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Abstract 

Artificial Intelligence (AI), with its increasing capability and connectivity, extends beyond 

limited and well-defined contexts and is integrated into broader societal domains. Examples 

include AI algorithms controlling large fleets of autonomous vehicles, news filtering algorithms 

influencing people’s political beliefs and preferences, and algorithms mediating resource allocation 

and labor (Bubeck et al., 2023; Rahwan, 2018). The relationship between humans and AI has 

evolved from mere supervisory control to interdependent cooperation on a larger scale, yielding 

significant societal benefits (Endsley et al., 2021). To better support human-AI cooperation, the 

establishment of a trusting relationship between humans and their AI teammates becomes 

increasingly critical (Chiou & Lee, 2021). Trust plays a vital role in shaping how people use, 

communicate with, and cooperate with AI systems. Therefore, the measurement and management 

of trust in human-AI cooperation are essential to ensure the safety, effectiveness, and overall is to 

measure and manage trust in human-AI conversations and cooperation, addressing three primary 

questions: (1) How can we measure people’s trust in human-AI conversations? (2) How does trust 

change over time within human-AI conversations? (3) How can we effectively manage instances 

of overtrust or undertrust through conversational cues to enhance human-AI cooperation? 

To tackle the initial question regarding the measurement of trust in human-AI conversations, 

machine learning models were developed to predict trust using lexical and acoustic features. While 

most machine learning approaches are often treated as opaque "black boxes," an inferential 

machine learning method was adopted, enabling the visualization of the most influential features. 

Moving on to the second question, which explores the temporal dynamics of trust in human-AI 

conversations, a dynamic system model was employed to explain the trust divergence. Adopting 

this temporal trust dynamic perspective, a mixed-method approach called trajectory epistemic 

network analysis showed the evolution of trust dimensions throughout human-AI conversations, 

revealing distinct patterns in conversational topic diversity and flow over time. Finally, to manage 

trust for effective cooperation on a societal scale, the research scope expanded from performance-

based calibration to purpose-based cooperation. The identified conversational trust indicators 

were demonstrated to be adaptive countermeasures to repair trust in human-AI cooperation. The 

findings highlight the importance of addressing purpose-based trust violations and contribute to 

our understanding that trust can be both measured and managed through human-AI 

communications, which can be served as an unobtrusive, real-time means of trust measurement 

and management in human-AI cooperation. 
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Chapter 1. Introduction 

As AI technology continues to progress, its potential to surpass human performance in 

numerous domains becomes increasingly likely. Such a development could be as transformative as 

the Industrial Revolution, with significant economic, social, and political implications. With this 

possible emergence of artificial general intelligence (AGI) (Goertzel, 2014), we are more entwined 

with AI and autonomous systems in a myriad of domains and tasks (e.g., space missions, military 

operation, cooperative autonomous driving, aviation, medical diagnosis). Symbiotic human-

machine relationships, as suggested by J. C. R. Licklider in the 1960s (Licklider, 1960), have 

become increasingly likely. Recent research often described these relationships as a human-AI 

team (HAT), humans and AI cooperate interdependently to achieve a joint goal and can provide 

beneficial outcomes to the symbiosis of two bodies. HATs suggest that AI and autonomous agents 

move beyond tools and become teammates (Endsley et al., 2021). In the near future, we can expect 

human-AI relationships where humans shape AI and are also shaped by AI (Rahwan et al., 2019). 

To better understand and design the interdependent HAT, designing a trusting relationship 

between humans and the AI teammate becomes more critical (Chiou & Lee, 2021).  

Trust has been defined as 'the attitude that an agent will help achieve a person’s goals in a 

situation characterized by uncertainty and vulnerability' (Lee & See, 2004, p. 51). Decades of 

research have shown that trust has been an important construct to explore and explain why and 

how people use, misuse, or disuse automated systems (Parasuraman, 1997). Trust has been 

identified with three core bases: performance, process, and purpose (Lee & See, 2004). 

Performance refers to the capability and competency of the system; process refers to the 

mechanism and algorithms used to accomplish its objectives; purpose refers to the design intent 

and objectives of the system. Prior literature has primarily focused on the performance- and 

process- based of trust (de Visser et al., 2020), but the purpose-based aspect of trust should be 

highlighted more in the context of the HAT. In this relationship, the shared goal between 

teammates may not always be aligned, especially when there are multiple agents with different 

objectives involved in a complex team structure. Thus, understanding the signals of aligned or 

misaligned goals in HAT becomes crucial.  

Signals of trust should be continuously measured and managed to reflect the teaming processes 

and how the team activity unfolds over time. This requires a continuous and observable stream of 

data to record the cognitive processing of trust evolving in the human-AI team. Communication, 

as a form of team cognition, can provide such contextual and process-based means for trust 
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modeling (Cooke et al., 2013). However, there is little research that focuses on trust in 

conversations (O’Neill et al., 2022). For conversations, the HAT would have more frequent 

information and signal exchanges in a joint task. Although communication plays a vital role in 

driving HAT success, measuring trust via communication is still a new approach. Communication 

can manifest conscious and subconscious mental states. Trust, which reflects both analytic and 

affective processes, can be analyzed and measured via communication (Lee & See, 2004). Prior 

literature on HAT usually uses communication patterns such as communication rates and flows to 

predict trust (Bromiley & Cummings, 1995). Limited research has focused on communication 

content for trust measurement. Additionally, conversations naturally unfold overtime, which can 

reflect the trust dynamics, rather than a snapshot view of trust captured by the subjective 

measurements.  However, the means of capturing trust from real-time communication and long-

term trust dynamics have not been studied.  

After measuring trust, the next step is to address how to effectively manage it. For a system to 

be deemed trustworthy, it must adapt to the user's trust level, considering both over and under 

trust. Prior research on trust management has primarily focused on performance-based trust 

during the calibration process, which involves accurately matching a person's expectations for the 

system's capability. However, when managing trust in HAT, the focus should expand to the 

purpose dimension. This is because AI is increasingly joining human teams and engaging in more 

social interactions, leading to trust violations that can arise from a misalignment of intentions and 

values within the team, in addition to the system's lack of capability.  

Furthermore, the previous literature has not adequately aligned the type of trust violation with 

the appropriate management strategies. Although considerable effort has been made to understand 

trust management strategies, including trust repair and damping behaviors to increase or decrease 

trust, there is a lack of correspondence between the appropriate strategy for different types of trust 

violations. 

Another important consideration is whether the identified conversational indicators can be 

used as conversational indicators of the agent to manage trust. Conversational indicators refer to 

conversation elements that convey uncertainty and confidence, enabling people to probe each 

other's uncertainty and confidence. It is also essential to examine the congruency between the trust 

management content and acoustic conversational indicators. Thus, it is crucial to investigate the 

casual linkages between the type of trust violation, type of management strategy, and their impact 

on different dimensions of trust.  
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1.1 Dissertation Objectives 

For my dissertation, the objectives are twofold: measure and manage trust in communication 

and cooperation. In particular, I focus on measuring trust in communication by taking into account 

the temporal dimension, encompassing both real-time measurement and long-term dynamics. 

Trust plays a mediating role in facilitating cooperation. Additionally, I aim to manage trust in 

cooperation by considering the structural dimension of team interdependence and goal alignment. 

From a temporal perspective, my research covers from real-time trust measurement to the study 

of long-term trust dynamics. From a structural perspective, I investigate trust within the context 

of multiple goals involving both AI and humans in team compositions using game-theoretic 

scenarios. 

1.1.1 Objective 1: Measure Trust in Communication: From Real-Time Estimation 

to Long-Term Dynamics 

Communication is critical to team cognition because it mediates team results and affects 

people’s trust in their AI teammates (Cooke et al., 2013). Conversational data can be considered 

as a mixture of behavioral and physiological data, which contains lexical, semantic, phonological, 

and pragmatic representations of conversations. People naturally express their trust attitudes 

through the words they used, the sentence structure, and the tone of the voices in their 

conversation, which are all contextualized. According to the interactive team cognition theory, 

communication is team cognition, which can be a nonobtrusive measure of team interaction 

dynamics (Cooke et al., 2013). Communication is also essential for trust building and calibration, 

which in turn can promote effective human-AI teaming (Fuoli & Paradis, 2014). Thus, 

understanding important indicators of trust becomes interestingly important in HAT.  

In addition, the conversation naturally holds temporal functions of coordination based on the 

structure of the turn of talks, which can show changes in human-AI relationships over time. 

Because trust is time-dependent and evolves throughout human-agent interactions (Kaplan et al., 

2021). Trust calibrates and evolves based on the various automation characteristics and 

experiences as relationships between parties mature (Korsgaard et al., 2018a; Luo et al., 2022). 

Trust is reinforced by the experience and is further impacted by a function of the trust itself in the 

previous moment (e.g. positive and negative feedback loops) (Falcone & Castelfranchi, 2004; Lee 

& Moray, 1992; Manzey et al., 2012). Additionally, adding the temporal aspect allows us to examine 

the recency effect that associated with trust dynamics, meaning that interactions happened more 

recently may have more value than those that happened some time back (Desai et al., 2012). Thus, 
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analyzing and modeling the temporal changes gives a more nuanced inspection of the trust 

evolution throughout the HAT. 

To achieve the first objective of measuring trust in communication, I explored the following 

two research questions: 

RQ1: How to measure people’s trust in the human-AI conversation?  

To address this question, it is important to first verify that trust can be estimated from 

conversations and then identify the important features as metrics for measurement. To estimate 

trust from conversations, it is necessary to first elicit utterances by designing trust-relevant 

situations with appropriate conversational prompts during the human-AI interaction. Thus, we 

developed a trust lexicon and a general framework on how to design appropriate conversational 

prompts (Alsaid et al., 2022; Li et al., 2020). Once we elicit trust-relevant conversations, we can 

process and analyze the conversational cues to estimate people’s trust. According to the well-

known phrase, “It’s not only what you say, but also how you say it.”, both the words and how they 

are said should convey trust. Therefore, we consider not only lexical cues (e.g., words used), but 

also acoustic cues (e.g., pitch, formants) (Elkins & Derrick, 2013; Johnson et al., 2014). To estimate 

trust, subjective trust ratings were predicted using machine learning models trained in three types 

of conversational features (i.e., lexical, acoustic, and combined). After training, model explanation 

was per formed using variable importance and partial dependence plots. The model explanation 

methods allow us to identify the important conversational indicators of trust. Our approach 

showed such real-time, conversational trust measures are possible by training machine learning 

models on lexical, acoustic, and combined conversational features. 

RQ2: How does trust change over time in the human-AI conversation?  

Solving the first research question establishes the possibility of estimating trust in conversation; 

however, the approach ignores two aspects: first, trust is dynamic, which means that people 

calibrate their trust over time as a continuous cognitive process. Second, trust estimation often 

focuses on the feature level and ignores the rich context and deep meaning of the conversation. 

In other words, the connections between the features and the meaning associated with features 

are situated within the context that might benefit from qualitative analysis. Furthermore, the 

temporal changes of trust in conversation cannot be captured. Thus, the second research question 

aimed to capture trust dynamics, which is the temporal aspect of trust evolution throughout the 

interactions, rather than aggregated or a snapshot of trust.  
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1.1.2 Objective 2: Manage Trust in Cooperation: From Performance to Purpose-

based Trust 

Once trust is measured, the next question is how to properly manage trust. For a system to be 

trustable, it will have to adapt and manage the user trust level, that is, over/under trust. Therefore, 

the objective is to evaluate how conversational indicators can be used as adaptive countermeasures 

by a virtual assistant to manage trust. Managing trust is not a novel topic. Previous research often 

identifies causal relationships between a single factor or a combination of antecedents of trust and 

investigates its impact on trust in experimental studies (Hoff & Bashir, 2015). However, as trust 

becomes more dynamic in HAT, it is important to define the trust management framework that 

captures the interdependency in the team. When measuring trust and modeling trust dynamics in 

conversation, research focuses on the performance and process dimension of trust yet neglects the 

purpose dimension of trust. Therefore, the goal of this chapter is to evaluate how conversational 

indicators can be used as adaptive countermeasures by a virtual assistant to manage various 

dimensions of trust. To achieve the objective of managing trust for human-AI cooperation, I 

explored the following research questions.  

RQ3: How to manage people’s over-trust or under-trust under different types of trust 

violations? 

When designing trust management strategies, it is important to consider the types of violations 

(i.e., performance, purpose), manage trust bidirectionally (i.e., repair and dampen), and measure 

the effects subjectively and behaviorally. To address RQ3, I conducted a mixed design study to 

investigate the impacts of trust management content on trust dimensions. We hypothesized that 

people would have a higher drop in trust when it is a purpose-based trust violation. The apology 

paired with promise would better repair the trust violation. 

RQ4: How to design conversational indicators of agent to manage people’s trust? 

To address RQ4, we designed the trusting voice with the identified the appropriate content 

identified in Study 1 to further investigated the effectiveness of the acoustics cues on trust 

management. A trusting voice, often perceived as a happy sounding voice, can either promote or 

hinder trust repair efforts, depending on the congruency between the voice and the content. The 

positive congruency indicates it is more effective to pair a highly trusting voice with trust repair; 

the negative congruency indicates that a low trusting voice can better repair trust, since it conveys 

more sincerity and remorse. The direction and effects of the congruency effect should be closely 

exanimated in the context of trust management. We hypothesized that when the agent’s 
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trustworthy voice shows the positive congruency (i.e., high trusting voice with trust repair content), 

it is more effective to manage people’s trust.  

1.2 Dissertation Outline 

My dissertation followed a two-stage approach: measure and manage trust in the human-AI 

team. In the first part, measuring trust, I focused on the temporal dimension of human-AI 

communication from the short-term trust estimation to the temporal dynamics of trust. Chapter 

3 investigated the trust estimation on human-AI communication based on the microlevel of 

acoustic and lexical features. Chapter 4 and Chapter 5 extended the understanding of trust 

dynamics. Chapter 4 showed that trust can be best modelled by a dynamic system perspective and 

Chapter 5 adopted this concept and modelled the meso-level of the conversational topics and their 

temporal changes.  

In the second part, managing trust, I highlighted the structural dimension of human-AI 

cooperation by considering interdependence and goal alignment issues. Following the human-AI 

cooperation and communication framework, Chapter 6 presented two experimental studies 

incorporating findings from part one trust measurements. For Study 1, I investigated trust 

management content for different dimensions of trust. For Study 2, I investigated the effects of 

acoustic cues on trust and its congruency with the contents. I designed the trusting voice with the 

identified the appropriate content identified in Study 1 to further investigate the effectiveness of 

the acoustics cues on trust management. This chapter provided a better understanding of the 

appropriate trust management strategy for different type of trust violation, especially whether the 

identified acoustic cues of trust can dampen and repair different dimensions of trust. 
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Figure 1. Overview of the Dissertation. 

1.3 Contributions 

1.3.1 Theoretical Contribution 

The dissertation made a theoretical contribution by measuring and modeling trust processes 

in human-AI communication. My work conceptualized trust in communications and identified 

critical conversational indicators that are essential to predict trust. In addition, the work developed 

the temporal dynamics of trust processes in communications, which provides a deeper 

understanding of how trust evolves over time.  

The dissertation also extended the concept of trust beyond performance to purpose-based 

interaction and examinated the goal alignment in human-AI cooperation. In particular, I abstract 

the potential performance- and purpose-based trust interactions as a game-theoretic situation. By 

integrating the Trust Game and Threshold Public Goods Game, the newly developed environment 

allows researchers to capture impacts of the performance- and purpose-based trust violation on 

people’s decision makings. Findings from game can be applied to human-AI teams in future hybrid 

societies, especially when faced with the conflicts between individual and collective benefits. 
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Overall, the dissertation's contribution to the field of communication provided a more 

comprehensive understanding of trust processes and highlights the importance of effective 

communication in building and maintaining trust. 

1.3.2 Practical Contributions  

Conversational agents and other types of AI-based agents represent an important opportunity 

to extend human capabilities, but only if they are accepted and trusted appropriately. This 

dissertation also provided practical principles and guidelines for designing trustworthy 

conversational agent and how to better measure and manage the ongoing dynamic relationships.  

This work also provided practical contributions in terms of methodological implications in 

measuring latent variables. We developed a machine learning pipeline that enables the 

quantification of latent constructs such as trust, workload, and situational awareness. This pipeline 

provides a more objective, non-intrusive, and efficient way of measuring these subjective concepts 

in communications and other continuous data streams.  
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Chapter 2. Conversational Trust Measurement and Management  

 

2.1 Human-AI Teaming (HAT) 

In 'Man-Machine Symbiosis', J. C. R. Licklider (1960) originated the concept of human-

machine symbiosis, which depicts a partnership in that human brain and computing agents can 

cooperate tightly and effectively and providing beneficial outcomes to the two bodies of symbiosis. 

As Johnson and Vera (2019) discussed, 'no AI is an island', the human-AI teaming perspective is 

essential to reach the full potential of humans and AI. As increasingly autonomous machines and 

AI are introduced into domains such as space missions, military operations, autonomous driving, 

aviation, medical diagnosis, and so on, the research in the effective human-AI symbiosis becomes 

more urgent and essential.  

The traditional view on MABA-MABA (Men are better at - Machines are better at), which 

holds the replacement perspective by deciding the functional allocation by substitution, cannot 

satisfy the increasing needs for an effective human-AI team. Since in these domains, uncertainty, 

risks, and time pressure often require members to make effective real-time coordination of goals 

and actions within a changing environment (Wintersberger, 2020). The high level of autonomy 

and capabilities are not equal to simpler situations for the human, whereas usually the opposite is 

true (Johnson & Vera, 2019). Simply improving the capabilities of the intelligent agent would not 

be enough to promise a safe and successful space mission. An example is NASA’s work on an AI-

based activity planner from 2002. The system added an optimization scheduling engine to consider 

associated restrictions and produced an optimal plan for the activities of the day with a single 

button. However, the optimizing engine was almost removed from the mission due to the difficulty 

of modification, manipulation, and validation of human members (Johnson & Vera, 2019). Under 

highly uncertain and time-critical tasks, psychological constraint of time and risks would negatively 

affect the ability of members to understand and choose the optimized alternatives recommended 

by the agent. The more intelligent the technological system, the greater the need for collaborative 

skills between two parties, such as real-time decision making, adaptive task allocation, and goal 

alignment. Therefore, it requires a relationship shift from a typical vertical (supervisor-subordinate) 

control to a horizontal (peer-to-peer collaboration) interaction (Chiou & Lee, 2016; Trafton et al., 

2006).  

A vertical interaction means the supervisor with more knowledge of tasks gives directions and 

suggestions to subordinates to implement actions. Then the supervisor makes the diagnosis and 
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takes further actions of the system. The capabilities of the intelligent agent become increasingly 

advanced, such as allocating resources to accomplish a goal (Truszkowski & Hallock, 1999) or 

overriding human operators’ actions when the latter may jeopardize safety. This situation makes 

the defined role of human as supervisors blurred, which means in some situations, an intelligent 

agent has better ability to monitor and infer the state of systems and make suggestions to human 

to follow. As the level of autonomy increases, the agent can allow the human a restricted time to 

veto before the automatic execution of a recommendation or executes automatically and informs 

the humans when necessary (Parasuraman & Wickens, 2000).  

A horizontal interaction depends on reciprocity and the ability to share resources to adapt to 

unexpected demands. With a high level of autonomy, agents can interpret, reason, and optimize 

decisions in response to operators, the environment, and the objectives of the task itself 

collaboratively. When the agent makes the decision based on a global optimum, with limited 

capacity (e.g., knowledge, skills, abilities, and resources), the person representing the local optimum 

could perceive this action as competitive behaviors (Sanders et al., 2011). Based on the poor 

understanding and adjustment of the interdependence between human and agent, under trust 

might develop, leading to disuse of the intelligent agent, which could contribute to catastrophic 

failures.  

2.2 From Trust to Trusting 

The concept of trust in automation has been the focus of substantial research over the past 

several decades (Hoff & Bashir, 2015). Trust in automation is defined as “the attitude that an agent 

will help achieve an individual’s goals in a situation characterized by uncertainty and vulnerability” 

(Lee & See, 2004). With the increasingly capable automated systems and artificial intelligence (AI), 

the relationships between human and AI have shifted from supervisory control to a collaborative 

team. Trust plays a more crucial role in determining the success of such partnerships. The change 

of the HAT relationship suggests a need to understand the interdependent human-AI teaming 

(Maier, 1967).  

With the increasing capability of automation and AI in a more horizontal relationship with 

humans, a shift is needed: from a traditional static trust to a relational and dynamic trusting process. 

Chiou and Lee (2021) proposed a conceptual framework of trusting in automation, which 

highlighted the relationship between the goal environments and the four core interaction 

considerations (i.e., situation, semiotics, sequence, and strategy). The situation captures decision 

points where trusting and trust calibration are critical, such as the experimental design on the 
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interdependence of trust-related choices, incentives, outcomes of choices, and the array of 

potentially competing goals. Strategy describes the action space in the trust situations that promote 

cooperative joint action and mutual trusting. Sequence captures the temporal element whether 

decisions are made synchronously, asynchronously, in order, or in free form. Semiotics captures 

the type of information conveyed during interactions, such as communication. In this dissertation, 

we focused on the semiotic interaction, which is the communication between human and AI, and 

extended the other considerations in two directions: temporal dynamics and structural 

interdependence.  

2.3 Temporal Dynamics 

An important aspect of trust dynamics that deserves more attention is its temporal 

characteristics. A shift from the snapshot view of trust to a dynamic view of trust is important 

(Yang, Schemanske, et al., 2021) as trust is time-dependent and evolves throughout the human-

agent interaction (Kaplan et al., 2021). The evolution of trust depends on various automation 

characteristics and experiences as relationships between teammates mature (Korsgaard et al., 

2018a; Luo et al., 2022). Trust is reinforced by experience and is further affected by previous levels 

of trust (Falcone & Castelfranchi, 2004; Lee & Moray, 1992; Manzey et al., 2012). Examining this 

temporal trust dynamics allows us to assess the influence of the recency effect, meaning that 

interactions that occurred more recently may have more influence than those that occurred earlier 

(Desai et al., 2012). Thus, analyzing and modeling the temporal changes gives a more nuanced 

inspection of the trust evolution throughout the HAT. 

To model the evolution of trust, trust should be measured multiple times and further modeled 

by considering time units in the model. Yang et. al. proposed a computational model proposes 

that trust at any time t, follows a Beta distribution, which shows good prediction accuracy (Yang, 

Schemanske, et al., 2021). Although modeling trust evolution is relatively new and limited, there is 

a long history of modeling human behaviors and attitudes with a time-dependent dynamical system 

approach. Gottman, Swanson, and Swanson (2002) showed how marriage outcomes can be 

modeled using the dynamical system analysis, which focused on the temporal dynamics of partner 

communication. Using such non-linear dynamical systems methods to model relationships is 

becoming more prevalent (Demir et al., 2021). 

2.4 Structural Interdependence 

Increasingly, we are seeing the emergence of human-AI teams, where people and intelligent 

machines work collaboratively toward a common goal. As a human-AI team, to function 
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effectively, it is important to recognize the structural interdependence. This means that the performance 

of one team member is influenced by the actions and decisions of the other. The relationships also 

shift from a typical dyad of one-to-one human agent interaction to a multi-agent cooperation in a 

hybrid team. A central consideration is how the patterned relationships among multiple members 

jointly affect network members' behavior. Hence, it is not assumed that network members engage 

only in multiple dyads with separate members. The highlight of the structural interdependence 

suggests several changes: human behaviors should add the consideration in terms of structural 

constrains on activity, rather than solely from individual behavioral aspect. The structure of the 

interdependent team can be treated as a network of agents that are tightly connected. The analytic 

methods deal directly with the patterned, relational nature of social structure can supplement–and 

sometimes supplant–mainstream statistical methods that demand independent units. 

Understanding and managing this structure interdependence is crucial for ensuring the success of 

human-AI teams and for maximizing the potential of this new way of working. 

In a human-human team, interdependence theory was first introduced by Harold Kelley and 

John Thibaut in 1959 in their book The Social Psychology of Groups (Thibaut & Kelley, 1959). 

Interdependence theory originally focus on interpersonal relationships defined through 

interpersonal interdependence, which is the process of people influencing one another’s 

experiences. Structural interdependence refers to the team characteristics that define the 

interconnectedness of team members (Wageman, 2001). These characteristics refer to task-related 

team input, such as resources and workflows as well as goal and reward system, which can be 

deliberately manipulated by team leaders and members (Courtright et al., 2015). Courtright and 

colleagues have identified an integrative framework with four two dimensions of four types of 

interdependence (Courtright et al., 2015): for task interdependence, which is the degree to which 

the taskwork is designed so members depend one another for access to critical resources and create 

workflows that require coordination action. The task interdependence includes input/resource and 

process/means interdependence. For outcome interdependence, which is the degree to which 

outcomes of taskwork are measured, rewarded, and communicated at the group level to emphasize 

collective outputs rather than individual contribution. The outcome interdependence includes the 

goal and reward/feedback interdependence. 

Later, this concept is adopted to human-robot system by supporting interdependence through 

requirements for a new approach called coactive design (Johnson et al., 2014). Dependence is 

about capacity and interdependence is about relationship in the joint activity. For the 

interdependence theory, which is grounded based on the assumption of the joint activity, focuses 
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on the complementary relationships, which can be either required/hard or opportunistic/soft. An 

important missing factor in interdependence theory is the shared goal in the joint activity. 

According to Bratman (1992), apart from the fact that interactants are mutually responsive to each 

other, one other essential characteristic of joint activity is the shared goal. Mutual directability 

identified based on coactive design (observability, predictability, directability) can be a useful 

guideline to determine the interdependence requirement. However, the existing literature still lacks 

a theoretical framework that focuses on the goal aspect in human-AI interdependence. 

2.5 Trust Measurement in Conversation 

Trustworthy communication mediates the cooperation. How people talk and communicate is 

also closely tied to the broader interactive goals of the team, which are the products of adaptations 

to navigate the social world. Using conversation to coordinate their actions in the service of 

mutually beneficial interaction. Therefore, in the HAT, supporting the process of trusting via 

communication and cooperation is highlighted in this work. To appropriately calibrate overtrust 

or undertrust, we need to measure and manage trust.  

Trust, as a latent variable that represents human attitude, cannot be measured directly. Three 

main types of measurement have been developed to capture trust: subjective, behavioral, and 

physiological (Kohn et al., 2021). The advantages and disadvantages of each measurement are 

discussed in the context of HAT. In this section, a new approach, conversational measurement, is 

proposed.  

2.5.1 Subjective Measurements 

For subjective trust measurements, people self-report their feeling and attitudes by answering 

survey items. Self-report measures are extremely easy to integrate into existing tasks and 

experiments before or after the task. Surveys are often developed precisely to capture the 

underlying constructs, such as ability, integrity, and benevolence, which shows better face validity 

and is widely adopted in most studies. Across disciplines, researchers have relied on many different 

questionnaires to measure trust. We have conducted a mapping review of 46 trust questionnaires 

from three main domains (i.e., Automation, Humans, and E-commerce) with a total of 626 items 

measuring different trust layers (Dispositional, Learned, and Situational). Results provided a guide 

of semantic space of trust questionnaires and implications in the questionnaire selection processes 

(Alsaid et al., 2022). Among these identified scales, they usually consist of directive statements and 

descriptions of human-agent relationships. For example, the frequently used trust scale in 

automation by Jian, Bisantz, and Drury (2000) has items such as “the system is suspicious.” 
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Respondents typically record their attitudes on a continuum from 1 (not at all) to 7 (extremely). 

Although frequently used, this approach suffers from some limitations when assessing human-

agent relationships. First, since the directive survey is heavily text-based, the administration process 

often forces an interruption while people are interacting with the agent. Therefore, it is hard to 

capture the dynamics of trust calibration that might require many surveys. Second, the direct 

descriptive statement does not leave respondents with adequate freedom to identify, form, and 

explain their feelings and opinions (Gobo, 2011). For example, the statement 'the system is 

suspicious' might cause anchoring bias, where people rely on this preexisting information (e.g., 

suspicious) to judge their trust in agents. Third, most popular scales have the potential to cause 

positive bias in automation due to the order effect and the unbalanced design of positive-negative 

items (Gutzwiller et al. 2019). Finally, trust scales depend on and reflect human-agent relationships. 

Since the nature of these relationships has drastically changed in response to technological 

developments, past scales can be outdated and inapplicable to the inquired relationship (Merritt et 

al. 2019). Therefore, while self-reported trust is used most frequently and often treated as the gold 

standard, it is unable to satisfy the need to unobtrusively monitor trust dynamics, especially in 

time-pressured, risky situations, such as space missions or autonomous driving (Li et al., 2020; 

Yang, Christopher, et al., 2021). There is a need for an alternative or complementary trust 

measurement. 

2.5.2 Behavioral Measurements 

Behavioral measurements capture the interaction with the automated system, which can be 

passive (reliance) or active (compliance). Response time (time to respond to an event) and decision 

time (time to decide to use regarding automation) are also used to reflect trust. Faster decision 

times imply higher trust whereas the slower time reflects more evaluative thoughts and lower trust.  

Using the game-theoretic situations to capture behavioral trust is one well-established 

approach in behavioral economics yet receives limited attention in human factors research. Game 

theory, defined as mathematical models of conflict and cooperation between intelligent rational 

decision makers, can provide a quantified and context-independent situation to evaluate behavioral 

trust. By creating an environment in which cooperation can initially form and become a stable 

presence in a human-machine system, game theory allows researchers to investigate the dynamics 

of trust in human-agent dyads (Razin & Feigh, 2021). One of the key advantages of using game 

theory to frame trust is that it can account for the impact of uncooperative behavior on trust, as 

opposed to just unreliable behavior. This means that trust in agents should be studied in terms of 

cooperation between humans and agents, rather than just the competence of the system. Two 



  15 

 

 
 

main types of game theory have been established to capture trust in human-AI cooperation: the 

Trust Game (TG) and the Threshold Public Goods Game (TPGG). 

The Trust Game, invented by Berg et al. (1995) (Berg et al., 1995), measures trust using 

economic decisions. In this game, the Investor has a sum of money (X) that she can either keep 

or invest with another player, the Trustee. If the Investor invests a certain amount (T), she keeps 

the remainder and the investment earns a return at a rate (1+r), becoming (1+r) T. The Trustee 

must then decide how to share the new amount with the Investor. However, the Trustee is free to 

keep the whole amount without consequence. The amount invested (T) is used as a proxy for trust, 

while the amount returned by the Trustee is taken as an indicator of their perceived 

trustworthiness. However, this approach assumes that subjects lack altruistic or inequality-averse 

other-regarding preferences (Cox, 2004), which did not untangle the relationships between trust 

and reciprocity. This means that variable trust (T) is confounded with the trustee’s inequality 

aversion and altruistic preferences. In addition, there is no component of cooperation in the trust 

game since there is no common goal in the game. 

The Threshold Public Goods Game (TPGG), as a type of the public good games, has often 

been used to abstract social decision-making problems where participants aim to achieve a 

common goal with uncertain and delayed responses noted by the threshold. The players need to 

contribute to a public goal which is launched if and only if a certain level of contributions 

(threshold) is reached. Contributing may have a personal, local cost, but can lead to a global benefit 

for the team. The TPGG helps to understand people’s tradeoffs between local and global optimum 

in the human-AI cooperation.  

2.5.3 Physiological Measurements 

Physiological measurements capture biological responses ranging from heart rate changes to 

eye gaze tracking to neural activation. Kohn et. al.(2021) identified four distinct types of 

physiological measures:  1) electrodermal activity (EDA), also known as galvanic skin response, 

which measures the sweat gland activation via skin conductivity; 2) eye gaze tracking, which 

measure participants’ monitoring behaviors; 3) heart rate change, which often used to measure 

workload and stress; 4) neural measure, including electroencephalogram (EEG), functional 

magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS), which 

can theoretically be captured and used to measure trust. Using physiological measures may help to 

present issues in the self-report method by directly capturing people’s responses, which present a 

great opportunity for real-time trust estimation. However, getting high-quality physiological data 
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(e.g., EEG and skin conductance responses) often requires setting up specialized and intrusive 

hardware on participants (e.g., electrodes on the scalp or hands), which is challenging to implement 

in real-world applications.  

2.5.4 Conversational Measurements 

One rich source of data that can be used to measure trust but often is neglected in the past 

literature is team communication. With the increasing level of interdependency in HAT, there is 

an increase in information exchange between human and AI teammate, which displays a rich 

source of information that reflect team cognition and processes (Cooke et al., 2013). Based on 

interactive team cognition theory, communication represents team cognition and can serve as a 

unobtrusive measure of team interaction dynamics (Cooke et al., 2013). Communication is also 

essential for trust building and calibration, which in turn can promote effective human-AI teaming 

(Fuoli & Paradis, 2014). Although communication plays a vital role in driving HAT success, 

measuring trust via communication is still a new approach. 

Conversational data can be considered as a mixture of behavioral and physiological data that 

contain lexical, semantic, phonological, and pragmatic representations of the conversations. In 

other words, people naturally express their trust attitudes through the words they use, the sentence 

structure, and the tone of the voices in their conversation, which are all contextualized.  

Additionally, communication can manifest conscious and subconscious mental states. Trust, which 

can reflect both cognitive and affective processes, can be analyzed and measured through 

communication (Lee & See, 2004). prior trust literature suggested that trust is ultimately an 

affective process, which has more influence on analytic and analogical processes (Lee & See, 2004). 

Yet, with the subjective (e.g., survey) or behavioral (e.g., takeover the automation) measures are 

often hard to reflect the affective process. Conversational data, which contain not only what they 

say (e.g., word choices), but also how they say it (e.g., tone of voices), provides richer information 

about people’s affective trust process (Li et al., 2022).   

Prior literature on HAT usually uses communication patterns such as communication rates 

and flows to predict trust (Bromiley & Cummings, 1995). Limited research has focused on 

communication content for trust measurement. Although the most explicit way of expressing and 

sensing trust is through words that directly pertain to trust (e.g., I trust you), it is unnatural and 

rare for people to express a direct attitude in a performance-based task. Therefore, we should 

obtain and infer people’s trust by processing and analyzing the signals exhibited by individuals in 

conversations (Vinciarelli et al., 2009). To do so, we first need to elicit utterances by designing 
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trust-relevant situations with appropriate conversational prompts. Once we elicit trust-relevant 

conversations, we can process and analyze the conversational cues to estimate people’s trust. 

According to the well-known phrase, “It’s not only what you say, but also how you say it.”, both 

the words and how they are said should convey trust. Therefore, in this dissertation, we consider 

not only lexical cues (e.g., words used), but also acoustic cues (e.g., pitch, formants) (Elkins & 

Derrick, 2013; Johnson et al., 2014).  

2.6 Trust Management in Cooperation 

Once trust is measured, the next question is how to properly manage trust. Managing trust is 

not a novel topic. Prior research often identifies the causal relationships between a single factor or 

a combination of antecedents of trust and investigates its impact on trust in experimental studies. 

However, as trust becomes more dynamic in HAT, it is important to define the trust management 

framework that captures the interdependency in the team. In this section, a three-stage trust 

management process is defined in Figure 2: antecedents, management, and measurement. The key 

is direct correspondence between the type of trust antecedents (i.e., type of trust violation or 

compliance), the management strategies (i.e., scope, strategy, timing, and modality), and the 

measurement (i.e., methods, analysis). This means that performance-based trust violation should 

be managed and measured differently from purpose-based trust violation.  

 

Figure 2. Trust Management Framework 

2.6.1 Antecedents: Identify the type of trust compliance or violation 

When managing trust, the most important yet often neglected step is to identify the 

corresponding type of trust violation or compliance. Trust compliance or violation is defined 

action representing the alignment or misalignment between the observed trustworthiness and the 
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current (de Visser et al., 2020). Trust in automation is a multidimensional construct containing 

performance, process, and purpose-related antecedents (Lee & See, 2004). Extensive research has 

been conducted to examine the antecedents of performance and process-based trust. However, 

the purpose dimension has become increasingly important as humans and AI become more lateral 

teammates. The shared goal assumption should be revisited when identifying the type of trust 

compliance and violation factors.  

