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Abstract

Page-based virtual memory (paging) is a crucial piece of memory management in today’s
computing systems. However, I find that need, purpose and design constraints of virtual memory
have changed dramatically since translation lookaside buffers (TLBs) were introduced to cache
recently-used address translations: (a) physical memory sizes have grown more than a million-
fold, (b) workloads are often sized to avoid swapping information to and from secondary storage,
and (c) energy is now a first-order design constraint. Nevertheless, level-one TLBs have
remained the same size and are still accessed on every memory reference. As a result, large
workloads waste considerable execution time on TLB misses and all workloads spend energy on

frequent TLB accesses.

In this thesis I argue that it is now time to reevaluate virtual memory management. 1
reexamine virtual memory subsystem considering the ever-growing latency overhead of address

translation and considering energy dissipation, developing three results.

First, I proposed direct segments to reduce the latency overhead of address translation for
emerging big-memory workloads. Many big-memory workloads allocate most of their memory
early in execution and do not benefit from paging. Direct segments enable hardware-OS
mechanisms to bypass paging for a part of a process’s virtual address space, eliminating nearly

99% of TLB miss for many of these workloads.
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Second, I proposed opportunistic virtual caching (OVC) to reduce the energy spent on
translating addresses. Accessing TLBs on each memory reference burns significant energy, and
virtual memory’s page size constrains L1-cache designs to be highly associative -- burning yet
more energy. OVC makes hardware-OS modifications to expose energy-efficient virtual caching

as a dynamic optimization. This saves 94-99% of TLB lookup energy and 23% of L1-cache

lookup energy across several workloads.

Third, large pages are likely to be more appropriate than direct segments to reduce TLB
misses under frequent memory allocations/deallocations. Unfortunately, prevalent chip designs
like Intel’s, statically partition TLB resources among multiple page sizes, which can lead to
performance pathologies for using large pages. I proposed the merged-associative TLB to avoid
such pathologies and reduce TLB miss rate by up to 45% through dynamic aggregation of TLB

resources across page sizes.
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Introduction

“Virtual memory was invented at the time of scarcity. Is it still a good idea?”

--Charles Thacker, 2010 ACM Turing award lecture.

Page-based virtual memory (paging) is a crucial piece of memory management in today’s
computing systems. software accesses memory using a virtual address that must be translated to
a physical address before the memory access can be completed. This virtual-to-physical address
translation process goes through the page-based virtual memory subsystem in every current
commercial general-purpose processor that I am aware of. Thus, efficient address translation
mechanism is prerequisite for efficient memory access and thus ultimately for efficient
computing. Notably though, virtual address translation mechanism’s basic formulation remains

largely unchanged since the late 1960s when translation lookaside buffers (TLB) were
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Figure 1-1. Growth of physical memory.

introduced to efficiently cache recently used address translations. However, the purpose, usage

and the design constraints of virtual memory have witnessed a sea change in the last decade.

In this thesis I argue that it is now time to reevaluate the virtual memory management.
There are at least two key motivations behind the need to revisit virtual memory management
techniques. First, there has been significant change in the needs and the purpose of virtual
memory. For example, the amount of memory that needs address translation is a few orders of
magnitude larger than a decade ago. Second, there are new key constraints on how one designs
computing systems today. For example today’s systems are most often power limited, unlike

those from a decade ago.

Evolved Needs and Purposes: The steady decline in the cost of physical memory
enabled a million-times larger physical memory in today’s systems then during the inception of

the page-based virtual memory. Figure 1-1 shows the amount of physical memory (DRAM) that



could be purchased in 10,000 inflation-adjusted US dollar since 1980. One can observe that
physical memory has become exponentially cheaper over the years. This has enabled installed
physical memory in a system to grow from few megabytes to a few gigabytes and now even to a
few terabytes. Indeed, HP’s DL980 server currently ships with up to 4TB of physical memory
and Windows Server 2012 supports 4TB memories, up from 64GB a decade ago. Not only can
modern computer systems have terabytes of physical memory but the emerging big memory
workloads also need to access terabytes of memory at low latency. In the enterprise space, the
size of the largest data warehouse has been increasing at a cumulative annual growth rate of 173
percent — significantly faster than Moore’s law [77]. Thus modern systems need to efficiently
translate addresses for terabytes of memory. This ever-growing memory sizes stretches current

address-translation mechanisms to new limits.

Unfortunately, unlike the exponential growth in the installed physical memory capacity,
the size of the TLB has hardly scaled over the decades. The TLB plays a critical role to enable
efficient address translation by caching recently used address translation entries. A miss in the
TLB can take several memory accesses (e.g., up to 4 memory access in x86-64) and may incur
100s of cycles to service. Table 1-1 shows the number of L1-DTLB (level 1 data TLB) entries
per core in different Intel processors over the years. The number of TLB entries has grown from
72 entries in Intel’s Pentium IIT (1999) processors to 100 entries in Ivy Bridge processors (2012).
L1-DTLB sizes are hard to scale since L1-TLBs are accessed on each memory reference and
thus need to abide by strict latency and power budgets. While modern processors have added

second level TLBs (L2-TLB) to reduce performance penalty on L1-TLB misses, recent research



Table 1-1. L1-Data-TLB sizes in Intel processors over the years.

Year 1999 2001 2008 2012
72 64 96 100
L1-DTLB (Pentium III) (Pentium 4) (Nehalem) (Ivy Bridge)
entries

suggests that there is still considerable overhead due to misses in L1-TLB that hit in the L2-TLB
[59]. Large pages that map larger amounts of memory with a single TLB entry can help reduce
the number of TLB misses. However, efficient use of large pages remains challenging [69,87].
Furthermore, my experiments show that even with use of large pages, a double-digit percentage
of execution cycles can still be wasted in address translation. Further, like any cache design, the
TLB needs access locality to be effective. However, many emerging big data workloads like
graph analytics or data streaming applications demonstrate low access locality and thus current

TLB mechanisms may be less suitable for many future workloads [77].

In summary, the every-increasing size of memory, growing data footprint of workloads,
slow scaling of TLBs and low access locality of emerging workloads leads to an ever-increasing
address translation overhead of page-based virtual memory. For example, my experiments on an
Intel Sandy Bridge machine showed that up to 51% of the execution cycles could be wasted in

address translation for the graph-analytics workloads graph500 [36].
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Figure 1-2. TLB power contribution to on-chip power budget. Data from Avinash
Sodani's (Intel) MICRO 2011 Keynote talk.

New Design Constraint: Power dissipation is a first-class design constraint today. It was
hardly the case when the virtual memory subsystems were first designed. The current focus on
energy efficiency motivates reexamining processor design decisions from the previous

performance-first era, including the crucial virtual memory subsystem.

Virtual memory’s address translation mechanism, especially the TLB accesses, can
contribute significantly to the power usage of a processor. Figure 1-2 shows the breakdown of
power dissipation of a core (including caches) as reported by Intel [83]. TLBs can account up to
13% of the core’s power budget. My own experiments find that 6.6-13% of on-chip cache-
hierarchy’s dynamic energy is attributed to TLB accesses. Further, TLBs also show up as a
hotspot due to high energy density [75]. The primary reason behind the substantial energy budget

of TLB’s is frequent accesses to TLB. Most, if not all, commercial general-purpose processors



today access caches using physical addresses. Thus every memory reference needs to complete a
TLB access before the memory access is completed. Furthermore, since a TLB is on the critical
path of every memory access, fast and thus often energy-hungry transistors are used to design

TLBs.

The energy dissipation is further exacerbated by the designs from performance-first era
that hide TLB lookup latency from the critical path of the memory accesses. They do so by
accessing the TLB in parallel to indexing into a set-associative L1 cache with page offset of the
virtual address. The TLB output is used only during the tag comparison at the L1 cache.
However, such a virtually indexed physically tagged cache design requires that the page offset be
part of L1 cache indexing bits — forcing the L1 cache to be more highly associative than required
for low cache miss rates. For example, a typical 32KB L1 cache needs to be at least 8-way set-
associative to satisfy this constrain with 4KB pages. Each access to a higher-associativity

structure burns more energy and thus ultimately adds to the power consumption.

In summary, many aspects of current virtual memory’s address translation mechanisms
warrant a fresh cost-benefit analysis considering energy dissipation as a first-class design

constraint.

Proposals: In this thesis I aim to reduce the latency and the energy overheads virtual
memory’s address translation primarily through three pieces of work. First, I propose direct
segments [8] to reduce TLB miss overheads for big memory workloads. Second, I propose
opportunistic virtual caching [9] to reduce address translation energy. Finally, I also propose a

merged-associative TLB, which aims to improve TLB designs for large page sizes by eliminating



performance unpredictability with use of large pages in commercially prevalent TLB designs. In

the following, I briefly describe these three works.

1. Direct Segments (Chapter 3): I find that emerging big-memory workloads like in-memory
object-caches, graph analytics, databases and some HPC workloads incur high address-
translation overheads in conventional page-based virtual memory (paging) and this overhead
primarily stems from TLB misses. For example, on a test machine with 96GB physical memory,
graph500 [36] spends 51% of execution cycles servicing TLB misses with 4KB pages and 10%
of execution cycles with 2 MB large pages. Future big-memory-workload trends like ever-

growing memory footprint and low access locality are likely to worsen this further.

My memory-usage analysis of a few representative big memory workloads revealed that
despite the cost of address translation, many key features of paging, such as swapping, fine-grain
page protection, and external-fragmentation minimization, are not necessary for most of their
memory usage. For example, databases carefully size their buffer pool according to the installed
physical memory and thus rarely swap it. I find that only a small fraction of memory allocations,
like those for memory-mapped files and executable code, benefit from page-based virtual
memory. Unfortunately, current systems enforce page-based virtual memory for all memory,

irrespective of its usage, and incur page-based address translation cost for all memory accesses.

To address this mismatch between the big-memory workloads’ needs, what the systems
support, and the high cost of address translation, I propose that processors support two types of
address translation for non-overlapping regions of a process’s virtual address space: 1)

conventional paging using of TLB, page table walker etc., 2) a new fast translation mechanism



that uses a simple form of segmentation (without paging) called a direct segment. Direct segment
hardware can map an arbitrarily large contiguous range of virtual addresses having uniform
access permissions to a contiguous physical address range with a small, fixed hardware: base,
limit and offset registers for each core (or context). If a virtual address is between the base and
limit register values then the corresponding physical address is calculated by adding the value of
the offset register to the virtual address. Since addresses translated using a direct segment need
no TLB lookup; no TLB miss is possible. Virtual addresses outside the direct segment’s range
are mapped using conventional paging through TLBs and are useful for memory allocations that
benefit from page-based virtual memory. The OS then provides a software abstraction for direct
segment to the applications — called a primary region. The primary region captures memory
usage that may not benefit from paging in a contiguous virtual address range, and thus could be

mapped using direct segment.

My results show that direct segments can often eliminate 99% of TLB misses across most

of the big memory workloads to reduce time wasted on TLB misses to 0.5% of execution cycles.

2. Opportunistic Virtual Caching (Chapter 4): 1 proposed Opportunistic Virtual Caching
(OVC) to reduce energy dissipated due to address translation. I find that looking up TLBs on
each memory access can account for 7-13% of the dynamic energy dissipation of whole on-chip
memory hierarchy. Further, the L1 cache energy dissipation is exacerbated by designs that hides

TLB lookup latency from the critical path.

OVC addresses this energy wastage by enabling energy-efficient virtual caching as a

dynamic optimization under software control. The OVC hardware allows some of the memory



blocks be cached in the L1 cache with virtual addresses (virtual caching) to avoid energy-hungry
TLB lookups on L1 cache hits and to lower the associativity of L1 cache lookup. The rest of the

blocks can be cached using conventional physical addressing, if needed.

The OS, with optional hints from applications, determines which memory regions are
conducive to virtual caching and uses virtual caching or conventional physical caching hardware
accordingly. My analysis shows that many of challenges to efficient virtual caching, like
inconsistencies due to read-write synonyms (different virtual addresses mapping to same
physical address), occur rarely in practice. Thus, the vast majority of memory allocation can
make use of energy-efficient virtual caching, while falling back to physical caching for the rest,

as needed.

My evaluation shows that OVC can eliminate 94-99% of TLB lookup energy and 23% of

L1 cache dynamic lookup energy.

3. Merged-Associative TLB (Chapter 5): While the proposed direct segments can eliminate
most of DTLB misses for big memory workloads that often have fairly predictable memory
usage and allocate most memory early in execution, it may be less suitable when there are
frequent memory allocation/deallocations. In contrast, support for large pages is currently the
most widely employed mechanism to reduce TLB misses and could be more flexible under

frequent memory allocation/deallocation by enabling better mitigation of memory fragmentation.

In the third piece of work I try to improve large-page support in commercially prevalent

chip designs like those from Intel (e.g., Ivy Bridge, Sandy Bridge) that support multiple page
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sizes by providing separate sub-TLBs for each distinct page sizes (called a split-TLB design).
Such a static allocation of TLB resources based on page sizes can lead to performance
pathologies where use of larger pages can increase TLB miss rates and disallow TLB resource
aggregation. A few competing commercial designs, like AMD’s, instead employ a single fully
associative TLB, which can hold entries for any page size. However, fully associative designs
are often slower and more power-hungry than a set-associative one. Thus, a single set-associative
TLB that can hold translations for any page size is desirable. Unfortunately, such a design is
challenging as the correct index into a set-associative TLB for a given virtual address depends

upon the page size of translation, which is unknown till the TLB lookup itself completes.

I proposed a merged-associative TLB to address this challenge by partitioning the
abundant virtual address space of a 64-bit system among the page sizes instead of partitioning
scarce hardware TLB resources. The OS divides a process’s virtual address space into a fixed
number of non-overlapping regions. Each of these regions contains memory mapped using a
single page size. This allows the hardware to decipher page size by examining a few high-order
bits of the virtual address even before the TLB lookup. In turn, this enables the hardware to
logically aggregate the TLB resources for different page sizes into a larger set-associative TLB
that can hold address translations for any page size. A merged-associative TLB can effectively
achieve miss rates close to a fully associative TLB without actually having one and avoid

performance pathologies of split-TLB design.

My experiments show that the merged-associative TLB successfully eliminates

performance unpredictability possible with use of large pages in a conventional split-TLB
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design. Furthermore, the merged-associative TLB could reduce the TLB miss rate by up to 45%

in one of the applications studied.
Organization of the thesis: The organization of the rest of the thesis is as follows.

Chapter 2 describes the background of the virtual memory address translation

mechanisms.

Chapter 3 describes the direct segments work that was published in 40" International
Symposium on Computer Architecture (ISCA 2013). The content of the chapter mostly follows
from the published paper but adds discussion on how direct segment could work in presence of

physical page frames with permanent faults.

Chapter 4 describes the opportunistic virtual caching (OVC) work that was published in
39™ International Symposium on Computer Architecture (ISCA 2012). The chapter follows the
published paper for most part but adds a section on how OVC and direct segments could work

together in a system.
Chapter 5 describes merged-associative TLB work, which is not yet published.

Chapter 6 concludes the thesis and describes potential future extensions to the thesis.
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Virtual Memory Basics

In this chapter, I briefly discuss the history of evolution of virtual memory and basic
mechanisms for virtual memory. While I primarily focus on the virtual memory as provided in
x86-64 instruction set architecture (ISA), I also discuss virtual memory in contemporary ISAs

like ARM, PowerPC, SPARC.

2.1 Before Memory Was Virtual

From the early days of electronic computing the designers recognized that fast access to
large amount of storage is hard and thus computer memories must be organized hierarchically
[26]. Computer memories have been commonly organized in at least two levels — “main
memory” and “auxiliary memory” or storage. A program’s information (code, data etc.) could
be referenced only when it resides in main memory. The obvious challenge is to determine, at
each moment, which information should reside in main memory and which in auxiliary memory.

This problem has been widely known as storage allocation problem. Until late 1950s, any
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program that needed to access more information than could fit in the main memory, required to

contain the logic for addressing the storage allocation problem [95]. Further, to allow

multiprogramming and multitasking early systems divided physical memory with special set of

registers as in DEC’s PDP-10 [95]. The challenges for automatic storage allocation and

multiprogramming not only complicated the task of writing large programs but also made

effectively sharing the main memory, a key computing resource, difficult.

2.2 Inception of Virtual Memory

As programs got more complex and more people
started programming, the need to provide an aufomatic
management of memory was deemed necessary to relieve
programmer’s burden. In 1959, researchers from
University of Manchester, UK, proposed and produced first
working prototype of a virtual memory system as part of
Atlas system [50]. They introduced the key concept behind
virtual memory — distinction between the “address” and the

“memory location”. The “address” would later more widely
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Figure 2-1. Abstract view of
Virtual Memory

be known as virtual address, while “memory location” can be a physical or real address in the

main memory or it could be a storage location as depicted in Figure 2-1. This allowed programmers

to name information only by its virtual address while the system software (OS) along with the

hardware is tasked to dynamically translate virtual addresses to its location in main memory or
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storage. The OS enabled automatic movement of data between the memory and storage as

needed.

They key concepts and mechanisms of virtual memory were then greatly refined by the
Multics project [24]. They enabled two-dimensional virtual address space that allowed ease of
sharing, modularity, and protection, while efficiently managing physical memory by allocating
memory in fixed sizes (called pages). Such a two-dimensional address space required two
identifiers to uniquely identify a memory location. The working set model [25] on access locality
of programs was then invented by Denning to fill in critical component in virtual memory — how
to decide how much of memory to assign to a process and how to decide which information to

keep in the main memory and which information in the auxiliary memory.

The rest of this chapter is organized as follows. I will first discuss a few of the important
use-cases of virtual memory. 1 will then delve into intricacies of implementation of virtual
memory management. This discussion will revolve around how virtual memory is implemented
in x86-64 processors. Since these mechanisms vary considerably across different instruction-set-
architectures (ISAs) I will briefly compare and contrast virtual memory management of other
relevant ISAs like PowerPC, ARM-64 and UltraSPARC (T2) with that of x86-64’s. Finally, I

will briefly discuss what aspects of the virtual memory management this thesis addresses.
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2.3 Virtual Memory Usage

While virtual memory was initially conceived to lessen the burden of the programmer to
write their own storage allocation procedures, it has since enabled many use-cases. A few of

them are listed below.

*  Automatic storage allocation: Virtual memory makes it possible to run a program with
memory needs in excess of the installed main memory size. This relieves the programmer
from being aware of memory sizes of the system where it will execute. Modern OSes
achieve this by moving data in and out between the main memory (e.g., DRAM) and the
auxiliary memory (e.g., disk) to provide an illusion of larger memory than one actually
available. This mechanism is commonly referred to as swapping.

* Protection: Virtual memory enables efficient fine-grain (e.g., 4KB granularity) protection
of memory. The virtual-memory hardware can enforce access restriction to parts of
memory by processes. This is useful for avoiding unwanted overwrite of read-only
information (e.g., code). It also enables many widely used optimization like copy-on-
write whereby a memory location(s) can be shared among multiple processes until at
least one of the processes tries to write memory location. Modern systems, like x86-64,
also enable “no-execute” protection to disallow execution of certain memory allocation to
enhance security against malicious code snippets.

*  Demand paging: Virtual memory allows bringing in information (data, code, etc.) from

auxiliary memory (storage) to main memory only when they are first referenced. Demand
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paging enables fast startup for processes by not requiring pre-loading of all the
information that the process would require during its execution.

Relocation: Virtual memory enables ease in software development by allowing the same
virtual address in different programs to refer to different physical memory location during
execution. This allows the software tool chains (e.g., compiler, linker) generate code
using only virtual addresses without worrying about where the referred information is
located and thus, be agnostic of a system’s memory configuration. This in turn, enables
programs to be built from separately compiled, reusable and sharable modules.

Metadata collection: Most current virtual memory hardware enables efficiently storing
small amount of metadata with virtual memory allocation units (e.g., per-page dirty and
reference bits). This enables usage information collection. For example, these hardware-
managed metadata are often useful for many OS procedures like page-frame-reclamation
or even in garbage collection of many high level languages.

Sharing: Virtual memory enables efficient sharing of code and data among multiple
processes by mapping virtual addresses of generated by different processes to map on to
same physical memory location. This is especially useful in sharing libraries across

multiple processes.

Virtual Memory Internals

In this section, I discuss the mechanisms to translate software-generated virtual addresses

to physical addresses — a key component of virtual memory subsystem.
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The OS and the hardware coordinate to accomplish this address-translation process.
There are broadly two techniques of address translation that were ever employed — paging and
segmentation. Paging or page-based virtual memory translates a linear virtual address to a
physical address. The address translation process is essentially hidden from user programs except
from its performance implications. Page-based virtual memory translates the virtual addresses in
one or few ISA-defined granularities (e.g., 4KB). On the other hand, segmentation allows
mapping between the address spaces at variable (often arbitrary) granularity. Segmentation often
exposes two a dimensional virtual address space to users where an address is identified by a
segment identifier and an offset within the segment. One advantage of paging over segmentation
is that paging can help mitigate external fragmentation. External fragmentation can occur if
memory is allocated and de-allocated in various sizes leaving physical memory scattered in small
holes that is unusable to satisfy later memory requests. Paging mitigates this by allocating and
de-allocating memory in one or a few fixed sizes called page size. Segmentation on the other
hand allows ease of sharing semantically related memory locations (segments) among multiple
processes. In this section, I will primarily focus on paging since it is the primary address
translation mechanism supported across almost all modern architectures. Further, current systems

that allow segmentation, do so on top of paging.

24.1 Paging

While almost every commercial ISAs today implements paging, in this subsection I will

discuss intricacies paging as implemented in x86-64 ISA. The hardware mechanism that is
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responsible for translating software generated virtual addresses to physical address is called

memory management unit or MMU. Below, I discuss various aspects of MMU.

2.4.1.1 Address Spaces

While x86-64 can theoretically support up to 64-bit long linear virtual address all current
implementations support up to 48 bits [40]. The address bits between 63™ and 48" are sign
extended. Thus current generation of x86-64 processors can refer up to 256TB of virtual
addresses. Most commercial operating systems, such as Linux, Windows, export separate virtual
address spaces for each process. Linux, for example, allows 128TB of virtual address space for

each user process while allows another 128TB for the kernel.

The size of the physical address space determines the maximum size of the main memory
that can be installed in a given system. Currently, x86-64 ISA supports up to 52 bits of physical
address but unlike virtual address, the physical address size is a micro-architectural (rather than
architectural) property and varies across processor models. A more typical 40-46 bit physical
addresses can support up to 64TB installed physical memory capacity. Note that there is only one
physical address space for a system, while each process in a system can have its own virtual

address space.

2.4.1.2 Translating Virtual Addresses
The primary function of the virtual memory subsystem is to translate an address in a
virtual address space to an address in the physical address space. In the following subsection, I

will describe the key components and mechanism of this address translation process.
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Page table: The page table is the per-process in-memory data-structure that holds the
translation information from a linear virtual address space to physical address space. The page
table stores the translation information at the granularity of ISA-defined page sizes. The default
page size in x86-64 is 4KB, while a couple of larger page sizes are supported (discussed later in
the section). The virtual address is divided in to two parts — virtual page number (VPN) and
page offset. The page offset identifies the byte address within a page. For example, with 4KB
page size the lower 12 bits of the virtual address. The rest of higher address bits constitute the
virtual page number. The physical memory is similarly divided into physical page frames at the
page-size grain and is identified by page frame number. The page offset remains unaltered
between a virtual address and its corresponding physical address. Thus the page table translates a
virtual page number to a page frame number. An entry of page table or page table entry (PTE)
contain information such as whether the page is in memory, corresponding page frame number
or location on the auxiliary memory (valid/present bit), access rights to the page (read, read-write
etc.), whether the page belongs to supervisor mode (OS), reference and dirty bit. The size of each
PTE in x86-64 is 8 bytes. In x86-64, the page table structure itself is accessed using physical

address only.

The x86-64 ISA defines the page-table data structure as a four-level radix tree with fan
out of 512 at each level. Such a hierarchical page table structure allows space-efficient
representation of large potentially sparse virtual address space. The last level of the page table

contains PTE that contains the physical frame number.
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Figure 2-2. Page table walk in x86-64 with 4KB page size.

Page Table Walk: In Figure 2-2, I depict the structure of four-level page table for a

process in x86-64. The figure also depicts how the page table is searched to find the desired PTE

corresponding to a given linear virtual address. This process is called a page table walk. The size

of each node in the tree structure is 4KB and the size of each entry in the node is 8-bytes wide.

