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General introduction

Overview

An understanding of trajectories in long-term forest development is essential for examining

several fundamental issues in forest ecology and management. Long-term forest develop-

ment has important implications for issues as diverse as forest productivity, carbon storage,

biological diversity, and ecological forestry methods. For example, nearly all forests appear

to show a decline in productivity with age (Gower et al., 1996), but it is not clear if pro-

duction in old-growth forests declines to zero and becomes carbon neutral (as suggested by

Odum 1969) or if old-growth stands continue to accumulate carbon (as suggested by Luys-

saert et al. 2008). The sustainability of tree species populations and stand structures can

likewise only be evaluated through analysis of long-term trends. Demographic sustainability

of tree populations is likely to become a pressing issue in this century due to the impacts

of climate change and invasive species. And while relatively few plant or animal species are

true obligates for any particular stage of forest development, very substantial differences in

species abundance have been associated with different developmental stages (e.g., Howe and

Mossman, 1996; Werner and Raffa, 2000; Linder et al., 2006). ‘Ecological forestry’ practices,

which seek to ensure ecosystem health, biological diversity, and long-term sustainability by

emulating natural species composition, stand structure and disturbance processes, require

long-term baseline data to provide sound management guidelines (Seymour and Hunter,

1999; Franklin et al., 2007).

While much has been learned from ecological studies of old-growth forests, a limitation is
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that these have necessarily been brief snapshots of species composition and forest structure

at one point in time from which accurate time trends can be difficult to infer. Permanent plot

records are rarely available for more than a couple of decades and are usually only available

in relatively young second-growth forests. More rigorous examination of these issues requires

access to both long-term permanent plot data as well as forest models capable of providing

accurate demographic predictions with a fairly high degree of resolution. Models are an

especially promising approach because they provide the only practical means of studying

changes in forests over many decades or centuries.

Forest models are available for a variety of objectives and levels of resolution. For stud-

ies of forest population dynamics, ‘individual tree’ models are among the most useful and

versatile (Busing and Mailly, 2004; Berger et al., 2008). Individual tree models simulate the

recruitment, growth, and mortality of individual trees based on local neighborhood (small

plot) characteristics. Aggregate stand properties are predicted from a ‘bottom up’ approach

in which stand growth and structure is determined form the sum of the growth and charac-

teristics of the individual trees. As long as the calibration data set contains a wide variety

of small plot conditions, the model can in principle predict the outcome of a wider range of

stand conditions and treatments than may be present in the stand-level data.

There are currently three widely used families of individual-tree models: the JABOWA/

FORET family (Shugart, 1984), the SORTIE family (Pacala et al., 1996), and the FVS/

STEMS family (Belcher et al., 1982). All of these models have been useful in examining a

wide range of forest ecology-forest management issues from climate change effects to forest

successional patterns, but the current versions are not well-suited for the main task in this

dissertation of understanding forest development in response to disturbances over multiple

tree generations. None of them were calibrated with data from old-growth forests, and

longer-term projections have not been rigorously tested against permanent plot data. In

a medium-term comparison against permanent plot data in second-growth forest, Yaussy



iii

(2000) found that NE-TWIGS (in the STEMS family) provided more accurate predictions of

size distributions and stand volume than ZELIG (in the JABOWA/FORET family), which

underestimated stand volume by 30-55% over a span of only 30 years. Yet the STEMS

model, in spite of its very large calibration data set, has also been found to be inaccurate

in its diameter growth and volume projections functions (Crow, 1986; Pokharel and Froese,

2008); the latter authors suggested that STEMS growth functions need to be replaced. The

FVS/STEMS family, designed primarily for short-term forest inventory updates, also lacks

a formal regeneration module, making long-term projections essentially impossible.

The JABOWA/FORET and SORTIE families take a more ecological approach to for-

est development and incorporate fairly detailed recruitment functions, but neither family

contains calibration data on actual growth and mortality of mature and old trees. Models

in both families also assume very simple crown and gap geometry. In JABOWA/FORET,

crowns are modeled as flat circular disks, with the leaf area of each tree uniformly distributed

across the plot, so that the leaf area of any tree lies completely above the leaf area of all

shorter trees, even when height differences are minor. In SORTIE, crowns are modeled as

cylinders that expand uniformly in all directions. These simplifications would likely impair

the accuracy of simulated gap dynamics, gap closure, and gap capture, which are funda-

mental processes in the development of uneven-aged stands. The impact on long-term stand

projections, however, is uncertain.

The overarching themes of the dissertation are the long-term trajectory of forest de-

velopment and the impact of the historic natural disturbance regime on that trajectory.

Embedded within these themes are three important and related concepts in forest ecology:

the dynamics of changes among stand developmental stages, resilience of stand structure to

the impact of disturbances, and long-term demographic sustainability of tree species. These

concepts will be examined specifically using the metrics of above-ground biomass, diameter

distributions, and structurally defined stand developmental stages.
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The overall objectives of this dissertation are: (1) to quantify long-term trends in above-

ground tree biomass and stand structure in northern hardwood forests, and to examine how

these are affected by the historic natural disturbance regime, (2) to estimate the frequency

of structural stand stages, along with residence times and transition rates among stages,

under several disturbance regimes, and (3) to develop a quantitative approach to evaluating

demographic sustainability of tree populations under several conditions, including those of

restricted recruitment. Computer simulation with the CANOPY model was used to clarify

long-term trends. However, to the extent possible, these model predictions were verified

against available field data, including an extensive field survey and a 30-year record of change

on permanent plots in the Porcupine Mountains Wilderness State Park.

Analyses in all chapters make frequent use of a structural stand stage classification system

that is fully described in Appendix A. This system uses a dichotomous key based on basal area

distribution among broad size classes (e.g., sapling, pole) to recognize forest developmental

stages. Stand stages in this system are sorted in order of increasing modal diameter and

degree of understory development. It extends the system of Lorimer and Frelich 1991a

with the ability to differentiate different stages of old growth, and it is based on commonly

collected field measurements. Appendix A contains background material on this classification

system and may aid in interpreting these results in all chapters, especially chapters 1 and 2.

Field data sets

Two field data sets were employed in various phases of the project, one that captures a snap-

shot of the landscape over a broad spatial scale and another that documents small-scale forest

change over a multi-decade temporal scale. The spatially broad data is a survey of 70 half-

hectare plots in northern hardwood stands that were randomly located in three wilderness

landscapes in Upper Michigan in 1981-84, and include stands in all stages of development.

In the earlier study, stand histories for each plot were reconstructed from increment cores
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(Frelich and Lorimer, 1991). A subset of eight of these plots from representative stages were

stem-mapped and measured four times from 1981-2011, providing a second data set spanning

three decades. On all plots in both datasets, diameter at breast height, species, and crown

class were recorded for all individuals larger than 2 cm dbh.

Forest model

The modeling portion of this study employs CANOPY, an empirical, spatially explicit,

individual-tree model calibrated for northern hardwood forests. The model is designed to

provide detailed simulations of gap dynamics and responses to canopy disturbances over a

period of several tree generations. Output is provided in the form of individual-tree mea-

surements (dbh, height, crown radii) at 5-year intervals, which can be analyzed to produce

plot-level metrics such as basal area, volume, above-ground tree biomass, and size distribu-

tions for individual species and all species pooled.

The model has several characteristics that make it especially well suited for the ques-

tions posed in this study. To our knowledge, it is the only forest model that has been

calibrated with field data derived from stands in all stages of development, including highly

uneven-aged, old-growth stands with trees near the end of their lifespan (350+ years). The

entire model has been designed and calibrated specifically to capture the essential features

of the dynamics of late-successional forests in general and northern hardwoods in particular.

Predictions from CANOPY have been extensively evaluated in the past 15 years in both

managed and unmanaged stands, using not only standard statistical techniques with subsets

of the data withdrawn for validation purposes (e.g., Mayer and Butler, 1993; Vanclay and

Skovsgaard, 1997) but also with direct comparisons of independent data from long-term ex-

perimental forest sites and other archival data (Choi et al., 2001, 2007; Halpin, 2009; Hanson

et al., 2011, 2012).

Calibration data used in CANOPY reflect growth, recruitment, and mortality rates of
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individual trees over a time span from about 1953 to 2011. Estimates of frequency and sever-

ity of natural disturbances were derived from tree-ring reconstructions of primary forests in

upper Michigan for the time period 1830-1960 (Frelich and Lorimer, 1991). Like many

empirical or mechanistic models (e.g., SORTIE and STEMS/FVS) the CANOPY model is

designed only to provide predictions under the environmental conditions of the calibration

data set, which are assumed to remain constant during the simulations. In its current form,

CANOPY is not designed to predict specific responses to climate change, invasive species,

and other major environmental changes. In this study, simulations of 500-1000 years were

therefore conducted only to understand the long-term response of forests to disturbance un-

der the baseline environmental conditions, and not to provide forecasts at any particular

future time. The primary value of this approach is in enhancing the historical understanding

of forest dynamics as a baseline for assessing alterations caused by global environmental

change. However, in Chapter 3, CANOPY is used to explore some of the long-term implica-

tions of sapling and canopy recruitment limitations that might be induced by any number

of potential environmental stressors such as climate change, invasive weedy plants, exotic

insects and diseases, exotic earthworms, and excessive deer browsing.

Details of the CANOPY design have been previously published in scientific journals (Choi

et al., 2001, 2007; Hanson et al., 2011, 2012) , and a brief summary of key design elements

is included in the following individual chapters. But because of the limited space that can

be allocated to model design in these chapters, a more comprehensive summary is included

below for reader convenience, along with changes made to the model for the present study.

All of the principal equations with supporting statistics are also included in Appendix B.

The code of the model (in C++ programming language) is included as Appendix C.

Site quality. CANOPY uses floristic habitat types from Kotar et al. (2002) to represent

site quality. These habitat types have been shown to reflect different levels of aboveground

net primary production (Fassnacht and Gower, 1997) as well as the ‘site index’ commonly
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used in forestry studies (Coffman, 1984). Habitat types were used instead of site index or

direct measures of production because estimates of primary production were not available,

and site index cannot be reliably determined in uneven-aged stands, which make up most

of the calibration data set. The model includes separate sets of equations for the Acer-

Ozmorhza-Caulophyllum, Acer-Tsuga-Dryopteris, and Acer-Tsuga-Maianthemum habitats,

the most common and widely distributed northern hardwood habitat types in the calibration

region. Habitat type can be specified independently for each 10 x 10 m cell, allowing the

model to simulate stands that include a mixture of these three habitats.

Subplot-level competition. Competition in CANOPY is evaluated using regional north-

ern hardwood stocking charts (Tubbs, 1977). These charts provide empirical measures of

crowding by comparing current stand basal area with the regional average basal area for

stands of the same mean diameter of dominant and codminant trees. Stocking charts are

conceptually related to self-thinning diagrams (e.g., Osawa and Sugita, 1989; Westoby, 1984)

in which current tree density is compared with an observed biological maximum. Previous

tests indicated that the stocking levels provide a slightly better correlation with observed

diameter growth and mortality than standard competition indices (Choi et al., 2001), and

unlike competition indices, the numerical value of stocking level is not highly influenced by

the plot size (cf. Lorimer, 1983). For growth and mortality predictions in CANOPY, compe-

tition level is evaluated for each 10 x 10 m cell by computing the stocking of the surrounding

30 x 30 m subplot. This evaluation proceeds in a ‘moving-window’ fashion throughout the

entire stand. By using a fixed 30 x 30 m subplot size, crowding is evaluated on the scale of

small neighborhoods, allowing trees to respond to local gap formation.

Diameter growth. Diameter growth of overstory trees is predicted as a function of current

diameter, species, habitat type, and local subplot competition. Stochastic variation in diam-

eter growth is incorporated based on the mean squared error of the regressions. As each tree

recruits into the stand, a ‘growth modifier’ variable is set following a normal distribution.
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This sets some trees on faster or slower growth trajectories (e.g., 10% higher than the mean),

but note that the mean values themselves can change in response to changing forest density.

The current revision of CANOPY (version 3) includes an option to use an alternative set

of growth and mortality equations that take into account small but statistically significant

differences in the growth rates of trees in even-aged vs. uneven-aged stands. The user may

select the default option that distinguishes the two stand structures only by local differences

in stocking at the subplot level, or else use the alternative equations that include categorical

variables and interaction terms to further distinguish even- and uneven-aged stands. If the

equations with age-structure variables are selected for use, even-aged growth and mortality

rates will be applied to any tree that recruits into a sapling patch until the tree reaches age

200, which is the mean longevity of canopy trees (Lorimer et al., 2001). After that point, the

patch is assumed to develop the gap structure of an uneven-aged stand, and the uneven-aged

equations are applied. When new recruits are added, the developmental stage of the stand

(i.e., sapling or otherwise) is evaluated on a 50x50 m patch size, in order to have a reasonably

sized sub-population.

Mortality. Background mortality (i.e., resulting from senescence or competition rather

than disturbance) of all trees is modeled stochastically. Probabilities of mortality for each

species are predicted by logistic regressions in terms of initial diameter and stocking. Mor-

tality functions for each species follow a U-shaped trend, with very high rates of mortality

for small trees, decreasing to a minimum level for most species at around 30 cm dbh, then

increasing again after around 66 cm dbh as trees become larger and older (Clark, 1992;

Coomes and Allen, 2007).

CANOPY includes an option to simulate the historic natural disturbance regime based on

the recurrence intervals in Frelich and Lorimer (1991). In each year, an expected proportion

of canopy removal is stochastically determined. For years where this removal is less than

10% of the crown area, no disturbance is simulated and instead the background mortality
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subroutine is used. Otherwise, individual tree probability of windthrow equations are used

stochastically to allocate disturbance mortality to particular trees. These equations predict

probability of mortality for each species in terms of storm severity index and initial size

(Hanson, 2009). The storm severity index follows the definition of Canham et al. (2001), and

is a 0-1 parameter estimated for each calibration plot by maximum likelihood that uses plot-

level degree of damage to assess the severity of disturbance without the need for explicit wind

speed measurements. A regression was used to relate the percent crown area removal used

in studies of recurrence intervals with the storm severity index used to develop probability

of windthrow equations. This regression is used to compute an initial storm severity index,

but then CANOPY checks that this storm severity index is sufficient to remove the target

proportion of crown area determined from the recurrence intervals. If not, the severity is

adjusted accordingly. This procedure is iterated until the target amount of crown area is

removed. The recurrence intervals used in CANOPY incorporate all disturbances removing

overstory trees, including not only windstorms but also other disturbances like drought

and disease. Because explicit size-dependent probability of mortality equations for these

other disturbances are not available, CANOPY makes a simplifying assumption that these

disturbances also preferentially remove large trees and uses the probability of windthrow

equations for all disturbances.

Gap dynamics and sapling height growth. In CANOPY v1, tree growth and mortality

was directly influenced by crown projection area and exposed crown area. However, when

the calibration data set was greatly expanded to include other sites where crown data was

not available, the model had to be simplified to exclude crown variables as independent

predictors of overstory growth and mortality. In CANOPY v2 and v3, crown variables are

used to delineate the boundaries of canopy gaps; crown competition variables and gap area

are then used as independent predictors of sapling height growth.

Asymmetric crown growth of overstory trees is simulated in response to available growing
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space. Each crown is divided into quarter ellipses, one for each cardinal direction, and growth

of each crown radius is independently simulated. When a crown quarter abuts the crown of a

taller tree, no further lateral crown growth is predicted for that crown quarter on the shorter

tree. Growth resumes as normal after the crowns no longer touch (e.g., when the taller tree

dies). Growth also continues as normal for the other crown quarters. Overtopped trees use

crown growth rates based differentiating an allometric relationship between diameter and

mean crown radius. Overstory trees use rates from Webster (2002), which depend on their

species, diameter, and degree of crown exposure.

For small trees, height growth is simulated directly, rather than being estimated from

diameter growth via an allometric relationship as in most other models. Height growth

for each species is predicted from initial height, gap area, and crown competition variables.

For each tree, the eight closest overstory trees in cardinal and intercardinal directions are

identified. The closest points to the subject tree along the driplines of these trees form the

vertices of an irregular octagon used to estimate the ‘gap area’ for each tree (if there is no

gap, then gap area = 0). The crown area of other saplings on a competition subplot centered

on the sapling is summed for the crown term. Similar to the diameter growth predictions,

stochastic variation is also incorporated into predictions of height growth using normally

distributed error based on the MSE of the regression fits. As with the diameter growth, a

stochastic modifier is assigned to each tree when it recruits into the stand.

Sapling recruitment. The number and species of 2-6 cm trees entering each 10x10 m

cell determined by the species composition and stocking level of the surrounding forest.

Stocking values are computed for the central cell and for the 8 cells that share a common

border, allowing CANOPY to recognize gaps. Based on these stocking values, the number

of 2-6 cm trees expected given the measured stocking is predicted from a field-calibrated

regression. If there is a deficit of saplings compared to the density predicted for that level

of subplot competition, new saplings are added to make up the deficit. Initial diameters of
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these new recruits follow a lognormal distribution of diameters between 2 and 6 cm based on

the calibration dataset. When there is a fractional deficit, then this is used as a stochastic

probability of adding a single tree. For example, if the deficit is 0.3 trees, then there will

be a 30% probability of adding a single tree. Initial species for the newly added individual

are determined stochastically based on overstory density and species composition, following

a method similar to Vanclay (1994).

A refinement was also made to the recruitment mechanism in CANOPY v.3 to allow it to

mimic the sparse recruitment commonly observed in stands with a high proportion of pole

and mature trees. Even on plots relatively unaffected by deer browsing, high concentrations

of pole and mature trees were frequently associated with low density of large saplings and

small poles (p<0.001). Based on this observation, a rule was added to CANOPY that delays

further recruitment of saplings whenever pole trees comprise ≥20% of the basal area or

mature trees comprise ≥ 35% of the basal area. This rule is enabled or disabled for each

simulation run by a user-selected switch. When the switch is enabled, this rule is evaluated

for each 10 x 10 m cell, based on the basal area percentages on the 50 x 50 m (0.25 ha) patch

centered on that cell. Uneven-aged stands experiencing small gap formation typically have

basal area of pole and mature trees below these thresholds, and therefore are not affected

by this rule even when it is enabled.

Overview of chapters 1-3

Chapter 1 evaluates long-term stand development, specifically in relation to biomass trends

and the underlying demographic changes that drive them. This chapter employs both long-

term simulation and analysis of field evidence to provide a systematic test of the Bormann

and Likens (1979) hypothesis that biomass developing after stand-replacing disturbance

reaches a peak and then declines to a lower steady-state level having approximately zero

net growth. An alternative hypothesis, that biomass shows an asymptotic trend (e.g., Lich-
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stein et al., 2009; Keeton et al., 2011) is also tested. Simulations track biomass development

after clearcutting for 1,000 years under a disturbance regime comprised only of individual

treefall gaps caused by background mortality and under the historic natural disturbance

regime. Two independent tests of these hypotheses are also conducted using field data.

Biomass from the full 70-plot upper Michigan data set was arranged by stand developmental

stage to determine if levels of biomass are lower late in stand development. Changes in

biomass over the 30-year measurement period were also analyzed on the permanent plots to

evaluate trends in net growth across a gradient of developmental stages.

Whether or not there is a peak in the biomass trend could partly depend on the ability of

secondary cohorts to compensate for overstory attrition during the transition from even-aged

to all-aged structure. In this chapter, this mechanism is tested both under a regime of small

treefall gaps and under the historic natural disturbance regime. Biomass net growth from

both simulations and field data is computed for individual trees and summarized by cohorts.

The frequency with which biomass net growth of the understory cohorts can compensate for

overstory attrition is evaluated.

The Bormann-Likens hypothesis predicts that the above-ground component of old-growth

forests will be approximately carbon neutral, whereas the alternative hypothesis predicts that

carbon accumulation may continue long into stand development (>800 years). The Bormann-

Likens peak/decline trend is supported by several simulation models (e.g., Shugart, 1984;

Bragg et al., 2004; Vanderwel et al., 2013), while the asymptotic trend is supported by

multiple chronosequence analyses of field data (e.g., Lichstein et al., 2009; Keeton et al.,

2011). The possibility that ‘noise’ in estimates of stand age may prevent chronosequence

techniques from detecting a biomass peak is also explored.

Chapter 2 evaluates developmental dynamics at both the stand-level and larger scales

from the perspective of forest structural change. Disturbance history (e.g., the timing and

severity of disturbances) has frequently been used to evaluate stand development (e.g.,
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Franklin et al., 2002; Zenner, 2005; D’Amato et al., 2009), but structural criteria for stand

development may be both easier to evaluate in the field and more closely related to a va-

riety of ecologically important processes. When disturbance history becomes sufficiently

complex, with a number of layered past disturbances of various severities and ages, each

leaving a ragged structure of surviving legacy trees, it becomes essentially impossible to de-

fine a meaningful ‘stand age’. While much of a landscape may indeed have been recently

disturbed, it may also have had sufficient resilience to disturbance that much of it remains

essentially structurally unchanged. Therefore, a large proportion of the landscape may be

occupied by stands that are structurally not distinct from those undisturbed for a long time.

In this chapter, 1,000 year simulations were conducted under two contrasting disturbance

regimes: a ‘dichotomous’ regime of frequent small gap formation with infrequent severe

disturbance, and the historic natural disturbance regime comprising a range of disturbance

frequency and severity. From these simulations, a second-order Markov chain was constructed

and used to compute the balance of stand structural stages for an infinitely sized population

of plots at equilibrium. Markov-chain results were then used to compute state transition

diagrams with residence times, illustrating the way that individual stands flow through

structural stages as well as the proportion of a landscape-scale population of stands in each

stage. Simulation experiments were also performed that test the impact of either single or

repeated light and moderate disturbances on old-growth stands.

Chapter 3 quantitatively evaluates the ability of individual species to sustain their popu-

lations under specified conditions. In contrast to the ‘minimum viable population’ of animal

ecology (cf. Boyce, 1992), there are no widely accepted quantitative criteria to assess pop-

ulation sustainability in forests. A typical ad hoc criterion for sustainability of forest tree

populations is the presence of descending monotonic size distributions so that higher num-

bers of small trees can compensate for attrition due to mortality (Smith et al., 1997; Nyland,

2007). This criterion also attempts to loosely mimic the descending monotonic form observed
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in many old-growth stands of late successional species.

Meyer and Stevenson (1943) observed a descending monotonic demographic distribution

in unmanaged hemlock/hardwood forests, and proposed the negative exponential distribu-

tion as a mathematical model to describe this pattern. Under this model, the ratios of

the numbers of trees in successive size classes (called the ‘q-ratio’ in forestry literature) is

constant. Goff and West (1975) suggested that the constant rates of mortality across size

classes implied by constant q-ratios may be untenable. They proposed a ‘rotated sigmoid’

distribution form, which has a variable q-ratio across size classes. There is ongoing debate in

the forestry literature regarding which of these forms may be correct, with some investigators

suggesting that a rotated sigmoid form may reflect either recent disturbance or represent a

sampling artifact (Schmelz and Lindsey, 1965; Leak, 2002; Rubin et al., 2006).

But regardless of the specific mathematical form taken by a descending monotonic curve,

the mere presence of a descending monotonic shape does not definitively indicate a sustain-

able distribution because the populations of small trees may still be insufficient to balance

mortality. Forests around the world are increasingly faced with a growing complex of stres-

sors that may threaten their long-term sustainability, including climate change as well as

invasive and exotic pests. Under these circumstances, quantitative tools to assess the long-

term sustainability of tree populations are urgently needed. In this chapter, a quantitative

metric of tree population sustainability was developed that evaluates the persistence of tree

populations based on their initial demographic structure. This demographic sustainability

index was then used in a series of simulation experiments designed to determine the minimum

number of saplings and the proportions of trees in different size classes (q-ratios) needed to

sustain the current overstory basal area.
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CHAPTER 1
Long-term trends in biomass and tree demography in
northern hardwood forests: An integrated field and
simulation study

Abstract

Long-term trends in biomass development in forests have important implications for carbon

management, but chronosequence field studies and simulation projections have produced

differing conclusions about patterns of biomass accumulation and the magnitude of a biomass

peak. In this paper, the Bormann-Likens hypothesis of a peak and decline in biomass followed

by zero net growth after several centuries was tested against an alternative hypothesis of

asymptotic biomass development having positive net growth even at advanced ages. Trends

in aboveground tree biomass and large tree density (>50 cm dbh) were examined from

30-year permanent plot data and replicated, multi-century simulations using CANOPY,

an empirical, individual-tree, spatially explicit model. Simulations were performed on a

variety of habitat types and species mixtures. Both field data and simulations indicated

a decline in aboveground tree biomass in later stages of old growth, with a corresponding

decline in the number of large trees. This decline was robust to modeling assumptions

and occurred to varying degrees on all habitat types and species mixtures tested. Peak

aboveground tree biomass occurred at a time when age structure was changing from even-

aged to multi-aged, and when the underlying size distribution showed a transition from
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unimodal to descending monotonic form. Biomass net growth of secondary cohorts was

usually found to be insufficient to compensate for attrition of the initial even-aged cohort.

A simulation analysis mimicking chronosequence methods, however, produced a misleading

asymptotic biomass trend because the mean age of the largest trees was not equivalent to

time since clearcut after age 300, which distorted the time scale. Incorporating natural

disturbances into the simulations lowered the level of the biomass peak, but a subsequent

decline was still predicted. Net growth of aboveground tree biomass in old-growth stands

with descending monotonic size distributions was approximately zero for both the field data

and simulations, even when natural disturbances were included. Results of this study suggest

that the aboveground component of old-growth forests is unlikely to continue accumulating

carbon at very advanced ages, even when averaging over a large area containing some younger

stands with positive net growth.

1.1 Introduction

Aboveground forest biomass is an important part of the total carbon budget for terrestrial

ecosystems, comprising 33% of total carbon in temperate forests (Turner et al., 1995), and

is highly responsive to anthropogenic and natural disturbances. Carbon storage capacity in

forests has recently become a topic of increasing global concern as carbon management plans

are devised (Heimann, 2009; Ashton et al., 2012). An understanding of long-term trends in

aboveground tree biomass will be necessary to assess forest carbon storage potential and the

degree to which carbon storage in forests can be maintained. Relevant data, however, are

difficult to obtain because older forests are globally uncommon, landscapes incorporating

a wide range of forest developmental stages are rare in many temperate ecosystems, and

permanent plot records are usually of short duration (e.g., van Doorn et al., 2011).

Based on an early forest model (JABOWA), Bormann and Likens (1979) constructed

a systematic hypothesis regarding the trend of tree biomass following stand-replacing dis-
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turbance. They suggested a ‘reorganization’ stage where trees become established, followed

by an ‘aggradation’ stage where a single dominant cohort increases rapidly in biomass and

attains maturity. In the subsequent ‘transition’ stage, the initial cohort breaks up and gives

way to a broader range of age classes. In late-successional forests with a gap-based distur-

bance regime, it then enters a ‘steady state’ stage where the forest is composed of a shifting

mosaic of patches of various age classes. This has been the most common hypothesis for

the past 35 years, and is the baseline from which many subsequent studies begin (Keeton

et al., 2011; Lichstein et al., 2009). Under this hypothesis, peak biomass is attained at the

beginning of the transition phase when the initial even-aged cohort reaches its maximum

development. During the transition phase, biomass declines to a lower level before entering

the steady-state, when net growth is approximately zero.

The hypothesis of a decline in biomass in the steady state is biologically plausible, but

JABOWA was an early prototype that lacked a formal calibration data set, and few data

in New England were available from actual old-growth forests. JABOWA also uses a simple

crown geometry, modeling crowns as flat circular discs and distributing leaf area of individ-

ual trees evenly across the entire 10 x 10 m simulation plot (Botkin et al., 1972; Busing and

Mailly, 2004). It is uncertain if the simplified crown geometry would accurately simulate

gap capture and gap closure, both fundamental processes in the growth and development

of uneven-aged stands. Additionally, the early JABOWA simulations did not incorporate

periodic moderate-severity disturbances, which would likely affect the biomass trajectory in

actual stands. Subsequent field studies and simulations in northern hardwood/conifer ecosys-

tems have suggested that periodic moderate disturbances (30-60% canopy removal) have such

a pervasive impact on actual landscapes that moderate rather than catastrophic disturbances

overwhelmingly dominate the stand development pathways (Frelich and Lorimer, 1991a,b;

Splechtna et al., 2005; Papaik and Canham, 2006; Hanson and Lorimer, 2007; D’Amato and

Orwig, 2008; Fraver et al., 2009).



4

Several recent field studies of chronosequences have also raised some doubt regarding the

hypothesized peak and decline, with their data being more consistent with an asymptotic

trend. In a chronosequence analysis of US forest inventory data, Lichstein et al. (2009)

documented an apparent asymptotic increase in biomass with age, and hypothesized that

the expectation of a decline may have been an artifact of how mortality is handled in models.

Keeton et al. (2011) found a similar asymptotic trend in biomass even in stands with trees

up to 400 years old and partially attributed this continued increase to a concurrent linear

increase in the number of large trees. Luyssaert et al. (2008) reported an apparent increase in

biomass with age well into the old-growth stage. They suggested that a biomass decline was

absent because losses due to mortality of large trees were balanced by increased productivity

in the smaller trees released when the larger trees die. According to this hypothesis, old-

growth forests function as a carbon sink even at very advanced ages (>500 years).

Permanent plot re-measurements at the Hubbard Brook Experimental Forest also appear

to document an asymptotic trend in biomass (Siccama et al., 2007; van Doorn et al., 2011).

Surprisingly, an asymptote appears to have been reached at a predominant tree age of only

80-90 years, well before the transition to old growth, and at a much lower biomass (245

Mg/ha) than originally expected (regression estimate of 350 Mg/ha; Whittaker et al. 1974).

They hypothesized that local factors (e.g., site degradation by acid rain, beech bark disease)

may be driving this trend, so it is not clear if this pattern can be broadly generalized. Un-

fortunately, there are few other permanent plot data sets measured over a similar timeframe

for comparison.

In this paper, the Bormann and Likens (1979) peak/decline hypothesis in northern hard-

wood forests of the Great Lakes region is evaluated against the alternative hypothesis of

asymptotic biomass development. Changes in biomass production are analyzed in relation

to underlying changes in tree mortality and tree size distributions. The effects of periodic

light and moderate disturbances on biomass trajectories are also examined. If the Bormann-
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Likens peak/decline hypothesis is valid, we would expect the following individual hypotheses

to be supported by field data and simulations. (1) In stands developing after stand-replacing

disturbance and then subjected only to individual treefall gaps (i.e. background mortality),

aboveground live-tree biomass and number of large trees reach maximum levels at a time

corresponding to the average longevity of canopy trees in the post-disturbance cohort. (2)

The rate of biomass increase of the younger trees in the understory and in canopy gaps is

insufficient to balance the biomass loss from overstory mortality, resulting in a subsequent

decline in live biomass. (3) Several hundred years after stand initiation, stands reach a

steady-state with lower biomass and approximately zero net biomass increment. (4) In the

first several centuries after the initial disturbance, diameter distributions progress from a

unimodal to a compound (bimodal) to a steeply descending monotonic curve form in one

maximum lifespan of the dominant trees, with peak biomass accumulation coinciding with

the development of a compound diameter distribution (unimodal distribution of overstory

trees and steeply descending ‘tail’ corresponding to understory trees). (5) When the historic

natural disturbance regime is incorporated, moderate disturbances interrupt the trajectory

of biomass accumulation, preventing a peak from developing, and resulting in an asymp-

totic trend when averaged over a number of sites. For individual stands, however, quiescent

periods are sometimes long enough that a biomass peak followed by a decline still occurs.

Rather than using a single line of evidence, we test these hypotheses using an integrated

approach that combines abundant field data on unmanaged mature and old-growth northern

hardwood forests with simulations using a well-tested, individual-tree model calibrated with

data from the same region. The field data include a broad, landscape-level survey in extensive

tracts of old-growth forest as well as 30-year permanent plot measurements from stands

ranging in age from young pole stands to broadly uneven-aged old growth. The model

(CANOPY) is calibrated with data from >8,000 trees from permanent and temporary plots

in second-growth and old-growth stands spanning a similarly wide range of development
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(Hanson et al., 2011).

1.2 Methods

1.2.1 Study areas

Measurements were conducted in three upper Michigan natural areas dominated by northern

hardwoods and having little or no history of logging: core areas in the Porcupine Mountains

Wilderness state park, Sylvania Wilderness in the Ottawa National Forest, and a tract of pro-

tected private lands owned by the Huron Mountain Wildlife Foundation (Christy, 1929; Raf-

ferty and Sprague, 2001). Northern hardwoods are widely distributed across the northeastern

US and are dominated by late-successional species such as sugar maple (Acer saccharum),

yellow birch (Betula alleghaniensis), and eastern hemlock (Tsuga canadensis). The natu-

ral disturbance regime is dominated by frequent small gap formation, occasional moderate-

severity disturbance, and infrequent stand-replacing disturbance (Frelich and Lorimer, 1991a;

Schulte and Mladenoff, 2005; Fraver et al., 2008; D’Amato and Orwig, 2008). Climate is hu-

mid continental with short cool summers. Average July temperatures are 20 °C and average

January temps are -7.5 °C near Lake Superior, and -10.9 °C further inland. Annual precip-

itation averages 80-90 cm and is fairly evenly distributed throughout the year. Elevations

range from 182 m to ∼600 m. Soils are primarily Fragiorthods and Haplorthods with a

loam or sandy loam texture. The majority of plots are on the Acer-Tsuga-Dryopteris (ATD)

habitat type of Kotar et al. (2002), which has sugar maple site index of ∼19-20 m at base age

50 (Coffman, 1984) and ANPP in second-growth stands of approximately 7.2-9.5 Mg/ha/yr

(Fassnacht and Gower, 1997). In nearby experimental forests on similar sites, sugar maple

site index is 18-21 m for base age 50 years (Erdmann and Oberg, 1973; Crow et al., 1981).

The other less common habitats (Frelich, 1986) are also mesic and above-average in produc-

tivity, but with some variation in site quality and species composition.
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1.2.2 Field methods

Seventy half-hectare plots were positioned by random coordinates on maps of primary for-

est in advance of the initial field survey. On each plot, diameter at breast height (DBH)

and crown class were recorded for all trees ≥ 1.4 meters tall. Increment cores were taken

from canopy trees nearest to 10-30 randomly located points. Initial measurement was in

the summers of 1981-1984, with eight plots permanently marked for remeasurement. Per-

manent plots were selected to span a wide range of developmental stages, from pole through

old-growth stands approaching a steady-state structure. On these plots, an average of 68

increment cores were taken per plot (range 39-99). Remeasurements were conducted in 1992,

2004, and 2011. Over the 30-year measurement period, the permanent plots have not expe-

rienced significant windstorms but were subjected to a severe drought in 1988 that caused

high mortality of large yellow birch (Lorimer et al., 2001).

1.2.3 Model description

CANOPY is a spatially explicit, individual-tree model that simulates gap capture and closure

via height growth of saplings and lateral crown growth by overstory trees (Hanson et al.,

2011, 2012). Calibration data for the model were collected in northern Wisconsin and upper

Michigan and span a wide range of stand developmental stages, including young even-aged

stands through broadly uneven-aged old-growth. CANOPY version 3, which is used in

this paper, expands the calibration dataset to include a substantial amount of long-term

permanent plot data from managed and unmanaged second-growth hardwood stands in the

Argonne Experimental Forest of northern Wisconsin (Niese and Strong, 1992).

CANOPY predicts the number of 2-6 cm saplings recruiting into the stand based on

overstory density and species composition. Height growth of saplings is predicted for each

species based on initial height, gap area, and crown competition. Diameter growth of canopy

trees is predicted for each species as a function of initial tree size and plot level competition.
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Crowns of canopy trees grow asymmetrically in four cardinal directions; growth rate along

each crown radius depends on the available growing space in that direction. Background mor-

tality of trees is modeled as a logistic function of initial tree size and plot competition level.

The growth, mortality, and recruitment equations all incorporate categorical variables and

interaction terms to account for habitat variation among the three floristic habitat types rep-

resented in the calibration dataset (Acer-Ozmorhza-Caulophyllum, Acer-Tsuga-Dryopteris,

and Acer-Tsuga-Maianthemum types of Kotar et al. 2002). Predictions of height and diam-

eter growth include stochastic variation following normal distributions based on the mean

squared error of the regression fits. Once trees die, they move through decay classes following

a Markov process, and estimates of dead volume or biomass can be computed.