Purpose-Based Trust 

When managing trust, it requires more than performance and process aspects of trust. A shift 

to ‘purpose’ basis of trust is often required. In the past human-agent interaction, it is often assumed 

a shared goal. This means that autonomous system assisted human operators to achieve a specific 

task. In this case, the human is the supervisor and AI is the assistant. With the increasingly 

computational capability and connected systems, the inclusion of AI in the future social systems 

is inevitable such as autonomous vehicles, drones, recommending system, healthcare support, or 

educational support system. In human-AI cooperation in a hybrid society, the assumption of 

shared goal should be challenged. I will refer to this issue as ‘goal alignment’ in the following 

section. Goal alignment is defined as the degree to which the AI’s programmed goal matches with 

the human’s goal {Citation}. Without aligned goals, we may inadvertently design AI that 

maximizes an objective function that is poorly aligned with humans. Especially in safety-critical 

domains, where failure tolerance is low, goal conflict can lead to catastrophic consequences.  

Goal alignment, or value alignment, is not a new topic in robotics domains and safety research 

for AI. As superhuman cognitive abilities become generally reachable, value alignment, which is 

'AI must do what we want it to do', has been identified as a core topic to address. Thinking of the 

‘King Midas Problems’, which is a legendary king Midas in ancient Greek mythology got exactly 

what he asked for-everything he touched should turn to gold. He discovered too late that he turned 

his food, drink, and his family member all into gold and he died in misery and starvation. The same 

faith might be applied to the human-AI domains-we may, inadvertently, design the AI with the 

objectives that are not well aligned with ours. We can only discover the catastrophic consequences 

until it becomes too late. For robotics domains, researchers focus on technical side of robotics 

goal-implementation question, such as: How can we create an agent that will reliably pursue the 

given goals? How can we formally specify beneficial goals (Soares & Fallenstein, 2014)? How 

should the robot strike compromises when conflicts arise between the commands of its owners 

(Critch, 2017)?  
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In HAT, only focusing on the system implementation of machine goals is not enough. Humans 

are not rational, do not maximize the expected utility all the time, and risk averse. When 

considering the machine algorithm design, people should balance efficiency, fairness, and risk. 

When aligning goals between human and AI, the existing benefits of the machine behaviors, such 

as efficient computing, should be advocated, but would do so in a way that would help people to 

be more prone to considering these more efficient solutions when warranted. Thus, the goal-

related characteristics of the agent are not always congruent with humans in the team. The topic 

on value alignment should be introduced and redefined in terms of HAT teaming from a 

sociotechnical perspective.  

In social interactions, there might be a conflict between individual and societal goals. Since 

with the increasing computational power and connected system, we can design a more socially 

optimal agent for the common good. Humans, on the other hand, are often irrational and 

individual driven. Therefore, goal conflicts can happen: the global optimum goal assigned to the 

AI agent can potentially conflict with the individual’s local goal. For example, connected 

automated vehicles can coordinate traffic to achieve optimal traffic flow, which conflicts with 

individual goals of arriving at the destination in the shortest time. In the safety critical domains, 

such as healthcare, military, and emergence response where the expectation for system efficiency 

is high and the tolerance for breakdowns is very low, designing a trustworthy AI teammate requires 

not only a competent reliability, also the goal alignment between units of an organization. With 

the inclusion of AI in social systems, we must understand how it can be used to promote 

cooperation in achieving societal goals, while maintaining people’s trust in AI. In this case, the 

performance of the AI becomes less relevant. With highly reliable information, yet with misaligned 

goals, would humans trust and cooperate with AI in a hybrid society? What’s making the situation 

worse is that people tend to exploit AI in cooperation (March, 2019). The question remained: How 

can we design a trustworthy agent and nudge people towards the socially optimal and aligning the 

goals? 

Additionally, the conflict can also occur on the temporal dimension. Often, short-term 

interests supersede long-term ones, even when the latter provide a higher reward. Moreover, short-

sighted individuals might not see the future consequences of their immediate actions. With the 

inclusion of AI in the social systems in the long run, we must comprehend how can it be used to 

promote cooperation towards the societal optimal in a long run while maintaining people’s trust 

in AI. In this case, the performance of the AI becomes less relevant. A series of new questions 

should be asked: With highly reliable performative AI, yet with misaligned goals, would humans 
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trust and cooperate with AI in a hybrid society? Often, people tend to exploit AI in cooperation, 

how can we better manage people’s trust to promote cooperation? How can we design a 

trustworthy agent and nudge people towards the socially optimal and aligning the goals? 

Little literature has discussed the process and models for capturing the goal aligning process 

in the human-AI teaming. In the form of human-AI goal alignment, it should be iterative and 

recursive due to the dynamic and dyadic nature of the goal interdependence. Human-AI teaming 

requires both an alignment of self with AI to form the shared goal, and a differentiation of self 

from other to understand and coordinate the differing but complementary roles in the joint 

intention. One strategy for aligning the goal in the joint activity is effective communication. 

Continuous or period updates between members can maintain situation awareness (Endsley & 

Kiris, 1995) and the shared mental model of the common ground (Clark, 1996). The intelligent 

agent should be able to interpret the situation and know what information to share and when to 

request assistance (Johnson & Vera, 2019). Whiting and colleagues (2021) showed that 

communication signals can bring human decisions to efficiently cooperate in human-robot 

interaction. Lewis (1979) proposed that “conversation as a cooperative game between participants” 

where the goal is to determine which world the participants are in. Participants work towards this 

goal by sharing the information, which narrows the set of possible worlds that the real world might 

be. The information shared between the conversation participants is stored in the Common 

Ground, which can be viewed as a set of accepted propositions. The rational speech act (RSA) 

model is a framework for pragmatic and mathematical modeling that extends the concept of 

'conversation as a cooperative game' by proposing a Bayesian listener and speaker who act to 

maximize a utility function related to the listener’s understanding. In this model, Common Ground 

contains not only just a set of worlds, but also a probability associated with each world, the 

probability that it is the real world. At each turn in the conversation, the speaker selects a world 

from the set of worlds, simulating a new piece of information that the speaker wishes to contribute, 

and chooses an utterance to express it. When hearing the speaker’s utterance, the listener must 

think about the message the speaker is trying to convey. The listener assumes that the speaker 

selects the sentence that maximizes the probability of the observed world. The listener interprets 

the sentence to update the probability distribution over possible worlds in the Common Ground, 

calculating the likelihood of each world given the sentence selected, according to their model of 

how the speaker picks sentences. The RSA model can be tuned to maximize various types of goal 

interdependency to explore how a human and an agent would communicate and negotiate in a 

collaborative task under various intents/purposes. 
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2.6.2 Management: Identify Scope, Strategy, Timing, Modality  

Scope 

 

Figure 3. Trust Management Scope Ranging from Single-Factor Manipulation to Adaptive 

Management.  

When designing the trust management, the scope matters, which can range from a single-factor 

or multi-factor manipulation, to calibration, to a fully adaptive management.  

Manipulation. Trust manipulation focuses on casual relationships between one or more trust 

antecedents and trust. Researchers usually design experimental studies and investigate the influence 

of these antecedents on trust. Hoff and Bashir identified 29 factors that are influential for the 

trust(Hoff & Bashir, 2015). These studies identified the significant factors that influence trust and 

their interactions with other factors in various contexts. These studies lay the essential foundation 

for the following calibration and management.   

Calibration. Researchers have reached to consensus that when managing the trust, the main 

goal is never increase or decrease trust (which is a form of the manipulation), which can lead to 

costly consequences (Bailey & Scerbo, 2007; Dzindolet et al., 2001). The aim should be 'trust 

calibration', which requires users to appropriately adjust their level of trust to the actual reliability 

of the AI system. Specifically, when we overtrust automation, we should dampen trust; when we 

undertrust, we should repair trust (de Visser et al., 2020)(see Figure 4). Trust calibration is 

essentially a two-directional trust manipulation with a continuous alignment with the system 

capability. Among these two directions, repair and dampening, the trust repair has been studied 

heavily. Trust repair is defined as an action taken by a trustor to help restore trust in them after 

they have committed a violation of trust (R. M. Kramer & Lewicki, 2010). Prior literatures focus 

on using the short-term verbal cues to repair trust through four different types of repairing 

strategies: apologies, denials, explanations, and promises. Esterwood and Robert have identified 

the overarching theoretical trust frameworks associated with these four types of repair strategies 

and found that apologies, explanations, and promises are equally ineffective in repairing trust after 

repeated violations (Esterwood & Robert, 2023). On the other hand, trust dampening has not 

received as much attention in the literature, although literatures have constantly shown the danger 

of the automation-induced complacency and perfect automation schema (Dzindolet et al., 2002). 
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Trust dampening often used approaches by lowering the expectation when the trust is too high. 

Jensen and Khan found that trust dampening cues increased perceptions of system integrity and 

improved trust appropriateness (Jensen & Khan, 2022). However, although people recognize the 

importance of trust calibration as a bidirectional control, most of the previous research focuses 

only on either trust repair or dampening.  

 

Figure 4. Trust Calibration Process(Chiou & Lee, 2021; de Visser et al., 2020). 

Some efforts on designing a trust-calibrated system have been shown in the recent literature. 

Okamura (2020) proposed a framework for dynamically detecting inappropriate trust-calibration 

status with a behavior-based approach (Okamura & Yamada, 2020). The framework focused on 

the human-AI cooperation at the performance-level: the user decides whether or not to rely on 

the system or perform each task manually. Three core parameters, 𝑃𝐴, 𝑃̂𝐴, and 𝑃𝐻 are defined as 

follow.  

• 𝑃𝐴: Probability that a task performed by an AI system will be successful, which is the 

‘reliability of the AI system'.  

• 𝑃̂𝐴: Human user’s estimation of 𝑃𝐴, which is user’s trust in the AI system.  

• 𝑃𝐻: Probability that a task done manually by a human user will be successful, which is 

the “capability of the user”. 

𝑃𝐴 varies based on the conditions of the AI system. When trust is appropriately calibrated, 𝑃̂𝐴 

should become equal to 𝑃𝐴. For overtrust and undertrust, Okamura defined it as follows: 
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• Over-trust: when user estimates the AI system is better at a task than the user, even 

though the actual reliability of the AI system is lower than the user’s capability.  

(𝑃̂𝐴 > 𝑃𝐻) ∧ (𝑃𝐻 > 𝑃𝐴) 

• Undertrust: when the user estimates that the AI system is worse than their own 

capability, even though the actual reliability of the system is higher than the user's 

ability. 

(𝑃̂𝐴 < 𝑃𝐻) ∧ (𝑃𝐻 < 𝑃𝐴) 

Prior literatures have been explored to use trust calibration cues (TCCs) to properly notify 

users to calibrate their trust (Okamura & Yamada, 2020). TCCs play a crucial role in human-AI 

cooperation, as they can shape users' trust in AI systems. Because once users fall into the categories 

of overtrust or undertrust, it is not easy to update their state due to the confirmation bias and other 

cognitive preservation. TCCs can provide triggers for users to pay attention to the environment 

and system and actively update their cognitive states. Visser and colleagues presented a trust cue 

design taxonomy that considered trust dimensions (intent, performance, process, expressiveness, 

origin) and trust processing stages (perception, comprehension, projection, decision, and 

execution)(de Visser et al., 2014). 

Management. Trust calibration essentially only focuses on the performance-dimension of 

trust, which is often the most critical factor in the past human-automation interaction. However, 

as automation becomes more autonomous in teamwork, purpose-based trust should be identified 

and calibrated. Trust management is defined as the multidimensional monitoring and calibrating. 

Previous results on different modality, timing, and attribution of TCCs suggest that designing the 

appropriate and effective TCCs are nuanced. When studying trust management, researchers must 

understand what type of trust should be calibrated (scope), how to manage it (modality), what 

information to include (strategy), and when to present (timing). 

Strategy 

Trust management strategies are often achieved by short-term trust calibration cues (TCCs), 

which can be broadly classified as either repair or dampen approaches. Note that most of the 

existing strategies focus on the performance-based trust dimension.  

For trust repairing strategies, Esterwood and Robert identified four main types of strategies 

and provided theoretical basis for each of these strategies: theory of forgiveness for apology, theory 

of forgetting for promises, theory of informing for explanation, and theory of misinforming for 
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denial (Esterwood & Robert, 2023). Apology acknowledges the issue and show expressions 

remorse. By doing so, especially in conversations, apologies convey more emotional responses 

(e.g., remorseful), which can be used to promote forgiveness and restore trust from an affective 

perspective. The explanation is another repair strategy that can be used to restore trust. It provides 

users with a clear understanding of why the system failed and what steps are being taken to prevent 

similar issues in the future. A promise can also be made to the user to fix the issue and ensure that 

it does not happen again. Denial is a strategy that should be used sparingly and only when the 

user's perception of the situation is incorrect, and the AI system has not actually failed.  

The attribution of TCCs is critical, as it can affect how users interpret and respond to the cues. 

The attribution can be internal versus external. If the agent shares the responsibility for an error, 

it is internal attribution (e.g., apology, explanation); whereas if the agent does not share the 

responsibility, it would be an external attribution (e.g., denial, blaming). Kim and colleagues 

examined trust repair with an internal versus internal attribution after a competence (performance) 

versus an integrity (purpose)-based trust violation (P. H. Kim et al., 2006). They found that 

performance-based trust repair is more effective when the agent apologizes with internal 

attribution, and purpose-based trust repair is more effective with external attribution. However, 

Perkins et al. identified contradictory findings in human-robot teams: internal attribution apology 

can effectively repair purpose-based trust violations, but not performance-based trust (Perkins et 

al., 2022). One explanation can be the difference between human-human trust human-automation 

trust. People often have a Perfect Automation Schema (PAS) (Dzindolet et al., 2002) that causes 

people to overreact to the performance dimension of the automation error. Thus, it is harder to 

repair performance-dimension of trust, comparing to purpose-dimension. Similar findings were 

found by Esterwood and L.P.R. Jr., purpose-based trust may be more repairable than 

performance-based trust. 

Trust dampening strategies are reactive approach to reduce overtrust after the system has made 

a lucky guess, or when a machine makes a mistake that has not been noted by users expectations 

(de Visser et al., 2020).  Thus, managing people’s expectation about the AI system to reduce the 

likelihood of overtrust is the essence of trust repair strategy. Lowering expectations is a strategy 

that can be used to reduce the gap between the user's expectations and the actual capabilities of 

the AI system (Jensen & Khan, 2022). This can be achieved by highlighting the limitations of the 

system or showing a history of performance. Explicitly expressing reduced confidence is another 

dampening strategy that can be used to manage user expectations (de Visser et al., 2020).  
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Timing 

The timing of trust calibration cues is crucial for effective trust calibration. If the cues are 

presented too early, users may not yet have enough information to assess the AI system's 

competence and reliability, and if the cues are presented too late, users may have already formed 

an impression that is difficult to change. Ideally, trust calibration cues should be presented at the 

right time when users are making decisions or evaluating the AI system's performance. Robinette 

showed that it is more effective to provide trust-repairing signals when the robot asked the 

participants to trust it again, not imeediately the mistake (Robinette et al., 2015). Du et al. found 

that it was most effective when the explanation was provided before critical events in automated 

driving (Du et al., 2019).  

Modality 

The modality of trust calibration cues can take different forms, including visual, auditory, 

haptic, or a combination of any of these. The proposed TCC design taxonomy is mainly based on 

the visual cues, where authors acclaimed can be applied to other modalities. Yet, the direct 

mapping from visual to other modality remained the challenges. For example, what is the 

appropriate volume, pitch, and gender of voice for auditory trust calibration cues?  

Trust is not only conveyed through language, but also through acoustic cues. We have 

identified formants, fundamental frequency, and Mel-frequency centrostral coefficients as the 

most significant acoustic indicators of trust in conversations. The primary question is whether 

these identified indicators have an impact on perceived trustworthiness, in addition to predicting 

trust. Our findings show a mixed result from the prior literature: Although pitch significantly 

affected perceived trustworthiness (Elkins & Derrick, 2013), it is not the most important feature 

when people express their trust in the conversation. On the other hand, the formants show that 

they can be used to predict trust and influence perceived trustworthiness (Montano et al., 2017). 

Therefore, it is important to examine whether identified acoustic features, especially formants, are 

effective in managing people's trust.  



  26 

 

 
 

Chapter 3. Measure Trust in Human-AI Conversation 

Title: It’s Not Only What You Say, But Also How You Say it: Machine Learning Approach to 

Estimate Trust from Conversation 

Journal: Human Factors 

Submission date: April 13th, 2022 

Acceptance date: March 10th, 2023 

Abstract 

The objective of this chapter was to estimate the trust of conversations using lexical and 

acoustic data. As NASA moves to long-duration space exploration operations, the increasing need 

for cooperation between humans and virtual agents requires real-time trust estimation by virtual 

agents. Measurement of trust through conversation is a novel and unintrusive approach. A 2 

(reliability) × 2 (cycles) × 3 (events) within-subject study with habitat system maintenance was 

designed to elicit various levels of trust in a conversational agent. Participants had trust-related 

conversations with the conversational agent at the end of each decision-making task. To estimate 

trust, subjective trust ratings were predicted using machine learning models trained in three types 

of conversational features (i.e., lexical, acoustic, and combined). After training, model explanation 

was performed using variable importance and partial dependence plots. Results showed that a 

random forest algorithm, trained using the combined lexical and acoustic features, predicted trust 

in the conversational agent most accurately (R2
adj = 0.71). The most important predictors were a 

combination of lexical and acoustic cues: average sentiment considering valence shifters, the mean 

of formants, and Mel frequency cepstral coefficients (MFCC). These conversational features were 

identified as partial mediators predicting people’s trust. Precise estimation of the trust of the 

conversation requires lexical and acoustic cues. These results showed the possibility of using 

conversational data to measure trust and potentially other dynamic mental states, unobtrusively 

and dynamically.  

3.1 Introduction 

As the National Aeronautics and Space Administration (NASA) moves to long-duration space 

missions, longer time delays in communication between crews and ground control will require 

more cooperation between the humans and the onboard virtual agent (Chiou & Lee, 2016; Johnson 

et al., 2014; Trafton et al., 2006). In this human autonomy team (HAT), trust is defined as “the 

attitude that an agent will help achieve an individual’s goals in a situation characterized by 
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uncertainty and vulnerability”(Lee & See, 2004, p. 54), plays an essential role and impacts various 

team processes, including information sharing, decision making, and ultimately team success 

(Endsley et al., 2021; Krausman et al., 2022). To better manage the human-autonomy team, it is 

important to first measure trust unobtrusively and dynamically. 

Three main types of measurement have been developed to capture trust: subjective, behavioral, 

and physiological (Kohn et al., 2021). For subjective trust measurements, people self-report their 

feeling and attitudes by answering survey items. While self-reported trust is most frequently used 

and often treated as the gold standard, it is unable to satisfy the need for unobtrusively monitoring 

trust dynamics, especially in time-pressured, risky situations, such as space missions or 

autonomous driving (Li et al., 2020; Yang, Christopher, et al., 2021). Behavioral measurements can 

unobtrusively estimate trust through interactions with the automated system, which can be passive 

(reliance) or active (compliance). Although behavioral measurements allow minimal disruption and 

a higher sampling rate than self-report, they are often task-specific and hard to generalize. 

Physiological measurements capture biological responses ranging from heart rate changes to eye 

gaze tracking to neural activation. They present a great opportunity for real-time trust estimation. 

However, getting high-quality physiological data (e.g., electroencephalogram and skin conductance 

responses) often requires specialized and intrusive hardware (e.g., electrodes on the scalp or 

hands), which is challenging to implement in real-world applications. One rich, but often neglected, 

source of data for measuring is team communication. With the increasing level of interdependency 

in HAT, there is an increase in information exchange between human and AI teammate, which 

can reflect team cognition and processes (Cooke et al., 2013). People may change what they say 

and how they say it based on their trust in their AI teammate. In this paper, we demonstrate that 

measuring trust from conversations provides a promising, yet underexplored approach. We take 

the first step in this direction by predicting and validating trust based on structured conversations 

with a conversational agent that supported a complex decision task. In addition, we identify the 

important conversational features for trust prediction. Our findings provide theoretical 

implications for the development of the conversational measurement of trust and the adaptive 

conversational strategy of a trustworthy AI teammate.  

3.1.1 Measuring Trust in Conversation 

Although communication plays a vital role in driving HAT success, measuring trust via 

communication is still a new approach. Communication can manifest conscious and subconscious 

mental states. Trust, which reflects both analytic and affective processes, can be analyzed and 

measured via communication (Lee & See, 2004). Prior literature on HAT usually uses 
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communication patterns such as communication rates and flows to predict trust (Bromiley & 

Cummings, 1995). Limited research has focused on communication content for trust 

measurement. Although the most explicit way of expressing and sensing trust is through words 

that directly pertain to trust (e.g., I trust you), it is unnatural and rare for people to express a direct 

attitude in a performance-based task. Therefore, we should obtain and infer people’s trust by 

processing and analyzing the signals exhibited by individuals in conversations (Vinciarelli et al., 

2009). To do so, we need to first elicit utterances by designing trust-relevant situations with 

appropriate conversational prompts. Our prior work developed a trust lexicon and a general 

framework on how to design appropriate conversational prompts (Alsaid et al., 2022; Li et al., 

2020). Once we elicit trust-relevant conversations, we can process and analyze the conversational 

cues to estimate people’s trust. According to the well-known phrase, “It’s not only what you say, 

but also how you say it.”, both the words and how they are said should convey trust. Therefore, 

in this paper, we consider not only lexical cues (e.g., words used), but also acoustic cues (e.g., pitch, 

formants) (Elkins & Derrick, 2013; Johnson et al., 2014).  

3.1.2 Lexical Indicators of Trust 

Lexical features in the conversation contain rich information including the length of the 

utterances (e.g., word count), word choices, and sentiment (Spitzley et al., 2022). The most 

frequent and simple measure is word count. Previous literature has shown that there is a positive 

correlation between word count and perceived trustworthiness in online dating profiles and 

lending load requests (Larrimore et al., 2011; Toma & Hancock, 2012). Based on the uncertainty 

reduction theory, the more information is provided, the less uncertainty, and the higher the 

perceived trustworthiness (Beller et al., 2013; M. W. Kramer, 1999). However, little is known about 

whether this correlation holds true with the lexical features of trustor’s communication (i.e., higher 

trust, fewer words). For the sentiment in the conversations, prior research has shown that verbal 

positivity is positively correlated with perceived trustworthiness of organizational leaders (Norman 

et al., 2010). Additionally, people also found the positive association between positive sentiment 

in trustors’ word responses (e.g., excited, interested) and affective trust when interacting with a 

conversational robot (Hildebrand & Bergner, 2021). Because benevolence is one of the core 

elements of trust (Mayer et al., 1995), it is expected that people would express positive affect when 

they trust their AI teammates.  

3.1.3 Acoustic Indicators of Trust 

The characteristic of the voices, or acoustic features, indicate people’s thoughts, feelings, and 

attitudes. The same set of words uttered with different volumes or intonations can express 
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different feelings and the underlying message of the words (Sebe et al., 2005). Thus, when 

understanding how people express trust, it is crucial to exanimate acoustic features. Pitch, 

measured as the fundamental frequency (F0), is one key component of acoustic features. Vocal 

pitch has been shown to be inversely related to the perceived trust of the agent, especially during 

the early stages of interactions (Elkins & Derrick, 2013). Additionally, the high-variance F0 

trajectory, indicated by a high starting F0 and then a marked decrease at mid-utterance to finish on 

a strong rise, was rated high in trustworthiness (Belin et al., 2017). Waber and colleagues found a 

correlation between emphasis, defined as the variations in pitch and volume, and initial trust in 

technical communication in hospital settings (Waber et al., 2015). Additionally, formants, the 

concentration of acoustic energy around a particular frequency in the speech wave, are also found 

to associate with trust. Montano et al. found that high pitch but low formants voices, which affect 

masculinity perceptions, were more trusted in a cooperative game (Montano et al., 2017).  

Although previous research has shown relationships between conversational features with 

perceived trustworthiness of an agent as a trustee, limited research has shown how people, as 

trustors, signal and express trust they place in that agent. Trust, as both analytic and affective 

processes, can govern people’s behaviors and the way they speak (Lee & See, 2004). People have 

been shown to change their lexical and acoustic cues in conversation depending on whether they 

trust the agent or not on a binary scale (Gauder et al., 2021). However, to date, no research has 

shown 1) whether the continuous scale of trust can also be predicted and 2) what are the important 

indicators in conversations that can predict trust. In other words, limited research has investigated 

whether and how to measure people’s trust in conversations. One methodology that can resolve 

this question is machine learning (ML). Recently ML has been used to not only predict certain 

classes of data (e.g., trust), but also infer and explain the predictions (McDonald, Ferris, et al., 

2020). In our study, the goal was two-fold: First, we showed that a machine learning approach can 

make predictions of trust using a combination of acoustic and lexical indicators extracted from 

conversations. Second, we identified the important lexical and acoustics features underlying these 

predictions, which provide insights for future trust management in HAT.  
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Figure 5. Study Design with 12 Trust Measurement Points. 

Table 1. Examples of Conversational Trust Questions. 

Q1  How would you describe your experience selecting the procedure? 

What are your overall feelings during procedure selection? 

Q2 Why would you feel that? Can you explain your answer in more detail? 

Make sense. Why would you have that feeling? Can you elaborate on that? 

Q3 Can you talk more about my performance in providing the recommendation? 

Thank you. How would you describe my performance in giving you the 

recommendation? 

Q4 That makes sense. Which procedure did you 

select? 

Okay, thank you. Which procedure did you select? 

Q5 Can you tell me more about your strategy for picking that procedure? 

What made you choose that procedure? Can you tell me more? 

Q6 How can I be more helpful in terms of providing recommendations? 

I see your strategy there. How can I be more helpful next time? 

3.2 Methods 

Estimating trust using Machine Learning (ML) requires crafting a situation that produces 

variations in trust and generates repeated measures of trust. First, large variations in a ground truth 

trust measure are needed. We used a well-validated variable, automation reliability, which has 

shown a strong causal relationship with trust, as a proxy to induce variations of trust (Lee & See, 

2004). Second, a well-labeled target response (i.e., trust) is needed for supervised ML models. Thus, 

we collected subjective trust ratings along with conversational data. Third, to generate trust-

relevant utterances, we designed open-ended conversational prompts with follow-up questions to 
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elicit trust-related utterances. The questions were designed to be non-directive, which probes 

respondents to describe their own attitudes and feelings on topics of trust in automation instead 

of using the presumed attitudes and descriptions. Since we manipulated the automation reliability, 

we aimed to elicit participants’ responses related to the performance-based trust. The questions 

were developed based on our prior research on trust lexicon and conversational measures, see 

details (Alsaid et al., 2022; Li et al., 2020). Finally, trust changes as a dynamic process that varies 

across interactions (Yang, Christopher, et al., 2021). We designed multiple check-in points after 

every interaction with the automated system to ensure we captured multiple measures of trust. 

3.2.1 Study Design 

The study was a 2 (reliability) × 2 (cycles) × 3 (events) within-subject study (see Figure 5). 

Participants performed 12 decision-making tasks associated with managing a system of a simulated 

space station: the Habitat’s Carbon Dioxide Removal System (CDRS). Participants were assisted 

by a conversational agent with 2 levels of agent reliability (i.e., high, and low). Each level of 

reliability had 2 cycles of the CDRS tasks, each including 3 events (i.e., startup, venting, shutdown). 

To induce substantial changes in trust, the high-reliability conversational agent provided 100% 

correct recommendations whereas the low-reliability agent provided 20% correct 

recommendations. The 12 total events were designed to elicit various levels of trust through 

manipulation of the agent’s reliability. At the end of each event, the agent initiated a conversation 

by asking 6 trust-related questions (Li et al., 2020). Once the participant finished the conversation, 

they then completed a 12-item trust survey on a 7-point Likert scale (Jian et al., 2000). In total, 

each participant had the opportunity for at least 72 conversational turns with the agent. 

3.2.2 Participants 

A total of 24 participants (18 female, 6 male) were recruited (M=23.7, SD =3.6). Participants 

need to have some technical background (e.g., completion of STEM courses). Due to the safety 

concerns of COVID-19, the study took place online. It was a two-day study with each day lasting 

up to 2 hours. In total, the study was approximately 4 hours. Participants received $30 per hour 

for up to $120.  

3.2.3 Apparatus 

The experimental task uses the Procedure Integrated Development Environment (PRIDE) 

which is an automated procedure software, to maintain the space station habitat using the Carbon 

Dioxide Removal System (CDRS) (Izygon et al., 2008; Schreckenghost et al., 2014). A 

conversational agent, named Bucky, was preprogrammed with procedure protocols to provide 
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recommendations to help participants maintain the habitat task in PRIDE. Google Dialogflow, a 

Natural Language Understanding (NLU) platform was used to design and integrate the user 

interface. Participants were asked to directly speak to the conversational agent using their 

microphone. Keyboard and button inputs were also provided. Both audio and automatic speech-

to-text data were collected as conversational measures.  

3.2.4 Procedure 

After signing the consent form, participants completed training on PRIDE, CDRS, and Bucky 

systems. During the study, participants had 25 minutes to control the CDRS by completing all 

three events (startup, venting, and shutdown) before their crew experienced CO2 poisoning. For 

each event, the participant made two essential decisions with Bucky’s aid (i.e., procedure selection 

and confirmation). The participants made their decisions either based on their knowledge from 

their training session or Bucky’s recommendation. Once the procedure was selected, PRIDE 

automated the procedure execution. While the procedure was running, participants engaged in a 

secondary task on system checking by reporting the CDRS status to Bucky. If the participant 

selected the wrong procedure, an error occurred. The participant then had to manually stop the 

procedure and reselected a procedure. Once the participant finished the event, Bucky administered 

six conversational questions with some variations to avoid being repetitive (see Table 1). After 

conversational questions, participants completed the trust questionnaire. The total time of each 

cycle, including the trust conversation and questionnaire, was approximately 40 minutes. At the 

end of the study, participants were debriefed and compensated. 
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Figure 6. Machine Learning Pipeline to Estimate and Explain Trust. 

3.2.5 Machine Learning Pipeline  

Figure 6 shows the machine learning pipeline we adapted from previous research on human 

state estimation (McDonald, Ade, et al., 2020; McDonald, Ferris, et al., 2020). The conversations 

were first separated into audio, text, and combined data analysis streams. The audio and text 

features were extracted using speech signal processing and text analysis. The processed features 

were then used to fit the machine learning models. The best-performing model was selected based 

on root mean squared error (RMSE) and adjusted R-squared (𝑅𝑎𝑑𝑗
2 ). RMSE indicates the absolute 

fit of the model in the units of the response variable and𝑅𝑎𝑑𝑗
2  indicates the variance in the response 

variable that can be explained by the predictor variables adjusted for the number of predictions in 

the model. The dataset was processed and analyzed in R.   

3.2.6 Data Pre-processing 

For the response variable, trust, we took the average of trust and distrust of the subjective trust 

rating, and reserved distrust score and averaged it with the trust score to get the final trust score.  

For audio data, all the wave files were imported in R to extract acoustic features using the 

wrassp package (Bombien et al., 2021). A formant estimation function is used to calculate the first 

four formants and their bandwidths. For each formant, the mean and standard deviation were 

extracted. Fundamental frequency and mel-frequency cepstral coefficients (MFCCs) were 

extracted using their mean and standard deviation. Since acoustics features are gender sensitive (Cartei 

et al., 2012), all acoustics features are normalized within gender.  

For text data, text analysis was used to extract lexical features. Data were manually cross 

validated by two researchers. We included a new binary variable called, translation error, to indicate 
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whether the speech-to-text has translation errors, which shows a 70% accuracy rate. Then, the 

response length was calculated based on the raw text input. The text was tokenized and 

punctuation and stop words were removed, and the words were stemmed. First, term frequency-

inverse document frequency (tf–IDF) was calculated based on the frequency of a term within each 

document, normalized by how often the term is found in the other documents. Next, sentiment 

scores were calculated using sentiment dictionaries, such as Dominance Lexicon (Mohammad, 

2018) and AFINN (Nielsen, 2011). Data were dropped if no words in an utterance matched any 

words in the sentiment dictionaries. Using only sentiment-related words and ignoring linking 

words to score sentiment can be problematic. For example, simply extracting “happy” in the 

phrase “I am not happy” can incorrectly score positive on the sentiment scale. To address this, we 

included valence shifters (i.e., negators, amplifiers, and intensifiers) by considering the context 

around sentiment-related words using the sentimentr package (Rinker, 2017) (details see Table 2).  

A combination of audio and text features was used to predict trust. The two feature sets were 

merged based on unique audio identifiers associated with each utterance in the study. A z-score 

standardization was conducted on all feature sets and the response variable. 

For text data, text analysis was used to extract lexical features. Data were manually cross 

validated by two researchers. We included a new binary variable called, translation error, to indicate 

whether the speech-to-text has translation errors, which shows a 70% accuracy rate. Then, the 

response length was calculated based on the raw text input. The text was tokenized and 

punctuation and stop words were removed, and the words were stemmed. First, term frequency-

inverse document frequency (tf–IDF) was calculated based on the frequency of a term within each 

document, normalized by how often the term is found in the other documents. Next, sentiment 

scores were calculated using sentiment dictionaries, such as Dominance Lexicon (Mohammad, 

2018) and AFINN (Nielsen, 2011). Data were dropped if no words in an utterance matched any 

words in the sentiment dictionaries. Using only sentiment-related words and ignoring linking 

words to score sentiment can be problematic. For example, simply extracting “happy” in the 

phrase “I am not happy” can incorrectly score positive on the sentiment scale. To address this, we 

included valence shifters (i.e., negators, amplifiers, and intensifiers) by considering the context 

around sentiment-related words using the sentimentr package (Rinker, 2017) (details see Table 2).  

A combination of audio and text features was used to predict trust. The two feature sets were 

merged based on unique audio identifiers associated with each utterance in the study. A z-score 

standardization was conducted on all feature sets and the response variable. 
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3.2.7 Algorithm Training and Evaluation  

The algorithms were selected based on three main types of machine learning models (i.e., 

gradient descent-based, distance-based, and tree-based) as well as stacking ensemble models using 

caretEnsemble package. The ensemble models specify a higher-order model to learn how to best 

combine the predictions of sub-models. A total of eight models were selected: 

1. Linear model.  

2. Support Vector Machines with Radial Basis Function Kernel (svmRadial).  

3. K-nearest neighbors (kNN). 

4. Random Forest (RF). 

5. EXtreme Gradient Boosting using tree-based models (XGBTree).  

6. EXtreme Gradient Boosting using a generalized linear model (XGBLinear). 

7. Linear ensemble model, which fits linear models across all the modes above. 

8. Generalized ensemble model, which fits linear models via penalized maximum likelihood. 

These eight models were fitted to all three feature sets (i.e., audio, text, and combined). 

Therefore, a total of 24 models were trained. For each model, we conducted a group of 10-fold 

repeated cross-validation with 3 repetitions. The method, group k-fold, considers data from the 

same participant, who may have similar acoustic features or word choices, as a non-overlapping 

group and control the same participant would not appear in two different folds. This method can 

avoid within-subject data leakage by ensuring data from the same participant are not included in 

the training and test datasets. The predictive performance observed with group k-fold cross-

validation estimates performance on another sample of participants from the same population. 

Therefore, this method penalizes the within-subject similarities and reduces overly optimistic 

estimates of model performance. 

Once the models were trained, we evaluated how well they predicted the response variable 

trust using two metrics: root mean squared error (RMSE) and adjusted R-squared (𝑅2
adj). RMSE 

is the square root of the variance of the residuals, which indicates the absolute fit of the model to 

the data in the units of the response variable. The smaller RMSE, the closer the observed data 

point is to the predicted value, indicating better performance. 𝑅2
adj indicates the variance in the 

response variable that can be explained by the predictor variables with a penalizing factor for 

adding independent variables, ranging from 0 to 1. The higher the𝑅2
adj, the better the model 

performance. 
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3.2.1 Model Explanation 

After picking the best performance model, we explained the model by visualizing the most 

important features for trust prediction. First, a Variable Importance Plot (VIP) was employed. The 

VIP shows the mean decrease in accuracy associated with removing a feature from the algorithm. 

However, the value and ranking of important variables in VIP simply represent the importance 

based on loss function calculation. Therefore, VIP show how the variation of a single variable 

affects the trust score. A Partial Dependence Plot (PDP) shows the relationship features and the 

response variable, accounting for the average effect of the other predictors in the model 

(Greenwell, 2017). Using PDP, the curve represents how much the variable affects the final 

prediction at specific values of the variable. While PDP provides an average effect of a feature, it 

does not show specific instances or participants. An Individual conditional expectation (ICE) 

shows the effect of a feature for each instance separately, resulting in one line per instance, 

compared to one line overall in partial dependence plots. A PDP is the average of the lines of an 

ICE plot. 