Thus, at each node of the page table there can be up to 512 entries (i.e., fan out of 512). I

number the address bits such that the most significant bit is the 63" bit of the virtual address and

0" bit is the lowest significant bit.
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In x86-64, a hardware page-table-walker walks the in-memory page table. First, the page-
table-walker needs to know the location of root of the page-table in the memory. In x86-64, a
register named CR3 holds the physical page frame number (40 bits) of the root of the page table
data structure of the currently running process [40]. The OS updates the value of CR3 when
switching process contexts, as the location of the page table is part of a process’s context. The
least significant 12 bits of the virtual address constituting the page offset for 4KB pages remain
unaltered across the virtual and physical address. The remaining higher-order 36-bits are divided
in to four 9-bit indices used to select entries from four levels of the page table as shown in Figure
2-2. The four levels of page tables are named Page Map Level 4 (PML4 or L4), Page Directory
Pointer (PDP or L3), Page Directory (PD or L2) and Page Table (PT or L1). In the first step, the
value of CR3 register is used to locate the 4KB-aligned starting physical address of the PML4 of
the page table. As depicted in the Figure 2-2, 9 bits from bit position 39" to 47" are extracted
from the virtual address and appended to the value of CR3 (40 bits of physical address). This
yields 49-bit physical address of the appropriate L4 entry. The L4 entry could contain the
physical frame number of the page containing the corresponding L3 node. The process is
repeated by extracting the L3 index field from virtual address and appending it to the physical
page frame number obtained from the L4 node to locate the correct L3 entry. This recursive
process continues until either a selected entry is invalid or the desired PTE at the L1 node is
found. The PTE at L1 contains the desired physical page frame number corresponding to the
given virtual page number. The page offset can then be appended to form the full physical
address of the given virtual address. Such a page-table “walk” procedure can require up to four

memory references to find the physical page frame number for a given virtual page number. As
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the address space grows, more levels would need to be added, further increasing the number of
memory references for a page table walk. A full 64-bit virtual address space could require up to
six levels. However, often off-chip memory accesses are avoided as the page table entries could
be cached along with normal data blocks in on-chip processor caches (e.g., L1, L2 and/or L3

caches).

Page fault: The page table can be sparsely populated. At any level if there are no valid
entry corresponding to the given virtual address index, the sub-tree beneath that index is not
instantiated. This yields significant memory space savings for a sparsely allocated virtual address
space. An exception is raised to the OS if a valid entry is not found at any of the levels of the
page table during the walk. Such a hardware exception is called a page-fault. The x86-64
hardware provides the linear virtual address that caused the page fault, called the faulting
address, in the control register called CR2. The operating system then takes appropriate actions
and may install mapping for the faulting address. OS can also raise exceptions to application if it
deems necessary, e.g., a segmentation fault is raised if an unmapped address is accessed. Page-
faults could also be triggered access rights violation (e.g., a write access to a read-only address)
or if the desired page has been swapped out to the auxiliary memory (disk). While generating
page-fault exception the hardware also provides related information such as whether the faulting
address is instruction or data, whether the fault is due to access rights violation or due to invalid

mapping information.
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2.4.1.3 Making Address Translation Faster

TLB: Software accesses memory using virtual addresses that need to be translated to
physical addresses. However, the aforementioned address translation process is too slow to be
carried out on each memory access. To speed up this process, translation lookaside buffer or
TLB was introduced. A TLB is a hardware cache of recently used address translation entries to
avoid long-latency page-walk on every memory access. Each TLB entry contains a virtual page
number and its corresponding physical page frame number. A TLB entry also contains related
metadata information like access rights, super-user bits etc. On each memory access the TLB is
accessed with the virtual page number. If it hits in the TLB then the physical page frame number
is immediately available. No page-table-walk is necessary. However, in case of a TLB miss the
hardware page-table walker looks up the page-table which could take up to four memory

accesses as described in the previous sub-section.

Large Pages: The TLB structure needs to be fast and energy efficient as it is looked up
on every memory access. This makes it hard to increase the number of TLB entries. To translate
larger amount of memory without requiring more TLB entries, hardware designers introduced
larger page sizes that helps increasing 7LB reach (number of TLB entries x page size). Larger
TLB reach can potentially lower the number of TLB misses. Currently, x86-64 supports two
larger page sizes — 2MB and 1GB beyond the default 4KB page size. A single TLB entry for
larger page sizes can translate 2MB or 1GB of contiguous virtual address to the corresponding
amount of physical address. Thus, compared to the base page size, larger page sizes can increase

the TLB reach with same number of TLB entries. Furthermore, larger page sizes shorten the
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page walk procedure described in Figure 2-2. For example, an entry in the L2 node (page
directory) could directly point to physical frame number of a 2MB page. Thus an address
mapped using 2MB pages needs up to 3 memory references to find the corresponding physical
page frame number. Similarly, page walk could stop at a L3 node (page directory pointer) for a
1GB page, requiring only up to two memory accesses. In summary, large pages can potentially
lower the number of TLB misses as well as reduce the number of memory references needed for

a page walk.

I observe that each page size in x86-64 is 512 times of its nearest size. This is an artifact
of the x86-64’s page table organization as radix tree with fan-out of 512. Radix-tree nodes at
each level of the tree represent different a page size — L1 nodes represent 4KB pages, L2 nodes
represents 2MB pages and L3 nodes represent 1GB pages. Going by this trend, it can be assumed

that in future next larger page size could be 512GB.

A typical per-core TLB hierarchy with multiple page sizes in recent Intel’s recent Ivy
Bridge processors has two levels of TLBs. There are separate L1 TLBs for instruction and data.
The L1 instruction TLB holds 128 entries for 4KB pages in an §-way set-associative structure,
while there are 8 entries for 2MB pages. The L1-data TLB has three sub-TLBs — 64 entry 4-way
set-associative TLB for 4KB pages, 32 entry 4-way set-associative TLB for 2MB pages and 4-
entry fully associative TLB for 1GB pages. The second level (L2) TLB can hold translations for
both instruction and data. The L2-TLB can hold 512 4KB page translation and is a 4-way set-
associative structure. There is no L2-TLB for larger page sizes. A miss in L1-TLB that hits in

L2-TLB can incur a delay of 7 processor cycles [39].
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Paging structure caches (PSC): A TLB miss triggers a long-latency hardware page
table walk. To reduce this cost, the hardware designers have introduced a cache for holding only
page table information, called a page-structure cache (Intel terminology). The key observation is
that the accesses to upper levels of page table demonstrate significant temporal locality. For
example, page table walks to two consecutive virtual address pages will likely to have same three
upper level entries since indices selecting these entries are extracted from higher order bits of
virtual address that rarely change. If the higher-level page table entries could be cached then the
later page walks could be serviced faster, requiring less number of memory accesses. Thus the
x86-64 vendors have developed caches to store recently used upper level page table entries
[3,6,41]. However, their designs differ significantly. In this subsection, I primarily discuss Intel’s

designs of translation caches and briefly contrast it with AMD’s design.

Like TLBs, PSCs are accessed using virtual addresses. However, while the TLBs are
indexed and/or tagged by complete virtual page number, the PSCs are looked up using only a
partial prefix of the virtual page number. More specifically, virtual address prefixes for different
levels of the page table is used for accessing PSCs. For example, there can be a PSC entry for the
L4 index (bits 39 to 47) of a virtual address (refer to Figure 2-3). Such an entry would provide
the physical page frame number containing the corresponding node in the next level of the page
table (here L3 node). Similarly, a PSC entry for bits 30 to 47 (L4 index appended by L3 index)
of a virtual address would contain physical frame number containing the corresponding L.2 node
of the page table. An entry for bits 21 to 47 (L4 index appended by L3 index appended by L2

index) would contain physical frame number of desired PTE. I observe that for a given virtual
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Figure 2-3. Paging-structure caches. The virtual address prefixes are un-shaded. The physical
page frame number of next level in the page table is in shade.

page number there could be up to three prefixes that could match in the translation cache. Intel’s
page-structure caches employ a split design where different levels of page table entries
corresponding to three different prefix lengths of the virtual address are cached in separate
caches to avoid interference. Such a split design could be helpful since different level of page
table entries demonstrate very different access locality. Figure 2-3 shows a typical page-structure
cache configuration as found in Intel’s recent processors. The number in the un-shaded boxes are
prefixes of virtual addresses while the numbers in shaded represents physical frame number. The
physical frame number represents the address of the page containing the desired PTE for a L2
entry, while it is the page frame number for node containing desired L2 node and L3 node for L3

and L4 entry, respectively.

On a TLB miss, the hardware page table walker firsts looks up the translation cache with
the virtual page number of the missing address. The lookup can produce up to three hits, one
each for three sub caches of three levels of the page table. The page table walker then selects an

entry with longest prefix match. A hit in the sub-cache for L2 page table entries can reduce the
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number memory access on TLB miss to one, instead of four as originally required. Hits for L3

and L4 entry would require two and three memory references, respectively.

Different from Intel’s design, AMD’s chips implement a simpler design called page-walk
cache for caching higher-level page table information. The entries are cached in the page-walk
cache with their physical addresses, unlike partial prefix of virtual address for Intel’s page-
structure caches. AMD’s page-walk cache can be deemed simply as a specialized data cache that
can hold only page table entries. In the ideal case, all three upper level page table entries could
be cached and three sequential lookups of the page walk cache can provide with the physical
page frame number of the node containing the desired PTE. Thereafter a single memory
reference provides the desired address translation. Further, unlike Intel’s split design, AMD’s
page walk caches employ a unified design where all entries from all three upper levels of page-

table compete for a place in the cache.

2.4.1.4  Putting it altogether
In this section, I discuss how various components of x86-64’s page based virtual
management work together to translate a linear virtual address generated by the software to a

physical address.

Figure 2-4 depicts various components of x86-64’s virtual memory management and
their interactions. The paged virtual memory management component in x86-64 is responsible
for translating a software-generated 48-bit wide virtual address (VA) to 52-bit wide physical
address (PA). In the following I describe the steps in that address translation process as it is done

in most Intel’s current processors.
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TLB: The virtual page number is first searched in the TLB hierarchy. A hit in the TLB

yields the desired physical page frame number along with the access rights. If the access rights

are sufficient for a given access then the page offset is appended to the physical page frame

number to obtain the desired physical address.

Paging-structure Cache (PSC): On a miss in TLB hierarchy, the PSC accompanying
the hardware page table walker is looked up using prefixes of the virtual page number. As

described in Section 2.4.1.3, page-structure caches can help skipping one or more levels of the

28
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four levels of hierarchical page table. On a hit in the paging structure cache it could require one

to three memory references for the partial page walk to find the desired PTE.

Page walk: On a miss in the PSC a complete page walk of in-memory page table data-
structure is initiated. The CR3 register provides the physical address of the root of the page table
for the given process. The hardware page-table-walker then walks the four-level radix tree
structure of the page table that could take up to four off-chip memory accesses. The page table
entries reside in normal cacheable memory and thus hardware page walker first accesses the on-

chip cache hierarchy before accessing main memory.

Page fault: If the hardware page-table-walker finds no valid entry in the page table
corresponding to the given virtual address or if entry lacks sufficient access rights, it raises page-
fault exception to the OS. On a page-fault the OS can create the missing PTE or raise exception

to user program.

2.4.2 Segmentation

While previous section discussed the intricacies of address translation with paging, in this

section I discuss segmentation.

Segmentation exports the virtual address space as a set of variable-sized sections or
segments. Different segments usually represent distinct natural divisions of program like stack
region, code region, data region, etc., and thus visible to the programmer or application.
Segmentation usually exports a two-dimensional address space as opposed to linear address

space provided by paging. A segment identifier identifies each segment. Thus a virtual address
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in segmented address space is a pair <s, 0>, where s is the segment identifier or segment selector
and o is the offset value within the segment. The offset value starts with value 0 and is bounded
by the size of the segment minus one. The segment information is stored in the segment table
where each entry contains segment selector, base, limit, protection information and a valid bit.
To translate a segmented address the segment table is accessed with the segment identifier to
find the physical base address and the limit value. If the segment offset (o) of the given virtual
address is within the limit of the selected segment and the protection information allows the
requested operation then the offset value (o) is added to the base value of the segment to produce
a linear address. The content of the segment table are often cached in a few ISA-defined

hardware segment registers to fasten the look up of the segment table.

Modern system that implements segments (e.g., PowerPC and x86), do so on top of
paging. Thus the linear address generated by segmentation is further translated to the physical
address via paging hardware. However, some very early system like Burrough’s B5000 [96] did

not use paging and used only segmentation.

Segmentation is useful in sharing of a semantically related memory region among
multiple processes. It also helps by allowing each segment to relocated and grown or shrunk
independently of other segments. However, due to variability in the segment size, a pure
segmented architecture (without paging) can lead to external fragmentation whereby physical
memory can be scattered in small unusable holes. Thus most commercial systems lay out
segmentation on top of paging. In the following I briefly describe x86’s segmentation and its fate

in x86-64 architecture.
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2.4.2.5 Segmentation in x86 (32-bits) and x86-64

The 32-bit x86 architecture allows two modes of operation — the real mode and the
protected mode. Real mode of operation is used only during early boot process to initialize
hardware and allows only a 20-bit address space (limited to 1MB). In the real mode, x86

implements pure segmentation without paging and each segment is always 64KB long.

During normal operation, an x86 system runs in protected mode. The virtual address
consists of 16-bit segment selector (or segment identifier) and a 32-bit of segment offset. The
segment selector needs to be in one of the hardware segment registers. The x86 ISA exposes six
segment registers: CS, SS, DS, ES, FS, GS. During instruction fetch, the CS or code segment
register is selected by default, while SS (stack register) is selected for stack reference. DS
register is selected by default for data accesses. However, data access can also use ES, FS or GS
by explicit referring them in the program binary. The upper 13 bits of the 16-bit long segment
selector read from the relevant segment register are called segment number and is used to index
into one of the two segment descriptor tables. There is a local descriptor table (LDT) and global
descriptor table (GDT), and a bit in the segment selector decides which of these two segment
descriptor tables to index into. In general, segments private to a process are kept in the LDT
while global segments reside in the GDT. The segment descriptor entries contain the segment’s
linear base address as well as limit and protection information. Segment information is cached
along with the segment selector in the segment registers for fast lookup. The segment base

address is then added to the segment offset to create the linear virtual address.
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Table 2-1. Comparison of key virtual memory features across different architectures.

PowerPC UltraSPARC (T2) ARM-64 x86-64
(Power 7)
Virtual Address 80-bit segmented- | 64-bits paged- 64-bits paged- | 64-bits paged-
Space address space on address space. address space. | address space.
top of paging Lower 44 bits used. | Lower 48 bits | Lower 48 bits
used. used.
Page Table Inverted hashed OS-defined flexible | Four-level Four-level
page table. structure. hierarchical. hierarchical.
TLB Miss H/W page table H/W looks.up TSB. | H/W page table | H/W page table
Handling walker. On TSB miss S/W walker. walker.
handler walks page
table.
Page Sizes 4KB, 64KB, 8KB, 64KB, 4MB, | 4KB and 4KB, 2MB and
16MB and 16GB. | and 256MB. 64KB. 1GB.

The x86-64 essentially uses flat model without much support for segmentation where CS,
SS, DS, ES registers are hardwired to zero. FS and GS registers can still have non-zero base
addresses and are sometimes used by modern systems for holding some thread-private
information. Thus, in today’s x86-64 systems paging is the primary address translation

mechanism.

243 Virtual Memory for other ISAs

Hitherto, I have discussed the virtual memory mechanisms as in the x86-64 architecture.
However, other ISAs like PowerPC, ARM-64 and SPARC have some important differences in
the way they handle virtual memory. In this subsection I will provide a brief discussion on how

these other ISAs differ from x86-64.
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Table 2-1 provides brief contrast of key virtual memory features of various different ISA

with those of x86-64. I discuss more details about these features and ISA in the following.

PowerPC: 64-bit Power-PC architecture exposes 80-bit wide segmented virtual address
space, which like x86, is implemented on top of paging. Each segments in PowerPC (Power7) is
256 MB or 1TB in size [82]. It uses the top 36 bits of a virtual address to index into a segment

descriptor table whose entries can be cached in hardware in a segment-lookaside-buffer.

PowerPC implements a hashed inverted page table, which is an eight-way set-associative
software cache structure. On a TLB miss the hardware computes a hash of the virtual address to
index into the inverted page table. Due to possible conflict in the hash table the OS also
maintains the complete page table in memory. PowerPC supports 4KB, 64KB, 16MB and 16GB

page sizes.

ARM-64: ARM supports a flat virtual address space without segmentation. It is very
similar to x86-64 and provides a 48-bit virtual address space with kernel occupying the upper
half and the user processes the lower half. It implements a four-level hierarchical page table
similar to x86-64 [4]. ARM supports 4KB and 64KB page sizes in 64-bit mode. Use of 64KB
page size limits the depth of hierarchical page table to two instead of four and restricts the virtual
address width to 42 bits. Since use of larger page size alters the page table structure and limits
address space size, it is likely that ARM-64 is unable to support mix of page sizes for a given

process.
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UltraSPARC T2: While SPARC supports a 64-bit address space only the lower 44-bits
are used for addressing. The physical address space size is generally 41 bits. The UltraSPARC
implements a software-defined page table completely under OS control. It also defines a
Translation Storage Buffer (TSB) that resides in system memory. It is a virtually indexed,
virtually tagged, direct-mapped software cache of the translation entry. On a TLB miss the
hardware first searches the TSB. On a TSB miss an exception is raised to OS to fill the TLB. It

supports 8KB, 64KB, 4MB, and 256MB page sizes.

2.5 In this Thesis

In this thesis, I focus primarily on two key problems of current virtual memory
implementation: 1) excessive energy dissipation due to frequent TLB lookups and 2)
performance overhead due to TLB misses. While rest of the thesis will focus around designs that
are employed by x86-64 architectures, the above-mentioned two key challenges of virtual
memory are universal across different architectures. For example, to the best of my knowledge
all current commercial general-purpose processors looks up the TLB on each memory access and
the performance overhead due to TLB misses are widely accepted challenge across architectures
other than x86-64 [88,103]. Further, I believe that the techniques proposed in this thesis are
applicable irrespective of ISA. In the third piece, I focus on the design trade-offs in TLB
implementation if multiple page sizes are to be supported. Our proposal could benefit TLB

design employed by recent commercially popular Intel chips.
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Reducing Address Translation Latency

3.1 Introduction

In this chapter I discuss the direct segments proposal that strives to eliminate most of the

address translation cost for emerging big memory workloads.

The primary cost of address translation in page-based virtual memory stems from
indirection: on each access to virtual memory, a processor must translate the virtual address to a
physical address. While address translation can be accelerated by TLB hits, misses are costly,

taking up to 10s-100s of cycles [9,83].

To reevaluate the address translation cost and the benefits of decades-old page-based
virtual memory in today’s context, I focus on an important class of emerging big-memory
workloads. These include memory intensive “big data” workloads such as databases, key-value
stores, and graph algorithms as well as high-performance computing (HPC) workloads with large

memory requirements.

My experiments reveal that these big-memory workloads incur high virtual memory

overheads due to TLB misses. For example, on a test machine with 96GB physical memory,
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graph500 [36] spends 51% of execution cycles servicing TLB misses with 4KB pages and 10%
of execution cycles with 2 MB large pages. The combination of application trends—Ilarge
memory footprint and lower reference locality [31,71]—contributes to high TLB miss rates and
consequently I expect even higher address translation overheads in future. Moreover, the trends
to larger physical memory sizes and byte-addressable access to storage class memory [77,91]

increase address mapping pressure.

Despite these costs, I find big-memory workloads seldom use the rich features of page-
based virtual memory (e.g., swapping, copy-on-write and per-page protection). These workloads
typically allocate most of the memory at startup in large chunks with uniform access permission.
Furthermore, latency-critical workloads also often run on servers with physical memory sized to
the workload needs and thus rarely swap. For example, databases carefully size their buffer pool
according to the installed physical memory. Similarly, key-value stores such as memcached
request large amounts of memory at startup and then self-manage it for caching. I find that only a
small fraction of memory uses per-page protection for mapping files, for executable code.
Nevertheless, current designs apply page-based virtual memory for al/l memory regions,

incurring its cost on every memory access.

In light of the high cost of page-based virtual memory and its significant mismatch to
“big-memory” application needs, I propose mapping part of a process’s linear virtual address
with a direct segment rather than pages. A direct segment maps a large range of contiguous
virtual memory addresses to contiguous physical memory addresses using small, fixed hardware:

base, limit and offset registers for each core (or hardware context with multithreading). If a
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virtual address V' is between the base and limit (base < V < [limit), it is translated to physical
address V + offset without the possibility of a TLB miss. Addresses within the segment must use
the uniform access permissions and reside in physical memory. Virtual addresses outside the
segment’s range are translated through conventional page-based virtual memory using TLB and

its supporting mechanisms (e.g., hardware page-table-walker).

The expected use of a direct segment is to map the large amount of virtual memory that
big-memory workloads often allocate considering the size of physical memory. The software
abstraction for this memory is called a primary region, and examples include database buffer

pools and in-memory key-value stores.

Virtual memory outside a direct segment uses conventional paging to provide backward
compatibility for swapping, copy-on-write, etc. To facilitate this, direct segments begin and end
on a base-page-sized boundary (e.g., 4KB), and may dynamically shrink (to zero) or grow (to
near physical memory size). While doing so may incur data-movement costs, benefits can still

accrue for long-running programs.

Compared to past segmentation designs, direct segments have three important
differences. It (a) retains a standard linear virtual address space, (b) is not overlaid on top of
paging, and (c) co-exists with paging of other virtual addresses. Compared to large-page designs,
direct segments are a one-time fixed-cost solution for any size memory. In contrast, the size of
large pages and/or TLB hierarchy must grow with memory sizes and requires substantial

architecture, and/or operating system and applications changes. Moreover, being a cache, TLBs
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rely on access locality to be effective. In comparison, direct segments can map arbitrarily large

memory sizes with a small fixed-size hardware addition.

The primary contributions of this chapter of the dissertation are:

* [ analyze memory usage and execution characteristics of big-memory workloads, and
show why page-based virtual memory provides little benefit and high cost for much
of memory usage.

* [ propose direct-segment hardware for efficient mapping of application-specified
large primary regions, while retaining full compatibility with standard paging.

* I demonstrate the correctness, ease-of-use and performance/efficiency benefits of the

direct segments proposal.

3.2 Big Memory Workload Analysis

I begin with a study of important workloads with big-memory footprints to characterize
common usage of virtual memory and identify opportunities for efficient implementations. The

study includes the following three aspects:

*  Use of virtual memory: 1 study what virtual memory functionalities are used by such

big-memory workloads;
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Table 3-1. Test machine configuration.

Description

Dual-socket Intel Xeon E5-2430 (Sandy Bridge), 6 cores/socket, 2
threads/core, 2.2 GHz

4KB pages: 64-entry, 4-way associative;

L1 DTLB 2MB pages: 32-entry 4-way associative;

1GB pages: 4-entry fully associative

Processor

4KB pages: 128-entry, 4-way associative;

LIITLB 2MB pages: 8-entry, fully associative
L2 TLB (D/) 4 KB pages: 512-entry, 4-way associative
96 GB DDR3 1066MHz
Memory
oS Linux (kernel version 2.6.32)

*  Cost of virtual memory: 1 measure the overhead of TLB misses with conventional
page-based virtual memory;
* Execution environment: 1 study common characteristics of the execution environment

of big-memory workloads.

Table 3-1 describes the test machine for the experiments.

Table 3-2 describes the workloads used in the study. These applications represent
important classes of emerging workloads, ranging from in-memory key-value stores
(memcached), web-scale large relational databases (MySQL), graph analytics (graph500) and
supercomputing (NAS parallel benchmark suite). Memcached is used by many popular websites
like YouTube, Wikipedia, Flickr, and Craigslist [65]. MySQOL is an open-source relational-
database running TPCC workload. IDC estimates that relational database market to be worth
nearly 34 billion USD in 2011 [42]. graph500 is created by a group of fifty researchers and

professionals from the industry and the academic to create representative workloads that accesses
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Table 3-2. Workload descriptions.

raph500 Generation, compression and breadth-first search of large graphs.
grap http://www.graph500.org/
memecached In—memow key-value cache widely used by large websites
(e.g., in Facebook).
MySQL MySQL with InnoDB storage engine running TPC-C (2000 warehouses).
HPC benchmarks from NAS Parallel Benchmark Suite.
NPB/BT http:// /publications/npb.html
NPB/CG tp:// nas.nasa.gov/publications/npb.htm
Random access benchmark defined by the High Performance Computing
GUPS Challenge.
http://www.sandia.gov/~sjplimp/algorithms.html

large graphs [36]. Graph algorithms, especially those on very large graphs, are gaining
importance due to emergence of social media where social connections often represented as
graphs. Further, I also studied the GUPS micro-benchmark designed by HPC community to

stress-test random memory access in high-performance computing settings.