CANOPY includes a subroutine to emulate the historic natural disturbance regime of

the upper Great Lakes region. Disturbances removing variable amounts of crown cover are

simulated following the recurrence intervals from Frelich and Lorimer (1991a). CANOPY

then applied individual-tree probability of blowdown equations from Hanson (2009). These

are a function of the size and species of individual trees, as well as the storm severity index,

an empirical estimate of storm severity based on the overall amount of blowdown on a plot

(Canham et al., 2001). A regression was developed to relate storm severity index to the

amount of canopy removal assessed in the earlier studies of the natural disturbance regime.

CANOPY checks that the estimated storm severity was sufficient to cause the required

amount of canopy removal, and iteratively adjusts it if it was not. If the actual removed

canopy area differs by more than 5% from the target, the storm severity is adjusted and

new individual-tree windthrow probabilities are calculated and applied. This procedure is

repeated until the target amount of canopy area is removed.

Previous validation tests have demonstrated good correspondence of CANOPY’s pre-

dictions of forest structural change with archival data and independent experimental trials.

Long-term predictions of stand basal area and size distributions under small-gap distur-
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bance regimes match closely with archival data on uneven-aged, old-growth stands from the

region. For example, in a multi-century simulation of a mixed hardwood site under back-

ground mortality (Halpin, 2009), CANOPY’s predicted basal area stabilized at 34 m2/ha

within the first 300 years of simulation, compared to 34 m2/ha reported by Janowiak et al.

(2008) and Goodburn and Lorimer (1999) on similar sites. After basal area stabilized, only

minor fluctuations were predicted, suggesting little evidence of error propagation even in

multi-century predictions. Predicted numbers of trees per ha in sapling, pole, mature and

large size categories fell near the middle of the range observed in old-growth stands (Hanson

et al., 2012). At the end of 1,000-year simulations, size distributions of mixed hardwood

stands were nearly identical to the mean distributions of the 18 steady-state stands in the

field data (Fig. 2 in Chapter 3).

A modification was made to the recruitment module in CANOPY v.3 to mimic sparse

understory development often observed in earlier stages of stand development. The field

data contain evidence of low ingrowth and high mortality for small trees in stands with high

concentrations of pole and mature trees, even with low levels of deer browsing (Chapter 2).

The recruitment mechanism in CANOPY v.2 predicted fairly abundant regeneration in some

of these situations. Based on the negative correlation between percent basal area of mature

trees and sapling density (r=-0.48, p=0.005), a switch was added to the recruitment module

that delays further addition of saplings whenever pole trees occupy ≥ 20% or mature trees

≥ 35% of the basal area in the 50 x 50 m patch centered on each 10 x 10 m cell. Uneven-

aged stands with small gap formation normally have basal area levels lower than these

thresholds and therefore are not affected by this rule, generally allowing development of a

dense understory.

Growth and mortality equations in CANOPY v.3 were also refined to account for subtle

differences between even- and uneven-aged stands. The CANOPY calibration dataset con-

tains small but statistically significant differences between growth and mortality rates for
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trees in even- vs. uneven-aged stands for some species. Given the more prominent role that

even-aged development plays in the current study, growth and mortality equations were both

augmented with categorical variables and interaction terms for even-aged structure. As each

new recruit is added, stand developmental stage is evaluated on a 0.25 ha patch centered on

the new recruit. If the developmental stage of the patch is classified as ‘sapling’ (less than

10 m2/ha of basal area in trees > 10 cm dbh), even-aged growth and mortality rates were

used for individual recruits for a period of 200 years after establishment (corresponding to

the mean age at time of death for canopy trees; Lorimer et al. 2001). Uneven-aged growth

and mortality equations were used for all trees that did not originate in a sapling patch or

were more than 200 years old. Mortality equations were also augmented with categorical

variables and interaction terms to allow different mortality rates among habitat types.

1.2.4 Simulation design

Development following a complete clearcut (no residual trees > 2 cm dbh) was simulated at

annual time-steps for 1,000 years on half-hectare plots, with 20 replicates performed for each

simulation experiment. In year 1 of the simulations, CANOPY’s recruitment mechanism

begins adding new 2-6 cm dbh saplings, with their density determined by field-calibrated

regressions. Trials were performed on all three habitat types simulated by CANOPY, both

under background mortality alone and under the historic natural disturbance regime (1850-

1980). Simulation results presented here focus on the ATD habitat type because the majority

of the field data are on plots of that type.

Sensitivity analyses were also performed to evaluate the effect of changes in CANOPY

v.3 described above: i.e., incorporating age structure variables into the growth and mortality

equations, and changes to CANOPY’s recruitment mechanism.

Species composition in the first 20 years of simulation was set to match common obser-

vations of the composition of young stands after clearcutting in the region on these habitat



11

types (Buttrick, 1923; Eyre and Zillgitt, 1953; Kotar et al., 2002). For AOCa habitat, initial

sapling composition was 60% sugar maple, 20% basswood (Tilia americana), 15% white ash

(Fraxinus americana), and 5% yellow birch. Initial composition on ATD was 80% sugar

maple, 5% basswood, 5% yellow birch, 5% red maple (Acer rubrum), and 3% white ash.

For ATM, initial composition was 40% sugar maple, 30% yellow birch, 15% red maple, and

5% basswood and white ash. After the first 20 years, CANOPY’s normal mechanism to

determine species composition based on the composition and density of the overstory was

employed.

Initial simulations demonstrated slow but steady increases in hemlock dominance over the

1,000 year simulation under background mortality on ATD and ATM habitat types (see also

Woods, 2000), which obscured age-related biomass trends. However, simulations under the

historic disturbance regime tended to remain maple dominated. In order to compare these

two disturbance regimes and also to evaluate age-related biomass trends separately from

changes in biomass related to changing species domiance, most simulations for this study

included only mixed hardwood species; hemlock-dominated stands were analyzed separately.

To clarify the relative influence of sugar maple and the less abundant hardwoods on biomass

trends, some simulations also included only sugar maple.

1.2.5 Data analysis

Whole-tree aboveground biomass (including branches and leaves) was estimated from stem

diameter using published biomass equations. Equations were selected from studies in the

northern hardwood region, with preference given to locations with species composition sim-

ilar to the study areas, and data sets that included large trees (≥50 cm dbh). Sources of

biomass equations were: sugar maple and yellow birch (Young et al., 1980), red maple (Crow

and Erdmann, 1983), white ash (Ker, 1980), ironwood and hemlock (Monteith, 1979), and

basswood (Perala and Alban, 1994).
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Analysis of biomass increment partitioned the stand-level response into the following

components, following definitions and size thresholds from Erdmann and Oberg (1973) and

Crow et al. (1981):

Ingrowth Total biomass of live trees with dbh < 11.7 cm at the beginning of a decade that

grew larger than 11.7 cm by the end of the decade.

Survivor growth Total biomass increment of trees ≥ 11.7 cm that were alive at the be-

ginning and end of a decade.

Mortality Total biomass of trees with dbh ≥ 11.7 cm alive at the beginning of a decade that

died by the end of the decade, measured at the beginning of the decade. For net growth

calculations, no growth was assumed on trees that died during the interval. However,

this simplifying assumption is restricted to the net growth analysis, and therefore does

not affect estimates of total biomass which were tabulated at annual time-steps.

Net growth The overall change in biomass by decade, equivalent to ingrowth + survivor

growth - mortality.

Biomass growth was further partitioned into cohorts. For simulations, the initial cohort

was defined to be all trees that recruited in the first 20 years after the clearcut and were

larger than 25 cm dbh when they died. Individual trees in the initial cohort were tracked

throughout the simulations and mean ages at time of death were computed. For field data

from the permanent plot remeasurements, the initial overstory was defined to be all trees

larger than 25 cm dbh at first measurement (1981-1982).

Structure of simulated and field stands was also classified using a revision of the stand

stage definitions from Frelich and Lorimer (1991a). Stages were sequentially arranged in

order of increasing modal diameter and degree of understory development. Typically, this

results in a progression in diameter distribution shape from skewed unimodal to unimodal to



13

descending monotonic (Appendix A). Actual distinctions between stand stages are based on

distribution of basal area among broad size categories (Appendix B, Table 1). For example,

old-growth stands must have at least 45% of the stand basal area in trees >46 cm dbh,

corresponding to an average tree age of ∼150 years (Lorimer and Frelich, 1989). Simulations

of post-clearcut stands for 1,000 years as well as available permanent plot data, supported

the interpretation that the stand structural stages follow the expected temporal sequence

(Appendix A).

1.3 Results

1.3.1 Aboveground biomass trends among stand structural stages

When mean aboveground live-tree biomass (hereafter “biomass” except as noted) was sum-

marized by stand stage for the full 70 plot field data set, a higher level of biomass was

observed in the transition stages than in steady state (Fig. 1). Mid-transition had on aver-

age 61 Mg/ha more biomass than steady state (t-test: p=0.004; t=3.192, df=22.54; 95% CI

for the difference: 21.7-102 Mg/ha), implying a decline of 19% between the two stages.

When the eight permanent plots were arranged in order of increasing modal diameter

and degree of understory development, an increasing trend in biomass was observed through

the early stages of old growth (Fig. 2). The pattern in steady state then becomes somewhat

ambiguous, with two plots showing a lower level of biomass than early stages of old growth

and a third showing a higher level. For six of the eight permanent plots, estimated biomass

fell within the range of variation of 20 replicated CANOPY simulations for stands of the

same developmental stage.

CANOPY simulations of mean biomass for each stage correspond well with field-measured

averages in most cases, with overlapping 95% confidence intervals for all structural stages

except mature-sapling mosaic. Formal two-sample t-tests showed no significant difference

between CANOPY predictions under the historic natural disturbance regime and field mea-
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surements for the mature stage and the last three stages of old growth (0.12≤p≤0.71). For

the pole stage, CANOPY biomass predictions were lower than the field average (t-test:

p=0.017, t=2.65, df=16.79; 95% CI for the difference: -72 to -7 Mg/ha) when the historic

natural disturbance regime was imposed, but simulations under background mortality alone

did not differ from the field averages (t-test: p=0.65,t=-0.466, df=10.53). For the early

transition stage, t-tests indicated that both sets of simulations differed from field averages

(p=0.019 for the historic disturbance regime and p=0.013 for background mortality).

1.3.2 Trends in simulated biomass over time

Under background mortality, CANOPY simulations of biomass development on ATD habitat

showed a peak followed by a decline. The average live AGB across the 20 replicates declined

by 16%, from a peak of 350 Mg/ha at stand age 180 years to a low of 294 Mg/ha 320 years

after clearcutting (Fig. 3 a). Subsequently, live AGB mostly recovered to a stable value of

approximately 320 Mg/ha 450 years after clearcutting. Among individual replicates, peak

biomass ranged from 350 Mg/ha to 397 Mg/ha and occurred between stand age 180 and 230.

The subsequent reduction averaged 28% on the 17 of 20 replicates that showed a decline.

The predicted biomass peak/decline behavior persisted when alternate versions of CANOPY

were used for sensitivity analyses. When CANOPY’s default recruitment mechanism was

employed, lacking the heuristic to mimic sparse understory development in mature and old

even-aged stands, live AGB of the 20 replicates declined by 9%, from 300 Mg/ha 200 years

after clearcut to 272 Mg/ha 370 years after clearcut. When growth and mortality equations

were used that did not include categorical variables to distinguish even vs. uneven-aged

structure, live AGB declined by 22%, from 320 Mg/ha 180 years after clearcut to 249 Mg/ha

310 years after clearcut. Finally, when neither the sparse regeneration heuristic nor the age-

structure sensitive growth and mortality equations were used, live AGB declined by 13%,

from 311 Mg/ha 170 years after clearcut to 272 Mg/ha 360 years after clearcut.
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Simulations that incorporated the historic natural disturbance regime in mixed hardwood

forests on ATD habitat resulted in lower peak biomass values (300 Mg/ha at age 200)

compared to background mortality. But there was still a peak followed by a decline of 23%

to 232 Mg/ha 320 years after clearcut (Fig. 3 c). Ten of the twenty individual replicates

still displayed a decline in live AGB, with an average decline of 46% on replicates that had

one. Disturbance in the first 300 years on many replicates usually removed < 30% of the

aggregate crown area and often did not disrupt the overall peak/decline pattern (Fig. 4).

Simulated aboveground biomass of dead trees on ATD habitat peaked 20-40 years after

the peak in live aboveground biomass under both background mortality (Fig. 3 a) and the

historic natural disturbance regime (Fig. 3 c). After the peak, both dead and live biomass

declined together, rather than demonstrating a compensating trend. The trend in total

aboveground biomass was therefore similar to the trend in live AGB alone.

In sensitivity analyses conducted to evaluate the influence of species and habitat type

under background mortality, biomass peaks were generally observed except on pure maple

stands on ATD habitat (Table 1). However, stands on the more productive AOCa habitat

reached a lower biomass peak at earlier ages compared to ATD. Biomass then recovered

after the initial decline to approximately peak levels. On the less productive habitat types,

biomass either never increased after the initial decline (ATM) or the recovery was only partial

(ATD). Differences in the magnitude and timing of the biomass peaks were influenced by

the fertility gradient, habitat-influenced differences in species composition, and differences in

wood density and growth rates among species. For example, basswood and ash grow faster

than sugar maple but have lower wood density (Miles and Smith, 2009).
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1.3.3 Demographic drivers of biomass trends

Changes in size distributions and mortality patterns over time

When the 70 field plots were arranged by structural stand stage, diameter distributions

progressed from a skewed unimodal form in the pole stage to more symmetric unimodal

in the mature and early transition. The mid-transition stage typically had compound dis-

tributions, whereas the late transition and steady state stages typically had irregular or

relatively smooth descending monotonic curves (Fig. 5 a-f). The CANOPY simulations of

diameter distributions produced similar curve shapes and confirmed that these occurred in

the temporal sequence expected from the field data on structural stages (Fig. 5 g-l).

Peak biomass and maximum number of large trees occurred in the mid-transition stage for

both field and simulation data (Figs. 2,3), with a trough and subsequent partial recovery in

the steady state. At the time of the biomass peak, the diameter distributions were compound

in form in both field and simulation data (Fig. 5 c,i). Simulated mean age at time of death

for canopy trees coincided with peak biomass under both background mortality and the

historic natural disturbance regime, and also coincided with the peak number of large trees

in background mortality simulations (t-tests; 0.20 ≤p≤0.91). However, the peak number of

large trees under the historic natural disturbance regime occurred about 20 years after the

mean age at time of death (t-test; p<0.01). The addition of exogenous natural disturbance

to background mortality also reduced the mean age at time of death from 209 to 180 years.

Aboveground live biomass had a nearly linear relationship with the number of large trees

(Fig. 6 a) in both the field data and simulations. In the simulations, however, the relationship

was different for even-aged stands younger than 200 years than for older uneven-aged stands

with a complex disturbance history. When simulated biomass was plotted against the mean

age of the largest 5% of trees, in order to roughly emulate a chronosequence analysis of multi-

aged stands, the observed relationship was essentially asymptotic (Fig. 6 b). The mean age

of the largest 5% of trees reached a maximum (Fig. 6 b) at the same time as peak biomass
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(Fig. 3 c).

On a shorter time scale, some of the irregularities present in the biomass trends on the

permanent plots (Fig. 2) are partly explained by disturbance-induced changes in species

composition. The effect of the severe 1988 drought during the first measurement period was

apparent on the net growth of yellow birch, which was negative on 6 of the 7 plots where

it was present. High yellow birch mortality at that time was responsible for the temporary

drop in biomass in an early transition stand (plot 6 in Table 3) and fully or partly accounts

for declines of variable length in two steady-state stands (plots 2 and 3 in Table 3). A net

decline in sugar maple biomass was also a contributing factor in the temporary biomass

declines on two of the plots (plots 3 and 6). The unexpectedly level biomass trend for the

early transition stand was due to a combination of high hemlock and maple mortality and

nearly zero ingrowth for all species (plot 4 in Table 3) resulting from many decades of high

deer browsing (Frelich and Lorimer, 1985). Yet, overall biomass net growth of hemlock was

positive on 7 of 8 plots despite a paucity of hemlock <10 cm dbh.

Production rates of initial and secondary cohorts

On the pole permanent field plot, both initial and secondary cohorts were aggrading over

the 30-year period (Table 2). On the mature and early transition plots, biomass increased

overall with slight losses in the understory. Of the five other old-growth permanent plots,

three had declining overstory biomass. In two of three cases, the negative net growth of the

overstory cohort was compensated by the growth of the secondary cohorts, resulting in a net

increase in biomass. However, none of the permanent plots occurred in the late transition

stage, where an overall decline in biomass would be most likely under the Bormann-Likens

hypothesis.

For the three permanent plots classified as steady-state based on structural attributes,

cumulative 30-year net growth averaged -3.9 Mg/ha; i.e., essentially zero (Annualized range:

-1.1 to 0.4 Mg/ha/yr). All three plots had positive net growth of the secondary cohorts, but
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two plots had negative net growth in the overstory cohort. On one of these, understory net

growth was sufficient to compensate for the losses, but not on the other plot in which the

overstory cohort decreased in biomass by 60 Mg/ha (Table 2).

Trends in the field data were clarified with simulations that included the late transition

stage. Simulated average biomass net growth of secondary cohorts under background mor-

tality did not generally compensate for the loss of the initial cohort during the transition

stages (Fig. 7). The initial cohort reached zero net growth at age ≈ 200, roughly at the mean

age at time of death for trees in that cohort (209 years). From ages 200-310, while overall

biomass was declining, average net growth was negative (t-test: p=0.014, t=-2.81, df=14;

95% CI: -0.60 to -0.08 Mg/ha/yr). After age 310, biomass net growth hovered about zero,

and the average was not distinct from zero (t-test: p=0.40, t=0.85, df=67; 95% CI: -0.05 to

0.13 Mg/ha/yr).

To more directly compare simulation results with the 30-yr permanent plot records,

biomass net growth was computed for 20 replicates under background mortality at 30 year

intervals from simulation years 200-290, the span of time during which a decline might be

expected (total of 60 intervals). In 78% of 60 cases, overall biomass declined over the 30-year

interval. In all but one of those, the secondary cohort net growth was positive but was not

sufficient to balance the loss of the initial cohort. In 22% of the 60 cases (n=13), overall

biomass increased during a 30-year interval. In 7 of these, both initial and secondary cohorts

were aggrading, and in the 6 others, the positive growth of the secondary cohort more than

balanced losses in the initial cohort. In one remaining case of the 60 total intervals, both

cohorts declined in biomass.

When the historic natural disturbance regime was incorporated into the simulations, the

loss of the initial cohort was somewhat more irregular, but was still not balanced on average

by the growth of the secondary cohorts (Fig. 8). From ages 200-300, while the overall biomass

was declining, average net growth was negative with marginal statistical significance (t-test:
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p=0.052, t=-2.16, df=12; 95% CI: -0.93 to 0.005 Mg/ha/yr). After age 300, average biomass

net growth was not distinct from zero (t-test: p=0.74, t=0.33, df=67; 95% CI: -0.14 to 0.20

Mg/ha/yr).

To analyze the natural disturbance simulations from Fig. 8 in a manner comparable

to the permanent plot field data, net growth was again computed for the 20 individual

replicates at 30 year intervals from years 200-290. Since the 30-yr permanent plot record

was free of moderate or severe disturbance, we sought to determine if secondary cohorts can

balance overstory losses when the late transition stage occurs during a ‘quiescent’ period.

Disturbances prior to year 200 were included in the analysis, but intervals from 200-290

that contained a disturbance were excluded along with all subsequent intervals for that

replicate (n=39 intervals remaining out of 60 total). Biomass declines were more common

than increases, with 59% of 39 replicates having a declining initial cohort that was not

balanced by the aggrading secondary cohorts. Biomass increased in 41% of the 39 cases; in

7 of these cases, both initial and secondary cohorts were aggrading, and in 9 cases, the loss

of the initial cohort was balanced or exceeded by the growth of the secondary cohorts.

1.4 Discussion

1.4.1 Evaluating the Bormann-Likens hypothesis

While the various lines of evidence from this study are not completely supportive of one

hypothesis, the preponderance of evidence supports the basic outline of the Bormann and

Likens (1979) hypothesis. In both field data and simulations, peak biomass occurred toward

the end of the lifespan of the initial overstory cohort, followed by declining biomass and

partial recovery in a steady state (Fig. 1,3) with zero net growth (Figs 7,8, Table 2). The

inclusion of mild and moderate disturbances did not produce an average asymptotic trend

but continued to show a peak-decline pattern, although natural disturbances lowered the

mean biomass levels (Fig. 3 c), as suggested by Bragg et al. (2004) and Keeton et al. (2011).
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Some disturbances prevented or delayed attainment of peak biomass, but most mild or

moderate disturbances were not sufficiently frequent or severe to disrupt the peak-decline

pattern (Fig. 4).

The magnitude of the simulated peak-decline pattern however, did vary under different

conditions, sometimes only showing a 3-10% decline under certain combinations of species

composition, habitat type, and model specifications. These declines might be too subtle to

detect in ‘noisy’ chronosequence data. Even under conditions where the mean decline was

15-25%, a decline was not universal among all replicates due to stochastic variation in growth

and mortality, at least at the 0.5 ha scale. For example, in simulations under background

mortality, 22% of the measurement intervals after age 200 had level or increasing biomass,

and in 10% of all cases, this increase occurred because overstory attrition was balanced or

exceeded by growth of secondary cohorts.

In both field and simulation data, biomass trends of stands and individual cohorts also

showed short-term fluctuations that could render the trend ambiguous over short time periods

(e.g., Figs. 1,3, Table 2). Sometimes, limitations in the field data also augmented the level of

ambiguity. For example, permanent plot field data show that secondary cohorts can in many

cases compensate for overstory losses. But late transition stands, when a large net decline is

most likely to be observed, were not present in the permanent plot data set. Likewise, the

ambiguous 30-yr trend among transition and steady-state permanent plots in Fig. 2 appears

to be largely an artifact of site variation. Specifically, the steady-state plot with high biomass

had the highest site quality of the 8 permanent plots. Its biomass of 366 Mg/ha was the

highest of any of the 18 steady state stands in the larger data set, well above the mean level

of 264 Mg/ha, while the biomass of the other two steady-state permanent plots was close to

the mean. Given these circumstances, even the trend in Fig. 2 appears to be more indicative

of a peak-decline pattern.

The peak-decline pattern is consistent with the underlying demographic processes of the
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tree species. The peak biomass in simulations occurred at about age 200, which corresponds

to the average longevity of canopy trees in both field data (Lorimer et al., 2001) and simula-

tions. This stage of stand development also had the greatest density of large trees (Figs. 3,5),

which is highly correlated with aboveground biomass (Keeton et al., 2011). In both field

data and simulations, the biomass peak also occurred at the time of transition in diameter

distributions from a predominantly unimodal to a descending monotonic form (Fig. 5). Sim-

ulations indicate that after age 200, mortality exceeded growth on average for the first time,

reflecting the breakup of the even-aged cohort (Fig. 7 b).

The peak-decline pattern of the Bormann-Likens hypothesis is also consistent with what

is known about structural differences between even-aged and all-aged stands. Periodic mor-

tality from senescence of large trees and resulting gap formation in all-aged forests leads to a

complex structural mosaic that includes numerous sapling and pole groups exposed to direct

skylight. In the present data set, this is evident in the size distributions of gap saplings and

canopy trees (dark bars in Fig. 5 f) and in crown maps that clearly show clusters of sapling

and pole trees in old canopy gaps in various stages of regrowth (Fig. 6b in Lorimer, 1985).

Biomass per unit area is lower for sapling and pole stands relative to mature and old growth

(e.g., Figs. 1,2 in this paper, cf. also Lichstein et al., 2009). Thus, the displacement of

some mature and large trees by sapling and pole groups will likely lower the level of above-

ground biomass. While it is conceivable that the multi-layered structure of all-aged forests

could augment total biomass and prevent a decline, both field (Fig. 1) and simulation data

(Fig. 3) generally indicated about 20% less biomass in these all-aged northern hardwood

forests compared to earlier stages of old growth.

Simulated peak and decline was robust to a number of modeling assumptions, with sim-

ilar conclusions based on both sets of growth and mortality equations, both recruitment

mechanisms, and both background mortality and natural disturbance regime, and also when

assessed at larger spatial scales (1, 2, 4 ha). Simulations are also able to factor out site-to site
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variability and represent behavior of identical sites allowed to develop under stable dynamics.

However, a limitation of the model is that CANOPY can’t predict the timing of stochas-

tic disturbance events like the 1988 drought, which accounts for some of the discrepancies

between observed and predicted biomass in Fig. 2.

1.4.2 How general are peak/decline dynamics?

The question of whether a broad generalizable trend can be inferred in biomass development

of northern hardwoods and other late-successional temperate forests depends partly on the

relative strengths of field and simulation evidence. Several models that differ substantially in

design from CANOPY have also predicted a peak in biomass followed by a decline, including

JABOWA (Whittaker et al., 1974), FORET (Shugart, 1984), FORCLIM (Bugmann, 1996),

SORTIE (Pacala et al., 1996), NORTHWDS (Bragg et al., 2004), and CAIN (Vanderwel

et al., 2013). However, the magnitude and timing of the predicted peaks differ among

models. For example, simulations with the NORTHWDS model predicted biomass peaks of

≈340 Mg/ha in the absence of windthrow and ≈ 290 Mg/ha under a natural disturbance

regime (Bragg et al., 2004), with peaks in both cases occurring around stand age 70. In

contrast, simulation with the CAIN model Vanderwel et al. (2013) predicted peak biomass

of ≈500 Mg/ha at approximately age 200, declining to ≈ 300 Mg/ha. And despite its

simplicity and minimal calibration data, JABOWA gave predictions of biomass similar to

those of CANOPY under background mortality. Whittaker et al. (1974) reported simulated

peak biomass of 390 Mg/ha at age 200, declining to a long-term average of ≈300 Mg/ha by

age 400. In the present study, CANOPY’s predictions of the magnitude of peak biomass

are in agreement with observations from field surveys of old-growth stands in the region

(Fig. 1; likewise Mroz et al. 1985; Gries 1995). Also, the onset of the decline coincides with

both predictions of average canopy-tree longevity generated by the field-calibrated mortality

equations as well as field evidence on longevity based on age determinations of recently dead
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trees (Lorimer et al., 2001).

At Hubbard Brook, recent permanent plot remeasurements show biomass leveling off

at ≈245 Mg/ha (Siccama et al., 2007), rather than the expected increase to ≈350 Mg/ha

(Whittaker et al., 1974). The asymptotic trend was believed to be influenced by anthro-

pogenic factors such as the exotic beech bark disease and acid rain. In the present study,

there has been little consistent evidence of growth stagnation in recent years, especially for

the mature and transition stages, and most stands seem to be trending toward a maximum

biomass of about 300-350 Mg/ha (Fig. 2). A possible exception is the pole-mature stand at

Summit Peak (Plot 5 in Table 2). In the first two measurement periods, biomass net growth

in this stand averaged 2.09 Mg/ha/yr, the highest value observed on any of the permanent

plots, and slightly lower than the 2.4 Mg/ha/yr reported at Hubbard Brook (van Doorn

et al., 2011). In the last 7-yr measurement interval, however, net growth averaged only 0.51

Mg/ha/yr, and its biomass may be trending toward a peak value of only 250 Mg/ha. This

could merely indicate a short-term lull in net growth, or alternatively it may be a valid

longer-term trend reflecting the stand’s location on an upper south-facing slope.

Other field studies in northern hardwoods aside from Hubbard Brook have reported

asymptotic biomass trends based on chronosequence analysis in which a time trend is inferred

from the mean age of larger trees in the stand. However, it is unclear if the assumption

of approximate equality between the mean age of the largest trees and time since major

disturbance (i.e. stand age) is consistently reliable. For stands younger than the mean

lifespan of the dominant species and with no old residual trees as a result of heavy partial

disturbance, this assumption works quite well (Fig. 6 c). As the initial cohort breaks up and

the stand begins to have a multi-aged structure, the relationship becomes increasingly less

reliable. Maple-dominated stands 600 years after stand initiation had a simulated mean age

of the largest 5% of trees closer to 300 years. When a trend in biomass development is inferred

using this noisy approximation of age, a largely asymptotic trend results (Fig. 6 b) even when
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the actual temporal trend is a peak followed by a decline (Fig. 3 c). In the current study,

repeated measurements on identical sites were used rather than a space-for-time substitution

across a mixture of sites. Another concern regarding chronosequence analysis is that many

forest inventory data sets, such as the US Forest Service FIA data, are comprised largely of

second-growth stands with few trees older than 150 years. At least for northern hardwood

systems, these ages would not be sufficient to observe the biomass peak (ca. 180-200 years)

or the subsequent decline (ca 250-300 years).

Some authors have hypothesized that disturbances may interfere with biomass devel-

opment, forestalling any peak that might theoretically exist. For example, Odum (1969)

suggested that some ecosystems may experience a dynamic in which periodic disturbances

maintain an ecosystem at an intermediate developmental stage. Based on their theoretical

REGIME model, however, Weng et al. (2012) computed that disturbances removing all of

the trees at > 120 year intervals would result in a <20% reduction in ecosystem carbon

content. The disturbance regime used by CANOPY has recurrence intervals longer than 120

years for all severity classes greater than 10% canopy removal (Frelich and Lorimer, 1991a;

Zhang et al., 1999; Schulte and Mladenoff, 2005). Many temperate forests with humid cli-

mates in Europe and Asia have similar disturbance regimes in which severe disturbance is

rare (Masaki et al., 1999; Schelhaas et al., 2003; Splechtna et al., 2005; Fraver et al., 2008).

This raises the possibility that late successional forests in humid climates may have simi-

lar peak-decline dynamics provided that recovery time is shorter than the interval between

severe disturbances (sensu Turner et al., 1993).

While the field and simulation evidence in this study support the hypothesis of posi-

tive net growth of aboveground tree biomass well into the old-growth stages, the question

of whether old-growth natural areas continue to accumulate carbon also depends partly on

the spatial scale. The large landscapes of northern hardwoods in the present study include

a mosaic of stands in all stages of development, but with late transition and steady-state
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stands comprising about 40% of the total area (Appendix A). In simulations using 20 in-

dependent replicates subjected to the historic natural disturbance regime, pooled estimates

of net growth in aboveground tree biomass hovered about zero after simulation year 200

(Fig. 8a). This implies that large wilderness areas with a high proportion of old-growth

northern hardwoods may have zero net growth, even though some young and mature stands

with positive net growth are present. Several lines of field and simulation evidence, in fact,

suggest that the aggregate study areas meet criteria of an equilibrium landscape, in which

net growth of zero would also be expected (Chapter 2). It is possible that carbon may still

accumulate in the soil in old-growth stands, an issue that is still poorly known (Gleixner

et al., 2009; Price et al., 2012). However, Tang et al. (2008, 2009) reported field-measured soil

carbon accumulation in old-growth northern hardwoods of <0.04 Mg/ha/yr, supported also

by simulations using Biome-BGC showing approximately zero NEP for old-growth forests

(Peckham and Gower, 2011). Regardless of the specific soil carbon accumulation rate, the

aboveground biomass and thus carbon storage in old-growth forests nevertheless remains

substantial, considerably higher than in younger stands (e.g., Fig. 1; see also Lichstein et al.,

2009; Keeton et al., 2011; Carroll et al., 2012) and should be explicitly considered in carbon

management plans.
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Figure 1: Biomass by stand stage of the seventy 0.5 ha field plots, compared to CANOPY
simulations of 20 replicate 0.5 ha plots subjected to either background mortality or the
historic natural disturbance regime. Simulations were conducted for mixed hardwood stands
on Acer-Tsuga-Dryopteris habitat type, starting immediately after a clearcut and leaving
no residual trees larger than 2 cm dbh. For simulation of biomass trends in the even-aged
and transition stages under background mortality, data were selected only for the first 300
years after the clearcut. Vertical lines give 95% confidence intervals; numbers above them
reflect sample size. Sap: Sapling; MSM: Mature-sapling mosaic; Mat: Mature; ET: Early
transition; MT: Mid-transition; LT: Late transition; SS: Steady state.
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Figure 2: Biomass trajectories of the eight Porcupine Mountains permanent 0.5 ha plots
over the 30 year remeasurement period (thick lines with symbols), sorted by stand stages.
Grey bars give the range of variation for 20 CANOPY simulations of the same plots assuming
only background mortality, with thin dotted lines showing the average trajectory over the
20 replicates. Abbreviations as in Fig. 1.
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Figure 3: Simulated trends in aboveground tree biomass and number of large trees in mixed
hardwoods on the Acer-Tsuga-Dryopteris habitat type. Thick lines give means, thin lines
ranges of variation for 20 replicates using 0.5 ha plots. Note that later simulation years
under the historic natural disturbance regime reflect the average of a mixture of twenty
0.5 ha stands encompassing a wide range of developmental stages rather than a uniform
old-growth stand.
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Figure 4: Simulated biomass trajectories of four replicate 0.5 ha plots simulated under the
historic natural disturbance regime (a subset of replicates from Fig. 3 c). Symbols refer
to the % crown area removed during the most severe disturbance on each replicate in the
first 300 years. Selected cases illustrate biomass trajectories for replicates with the most
severe and least severe disturbance during the first 300 years, with two replicates subjected
to intermediate-severity disturbances.
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Figure 5: Diameter distributions of mixed hardwood stands from field data (a-f) and simula-
tions (g-l) representative of the five mature and old growth stages on Acer-Tsuga-Dryopteris
habitat. Simulations were conducted under a disturbance regime of background mortality
only following an initial clearcut in year 0. Black bars denote canopy trees and gap saplings.
Hollow bars indicate shaded understory trees. First row of numbers under the stand stage
designation indicate the biomass of the particular stand or simulation replicate shown, as
well as the range (in parentheses) among all stands or replicates in that stage. Second row
of numbers shows the density per ha of trees >50 cm dbh for the stand or replicate shown.
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Figure 6: Simulated relationships between aboveground live tree biomass, number of large
trees (>50 cm dbh), and mean age of the largest 5% of trees for the simulations in Fig.
3 c. Each dot represents a single simulation year; curves on all panels show a loess fit to
the simulation data. Mean age of largest 5% of trees was computed at 5 year intervals
for 20 replicate simulations developing after a clearcut on Acer-Tsuga-Dryopteris habitat
with mixed hardwood regeneration, followed by 1,000 years of simulation under the historic
natural disturbance regime. In panel (c), individual replicates follow a 45 degree trajectory in
between mortality events, as trees age. Mortality events cause a vertical drop in average age
as younger trees enter the largest 5% size class, resulting in an overall sawtooth trajectory for
each replicate. The diagonal line from year 0 to approximately year 400 depicts the aging of
the initial even-aged cohort with time, and the subsequent irregular trend shows the variable
mean age of the largest 5% once the initial cohort is no longer among the largest 5% of the
trees.
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Figure 7: Simulated aboveground live tree biomass net growth (Mg/ha/yr) for initial and
secondary cohorts after clearcutting in year 0, with no further disturbance except background
mortality (simulations from Fig. 3 a). Vertical lines (panel d) mark the time of the initial
peak biomass and subsequent trough in Fig. 3 a. Initial cohort comprises all trees that
recruited into the stand from year 0-20.
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Figure 8: Simulated aboveground live tree biomass net growth (Mg/ha/yr) of initial and
secondary cohorts after clearcutting in year zero; replicates were then subject to the historic
natural disturbance regime (simulations from Fig. 3 c). Vertical lines (panel d) mark the
time of peak biomass and subsequent trough in Fig. 3 c. Initial cohort comprises all trees
that recruited into the stand from year 0-20.
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CHAPTER 2
Trajectories of stand structural development in response
to variable disturbance severities in northern hardwoods

Abstract

In late successional forests, analysis of long-term stand development using structural criteria

are often more tractable and more closely related to key ecological parameters than more

commonly used metrics like stand age or time since stand-replacing disturbance. In this

paper, the effects of various disturbance regimes on long-term stand structural development

in northern hardwoods at the stand and landscape scale were analyzed using the CANOPY

individual-tree model. Percentages of a simulated equilibrium population among stages were

similar to conventional chronology-based analyses for the earlier stages of development. How-

ever, steady-state stands as defined by structure were much more frequent than when the

steady state is defined by the timing and severity of disturbances. Under the historic natural

disturbance regime, characterized by predominately mild or moderate severity disturbances,

mean residence times among all structural stages were predominately short (8 to 35 years)

and followed descending monotonic distributions. Sequences of mild and moderate distur-

bances were sufficient to generate multi-aged unimodal size distributions that were similar in

form to size distributions of even-aged stands with comparable modal diameters. However,

simulation experiments often demonstrated structural resilience to repeated mild disturbance

even at the 0.5 ha scale. For example, stands in the early stages of old growth did not revert
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to earlier structural stages even after three disturbances removing 20% crown area at 30 year

intervals. Recovery from heavy partial disturbances was markedly faster than recovery after

clearcutting, with stands recovering to a steady state 175 years after disturbances removing

60% of the crown area, compared to 280 years after a clearcut. State transition diagrams

based on a second-order Markov chain supported earlier evidence that the existing 23,000 ha

study areas closely approach the threshold criteria for equilibrium landscapes.