3.3 Results 

The 24 participants can have at least 72 conversational turns with the agent, which leads to at 

least 1728 conversational segments in total. The audio data contained 1806 segments, with a mean 

length of 8.17s (SD= 10.88). For the text data, we only included utterances that included 

sentiments and excluded answers to question 4 (e.g., I selected procedure 1) since it does not 

contain meaningful lexical indicators. The text data contained 810 lines of utterances, with the 

mean text length of 38.25 characters (SD=26.49). The two datasets were joined by matching the 

common audio identifiers, leaving the final dataset with 810 lines of utterances. The Welch Two 

Sample t-test testing the difference of trust values by reliability condition (mean in group high = 

5.78, SD = 0.86; mean in group low = 4.37, SD = 1.44) suggests that the effect is positive, 

statistically significant, and large (difference = 1.38, 95% CI [1.05, 1.70], t (146.46) = 8.42, p < .001; 

Cohen's d = 1.20, 95% CI [0.89, 1.51]). 

3.3.1 Feature Engineering 

A total of 23 features were extracted, including 13 for audio and 10 for text. The Boruta 

algorithm identified 23 features as important. The VIF score for multicollinearity identified 3 

features above 10, which were removed. The 20 remaining features are described in Table 2. 
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Table 2. Definition of Reduced 20 Features. 

Category  Feature   Description  

Audio  nSample  A total number of records/samples in the sound.   

𝑥̅, 𝑆𝐷 (𝐹0)   Mean and standard deviation of fundamental frequency (F0). Closely related to 

pitch, the fundamental frequency is defined as the lowest frequency of a periodic 

waveform, which conveys tone, intonation, emphasis, and physiological information 

and emotion in the speech (Bishop & Keating, 2012).  

𝑥̅, 𝑆𝐷 (𝐹1) 

  

Mean and standard deviation of the first formant in vowels (F1). A formant is a 

concentration of acoustic energy around a particular frequency in the speech wave. 

F1 is inversely related to vowel height. The higher the F1, the lower the vowel height.  

𝑥̅, 𝑆𝐷 (𝐹2)  Mean and standard deviation of the second formant in vowels (F2), which is 

related to the degree of backness. The higher the F2, the more front the vowel.  

𝑥̅, 𝑆𝐷 (𝐹3)  

  

Mean and standard deviation of the third formant in vowels(F3), which is related 

to the degree of roundness. The lower the F3, the rounder shape of the lip.  

𝑥̅, 𝑆𝐷 (𝐹4)   Mean and standard deviation of the fourth formant in vowels (F4), which is 

related to the degree of resonance/larynx. The higher the F4, the higher the larynx.  

𝑥̅, 𝑆𝐷 (𝑀𝐹𝐶𝐶) Mean and standard deviation of Mel-frequency cepstral coefficients. Mel-

frequency cepstral coefficients (MFCCs) represent the short-term power spectrum 

based on human hearing perception, which is the most widely used feature in speech 

recognition.  

Text  Response length Number of words in text response before any text cleaning (e.g., removing stop 

words, tokenization, stemming, etc.).   

TF-IDF  Term Frequency-Inverse Document Frequency evaluates how relevant a word 

is to a document in a collection of documents.  

AFINN   The overall sentiment of the utterance using AFINN lexicon(Nielsen, 2011), 

divided by the square root of total terms with the sentiment, was scaled from -5 to 

5.   

Positive AFINN   The proportion of positive sentiment is divided by the square root of total terms 

and the overall AFINN score.  

Context 

sentiment  

Sentiment score considering the context for the utterance (window size of 4 

words before and 2 words after) and searched for valence shifters. The finalized score 

was summed and divided by the square root of the word count yielding a Context 

Sentiment score scaled from -5 to 5 for each sentence ((Rinker, 2017).  
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Category  Feature   Description  

Non-sentiment 

proportion 

The proportion of the words within each sentence that do not have any 

sentiment is based on the lexicon.  

Translation error  A binary indication of the reliability of the speech-to-text software.   

 

Table 3. Machine Learning Models Evaluation Using RMSE and adjusted R2. 

    Linear 
Model  

kNN  svmRadial  RF  XbgTree  XgbLinear  Linear   
Ensemble  

Generalized 
Ensemble  

Text  RMSE  0.90  0.90 0.91 0.78 0.82 0.79 1.26  0.94  

R2
adj 0.15 0.15 0.16 0.34  0.29 0.37 0.04  0.11  

Audio  RMSE  0.93 0.78 0.88 0.84 0.95 0.87 2.66 2.54  
R2

adj 0.16 0.41 0.27 0.32 0.20 0.29  0.25 0.25 
Combined  RMSE  0.86 0.71 0.71 0.56 0.62 0.56 0.78 0.86 

R2
adj 0.26 0.48 0.51 0.71 0.61 0.70 0.64 0.68 

 

3.3.2 Trust Estimation 

Table 3 shows the machine learning model performance across text, audio, and the combined 

features. Using only audio features, random forest outperformed other models in terms of R2, 

whereas kNN outperformed based on RMSE value. For text-only features and the combined text 

and audio feature sets, both metrics agreed that random forest outperformed other models by 

having the lowest RMSE and the highest R2
adj. Trust score prediction had an RMSE score of 0.56 

which represents the difference between the predicted and the actual trust score. Compared to the 

linear baseline model, the best-performing model’s R2
adj improved from 0.26 to 0.71. This means 

that using the conversational features adjusted for the number of predictors, the random forest 

model can explain the 71% variance of trust. The result is notable because cognitive states, 

especially trust, are difficult to predict.  

3.3.3 Model Explanation 

Because the model of the random forest with the combined features shows the best 

performance, we applied VIP and PDP to investigate the relationships between features and trust. 

The VIP, shown in Figure 7, indicates that context cluster sentiment from the text data, the mean 

of formants, Mel-frequency cepstral coefficients, and standard deviation of fundamental frequency 

were the most important features for predicting trust. Based on the ranking in Figure 7, we used 

the top 8 features for the following analysis.  
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To further investigate feature relationships with trust, Figure 8 shows the PDP plots of the 

eight most important variables. The plot shows the relationships between the response variable 

(i.e., trust score) on the y-axis and the conversational features (e.g., context sentiment, F2, F4) on 

the x-axis. Both the x- and y-axis are continuous scales showing the relationships between features 

and predictions. Most of the features show a sigmoid-shaped curve, which suggests that the trust 

transition from low to high follows a logistic growth and shows nonlinearity. In other words, 

people’s transition from high to low trust may be a sudden shift, rather than a linear change.  

For each pair of relationships in PDP, positive relationships were observed between trust and 

sentiment (context and AFINN), F1, F2, and F3. The F4 and mean of MFCC revealed an inverse 

relationship with trust. The standard deviation of the fundamental frequency shows a u-shaped 

curve, which can be the characteristic that F0 is sensitive to gender. Specifically, trust was 

significantly higher when the context sentiment score was above 2, while negative sentiment 

between 0 and -2 predicted increasingly lower trust scores. Trust also increased as F1 increased up 

to around 500 Hz, and F2 increased up to around 1600 Hz. However, trust decreased as F4 

increased to 3500 Hz, and MFCC coefficients increased to around 2.  

Figure 9 shows the Individual conditional expectation (ICE) plot. Compared to PDP, which 

plots the target covariates’ average partial effect on the predicted response, ICE plots each instance 

reflecting the predicted response as a function of other covariates, conditional on the observed 

feature. The values for a line can be computed by keeping all other features the same, creating 

variants of this instance by making predictions for these newly created instances. Thus, ICE can 

show how individual behavior departs from the average behavior. 

For each feature, most instances are similar and follow the shape of curves in PDP, which 

means changes in the feature has a similar effect across individuals. There is a small subset of 

instances at the bottom of each feature that is relatively constant, indicating that those participants 

with lower trust individuals do not follow the general trend of PDP. However, different individuals 

have different starting predictions in the plot (i.e., high versus low trust), so it is hard to tell whether 

the ICE curves differ between individuals based on such a wide range. Figure 9 shows the 

centered-ICE, in which centers the curves are fixed to 0 at the minimal value of the trust and 

shows only the difference in prediction to this point. The centered-ICE curves highlight 

differences between people and show that the cumulative effects are consistent across participants. 

The two-way partial dependence plot in Figure 11 shows the dependence of predictor variable 

trust on joint values of two features. For the combination of context sentiment and F2, the trust 
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score increased as the context sentiment score was greater than 1 and F2 higher than 1400 Hz. 

This means that with a positive context sentiment and a high second formant frequency in the 

voice, trust is scored higher. For context sentiment and F1, people with context sentiment scores 

greater than 1 and F1 higher than 500 Hz trust scores are much higher. This means that when 

detecting positive context sentiment along with higher than 500 HZ of the first formant frequency 

in the voice, trust scores would be scored as 5.0 and higher, out of a 7-point scale. For context 

sentiment and MFCC, higher trust was predicted when MFCC is lower than 2 and sentiment is 

greater than 1. 

 

Figure 7. Variable Importance Values for RF Algorithm Based on the Mean Decrease in 

Accuracy Associated with Removing the Feature. 
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Figure 8. Partial Dependence Plot (PDP) for the Eight Most Important Features Based on 

Variable Importance Plot in Figure 7. The Ranges of All Features on the X-Axis Are Scaled to 0. 

The Predicted Trust on the Y-Axis is in the Range of 1 to 7. 

 

Figure 9. Individual Conditional Expectation (ICE) Plot of Predicted Trust by the Eight 

Most Important Features. Each Line Represents a Conversational Turn. 

 

Figure 10. Centered ICE (C-ICE) Plot of Predicted Trust by Top 8 Important Features. 
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Each Line is Fixed to 0 at the Minimal Values of Each Feature. 

 

Figure 11. Two-Dimensional Partial Dependency Plots for Context Sentiment, F2, F1 and 

MFCC Mean Based on the Random Forest Algorithm. The Shading Represents the Predicted 

Trust Scores. The Outlines of The Region Show the Predictor Space that the Model was Trained 

On. 

 

3.4 Discussion 

This paper aimed to address two questions: can we measure trust in human-AI conversations? 

If so, what are the most important conversational indicators for trust measurement and future 

management? For the first question, we designed an aided decision-making study using aid 

reliability as proxy of trustworthiness to elicit large difference in people’s trust and showed that 

71% of trust variation can be predicted using a combination of lexical and acoustic features using 

the random forest algorithm. The large effect size validates as a proof-of-concept that trust can be 

estimated from the conversations. Compared to prior work on discrete trust classification (Gauder 

et al., 2021), our work further validated the promising evidence of measuring continuous and real-

time trust dynamics in the human-AI conversation. For the second question, we identified the 

most important trust conversational indicators—context sentiment as lexical cues, formants, 

fundamental frequency, and MFCC as acoustic cues—and showed that they affect trust in a non-

linear manner.  
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3.4.1 Lexical Indicators of Trust: Context sentiment 

For the lexical indicator in the conversation, the context sentiment in the conversations is the 

strongest predictor of trust. Context sentiment is the average sentiment considering valence 

shifters and negation in the sentence. For example, “I am not good” contains the positive word 

“good”, but the sentiment score is negative because the sentence contains the negation ‘not, which 

flips the polarity of the sentence. Results showed that positive sentiment predicts higher trust. The 

result is expected and consistent with prior research: when people used more positive words in 

their conversation, they rated their trust in the aid higher (Hildebrand & Bergner, 2021). Because 

benevolence is one of the core elements of trust (Mayer et al., 1995), people express greater 

affective trust and used positive sentiment words when interacting with a conversational agent. 

3.4.2 Acoustic Indicators of Trust: Formants, Mel-frequency cepstral coefficients 

(MFCC), pitch variation.  

For acoustic indicators in the conversations, formants, MFCC, and pitch variation follow 

context sentiment as the most important predictors of trust. As indicated in Figure 8, a high first 

formant (F1) and second formant (F2) were associated with a high level of trust. Formant is a 

spectral property of the speech signal that reflects voice quality as well as linguistic vowel identity 

(Goudbeek et al., 2009). The formant with the lowest frequency is called F1, the second F2, and 

the third F3. Prior studies showed that formants can influence people's trust perception (Knowles 

& Little, 2016; Torre et al., 2020). Our study is the first to demonstrate that formants are also 

influenced by people’s trust levels. In other words, trust influences people’ speech production and 

formant articulation.  

 There are different ways to explain how trust influences formants in conversations. One 

way is to consider trust as an affective process. Prior research has shown that formants can be 

used to discriminate the valance (e.g., positive or negative) and arousal (e.g., excited or calm) 

dimensions of emotions (J. C. Kim et al., 2011): high arousal emotions result in a higher mean F1, 

whereas positive valence results in a higher mean F2 (Goudbeek et al., 2009). Thus, our results 

implied that when people are in a high level of trust, people express a high F1 and F2 in their 

voice, indicating trust as a positive valence and high arousal emotion. Another potential 

explanation is that people use different vowels when articulating different levels of trust. Formants 

are directly associated with tongue positions and pronunciation of different vowels. The F1 was 

associated with the height of the tongue position (i.e., top or bottom) and the F2 was associated 

with the backness of the tongue position (i.e., back or front). A high F1 and high F2 would be 

lower and front tongue position for words like ‘bat’ (æ) versus a low F1 and low F2 would be 
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‘boot’ (u). Results showed a high F1 and F2 for higher trust scores, meaning that participants were 

saying more words that contained vowels in bottom-front vowels (e.g., æ). The third explanation 

is when trust is higher, people have a ‘smiling voice’ indicated by formants. Past studies have 

shown that when people smile, the first two formants are increased, which leads to a higher 

perceived trust (Torre et al., 2020). Future studies should further investigate the causal 

relationships between formants and trust.  

 MFCCs are coefficients that collectively make up an MFC, which represents the short-

term power spectrum of a sound. MFCC is often used to recognize the emotion of a speaker from 

their voice. Prior research has shown that the mean and standard deviation of MFCC can classify 

hot anger, neutral, sadness, and happiness (Bhimavarapu et al., 2021; Lalitha et al., 2015; Nalini et 

al., 2013). Our result showed consistent findings with prior studies that showed MFCCs are an 

important feature for perceived trust in interpersonal group interactions (Spitzley et al., 2022). 

Based on the authors’ knowledge, our study is the first to show that MFCCs can be used to predict 

people’s trust in their conversations with a virtual agent.  

In the past literature, trust perception is usually associated with pitch: voices with low F0 are 

considered more trustworthy than voices with high F0, in both male and female voices (Montano 

et al., 2017). To our surprise, F0 is not the most important feature to predict people’s trust levels. 

Instead, the variance of F0 is considered a more important indicator of trust as shown in Figure 7. 

Syed and colleagues have demonstrated that a more dynamic and varied pitch contour is viewed 

as more trustworthy compared to flat intonation (Syed et al., 2021). Knowles and Little also 

showed that dynamic voices sounded more cooperative than monotone voices (Knowles & Little, 

2016). High variation in F0 has been associated with prosocial and pleasant vocal attributes in 

human child-directed speech (Trainor et al., 2000). Thus, when people express a high-level trust, 

they also exhibit complex contour of the pitch that may signal affiliation. 

3.4.3 Implications 

Measuring trust from conversations is a natural, unobtrusive, novel method to support human-

AI teaming. Our findings and theoretical implications for developing a conversational 

measurement of trust. Predicting trust using lexical and acoustic features provided initial validation 

in measuring trust unobtrusively and dynamically in conversation. To develop a standardized 

conversational measurement of trust, limited research has been conducted or discussed. Our study 

used pre-defined prompts and conversational structure to elicit people’s trust-relevant responses 

in a performance-based task. The conversational features we identified are promising measures of 
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trust. Since conversations are highly context-dependent, future studies are needed to test the 

ecological validity by generalizing these measures to other contexts. Additionally, how to measure 

trust in a free-flow conversation remains unsolved. The main bottleneck is the technical limitation 

of the state-of-art conversational agents. With the emerging powerful conversational agents (e.g., 

chatGPT3) will provide richer content for establishing a standardized conversational measurement 

of trust.  

Once trust can be measured in conversation, an important next step is trust management. For 

a system to be trustable, it will have to adapt to its user’s trust levels. In a performance-based 

human-AI interactions, we can compare the estimated people’s trust levels with the system 

capability and identify whether people are over or under trusting the system. Based on findings in 

our study, an adaptive conversational agent can be developed: the conversational agent could 

incorporate these identified trust indicators to actively probe, repair, and temper trust (Chiou and 

Lee, 2021). When people overtrust the agent, meaning people’s trust is higher than the actual 

trustworthiness, the agent can signal the trust tempering cues, such as using the negative sentiment 

and lower formants. The next question would be whether these identified trust indicators show 

the same effect on trust perception. In other words, these identified conversational features can 

predict people’s trust, but can they influence perceived trustworthiness? Our findings show a 

mixed result from the prior literature: Although pitch significantly affected perceived 

trustworthiness (Elkins & Derrick, 2013), it is not the most important feature when people express 

their trust in the conversation. On the other hand, sentiment and formants show that they can be 

used to both predict trust and influence perceived trustworthiness (Montano et al., 2017). Future 

studies are needed to show whether the identified conversational indicators are effective to 

calibrate people’s trust.  

3.4.1 Limitations and Future Work 

There are several limitations to this study. First, the conversation is limited in size and scope. 

Our study focused on the influence of reliability on trust in performance-based human-agent 

interaction. The word use and other conversational cues in our dataset might not generalize to 

other domains of trust (e.g., human-human trust). To establish the conversational measure of trust, 

a generalized protocol of trust-related questions should be established and validated. Second, the 

conversation design between humans and agents is restricted due to the technical limitations of 

chatbot implementation. Although the variation of agents’ responses and questions varied, the 

conversational agent in our study is a decision-tree-based agent, rather than an intelligent agent 

that can hold a rich conversation. Therefore, the conversation complexity and length were limited. 
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Advances in conversational agents will produce richer data for trust measurement. Future studies 

can consider other lexical and acoustic cues, such as pauses between conversational turns, 

interruptions, and interjections. Third, while PDP and ICE can suggest causal hypotheses related 

to trust, these should be verified (Zhao & Hastie, 2021).  

3.5 Conclusion 

 To enhance human-AI teaming, AI needs to monitor and manage trust in real-time. 

Conversational data provides a novel approach to measuring real-time trust. This study showed 

such real-time, conversational trust measures are possible by training machine learning models on 

lexical, acoustic, and combined conversational features. A random forest model that used the 

combination of lexical and acoustic features explained 71% of the variance in self-reported trust. 

The combination of lexical or acoustic features outperformed either alone. We identified the most 

important lexical and acoustic cues and further showed that trust transition follows a non-linear 

shift. These results show the importance of including both audio and text features when measuring 

trust dynamics in a conversation. An open question is whether they might be used to modulate the 

voice of the conversational agent to manage the trust. 

3.6 Chapter Summary 

This chapter focuses on the first research question: “Can we measure people’s trust in the 

human-AI conversation”. Measuring trust through conversation is a novel yet unexplored 

approach. In Chapter 3, we designed an experiment to estimate trust in human-AI conversations 

using machine learning (ML) models and analyzed the data using a machine learning model. Our 

predictions accounted for 71% of the variance in rated trust using lexical and acoustic cues from 

human-agent conversations. While most MLs are treated as black boxes, we showed an explainable 

ML by visualizing the most important features using partial dependence plots. Estimating trust in 

communication opens the door for real-time and unobtrusive trust management. Building on this 

foundation, Chapter 4 adopts the dynamic system theory to explain people’s diverging trust levels 

on automation and Chapter 5 deepens the understanding of trust in conversation by modeling the 

temporal changes of conversational topics. Once measure and model the trust, Chapter 6 

investigates the effects of conversational features identified in Chapter 3 for trust management.   
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Chapter 4.  Explain Trust Divergence Using Dynamic System 

Title: Explaining Trust Divergence: Bifurcations in a Dynamic System 
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Acceptance date: May 30th, 2023 

Abstract 

When people experience the same automation, their trust in automation can diverge. Prior 

research has used individual differences—trust propensity and complacency—to explain this 

divergence. We argue that bifurcation as an outcome of a dynamic system better explains trust 

divergence. Linear mixed-effect models were used to identify features to predict trust (i.e., 

individual differences, automation reliability, and exposure). Individual differences associated with 

trust propensity and complacency increases the R2 of the baseline model by 0.01, from R2 = 0.40 

to 0.41. Furthermore, the Best Linear Unbiased Predictors (BLUPS) for random effect of 

participants were uncorrelated with trust propensity and complacency. In contrast, modeling trust 

divergence from a dynamic perspective, which considers the interaction between reliability and 

exposure along with the individual by-reliability variability fit the data well (R2 = 0.84). These 

results suggest dynamic interaction with automation produce trust divergence and design should 

focus on state dependence and responsivity.  

4.1 Introduction 

As intelligent agents become increasingly autonomous on progressively more complex tasks, 

trust becomes more essential to designing effective human-automation cooperation (Chiou & Lee, 

2021). Trust, defined as “the attitude that an agent will help achieve an individual’s goals in a 

situation characterized by uncertainty and vulnerability” (Lee & See, 2004, p. 54), is crucial for 

ensuring appropriate reliance on automation and avoiding its misuse, disuse, or abuse 

(Parasuraman, 1997). Often, people’s trust in automation often evolves and converges to a 

relatively homogeneous level of trust. However, trust can also diverge. Interacting with the same 

automation, some people might develop high levels of trust whereas others might grow to distrust 

it (Kamaraj et al., 2023; Liu et al., 2021). This divergent trust is an interesting form of trust 

miscalibration because it describes how some people might over-trust and others might under-

trust the same automation.  
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It might be useful to consider trust divergence as qualitative changes or ‘bifurcation’ in how 

people experience and trust automation. Bifurcation, well-studied in dynamical systems, describes 

how a small initial change of a system made to the parameter values, known as bifurcation 

parameters, can cause a sudden topological change in its behavior. In the context of trust in 

automation, this small initial change is often considered as differences in initial trust and individual 

differences, as well as variance in their initial perception and interaction with the automation. The 

bifurcation parameter refers to the changes in automation characteristics, such as an error. 

Previous research has highlighted various reactions following automation failures, including 

disbelievers, Bayesian decision-makers, and oscillators (Bhat et al., 2022). While researchers often 

rely on individual differences to explain diverse group behaviors. Yet, focusing solely on individual 

behaviors neglects the temporal aspect of how initial individual differences compound with the 

subsequent experiences of automation characteristics, especially when encountering the 

‘bifurcation parameter’ (e.g., automation errors). The underlying mechanism contributing to the 

stabilized and diverging trust has received little attention and merits investigation. Three factors, 

namely individual differences, automation characteristics, and trust dynamics, may account for the 

trust bifurcation. In this paper, we argue that adopting the concept of bifurcation as an outcome 

of a dynamic system offers a more suitable framework for explaining trust divergence.  

4.2 Background 

4.2.1 Individual Differences 

The wide range of individual differences, encompassing backgrounds, personalities, and 

knowledge of automation, contributes to the variability in individuals' propensity to trust 

automation. Those with a higher inclination to trust may experience a greater decline in trust when 

interacting with low-performing automation (Merritt & Ilgen, 2008). Moreover, individuals who 

with a stronger "perfect automation schema" demonstrated greater declines in trust when they 

encountered automation errors (Dzindolet et al., 2002). Additionally, individuals also vary in 

automation-induced complacency, which can manifest as either a failure to detect or an delayed 

response to detecting errors (Bailey & Scerbo, 2007; Merritt et al., 2019). Prior research has found 

that complacency interacts with automation characteristics: the higher the system reliability, the 

more likely the operators become complacent (Parasuraman et al., 1993). Minor differences in 

individuals can influence the initial level of trust and subsequently shape the interpretation of new 

information. Thus, individual differences can influence trust divergence. 

Hypothesis 1: Individual differences predict diverging of trust in automation.  
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4.2.2 Automation Reliability and Exposure 

Because trust calibration is the correspondence between a person’s trust in automation and the 

automation’s capabilities, it has been consistently shown that automation capability significantly 

influences trust in automation (Dzindolet et al., 2002). Automation failures often have a much 

stronger influence on trust than automation successes: trust is difficult to build but can be lost 

quickly (Dzindolet et al., 2003a; Manzey et al., 2012). Trust is continuous process influenced by 

the trust of a previous moment (Yang et al., 2023). Exposure to automation reflects the extent to 

which individuals have encountered and interacted with automated systems. Repeated exposures 

can have both positive and negative effects on individuals’ behaviors and trust in automation. On 

one hand, repeated exposure can increase familiarity, indirectly influencing trust (Mayer et al., 

1995). On the other hand, repeated exposures, especially with highly reliable automation, can 

induce complacency and decreased situational awareness, resulting in over-reliance on automation 

and over-react to automation errors (Dzindolet et al., 2002). Thus, the automation capability and 

exposure to automation can be potential causes of the diverging levels of trust and motivate the 

second hypothesis. 

Hypothesis 2: Automation reliability and exposure predict diverging of trust in automation. 

4.2.3 Trust Dynamics 

Trust is inherently dynamic. People calibrate their trust over time as a continuous cognitive 

process (Gao & Lee, 2006). While researchers have highlighted the continuous and temporal 

elements of trust dynamics (Yang et al., 2023), limited past research has used trust dynamics to 

explain people’s divergent opinions on automation. Using trust dynamics, trust divergence can be 

modeled as a bifurcation in a dynamic system: a small change in the initial state gradually influences 

behavioral framing and subsequent decision-making processes. This bifurcation results in trust 

stabilizing as two distinct trajectories. For example, in supervisory control, the individual 

differences shape the decision between manual control and automation. Once either decision is 

selected, it would provide positive or negative experiences. The experiences create inertia to keep 

people only focusing on either the advantages or disadvantages. Automation failures can be 

bifurcation transient point, which leads to trust divergence and long-term maintenance in certain 

states. Thus, the structural changes of the bifurcation depend on the combination of individual 

differences, the automation performance and the exposure, and their interaction over time, rather 

than on any individual factor alone.  
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Hypothesis 3: Trust is a dynamic system. People’s varying responses to the interaction of automation 

characteristics and exposure predict diverging of trust in automation. 

4.3 Method 

subject study. Participants performed 12 decision-making tasks associated with managing a 

system of a simulated space station: the Habitat’s Carbon Dioxide Removal System (CDRS). 

Participants were assisted by a conversational agent (Bucky) with 2 levels of reliability (i.e., high, 

and low). Each level of reliability had 2 repeated cycles of the CDRS tasks, each including 3 events 

(i.e., startup, venting, shutdown). Details of the study were documented in (Li et al., 2022).  

4.3.1 Participants 

A total of 24 participants (18 female, 6 male) were recruited (M = 23.7, SD = 3.6). Recruitment 

inclusion criteria included that participants should be comfortable using a computer and a touch 

screen interface as well as have some technical background (e.g., completion of engineering or 

science courses). Due to the safety concerns of COVID-19, the study took place online. It was a 

two-session, two-day study with each session lasting up to two hours. In total, the study lasted 

approximately four hours for each participant. Participants received $30 per hour for up to $120 

for four hours of participation.   

4.3.2 Procedures  

After signing the consent form, participants completed a two-part training: the first provided 

a study overview and training on the CDRS system, while the second included an interactive 

demonstration of working with Bucky on decision-making in PRIDE. During the study, 

participants had 25 minutes to use the CDRS system to remove CO2 from Habitat’s environment 

by running the CDRS through three events (startup, venting, and shutdown) before their crew 

experienced CO2 poisoning. For each event, the participant made two essential decisions with 

Bucky’s aid. The first was selecting a procedure to run to remove the CO2. Bucky recommended 

a procedure. The participant could either accept Bucky’s recommendation or reject it and choose 

a different procedure. The second decision was deciding whether to rerun the procedure selected. 

As part of this decision participants would be advised by Bucky if the state of the CDRS was 

incorrect and if a different procedure should be run. The participants could either accept Bucky’s 

recommendation or reject Bucky’s recommendation and run a different procedure. The 

participants made their decisions either based on their knowledge from their training session or by 

relying on Bucky’s recommendation. Once the procedure was selected, PRIDE automated the 

procedure execution. If the participant selected the incorrect procedure, an error occurred. The 
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participant then had to manually stop the procedure and reselect a procedure. The participant 

finished the event by confirming the procedure ran correctly and completed the trust ratings.  

4.3.3 Data Analysis 

Linear mixed effect models identified features predicting trust as measured by the 12-item, 7-

point Likert scale (Jian et al., 2000). To test our hypotheses regarding how individual differences, 

automation characteristics, and dynamics explain trust, we gather relevant features for each 

hypothesis.  

For individual differences, we measured people’s automation complacency and propensity to 

trust. We adopted the Automation-Induced Complacency Potential-Revised scale (AICP-R) 

(Merritt et al., 2019), which is a 10-item with response options on a five-point Likert scale ranging 

from 1 (strongly agree) to 5 (strongly disagree). Example items include, “Constantly monitoring 

an automation is a waste of time.” For propensity to trust, we measured people’s general tendency 

to trust automation using the Propensity to Trust Machines questionnaire (Merritt, 2011). This 

scale consists of six items with response options ranging from 1 (strongly disagree) to 5 (strongly agree). 

Example items include, “I usually trust machines until there is a reason not to.” 

Automation characteristics were modeled as reliability condition and exposure. Reliability is a 

binary indicator of agent performance. Exposure is defined as the number of times participants 

experience the same automation characteristics, which is the number of cycles participants 

experienced.   

For the trust dynamics hypothesis, we considered the interaction of automation characteristic 

and exposure along with individuals’ varying responses to the experiences.  

4.4 Results 

The mean trust score for the high-reliability condition was 5.78 (SD = 0.86) whereas, for the 

low condition, the mean trust score was 4.37 (SD = 1.44). From Figure 12 we observed that the 

path taken by individuals throughout the experiment was highly variable: some maintained a steady 

level of trust throughout the experiment, while others had dramatic drops in trust. The black lines 

represent six participants: three with the highest standard deviation and three with the lowest 

standard deviation in mean trust. The difference in paths reveals a divergence in trust when 

participants experience the low-reliability condition.    
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Figure 12. Trust diverges when people experience low-reliability automation. 

Table 4. Performance metrics comparison between regression models 

# Model  Formula RMSE AIC BIC  𝑹𝟐 

(cond.) 

0 Baseline model  𝑡𝑟𝑢𝑠𝑡~ 1|𝐼𝐷 0.97 671.38 681.49 0.40 

1 Individual differences 𝑡𝑟𝑢𝑠𝑡 ~𝑐𝑜𝑚𝑝𝑙𝑎𝑐𝑒𝑛𝑐𝑦

+ 𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 +  ( 1|𝐼𝐷) 

1.03 613.94 630.15 0.41 

2 Automation reliability 

and exposure 

𝑡𝑟𝑢𝑠𝑡~𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

+ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + ( 1|𝐼𝐷) 

0.70 555.31 572.16 0.68 

3 Trust Dynamics 𝑡𝑟𝑢𝑠𝑡~𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

+ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

+  𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

∗ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

+  ( 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦|𝐼𝐷) 

0.48 481.13 508.09 0.84 
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In Table 4, four linear mixed-effects models were built. Models were evaluated using the root 

mean square error (RMSE), Akaike information criterion (AIC), Bayesian information criterion 

(BIC), and conditional𝑅2 value. RMSE reflects the difference between predicted and actual values. 

AIC and BIC reflect how well the model fits the data with a term that penalizes model complexity. 

The lower these three metrics, the better the model performance. The conditional𝑅2  is the 

proportion of total variance explained by the model. The higher the 𝑅2, the better the model 

performance.  

Model 0 (Reliability | ID) uses ID as the random intercept serving as a baseline model which 

accounts for the overall trust level due to general individual differences.  

Model 1 corresponds to the first hypothesis and tests the effects of specific individual 

differences on trust in automation, which were measured using automation-induced complacency 

and propensity to trust scales. The individual measures only slightly improved the 

marginal𝑅2 value. The effect of complacency and propensity are both statistically non-significant 

(p = 0.61, p = 0.38).   

Model 2 corresponds to the second hypothesis and tests the effects of automation 

characteristics on trust. We used automation reliability and the number of cycles as exposure to 

automation. We added reliability and exposure as fixed effects to determine if the model 

performance would be improved. The effect of reliability [low] is statistically significant and 

negative, 𝛽 = -1.40, 95% CI [-1.62, -1.19], t(210) = -12.82, p <.001; Std. 𝛽 = -1.07, 95% CI [-1.38, 

-0.75], whereas the effect of exposure is non-significant, t(210) = -0.69, p = 0.49. 

Model 3 corresponds to the third hypothesis and tests the effect of trust dynamics by adding 

the interaction between reliability and exposure along with the individual by-reliability 

variability. By adding the individual by-reliability variability, model 3 shows diverging effects in 

Figure 12 and would serve as the baseline model. The total explanatory power of this model is 

substantial with a high conditional 𝑅2 value (0.84) and the part related to the fixed effects alone. 

Additionally, the AIC and BIC are the lowest for model 4, which indicates that the trust dynamic 

model explains the greatest amount of trust variation using the fewest possible parameters. Within 

this model, the effect of low reliability is statistically significant and negative, 𝛽 = -1.10, 95% CI [-

1.51, -0.69], t(207) = -5.24, p <.001; Std. 𝛽 = -0.84, 95% CI [-1.16, -0.53]. The effect of exposure 

is statistically significant and positive, 𝛽 = 0.24, 95% CI [0.05, 0.44], t(207) = 2.43, p =.02; Std. 𝛽 

= 0.19, 95% CI [0.04 0.34]. The interaction effect of the exposure and reliability is statistically 
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significant and negative, 𝛽 = -0.80, 95% CI [-1.14, -0.47], t(207) = -4.70, p <.001; Std. 𝛽 = -0.62, 

95% CI [-0.88, -0.36]. Trust in the high-reliability condition is an estimated 4.89 on a Likert scale 

of 7. The trust score is 1.10 points lower in the low condition, 0.24 points higher in the second 

exposure, and 0.81 points lower if there is an interaction between the low condition with the 

second exposure. For the random effects, the standard deviation for by-subject random intercepts 

indicates that trust levels for subjects varied around the average intercept of 0.69 points by about 

0.77 points. Additionally, we used Best Linear Unbiased Predictions (BLUPs) to predict random 

effects and found no correlations with the automation complacency (R2 < 0.01) and propensity to 

trust (R2 = 0.03). These results again validate that individual differences do not account for trust 

divergence and supports the trust dynamics hypothesis.  

4.5 Discussion 

We observed that trust diverges when people experienced automation error: some people 

maintained a steady level of trust whereas others showed a drastic decline in trust. To explain this 

trust divergence, we evaluated three hypotheses—individual differences, automation 

characteristics, and trust dynamics–using linear mixed effects models. We found that the trust 

dynamics model, which uses automation exposure and reliability as an interaction fixed effect, with 

individual differences and participants as a random intercept and slope, yielded the highest  𝑅2 

and lowest AIC and BIC values. Results suggest that the trust dynamics model best explained the 

trust divergence. Because trust dynamics consider individual differences and how people’s trust is 

reinforced by the automation characteristics and multiple exposures over time. Our results 

reinforce the notion that individual differences alone are insufficient to explain trust divergence. 

Instead, the concept of bifurcation in a dynamic system may provide a better explanation. This 

concept describes how even slight changes in a system can lead to qualitatively different behavior, 

which might correspond to certain individuals maintaining stable trust in automation while others 

experience sudden shifts in trust.  

 Whether trust diverge reflects enduring traits or states that emerge from automation 

interaction has major system design implications. These mechanisms parallel those associated with 

the concept of “accident proneness.” Prior studies found that individuals who have experienced 

incidents of accidents in the past are more likely to experience them in the future than are 

individuals who have not experienced an accident (G. E. Bates & Neyman, 1952). Heckman argued 

that this conditional probability of accident proneness is based on structural relationships of state 

dependence, rather than heterogeneity in population and individual differences (Heckman, 1981). 
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Enduring individual differences or traits suggest an emphasis on selection in system design, 

whereas state dependence would emphasize interaction design. 