3.2.1 Actual Use of Virtual Memory

Swapping. A primary motivation behind the invention of page-based virtual memory was
automatic management of scarce physical memory without programmer intervention [26]. This
is achieved by swapping pages in and out between memory and secondary storage to provide the

illusion of much more memory than is actually available.

I hypothesize that big-memory workloads do little or no swapping, because performance-
critical applications cannot afford to wait for disk I/Os. For example, Google observes that a sub-
second latency increase can reduce user traffic by 20% due to user dissatisfaction with higher

latency [54]. This drives large websites such as Facebook, Google, Microsoft Bing, and Twitter
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to keep their user-facing data (e.g., search indices) in memory [20]. Enterprise databases and in-
memory object-caches similarly exploit buffer-pool memory to minimize I/O. These memory-
bound workloads are therefore either sufficiently provisioned with physical memory for the

entire dataset or carefully sized to match the physical memory capacity of the server.

I examine this hypothesis by measuring the amount of swapping in these workloads with
the vmstat Linux utility. As expected, I observe no swapping activity, indicating little value in

providing the capability to swap.

Memory allocation and fragmentation: Frequent allocation and de-allocation of
memory in various sizes can leave holes in physical memory that prevent subsequent memory
allocations, called external fragmentation. To mitigate such external fragmentation, paging uses

fixed (page-sized) allocation units.

Big-memory workloads, on the other hand, rarely suffer from OS-visible fragmentation
because they allocate most memory during startup and then manage that memory internally. For
example, databases like MySQL allocate buffer-pool memory at startup and then use it as a
cache, query execution scratchpad, or as buffers for intermediate results. Similarly, memcached
allocates space for its in-memory object cache during startup, and sub-allocates the memory for

different sized objects.
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Figure 3-1. Memory allocated over time by workloads.

I corroborate this behavior by tracking the amounts of memory allocated to a workload
over its runtime. I use Linux’s pmap utility [55] to periodically collect total allocated memory
size for a given process. Figure 3-1 shows the allocated memory sizes in 5-second intervals over

25 minutes of execution for each workload on the test machine described in Table 3-1.

Across the workloads, most memory is allocated early in the execution and very little
variation in allocation thereafter. These data confirm that these workloads should not suffer OS-
visible fragmentation. A recent trace analysis of jobs running in Google’s datacenter
corroborates that memory usage changes little over runtime for long-running jobs [78].
Furthermore, because memory allocation stabilizes after startup, these workloads have

predictable memory usage.
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Table 3-3. Page-grain protection statistics.

Percentage of allocated memory with
read-write permission

graph500 99.96%
memcached 99.38%
MySQL 99.94%
NPB/BT 99.97%
NPB/CG 99.97%
GUPS 99.98%

Per-page permissions. Fine-grain per-page protection is another key feature of paging.
To understand how page-grain protection is used by big-memory workloads, I examine the
kernel metadata for memory allocated to a given process. Specifically, I focus on one type of
commonly used memory regions—anonymous regions (not backed by file) (excluding stack
regions). Table 3-3 reports the fraction of total memory that is dynamically allocated with read-

write permission over the entire runtime (averaged over measurements at 5-second intervals).

I observe that nearly all of the memory in these workloads is dynamically allocated
memory with read-write permission. While unsurprising given that most memory comes from
large dynamic allocations at program startup (e.g., MySQL’s buffer pool, in-memory object
cache), this data confirms that fine-grain per-page permissions are not necessary for more than

99% of the memory used by these workloads.

There are, however, important features enabled by page-grain protection that preclude its

complete removal. Memory regions used for inter-process communication use page-grain
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protection to share data/code between processes. Code regions are protected by per-page
protection to avoid overwrite. Copy-on-write uses page-grain protection for efficient
implementation of the fork() system call to lazily allocate memory when a page is modified.
Invalid pages (called guard pages) are used at the end of thread stacks to protect against stack
overflow. However, the targeted big-memory workloads do not require these features for most of

the memory they allocate.

Observation 1: For the majority of their address space, big-memory workloads do not
require, swapping, fragmentation mitigation, or fine-grained protection afforded by current

virtual memory implementations. They allocate memory early and have stable memory usage.

3.2.2 Cost of Virtual Memory

In this subsection, I quantify the overhead of page-based virtual memory for the big-

memory workloads on real hardware.

Modern systems enforce page-based virtual memory for a/l memory through virtual-to-
physical address translation on every memory access. To accelerate table-based address
translation, processors employ hardware to cache recently translated entries in TLBs. TLB reach
is the total memory size mapped by a TLB (number of entries times their page sizes). Large TLB
reach tends to reduce the likelihood of misses. TLB reach can be expanded by increasing the

number of TLB entries or by increasing page size.
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However, since TLB lookup is on the critical path of each memory access, it is very
challenging to increase the number of TLB entries without adding extra latency and energy
overheads. Modern ISAs instead provide additional larger page sizes to increase TLB reach. For
example, x86-64 supports 2MB pages and 1GB pages in addition to the default 4KB pages.
Table 3-1 describes the TLB hierarchy in the 32 nm Intel Sandy Bridge processors used in this
paper. The per-core TLB reach is a small fraction of the multi-TB physical memory available in
current and future servers. The aggregate TLB reach of all cores is somewhat larger but still
much less than a terabyte, and summing per-core TLB reaches only helps if memory is perfectly

partitioned among cores.

To investigate the performance impact of TLB misses, I use hardware performance
counters to measure the processor cycles spent by the hardware page-table-walker in servicing
TLB misses. In my Intel’s Sandy Bridge test machine the specific performance counter numbers
used for measuring cycles spent on TLB load-misses and TLB store-misses are 0x08 (mask
0x04) and 0x49 (mask 0x04), respectively. In x86-64, a hardware page-table-walker locates the
missing page-table entry on a TLB miss and loads it into the TLB by traversing a four-level page
table. A single page-table walk here may cause up to four memory accesses. The estimate for
TLB-miss latency is conservative, as I do not account for L1 TLB misses that hit in L2 TLB (for
4KB pages), which can take around 7 cycles [59]. I run the experiments with base (4KB), large

(2MB) and huge page (1GB).

I report TLB miss latency as a fraction of total execution cycles to estimate its impact on

the execution time. Table 3-4 lists my findings (the micro-benchmark GUPS is separated at the
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Percentage of execution cycles servicing
TLB misses
Base Pages Large Pages Huge Pages

(4KB) (2MB) (1GB)

D-TLB I-TLB D-TLB D-TLB
graph300 51.1 0 9.9 1.5
memcached 10.3 0.1 6.4 4.1
MySQL 6.0 2.5 49 43
NPB:BT 5.1 0.0 1.2 0.06
NPB:CG 30.2 0.0 1.4 7.1
GUPS 83.1 0.0 53.2 18.3

bottom). First, I observe that TLB misses on data accesses (D-TLB misses), account for
significant percentage of execution cycles with 4KB pages (e.g., 51% of execution cycles for
graph500). The TLB misses on instruction fetches (I-TLB misses), however, are mostly
insignificant and thus are ignored in the rest of the study. With 2MB pages, the effect of D-TLB
miss moderates across all workloads as expected: for NPB:CG cost of D-TLB misses drops from
30% to 1.45%. However, across most of the workloads (graph500, memcached, MySQL) D-TLB

misses still incur a non-negligible cost of 4.9% - 9.9%.

Use of 1GB pages reveals more interesting behavior. While most of the workloads
observe a reduction in the fraction of time spent servicing TLB misses, NPB:CG observes a
significant increase compared to 2MB pages. This stems from almost 3X increase in TLB miss

rate likely due to the smaller number of TLB entries available for 1GB pages (4 entries)
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compared to 2MB pages (32 entries). A sparse memory access pattern can result in more misses
with fewer TLB entries. This possibility has been observed by VMware, which warns users of

possible performance degradation with large pages in their ESX server [90].

In summary, across most workloads (graph500, memcached, MySQL) I observe
substantial overhead for servicing TLB misses on the 96 GB test machine (4.3% to 9.9%), even
using large pages. Results will likely worsen for larger memory sizes. While the latency cost of
TLB misses suffice to show the significant overhead of paging, there are several other costs that
are beyond the scope of this analysis: the dynamic energy cost of L1 TLB hit [83], the energy

cost of page table walk on TLB miss, and the memory and cache space for page tables.

Observation 2: Big-memory workloads pay a cost of page-based virtual memory:

substantial performance lost to TLB misses.

3.2.3 Application Execution Environment

Finally, I qualitatively summarize other properties of big-memory workloads that the rest

of this paper exploits.

First, many big-memory workloads are long-running programs that provide 24x7 services
(e.g., web search and databases). Such services receive little benefit from virtual memory

optimizations whose primary goal is to allow quick program startup, such as demand paging.

Second, services such as in-memory caches and databases typically configure their

resource use to match the resources available (e.g., physical memory size).
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Third, many big-memory workloads provide a service where predictable, low latency
operation is desired. Thus, they often run either exclusively or with a few non-interfering tasks to
guarantee high performance [62], low latency and performance predictability. A recent study by
Reiss et al. [78] finds that in Google’s datacenters, a small fraction of long-running jobs use
more than 90% of system resources. Consequently, machines running big-memory workloads
often have one or a few primary processes that are the most important processes running on a

machine and consume most of the memory.

Observation 3: Many big-memory workloads:
a) Are long running,
b) Are sized to match memory capacity,

c) Have one (or a few) primary process(es).

3.3 Efficient Virtual Memory Design

Inspired by the observations in Section 3.2.2, I propose a more efficient virtual memory
mechanism that enables fast and minimalist address translation through segmentation where
possible, while defaulting to conventional page-based virtual memory where needed. In effect, 1
develop a hardware-software co-design that exploits big-memory workload characteristics to
significantly reduce the virtual memory cost for most of its memory usage that does not benefit
from rich features of page-based virtual memory. Specifically, I propose direct-segment

hardware (Section 3.3.1) that is used via a software primary region (Section 3.3.2).
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3.3.1 Hardware Support: Direct Segment

The goal is to enable fast and efficient address translation for a part of process’s address
space that does not benefit from page-based virtual memory, while allowing conventional paging
for the rest. To do this, the proposed scheme translates a contiguous virtual address range
directly onto a contiguous physical address range through hardware support called a direct
segment—without the possibility of a TLB miss. This contiguous virtual address range can be
arbitrarily large (limited only by the physical memory size of the system) and is mapped using a
small fixed-sized hardware. Any virtual address outside the aforementioned virtual address range
is mapped through conventional paging. Thus, any amount of physical memory can be mapped
completely through a direct segment, while allowing rich features of paging where needed (e.g.,
for copy-on-write, guard pages). It also ensures that the background (non-primary) processes are

unaffected and full backward compatibility is maintained.

The proposed direct-segment hardware adds modest, fixed-sized hardware to each core
(or to each hardware thread context with hardware multithreading). Figure 3-2, provides a logical
view with the new hardware shaded. The figure is not to scale, as the D-TLB hardware is much
larger. For example, for Intel’s Sandy Bridge, the L1 D-TLB (per-core) has 100 entries divided

across three sub-TLBs and backed by a 512-entry L2 TLB.

As shown in Figure 3-2, direct segments add three registers per core as follows:

* BASE holds the start address of the contiguous virtual address range mapped

through direct segment,
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Figure 3-2. Logical view of address translation with direct segment.
Added hardware is shaded. (Not to scale)

e LIMIT holds the end address of the virtual address range mapped through direct
segment, and,
* OFFSET holds the start address of direct segment’s backing contiguous physical

memory minus the value in BASE.

Direct segments are aligned to the base page size, so page offset bits are omitted from

these registers (e.g., 12 bits for 4KB pages).

Address translation: As depicted in Figure 3-2 on each data memory reference, data

virtual address V' is presented to both the new direct-segment hardware and the D-TLB. If virtual
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address V falls within the contiguous virtual address range demarcated by the direct segment’s
base and limit register values (i.e., BASE < V < LIMIT), the new hardware provides the
translated physical address as V' + OFFSET and suppresses the D-TLB translation process.
Notably, addresses translated using direct segments never suffer from TLB misses. Direct-

segment hardware permits read-write access only.

A given virtual address for a process is translated either through direct segment or
through conventional page-based virtual memory but never both. Thus, both direct segment and
D-TLB translation can proceed in parallel. A virtual address outside the direct segment may hit
or miss in L1 TLB, L2 TLB, etc., and is translated conventionally. This simplifies the logic to
decide when to trigger hardware page-table walk and only requires that the delay to compare the
virtual address against BASE and LIMIT be less than the delay to complete the entire D-TLB

lookup process (which involves looking up multiple set-associative structures).

The OS is responsible for loading proper register values, which are accessible only in
privileged mode. Setting LIMIT equal to BASE disables the direct segment and causes all
memory accesses for the current process to be translated with paging. I describe how the OS

calculates and handles the value of these registers in the next section.

Unlike some prior segment-based translation mechanisms [24,97] direct segments are

also notable for what they do not do. Direct segments:

(a) Do not export two-dimensional address space to applications, but retain a standard linear

address space.
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(b) Do not replace paging: addresses outside the segment use paging.

(c) Do not operate on top of paging: direct segments are not paged.

3.3.2 Software Support: Primary Region

System software has two basic responsibilities in the proposed design. First, the OS
provides a primary region abstraction to let applications specify which portion of their memory
does not benefit from paging. Second, the OS provisions physical memory for a primary region
and maps all or part of the primary region through a direct segment by configuring the direct-

segment registers.

3.3.2.1 Primary Regions

A primary region is a contiguous range of virtual addresses in a process’s address space
with uniform read-write access permission. Functionalities of conventional page-based virtual
memory like fine-grain protection, sparse allocation, swapping, and demand paging are not
guaranteed for memory allocated within the primary region. It provides only the functionality
described in Section 3.2.1 as necessary for the majority of a big-memory workload’s memory
usage, such as MySQL’s buffer cache or memcached’s cache. Eschewing other features enables

the primary region of a process to be mapped using a direct segment.

The software support for primary regions is simple: (i) provision a range of contiguous
virtual addresses for primary region; and (ii) enable memory requests from an application to be

mapped to its primary region.
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Figure 3-3. Virtual Address and Physical Address layout with a primary region. Narrow
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Provisioning virtual addresses: Primary regions require a contiguous virtual address
range in a process’s address space. During creation of a process the OS can reserve a contiguous
address partition in the infant process to be used exclusively for memory allocations in the
primary region. This guarantees contiguous space for the primary region. Conservatively, this
partition must be big enough to encompass the largest possible primary region—i.e., the size of
the physical memory (e.g., 4TB). Since 64-bit architectures have an abundance of virtual address
space—128TB for a process in Linux on x86-64—it is cheap to reserve space for the primary
region. Alternatively, the operating system can defer allocating virtual addresses until the
application creates a primary region; in this case the request may fail if the virtual address space

is heavily fragmented
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In Figure 3-3 the top outermost rectangular box shows the virtual address space layout of
a process with primary region. The lightly shaded inner box represents the address range
provisioned for the primary region. The remainder of the address space can be mapped through

conventional pages (narrow rectangles).

Memory allocations in primary region: The OS must decide which memory allocation
requests use the primary region. As mentioned earlier, any memory allocation that does not

benefit from paging is a candidate.

There are two broad approaches: opt in and opt out. First, a process may explicitly request
that a memory allocation be put in its primary region via a flag to the OS virtual-memory
allocator (e.g., mmap() in Linux), and all other requests use conventional paging. Second, a
process may default to placing dynamically allocated anonymous (not file-backed) with uniform
read-write permission in the primary region. Everything else (e.g., file-mapped regions, thread
stacks) use paging. Anonymous memory allocations can include a flag to “opt out” of the
primary region if paging features are needed, such as sparse mapping of virtual addresses to

physical memory.
3.3.2.2 Managing Direct-Segment Hardware

The other major responsibility of the OS is to set up the direct-segment hardware for
application use. This involves two tasks. First, the OS must make contiguous physical memory
available for mapping primary regions. Second, it must set up and manage the direct-segment

registers (BASE, LIMIT, and OFFSET).
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Managing physical memory: The primary task for the OS is to make contiguous
physical memory available for use by direct segments. As with primary regions, there are two
broad approaches. First, the OS can create contiguous physical memory dynamically through
periodic memory compaction, similar to Linux’s Transparent Huge Pages support [23]. The cost
of memory compaction can be amortized over the execution time of long-running processes. |
measured that it takes around 3 seconds to create a 10GB range of free, contiguous physical
memory. For this memory size, compaction incurs a 1% overhead for processes running 5

minutes or longer (and 0.1% overhead for one hour).

The second, simpler approach is to use physical memory reservations and set aside
memory immediately after system startup. The challenge is to know how much memory to
reserve for direct-segment mappings. Fortunately, big-memory workloads are already cognizant
of their memory use. Databases and web caches often pre-configure their primary memory usage
(e.g., cache or buffer pool size), and cluster jobs, like those at Google, often include a memory

size in the job description [78].

Managing direct-segment registers: The OS is responsible for setting up and managing
direct-segment registers to map part or all of the primary region of one or few critical primary
processes on to contiguous physical memory. To accomplish this task the OS first needs to
decide which processes in a system should use direct segment for address translation. To
minimize administration costs, the OS can monitor processes to identify long-running processes
with large anonymous memory usage, which are candidates for using direct segments. To

provide more predictability, the OS can provide an explicit admission control mechanism where
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system administrators identify processes that should map their primary region with a direct

segment.

With explicit identification of processes using direct segments, the system administrator
can specify the desired amount of memory to be mapped with a direct segment. The OS then
finds a contiguous chunk of physical memory of the desired size from the reserved memory. If
no such chunk is found then the largest available contiguous physical memory chunk determines
the portion of the primary region mapped through the direct segment. However, this region can
be dynamically extended later on as more contiguous physical memory becomes available,

possibly through compaction or de-allocations.

Figure 3-3 provides a pictorial view of how the values of three direct-segment registers
are determined; assuming all of primary region of the process is mapped through direct segment
in the example. As shown in the figure, the OS uses the BASE and LIMIT register values to
demarcate the part of the primary region of a process to be mapped using direct segment (dark-
shaded box in the upper rectangle). OFFSET register is simply the difference between BASE and
the start address of the physical memory chunk mapping the direct segment. The OS disables a

process’s direct segment by setting BASE and LIMIT to the same value, e.g., zero.

The values of the direct-segment registers are part of the context of a process and
maintained within the process metadata (i.e., process control block or PCB). When the OS

dispatches a thread, it loads the BASE, LIMIT, and OFFSET values from the PCB.

Growing and shrinking direct segment: A primary region can be mapped using a direct

segment, conventional pages, or both. Thus, a process can start using primary regions with
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paging only (i.e., BASE = LIMIT). Later, the OS can decide to map all or part of the primary
region with a direct segment. This may happen when contiguous physical memory becomes
available or if the OS identifies the process as “big-memory”. The OS then sets up the direct-
segment registers and deletes the page table entries (PTEs) for the region. This can also be used
to grow the portion of primary region mapped through a direct segment. For example, initially
the new space can be mapped with paging, and later converted to use an expanded direct

segment if needed.

The OS may also decide to revert to paging when under memory pressure so it can swap
out portions. The OS first creates the necessary PTEs for part or all of the memory mapped by
the direct segment, and then updates the direct-segment registers. As with other virtual-memory
mapping updates, the OS must send shootdown-like inter-process interrupts to other cores

running the process to update their direct-segment registers.

3.4 Software Prototype Implementation

The direct-segment prototype is implemented by modifying Linux kernel 2.6.32 (x86-
64). The code has two parts: implementation of the primary region abstraction, which is common
to all processor architectures, and architecture-specific code for instantiating primary regions and

modeling direct segments.

3.4.1 Architecture-Independent Implementation

The common implementation code provisions physical memory and assigns it to primary

regions. The prototype implementation is simplified by assuming that only one process uses a
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direct segment at any time (called the primary process), but this is not a constraint of the design.
Further, the prototype uses explicit identification of the primary process and physical memory
reservations, although more automatic implementations are possible as detailed in Section 3.3.2.
Below, I describe the main aspects of the implementation—identifying the process using a direct

segment, managing virtual address and managing physical memory.

Identifying the primary process: A new system call was implemented to identify the
executable name of the primary process. The kernel stores this name in a global variable, and
checks it when loading the binary executable during process creation. If a new process is
identified as primary process then OS sets an “is_primary” flag in the Linux task structure
(process control block). The OS must be notified of the executable name before the primary

process launches.

Managing virtual address space: When creating a primary process, the OS reserves a
contiguous virtual address range for a primary region in the process’s virtual address space that
is of 4TB in size — much larger than the physical memory in the test system. This guarantees the

availability of a contiguous virtual address range for memory allocations in the primary region.

The prototype uses an “opt in” policy and places all anonymous memory allocations with
read-write permission contiguously in the address range reserved for the primary region. This
way, all heap allocations and mmap() calls for anonymous memory are allocated on the primary

region, unless explicitly requested otherwise by the application with a flag to mmap().
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Managing physical memory: The prototype reserves physical memory to back direct
segments. Specifically, the new system call described above notifies the OS of the identity of the
primary process also specifies the estimated size of the physical memory that is to be mapped
through direct segment. Then a contiguous region of physical memory of the given size is
reserved using Linux’s memory hotplug utility [56], which takes a contiguous physical memory
region out of the kernel’s control (relocating data in the region if needed). The current prototype

does not support dynamic resizing primary regions or direct segments.

3.4.2 Architecture-Dependent Implementation

The direct segment design described in Section 3.3.1 requires new hardware support. To
evaluate primary region with direct segment capability on real hardware without building new
hardware, I emulate its functionality using 4KB pages. Thus, I built an architecture-dependent

implementation of direct segments.

The architecture-dependent portion of my implementation provides functions to create
and destroy virtual-to-physical mappings of primary regions to direct segments, and functions to

context switch between processes.

On a machine with real direct-segment hardware, establishing virtual-to-physical
mapping between a primary region and a direct segment would require calculating and setting
the direct-segment registers for primary processes as described in Section 3.3.2. The OS creates
direct-segment mappings when launching a primary process. It stores the values of the direct-

segment registers as part of process’s metadata. Deleting a direct segment destroys this
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information. On a context switch the OS is responsible for loading the direct-segment registers

for the incoming process.

Without real direct-segment hardware, I emulate direct-segment functionalities using
4KB pages. More specifically, I modify Linux’s page fault handler so that on a page fault within
the primary region it calculates the corresponding physical address from the faulting virtual page
number. For example, let us assume that VAsar primary a0d VAena primary are the start and end
virtual addresses of the address range in the primary region mapped through direct segment,
respectively. Further, let PAgq+ cnunk be the physical address of the contiguous physical memory
chunk for the direct segment mapping. The OS then sets the BASE register value to VAar primary,
LIMIT register value to VAewd primary +1, and OFFSET register value to (PAswrt chunk -
VAstart primary)- If VAguir 1s the 4KB page-aligned virtual address of a faulting page, then the
modified page-fault handler first checks if BASE < VA, < LIMIT. If so, the handler adds a

mapping from VA, to VA + OFFSET to the page table.

This implementation provides a functionally complete implementation of primary region
and direct segments on real hardware, albeit without its performance. It captures all relevant
hardware events for direct segment and enables performance estimation of direct segment for
big-memory workloads without waiting for new hardware. Section 3.5.1 describes the details of

my performance evaluation methodology.
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3.5 Evaluation

In this section, I describe the evaluation methodology for quantifying the potential
benefits of direct-segment. To address the challenges of evaluating long-running big-memory
workloads, which would have taken months of simulation time, I devise an approach that uses
kernel modification and hardware performance counters to estimate the number of TLB misses

avoided by direct segments.

3.5.1 Methodology

Evaluating big-memory workloads for architectural studies is itself a challenging task.
Full-system simulations would require very high memory capacity and weeks, if not months, of
simulation time. Actually, a single simulation point using the gem5 simulator [14] would take
several weeks to months and at least twice as much physical memory as the actual workload. It is
particularly difficult for TLB studies, where TLB misses occur much less often than other micro-
architectural events (e.g., branch mispredictions and cache misses). Downsizing the workloads
not only requires intimate knowledge and careful tuning of the application and operating system,

but also can change the virtual memory behavior that I want to measure.

I address this challenge using a combination of hardware performance counters and
kernel modifications that together enable performance estimation. With this approach, I can run
real workloads directly on real hardware. I first use hardware performance counters to measure
the performance loss due to hardware page-table walks triggered by TLB misses. I then modify
the kernel to capture and report the fraction of these TLB misses that fall in the primary region

mapped using direct-segment hardware. Because these TLB misses would not have happened
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with direct-segment hardware, this allows us to estimate the reduction in execution cycles spent
on servicing TLB misses. I conservatively assume that TLB miss rate reduction directly
correlates to the reduction in time spent on TLB misses, although the design can improve the
TLB performance for addresses outside direct segments by freeing TLB and page-walk-cache
resources. The following equation describes how I estimate the DTLB miss overhead when

direct segment is employed (Y%).