2.1 Introduction

Many structural attribute of forests, like size distributions, are strongly shaped by distur-

bance history (Zenner, 2005; D’Amato et al., 2009). Disturbance histories, especially in late-

successional forests, are often highly variable (Henry and Swan, 1974; Fraver et al., 2009;

Vanderwel et al., 2013). The occurrence of infrequent stand-replacing events, upon which

are superimposed many minor and moderate-severity disturbances, can result in stand de-

velopmental trajectories that resemble a complex web rather than a simple repeating cycle

(Frelich and Lorimer, 1991a). These repeated partial disturbances can generate structurally

complex multi-aged stands that would not be expected under a simpler disturbance model.

For example, these landscapes can contain pole and mature stands that are highly uneven-

aged and yet structurally almost indistinguishable from even-aged stands of similar mean

diameter (Appendix A). And while severe disturbances usually cause reversion to early devel-

opmental stages (Bormann and Likens, 1979; Oliver and Larson, 1990), recent field evidence

suggests that moderate disturbances in structurally uniform mature stands can at least tem-

porarily accelerate the development of gap structure and a multi-layered canopy (Hanson

and Lorimer, 2007). But it is not currently clear whether these changes might either set

back or accelerate the long-term trajectories of stand structural development.

In complex multi-aged stands, ‘stand age’ has no clear meaning and ‘time since last major

disturbance’ may often be impossible to determine from tree-ring evidence. Structural stages
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of stand development may be more easily recognized (Appendix A). For some purposes,

structural metrics may be more ecologically informative than disturbance chronologies. For

example, wildlife habitat, forest production rates, and resilience to disturbance (i.e., the

ability to ‘absorb’ disturbances without reversion to an earlier structural stage or to quickly

regain pre-disturbance structural stage after disturbances) are probably more closely related

to structural variables than to the timing of disturbances (cf. Franklin et al., 2002; Canham

et al., 2001; Caspersen et al., 2011). Structure is also more easily monitored, and can be

more quickly and precisely assessed, than disturbance history. Furthermore, land managers

of late-successional temperate forests often have little or no information about stand age or

disturbance history.

A structural classification of forest patches within a landscape could produce results

quite different than one based on stand age or disturbance history. For example, based

solely on the timing and severity of natural disturbances, only 4% of the area of three

large landscapes of primary northern hardwood forest in Michigan could satisfy fairly le-

nient steady-state criteria (Frelich and Lorimer, 1991a). Yet old-growth stands with size

distributions approaching steady-state conditions are frequently observed in field studies of

these and other late-successional forests (Hett and Loucks, 1971; Goodburn and Lorimer,

1999; Emborg et al., 2000; Antos and Parish, 2002; Piovesan et al., 2005; Motta et al., 2011).

Forest dynamics are most often interpreted using a non-equilibrium framework (Mori, 2011),

but the possibility that disturbance history data and stand structural dynamics could lead

to differing conclusions about equilibrium or non-equilibrium dynamics has not often been

considered.

The overall goal of this paper is to quantitatively analyze stand developmental pathways

from a structural perspective. Specifically, we ask the following questions:

• How does the complex natural disturbance regime, with its mixture of predominantly

mild and moderate disturbances, influence the frequency of stand developmental stages
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on a landscape compared to a ‘dichotomous’ disturbance regime of frequent small

treefall gaps with infrequent severe events?

• How does the frequency of stand developmental stages on a landscape under the natural

disturbance regime differ when stages are defined by structural criteria vs. disturbance

history criteria? What are the corresponding transition rates between stages, and how

variable are the resulting residence times?

• How resilient are old-growth stands to the impacts of mild and moderate disturbance?

Specifically, what cumulative level of mild and moderate disturbances can be ‘absorbed’

by old-growth forests without retrogressing to earlier developmental stages? And when

retrogression to earlier stages occurs, how does the recovery time to regain old-growth

structure compare to recovery time after stand-replacing disturbance?

• For stands in the earliest stages of old growth, do periodic light to moderate distur-

bances (10-30% canopy removal) always cause retrogression to earlier stages, or can

these disturbances accelerate the development of later developmental stages?

To achieve these objectives, simulation experiments were performed using CANOPY,

an individual-tree model of forest gap dynamics. CANOPY was designed for long-term

projections of demographic change such as size-class distributions, and it can simulate effects

of the historic natural disturbance regime. A recently developed structural stand stage

classification (Appendix A) was then used to analyze these simulation results. CANOPY

has been calibrated using data from a >8,000 trees from stands representing a broad range of

developmental stages, including pole, mature, and various stages of old growth. The model

includes explicit simulation of gap dynamics by incorporating gap closure via asymmetric

lateral growth of overstory crowns and height growth of saplings in response to opening

size. Extensive validation of CANOPY has been performed for gap capture, recruitment,
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size distributions in old-growth stands, and the response of stands to both natural and

anthropogenic disturbance (Choi et al., 2007; Halpin, 2009; Hanson et al., 2011, 2012).

2.2 Methods

2.2.1 Study areas

Data were collected from three large natural areas with 23,000 ha of primary forests in upper

Michigan: the Porcupine Mountains Wilderness State Park, the Sylvania Wilderness Area

in the Ottawa National Forest, and a tract of primary forest west of Marquette, MI owned

by the Huron Mountain Club (see Frelich and Lorimer, 1991b, for detailed site locations).

These areas largely escaped 19th and early 20th century logging (Christy, 1929; Rafferty and

Sprague, 2001). Climate in this region is humid continental with short and cool summers

(mean summer temperature 20 °C; mean winter temperature -7.5°C near Lake Superior and

-11°C further inland). Precipitation is fairly evenly distributed throughout the year and

averages 80-90 cm annually. Elevations range from 182 m to ≈600 m. Soils belong primarily

to the Fragiorthod and Haplorthod groups. Soils in Sylvania are generally of sandy loam

texture, whereas soils in the other two study areas are generally of loam, sandy loam, or

silt loam texture. The large majority of plots were classified as the Acer-Tsuga-Dryopteris

(ATD) floristic habitat type of Kotar et al. (2002); other habitat types were present but all

were mesic or dry-mesic sites. Site index of sugar maple (Acer saccharum) on ATD habitat

is approximately 19-20 m at base age 50 (Coffman, 1984). In nearby experimental forests on

similar sites, sugar maple site index is 18-21 m for base age 50 (Erdmann and Oberg, 1973;

Crow et al., 1981). Aboveground net primary productivity young second-growth stands on

ATD habitat is approximately 7.2-9.5 Mg/ha/yr (Fassnacht and Gower, 1997).

2.2.2 Field methods

Seventy half-hectare plots were originally located in 1981-1984 using random coordinates

on maps of the primary forest zones. A half hectare plot size was selected to provide a
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sample large enough to reasonably be considered a population (generally >165 trees more

than 10 cm dbh) with a relatively homogeneous disturbance history and site quality. Species

composition and structure of 0.5 ha individual plots were typically representative of the

larger stands in which they occurred. Plots were divided into seven contiguous 70.7 x 10.1

m strips, although in some younger stands with higher stem densities, only a subset of strips

were censused. Eight of the 70 plots, spanning a wide range of developmental stages, were

permanently marked, mapped, and were remeasured in 1992, 2004, and 2011.

On each plot, diameter at breast height (DBH) and crown class was recorded for all

trees ≥ 1.4 m tall. Increment cores were taken from 10-30 randomly located canopy trees

for stand history reconstruction. On the permanent plots, an average of 68 increment cores

were obtained per plot (range 39-99).

2.2.3 Model description

Simulations were performed using CANOPY, an empirical, individual tree, spatially explicit

model (Hanson et al., 2011, 2012). Calibration data for the model were collected in northern

Wisconsin and upper Michigan and span a wide range of stand developmental stages, from

young even-aged through uneven-aged old-growth. For the version of CANOPY used in this

paper (v.3), the calibration data set was expanded to include a substantial amount of long-

term permanent plot data from managed and unmanaged second-growth hardwood stands

in the Argonne Experimental Forest of northeastern Wisconsin (Niese and Strong, 1992).

CANOPY has submodels for the Acer-Ozmorhza-Caulophyllum, Acer-Tsuga-Dryopteris, and

Acer-Tsuga-Maianthemum floristic habitat types of Kotar et al. (2002).

CANOPY predicts species composition and density of 2-6 cm saplings entering a stand

as a function of overstory species composition and density. Height growth of small trees

is modeled for each species as a function of initial height, gap area, and competitor crown

variables. Diameter growth of overstory trees is simulated as a function of initial size, species,
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and local crowding. Height and diameter growth equations both include categorical variables

and interaction terms for habitat type. Asymmetric crown expansion of overstory trees is

simulated as a function of crown position and predicted diameter growth. Background

mortality is modeled as a logistic process based on species, initial tree size, and subplot

competition level. Growth predictions incorporate normally distributed stochastic variation

based on the mean squared errors estimated by the regression procedure. Each tree is

assigned a stochastic growth modifier when it recruits into the stand that is used throughout

its life. These modifiers raise or lower the growth of individual trees relative to the predicted

mean, which itself changes in response to local crowding.

In addition to simulations of background mortality, CANOPY is also able to simulate

disturbance-related mortality. Each year, a random variable was used to determine if a

disturbance should occur, with recurrence intervals for a given level of crown removal from

Frelich and Lorimer (1991b). The maximum canopy area removed in a disturbance was 70%

because of limited evidence on the frequency of more severe events. CANOPY then applied

individual-tree probability of blowdown equations from Hanson (2009), which are a function

of the size and species of individual trees, as well as the storm severity index, an empirical

estimate of storm severity based on the overall amount of blowdown on a plot (Canham et al.,

2001). A regression was developed to relate storm severity index to the amount of canopy

removal assessed in the earlier studies of the natural disturbance regime. If crown removal

at the regression-estimated storm severity index differed by more than 5% from the target

given by the recurrence intervals, CANOPY adjusted the severity upward or downward, then

repeated the removal procedure until the target amount of crown area was removed.

The current version of CANOPY (v.3) adds the ability to simulate disturbances that

are correlated across plots. Previous work showed that disturbances that removed ≥ 40%

of the crown area on a plot tended to occur in clusters affecting approximately four plots

(equivalent to ∼1,300 ha of forest), while smaller disturbances did not have statistically
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significant spatial correlation (Frelich and Lorimer, 1991b). In each year, disturbances were

simulated independently for each plot. When a disturbance removed ≥ 40% of the aggregate

exposed crown area on one plot, three other plots were also selected at random and subjected

to a disturbance of equal severity. To maintain the same recurrence intervals between the

spatially correlated and uncorrelated simulations, the next three subsequent disturbances of

that severity were then skipped.

To mimic the sparse recruitment commonly observed in the earlier stages of stand devel-

opment, a refinement was made to the recruitment module in CANOPY v3. Even on plots

relatively unaffected by deer browsing, the field data often contain evidence of low ingrowth

and high mortality for saplings in stands with high concentrations of pole and mature trees

(Appendix A). Based on the observed negative correlation between percent basal are of ma-

ture trees and sapling density (p=0.005), a switch was added to CANOPY delaying further

recruitment whenever pole trees comprise ≥ 20% of the basal area or mature trees comprise

≥35% of the basal area. This rule is evaluated for each 10 x 10 m cell by assessing basal

area allocation on the 50 x 50 m (0.25 ha) patch centered on that cell. Uneven-aged stands

undergoing small gap formation as a result of background mortality typically have basal area

levels below these thresholds, and are therefore not generally affected by this rule.

2.2.4 Simulation design

Field measurements from the seventy 0.5 ha plots from the early 1980s were used as initial

conditions, and stand development was simulated for 1,000 years with 10 replications per

plot. For the temporary plots that were not stem-mapped, tree locations were randomly

generated given previous work on stem spatial patterns (e.g., Frelich and Graumlich, 1994;

Chokkalingam and White, 2001), with a different random stem map used in each replication.

Plots were subjected to a number of stochastically-timed disturbances, with the frequency

and severity based on the data in Frelich and Lorimer (1991b). Half-hectare plot sizes
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were used for simulations involving the natural disturbance regime because the recurrence

intervals in CANOPY were based on plots of that size. To evaluate the immediate response of

stands with varied histories to a new disturbance, structural stage following each stochastic

disturbance was tabulated.

A sensitivity analysis was also conducted under a ‘dichotomous disturbance regime’ com-

prised of only small gap formation due to background mortality and infrequent disturbances

removing 70% of the aggregate exposed crown area (the latter with a 3734 year mean re-

currence interval (Frelich and Lorimer, 1991b)). For the 0.5 ha plot size, all 70 plots were

simulated starting from the 1981-84 plot data. To evaluate the effect of plot size on the

resulting developmental trajectories, 4 ha plots were constructed by tiling the 0.5 ha plot

data in a 4x2 grid (i.e., using the measured plot in a repeating pattern). Because of the

long time required for 4 ha simulations, a subset of 30 plots were randomly selected from

the larger set of 70 plots for the 4 ha sensitivity analysis.

Simulation experiments were also performed that subjected 0.5 ha old-growth plots to

both a single moderate severity disturbance and repeated low severity disturbances at 30

year intervals. Starting conditions for these simulations were plots in the early transition

stage (representing the earliest stage of old-growth development with a non-equilibrium

size distribution) and the steady state (representing the latest stage of old-growth with a

potentially stable size distribution). To control for the influence of past disturbance, initial

conditions for these experiments were drawn from 20 replicated 1,000-year simulations of

stand development starting from a clearcut and with no intermediate disturbances aside

from small gap formation due to background mortality. This approach has the additional

advantage of accounting for the structural diversity of stands in old growth by giving each

replication a different set of initial old-growth conditions.
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2.2.5 Analytical techniques

Structural stages of simulated stands were classified using a refinement of the stand stage

definitions from Frelich and Lorimer (1991a). The structural stages reflect a generally pro-

gressive increase in modal overstory diameter and increasing understory development as

stands progress from young to old-growth stands (Appendix A). Revised criteria are based

entirely on aggregate basal area of size classes rather than crown data or disturbance his-

tory, and the old-growth stage has been subdivided into four stages. Individual stages from

sapling stage to old-growth are determined primarily by whether saplings (0-10.9 cm), poles

(11-25.9 cm), mature (26-45.9 cm) or large trees (> 46 cm) comprise the largest proportion

of stand basal area. For example, in old-growth stands, large trees (with ages usually >150

years) make up > 45% of the stand basal area (Fig. 1 in Appendix A).

The first three stages of old growth (early, mid-, and late transition) represent the tran-

sition from a unimodal size distribution and generally even-aged structure to the descend-

ing monotonic size distribution of an all-aged forest. Early transition has limited under-

story development and the lowest modal diameter of all the old growth stages (Fig. 1 b).

Mid-transition has variable understory development, but among the mature and old-growth

stages, it has the lowest mean proportion of basal area in saplings and poles and the highest

proportion of large trees. Late transition has a well-developed understory with a reduced

component of large trees.

The structural steady state stage includes stands with descending monotonic diameter

distributions that have the potential to be self-sustaining (Fig. 1 d). The sustainability is

based on the concept of a balanced sized distribution where each size class occupies roughly

equal amounts of growing space (Smith et al., 1997; Goodburn and Lorimer, 1999; Nyland,

2007). Note that the steady-state stage in this classification does not imply either a lack of

exogenous disturbance or long-term demographic stability. In fact, residence times in the

structural steady state can be quite short and, at the 0.5 ha scale, retrogression from steady



52

state can occur during decades of above-average background mortality. This stage only

signifies the potential for a self-sustaining size distribution that, while not entirely static,

would not experience large changes in form.

In order to be classified as steady state, an old-growth stand had to have a well-developed

understory with a significant proportion of saplings growing in gaps (gap saplings >0.6% of

stand basal area). In the original field data, gap saplings were identified by the degree of

crown exposure in gaps. In simulations, gap saplings were identified using similar criteria,

but gap sizes were based on predicted rather than observed crown radii of gap border trees.

The stand stage classification system also includes a ‘mature-sapling mosaic’ stage. These

stands have some mature or large trees (10-20 m2/ha of basal area), but not enough to meet

the criteria for mature or old-growth forests. These appear to be formerly mature or old-

growth stands that were subjected to moderate severity disturbance that left a number of

legacy trees.

A second-order Markov chain was constructed from CANOPY simulations, as it enables

the equilibrium distribution of stand stages to be directly computed, rather than only ap-

proximated with large numbers of simulations. States were defined that included the current

and previous stages of each plot (e.g., pole from sapling). A second-order formulation al-

lows transition probabilities that are conditional on the previous stand stage. Including this

historical data allows the model to take into account structural features, like large legacy

trees, which may affect the residence time in a given stage. For each of the 10 replicates of

the 70 plots in the data set, transition rates between stages were computed from the last

800 years of a 1000 year simulation. These transition rates were then turn used to approxi-

mate transition probabilities. A Markov state transition matrix M was constructed, and the

equilibrium was computed by finding i such that Mi = M(i+1), then taking the diagonal of

Mi. Residence times in each state at equilibrium were computed using the expectation of

a negative binomial variable with p = M[j, j] and r = 1. To evaluate the impact of species
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dominance, an additional Markov analysis was performed that augmented state definitions

with species dominance (e.g., maple sapling from hemlock (Tsuga canadensis) mature). For

this analysis, a plot was classified as dominated by hemlock when hemlock comprised ≥ 35%

of the stand basal area.

2.2.6 Evaluation of model predictions

CANOPY has been extensively validated in previous studies both for natural stand develop-

ment and responses to silvicultural treatments. Hanson et al. (2012) found that simulated

volumes harvested under single-tree selection over a 300-yr span differed by <6% from har-

vest volumes in comparable experimental field studies. For untreated stands in northern

Wisconsin, Hanson et al. (2011) demonstrated close correspondence of stand basal area and

tree density by size class between 1,000 year CANOPY simulations and old-growth forests

on similar sites. CANOPY’s recruitment mechanism also replicated observed trends in the

number, species composition, and spatial pattern of saplings for both treated and untreated

stands.

The ability of CANOPY to predict changes in size distributions and stand developmen-

tal stages was evaluated in the present paper by comparing 30 year changes in observed vs

predicted diameter distributions and stand stage on the permanent plots (Fig. 1). Overall,

the observed 2011 field measurements fell within the range of variation for CANOPY sim-

ulations for 82% of the 4 cm diameter classes. On individual plots, observations fell within

the predicted range of variation for 79%-95% of diameter classes except for the pole plot,

where observation fell within the predicted range of variation for 67% of diameter classes. In

most cases, the observed diameter distributions after 30 years were near the middle of the

range of values predicted by CANOPY (Fig. 1).

CANOPY also predicted stand stage in 2011 correctly for the large majority of replicates.

On 6 of 8 plots, the majority of individual replicates of each plot correctly matched field
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observations of stand stage (70% correct predictions overall on these plots), including the

two plots that changed stage in the field observation. For the pole stand, all 20 replicates

correctly predicted the development from pole to mature stage, and 12 of 20 replicates for

the mature hardwood stand correctly predicted the development from mature to the early

transition stage during the 30-year period. Four plots were correctly predicted to remain in

their initial stages, including an early transition plot, a mid-transition plot, and two steady

state plots. The two plots where CANOPY predictions did not agree with field observations

included a mid-transition plot that was predicted to advance to late transition, but did not

mainly because of heavy deer browsing that slowed the pace of understory development. One

of the three steady plots was also predicted to retrogress to late transition from stochastic

background mortality but actually remained in steady state.

In long-term (1000 year) simulations of the upper Michigan field data, predicted mean

numbers of trees per size class under background mortality were very close to the mean

numbers in each size class of the 18 steady-state forests measured in the field (Fig. 2 in

Chapter 3).

2.3 Results

2.3.1 Initial distribution of structural stages and predicted changes

The initial distribution of stand stages on the study area landscapes in 1981-1984 was 9%

pole, 11% mature, 3% mature-sapling mosaic, 19% early transition, 20% mid-transition, 13%

late transition, and 26% steady state. Initial stand structural classification in the simulations

differed for a few plots from the field classification because of the need in simulations to

generate stem and crown maps on unmapped plots, which altered the gap status of some

saplings compared to direct field observations.

The final predicted balance of stand stages on the landscape was very close to initial

conditions. As simulations proceeded, CANOPY predicted a decrease in the proportion of
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pole stands over time from 9% to 2%. Corresponding fluctuation in the mature, transition,

and steady-state stages occurred as the existing cohort of pole stands advanced through the

older structural stages (Fig. 2). Most stages then returned to essentially their initial levels

except for the mature-sapling mosaic and pole stages. Mature-sapling mosaic was predicted

to increase to 8% of the population in simulations, becoming more common than either

sapling or pole stands. However, the sum of sapling, pole, and mature-sapling mosaic stages

– all of which reflect fairly heavy recent disturbance – was similar between simulations and

field measurements (11% for simulations vs 12% for field data).

2.3.2 Residence times among stages from CANOPY simulations

Mean residence times in each stage ranged from about 8 years for sapling stands to 35 years

for mid-transition stands (Fig. 3). The distribution of residence times in each stage was

descending monotonic in form, except for the pole and mid-transition stages, which had

an irregular curve shape. A negative exponential distribution had no significant lack of fit

for residence times in the sapling stage (chi-squared test; p=0.14), but had significant lack

of fit for all other stages (p<0.001). Residence times were highly variable in most stages.

For example, while the pole stage had a mean residence time of only 27 years, some plots

remained in the pole stages for up to 75 years. The steady-state stage, which also had mean

residence time of 27 years, had some stands remaining in that stage for over 100 years. Mean

residence time in old growth was 87 years, but ranged as high as 500 years for some plots.

Mean residence time in the last two old-growth stages combined (late transition and steady

state) was 35 years, but ranged up to 170 years for some plots.

Residence times were markedly shorter under the complex natural disturbance regime

than when simply developing along an even-aged pathway for several reasons. For example,

average residence in the mature stage under the historic natural disturbance regime was

only about 20 years, but averaged about 70 years in even-aged stands (Appendix A). This
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was due partly to the large residual trees remaining after moderate disturbances, permitting

shorter recovery times to old-growth structure. Secondly, mild or moderate disturbances

often caused retrogression to mature-sapling mosaic and other earlier stages before the stand

had a chance to progress to the next stage. Thirdly, many of the short residence times in

uneven-aged stands in this analysis occurred in stands near the boundary of two structural

stages. In these stands, higher than average background mortality was often sufficient to

cause a stand to retrogress to an earlier stage. Residence times from this paper, therefore,

cannot be summed among consecutive stand stages to estimate the time required to reach a

particular stage along an even-aged pathway.

2.3.3 Predicted equilibrium structural composition from the Markov analysis

In the equilibrium distribution of stand stages predicted by the second order Markov analysis

of CANOPY simulations under the historic natural disturbance regime, ∼ 80% of the plots

were in the old-growth stage (Fig. 4). Most of the stage transitions were among the early

transition, late transition, and steady-state stages, among which individual plots had a

random-walk behavior. The highest proportion of plots (26-27%) occurred in the early

transition and steady state stages. The proportion of plots in the pole stage was lower than

in the field data (2% vs 9%) and the proportion in mature-sapling mosaic was higher than

in the field data (8% vs 3%).

When simulations were conducted under a dichotomous disturbance regime (frequent

small-gap formation and infrequent severe disturbance), there was a dramatic increase in

the proportion of the Markov equilibrium distribution in steady state, as expected (Fig. 5).

However, the developmental pathways in this situation were more complex than expected,

with 11% of the plots in early transition, 15% in mid-transition, and a significant amount of

retrogression and recovery between steady state and these earlier stages. Over the span of

a typical century, nearly all the stands in steady state and late transition shifted back and
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forth between those two stages. About 20-30% of the steady state stands per century shifted

back and forth between that stage and early transition. This diversity of structural stages

appeared to be related to the relatively small scale of the 0.5 ha plots. When larger 4 ha

plots were simulated (Fig. 6), the proportion of plots in early transition and mid-transition

decreased dramatically to 2.4% and 3.4%, respectively, and retrogressions from steady state

to earlier stages of stand development decreased to < 5% of the plots per century. At the

4 ha scale, late transition occupied 44% of the distribution and steady state occupied 49%,

with the overwhelming majority of the transfers between stages occurring between these two

as a result of stochastic variation in background mortality (Fig. 6).

A Markov chain equilibrium analysis that took into account the species composition of

individual stands revealed little difference in the residence times between sugar maple and

hemlock dominated stands (Fig. 7). Residence times for hemlock stands in the transition

stages of old growth were slightly longer than maple stands, though both species had resi-

dence times in these stages that were quite short. Shifts in dominance between maple and

hemlock (e.g., reciprocal replacement sensu Woods, 1979) were rare in the simulations (Table

1).

2.3.4 Effect of disturbance on structural development

Based on the field estimates of recurrence intervals for natural disturbances incorporated

into CANOPY, most disturbances were of low severity. For example, of the more than

30,000 five-year intervals simulated in Table 2, 93% had mortality levels not distinguishable

from background mortality. Seventy-five percent of the more than 2100 disturbances beyond

background level had severities of 20% canopy removal or less (98% of all intervals).

In simulations of the historic natural disturbance regime, disturbances of 10% canopy

removal had little immediate effect on the simulated stand stage of old-growth plots. Dis-

turbances of 20% removal caused elevated frequency of retrogression relative to background
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mortality, but more than 50% of the stands remained in, or advanced beyond, their pre-

disturbance structural stage (Table 2). As disturbance severity increased to 30% removal

or more, the large majority of old-growth stands underwent immediate major retrogression

to earlier stages. For 40-50% removal, retrogression to mature-sapling mosaic was the most

common outcome. For 60-70% removal, retrogression to the sapling stage or mature-sapling

mosaic was the most common result.

Simulation experiments that subjected plots to a controlled sequence of disturbance tim-

ing and severity, and which tracked the response over several hundred years, provided insights

into long-term recovery patterns. Background mortality alone on the 0.5 ha scale was suf-

ficient to cause some retrogression of steady-state stands to earlier stages, such that the

average stand stage often ‘drifted’ into the late transition stage over the course of the sim-

ulations (Fig. 8 a). For both steady state and early transition stands, single disturbances

removing 10%, 20%, or 30% of the crown area resulted in stand stages that were not statis-

tically distinct from simulations with only background mortality.

Simulation experiments that subjected plots to sequences of light and moderate distur-

bances demonstrated the cumulative effect of multiple disturbances (Fig. 8 b,d). Repeated

disturbances removing 10% of the crown area at 30-year intervals continued to show essen-

tially no effect on stand stage. Repeated 20% removals caused steady state to revert to earlier

stages after the second removal and caused early transition to revert to earlier stages after

the fourth removal. Repeated 30% removals caused both steady state and early transition

to revert to mature or mature-sapling mosaic stages after the second removal.

There were surprising differences in the impact of a given disturbance severity on different

stages of old growth (results for early transition and steady state shown in Table 2 and Fig. 8).

After 10-20% canopy removal, the percentage of stands remaining in their pre-disturbance

stage or advancing to a later stage was similar for early transition and steady state. But

immediately after 30-40% canopy removal, early transition stands were 2-4X more likely
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than steady state to remain in the pre-disturbance stage or advance to a later stage (Table

2). Recovery times were also quite different in these two old-growth stages, as can be seen

in the different slopes of the curves in Fig. 8 a,c. For example, after 60% canopy removal

that set both of these old-growth stages back to mature-sapling mosaic, it took an average

of ∼90 years for a steady-state stand to recover to the early transition stage compared to

∼40 years for a stand initially in the early transition stage.

There was some, but limited, evidence that light or moderate disturbances in mature

or early transition stands could accelerate development to a later stage by increasing gap

formation and lowering the high concentration of mature trees. After 2-3 disturbances of

20% canopy removal in early transition stands, stand stage was significantly more advanced

25-100 years later compared to ‘control’ stands under background mortality (Fig. 8 d). In the

simulation experiments with a single 10-20% disturbance, stand stage after 25-100 years was

nominally more advanced on average than the controls, but differences were not significant

(chi-squared test, n=40 plots, p>0.05).

2.4 Discussion

2.4.1 The effect of complex disturbance regimes on stand structural develop-

ment

Simulations based on the historic natural disturbance regime produced more complex path-

ways of structural development than a ‘dichotomous’ regime of small gap formation with

severe disturbance at long intervals. Under the historic natural disturbance regime, there

was a greater diversity and more equitable distribution of stand stages. The natural distur-

bance regime on 0.5 ha plots had only 64% as much forest satisfying the structural criteria

for a steady state, but 6X as much forest in the mature stage and twice as much forest in

the early and late transition stages.

The distribution of residence times in Fig. 3 likely reflects a number of different interacting
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processes, both progressive and retrogressive. Stands can progress to higher developmental

stages either as a result of growth increasing the modal diameter, or as a result of mor-

tality increasing the structural complexity (e.g., increasing the proportion of gap saplings).

For upward transitions driven by growth, a normal distribution of residence times might

be expected, with mean determined by the average of the underlying growth equations and

variance determined by the stochastic variation in growth. In 4 ha simulations under back-

ground mortality, residence times were normally distributed for the sapling and pole stages

(Shapiro-Wilk test; sapling: p=0.32, pole: p=0.95).

Stands can also retrogress to earlier developmental stages as a result of disturbance

mortality or sometimes even higher-than-average background mortality. By definition, res-

idence times within a stage are analogous to age distributions (i.e., a patch having a 10

year residence in the mature stage is a 10-year old mature patch). Age distributions of forest

patches, assuming independent probability of disturbance, tend to follow a negative exponen-

tial distribution (Van Wagner, 1978). If the probability of a disturbance sufficient to cause

retrogression is constant within a stage, then disturbance-truncated residence times should

also represent a superposition of negative exponential residence times. Additional work is

necessary to develop a detailed mathematical model of residence times among structural

stages, and in particular to examine the role played by resilience to disturbance.

Contrary to expectation, simulations using temporally correlated disturbances produced

essentially identical estimates of transition rates and equilibrium structural composition

from those using uncorrelated disturbances. The apparent reason is that the Markov chain

analysis is based only on transition probabilities between stages, which are determined by

the recurrence intervals of disturbance without regard to their spatial configuration. We

had also expected that temporally correlated disturbances (as in Fig. 1) would produce a

‘jumpier’ developmental trajectory for an individual 70 plot replication than independent

disturbances (data not shown). However, because of the disturbance patch sizes involved for
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northern hardwoods, multiple plot disturbances still only affected four plots at a time and

were therefore easily lost in the average when the other 66 plots were included.

2.4.2 Implications of a structural approach to large scale stand dynamics

The structural approach used in classifying stands in this paper leads to different insights

compared to a disturbance chronology approach (Frelich and Lorimer, 1991a), despite the

use of the same disturbance recurrence intervals. The largest differences in the two analyses

relate to how old-growth stands were classified. In the disturbance chronology approach,

50% of the landscape was occupied by non-equilibrium, old-growth, uneven-aged stands

with widely varying disturbance histories. Steady-state stands occupied only 4% of the

landscape. In the present structural approach, non-equilibrium old-growth stands likewise

occupy the largest portion of the landscape (51%), but stands satisfying structural criteria

for the steady state occupied 26% (field data) or 27% (simulation with Markov analysis) of

the study areas.

Both approaches together enhance our understanding of the underlying dynamics of the

system. For example, the disturbance chronology approach isolates the even-aged pathway

following catastrophic disturbance (e.g., 18.7% of the study areas were subjected to severe

disturbance of >66% canopy removal within the previous 250 years, in agreement with Can-

ham and Loucks 1984). In the structural approach, as in a classical first-order Markov

analysis, the pathway of how a stand arrived in a particular structural stage is not directly

considered. On the other hand, an advantage of the structural approach is much greater

structural uniformity within a developmental stage. For example, the ‘old multi-aged’ cat-

egory in the disturbance chronology approach is structurally (and probably functionally)

quite heterogeneous, containing stands that would in this study be classified in the early-,

mid-, late-transition, and steady-state stages. Both field and simulation evidence indicate

that these different structural stages have substantially different patterns of biomass accu-
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mulation and net growth, and that these differences are more closely tied to structure than

disturbance history (Chapter 1).

Although 74% of the individual stands were in non-equilibrium structural stages, the

aggregate study areas (23,000 ha) at the time of the field survey in 1981-84 were close to

the equilibrium distribution predicted from the Markov analysis of CANOPY simulations.

Earlier studies (Frelich and Lorimer, 1991a,b) concluded that these study areas met criteria

for equilibrium landscapes based on a uniform frequency of gap formation by decade from

tree-ring analysis, as well as comparisons of field data with long-term simulations using a

simpler size-class model (STORM). The current results support these earlier conclusions

with an additional line of evidence based on forest structure and using a much more detailed

individual-tree model in which competition level dynamically affects recruitment, growth

rate, and mortality. Sensitivity analyses suggest that the close structural similarity of the

simulated and observed landscape would not likely have been possible if there were inac-

curacies in the disturbance recurrence intervals estimated from tree-ring methodology or in

CANOPY’s predictions of long-term stand development. In addition, the close similarity

between the predicted equilibrium landscape distribution and the 1981 landscape provides

evidence that the high dominance of old-growth in the field survey was not an artifact of

preservation bias in the acquisition of these natural reserves.

The issue of whether individual stands, or even forest landscapes, can reach a steady

state under prevailing disturbance regimes has been controversial, and the steady state has

also been defined in a variety of ways. The key concept underlying many definitions has

been a shifting mosaic of age classes and a stable age distribution (Bormann and Likens,

1979; Shugart, 1984; Johnson and Van Wagner, 1985; Turner et al., 1993). Some investigators

have added other criteria such as species composition and ecosystem processes (Odum, 1969;

Mori, 2011). Clearly, if criteria for equilibrium status are numerous and stringent, few or no

stands would ever qualify and the debate becomes moot (Sprugel, 1991). The dominance of
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some ecosystems by recurrent stand-replacing disturbances such as crown fires, landslides,

hurricanes, and insects is well documented and is beyond dispute (e.g., Batzer and Popp,

1985; Guariguata, 1990; Heinselman, 1973; Foster and Boose, 1992).

But in some humid temperate regions with late successional hardwood and conifer species,

the relatively mild disturbance regimes appear to allow some forests to approach steady-state

age or size structure either at the stand or landscape level during multi-century periods of a

fairly stable climate (Emborg et al., 2000; Antos and Parish, 2002; Motta et al., 2011). The

state diagram of Turner et al. (1993) accommodates these disparate views and illustrates

how equilibrium and non-equilibrium states are determined by specific properties of the

disturbance regime. In northern hardwoods, the evidence suggests that true equilibrium age

distributions seldom occur at the 0.5 ha scale even when criteria allow for several periodic

light disturbances (Frelich and Lorimer, 1991a). However, the present study illustrates that

stands at that scale can often satisfy structural criteria of a steady state. More importantly,

these stands exhibit the expected behavior of a steady state, such as stable size distributions

and zero net growth, over a 30-yr monitoring period (Fig. 1 d and Appendix A). This

illustrates the point that forest stands may not satisfy strict disturbance history criteria for a

steady state and yet may be largely indistinguishable structurally – and perhaps functionally

– from stands with a truly balanced age distribution. It may also be the case that in

some systems where disturbance intervals are long, stands may seldom reach a steady state

but still have a strong tendency to converge toward it (i.e., a ‘domain of attraction’ sensu

Holling 1973) At the same time, however, it must be emphasized that this overall system is

highly dynamic; steady-state stands are subject to frequent retrogression caused by moderate

disturbances and have a mean residence time of less than 30 years.
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2.4.3 The influence of light and moderate disturbance on stand structure

The simulations in this study help clarify the relative role of treefall gaps, moderate dis-

turbance, and severe disturbance in shaping the structure and composition of these forests.