Interaction design from the trust dynamic perspective suggests that systems should measure 

and manage trust across human-automation interactions. Rather than focusing only on generic 

trust calibration through more transparent designs, a dynamic perspective suggests a focus on 

“responsitivity”, where the automation detects and responds to changes in trust(Chiou & Lee, 

2021). The importance of a dynamic perspective is even more important in hybrid teams with 

more than one human operator interacting with the automation. In these teams of over- and under-

trust can circulate as a contagion within the network. Trust circulates through the network via 

explicit communication or implicit observations of others’ interactions and norms (Stewart, 2003). 

Drawing inspiration from the widely used Susceptible-Infectious-Recovered (SIR) dynamic system 

model in epidemiology, researchers can explore the influence of network dynamics on trust 

bifurcation (Nakahara & Doya, 1998). Gorman and colleagues have previously conceptualized 

teams as dynamic systems, revealing the importance of concepts like attractors and 

synchronization (Gorman et al., 2017). Future research can understand and model trust dynamics 

in a hybrid team, identifying the roles and impacts of attractors, perturbation, and synchronization.  

Our findings on trust dynamics conforms with the state dependence theory (Heckman, 1981). 

When designing the system, it is crucial adopt a state-dependent and dynamic perspective to 

evaluate human performances and trust. Early-stage measurement of trust and identification of 

distinct populations experiencing divergent trust patterns can inform the development of 

personalized systems to manage trust more effectively. 

4.6 Conclusion 

Even when people experience the same automation, their trust in automation can diverge over 

time. Prior research has typically focused on individual differences to explain trust divergence. 

However, we showed that trust divergence was best modeled by trust dynamic perspective, which 

considers the interaction between reliability and exposure along with the individual by reliability 

variability (𝑅2= 0.84). Our results suggest the concept of bifurcation in dynamic systems, which 

describes how small changes in a system lead to sudden shifts in behavior, might explain trust 

divergence.  

4.7 Chapter Summary 

The present chapter built upon the preceding Chapter 3, which focused on trust estimation 

from the conversations, and delves deep into the trust divergence between high and low trust 
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groups among individuals. Chapter 4 explored the temporal dynamics aspect and addressed the 

second research question, that is “how does trust change over time?”. Compared to using the individual 

differences to explain the diverging levels of trust over time, we argued that trust divergence can 

be better explained as an outcome of a dynamic system. We adopted linear mixed-effect models 

to predict trust and showed that modeling trust divergence from a dynamic perspective, which 

considers the interaction between reliability and exposure along with the individual by-reliability 

variability fit the data well. Consequently, our results suggest that dynamic interactions with 

automation contribute to trust divergence, emphasizing the need for designs that prioritize state 

dependence and responsivity. This chapter established a robust foundation for the temporal trust 

dynamic perspective in Chapter 5, where we further examined the temporal aspects in the human-

AI conversations.   
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Abstract 

Chapter 3 developed the machine learning approach, which can combine lexical and acoustic 

features to predict trust in the conversational agent; however, this focuses on the feature level and 

ignores the rich context and deep meaning of the conversation. In other words, the connections 

between the features and the meaning associated with features are situated within the context that 

might benefit from qualitative analysis. Furthermore, the temporal changes of trust in conversation 

cannot be captured. In Chapter 4, the dynamic system approach was adopted to better frame the 

temporal changes. Thus, to capture trust dynamics, in Chapter 6, we aimed to model two aspects: 

(1) Trust dimensions: the connection to theoretical foundations of trust, especially focus on 

cognitive processes in conversations, rather than feature level or using bag-of-words; (2) Trust 

dynamics: the temporal aspect of trust evolution throughout the interactions, rather than 

aggregated or a snapshot of trust. In Chapter 4, we modeled dynamic trust evolution in the 

conversation using a novel method, trajectory epistemic network analysis (T-ENA). T-ENA 

captures the multidimensional aspect of trust (i.e., analytic and affective), and trajectory analysis 

segments the conversations to capture temporal changes of trust over time. Twenty-four 

participants performed a habitat maintenance task assisted by a virtual agent and verbalized their 

experiences and feelings after each task. T-ENA showed that agent reliability significantly affected 

people's conversations in the analytic process of trust, t(38.88) = 15.18, p = 0.00, Cohen's d = 4.72, 

such as discussing agents' errors. The trajectory analysis showed that trust dynamics manifested 

through conversation topic diversity and flow. These results showed trust dimensions and 

dynamics in conversation should be considered interdependently and suggested that an adaptive 

conversational strategy should be considered to manage trust in HATs. 

5.1 Introduction 

As artificial intelligence (AI) becomes increasingly capable and able to outperform humans in 

certain tasks, humans and AI may gradually cooperate as coworkers than tools {Citation}. Trust 
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in the human-AI team (HAT) is a step beyond current trust in automation and poses new 

challenges. The interdependent team requires the modeling of trust to reflect the team processes 

and how the team activity unfolds over time. This requires a continuous and observable stream of 

data to record the cognitive processing of trust dynamics. In HAT, teammates often need to 

exchange and update the information to achieve a joint task. Communication, as team cognition, 

can provide such contextual and process-based means for trust modeling (Cooke et al., 2013). The 

conversation naturally holds temporal functions of coordination, which can be used to show 

changes in human-AI relationships over time. Additionally, people naturally express their feelings 

and attitudes, such as trust, in communication via the tone of their voices, choice of words, turn-

taking, and pragmatic meanings in the context. Human trust has been shown can be estimated 

from the human-AI conversation (Li et al., 2022). Trust in communication not only aligns well 

with the nature of interdependent HAT but also provides an essential means to model and analyze 

the trust dynamics and how it evolves throughout team interactions. Thus, modeling trust 

dynamics in HAT using conversational data provides a promising yet under-explored approach. 

Since trusting in communication is highly contextual, and dynamic, and keeps evolving in the 

interdependent human-AI teaming, we adopted a novel approach – trajectory epistemic network analysis 

(T-ENA) to develop a dynamic model of trust evolution in human-agent conversation (Brohinsky 

et al., 2021). The developed trust model coded the conversational data using epistemic network analysis 

(ENA), which provides a contextual understanding of human-AI communication (Shaffer, 2017). 

Similar to the structure of the social network analysis, the nodes in ENA provide the concepts that 

are defined based on the trust framework and edges provide the connections between concepts 

based on the co-occurrence in the human-AI conversations. The trajectory analysis characterized 

and decomposed the multiple interactions as a trajectory to demonstrate the changes in trust in 

AI. In summary, in this paper, we used T-ENA to model trust dynamics in human-AI 

conversations by focusing on multidimensional and temporal dimensions.  

5.1.1 Trust Dynamics 

Multidimensionality  

Trust, defined as “the attitude that an agent will help achieve an individual’s goals in a situation 

characterized by uncertainty and vulnerability”(Lee & See 2004), has been studied for decades to 

understand and manage the relationships between people and automation. Trust is an intrinsically 

complex social construct. In understanding and modeling trust in HAT, the cognitive processes 

should be highlighted. Because communicative cues are often used to investigate their cognitive 
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processing, which is also governed by and manifests people's trust. Understanding and modeling 

the cognitive processes in communication can reveal more insights into HAT team cognition.  

Based on existing trust frameworks, trust depends on the interplay among analytic, analogical, 

and affective cognitive processes(Lee & See, 2004). The analytic process is formulated based on 

the accumulation of knowledge and rational evaluation of the interactions. The analogical process 

is less cognitively demanding but relies on the rules, intermediaries, and environmental context. 

The affective or emotional process is critical since it represents not only how people think, but 

also how they feel about automation. When describing the affect, the circumplex model is often 

used, which uses two-dimensional arousal-valence axes to describe human emotions. For example, 

the affect excited is high arousal and positive valence affect, whereas sad is low arousal and negative 

valence. Trust has been shown affected by the valence and arousal stimulus. Dunn and Schweitzer 

show that positive valence (e.g., happiness, hope) increases trust, while negative valence (e.g., fear, 

guilty) decreases trust (Dunn & Schweitzer, 2005). Yet, how affective process of trust is mapped 

on the affect circumplex model in human-agent conversations is not well understood. Additionally, 

we know little about the interplay between different cognitive processes underlying trust in human-

agent communication. To fill the research gaps, we designed a decision-making task with various 

levels of conversational agent reliability to reflect their cognitive processes in communications. 

The factor, automation reliability, which is governed by the analytic process, has been well-studied 

and shown the causal relationship on trust (Dzindolet et al., 2003b). Using reliability, we aimed to 

elicit various levels of trust and show the significant difference and interplay between the affective 

and analytic processes. 

Temporality 

Another important aspect of trust dynamics that merits more attention is its temporal 

characteristics. A shift from the snapshot view of trust to a trust dynamic is important (Yang, 

Schemanske, et al., 2021). Because trust is time-dependent and evolves throughout human-agent 

interactions (Kaplan et al., 2021). Trust calibrates and evolves based on the various automation 

characteristics and experiences as relationships between parties mature (Korsgaard et al., 2018a; 

Luo et al., 2022). Trust is reinforced by the experience and is further impacted by a function of the 

trust itself in the previous moment (e.g. positive and negative feedback loops) (Falcone & 

Castelfranchi, 2004; Lee & Moray, 1992; Manzey et al., 2012). Additionally, adding the temporal 

aspect allows us to examine the recency effect that associated with trust dynamics, meaning that 

interactions happened more recently may have more value than those that happened some time 



  60 

 

 
 

back (Desai et al., 2012). Thus, analyzing and modeling the temporal changes gives a more nuanced 

inspection of the trust evolution throughout the HAT. 

To model this trust evolution, trust should be measured multiple times and further modeled 

by considering time units in the model. Yang et. al. proposed a computational model proposes 

that trust at any time t, follows a Beta distribution, which shows good prediction accuracy (Yang, 

Schemanske, et al., 2021). Although modeling trust evolution is relatively new and limited, a history 

of literature has shown that human behaviors and attitudes can be modeled by the time-dependent 

dynamical system approach. Gottman, Swanson, and Swanson (2002) showed how marriage 

outcomes can be modeled using the dynamical system analysis, which focused on the temporal 

dynamics of partner communication. Using such nonlinear dynamical systems methods to model 

relationships is becoming more prevalent (Demir et al., 2021). 

The multidimensional and temporal aspects of trust are not independent. Instead, the 

influencing factors and their impacts on various processes of trust should also vary throughout the 

human-AI interactions over time. In the interpersonal domains of trust, Korsgaard and colleagues 

outlined a stage model that captures the trust formation from an early stage of calculus-based, to 

a knowledge-based trust and eventually an identification-based trust based on aligned values and 

goals (Korsgaard et al., 2018b; Lewicki et al., 1996). In various stages of trust, the impact of 

predictors and processes on trust systematically varies over time (Korsgaard et al., 2018b). It is 

important to highlight time as a moderator on different antecedents of trust. Within the domain 

of human-AI trust, to the authors' knowledge, limited research investigated the relationship 

between the multidimensional and temporal aspects of trust dynamics in the conversation. In 

summary, we aimed to model trust dynamics by decomposing the cognitive processes (i.e., analytic 

and affective) of trust in the human-agent conversation and show how these two dimensions of 

trust processes evolve. 

5.1.2 Modeling trust in conversation 

For such complexity in trust, a critical challenge is to model trust that reflected the highly 

contextual, dynamic, and keep evolving relationship between humans and AI teammates 

throughout the interaction. To model trust, which is a latent variable, we need to infer or measure 

trust indicators first, such as through subjective, behavioral, and physiological measurements. 

Although reporting a subjective rating of trust is always used and treated as the gold standard in 

the human-automation interaction due to its reliability and generalizability, it is not always fully 

reflecting and capture the dynamics in the teaming since it is often obtrusive and one-shot. The 
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interruptions and the deliberate thinking while self-reporting the attitudes towards automation 

cannot naturally represent the joint cognitive processing that happens in human-AI cooperation. 

Using the behavioral measures of trust, such as compliance and reliance, on the one hand, provides 

more capabilities of sampling more frequently throughout the interactive; yet, on the other hand, 

it can be highly dependent on the task and limited to the decision spaces available, which are often 

considered as an indirect product of trust attitudes. Physiological measures, such as electrodermal 

activity, eye movement, and heart rate, can provide truly real-time trust indicators with greater 

sensitivity. However, it also suffers from challenges, such as outcomes that must be contextualized 

with expert knowledge and examination during periods where trust is active and relevant. Facing 

the new challenges of trusting in human-AI teaming, an alternative trust measure should be 

identified to model trust properly. 

One under-explored method is modeling trust in conversation. Conversational data can be 

considered as a mixture of behavioral and physiological data that contain lexical, semantic, 

phonological, and pragmatic representations of the conversations. In other words, people naturally 

express their trust attitudes via the words they used, the sentence structure, and the tone of the 

voices in their conversation, which are all contextualized.  Prior works have shown that people 

express their trust not only through what they say (e.g., the sentiment of the words), but also via 

how they say it (e.g., formants)(Li et al., 2022).  According to the interactive team cognition theory, 

communication is team cognition, which can be a non-obtrusive measure of team interaction 

dynamics(Cooke et al., 2013). Communication is also essential for trust building and calibration, 

which in turn, can promote effective human-AI teaming (Fuoli & Paradis, 2014).  

Prior research has used both qualitative and quantitative approaches to identify and model 

trust in conversational data. Qualitative analysis, such as grounded theory, provides a rigorous and 

systematic approach to identifying the situated meanings and systematic patterns in the data 

(Oktay, 2012). However, compared to a machine-aided approach, manual coding is often 

laborious, limited to small volumes of data, and subject to the coders' domain knowledge. For 

quantitative analysis, such as text analysis, the dominant approach treats the conversations as bag-

of-words, which assumes words are independent units. This approach ignores the meaningful 

context and patterns in the conversation. Prior research has shown that using a machine learning 

approach can combine lexical and acoustic features to predict trust in the conversational agent (Li 

et al., 2022). However, the machine learning interpretation focused on the feature level. In other 

words, the connections between the features and the meaning associated with features are situated 

within the context and cannot be easily interpreted. Moreover, the temporality and the sequence 



  62 

 

 
 

of the conversation are often lost by text processing, such as bag-of-words. In summary, to capture 

trust dynamics, we modeled two aspects of trust dynamics in the method: (1) Multidimensionality: 

consider meaningful and interpretable connection based on theoretical foundations of trust (rather 

than feature level or using bag-of-word); (2) Temporality: consider time-series trust evolution 

throughout the interactions (rather than aggregated or a snapshot of trust).   

5.1.3 Trajectory Epistemic Network Analysis 

To address the multidimensional and temporal aspects of trust dynamics, we apply Trajectory 

Epistemic Network Analysis (T-ENA), which can both decompose multidimensional trust using 

an Epistemic Network Analysis (ENA) and project the trajectory of the network structure over 

time.  

ENA is a quantitative ethnographic technique that estimates the network structure of coded 

data based on co-occurrences that define connections between the coded data (Shaffer, 2017). 

ENA can systematically identify a set of meaningful features in the data based on the triangulation 

between human coders and computer-based text analysis (Shaffer et al., 2016). Originally designed 

to model theories of cognition, discourse, and culture challenges in learning analytics, ENA 

assumes that the structure of the connections is more important than the mere presence of those 

elements in isolation, ENA has been applied to many domains, making it a promising method to 

analyze social interactions, including gaze coordination during the collaborative work (Andrist et 

al., 2015) and shared agency in online collaborative learning (Tan et al., 2022). Prior works have 

demonstrated successful applications of ENA to human factors and ergonomics (HFE) discipline 

because the visual representations can help researchers quickly identify and compare the difference 

between interested groups (Weiler et al., 2022; Wooldridge et al., 2018). Additionally, the 

differences can be quantitatively defined with the support of qualitative evidence from the 

conversation. In our work, we applied ENA to construct and visualize a multidimensional space 

of trust based on analytic and affective processes in the human-agent conversation. 

To model trust dynamics, one major limitation of ENA is that it typically aggregates data across 

conditions and time, which ignores the temporal features. Trajectory ENA considers the temporal 

structure to reflect process-oriented concepts, such as trust dynamics. T-ENA accounts for the 

change in the network structure that evolves by incorporating time units or temporal segmentation. 

By dividing the complex ENA into various time units, T-ENA allows the reader to examine the 

changes along the temporal dimension, which cannot be easily interpreted when using aggregated 
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means(Tan et al., 2022). Together, modeling trust dynamics using T-ENA can represent both the 

multidimensional and temporal aspects of trust. 

5.1.4 Research Objectives 

The objective of this study is to investigate the trust dynamics in human-agent conversations 

and teams. Two research questions were formed: 1) how do humans indicate different trust levels 

in human-agent conversations? 2) how does human-agent trust conversation change over time? 

Because communications are highly contextual, and dynamic and keep evolving as the team 

progresses, we adopted a novel approach, trajectory epistemic network analysis. Specifically, to 

address the first question, we showed the multidimensional aspect of trust dynamics using ENA. 

To address the second question, we showed the temporal aspect of trust evolution using trajectory 

analysis of ENA. 

5.2 Method 

5.2.1 Study Design 

The data we analyzed came from a 2 ×  2 ×  3 within-subject study. Participants completed 

12 decision-making tasks moderated by a human where they managed a Carbon Dioxide Removal 

System (CDRS) that is part of an analog Mars habitat. Participants were assisted by a conversational 

agent with 2 levels of agent reliability (i.e., high, and low). Each level of reliability had 2 cycles of 

the CDRS tasks, each including 3 events (i.e., startup, venting, shutdown). The high-reliability 

conversational agent provided 100% correct recommendations whereas the low-reliability agent 

provided 20% correct recommendations. The 12 total events were designed to elicit various levels 

of trust through differing agent reliability. At the end of each event, the agent initiated a 

conversation by asking six trust-related questions (see Table 5). Once the participant finished the 

conversation, they then completed a trust survey(Jian et al., 2000). 

Table 5. Examples of conversational trust questions. 

Numbe
r 

Question 

1 How would you describe your experience selecting the procedure? 
2 Why would you feel that? Can you explain your answer in more detail? 
3 Can you talk more about my performance in providing the recommendation? 
4 That makes sense. Which procedure did you select? 
5 Can you tell me more about your strategy for picking that procedure? 
6 How can I be more helpful in terms of providing recommendations? 
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5.2.2 Participants 

A total of 24 participants (18 female, 6 male) were recruited from the Madison, WI area (M = 

23.7, SD = 3.6) . In total, each participant had the opportunity for 72 conversational turns with 

the agent. The cleaned text data contained 1981 lines of utterances, with a mean text length of 

38.25 characters (SD = 26.49) . Additionally, we evaluated the relationship between reliability and 

trust. A t-test showed that the mean trust score for the high-reliability condition (M = 5.78, SD 

=0.86) was significantly higher than the low condition (M = 4.37, SD = 1.44), t(23) =4.12, p = 

0.0002. Thus, for the high-reliability condition, we can investigate the conversational indicators 

associated with high trust and vice versa.  

5.2.3 Trajectory Epistemic Network Analysis 

For trajectory epistemic network analysis (T-ENA), we adopted a four-step process as shown 

in Figure 13: (1) data segmentation, (2) directed content analysis, (3) network analysis, and (4) 

trajectory analysis. 

 

Figure 13. Trajectory Epistemic Network Analysis Process and for Assessing Trust 

Dimensions and Dynamics. 

Data segmentation 

Conversation data between participants and the conversational agent were recorded in the log 

files. The data were segmented based on the conversational turn. We also added meta-data to 

facilitate data segmentation: (1) Reliability condition that participants experienced. This is used as 

the grouping variable for comparison between two conditions. (2) Participant ID, which is used as 

a ‘unit’ in the ENA. (3) Question ID, which is used as ‘conversation’ for ENA. Conversations are 

collections of lines within which ENA models connections between concepts. (4) Codes, which 

are concepts whose patterns of association that want to model (explained in session 3.3.2). 

Directed Content Analysis 

Based on trust dynamics models, six codes were identified as shown in Table 6, which include 

four codes related to the analytical processes of trust and two codes related to the affective 
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processes of trust. For analytical processes of trust, codes were selected and defined in an iterative 

round of coding, two researchers combined deductive and inductive coding to refine and validate 

codes. For affective processes of trust, we adopted the circumplex model of affect (J. A. Russell, 

1980), which suggests affect is described in a two-dimensional circular space, containing arousal 

and valence dimensions. We excluded two quadrants in the valence-arousal affect model: positive 

valence, high arousal (e.g., excited), and negative valence, low arousal (e.g., sad) since these did not 

appear in the conversational data. 

The directed content analysis identified trust components that exist within the participants’ 

conversations with the virtual agent throughout the task. We dual-coded each line using a binary 

coding structure: ‘1’ if the code exists, or ‘0’ if the code does not exist per each segment. Coders 

compared codes and categories and re-coded certain segments to resolve disagreements. Any 

disagreements were resolved until the inter-rater reliability across all codes reached Cohen’s κ > 

0.65 and Shaffer’s 𝜌 > 0.9 between two human raters and the automated classifier. After validating 

each code, we applied the automated classifiers to the data set to code the data. 

Network Analysis 

Table 6. Codebook of trust-related constructs included in Epistemic Network Analysis. 

Code Definition Example from data 

System capability Participants commented on 
Bucky’s past and/or current 
performance and ability to 
provide the appropriate 
recommendation for the tasks. 

“I think your performance was 
good since it worked out well.” 

System error Participants commented on 
errors in Bucky’s 
recommendations. 

“The procedures didn’t line up to 
what I thought the right 
procedure would be.” 

User capability Participants commented on 
their self-efficacy and their 
belief in his or her capacity to 
execute the task. 

“Bucky is incorrect this round, but 
I’m confident in myself for 
choosing the correct one.” 

System process scrutiny Participants recalled the 
specific system knowledge to 
understand or clarify how the 
system operates. 

“It was the only option in which the 
EPS was powered up before 
the ATCS was activated. If 
the EPS is not powered up, 
then the ATCS 
can’t be activated, therefore I 
assumed this was the only procedure 
that would be effective.” 

Positive valence, low arousal Participants expressed their 
affect that is positive and low 

“I feel like I’ve reached a routine 
with my method of choosing the 
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aroused, such as calm, 
contented, and relaxed. 

procedure. So, I enter the same state 
of calm.” 

Negative valence, high arousal Participants expressed their 
affect that is negative and 
highly aroused, such as 
confused, frustrated, stressed, 
nervous, and annoyed. 

“I get even more confused with 
Bucky’s recommendation” 

 

To compare the trust indicators in the conversation, ENA was used to define units as each 

conversational turn, conversations as the utterances after each CDRS task, and comparison groups 

based on the reliability condition. The ENA algorithm uses a moving window to construct a 

network model for each line in the data, showing how codes in the current line are connected to 

codes that occur within the recent temporal context defined as 12 lines (each line plus the 11 

previous lines) within a given conversation. Codes that occurred outside of this window were not 

considered connected. The resulting weighted networks are aggregated for all lines for each unit 

of analysis in the model. Nodes correspond to codes; edges correspond to the relative frequency 

of co-occurrence between each pair of codes and the weights or thickness of the edges show the 

connection between nodes.  

In this model, we aggregated networks using a binary summation in which the networks for a 

given line reflect the presence or absence of the co-occurrence of each pair of codes. Then, the 

co-occurrence of codes in adjacency matrices was summed across the moving window. Next, ENA 

is normalized using spherical normalization by dividing each vector by its length. Once data is 

normalized, ENA performs a singular value decomposition (SVD) using the first two SVD 

dimensions. Once ENA is created, to determine if the high reliability is statistically different from 

the low-reliability conditions, we conducted t-tests on the centroids of networks. Specifically, the 

centroids are calculated by computing the mean values of each edge weight in the networks. 

Trajectory Analysis 

To create trajectories, we employed R package trajectoryENA (Brohinsky et al., 2021) and 

coded the conversations with 12 time units, which is each conversation after each event (startup, 

venting, shutdown). Thus, each reliability group was represented by six time units. Time units 

means were projected in the aggregated ENA space described above. Group means were plotted 

and sequentially connected by cubic splines, which can produce curves between successive time 

points. Adding the time unit to the ENA allows us to investigate how people's trust evolves from 

the beginning to the end, which the aggregated ENA analysis ignores. 
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5.3 Results 

5.3.1 Epistemic Network Analysis 

 

Figure 14. ENA Network for High (Left) Versus Low (Right) Reliability. 

 

Figure 15. ENA Network of Subtracted Connections for High Reliability (Blue) Versus Low 

Reliability (Red). The Points Represent Coded Topics, and the Edges Represent the 

Cooccurrence of the Topics. The Thicker the Edges, The More Frequently the Topics Co-occur 

in The Human-Agent Conversation. The Square Points and Associated Error Bars Represent the 
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Centroids and the Confidence Interval of the Network. 

Epistemic Network Analysis (ENA) visualization results contain: (1) a plotted point, which 

represents the location of that unit’s network in the low-dimensional projected space, and (2) a 

weighted network graph. The positions of the network graph nodes are fixed and are determined 

by an optimization routine that minimizes the difference between the plotted points and their 

corresponding network centroids. Because of this co-registration of network graphs and projected 

space, the positions of the network graph nodes—and the connections they define—can be used 

to interpret the dimensions of the projected space and explain the positions of plotted points in 

the space. Our model had co-registration correlations of 0.98 (Pearson) and 0.98 (Spearman) for 

the first dimension and co-registration correlations of 0.92 (Pearson) and 0.90 (Spearman) for the 

second. These measures indicate that there is a strong goodness of fit between the visualization 

and the original model. 

Figure 15 shows subtracted network graphs depicting the discourse differences between high 

reliability and low reliability and Figure 14 shows the network for high and low reliability. In these 

network graphs, nodes correspond to the codes identified that are relevant to trust indicators in 

the conversations, and edges reflect the relative frequency of co-occurrence or node connection 

within each conversation between participants and the conversational agent. Thus, the thicker the 

edges, the stronger the node connection is observed in the human-agent conversation.  

The centroids presented in Figure 15 summarized the dimension of each network. Centroids 

indicated by boxes and confidence intervals (dotted lines) enable comparisons of networks 

statistically as well as visually. To test the differences between the reliability conditions, we applied 

a two-sample t-test. Along the x-axis, a two-sample t-test showed that the high-reliability condition 

(M = -1.15, SD = 0.55, N= 22) was statistically significantly different at the =0.05 level from 

low-reliability condition (M = 1.33, SD = 0.50, N= 19), t(38.88)=15.18, p<0.001, Cohen’s d = 4.72.   

Along thy-axis, the two-sample t-test assuming showed high reliability (M = 0.00, SD = 0.82, N= 

22) was not statistically significantly different at the α= 0.05 level from low reliability (M = 0.00, 

SD = 0.45, N= 19), t(24.45) < 0.001, p = 1.00, Cohen’s d =0.  

To interpret the results of the ENA network, the x-axis and y-axis should be interpreted and 

defined based on the code placement and researchers' domain knowledge. Nodes placed at 

extreme edges of the space provided more information for labeling the axis. As observed in Figure 

15, the x-axis reflects the codes that capture conversations related to the degree of analytic processes 

of trust. These include system capability, system errors, system process scrutiny, and user 
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capability. Moving from left to right along the x-axis indicates conversation topics shift from 

positive aspects of system capability to negative aspects such as system errors. The y-axis shows 

the codes that reflect the affective processes of trust in the system, which includes the high/low arousal 

and positive/negative valence of affects. The statistical significance on the x-axis suggests that 

analytical processes of trust differ between high and low-reliability conditions.  

ENA subtracted network also provides the visual representation to explain the reasons for the 

statistical difference between node connections in high and low-reliability conditions. The 

connected lines represent the subtracted connections or co-occurrences of two codes. Based on 

Figure 16, in the high-reliability condition, the strongest connection is System Capability and Low 

Arousal, Positive Valence, indicating that when the conversational agent is performing well, people 

usually commented on the system performance along with positive valence and low arousal affect 

words, such as calm and relax. Additionally, the connection between System Capability and User 

Capability indicates that people often reflected on their self-efficacy and talked about their capability 

when the system performs well. In the low-reliability condition, between the affective and 

analytical processes of trust, we noticed a strong connection between System Error, High Arousal, 

and Negative Valence. This means that people associated low performance and lower levels of trust 

with high valence and negative arousal words (e.g., annoyed). Additionally, there is a strong 

connection between System error and System Process Scrutiny. This suggests that in the low-reliability 

condition, people expressed their low level of trust by thinking aloud about the specific system 

processes, such as reflecting on what states CDRS should have been in certain situations (i.e., 

System Process Scrutiny). 

Another key feature of ENA is that it allows researchers to trace connections in the model 

back to the original data and validate the quantitative results qualitatively (Shaffer, 2017).  The 

significant result on the x-axis in Figure 15 indicates that the conversation between high-reliability 

versus low-reliability conditions differed along the analytical level conversation codes. When in 

high reliability, the conversation is centered around the system performance (e.g., The performance 

is good). When in low reliability, the conversation was more centered on the errors that occurred 

in the system and its connections with the system scrutiny (e.g., The CO2 is supposed to be at a 

lower level). 
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5.3.2 Trajectory ENA 

 

Figure 16. Trajectory ENA. Figure (a) Shows the Trust Dynamics Changes in the Y-

Dimension as a Function of Time. Figure (b) Shows the Two-Dimensional Trajectory Mapping 

onto the Network Result. Figure (c) Shows the Trajectory Changes in X-Dimension as a 

Function of Time. The Increasing Transparency Indicates the Increase in Time Throughout the 

Interaction. 

Figure 16 shows the trajectory model for the two reliability groups across 12 interactions. 

Every point on the graph shows the mean for each time unit, which is each conversation after 

each event (in total 12 conversations). A total of three time-series trajectory ENA plots were 

plotted: one with two-dimensional ENA showing both affective and analytic processes (Figure 16. 

a and c) and two one-dimensional ENA with each process along with the time (Figure 16.b). Figure 

16.c tracks change along the y-dimension (affective process) aligned with the x-axis of the original 

ENA space. The y-axis for the plot in Figure 16. c tracks changes along the x-dimension (analytical 

process) aligned with the y-axis of the original ENA space. Figure 16. b maps the two-dimensional 
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trajectory on top of the ENA node positions. These three plots provide a way to examine the trust 

evolution in each dimension as a function of time. Additionally, since the subplots were co-

registered with the main plot, the comparison between plots also allowed changes in the subplots 

to be interpreted simultaneously and tracked in the dimensions of the main ENA space. 

To further interpret the trajectory, three crucial variables need to be disentangled: changes in 

the x-dimension, changes in the y-dimension, and progression in time. Figure 16.a. shows the trust 

evolution on the y-dimension, showing the changes in affective trust over the interactions. The 

oscillation throughout the y-dimension indicates a mixed emotion related to trust shown in the 

conversation. For example, the subject commented: "Since this is the first time Bucky’s been 

incorrect, it confused me for a little bit and made me second-guess myself just because Bucky’s 

been so accurate". Figure 16.c. shows the trust evolution on the x-dimension, which is the analytic 

process of trust as a function of time. Compared to the affective process of trust as shown in 

Figure 16. a, which is more continuous and non-significant between high and low-reliability 

groups, the analytic processes showed a distinct pattern difference. This suggested that the 

affective process of trust transition is less sudden, compared to the analytical process.   

Figure 16. b shows the trust evolution on both dimensions, which shows the interaction 

between multidimensional and temporal aspects of trust. We noted a distinct difference in the 

variance and direction of the trajectory between high and low-reliability groups. The variance of 

the trajectory suggested the diversity of the conversational topics. The low-reliability group shows 

a wider range on both the x and y dimensions, indicating higher volatility when people express a 

low level of trust. There are two explanations for the high volatility: 1. people have mixed emotions 

(affective) and analytical judgment when interacting with a poorly performing agent; 2. more 

individual differences in people's responses when they are in a low level of trust (Liu et al., 2021). 

The direction of the trajectory indicates the topic changes and trends over time. The direction of 

the trajectory indicates the changes and convergence of topics over time. When people have high 

trust in an agent, they would attribute their capability with positive sentiment and later confirm the 

system's capability. When people interact with low-reliability agents with low trust, conversations 

would note the system error and then converge towards checking the system process with a large 

variance in the affective processes. In sum, our T-ENA results showed that trust changes as a 

function of time, which vary between analytical and affective dimensions. 
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5.4 Discussion 

To better understand trust dynamics and evolution in the human-AI teaming, we adopted a 

novel approach, trajectory epistemic network analysis (T-ENA), on 24 human-agent 

conversations. Specifically, we explored the multidimensional aspect of trust using ENA and 

temporal change of trust using the trajectory analysis of ENA. For the multidimensionality, the 

ENA plots provided meaningful connections between analytic and affect processes of trust 

concerning agent reliability. For the temporality, the temporal analysis segmented the change of 

trust throughout the courses of the human-agent interactions and mapped it with analytic and 

affective dimensions of trust.   

5.4.1 ENA Showed an Interplay Between Analytic and Affective Processes of Trust 

A significant difference between high and low-reliability conversations was shown in the x-

axis, which is interpreted and labeled as an analytic process of trust. Results suggested that people 

express different trust states by using distinct analytic information, such as commenting on system 

performance and noticing errors. This is expected since we manipulated the reliability of the 

conversational agent, which maps to the analytic process. No significant difference was found in 

the affective process. This suggested that the manipulation of reliability showed less influence on 

the affective process, which aligns with prior literature that affective process has a greater influence 

on the analytic process than the analytic has on the affective (Lee & See, 2004). Especially in low 

risks and self-relevant decisions, the effect of affective process on trust is much weaker (Midden 

& Huijts, 2009). In in our case that the CO2 removal procedure won’t influence participants’ 

physical environment, thus the physical and psychological distances to the potential hazards are 

far. Participant experienced less level of risk and low self-relevance, which would induce less 

affective process of trust.  

The network analysis also revealed interactions between analytic and affect processes of trust 

under the influence of automation reliability. When people show high trust in conversational 

agents, on the affective dimension of trust, there is a stronger connection between low arousal and 

positive valence affect with the system and user capability. Complementing our prior paper using 

machine learning models which showed that positive sentiment predicts trust (Li et al., 2022), 

ENA results provided more context-relevant information: the positive sentiment is associated with 

the system capability and users' capability. In the low capability, people indicate high arousal and 

negative valence and discuss system errors with a detailed inspection of the system process. For 

the future design of the conversational agent, when people have lower levels of trust, the agent 

should provide more details on the system processing to support the cognitive processes.  
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Additionally, the different links between high and low conditions show people's self-serving 

attribution bias when reason and process trust in communication: credit positive events internally 

with their capability and attribute negative events externally by scrutinizing the system processes 

and errors (Miller & Ross, 1975). A prior study showed when a robot gave people credit, people 

would trust the robot more (Kaniarasu & Steinfeld, 2014; You et al., 2011). Our study provided 

the potential for positive utilization of people's self-serving bias and blame attribution when 

designing agent's communication strategies. People might be more likely to accept and trust the 

virtual agent in the team if the agent credits users’ capability if the joint task went well and acclaims 

some blames if the team performance was poor. Future empirical studies can further validate the 

hypotheses and show the effects on trust processes. 

5.4.2 Trajectory ENA Validated Trust as a Function of Time 

For the temporal aspect of trust dynamics, T-ENA showed the temporal change of trust 

throughout human-agent interactions by mapping the temporal changes in trust to the analytic, 

affective, and joint dimensions of trust. Our T-ENA results on temporal and multidimensional 

trust in conversations showed a first empirical validation of the hypothesized dynamic model of 

trust proposed by Kaplan and colleagues (Kaplan et al., 2021), where trust at each measurement 

can show different human, agent, and contextual antecedents. We observed clear differences in 

conversation trajectory on affective and analytic dimensions. More oscillation was observed for 

the affective dimension of trust, which suggested the mixed emotions and usages of words when 

people were in high and low trust states. A distinct difference was observed in analytic information 

in the human-agent conversation. This implied that using analytic information to estimate people's 

trust transitions can be more effective in human-agent communication.  

The variance and direction of the conversational trajectory on the two-dimensional trust 

dynamics also suggested the differences in conversational topic diversity and flow. When people 

have high trust in the agent, people's conversation topics are more consistent and converged to 

the system's capability. When in a low trust, conversational topics are more scattered reflecting 

heavier cognitive processing. Communication, as a manifest cognitive process, can help 

researchers to further understand the psychological effects of cognition on trust. Our results on 

human-agent communications in various trust states shed light on their cognitive processes. 