Y% = X*(1 -F)/(1 - F*X)

In the above equation, X represents the DTLB miss cycles expressed as percentage of the
execution cycles in the baseline (uses 4KB pages). F represents the fraction of DTLB misses that
falls in direct-segment memory and thus can be eliminated if direct-segment hardware existed.
The numerator of the above equation encapsulates the reduction in cycles spent on DTLB misses
in proportion to the reduction in the number of DTLB misses. The denominator captures the
estimated reduction in execution cycles as contribution due to DTLB misses reduces

proportionally.

1. Baseline: I use hardware performance counters to estimate the fraction of execution cycles
spent on TLB misses. I collect data with oprofile [84] by running each of the workloads for
several minutes on the test platform described in Table 3-1. In my test machine, the hardware
performance counter number 0x3c captures the execution cycles, while the counter numbers
0x08 (mask 0x04) and 0x49 (mask 0x04) capture the cycles spent on servicing the DTLB misses

for load and store instructions, respectively.
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2. Primary Region/Direct Segment: To estimate the efficacy of the proposed scheme, I
determine what fraction of the TLB misses would fall in the direct segment. To achieve this, it
needs to determine whether the miss address for each TLB miss falls in the direct segment.

Direct segments eliminate these misses.

Unfortunately, the x86 architecture uses a hardware page table walker to find the PTEs
on a TLB misses so an unmodified system cannot immediately learn the address of a TLB miss. I
therefore tweak the Linux kernel to artificially turn each TLB miss into a fake page fault by
making PTEs invalid after inserting them into the TLB. This mechanism follows from the
methodology similar to Rosenblum’s context-sensitive page mappings [79]. I modify the page
fault handler to record whether the address of each TLB miss comes from the primary or

conventional paged memory. See Box 1 for more details on this mechanism.

I then estimate the reduction in TLB-miss-handling time with direct-segment using a
linear model. This is similar to a recent work on coalesced TLB by Pham et al. [73]. More
specifically, I found the fraction of total TLB misses that fall in the primary region mapped with
a direct segment using the methodology described above. I also measure the fraction of
execution cycles spent by hardware page walker on TLB misses in the baseline system using
performance counters. Finally, I estimate that the fraction of execution cycles spent on TLB
misses with direct segment is linearly reduced by the fraction of TLB misses eliminated by direct

segment over that of the baseline system.
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Box 1. TLB miss tracking method

The prototype tracks TLB misses by making an x86-64 processor act as if it had a software-filled

TLB by making TLB misses trap to the OS.

Forcing traps: In x86-64, page table entries (PTEs) have a set of reserved bits (41-51 in the test
platform here) that cause a trap when loaded into the TLB. By setting a reserved bit, the prototype

implementation ensures that any attempt to load a PTE will cause a trap.

TLB Incoherence: The x86-64 architecture does not automatically invalidate or update a TLB entry
when the corresponding memory-resident PTE is modified. Thus, a TLB entry can continue to be

used even after its corresponding PTE in the memory has been modified to set a reserved bit.

Trapping on TLB misses: The prototype uses these two features to intentionally make PTEs
incoherent and generate a fake page fault on each TLB miss. All user-level PTEs for a primary
process are initially marked invalid. The first access to a page triggers a page fault. In this handler,
the PTE is made valid and then take two additional actions. First, it forces the TLB to load the correct
PTE by touching the page with the faulting address. This puts the correct PTE into the TLB. Second,
it poisons the PTE by setting a reserved bit. This makes the PTE in memory invalid and inconsistent
with the copy in the TLB. When the processor tries to re-fetch the entry on a later TLB miss, it will
encounter the poisoned PTE and raises an exception with a unique error code identifying that

reserved bit was set.

When a fake page fault occurs (identified by the error code), I record whether the address
falls in the primary region mapped using direct segment. The prototype then performs the two actions

above to reload the PTE into the TLB and re-poison the PTE in memory.

My colleagues are re-implementing this mechanism as a tool named BadgerTrap in a newer

version of Linux kernel.




66

This estimation makes the simplifying assumption that the average TLB miss latency
remains same across different number of TLB misses. However, this is likely to underestimate
the benefit of direct segments, as it does not incorporate the gains from removing L1 TLB misses
that hit in L2 TLB. A recent study shows that L2 TLB hits can potentially have non-negligible
performance impact [59]. Further, unlike page-based virtual memory the direct-segment region
does not access page tables and thus, it does not incur data cache pollution due to them. The
direct segment also frees up address translation resources (TLB and page-walk cache) for others

to use. However, I omit these potential benefits in the evaluation.

3.5.2 Results

In this section I discuss two aspects of performance:

1. What is the performance gain from primary region/direct segments?

2. How does the primary region/direct-segment approach scale with increasing memory

footprint?

Performance gain: Figure 3-4 depicts the percentage of total execution cycles spent by the
workloads in servicing D-TLB misses (i.e., the TLB miss overhead). For each workload I
evaluate four schemes. The first three bars in each cluster represent conventional page-based
virtual memory, using 4KB, 2MB and 1GB pages, and are measured using hardware
performance counters. The fourth bar (often invisible) is the estimated TLB overhead for primary
region/direct segments. As observed earlier, I find that even with larger page sizes significant

execution cycles can be spent on servicing TLB misses.
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Figure 3-4. Percentage of execution cycles spent on DTLB misses. Values larger than
35% are shown above the bars, while very small values shown by straight arrows.

With primary regions and direct segments, the workloads waste practically no time on D-
TLB misses. For example, in graph500 the TLB overhead dropped to 0.01%. Across all
workloads, the TLB overhead is below 0.5%. Such results are hardly surprising: from the Table
3-5, as one can observe that most of the TLB misses are captured by the primary region and thus
avoided by the direct segment. This correlates well with Table 3, which shows that more than
99% of allocated memory belongs to anonymous regions that can be placed in a primary region
and direct segment. The only exception is MySQL, where the direct segment captured only 92%
of TLB misses. I found that MySQL creates 100s of threads and many TLB misses occur in the
thread stacks and the process’s BSS segment memory that holds compile-time constants and

global data structures. Many TLB misses also occur in file-mapped regions of memory as well.
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Table 3-5. Reduction in D-TLB misses.

Percent of D-TLB misses in the direct
segment

graph500 99.99
memcached 99.99
mySQL 92.40
NBP:BT 99.95
NBP:CG 99.98
GUPS 99.99

Scalability: Direct segments provide scalable virtual memory, with constant performance as
memory footprint grows. To illustrate this benefit, Figure 5 compares the fraction of execution
cycles spent on DTLB misses with different memory footprints for three x84-64 page sizes and
direct segments. I evaluate GUPS, whose dataset size can be easily configured with a scale

parameter. I however note that GUPS represents worst-case scenario of random memory access.

As the workload scales up, the TLB miss overhead grows to an increasing portion of
execution time across all page sizes with varying degree (e.g., from 0% to 83% for 4KB pages,
and from 0% to 18% for 1GB pages). More importantly, one can notice that there are distinct
inflection points for different page sizes, before which TLB overhead is near zero and after
which TLB overhead increases rapidly as the workload’s working set size exceeds TLB reach.

Use of larger pages can only push out, but not eliminate, these inflection points. The existence of
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Figure 3-5. DTLB miss overhead when scaling up GUPS.

these inflection points and the upward overhead trends demonstrate the TLB’s scalability
bottleneck. In contrast, primary regions with direct segments provide a scalable solution where
the overhead of address translation remains constant and negligible when memory footprints

Increase.

Selective raw numbers for this chapter appears in Appendix in page 163.

3.6 Discussion

In this section, I discuss possible concerns regarding primary region/direct segment.

Why not large pages? Modern hardware supports large pages to reduce TLB misses. Large
pages optimize within the framework of page-based virtual memory and are hence constrained
by its limitations, such as alignment restrictions. In contrast, my proposal is based on analysis of

the memory needs of big-memory workloads, and meets those needs with minimal hardware
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independent of the TLB. In the following paragraphs I describe major shortcoming of large

pages that direct segments proposal can overcome.

First, large pages and their TLB support do not automatically scale to a much larger
memories. To support big-memory workloads, the size of large pages and/or size of TLB
hierarchy must continue to scale as memory capacity increases. This requires continual updates
to the processor micro-architecture and/or operating system, and application’s memory
management functionality. Being a cache, TLBs are reliant on memory-access locality to be
effective and it can be a mismatch for future big-memory workloads with poor locality (e.g.,
streaming and random access) [71,77]. In contrast, direct segments only need a one-time, much
simpler change in processor, OS, and applications, with full backward compatibility. It can then
map arbitrarily large amounts of memory, providing a scalable solution for current and future

systems.

Second, efficient TLB support for multiple page sizes is difficult. Because the indexing
address bits for large pages are unknown until the translation completes, a split-TLB design is
typically required where separate sub-TLBs are used for different page sizes [88]. This design, as
employed in recent Intel processors such as Westmere, Sandy Bridge, and Ivy Bridge, can suffer
from performance unpredictability while using larger page sizes as observed in experiments
described in Section 3.2.2. For the application NPB:CG the fraction of processor cycles spent on
servicing TLB misses rises substantially when 1GB pages are used instead of 2MB pages. This
demonstrates that performance with large pages can be micro-architecture dependent. An

alternative design could use a unified, fully associative TLB, but this increases TLB power and
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access latency while limiting its size. In contrast, direct segment obviate such TLB design

complexities and is micro-architecture agnostic.

Third, large page sizes are often few and far apart. For example in x86-64, the large page
sizes correspond to different levels in the hardware-defined multi-level radix-tree structure of the
page table. For example, recent x86-64 processors have only three page sizes (4KB, 2MB, 1GB),
each of which is 572 times larger than the previous. This constant factor arises because 4KB
pages that hold page tables contain 512 8-byte-wide PTEs at each node of the page table. Such
page-size constraints make it difficult to introduce and flexibly use large pages. For example,
mapping a 400GB physical memory using 1GB pages can still incur substantial number of TLB
misses, while a 512GB page is too large. A direct segment overcomes this shortcoming, as its

size can adapt to application or system needs.

Virtual machines with direct segment: Direct segments can be extended to reduce TLB
miss overhead in virtualized environments as well. In a virtualized environment the memory
accesses goes through two levels of address translations: (1) guest virtual address (gV4) to guest
physical address (gPA4) and (2) guest physical address (gPA) to system physical address (sPA). In
x86-64 with hardware virtualization of the MMU, a TLB miss in a virtual machine is serviced by
a 2-D page-table-walker that may incur up to 24 memory references [2]. Direct segments could

be extended to substantially reduce this cost in the following ways.

The simplest extension of direct segment to virtualized environment would be to map the

entire guest physical memory (gPA) to system physical memory (sPA4) using a direct segment.
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This extension can reduce a 2-D page-table walk to 1-D walk where each TLB miss incurs at

most 4 memory accesses instead of 24.

Further, a direct segment can be used to translate addresses from gVA to gPA for primary
processes inside the guest OS, similar to use in a native OS. This also reduces the 2-D page-table

walk to one dimension.

Finally, direct segments can be used for gVA to sPA translations. This can be
accomplished in two ways. First, similar to shadow paging [1], a hypervisor can populate the
direct segment OFFSET register with the two-step translation of the direct-segment base from
gVA to sPA. Any update by the guest OS to segment registers must trap into the hypervisor,
which validates the base and limit, and calculates and installs the offset. Second, if a trap is
deemed costly then nested BASE/LIMIT/OFFSET registers in hardware, similar to hardware
support for nested paging, could be added without significant cost. However, evaluation of these
techniques is beyond the scope of this dissertation. I also note that, similar to large pages use of

direct segment may reduce opportunities for de-duplication[92].

Direct segments in presence of faulty memory: Modern operating systems like Solaris
[89] may use fine-grain address remapping capability of page-based virtual memory to mask
permanent faults in DRAM pages. More specifically, a given virtual page address that maps to a
physical page frame with permanent faults is re-mapped to a new (non-faulty) physical page. The
older faulty physical page is never used again. Unfortunately, if the faulty physical page frame is

mapped using direct segment such a fine grain remapping is not possible. However, note that
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transient faults in the DRAM are generally handled by error-correcting codes (ECC) and are

unaffected by direct segment.

On a permanent fault in direct-segment memory it is possible to revert back to paging for
part or all of memory mapped using direct segment. Direct segment mechanisms can do so by
adjusting the values of BASE, LIMIT, OFFSET registers and creating necessary PTEs for
paging. If the faulty page frame maps a virtual address near the start or the end of contiguous
virtual address range of the direct segment then slightly shrinking the boundaries of that address
range can allow faulty address being mapped using conventional paging, while most of non-
faulty memory to continues to be mapped using direct segment. In the worst case, if the faulty
page frame maps an address in the middle of direct segment’s address range then the size of the
memory mapped by direct segment may be halved. A naive alternative solution could be to
revert back to paging for the entire direct segment. Although correct, this solution is likely to be

overkill and can lead to severe performance unpredictability.

Instead, another solution would be to relegate the responsibility of remapping faulty page
frames in DRAM to the on-chip memory controller. The memory controller could be augmented
to hold a list of faulty physical addresses that would be remapped to a non-faulty “real” physical
address at the memory controller level instead being remapped by the OS. To enable such a
design I propose to add a small hardware lookup table at the memory controller that would
contain only the faulty physical address and its corresponding re-mapped (non-faulty) real
physical address. I call this table Faulty Physical Address Table (FPAT). A memory request that

misses in all on-chip caches and reaches memory controller needs to lookup the FPAT first. On a
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match in the FPAT, the memory request would use the remapped real physical address instead of
the original address to lookup the data in the DRAM. On a miss however, the memory request

proceeds in conventional way.

The number of faulty physical page frames that could be remapped in memory controller
is constrained by the number of entries in FPAT. Thus, a small and efficient FPAT could be
effective only if a small number of physical page frame suffers faults. Indeed, a recent large-
scale study on DRAM errors in IBM’s Blue Gene supercomputer and Google datacenter
demonstrates that a significant majority of all DRAM errors are accounted by a handful of faulty
pages [37]. The study shows that on average around 4-18 pages in a multi-GB DIMM often
covers more than 90% of the DRAM errors. This suggests that a FPAT design with 32-64 entries
is likely to be sufficient under most scenarios. Further, since FPAT is accessed only on an off-
chip memory access any performance impact due to access latency of FPAT is highly
unlikely. Finally, if FPAT is full then DIMMs containing faulty physical address needs to be

replaced. Replacing faulty DIMMs in servers are not uncommon.

Compared to the OS-mediated remapping of faulty physical pages the proposed handling
at the memory controller has its advantages as well. If OS is to remap faulty pages then a
feedback path from the DRAM to OS is necessary to identify the faulty page frames. In contrast,
if the memory controller handles the remapping functionality locally then the OS can be kept
agnostic of the fault behavior of the DRAM. Further, OS is constrained to remap pages at page
size granularity only. However, a memory controller can remap faults at finer granularity,

potentially avoiding wasting physical memory.
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Direct segments for kernel memory: So far, I have focused on TLB misses to user-
mode application memory. However, workloads like memcached that exercise the kernel
network stack can waste up to additional 3.2% of execution cycles servicing TLB misses for

kernel memory.

Direct segments may be adapted to kernel memory by exploiting existing regularity in
kernel address space. For example, Linux’s kernel memory usage is almost entirely direct-
mapped, wherein the physical address is found by subtracting a static offset from the virtual
address. This memory matches direct segments’ capabilities, since they enable calculating
physical address from a virtual address in similar fashion. If direct segments are not used in user
mode, they can be used by the kernel for this memory (using paging for processes that do use a
direct segment). Alternatively, additional segment registers can be added to each hardware thread

context for a second kernel-mode direct segment.

The Linux kernel maps some memory using variable virtual addresses, which cannot use
a direct segment. However, I empirically measured that often nearly 99% of kernel TLB misses

reference direct-mapped addresses and thus can be eliminated by a direct segment.

3.7 Limitations

Not general (enough): Direct segments are not a fully general solution to TLB
performance. I follow Occam’s razor to develop the simplest solution that works for many
important big-memory workloads, and thus propose a single direct segment. Future workloads
may or may not justify more complex support (e.g., for kernels or virtual machines) or support

for more segments.
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Dynamic execution environment: While direct segments can simultaneously achieve
address translation efficiency and compatibility, it should not be misused in environments with
mismatching characteristics. In general, the proposed technique is less suitable for dynamic
execution environments where many processes with unpredictable memory usage execute for
short periods. However, I believe that it is straightforward to identify, often without human
intervention, whether a given workload and execution environment is a good fit (or not) for

direct segments and avoid misuse.

Sparse address space: In addition, software that depends on sparse virtual memory
allocations may waste physical memory if mapped with direct segments. For example, malloc()
in glibc-2.11 may allocate separate large virtual-memory heap regions for each thread (called an
arena), but expects to use a small fraction of this region. If these per-thread heaps are mapped
using a direct segment then the allocator could waste physical memory. My experiments use

Google’s tcmalloc() [33], which does not suffer from this idiosyncrasy.

3.8 Related Work

Virtual memory has long been an active research area. Past and recent work has
demonstrated the importance of TLBs to the overall system performance [5,9,13,11,19]. I expect

big-memory workloads and multi-TB memories to make this problem even more important.

Efficient TLB mechanisms: Prior efforts improved TLB performance either by
increasing the TLB hit rate or reducing/hiding the miss latency. For example, recent proposals
increase the effective TLB size through co-operative caching of TLB entries [86] or a larger

second-level TLB shared by multiple cores [11]. Prefetching was also proposed to hide the TLB
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miss latency [6,17,22]. SpecTLB [7] speculatively uses large-page translations while checking
for overlapping base-page translations. Zhang et al. proposed an intermediate address space
between the virtual and physical addresses, under which physical address translation is only
required on a cache miss [103]. Recently, Pham et al. [73] proposed hardware support to exploit
naturally occurring contiguity in virtual to physical address mapping to coalesce multiple virtual-

to-physical page translations into single TLB entries.

Since servicing a TLB miss can incur a high latency cost, several processor designs have
incorporated software or hardware PTE caches. For example, UltraSPARC has a software-
defined Translation Storage Buffer (TSB) that serves TLB misses faster than walking the page
table [66]. Modern x86-64 architectures also use hardware translation caches to reduce memory

accesses for page-table walks [6].

There are also proposals that completely eliminate TLBs with a virtual cache hierarchy
[45,101], where all cache misses consult a page table. However, these techniques work only for

uniprocessors or constrained memory layout (e.g., to avoid address synonyms).

While these techniques make TLBs work better or remove them completely by going
straight to the page table, they still suffer when mapping the large capacity of big-memory
workloads. In contrast, I propose a small hardware and software change to eliminate most TLB
misses for these workloads, independent of memory size and available hardware resources (e.g.,

TLB entries).

Support for large pages: Almost all processor architectures including MIPS, Alpha,

UltraSPARC, PowerPC, and x86 support large page sizes. To support multiple page sizes these
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architectures implement either a fully associative TLB (Alpha, Itanium) or a set-associative split-
TLB (x86-64). Talluri et al. discusses the tradeoffs and difficulties of supporting multiple page
sizes in hardware [88]. However, system software has been slow to support the full range of page
sizes: operating system support for multiple pages sizes can be complicated [32,87] and
generally follows two patterns. First, applications can explicitly request large pages either
through use of libraries like libHugeTLBFS [35] or through special mmap calls (in Linux).

Second, the OS can automatically use large pages when beneficial [23,70,87].

Although useful, I believe large pages are a non-scalable solution for very large
memories as discussed in detail in Section 3.6. Unlike large pages, primary regions and direct
segments do not need to scale the hardware resources (e.g., adding more TLB entries or new
page size) or change the OS, which are required to support new page sizes as memory capacity

scales.

TLB miss reduction in virtualized environment: Under virtual machine operation,
TLB misses can be even more costly because addresses must be translated twice [10].
Researchers have proposed solutions specific to the virtualized environment. For example,
hardware support for nested page tables avoids the software cost of maintaining shadow page
tables [10], and recent work showed that the VMM page table could be flat rather than
hierarchical [2]. As mentioned in Section 3.6, I expect direct segments can be made to support

virtual machines to further reduce TLB miss costs.

Support for segmentation: Several past and present architectures supported a

segmented address space. Generally, segments are either supported without paging, as in early
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Intel 8086 processors [97], or more commonly on top of paging as in MULTICS [24], PowerPC,
and TA-32 [44]. Use of pure segmentation is incompatible with current software, while
segmentation on top of paging does not reduce the address translation cost of page-based virtual
memory. In contrast, direct segments use both segments and paging, but never for the same
addresses, and retains the same abstraction of a linear address space as page-based virtual

memory.
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Reducing Address Translation Energy

4.1 Introduction

A key design constraint of modern era computing is energy dissipation. In this chapter, I
present Opportunistic Virtual Caching (OVC), which reduces the energy dissipation due to
virtual memory’s address translation. In particular OVC saves substantial TLB and L1 cache
lookup energy by reducing the frequency of address translation and by enabling lower-

associative cache lookup.

Almost all commercial processors today cache data and instructions using physical
addresses and consult a TLB on every load, store, and instruction fetch. Thus, a TLB access must
be performed for each cache access. However, processor designs are increasingly constrained by
energy, and such a physically addressed caches lead to energy dissipation inefficiencies. TLB
lookup must be fast and rarely miss—often necessitating an energy-hungry highly associative

structure. Industrial sources report that 3-13% of core power (including caches) can be due to the
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TLB [83], and an early study finds that TLB power can be as high as 15-17% of chip power
[46,48]. My analysis shows that a TLB lookup can consume 20-38% of the energy of an L1

cache lookup.

Energy consumption is further exacerbated by efforts to reduce the critical-path latency
of a cache access. Most current processors overlap the TLB lookup with indexing the L1 cache
and use the TLB output during tag comparison [64,72]. Such a virtually indexed, physically
tagged cache requires that the virtual index bits equal the physical index bits, which is only true
if the index comes from the page offset. Thus, the L1 cache size divided by its associativity must
be less than or equal to the page size. To satisfy this constraint, some L1 cache designs use a
larger associativity than needed for good miss rates (e.g., 32KB L1 + 4KB page size = 8-way),

which leads to higher energy consumption compared to lower associative caches (Section 4.2.1).

Now that energy is a key constraint, it is worth revisiting virtual caching [15,101]. While
most past virtual cache research focused on its latency benefit [15,34,93], OVC focuses on its
potential energy benefits. A virtual L1 cache is accessed with virtual addresses and thus requires
address translation only on cache misses. This design makes TLB accesses much less frequent
and thus could reduce TLB-lookup energy substantially. Further, it can lower the L1 cache

lookup energy by removing the associativity constraint on the L1 cache design described above.

However, virtual caches present several challenges that have hindered their adoption.
First, a physical address may map to multiple virtual addresses (called synonyms). An update to
one synonym must be reflected in all others, which could be cached in different places. Thus it

requires additional hardware or software support to guarantee correctness. Second, virtual caches
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store page permissions with each cache block, so that these can be checked on cache hits without
a TLB access. When page permissions change, associated cache blocks must be updated or
invalidated beyond the normal TLB invalidation. Third, virtual caches require extra mechanisms
to disambiguate homonyms (a single virtual address mapped to different physical pages). Fourth,
they pose challenges in maintaining coherence, as coherence is traditionally enforced using
physical addresses. Finally, virtual caches can be incompatible with commercially important
architectures. For example, the x86 page-table-walker uses physical addresses to find page-table

entries [38], which creates problem for caching entries by virtual address.

I find, though, that many of these problems occur rarely in practice. I analyze the
behavior of a set of applications running on real hardware with the Linux operating system to
understand how synonyms are actually used and to measure the frequency and characteristics of
page permission changes. As detailed in Section 4.3, I find that synonyms are present in most
processes, but account for only up to 9% of static pages and up to 13% of dynamic references.
Furthermore, 95-100% of synonym pages are read-only, for which update inconsistencies are not
possible. I also find that page permission changes are relatively rare and most often involve all
pages of a process, which allows permission coherence to be maintained through cache flushes at
low overhead. Thus, a virtual cache, even without synonym support, could perform well, save

energy, and almost always work correctly.