Our evidence suggests that combinations of light and moderate disturbance, as well as se-

vere disturbance, are both capable of causing structural retrogression to earlier stand stages

(Fig. 8) and generating the commonly observed non-equilibrium diameter distributions (Ap-

pendix A). Stand-replacing disturbances are too infrequent to have a major impact on the

landscape (Canham and Loucks, 1984; Frelich and Lorimer, 1991b; Zhang et al., 1999; Schulte

and Mladenoff, 2005). The simulations in the present study explain how a stand with re-

peated light or moderate disturbances can have a nearly identical size distribution to an

even-aged mature or early transition stand and yet have many age classes and a complex

disturbance history. There was also little evidence that descending monotonic distributions

could spontaneously revert to unimodal or compound distributions under background mor-

tality at the 4 ha scale. Sometimes modest peaks (but not a unimodal distribution) could

develop in all-aged stands at the 0.5 ha scale because of stochastic mortality.

Once a stand has developed a unimodal size distribution from the impact of repeated light

or moderate disturbances, both field and simulation data suggest that small gap formation

has a limited effect on size distributions except over a long period of time. For example, the

30-yr permanent plot data show that in the mature and early transition stands, the bulge in

the middle size classes actually became more pronounced over time, and there were net losses

of small trees despite periodic gap formation by dying canopy trees (Fig 1a, b). Simulations

suggest that it will take about 150 years for a 100-yr old mature stand on above-average

site to develop a descending monotonic distribution (late transition stage) under small gap

dynamics. And while single- and small multiple- tree gaps can help avoid the local extirpation

of the less shade-tolerant species, the simulations suggest that moderate disturbances are

necessary to maintain the current abundance of yellow birch and other midtolerant species
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(Chapter 3). Cumulatively, this evidence suggest that, despite many studies devoted to the

extremes of either small-gap dynamics or stand-replacing disturbance in northern hardwoods

(see review in Seymour et al., 2002), moderate disturbances removing 20-50% of the canopy

have a more dominant role in shaping the key structural and compositional attributes in

protected natural areas in this ecosystem.

Numerous studies have documented that both mild and severe disturbances removing

primarily mature canopy trees (e.g., wind, ice storms, disease, drought) often accelerate

succession, rather than reversing the trend, due to release of advance regeneration of shade

tolerant species (Abrams and Scott, 1989; Webb and Scanga, 2001; Arévalo et al., 2009).

Simulation results in this paper provide some support for the hypothesis that mild distur-

bances might also accelerate structural development in mature and early old-growth stages

by reducing the high density of mature trees and increasing structural complexity through

gap formation. The clearest evidence was found over a span of 50-100 years during and

after several mild disturbances in early-transition stands, which accelerated the trend to late

transition compared to undisturbed stands. There was only weak evidence that a single

disturbance could have this effect. Too many mild disturbances, on the other hand, caused

retrogression to earlier stages.

2.4.4 Resilience of old-growth forest under the natural disturbance regime

Holling (1973) defined ‘resilience’ as “a measure of the persistence of systems and of their

ability to absorb change and disturbance and still maintain the same relationships between

populations or state variables”. Many authors have focused on the “persistence of systems”

aspect of this definition, and examined (for example) the ability of forests to remain forests

rather than converting to some other vegetation type (e.g., Gunderson, 2000; Scheffer et al.,

2001). However, in management and conservation contexts, the second portion of this defini-

tion is of equal or even greater importance and has been the subject of recent attention (e.g.,
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Drever et al., 2006; O’Hara and Ramage, 2013). The ability of old-growth forests to absorb

disturbance without reverting to an earlier structural stage is of particular interest given

the current rarity of old-growth forests in many ecosystems and the vulnerability of existing

remnants to destruction by natural disturbances (e.g., Henry and Swan, 1974; Peterson and

Pickett, 1995). In the present study, resilience of old growth might be indicated by its mean

residence time, its ability to tolerate disturbance without retrogressing to mature or younger

stages, and the recovery time to old growth in cases of retrogression.

In our simulations, old-growth stands were able to absorb multiple disturbances of 10-20%

canopy removal at 30-yr intervals and still maintain old-growth structure. However, even two

30% removals or a single removal of ≥40% was sufficient to cause reversion to earlier stages.

Under the historic natural disturbance regime, the resulting average residence time in old-

growth forest was only 87 years, which is shorter than the time required (150 years) to reach

old growth after stand-replacing disturbance. Residence times, however, were highly variable

and ranged up to 500 years in some replicates. Also, residence times in some old-growth

stands might in principle be higher in topographically protected locations (e.g., Foster and

Boose, 1992). Earlier results in this region indicated no significant difference in the frequency

of light, moderate, and severe disturbance on plots in differing topographic position (Frelich

and Lorimer, 1991b). However, topographic position might possibly exert a more subtle

influence on structural response to disturbance. Hanson and Lorimer (2007) found that even

within a single moderate disturbance event, larger individual trees on ridgetops had higher

probabilities of windthrow than those in lower topographic positions. Possible reasons could

include greater crown exposure of large trees and thinner soils on ridge tops. Since stand

structural stage is highly sensitive to the proportions of mature and large trees, disturbances

of the same severity in different topographic positions could therefore result in different

effects on stand stage. Because of its design, the disturbance module in CANOPY v. 3

doesn’t incorporate these more subtle influences. However, the close correspondence of the
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Markov predictions of stand stage allocations with the field data suggest that the overall

bias resulting from the simplifying assumption about topographic effects may not be very

strong.

Previous studies have indicated that resilience of forest stands to windthrow is influenced

by the size distribution, with larger trees being more susceptible than medium or small

trees (Foster, 1988; Canham et al., 2001). At the same time, there is some evidence that

multi-aged stands may be more resilient to windthrow than even-aged stands due to the

diversity of size classes and greater windfirmness of trees growing within more open canopies

(Mason, 2002; O’Hara and Ramage, 2013). In the present study, simulated patterns of

recovery after single episodes of disturbance appeared to differ among different stages of old

growth. For steady state stands, disturbances of any severity resulted in some retrogression,

whereas early transition stands appeared to be more resilient (Table 2). Early transition

stands typically had fewer large trees than steady state and hence may be inherently less

susceptible to windthrow. But even after disturbances that removed identical amounts of

crown area, steady-state stands took nearly twice as long to recover as the early transition

stands (Fig. 8 a,c). Early transition stands also had about twice as much basal area in

mature trees compared to steady state (simulated mature tree basal area of 16.9 m2/ha in

early transition compared to 6.7 m2/ha for steady state). This would likely provide early

transition stands with a much larger population of survivors that are not only more wind-

resistant but also more resilient and capable of rapidly closing gaps formed during a moderate

disturbance.

Compared to development along an even-aged pathway, simulated residence times in

the younger stages were much shorter under the historic natural disturbance regime. In a

management context, this may provide an incentive to utilize ecological forestry methods

(e.g. Franklin et al., 2007), which attempt to silviculturally emulate patterns of natural

disturbance to help maintain biodiversity and ecosystem function. When residual trees are
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retained, many of which need not be large, stands can recover to steady state within 175

years after a 60% canopy removal, compared to 280 years after a clearcut that leaves no

residual trees. These shorter recovery times, in addition to the mild disturbance regimes,

are major reasons for the high dominance of these landscapes by old-growth forest.

Literature Cited
Abrams, M. D. and M. L. Scott (1989). Disturbance-mediated accelerated succession in two

Michigan forest types. Forest Science 35 (1), 42–49.

Antos, J. A. and R. Parish (2002). Structure and dynamics of a nearly steady-state subalpine
forest in south-central British Columbia, Canada. Oecologia 130, 126–135.

Arévalo, J. R., J. K. DeCoster, S. D. McAlister, and M. W. Palmer (2009). Changes in two
Minnesota forests during 14 years following catastrophic windthrow. Journal of Vegetation
Science 11 (6), 833–840.

Batzer, H. O. and M. P. Popp (1985). Forest succession following a spruce budworm outbreak
in Minnesota. The Forestry Chronicle 61 (2), 75–80.

Bormann, F. H. and G. E. Likens (1979). Pattern and process in a forested ecosystem. New
York: Springer-Verlag.

Canham, C. D. and O. L. Loucks (1984). Catastrophic windthrow in the presettlement
forests of Wisconsin. Ecology 65 (3), 803–809.

Canham, C. D., M. J. Papaik, and E. F. Latty (2001). Interspecific variation in susceptibility
to windthrow as a function of tree size and storm severity for northern temperate tree
species. Canadian Journal of Forest Research 31, 1–10.

Caspersen, J. P., M. C. Vanderwel, W. G. Cole, and D. W. Purves (2011). How stand
productivity results from size-and competition-dependent growth and mortality. PloS
one 6 (12), e28660.

Choi, J., C. G. Lorimer, and J. M. Vanderwerker (2007). A simulation of the development
and restoration of old-growth structural features in northern hardwoods. Forest Ecology
and Management 249 (3), 204–220.

Chokkalingam, U. and A. White (2001). Structure and spatial patterns of trees in old-growth
northern hardwood and mixed forests of northern Maine. Plant Ecology 156 (2), 139–160.

Christy, B. H. (1929). The book of Huron Mountain. Chicago, IL, USA: Huron Mountain
Club.



69

Coffman, M. S. (1984). Field guide: Habitat classification system for upper peninsula of
Michigan and northeast Wisconsin. Houghton, MI, USA: CROFS, School of Forestry and
Wood Products, Michigan Technological University.

Crow, T. R., C. H. Tubbs, R. D. Jacobs, and R. R. Oberg (1981). Stocking and structure for
maximum growth in sugar maple selection stands. Research Paper NC-199, USDA Forest
Service.

D’Amato, A. W., D. A. Orwig, and D. R. Foster (2009). The influence of successional
processes and disturbance on the structure of Tsuga canadensis forests. Ecological Appli-
cations 18, 1182–1199.

Drever, C. R., G. Peterson, C. Messier, Y. Bergeron, and M. Flannigan (2006). Can for-
est management based on natural disturbance maintain ecological resilience? Canadian
Journal of Forest Research 36, 2285–2299.

Emborg, J., M. Christensen, and J. Heilmann-Clausen (2000). The structural dynamics of
Suserup Skov, a near-natural temperate deciduous forest in Denmark. Forest Ecology and
Management 126, 173–189.

Erdmann, G. G. and R. R. Oberg (1973). Fifteen-year results from six cutting methods in
second-growth northern hardwoods. Research Paper NC-100, USDA Forest Service.

Fassnacht, K. S. and S. T. Gower (1997). Interrelationships among the edaphic and stand
characteristics, leaf area index, and aboveground net primary production of upland forest
ecosystems in north central Wisconsin. Canadian Journal of Forest Research 27, 1058–
1607.

Foster, D. R. (1988). Species and stand response to catastrophic wind in central New Eng-
land, USA. The Journal of Ecology 76, 135–151.

Foster, D. R. and E. R. Boose (1992). Patterns of forest damage resulting from catastrophic
wind in central New England, USA. Journal of Ecology 80, 79–98.

Franklin, J. F., R. J. Mitchell, and B. Palik (2007). Natural disturbance and stand develop-
ment principles for ecological forestry. General Technical Report NRS-19, USDA Forest
Service.

Franklin, J. F., T. A. Spies, R. van Pelt, A. B. Carey, D. A. Thornburgh, D. R. Berg, D. B.
Lindenmayer, M. E. Harmon, W. S. Keeton, D. C. Shaw, K. Bible, and J. Chen (2002).
Disturbance and structural development of natural forest ecosystems with silvicultural
implications, using Douglas-fir forests as an example. Forest Ecology and Management 155,
399–423.

Fraver, S., A. S. White, and R. S. Seymour (2009). Natural disturbance in an old-growth
landscape of northern Maine, USA. Journal of Ecology 97 (2), 289–298.



70

Frelich, L. E. and L. J. Graumlich (1994). Age-class distribution and spatial patterns in
an old-growth hemlock-hardwood forest. Canadian Journal of Forest Research 24 (9),
1939–1947.

Frelich, L. E. and C. G. Lorimer (1991a). A simulation of landscape-level stand dynamics
in the northern hardwood region. Journal of Ecology 79, 145–164.

Frelich, L. E. and C. G. Lorimer (1991b). Natural disturbance regimes in hemlock-hardwood
forests of the upper Great Lakes region. Ecological Monographs 61 (2), 145–164.

Goodburn, J. M. and C. G. Lorimer (1999). Population structure in old-growth and man-
aged northern hardwoods: An examination of the balanced diameter distribution concept.
Forest Ecology and Management 118, 11–29.

Guariguata, M. R. (1990). Landslide disturbance and forest regeneration in the upper
Luquillo Mountains of Puerto Rico. Journal of Ecology 78, 814–832.

Gunderson, L. H. (2000). Ecological resilience – in theory and application. Annual Review
of Ecology and Systematics 31, 425–439.

Halpin, C. R. (2009). Simulated long-term effects of group selection on production, efficiency,
composition, and structure in northern hardwood and hemlock-hardwood forests. Master’s
thesis, University of Wisconsin – Madison, Madison, WI, USA.

Hanson, J. J. (2009). Emulating natural disturbance dynamics in northern hardwood forests:
Long-term effects on species composition, forest structure, and yield. Ph. D. thesis, Uni-
versity of Wisconsin – Madison, Madison, WI, USA.

Hanson, J. J. and C. G. Lorimer (2007). Forest structure and light regimes following moderate
windstorms: Implications for multi-cohort management. Ecological Applications 17, 1325–
1340.

Hanson, J. J., C. G. Lorimer, and C. R. Halpin (2011). Predicting long-term sapling dy-
namics and canopy recruitment in northern hardwood forests. Canadian Journal of Forest
Research 41, 903–919.

Hanson, J. J., C. G. Lorimer, C. R. Halpin, and B. J. Palik (2012). Ecological forestry in
an uneven-aged, late-successional forest: Simulated effects of contrasting treatments on
structure and yield. Forest Ecology and Management 270, 94–107.

Heinselman, M. L. (1973). Fire in the virgin forests of the Boundary Waters Canoe Area,
Minnesota. Quaternary Research 3 (3), 329–382.

Henry, J. D. and J. M. A. Swan (1974). Reconstructing forest history from live and dead
plant material – an approach to the study of forest succession in southwest New Hampshire.
Ecology 55 (4), 772–783.



71

Hett, J. M. and O. L. Loucks (1971). Sugar maple (Acer saccharum marsh.) seedling mor-
tality. The Journal of Ecology , 507–520.

Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology
and Systematics 4, 1–23.

Johnson, E. A. and C. E. Van Wagner (1985). The theory and use of two fire history models.
Canadian Journal of Forest Research 15 (1), 214–220.

Kotar, J., T. L. Burger, and J. A. Kovach (2002). A guide to forest communities and
habitat types of northern Wisconsin. Madison, WI: Department of Forest Ecology and
Management, University of Wisconsin – Madison.

Mason, W. L. (2002). Are irregular stands more windfirm? Forestry 75, 347–355.

Mori, A. S. (2011). Ecosystem management based on natural disturbances: Hierarchical
context and non-equilibrium paradigm. Journal of Applied Ecology 48, 280–292.

Motta, R., R. Berretti, D. Castagneri, V. Dukić, M. Garbarino, Z. Govedar, E. Lingua,
Z. Maunaga, and F. Meloni (2011). Toward a definition of the range of variability of
central european mixed FagusâĂŞAbiesâĂŞPicea forests: the nearly steady-state forest of
Lom (Bosnia and Herzegovina). Canadian Journal of Forest Research 41, 1871–1884.

Niese, J. N. and T. F. Strong (1992). Economic and tree diversity trade-offs in managed
northern hardwoods. Canadian Journal of Forest Research 22 (11), 1807–1813.

Nyland, R. D. (2007). Silviculture: Concepts and applications. Long Grove, IL, USA:
Waveland Press.

Odum, E. P. (1969). The strategy of ecosystem development: An understanding of ecological
succession provides a basis for resolving man’s conflict with nature. Science 164, 262–270.

O’Hara, K. L. and B. S. Ramage (2013). Silviculture in an uncertain world: Utilizing multi-
aged management systems to integrate disturbance. Forestry 86, 401–410.

Oliver, C. D. and B. C. Larson (1990). Forest stand dynamics. New York: McGraw-Hill.

Peterson, C. J. and S. T. A. Pickett (1995). Forest reorganization: a case study in an
old-growth forest catastrophic blowdown. Ecology , 763–774.

Piovesan, G., A. DiFilippo, A. Alessandrini, F. Biondi, and B. Schirone (2005). Structure,
dynamics and dendroecology of an old-growth Fagus forest in the Apennies. Journal of
Vegetation Science 16, 13–28.

Rafferty, M. and R. Sprague (2001). Porcupine Mountains companion: Inside Michigan’s
largest state park. White Pine, MI, USA: Neqauket Natural History Associates.



72

Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker (2001). Catastrophic shifts
in ecosystems. Nature 413, 591–596.

Schulte, L. A. and D. J. Mladenoff (2005). Severe wind and fire regimes in northern forests:
Historical variability at the regional scale. Ecology 86 (2), 431–445.

Seymour, R. S., A. S. White, and P. G. deMaynadier (2002). Natural disturbance regimes
in northeastern North America – evaluating silvicultural systems using natural scales and
frequencies. Forest Ecology and Management 155, 357–367.

Shugart, H. H. (1984). A theory of forest dynamics: The ecological implications of forest
succession models. New York: Springer-Verlag.

Smith, D. M., B. C. Larson, M. J. Kelty, and P. M. Ashton (1997). The practice of silviculture:
Applied forest ecology. New York: John Wiley and Sons.

Sprugel, D. G. (1991). Disturbance, equilibrium, and environmental variability: What is
‘natural’ vegetation in a changing environment? Biological Conservation 58, 1–18.

Turner, M. G., W. H. Romme, R. H. Gardner, R. V. O’Neill, and T. K. Kratz (1993). A
revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes.
Landscape Ecology 8 (3), 213–227.

Van Wagner, C. E. (1978). Age-class distribution and the forest fire cycle. Canadian Journal
of Forest Research 8 (2), 220–227.

Vanderwel, M. C., D. A. Coomes, and D. W. Purves (2013). Quantifying variation in forest
disturbance, and its effects on aboveground biomass dynamics, across the eastern United
States. Global Change Biology 19, 1504–1517.

Webb, S. L. and S. E. Scanga (2001). Windstorm disturbance without patch dynamics:
Twelve years of change in a Minnesota forest. Ecology 82, 893–897.

Woods, K. D. (1979). Reciprocal replacement and the maintenance of codominance in a
beech-maple forest. Oikos , 31–39.

Zenner, E. K. (2005). Development of tree size distributions in Douglas-fir forests under
differing disturbance regimes. Ecological Applications 15 (2), 701–714.

Zhang, Q., K. S. Pregitzer, and D. D. Reed (1999). Catastrophic disturbance in the pre-
settlement forests of the upper peninsula of Michigan. Canadian Journal of Forest Re-
search 29 (1), 106–114.



73

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Midpoint DBH (cm)

Tr
ee

s/
ha

Mature
24 / 27 obs inside simulation ROV

(a)

0 20 40 60 80 100 120
0

20
40

60
80

10
0

12
0

Midpoint DBH (cm)

Tr
ee

s/
ha

Early Transition
23 / 24 obs inside simulation ROV

(b)

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Midpoint DBH (cm)

Tr
ee

s/
ha

Mid−Transition
20 / 27 obs inside simulation ROV

(c)

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Midpoint DBH (cm)

Tr
ee

s/
ha

Steady State
22 / 27 obs inside simulation ROV

(d)

Figure 1: Thirty-year change in diameter distribution from 0.5 ha permanent plots rep-
resenting four mature and old growth stages, compared to CANOPY predictions of these
changes. Thick lines give 2011 measurement and thin lines 1981 measurements. grey bands
give ranges of variation (ROV) over 20 replicated CANOPY simulations.
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Figure 2: Simulated changes over time in the percentage of the 70 plot population (0.5
ha plots, 10 reps per plot, 1000 years per rep) in each structural stage under the historic
natural disturbance regime. Lines to the right of the trajectories show the equilibrium state
predicted by the second order Markov chain analysis. MSM: Mature-sapling mosaic.
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Figure 3: Frequency distributions of residence times in each structural stage of the 70 plot
population (CANOPY simulations, 0.5 ha plots, 10 reps per plot, 1000 years per rep) under
the historic natural disturbance regime. The first 100 years of each simulation were excluded
to reduce correlation between replicates of the same plot.
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Figure 4: State transition diagram for the historic natural disturbance regime on 0.5 ha
plots based on a second order Markov chain analysis that computed the equilibrium structural
composition. Numbers in the boxes represent the percentage of the Markov population in a
given stage at equilibrium and the average residence time for a plot in that stage. Labeling
on the arrows give the percentage of the Markov population transferred per century between
stages, and arrow widths are scaled according to these percentages. Transition probabilities
between stages were taken from CANOPY simulations in Fig. 3. MSM: Mature-sapling
mosaic, ET: Early transition, MT: Mid-transition, LT: Late transition, SS: Steady state.
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Figure 5: State transition diagram for a dichotomous disturbance regime on 0.5 ha plots
that included only background mortality in most decades and removal of 70% canopy area
at mean intervals of 3734 years (from Frelich and Lorimer, 1991b) . Numbers in the boxes
represent the percentage of the Markov population in a given stage at equilibrium and the
average residence time for a plot in that stage. Labeling on the arrows give the percentage of
the population transferred per century between stages, and arrow widths are scaled according
to these percentages. Abbreviations as in Fig. 4.
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Figure 6: State transition diagram for 4 hectare simulations of a dichotomous disturbance
regime that included only background mortality in most decades and severe events removing
70% canopy area at mean recurrence interval of 3734 years. Numbers in the boxes represent
the percentage of the Markov population in a given stage at equilibrium and the average
residence time for a plot in that stage. Labeling on the arrows give the percentage of the
population transferred per century between stages, and arrow widths are scaled according
to these percentages. Abbreviations as in Fig. 4.
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Figure 7: State transition diagram for the historic natural disturbance regime, analyzed
separately for maple- and hemlock- dominated stands (defined as ≥ 35% hemlock basal area).
Numbers in the boxes represent the percentage of the Markov population in a given stage at
equilibrium and the average residence time for a plot in that stage. Arrow widths are scaled
according to the percent transferred per century between stages. Transition probabilities
taken from simulations in Fig. 3. Transition rates among stages are shown in Table 1.
Abbreviations as in Fig. 4.
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Figure 8: Simulated structural recovery of old-growth stands from either single or repeated
disturbances compared to development under background mortality. Thick line shows tra-
jectory under background mortality. Black symbols denote p<0.05 in a chi-squared test
between the distribution of stages with disturbance vs background mortality. (a) single dis-
turbance in steady state stands. (b) Repeated disturbances (year 1, 31, 61, 91) in steady
state stands. (c) Single disturbance in early transition stands. (d) repeated disturbance in
early transition stands. Abbreviations as in Fig. 4.
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Table 1: Percentage of the landscape transferred between stages by century from the Markov
model in Fig. 6. Rows give the initial stages, columns the destination. Empty cells represent
transitions never observed.

Maple Hemlock
Sap Pole MSM Mat ET MT LT SS Sap Pole MSM Mat ET MT LT SS

M
ap

le

Sap 1.6 2.1 <0.1 <0.1
Pole 0.3 5.0 1.8 0.2 <0.1

MSM 1.2 3.8 19.4 11.3 0.7 0.7 3.4 <0.1 0.6 0.2 <0.1 <0.1
Mat 0.2 0.6 7.0 33.3 0.7 <0.1 1.6 0.5 <0.1
LA 0.7 0.6 11.2 19.9 15.0 21.7 21.5 <0.1 0.3 4.5 0.3 0.2 0.3
ET 0.1 2.8 2.1 18.2 4.6 <0.1 <0.1 2.0 0.1 0.2
LT 0.1 1.7 <0.1 10.4 12.0 30.4 <0.1 0.1 0.2 1.0 0.4
SS 0.8 <0.1 8.6 1.2 35.0 0.3 14.8 <0.1 0.1 <0.1 0.5 <0.1 0.3 3.9

H
em

lo
ck

Sap <0.1 <0.1 0.1 0.5
Pole <0.1 0.2 <0.1 0.4 0.2

MSM <0.1 0.1 0.9 <0.1 <0.1 0.1 0.4 3.2 2.2 0.1 <0.1 0.9
Mat <0.1 0.3 0.9 0.1 0.1 0.9 8.4 0.3
LA 0.1 <0.1 0.8 0.7 2.9 <0.1 <0.1 0.3 0.1 0.1 1.7 4.8 4.8 9.8 8.8
ET 0.3 <0.1 0.2 1.9 0.2 0.3 <0.1 0.8 1.2 2.6 6.8
LT 0.1 <0.1 0.3 <0.1 0.5 0.5 <0.1 0.6 0.2 5.9 5.8 16.8
SS 0.1 <0.1 0.7 0.2 0.8 <0.1 0.2 3.9 0.2 <0.1 2.2 0.6 11.6 1.1 16.7
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Table 2: Short-term response of steady state and early transition stands five years after
disturbances of various severity during simulations of the historic natural disturbance regime.
Results were constructed by tabulating structural stage following stochastic disturbances
from the simulations in Fig. 2. Abbreviations as in Fig. 4. n: number of 5-yr simulation
intervals.

Percentage of stands 5 years after disturbance n
Sap Pole MSM Mat ET MT LT SS

St
ea
dy

st
at
e

Background Mortality <0.1 0.0 0.5 0.2 8.1 0.3 6.4 84.3 32522
10% disturbance 0.0 0.0 3.4 1.1 16.0 0.0 0.8 78.8 1139
20% disturbance 0.0 0.0 19.2 4.0 23.6 0.2 0.2 52.8 598
30% disturbance 0.0 0.0 66.5 3.4 13.2 0.0 0.0 16.9 266
40% disturbance 1.9 0.0 91.1 0.6 1.9 0.0 0.0 4.5 157
50% disturbance 4.9 0.0 95.1 0.0 0.0 0.0 0.0 0.0 61
60% disturbance 52.5 5.0 42.5 0.0 0.0 0.0 0.0 0.0 40
70% disturbance 67.7 9.7 22.6 0.0 0.0 0.0 0.0 0.0 31

E
ar
ly

tr
an

si
ti
on

Background Mortality <0.1 <0.1 0.9 4.7 77.8 4.1 6.5 6.0 28965
10% disturbance 0.0 0.1 7.1 8.5 68.5 3.6 4.9 7.4 1100
20% disturbance 0.0 0.4 29.8 11.4 43.3 1.1 4.1 9.9 543
30% disturbance 0.4 1.2 56.3 10.7 24.5 1.5 0.8 4.6 261
40% disturbance 2.1 5.5 68.5 6.2 13.0 0.7 0.0 4.1 146
50% disturbance 8.1 14.5 75.8 0.0 1.6 0.0 0.0 0.0 62
60% disturbance 19.4 22.6 58.1 0.0 0.0 0.0 0.0 0.0 31
70% disturbance 64.3 9.5 26.2 0.0 0.0 0.0 0.0 0.0 42
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CHAPTER 3
A demographic approach to evaluating tree population
sustainability

Abstract

Currently, there are no widely accepted quantitative criteria to assess the demographic sus-

tainability of tree populations. Such criteria would be useful in forest management as climate

change and a growing complex of invasive pests are likely to drive forests outside their his-

toric range of variability. In this paper, a quantitative index of tree population sustainability

was defined based on the ratio of future simulated basal area to current basal area. This

index assesses the proportion of existing species or stand basal area that is sustained over

a specified time period and under specified environmental conditions. Simulations were

conducted to compute the index under several disturbance regimes for seventy northern

hardwood stands having a range of initial size distributions. These simulations were con-

ducted using CANOPY, an empirical, individual-tree model that provides projections of

density-dependent recruitment, growth, and mortality. Only steeply descending monotonic

size distributions were indicated to be moderately or highly sustainable (final BA / initial

BA ≥ 0.7) and stable in the sense that their size distributions maintained the same form.

Regression analyses indicated that demographic variables (e.g., initial basal area, quadratic

mean diameter, etc) were often predictive of demographic sustainability, both overall and

for individual species. When the population density and species composition of trees 2-6 cm
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dbh were maintained at current levels, all species examined had demographic sustainability

index values ≥0.95 except for red maple (Acer rubrum). A series of simulation experiments

were conducted which manipulated the number of 2-6 cm dbh saplings in uneven-aged, old

growth stands and forecast the long-term demographic sustainability. A minimum sapling

density of 300 trees per hectare (2-6 cm dbh) was required to sustain the initial basal area,

but increasing the density of 2-6 cm trees above 300 did not result in increased basal area

because of coincident increases in mortality. Applying fixed shallow slopes to the size dis-

tribution of the 2-22 cm size classes (q ratio < 2.3) reduced the population of small trees

below that required to sustain the overstory. A variable slope was found to necessary in

the understory to maintain the existing overstory of mature and old-growth stands. These

results suggest that current uneven-aged management guidelines specifying residual curves

with a constant q-ratio would not be sustainable if small trees were harvested to the specified

residual density.

3.1 Introduction

In plant ecology, there is no close analog to the concept of ‘minimum viable populations’

in animals. Extending this concept to plants has proven difficult because of the increased

role that spatial processes play in non-motile populations (Reed et al., 2002). Nevertheless,

several investigators have applied the population viability analysis framework from animal

ecology to understory plants (cf. McGraw and Furedi, 2005; Obioh and Isichei, 2007). In this

framework, Monte Carlo simulation is used, generally with a probabilistic life-table model,

to assess a population’s probability of persistence (Reed et al. 2002), oftentimes including

the influence of stochastic disturbance. Various persistence criteria have been used. But

because population viability analysis is most often applied to threatened or endangered

species, persistence criteria are often satisfied if the target population does not go extinct,

and little emphasis given to maintaining present levels of abundance. To my knowledge,
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there have not been any formal population viability analyses conducted to date for tree

species.

The common ad hoc criterion used to judge the demographic sustainability of tree popu-

lations is that size distributions have a descending monotonic form, so that higher numbers

of small trees can compensate for mortality (Smith et al., 1997; Nyland, 2007). In the

forestry literature, the steepness of slope has been quantified by the ‘q-ratio’, defined as the

ratio of the number of trees in successive diameter classes (Guldin, 1991). But a descending

monotonic form is not a definitive criterion of demographic sustainability because many size

distributions of this form could be unsustainable if mortality rates are higher than recruit-

ment rates, and neither of these rates can be determined without long-term data. And under

certain conditions, a steeply descending monotonic form might be unnecessary for sustain-

ability. For example, gap-phase species might not need to maintain large sapling populations

to compensate for mortality if sapling growth rates within gaps are high and mortality rates

are low, suggesting that a relatively ‘flat’ size distribution may be sustainable. Likewise, a

unimodal size distribution could conceivably have an underlying stable age distribution in

some cases if fast growth in some smaller trees permits them to escape the high mortality

rates in the sapling classes, but low mortality and declining growth with increasing diameter

causes trees to ‘pile up’ in the larger size classes.

There are a number of important North American species for which existing means of

assessing sustainability do not provide a definitive assessment. Coast redwood (Sequoia

sempervirens), a canopy dominant species over a 500,000 acres of coastal forests in California

and Oregon, often has relatively flat size and age distributions in which recruitment rates

seem to be low (Lorimer et al., 2009). Yellow birch (Betula alleghaniensis), a moderately

shade tolerant gap-phase species in northern hardwood forests, oftentimes also has flat,

shallow distributions with few young trees (Tyrrell and Crow, 1994). It is not entirely clear

if either of these species is maintaining sustainable size distributions in such stands. In other
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cases, a clear change in the disturbance regime can affect population sustainability. Eastern

hemlock (Tsuga canadensis), which was the most abundant tree in northern Wisconsin at

the time of the 19th century land survey (Fahey et al., 2012), is now in region-wide decline,

which is at least partially attributable to recruitment limitation caused by chronic deer

over-browsing (Rooney et al., 2000; Witt and Webster, 2010).

The topic of population sustainability is likely to become increasingly important in this

century because of large numbers of anthropogenically induced stressors such as climate

change, exotic plants, invasive earthworms, and exotic insects and diseases. For exam-

ple, there is evidence that invasive earthworms may be hindering the establishment of tree

seedlings of some of the most common and economically valuable tree species, such as sugar

maple (Acer saccharum; Holdsworth et al., 2007). The future population viability of even

major tree species is uncertain because of introduced insects and diseases such as hemlock

woolly adelgid (Adelges tsugae) and Asian longhorned beetle (Anoplophora glabripennis)

(Orwig et al., 2002; Dodds and Orwig, 2011). Under these conditions, we need much more

rigorous criteria for judging the long-term population sustainability of various size distribu-

tions.

The main objective of this paper is to develop quantitative guidelines for interpreting

the long-term demographic sustainability of tree species at scales from small stands to land-

scapes. The specific hypotheses of interest were:

• Slopes of minimally sustainable size distributions will vary by species and size class,

reflecting systematic differences in mortality rates. Distributions with shallow slopes

(e.g., q-ratios of less than 1.5 in the smaller size classes) will not be sustainable at the

stand level for most tree species.

• Current overstory importance of late successional species will be sustainable at both

the stand and aggregated population level in the absence of novel stressors such as high
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deer populations or invasive pests. Gap-phase species will have sustainable populations

at the larger landscape level, but not within individual stands.

• For a given productivity level and species mixture, and under constant environmental

conditions and a disturbance regime limited to individual treefall gaps, stands domi-

nated by shade-tolerant species will tend to converge toward a common and sustainable

equilibrium size distribution.

In this paper, we use a well-tested, individual-tree model to examine the degree to which

various initial size distributions in mature and old-growth forests are sustainable over time

under different assumptions regarding recruitment limitations and disturbance regimes. We

then develop a quantitative index of tree population sustainability that measures the degree

to which the initial basal area is maintained. Simulation experiments were also conducted

to determine the minimum number of saplings needed to sustain the overstory basal area of

a species and the overall stand.

3.2 Methods

3.2.1 Study areas

Field sites were located in portions of three large upper Michigan natural areas that largely

escaped logging in the 19th and 20th centuries: the Porcupine Mountains Wilderness State

Park, Sylvania Wilderness in the Ottawa National Forest, and a tract of protected private

lands owned by the Huron Mountain Wildlife Foundation (see Frelich and Lorimer, 1991a, for

full details). Climate is humid continental with mean summer temperatures of 20 C and mean

winter temperatures between -7.5 C and -11 C depending on distance from Lake Superior.

Annual precipitation is approximately 80-90 cm and is well distributed throughout the year.

Soils are typically of loam, sandy loam, or silt loam texture and are primarily Fragiorthods

and Haplorthods. Elevations range from ˜ 182 m near the shore of Lake Superior to 600 m
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further inland. All plots were on mesic or dry-mesic habitats, with the majority of plots on

the Acer-Tsuga-Dryopteris (ATD) floristic habitat type of Kotar et al. (2002). The ATD

habitat is above average in productivity, with a sugar maple site index of approximately

19-20 m for base age 50 years (Coffman, 1984).

3.2.2 Field methods

Plot locations were limited to zones of primary forest and were determined by random

coordinates on maps in advance of the field survey. Seventy 0.5 ha plots were surveyed in

the summers of 1981-1984. Each plot was divided into seven contiguous 10.1 x 70.7 m strips.

Species, diameter at breast height (dbh) and crown class were recorded for all trees taller

than 1.4 m. On some younger dense stands comprised primarily of small trees, a subset of

strips were tallied. Each plot generally included a population of > 165 trees larger than 10 cm

dbh and was representative of the species composition and size structure of the surrounding

stand.