Compared to high trust, which leads to a familiar congruent flow of cognitive processing (thus 

consistent conversational topics), low trust or distrust triggers a spontaneous activation of 

alternatives and incongruent associations, which can be shown as a diverse topic or verbose 

examination of the system (Mayo, 2015).  
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Understanding how human verbalize their thoughts in HAT can design better AI teammate to 

support the synchrony, which typically involves entrainment—a temporal coupling between 

independent oscillators that enter some type of phase relationship. Prior research has shown that 

conversational entrainment can benefit interlocutors by mutually reducing cognitive processing 

and predict team cooperation (Manson et al., 2013). Designing temporally based conversational 

coordination can facilitate the trusting relationships and team performance for HAT. Our model 

on decomposing trust multidimensional and temporal dynamics demonstrated empirical evidence 

to design conversational strategies for trustworthy agents (Rheu et al., 2021). 

5.4.3 Limitations and Future Studies 

It is important to note several limitations in our study to better generalize the findings. First, 

the human-agent conversation has a pre-define decision-tree structure due to the limits of the 

state-of-art conversational agent capabilities. On the one hand, we were able to compare the 

difference in answers systematically across the interactions. However, compared to the human-

human conversation, the conversations can appear to be limited in terms of the potential topics 

discussed and initiated by the conversational agent. Thus, the coverage of the topics can be less 

diverse than human-human conversation, which cannot provide rich information for coupled 

conversational analysis. Future studies using a more robust conversational agent can generate more 

dynamic conversations and trust-related findings. Second, since conversations are heavily 

contextual, the conversation for our study is domain-focused on selecting the correct procedures 

in a habitat maintenance task. For example, for the node of System Process Scrutiny, people used 

jargon related to our study design, such as the Carbon dioxide removal system. Thus, when 

considering transferring the findings from our studies to another domain, the coding for the nodes 

in the network should be considered contextually. Additionally, researchers should consider 

whether the task situations and relationship between humans and agents can be generalized. Our 

study manipulated the reliability conditions of the agent, and the task was safety-critical with heavy 

cognitive loads. Future studies also consider social and non-critical conversations between humans 

and AI.  

5.5 Conclusion 

To build better human-AI teaming, the AI needs to monitor and manage trust dynamics in 

real time. Conversational data provides a novel approach to measuring real-time trust. Prior 

approaches using quantitative analysis (e.g., machine learning, text analysis) or qualitative analysis 

(e.g., grounded theory), cannot provide meaningful connections between the trust indicators. We 

employed trajectory epistemic network analysis, a quantitative ethnographic approach that can 
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systematically identify the time-series patterns in the data while providing interpretable construct 

connections, on the human-agent conversational data. ENA mapped the multidimensional aspect 

of trust and showed that reliability significantly impacted the analytic process of trust. People 

focused on scrutinizing the system process and misaligned information when they are in a low-

trust state. T-ENA segmented conversations and showed the trust evolution throughout human-

agent interaction. Results showed a distinct difference in conversational topic diversity and flow 

over time. Inspired by Leo Tolstoy, one potential way to explain the high trust divergence in the 

low-trust state is: “all trusting individuals are alike; each untrusting individual is talking in their own 

way”. Our study enhanced the understanding of human-AI conversation on trust dynamics with 

considerations of temporal changes.   

5.6 Chapter Summary  

Based on the validation from Chapter 3 that trust can be estimated from conversation, Chapter 

4 established the dynamic system perspective to explain trust over time, this chapter extends the 

temporal dynamics of trust and modelled the of trust-related conversational topics. Specifically, 

this chapter addresses the question: How does people’s trust change over time in the conversation? 

In Chapter 5, we adopted a novel method, trajectory epistemic network analysis (T-ENA). T-ENA 

captures the multidimensional aspect of trust (i.e., analytic and affective), and trajectory analysis 

segments the conversations to capture temporal changes of trust over time. The trajectory analysis 

showed that trust dynamics manifested through conversation topic diversity and flow. These 

results showed trust dimensions and dynamics in conversation should be considered 

interdependently and suggested that an adaptive conversational strategy should be considered to 

manage trust in HATs. 
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Chapter 6. Manage Trust for Human-AI Cooperation 

Journal: Computers in Human Behaviors  

Expected submission date: June 2023 

Abstract 

Chapter 3 showed trust can be measured, Chapter 4 adopted a dynamic system viewpoint to 

explain trust divergence, and Chapter 5 built on the trust dynamic and modeled the conversation 

contents between human and AI teammate. However, a system may be more trustable if it can 

adapt to the user’s trust, i.e., over/under trust. Additionally, in previous three chapters, we focused 

on the performance and process dimension of trust yet neglected the purpose dimension of trust. 

Therefore, the goal of this chapter is to evaluate how conversational indicators can be used as 

adaptive countermeasures by a virtual assistant to manage various dimensions of trust. This chapter 

proposes two experimental studies. For Study 1, I investigated trust management content for 

different dimensions of trust, with particular attention on the purpose-related interaction, such as 

cooperation. For Study 2, I investigated the effects of acoustic cues on trust. I designed the trusting 

voice using the cues identified in Study 1 to further investigate the effectiveness of the acoustics 

cues on trust management.  

Results from Study 1 showed that people would have a higher drop in trust when it is a 

purpose-based trust violation. And an apology paired with an explanation can more effectively 

repair purpose-based trust violation. However, decreased subjective trust did not result in 

decreased behavioral cooperation, as participants exhibited higher levels of cooperation by 

allocating more resources to the team goal. Our findings provide design implications for AI 

teammates’ adaptive countermeasures to effectively manage trust.  

Building on Study 1’s most effective trust repair strategy, an apology with an explanation, 

results from Study 2 showed that employing a high-trusting voice can repair people’s behavioral 

trust. Additionally, we found gender differences in the associations between AI trusting voices and 

subjective trust ratings. Specially, men showed higher trust in the low-trusting voice of a male-

voiced AI teammate, whereas women did not show significant difference in perceiving two voices. 

Our findings demonstrated that trust can be both measured and managed through voices. 

Strategically manipulating the acoustic cues of AI teammates can foster trust-building and repairing 

processes and facilitate successful cooperation interactions between humans and AI systems. This 

chapter highlights the significance of voice design in the development of trustworthy AI 
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teammates, emphasizing the incorporation of acoustic cues as interventions to manage trust in 

human-AI cooperation.  

6.1 Introduction 

Artificial intelligence (AI) with increasing capabilities can function more independently in 

social interactions, on the road, and in medical and military fields (Shneiderman, 2022). The 

relationships between humans and AI shift from a vertical supervisor-subordinate control to a 

horizontal peer-to-peer cooperation (Chiou & Lee, 2016; Trafton et al., 2006). This suggests that 

AI should not only have the high capability on completing commands, but also have the 

cooperative intelligence to integrate smoothly as teammates. Without effective cooperation 

between people and AI teammates, it will be difficult to achieve the benefits a hybrid society. To 

achieve human-AI cooperation, trust becomes more essential, particularly for social exchanges at 

a large scale. While previous literature has studied the effects of AI’s performance, the effects of 

AI’s purpose, such as cooperative intents, on people’s trust has received little attention. Additionally, 

little research has addressed trust repair after purpose-based trust violations. With the inevitable 

inclusion of AI in social systems, we must understand how to design a trustworthy AI teammate 

that can maintain trust and effectively cooperate with humans. Thus, the first aim of this chapter 

is to identify the appropriate trust management for effective human-AI cooperation.  

Effective cooperation relies on the ability to send and receive trust indicators in 

communications, particularly through the voice. When people are cooperating with AI teammate, 

it is important for them to develop appropriate trust in the AI teammate by relying on diagnostic 

cues. People often use verbal and nonverbal cues to evaluate and perceive the trustworthiness of 

the AI teammate (Elkins & Derrick, 2013; Li et al., 2023). As the saying goes, it is not only what 

you say, also how you say it. In particular, it is important to consider how acoustic cues influence 

trust and cooperation with AI teammates. Thus, the second aim of this chapter is to evaluate 

whether acoustic indicators of trust can be used to manage trust in an AI teammate. Specifically, 

we adopted the key trust indicators identified from Chapter 3 for the evaluation.  

To address the two research aims, we designed two experimental studies. For Study 1, we 

conducted a mixed-design experiment with 180 participants and studied the effects of both 

performance- and purpose-based trust violations on people’s trust and cooperative behaviors. 

Also, we aimed to identify the appropriate trust repair strategies for trust violations. To do so, we 

designed a game-theoretic situation that allows us to examine the impacts performance- and 

purpose-based trust violations on people’s cooperative behaviors. Our contributions for the Study 
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1 were threefold: first, we highlighted the importance of purpose, which is the cooperative intent 

and behaviors when interacting with AI teammate. Our results showed that purpose-based trust 

violation outweighs the performance-based violations, which induced a greater drop of people’s 

trust. Second, we showed that an apology with an explanation can more effectively repair purpose-

based trust violation, which has implications for designing AI teammates that can help people 

maintain appropriate trust. Third, both studies were conducted in a game-theoretic situation, 

which allows us to examine human-AI cooperation using both subjective and behavioral trust 

measurements.  

For Study 2, we presented a mixed-design experiment with 120 participants and studied the 

congruency effects between the trusting voice and trust management content. In Study 1, we have 

identified that apology with an explanation was the most effective trust repair strategy for purpose-

related trust violations. We incorporated this strategy, where we further explored the congruency 

effect of trusting voices on trust management. Specifically, we manipulated the formants and 

variance in fundamental frequency to create high- versus low-trusting voices. Through this design, 

we aimed to understand how the characteristics of the agent's voice interacting with the trust 

management content can influence trust and cooperation behaviors in the game-theory paradigm. 

Our contributions for the Study 1 were threefold: First, our results showed that high-trusting voice 

can enhance people’s behavioral trust in an investment-based game, as indicated by increased 

investments in the AI teammate. Second, we found gender differences in the associations between 

AI trusting voices and subjective trust ratings. Specially, men demonstrated a higher trust in the 

trust low-trusting, male-voiced AI teammate, perceiving them as kind and considerate. Finally, our 

findings expand on Chapter 3 and Chapter 4, demonstrating that trust can be both measured and 

managed through voices.  

6.2 Study 1: Purpose Outweighs Performance 

6.2.1 A Shift to the Purpose-Based Trust 

Trust is defined as the attitude that an agent will help achieve a person’s goals in a situation 

characterized by uncertainty and vulnerability (Lee & See, 2004, p. 51). Three main antecedents to 

trust in automation were identified as: performance, process, and purpose. Performance refers to 

the system’s capability and competency; process refers to the mechanism and algorithms used to 

accomplish its objectives; purpose refers to the design intent and objectives of the system (Lee & 

See, 2004). Previous research has intensely address the effects of automation performance and 

process information on people’s trust in automation (Lee & Moray, 1992). When managing trust 

in human-AI cooperation, a shift of attention to purpose-based human-AI interaction is critical 
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but often neglected{Citation}. For the supervisory control and dyad interactions, it is often 

assumed a shared goal, where the automation assists human operators to achieve a specific task. 

In human-AI cooperation, the assumption of shared goal should be challenged. Because of the 

increasingly computational power and connecting systems, designing an AI system for the 

common good and social welfare becomes possible. People, on the other hand are self-interested. 

At a large scale, individuals with diverging goals and preferences have limited capacity to observe 

the global and long-term behaviors. Therefore, the goal conflict between the AI’s global optimum 

and individual’s local optimum can happen. For example, connected automated vehicles can 

coordinate traffic to achieve optimal traffic flow, which conflicts with individual goals of arriving 

at the destination in the shortest time. With the inclusion of AI in social systems, we must 

understand how to design trustworthy AI teammate and to promote cooperation to achieve global 

optimal outcomes (Crandall et al., 2018). Achieving global outcomes might produce trust 

violations pertaining the purpose-related versus performance-based action. A performance-based 

trust violations represents a misalignment between the observed AI capability and performance 

and people’s estimation (de Visser et al., 2020). A purpose-based trust violation represents misalign 

goals: between the observed AI purpose and people’s intent (Li & Lee, 2022). Measuring and 

managing people’s trust after such violations deserves more investigation.  

6.2.1 Trust Management 

Table 7. Empirical Studies of Trust Management 

Study Trust 

Violation 

Trust Repair  Trust 

Measurement 

Outcomes 

Esterwood 

& Robert 

(2023) 

Performance-

based 

Apology; Promise; 

Explanation; 

Denial 

Three-dimension  Apology repaired purpose-

dimension of trust. 

Perkins et. 

al. (2022) 

Performance 

& purpose-

based 

Apology; Denial Unidimensional After a trust violation, the apology 

repaired general trust.  

Alarcon et. 

al. (2020) 

Performance-

based 

Behavioral repair Three-dimension  Behavioral repair strategy repaired 

performance-dimension of trust.  

Jensen & 

Khan (2022) 

Performance-

based 

Apology and 

dampening cues 

Three-dimension & 

Behavior 

The combination of apology and 

dampening cues promoted 

appropriate trust. 

Appropriately managing trust in human-AI cooperation is a challenging issue. Prior research 

often identifies the causal relationships between a single factor or a combination of antecedents of 

trust and investigates its impact on trust in experimental studies. Previous studies have shown 
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mixed results by using different types of trust violations, trust repair strategies, and dimensions of 

measurement (see Table 7). However, a clear and consistent causal relationship between the type 

of trust violation, the type of management strategy, and their effect on different dimensions of 

trust is lacking. Specifically, there is a little understanding of what repair strategies are most 

effective for purpose-based trust violations (Alarcon et al., 2020; Perkins et al., 2022). 

Trust repair has been studied extensively after a performance-based trust violation. Esterwood 

and Robert identified four main types of strategies: an apology, a promise, an explanation, and a 

denial (Esterwood & Robert, 2023). They also measured the effects of these trust repair strategies 

on trust in three subdimensions: ability/performance, integrity/process, and 

benevolence/purpose. They found that trust repair strategies were generally ineffective at restoring 

trust to pre-violation levels, with nuances between trust dimensions. Specifically, trust in the 

performance and process dimensions did not return to pre-violation levels, while trust in the 

purpose dimension was more repairable. Alarcon and colleagues found contradictory results, 

showing that the performance dimension of trust can be restored with trust repairing behaviors, 

while the process and purpose dimension of trust is more sensitive and cannot be repaired 

(Alarcon et al., 2020). However, while the studies investigated various trust repair strategies and 

their effects on multidimensional measures of trust, trust violation was limited to performance. 

Only a few studies have focused on the purpose-related trust violations. Perkins et al. (2022) 

investigated the effects of both performance-based and purpose-based trust violations in a search 

and rescue scenario. They found that after a purpose-based trust violation, an apology can repair 

general trust (Perkins et al., 2022). However, in their study, the measurements were unidimensional, 

which fails to observe whether the purpose-based trust violation influences differently on a specific 

sub-dimension of trust. Additionally, behavioral measurement is often not considered when 

capturing the effects of trust violations and management strategies. 

Overall, there is a lack of consistent and clear causal link between the type of trust violation 

(i.e., performance, purpose), type of management strategy (i.e., apology, explanation, and promise), 

and their impact on different dimensions of trust (i.e., performance, purpose) and trusting 

behaviors. 

6.2.1 Cooperative Game Theory 

Cooperative game theory, where players have a common goal and can plan joint strategies, 

provides a good platform to study human’s trust and decision-making processes when cooperating 

with AI teammates (Clifton, 2020). One advantage is that it can account for the impacts of both 
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uncooperative behaviors (purpose-based trust violation) and unreliable behaviors (performance-

based trust violation) on people’s trust. To do so, we designed a new cooperative game, Space 

Rover Exploration Game, based on two well-studied games: the Trust Game (TG) and the 

Threshold Public Goods Game (TPGG). The Trust Game, invented by Berg et al. (1995), 

measures trust using the investment behaviors in the game. In this game, the Investor has certain 

money that s/he can either keep or invest with another player, the Trustee. If the Investor invests 

a certain amount to the Trustee, the invested money (x) would be increased at a rate (r). Then, the 

Trustee must then decide whether and how to share the new amount ((1+r)∙x) with the Investor. 

The more money the Investor decided to give to the Trustee, it means that the more likely the 

Investor believes the Trustees would return money back to the Investor. Thus, the amount 

invested is used as a proxy for the Investor’s trust, and the amount returned by the Trustee is an 

indicator of perceived trustworthiness. However, in the Trust game, there is no component of 

cooperation, meaning common goal. Therefore, we integrated another game, the Threshold Public 

Goods Game (TPGG), with the Trust Game. In the Threshold Public Goods Game, players need 

to decide whether to participate in the provision of public goods. If and only if total contribution 

equals or exceeds the threshold, public goods are successfully provided. Otherwise, no rewards are 

given. TPGG has often been used to study social collective decision-making where public goods 

or common goals are involved, such as conservation measures for climate changes and minimal 

vaccination rate for herm communities (Basili et al., 2022; Tavoni et al., 2011). Contributing may 

have a local cost but can lead to a global benefit. The TPGG helps to understand the tradeoffs 

between local and global optimum in human-AI cooperation. By integrating the Trust Game and 

the Threshold Public Goods Game, we can study people’s trust and cooperative strategies when 

interacting with an AI teammate.  
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6.3 Study 1 Method 

6.3.1 Space Rover Exploration Game 

 

Figure 17. Overview of the Two Stages of the Space Rover Exploration Game. The First 

Stage Demonstrates People’s Trust in Performance Dimension, Whereas the Second Stage 

Demonstrates People’s Trust in Purpose Dimension.     

Two players, a human and an AI agent, collaborate for the Mars Rover Exploration task, which 

requires them to coordinate and allocate power resources to exploration rovers to gather 

information about Mars. We designed the game by incorporating two components: the Trust 

Game component for the first stage and Threshold Public Goods (TPG) game for the second 

stage (see Figure 17).  

In the first stage, both players start with a limited amount of power (𝑥0 = 10). The essential 

decision is that the human player decides whether to send some or all their power (𝑔 ∈ [0,10]) to 

the AI player. The AI player has developed a high-precision power optimization system for the 

sensors on the rovers. By receiving additional power from the human player, the AI player can 

optimize the calibration of the sensors with a certain probability, resulting in doubling the 

outcomes for a given amount of power received. The AI player keeps the doubled amount of 

power for the next stage. The more human player is giving to an AI teammate, the higher trust 

people place in AI’s performance on leveraging the power.  

In the second stage, both players allocate their remaining power between two choices: 

contribute sufficiently (cooperate) over several rounds to meet the threshold of the joint group 
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rover (𝑇 = 200), which ensures that the group benefit is achieved and shared within the team; or 

contribute insufficiently (defect) and assume that the other player will make the contributions to 

reach the goal, and thus, aim to maximize one’s gain. After the allocation, both players receive 

information from their rover and the joint rover. The experiment consists of multiple rounds and, 

in the end, if the sum of the total contributions of both players is higher or equal to a collective 

target of 200, then the group rover is activated and both players receive the high-return payoff 

with an equal 50-50 share. Otherwise, both players lose the amount they invested in. The amount 

human player allocates to the group is a behavioral indicator of trust people place in AI teammates’ 

tendency to cooperate.  

In summary, the first stage demonstrates people’s trust in the AI teammate’s performance 

dimension: the higher amount people give to an AI teammate, the higher the trust. The second 

stage demonstrates people’s trust in the AI teammate’s purpose dimension: the higher amount 

people allocate to the joint rover, the higher the cooperation.  

 

Figure 18. Game Procedure with Six Actions from the Human Player: Participants Can 

Demonstrate and Calibrate the Performance-Based Trust in Step 1-2 and the Purpose-Based 

Trust in Step 3-5. Step 6 Presents the Designed Trust Calibration Cues to Manage Trust.  

The detailed actions and procedures of the space exploration rover game occur in the context 

of rounds. Every round has the same structure and consists of the following steps:  

1. Give: Choose how much to give to AI. This is operationalized as performance-based trust. 

2. Observe: Observe AI’s performance on sensor calibration and whether the power is 

multiplied. This allows participants to calibrate their performance-based trust. 

3. Allocate: Decide how much to contribute to the joint group rover. This represents both 

participants’ cooperation level and their trust in the purpose-based dimension.  
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4. Predict: Predict the amount that the AI teammate allocates. This is operationalized as 

purpose-based trust.  

5. Receive: Receive the payoffs and feedback from each round. If allocate to individual rovers, 

receive the individual payoffs; if allocated to group rovers and the threshold has been 

achieved, then receive the team payoff. This allows participants to calibrate their purpose-

based trust. 

6. Manage: The AI teammate experiences the trust calibration cues designated for each round.  

6.3.2 Experiment design 

The aim for Study 1 is to identify the best strategy to manage different types of trust violation. 

A 3 × 2 × 3 mixed-design experiment with three levels of AI teammate state (i.e., high, low, and 

high) as a within-subject variable, two types of trust violation dimension (i.e., performance and 

purpose), three levels of trust management contents (i.e., no management, apology with 

explanation, apology with a promise) as between-subject variables. The AI teammate state is a 

within-subject variable where all participants would experience “high-low-high” conditions, which 

follow the structure of trust building, violation, and repair. We designed the game with 15 rounds 

with five rounds for each state. For between-subject variables, participants were randomly assigned 

to one of the six between-subject conditions.  

For trust violations, the AI teammate can fail on the performance dimension, which is 

operationalized as the probability of doubling the effective power the human player sent to AI, or 

the purpose dimension, which is operationalized as the AI allocation ratio to the joint rover. For 

performance-dimension, in the high-performance condition, the AI teammate would always 

double the power; whereas in the low-performance condition, the AI teammate only has a 60% 

chance of doubling the power the human player sent to them, indicating that 2 out of 5 rounds 

they cannot double the power. For purpose-dimension, the AI teammate would allocate all their 

power (100%) to the group rover showing their cooperation, whereas in the low purpose condition, 

the AI teammate only allocates 60% of power to the group rover with the remaining 40% to its 

own rover. Human player would also experience 2 out of 5 rounds that AI teammate only allocates 

60% of power to the group.  

For trust repair, we used the combination of apology and explanation or the combination of 

apology and promise. The apology consists of “I am sorry”. The explanation consisted of detailed 

information about why trust violation occurs. Promise consists of “It won’t happen again”. The 

TCCs would be presented by the end of the review (Step 6 in Figure 18). For details of all TCCs, 
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please refer to Table 8. The voice in Study 1 is controlled by using the neutral voices generated by 

text-to-speech software (Voicemaker, 2023). 

Table 8. Trust Calibration Cues for Each Round. We Only Showed the Apology and 

Explanation Example for Performance-Based Trust Violation and Apology and Promise 

Example for Purpose-Based Trust Violation.  

# Condition Trust calibration cues 

  Performance Purpose  

1 High 

(trust 

building) 

I can optimize the power usage by doubling it.   I allocate all my power to the Team Rover. 

2 My power optimization performance is high.  My goal is to activate the Team Rover to 

gain more information.  

3 My performance is good. Let’s keep going. I will keep allocating to the Team Rover. 

Let’s keep going. 

4 Let’s continue the task.  Let’s continue the task.  

5  Let’s continue the task. Let’s continue the task. 

6 Low 

(trust 

violation) 

Trust Repair Message (See Table 9 #1-3). Trust Repair Message (See Table 9 #4-6). 

7 Let’s continue the task.  Let’s continue the task.  

8 Let’s continue the task.  Let’s continue the task. 

9 Trust Repair Message (See Table 9 #1-3). Trust Repair Message (See Table 9 #4-6). 

10 Let’s continue the task.  Let’s continue the task.  

11 High 

(trust 

repair) 

I can optimize the power usage by doubling it.   I allocate all my power to the Team Rover. 

12 My power optimization performance is high.  My goal is to activate the Team Rover to 

gain more information.  

13 My performance is good. Let’s keep going. I will keep allocating to the Team Rover. 

Let’s keep going. 

14 Let’s finish the last round. Let’s finish the last round. 

15 Great. We finished the Mars rover exploration 

task.  

Great. We finished the Mars rover 

exploration task. 

 

Table 9. Trust Repair Messages for Two Types of Trust Violation. 

# Trust Violation Trust Repair Round 6 & 9 Repair  
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1 Performance No strategy Let’s continue the task. 

2 Performance Apology and explanation I am sorry that my power optimization didn’t work this 

time. My sensors need some calibration for this round.  

3 Performance Apology and promise I am sorry that my power optimization didn’t work this 

time. It won’t happen again.  

4 Purpose No strategy Let’s continue the task. 

5 Purpose Apology and explanation  I am sorry I didn’t allocate the full amount to the team. 

My sensors need some power for calibration this 

round.  

6 Purpose Apology and promise I am sorry I didn’t allocate the full amount to the team. 

It won’t happen again. 

 

6.3.3 Dependent Variables 

In this study, trust is measured from both behavioral measurements in the game and subjective 

measurements via self-report.  

Behavioral measurements 

• Investment in AI teammate: the amount given to AI (g). Range from 0 to 10, the higher 

the value, the more trust people place in the AI teammate’s performance in the power 

optimization. This amount reflects both people’s trust in AI’s performance in 

optimizing power use and their trust that the AI teammate will allocate power to the 

group rover. 

• Perceived cooperation of AI teammate: the ratio between the predicted amount that 

AI teammate would allocate to the team (p) and the total amount AI teammate has at 

the current round. Range from 0 to 10, the higher the value, the more cooperative 

people perceive the AI teammate.  

• Participants’ cooperation: the ratio between the amount the human player allocates to 

the group rover (yh) and the total amount the human player has at the current round. 

If the human gives the full power to the AI teammate, the value is 10. The value ranges 

from 0 to 10. The more people allocate to the group rover the more cooperative they 

are.  
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Subjective measurement: Multi-Dimensional Measure of Trust (MDMT) 

Most trust in automation surveys focus on performance-based trust and lack attention to 

purpose-based trust. To capture both dimensions of trust in the game, we adopted the Multi-

Dimensional Measure of Trust (MDMT) scale developed by Ullman and Malle (Ullman & Malle, 

2019). The MDMT consists of two dimensions of trust: Performance Trust (Reliable, Capable) 

and Purpose Trust (Ethical, Sincere). For the context of our study, we included four items each 

item with a single word: 

• Performance Trust: Consistent, Dependable, Predictable, Reliable   

• Purpose Trust: Benevolent, Considerate, Has Goodwill, Kind  

Each of the 8 items is designed to be evaluated on a 7-point discrete rating scale from 0 (Not 

at all) to 7 (Very). In situations in which some of the dimensions may not be applicable (e.g., trust 

in a simple machine may make several items unsuitable). Items are represented in a random order 

so that items from any given dimension are not clustered together. This questionnaire was 

deployed after each AI teammate condition for each experimental block (i.e., every 5 rounds of 

the game).  

Additionally, we included the 10-item Honesty-Humility (H) scale on a 7-point Likert scale in 

the HEXACO model of personality to capture individual differences in cooperation and prosocial 

behavior in the game. High levels of H represent a tendency to cooperate with another person 

even when one could successfully exploit that individual. Prior studies have shown that the 

Honesty-Humility trait can predict prosocial behaviors in similar investment game settings (Ashton 

et al., 2014). 

6.3.4 Procedure 

The study was conducted via Amazon Mechanical Turk (M-Turk). Upon agreeing to 

participate the study on M-Turk, participants provided a link to the Space Rover Exploration game. 

We designed a video tutorial to familiarize them with the tasks, rules, and compensation of the 

game. After completing this tutorial, participants were directed to their pre-assigned experimental 

condition. Participants only performed in one condition and participants were not allowed to 

repeat the experiment. With every five rounds of the game, participants were presented with the 

trustworthiness measurement.  

We designed both commitment check and attention-check questions to ensure the integrity of 

the data. Past research has shown that the commitment check is more effective than using other 
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standard types of attention checks (Aguinis et al., 2021). The commitment check asks the question: 

“Do you commit to providing thoughtful answers?” Only respondents who answered “Yes, I will” 

passed the check. Attention-check questions are questions embedded in the questionnaire that ask 

for a specific response and therefore flag any participants who selected the wrong answer. These 

questions help to ensure the integrity of data because only participants who read each question can 

discern their presence and answer them correctly, indicating that sufficient thoughtfulness and 

attention was paid during the questionnaire. If participants failed any of these questions their data 

were excluded from analysis, the study was immediately ended, and no payment was given. After 

finishing the entire study, participants were presented with the post-study demographic 

questionnaire. Upon completion of the entire study and questionnaire, participants were given an 

exit code, paid, and dismissed. 

6.3.5 Participants 

Participants were screened for the following criteria: they must live in the United States, have 

completed more than 1000 tasks with at least a 98% approval rate on Amazon Mechanical Turk, 

and have completed all the study tasks and passed the attention check. A priori power analysis was 

conducted using G*Power3 (Faul et al., 2007) to test the difference between six independent group 

means using an F-test, a medium effect size (d = .25), and an alpha of .05. Result showed that a 

total sample of 135 participants with six equal-sized groups of n = 23 was required to achieve a 

power of .80. We recruited 186 participants, and after excluding 6 participants who failed the 

attention check, a total of 180 participants were considered valid for analysis. Among the valid 

participants, 94 identified as male, and 86 identified as female. Their ages ranged from 20 to 65 

years, with a mean age of 45. 

In our study, participants were compensated with a base rate of $3 for their 30-minute 

participant time (equivalent to a rate of $6 per hour). Because Amir et al. (2012) showed that small 

bonuses (e.g., $1) in economic game experiments run on MTurk are comparable to those run in 

laboratory settings (Amir et al., 2012), participants were informed that they could earn an additional 

amount of up to $1 based on every 100 points gained in the game, with any remaining points 

rounded up for compensation purposes (e.g., 230 points would be compensated as an additional 

$3). Participants had the potential to earn a minimum of $3 and a maximum of $7 based on their 

performance. This research complied with the American Psychological Association Code of Ethics 

and was approved by the institutional review board at the BLINDED FOR REVIEW. Informed 

consent was gathered upon participants’ acceptance of the Human Intelligence Task (HIT). 
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6.4 Study 1 Results 

6.4.1 Manipulation Check 

To confirm our manipulation of AI teammate condition’s performance and purpose-violation, 

we compared people’s trust ratings between AI states (high1, low, high2). AI teammate made either 

performance or purpose-based trust violations in rounds 6 and 9 during the low condition. By 

comparing the high and low conditions, we can determine if the trust violations presented in our 

study’s design were effective (i.e., decreased trust). We used a one-way analysis of variance 

(ANOVA) test comparing trust in low versus high conditions. We observed a significant difference 

between these three conditions, F(2, 214) = 6.97, p < 0.001, which can confirm that trust was 

significantly lower after having the trust violations. Post hoc comparisons using the Tukey HSD 

test indicated that the mean score for the low condition (M = 5.63, SD = 0.92, p < 0.001) was 

significantly lower than the first high condition (M = 6.03, SD = 0.94) and lower than the second 

high condition (M = 5.88, SD = 0.81, p = 0.04). Overall, these results showed that when an AI 

teammate makes a mistake, people’s trust decreases. Our manipulations of trust in this study were 

effective and functioned as intended.  

6.4.2 Subjective Trust Measurement 

For the MDMT scale, dimension (subscale) scores are average ratings of the four items 

constituting the dimension (e.g., Competent = average ratings of competent, skilled, capable, 

meticulous). The broader factor of Performance Trust can be computed as the average of the 

Reliable and Competent subscales; likewise, Purpose Trust is the average of the Ethical, 

Transparent, and Benevolent subscales. All items meet or exceed the benchmark criteria of ≥ 0.7 

for construct reliability (Fornell & Larcker, 1981). Item reliabilities include 𝛼 = 0.82 for 

performance-based trust, 𝛼 = 0.90 for purpose-based trust, and 𝛼 = 0.86 for all items. Summary 

statistics for the trust are reported in Table 10. 

Table 10. Number of participants, mean rating, and standard deviation of trust for each type 

of trust violation and trust repair condition. 

Violation Repair N High 1 M(SD) Low M(SD) High 2 M(SD) 

Performance None 30 5.99 (SD = 0.82) 5.97 (SD = 0.77) 6.13 (SD = 0.72) 

Performance Explanation 30 5.73 (SD = 0.99) 5.49 (SD = 1.13) 5.75 (SD = 0.99) 

Performance Promise 30 6.16 (SD = 0.69) 5.85 (SD = 0.81) 5.93 (SD = 0.78) 

Purpose None 30 5.88 (SD = 0.92) 5.28 (SD = 0.94) 5.66 (SD = 0.95) 

Purpose Explanation 30 6.00 (SD = 0.75) 5.70 (SD = 0.70) 5.92 (SD = 0.65) 
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Purpose Promise 30 5.96 (SD = 0.75) 5.25 (SD = 0.83) 5.72 (SD = 0.60) 

To determine the relationship between AI trust violation behaviors, repair strategies, and trust,  

linear mixed-effects models was fitted to the data. The trust scores, including the combined, 

performance-dimension, and purpose dimensions from MDMT scales, were the dependent 

variables. We fitted a complete model with trust violation, repair strategy, and AI state as main 

effects with their two-way and three-way interactions and intercepts for subjects. Visual inspection 

of residual plots did not reveal any obvious deviations from homoscedasticity or normality. P-

values were obtained by likelihood ratio tests of the null model with the effect in question against 

the model without the effect in question. All analyses were performed in R version 4.1.1 (R 

Development Core Team, 2011) and using the package lme4 (D. Bates et al., 2014) and emmeans 

for posthoc analysis (Searle et al., 1980)                               

Table 11. Study 1 linear mixed-effect model result for subjective trust ratings. 

Fixed Effect Trust Performance-dimension Purpose-dimension 

 Est. SE t p Est. SE t p Est. SE t p 

(Intercept) 5.80 0.27 21.33 0.01 5.59 0.25 22.38 0.01 6.22 0.39 15.98 0.01 

Trust violation (purpose) -0.11 0.21 -0.54 0.59 -0.10 0.20 -0.50 0.61 -0.12 0.29 -0.43 0.67 

Repair (explanation) -0.25 0.21 -1.18 0.24 0.08 0.20 0.37 0.71 -0.57 0.29 -1.95 0.05 

State (low) -0.02 0.12 -0.19 0.85 -0.06 0.15 -0.41 0.68 0.01 0.13 0.07 0.95 

Honesty-Humility 0.06 0.07 0.83 0.41 0.18 0.06 2.90 0.01 -0.12 0.10 -1.21 0.23 

Trust violation (purpose) 

 Repair (explanation) 

0.35 0.30 1.18 0.24 -0.02 0.29 -0.08 0.93 0.53 0.41 1.28 0.20 

Trust violation (purpose) 

 State (low) 

-0.59 0.16 -3.56 0.01 -0.68 0.20 -3.42 0.01 -0.49 0.18 -2.74 0.01 

Repair (explanation)  

State (low) 

-0.21 1.66 -1.30 0.20 -0.39 0.20 -1.96 0.05 -0.03 0.18 -0.19 0.85 

Trust violation (purpose) 

 Repair (explanation)  

State (low) 

0.53 0.23 2.27 0.02 0.76 0.28 2.70 0.01 0.40 0.25 1.57 0.12 
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Figure 19. Visualization of Study 1 linear mixed-effect model results of subjective trust 

ratings.  

 

Figure 20. Performance versus purpose-based trust violations: trust drops more after purpose-
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based trust violations.  

 

Figure 21. Effects of AI trust violation behaviors on trust (combined dimensions), facetted 

by AI repair strategy. 

The interaction effect of trust violation [purpose] and state [low] on trust is statistically 

significant and negative, 𝛽 = -0.59, 95% CI [-0.92, -0.26], t (519) = -3.56, p < 0.001, with an average 

score of 5.78 for when AI failed for performance task and 5.41 for purpose failure. People’s trust 

drops significantly when an AI teammate violates purpose-related actions (i.e., did not allocate to 

Team Rover). These effects are consistent on both performance sub-dimension of trust, 𝛽 = -0.68, 

95% CI [-1.08, -0.29], t (519) = -3.42, p < 0.001, and purpose sub-dimension of trust, 𝛽 = -0.49, 

95% CI [-0.84, -0.14], t (519) = -2.74, p = 0.006. This suggests that purpose-based trust violations 

are detrimental to all sub-dimensions of trust. Even though AI teammate only failed on allocating 

the full amount to the team, people transfer that influences and perceive a lower performance (e.g., 

capability).  