Since correctness must be absolute, I instead propose a best-of-both-worlds approach
with opportunistic virtual caching (OVC) that exposes virtual caching as a dynamic optimization

rather than a hardware design point. OVC hardware can cache a block with either a virtual or
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physical address. Rather than provide complex support for synonyms in hardware [34,93] or
enforce limits on which virtual addresses can have synonyms [60], OVC requires that the OS
(with optional hints from applications) declare which addresses are not subject to read-write
synonyms and can use virtual caching; all others use physical addresses and a normal TLB. This
flexibility provides 100% compatibility with existing software by defaulting to physical caching.
The OS can then save energy by enabling virtual caching when it is safe (e.g., no read-write
synonyms) and efficient (e.g., few permission changes). OVC also provides a graceful software
adoption strategy, where OVC can initially be disabled, then used only in simple cases (e.g.,

read-only and private pages) and later extended to more complex uses (e.g., OS page caches).

With simple modifications to Linux (roughly 240 lines of code), my evaluation shows
that OVC can eliminate 94-99% of TLB lookup energy and saves more than 23% of L1 cache

dynamic energy compared to a virtually indexed, physically tagged cache.

This chapter of the dissertation makes three contributions. First, I analyze modern
workloads on real hardware to understand virtual memory behavior. Second, based on this
analysis, I develop policies and mechanisms that use physical caching for backward
compatibility, but virtual caching to save energy by avoiding many address translations. Third, I

develop necessary low-level mechanisms for realizing OVC.
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4.2 Motivation: Physical Caching Vs. Virtual Caching

In this section I first compare and contrast the benefits and limitations of existing
physically and virtually addressed L1 caches to understand where virtual caching may be

desirable and where physical caching may be needed.

4.2.1 Physically Addressed Caches

A physical L1 cache requires the address translation to finish before a cache lookup can
be completed. In one possible design, the address translation completes before L1 cache lookup
starts, which places the entire TLB lookup latency in the critical path. However, a more common
design is to overlap the TLB lookup with the cache access [64,72]. The processor sends the
virtual page number to the TLB for translation while sending the page offset to the cache for
indexing into the correct set. Then the output of the TLB is used to find a matching way in the
set. Such a design is termed a virtually-indexed/physically-tagged cache. In both designs, all
cache accesses, both instruction and data, require a TLB lookup. When latency (and thus
performance) is the single most important design objective, a virtually indexed/physically tagged
design is attractive as it hides the TLB lookup latency from the critical path of cache lookups

while avoiding the complexities of implementing a virtual cache.

In the remainder of this chapter, I focus on the second and more commonly used design.
Henceforth the term physical cache is used to refer to a virtually indexed and physically tagged

cache.
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Table 4-1. L1 cache (32KB, 64B block) miss ratios
with varying associativity.

L1 Data Misses per 1K Cache references

4-way 8-way 16-way
Parsec 34.400 33.885 33.894
Commercial 41.634 40.721 39.636

L1 Instr. Misses per 1K Cache references

4-way 8-way 16-way
Parsec 1.053 0.991 0.934
Commercial 12.202 12.011 11.938

When energy-dissipation is a first-class design constraint, two aspects of this physical
cache design lead to higher energy consumption. First, TLB lookups are energy-hungry: they
occur frequently — on every memory reference. TLBs can also cause thermal hotspots due to high
power density [75]. As increasing working sets put further pressure on TLB reach [7], processors
may require yet larger TLBs, thus making TLB energy consumption worse. Second, to allow
indexing with virtual addresses, the address bits used for cache indexing must be part of the page
offset. This requires that cache size + associativity < page size. For example, a 32KB L1 cache
requires at least an 8-way set-associative design for 4KB pages. Accesses to larger-associative

structures dissipate more energy.

With the method explained in Section 4.5.2, I empirically find that such a highly
associative L1 cache can lead to energy-inefficient cache designs that provide little hit-rate
improvement benefit from their increased associativity. Table 4-1 shows the number of misses
per 1K cache references (MPKR) for Parsec and commercial workloads for a 32 KB L1 cache

with varying associativity. For example, when associativity increases from 4 to 8 the MPKR
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changes very little (e.g., < 1 MPKR). Even ignoring extra latency of higher-associativity
lookups, this can at best lead to a 0.12-0.14% speedup when associativity is increased from 4 to 8
and 16 respectively (Table 4-3). However, Table 4-2 shows that a cache lookup consumes 30%
more energy when the associativity is increased from 4 to 8, and 86% more energy when
increased from 4 to 16. While extra misses can burn more energy due to access to lower-level
caches, the high L1 hit rates makes this a non-issue. This data shows that designing higher-
associativity caches to overlap TLB latency can lead to energy-inefficient L1 caches.

Table 4-2. Normalized energy per access to L1 cache (32KB)
with varying associativity (w.r.t. 4-way).

4-way 8-way 16-way

Read Dynamic

1 1.309 1.858
Energy

Write Dynamic

1 1.111 1.296
Energy

Table 4-3. Normalized runtime with varying L1 cache
associativity (w.r.t. 4-way).

4-way 8-way 16-way

Parsec 1 0.998 0.998

Commercial 1 0.998 0.996
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4.2.2 Virtually Addressed Caches

A virtual L1 cache is both indexed and tagged by virtual address, and consequently does
not require address translation to complete a cache hit. Instead, virtual caches usually consult a
TLB on a miss to pass the physical addresses to the next level in the cache hierarchy. The
primary advantage of this design is that TLB lookups are required only on misses. L1 cache hit
rates are generally high and thus a virtual L1 cache acts as an effective energy filter on the TLB.
Moreover, a virtual L1 cache removes the size and associativity constraints on the L1, which

enables more energy-efficient L1 designs.
However, several decades of research on virtual caches have showed that they are hard:

Synonyms: Virtual-memory synonyms arise when multiple, different virtual addresses
map to the same physical address. These synonyms can reside in multiple places (sets) in the
cache under different virtual addresses. If one synonym of a block is modified, access to other

synonyms with different virtual addresses may return stale data.

Homonyms: Homonyms occur when a virtual address refers to multiple physical

locations in different address spaces. If not disambiguated, incorrect data may be returned.

Page mapping and protection changes: The page permissions must be stored with each
cache block to check permissions on cache hits. However, when permissions change, these bits
must be updated. This is harder than with a TLB because many blocks may be cached from a
single page, each of which must be updated. In addition, when the OS removes or changes a page

mapping, the virtual address for a cache block must change.
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Cache block eviction: Evicting a block cached with a virtual address requires translating
the address to a physical address to perform write-back to physical caches further down the

hierarchy.

Maintaining cache coherence: Cache coherence is generally performed with physical
addresses. With a virtual cache, the address carried by the coherence messages cannot be directly
used to access the cache. Thus a reverse translation (physical-to-virtual) is logically required to

find the desired cache block.

Backward compatibility: Virtual caches can break compatibility with existing processor
architectures and operating systems. For example, the x86's hardware page-table-walker uses
only physical addresses to find PTEs in caches or memory [38]. With a virtual cache, it is
unclear how to make x86's page table walker work both correctly (a virtual L1 cache entry is like
a synonym) and efficiently (if caching of PTEs is disabled). Moreover, virtual caches often break
compatibility by requiring explicit OS actions (e.g., cache flushes on permission changes) to

maintain correctness.

These challenges hinder the adoption of virtual L1 caches despite their potential energy
savings. OVC seeks an ideal situation that provides most of the benefits of virtual caches by
using it as a dynamic optimization while avoiding their complexities to an extent possible and

maintaining compatibility.



&9

4.3 Analysis: Opportunity for Virtual Caching

I set out to determine how often the expensive or complex virtual cache events actually
happen in the real world by studying several modern workloads running on real x86 hardware
under Linux. First, I measure the occurrences of virtual-memory synonyms to determine how
often and where they occur in practice. As noted in Section 2.2, synonyms pose a correctness
problem for virtual caches. Second, I measure the frequency of page protection/mapping

changes, as these events may be more expensive with virtual caches.

I measured applications drawn from Parsec benchmark suite [74], as well as some
important commercial applications (workloads explained in Section 4.5.2) listed in Table 4-4
running on Linux. The synonym pages are identified by analyzing the kernel’s physical page

frame descriptors, and dynamic references to synonyms are measured using PIN [58].

4.3.1 Synonym Usage

Table 4-4 presents a characterization of synonyms for the workloads. A page with a
synonym is a virtual page whose corresponding physical page is mapped by at least one other
user-space virtual address. I make three observations from this data. First, all but one application
had synonym pages, but very few pages (0.06-9%) had synonyms. Second, the dynamic access
rate of synonym pages was low (0-26%), indicating that virtual caching could be effective for
most references. Finally, most synonym pages are mapped read-only, and therefore cannot
introduce inconsistencies. This occurs because these pages were often from immutable shared

library code (95-100% of the synonym pages).
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Table 4-4. Virtual memory synonym analysis.

Percentage of application | Percentage of synonym |Percentage of all dynamic
Applications - allocated pages that |containing pages that are| user memory accesses to
contains synonyms read-only pages with synonyms
canneal 0.06% 100% 0%
fluidanimate 0.28% 100% 0%
facesim 0.00% 100% 0%
streamcluster 0.23% 100% 0.01%
swaptions 5.90% 100% 26%
x264 1.40% 100% 1%
bind 0.01% 100% 0.16%
firefox 9% 95% 13%
memcached 0.01% 100% 0%
specjbb 1% 98% 2%

I also found that the OS kernel could sometimes use synonyms in the kernel virtual
address space to access user memory. For example, kernel-space synonyms are used during a
copy-on-write page fault to copy content of the old page to the newly allocated page. Similarly
kernel space synonyms are used to zero-fill in a newly allocated page. The kernel-space
synonyms are temporary but can introduce inconsistency through read-write synonyms. Further
to process a direct I/O request that bypasses the operating system’s page cache (used by
databases), kernel-space aliases may be used to zero-fill the pages belonging to the user-space

buffer.
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Observation 1: While synonyms are present in most applications, conflicting use of

them is rare. This suggests that virtual caches can be used safely for most, but not all, memory

references.

4.3.2 Page Mapping and Protection Changes

The operating system maintains coherence between the page-table permissions and the
TLB by invalidating entries on mapping changes or protection downgrades, or by flushing the
entire TLB. Table 4-5 presents the average inter-arrival time of TLB invalidations for the
workloads (and its reciprocal — the TLB invalidation request per sec). The inter-arrival time of
TLB invalidations varies widely across the workloads, but I make two broad observations. First,
even the smallest inter-arrival time between invalidations (2.325ms for memcached) is orders of
magnitude longer than a typical time to flush and refill a L1 cache (~ 5us). Hence, flushing the
cache is unlikely to have much performance impact. Second, I observe that almost all TLB
invalidations (97.5-100%) flush the entire TLB rather than a single entry. Most TLB
invalidations occur on context switches that invalidate an entire address space, and only a few
are for page protection/permission changes. Consequently, complex support to invalidate cache

entries from a single page may not be needed.

Observation 2: TLB invalidations that occur due to page mapping or protection

changes are infrequent and are thus unlikely to create much overhead for virtual caching.
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Table 4-5. Frequency of TLB invalidations.

inxf;:;;ttii::leizeg:ea:;liilg Fraction of leB invalidations to a

invalidations per sec per core) single page
canneal 132.62 (7.5) 0%
facesim 75.64 (13.2) 0%
fluidanimate 52.63 (19.2) 0%
streamcluster 55.53 (18) 0%
swaptions 51.81 (19.3) 0%
x264 111.11 (9.4) 0%
bind 7.571 (132.1) 0.00%
firefox 4.761 (210.3) 0.10%
memcached 2.325 (430.1) 0%
specjbb 39.011 (25.6) 2.50%

4.4 Opportunistic Virtual Caching: Design and Implementation

The empirical analyses in the previous section suggest that while virtual cache challenges
are real, they occur rarely in practice. All the applications studied provide ample dynamic
opportunities for safe (i.e., no read-write synonyms) and efficient (i.e., no page
permission/protection changes) use of virtual caches. Unfortunately, correctness and backward

compatibility must be absolute and not “almost always”.

To benefit from virtual caches and while sidestepping their dynamically-rare issues, I
propose opportunistic virtual caching (OVC). OVC hardware can cache a block with either
virtual or physical address (Section 4.4.1). Virtual caching saves energy (no TLB lookup on L1

hits and reduced L1 associativity). Physical caching provides compatibility for read-write
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synonyms and caching page-table entries (and other structures) accessed by the processor with

physical addresses.

To reap the benefits of OVC, the operating system must enable virtual caching for
memory regions that are amenable to the use of virtual caching (Section 4.4.2). Importantly, I
find that the OS kernel (Linux in this study) already possesses most of the information needed to
determine which memory regions are suitable for virtual caching and which are not. While OVC
defaults to physical-only caching to enable deployment of unmodified OSes and applications,
changes to support virtual caching affected only around 240 lines of code in the Linux kernel

(version 2.6.28-4).

4.4.1 OVC Hardware

OVC requires that hardware provide the following services to realize the benefits of
caching with virtual addresses — (1) determining when to use virtual caching and when physical
caching, (2) reducing power when possible by bypassing the TLB and reducing cache
associativity (3) handling-virtual memory homonyms and page permission/protection changes,

and (4) handling coherence requests for virtually cached blocks.

Determining when to use virtual caching: The hardware defines a one-bit register
named ovc_enable that an operating system can set to enable OVC (default is unset). When
OVC is enabled, the hardware needs to determine which memory accesses should use virtual
caching and which should use physical caching. While there could be many possible mechanisms
to make this differentiation, in the proposed solution the large virtual address space of modern

64-bit OSes is logically partitioned into two non-overlapping address ranges (partition Ppaysicar
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and P,iymar). The highest order bit of the user-space virtual address range (e.g., VAy4s, the 48" bit
in Linux for x86-64) determines the partition in which a virtual address of a cache lookup
belongs to (in Ppuysicar 1f VA47 1s unset and Pyima otherwise). Only cache lookups with virtual
address in the partition Py can use the virtual address to cache data. Thus, there is no added
lookup cost to determine how an address is cached. A L1 miss for an access with address in

Pyira does address translation through a conventional TLB mechanism.

Opportunistically reducing lookup energy: When data can be cached using virtual
address OVC takes advantage of it in two ways. First, OVC avoids TLB lookups on L1 cache
hits. Second, OVC allows lower associativity L1 cache lookups. As shown in Figure 4-1, when
cache lookup address falls in partition Pyipma (i.€., 0vc_enable and VA4, are set), the TLB lookup
is disabled and part of the virtual address is used for cache tag match. Otherwise, conventional
physical cache lookup is performed where the TLB is performed in parallel with indexing into
the L1 cache. On virtual L1 cache miss a TLB lookup is required before sending the request to

the next cache.

Second, OVC dynamically lowers the associativity of L1 cache lookups. Note that the
cache-associativity constraint of a physical cache, described in Section 4.2.1, need not hold true
for virtually cached blocks. Figure 4-2 shows an example of how a banked L1 cache organization
can be leveraged to allow lower-associativity cache lookup for a 32KB, 8-way set associative
cache. The 8-way set-associative cache is organized in two banks each holding 4-ways of each
set. For virtual addresses (i.e., ove_enable and VA4 are set), the processor only accesses one of

the two banks (i.e., 4 ways) based on the value of a single virtual-address bit from the tag (VA2
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in the example). For other accesses using physical addressing, the processor performs a full 8-

way lookup as in a conventional cache.

Handling homonyms and page permission changes: OVC implementation uses
conventional address-space identifiers (ASIDs) to distinguish between different mappings of the
same virtual address and avoids cache flushes on context switches. Both the ASID and the tag
need to match for a cache hit to occur. OVC uses an all-zero ASID for blocks cached under the
physical address (which results in an ASID match for any physical cache access). To handle the
kernel address space, which is shared by all processes, OVC copies the global bit of the x86 PTE
(which is set for globally shared kernel memory) to each cache block. Privileged mode access for
blocks with this bit set do not need an ASID match. ASID overflow can be handled by modifying

Linux’s existing ASID management code to trigger a cache flush before reusing an ASID.

Page permissions (e.g., read, write, execute, privileged) augment the coherence state
permissions for each cache block and are checked along with coherence permissions. A page
permission miss-match (e.g., write request for a block with read permission) triggers a cache
miss, which results in access to the TLB. It is then handled appropriately as in conventional
physical cache for page permission miss-matches. Page mapping or permission downgrades

trigger a cache flush.

Cache block eviction: Eviction of a dirty L1 block invokes a write-back to a physical
L2 cache. OVC—like most virtual caches—logically augments each virtually-tagged block with
a physical tag to avoid deadlock issues with doing an address translation at eviction. This

physical tag adds a small state (e.g., 28 bits on 544 bits state, tag, and data) and can either be
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stored (a) in the L1 cache or (b) an auxiliary structure (not shown) that mirrors L1 dimensions,

but is accessed only on less-frequent dirty evictions.

Coherence: L2 caches and beyond typically process coherence with physical addresses.
To access virtually tagged L1 blocks, incoming (initiated by other cache controllers) back-
invalidations and forwarded requests may require reverse address translation (physical to
virtual). Reverse translation can be avoided by serially searching physical tags (added for cache
block eviction) for all sets that might hold a block. Since OVC already provides the processor
with an associative lookup on physical addresses, it associatively handles incoming coherence
lookups with the same mechanism. For example, an incoming coherence request to the cache
depicted in Figure 4-2, would simply access the physical tags in both banks (8-way total).
Further, this action may be handled with an auxiliary structure (option (b) for handling eviction)
and my empirical results find this occurs less than once per 1K L1 cache accesses due to L1 high
hit rates and low read-write sharing. Note that, coherence messages received due to local cache
misses (e.g., data reply, acks) use miss-status handling register entries to find the corresponding

location in the cache and hence do not require reverse translation lookup.

Space and Power Cost: As depicted in Figure 4-3, OVC’s space overhead in the L1
cache stem primarily from the addition of an ASID (16 bits) and physical tag (28 bits) per cache
block. The primary tag must be extended (8 bits) to accommodate larger virtual address tag.
OVC also adds page permission/privileged bits (3 bits) and a global bit. This totals
approximately 10% space overhead for the L1 assuming 64-byte cache blocks. Given that L1

caches comprise a small fraction of the total space (and thus transistor count) for the cache
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Figure 4-3. OVC overheads per L1 cache block. Additions are shaded.

hierarchy, which is dominated by larger L2 and L3 caches, the overall static power budget
(which is grows roughly in proportion to transistor count) of the on-chip caches barely changes:
~ 1% overhead for the cache hierarchy in Table 4-6. Furthermore, the extra physical tag is
accessed only for uncommon events: back invalidations, forwarded coherence messages and
dirty evictions. L1 cache lookups and L1 cache hits do not accesses this physical tag. As a result,
it causes ~ 1% energy overhead on L1 cache lookups, because most the energy is spent on data
access, which has not changed. I will later show that the benefits of OVC out-weigh this
overhead. I also note that cycle time is not affected as data lookup latency overshadows the tag

lookup latency.

4.4.2 OVC Software

The operating system for OVC hardware has three additional responsibilities: (1)
predicting when virtual caching of an address is desirable (safe and efficient); (2) informing the
hardware of which memory can use virtual caching; and (3) ensuring continued safety as
memory usage changes. I extend the Linux virtual-address allocator to address the first two and

make minimal changes to the page-fault handler and scheduler for the third.

Deciding when to use virtual caches: The OS decides whether virtual caching may be
used at the granularity of memory regions. These are an internal OS abstraction for contiguous

virtual-address ranges with shared properties, such as for program code, the stack, the heap, or a
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memory-mapped file. When allocating virtual addresses for a memory region the OS virtual-
address range allocator predicts whether the region could have read-write synonyms (unsafe) or
frequent permission/mapping changes (inefficient), and if so, uses addresses that allows physical

caching and otherwise uses virtual caching.

While predicting future memory usage may seem difficult, I observe that the OS already
possesses much of the information needed. The kernel virtual-address allocator defines flags
specifying how the memory region will be used, which guides its assignment of page
permissions for the region. For example, in Linux, the vM_PRIVATE flag indicates pages private to
a single process, VM_SHARED indicates a region may be shared with other processes, and
VM_WRITE/VM_MAYWRITE indicates that a region is writable. From these flags, the kernel can
easily determine that read-write synonyms occur only if the VM_SHARED and VM_WRITE/
VM_MAYWRITE flags are set, which causes the kernel to use physical caching. For all other
memory regions kernel predicts that use of virtual caching would not cause read-write synonyms.

This enables a straightforward identification of which memory regions can use virtual caching.

Unfortunately, these flags do not provide hints about efficiency: some regions, such as
transiently mapped files, may observe frequent page-mapping or protection changes (e.g.,
through mprotect() and mremap()) that can be expensive with virtual caches. I thus add an
additional flag, MAP_DYNAMIC, to the kernel allocator to indicate that the mapping or page
permissions are likely to change. Applications can use this flag while allocating memory to
indicate frequent protection/mapping changes or the need for physical caching for other semantic

or performance reasons.
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Communicating access type to hardware: The kernel uses the prediction techniques
described above to select either virtually or physically cached addresses for a region. If
MAP_DYNAMIC is specified, physical caching is used irrespective of the prediction. OVC
minimally extends the OS virtual-address range allocator to allocate addresses from two non-
overlapping address pools, partitions Ppaysicar a0d Piirsuar (described in Section 4.4.1), depending

on whether physical or virtual caching is to be used.

Ensuring correctness: While the kernel only uses virtual caching when it predicts that
conflicting synonyms will not arise, they may still be possible in some rare cases. First, the
kernel itself may use temporary kernel address space synonyms to access some user memory
(Section 4.3.1). Second, the kernel allows a program to later change how a memory region can
be used (e.g., through Linux’s mprotect() system call). OVC provides a fallback mechanism to
ensure correctness in these cases by detecting when the change occurs, and then flushing the

cache between conflicting uses of memory.

OVC inserts two checks into the Linux kernel for conflicting synonyms. Within the page
fault handler, I added code to check whether a virtually cached page is being mapped with write
permissions at another address in another process. If the above checks detect possibility of a
conflicting synonym in the page-fault handler, the OS marks the process with write access to a
synonym as tainted, meaning that when it runs, it may modify synonym pages. [ modified the OS
scheduler to flush the L1 cache before and after the tainted process runs. If hyper-threading is
enabled, scheduler needs to prohibit tainted process from sharing the same core (and thus L1

cache) with another process. The current implementation however does not enforce this check
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since simulated system does not employ hyper-threading. Further, I put a check in the Linux’s
kernel routine that creates temporary kernel mappings to user memory (e.g., kmap(),
kmap _atomic() in Linux) and the kernel routine that grabs user-space page frames (e.g.,
get _user pages() in Linux) to detect conflicting use of synonyms. The L1 cache is flushed

before and after such conflicting uses.

For frequent and performance-sensitive synonym uses, such as direct I/O, a program can
prevent these flushes by mapping I/O buffers using the Map_DYNAMIC flag, which will use
physical caching. However, even if a user fails to do so, the above mechanism ensures
correctness. Further, note that it is possible to have read-write synonyms within single process’s
address space (e.g., if same file is simultaneously memory mapped by a single process at
different places in writable mode). If such cases ever occur (I have encountered none), I propose

to turn off OVC capability (unset ove_enable) for the offending process.

4.5 Evaluation

In this section, I evaluate the OVC design. First, I will describe the baseline architecture
for the experiments and the methodology. I will then provide quantitative results of the

evaluation.

4.5.1 Baseline Architecture

I modeled a 4-core system with an in-order x86-64 CPU detailed in Table 4-6. The
simulated system has two levels of TLB and three levels of caches. Each core has a separate L1

data and instruction TLB and a unified L2 TLB. The cache hierarchy has a split L1 instruction
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Table 4-6. Baseline system configuration.

CPU 4-core, in-order, x86-64
L1 TLB Private, Sp.ht Data and Ins.tru.ctlon L1 TLB,
64 entries, Fully associative
L2 TLB Private, 512 entries, 4-way set associative
Private, Data and Instruction L1 Cache, 32
L1 cache ..
KB, 8-way set associative
L2 cache Private, 256K B, 8-way set associative
Shared, 8MB, 16-way set-associative, MESI
L3 cache .
Directory cache coherence

and data cache private to each core. Each core also has a private L2 cache that is kept exclusive
to the L1 cache. The L3 cache is logically shared among all the cores, while physically

distributed in multiple banks across the die.

4.5.2 Methodology and Workloads

I used x86 full system simulation with gem5 [14] to simulate a 4-core CMP with the
configuration listed in Table 4-6. I modified the Linux 2.6.28-4 kernel to implement the
operating system changes required for leveraging OVC. I used CACTI 6.5 [68] with the 32nm
process for computing energy numbers. For TLBs, L1 caches, and L2 caches, I used high
performance transistors (“itrs-hp”’), while low static power transistors (“itrs-Istp’’) were used for
L3. L1 and L2 caches lookup both tag and data array in parallel for providing faster accesses.