3.2.3 Model description

CANOPY is a spatially explicit, individual-tree model that incorporates direct simulation

of gap capture and simulation of natural disturbances (Hanson et al., 2011, 2012). It has

been calibrated from a data set containing more than 8,000 trees, many on permanent plots.

Stands in the calibration data set span a wide range of forest developmental stages, from

young even-aged stands to broadly uneven-aged old growth. Measurements were conducted

on temporary and permanent plots between 1953 and 2007. For each species and floris-

tic habitat type, height growth is simulated for small trees in response to canopy gap area

and competitor crown area. For larger trees, diameter growth is simulated as a function of

competition level (crowding or stocking level) in a 900 m2 competition neighborhood. Back-

ground mortality is determined by initial tree size and plot competition level. Mortality from

natural disturbances is simulated following the recurrence intervals in Frelich and Lorimer
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(1991a), with size-dependent individual tree probability of mortality based on equations in

Hanson (2009). Stochastic variation is incorporated into predictions of species composition

of new recruits, height and diameter growth, background mortality, and disturbance events.

CANOPY’s recruitment module assesses the density of saplings (2-6 cm dbh) on each

10x10 m cell, adding new individuals when the measured density is lower than the expected

density predicted by the regeneration equation, given the overstory density on the surround-

ing 900 m2 patch (Hanson et al., 2011). Species of new individuals are determined stochas-

tically based on the local overstory competition and density following a method similar to

Vanclay (1994). CANOPY is currently calibrated for late-successional northern hardwood

forests on mesic upland sites in which recruitment is primarily through advance regeneration

of mostly shade-tolerant species and short-distance colonization by midtolerant gap-phase

species. Wind disturbance usually does not facilitate the establishment of pioneer species

and largely leaves dominance by late-successional species unchanged (Dahir and Lorimer,

1996; Peterson, 2000). Long-distance colonization by species of relatively low shade toler-

ance (e.g., Betula papyrifera, Populus tremuloides, Pinus strobus) occurs primarily after fire.

But because fires severe enough to cause overstory mortality occur infrequently in northern

hardwoods (Frelich and Lorimer, 1991a; Schulte and Mladenoff, 2005), and early successional

trees of all species combined comprise only 3.3% of the basal area in the study area forests,

post-fire and long-distance recruitment is not considered in this paper. The recruitment

equations for hemlock in this paper are based on calibration data only from stands having

low levels of deer herbivory.

3.2.4 The demographic sustainability index

An index of demographic sustainability was defined as the ratio of final simulated basal area

to initial observed basal area. This index evaluates the degree to which the existing stand

basal area can be sustained over time in a particular stand or landscape given a specified
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disturbance regime, recruitment mechanism, and environmental conditions. Spatial extent

and time frame will affect the numerical value of the index, but both can be adjusted based

on the questions of interest. For example, a species that is not sustainable in any individual

stand may nevertheless be sustainable at a larger spatial scale if there is a shifting spatial

pattern of establishment and subsequent decline. Likewise, if an even-aged stand of pioneer

species has deficient regeneration, the demographic sustainability index may be quite low

over a time span of about a century. But if subsequent disturbance or harvest/planting

operations stimulate adequate regeneration, then the index may be close to 1.0. In the

northern hardwood ecosystem considered here, the natural disturbance regime produces

mostly uneven-aged stands (Frelich and Lorimer, 1991b), and so our simulations largely

evaluate the degree to which the species or stand basal area may be sustainable in a context

where the canopy is usually not completely removed in a disturbance.

In this paper, we evaluated the index at multi-century time scales and a dual stand/landscape-

level spatial scale. We examined both 500 and 1,000 year time frames, a period about two

to four times the average age at time of death for canopy trees in this ecosystem (Lorimer

et al., 2001). These simulations were designed to examine the long-term consequences of

a particular demographic structure under current environmental conditions, not to predict

future consequences of global environmental change. Note that the index can exceed 1.0 if

the population is increasing, and that it can’t be computed on plots where a species was

initially absent.

We computed the index for all species pooled as well as for each of the major canopy

species (sugar maple, hemlock, yellow birch, green ash (Fraxinus pennsylvanica), basswood

(Tilia americana), and red maple (Acer rubrum)). While the reasons for investigating sus-

tainability of individual species are evident, pooled species sustainability is also relevant in

evaluating maintenance of current forest density in cases of severe recruitment limitations.

For example, exotic earthworms or exotic pests like the Asian longhorned beetle can limit
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recruitment of most species in this ecosystem (Holdsworth et al., 2007; Dodds and Orwig,

2011), potentially leading to chronically understocked stands.

3.2.5 Analytical techniques

Regressions were performed to assess the degree to which the sustainability index can be

predicted based on initial stand structure. Several structural variables were computed as a

function of the basal area distributions of the underlying stands, which sum the basal area in

each 4 cm diameter class. Predictors of the sustainability index included initial stand basal

area, initial number of 2-6 cm dbh trees present, the percentage of stand basal area occupied

by the five classes centered on the mode of the basal area distribution, and a number of

other variables. Sustainability index was regressed individually against each variable and a

multiple regression including all the variables was also constructed. Stepwise selection based

on AIC was used to remove non-significant terms. Residual plots were manually inspected

for evidence of pattern, and normality of residuals was verified with Shapiro-Wilk tests. All

statistical analysis was performed in GNU R version 3.0.1 (R Core Team, 2013).

3.2.6 Simulation design

Eight separate simulation designs, within four general groups, were performed to evaluate

patterns in population sustainability. Group 1 includes both individual stand and larger-scale

simulations, while groups 2-4 include only stand-scale simulations.

Projections of the upper Michigan field data (Group 1). Several sets of simulations were

performed that projected the development of the 70 upper Michigan field plots for 500 years,

with 10 replications per plot. To assess the stability of the current population structure, one

set of simulations (Group 1a) was conducted for individual stands in which the total number

of trees in the 2-6 cm size class (the smallest class tracked by CANOPY) was maintained

constant at the initial levels with background mortality only. Group 1a allowed CANOPY

to determine the species composition of new recruits based on local overstory density and
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species composition. However, this procedure does not maintain constant numbers of 2-6 cm

saplings for any individual species, only for all species pooled.

To evaluate the sustainability of the overstory for individual stands in the absence of

recruitment limitation, Group 1b simulations were also performed in which CANOPY’s

normal recruitment mechanism sets species composition and permits variable understory

density, again with background mortality only.

In Group 1c simulations, CANOPY set both species composition and understory density

on each of the 70 plots, this time in concert with simulation of the historic natural disturbance

regime.

In all Group 1 a-c simulations, results of individually simulated plots were also subse-

quently pooled to estimate sustainability at a larger scale (results shown in the last column

of Table 1).

In Group 1d, the 70 plots were pooled together initially and simulated as a single unit to

represent the landscape scale, so that the total numbers of trees of each species at the larger

scale could be experimentally manipulated. Also, in contrast to Group 1a, which controlled

only the total number of saplings of all species, the simulations in Group 1d held the initial

numbers of 2-6 cm trees of each species constant over the 500-year period. During these

simulations, only background mortality was employed, but note that the initial number of

2-6 cm trees may also reflect the influence of recent episodic disturbance in the field data.

Simulation experiments with pre-determined numbers of 2-6 cm saplings (Group 2). To

more directly assess the minimum population necessary to sustain a stand, a group of de-

signed simulation experiments was performed that systematically varied the number of 2-6

cm trees. Initial conditions for this group consisted of simulated size distributions after 1000

years of forest development with only small gap formation from background mortality. These

initial conditions have the advantages of removing the complicating influence of past partial

disturbances and having an initial size distribution shown in previous simulation experiments
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to sustain the initial basal area (Appendix A). In Group 2a, recruitment was held fixed at

pre-determined constant levels and, for simplicity, only sugar maple saplings were added.

Levels of recruitment selected ranged from 15% to 150% of the average number of 2-6 cm

saplings in the initial conditions.

In Group 2b simulations, CANOPY was allowed to regulate recruitment levels within

limits, but recruitment was restricted so as not to exceed the quotas used in Group 2a. This

was done in order to avoid forcing biologically unrealistic numbers of saplings into a stand.

For example, in one trial, 600 trees/ha was the maximum allowed number of 2-6 cm trees, but

natural mortality simulated by CANOPY could cause numbers to fall below this level. To

assess the influence of species, this experiment was repeated using pure sugar maple stands,

mixed hardwood stands without hemlock, and lastly with mixed hemlock/hardwood stands.

Simulations imposing a constant q-ratio on 2-22 cm trees (Group 3). These 1000-year

simulation experiments imposed pre-specified and constant maximum q-ratios on the 2-22

cm dbh classes (using the conventional 5 cm class width). In each year, CANOPY counted

the number of trees in the 17-22 cm class, and determined the number that should then be

expected in the 12-17 cm, 7-12 cm, and 2-7 cm classes based on the specified q-ratio. If at

any time, the model detected surplus trees in a size class beyond the number specified by

the q-ratio, these were removed to maintain the specified q-ratio. If mortality in the smaller

classes was high enough that the 17-22 cm class was not replenishing itself, then the target

number of trees in the other classes was adjusted downward to account for the change in

17-22 cm density in order to maintain the specified q-ratio.

Simulations assessing minimum sustainable q-ratios (Group 4). Whereas the experiments

in Group 1-3 generally examined constant numbers of 2-6 cm trees or constant q-ratios,

Group 4 allowed for the possibility that variable q-ratios within a stand may be needed for

sustainability. This group assessed the minimum number of understory trees needed in three

consecutive 5 cm understory classes. Based on the simulated mean number of 17-22 cm
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trees in a steady state stand (49 trees/ha), we determined the minimum number of trees

in the next smaller class needed to sustain the 49 trees/ha, given the growth and mortality

functions in the model. This procedure was iteratively repeated in the 3 smallest size classes

for 500 year time spans.

3.3 Results

3.3.1 Range of demographic sustainability index values for individual stands

When individual plots were simulated for 500 years with the total number of 2-6 cm saplings

held constant at their initial levels (Group 1a simulations), a variety of demographic sustain-

ability index values were predicted, with values ranging from 0.2 to 1.6. Final sustainability

values depended on initial structure, recruitment dynamics, and disturbance regime; a subset

of 5 plots that ranged widely in initial structure is shown in Fig. 1. Within any particular

plot, a range of values was predicted because of the stochastic growth and mortality functions

in the CANOPY model. For any fixed population of 2-6 cm trees, size distributions under a

disturbance regime of single treefall gaps tended toward a descending monotonic form, but

with differing final basal areas and sustainability.

A number of general trends emerged from simulations of individual plots based on an as-

sumption of constant recruitment (Group 1a). All size distributions with high sustainability

(index values ≥0.9) were initially descending monotonic in form (data not shown). Shallow

descending monotonic curves were only moderately sustainable, typically having sustainabil-

ity index values of about 0.7. No flat or unimodal distributions were identified that were

both sustainable and stable in form. For example, the rather flat, unimodal distribution in

Fig. 1 j likewise had an index of about 0.7. Young pole stands with large numbers of small

trees were often able to sustain the initial basal area (e.g., Fig. 1 m). But these pole stands

did not have stable size distributions and were able to maintain basal area sustainability

only by shifting the form of their size distribution over several centuries from unimodal to
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descending monotonic.

When CANOPY’s normal recruitment mechanism was allowed to operate for 500 years

(i.e. no constraints were placed on the number of 2-6 cm trees; Group 1b simulations), the

five stands in Fig. 1 tended to converge toward similar descending monotonic curves. These

were also close to the average observed size distributions from field measurements of steady-

state, old-growth stands on ATD habitat (Fig. 2 a). While there were differences in the final

number of trees in the 10-40 cm classes among some replicates, the simulation envelopes for

all five curves overlapped (Fig. 2 b), suggesting little inherent difference among replicates.

For all 70 plots, mean diameter distributions of simulated steady-state plots fell near the

middle of the range of field observations (Fig. 2 c).

Calculations of the sustainability index for individual species, based on 500 year CANOPY

simulations of the 70 individual plots, also indicated a wide range of index values depending

on recruitment limitations and disturbance regime (Table 1, Group 1a simulations). Sugar

maple, green ash, and all species pooled had index values > 0.8 for all conditions tested.

Yellow birch and red maple had low sustainability under most conditions, with ≥ 70% of

plots having index values < 0.4 for both species and average plot-level index values < 0.5.

Hemlock and basswood had moderate levels of sustainability, except that hemlock showed a

very gradual and progressive increase in relative basal area on ATD habitat under a regime

of only small treefall gaps and low levels of deer browsing.

3.3.2 Assessing sustainability at the landscape scale

The initial landscape-level diameter distributions for most species from the 70-plot field sur-

vey were descending monotonic in form, with the exceptions of hemlock, white cedar, and

northern red oak (Fig. 3). The descending distributions might be considered sustainable

under traditional, ad hoc criteria. However, it is difficult to make reliable assessments of

sustainability without consideration of the underlying recruitment, growth, and mortality
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relationships. Therefore, the sustainability of initially observed landscape-level size distri-

butions in Fig. 3 was evaluated by projecting them for 500 years using the demographic

equations in CANOPY.

Two sets of simulations evaluated sustainability at the landscape scale with constant num-

bers of 2-6 cm trees (Group 1a and 1d simulations). These two analyses gave substantially

different results. In simulations where CANOPY was allowed to determine species composi-

tion of the 2-6 cm trees (Group 1a), sugar maple and ash had sustainability > 1.0 (rightmost

column of Table 1). Other species had only moderate or low sustainability (<0.8), including

major gap-phase species such as yellow birch. In Group 1d, where numbers of trees in the

2-6 cm class were maintained at initial levels for each species, all species had sustainability

>1.0 except red maple (Fig. 4).

3.3.3 Predictors of demographic sustainability

Multiple regressions using demographic variables based on initial plot conditions were able to

explain 47-77% of the variation in sustainability index for all species combined, and 27-68%

of the variation for individual species, depending recruitment mechanism and disturbance

regimes (Table 2). The two best single predictors in bivariate regressions were the initial

basal area and quadratic mean diameter (R2 of 0.47 and 0.24, respectively, under the historic

natural disturbance regime without recruitment limitation). Demographic sustainability

index was most predictable when the initial number of saplings was maintained under a

disturbance regime comprised only of background mortality. Sustainability of individual

species was least predictable (0.27 ≤ R2 ≤ 0.45) under background mortality alone but

without any recruitment limitations. Incorporating the historic disturbance regime resulted

in the lowest predictability for overall sustainability (R2=0.47). However, predictability for

sugar maple and yellow birch was higher under the historic natural disturbance regime than

under background mortality alone and roughly equal to simulations that maintained the
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initial number of saplings (Table 1).

In the original field data, increasing initial basal area was negatively correlated with the

number of 2-6 cm saplings in a log-linear fashion (Fig. 5 a). Simulations suggested that the

sustainability index is positively correlated with the number of 2-6 cm trees and negatively

correlated with initial basal area (Fig. 5 b). Sustainability index of 1.0 was predicted at 37

m2/ha of basal area and 320 trees/ha in the 2-6 cm class (Fig. 5 b,c). These two levels of

initial stand basal area and number of 2-6 cm saplings are very similar to the mean observed

values of stands in the field data (Fig. 5 d,e)

3.3.4 Minimum number of understory trees for sustainability

Controlled experiments that started with a steady-state stand (Group 2a simulations) and

maintained the initial number of 2-6 cm dbh trees at constant levels from 50-600 trees/ha

demonstrated an asymptotic trend in sustainability with increasing sapling density. Index

values of about 1.0 were reached when stands contained approximately three hundred 2-6 cm

trees per hectare (Fig. 6 a). Additional experiments that placed a limit on the number of 2-6

cm trees but did not add more trees than predicted by CANOPY’s recruitment mechanism

(to avoid biologically unreasonable sapling densities) produced similar trends (Group 2b;

Fig. 6 b). Results were similar under all species mixtures tested.

Equilibrium diameter distributions for pure maple stands with fixed numbers of 2-6 cm

trees had shallower slopes as the number of saplings was decreased, but were all descending

monotonic in form (Fig. 7). For all stands with sapling densities > 150/ha, size distributions

for trees above 30 cm dbh converged to essentially identical form as long as the stands were

fully stocked. Higher densities of saplings resulted in higher densities of trees less than 30 cm

dbh. However, mortality rates were correspondingly higher in high-density stands, especially

for the smaller trees.

Controlled experiments that started from steady-state stands and applied constant q-
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ratios to the 2-22 cm trees (Group 3 simulations) demonstrated that q-ratios of less than

about 2.3 resulted in stands with low index values averaging only 0.3-0.4(Fig. 8). Results

were similar for mixed hardwood stands without hemlock recruitment and for stands that

included mixed hemlock/hardwood recruitment.

Iterative experiments that controlled q-ratios in the 2-7, 7-12, and 12-17 cm diameter

classes (Group 4 simulations) showed that a variable q-ratio was necessary to maintain target

tree densities in the smaller diameter classes (Table 3). The predicted minimum number of

saplings was close to the average sapling populations in CANOPY simulations of steady-

state stands under a disturbance regime exclusively of individual treefall gaps. Predicted

minimum sapling numbers were also generally close to observed values from stands on ATD

habitat classified as steady state based on structural criteria (Appendix A). The simulated

steady-state stands do contain some inherent variation as a result of stochastic growth and

mortality in the CANOPY model, but stands on average appear to maintain populations

close to the minimum number of saplings required for sustainability and without carrying

large excesses.

3.4 Discussion

3.4.1 Characteristics and dynamics of sustainable size distributions

Results demonstrated that the following demographic size distributions were not generally

sustainable in this forest type and region: (1) flat distributions, (2) shallow descending

monotonic curves, and (3) unimodal curves. While it is conceivable that a flat or shallow

descending distribution could be sustainable if mortality rates are sufficiently low, the mor-

tality calibration data in CANOPY indicate that mortality rates are too high to sustain

these distribution types under any disturbance regime and competition level tested in these

experiments. These results suggest that descending monotonic curves should not always be

assumed to indicate sustainable populations in the absence of specific knowledge of mortal-
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ity and recruitment rates. Likewise, we could find no evidence that unimodal distributions

could represent alternative stable states under the conditions examined. All sustainable and

stable size distributions in this study were steeply descending in form.

The relationships in Figures 2, 5, and 6 suggest underlying feedback mechanisms in these

forests that cause stand structure to trend toward a stable size distribution in the absence

of moderate or severe disturbance. When basal area is relatively high, recruitment decreases

(Fig. 5 a) and mortality increases (Fig. 6), driving overall stand density downward over

time. But when forests are relatively sparse, the density of saplings tends to increase in

the absence of recruitment limitations (Fig. 5 a). In this study, these countervailing trends

balanced, with a demographic sustainability index of 1.0, at 37 m2 of basal area and 320

saplings per hectare (Fig. 5 b,c). These values correspond with the mean of field observations

(Fig. 5 d,e), suggesting that the existing landscape-level size distribution is, on average, close

to CANOPY’s predicted stable structure. Simulations of different stands with varied initial

structures all converged toward a common size distribution on the same habitat and site

productivity level (Fig. 2 a). The apparent differences among curves in the 10-40 cm dbh

classes were not significant (Fig. 2 b), supporting the hypothesis of convergence toward a

common stable structure for a given habitat under constant environmental conditions. The

implication that size distributions at the landscape scale may be stable is consistent with

earlier evidence suggesting that these study areas generally meet criteria for equilibrium

landscapes (Frelich and Lorimer, 1991a,b) based on disturbance frequency and severity (sensu

Turner et al., 1993).

Some authors have suggested that relatively low and constant q-ratios are sustainable

and typical of natural stands, and they have defended the negative exponential function as

the best model for uneven-aged northern hardwoods (e.g., Rubin et al., 2006). For Ponderosa

pine, O’Hara (1996) provided simulation evidence that constant q-ratios of less than 1.5, or

even linearly decreasing numbers of trees, may be sustainable in managed selection stands.
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Q-ratios in natural northern hardwood stands, however, can be much higher. In old-growth

northern hardwood stands in upper Michigan, q-ratios of the 5-10 cm class averaged 6.5

(Goodburn and Lorimer, 1999). In the present study, any q-ratio greater than 2.3 in the

smaller size classes was found to be sustainable, suggesting that ratios as steep as six may

reflect an excess population of small trees.

However, a variable and relatively steep q-ratio was necessary in the smaller size classes

(<20 cm) to maintain a stable, uneven-aged structure. Q-ratios of 1.3 are used commonly

in uneven-aged silvicultural guidelines for northern hardwoods (Leak, 1965; Marquis, 1978;

Leak, 2002). But, when these were applied to the 2-22 cm dbh classes, stands had sustain-

ability index values of only 0.3 and standing basal area of only ≈ 12 m2/ha, about half the

level in fully-stocked managed stands. Shallow q-ratios of about 1.3 do provide a reasonable

approximation to the form of a natural size distribution over the ranges of diameters typi-

cally maintained in managed stands (e.g., 15-60 cm dbh). But, results of the present study

suggest that a constant q-ratio of this magnitude would not be sustainable if applied across

the entire range of sizes (see also Goodburn and Lorimer, 1999). Our results suggest that

a rotated sigmoid size distribution (sensu Goff and West, 1975) with variable q-ratios may

be required when management is applied across the full range of size classes, as in a forest

managed for old-growth characteristics (Keeton, 2006).

The negative exponential model with constant q ratios may especially be inappropriate

if some small trees are harvested from the site. Harvesting of trees < 15 cm dbh has rarely

been conducted with traditional selection silviculture. But there may be a trend toward

harvesting smaller trees in some stands managed for bioenergy and other alternative wood

products (Janowiak and Webster, 2010; Aguilar et al., 2013). The results of the present

study suggest that viable alternatives for thinning the small-tree population may be limited

in uneven-aged stands where demographic sustainability is a management objective.
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3.4.2 Sustainability of late-successional and gap-phase species

Overstory populations of late-successional species tended to be sustainable both at the level

of individual plots and in the aggregate population. Sugar maple had high values of the

sustainability index (average plot index >1.2 and aggregate population index >0.95) under

all conditions tested. Results for hemlock were somewhat more varied, reflecting several

likely factors. CANOPY predicts that under prevailing (late 20th/early 21st century) envi-

ronmental conditions, hemlock on Acer-Tsuga-Dryopteris habitats would gradually increase

in importance over a span of > 500 years under a regime of single-tree gap dynamics and low

deer populations. However, CANOPY predicted that hemlock would decline in abundance

in multiple-tree gaps and larger disturbances (see also Webster and Lorimer, 2002; Halpin,

2009; Hanson et al., 2012). When simulations were conducted under background mortality

only and low browse levels, hemlock had an average individual-plot sustainability index of 2.3

and a landscape-scale sustainability of 1.6. CANOPY simulations of the historic natural dis-

turbance regime suggest a corresponding reduction of hemlock following major disturbance;

the average-plot sustainability of hemlock decreased to 1.2 and the aggregate-population

sustainability decreased to 0.8. While these predictions of hemlock response need further

field testing, the model does suggest that hemlock increasingly dominates stands under a

regime of small treefall gaps, but this trend is counteracted by the occurrence of periodic

canopy disturbance. Hemlock is known to become dominant under disturbance regimes in

which large openings and stand-replacing disturbances are infrequent. For example, in the

presettlement land surveys, hemlock was the single most abundant tree species in northern

Wisconsin forests (Fahey et al., 2012). But mature hemlock is also known to suffer high

mortality after exposure (Hough, 1960), and hemlock seedling establishment is often poor in

large openings (Goerlich and Nyland, 2000).

As hypothesized, gap-phase species tended to be sustainable when the aggregate popula-

tion was simulated at the larger scale, but not on the level of individual plots. For example,
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yellow birch had sustainability less than 0.6 on 80% of plots under all conditions tested.

This appears to reflect the shifting-mosaic nature of recruitment of many gap-phase species.

Typical size distributions of yellow birches for the upper Michigan dataset contain occasional

spikes of recruitment, but many stands lack adequate recruitment. In 57% of stands where

yellow birch occurred, the average density of birches per hectare by 4 cm size class < 25

cm dbh was less than the average density by size class of birches ≥ 25 cm dbh, with 83%

of these having density of small birches 20% lower than density of large birches. On these

plots, the overstory would be unable to sustain the understory even in the absence of any

mortality. The deficit of small trees exists despite frequent gap formation, numerous fallen

rotten logs, and tip-up mounds. This evidence suggests that more intense disturbance than

small treefall gaps (large openings or partial shade in low-density stands) is necessary to

sustain the gap-phase species.

The two alternative evaluations of landscape-scale sustainability for gap-phase species

(Group 1c and 1d simulations) gave dramatically different results. For example, in Group 1c

simulations, where CANOPY selects the species composition of new recruits, yellow birch had

a sustainability index averaging only ≈0.2. These low index values occurred even under the

historic natural disturbance regime and even though moderate and severe disturbance in the

simulations were often followed by a pulse of yellow birch recruitment. These pulses, however,

were not sufficient to maintain the initial number of yellow birch saplings observed in the

field data or the overall level of yellow birch basal area. In contrast, Group 1d simulations,

which ensured the observed initial numbers of 2-6 cm trees for each species, had average

sustainability values of yellow birch of ≈1.3. This difference arose because in Group 1c, the

magnitude and duration of the yellow birch pulses as determined by CANOPY’s recruitment

equations likely reflects the limited recruitment of yellow birch in the calibration data set.

Second-growth stands in the calibration data seldom had adequate seedbed conditions (tip-up

mounds, rotten logs; e.g., Bolton and D’Amato, 2011). In addition, while the timespan of the
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old-growth field survey (1981-2011) included periods during which some plots had suitable

seedbed conditions, episodes of moderate or severe disturbances did not occur during the

calibration period, which otherwise could have provided light regimes favorable for yellow

birch establishment and survival. For these reasons, we consider the Group 1d simulations,

which hold constant the initial observed sapling densities of each species, to provide the most

plausible assessments of landscape-level sustainability of gap-phase species under the stated

environmental conditions.

3.4.3 Potential applications

The demographic sustainability index could be used in conservation planning to identify

stands and species with potentially unsustainable populations. Estimates of the index could

then be used to prioritize management activity, focusing interventions (e.g., planting opera-

tions, population control of herbivores, insect pests, invasive plants, etc) on those sites where

they are most likely to be effective. The index could easily be integrated into an Adaptive

Management approach, as these already make prominent use of models (Schreiber et al.,

2004; Williams, 2011).

In this paper, we used CANOPY, a complex, individual-tree model that has many com-

ponents such as a natural disturbance simulator, to provide the raw data for calculating

the demographic sustainability index. Other individual-tree models or even whole-stand

models could be employed, and they need not necessarily be complex to compute the in-

dex. For example, some models that utilize non-spatial forest inventory data (e.g., Kaya and

Buongiorno, 1987; Caspersen et al., 2011) might also be suitable. Essential requirements for

computing the index would be a model that simulates interacting recruitment, growth, and

mortality rates under varying competition levels.

In this study, long-term sustainability was evaluated for existing species under dynamics

of the historic natural disturbance regime. The CANOPY calibration data set includes
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recruitment, growth, and mortality data from the mid 20th to early 21st centuries and

disturbance regime data from the early 19th to late 20th centuries (Frelich and Lorimer,

1991a; Hanson et al., 2012). However, climate change and the oncoming complex of invasive

and exotic pests will likely have a profound impact on these forest dynamics. Regardless of

the specific model used, the recruitment, growth, and mortality functions in empirical and

mechanistic models would need to be recalibrated under changing environmental conditions.

As an example, consider the potential impact of the exotic hemlock woolly adelgid. When

twenty replications of an old-growth stand with ≈70% hemlock basal area and no adelgid

present was simulated for 100 years under background mortality, hemlock had an average

sustainability index of 0.9. In a simulation including a single adelgid infestation that killed

25% of the live hemlocks (as in Eschtruth et al., 2006), the predicted mean sustainability

index was reduced to 0.74. When a persistent infestation was assumed, such that hemlock

mortality was 25% in each decade, mean index value was further reduced to 0.07. The index

could be especially useful in comparing the potential impact of pests and pathogens that kill

only mature trees (e.g., Dutch Elm disease) with those that kill trees in all life stages (e.g.,

Hemlock woolly adelgid). As data on these and other stressors becomes available, future

work could integrate their effects into models such as CANOPY, and revised estimates of

demographic sustainability index could help guide conservation and restoration efforts.
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Figure 1: Predicted demographic sustainability index for five 0.5 ha plots with a variety of size
initial distributions from the 1981-1984 upper Michigan field survey. Each plot was simulated
10 times for 500 years with the number of 2-6 cm trees maintained constant at initial levels
(Group 1a simulations). First class shown is the 2-6 cm class. Left column: initial conditions.
Middle column: Projected diameter distributions in year 500 (bars: means; whiskers: range
of variation for the 10 replicates). Right column: Distribution of sustainability index values
for all species pooled.
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Figure 2: (a)Predicted diameter distribution in year 500 for the five plots shown in Fig. 1
when simulated without any recruitment limitation under background mortality only (Group
1b simulations). Solid lines show the mean of the 10 replicates for each plot. Dashed line
gives the mean of steady-state field plots on Acer-Tsuga-Dryopteris habitat, with grey band
showing the range of variation. (b) Mean simulated densities for trees in the 10-40 cm size
classes and the range of variation among replicates of the five stands. (c) 95% confidence band
(thick line) for 1,000-yr simulations under background mortality of all 70 plots compared
to the range of variation among steady-state field plots (diagonal hatching). The narrow
confidence band in the simulations is due to the large sample size (n = 700 independent
observations after 1000 years of simulation), rather than lack of stochastic variation in the
model (see panel b). For each replication, the diameter distribution selected to compute the
width of the confidence band occurred in the last year in which that replication was classified
as steady-state.
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Figure 3: Observed landscape-level diameter distributions for each species in the 1981-1984
upper Michigan field survey (70 half hectare plots in natural areas containing 23,000 ha of
primary forest). Thick lines give the means among plots, thin lines show a 95% confidence
band without a multiple-test correction.
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Figure 4: Demographic sustainability index of principal species based on 20 replicated simu-
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initial observed numbers of trees of each species in the field data, assuming a disturbance
regime of background mortality only (Group 1d simulations).
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Figure 5: Relationship of initial stand basal area and sapling density with sustainability
index. (a) Stand basal area and initial numbers of 2-6 cm dbh trees from the upper Michigan
field data. (b,c) Initial distribution of stand basal area and density of 2-6 cm dbh trees from
the 1981-1984 field survey. (d,e) Predictions of pooled species demographic sustainability
index for the 70 field plots. Simulations were run for 500 years, with 10 replications per
plot, and the initial number of 2-6 cm dbh trees held constant. Species composition of new
recruits was determined by CANOPY’s recruitment equations. (Group 1a simulations).
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Figure 6: Pooled-species demographic sustainability index values from 1000 year simulation
experiments with varying densities of small saplings (Group 2 simulations). (a) Pure maple
stand where trees were added if necessary to maintain the specified sapling density (Group
2a simulations). (b) Stands where the specified density was used as a limit (i.e. additional
trees were not added if mortality reduced the population below the specified density; Group
2b simulations).
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Figure 8: Pooled-species demographic sustainability index as a function of maximum q-ratio
maintained in the 2-22 cm diameter classes. Simulations were conducted for 1000 years and
replicated 20 times starting from uneven-aged old-growth stands (Group 3 simulations).
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Table 1: Summary of demographic sustainability index from simulations of the 70 upper
Michigan field plots analyzing the effect of recruitment limitation and disturbance regime
(Group 1 simulations). Ten replications of each plot were simulated for 500 years.

Percentage of plots by sustainability class
<0.2 <0.4 <0.6 <0.8 <0.9 0.9+ avg. plot1 pop. overall2

All spp. pooled
Const. 2-6 cm T/ha3 0 8 23 48 58 42 0.82 0.83
Background mort. only4 0 0 0 11 24 76 1.02 1.08
Historic disturbance5 0 2 16 49 66 34 0.82 0.85

Sugar maple
Const. 2-6 cm T/ha 1 4 11 24 32 68 1.35 1.06
Background mort. only 4 15 27 39 44 56 1.23 0.95
Historic disturbance 1 6 15 27 35 65 1.38 1.06

Hemlock
Const. 2-6 cm T/ha 15 27 40 50 55 45 1.31 0.72
Background mort. only 0 1 4 8 13 87 2.28 1.65
Historic disturbance 10 23 38 51 56 44 1.16 0.82

Yellow birch
Const. 2-6 cm T/ha 57 78 84 88 89 11 0.44 0.20
Background mort. only 48 70 81 86 87 13 0.53 0.22
Historic disturbance 59 79 86 89 90 10 0.44 0.18

Ash
Const. 2-6 cm T/ha 31 41 49 55 59 41 1.38 2.27
Background mort. only 16 31 44 50 53 47 1.73 2.57
Historic disturbance 24 37 46 52 57 43 1.70 2.49

Basswood
Const. 2-6 cm T/ha 26 37 46 53 55 45 1.86 0.78
Background mort. only 14 27 38 47 51 49 2.11 0.90
Historic disturbance 28 45 54 62 64 36 1.61 0.57

Red maple
Const. 2-6 cm T/ha 66 78 84 86 88 12 0.36 0.28
Background mort. only 61 73 79 84 85 15 0.50 0.29
Historic disturbance 61 74 82 86 87 13 0.49 0.28

1 Average demographic sustainability index on plots where the subject species was initially
present.
2 Mean sustainabiilty index of all 70 plots pooled, including plots that initially lacked the
subject species.
3 Constant number of trees maintained in the 2-6 cm class, but CANOPY allowed to deter-
mining sapling species composition, under a regime of background mortality only (Group 1a
simulations).
4 CANOPY determined both density and composition of 2-6 cm dbh trees, under a regime
of background mortality only (Group 1b simulations).
5 CANOPY determined both density and composition of new 2-6 cm dbh trees, under the
historic natural disturbance regime (Group 1c simulations).
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Table 2: Multiple regressions to predict sustainability index based on simulations of the
upper Michigan field data.