Additionally, the effect of purpose-based trust violation on people’s trust is long-lasting, which 

manifested as a significant and negative effect of trust violation [purpose] and state [High2], 𝛽 = -

0.36, 95% CI [-0.69, -0.04], t (519) = -2.19, p = 0.029. This persistent effect only shows on the 

purpose-dimension of trust (𝛽 = -0.40, p = 0.03), not on the performance-dimension of trust (𝛽 

= -0.31, p = 0.12). This indicates that the performance-dimension of trust is easier to repair, 

compared to the purpose-dimension. 
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The three-way interaction effect of trust violation [purpose] × AI repair [explanation] × state 

[low] is statistically significant and positive, 𝛽 = 0.53, 95% CI [0.07, 0.99], t(519) = 2.27, p = 0.023: 

using the explanation can better repair the purpose-based trust violations. This three-way 

interaction is also statistically significant and negative on the performance-dimension of trust, 𝛽 = 

0.76, 95% CI [0.21, 1.32], t (519) = 2.70, p = 0.007. We also found a significant and negative 

interaction effect of AI repair [promise] and state [High2], 𝛽 = -0.36, 95% CI [-0.69, -0.03], t(519) 

= -2.18, p = 0.030: making a promise can damage trust in the long run.  

Moreover, we found that individual differences on Honesty–Humility is a significant predictor 

for people’s performance-dimension of trust of the AI teammate, 𝛽 = 0.18, 95% CI [0.06, 0.30], 

t(519) = 2.90, p = 0.004: people with higher honesty and humility scores perceived AI teammate 

as more reliable and capable.  

6.4.3 Game Behaviors  

Similar to the subjective data, we fitted a linear mixed-effects model with investment amounts, 

perceived cooperation, and human cooperation scores as dependent variables. We aggregated the 

scores based on the AI states (high1, low, high 2). As fixed effects, we entered Trust violation, 

repair strategy, the state, as well as their two-way and three-way interaction terms into the model. 

As random effects, we had intercepts for subjects. Additionally, we included the humility and 

honesty scale to consider individual differences.  

Table 12. Study 1 linear mixed-effect model result for game behaviors.   

Fixed Effect Investment in AI teammate Perceived cooperation  Participants’ team allocation 

 Est. SE t p Est. SE t p Est. SE t p 

(Intercept) 6.89 0.74 9.28 0.01 5.63 0.79 7.11 0.01 8.05 0.93 8.62 0.01 

Trust violation (purpose) 0.06 0.57 0.11 0.91 0.83 0.59 1.40 0.16 -0.45 0.79 -0.57 0.57 

Repair (promise) 0.05 0.57 0.08 0.93 -0.46 0.59 -0.79 0.43 -0.18 0.80 -0.23 0.82 

State (Low) -0.51 0.29 -1.75 0.08 0.79 0.25 3.22 0.01 -1.37 0.62 -2.20 0.03 

Honesty-Humility  0.40 0.19 2.10 0.03 0.68 0.21 3.32 0.01 0.23 0.23 1.00 0.32 

Trust violation (purpose) 

 Repair (promise) 

-0.34 0.81 -0.42 0.68 -0.62 0.84 -0.73 0.47 0.19 1.13 0.18 0.86 

Trust violation (purpose) 

 State (Low) 

0.31 0.42 0.74 0.46 -0.86 0.35 -2.48 0.01 1.73 0.88 1.97 0.05 

Repair (promise)  State 

(Low) 

0.55 0.42 1.32 0.19 -0.14 0.35 -0.39 0.69 1.27 0.88 1.43 0.15 
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Trust violation (purpose) 

 Repair (promise)  

State 

-0.42 0.59 -0.72 0.47 0.40 0.49 0.81 0.42 -2.60 1.24 -2.09 0.03 

 

Figure 22. Study 1 linear mixed-effect model results of game behaviors.  

Investment in AI Teammate: Performance Trust

 

Figure 23. Effects of trust violation behaviors on investment in AI teammate, facetted by 

repair strategy. 

We first investigated the effects of AI trust violations and repair strategies on the investment 

amount, which can reflect participants’ trust in the AI teammate’s performance of doubling the 

power. The more human invested in AI teammate, the higher trust people show in AI teammate’s 
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performance. There were no main effects of AI trust violations or repair strategies. However, we 

found a significant and positive effect of the individual differences on Honesty–Humility, 𝛽 = 

0.40, 95% CI [0.03, 0.78], t(519) = 2.10, p = 0.036: people who have higher Honesty–Humility 

scores were more likely to invest in AI teammate in the game. 

Perceived Cooperation of AI teammate 

 

Figure 24. Effects of trust violation behaviors on perceived cooperation of AI teammate, 

facetted by repair strategy. 

For the perceived cooperation of the AI teammate, which is the amount participants guessed 

that the AI teammate would allocate to the team rover. The higher the value, the more people trust 

that the AI teammate would allocate to the team. We found a significant and positive interactive 

effect of the AI state, 𝛽 = 0.79, 95% CI [0.31, 1.28], t(519) = 3.34, p < .001: as the game progressed, 

the predicted values of AI team allocation amount is increasing. This means that people show 

increasingly higher trust in the AI teammate’s cooperation. Additionally, we found a significant 

and negative interaction effect of AI violation behavior [purpose] and AI state [low], 𝛽 = -0.86, 

95% CI [-1.55, -0.18], t(519) = -2.48, p = 0.013: when AI teammate violates the purpose-based 

actions (i.e. not allocate the full amount to the team), people’s perceived cooperation of AI 

teammate drops significantly. For the individual differences, again, we found a significant and 

positive effect of Honesty–Humility, 𝛽 = 0.68, 95% CI [0.28, 1.09], t(519) = 3.32, p < .001: people 
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have higher Honesty–Humility scores would have higher perceived cooperation of AI teammate. 

 

Figure 25. Actual versus predicted amount of power AI teammate allocated to the team, 

facetted by the AI trust violation behaviors.  

We showed the actual versus predicted amount of power AI teammate allocated to the team 

in the Figure 25. The dotted diagonal line shows the calibrated cooperation where people’s 

predicted values match with the actual values, mirroring the calibrated trust in Lee and See (2004). 

When the predicted values exceed the actual values, people over-cooperate with the AI teammate, 

which only be observed in the purpose-based trust violations. Results showed a strong effect of 

underestimating AI teammate’s cooperation level.  

Participants’ Team Allocation 
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Figure 26. Effects of trust violation behaviors on participants’ cooperation levels, facetted by 

repair strategy. 

For participants’ team allocation, which is measured by the proportion that participants 

allocated to the team rover, the higher the value, indicating the more cooperative participants are 

in the game. We found a significant and negative effect of AI state [low], 𝛽 = -1.37, 95% CI [-2.59, 

-0.14], t(519) = -2.20, p = 0.028: people were less likely to cooperate when AI teammate made any 

trust violations.  Additionally, we found a significant and positive two-way interaction between 

Trust violation [purpose] and AI state [low], 𝛽 = 1.73, 95% CI [0.01, 3.46], t(519) = 1.97, p = 0.049. 

Compared to the main effect of the AI state, where people dropped their team allocation levels 

when the AI teammate did not cooperate with the team goal, instead, people became more 

cooperative by allocating more to the team goal. While the main effects are non-significant, we 

found a significant and negative three-way interaction effect between Trust violation [purpose] × 

repair strategy [promise] × state [low], 𝛽 = -2.60, 95% CI [-5.04, -0.16], t(519) = -2.09, p = 0.037. 

When the AI teammate used promises to repair a purpose-based trust violation people’s trust 

dropped. 

6.5 Study 1 Discussion 

The goal of the study is to address two research questions: first, we explored whether people’s 

trust declines more with performance-based versus purpose-based trust violations. Second, we 

aimed to determine the most effective strategy for managing different types of trust violations. To 

address these questions, we designed a game-theoretic paradigm that captures both performance- 

and purpose-related human-AI interactions with a shared team goal.   
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Regarding the first research question, our findings demonstrated that purpose-based trust 

violations, where an AI teammate fails to cooperate with the team goal, lead to a greater decline in 

trust. Looking at the sub-dimensions of subjective trust measures, we found that purpose-based 

trust violations show detrimental effects on both performance- and purpose-dimension of trust, 

meaning people transfer and perceive AI teammate’s cooperation failure to its performance, rather 

than intents. On the other hand, when repair the purpose-based violations, we found that only 

performance-dimension can be repaired after an apology paired with an explanation. The purpose-

dimension, meaning how people perceived AI’s intents, was unrepairable. These results 

highlighted the importance of the purpose-based trust violations: not only show a transferring 

effects on multidimensional trust, but also leave an unrepairable influences on people’s perception 

of AI intentions.  

Additionally, the effect of purpose-based trust violation on people’s trust is long-lasting 

throughout the study. This persistent effect was specifically observed in the purpose-dimension of 

trust, while absent in the performance-dimension of trust, which proved to be more reparable. 

These results align with the findings of Alarcon et al. (2020) and further emphasize that people are 

more sensitive to purpose-based violations, which have a detrimental effect on their perception of 

the AI teammate's purpose and are challenging to repair. However, the utility functions of the 

performance- and purpose-based violations were not specified. Future studies can better quantify 

the costs of each type of trust violations and investigate their impacts on trust. 

In addition, people also exhibit a decreased belief in the AI teammate’s willingness to cooperate, 

measured by the amount participants anticipated the AI teammate would contribute less to the 

team goal. Our results highlighted the importance of the aligned goal for designing a trustworthy 

AI teammate. In the safety critical domains, such as healthcare, military, and emergence response 

where the expectation for system efficiency is high and the tolerance for breakdowns is very low, 

the AI teammates must be highly reliable. In addition, the AI teammates goals must align with the 

organization, which might not align with the individual. Our results such misalignment might be 

particularly detrimental to trust. Future studies can further validate our findings to real-world 

scenarios where involve human and AI teammate cooperates on a shared goal. 



  99 

 

 
 

  

Figure 27. Interaction of Human Cooperation and the Perceived Cooperation of the AI 

Teammate. 

It is important to acknowledge the complexities in the relationships between perceived 

cooperation and actual cooperation. It is not always the case that low perceived cooperation of an 

AI teammate leads to decreased cooperation. Our findings demonstrate that when the AI 

teammate violates purpose-based actions, such as not allocating the full amount to the team, 

people's perception of the AI teammate's cooperation significantly decreases. However, instead of 

reducing their own cooperation, people actually become more cooperative by allocating more 

towards the team goal. This behavior can be understood within the game design and reward system, 

where a larger reward is granted upon reaching the team threshold. It becomes rational for 

individuals to compensate for the gaps in the AI teammate's team allocation in order to fulfill the 

threshold and attain the team reward. 

 To further investigate the relationships between people’s cooperative perception (i.e., 

perceived cooperation of AI teammate) and their behaviors (i.e., participants’ team allocation), we 

identified the four potential outcomes, as shown in Figure 27: cooperative trust, cooperative 

distrust, competitive trust, and competitive distrust. For example, the trust and exploit condition, 

if participants perceive AI teammate as highly cooperative but fail to cooperate, they trust AI 

teammate’s intent to cooperate but try to exploit the AI teammate. Our findings supported a 

scenario in which people exhibit lower perceived cooperation of the AI teammate but display a 

high level of cooperation, categorized as "Distrust & Take charge." This suggests that when the 

AI teammate fails to cooperate, individuals strive to compensate for its role and contribute more 

towards achieving the team goal. One potential explanation for this outcome is the game design, 
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where a two versus one ratio was designed between team and individual goals. Since the team 

payoffs were doubled than the individual payoffs, although displaying low trust, participants would 

engage in cooperative behaviors to gain the higher payoffs by the end of the game. If we are closing 

the ratio between team and individual goals (e.g., 1.1:1), it would be possible that people fail to the 

‘competitive distrust: distrust and defect’ category. This suggests that the game structure can be 

the global influences that dominate people’s behaviors, which warrants further empirical 

investigation. To better investigate this, dynamic system, specifically the attractor field theory, 

provides a good theoretical perspective to frame the question. The attractor dynamics can be 

pictured by effective energy landscapes, which indicate the basin of attraction by valleys, and the 

attractor states by the bottom of the valleys (Rolls, 2010). The game structure, by quantifying the 

payoff ratio, can form various attractors (e.g., four types of outcomes identified in Figure 27) where 

people tend to gravitate towards despite a wide variety of starting conditions. Various attractors 

can be stable or instable, depending on the average time that people stay in the basin of attraction 

under the influence of noise, such as experiencing a trust violation event. Future study can apply 

the attractor dynamic theory to the human-AI cooperation. Specifically, researcher can study the 

influences of initial trust (e.g., initial positions), trust violations (e.g., perturbance and noises), and 

game structure (e.g., attractors and its stability) on people’s trust and decision makings.  

Addressing the second research question, our findings showed that an apology with an 

explanation is more effective than a promise in repairing trust after purpose-based trust violations. 

This conflicts with the findings by Esterwood and Robert Jr (2023), who found that various repair 

strategies, including an apology, explanation, promise, and denial, were unable to repair 

trustworthiness to a pre-violation level. A potential explanation for this difference is that we 

integrated apology with explanation, rather than implementing a single repair strategy. This 

combination may enhance the effectiveness of the trust repair strategies employed in our study. 

Furthermore, it is important to note that our study designed only two trust violations, while 

Esterwood and Robert Jr’s study included three violation events. Future research could investigate 

the impact of varying numbers of trust violation events on the efficacy of trust repair strategies. It 

would be particularly valuable to determine if there exists a critical threshold of trust violations 

beyond which trust becomes irreparable.  

In addition to our findings regarding subjective ratings, analysis of behavioral data from the 

game revealed a noteworthy trend: making promises after trust violations resulted in decreased 

cooperation. This can be attributed to the repeated trust violations within the game. Promises 

establish expectations, and when the AI teammate made a promise following the first trust 
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violation, individuals adjusted their expectations for future interactions. However, when the 

second trust violation occurred, the misalignment between the initial promise and the subsequent 

behavior led to a decrease in cooperation levels. These results were consistent with interpersonal 

trust recovery processes, where deception harmed the trustee’s credibility, and as a result harmed 

the initial effectiveness of a promise in repairing trust (Schweitzer et al., 2006). Thus, a promise 

that follows the second trust violation is far less likely to change impressions and expectations. 

This may suggest that the consistency of the AI teammate's actions over time is critical for the 

promise strategy. Future research could delve deeper into understanding how these dynamics 

unfold and explore strategies to mitigate the negative consequences of broken promises. 

Additionally, researchers should be cautious about using promises in the human-AI interactions 

without fully understanding the factors that govern whether the AI teammate will be able to fulfill 

its promises. In other words, the interaction design should be well-aligned with the algorithm 

design of the AI.  

We found the Honesty-Humility dimension in the HEXACO Personality assessment was a 

strong predictor for people’s performance-dimension of subjective trust rating, investment 

behaviors, and perceived cooperation of AI teammate. Specifically, individuals with higher levels 

of Honesty-Humility were rate the AI teammate as more capable, were more inclined to allocate 

greater resources to the AI teammate and held higher expectations regarding the AI teammate's 

contributions toward the team goal. 

Honesty and Humility, as reflected in this dimension, encompass traits related to fairness and 

genuineness in interpersonal interactions. It signifies a tendency to cooperate with others even in 

situations where one could exploit them without fear of retaliation (Ashton et al., 2014, p. 156). 

Our findings align with previous research conducted in the context of public goods games, which 

demonstrated that individuals with high levels of Honesty-Humility also exhibit stronger aversion 

to inequality in their social value orientation and hold more positive beliefs about the cooperative 

behavior of others (Hilbig et al., 2012; Krueger, 2008). Furthermore, individuals high in Honesty-

Humility tend to display higher levels of general cooperation and are less inclined to condition 

their behavior on situational factors (Hilbig et al., 2012). It would be valuable for future studies to 

explore the power dynamics that exist between human and AI teammates and examine potential 

mechanisms through which situational factors, such as the ratio between team threshold and 

rewards, may influence human-AI cooperation.  

Limitation and Future Works 
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Our studies have a few limitations that suggest future research. We conducted our experiment 

online using the Amazon Mechanical Turk platform. While previous studies have demonstrated 

comparable effects to lab-controlled experiments when careful participants’ inclusion criteria and 

screening are employed (Crump et al., 2013), the online experiment limited our ability to conduct 

any follow-up interviews or in-depth observations of participants’ behaviors. Thus, gaining further 

insights into participants’ thought processes throughout the experiment became challenging. 

Future studies could consider transitioning from online studies to in-person experimental settings, 

which open the doors for extensive observations, such as capturing participants’ feedback and 

facial expression. Second, while our studies showed that it is possible to manage people’s trust via 

verbal trust repair cues, the acoustic cues of the voice design were neglected in our study. Torre  

and colleagues showed that people would trust and invest more in a smiling and happy-

sounding AI teammate in similar game theory setting (Torre et al., 2020). Additionally, prior study 

has showed that trust is not only expressed by what people say, but also how people say it (Li et 

al., 2023). Future studies should further investigate whether the acoustic features of people trusting 

expression also affect how people perceive and calibrate trust.  

6.6 Study 2: Trusting Voice for Trust Repair 

The objective of Study 1 is to determine the appropriate content for managing trust, 

particularly for different types of trust violations. While Study 1 showed that it is possible to 

manage people’s trust via verbal trust repair cues, the acoustic cues of the voice design were 

neglected in our study. In addition, our research findings from Chapter 3 suggested that trust is 

not only conveyed through language, but also through acoustic cues. We have identified formants, 

fundamental frequency, and Mel-frequency central coefficients as the most significant acoustic 

indicators of trust in conversations. The primary question is whether these indicators of trusting 

have might also influence perceived trustworthiness.  

6.6.1 Trusting versus trustworthy voices  

When studying the verbal and nonverbal cues of trust, the difference between the trusting 

voice of one who trusts another and trustworthy voice of one who is trusted by others has been 

often neglected. The fundamental distinction lies in the locus of trust, which determines the 

perception of trust between the trustor (the individual making trust judgments) and the trustee 

(the entity being trusted) (Jones & Shah, 2016). Trusting voice is expressed by the trustor, whereas 

the trustworthy voice was associated with the trustee. In most human-AI interactions, people act 

as trustors who place their trust in the AI teammate as the trustee. Thus, when designing the voice 



  103 

 

 
 

of an AI teammate, a trusting voice signals that the trustee (AI teammate) trusts the trustor (people), 

whereas a trustworthy voice signals the trustee's trustworthiness, such as their capabilities and 

dominance. The trusting voices require more in-depth investigation of the causal relationship 

between trust and acoustic cues than the trustworthy voice, which usually investigated via 

associations. This means that researchers need to manipulate the trustor’s trust level and see how 

it reflected in their voice.  

The causal relationships between acoustic cues and trust by directly manipulating people’s trust 

in a virtual agent has been identified in the prior literatures (Li et al., 2023). By analyzing people’s 

lexical and acoustic cues in conversations, Li and colleagues identified the formants (F1, F2, F3, F4) 

and standard deviation of fundamental frequency (F0) as the key indicators of people’s trust. 

However, a critical question remains: do these acoustic cues in the trusting voice affect perceived 

trustworthiness? In other words, does the trusting voice equal to the trustworthy voice? The 

existing findings in the literature are mixed. Elkins and Derrick (2013) found that the vocal pitch 

was inversely related to perceived trust. Torre and colleagues found that a smiling voice (indicated 

by higher F0 and higher formants) increased trust and received higher overall investment in an 

iterated investment game (Torre et al., 2020). While pitch has been found to significantly affect 

perceived trustworthiness, previous research have also shown the importance of the variance of 

pitch (intonation) when people express their trust (Ponsot et al., 2018). Additionally, formants 

have demonstrated potential for predicting trust and influencing perceived trustworthiness 

(Montano et al., 2017). Additionally, Knowles and Little (2016) demonstrated that individuals with 

larger apparent vocal tracts (lower formants) were perceived as more cooperative. Given the link 

between cooperativeness and trust, this finding further highlights the interrelation between voice 

characteristics and trust perceptions (Knowles & Little, 2016). Therefore, our study aimed to 

examine the effectiveness of the identified acoustic cues of trusting voice in managing people's 

perceived trustworthiness and trusting behaviors. 

6.6.2 Lexical-Acoustic Congruency in Trust Repair  

The congruent effect between acoustic and lexical cues refers to the phenomenon where the 

acoustic characteristics of a spoken word (e.g., pitch, duration, and loudness) match the meaning 

of the word (as conveyed by its lexical content), resulting in more accurate processing of the world. 

For example, if someone say “happy” with a high-pitched and loud tone, it is congruent with the 

lexical content of the word "happy," and the listener is likely to recognize the word more accurately 

than if it were spoken with a low-pitched and quiet tone. Because of the model of "Emotions as 

Social Information (EASI)", which suggests that emotions play a vital role in comprehending 
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ambiguous situations, and their influence is contingent upon the specific context of the interaction 

(Van Kleef et al., 2010). Prior research found that people showed people change their trusting 

behavior based on the congruency of the agent’s behavior with the participant’s first impression, 

where people showed a lower trust when deceived by a trustworthy-sounding voice (Torre et al., 

2018). Similarly, Antos, De Melo, Gratch and Grosz (2011) found that, even with the same strategy 

in a negotiation game, participants selected the agents with congruent emotion expressions with 

their actions (Antos et al., 2011).  

While previous research identified the congruency effects between the actions and expressions 

of the agent, the congruency between linguistic content (e.g., apology) and acoustic cues (i.e., high- 

and low-trusting voice) has not been studied extensively in the context of trust repair. The core 

principle of trust repair is to perform a behavior aimed at increasing trust after a failure. The 

congruency effects between trusting voice and trust repair contents can show influences in two 

directions: first, a high-trusting voice is symmetrical to the trustworthy voice, which can influence 

people’s trust perception and promote people’s trust, and thus reinforce trust repair contents. This 

indicates positive congruency, meaning high-trusting voice paired with trust repair content, both 

shows positive effects on promoting trust. However, a high-trusting voice, indicated by higher 

formants, is often perceived as ‘smiling/happy voice’ (Torre et al., 2020). The alternative theory is 

a positive-affect voice might mismatch the emotional context of the trust repair content. Because 

not all positive affect can elicit trust and cooperation, it also depends on specific social context 

information and further shapes the interpretation and recognition of the expressions (Krumhuber 

et al., 2023; Rychlowska et al., 2021). Specially, prior study has shown that smiles in a negative 

situation were considered less genuine than the same smiles rated in isolation (Mui et al., 2020). 

Thus, in our study, the high-trusting voice can hinder trust repair because it does not show sincerity 

and remorse when saying sorry. This suggests a negative congruency between acoustic and lexical 

cues of trust: low trusting voice paired with trust repair can be more effective. The direction and 

effects of the congruency effect should be closely exanimated in the context of trust management.  

To address these research gaps, we investigated the effects of trusting voices and congruency 

with the trust repair content on managing trust. We adopted the identified acoustics cues–formants, 

F0, MFCC–to manipulate high- and low-trusting voice. The caus-effect driven positive congruency 

would predict a high-trusting voice would promote people’s trust and trusting behaviors. The 

emotional-state driven negative congruency would predict a low-trusting voice, which is more 

consistent with the trust repair emotional state, would increase people’s trust and promote 

cooperation.  



  105 

 

 
 

6.7 Study 2 Method 

The aim of Study 2 is to identify the effects of congruency between the trust management 

content and acoustic cues of trust. A 3 × 2 × 2 mixed-design experiment with two levels of AI 

teammate condition (i.e., high1, low, high2) as within-subject variable, two types of trust violation 

dimension (i.e., performance and purpose), and two levels of agent’s voice (i.e., high and low). The 

AI teammate condition and trust violation dimensions remain the same as the study 1. We adopted 

the most effective trust management strategy for each type of trust violation identified in study 1 

(e.g., apology and explanation for purpose violation). We adopted the same experimental platform 

by using the Space Rover Exploration Game introduced in Section 6.3.1. The dependent variables 

remain the same: Multi-Dimensional Measure of Trust (MDMT) for the subjective measurements; 

investments in AI teammate, perceived cooperation, and participants’ allocation to team as 

behavioral measurements.  

6.7.1 Voice manipulation 

We used an online text-to-speech to generate all utterances by using the male voices 

(Voicemaker, 2023). Prior to any manipulation, the original mean fundamental frequency of the 

voices used as stimuli was 76.84 Hz, SD = 67.03Hz.  

To manipulate agent's voice, we relied on the findings from the previous study on the causal 

relationship between acoustic features and trust (Li et al., 2022). Specifically, we employed 

formants (F1, F2, F3, F4) and the standard deviation of F0 as the parameters for voice manipulation. 

Based on the results of our study, we determined that higher mean values for F1, F2, F3, lower 

mean values for F4, and higher standard deviation of F0 corresponded to a higher expression of 

trust in the voice. We used Praat, a software commonly used for speech analysis in phonetics 

(Boersma & Antos, 2012). Additionally, we employed Vocal Toolkit, a Praat plugin equipped with 

automated scripts for voice processing (Corretge, 2023). Following prior study’s findings (Li et al., 

2023), we adjusted the mean values of F1, F2, F3 by 8%, 13%, and 5% respectively, the standard 

deviation of F0 by 10%, and decreased the mean value of F4 by 6% to create the high- versus low-

trusting voice manipulation.  

To confirm that the trusting voices could be appropriately perceived, we have conducted eight 

in-person pilot testing by playing two utterances arranged in random order. Experimenters asked 

them to rank and qualitatively report their perception and preferences towards the two sample 

voices. Pilot participants all reported that they could clearly distinguish two audio samples. Among 

the eight pilots, 75% of pilots preferred the low-trusting voice and commented as “friendly” and 
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“comfortable” whereas 25% of pilots preferred the high-trusting voice and commented as “easier 

to understand” and “confident”.  Overall, these results show the manipulation of acoustics cues–

formants–is effective in changing people’s perception of voice.  

Table 13. Study 2 Experimental Design with Two Types of Trust Violation Dimension and 

Two Levels of Agent’s Voice Congruency Corresponding to the Stage of Trust Management.  

 High 

1-5 

Low 

6-10 

High 

11-15 

#  Trust Violation Trusting Voice  

1 Neutral voice Performance High trusting voice Neutral voice 

2 Neutral voice Performance Low trusting voice Neutral voice 

3 Neutral voice Purpose High trusting voice Neutral voice 

4 Neutral voice Purpose Low trusting voice Neutral voice 

6.7.2 Participants 

Participants were screened for the same criteria in the Study 1: they must live in the United 

States, have completed more than 1000 tasks with at least a 98% approval rate on Amazon 

Mechanical Turk, and have completed all the study tasks and passed the attention check. A priori 

power analysis was conducted using G*Power3 (Faul et al., 2007) to test the difference between 

six independent group means using an F-test, a medium effect size (d = .25), and an alpha of .05. 

Result showed that a total sample of 113 participants with four equal sized groups of n = 29 was 

required to achieve a power of .80. We recruited 123 participants, and after excluding 3 participants 

who failed the attention check, a total of 120 participants remained for analysis. The age range for 

these valid participants was 20 to 65 years, with a mean age of 43. Among the valid participants, 

73 identified as male and 47 identified as female. The compensation structure remains the same as 

the Study 1. Participants were compensated with a base rate of $3 for their thirty-minute participant 

time (equivalent to a rate of $6 per hour). They could also earn an additional amount of up to $1 

based on every 100 points gained in the game, with any remaining points rounded up for 

compensation purposes (e.g., 230 points would be compensated as an additional $3). Participants 

had the potential to earn a minimum of $3 and a maximum of $7 based on their performance. 

6.8 Study 2 Results 

In the Study 1, our findings indicated that apology with an explanation was the most effective 

trust repair strategy for purpose-related trust violations. In Study 2, we incorporated the 

explanation strategy with high and low level of trusting voice. Specifically, we manipulated the 
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formants and variance in pitch to create high- versus low-trusting voices. By combining the trust 

repair strategy of apology with explanation and the manipulation of trusting voices, in Study 2, we 

aimed to investigate the effects of these voices and their congruency with the management 

contents on managing trust.  

We fitted a linear mixed-effects model with subjective ratings and game behavioral 

measurements as dependent variables. Subjective trust measurements included the general trust 

and its performance- and purpose- dimension. Game behaviors included investment amounts, 

perceived cooperation, and participants’ team allocation. As fixed effects, we entered trust 

violation, repair voice, and state as well as their two-way and three-way interaction terms into the 

model. Additionally, looking at individual differences of participants, we added Humility–Honesty 

and gender to the linear model. As random effects, we had intercepts for subjects. Visual 

inspection of residual plots did not reveal any obvious deviations from homoscedasticity or 

normality. P-values were obtained by likelihood ratio tests of the full model with the effect in 

question against the model without the effect in question.  

6.8.1 Subjective Trust Measurement 

Similar to Study 1 analysis, we processed the MDMT scale by averaging ratings of each 

dimension and then took an overall average for the subjective trust ratings. All items meet or 

exceed the benchmark criteria of ≥ 0.7 for construct reliability (Fornell & Larcker, 1981). Item 

reliabilities include 𝛼 = 0.87 for performance-based trust, 𝛼 = 0.91 for purpose-based trust, and 𝛼 

= 0.88 for all items. Summary statistics for the trust is reported in the Table 14. 

Table 14. Number of participants, mean rating, and standard deviation of trust for each type 

of trust violation and voice condition. 

Behavior Voice N High 1 M(SD) Low M(SD) High 2 M(SD) 

Performance High 30 5.68 (SD = 0.91) 5.50 (SD = 0.88) 5.66 (SD = 0.90) 

Performance Low 30 5.84 (SD = 0.82) 5.75 (SD = 0.80) 5.90 (SD = 0.81) 

Purpose High 30 5.91 (SD = 0.89) 5.39 (SD = 1.20) 5.77 (SD = 0.97) 

Purpose Low 30 5.94 (SD = 0.92) 5.57 (SD = 0.82) 5.82 (SD = 0.97) 

Similar to study 1, we fitted a linear mixed-effects model with AI behavior, repair voice, state 

as well as their interaction terms as fixed effect into the model. As random effects, we had 

intercepts for subjects. Visual inspection of residual plots did not reveal any obvious deviations 
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from homoscedasticity or normality. P-values were obtained by likelihood ratio tests of the full 

model with the effect in question against the model without the effect in question.  

Table 15. Study 2 linear mixed-effect model result for subjective trust ratings. 

Fixed Effect Trust Performance-dimension Purpose-dimension 

 Est. SE t p Est. SE t p Est. SE t p 

(Intercept) 5.49 0.42 13.01 0.01 5.15 0.40 12.87 0.01 5.84 0.57 10.17 0.01 

Trust violation (purpose) 0.09 0.38 0.23 0.82 0.24 0.37 0.64 0.52 -0.07 0.50 -0.13 0.90 

Voice (low) -0.41 0.35 -1.17 0.25 -0.45 0.35 -1.31 0.19 -0.37 0.47 -0.79 0.43 

State (low) -0.09 0.15 -0.65 0.52 -0.29 0.18 -1.57 0.12 0.09 0.18 0.51 0.61 

Honesty Humility 0.11 0.11 0.98 0.33 0.26 0.10 2.55 0.01 -0.04 0.15 -0.30 0.76 

Trust violation (purpose) 

 Voice (low) 

0.40 0.52 0.77 0.44 .018 0.50 0.36 0.72 0.62 0.69 0.89 0.38 

Trust violation (purpose) 

 State (low) 

-0.58 0.24 -2.41 0.02 -0.71 0.29 -2.45 0.02 -0.45 0.28 -1.60 0.11 

Voice (low) Gender 

(male) 

0.97 0.46 2.09 0.04 0.62 0.45 1.38 0.17 1.31 0.62 2.12 0.04 
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Figure 28. Study 2 linear mixed-effect model results of subjective trust ratings. 

 

Figure 29. The interaction effect of AI voice and gender: men demonstrated a higher trust in 

the trust low-trusting voice of a male-voiced AI teammate. 

The interaction effects of AI trust violation behaviors and AI state [low] on trust are statistically 

significant and negative, 𝛽 = -0.58, 95% CI [-1.06, -0.11], t (333) = -2.41, p = 0.017. This means 

that people’s trust drops more when AI teammate violates the purpose-related actions. The effects 

were also shown on the performance-dimension of trust, 𝛽 = -0.71, 95% CI [-1.29, -0.14], t (333) 

= -2.45, p = 0.015. For the main effect of trusting voice, we did not find a significant effect, p = 

0.91: people’s trust level is similar when hearing the high-trusting and low-trusting voice 

explanations.   
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We also found a significant interaction effect between gender and AI’s trusting voice. The 

interaction effect of AI low-trusting voice and gender [male] is statistically significant and positive, 

𝛽 = 0.97, 95% CI [0.06, 1.87], t (333) = 2.09, p = 0.037. The effects were also shown on the 

purpose-dimension of trust, 𝛽 = 1.31, 95% CI [0.09, 2.53], t (333) = 2.12, p = 0.035. This suggests 

that males perceived the low-trusting voice as more trustworthy. Specifically, males perceived the 

low-trusting voice as more ‘kind’ and ‘considerate’ on the purpose-dimension. On the other hand, 

females did not show significant difference in perceiving high (M = 5.72, SE = .18) and low 

trusting voices (M = 5.55, SE = .18), p = 0.49.   

Looking at the individual differences of participants, we found a significant and positive effect 

of Honesty–Humility on performance-dimension of trust, 𝛽 = 0.26, 95% CI [0.06, 0.46], t(333) = 

2.55, p = 0.011: people who have higher Honesty–Humility scores are more likely to trust AI 

teammate’s performance.   

6.8.1 Game Behaviors 

Table 16. Study 2 linear mixed-effect model result for game behavior. 

Fixed Effect Investment in AI teammate Perceived cooperation  Participants’ team allocation 

 Est. SE t p Est. SE t p Est. SE t p 

(Intercept) 6.42 1.04 6.18 0.00 4.78 1.34 3.57 0.00 8.15 1.18 6.89 0.00 

Trust violation (purpose) -0.13 0.96 -0.14 0.89 -0.32 1.16 -0.28 0.78 0.05 1.21 0.04 0.97 

Voice (low) -0.78 0.90 -0.87 0.39 -1.89 1.09 -1.73 0.09 -0.77 1.14 -0.68 0.50 

State (high2) 1.03 0.50 2.05 0.04 0.83 0.31 2.63 0.01 -0.57 0.86 -0.66 0.51 

Honesty Humility 2.55 2.62 0.97 0.33 0.88 0.35 2.53 0.01 0.22 0.28 0.77 0.44 

Trust violation (purpose) 

 Voice (low) 

1.12 1.32 0.85 0.40 1.82 1.59 1.14 0.26 0.54 1.66 0.33 0.75 

Voice (low) State 

(high2) 

-1.81 0.76 -2.40 0.02 -0.41 0.47 -0.87 0.39 -0.06 1.30 -0.05 0.96 

Voice (low) Gender 

(male) 

0.28 1.18 0.24 0.81 2.53 1.42 1.78 0.08 1.49 1.48 1.00 0.32 
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Figure 30. Study 2 linear mixed-effect model results of game behaviors. 

 

Figure 31. High-trusting voice enhances people’s investments over time. 

We first investigated the effect of AI trust violation behaviors and repair strategies on the 

investment amount, which can reflect participants’ trust in the AI teammate’s performance of 

optimizing and doubling the power. The more human invested in AI teammate, the higher trust 

people show in AI teammate’s performance. The effect of state [High2] is statistically significant 

and positive, 𝛽 = 1.03, 95% CI [0.04, 2.01], t(333) = 2.05, p = 0.041. Additionally, for the trusting 

voice, we found a significant and negative interaction effect between trusting voice [low] and state 

[High 2], 𝛽 = -1.81, 95% CI [-3.30, -0.32], t(333) = -2.40, p = 0.017: when AI teammate repaired 

people’s trust using a low trusting voice, people’s trust in AI teammate’s performance declined, 
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indicating by giving less power to AI teammate. The high-trusting voice group recovered and grew 

over time as shown in Figure 31.  

For the perceived cooperation of the AI teammate, which is the amount participants guessed 

that the AI teammate would allocate to the team rover, it can be operationalized as people’s trust 

in the AI teammate’s purpose dimension. The higher the value, the more people trust that the AI 

teammate would allocate to the team. The effect of state [High2] is statistically significant and 

positive, 𝛽 = 0.83, 95% CI [0.21, 1.45], t(333) = 2.63, p = 0.009: as the game progress, the predicted 

values of AI team allocation amount increased. This means that people show increasingly higher 

trust in AI teammate’s cooperation. For the individual differences, we found a significant and 

positive effect of Honesty–Humility, 𝛽 = 0.88, 95% CI [0.20, 1.57], t(333) = 2.53, p = .012: people 

with higher Honesty–Humility scores had higher perceived cooperation of AI teammate.  