However, L3 caches lookup the tag array and data array in sequence.
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I used several of RMS workloads (canneal, facesim, fluidanimate, streamcluster,
swaptions, x264) from Parsec [74]. I also used a set of commercial workloads: Spec/BB 2005
[85], a server benchmark that models Java middle-tier business-logic processing; memcached
[65], an open source in-memory object store used by many popular web services including
Facebook and Wikipedia; and bind, the BIND9 Domain Name Service (DNS) lookup service
[22]. T also analyzed the open-source web browser Firefox [67] for synonym usages and TLB
invalidation characterization. However, as an interactive workload, it does not run on the

simulator.

4.5.3 Results

To evaluate OVC, I seek to answer three questions: (1) How much TLB lookup energy is
saved? (2) How much of L1 cache lookup energy is saved? (3) What is the performance impact

of the OVC?

The evaluation focuses on dynamic (lookup) energy as TLBs and L1 caches are

frequently accessed, but relatively small, making OVC’s static-energy impact insignificant.
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Table 4-7. Percentage of TLB lookup Table 4-8. Percentage of accesses
energy saved by OVC. that use virtual caching.
Data V-address I\n,f:;llzlc::s):
L1 Data TLB | L1 Instr. TLB access
ercentage access

P percentage
canneal |72.253 99.986 canneal 80.791 100
facesim 96.787 99.999 facesim 99.843 100
fluidanimate |99.363 99.999 fluidanimate |99.925 100
streamcluster [95.083 99.994 streamcluster |98.575 100
swaptions |99.028 99.989 swaptions |99.990 100
x264 95.287 99.304 x264 99.933 100
specjbb  [91.887 99.192 specjbb  [96.650 100
memcached |94.580 98.605 memcached [99.291 100
bind 97.090 98.310 bind 98.97 100
Mean 93.484 99.486 Mean 97.116 100

TLB Energy savings: Table 4-7 shows the percentage of L1 data and instruction TLB
dynamic energy saved by the OVC. I observe that more than 94% of the L1 data TLB energy and
more than 99% of L1 Instruction TLB lookup energy is saved by OVC. To analyze this result, I
first note that the cache accesses that use virtual addresses and hit in the L1 cache avoid using
energy for TLB lookups. Table 4-8 shows the percentage of data and instruction accesses that
can complete without needing address translation, while the L1 cache hit rates for accesses using
virtual addresses are listed in Table 4-9. I observe that on average 97% of data accesses and

almost 100% of instruction accesses complete without needing address translation, while a very



Table 4-9. L1 cache hit rates for

virtual caching.
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Table 4-10. Dynamic energy savings
in caches and TLBs (percentages).

L1 Data L1 TLBs + $
L1 Data L1 ) $ ' Instr. $ hierarcl.ly
Cache Instruction dynamic |dynamic| dynamic
Cache energy | emergy | energy
savings | savings | savings
canneal 0.894 0.999 canneal 17.381 22.800 \9.989
facesim 0.969 0.999 facesim 22252 22.800 |18.575
fluidanimate | 0.994 0.999 fluidanimate 22.727 22.801 130.672
streamcluster | 0.964 0.999 streamcluster 21.805 22.802 16.709
swaptions 0.990 0.999 swaptions 22.797 22.807 |32.542
<264 0953 0993 <264 27.737 23.230 (25.446
specjbb 0.950 0.991 specjbb 23.229 22771 117547
memcached | 0.952 0.986 memcached 23.352 23.155 16.765
bind 0.980 0.983 bind 22.812 22.784 |28.283
Mean 0.961 0.994 Mean 22.624 22.883 [19.546

high fraction these accesses (0.96 and 0.99 respectively) hit in the cache, saving TLB

lookup energy.

L1 cache energy savings: OVC saves L1 cache lookup energy by accessing only a

subset of the ways in a set when using virtual addresses (Section 4.4.1). Table 4-10 presents
percentage savings in dynamic energy by OVC from opportunistic use of partial lookups (4-ways
out of 8-ways) in the L1 cache. The second column shows that on average more than 22% of the
dynamic energy spent on L1 data cache lookups is saved, while the third column shows similar

savings for an instruction cache. The rightmost column provides a more holistic view of the
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energy savings in the chip by showing how much of dynamic energy of TLBs and all the three
levels of on-chip caches taken together is saved. On average, more than 19% of the dynamic
energy spent on the on-chip cache hierarchy and the TLBs is eliminated by the OVC. The
savings can be as high as 32% (swaptions) for applications with small working sets that rarely
access L2 or L3 caches. In total, OVC saves a considerable portion of on-chip memory
subsystem dynamic energy through lower associative L1 cache lookups and TLB lookup savings

as these two frequent lookups account for most of the dynamic energy in the on-chip memory.

Performance impact: 1 quantify the performance implications of OVC in Table 4-11
that shows the number of misses per 1K cache reference (MPKR) for the baseline and the OVC
L1 data and instruction caches. For the L1 data cache, the change in the number of misses is
within a negligible 0.7 misses per 1K cache reference, while changes for instruction caches are
even smaller. A couple of the workloads (specjbb, memcached) experience larger L1-D cache
miss rate decrease with OVC (~2 misses per 1K reference, which translates to a minuscule hit-
rate difference), while the L1 I-cache miss rate increases for one workload (bind). 1 note that
cache hit/miss patterns are slightly perturbed due to use of a single bit from the virtual page
number in selection of the bank where an access should go when virtual address is used under
OVC. More importantly from Table 4-11 (right-most column), I observe that OVC hardly
changes runtime compared to the baseline system (within 0.017%). The unchanged runtime,
coupled with OVC’s small static power overhead to the whole on-chip cache hierarchy (Section
4.4.1) indicates that OVC leaves the static power consumption of the on- chip memory
subsystem largely unchanged while saving substantial dynamic energy. Furthermore, for these

workloads, the operating system never needed to use the taint bit (Section 4.4.2) as they do not
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Table 4-11. Miss ratios and runtime comparison between the baseline and the OVC.

Baseline OvCL1D Baseline L11 OVC L1l Normalized
L1D MPKR MPKR MPKR MPKR runtime
canneal 105.62 105.68 0.120 0.133 0.9994
facesim 30.476 30.613 0.084 0.093 0.9999
fluidanimate 5.735 5.622 0.003 0.006 0.9999
streamcluster 35.436 35421 0.037 0.037 1.00001
swaptions 9.668 9.716 0.106 0.106 1.0004
x264 47.329 46.492 6.53 6.977 1.00099
specjbb 51.704 49.289 7.683 8.008 0.99330
memcached 49.699 47.349 14.235 13.947 0.99632
bind 20.527 19.630 13.981 16.893 1.00701
Mean 39.576 38.879 4.745 5.133 1.00017

use direct I/O or make system calls to conflicting change of page protection. Moreover,

there were no cache flushes due to memory-mapping changes.

Selective raw numbers for this chapter appears in Appendix in page 163.

4.6 OVC and Direct Segments: Putting it Together

Direct segments reduce TLB misses while OVC reduces TLB and cache lookup energy.
Thus an obvious question is, “Can direct segments and OVC work together?” In this subsection,

I sketch one possible answer. However, the proposed technique is not evaluated.
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Figure 4-4. OVC with Direct Segments. OVC in shades. Direct segment additions within dotted box.
VPN = Virtual Page Number, PFN = Physical Frame Number.

To save both energy and latency due to address translation, I propose combine the OVC

and the direct segments in the way shown in the flowchart of Figure 4-4. Specifically, as with

original OVC proposal, if the OVC is enabled (OVC ENB=1) then a high-order virtual-address
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bit (VA447) decides whether to use virtual caching or physical caching. If virtual caching is used
for a memory access and a L1-cache hit occurs, then the memory reference completes without
requiring an address translation, as is the case with original OVC proposal. In case of an L1-
cache miss or if the memory access is to the physically addressed region then an address-
translation is needed. On an address translation the proposed technique employs direct segment’s
way of doing address translation — lookup direct-segment registers (BASE, LIMIT) in parallel to

conventional TLB lookup. If the address falls within BASE and LIMIT register values then

One potential limitation however is that it may not be possible to use a direct segment to
map all of the primary region (memory not needing paging features) if one part of the region is
accessed using virtual caching and the other using physical caching in OVC. This limitation
stems from the fact that OVC partitions the virtual address space between virtual caching and
physical caching, while the direct segment needs a single contiguous virtual address range.
However, if this is an important use-case then two sets of direct-segment registers — one set for
virtually cached region and another for physically cached region -- can be introduced. Depending
upon whether the address translation is needed for the virtually cached or physically cached

region the corresponding set of direct segment registers can be accessed during the translation.

In summary, OVC can be combined with direct segments to provide reduce both address

translation energy and latency.

4.7 Related Work

There has been decades of research on implementing virtual caches, which are

summarized by Cekleov and Dubois for both uniprocessor [15] and multiprocessor systems [16].
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Here I discuss a few of the most related work on virtual caches. I also discuss relevant work on

reducing TLB power.

Goodman proposed an all-hardware solution for handling synonyms by introducing dual-
tag store for finding reverse translations on possible synonyms [34], while a similar technique
uses back-pointers in L2 physical caches for finding synonyms in L1 virtual caches [93]. Kim et
al. proposed the U-cache in which a small physically indexed cache was added to hold reverse
translations for pages with possible synonyms [51]. A few other works advocate for side-
stepping the problem of synonyms by constraining sharing (and thus synonyms) through shared
segments only [27,101] or through constrained virtual-to-physical memory mapping (page
coloring) to ensure synonyms always fall in the same cache set [60]. Qiu et al. [76] proposed a
small synonym lookaside buffer in place of a TLB to handle synonyms in a virtual cache
hierarchy. On the other side of the spectrum, single address space operating systems like Opal
[18,30] and Singularity [52] propose a new OS design philosophy that does away with private
per-process address spaces altogether (and thus no possibility of synonyms). Although many of
the above techniques for virtual caching are used in OVC; OVC exposes virtual caching as an
optimization rather than a design point to leverage benefits of virtual caching when suitable and

defaulting to physical cache when needed for correctness, performance or compatibility.

Several past hardware proposals addressed the problem of TLB power consumption
through TLB CAM reorganization [46], by adding hardware filter or buffering for TLB access
[17,43] or by using banked TLB organization [17,61]. Kadayif et al. [47] proposed adding

hardware translation registers to hold frequently accessed address translations under compiler
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directions. Ekman et al. [28] evaluated possible TLB energy savings by using virtual L1 caches
as a pure hardware technique while also proposing a page grain structure to reduce the coherence
snoop energy in the cache. Wood et al. [101] advocated doing away with TLBs by using virtual
caches and using in-cache address translation. Jacob et al. [45] proposed handling address
translation with software exceptions on cache miss to also get rid of the TLB. OVC, on the other
hand, is a software-hardware co-design technique that aims to maintain full backward
compatibility with existing software while opportunistically allow both TLB and L1 cache

lookup energy reduction.

Woo et al. [100] proposed using bloom filter to hold synonym addresses to save L1 cache
lookup energy by allowing lower associativity. Ashok et al. [5] proposed compiler directed
static speculative address translation and cache access support to save energy. Different from
their work, OVC does not burden the hardware with the onus of ensuring correctness for static
miss-speculation; neither does OVC require recompilation of application to take advantage of
OVC. Zhou et al. [104] proposed heterogeneously tagged (both virtual and physical tag) to
allow cache access without TLB access for memory regions explicitly annotated by the
application. Unlike their work, application modification is not necessary for OVC. Furthermore,
OVC saves L1 cache lookup energy through reduced associativity. Lee et al. [53] proposed to
exploit the distinct characteristics of accesses to different memory regions of a process (e.g.,
stack, heap etc.) to statically partition the TLB and cache resources to save energy. OVC does
not require static partitioning of hardware resources and instead opportunistically use virtual

caching to allow substantial energy benefits.
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Some of older embedded processors from ARM also allowed virtual caches and flushed

caches on context switch/page permission changes [94].
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TLB Resource Aggregation

5.1 Introduction

Direct segments (Chapter 3) can eliminate most of the DTLB misses for big memory
workloads that often have fairly predictable memory usage and allocate most memory early in
execution. However, direct segments are less suitable under a more dynamic execution
environment [102] where application characteristics are unknown a priori and applications can
allocate/de-allocate memory frequently. In such a scenario, large-page support may lend more
flexibility by avoiding memory fragmentation and by allowing memory overcommit through
swapping pages to the disk. In this section, I proposed a merged-associative TLB that tries to

improve large page support in commercially prevalent processors.

Large pages are one of the most widely deployed mechanisms to reduce TLB misses in
current processors. A large page size maps a larger amount of contiguous and aligned virtual

addresses into contiguous and aligned physical addresses. Thus, a given number of TLB entries
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can potentially map a much larger amount of memory compared to the base page size (e.g., 512
times larger for 2MB page size vs. 4KB). This can potentially help reduce the number of TLB
misses. Almost all processors today support multiple large page sizes. For example, x86-64
processors support 2MB and 1GB large page size beyond the 4KB base page size. ARM supports
4KB and 64KB page sizes. PowerPC supports 4KB, 64KB, 16MB, 16GB page sizes.

UltraSPARC supports 8KB, 64KB, 4MB and 256MB pages.

However, use of large pages introduces its own set of difficulties — both software and
hardware. In this chapter, I focus only on the hardware challenges. The use of large pages affects
TLB designs. Larger page size introduces an additional unknown in the address translation
process — the page size of the translation. This lack of knowledge about the page size makes it
hard to determine the virtual page number for searching the TLB for a given virtual address. This

in turn introduces TLB design tradeoffs among design complexity, performance [88] and power.

Commercial processors use two approaches to support multiple page sizes in the TLB.
One approach to allow multiple page sizes in the TLB is to use a fully associative TLB, as often
implemented in many AMD and IBM processors. The tag in each entry of the TLB contains page
size information in addition to the virtual page number. The hit/miss logic uses page size
information to select the actual page number for the virtual address tag comparison. A fully
associative design looks up all its entries and thus a match will be triggered if desired address
translation entry is present in the TLB, irrespective of the page size. In short, a fully associative

TLB makes it easy to support multiple page sizes because it requires only minimal change in
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TLB entries to include page size information and requires the corresponding logic to match page

size information.

However, a fully associative design is often slower, more power hungry, and needs more
chip area compared to a set-associative design with equal number of entries [98]. In addition, a
fully associative design needs as many comparators as the number of entries to find a tag match.
It also needs a wide (logical) multiplexer (input equal to number of entries) to select the
matching entry. The high latency and power overheads make it hard to scale a fully associative
TLB to more entries. To the best of my knowledge there has been no commercial processor with

more than 64 entries in a fully associative TLB.

The second approach for supporting multiple page sizes uses set-associative TLBs. Set-
associative TLBs can address scalability challenge of a fully associative design. Intel’s prevalent
commercial designs like Sandy Bridge and Ivy Bridge employ set-associative TLBs. Set-
associative designs are more scalable compared to fully associative designs as the number of

comparators does not grow with the number of entries but remains equal to the associativity.

However, a set-associative design for TLBs comes with its own drawbacks. In a
conventional virtual memory system the page size for mapping a given address is unknown until
the address translation is itself complete. This makes it difficult to select the address bits to
index into a set-associative TLB. A part of the virtual page number needs to be used to index into
the set-associative TLB. However, depending upon the page size the location of virtual page

number in the address bits changes. For example, if a virtual address VA,.;VA,......VAj is mapped
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using a 4KB page size then the virtual page number is VA,.;VA,.>... VA2, while if the same

address is mapped using a 2MB page then virtual page number is comprised of VA,.;VA,.>...V2;.

Intel’s designs address this challenge through a split-TLB design where each different
page size has its own sub-TLB and all sub-TLBs are accessed in parallel on each memory access
[88]. At most one of the sub-TLBs can produce a hit since OS maps a virtual address using only
one of the page sizes. Since each sub-TLB can only hold translations of a single page size, the
indexing bits for a sub-TLB is fixed. The TLB resources are statically partitioned at the design

time among the sub-TLBs for different page sizes.

However, such a split-TLB design has several potential disadvantages. First, static
partitioning of TLB resources among sub-TLBs for different page sizes can lead to a
performance anomaly where use of larger pages can degrade performance. The static partitioning
of resources among the sub-TLBs reflects the chip-designer’s expectation about the mix of page
sizes used by the applications. Often fewer entries are provisioned for large page sizes compared
to base (smaller) page sizes as each large page has greater reach and also since the use of large
pages is less prevalent today compared to base pages. For example, Intel’s recent Ivy Bridge
processors have for 4 entries for 1GB pages while there are 64 entries for 4KB pages in the L1
data-TLB. Unfortunately, a diverse set of applications with wide-ranging behaviors is unlikely
to match the chip-designer’s intuition most of the time. Thus, an access pattern with low access
locality may lead to more TLB misses with large pages than smaller pages due to the lower
number of TLB entries available to larger pages — leading to a performance anomaly where use

of larger pages could actually hurt performance. Indeed, Linux kernel developers are aware of
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this performance unpredictability as evident in the following quote published in Linux Weekly
News -- “differences in TLB structure make predicting how many huge pages can be used and
still be of benefit problematic” [35]. VMWare also warns its users of possible performance
degradation with use of large pages due to same reasons [90], while my own experiments on
Intel’s Sandy Bridge shows TLB performance anomaly where the application CG from NAS

parallel benchmark suite incurs more TLB misses when using 1GB pages than with 2MB pages.

Second, a split-TLB design leads to wunderutilization of critical TLB resources. For
example, an application that makes no use of large pages wastes TLB entries provisioned for
large pages. In general, underutilization of TLB resources is possible whenever chip designer’s

expected usage mix of page size in applications mismatches with the actual page size mix.

Thus, ideally, one would wish to have a single set-associative TLB that avoids scalability
limits of a fully associative TLB while accommodating PTEs for any page size without statically
partitioning the TLB resources among sub-TLBs for different page sizes. Such a design can scale
better than a fully associative TLB while allowing resource aggregation to provide a larger
effective TLB size than a split TLB design, avoid performance unpredictability with large pages

and reduce power waste due to accessing multiple TLBs.

In this work, I propose a hardware-software co-design that logically provides a single
set-associative TLB design that can hold a flexible mix of PTEs for any page size (e.g., 0, some,
or all entries can map 2MB pages). Another important goal of my proposed design is to maintain
backward compatibility with unmodified OSes and applications. In particular, I start from a

commercially prevalent split-TLB design but overcome its shortcomings like static partitioning
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of resources wherever possible, while falling back to the baseline split-TLB design when
necessary for compatibility. They key idea is to split the abundant virtual address space of 64-bit
address space among the page sizes instead of splitting more constrained hardware TLB
resources. 1 call this a merged-associative TLB since it can merge or aggregate hardware TLB

resources of provisioned for different page sizes.

At the high level, the merged-associative TLB proposal put the onus on the operating
system to keep memory mapped using distinct page sizes in distinct regions of a process’s virtual
address space. The hardware TLB then interprets the page size used to map a given virtual
address by inferring the address region it is coming from — allowing it to correctly calculate the
virtual page number even before the address translation process is initiated. This, in turn, enables
the hardware TLB to logically aggregate the entries of sub-TLBs in a split-TLB design in to a

single logical set-associative TLB that can hold PTEs for any page size.

More specifically, the operating system splits virtual address space of a process in k
equal-sized regions. Each of these regions contains memory mapped with a single page size. In
effect, this establishes a correspondence between virtual addresses and the page size used to map
these addresses. A typical value of k could be 4, which my current prototype implements. The
hardware exposes a k-entry table for each core (or each hardware context if multi-threaded) to
the OS, called the region table or RT. The n™ (0 < n < k) entry of the region table should contain
the encoding for the page size used for mapping n™ virtual address region in the address space of

the currently running process in the given core. This encoding acts as hint to the hardware about
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the page size used for mapping a virtual address and this information is available before the

address translation is started.

The hardware of a merged-associative TLB logically merges the separate sub-TLBs in a
split-TLB design to provide an illusion of a larger combined TLB shared by all page sizes. By
logically combining sub-TLBs, merged-associative TLB (m7TLB) aggregates TLB resources
when possible and falls back on the conventional split-TLB when needed for compatibility. The
mTLB logically appends sets (rows) of one sub-TLB after another sub-TLB. For example, in a
split-TLB design as in Intel’s Sandy Bridge, with 64-entry, 4-way set-associative TLB for 4KB
pages and 32-entry, 4-way set-associative TLB for 2MB pages are logically coalesced to form a
96-entry, 4-way set associative merged-associative TLB. To index into this logical merged-
associative TLB structure two-step process is followed. First, on each memory access the region
table is looked up using top log:k bits of the virtual address to find out the page size used to map
the given address. It then uses this page size hint to calculate the correct virtual page number

(VPN) and finally indexing into the correct set using part of the VPN.

To allow backward compatibility with unmodified OSes, the default for the encoding for
the page size in the region table is set to a special value that indicates “unknown_pagesize”. If for
a given virtual address the corresponding region table entry contains “unknown_pagesize” then a
merged-associative TLB reverts to a split-TLB design where all possible sub-TLBs are searched
for a potential match. Further note that, although not fundamental to the design of merged-

associative TLB, logically aggregated TLB can have non-power-of-2 number of sets due to an
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uneven number of sets in sub-TLBs of typical split-TLB design. The indexing scheme of a

merged-associative TLB may thus need to handle this situation.

A merged-associative TLB alleviates several shortcomings of a split-TLB and a fully
associative TLB designs. First, unlike a split-TLB design unpredictable performance loss with
use of large pages is not possible as the number of entries for large pages is never less than that
of base pages. Second, by enabling resource aggregation across multiple TLBs, a merged-
associative TLB addresses the potential underutilization of TLB resources. Finally, since
merged-associative TLB is built essentially out of set-associative TLBs, it provides better
scalability in terms of both latency and power consumption compared to a fully associative
design. Merged-associative TLB can enable provide energy benefits over a split-TLB design

since only one instead of multiple TLBs are accessed.

A merged-associative TLB has its own share of shortcomings, though. First, a merged-
associative TLB requires modifications to the OS to partition a process’s virtual address space
based on page sizes. It reverts to split-TLB with an unmodified OS where all the sub-TLBs are
accessed for finding a potential match. Further, a merged-associative TLB requires that the page
size used to map a given virtual address should be fixed at the time of the memory allocation
request. Thus a merged-associative TLB reverts to a split-TLB design with online page size
promotion or demotion where a given virtual address can be mapped using different page sizes

during its lifetime.

In summary, following are the contributions of this work.
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* I demonstrate that a merged-associative TLB design could alleviates performance

anomalies possible with use of large pages in a split-TLB design.

* [ demonstrate that a few applications like graph500 [36] -- a graph-analytics
application -- can observe substantial reduction in number of TLB misses with

merged-associative TLB design through resource aggregation.

5.2 Problem Description and Analysis

In this chapter, I will first recap large-page support in contemporary x86-64 processors
and then describe and analyze tradeoffs of currently available TLB designs that support multiple
page sizes. I will then state the problem statement addressed in the work described in this

chapter.

5.2.1 Recap: Large pages in x86-64

TLB reach is the total memory size mapped by a TLB (number of entries times their page
sizes). Large TLB reach tends to reduce the likelihood of misses. Larger page sizes — that map
larger amount of contiguous virtual address to larger amount of physical address space -- were

introduced to reduce number of TLB misses without needing to scale TLB entries.

The page sizes are defined in the Instruction Set Architecture (ISA) of a processor. For
example, x86-64 supports 4KB (base page), 2MB and 1GB page sizes while ARM-64 would
support 4KB (base page) and 64KB. The OS also needs to extend support for large pages to

enable application use larger page sizes. Further, to make effective use of multiple page sizes it
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Table 5-1. Comparative Analysis of set-associative and fully associative TLBs. 4-SA = 4-
way set-associative, FA= Fully associative.

64 Entries 128 Entries 256 Entries
4-SA FA 4-SA FA 4-SA FA
0.14 ns 0.39 ns 0.15 ns 0.47 ns 0.17 ns 0.67 ns
Access Latency
. 0.16 ns 0.49 ns 0.16 ns 0.58 ns 0.18 ns 0.77 ns
Cycle time
0.003 nJ 0.008 nJ 0.004 nJ 0.016 nJ 0.006 nJ 0.031 nJ
Dyn. Access
Energy(nJ)
. 1.72 mW 3.87 mW 2.69 mW 7.57 mW 4.81 mW 14.37 mW
Static Power
(mW)

needs to be decided which page size to use for mapping which part of memory usage of an

application.

5.2.2 TLB designs for multiple page sizes

Supporting multiple page sizes leads to important TLB design tradeoffs [88]. In this

section I discuss different TLB designs and their tradeoffs.