Const. 2-6 cm1 Background mort.2 Historic Dist. Regime3
Variable Estimate p Estimate p Estimate p

All species pooled
(Intercept) 1.0150 <0.001 0.7190 <0.001 0.5753 <0.001
2-6 cm T/ha 0.0008 <0.001 -0.0002 <0.001 -0.0002 0.039
Initial BA -0.0266 <0.001 -0.0128 <0.001 -0.0165 <0.001
BA-weighted avg. q 0.0320 <0.001 0.0249 0.072
Distance from SS -0.0112 <0.001 -0.0022 0.012
Modal DBH -0.0020 0.452 -0.0030 <0.001 -0.0020 0.023
R2 0.77 0.63 0.47

Sugar maple
(Intercept) 1.0941 <0.001 -1.5188 <0.001 1.2119 <0.001
2-6 cm T/ha 0.0012 <0.001 0.0010 <0.001 0.0009 0.003
Initial BA -0.0254 <0.001 -0.0057 0.053 -0.0204 <0.001
Avg. q below mode 0.1478 <0.001 1.4382 <0.001 0.2942 0.008
QMD 0.0391 <0.001 0.0274 <0.001 0.0226 <0.001
2-6 cm SM/ha -0.0010 <0.001 -0.0013 <0.001
Initial SM BA -0.0397 <0.001 -0.0470 <0.001 -0.0379 <0.001
Avg. q below mode for SM 0.0031 0.104
QMD for SM -0.0170 <0.001 -0.0104 0.002 -0.0205 <0.001
R2 0.68 0.45 0.60

Hemlock
(Intercept) 2.9959 <0.001 1.6742 <0.001 -0.2405 0.404
2-6 cm T/ha -0.0012 0.002 0.0004 0.071 0.0007 0.049
Initial BA 0.0613 <0.001 -0.0041 0.159 0.0148 0.012
Avg. q below mode -0.2965 0.071 -0.7328 <0.001
QMD -0.1779 <0.001 0.0128 0.065 0.0284 0.012
2-6 cm HM/ha 0.0056 0.003
Initial HM BA -0.0649 <0.001 -0.0307 <0.001 -0.0262 <0.001
Avg. q below mode for HM 0.0115 0.049 -0.0400 <0.001
QMD for HM -0.0359 <0.001
R2 0.57 0.29 0.29

Yellow birch
(Intercept) -0.0820 0.740 1.0638 0.010 2.0188 0.004
2-6 cm T/ha -0.0011 0.004
Initial BA 0.0501 <0.001 -0.0199 <0.001 0.0409 <0.001
Avg. q below mode -0.8325 <0.001 -1.9549 <0.001
QMD -0.0682 <0.001 -0.0485 <0.001
2-6 cm YB/ha -0.0033 0.079 0.0042 0.026
Initial YB BA -0.0458 0.002 -0.1621 <0.001 -0.0614 <0.001
Avg. q below mode for YB -0.0473 <0.001 -0.0344 <0.001
QMD for YB -0.0492 <0.001 0.0130 <0.001 -0.0371 <0.001
R2 0.34 0.27 0.34

1 Constant number of trees maintained in the 2-6 cm dbh class, but CANOPY allowed to
determine their species composition, under a regime of background mortality only (Group
1a simulations).
2 CANOPY allowed to determine both density and composition of 2-6 cm dbh trees, under
a regime of background mortality only (Group 1b simulations).
3 CANOPY allowed to determine both density and composition of new 2-6 cm dbh trees,
under the historic natural disturbance regime (Group 1c simulations).
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Table 3: Determination of minimum tree densities in the three smallest size classes needed to
perpetuate the steady-state structure shown in panel 1. In Panels 2-4, the number of trees in
the three smallest 5 cm diameter classes were iteratively adjusted to determine the number
of trees necessary to sustain the next larger size class (final result in bold). Simulations
were conducted for 500 years, with 20 replications each, starting from steady state stands
on ATD habitat that developed after clearcut under background mortality only (Group 4
simulations). Numbers in parentheses give 95% confidence intervals.
1. Simulated SS stand Steady-state field data

T/ha q T/ha q
2-7 cm 337 – 686 (290-1080) –
7-12 cm 88 3.83 153 (119-189) 4.52 (1.65-7.39)
12-17 cm 51 1.74 71 (55-86) 2.20 (1.84-2.56)
17-22 cm 49 1.05 45 (37-52) 1.60 (1.29-1.91)

2. Number of 12-17 cm trees needed to maintain 49 17-22 cm trees
q 12-17 cm T/ha Predicted 17-22 cm T/ha
1.05 51 30.1 (24.9-35.3)
1.10 53 35.9 (30.7-41.2)
1.15 56 48.5 (41.9-55.0)

3. Number of 7-12 cm trees needed to maintain 56 17-22 cm trees
q 7-12 cm T/ha Predicted 17-22 cm T/ha
1.60 90 34.5 (30.3-38.7)
1.80 101 45.0 (39.6-50.4)
1.90 106 56.3 (49.3-62.9)

4. Number of 2-7 cm trees needed to maintain 106 12-17 cm trees
q 2-7 cm T/ha Predicted 12-17 cm T/ha
3.50 370 72.3 (65.5-79.2)
3.60 382 88.8 (79.0-100.6)
3.70 392 98.5 (88.5-108.6)
3.75 398 106.7 (93.7-119.6)
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Conclusions

This dissertation has helped to clarify the relative role of treefall gaps, moderate disturbance,

and severe disturbance in long-term forest development of northern hardwoods. While evi-

dence on stand development in young even-aged stands and uneven-aged old growth stands

has been abundant (e.g., Erdmann and Oberg, 1973; Marquis, 1991; Tyrrell and Crow, 1994;

D’Amato and Orwig, 2008), data have been largely lacking on stands between these ex-

tremes (ages 100-300). This period is especially important because of the major changes in

size distributions and biomass during the critical transition between even- and uneven-aged

structure.

When a stand developing after a clearcut is simulated for several centuries with only

background mortality, CANOPY predicted that the unimodal diameter distribution of a

typical even-aged stand begins to develop a ‘compound’ form shortly before age 200. This

coincided with the maximum number of large trees and peak aboveground live-tree biomass,

which are highly correlated (cf. Keeton et al., 2011). On the predominant habitat type, a

decline in biomass of about 16% started to occur at about age 210, which corresponded to

the mean longevity of the initial even-aged cohort. Biomass net growth became negative

from year 210 to 310. The apparent mechanism behind this decline was that positive net

growth of secondary cohorts was insufficient to compensate for mortality in the overstory

cohort. This mechanism differs from the ‘compensation hypothesis’ proposed by Luyssaert

et al. (2008) and Lichstein et al. (2009) to explain the apparent asymptotic biomass trends

in chronosequence data from second-growth forests.
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The threshold for steady state structure was crossed in simulations at age 280, but

biomass continued to decrease until age 320, and the number of large trees continued to

decline until age 400. While this suggests that minimum criteria for steady-state structure

can be achieved within the lifespan of the initial even-aged cohort, size distributions did not

fully stabilize until 400-500 years after the clearcut. After the initial period of negative net

growth, biomass net growth became zero after year 310 and remained non-significantly dif-

ferent from zero for the remainder of the simulation. Average aboveground live-tree biomass

net growth of the steady-state permanent plots was likewise close to zero, supporting the

early ideas of Odum (1969) and Bormann and Likens (1979) for the existence of a steady

state having zero net growth. This disturbance regime of a clearcut followed by several

centuries of gap formation also indicated major changes in species composition over time.

Whereas midtolerant species averaged 26% of stand basal area 80 years after the clearcut,

they declined to only 7% after 1000 years of background mortality.

To further clarify the effects of disturbance regime on stand stage trajectories beyond

a simple clearcut followed by background mortality, simulations were conducted under two

additional disturbance regimes. In the dichotomous disturbance regime, the existing stand

structure of the 70 plots was simulated assuming background mortality in most decades

with infrequent severe disturbance at random times uncorrelated among plots. Landscapes

developing under the dichotomous regime were heavily dominated by old-growth stands

(>97%). This was true for both the 0.5 ha and 4 ha scales, although the 0.5 ha plots had a

more diverse distribution of old-growth stages because the smaller plot size is more subject

to erratic fluctuations in background mortality.

For simulations under the historic natural disturbance regime, the mild- and moderate-

severity disturbances added significant complexity to this trajectory. Landscapes developing

under the historic natural disturbance regime were still dominated by old-growth, but with

a much higher proportion of other stages (21% vs 3%) and not as heavily dominated by late
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transition and steady state (38% vs 71%). Three-fourths of the plots were categorized as non-

equilibrium stages. However, despite the frequent occurrence of moderate disturbances, a

quarter of the plots were still able to attain steady state structure. The system, however, was

very dynamic, with residence times in steady state often on the order of a few decades (Fig. 2-

3). Structural retrogression as a result of mild disturbances resulted in shorter residence times

in all structural stages and a much more diverse mixture of stages. Simulations demonstrated

that sequences of mild and moderate disturbance could generate multi-aged transition stands

having a unimodal diameter distributions similar to those of even-aged stands (e.g., Fig. 2-

7). In spite of this added complexity, a peak and decline pattern in biomass development

remained after major disturbances (Fig. 1-3 c,d). Biomass in all stages was generally lower

under the historic natural disturbance regime than under a dichotomous regime (Fig. 1-2).

The number of large trees decreased in the old-growth stages, but was greater in the early

stages of development as a result of legacy trees remaining after disturbances. It was clear

from both field data and simulations that moderate disturbances exert a defining influence

on this ecosystem (compare Fig. 2-4 vs Fig. 2-5).

The resilience of old-growth forests is of current interest because of the rarity of old-

growth forests worldwide and the vulnerability of old-growth remnants to destruction by

natural disturbances. In this study, old-growth forests were resilient, in the sense of retaining

old-growth structure after disturbance, to the impact of a single event of up to 30% canopy

removal, or even multiple events of <30% removal. However, the simulations suggest that

multiple disturbances of >30% removal would cause retrogression to mature or mature-

sapling mosaic stages. Under the historic natural disturbance regime, mean residence time

in the old-growth stages was about 90 years, but with much variability (up to 500 years).

The multiple lines of evidence employed in this dissertation (broad-scale field survey,

permanent plot re-measurements, simulations) were extremely helpful in providing a clear

picture of long-term forest dynamics. For example, all three of these lines of evidence were
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necessary to evaluating the pattern of long-term biomass accumulation. While they are all

consistent with the peak/decline trend, the combination of all three lines of evidence is much

more convincing than any single line of evidence. The differing strengths of these lines of

evidence allowed them to act in a complementary way. For example, the biomass trend

among permanent plots was somewhat ambiguous and the lack of late transition field plots

precluded a clear evaluation of the ability of secondary cohorts to compensate for overstory

attrition based on field data alone. Oftentimes, biologists are more trusting of field data

than simulations. However, especially in older forests, field data are often difficult to clearly

interpret because of complex stand history and site variation. For example, even the pole

and mature stands shown in Chapter 1, Figure 1 were usually multi-aged and hence do not

technically represent even-aged development. In cases where field data are ambiguous or

difficult to interpret, models can be a helpful and complementary tool.

The use of chronosequence techniques are often necessary in reconstructing long-term

trends in forest development. However, the assumption of approximate equality between

the mean age of the largest trees and the time since major disturbance becomes increas-

ingly unreliable as forests become older. Results in this study imply that this limitation

of chronosequences can lead to misleading inference about biomass trends. In many cases,

chronosequences are the only available tool, but such results should be interpreted with cau-

tion. Structural sequences based on multiple structural attributes of the stand as a whole

(e.g., Appendix A) rather than estimated maximum tree ages may provide a more accurate

interpretation of the stage of stand development in multi-aged stands.

Results of this dissertation have a number of implications for several different aspects of

forest management.

Carbon management. The evidence in this study is consistent with recent hypotheses that

all old-growth stands do not necessarily have negative net growth (Luyssaert et al., 2008;

Lichstein et al., 2009; Keeton et al., 2011). However, in the present simulations, aboveground
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live-tree biomass net growth became negative at an earlier stage, at about 210 years after

clearcutting, than has been proposed in these hypotheses. Biomass net growth under the his-

toric natural disturbance regime averaged approximately zero, even when individual stands

were aggregated at a larger landscape scale and included a mixture of stages (Fig. 1-8 a).

The above-ground tree component of the forest is, therefore, unlikely to remain a carbon

sink late into forest development or in large old-growth reserves. Presumably, the point at

which biomass ceases to accumulate will be a function of the maximum age of the trees.

In northern hardwoods, mean canopy tree longevity is about 200-250 years (Lorimer et al.,

2001), an age which corresponded in this study with the onset of the decline in biomass.

However, carbon storage in old-growth forests is substantially higher than in pole or mature

stands (Ch. 1,Fig. 2) and so old-growth forests could serve as a valuable means of carbon

storage, even if their net carbon accumulation rate is approximately zero.

Conventional uneven-aged management. Single-tree selection is often implemented fol-

lowing the DBq method, where a smooth residual curve is computed based on a fixed q-ratio

(e.g., Guldin, 1991). In northern hardwoods, this distribution is typically applied to trees

from 11-60 cm, with trees larger than 60 cm always harvested and trees less than 11 cm left

unmanaged (Arbogast, 1957; Crow et al., 1981). However, there is recent increased interest

in harvesting smaller trees for woody biomass (Janowiak and Webster, 2010; Aguilar et al.,

2013). In this study, variable q-ratios were required in the understory to maintain overstory

density (Fig. 3-8), implying that harvesting of small diameter timber following a strict DBq

design may render a stand unsustainable.

Ecological Forestry methods. Often, ecological forestry is performed by applying DBq

management with a larger maximum diameter (Birch and Johnson, 1992; Hansen et al.,

1995). However, if emulation of natural conditions is a goal, then broad application of a

DBq technique would produce a higher proportion of descending monotonic curves than

would probably exist in nature. In this study, only about 40% of stands in an equilibrium
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population of stands followed a descending monotonic diameter distribution (Steady state

+ late transition; Ch. 2, Fig. 4). The application of multi-cohort management, which does

not prescribe any particular residual distribution but focuses instead on gap structure and

residual density, would be one approach to more closely mimic natural conditions. Retention

of legacy trees may also aid resilience and speed recovery, even when few of those trees are

large (Chapter 2 O’Hara and Ramage, 2013). Managers could also consider the use of other

descending monotonic residuals which allow a variable q-ratio (e.g., Keeton, 2006).

Demographic sustainability. In presettlement forests, essentially any size distribution of

northern hardwoods would have been sustainable given a long-enough time horizon (Ch. 3,

Fig. 4). However, the rising tide of global environmental change will bring recruitment

limitations with it, and therefore sustainability can no longer be assumed even with very

shade-tolerant species like sugar maple, which historically had prolific regeneration. Under

these conditions, the ability of a lower level of recruitment to sustain an existing overstory

becomes a concern. The demographic sustainability index presented in Chapter 3 provides

one tool to address that concern.

Global environmental change will be a difficult challenge for all types of models, but

each type of model may have a role in clarifying different aspects of this problem. Process

models are designed to provide predictions of forest growth under a changing climate, pro-

vided that the underlying forest dynamics (e.g., drivers of recruitment and mortality) do

not also change. However, some novel environmental stressors will change these dynamics

(e.g., invasive earthworms, devastating insects pests, and pathogens), and their abundance,

population dynamics, and the resulting effects will be difficult to predict using any model.

At the present time, a strength of CANOPY its ability to predict long-term demographic

change, including mechanistic detail about gap capture and natural disturbances. In order

to continue to provide these predictions in a scenario of environmental change that includes

multiple stressors, the equations in CANOPY would need to be periodically recalibrated
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with terms to represent the changing effects of climate and stress on growth, mortality, and

recruitment. An example of such terms for incorporating climate effects might be the grow-

ing season average Palmer drought severity index and the number of growing degree days

per season. A suitable metric for the reflecting the impact of multiple stressors might be the

vigor of tree crowns. These variables could enable predictions involving various climate sce-

narios and interacting multiple stressors without the need for detailed submodels to predict

the population and environmental dynamics of any particular stressor.
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APPENDIX A
Classification and dynamics of developmental stages in
late-successional forests1

A.1 Introduction

Analysis of changes in plant species composition, forest structure, and animal populations

over long periods of time in forests usually necessitates development of a chronosequence or

“space-for-time substitution” because of the slow rate at which forests develop. Permanent

plots provide an alternative approach with fewer assumptions (Aldrich et al., 2005). But

permanent plots spanning even a modest time period of 30-60 years are uncommon in most

areas of the world and usually available only in certain forest types, habitats, and for a

restricted range of age classes. If a sufficient number of sample plots are taken and carefully

stratified by habitat and age class, chronosequences can often yield valuable insights about

certain long-term ecological trends (Walker et al. 2010). In cases where stand age can be

determined accurately, trends in structural features or biotic populations can be plotted

as a function of stand age or time since the last stand-replacing disturbance (Crowell and

Freedman 1994; DeWalt et al. 2003).

Late-successional forests of shade-tolerant species, however, present a number of special

problems that often make it difficult to develop conventional chronosequences. Even when

the oldest cohort can be aged accurately, it is often difficult or impossible to determine the
1Corey Halpin is second author on this paper and was integrally involved in the data analysis.
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time since last major disturbance using conventional tree-ring analysis. The oldest cohort

could represent either a remnant of a once-dominant even-aged overstory (Antos and Parish

2002) or a more limited cohort that developed after minor or moderate disturbance in an

uneven-aged stand (Parish and Antos 2006).

Furthermore, the validity of chronosequences becomes increasingly doubtful as time since

last major disturbance increases and the age structure diversifies. While forests of shade-

tolerant species often differ markedly in structure and disturbance history, they often have

many major and minor age classes, reflecting a complex pattern of past disturbance (e.g.,

Splechtna et al., 2005; D’Amato and Orwig, 2008; Fraver et al., 2009). A chronosequence

approach has sometimes been applied to such stands by using the age of the oldest cored

tree as a proxy for stand age. But investigators have recognized that the oldest tree in

a stand with many age classes and a complex disturbance history may not always bear a

clear relationship with time since last major disturbance (Tyrrell and Crow 1994; Lichstein

et al. 2009; Keeton et al, 2011). Even relatively young stands a few decades after heavy

disturbance often contain ‘legacy trees’ 150-200 years old or more (e.g., Henry and Swan,

1974).

Understanding dynamic changes in old-growth forests can be especially challenging.

While it is possible to recognize old growth as a single stage (e.g., Oliver and Larson 1996,

DeWalt et al. 2003), there has been an increasing awareness that forests continue to change

in structure and production rate after the old-growth threshold is reached. Based on simula-

tions with the JABOWA model, Bormann and Likens (1979) predicted that after about age

125, northern hardwood forests would pass through three further stages of biomass accumu-

lation: a late aggradation phase, a transition phase with peak biomass, and a steady state

with reduced biomass and zero net growth. Spies and Franklin (1988) recognized various

“degrees of oldgrowthness” in Pacific Northwest forests, and a number of investigators have

provided evidence of continuous change in attributes as old-growth forests develop, such as
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coarse woody debris volumes and numbers of large trees (Tyrrell and Crow 1994, Keeton et

al., 2011).

An alternative to a strict chronosequence in late successional forests is to arrange stands

by developmental stages based on stand structure. Despite the often complex developmental

pathways in late successional forests, structural variation among stands (evidenced, for ex-

ample, by diameter distributions) appears to follow a more predictable trajectory over time

and is more easily quantified (Lorimer and Frelich 1998; Antos and Parrish, 2002; Podlaski,

2006; D’Amato et al., 2008, Janowiak et al., 2008). A systematic approach based on quan-

titative structural criteria would be useful in facilitating objective and repeatable methods

of classifying stand stages. Developmental stages have significant ecological ramifications

for matters as diverse as growth dynamics, wildlife habitat, aesthetics, and carbon storage

(Bormann and Likens, 1979; Keeton et al, 2011). An understanding of long-term stand

development under natural, ‘baseline’ conditions is an especially urgent task, as many rare

old-growth remnants are potentially at risk of functional extirpation of dominant species by

exotic insects and diseases such as the hemlock woolly adelgid (Adelges tsugae), emerald ash

borer (Agrilis planipennis), and the Asian longhorned beetle (Anoplophora glabripennis)(e.g.,

Poland and McCullough, 2006; Orwig et al., 2008; Dodds and Orwig, 2011).

A rare opportunity to study long-term forest development is provided by the existence of

three sizable landscapes of late successional northern hardwood forest with little past human

disturbance in upper Michigan, USA. Previous work has suggested that these areas contain

a mosaic of stands spanning all stages of development, from young pole stands originating

after stand-replacing windstorms to old-growth, all-aged forests approaching a steady state

(Lorimer and Frelich 1998). Even old-growth stands differed widely in structure, with many

having unimodal size distributions with variable mean diameters and a history of one or

more moderate disturbances. Especially useful metrics for interpreting stand development

in that study included modal overstory diameter, the percentage of aggregate crown area in
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large trees (>46 cm dbh), and the ratio of crown area in large to mature trees. Nearly linear

diameter-age relationships confirmed that stands with progressively larger mean overstory

diameters contained correspondingly older trees. Thus, rather than using maximum tree

age in uneven-aged stands for arranging stands in a developmental sequence, this approach

utilizes several overall structural metrics to categorize the stand developmental stage. Despite

complex disturbance histories, stands on a given site productivity class with relatively few

large trees generally had a recent history of either frequent small disturbances or else one

or more moderate-to-severe disturbances. Both types of stands generally represented earlier

stages of structural development as indicated by the size distributions compared to those

with a higher proportion of large trees.

In this study we extend the results of Lorimer and Frelich (1998) to develop a system-

atic and quantitative classification of forest developmental stages for forests of shade-tolerant

species based on overstory and understory structure. These stages reflect progressive changes

in the form of the diameter distribution from skewed unimodal to descending monotonic.

While our proposed system tracks these progressive changes in the form of the diameter

distribution, the diagnostic criteria utilize more easily quantified and readily interpretable

basal area metrics such as percent stand basal area in pole or large trees and the large:mature

ratio rather than estimated equation parameters from fitted curves. The revised classifica-

tion system recognizes eight stages of development, including 4 stages of old growth. We

also evaluate the degree to which the stages reflect actual underlying temporal trends by

using long-term permanent plot records on sites with known stand histories, ecological in-

ventories of stands spanning a wide range of stages on mesic sites, and computer simulation.

Simulations were performed using a model (CANOPY) that has had extensive validation

tests in the same ecosystem (Choi et al., 2007; Hanson et al., 2011; Hanson et al., 2012).

While the classification system has been developed for northern hardwood forests in eastern

North America, and specifically in the Great Lakes region, the general approach is probably
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applicable with modification to a number of other late successional temperate forests around

the world.

A key point is that this method only identifies the probable position of each stand in a

developmental series based on its structure, and does not identify either a specific stand age

or time since last stand-replacing disturbance. The reason is that the latter metrics often

have no intrinsic biological meaning in multi-aged stands or cannot be determined in stands

with a complex disturbance history, even when numerous trees were cored to determine ages.

As with traditional chronosequences, an underlying assumption of the method is that the

stands being compared are of similar productivity, unless adjustments have been made for

differences in growth rates and tree size among habitats. In mixed-species forests, it is also

critical that the method be restricted to forests in which the component species have similar

potential maximum diameters and similar growth rates. Potential candidates are forests

dominated by shade-tolerant and relatively slow growing genera such as Fagus, Acer, Tsuga,

Picea, Abies, and Thuja. The method is not generally applicable as presented here in forests

in which fast-growing species of low or moderate shade tolerance are mixed with slow-growing

species of high shade tolerance. For example, forests of shade tolerant species mixed with a

substantial component of fast-growing species like Pinus strobus or Liriodendron tulipifera

may not be suitable because large trees of the latter species may often be the same age or

younger than smaller shade-tolerant canopy trees (Fajvan and Seymour, 1993; Oliver and

Larson, 1996). The presence of large trees of fast-growing species would not necessarily

signify that such stands are in a later stage of development than those lacking large trees.

A.1.1 Study areas

The three study landscapes in Michigan include the Porcupine Mountains Wilderness State

Park, the Sylvania Wilderness on the Ottawa National Forest, and private lands protected

by the Huron Mountain Wildlife Foundation (14,500 ha, 6,000 ha, and 2,500 ha of primary
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forest, respectively). These lands had not been logged for various reasons, including private

ownership as hunting/fishing preserves or earlier ownership by mining companies lacking a

strong interest in timber production. Their status as reserves dates from the late 19th to

mid-20th centuries (Christy, 1929; Rafferty and Sprague, 2001).

Climate in all areas is humid continental, with mean July and January temperatures of

19-20 C and -7 to -11 C, respectively. Mean annual precipitation is 80-90 cm and is fairly

well distributed throughout the year. Sylvania is situated on a ground moraine with low

topographic relief, while the Porcupine and Huron Mountains have more rugged topography

with elevations up to 600 m. Only mesic and dry-mesic northern hardwood and hemlock-

hardwood stands, dominated by Acer saccharum, Betula alleghaniensis, and Tsuga candensis,

were sampled in this study. Soils in the stands are primarily spodosols (Haplorthods and

Fragiorthods) of sandy loam to silt loam surface texture.

The natural disturbance regime in these areas is complex, with the primary disturbance

agents being windstorms of various intensities, drought, ice storms, disease, and fire. Dis-

turbance chronologies reveal evidence of repeated disturbances removing 10 to >70% of the

forest cover on 0.5 ha tracts, with corresponding mean recurrence intervals ranging from 70

to 3700 years (Frelich and Lorimer 1991a). While all stages of stand development appear to

be present, about 75% of the landscapes are covered by old-growth forest, most of which is

uneven-aged with numerous age classes of varying importance.

A.1.2 Field Methods

The initial survey in 1981-1984 included seventy 0.5 ha plots. Plot size was selected to

provide a sample size large enough (typically more than 165 trees > 10 cm dbh) so that

the size distribution and other population parameters could be examined separately from

other plots, but small enough to reflect uniform site conditions and disturbance history.

Locations of plots were determined by random coordinates in advance of field inspection on
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maps of primary forest in the study areas. Measurements included dbh, crown class, and

gap/non-gap status of saplings and poles. Site quality was judged both by floristic habitat

type (Coffman et al., 1980) and use of curves (analogous to site index) showing mean height

plotted against mean dbh for each stand (Curtis, 1967; Stout and Shumway, 1982; Frelich,

1986). On the 62 temporary plots, a random sample of 10-30 increment cores were taken

in each stand. A subset of 8 plots, spanning a wide range of development, was selected

for permanent plot status. On the permanent plots, individual trees were mapped, and an

average of 68 increment cores were taken per stand (range 39-99). Increment cores were

sanded to reveal ring structure and ring widths measured to the nearest 0.001 mm under a

binocular microscope with stage micrometer. The permanent plots were remeasured in 1992,

2004, and 2011, providing a 30-year record of change.

A.1.3 CANOPY model and simulation design

CANOPY is a spatially explicit, individual tree model that simulates long-term gap dynamics

in large plots or stands. The model is calibrated with data from >8,000 trees on permanent

and temporary plots in northeastern Wisconsin and western upper Michigan. Data were

obtained from stands spanning a wide range of developmental stages, including pole, mature,

and old-growth stands. Recruitment, growth, and mortality of trees is predicted on 10 x

10 m cells within larger mapped stands from initial tree size and competition level of the

surrounding 900 m2 patch. The species of recruited saplings is influenced by the species

composition of the surrounding overstory. Height growth of saplings is predicted in part by

presence and size of canopy gaps and sapling competition. Lateral closure of canopy gaps

occurs by radial crown growth of gap border trees in four cardinal directions. Stochastic

variation is incorporated into a number of model elements, including species composition of

sapling recruits, diameter growth, and mortality. (For details on calibration data and model

design, see Hanson et al. 2011 and Hanson et al. 2012).
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CANOPY has been tested extensively and has shown good correspondence with stand

growth and tree mortality reported in independent field experiments. Tests also have in-

dicated good correspondence with details of long-term stand dynamics, such as sapling re-

cruitment, sapling gap capture, and size distributions in old-growth stands (Hanson et al.,

2011, 2012).

Version 3 of CANOPY, utilized in this paper, incorporates three new refinements. An

optional subroutine (enabled by a user-controlled switch) has been added to incorporate

the impact of the historic natural disturbance regime, using recurrence intervals for a range

of disturbance severities as reported in Frelich and Lorimer (1991a). Initial disturbance

severities are determined by a regression relating the removal of canopy cover on the 0.5 ha

tracts with storm severity index (Canham et al., 2001). CANOPY adjusts storm severity

index up or down as necessary to remove the designated level of crown area. Removal of

individual tree sizes is based equations in Hanson (2009) relating probability of windthrow

in individual trees as a function of species, size, and storm severity.

A second feature is an option to include even- or uneven-aged structure as a categorical

independent variable in the tree growth and mortality equations. Tests of the calibration

data indicated small but statistically significant differences in individual-tree growth and

mortality rates at a given tree size and plot competition level between even-aged and uneven-

aged northern hardwood stands. Two versions of the growth and mortality equations were

therefore used in this study, one based on a unified set of equations for all stand stages,

and one based on equations including the age-structure variable and interaction terms with

competition level. Equations with the age-structure variables were used in all results reported

here except for a sensitivity analysis using the unified equations without these categorical

variables. Even-aged growth and mortality rates were used for any trees that originated

as part of a post-disturbance sapling cohort in an opening > 0.25 ha and continued for the

subsequent 200 years. This temporal marker corresponds to the mean age at time of death for
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canopy trees in maple-dominated forests (Lorimer et al., 2001) and the point of transition to

an uneven-aged structure, when canopy gaps are becoming common in unmanaged even-aged

stands. After year 200, and for trees occurring in all other stand structures and disturbance

regimes, the rates for uneven-aged stands were used.

Version 3 also includes a refinement to the sapling recruitment function. Tests of CANOPY

v.2 indicated that under high plot competition levels, low ingrowth of large saplings and poles

occurs from recruitment limitations and high mortality until about age 190, while abundant

recruitment of large saplings is predicted in uneven-aged stands with a diverse gap struc-

ture. Both predictions match well with field data. However, stands in middle stages of old

growth (190-240 years old) also frequently have evidence of restricted recruitment of under-

story trees, even in areas of low deer browsing, and this was not being predicted by the plot

competition metric in CANOPY v.2. Based on a significant negative correlation between

the percent stand basal area in mature trees and sapling density (P=0.005), CANOPY v.

3 uses a tentative simplifying assumption of delayed recruitment into the 2-6 cm dbh class

whenever a 0.25 ha patch has >20% of the basal area in pole trees or >35% of the basal

area in mature trees. Stands with pole or mature trees above this threshold are associated

with low levels of understory development, and permanent plots exceeding these thresholds

have had large reductions in understory trees in the past 30 years (cf. Fig. 6). Uneven-aged

forests with a developed gap structure, on the other hand, typically have pole and mature

basal area levels below these thresholds, and sapling recruitment is typically prevalent (e.g.,

after age 180 in Fig. 3). A sensitivity analysis was conducted by also running simulations

having recruitment functions from CANOPY v. 2 lacking this feature.

In this paper, simulations were conducted on 0.5 ha tracts to match the size of plots

and scale of disturbances measured in the 1980s field survey. While CANOPY can simulate

stand dynamics on all three of the most common northern hardwood habitat types, the

Acer-Tsuga-Dryopteris habitat has the widest range of age-class data in the calibration data
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set and was used for all simulations reported in this paper. One set of simulations with 20

replicates was started in year 0 with a clearcut (all trees removed down to 2 cm dbh) and

continued for 1,000 years under a regime of background mortality only (individual treefall

gaps). Another set used the same starting conditions but simulated development on the

20 replicates for 1,000 years under the historic natural disturbance regime. Initial species

composition of saplings after the disturbance was set at 80% sugar maple, 5% basswood, 5%

yellow birch, 5% basswood, and 3% white ash, based on a range of reported field observations.

A.1.4 Analytical Methods

For analytical purposes, trees were grouped into four broader size classes: saplings (0-10.9 cm

dbh), poles (11.0-25.9 cm), mature (26.0-45.9 cm), and large (>46.0 cm). On sites of below-

average productivity (usually dry-mesic sites), the minimum threshold for large trees was

reduced to 44 cm dbh based on inspection of dbh-age relationships. The lower threshold size

for mature and large trees corresponds to a mean age of ∼100 and 150 years, respectively,

for the three dominant species (sugar maple, hemlock, and yellow birch). The lower size

threshold for large trees is below the mean size of canopy trees at time of death (51 cm;

Lorimer et al., 2001).

For these species there was also a highly significant relationship between dbh and age

(P<0.0001) (Lorimer and Frelich 1998). Mean or modal overstory diameter is therefore used

as an indicator of the average canopy tree age in each stand. A ‘large to mature ratio’

(hereafter L/M ratio) was also computed for each stand as the ratio of aggregate basal area

in large trees divided by the aggregate basal area in mature trees and used as an index of

the relative developmental stage among stands. Diameter distributions were examined for

each stand by individual species as well as pooled species, although only the pooled species

graphs are shown in this paper because of space limitations. Disturbance chronologies for

stands referred to in this paper were reported in Frelich (1986), Frelich and Lorimer (1991a),
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and Dahir and Lorimer (1996).

In an earlier classification (Frelich and Lorimer 1991a), 5 stand stages were recognized

(sapling, pole, mature, mature-sapling mosaic, and old growth). Each stage was defined by a

dominant size cohort and a secondary cohort, together representing ≥ 67% of the aggregate

exposed crown area of the stand. For example, a mature stand was defined as a stand with

at least 67% of the crown area in pole and mature trees, with more crown area in mature

than poles, or ≥67% of the crown area in mature and large, with mature > large.

The decision tree in Fig. 1 was designed to retain the same basic rationale for distin-

guishing these 5 stages. But in the classification rules shown in Fig. 1, basal area equivalents

are used. Developmental stages are distinguished in part by the amount of absolute basal

area in mature and large trees (e.g., a threshold ≥ 20 m2/ha in the case of mature and old-

growth stands) and also by the percentage basal area made up by certain size classes. For

example, >30% basal area in pole trees helps distinguish pole stands from sapling stands,

and >45% basal area in large trees helps distinguish old-growth stands from mature stands.

These thresholds were chosen to make the results of the new basal area classification as close

as possible to the crown-based system. Among the four stages (pole, mature, mature-sapling

mosaic, and old growth) present in the 1980s field data and in common between this system

and that of Frelich and Lorimer (1991a), actual percent similarity in the classification of the

70 stands is 89%. However, changes were made in two of the stages. The ‘mature-sapling

mosaic’ category, which formerly could include some old-growth stands, has been redefined

to include only mature stands and to exclude old growth. Also, the old-growth stage has

been subdivided into four separate stages, reflecting the transition from a predominantly

even-aged to uneven-aged structure and development of a potentially stable size distribution

in the steady state.

CANOPY simulations in conjunction with field data were used to provide further input

in defining threshold criteria for stand stages in Fig. 1, especially for old-growth stands.
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Fig. 3 shows how the percentage of stand basal area in saplings, pole trees, mature, and

large trees are predicted to change over time following a clearcut. Poles reach a peak of more

than 70% of stand basal area from ages 20-40. They then decline precipitously, reaching

a minimum of <5% at age 200, and eventually stabilize to levels of 9-10% after age 400.

Mature trees peak at levels exceeding 60% of stand basal area between ages 80-110, reach

a minimum of ∼15% at age 270, and then increase to stable values of ∼24%. Large trees

reach a peak of >70% from ages 200-300, then slowly decline to a stable level of ∼64%.

A.2 Results

A.2.1 Range of structural variation in the field data

Individual northern hardwood stands in the three upper Michigan landscapes vary widely

in structural characteristics on similar mesic habitats of above-average productivity. The

percentage of stand basal area in large trees (≥46 cm dbh) varied from 0-75% in different

stands. The ratio of basal area in large to mature trees (25-45.9 cm dbh) ranged from 0 to

4.6, and modal diameter of the overstory cohort (dominant, codominant and intermediate

crown classes) ranged from 10 to >50 cm dbh.

The sample of stands shown in Fig. 2a-f illustrates the typical variation in size distribu-

tions among the 70 stands. Stands with unimodal, bimodal, and descending size distributions

are all common on these landscapes. As modal overstory diameter increased from 10 to ∼35

cm dbh, the size distribution of all species and crown classes shifted from a steeply descend-

ing curve with a small mean diameter (Fig 2a) to a distinctly unimodal curve with minimal

understory development (Fig 2b, c).

Stands with a higher overstory modal dbh of 40-45 cm had broader and flatter size

distributions, with evidence of a re-developing understory (Fig. 2d). These distributions have

a characteristic overstory ‘bulge’ with a steeply descending ‘tail’ in the smaller size classes

(hereafter termed ‘compound’ size distributions). When the overstory attained a modal dbh
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of >45-50 cm, the identity of the main overstory cohort was less distinct and secondary

cohorts of smaller trees are present, causing the curve to be skewed toward smaller size

classes (Fig. 2e). About 26% of the stands conformed to the classic descending monotonic

curves of relatively balanced, uneven-aged forest, in which evidence of a single dominant

overstory cohort is muted or lacking (Fig. 2f).

A.2.2 Stand stage criteria and descriptions

Sapling and pole stages

The residence time of sapling northern hardwood stands is very brief (<20 years in simula-

tions after a clearcut on ATD habitat), and none of the 70 randomly-selected field stands

fell into this category. Simulations after a clearcut on ATD habitat suggest that at age 10,

saplings average 57% and poles 42% of the stand basal area.

Pole stands are characterized by less than 20 m2/ha of basal area in mature and large

trees, with pole trees making up >30% of the stand basal area (Fig. 1). Pole stands made

up 9% of the initial (1981-84) field sample. Four of the six pole stands occurred in the

west-central uplands of the Porcupine Mountains landscape; three of these developed after

a historically documented severe windstorm in June 1953 (Rafferty and Sprague 2001) and

the fourth after a severe disturbance about 1960 as reconstructed from increment cores. For

all 6 pole stands, large trees (≥46 cm dbh) in the first measurement in 1981-84 averaged

only 10% of the stand basal area, with only 6 trees/ha > 50 cm dbh (Table 1). Although

young pole stands usually have a steeply descending size distribution when all species and

crown classes are pooled, the size distribution is typically unimodal when only trees with

crowns exposed to direct skylight are included (Fig. 2a). The 30-year permanent plot record

in a Porcupine Mountains pole stand originating after the 1953 storm demonstrates a shift

toward a more unimodal curve in recent measurement periods (Fig. 6).