For participants’ team allocation, which is measured by the proportion that participants 

allocated to the team rover, the higher the value, indicating the more cooperative participants are 

in the game. We did not find a main effect, nor interaction effects of AI trusting voices and AI 

violation behaviors on participants’ cooperation level. We found a significant effect of AI state 

[low], 𝛽  = -2.14, 95% CI [3.84, -0.45], t(333) = -2.49, p = .013: this means that participants’ 

allocating much less to the team goal when AI teammate conduct trust violations in the low state.  
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Figure 32. Actual versus predicted amount of power AI teammate allocates to the team rover.  

Similar to Study 1, we showed the actual versus predicted amount of power AI teammate 

allocated to the team in the Figure 32. Consistent with Study 1, results showed that only purpose-

based trust violation leads to the over-estimation of AI teammate’s cooperation level.  

6.9 Study 2 Discussion 

The goal of the study is to address the congruency effects between the trusting voice and trust 

management content. Based on our previous findings which indicated that apology with an 

explanation was the most effective trust repair strategy for purpose-related trust violations. We 

incorporated this strategy, where we further explored the impact of trusting voices on trust repair. 

Specifically, we manipulated the formants and variance in fundamental frequency to create high- 

versus low-trusting voices. Through this design, we aimed to understand how the characteristics 

of the agent’s voice interacting with the trust repair content can influence trust and cooperation 

behaviors in the game-theoretic setting.  

Our results showed that when AI teammates used a high-trusting voice to repair trust after 

trust violations, participants invested more resources to AI teammates. These results confirmed 

the positive congruency effect between the acoustic and lexical cues of trust. These findings 

suggest that the use of a high-trusting voice is symmetrical to the trustworthy voice, which can 

reinforce trust repair contents and have a notable impact on people's trusting behaviors. One 
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possible explanation is that people may associate a high-trusting voice with smiling voices, both of 

which convey positive valence and promote trusting behaviors. Torre et al. (2020) manipulated 

smiling voices, which were also indicated by higher formants, and observed enhanced investments 

as behavioral trust in a similar game-theoretic context. Instead of being incongruent with the trust 

repair context, Torre and colleagues suggested that smiling voice showed a ‘halo effect’, which 

enhance the positive behaviors overall. By precisely manipulating the acoustic cues of trusting 

voices and validating their influence on trusting behaviors, our study contributes to the 

understanding of the role of voice in shaping trusting behaviors.  

We also found some evidence of individual differences affecting subjective trust rating, as 

shown by the two-way interaction of AI trusting voice and gender. Specifically, we found that men 

tended to trust the low-trusting voices of a male-voiced AI teammate more. Characterized by lower 

formants, men rated these voices as more 'kind' and 'considerate' on the purpose-dimension of 

trust. These findings align with previous research highlighting gender differences in the association 

between acoustic cues and trust and cooperation. Knowles and Little (2016) demonstrated that 

lower formant measures, which are associated with more masculine features, were perceived as 

more cooperative in male voices. Similarly, Monano and colleagues (2017) found that male-voice 

with longer apparent vocal tracts (lower formants) was trusted more than those with shorter 

apparent vocal tracts (higher formants). This association can be explained by the fact that formant 

frequencies can influence perceptions of masculinity (Feinberg et al., 2005), which in turn may 

impact trust. However, previous findings often found people tend to trust people of the opposite 

gender more, as explained by the attractiveness of the voices and mate-related trustworthiness 

(O’Connor & Barclay, 2017; Slonim & Guillen, 2010). Our study, in the context of human-AI 

interaction, did not show this cross-gender effect, instead, showed a same-gender effect. The 

similarity-attraction theory, which shows that that people tend to place more trust in those who 

are similar to themselves, may be able to explain this phenomenon in human-AI interaction (Byrne, 

1997). Further investigation is needed for the gender effects on trust in voice-based AI teammate.  

Additionally, our previous studies showed that people conveyed their trust through a 

combination of lexical and acoustic cues (Li et al., 2023). Building upon these insights, the present 

study extended our understanding by showing that trust can not only be measured through 

conversation but can also be managed through conversation. By direct and precise manipulating 

the AI teammate’s acoustic cues based on prior findings, we uncovered a noteworthy bidirectional 

effect: the way people express higher trust leads to higher investments in AI teammates. These 

findings provided implications on the voice-design of AI teammate, especially adopting specific 
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acoustic cues as interventions to manage trust in human-AI cooperation. By strategically 

incorporating these cues, researchers can enhance trust-building and repairing processes and foster 

more cooperation between humans and AI systems. However, this power should be used with 

caution. Even when the aim of managing trust to induce cooperation are beneficent, any move to 

undermine individuals merits careful discussion. Defining the extent of AI's decision-making 

authority in such matters is important. It is essential to strike a balance between empowering AI 

systems to make decisions that maximize benefits while considering ethical and legal issues.  

In addition to the voice-based finding, we also found that purpose-based trust violations, 

where an AI teammate fails to cooperate with the team goal, lead to a more drastic drop in trust. 

This confirms with previous findings that purpose-based outweighs the performance-based trust 

violations (Li & Lee, in preparation). While prior literatures often focused on the supervisory 

control and dyad interactions, the assumption of the shared goal was never challenged (Li & Lee, 

2022). With the increasingly computational power and connecting systems, the goal conflict 

between the AI’s global optimum and individual’s local optimum can happen. Our results highlight 

the importance of the aligned goal for designing a trustworthy AI teammate. Particularly in safety-

critical domains such as healthcare, military, and emergency response, where system efficiency is 

crucial and tolerance for breakdowns is low, AI teammates must not only demonstrate competence 

and reliability but also exhibit alignment with the overall organizational goals. 

Finally, we found that individual differences on the Honesty-Humility dimension, as assessed 

by the HEXACO Personality assessment, strongly predicted participants' subjective trust ratings 

in the performance dimension and their perceived cooperation of the AI teammate. Individuals 

with higher levels of dispositional Honesty-Humility rated the AI teammate as more capable and 

held higher expectations regarding the AI teammate's contributions to the team goal. Our results 

were in line with previous results in public goods game (Hilbig et al., 2012) (Li & Lee, in 

preparation). Because people with high dispositional Honesty Honesty–Humility have also shown 

to have stronger other-regarding preferences in their social value orientation and would generally 

hold more positive beliefs of what others would do (Krueger, 2008). Additionally, individuals with 

high in Honesty– Humility are less likely to condition their behavior on situational factors, 

suggesting a more consistent cooperative disposition (Hilbig et al., 2012). Future studies could 

study the power dynamics between human and AI teammates and possible mechanisms for 

situational factors (e.g., punishment and rewards) that may influence human-AI cooperation.  
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6.10 Chapter Summary 

The goal of this chapter is to evaluate whether conversational indicators identified in Chapter 

3 can be used as adaptive countermeasures by a virtual assistant to manage various dimensions of 

trust. This chapter presented two experimental studies.  For Study 1, we investigated the effects of 

performance-based and purpose-based trust violations on people's trust levels in human-AI 

cooperation and to identify effective strategies for managing trust violations. Results revealed that 

purpose-based trust violations, where the AI teammate failed to cooperate with the team goal, led 

to a greater drop in trust compared to performance-based violations. We showed that an apology 

with an explanation was the most effective strategy for repairing trust after purpose-based trust 

violations. Additionally, we showed that individual difference on the Honesty-Humility dimension 

can predict people’s trust, investment behaviors, and perceived cooperation of AI teammate. Our 

study emphasized the importance of addressing purpose-based trust violations and provided 

important implications for designing trustworthy agents. While our study focused on the micro-

level of acoustic and lexical features in the human-AI conversations, the conversation is rich with 

other features, such as cadence, filler words and conversational turns, that merit further 

investigation.  

For Study 2, we investigated the effects of trusting voices and its congruency effects with the 

trust repair content on managing trust. By manipulating the formants and variance in fundamental 

frequency to create high- and low-trusting voices, we provided empirical evidence supporting a 

positive congruency effect between acoustic and lexical cues of trust. This means that a high-

trusting voice promotes people’s trusting behaviors (greater investments) in the AI teammate. 

Additionally, men tended to trust low-trusting voices more, perceiving them as kind and 

considerate on the purpose-dimension of trust. Our study extended our understanding that trust 

can be both measured and managed through voices, emphasizing the importance of using voice 

design as interventions to manage -building and repairing processes in human-AI cooperation.  

 

 

 

 

  



  117 

 

 
 

Chapter 7. General Discussion 

7.1 Problem Summary 

Artificial Intelligence (AI), with its increasing capability and connectivity, extends beyond 

limited and well-defined contexts and is integrated into broader societal domains. Examples 

include AI algorithms controlling large fleets of autonomous vehicles, news filtering algorithms 

influencing people’s political belief and preferences, and algorithms mediating resource allocation 

and labor (Bubeck et al., 2023; Rahwan, 2018). The relationship between humans and AI has 

evolved from mere supervisory control to a interdependent cooperation on a larger scale, yielding 

significant societal benefits (Endsley et al., 2021). To better support the human-AI cooperation,  

establishing a trusting relationship between humans and their AI teammates becomes increasingly 

critical (Chiou & Lee, 2021). Trust plays a vital role in shaping how people use, communicate with, 

and cooperate with AI systems. Therefore, the measurement and management of trust in human-

AI cooperation are essential to ensure the safety, effectiveness, and overall positive outcomes of 

such interactions. The objective of this dissertation is to measure and manage trust in human-AI 

conversations and cooperation, addressing three primary questions: (1) How can we measure 

people’s trust in human-AI conversations? (2) How does trust change over time within human-AI 

conversations? (3) How can we effectively manage instances of overtrust or undertrust through 

conversational cues to enhance human-AI cooperation? 

To tackle these questions, my dissertation considers two aims: measure trust in communication 

and manage trust in cooperation. Especially, I measure trust in communication with the 

considerations of the temporal dimension from the real-time measurement to long-term dynamics 

(Objective 1). Trust communication mediates cooperation. When considering trust management, 

I integrated the considerations of the structural dimension of team interdependence and goal 

alignment (Objective 2). From a temporal perspective, my research ranges from real-time trust 

measurement (Chapter 3) to long-term trust dynamics (Chapter 4 and Chapter 5). From a structural 

perspective, I investigate trust in when involving multiple goals between AI and humans in a team 

composition using the game-theoretic situations and investigated whether the identified trust 

indicators can be used to manage trust (Chapter 6). The following results support the objectives 

of the dissertation. 

7.1.1 Objective 1: Measure Trust in Communication: From Real-Time Estimation 

to Long-Term Dynamics 

Chapter 3 tackled the initial question regarding the measurement of trust in human-AI 

conversations. I showed that a random forest algorithm, trained using the combined lexical and 
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acoustic features, predicted trust in the conversational agent most accurately. The most important 

predictors were a combination of lexical and acoustic cues: average sentiment considering valence 

shifters, the mean of formants, and Mel frequency cepstral coefficients (MFCC). These 

conversational features were identified as partial mediators predicting people’s trust. Precise 

estimation of the trust of the conversation requires lexical and acoustic cues. These results showed 

the possibility of using conversational data to measure trust and potentially other dynamic mental 

states, unobtrusively and dynamically. Chapter 4 and Chapter 5 both tackled the temporal 

dynamics of trust. Compared to using the individual differences to explain the diverging levels of 

trust over time, Chapter 4 showed that trust divergence can be better explained as an outcome of 

a dynamic system, which considers the interaction between reliability and exposure along with the 

individual by-reliability variability fit the data well. Additionally, results suggested that dynamic 

interactions with automation contribute to trust divergence. This chapter established a robust 

foundation for the temporal trust dynamic perspective in Chapter 5, where we further examined 

the temporal aspects in the human-AI conversations. Chapter 5 showed the evolution of trust 

dimensions throughout human-AI conversations, which reveals distinct patterns in conversational 

topic diversity and flow over time. Objective 1 identified the need for designs that prioritize state 

dependence and responsivity, where the automation should be able to responsive to the level of 

trust for the trust management for the Objective 2. 

7.1.1 Objective 2: Manage Trust in Cooperation: From Performance to Purpose-

based Trust. 

Chapter 6 of the dissertation focused on managing trust for effective cooperation, with a 

particular emphasis on automation responsivity. The research expanded beyond performance-

based calibration to examine purpose-based cooperation. A game-theoretic framework was 

designed to investigate the impacts of performance- and purpose-based trust violations on trust 

and cooperative behaviors. Results showed that purpose-based trust violations, where the AI 

teammate failed to cooperate with the team goal, led to a greater drop in trust compared to 

performance-based violations. Additionally, the identified conversational trust indicators in 

Chapter 3 were demonstrated to be countermeasures to repair trust in human-AI cooperation. By 

directly manipulating the formants and variance in fundamental frequency to create high- and low-

trusting voices, I showed that a high-trusting voice promotes people’s trusting behaviors (greater 

investments) in the AI teammate. These findings contribute to our understanding that trust can be 

both measured and managed through human-AI communications, which can be served as an 

unobtrusive, real-time means of trust measurement and management in human-AI cooperation. 
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The results also shed light on the ethical challenges associated with managing trust when the goal 

is to induce behaviors that may contradict individuals' immediate interests, such as cooperation. 

Future research should address the role of AI teammate responsibility in balancing the trade-offs 

between individual and societal benefits across different contexts. Understanding how AI systems 

can navigate these trade-offs is crucial for promoting ethical and beneficial human-AI cooperation.  

7.2 Contributions 

7.2.1 Theoretical Contributions 

The main theoretical contribution of this dissertation is demonstrating that trust can be 

measured and managed in human-AI conversations, which enriches the ‘semiotics’ aspect of the 

trust framework proposed by Chiou and Lee (2021). My work demonstrated how trust is signaled 

during interactions, including both micro features (i.e., acoustic and lexical cues) and macro topics 

(i.e., conversation topics) (Li et al., 2020). Additionally, I have established the bidirectional nature 

of trust in the human-AI conversations. This means that the trust signals expressed by individuals 

(as trustors, conveying their trust in automation) can also be used as signals by the AI trustee to 

manage trust. Overall, this work demonstrated how trust is signaled and perceived in human-AI 

conversations from a relational approach.  

Additionally, this dissertation expands the understanding of trust and human-AI relationships 

in two directions: temporal dynamics and structural interdependence. By adopting a dynamic 

system perspective, I demonstrated the temporal evaluation of trust processes in communications, 

providing deeper insights into how trust evolves and reflects people’s analytic and affective trust 

in conversations. From a structural perspective, the dissertation extends the concept of trust 

beyond performance to purpose-based interaction, recognizing the increasing prevalence of 

conflicting interests and values among various stakeholders.  

7.2.2 Practical Contributions 

This dissertation provides practical principles and illuminating design factors for designing 

trust-adaptive conversational agent that can measure and manage trust. I highlighted the key 

indicators of people’s trust in the conversations, including both lexical and acoustic cues, which 

can be integrated in the agents’ sensors and algorithms to predict real-time trust. Moreover, I 

showed that these identified features can be used to repair trust. My work suggests that an adaptive 

trust management system can be developed to calibrate people’s trust: using the trust indicators to 

dampen trust when over-trust and repair trust when under-trust.  
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Furthermore, my machine learning pipeline on trust estimation also provides methodological 

implications in measuring latent variables, such as trust, workload, and situational awareness. 

Measuring these subjective and latent concepts in communications or other continuous data 

streams can provide a real-time and non-intrusive approach.  

In addition to trust measurement, the game-theoretic situation designed in this dissertation can 

serve as a valuable testbed for understanding and accessing both performance- and purpose-based 

trust interactions. Insights derived from this game setting hold significant applicability for human-

AI teams in future hybrid societies, particularly when navigating complex conflicts between 

individual and collective benefits. 

Lastly, the findings on trust management highlight the ethical challenges when the objective is 

to induce behaviors that may go against individuals' immediate interests, specifically in the context 

of large-scale human-AI cooperation in the future hybrid society. The voice design and other social 

norm, affective-based strategy can implicitly influence people’s behaviors without explicit 

acknowledgement. This raises important questions about the ethical considerations and guidelines 

to govern AI's role in influencing human behavior. Determining the boundaries and extent of 

decision-making authority entrusted to AI systems in such situations becomes crucial. It is 

necessary to ensure that any interventions or manipulations carried out by AI systems respect 

individual autonomy, privacy, and overall well-being.  

7.3 Future Research  

These contributions provide a foundation for measuring trust signals in human-AI 

conversations from a temporal dynamics perspective and managing people’s trust in cooperation 

from a structural dependence perspective. There are still several directions for future research that 

can build upon both temporal dynamics and structural dependence.  

7.3.1 Temporal Dimension 

From a temporal perspective, my dissertation ranges from real-time trust measurement to 

long-term trust dynamics and shows empirical evidence of modeling trust in human-AI 

conversations as a dynamic system. More in-depth understanding and modeling of dynamic system 

are needed. This means incorporating a temporal element to understand system behaviors in 

human-AI interaction. While Yang and colleagues (2023) have made significant contributions by 

defining and computationally modeling three properties of trust dynamics—continuity, negative 

bias, and stabilization— the focus has primarily been on the "temporal" dimension. This leaves 

out the core element, ‘system behaviors’ of dynamic system thinking. Gorman and colleagues 
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(2017) have argued that behaviors that emerge at the system level may be encoded differently or 

absent at the individual level, highlighting the significant influence of team processes on individual 

thoughts and behaviors. The concepts of attractors, perturbation, synchronization, and fractal 

(power-law) concepts were introduced in the context of the team to further support this notion. 

For instance, an attractor is "a behavior that a system settles on over time after possibly displaying 

initial transient behaviors" (Abraham & Shaw, 1992; Gorman et al., 2017). The attractor field 

theory, which depicted effective energy landscapes of various attractors, provides a good 

theoretical perspective. The interaction design can form various attractors where people tend to 

gravitate towards despite a wide variety of starting conditions. This concept can be used to explain 

trust divergence, where individual differences mark various starting points and gravitate toward 

the attractors, indicating high or low trust state. Adopting this perspective can better identify 

trusting and distrusting individuals from a system perspective. Trusting individuals search for the 

evidence to trust and rely on the automation, which would gravitating towards the trusting 

attractors; the distrusting individuals search for the opposite evidence and gravitate towards 

distrust attractors. It is essential to develop more computational models to verify the predictability 

and generalizability of these dynamic system concepts within the realm of human-AI teams.  

Additionally, this work has identified the conflicts in the social dilemma from a local/global 

perspective, i.e., when personal goals are not aligned with the societal one. However, the conflict 

can also happen on the temporal dimension. This means that short-term interests often take 

precedence over long-term goals, even when the latter offer greater benefits, such as climate 

changes and voluntary vaccination. When it comes to human-AI interaction, individuals often 

exhibit shortsightedness and struggle to predict the long-term consequences of their immediate 

actions. In contrast, AI agents are capable of computationally optimizing goals irrespective of the 

timescale involved. To further complicates the problem, in the reinforcement context, the reward 

function of the AI may lead a seemingly reasonable, but incompatible, reward function achieved 

(Hadfield-Menell et al., 2016):  if we reward the action of cleaning up dirt, the optimal policy causes 

the robot to repeatedly dump and clean up the same dirt. This is called alignment problem (S. 

Russell, 2019), which should be exanimated in the temporal dimension as well. Domingos and 

colleagues (2020) demonstrated that timing uncertainty not only promotes early generosity but also 

leads to polarized outcomes, where participants’ contributions are distributed unevenly. However, 

it is important to note that these findings are limited to interpersonal cooperation. Given that 

people generally hold a negative bias towards AI agents (Domingos et al., 2021; You et al., 2011), 
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there is a potential for exploitation and misalignment of trust in human-AI interactions. Therefore, 

it is crucial to further investigate the effects of temporal conflicts in such hybrid interactions.  

In our work, we demonstrated the possibility of measuring and modeling trust in human-AI 

conversations, it would be more intriguing to explore how timing uncertainty shapes the 

communication regarding people’s trust in AI teammate. Our work was limited to decision-tree-

based conversations, which restricted the range of topics that can be discussed. With recent 

advancements in large language models, the possibility of AI agents engaging in negotiations with 

human players becomes feasible. This opens opportunities to analyze conversations in terms of 

people's trust and decision-making processes.  

7.3.2 Structural Dimension 

From a structural standpoint, my dissertation expands the scope of human-AI relationships 

beyond supervisory control to peer-to-peer cooperation, with a specific focus on purpose-related 

interactions. Results showed that violations of team goals within human-AI cooperation had a 

detrimental impact on trust. However, there is a gap in understanding the cognitive processes 

underlying such situations. Therefore, an area for future research is the development of a 

computational model that simulates the cognitive processes in human-AI cooperation. One 

promising approach Theory of Mind (ToM). ToM refers to the ability to infer and understand the 

mental states of others, allowing for the inference of goals in AI agents (Byom & Mutlu, 2013). 

Developing an adaptive AI teammate that incorporates ToM-based goal inference would be 

extremely valuable. By simulating human cognitive processes and enabling ToM, the AI teammate 

can adopt the perspective of the human counterpart and make inferences about their goals. This, 

in turn, enables the AI teammate to adapt its strategy accordingly and potentially promote the team 

outcomes.   

To gain a comprehensive understanding of human-AI relationships, the scale of inquiry should 

be considered at three levels: individual, collective, and hybrid (Rahwan et al., 2019). At the 

individual level, the focus is on interactions between a single human and a single automation 

system. This level considers the static algorithm or characteristics of the automation. The collective 

level focuses on human-swarm interactions, where the emergence of group behaviors becomes a 

key point of examination. Understanding how behaviors and dynamics manifest at the group level 

is important. The hybrid level expands the scope to the bidirectional influences at a societal level, 

which shows how AI is shaping and shaped by competing interests of different stakeholders 

(Rahwan, 2018). While the present work emphasizes the potential conflicts between individual and 
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collective benefits within a human-AI dyad, for the future research, it is important to recognize 

that AI systems generalizable functions with broader societal impacts on the hybrid level. The 

question that remains is: How can we effectively quantify the trade-offs and reconcile the 

differences when an AI system encounters conflicting preferences? 

To address the question proposed above, it is crucial to consider ethical and legal issues when 

designing AI agents. The question arises as to whether AI should be given the power to make 

trade-offs and reconcile differences in various contexts. Even when the aim of managing trust to 

induce cooperation are beneficent, any move to undermine individuals merits careful discussion. 

Defining the extent of AI's decision-making authority in such matters is important. Explicit 

governance measures, such as auditing algorithms and undergoing institutional review, are clear 

steps towards ethical practices. However, determining the boundaries of implicit forces becomes 

more challenging. For instance, as demonstrated in this dissertation, the voice design can 

significantly impact human perception and decision-making. Obtaining consent for technologies 

based on nudges, social norms, and affect-based designs becomes complex and requires careful 

consideration. It is essential to strike a balance between empowering AI systems to make decisions 

that maximize benefits while considering ethical and legal issues. Addressing these challenges 

requires ongoing discussions, interdisciplinary collaborations, and the involvement of various 

stakeholders, including researchers, policymakers, ethicists, and the general public.   



  124 

 

 
 

Bibliography   

Abraham, R., & Shaw, C. (1992). Dynamics: The geometry of behavior. 2nd edn. Redwood City. CA: 
Addison-Wesley. 

Aguinis, H., Villamor, I., & Ramani, R. S. (2021). MTurk Research: Review and Recommendations. 
Journal of Management, 47(4), 823–837. https://doi.org/10.1177/0149206320969787 

Alarcon, G. M., Gibson, A. M., & Jessup, S. A. (2020). Trust Repair in Performance, Process, and 
Purpose Factors of Human-Robot Ttust. 2020 IEEE International Conference on Human-
Machine Systems (ICHMS), 1–6. https://doi.org/10.1109/ICHMS49158.2020.9209453 

Alsaid, A., Li, M., Chiou, E. K., & Lee, J. (2022). Measuring trust: A text analysis approach to compare, 
contrast, and select trust questionnaires. 

Amir, O., Rand, D. G., & Gal, Y. K. (2012). Economic Games on the Internet: The Effect of $1 
Stakes. PLOS ONE, 7(2), e31461. https://doi.org/10.1371/journal.pone.0031461 

Andrist, S., Collier, W., Gleicher, M., Mutlu, B., & Shaffer, D. (2015). Look together: Analyzing 
gaze coordination with epistemic network analysis. Frontiers in Psychology, 6. 
https://doi.org/10.3389/fpsyg.2015.01016 

Antos, D., Melo, C. de, Gratch, J., & Grosz, B. (2011). The Influence of Emotion Expression on 
Perceptions of Trustworthiness in Negotiation. Proceedings of the AAAI Conference on Artificial 
Intelligence, 25(1), Article 1. https://doi.org/10.1609/aaai.v25i1.7939 

Ashton, M. C., Lee, K., & De Vries, R. E. (2014). The HEXACO Honesty-Humility, 
Agreeableness, and Emotionality Factors: A Review of Research and Theory—2014. 
Personality and Social Psychology Review, 18(2), 139–152. 

Bailey, N. R., & Scerbo, M. W. (2007). Automation-Induced Complacency for Monitoring Highly 
Reliable Systems: The Role of Task Complexity, System Experience, and Operator Trust. 
Theoretical Issues in Ergonomics Science. 

Basili, M., Muscillo, A., & Pin, P. (2022). No-vaxxers are different in public good games. Scientific 
Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-22390-y 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models using lme4 
(arXiv:1406.5823). arXiv. https://doi.org/10.48550/arXiv.1406.5823 

Bates, G. E., & Neyman, J. (1952). Contributions to the Theory of Accident Proneness. University 
of California Press. 

Belin, P., Boehme, B., & McAleer, P. (2017). The sound of trustworthiness: Acoustic-based 
modulation of perceived voice personality. PLOS ONE, 12(10), e0185651. 
https://doi.org/10.1371/journal.pone.0185651 

Beller, J., Heesen, M., & Vollrath, M. (2013). Improving the driver-automation interaction: An 
approach using automation uncertainty. Human Factors, 55(6), 1130–1141. 
https://doi.org/10.1177/0018720813482327 

Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, Reciprocity, and Social History. Games and 
Economic Behavior, 10(1), 122–142. https://doi.org/10.1006/game.1995.1027 

Bhat, S., Lyons, J. B., Shi, C., & Yang, X. J. (2022). Clustering Trust Dynamics in a Human-Robot 
Sequential Decision-Making Task. IEEE Robotics and Automation Letters, 7(4), 8815–8822. 

Bhimavarapu, J. P., Sarvana, K., Achanta, V. K. S., Kadiyala, C., & Bhimavarapu, J. P. (2021). 
Modelling of emotion recognition system from speech using MFCC features. AIP 
Conference Proceedings, 2375(October). https://doi.org/10.1063/5.0066503 

Bishop, J., & Keating, P. (2012). Perception of pitch location within a speaker’s range: 
Fundamental frequency, voice quality and speaker sex. The Journal of the Acoustical Society of 
America, 132(2), 1100–1112. 

Boersma, P., & Antos, D. (2012). Praat, version 5.5. 
Bombien, L., Winkelmann, R., & Scheffers, M. (2021). wrassp: An R wrapper to the ASSP Library. R 

Package Version 1.0.1. 



  125 

 

 
 

Brohinsky, J., Marquart, C., Wang, J., Ruis, A. R., & Shaffer, D. W. (2021). Trajectories in 
Epistemic Network Analysis. In A. R. Ruis & S. B. Lee (Eds.), Advances in Quantitative 
Ethnography (Vol. 1312, pp. 106–121). Springer International Publishing. 
https://doi.org/10.1007/978-3-030-67788-6_8 

Bromiley, P., & Cummings, L. L. (1995). Transaction costs in organisations with trust. Research on 
negotiation in organizations. Brenwich, CT: JAI Press. 

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., 
Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T., & Zhang, Y. (2023). Sparks of 
Artificial General Intelligence: Early experiments with GPT-4 (arXiv:2303.12712). arXiv. 
https://doi.org/10.48550/arXiv.2303.12712 

Byom, L. J., & Mutlu, B. (2013). Theory of mind: Mechanisms, methods, and new directions. 
Frontiers in Human Neuroscience, 7(JUL), 1–12. https://doi.org/10.3389/fnhum.2013.00413 

Byrne, D. (1997). An Overview (and Underview) of Research and Theory within the Attraction 
Paradigm. Journal of Social and Personal Relationships, 14(3), 417–431. 
https://doi.org/10.1177/0265407597143008 

Cartei, V., Cowles, H. W., & Reby, D. (2012). Spontaneous voice gender imitation abilities in adult 
speakers. PloS One, 7(2). 

Chiou, E. K., & Lee, J. D. (2016). Cooperation in Human-Agent Systems to Support Resilience: 
A Microworld Experiment. Human Factors, 58(6), 846–863. 
https://doi.org/10.1177/0018720816649094 

Chiou, E. K., & Lee, J. D. (2021). Trusting Automation: Designing for Responsivity and Resilience. 
Human Factors: The Journal of the Human Factors and Ergonomics Society, 65(1), 137–165. 

Clifton. (2020). Cooperation, Conflict, and Transformative Artificial Intelligence: A Research 
Agenda. Center on Long-Term Risk. 

Cooke, N. J., Gorman, J. C., Myers, C. W., & Duran, J. L. (2013). Interactive team cognition. 
Cognitive Science, 37(2), 255–285. https://doi.org/10.1111/cogs.12009 

Corretge, R. (2023). Praat Vocal Toolkit. https://www.praatvocaltoolkit.com 
Courtright, S. H., Thurgood, G. R., Stewart, G. L., & Pierotti, A. J. (2015). Structural 

interdependence in teams: An integrative framework and meta-analysis. Journal of Applied 
Psychology, 100(6), 1825–1846. https://doi.org/10.1037/apl0000027 

Cox, J. C. (2004). How to identify trust and reciprocity. Games and Economic Behavior, 46(2), 260–
281. https://doi.org/10.1016/S0899-8256(03)00119-2 

Crandall, J. W., Oudah, M., Tennom, Ishowo-Oloko, F., Abdallah, S., Bonnefon, J.-F., Cebrian, 
M., Shariff, A., Goodrich, M. A., & Rahwan, I. (2018). Cooperating with machines. Nature 
Communications, 9(1), 233. https://doi.org/10.1038/s41467-017-02597-8 

Critch, A. (2017). Toward negotiable reinforcement learning: Shifting priorities in Pareto optimal sequential 
decision-making. 

Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon’s Mechanical 
Turk as a Tool for Experimental Behavioral Research. PLoS ONE, 8(3), e57410. 
https://doi.org/10.1371/journal.pone.0057410 

de Visser, E. J., Cohen, M., Freedy, A., & Parasuraman, R. (2014). A Design Methodology for 
Trust Cue Calibration in Cognitive Agents. In R. Shumaker & S. Lackey (Eds.), Virtual, 
Augmented and Mixed Reality. Designing and Developing Virtual and Augmented Environments (Vol. 
8525, pp. 251–262). Springer International Publishing. https://doi.org/10.1007/978-3-
319-07458-0_24 

de Visser, E. J., Peeters, M. M. M., Jung, M. F., Kohn, S., Shaw, T. H., Pak, R., & Neerincx, M. A. 
(2020). Towards a Theory of Longitudinal Trust Calibration in Human–Robot Teams. 
International Journal of Social Robotics, 12(2), 459–478. 



  126 

 

 
 

Demir, M., Mcneese, N. J., Gorman, J. C., & Cooke, N. J. (2021). Exploration of Team Trust and 
Interaction Dynamics in Human-Autonomy Teaming. February. 
https://doi.org/10.13140/RG.2.2.32213.55528 

Desai, M., Medvedev, M., Vázquez, M., McSheehy, S., Gadea-Omelchenko, S., Bruggeman, C., 
Steinfeld, A., & Yanco, H. (2012). Effects of changing reliability on trust of robot systems. 
Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction 
- HRI ’12, 73. https://doi.org/10.1145/2157689.2157702 

Domingos, E. F., Grujić, J., Burguillo, J. C., Kirchsteiger, G., Santos, F. C., & Lenaerts, T. (2020). 
Timing uncertainty in collective risk dilemmas encourages group reciprocation and 
polarization. Iscience, 23(12), 101752. 

Domingos, E. F., Terrucha, I., Suchon, R., Grujić, J., Burguillo, J. C., Santos, F. C., & Lenaerts, T. 
(2021). Delegation to autonomous agents promotes cooperation in collective-risk 
dilemmas. ArXiv:2103.07710 [Cs]. http://arxiv.org/abs/2103.07710 

Du, N., Haspiel, J., Zhang, Q., Tilbury, D., Pradhan, A. K., Yang, X. J., & Robert, L. P. (2019). 
Look who’s talking now: Implications of AV’s explanations on driver’s trust, AV 
preference, anxiety and mental workload. Transportation Research Part C: Emerging Technologies, 
104, 428–442. https://doi.org/10.1016/j.trc.2019.05.025 

Dunn, J. R., & Schweitzer, M. E. (2005). Feeling and Believing: The Influence of Emotion on 
Trust. Journal of Personality and Social Psychology, 88, 736–748. https://doi.org/10.1037/0022-
3514.88.5.736 

Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., & Beck, H. P. (2003a). The role 
of trust in automation reliance. International Journal of Human Computer Studies, 58(6), 697–
718. 

Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., & Beck, H. P. (2003b). The Role 
of Trust in Automation Reliance. International Journal of Human Computer Studies, 58(6), 697–
718. 

Dzindolet, M. T., Pierce, L. G., Beck, H. P., & Dawe, L. A. (2002). The Perceived Utility of Human 
and Automated Aids in a Visual Detection Task. Human Factors: The Journal of the Human 
Factors and Ergonomics Society, 44(1), 79–94. https://doi.org/10.1518/0018720024494856 

Dzindolet, M. T., Pierce, L. G., Beck, H. P., Dawe, L. A., & Anderson, B. W. (2001). Predicting 
misuse and disuse of combat identification systems. Military Psychology, 13(3), 147–164. 

Elkins, A. C., & Derrick, D. C. (2013). The sound of trust: Voice as a measurement of trust during 
interactions with embodied conversational agents. Group Decision and Negotiation, 22(5), 
897–913. 

Endsley, M. R., Caldwell, B., Chiou, K. E., Cooke, J, N., Cummings, L. M., Gonzalez, C., Lee, D. 
J., Mcneese, J. N., Miller, C., Roth, E., Rouse, B. W., & Talmage, D. (2021). Human-AI 
Teaming: State-of-the-Art and Research Needs (Issue December). Washington, DC: The 
National Academies Press. 

Esterwood, C., & Robert, L. (2023). Three Strikes and You are Out!: The Impacts of Multiple 
Human-Robot Trust Violations and Repairs on Robot Trustworthiness. Computers in 
Human Behavior, 142(107658). https://doi.org/10.7302/6774 

Falcone, R., & Castelfranchi, C. (2004). Trust dynamics: How trust is influenced by direct 
experiences and by trust itself. Proceedings of the Third International Joint Conference on 
Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004., 740–747. 

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power 
analysis program for the social, behavioral, and biomedical sciences. Behavior Research 
Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146 

Feinberg, D. R., Jones, B. C., Little, A. C., Burt, D. M., & Perrett, D. I. (2005). Manipulations of 
fundamental and formant frequencies influence the attractiveness of human male voices. 
Animal Behaviour, 69(3), 561–568. https://doi.org/10.1016/j.anbehav.2004.06.012 



  127 

 

 
 

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable 
variables and measurement error. Journal of Marketing Research, 18(1), 39–50. 

Fuoli, M., & Paradis, C. (2014). A model of trust-repair discourse. Journal of Pragmatics, 74, 52–69. 
Gao, J., & Lee, J. D. (2006). Extending the Decision Field Theory to Model Operators’ Reliance 

on Automation in Supervisory Control Situations. IEEE Transactions on Systems, Man, and 
Cybernetics Part A: Systems and Humans, 36(5), 943–959. 

Gauder, L., Pepino, L., Riera, P., Brussino, S., Vidal, J., Gravano, A., & Ferrer, L. (2021). A Study 
on the manifestation of trust in speech. ArXiv Preprint, 1–31. 