Fully associative TLB design: As described in Section 5.1, a fully associative TLB
design offer a straightforward way to allow multiple page sizes by adding page size information
at each entry. The number of virtual address bits in the tag is determined by the smallest page
size. For each TLB entry the hit/miss logic then selects the actual virtual page number to be
compared based on the page size information of the TLB entry. For example, let us assume there
is a two-entry fully associative TLB. Further let us assume that the 0" TLB entry (TO) contains a

mapping for 4KB page size and 1* TLB entry (T1) contains a mapping for a 2MB page size. If a
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48 bit address 0x7FFFFFABO0128 is to be looked up in the TLB, then the hit/miss logic will mask
last 12 bits of the lookup address (page offset for 4KB page) and use 0x7FFFFFAB0000 for TLB
entry TO, while for entry T1 it will mask last 21 bits of the lookup address (page offset for 2MB
page) to use Ox7FFFFFA00000 for a possible match in entry T1. Since every TLB entry is
searched in a fully associative design for possible match, the desired entry, if present, would
certainly produce a hit, irrespective of page size of the mapping. Thus it’s straightforward to

extend a fully associative TLB to support multiple page sizes.

Unfortunately, fully associative structures are slower and require more area and power
than a set-associative structure. Since a fully associative TLBs are usually implemented as
content-addressable-memory or CAM, it needs as many comparators as number of entries and
wide multiplexer. This makes a fully associative design often hard to scale. To quantify the
tradeoffs between fully associative and set-associative TLB design, I used CACTI 6.5 [68] to
estimate latency, area and power of various TLB designs. Table 5-1 lists this comparison of a
fully associative and a set-associative TLB designs for various sizes. For a typical 64-entry TLB,
the access time for a fully associative design is almost 2.8-times that of a 4-way set-associative
design. When the TLB size is scaled to 256 entries the access latency of a fully associative
design is even higher at 4-times of that of a set-associative design. This demonstrates the poor
scalability of a fully associative design. Further, as discussed in the Chapter 4 (OVC) that the
TLB lookup energy can be non-negligible fraction of core energy dissipation [9,83]. Table 5-1
shows that a 64-entry fully associative TLB spends 2.67X more dynamic energy on each access

compared to a 4-way set-associative design. Static power and cycles time also scale poorly in a
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Table 5-2. Number of TLB misses for 1K memory accesses on Intel Sandy Bridge

machine.
Page 4KB 2MB 1GB
Size
NPB:CG 279.5 42.1 130.7
Nano-benchmark 0 487.8 490.7
(Fig. 1)

fully associative design. In summary, a fully associative TLB design simplifies supporting

multiple page sizes but can incur more latency and access energy.

Split TLB design: Intel’s recent designs (e.g., Nehalem, SandyBridge, IvyBridge)
instead adopt set-associative TLBs. However, to overcome the challenge posed by the lack of
knowledge about the page size during the translation such designs employ separate sub-TLBs for
each different page sizes. Each of these sub-TLBs is searched in parallel (and thus called split-
TLB design) to find a hit/miss. Note that since a virtual address can be mapped using only one

page size at most one of the TLBs can produce a hit.

Unfortunately, a split-TLB has several drawbacks. First, a split-TLB design can lead to
performance unpredictability where use of larger page size can lead to more TLB misses than
smaller page sizes. The potential increase in the number of TLB misses is due to asymmetric
number of TLB entries available for different page sizes. For example, each core of Intel’s recent
Ivy Bridge architecture implements 64-entry L1-TLB for 4KB pages while there are only 32

entries for 2MB pages and 4 entries for IGB pages. While TLBs of larger pages have larger
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array[] = malloc(64xsizeof (long pointer)); //allocate array of 64 pointers

//allocate memory that the pointers would point to
for (int i=0; i < 64; i++) {
if (use_1GB_page)
array[i] = mmap_with 1GB pages(1GB); // mapped with 1GB pages
else if (use_2MB pages)
array[i] = mmap_with 2MB pages(lGB); // mapped with 2MB pages
else
array[i] = allocate_using 4KB pages(1GB); // mapped with 4KB pages
}
//Loop num iterations times and access the array entries
for (int i=0; i < num_iterations; i++) {
//Inner loop to stream through the array
for (int j=0; j < 64; j++) {
//Offset makes sure that for each page size accesses do not conflict on
// same set of a TLB
if (use_l1GB_page) {
offset = j*64; //64 bytes offset
}else if (use_2MB page) {
offset = (j*2M+ j*64); //2MB + 64 bytes offset
}else if (use_4KB_page) {
offset = (j*4KB + j*64) //4KB + 64 bytes offset
}
//Touch one cache line of a single page within each of 64 elements
result = (array[j] + offset); //Access the array

Figure 5-1. Pseudo-code for nano-benchmark with performance pathologies with split-TLB design.

TLB reach (number of entries x page size), the smaller number of entries can increase misses
due to certain sparse access patterns. Although uncommon, such cases indeed exist. I found that
the CG (Conjugate Gradient) workload from NAS parallel benchmark suite incurs far a higher
number of TLB misses if 1GB pages are used compared to 2MB pages while running on Intel’s
Sandy Bridge processor. Table 5-2 (first row) lists TLB misses per 1K memory accesses for the
workload CG for different page sizes — 4KB, 2MB and 1GB. The number of TLB misses jumps

nearly 3 times when 1GB pages are used instead of 2MB pages.
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To better understand this apparent anomaly, I designed a nano-benchmark that streams
through an array of elements and incurs different number of TLB misses for different page sizes.
The pseudo-code of the nano-benchmark is shown in Figure 5-1. The nano-benchmark allocates
an array with 64 pointers each of which points to 1GB of memory that is allocated using 4KB,
2MB or 1GB page sizes. The number of entries in the array is fixed at 64 since the largest
number of entries in L1-TLB in the experimental machine is 64 (for 4KB pages). This ensures
that the allocated array would have enough number of pages to fully populate the TLBs. The
program then loops through (inner loop) all 64 elements of the array while loading an address
from each unique element. The program calculates different offsets for each page size, which are
then added to the base address of each element in the array. The offset has two purposes. First, it
makes sure that each access goes to consecutive set (row) in the TLB instead of conflicting
within the same set. For example, the virtual address of the base of each element in the array is
1GB apart and 4KB PTE entries mapping these base virtual address of each element would map
to the same 0™ set (row) of a 4KB TLB. To avoid this and make use of the full capacity of the
TLB, the loop instead access pages in each element that maps on the consecutive sets of the
TLB. This is accomplished by adding an offset equal to page size for 4KB and 2MB page sizes.
For, when 1GB pages are used no offset needs to be added since the base of each element itself is
1GB apart. Second, a 64-byte offset is added to make sure the loop accesses consecutive cache
blocks within a page to avoid similar set-conflicts in the L1 cache. The loop iterates for ten

million times in the experiments.
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The Table 5-2 (second row) lists the number of TLB misses per 1K memory accesses for
the nano-benchmark using different page sizes. While with 4KB pages there are no measurable
TLB misses, with 2MB and 1GB pages nearly every other memory access misses in the TLB. In
the case of 4KB pages all 64 pages of the workload fit into the TLB. However, since the TLBs
for 2MB and 1GB pages can accommodate at most 32 and 4 entries, respectively, it incurs a
large number of TLB misses. This nano-benchmark shows that even with simple access pattern,
use of large pages can incur many more of TLB misses than with the base page size. This
unpredictability in number of TLB misses with large pages demonstrates one of the key

drawbacks of the split-TLB design.

Further, static partitioning of critical TLB resource among page sizes disallows resource
aggregation. For example, if an application uses only 4KB pages it wastes hardware dedicated to
hold 2MB page translation. Finally, the split TLB design wastes power. On every memory access
TLBs for every page size is looked up in parallel, while at most only one of them can produce a
hit. As discussed in Chapter 4 TLB energy dissipation is non-negligible [9] and TLB can become
hot spot in a chip design due to high power density [75], eliminating unnecessary TLB lookups

could be important.

5.2.3 Problem Statement

In view of above discussion it is obvious that ideally one would like to have a single set-
associative TLB that can efficiently hold PTEs for any page size. Compared to a split set-
associative TLB design it could better aggregate critical TLB resources and avoid performance

unpredictability due to large pages. Compared to a fully associative design such a design should
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incur much lower latency per access and scale better while helping to avoid design constraint of

implementing a CAM on the critical path of every memory access.

5.3 Design and Implementation
The goal of our proposed merged-associative TLB (mTLB) design is three fold.

* mTLB should prevent performance unpredictability possible with use or large page

sizes in a split-TLB design while avoiding hard-to-scale fully associative designs.

* mTLB should allow resource aggregation across separate TLBs for each page size to

increase TLB reach.

* Finally, mTLB should preserve backward compatibility to allow unmodified OSes
and applications to run as before and could fallback to conventional split-TLB design

when necessary.

To achieve the above-mentioned goals, I propose a hardware-software co-design that
extends split-TLB design. At the high level, the hardware enables logical aggregation of separate
sub-TLBs in split-TLB design allowing a TLB entry to hold translation for any page size. The
OS segregates address mappings for a given page size in non-overlapping. This enables virtual

address ranges to act as a hint for the page size used to map a given address.

5.3.1 Hardware: merged-associative TLB

The goal of the merged-associative TLB is to enable logical aggregation of separate set-
associative L1 sub-TLBs of a split-TLB design. Figure 5-2 depicts the high level view of how a

merged-associative TLB aggregates the sub-TLBs of a split-TLB design.
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Figure 5-2. Logical view of Merged-associative TLB to aggregate the sub-TLBS of a
split-TLB design. Added elements for merged-associative TLB is in shades.

As shown in the figure, let us assume there are ‘n’ distinct page sizes with ‘n’ sub-TLBs
in a split-TLB design. In a conventional split-TLB design, all ‘n’ possible virtual page numbers
(VPNy, VPN,,...,VPN,.|), are formed by shifting the bits of the virtual address according to the
page sizes. The VPNs thus formed, are then used to look up their corresponding sub-TLBs, in

parallel.

In a merged-associative TLB, the key challenge in aggregating sub-TLBs of split-TLB
design is to correctly determine the virtual page number in the absence of page size information.
To overcome this challenge the mTLB requires that the OS partition a process’s virtual address

space and make sure that each address partition contains memory mappings from only one page
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size. To achieve this, the virtual address space of a process is divided into k& (k=2", a typical
value of k is 4) equal sized partitions and a tiny hardware lookup table with m entries, called the
region table or RT, is added to each core as depicted in Figure 5-2. Each entry in this table
provides the page size used to map a virtual addresses in a given address region. For example, if
there are three possible page sizes supported in the architecture then a 2-bit entry can be used to
encode one of the three possible page sizes and a default value when page size is unknown. This
table is called region table or RT. The region table is indexed by high order m bits of the
(implemented) virtual address (e.g., bit 48-47" of the virtual address when m=2). Thus a typical
region table would be only need 8-bits and thus incur negligible access latency or power
overhead. Larger number of partitions could allow the OS finer grain of control on addressing

mapping, however at the cost of larger lookup-table size.

As depicted in the Figure 5-2, the VPN selector — which is essentially a multiplexer —
uses the page size information available in the region table entry indexed by the higher order bits
of the virtual address to select the correct virtual page number. This virtual page number is
broadcasted to all sub-TLBs. However, unlike the split-TLB design only one of the sub-TLBs
will be activated as decided by the TLB selector (Figure 5-2), which logically aggregates the
sub-TLBs. The virtual page number is fed to the TLB selector and the separate sub-TLBs of
split-TLB design works as banks of the logically aggregated merged-associative TLB. The TLB
selector logic uses a few bits from the virtual page number to decide which bank in the logically
aggregated TLB to index into. For example, let’s assume n=2 and each of the two sub TLB has

64 entries, and is 4-way set-associative. Thus, each sub-TLB has 16 sets (row) and requires 4 bits
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of the virtual page number for indexing. The TLB selector then uses 5" least significant bit of the
VPN to choose one of the two sub-TLBs to enable and within each sub-TLB four least
significant bits are used to index into a set (row) of the TLB. Thus, in this way logically a 128-

entry (64 + 64) merged-associative TLB is formed.

As mentioned in Section 4.1 a merged-TLB maintains backward compatibility with
unmodified OS. It does so by allowing a region table (RT) entry to specify “unknown_pagesize”.
For example, in x86-64 a 2-bit RT entry could the page size information. Three of the four
possible bit combinations (00, 01, 10) can encode three possible page sizes in x86-64 system
while the code “11” indicates unknown page size. If the RT entry corresponding to virtual
address range is “11” then the TLB lookup proceeds as if split-TLB design is used. All the sub-
TLBs are searched in parallel for the desired address translation. Thus, even with an unmodified
OS the merged-associative TLB operates correctly; albeit without any benefit over a split-TLB

design.

Non-power-of-2 entries: Often the split-TLB designs have sub-TLBs with unequal
number of entries. For example, Intel’s Ivy Bridge’s split-TLB design has 64 entries for 4KB
pages, 32 entries for 2MB pages and 4 entries for 1GB pages. In such scenario, the merged-
associative TLB (mTLB) could logically aggregate 96 entries (64 +32), while excluding 4 entries
for ease of implementation of TLB selector logic. For sake of simplicity of implementation, the
TLB selector could divide the address space equally between the sub-TLBs of unequal size using
higher order bits of the virtual address. This could lead to loss of opportunity to save more TLB

misses in a merged-associative TLB due to extra indexing-conflicts but still is strictly better than
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Figure 5-3. Logical view of merged-associative TLB for Intel's Sandy Bridge L1-TLB
hierarchy.

split-TLB designs due to larger aggregated number of entries. My current implementation
(evaluated in Section 5.5) logically merges Intel’s Sandy Bridge design into a 96 entry merged-
associative TLB in this fashion. Figure 5-3 depicts the logical view of such merged-associative

TLB hierarchy built out of Intel’s Sandy Bridge L1-TLBs.

In summary, a merged-associative TLB enables the logical aggregation of separate TLBs
under split-TLB design when page size information is made available through virtual address
space partitioning. By default, the contents of the region table are initialized with each entry
indicating page size is unknown. Thus, a merged-associative TLB design defaults to a

conventional split-TLB design.
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Figure 5-4.Virtual address layout of a process.
5.3.2 Software

The operating system (OS) needs modifications to its virtual-memory management to
make use of a merged-associative TLB. Applications remain unchanged since the application-

binary-interface (ABI) is unaltered.

The OS has two primary responsibilities. First, the OS makes sure that memory allocation
requests for different page sizes go to different partitions of the virtual address space. Second,
the OS is responsible for setting up the region table used by mTLB to set the e page size used to

map the addresses in each range.

A typical virtual address space of processes running under Linux (x86-64) is 128TB in
size and the conventional use of address space is depicted in Figure 5-4(a). As depicted, the

lower portion of the address space is used for code, data and BSS segment (used for compile
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time allocations and constants), while the top part is used for keeping the process stacks. These
memory regions are usually always mapped using the base page size. The dynamically allocated
memory is put in the middle part of the virtual address space. Dynamically allocated memory
include heap allocation and memory allocated using mmap(), and shmget() system calls in Linux.
Dynamically allocated memory can be mapped using base or larger page sizes. The goal of the
software prototype is to enable this common use of large pages while partitioning the virtual

address space according to page sizes.

I modified Linux 3.5.3 to partition the virtual address space to establish correspondence
between an address partition and page size used to map addresses in the partition. At the boot
time, the OS reads the number of partitions (‘4’) enabled by the mTLB (i.e., number of entries in
the region table) by reading a specific model-specific-register (MSR). The OS then logically
partitions the virtual address space of a process in up to ‘k’ equal-sized partitions and designates
the page size for each partition. The current prototype logically partitions the virtual address
space of each process in four equal-sized partitions (i.e., ‘k’=4) as depicted in Figure 5-4(b). In
the current implementation each of these partitions are 32TB in size (128TB/4). The top and
bottom most partitions are mapped with base page size (4KB). This enables ease of
implementation as these partitions contain process stack, code, bss and data segment, which are
mapped using base page size. As shown in the Figure 5-4(b) the dynamically allocated memory
is put in to different partitions of the virtual address space depending upon the page sized used

for mapping the allocations.
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More specifically, I modified Linux system calls mmap() and shmget() such that
depending upon requested page size virtual addresses from different address partition are used.
Note that memory allocation requests for large pages have to go through either mmap() or
shmget() system calls in Linux. Further, I modified brk() system call in Linux, which is used to
allocate memory on the heap, to ensure that process heap is assigned virtual addresses from the
bottom most address partition that is set aside for base page size. These simple modifications
ensured that addresses mapped with different page sizes belong to non-overlapping designated
virtual address partitions. Linux kernel also makes use of large pages. For example, in x86-64,
Linux uses large pages to map entire physical memory into its “direct-mapped” virtual address

space. In this work however, I only consider user-space memory usage.

The second responsibility of the OS is to populate the region table (Section 5.3.1) that
contains the correspondence between the virtual address partition and the page size. The content
of the RT is part of process context in the process control block or PCB. When a process is first
created, the kernel initializes a new field in the PCB corresponding to store the virtual address
partitioning as depicted in Figure 5-4(b). The initial content of this field reflects the OS’s default
correspondence between the virtual address partitions and the page sizes used to map them. The
OS memory allocator also consults this field on an application memory request to return virtual
addresses in accordance to the intended correspondence between the virtual address ranges and
the page size. On a process context switch the contents of the hardware RT is switched from the

old process to that of the new process. I also note that unmodified OS can run correctly with the
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merged-associative TLB. However, since all page size information in the RT will be “unknown”,

it degenerates to the split-TLB design.

5.4 Dynamic page size promotion and demotion

The merged-associative TLB proposal relies on page size information being available at
the time of memory allocation so as to assign virtual addresses from correct partition.
Unfortunately, dynamic page size promotion or demotion changes the page size for a virtual
address during its lifetime, and is thus incompatible with the merged-associative TLB proposal.
In this section, I describe how a merged-associative TLB could co-exist with dynamic page

promotion or demotion by reverting back to split-TLB design.

Recently, Linux enabled Transparent Huge Page or THP [23], which enables
opportunistic allocation of large pages and dynamic page size promotion or demotion without
application knowledge. THP achieves this in two ways. First, on a memory allocation request for
larger amount of memory (e.g., > 2 MB), the THP tries to use large pages to map these large
allocations. Second, THP periodically scans process’s address space to find contiguous
allocations in virtual address space mapped with small pages that could be mapped with large
page and if large physical page(s) are available then it does the remapping with large pages. This
process is called page promotion. Finally, THP can also demote the page size whereby it remaps
a memory region with smaller page size that was earlier mapped with large pages. Page size
demotion happens if a memory region needs to be swapped out or page protection is changed for

portion of the memory region under consideration.



137

The goal of this proposal is to ensure that mTLB does not perform worse than the
baseline split-TLB design under online promotion or demotion of page size. This is achieved
through two mechanisms. The hardware first detects when the expected correspondence between
the virtual address and page size is violated and then take corrective action to ensure that mTLB

defaults to the split-TLB design for the offending virtual address region.

If the actual page size of a mapping of a given address differs from the expected page
size, the mTLB will index into wrong place in the set-associative TLB. Thus, even if the PTE for
the requested address is in the TLB, a miss will be triggered. In x86-64, on a TLB miss a
hardware page table walk is initiated which locates the desired entry in the kernel memory and
loads it into the TLB. In my proposed design, the page walker observes that the predicted page
size is different from the page size of the correct PTE that it located in the memory. This
indicates that correspondence between the virtual address region where the given address falls
and the page size as noted in the lookup table is stale. At this point the hardware alters the region
table contents to change the entry corresponding to the offending address region to

“unknown_page size”. As described in Section 5.3.1, all the sub-TLBs are searched in parallel

Table 5-3. Baseline TLB hierarchy.

Core 6 core, x86-64

64 entry, 4-way set-associative for
4KB pages

32 entry, 4-way set-associative for
2MB pages

4-entry, fully-associative for 1GB
pages

512-entry, 4-way set-associative
for 4KB pages

L1-TLB

L2-TLB
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from now onwards for any address is the offending address region. Thus, the scheme works

correctly as in a split-TLB design, albeit without the benefit of the mTLB.

5.5 Evaluation

In this section I evaluate merged-associative TLB design against baseline split-TLB

design and fully associative TLB design.

5.5.1 Baseline

I model the baseline TLB hierarchy after that of Intel’s Sandy Bridge processor. Table 5-
3 details the TLB hierarchy. Intel’s Sandy Bridge processor employs a split-TLB design. Each
core has three separate L1 Data sub-TLBs for each of the two different page sizes — 4KB, 2MB
and 1GB. Larger number of TLB entries is statically allocated to smaller page sizes while large
pages get smaller number of TLB entries. There is also a L2-TLB only for 4KB pages, which is

accessed on a miss in L1-TLB. The L2-TLB behavior remains unchanged with mTLB.

5.5.2 Workloads

The workloads used in the evaluation includes commercial workloads like MySQL
running TPC-C and memcached, as well as scientific workloads like BT and CG from NAS
benchmark suite. The graph500 workload was run with graph of size approximately 32GB. The
MySQL workload used 1000 warehouses (100GB). The memecached server used 32GB of in-
memory object cache. The NAS workloads (BT and CG) used class “D” input set. I also

evaluated the nano-benchmark presented in the Section 5.2.2.
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5.5.3 Methodology

Analysis of TLB behavior needs to run large memory workloads for sufficient amount
time to characterize enough number of TLB misses. Unfortunately cycle-accurate full-system
simulators are too slow for simulating large memory workloads for reasonable time. More
importantly, full system simulators add 2-3X memory overhead compared to the memory size of
the simulated system. This makes it hard to simulate large memory workloads. To avoid the
above issues I wrote a fast TLB simulator based on PIN dynamic binary instrumentation [57] to
yield TLB miss rates. More specifically, the TLB simulator enables us to measure TLB miss
rates for different TLB designs. This simulator observes only user-level memory access only and

thus the effect of system code is not captured.

5.6 Results

In this section I present results of the evaluation. More specifically I try to answer

following questions.

1. How much the TLB reach is increased by mTLB?
2. Can mTLB avoid TLB performance unpredictability when using larger page sizes?

3. Can mTLB enable additional performance benefit through resource aggregation?

To evaluate the efficacy of the different TLB organization I used the number of TLB misses per
1K memory accesses or MPKA as the metric. I measured the TLB misses that miss in both the

levels of TLB hierarchy.

I evaluated three L1-TLB designs as follows.



Table 5-4.

Ideal L1-TLB reach for different TLB configurations and page sizes. FA-
TLB stands for fully associative TLB.

Split-TLB FA-TLB FA-TLB Merged-
(64 entry) (96 entry) associative TLB
All 4KB 256KB 256KB 384KB 384KB
All 2MB 64MB 128MB 192MB 192MB
All 1GB 4GB 64GB 96GB 96GB

1. Split-TLB: This baseline design emulates split-TLB design as found in Intel’s Sandy

Bridge and as described in Table 5-3.
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2. Fully associative (FA): I simulated fully associative TLB design with 64 and 96 entries.

3. Merged-associative TLB: This simulates the proposed merged-TLB that logically

aggregates the resources of the split-TLB design to enable 96-entry L1-TLB for any page

sizes. It logically aggregates 64 entries of the sub-TLB for 4KB pages with 32 entries of

the sub-TLB for 2MB pages. Note that this adds no extra TLB entries on top of Intel’s

Sandy Bridge’s split-TLB design.

All configurations used Least-Recently-Used (perfect LRU) replacement policy to select

which TLB entry to victimize to make space for a new entry.

5.6.1 Enhancing TLB Reach

The merged-associative TLB increases the TLB reach (number of TLB entries x page

size) of a split-TLB design by aggregating TLB resources of its sub-TLBs. Table 5-4 shows the

L1-DTLB reach for four TLB configurations and different page sizes.
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Table 5-4 lists L1-DTLB reach for different TLB configurations and different page sizes.
The TLB reach is calculated by assuming page sizes are not mixed, i.e., if 4KB pages are used
then all memory is mapped using 4KB pages and similarly for 2MB and 1GB pages. The split-
TLB design has 64 entries for 4KB pages, 32 entries for 2MB pages and 4 entries for 1GB pages.
The fully associative design has 64 or 96 entry while the merged-associative TLB has 96 entries.
Table 5-4 shows that merged-associative TLB could increase the TLB reach over a split-TLB
reach substantially (e.g., 96GB compared to 4GB with 1GB pages). Note that, the TLB reach
enabled by the merged-associative TLB is equal to that of a 96-entry fully associative TLB and
yet does not make use of fully associative structures. While larger TLB reach can help reduce
possibility of TLB misses, the actual reduction in TLB miss rate depends upon workload

characteristics.