Simulations after a clearcut on ATD habitat suggest that even-aged stands remain in the
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pole stage from about age 20 to age 70. During this time, the simulated proportion of stand

basal area in poles declined from 74 to 42%, mature trees increased from 4 to 54%, and large

trees from 0 to 2%.

Mature stage

Mature stands are defined as having > 20 m2 of basal area in mature and large trees, with

large trees making up <45% of total stand basal area (Fig. 1). Modal overstory diameter

in mature stands in the field data usually ranged from 14-42 cm. The mean proportion of

stand basal area in large trees in the mature field stands averaged 36%, with a mean of 43

trees/ha >50 cm dbh (Table 1). Despite their prevalence in the modern human-modified

landscape, mature stands made up only 11% of the reserved study landscapes.

Based on post-clearcut simulations, even-aged stands remained in the mature stage, as

defined structurally in Fig. 1, from ages 80-140. During this time, the proportion of stand

basal area in poles decreased from 32% to 6%, mature trees decreased from 62% to 46%, and

large trees increased from 5 to 48%.

The mature stands in the field sample were typically uneven-aged, with some legacy trees

150-250 years old. Disturbance chronologies usually show evidence of more than one episode

of moderate disturbance rather than a single stand-replacing event. Field evidence and

simulations both suggest that most mature stands in the study areas have more commonly

retrogressed from old-growth stands following moderate disturbance, rather than developed

’upward’ from sapling-pole stands after stand-replacing disturbance (Frelich and Lorimer

1991b).

Mature-sapling mosaic

The mature-sapling mosaic stage includes stands that have 10-20 m2/ha of basal area in

mature and large trees – less than in a mature stand, but without the high concentration of

poles typical of a pole stand. Only two of the 70 field stands fell into this category. Several
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lines of evidence indicate that these stands were formerly older stands that experienced

recent moderate disturbance. While the basal area in mature and large trees is only about

half that of the average mature stand (Table 1), diameter distributions in both stands were

descending monotonic with scattered large trees up to 80 cm dbh. Trees cored between 32

and 48 cm dbh ranged in age from 165 to 187 years. Also, most of the simulated mature-

sapling mosaic stands had retrogressed from older stands, especially from early transition

or steady state, after moderate disturbance. Simulated post-clearcut stands rarely passed

through the mature-sapling mosaic stage but moved directly from pole to mature and then

to early transition (Fig. 4). Based on simulations, residence time in this stage under the

historic natural disturbance regime averaged only 13 years.

Early transition stage

In post-clearcut stands, the transition stages correspond to the point in time when the

original even-aged overstory is starting to break up, or in the words of Bormann and Likens

(1979), “starting to lose its grip on the site.” It is also comparable to the ‘breakdown’ or

‘degradation’ stage recognized by some European ecologists (Emborg et al., 2000; Podlaski,

2008; Kral et al, 2010). We recognize three stages that correspond to the Bormann-Likens

transition stage. The earlier phase corresponds to when the initial overstory cohort is still

mostly intact and size distributions generally are still strongly unimodal (Fig. 2c). The

middle stage occurs when mortality of the initial cohort is underway and an understory of

trees > 2 cm dbh is beginning to develop, but the canopy is still largely closed. The late

transition stage occurs when breakup of the cohort is fairly advanced and canopy gaps and

gap sapling/ pole groups are common.

The early transition stage represents the earliest stage of old-growth development, with

>45% of stand basal area in large trees. Understory trees > 2 cm dbh are usually sparse,

although stands sometimes have a compound size distribution with a developing ‘tail’. How-

ever, these larger saplings, when present, are usually suppressed beneath a closed canopy and
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do not occur in gaps (Fig. 2c). L/M ratios in the early transition field stands were usually

relatively low compared to other old growth stages, with 69% of the stands having L/M

ratios between 1.1-1.4. Modal overstory dbh in the field data commonly ranged between 35

and 42 cm. Based on simulation trials, even-aged stands in the early transition stage on

ATD habitat range in age from 140-160 years.

Early transition stands can also result from structural retrogression of old-growth stands

from later developmental stages. In the field data, all of early transition stands had an

uneven-aged structure, often with some trees >200 years old, even if the size distribution

was strongly unimodal. Some (15-23%) of the early transition field stands also had > 14%

saplings and poles or a higher L/M ratio of 1.6-1.7. Early transition stands with a uni-

modal distribution were not distinguished from those with a skewed descending curves in

the classification because there appeared to be no consistent differences in stand history

either in the field data or simulations. Simulations suggest that both types of size distribu-

tions could sometimes result from either ‘upward’ development from an earlier stand stage

or ‘retrogression’ from a more advanced stage following disturbance.

Mid-transition stage

Mid-transition stands are generally characterized by compound size distributions, but they

almost always retain a single and strongly identifiable bulge in the overstory size classes,

with a peak typically at 45-50 cm dbh (Fig. 2d). Both the field data and the simulations

show that stands with these features are characterized by maximum abundance of large trees

and minimal understory development (Fig. 2d and 2i, Fig. 5, Table 1). In the decision tree,

stands progress from early transition to mid-transition as soon as the L/M ratio exceeds 1.75

and the percentage of stand basal area and saplings and poles drops below 8% (maple stands)

or 10% (hemlock stands). The maximum sapling-pole development in this stage is below

the mean level normally found in steady state stands in the field data and simulations (Fig.

3). In simulations of post-clearcut stands on ATD habitat with no subsequent exogenous
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disturbance, mid-transition is a stage of long duration (80 years), from ages 170 to 250.

Together, the early and mid-transition stages occupy 39% of the study area landscapes.

All of the indices of large tree development (% basal area in large trees, L/M ratio,

density of trees >50 cm dbh) reach a maximum in this stage in the field data (Table 1) and

simulations (Fig. 5). For example, density of trees >50 cm dbh averaged 84 trees/ha in the

mid-transition field data, compared to 63 in early transition and 66 in late transition. The

simulations likewise predict a peak value of 85 trees/ha >50 cm dbh at age 220, after the

midpoint of the mid-transition stage. Understory development in mid-transition was less

than in any other stand stage, perhaps because of continued attrition of overtopped pole

trees and despite the development of smaller saplings. Saplings and poles averaged 7.0% of

stand basal area in mid-transition field stands compared to 10.3% for early transition, 12.7%

in late transition, and 14.8% in steady state.

Late transition stage

Late transition stands differ from mid-transition in having much more evidence of understory

development (sapling + pole basal area 10-19% of total) and a less pronounced cohort of

large trees. The overall distribution is typically skewed toward the smaller size classes (Fig.

2e). However, a modest peak is usually present in the overstory size distribution at ∼50-55

cm dbh – larger than the modal diameter of mid-transition stands. This peak is much more

evident if size class basal area is plotted on the y axis rather than number of trees. There is

often a secondary peak in a smaller size class, usually < 35 cm dbh.

Although the understory is usually well developed, larger gap saplings 2-10 cm dbh are

still relatively uncommon (<0.6% of stand basal area). For late transition stands originating

after stand-replacing disturbance, this pattern would be expected from a breakup of the

even-aged cohort and the incipient development of one or more secondary cohorts in the

gaps. L/M ratio is set at a minimum of 1.7 but often ranges from 2.0 to 2.7. However, late

transition has a lower density of large trees than in mid-transition as noted above.



145

In CANOPY post-clearcut simulations on ATD habitat, late transition is of short du-

ration, lasting from ages 260-270. Functionally, this stage may last up to 80 years longer

because simulated stand volume continues to decline until age 350. But from a structural

perspective, the diameter distributions and volumes for 280-350 year old stands are not

distinguishable from temporal variations among steady-state stands more than 400 years

after the clearcut (Fig. 4). In spite of the short simulated residence time, late transition

field stands as classified by the criteria in Fig. 1 are relatively common on the landscape.

Simulations suggest that the reason is a high frequency of retrogressions into this stage

from the steady state because of minor disturbances, as well as from random fluctuations in

age-related background mortality on small tracts such as the 0.5 ha plots (Fig. 4).

Steady state stands

The steady-state stands in the field data had diameter distributions that conform reasonably

closely to the descending monotonic curves (e.g., rotated sigmoid or negative exponential

on semi-logarithmic axes) that have long been described for all-aged stands. Disturbance

chronologies verified that these stands typically have many age classes and lack of severe

disturbance for the past 150-200 years. Minimum criteria for steady state include a L/M

ratio >1.4, sapling + pole component of 10-19%, and large tree component of >45% (Fig. 1).

Saplings and poles in canopy gaps become abundant for the first time since stand initiation

(gap saplings ≥ 0.6% of stand basal area). Simulated stands on ATD habitat after clearcut

but with no further disturbance reached the steady state after about age 280.

Steady-state stands as defined in Fig. 1 occupied 26% of the study area landscapes, more

than any other single stage (Table 1). Structurally, steady-state stands showed only minor

differences from late transition, mainly in the prominence of gap saplings and (usually) a

less irregular size distribution. But otherwise the structural attributes were almost identical

(Table 1). Together, late transition and steady state occupied 39% of the study area land-

scapes, the same as with early transition + mid-transition. All four old-growth stages thus
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occupied 78% of the study area landscapes.

Simulated stands subject only to small treefall gaps for many centuries had a basal area

distribution of ∼2.3% saplings, 10% poles, 24% mature trees, and 64% large trees (Fig. 3).

Minor disturbances might slightly decrease the proportion of large trees in actual landscapes

– the field data in stands of this stage (n=18) had a mean of 3.6% saplings, 11% poles, 27%

mature, and 59% large (Table 1).

Some peaks and irregularities in the diameter distributions, resulting from relatively

minor disturbances, are accepted in this stage as long as the quantitative criteria in Fig. 1

are met. The rationale for a minimum gap sapling component of 0.6% of total basal area

(mean for steady-state stage in the field data = 1.4%, maximum = 4.7%) is that a highly

balanced, all-aged stand is presumed to have a fairly constant background mortality rate of

canopy trees and recruitment of gap saplings in each decade. If there is a quiescent period

of 20 or 30 years with little gap formation, a stand can relapse into the late transition stage

even without exogenous disturbance. Simulations suggest that this could often happen on

relatively small tracts ≤ 0.5 ha, but is much less common on larger tracts such as 4 ha (Fig.

4). Alternatively, if a disturbance increases the component of saplings and poles above 19%

of total basal area and lowers the proportion of large trees, the stand may relapse into the

early transition stage (Fig. 1).

A.2.3 Evaluation of the classification system

Several lines of evidence were used to evaluate the degree to which the recognized stages

mimic underlying temporal trends in stand dynamics. The first line of evidence is indepen-

dent verification of trends in the size distributions using the CANOPY model. The simulated

distributions for a wide range of stand age and time since clearcutting (Fig. 2 g-l) were com-

pared with the developmental sequence of size distributions reconstructed from structural

variation in the field data (Fig. 2a-f). The model mimics the inferred sequence in the field
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data as size distributions progress from steeply descending to unimodal and then to broad,

flat distributions with a developing understory. By age 280-300, old-growth stands develop

a descending monotonic distribution that remains largely stable for hundreds of years in

the absence of further disturbance (Fig. 2f, 4). Aside from the general similarity between

observed and simulated size distributions, comparisons also show a close correspondence be-

tween specific metrics such as basal area or number of trees in pole, mature, and large size

categories within a given stage (Fig. 5).

A second line of evidence is the trajectories of stand development observed on the eight

permanent 0.5 ha mapped tracts over a span of 30 years (Fig. 6). Two of the stands advanced

in stage during the 30 years, and in the expected manner. The pole hardwood stand met

the threshold criteria of a mature forest by 2004, and the mature hardwood stand had also

crossed the threshold for late aggradation by 2004. The three hemlock-dominated stands in

early and mid- transition remained in those stages, as did the three steady-state hardwood

stands.

Diameter distributions on these permanent plots also changed in ways that would be

expected, based on the developmental sequence postulated in Fig.1. During the shift from

pole to mature and from mature to early transition, the stands had major losses in the

number of small trees, making the diameter distributions more unimodal in form. The mid-

transition hemlock stands also had net losses in small-medium trees, although this was likely

aggravated by the high levels of deer browsing in hemlock stands bordering Lake Superior

(Frelich and Lorimer 1985). The three steady-state hardwood stands, in contrast, had little

change in the descending monotonic (rotated sigmoid) size distributions, aside from the

expected increase in the mean dbh and corresponding reduction in stem density of trees in

a few peak size classes (Fig. 6).

A third line of evidence is the order of stand stage development in the simulations. In

post-clearcut simulations, stands progressed in order through each one of the stages sequen-
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tially, from sapling stand to steady state (stages 1 to 8, but excluding mature-sapling mosaic;

Fig. 4). Once stands reached the steady state, they remained in that stage through the end

of the simulation (year 1000) in the absence of further disturbance.

Simulations also supported the interpretation that structural retrogression of stands to

earlier stages of development after a series of light or moderate disturbances could result in

stands with diameter distributions similar to those of even-aged stands. For example, Fig. 7

shows the retrogression of a steady state stand to a mid-transition stand with a prominent

bulge in the size distribution as predicted by CANOPY.

A.3 Discussion

A.3.1 Long-term trends in stand development

The stand stages as described here confirm previously hypothesized temporal trends in struc-

tural development as mean tree diameter increases and age structure diversifies (e.g., Kral

et al. 2010), but supporting systematic and quantitative data across a complete range of

stand stages have previously been difficult to obtain. Both the field data and the CANOPY

simulations support the hypothesis of Bormann and Likens (1979) that the number of large

trees in a northern hardwood stand reaches a maximum toward the end of the lifespan of

an even-aged cohort and declines thereafter. In the field data, the maximum abundance

of trees > 50 cm dbh (84 trees/ha) is reached in the mid-transition stage when there is

still a distinct bulge in the overstory size distribution but minimal understory development.

The CANOPY model predicts a peak of 86 trees/ha of this size range at age 220 on the

ATD habitat type, which corresponds approximately to the mean age of death (216 years)

of canopy sugar maples observed in the field data (Lorimer et al. 2001). In both field data

and simulations, there is an apparent decline to a level of ∼60 large trees/ha in the steady

state, as well as an increase in the prominence of sapling and pole trees. Similar results were

obtained with simulations on the more productive Acer-Osmorhiza-Caulophyllum habitat
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type and the less productive Acer-Tsuga-Maianthemum type.

Both field data and simulations also support the traditional concept that an old-growth

stand with a descending monotonic size distribution has a relatively stable and sustainable

population over long periods of time in the absence of major disturbance (e.g., Motta et al.,

2011; Kucbel et al., 2012). One might also be able to make an a priori case for stability

of stands with unimodal or compound distributions in certain cases or on certain sites.

For example, slow growth of large trees and limited recruitment under heavy crown cover

(e.g., Goff and West, 1975) could possibly result in a stable bulge in the overstory and a

persistent deficit in small trees. However, no evidence was found that unimodal or compound

distributions were stable for more than a decade on any of the habitat types investigated

here. All such stands showed progressive changes over time in field data and simulations.

Similar progressive changes in the form of ‘compound’ size distributions based on permanent

plot records were reported over a span of 28 years for a sugar maple stand in Wisconsin

(Lorimer and Krug, 1983) and over 35-40 years in European beech stands (Fagus sylvatica)

(von Oheimb et al., 2005; Kucbel et al., 2012).

The rather high proportion of steady state stands (26%) defined by structural criteria

in this analysis contrasts with an earlier analysis indicating only 4% steady state when

the steady state is defined by disturbance history criteria (Frelich and Lorimer, 1991b). The

differences are explained by evidence in both field data and simulations that moderately light

disturbances may not always have enough impact on stand structure to cause retrogression

to an earlier structural stage. For example, the three steady-state permanent plots in this

study all have evidence of several decades with 10-20% canopy removal in the past 150

years (Frelich and Lorimer, 1991a; Dahir and Lorimer, 1996), but these caused only minor

irregularities in the size distributions (Fig. 6).

The close correspondence of the multi-aged stands in the field data with simulated devel-

opment after clearcutting supports the hypothesis that structural stages in the even-aged and
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multi-aged pathways are very similar. In most cases, even-aged and multi-aged stands with

similar modal overstory diameters cannot be readily distinguished by the size distribution

(e.g., Fig. 2). The main exception may be that old-growth stands in later developmen-

tal stages may retain more understory trees following moderate disturbance than even-aged

stands with a comparable mean overstory diameter. Also, a mature or old growth stand

with 2 or 3 widely separated age classes would likely be distinguishable structurally from an

even-aged stand of similar mean age.

A.3.2 The role of simulation in inferring developmental trajectories

The CANOPY model does not include features intrinsically related to stand stages or diam-

eter distributions, and so the field data and model predictions provide largely independent

evidence of long-term stand development. The predictions in Fig. 2 g-l are only deter-

mined by the underlying recruitment, growth, and mortality equations of individual trees

in response to tree size and local competitive environment in a 900 m2 neighborhood, as

calibrated from a large regional data set. And while both field and simulated stage bound-

aries are defined by constraining certain parameters within a specified range (e.g., L/M ratio

in some cases), there are no imposed limits within a stage on the number per ha or basal

area per ha for trees of any size class. The close correspondence of predicted vs. observed

metrics (Fig. 5) suggests that the equations in CANOPY are providing reasonable long-term

projections of stand development patterns.

The sensitivity analysis in which simulations used the earlier recruitment function from

CANOPY v. 2 indicated that the modified function in v. 3 provides better predictions of size

distributions in the mid-transition stage. The function in CANOPY v.2, for example, doesn’t

predict the low level of pole basal area (mean of ∼5%) evident in the mid-transition field

data. Consequently, with the earlier recruitment function, even-aged stands often progressed

directly from stage 5 (early transition) to stage 8 (steady state), skipping over the structural
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features of mid- and late transition stages seen in the field data (e.g., Fig. 2d).

Sensitivity analysis with the unified growth and mortality equations, on the other hand,

suggested relatively little difference in magnitude or timing of model predictions. For exam-

ple, when using separate equations for even-aged and uneven-aged stands, most simulation

replicates had reached the early transition stage by year 150; with the unified equations, this

occurred about 10 years later. But there was no consistent trend among all stand stages.

With the unified equations, many replicates had reached the mature stage and steady state

about 10 years sooner than with the separate equations.

A.3.3 Applications of the method

The method for identifying stand stages in this paper is quantitative, easy to apply, and

easily replicated since only basal area calculations of specific size classes are needed. Other

approaches and criteria for distinguishing stand stages are also possible. For example, various

mathematical distributions such as the single or double Weibull distribution can be fit to

observed size distributions and inferences made about stand stages based on the equation

parameters or the theoretical distributions having the best fit (e.g., Podlaski, 2006). An

advantage of the classification system described here is that each stage is based on multiple

criteria that can be precisely measured (basal area of saplings, poles, L/M ratio, etc.) and

applied uniformly to any stand of comparable species composition and site quality. By

contrast, curve-fitting methods in our experience are often subject to more error in obtaining

a good fit to the raw data because of limited flexibility in the underlying equations and the

complexity of non-linear curve fitting, especially when applied to irregular or multimodal

size distributions. It may be possible to classify stages by identifying threshold values in the

equation parameters, but probably these threshold values would have to be determined by

examining the same kinds of variables discussed in this paper.

While several lines of evidence suggest that these developmental stages tend to follow a
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logical chronological development following major disturbance, the classification is neverthe-

less not a strict chronology and is based only on measurable differences in stand structure.

CANOPY simulations suggest that stands may sometimes skip one or more structural stages

or retrogress one or more stages, especially in old-growth stands after minor or moderate

disturbance. The reason is that after moderate disturbance, old-growth stands often retain

many large and small trees that place them near the threshold of two or three different struc-

tural stages. For example, a steady-state stand may retrogress after moderate disturbance

to early transition because of a drop in the number of large trees. But it may retain sufficient

small, medium and large trees – as well as a descending monotonic size distribution – that

allow it to quickly recover to a steady state structure without going through the mid- or

late transition stages (cf. Fig. 2). This is especially likely if the steady-state stand initially

had a low L/M ratio (e.g., 1.4-1.6) and only modest densities of mature trees capable of

growing into larger size classes. Also, it is conceivable that two stands with overstory trees

of the same age sometimes could be placed in different stages if they differ markedly in other

attributes such as understory density. From a structural perspective, different stages may

be warranted since they differ in attributes of ecological importance (e.g., songbird habitat),

and the time required for the two stands to reach a more advanced stage of development

would likely be different in the two cases.

The basic method described here could likely be adapted for other suitable forest types.

This could be done by recognizing site-specific or species-specific size thresholds for sapling,

pole, mature, and large trees based on local dbh-age relationships. One could likewise modify

the stand stage criteria (Fig. 1) to fit observed structural variations among the diameter

distributions in other forest types, analogous to those shown in Fig. 2. Size distributions with

these curve forms can be observed across a fairly wide range of stand size, but investigators

should keep in mind that size distributions (and hence thresholds for defining stand stages)

can be affected by the spatial extent of sampling. In order to minimize potential confounding
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effects of variation in habitat features and disturbance history on the size distribution, we

recommend that sample plots within a single stand not be distributed over more than 8-10

hectares unless site features and stand history are known to be uniform over a larger area.

Literature Cited

Aldrich, P.R., Parker, G.R., Romero-Severson, J., Michler, C.H. 2005. Confirmation of oak
recruitment failure in Indiana old-growth forest: 75 years of data. For. Sci. 51, 406-416.

Antos, J.A., Parish, R., 2002. Dynamics of an old-growth, fire-initiated, subalpine forest in
southern interior British Columbia: tree size, age, and spatial structure. Can. J. For.
Res. 32, 1935-1946.

Bormann, F.H., Likens, G.E. 1979. Pattern and process in a forested ecosystem. Springer-
Verlag, New York.

Canham, C.D., Papaik, M.J., Latty, E.J., 2001. Interspecific variation in susceptibility
to windthrow as a function of tree size and storm severity for northern hardwood tree
species. Can. J. For. Res. 31, 1-10.

Christy, B.H. (ed)., 1929. The Book of Huron Mountain. Huron Mountain Club, Chicago,
IL.

Coffman, M.S., Alyanak, E., Resovsky, R. 1980. Field guide, habitat classification system
for upper peninsula of Michigan and northeast Wisconsin. Michigan Technological Uni-
versity, Houghton, MI.

Crowell, M., Freedman, B. 1994. Vegetation development in a hardwood-forest chronose-
quence in Nova Scotia. Can. J. For. Res. 24, 260-271.

Curtis, R.O. 1967. Height-diameter and height-diameter-age equations for second-growth
Douglas-fir. For. Sci., 13, 365-375.

D’Amato, A.W., Orwig, D.A., 2008a. Stand and landscape-level disturbance dynamics in
old-growth forests in western Massachusetts. Ecol. Monogr. 78, 507-522.

D’Amato, A.W., Orwig, D.A., Foster, D.R., 2008b. The influence of successional processes
and disturbance on the structure of Tsuga canadensis forests. Ecol. Appl. 18, 1182-1199.

Dahir, S.E., Lorimer, C.G., 1996. Variation in canopy gap formation among developmental
stages of northern hardwood stands. Can. J. For. Res. 26, 1875-1892.

DeWalt, S.J., Maliakal, S.K., Denslow, J.S. 2003. Changes in vegetation structure and



154

composition along a tropical forest chronosequence: implications for wildlife. For. Ecol.
Manage. 182, 139-151.

Dodds, K.J., D.A. Orwig. 2011. An invasive urban pest invades natural environmentsâĂŤAsian
longhorned beetle in northeastern US hardwood forests. Can. J. For. Res. 41, 1729-1742.

Emborg, J., Christensen, M., Heilmann-Clausen, J. 2000. The structural dynamics of
Suserup Skov, a near-natural temperate deciduous forest in Denmark. For. Ecol. Man-
age. 126, 173-189.

Fajvan, M.A., Seymour, R.S., 1993. Canopy stratification, age structure, and development
of multi-cohort stands of eastern white pine, eastern hemlock, and red spruce. Can. J.
For. Res., 23, 1799-1809.

Fraver, S., White, A.S., Seymour, R.S., 2009. Natural disturbance in an old-growth land-
scape of northern Maine, USA. J. Ecol. 97, 289-298.

Frelich, L.E., Lorimer, C.G., 1985. Current and predicted long-term effects of deer browsing
in hemlock forests in Michigan, USA. Biol. Conserv. 34, 99-120.

Frelich, L.E., Lorimer, C.G. 1991a. Natural disturbance regimes in hemlock-hardwood forests
of the upper Great Lakes region. Ecol. Monogr. 61, 145-164.

Frelich, L.E., Lorimer, C.G. 1991b. A simulation of landscape-level stand dynamics in the
northern hardwood region. J. Ecol. 79, 223-233.

Goff, F.G., West, D. 1975. Canopy-understory interaction effects on forest population struc-
ture. For. Sci. 19, 97-104.

Hanson, J.J.. 2009. Emulating natural disturbance dynamics in northern hardwood forests:
long-term effects on species composition, structure, and yield. Ph.D. Dissertation, Univ.
of Wisconsin-Madison, Madison, WI, USA.

Hanson, J.J., Lorimer, C.G., Halpin, C.H. 2011. Predicting long-term sapling dynamics and
canopy recruitment in northern hardwood forests. Can. J. For. Res. 41, 903-919.

Hanson, J.J., Lorimer, C.G., Halpin, C.R., Palik, B.J., 2012. Ecological forestry in an
uneven-aged, late-successional forest: Simulated effects of contrasting treatments on
structure and yield. For. Ecol. Manage. 270, 94-107.

Janowiak, M.K., Nagel, L.M., Webster, C.R., 2008. Spatial scale and stand structure in
northern hardwood forests: implications for quantifying diameter distributions. For. Sci.
54, 497-506.

Kral, K, Vrska, T., Hort, L., Adam, D., Samonil, P., 2010. Developmental phases in a



155

temperate natural spruce-fir-beech forest: determination by a supervised classification
method. Eur. J. For. Res. 129, 339-351.

Kucbel, S., Saniga, M., Jaloviar, P., Vencurik, J., 2012. Stand structure and temporal
variability in old-growth beech-dominated forests of the northwestern Carpathians: a 40
years perspective. For. Ecol. Mange. 264, 125-133.

Lorimer, C.G., Krug, A.G., 1983. Diameter distributions in even-aged stands of shade-
tolerant and midtolerant tree species. Am. Midl. Nat. 109, 331-345.

Lorimer, C.G., Frelich, L.E., 1984. A simulation of equilibrium diameter distributions of
sugar maple (Acer saccharum). Bull. Torrey Bot. Club 111, 193-199.

Lorimer, C.G., Frelich, L.E., 1998. A structural alternative to chronosequence analysis for
uneven-aged northern hardwood forests. J. Sustain. For. 6, 347-366.

Lorimer, C.G., Dahir, S.E., Nordheim, E.V., 2001. Tree mortality rates and longevity in
mature and old-growth hemlock-hardwood forests. J.Ecol. 89, 960-971.

Motta, R., Berretti, R., Castagneri, D., Dukic, V., Garbarino, M., Govedar, Z., Lingua, E.,
Maunaga, Z., Meloni, F., 2011. Toward a definition of the range of variability of central
European mixed Fagus-Abies-Picea forests: the nearly steady-state forest of Lom (Bosnia
and Herzegovina). Can. J. For. Res. 41, 1871-1884.

Oliver, C.D., Larson, B.C. 1996. Forest Stand Dynamics. Update ed., John Wiley & Sons,
New York.

Orwig, D.A., Cobb, R.C., D’Amato, A.W., Zizlinski, M.L., Foster, D.R., 2008. Multi-
year ecosystem response to hemlock woolly adelgid infestation in southern New England
forests. Can. J. For. Res. 38, 834-843.

Parish, R., Antos, J.A., 2006. Slow growth, long-lived trees, and minimal disturbance char-
acterize the dynamics of an ancient, montane forest in coastal British Columbia. Can.
J. For. Res. 36: 2826-2838.

Podlaski, R., 2006. Suitability of the selected statistical distributions for fitting diameter
data in distinguished development stages and phases of near-natural mixed forests in the
Swietokrzyski National Park (Poland). For. Ecol. Manage. 236, 393-402.

Podlaski, R., 2008. Dynamics in central European near-natural Abies-Fagus forests: Does
the mosaic cycle approach provide an appropriate model? J. Veg. Sci. 19, 173-182.

Poland, T.M., McCullough, D.G., 2006. Emerald ash borer: invasion of the urban forest and
the threat to North America’s ash resource. J. For. 104, 118-124.



156

Rafferty, M., Sprague, R., 2001. Porcupine Mountains Companion: Inside Michigan’s Largest
State Park , 4th ed., Neqauket Natural History Associates, White Pine, MI.

Spies, T.A., Franklin, J.F. 1988. Old growth and forest dynamics in the Douglas-fir region
of western Oregon and Washington. Nat. Areas J. 8, 190-201.

Splechtna, B.E.,Gratzer, G., Black, B.A., 2005. Disturbance history of a European old-
growth mixed-species forest – a spatial dendro-ecological analysis. J. Veg. Sci. 16,
511-522.

Stout, B.B., Shumway, D.L., 1982. Site quality estimation using height and diameter. For.
Sci., 28, 639-645.

Tyrrell, L.E., Crow, T.R., 1994. Structural characteristics of old-growth hemlock-hardwood
forests in relation to age. Ecology 75, 370-386.

Von Oheimb, G., Westphal, C., Tempel, H., Hardtle, W., 2005. Structural pattern of a
near-natural beech forest (Fagus sylvatica) (Serrahn, North-east Germany). For. Ecol.
Manage. 212, 253-263.

Walker, L.R., Wardle, D.A., Bardgett, R.D., Clarkson, B.D., 2010. The use of chronose-
quences in studies of ecological succession and soil development. J. Ecol., 98, 725-736.



157

F
ig
u
re

1:
D
ic
ho

to
m
ou

sk
ey

fo
rc

la
ss
ify

in
g
st
ru
ct
ur
al

st
an

d
st
ag

es
.
A
ll
m
et
ri
cs

(i
nc
lu
di
ng

la
rg
e:
m
at
ur
e
ra
ti
o)

ar
e
ex
pr
es
se
d

in
te
rm

s
of

ab
so
lu
te

or
re
la
ti
ve

ba
sa
la

re
a
(B

A
)
of

br
oa

d
si
ze

cl
as
se
s.

Si
ze

cl
as
se
s
ar
e:

sa
pl
in
g
(<

11
cm

db
h)
,p

ol
e
(1
1
-

25
.9

cm
),
m
at
ur
e
(2
6-
45

.9
),
an

d
la
rg
e
(≥

46
cm

).



158

5 13 21 29 37 45 53 61 69 77

0
10

0
20

0
30

0

Pole (field plot)
4.4% Large, L/M = 0.14

(a)

5 13 21 29 37 45 53 61 69 77

0
40

80
12

0

Mature (field plot)
38% Large, L/M = 0.85

(b)

5 13 21 29 37 45 53 61 69 77

0
40

80
12

0

Early transition (field plot)
51% Large, L/M = 1.6

(c)

5 13 21 29 37 45 53 61 69 77

0
40

80
12

0

Mid−transition (field plot)
75% Large, L/M = 4.3

(d)

5 13 21 29 37 45 53 61 69 77

0
40

80
12

0

Late transition (field plot)
64% Large, L/M = 2.7

(e)

5 13 21 29 37 45 53 61 69 77

0
40

80
12

0

Steady state (field plot)
60% Large, L/M = 2.5

(f)

5 13 21 29 37 45 53 61 69 77

0
10

0
20

0
30

0

Pole (Sim. year 30)
0 % Large BA, L/M = 0.0

(g)

5 13 21 29 37 45 53 61 69 77

0
40

80
12

0

Mature (Sim. year 130)
37 % Large BA, L/M = 0.7

(h)

5 13 21 29 37 45 53 61 69 77

0
40

80
12

0
Early transition (Sim. year 155)

52 % Large BA, L/M = 1.2

(i)

5 13 21 29 37 45 53 61 69 77

0
40

80
12

0

Mid−transition (Sim. year 220)
80 % Large BA, L/M = 4.4

(j)

5 13 21 29 37 45 53 61 69 77

0
40

80
12

0

Late transition (Sim. year 265)
77 % Large BA, L/M = 5.9

(k)

5 13 21 29 37 45 53 61 69 77

0
40

80
12

0

Steady state (Sim. year 300)
71 % Large BA, L/M = 4.8

(l)

DBH (cm)

Tr
ee

s 
/ h

a

Figure 2: Representative size distributions for each structural stage on Acer-Tsuga-
Dryopteris habitat. (a-f): Distributions from half-hectare field plots. (g-l): distributions
from simulations developing after clearcut that removed all trees larger than 2 cm dbh and
subsequently with only background mortality. Note that the earlier stages of field plots may
include some older residual trees.
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Figure 3: CANOPY simulations of the percent basal area occupied by various size classes
as a function of time since clearcutting on half hectare plots. Thick line denotes the mean
and the grey band denote the range of variation over 20 replications.
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Figure 5: Comparison of the observed and simulated numbers of trees per hectare in broad
size classes for each structural stage. Simulations started after a clearcut that removed all
trees larger than 2 cm dbh. Bars give the range of variation and numbers above them reflect
the sample size. Abbreviations were S: Sapling, P: Pole, others as in Fig. 4.
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APPENDIX B
CANOPY model equations

Table 1: Stand stage classification rules.
Yes No

1. Mature + Large basal area ≥ 20 m2/ha? 2 7

2. Percent large basal area > 45 AND
Large:Mature > 1.1? 3 Mature

3. 1.1 ≤ Large:Mature < 1.4? Early Transition, 4

4. Large:Mature > 1.75 AND
%( Sapling + Pole basal area) < 10 ? Mid-transition 5

5. Large:Mature ≥ 1.7 AND
10 ≤ %(Sapling + Pole basal area) < 20 AND
%(Gap sapling basal area) <0.6? Late Transition 6

6. Large:Mature > 1.4 AND
10 ≤ %(Sapling + Pole basal area) < 20 AND
%(Gap sapling basal area) ≥ 0.6 ? Steady state Early transition

7. Mature + Large basal area > 10 m2/ha? 8 9

8. % Pole basal area > 30 ? Pole Mature-sapling mosaic

9. Pole + Mature + Large basal area ≥ 10 m2/ha ? Pole Sapling
Sapling: 0-11 cm dbh; Pole: 11 - 26 cm dbh; Mature: 26 - 46 cm dbh; Large: 46+ cm dbh
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Table 2: Growth equations.
Species ln∆D (mm/yr) RMSE R2

Without even-aged variables
Sugar maple 3.77611 + 1.78561·ln(D) - 0.63133·

√
D - 1.17279·ln(S) + 0.668 0.410

AOCa·(-1.63801 + 0.38850·ln(S)) +
ATD·(-2.39432 + 0.49766·ln(S))

Hemlock 3.55465 + 0.62131·ln(D) -0.13625·
√

D - 0.84355·ln(S) 0.720 0.145
Yellow birch 2.63158 + 2.12509·ln(D) - 0.84656·

√
D - 0.104412·ln(S) + 0.746 0.328

AOCa·(-1.89722 + 0.55303·ln(S) +
0.50702·ATD

Red maple -1.0088 + 3.1011·ln(D) -1.0896·
√

D -0.5144·ln(S) 0.705 0.305
0.1856·AOCa

Ash -1.87360 + 1.58654·ln(D) -0.50035·
√

D + 0.05889·ln(S) + 0.536 0.333
AOCa·(1.42342 + 0.33364·ln(D) -0.44274·ln(S))

Basswood -1.8954 + 2.4149·ln(D) -0.7779·
√

D -0.3982·log(S) + 0.663 0.274
1.0692· AOCa +
ATD·(4.1372 -0.6694·ln(S))

Ironwood 2.5292 - 0.5590·ln(S) - 0.3287·AOCa 0.821 0.065
With even-aged variables

Sugar maple 3.70539 + 1.83246·ln(D) - 0.65283·
√

D -1.16630·ln(S) + 0.665 0.415
E·(1.87563 - 0.41408·ln(S) ) +
AOCa·( -2.35133 + 0.55468·ln(S) ) +
ATD·( -2.42867 + 0.51098·ln(S) )

Yellow birch 1.9621 + 2.2637·ln(D) - 0.8994·
√

D -0.9391·ln(S) + 0.741 0.334
E·(3.1228 - 0.6708·ln(S)) +
AOCa·(-1.9064 + 0.5638·ln(S)) +
0.5464·ATD

Red maple -1.0700 + 3.2407·ln(D) - 1.1444·
√

D -0.5290·ln(S) + 0.698 0.314
E·(2.4947 -0.5381·ln(S)) +
AOCa·( -1.8137 + 0.4496·ln(S))

Ash -1.80895 + 1.40155·ln(D) -0.41957·
√

D + 0.06857·ln(S) 0.534 0.336
0.14343·E +
AOCa·(1.38725 + 0.33290·ln(D) -0.44339·ln(S))

Basswood -0.46008 + 1.71851·ln(D) -0.46575·
√

D -0.55461·ln(S) + 0.664 0.312
0.42968·E +
0.70359·AOCa +
ATD·(2.77882 - 0.46826·ln(S))

Ironwood 2.3785 -0.4263·ln(S) -0.3653·E 0.816 0.075
D: diamter at breast height (cm).
S: northern hardwood stocking value
E: 1 for even-aged, 0 for uneven-aged.
ATM, AOCa, ATD: Categorical variables for habitat type.
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Table 3: Mortality equations including habitat variables.
Species X

Without even-aged variables
Sugar maple -1.0849·

√
D + 0.1232·D -0.3608·ln(S) +

AOCa·( -12.7668 -0.3108·
√

D +2.7155·ln(S) ) +
ATD· ( -2.6611 -0.4633·

√
D + 0.8485·ln(S) )

Hemlock -1.4302·
√

D + 0.1204·D -0.2207·ln(S) +
ATM·( 6.3953 -1.2475·ln(S) )

Yellow birch -2.3225·
√

D + 0.2003·D + 0.2811·ln(S) +
0.5574·ATM

Red maple -2.4951 -0.9903·
√

D + 0.0942·D +
1.0553· ATM

Ash -16.2836 -0.2974·
√

D +2.6076·ln(S)
Basswood -1.7014 -0.1641·D +

AOCa·(-22.5704 + 4.5452·ln(S) )
Ironwood -10.2681 - 2.4489·

√
D + 0.3303·D + 2.1448·ln(S) +

0.8931·AOCa
Including even-aged variables

Sugar maple -1.1435·
√

D + 0.1294·D - 0.3372·ln(S) + 0.3399·E +
AOCa·( -11.0919 -0.3034·

√
D +2.3192·ln(S) ) +

ATD·( -3.1414 -0.4757·
√

D + 0.9427·ln(S) )
Yellow birch -2.5734·

√
D + 0.2262·D + 0.3391·ln(S) + 0.9938·E +

0.7639·ATM
Ash -19.6718 -0.0278·D + 3.1378·ln(S) -1.1835·E +

1.0412·ATM
Basswood -15.3054 -0.1768·D +2.6486·ln(S) + 0.9358·E
Ironwood -8.7213 -2.4697·

√
D + 0.3659·D + 1.9036·ln(S) + 0.1870·E

D: diamter at breast height (cm).
S: northern hardwood stocking value
E: 1 for even-aged, 0 for uneven-aged.
ATM, AOCa, ATD: Categorical variables for habitat type.
The value ‘x’ is used in logistic regressio nto calculate the annual probability of mortality:
p(mort) = 1/(1+exp(-x)).
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Table 4: Mortality equations without habitat variables.
Species X

Without even-aged variables
Sugar maple -8.3470 -1.5961·

√
D + 0.1377·D + 1.5969·ln(S)

Hemlock -1.3568 -1.3066·
√

D + 0.1105·D
Yellow birch -2.3385·

√
D + 0.1985·D + 0.3446·ln(S)

Red maple -7.5231 -0.2003·
√

D + 0.8547·ln(S)
Ash -17.5287 -0.0329·D + 2.7363·ln(S)
Basswood -14.4636 -1.3268·

√
D + 3.1005·ln(S)

Ironwood -9.7996 -2.2811·
√

D + 0.3131·D + 2.0856·ln(S)
Including even-aged variables

Yellow birch -2.5096·
√

D + 0.2155·D + 0.3991·ln(S) + 0.6380·E
Basswood -12.3662 -1.3382·

√
D + 2.5380·ln(S) +0.9340·E

Ironwood -9.1134 -2.7375·
√

D +0.3741·D +1.9989·ln(S) + 0.9585·E
D: diamter at breast height (cm).
S: northern hardwood stocking value
E: 1 for even-aged, 0 for uneven-aged.
The value ‘x’ is used in logistic regressio nto calculate the annual probability of mortality:
p(mort) = 1/(1+exp(-x)).
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APPENDIX C
CANOPY source code: C++ files

Source code listings use the “OCR-B” font, which is designed to facilitate optical character
recognition.