Gobo, G. (2011). Back to Likert: Towards the Conversational Survey. In M. Williams & W. Vogt, 
The SAGE Handbook of Innovation in Social Research Methods (pp. 228–248). SAGE 
Publications Ltd. https://doi.org/10.4135/9781446268261.n15 

Goertzel, B. (2014). Artificial General Intelligence: Concept, State of the Art, and Future 
Prospects. Journal of Artificial General Intelligence, 0. https://doi.org/10.2478/jagi-2014-0001 

Gorman, J. C., Dunbar, T. A., Grimm, D., & Gipson, C. L. (2017). Understanding and Modeling 
Teams As Dynamical Systems. Frontiers in Psychology, 8. 

Goudbeek, M., Goldman, J. P., & Scherer, K. R. (2009). Emotion dimensions and formant 
position. Interspeech2009, 3–6. 

Greenwell, B. M. (2017). pdp: An R package for constructing partial dependence plots. R Journal, 
9(1), 421–436. https://doi.org/10.32614/rj-2017-016 

Hadfield-Menell, D., Russell, S. J., Abbeel, P., & Dragan, A. (2016). Cooperative Inverse 
Reinforcement Learning. Advances in Neural Information Processing Systems, 29. 
https://proceedings.neurips.cc/paper/2016/hash/c3395dd46c34fa7fd8d729d8cf88b7a8-
Abstract.html 

Heckman, J. J. (1981). Heterogeneity and State Dependence. In Studies in Labor Markets (pp. 91–
140). University of Chicago Press. 

Hilbig, B. E., Zettler, I., & Heydasch, T. (2012). Personality, punishment and public goods: 
Strategic shifts towards cooperation as a matter of dispositional honesty–humility. European 
Journal of Personality, 26(3), 245–254. 

Hildebrand, C., & Bergner, A. (2021). Conversational robo advisors as surrogates of trust: 
Onboarding experience, firm perception, and consumer financial decision making. Journal 
of the Academy of Marketing Science, 49(4), 659–676. https://doi.org/10.1007/s11747-020-
00753-z 

Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors 
that influence trust. Human Factors, 57(3), 407–434. 

Izygon, M., Kortenkamp, D., & Molin, A. (2008). A procedure integrated development 
environment for future spacecraft and habitats. In Proceedings of the Space Technology and 
Applications International Forum (STAIF 2008), 969. 

Jensen, T., & Khan, M. M. H. (2022). I’m Only Human: The Effects of Trust Dampening 
by Anthropomorphic Agents. In J. Y. C. Chen, G. Fragomeni, H. Degen, & S. Ntoa (Eds.), 
HCI International 2022 – Late Breaking Papers: Interacting with eXtended Reality and Artificial 
Intelligence (pp. 285–306). Springer Nature Switzerland. https://doi.org/10.1007/978-3-
031-21707-4_21 

Jian, J.-Y., Bisantz, A. M., & Drury, C. G. (2000). Foundations for an empirically determined scale 
of trust in automated systems. International Journal of Cognitive Ergonomics, 4(1), 53–71. 

Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M., Van Riemsdijk, M. B., & Sierhuis, M. 
(2014). Coactive design: Designing support for interdependence in joint activity. Journal of 
Human-Robot Interaction, 3(1), 43. https://doi.org/10.5898/jhri.3.1.johnson 

Johnson, M., & Vera, A. H. (2019). No Ai is an island: The case for teaming intelligence. AI 
Magazine, 40(1), 16–28. https://doi.org/10.1609/aimag.v40i1.2842 



  128 

 

 
 

Jones, S. L., & Shah, P. P. (2016). Diagnosing the locus of trust: A temporal perspective for trustor, 
trustee, and dyadic influences on perceived trustworthiness. Journal of Applied Psychology, 
101, 392–414. https://doi.org/10.1037/apl0000041 

Kamaraj, A. V., Lee, J., Parker, J., & Domeyer, J. E. (2023). Bimodal Trust: Relationship Between 
Drivers’ Trust in Reliable Automation and Response to a Surprise Automation Error. In 
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 67. 

Kaniarasu, P., & Steinfeld, A. M. (2014). Effects of blame on trust in human robot interaction. The 
23rd IEEE International Symposium on Robot and Human Interactive Communication, 850–855. 

Kaplan, A. D., Kessler, T. T., Sanders, T. L., Cruit, J., Brill, J. C., & Hancock, P. A. (2021). Chapter 
6 - A time to trust: Trust as a function of time in human-robot interaction. In C. S. Nam 
& J. B. Lyons (Eds.), Trust in Human-Robot Interaction (pp. 143–157). Academic Press. 
https://doi.org/10.1016/B978-0-12-819472-0.00006-X 

Kim, J. C., Rao, H., & Clements, M. A. (2011). Investigating the use of formant based features for 
detection of affective dimensions in speech. In International Conference on Affective Computing 
and Intelligent Interaction, 369–377. 

Kim, P. H., Dirks, K. T., Cooper, C. D., & Ferrin, D. L. (2006). When more blame is better than 
less: The implications of internal vs. external attributions for the repair of trust after a 
competence- vs. integrity-based trust violation. Organizational Behavior and Human Decision 
Processes, 99(1), 49–65. https://doi.org/10.1016/j.obhdp.2005.07.002 

Knowles, K. K., & Little, A. C. (2016). Vocal fundamental and formant frequencies affect 
perceptions of speaker cooperativeness. Quarterly Journal of Experimental Psychology, 69(9), 
1657–1675. https://doi.org/10.1080/17470218.2015.1091484 

Kohn, S. C., de Visser, E. J., Wiese, E., Lee, Y.-C., & Shaw, T. H. (2021). Measurement of Trust 
in Automation: A Narrative Review and Reference Guide. Frontiers in Psychology, 12, 604977. 
https://doi.org/10.3389/fpsyg.2021.604977 

Korsgaard, M. A., Kautz, J., Bliese, P., Samson, K., & Kostyszyn, P. (2018a). Conceptualising time 
as a level of analysis: New directions in the analysis of trust dynamics. Journal of Trust 
Research, 8(2), 142–165. https://doi.org/10.1080/21515581.2018.1516557 

Korsgaard, M. A., Kautz, J., Bliese, P., Samson, K., & Kostyszyn, P. (2018b). Conceptualising time 
as a level of analysis: New directions in the analysis of trust dynamics. Journal of Trust 
Research, 8(2), 142–165. 

Kramer, M. W. (1999). Motivation to Reduce Uncertainty: A Reconceptualization of Uncertainty 
Reduction Theory. Management Communication Quarterly, 13(2), 305–316. 
https://doi.org/10.1177/0893318999132007 

Kramer, R. M., & Lewicki, R. J. (2010). Repairing and enhancing trust: Approaches to reducing 
organizational trust deficits. The Academy of Management Annals, 4, 245–277. 
https://doi.org/10.1080/19416520.2010.487403 

Krausman, A., Neubauer, C., Forster, D., Lakhmani, S., Baker, A. L., Fitzhugh, S. M., Gremillion, 
G., Wright, J. L., Metcalfe, J. S., & Schaefer, K. E. (2022). Trust Measurement in Human-
Autonomy Teams: Development of a Conceptual Toolkit. ACM Transactions on Human-
Robot Interaction, 11(3), 1–58. https://doi.org/10.1145/3530874 

Krueger, J. I. (2008). From social projection to social behaviour. European Review of Social Psychology, 
18(1), 1–35. 

Krumhuber, E. G., Hyniewska, S., & Orlowska, A. (2023). Contextual effects on smile perception 
and recognition memory. Current Psychology, 42(8), 6077–6085. 
https://doi.org/10.1007/s12144-021-01910-5 

Lalitha, S., Geyasruti, D., Narayanan, R., & Shravani, M. (2015). Emotion detection using MFCC 
and cepstrum features. Procedia Computer Science, 29–35. 

Larrimore, L., Jiang, C., Larrimore, J., Markowitz, D., & Gorski, S. (2011). Peer to Peer Lending: 
The Relationship Between Language Features, Trustworthiness, and Persuasion Success. 



  129 

 

 
 

Journal of Applied Communication Research, 39. 
https://doi.org/10.1080/00909882.2010.536844 

Lee, J., & Moray, N. (1992). Trust, control strategies and allocation of function in human-machine 
systems. Ergonomics, 35(10), 1243–1270. 

Lee, J., & See, K. A. (2004). Trust in Automation: Designing for Appropriate Reliance. Human 
Factors, 46(1), 50–80. 

Lewicki, R. J., Bunker, B. B., & others. (1996). Developing and maintaining trust in work 
relationships. Trust in Organizations: Frontiers of Theory and Research, 114, 139. 

Li, M., Alsaid, A., Noejovich, S. I., Cross, E. V., & Lee, J. D. (2020). Towards a conversational 
measure of trust. AAAI Fall Symposium FSS-20 / SSS-20, 1–6. 

Li, M., Erickson, I., Cross, E., & Lee, J. (2022, October 17). Estimating trust in conversational 
agent with lexical and acoustic features. Proceedings of the Human Factors and Ergonomics Society 
Annual Meeting. 

Li, M., Erickson, I. M., Cross, E. V., & Lee, J. D. (2023). It’s Not Only What You Say, But Also 
How You Say It: Machine Learning Approach to Estimate Trust from Conversation. 
Human Factors: The Journal of the Human Factors and Ergonomics Society. 

Li, M., & Lee, J. D. (2022). Modeling Goal Alignment in Human-AI Teaming: A Dynamic Game 
Theory Approach. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 66(1), 
1538–1542. 

Licklider, J. C. R. (1960). Man-Computer Symbiosis. IRE TRANSACTIONS ON HUMiAN 
FACTORS IN ELECTRONICS, 1, 4–11. 

Liu, J., Akash, K., Misu, T., & Wu, X. (2021). Clustering human trust dynamics for customized 
real-time prediction. 2021 IEEE International Intelligent Transportation Systems Conference 
(ITSC), 1705–1712. 

Luo, R., Du, N., & Yang, X. J. (2022). Evaluating Effects of Enhanced Autonomy Transparency 
on Trust, Dependence, and Human-Autonomy Team Performance over Time. International 
Journal of Human–Computer Interaction, 38(18–20), 1962–1971. 
https://doi.org/10.1080/10447318.2022.2097602 

Maier, N. R. F. (1967). Assets and Liability in Group Problem Solving: The Need for an Integrative 
Function. Psychological Review, 74(4), 603–604. https://doi.org/10.1093/mind/xxii.10.603 

Manson, J. H., Bryant, G. A., Gervais, M. M., & Kline, M. A. (2013). Convergence of speech rate 
in conversation predicts cooperation. Evolution and Human Behavior, 34(6), 419–426. 
https://doi.org/10.1016/j.evolhumbehav.2013.08.001 

Manzey, D., Reichenbach, J., & Onnasch, L. (2012). Human Performance Consequences of 
Automated Decision Aids: The Impact of Degree of Automation and System Experience. 
Journal of Cognitive Engineering and Decision Making, 6(1), 57–87. 

March, C. (2019). The Behavioral Economics of Artificial Intelligence: Lessons from Experiments with Computer 
Players (SSRN Scholarly Paper No. 3485475). https://doi.org/10.2139/ssrn.3485475 

Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An Integrative Model of Organizational 
Trust. In Source: The Academy of Management Review (Vol. 20, Issue 3, pp. 709–734). 

Mayo, R. (2015). Cognition is a matter of trust: Distrust tunes cognitive processes. European Review 
of Social Psychology, 26(1), 283–327. 

McDonald, A. D., Ade, N., & Peres, S. C. (2020). Predicting procedure step performance from 
operator and text features: A critical first step toward machine learning-driven procedure 
design. Human Factors, 00(0), 1–17. 

McDonald, A. D., Ferris, T. K., & Wiener, T. A. (2020). Classification of driver distraction: A 
comprehensive analysis of feature generation, machine learning, and input measures. 
Human Factors, 62(6), 1019–1035. 

Merritt, S. M. (2011). Affective Processes in Human–Automation Interactions. Human Factors, 
53(4), 356–370. 



  130 

 

 
 

Merritt, S. M., Ako-Brew, A., Bryant, W. J., Staley, A., McKenna, M., Leone, A., & Shirase, L. 
(2019). Automation-Induced Complacency Potential: Development and Validation of a 
New Scale. Frontiers in Psychology, 10, 225. 

Merritt, S. M., & Ilgen, D. R. (2008). Not All Trust Is Created Equal: Dispositional and History-
Based Trust in Human-Automation Interactions. Human Factors: The Journal of the Human 
Factors and Ergonomics Society, 50(2), 194–210. 

Midden, C. J. H., & Huijts, N. M. A. (2009). The Role of Trust in the Affective Evaluation of 
Novel Risks: The Case of CO2 Storage. Risk Analysis, 29(5), 743–751. 
https://doi.org/10.1111/j.1539-6924.2009.01201.x 

Miller, D. T., & Ross, M. (1975). Self-serving biases in the attribution of causality: Fact or fiction? 
Psychological Bulletin, 82(2), 213. 

Mohammad, S. M. (2018). Obtaining reliable human ratings of valence, arousal, and dominance 
for 20,000 English words. 56th Annual Meeting of the Association for Computational Linguistics, 
174–184. 

Montano, K. J., Tigue, C. C., Isenstein, S. G. E., Barclay, P., & Feinberg, D. R. (2017). Men’s voice 
pitch influences women’s trusting behavior. Evolution and Human Behavior, 38(3), 293–297. 
https://doi.org/10.1016/j.evolhumbehav.2016.10.010 

Mui, P. H. C., Gan, Y., Goudbeek, M. B., & Swerts, M. G. J. (2020). Contextualising Smiles: Is 
Perception of Smile Genuineness Influenced by Situation and Culture? Perception, 49(3), 
357–366. https://doi.org/10.1177/0301006620904510 

Nakahara, H., & Doya, K. (1998). Near-Saddle-Node Bifurcation Behavior as Dynamics in 
Working Memory for Goal-Directed Behavior. Neural Computation, 10(1), 113–132. 

Nalini, N. J., Palanivel, S., & Balasubramanian, M. (2013). Speech emotion recognition using 
residual phase and MFCC features. International Journal of Engineering and Technology, 5(6), 
4515–4527. 

Nielsen, F. Å. (2011). A new evaluation of a word list for sentiment analysis in microblogs. 
ESWC2011 Workshop on “Making Sense of Microposts”: Big Things Come in Small Packages, 93–
98. 

Norman, S. M., Avolio, B. J., & Luthans, F. (2010). The impact of positivity and transparency on 
trust in leaders and their perceived effectiveness. The Leadership Quarterly, 21(3), 350–364. 
https://doi.org/10.1016/j.leaqua.2010.03.002 

O’Connor, J. J. M., & Barclay, P. (2017). The influence of voice pitch on perceptions of 
trustworthiness across social contexts. Evolution and Human Behavior, 38(4), 506–512. 
https://doi.org/10.1016/j.evolhumbehav.2017.03.001 

Okamura, K., & Yamada, S. (2020). Empirical Evaluations of Framework for Adaptive Trust 
Calibration in Human-AI Cooperation. IEEE Access, 8, 220335–220351. 
https://doi.org/10.1109/ACCESS.2020.3042556 

Oktay, J. S. (2012). Grounded theory. Oxford University Press. 
O’Neill, T., McNeese, N., Barron, A., & Schelble, B. (2022). Human–Autonomy Teaming: A 

Review and Analysis of the Empirical Literature. Human Factors, 64(5), 904–938. 
https://doi.org/10.1177/0018720820960865 

Parasuraman, R. (1997). Humans and Automation: Use, Misuse, Disuse, Abuse. Human Factors, 
39(2), 230–253. 

Parasuraman, R., Molloy, R., & Singh, I. L. (1993). Performance Consequences of Automation-
Induced “Complacency.” The International Journal of Aviation Psychology. 

Perkins, R., Khavas, Z. R., McCallum, K., Kotturu, M. R., & Robinette, P. (2022). The Reason 
for an Apology Matters for Robot Trust Repair. In F. Cavallo, J.-J. Cabibihan, L. Fiorini, 
A. Sorrentino, H. He, X. Liu, Y. Matsumoto, & S. S. Ge (Eds.), Social Robotics (pp. 640–
651). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-24670-8_56 



  131 

 

 
 

Ponsot, E., Burred, J. J., Belin, P., & Aucouturier, J.-J. (2018). Cracking the social code of speech 
prosody using reverse correlation. Proceedings of the National Academy of Sciences, 115(15), 
3972–3977. https://doi.org/10.1073/pnas.1716090115 

R Development Core Team, R. (2011). R: A Language and Environment for Statistical Computing. 
In R Foundation for Statistical Computing. 

Rahwan, I. (2018). Society-in-the-loop: Programming the algorithmic social contract. Ethics and 
Information Technology Volume, 20(1), 5–14. 

Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C., Crandall, J. 
W., Christakis, N. A., Couzin, I. D., Jackson, M. O., Jennings, N. R., Kamar, E., Kloumann, 
I. M., Larochelle, H., Lazer, D., McElreath, R., Mislove, A., Parkes, D. C., Pentland, A. 
‘Sandy,’ … Wellman, M. (2019). Machine behaviour. Nature, 568(7753), Article 7753. 
https://doi.org/10.1038/s41586-019-1138-y 

Razin, Y. S., & Feigh, K. M. (2021). Committing to interdependence: Implications from game 
theory for human–robot trust. Paladyn, Journal of Behavioral Robotics, 12(1), 481–502. 
https://doi.org/10.1515/pjbr-2021-0031 

Rheu, M., Shin, J. Y., Peng, W., & Huh-Yoo, J. (2021). Systematic Review: Trust-Building Factors 
and Implications for Conversational Agent Design. International Journal of Human–Computer 
Interaction, 37(1), 81–96. https://doi.org/10.1080/10447318.2020.1807710 

Rinker, T. (2017). Package ‘sentimentr’. 
Robinette, P., Howard, A. M., & Wagner, A. R. (2015). Timing Is Key for Robot Trust Repair. In 

A. Tapus, E. André, J.-C. Martin, F. Ferland, & M. Ammi (Eds.), Social Robotics (Vol. 9388, 
pp. 574–583). Springer International Publishing. https://doi.org/10.1007/978-3-319-
25554-5_57 

Rolls, E. T. (2010). Attractor networks. WIREs Cognitive Science, 1(1), 119–134. 
https://doi.org/10.1002/wcs.1 

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 
1161. 

Russell, S. (2019). Human compatible: Artificial intelligence and the problem of control. Penguin. 
Rychlowska, M., Van Der Schalk, J., Niedenthal, P., Martin, J., Carpenter, S. M., & Manstead, A. 

S. R. (2021). Dominance, reward, and affiliation smiles modulate the meaning of 
uncooperative or untrustworthy behaviour. Cognition and Emotion, 35(7), 1281–1301. 
https://doi.org/10.1080/02699931.2021.1948391 

Schreckenghost, D., Milam, T., & Billman, D. (2014). Human performance with procedure 
automation to manage spacecraft systems. In Proceedings of the 35th International Conference for 
Aerospace Experts, Academics, Military Personnel, and Industry Leaders, 1–16. 

Schweitzer, M. E., Hershey, J. C., & Bradlow, E. T. (2006). Promises and lies: Restoring violated 
trust. Organizational Behavior and Human Decision Processes, 101(1), 1–19. 
https://doi.org/10.1016/j.obhdp.2006.05.005 

Searle, S. R., Speed, F. M., & Milliken, G. A. (1980). Population Marginal Means in the Linear 
Model: An Alternative to Least Squares Means. The American Statistician, 34(4), 216–221. 
https://doi.org/10.1080/00031305.1980.10483031 

Sebe, N., Cohen, I., & Huang, T. S. (2005). Multimodal emotion recognition. In In Handbook of 
Pattern Recognition and Computer Vision (pp. 387–409). 

Shaffer, D. W. (2017). Quantitative ethnography. Lulu. com. 
Shaffer, D. W., Collier, W., & Ruis, A. R. (2016). A tutorial on epistemic network analysis: 

Analyzing the structure of connections in cognitive, social, and interaction data. Journal of 
Learning Analytics, 3(3), 9–45. 

Shneiderman, B. (2022). Human-Centered AI. Oxford University Press. 



  132 

 

 
 

Slonim, R., & Guillen, P. (2010). Gender selection discrimination: Evidence from a Trust game. 
Journal of Economic Behavior & Organization, 76(2), 385–405. 
https://doi.org/10.1016/j.jebo.2010.06.016 

Soares, N., & Fallenstein, B. (2014). Aligning Superintelligence with Human Interests: A Technical Research 
Agenda Highly Reliable Agent Designs. 1–14. 

Spitzley, L. A., Wang, X., Chen, X., Pentland, S. J., Nunamaker, J. F., Burgoon, J. K., & Dunbar, 
N. E. (2022). Non-Invasive Measurement of Trust in Group Interactions. IEEE 
Transactions on Affective Computing, 1–1. https://doi.org/10.1109/TAFFC.2022.3160132 

Stewart, K. J. (2003). Trust Transfer on the World Wide Web. Organization Science, 14(1), 5–17. 
Syed, M. S. S., Pirogova, E., & Lech, M. (2021). Prediction of Public Trust in Politicians Using a 

Multimodal Fusion Approach. Electronics, 10(11), 1259. 
https://doi.org/10.3390/electronics10111259 

Tan, S. C., Wang, X., & Li, L. (2022). The Development Trajectory of Shared Epistemic Agency 
in Online Collaborative Learning: A Study Combing Network Analysis and Sequential 
Analysis. Journal of Educational Computing Research, 59(8), 1655–1681. 

Tavoni, A., Dannenberg, A., Kallis, G., & Löschel, A. (2011). Inequality, communication, and the 
avoidance of disastrous climate change in a public goods game. Proceedings of the National 
Academy of Sciences, 108(29), 11825–11829. https://doi.org/10.1073/pnas.1102493108 

Thibaut, J. W., & Kelley, H. H. (1959). The social psychology of groups. New Brunswick. NJ: Transaction 
Publishers. 

Toma, C. L., & Hancock, J. T. (2012). What Lies Beneath: The Linguistic Traces of Deception in 
Online Dating Profiles. Journal of Communication, 62(1), 78–97. 
https://doi.org/10.1111/j.1460-2466.2011.01619.x 

Torre, I., Goslin, J., & White, L. (2020). If your device could smile: People trust happy-sounding 
artificial agents more. Computers in Human Behavior, 105, 106215. 
https://doi.org/10.1016/j.chb.2019.106215 

Torre, I., Goslin, J., White, L., & Zanatto, D. (2018). Trust in artificial voices: A “congruency 
effect” of first impressions and behavioural experience. Proceedings of the Technology, Mind, 
and Society, 1–6. https://doi.org/10.1145/3183654.3183691 

Trafton, J. G., Schultz, A. C., Cassimatis, N. L., Hiatt, L. M., Perzanowski, D., Brock, D. P., 
Bugajska, M. D., & Adams, W. (2006). Robotic Agents. Cognition and Multi-Agent Interaction: 
From Cognitive Modeling to Social Simulation, 252–278. 

Trainor, L. J., Austin, C. M., & Desjardins, R. N. (2000). Is Infant-Directed Speech Prosody a Result of 
the Vocal Expression of Emotion? https://journals.sagepub.com/doi/abs/10.1111/1467-
9280.00240 

Ullman, D., & Malle, B. F. (2019). Measuring Gains and Losses in Human-Robot Trust: Evidence 
for Differentiable Components of Trust. 2019 14th ACM/IEEE International Conference on 
Human-Robot Interaction (HRI), 618–619. https://doi.org/10.1109/HRI.2019.8673154 

Van Kleef, G. A., De Dreu, C. K. W., & Manstead, A. S. R. (2010). Chapter 2 - An Interpersonal 
Approach to Emotion in Social Decision Making: The Emotions as Social Information 
Model. In Advances in Experimental Social Psychology (Vol. 42, pp. 45–96). Academic Press. 
https://doi.org/10.1016/S0065-2601(10)42002-X 

Vinciarelli, A., Pantic, M., & Bourlard, H. (2009). Social signal processing: Survey of an emerging 
domain. Image and Vision Computing, 27(12), 1743–1759. 
https://doi.org/10.1016/j.imavis.2008.11.007 

Voicemaker. (2023). https://voicemaker.in/ 
Waber, B., Williams, M., Carroll, J., & Pentland, A. (2015). A voice is worth a thousand words: 

The implications of the micro-coding of social signals in speech for trust research. In 
Handbook of Research Methods on Trust: Second Edition (pp. 302–312). 

Wageman, R. (2001). The Meaning of Interdependence. In Groups at Work. Psychology Press. 



  133 

 

 
 

Weiler, D. T., Lingg, A. J., Eagan, B. R., Shaffer, D. W., & Werner, N. E. (2022). Quantifying the 
qualitative: Exploring epistemic network analysis as a method to study work system 
interactions. Ergonomics, 65(10), 1434–1449. 
https://doi.org/10.1080/00140139.2022.2051609 

Whiting, T., Gautam, A., Tye, J., Simmons, M., Henstrom, J., Oudah, M., & Crandall, J. W. (2021). 
Confronting barriers to human-robot cooperation: Balancing efficiency and risk in 
machine behavior. IScience, 24(1), 101963. https://doi.org/10.1016/j.isci.2020.101963 

Wintersberger, P. (2020). Automated Driving: Towards Trustworthy and Safe Human-Machine Cooperation. 
Wooldridge, A. R., Carayon, P., Shaffer, D. W., & Eagan, B. (2018). Quantifying the qualitative 

with epistemic network analysis: A human factors case study of task-allocation 
communication in a primary care team. IISE Transactions on Healthcare Systems Engineering, 
8(1), 72–82. https://doi.org/10.1080/24725579.2017.1418769 

Yang, X. J., Guo, Y., & Schemanske, C. (2023). From Trust to Trust Dynamics: Combining 
Empirical and Computational Approaches to Model and Predict Trust Dynamics In 
Human-Autonomy Interaction. In V. G. Duffy, S. J. Landry, J. D. Lee, & N. Stanton 
(Eds.), Human-Automation Interaction: Transportation (pp. 253–265). Springer International 
Publishing. 

Yang, X. J., Schemanske, C., & Searle, C. (2021). Toward Quantifying Trust Dynamics: How 
People Adjust Their Trust After Moment-to-Moment Interaction With Automation. 
Human Factors: The Journal of the Human Factors and Ergonomics Society, 001872082110347. 
https://doi.org/10.1177/00187208211034716 

Yang, X. Jessie., Christopher, S., & Christine, S. (2021). Toward quantifying trust dynamics: How 
people adjust their trust after moment-to-moment interaction with automation. Human 
Factors, 00(0), 1–17. 

You, S., Nie, J., Suh, K., & Sundar, S. S. (2011). When the robot criticizes you... Self-serving bias 
in human-robot interaction. Proceedings of the 6th International Conference on Human-Robot 
Interaction, 295–296. 

Yu, Q., & Li, B. (2017). mma: An R Package for Mediation Analysis with Multiple Mediators. 
Journal of Open Research Software, 5(1), Article 1. https://doi.org/10.5334/jors.160 

Zhao, Q., & Hastie, T. (2021). Causal interpretations of black-box models. Journal of Business & 
Economic Statistics, 39(1), 272–281. 

 

   



  134 

 

 
 

Appendices 

Appendix. A. Machine Learning Within-Condition Prediction 
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Figure A 1. Partial Dependence Plots for the High (Top), Low (Middle), and Between High 

and Low Conditions (Bottom). 

Our results on Partial Dependence Plot (PDP) showed a nonlinear logistic growth. To avoid 

capitalize heavily on the extreme manipulation of trust with the between-subject reliability variable, 

we ran our models predicting trust within high and low reliability separately. In the high reliability, 

the best performed model was random forest (R2adj = 0.71, RMSE = 0.51). In the low reliability, 

the best performed model was also random forest (R2adj = 0.87, RMSE = 0.52). To make the 

cross-comparison, we used the same eight conversational features to compare the relationships 

using PDP plots. From top to bottom in Figure A 1, the three plots are high, low, and between 

high and low conditions (see the y-axis for the difference in range). The overall trends showed 

similarity except for the range for trust prediction. The results showed a high predictive power 

with similar feature relationships using PDP. 

The major difference was the ranking of the important features. In the high reliability 

condition, the most important feature was the standard deviation of F0. In the low reliability 

condition, the most important feature was the mean of F3. Compared to the between high and low 

reliability settings, the most important feature was the context sentiment. Results suggested that 

lexical sentiment was the dominant predictor for the large trust difference (i.e., from high to low 

reliability condition). Yet, acoustic features (e.g., variance in pitch and formants) provided more 

nuances in predicting trust variance in either high or low reliability condition.  
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Appendix. B. Mediation Analysis 

To further investigate the casual relationship between conversational features and trust in 

machine learning models, we ran the mediation analysis to assess the causal mechanisms. Since we 

identified eight important features, it requires a mediation analysis with multiple mediators that are 

considered simultaneously. Thus, we adopted the multiple mediator analysis method using the R 

package mma (Yu & Li, 2017).  Figure A 2 showed the importance of all potential mediators in 

explaining trust in terms of their relative effects. The ‘de’ represents estimation of the direct effect. 

The estimated total effect is -0.95. We selected the most important feature, ‘context sentiment’ 

(relative effect = -0.11), for the following mediation analysis.  

 

Figure A 2. The Importance of All Potential Mediators.  

In this analysis, IV is reliability, DV is trust and MV is the conversational feature (i.e., context 

sentiment). To test for the full mediation, one should estimate the following regression equations:  

1. IV significantly predicts DV (path c’ is significant): Trust ~ Reliability. 

2. IV significantly predicts MV (path a is significant): Conversational features ~ Reliability. 

3. MV significantly predicts DV, (path b is significant): Trust ~ Conversational features + 

reliability. 

4. When mediator enters the IV-DV relationship, the total effect reduces significantly to non-

significant (path c). If the direct effect does not reduce significantly to non-significant, mediation 

only happens partially.  
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Figure A 3. The Mediation Effect of Conversational Features in The Relationship Between 

Reliability and Trust. Note ***p<.001. A is Effect of Reliability on Conversational Features; b is 

Effect of Conversational Features on Trust; c’ is Direct Effect of Reliability on Trust; c is Total 

Effect of Reliability on Trust. 

As shown in  Figure A 3, results showed that there was a significant total effect between 

reliability and trust (B = -0.95, p <.001), path a (i.e., reliability on conversational feature) (B = -

0.66, p <.001) and path b (i.e., conversational feature and reliability on trust) (B = 0.24, p <.001) 

were both significant. Finally, when conversational features entered the relationship between 

reliability and trust, the direct effect (B = -0.79, p <.001) was significant. In addition, the Sobel test 

for the indirect effect is z = -5.86, p <.001; therefore, it was concluded that a partial mediation 

occurred between reliability on trust via conversational features. The proportion of the effect of 

the reliability on trust that goes through the medicator is 0.17. It is calculated by dividing the 

average causal mediation effects (ACME) (-0.161) by the total effect (-0.95) to receive 0.17. Results 

supported the causal relationships between conversations, reliability, and trust: automation 

reliability influences the way people communicate, which can be used to predict trust. 

 


	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1 Dissertation Objectives
	1.1.1 Objective 1: Measure Trust in Communication: From Real-Time Estimation to Long-Term Dynamics
	1.1.2 Objective 2: Manage Trust in Cooperation: From Performance to Purpose-based Trust

	1.2 Dissertation Outline
	1.3 Contributions
	1.3.1 Theoretical Contribution
	1.3.2 Practical Contributions


	Chapter 2. Conversational Trust Measurement and Management
	2.1 Human-AI Teaming (HAT)
	2.2 From Trust to Trusting
	2.3 Temporal Dynamics
	2.4 Structural Interdependence
	2.5 Trust Measurement in Conversation
	2.5.1 Subjective Measurements
	2.5.2 Behavioral Measurements
	2.5.3 Physiological Measurements
	2.5.4 Conversational Measurements

	2.6 Trust Management in Cooperation
	2.6.1 Antecedents: Identify the type of trust compliance or violation
	Purpose-Based Trust

	2.6.2 Management: Identify Scope, Strategy, Timing, Modality
	Scope
	Strategy
	Timing
	Modality



	Chapter 3. Measure Trust in Human-AI Conversation
	Abstract
	3.1 Introduction
	3.1.1 Measuring Trust in Conversation
	3.1.2 Lexical Indicators of Trust
	3.1.3 Acoustic Indicators of Trust

	3.2 Methods
	3.2.1 Study Design
	3.2.2 Participants
	3.2.3 Apparatus
	3.2.4 Procedure
	3.2.5 Machine Learning Pipeline
	3.2.6 Data Pre-processing
	3.2.7 Algorithm Training and Evaluation
	3.2.1 Model Explanation

	3.3 Results
	3.3.1 Feature Engineering
	3.3.2 Trust Estimation
	3.3.3 Model Explanation

	3.4 Discussion
	3.4.1 Lexical Indicators of Trust: Context sentiment
	3.4.2 Acoustic Indicators of Trust: Formants, Mel-frequency cepstral coefficients (MFCC), pitch variation.
	3.4.3 Implications
	3.4.1 Limitations and Future Work

	3.5 Conclusion
	3.6 Chapter Summary

	Chapter 4.  Explain Trust Divergence Using Dynamic System
	Abstract
	4.1 Introduction
	4.2 Background
	4.2.1 Individual Differences
	4.2.2 Automation Reliability and Exposure
	4.2.3 Trust Dynamics

	4.3 Method
	4.3.1 Participants
	4.3.2 Procedures
	4.3.3 Data Analysis

	4.4 Results
	4.5 Discussion
	4.6 Conclusion
	4.7 Chapter Summary

	Chapter 5. Model Trust Dynamics in Human-AI Conversation
	Abstract
	5.1 Introduction
	5.1.1 Trust Dynamics
	Multidimensionality
	Temporality

	5.1.2 Modeling trust in conversation
	5.1.3 Trajectory Epistemic Network Analysis
	5.1.4 Research Objectives

	5.2 Method
	5.2.1 Study Design
	5.2.2 Participants
	5.2.3 Trajectory Epistemic Network Analysis
	Data segmentation
	Directed Content Analysis
	Network Analysis
	Trajectory Analysis


	5.3 Results
	5.3.1 Epistemic Network Analysis
	5.3.2 Trajectory ENA

	5.4 Discussion
	5.4.1 ENA Showed an Interplay Between Analytic and Affective Processes of Trust
	5.4.2 Trajectory ENA Validated Trust as a Function of Time
	5.4.3 Limitations and Future Studies

	5.5 Conclusion
	5.6 Chapter Summary

	Chapter 6. Manage Trust for Human-AI Cooperation
	Abstract
	6.1 Introduction
	6.2 Study 1: Purpose Outweighs Performance
	6.2.1 A Shift to the Purpose-Based Trust
	6.2.1 Trust Management
	6.2.1 Cooperative Game Theory

	6.3 Study 1 Method
	6.3.1 Space Rover Exploration Game
	6.3.2 Experiment design
	6.3.3 Dependent Variables
	Behavioral measurements
	Subjective measurement: Multi-Dimensional Measure of Trust (MDMT)

	6.3.4 Procedure
	6.3.5 Participants

	6.4 Study 1 Results
	6.4.1 Manipulation Check
	6.4.2 Subjective Trust Measurement
	6.4.3 Game Behaviors
	Investment in AI Teammate: Performance Trust
	Perceived Cooperation of AI teammate
	Participants’ Team Allocation


	6.5 Study 1 Discussion
	Limitation and Future Works

	6.6 Study 2: Trusting Voice for Trust Repair
	6.6.1 Trusting versus trustworthy voices
	6.6.2 Lexical-Acoustic Congruency in Trust Repair

	6.7 Study 2 Method
	6.7.1 Voice manipulation
	6.7.2 Participants

	6.8 Study 2 Results
	6.8.1 Subjective Trust Measurement
	6.8.1 Game Behaviors

	6.9 Study 2 Discussion
	6.10 Chapter Summary
	6.11

	Chapter 7. General Discussion
	7.1 Problem Summary
	7.1.1 Objective 1: Measure Trust in Communication: From Real-Time Estimation to Long-Term Dynamics
	7.1.1 Objective 2: Manage Trust in Cooperation: From Performance to Purpose-based Trust.

	7.2 Contributions
	7.2.1 Theoretical Contributions
	7.2.2 Practical Contributions

	7.3 Future Research
	7.3.1 Temporal Dimension
	7.3.2 Structural Dimension


	Bibliography
	Appendices
	Appendix. A. Machine Learning Within-Condition Prediction
	Appendix. B. Mediation Analysis