5.6.2 TLB Performance Unpredictability with Large Pages

As explained in Section 5.2.2, a split-TLB design can incur more TLB misses when using
large pages. This could happen due to fewer TLB entries that are generally statically allocated
for larger page sizes in a split-TLB design. One of the key motivations behind merged-TLB
design is to avoid this unpredictability of TLB performance by aggregating the resources of sub-
TLBs of a split-TLB design. Table 5-5 shows the TLB miss rates for Intel’s Sandy Bridge’s
split-TLB design and for the merged-associative TLB (shaded column). As shown in Table 5-5,
the workload CG from NAS parallel benchmark suite and the nano-benchmark depicted in
Figure 5-1 incur more number of TLB miss with larger page size on Intel’s Sandy Bridge

machine. For example, when 1GB pages are used instead of 2MB pages the number of TLB



142

Table 5-5. TLB miss rates per 1K memory accesses for Intel's Split Design and for merged-

associative TLB.

4KB 2MB 1GB
Split-TLB Merged- Split-TLB Merged- Split-TLB Merged-
associative associative associative
TLB TLB TLB

NPB:CG 279.5 282.6 42.1 0 130.7 0

Nano- 0 0 487.8 0 490.7 0

benchmark

(Figure 1)

misses per 1K memory accesses goes up from 42 to 130 for the workload CG. Similarly, the
nano-benchmark incurs nearly 500 TLB misses per 1K memory access with 2MB and 1GB page
sizes while incurring no misses when 4KB base page size is used. However, with the simulated
merged-TLB architecture these workloads do not show any TLB miss unpredictability. For
example, workload CG incurs almost no TLB misses with 2MB and 1GB pages and the same is
true across all page sizes for the nano-benchmark. Thus, merged-associative TLB is able to

mitigate TLB miss rate unpredictability of a conventional split-TLB design.

5.6.3 Performance benefits of merged TLB

The merged-associative TLB design aggregates TLB resources of sub-TLBs for various
page sizes. This helps avoid underutilization of hardware TLB resources that is possible with
split-TLB design. For example, 96 PTEs (64 + 32) for 2MB pages could be cached in the
merged-TLB configuration, while in a split-TLB design could hold address translation for only

up to 32 pages. Table 5-6 lists the MKPA for the D-TLB hierarchy when using only 4KB pages.
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Split-TLB FA-TLB FA-TLB Merged-TLB
(64 entry) (96 entry)
graph500 207.9 207.9 207.7 207.9
memcached 4.4 4.36 4.42 4.38
MySQL 431 3.88 4.05 3.63
NPB:CG 282.1 281.37 284.29 282.71
NPB:BT 5.77 6.63 5.67 5.50
Table 5-7. TLB misses per kilo memory access with 2MB pages.
Split-TLB FA-TLB FA-TLB Merged-TLB
(64 entry) (96 entry)
graph500 60.13 51.94 39.92 33.52
memcached 3.97 4.05 4.04 4.08
MySQL 2.89 3.73 3.48 3.95
NPB:CG 0.68 0.0017 0.0018 0.035
NPB:BT 2.94 3.13 3.12 3.19
Table 5-8. TLB misses per kilo memory accesses using 1GB pages.
Split-TLB FA-TLB FA-TLB Merged-TLB
(64 entry) (96 entry)
graph500 6.04 0 0 0
memcached 3.57 3.02 2.72 2.76
MySQL 421 2.79 2.92 3.23
NPB:CG 109.791 0 0 0
NPB:BT 1.28991 0 0 0
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For each workload I run four TLB configurations — split TLB, fully associative TLB with
64 and 96 entries and the proposed merged-associative TLB. Table 5-7 and 5-8 lists the same

when 2MB and 1GB pages are used, respectively.

I observe that the merged-associative TLB does not enable any reduction in number of
TLB misses over split-TLB design when only 4KB pages are used (Table 5-6). The split-TLB
design has 64 entries for 4KB pages in L1-TLB, backed by a larger 512 entry L2-TLB. While the
merged-associative TLB design provides up to 96 entries in L1-TLB it does not increase the

TLB reach in any substantial way and thus demonstrates no benefit.

Table 5-7 shows the TLB miss rates when 2MB pages are used. The split-TLB design
provides 32 L1-TLB entries for 2MB pages (no L2 TLB), while the merged-associative TLB
provides up to 96 L1-TLB entries. If a workload’s working set for 2MB pages is captured by
number of TLB entries between 32 and 96 then the merged-associative TLB provides significant
reduction in TLB misses. For example, in case of graph500 the merged-associative TLB incurs
only 33 TLB misses per 1K memory access while a split-TLB design would have incurred more
than 60 misses. The number of TLB misses is slightly lower than even the fully associative
configurations as well. The slight improvement shown over fully associative TLB with 96 entries
is most likely due to the LRU replacement policy in the TLB. However, I do not notice any
significant benefit from the merged-associative TLB for other workloads. I also note that for
2MB pages NPB:CG has very different TLB miss rates in Table 5-5 and Table 5-7 for the split

TLB design. The data in Table 5-5 is collected using hardware performance counter while the
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data in Table 5-7 is from the simulator. I was unable to explain this discrepancy, however the

simulator provided good estimates of TLB misses for almost all other cases.

When 1GB pages are used the merged-associative TLB significantly reduces TLB miss
rates compared to split-TLB design for graph500 and CG (Table 5-8). In a split-TLB design
there could be only four entries for 1GB pages in the TLB while a merged-associative TLB can
hold up to 96 entries. In general, for 1GB pages merged-TLB is able to nearly eliminate all TLB

misses for several workloads.

In summary, I find that the merged-associative TLB fails to provide significant
reductions in TLB misses over the conventional split-TLB design. Any significant reduction in
TLB miss rates occur only when the number of pages that effectively covers the working set of a
program falls within the number of DTLB entries allowed by split-TLB design and that enabled

by the merged-TLB design.

5.7 Related Work

Virtual memory has long been an active research area. Past and recent work has

demonstrated the importance of TLBs to the overall system performance [5,9,13,11,19].

Support for large pages: Almost all processor architectures including MIPS, Alpha,
UltraSPARC, PowerPC, and x86 support large page sizes. To support multiple page sizes these

architectures implement either a fully associative TLB (Alpha, Itanium) or a set-associative split-
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TLB (x86-64). Talluri et al. was first to discuss the tradeoffs and difficulties of supporting
multiple page sizes in hardware [88]. More specifically, they pointed out difficulties in designing

set-associative TLBs when multiple page sizes are to be supported.

The work closest to the merged-associative TLB proposal is a skewed-set associative
TLB [81] proposed (but not evaluated) by Andre Seznec that extends the idea of skewed-
associative caches to TLBs to support multiple page sizes in a single set-associative structure. A
skewed-set associative TLB extends a set-associative design where each way (column) is
indexed by a different hash function. The hash functions are chosen such that a given virtual
address has a unique location in each way depending upon the page size. A skewed-associative
TLB enables any location in a set-associative TLB structure to map pages with any possible page
size. However, the effective associativity of the skewed-associative TLB, i.e., the number of
potential locations for a given virtual address mapped with a given page size is much smaller
than the actual number of ways in the TLB structure. In the example presented in the paper, the
effective associativity is only 2 against the actual 8-way associative TLB structure. Thus, such a
design is likely increase TLB misses due to conflicts. Furthermore, to allow address translations
for large contiguous virtual memory regions to be cached in a skewed-associative TLB, the
author recommends number of entries in the skewed-associative TLB should be twice of the ratio
of maximum to minimum page size. Following this recommendation would need 512K
(512*512%*2) entries in the TLB for the x86-64’s page sizes. Thus, skewed-associative TLB is, at
best, more suitable for larger L2 TLBs but not for L1-TLB. In the contrary, merged-associative

TLB does not have such constraints and can work well for L1 TLBs.



147

Efficient TLB mechanisms: Prior efforts improved TLB performance either by
increasing the TLB hit rate or reducing/hiding the miss latency. For example, recent proposals
increase the effective TLB size through co-operative caching of TLB entries [86] or a larger
second-level TLB shared by multiple cores [11]. Prefetching was also proposed to hide the TLB
miss latency [6,17,22]. SpecTLB [7] speculatively uses large-page translations while checking
for overlapping base-page translations. Zhang et al. proposed an intermediate address space
between the virtual and physical addresses, under which physical address translation is only
required on a cache miss [103]. Recently, Pham et al. [73] proposed hardware support to exploit
naturally occurring contiguity in virtual to physical address mapping to coalesce multiple virtual-
to-physical page translations into single TLB entries. While these works focus on reducing TLB
misses in general, the proposed merged-associative TLB focuses particularly on the performance

unpredictability of a split-TLB design.

Since servicing a TLB miss can incur a high latency cost, several processor designs have
incorporated software or hardware PTE caches. For example, UltraSPARC has a software-
defined Translation Storage Buffer (TSB) that serves TLB misses faster than walking the page
table [66]. Modern x86-64 architectures also use hardware translation caches to reduce memory

accesses for page-table walks [6].

There are also proposals that completely eliminate TLBs with a virtual cache hierarchy
[45,101], where all cache misses consult a page table. However, these techniques work only for

uniprocessors or constrained memory layout (e.g., to avoid address synonyms). Opportunistic
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Virtual Caching discussed in Chapter 4, reduces address translation energy, but does not reduce

TLB miss rates.

While these techniques make TLBs work better or remove them completely, merged-
associative TLB proposes better TLB design in presence of multiple page sizes. Thus, merged-

associative TLB is orthogonal to many of the above proposals.

5.8 Conclusion

Use of large pages is most common method to reduce overhead of TLB misses. However,
supporting large page sizes complicates hardware TLB design. Commercial processors support
multiple page sizes either through fully associative TLB or by having separate set-associative
TLBs for each supported page sizes (called split-TLB design). While fully associative TLBs are
hard to scale and are often slower than set-associative TLBs, having separate set-associative
TLBs for different page sizes leads to potential TLB performance unpredictability and resource

underutilization.

A merged-associative TLB proposal overcomes the shortcomings of the split-TLB design
while avoiding fully associative TLB. In particular, split-TLB removes possibility of
performance degradation with use of large page sizes and in some cases significantly reduces the

TLB miss rates through resource aggregation.
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Summary, Future Work, and Lessons Learned

This chapter summarizes the thesis, mentions a few future research directions, and

discusses a few lessons that I learned during the thesis work.

6.1 Summary

Page-based virtual memory (paging) is a crucial piece of memory management in
today’s computing systems. Notably though, virtual address translation mechanisms’ basic
formulation remains largely unchanged since the late 1960s when translation lookaside buffers
(TLB) were introduced to efficiently cache recently used address translations. However, the
purpose, usage and the design constraints of virtual memory have witnessed a sea change in the

last decade.

In this thesis, I reevaluated virtual memory management in today’s context. In particular,
I focused on two aspects of address translation mechanism of the virtual memory subsystem --

latency overhead from TLB misses, particularly for big memory workloads and the energy
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dissipation due to address translation. I made three high level observations. First, big memory
workloads’ demand to efficiently address-translate large amounts of data stretches the current
TLB mechanism for address translation to new limits. Second, many key features of page-based
virtual memory like swapping, fine-grain page protection etc. are less important for many
emerging applications that access large amount of memory. Third, the design of the address
translation mechanism needs reevaluation considering energy-dissipation as a first class
constraint. Based on these observations I proposed three pieces of work. The first piece, called
direct segments, aims to reduce latency overhead of address translation. The second piece, called
opportunistic virtual caching, reduces energy overheads of address translation. In the third piece,
I proposed a merged-associative TLB that improves large page support in commercially

prevalent designs by aggregating TLB resources across different page sizes.

I proposed direct segments to reduce the ever-increasing latency overhead of virtual
memory’s address translation for emerging big memory workloads. Many big memory
workloads allocate most of their memory early in execution in large chunks and do not benefit
from paging. Direct segments enable hardware-OS mechanisms to dynamically bypass paging
for a large part of a process’s virtual address space, eliminating nearly 99% of TLB misses for

many of these workloads.

I proposed opportunistic virtual caching (OVC) to reduce the energy spent on translating
addresses. Accessing TLBs on each memory references uses significant energy, and virtual
memory’s page size constrains conventional L1 cache designs to be highly associative -- burning

yet more energy. OVC makes hardware-OS modifications to expose energy-efficient virtual



151

caching as a dynamic optimization. This saves 94-99% of TLB lookup energy and 23% of L1

cache lookup energy across several workloads.

While direct segments could eliminate most TLB misses for big memory workloads that
often have fairly predictable memory usage pattern, they are less suitable when there are frequent
memory allocations/deallocations. Large pages are likely to be more suitable under such
dynamic memory management scenarios. Unfortunately, prevalent chip designs like Intel’s Ivy
Bridge statically partition TLB resources among multiple page sizes (default base page sizes and
larger page sizes), which could lead to performance pathologies for using large pages. To this
end, I proposed merged-TLB to avoid these performance pathologies and allow dynamic

aggregation of TLB resources to reduce TLB miss rates.

A common theme across the techniques proposed in this thesis is to attach semantic
information with the virtual addresses that is used by the hardware to enable efficient address
translation. For example, in direct segments, a range of virtual address designates memory region
that may not benefit from paging. In OVC, the hardware uses virtual caching or physical caching
depending upon a higher order bit of the virtual address. In a merged-associative TLB, a hint on

the page size for translation is embedded in the virtual address range.

6.2 Future Research Directions

While my thesis research reevaluated virtual memory’s address translation mechanisms
for latency and energy dissipation, I believe there are at least three additional emerging scenarios

in computing that encourages rethinking of virtual memory management. These three computing
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trends are: wide use of virtual machines, emergence of non-volatile memory and emergence of

single-chip heterogeneous computing.

6.2.1 Virtual Machines and IOMMU

Virtual machines are gaining importance in cloud-era computing as they enable resource
consolidation, security, performance isolation. However, under virtualized environments the cost
of address translation can be multiple times of that in a native system as the hardware may

traverse two levels of address translation [10:-].

This may make future big memory workloads less suitable for running with virtual
machines. Further, many emerging workloads are I/O intensive and the IOMMU hardware in
modern processors are often used to provide protection against buggy devices and to provide
guest operating systems with direct access to devices under virtualization. However, enforcing

strict protection through IOMMU often incurs significant overhead to I/O intensive workloads.

In the near term, the direct segment design can be extended to reduce the TLB miss cost
in virtual machines by eliminating one or both levels of page-walk. In longer term, I think virtual
memory management could be specialized to cater to the needs of operation under virtualized
environment. For example, today in x86-64 architecture the same hierarchical page table
structures and similar address translation hardware are used for translating addresses for both
translation layers under virtualized environment. However, key features like sparsity of address

mapping, size of memory mapping can be different among the two address translation layers.
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Further, utilizing IOMMU to provide strict protection against buggy devices can incur
significant performance cost due to the need of frequent creation/destruction of memory
mappings [99]. It may be possible to enable the IOMMU hardware to provide the OS with
ephemeral, self-destructing mappings that automatically expires after an OS-specified condition
(e.g., access counts, elapsed time). This could avoid costly OS interventions on unmapping
operations. Moreover, as use of the IOMMU becomes popular, challenges in efficient
virtualization of IOMMU hardware itself -- possibly through two-dimensional IOMMU -- could
be interesting. Such a two-dimensional IOMMU could provide protection against device driver

bugs in the guest OS, while allowing guest OS to access devices without VMM intervention.

6.2.2 Non-Volatile Memory

As the DRAM technology faces scaling challenges in sub-40 nm process emerging non-volatile
memories (NVM) like phase are being touted as potential DRAM replacement. However, unique
features of most NVM technologies like non-volatility, read-write asymmetry, and limited write-

endurance make a compelling case of revisiting DRAM-era virtual memory design.

For example, while redundant writes (e.g., due to zeroing of zeroed pages) by virtual
memory is hardly an issue with DRAM, finding and eliminating these writes may be important
due to limited write endurance and high cost of write operation in NVMs. Further, stray writes
by buggy applications on the persistent memory can leave inconsistencies that survive restart.
One potential solution to contain stray writes may be to treat all persistent user memory as read-
only and can be written only after application explicitly requests OS to make a range of

addresses writable. However, such a system could require low-overhead page-permission
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modifications. Hardware-enforced TLB coherence instead of today’s long-latency software
enforced one (a.k.a. TLB shootdown) could be helpful in such scenario. NVM’s ability to allow
both fast, byte-addressable access and non-volatility allows it to be treated as physical memory
or storage media. It could be interesting to explore ways to dynamically decide what portion of
installed NVM is treated as memory and what portion for persistence. Furthermore, segregation
of read-mostly and write-mostly memory regions rather than only identifying read-only, read-
execute or read-write regions can be beneficial for future virtual memory that needs to deal with

read-write asymmetry and write-endurance of NVMs.

6.2.3 Heterogeneous Computing

There is a growing trend of heterogeneous computing elements (e.g., central processing
unit, graphic processing unit, cryptographic unit) being tightly integrated together on a system-
on-chip. Extending virtual memory seamlessly across varied computing elements for ease of
programming and for better management of heterogeneity is likely to be key for such tight
integration. However, different computing elements have very different memory usage needs and
simply extending conventional virtual-memory hardware and OS techniques to non-CPU
computing units may not be optimal. For example, GPUs tend to demand much more memory
bandwidth than CPUs. Further, GPU’s lock-step execution model makes its memory-access
patterns bursty. Sustaining address translation needs of bursts of concurrent memory accesses
may be a real challenge for the hardware virtual memory apparatus. Further, GPU workloads
often demonstrate streaming access patterns that may make TLBs less effective due to lack of

temporal locality. Moreover, GPU memory architecture is different from that of the conventional
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CPU. Unlike CPUs, GPUs enable different types of memory like scratchpad (shared) memory,
global memory and includes memory-access coalescer before cache access. Efficiently handling
page-faults and enabling demand paging on GPUs may also need further exploration. Exploring
the feasibility of virtual caches in GPUs can be another interesting research question as it might
lower the latency and energy overhead of address translation in GPUs. In summary, I believe that
accommodating memory usage needs of very different computing units while presenting a

homogenous virtual address space to programmer is challenging and needs further exploration.

6.3 Lessons Learned

There are few important lessons I learned during my thesis work.

First, the merged-associative TLB work made me realize that I should have done more
back-of-the-envelope calculations on potential benefits before delving into implementations. In
the hindsight, I observe that merged-associative TLBs can substantially reduce the TLB miss
rates over a split-TLB design for a narrow range of applications whose working set fits within
the entries enabled by a merged-associative TLB but not by a split-TLB design. Unfortunately, I

could have made this observation even before any implementation effort.

Second, during my thesis work, I realized that several inefficiencies in performance and
energy dissipation could be eliminated through cross-layer optimizations, as also observed in a
recent community whitepaper [21]. In the later part of 20" century and in the early 21* century,
the technology scaling provided tremendous impetus to computing capability. Modern

computing systems harnessed this capability by evolving into having many layers (e.g., OS,
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compiler, architecture), each with often disjoint and well-defined set of responsibilities. This
helped divide-and-conquer the design complexity. However, this layering hides much of the
semantic information between the layers of computing and results in inefficiencies. These
inefficiencies arise from the lost opportunity to optimize an operation by needing to ensure that
the desired operations work under all possible scenarios. For example, in direct segments work, I
found that big memory applications do not benefit from page-based virtual memory for most of
its memory allocations and yet systems enforces page-based virtual memory for all memory

allocation.

Thus cross layer optimizations can help reduce the inefficiencies and thus enable better
computing capability both in terms of performance and energy-efficiency even without same
level of technology scaling that were available until early part of 21* century. Consequently, I

encourage researchers and engineers to seek out and exploit additional cross-layer optimizations.
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Appendix Raw Data Numbers

In the appendix, I put some raw numbers for various experiments conducted for Direct
Segment (Chapter 3) and Opportunistic Virtual Caching (Chapter 4). The data presented in

Chapter 5 are all absolute and so, I add no more data for the Chapter 5.

Raw data for Direct Segment (Chapter 3)

In Chapter 3 there are primarily two sets of relative numbers. The first set provides the
percentage of execution cycles attributed to data-TLB misses (Table 3-4). The second set of data

captures the fraction of data-TLB misses that falls in direct segment memory (Table 3-5).

I collected the above-mentioned first set of data using performance counters mentioned in
Chapter 3. The performance counter numbers are sampled after the initialization phase of each
workload and sampling is continued till the TLB-miss cycles as the fraction of total execution
cycles shows no further significant change. Thus, multiple runs of each workload did not
necessarily run for same amount of logical unit of work. The raw numbers presented here are
also has one more caveat. All though the relative numbers calculated from the raw data presented

below is close to all relative numbers presented in Chapter 3, they may not be exactly match.
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This happened since the archived profiled raw performance counter values did not exactly
correspond to the sampling done for the data but correspond to when the execution of workload

ended. Table A-1 presents raw numbers related to Table 3-4. It provides the execution cycles and

the DTLB miss cycles.

Table A-1. Execution Cycles.

4KB 2MB 1GB

DTLB

Total DTLB Total DTLB Total miss

cycles miss cycles miss cycles cycles

(in cycles (in cycles (in (in

million) (in million) million) (in million) million) million)

graph500 10031600 5128000 & 6114000 602400 @ 5086400 74400
memcached 2540400 @ 238400 @ 2136400 129200 4485200 @ 172000
mySQL 1388800 69200 1665200 72000 1654800 62000
NPB:BT 1229600 685600 18807600 223600 13987600 77600
NPB:CG 20365600 6161600 69655000 1176950 13354800 952000
GUPS 143200 118800 143200 76400 143600 26000

In Table A-2, I provide the total number of DTLB misses and the number that falls within

the direct segment memory.

Table A-2. DTLB miss counts.
DTLB miss in DS Total DTLB miss

graph500 9090742807 9091425377
memcached 1002012524 1002103147
mySQL 453105523 501628801
NPB:BT 1262602735 1263148127

NPB:CG 5079907025 5080166016
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Raw data for Opportunistic Virtual Caching (Chapter 4)

Table B-1 provides the raw energy numbers L1 TLBs. It presents data and instruction
TLB’s dynamic access energy for the baseline and the opportunistic virtual caching. These
numbers corresponds to numbers Table 4-7 in Chapter 4.

Table B-1. TLB energy numbers.
L1 D TLB Dynamic Energy (nJ) L1 ITLB Dynamic Energy (nJ)

canneal
facesim
fluidanimate
streamcluster
swaptions
x264

bind

specjbb

memcached

Baseline
10171063.1412
15448572.3787
11911983.2395
15820949.7295
12038730.3317
12304883.1953
10060588.2406
13034437.0135

14694311.4458

ovc
2804367.79579
496105.789414
75812.2024277
777460.978147
117748.159708
541890.521626
300806.244694
1032790.11189

795933.941261

Baseline
32533227.2304
55033317.1814
55691262.1606
50381618.6952

44604476.28
42053075.9906
27134186.3582
44576334.9065

45221072.5231

ove

6929.51215291
6218.76220788
501.209294257
3123.37863463
4729.09656129

292748.61594
459383.718418
358372.779693

639722.305095

Table B-2 provides the raw energy numbers L1 caches. It presents data and instruction
cache’s dynamic access energy for the baseline and the opportunistic virtual caching. These

numbers corresponds to numbers Table 4-10 in Chapter 4.



canneal
facesim
fluidanimate
streamcluster
swaptions

x264
bind

specjbb

memcached

Table B-2. L1 cache energy numbers.
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L1 D-Cache Dynamic Energy (nJ) L1 I-Cache Dynamic Energy (nJ)

Baseline
75157238.0322
105425385.611
78543497.5052
108847366.129
78993953.6996

82154652.1382
66964562.73

89866798.4328

101121133.98

ovc
61352743.0943
80917926.0771
59921791.1285
84011005.4784
60228798.5231

58894228.6761
51061748.8156

68197386.7696

77922454.2875

Baseline
213472195.203
361040885.469
365328236.349
330523189.686
292598096.757

275970385.801
178903587.764

293745553.024

297146477.955

ovc
162719484.85
275195461.912
278452413.445
251911011.881
223070905.714

210461550.156
136426060.701

224107587.044

229334179.882

Table B-3 provides the execution cycles spent for the baseline and OVC configurations.

These raw numbers corresponds to Table 4-11.

Table B-3. Execution cycles (in millions).

Baseline ovC

canneal 19424405157 19412318708
facesim 4037494795.34256 8162729465
fluidanimate 8164085256.37547 4036934313
streamcluster 9498754713.03902 9498999061
swaptions 3060185160.00724 3062848436
x264 4335044991.28174 4339342731
bind 2282773185.46217 2297728023
memcached 14998123261.9223 15014787106

specjbb 6110624382.00161 6084041979