C.1 command_line.cpp
This defines CANOPY’s global variables which are used for option flags, and sets up the
main simulation loop.
// This is the main CANOPY program for the command – line version , also

// currently the only version as we've not yet re – written the graphics

// portion to work on modern machines.

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <stdlib.h>

#include <assert.h>

#include <slist.h>

#include "util.h"

#include "Tree.h"

#include "TreeData.h"

#include "Stand.h"

// Global variables to tweak some parameters of the simulation

// Simulation mode

bool use windstorms = false;

// Growth settings

bool use branch growth = false;

bool use height growth = false;

float lg growth nsd = 0;

float ht growth nsd = 0;

bool use even uneven = true;

float eu switch age = –1;

bool use v2 equations = false;

bool use old hm mort = false;

int mort equation type = 0;
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bool use mort = true;

bool gentle birch mort = false;

// Regeneration settings

bool regen maintain initial saplings = false;

bool use stem exclusion = false;

bool only sm regen = false;

bool only hm regen = false;

bool forbid hm regen = false;

bool use test regen props = false;

int regen recovery time = 0;

int n saps to maintain = –1;

// Save settings

int save interval = 5; // how often to save , in years

double min diameter = 2.0; // min dbh in cm of trees to save

// Windstorm settings:

int disturbance threshold = 10;

void usage () {

printf("Usage: canopy –i INPUT –o OUTPUT OPTIONS \n"

"INPUT \ tis the CANOPY treelist giving the conditions at t=0.\n"

"OUTPUT \ tgives the name of the result db. CANOPY creates this file .\n"

"\ tAn error will happen if you try to re – use an existing file .\n"

"OPTIONS is any combination of :\n"

" –l N\ tsimulate for N years .\n"

" –I N\ tsave every N years (default is 5) .\n"

" –f N\ tfirst save at Nth simulatin year .\n"

" –c N\ tsave treedata for trees larger than N cm (default is 2.0) \n"

" –H\ tUse height growth \n"

" –b\ tUse branch (crown) growth \n"

" –s\ tUse stochastic diameter growth \n"

" –t\ tUse stochastic height growth \n"

" –w N\ tSimulate windstorms \n"

" –d N\ tIgnore windstorms with %%eca removal less than N\n"

" –B\ tMaintain initial sapling population to test sustainability \n"

" –r\ tStart regen in ’recovery from stem exclsuion ’ mode \n"

" –?\ tDisplay this help \n"

"The –i and –o flags are required .\n");

exit (1);
}

int main(int argc , char ∗ argv []) {

int length =10; // simulation length in years

slist<char∗> harvests; // List of harvest lua files

char ∗ storm spec = NULL; // Storm specification file (optional)

// Stand expansion factors

int multiply x =1, multiply y =1;

// Temp variables for processing command line arguments.

char ∗ infile=NULL , ∗ outfile=NULL , ch;

extern char ∗ optarg;

while( (ch=getopt(argc ,argv ,"i:o:l:x:y:h:bHstUvV :2m:Yd:wW:BC:rR:XeNOL?")) != –1 ){

switch(ch){
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// Operational options:

case ’i’: infile = strdup(optarg); break;

case ’o’: outfile = strdup(optarg); break;

case ’l’: length=strtol(optarg ,NULL ,10); break;

case ’x’: multiply x = strtol(optarg ,NULL ,10); break;

case ’y’: multiply y = strtol(optarg ,NULL ,10); break;
// Harvesting

case ’h’: harvests. push front (strdup(optarg)); break;
// Options affecting growth

case ’b’: use branch growth = true; break;

case ’H’: use height growth = true; break;

case ’s’: lg growth nsd = 1.645; break;

case ’t’: ht growth nsd = 1.645; break;

case ’U’: use even uneven = false; break;

case ’v’:

case ’V’:

if (optarg != NULL){

eu switch age = atof(optarg);

} else {

eu switch age = 200;
}

break;

case ’2’: use v2 equations = true; break;

case ’m’:

mort equation type = strtol(optarg ,NULL ,10);

break;

case ’Y’:

gentle birch mort = true; break;
// Options affecting disturbance

case ’d’:

disturbance threshold = strtol(optarg ,NULL ,10);

break;

case ’w’:

case ’W’:

use windstorms = true;

use branch growth = true;

if (optarg != NULL){

storm spec = strdup(optarg);
}

break;
// Regeneration options

case ’B’: regen maintain initial saplings =true; break;

case ’C’:

n saps to maintain = atoi(optarg);

regen maintain initial saplings =true;

break;

case ’r’:

case ’R’:

if (optarg !=NULL){

regen recovery time = atof(optarg);

} else {

regen recovery time = 15;
}
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break;

case ’X’: use test regen props = true; break;

case ’e’: use stem exclusion = true; break;

case ’N’: only hm regen = true; break;

case ’O’: only sm regen = true; break;

case ’L’: forbid hm regen = true; break;
// Debugging options

case ’?’:

usage (); break;
}

}

if( ! use height growth && ht growth nsd !=0 ){

printf("WARNING: Cannot use stochastic dH when dH is turned off \n");
}

if (infile !=NULL && outfile !=NULL) {

Stand ∗s;

s = new Stand(infile , outfile , multiply x , multiply y ,

argc , argv);

for (slist<char ∗>::iterator it=harvests.begin ();

it != harvests.end(); it++) {

s–>add harvester ( (∗ it) );
}

if ( storm spec != NULL){

s–>add storm model ( storm spec );
}

if ( mort equation type == –1 ){

use mort = false;
}

s–>calculate (); // Get initial stocking values

if (! harvests.empty()) { s–>harvest (); }

s–>calculate ();

s–>save();

s–>inc year ();

for (int i=1; i<=length; i++) {

printf("Year %i\n", i);

s–>grow();

if ( use windstorms ){ s–>wind(); }

if ( use mort ) { s–>die(); }

s–>decay ();

if (! harvests.empty()) { s–>harvest (); }

s–>regenerate ();

s–>calculate ();

s–>save();

s–>inc year ();

fflush(NULL);
}

s–>db close ();

} else {
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usage ();
}

}

C.2 Tree.cp
// –∗ – C++ –∗ –

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Tree.cp ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/

#include <math.h>

#include <stdlib.h>

#include <assert.h>

#include "Tree.h"

#include "CanopyGlobals.h"

#include "TreeDB.h"

#include "Random.h"

#include "util.h"

int Tree:: last treeno = 0;

extern int save interval ;

extern double min diameter ;

// define these as globals in the main program.

extern bool use branch growth ;

extern bool use height growth ;

extern float lg growth nsd ;

extern float ht growth nsd ;

extern bool use even uneven ;

extern float eu switch age ;

extern bool use v2 equations ;

extern int mort equation type ;

extern bool gentle birch mort ;

Tree::Tree() { ; }

//! Set or auto – assign the treeno for this tree.

// tn >= 0 means 'use this treeno '

// tn <0 means 'auto – assign '

void Tree:: set treeno (int tn){

if( tn<0 ){

treeNo= ++ last treeno ;

} else {

treeNo = tn;

if( tn > last treeno ) { last treeno = tn; }
}

}

//! Initialize default values

void Tree::set( hdata t ∗ hd , int no, double x, double y, double d,

species t sp , double ncr , double ecr , double scr , double wcr ){

treeCoordX=x; treeCoordZ=y;

species=sp; dbh = d;

born in sap stand = false;

set treeno (no);

status = st live ;

gap age =20;
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gap area =1;

// Estimate initial age from Singer and Lorimer equation

age = lround(exp( (log(dbh) –0.123) /0.718 ));

set habitat (hd);

double mcr = predict mcr ();

crown radius [0]=( ncr != –1)?ncr:mcr;

crown radius [1]=( ecr != –1)?ecr:mcr;

crown radius [2]=( scr != –1)?scr:mcr;

crown radius [3]=( wcr != –1)?wcr:mcr;

for( int i=0; i<4; i++) {

exposed crown radius [i] = 0;
}

save status . need initial =true;

save status . need final =true;

save status . need forced =false;

save status .last = 0;

if(last treeno <=no){ last treeno =no+1; }

for(int i=0; i<4; i++) {

xy neighbor [i].reset ();

rz neighbor [i].reset ();

eca neighbor [i].reset();

facing gap [i]=0;
}

for(int i=0; i<8; i++) {

gap neighbor [i].reset();
}

stochastic hg modifier .value = 0;

stochastic hg modifier . is good = ht growth nsd ==0;

stochastic lg grow modifier .value = 0;

stochastic lg grow modifier . is good = lg growth nsd ==0;

stochastic ht dbh modifier .value = 0;

stochastic ht dbh modifier . is good = false;

rel ht = 0;

rel diam = 0;

setStormCoefs(species);

clear caches ();
}

//! Compute the stochastic modifier for the ht/diameter relation

double Tree:: get ht dbh modifier () {

if( ! stochastic ht dbh modifier . is good ){

double rmse;

switch( habitat type ){

case ht ATM :

switch(species){

case sp sugar maple : rmse = 0.2792848; break;
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case sp hemlock : rmse = 0.3193744; break;

case sp yellow birch : rmse = 0.3146427; break;

case sp red maple : rmse = 0.2213594; break;

case sp white ash : rmse = 0.2167948; break;

default: rmse = 0; break;
}

break;

case ht AOCa :

switch(species){

case sp sugar maple : rmse = 0.2236068; break;

case sp basswood : rmse = 0.2024846; break;

case sp white ash : rmse = 0.2387467; break;

default: rmse = 0; break;
}

break;

case ht ATD :

switch(species){

case sp sugar maple : rmse = 0.2323790; break;

case sp hemlock : rmse = 0.2932576; break;

case sp yellow birch : rmse = 0.2880972; break;

case sp red maple : rmse = 0.2549510; break;

default: rmse = 0; break;
}

break;

default:

printf("Call to get ht dbh modifier () on an unknown habitat type \n");

exit (1);
}

stochastic ht dbh modifier .value =

rmse == 0 ? 0 : rnorm trunc (0, rmse);

stochastic ht dbh modifier . is good = true;
}

return stochastic ht dbh modifier .value;
}

////// Constructors:

Tree::Tree(int no , double x, double y, double d, species t sp ,

double ncr , double ecr , double scr , double wcr , hdata t ∗ hd){

set(hd , no , x, y, d, sp , ncr , ecr , scr , wcr);
}

Tree::Tree(double x, double y, double d, species t sp ,

double ncr , double ecr , double scr , double wcr , hdata t ∗ hd){

set(hd , –1, x, y, d, sp , ncr , ecr , scr , wcr);
}

Tree::Tree(int no , double x, double y, double d, species t sp , hdata t ∗ hd){

set(hd , no , x, y, d, sp , –1, –1, –1, –1 );
}

Tree::Tree(double x, double y, double d, species t sp , hdata t ∗ hd ){

set(hd , –1, x, y, d, sp , –1, –1, –1, –1 );
}

// "Copy constructor" saying how to duplicate a tree
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Tree& Tree:: operator =( const Tree& t){

if( this != &t ){

set treeno ( –1);

born in sap stand = false;

treeCoordX = t.treeCoordX;

treeCoordZ = t.treeCoordZ;

dbh = t.dbh;

species = t.species;

status = t.status;

age = t.age;

gap age = t. gap age ;

gap area = t. gap area ;

status = t.status;

habitat type = t. habitat type ;

save status . need initial =true;

save status . need final =true;

save status . need forced =false;

save status .last = 0;

for(int i=0; i<4; i++) {

crown radius [i] = t. crown radius [i];

exposed crown radius [i] = t. exposed crown radius [i];

xy neighbor [i].reset ();

rz neighbor [i].reset ();

eca neighbor [i].reset();

facing gap [i]=0;
}

for(int i=0; i<8; i++) {

gap neighbor [i].reset();
}

stochastic hg modifier .value = 0;

stochastic hg modifier . is good = ht growth nsd ==0;

stochastic lg grow modifier .value = 0;

stochastic lg grow modifier . is good = lg growth nsd ==0;

stochastic ht dbh modifier .value = 0;

stochastic ht dbh modifier . is good = false;

setStormCoefs(species);

clear caches ();
}

return ∗ this;
}

//! Destructor (deallocates a Tree object)

Tree ::~ Tree() {

clear competitor saplings ();

#ifndef no graphics

if (itsTreeModel != NULL)

Q3Object Dispose (itsTreeModel);
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#endif
}

species t Tree:: GetSpecies(void) { return species; }

double Tree:: GetBA(void){ return M PI ∗ pow( (dbh /2) /100 , 2); }

long Tree:: GetTreeno(void){ return treeNo; }

double Tree:: GetDBH(void){ return dbh; }

double Tree:: GetRH(void){ return rel ht ; }

double Tree:: GetRD(void){ return rel diam ; }

//! Get the mean crown radius of a tree

double Tree:: GetMCR () {

double rc=0;

for (int i=0; i<4; i++) {

rc += crown radius [i];
}

return rc;
}

//! Get the status code for a tree (live , dead , etc)

status t Tree:: GetStatus(void) { return (status); }

//! Get the height of the base of the crown

double Tree:: GetBaseHeight () {

if( ! base height . is good ) {

switch (species) {

case sp sugar maple :

default:

base height .value = –1.3946+0.61316∗ GetTotalHeight ();

break;

case sp hemlock :

case sp white pine :

base height .value = pow ( –0.9734+1.24609∗ log(GetTotalHeight ()), 2);

break;

case sp yellow birch :

base height .value = –1.1878+0.65831∗ GetTotalHeight ();

break;

case sp red maple :

base height .value = –1.8377+0.68909∗ GetTotalHeight ();

break;
}
// Ensure that base height is between 0 and TH:

base height .value = fmax(0,fmin( base height .value , GetTotalHeight ()));

base height . is good = true;

assert(isfinite( base height .value));
}

return base height .value;
}

//! Height of the widest part of the crown

double Tree:: GetWidestHeight () {

if( ! widest height . is good ){

switch (species) {

case sp sugar maple :

default:

widest height .value = –1.6101+0.88096∗ GetTotalHeight ();

break;
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case sp hemlock :

case sp white pine :

widest height .value = exp ( –1.33558+1.28089∗ log( GetTotalHeight () ));

break;

case sp yellow birch :

widest height .value = –1.1093+0.89031∗ GetTotalHeight ();

break;

case sp red maple :

widest height .value = –2.1281+0.94456∗ GetTotalHeight ();

break;
}

assert(isfinite( widest height .value));

widest height .value = fmax(0, widest height .value);

widest height . is good = true;
}

return widest height .value;
}

//! Fill in an array with coefficients from the total height equations

void Tree:: total height equation coefs (double ∗ bi){

int sp;

double coefs [][2] = {
// CONST ln(dbh)

// AOCa:

{ 1.44818 , 0.955864 }, // AOCa:SM 0

{ 1.72731 , 0.953316 }, // AOCa:WA 1

{ 1.45300 , 0.958920 }, // AOCa:BW 2

//ATD:

{ 1.084297 , 1.090011 }, // ATD:SM 3

{ –1.017610 , 1.517670 }, // ATD:HM 4

{ 1.341310 , 0.938250 }, // ATD:YB 5

{ 1.449740 , 0.995870 }, // ATD:RM 6

{ 1.30240 , 0.947100 }, // ATD:IW 7

//ATM:

{ 1.140040 , 1.050100 }, // ATM:SM 8

{ 0, 1.249200 }, // ATM:HM 9

{ 1.378800 , 0.942980 }, // ATM:YB 10

{ 1.751530 , 0.919210 }, // ATM:RM 11

{ 1.055300 , 1.144900 } // ATM:WA 12

};

if( habitat type == ht AOCa ){ //AOCa

switch(species){

case sp hemlock : sp= 4; break;

case sp yellow birch : sp= 5; break;

case sp red maple : sp= 6; break;

case sp white ash : sp= 1; break;

case sp basswood : sp= 2; break;

case sp ironwood : sp= 7; break;

default: sp= 0; break;
}

} else if( habitat type == ht ATD ){ //ATD

switch(species){

case sp hemlock : sp= 4; break;
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case sp yellow birch : sp= 5; break;

case sp red maple : sp= 6; break;

case sp white ash : sp= 1; break;

case sp basswood : sp= 2; break;

case sp ironwood : sp= 7; break;

default: sp= 3; break;
}

} else if( habitat type == ht ATM ){ //ATM

switch(species){

case sp hemlock : sp= 9; break;

case sp yellow birch : sp=10; break;

case sp red maple : sp=11; break;

case sp white ash : sp=12; break;

case sp basswood : sp= 2; break;

case sp ironwood : sp= 7; break;

default: sp= 8; break;
}

} else {

printf("ERROR: unknown htype: %i %s:%i (this=%x)\n",

habitat type , FILE , LINE , (void ∗) this);

exit (1);
}

bi[0] = coefs[sp ][0];

bi[1] = coefs[sp ][1];
}

//! Allometrically determine total height

double Tree:: GetTotalHeight () {
/// Allometrically determins total height

/∗ ∗ This uses species/habitat type specific equations developed by

Jake Hanson in 2005.

∗/

if( ! total height . is good ){

double bi[2];

double xi[2];

xi [0]=1;

xi[1]= log(dbh);

// Preconditions:

assert(isfinite(xi[1]));

total height equation coefs (bi);

double rc = bi [0]∗ xi[0]+bi [1]∗ xi[1] + get ht dbh modifier ();

rc = pow(rc , 2);

assert(isfinite(rc));

total height .value = rc;

total height . is good =true;
}

return total height .value;
}

//! Update diameter based on a desired total height

void Tree:: SetTotalHeight(double th) {

double bi[2];

total height equation coefs (bi);
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double log dbh = (sqrt(th) – bi[0] – get ht dbh modifier () )/bi[1];

double new dbh = exp( log dbh );

if ( new dbh >= dbh){

dbh = new dbh ; clear caches ();
}

}

double Tree:: GetXCoord(void) { return (treeCoordX); }

double Tree:: GetYCoord(void) { return (treeCoordZ); }

void Tree:: SetRH(double avg ht900 ) { rel ht = GetTotalHeight ()/ avg ht900 ; }

void Tree:: SetXCoord(double x){ treeCoordX=x; }

void Tree:: SetYCoord(double y){ treeCoordZ=y; }

void Tree:: SetTreeData(long TreeNo , double xCoord , double yCoord ,

species t Species , short CC ,

double DBH , double TotalHeight , double BaseHeight ,

double WidestHeight , double NorthTotal ,

double NorthExp ,

double EastTotal , double EastExp , double SouthTotal ,

double SouthExp , double WestTotal , double WestExp ,

double Distance , double Azimuth , status t Status ,

double BasalArea , double PreviousBA ,

long YearsOnTreeList) {

treeNo = TreeNo;

treeCoordX = xCoord;

treeCoordZ = yCoord;

dbh = DBH; clear caches ();

species = Species;

status = Status;

if( treeNo > last treeno ) { last treeno = treeNo; }
}

void Tree:: SetStatus( status t st){ status = st; }

//! Crown growth

void Tree:: grow branches (double delta dbh , double rh){
// Preconditions:

assert( isfinite(dbh) && 0<= dbh );

assert( isfinite( delta dbh ) && 0<= delta dbh );

assert( isfinite(rh) && 0<= rh );

for(int i = 0; i<4; i++) {

double bgrow;

if( touching[i] == true ){

bgrow =0;

} else if ( gap area == 0 | | shaded[i]== true | | dbh<11 ){
//Grow at background rate.

int ix;

switch(species){

default:

if( habitat type == ht AOCa ) { ix=0; } else { ix=1; }

break;

case sp hemlock : ix=2; break;

case sp yellow birch : ix=3; break;
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case sp red maple : ix=4; break;

case sp white ash : ix=5; break;

case sp basswood : ix=6; break;

case sp ironwood : ix=7; break;
}

double coefs [][3] = {

{ /∗ SM AOCa ∗/ 8.13689 , 0.03818 , 18.56050 },

{ /∗ SM ATD/ATM ∗/ 7.91233 , 0.02746 , 24.93295 },

{ /∗ Hemlock ∗/ 4.51000 , 0.04241 , 10.10187 },

{ /∗ Yellow Birch ∗/ 7.76193 , 0.04056 , 25.38926 },

{ /∗ Red Maple ∗/ 5.24100 , 0.09100 , 18.62089 },

{ /∗ White Ash ∗/ 6.01723 , 0.05012 , 20.01200 },

{ /∗ Basswood ∗/ 6.18326 , 0.03983 , 19.18628 },

{ /∗ Ironwood ∗/ 3.24642 , 0.30031 , 5.00321 }};

double A=coefs[ix ][0];

double B=coefs[ix ][1];

double C=coefs[ix ][2];

double dcr ddbh = –A ∗ – B ∗ exp( – exp( –B ∗( dbh –C))) ∗ exp( –B ∗( dbh –C));

bgrow= dcr ddbh ∗ delta dbh ;

} else {
// These equations come from Page 166 of Chris Webster 's PhD Thesis.

int yellow birch = (species == sp yellow birch )?1:0;

int dominant = (rh>=0.66) ?1:0;

if(species == sp hemlock | | species == sp white pine ){

bgrow = 14.836 –2.66∗ log(dbh);

} else if( is facing gap (i) == true ){

bgrow = pow (2.99+0.607∗ yellow birch –0.0091∗ dbh –0.434∗ dominant ,2);

} else {

bgrow = pow (0.65+0.755∗ yellow birch +0.0652∗ dbh

–0.000799∗ pow(dbh ,2) ,2);
}

/∗ Apply a per – habitat – type growth – rate difference to sugar

maple , which is the only species for which we can detect a

significant effect of habitat type in crown – growth rate.

∗/

if (species == sp sugar maple && habitat type == ht ATD ) { bgrow ∗=1.06;}

else if (species == sp sugar maple && habitat type == ht AOCa ){ bgrow ∗=1.17;}

bgrow /= 100; // convert from cm to meters.
}

bgrow = fmax(0, bgrow); // Require non – negative

// Postconditions:

assert( isfinite(bgrow) && 0<= bgrow );

crown radius [i]+= bgrow;
}

}

//! Size increase for trees , uses dD where appropriate , and dH otherwise

double Tree::grow(double stock , double rd, stage t stage){

double th=GetTotalHeight ();

double growth;

rel diam = rd;
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if ( use height growth &&

( (species != sp ironwood && species != sp hemlock && GetTotalHeight () <= 17) | |

(species == sp hemlock && GetTotalHeight () <= 8.25) ) ){

growth = grow ht ();

} else {

if ( use v2 equations ){

growth = grow dbh (stock , stage);

} else {

growth = grow dbh new (stock , stage);
}

}

if ( use branch growth ) {

grow branches (growth ,this –>rel ht );

} else {
// Predict the MCR and set all radii equal to it.

double mcr = predict mcr ();

for( int i=0; i<4; i++) { crown radius [i]=mcr; }
}

age ++;

return growth;
}

//! Compute the TCA of competitor saplings

double Tree:: get comp sap tca () {

if ( ! comp sap tca . is good ){

double rc=0;

for (int i=0; i< competitor saplings .size(); i++) {

if ( competitor saplings [i]–>GetTotalHeight () > this –>GetTotalHeight () &&

competitor distances [i] <= 5.05 ) {

rc += competitor saplings [i]–>get tca ();
}

}

comp sap tca .value = rc;

comp sap tca . is good = true;
}

return comp sap tca .value;
}

//! Compute a competition index based on competitor saplings

double Tree:: get comp sap ci () {

if( ! comp sap ci . is good ){

double mcr = GetMCR ();

double rc = 0;

for (int i=0; i<competitor saplings .size(); i++) {

if ( competitor distances [i] <= 2.5 ∗ mcr) {

rc += competitor saplings [i]–>get tca ();
}

}

rc /= ( M PI ∗ pow (2.5∗ mcr ,2) );

comp sap ci .value = rc;

comp sap ci . is good = true;
}

return comp sap ci .value;
}
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//! Height growth

double Tree:: grow ht ( ){
//// Regression coefficients:

double coefs [][7]={
//Const , H, lnH , lnGA , SapTCA , CI , gAge

// ATD/AOCa

{ 1.8669 , –0.0995 , 0.6439 , 0.2404 , –0.3130 , 0, 0 }, //YB 0

{ 2.4871 , –0.0916 , 0.8761 , 0.1398 , –0.5450 , 0, 0 }, //WA 1

//AOCa

{ 1.7715 , –0.0953 , 0.5656 , 0.3128 , –0.7457 , 0, 0 }, //SM 2

{ 2.5063 , –0.0930 , 0.7551 , 0.0926 , –0.3226 , 0, 0 }, //BW 3

{ 2.5047 , –0.1953 , 0.6969 , 0.1952 , –0.5816 , 0, 0 }, //IW 4

// ATD

{ 1.7715 , –0.0953 , 0.5656 , 0.2702 , –0.7457 , 0, 0 }, //SM 5

{ 2.5063 , –0.0930 , 0.7551 , 0, –0.3226 , 0, 0 }, //BW 6

{ 1.9618 , 0, 0.6969 , 0, 0, 0, 0 }, //IW 7

// ATM

{ 2.1665 , 0, 0.3883 , 0.1998 , 0, –0.4875 , –0.0348} , //SM 8

{ 2.0031 , 0, 0.7398 , 0.1639 , 0, –0.3609 , –0.0493} , //YB 9

{ 1.3463 , 0, 0.6103 , 0.1415 , 0, –0.3935 , 0 }, //HM 10

{ 2.1299 , 0.0498 , 0, 0.2444 , 0, –0.5924 , –0.0149} , //RM 11

};

double rmse[] = {

/∗ AOCa/ATD: YB ∗/ 0.9364828 ,

/∗ AOCa/ATD: WA ∗/ 0.5775812 ,

/∗ AOCa: SM ∗/ 0.8377947 ,

/∗ AOCa: BW ∗/ 0.5515433 ,

/∗ AOCa: IW ∗/ 0.7866384 ,

/∗ ATD: SM ∗/ 0.8377947 ,

/∗ ATD: BW ∗/ 0.5515433 ,

/∗ ATD: IW ∗/ 0.7866384 ,

/∗ ATM: SM ∗/ 1.2498000 ,

/∗ ATM: YB ∗/ 1.6649920 ,

/∗ ATM: Hm ∗/ 0.7342343 ,

/∗ ATM: RM ∗/ 0.7014984 ,

};

double bias correction [] = {

/∗ AOCa/ATD: YB ∗/ 1.20,

/∗ AOCa/ATD: WA ∗/ 1.11,

/∗ AOCa: SM ∗/ 1.23,

/∗ AOCa: BW ∗/ 1.14,

/∗ AOCa: IW ∗/ 1.21,

/∗ ATD: SM ∗/ 1.23,

/∗ ATD: BW ∗/ 1.14,

/∗ ATD: IW ∗/ 1.21,

/∗ ATM: SM ∗/ 1.24,

/∗ ATM: YB ∗/ 1.22,

/∗ ATM: Hm ∗/ 1.13,

/∗ ATM: RM ∗/ 1.11,

};

int species code ;
// Determine a species code which is used to index into
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// the table of coefficients

switch ( habitat type ){

case ht AOCa :

switch(species){

case sp yellow birch : species code =0; break;

case sp white ash : species code =1; break;

case sp basswood : species code =3; break;

case sp ironwood : species code =4; break;

case sp hemlock : species code =10; break;

case sp red maple : species code =11; break;

default: species code =2; break;
}

break;

case ht ATD :

switch(species){

case sp yellow birch : species code =0; break;

case sp white ash : species code =1; break;

case sp basswood : species code =6; break;

case sp ironwood : species code =7; break;

case sp hemlock : species code =10; break;

case sp red maple : species code =11; break;

default: species code =5; break;
}

break;

case ht ATM :

switch(species){

case sp yellow birch : species code =9; break;

case sp white ash : species code =1; break;

case sp basswood : species code =6; break;

case sp ironwood : species code =7; break;

case sp hemlock : species code =10; break;

case sp red maple : species code =11; break;

default: species code =8; break;
}

break;

default:

printf("Call to grow ht () on a habitat type for which "

"no growth equations are available \n");

exit (1);
}

double th = GetTotalHeight ();

double xi[7];

xi [0]=1;

xi[1]=th;

xi[2]= log(th);

xi[3]= log(fmin (1000 , fmax(1, gap area )));

xi[4]= get comp sap tca ()/80;

xi[5]= get comp sap ci ();

xi[6]= gap age ;

// Preconditions:

assert( isfinite(xi[1]) && 0< xi[1] ); // Height
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assert( isfinite(xi[2]) ); // ln(Height)

assert( isfinite(xi[3]) ); // ln(GA)

assert( isfinite(xi[4]) && 0<=xi[4] ); // SapTCA

assert( isfinite(xi[5]) && 0<=xi[5] ); // CI

assert( isfinite(xi[6]) && 0<=xi[6] ); // gAge

double result =0;

for(int i=0; i<7; i++) {

result += xi[i]∗ coefs[ species code ][i];
}

double bc = 1; // bias correction factor for this tree

if ( ht growth nsd !=0 ){

if ( ! stochastic hg modifier . is good ){

stochastic hg modifier .value = rnorm trunc (0, rmse[ species code ], ht growth nsd );

stochastic hg modifier . is good = true;
}

result += stochastic hg modifier .value;

} else {
//bc = bias correction [ species code ];

}

double hgrow m = fmax(0, bc ∗ exp(result)/100);

// Adjust the white – ash growth:

if ( habitat type == ht ATM && species == sp white ash ){

hgrow m ∗= 0.925;
}

// Postconditions:

assert( isfinite( hgrow m ) && 0 <= hgrow m );

// For SM on ATM , limit dH to less than the max dH observed:

if ( species code ==8) {

double pct lim =0;

if (th < 4.013) { pct lim = –0.0424 ∗ th + 0.3500; }

else if (th < 8.200) { pct lim = –0.0215 ∗ th + 0.2663; }

else if (th < 15.000) { pct lim = –0.0059 ∗ th + 0.1382; }

else if (th < 18.300) { pct lim = –0.0055 ∗ th + 0.1318; }

else { pct lim = –0.0043 ∗ th + 0.1101; }

hgrow m = fmin( pct lim ∗ th , hgrow m );
}

// For YB on ATM , limit dH to less than the max dH observed:

if ( species code ==9) {

double pct lim =0;

if (th < 9.51) { pct lim = –0.0284 ∗ th + 0.3500; }

else { pct lim = –0.0048 ∗ th + 0.1255; }

hgrow m = fmin( pct lim ∗ th , hgrow m );
}

double prev dbh = dbh;

SetTotalHeight( th + hgrow m );

double dgrow = fmax(0, dbh – prev dbh ); //use fmax to account for round – off

return dgrow;
}



188

//! Diameter growth

// Predicts diameter growth in terms of stocking and current diameter ,

// with separate equations for each species and habitat type. Also

// has alternate equations for even v. uneven aged conditions.

double Tree:: grow dbh (double stock , stage t stage){

const int n species = 7;

const int n params = 4;

double coefs [3][ n species ][ n params ]={
// CONST ln (DBH) DBH STOCK

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
/∗ ∗∗ AOCa ∗∗ ∗/
/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
{

//// "Standard" MS – thesis equation set:

/∗ Sugarmaple ∗/ { –0.24524 , 0.90394 , –0.02842 , –0.00788} ,

/∗ Hemlock ∗/ { 0, 0.60313 , –0.01260 , –0.00617} ,

/∗ Yellow birch ∗/ { 0, 0.80757 , –0.03100 , –0.00841} ,

/∗ Red maple ∗/ { –1.34701 , 1.25414 , –0.03392 , –0.00560} ,

/∗ White ash ∗/ { –1.37627 , 1.17654 , –0.03423 , –0.00213} ,

/∗ Basswood ∗/ { 0, 0.61999 , –0.01514 , –0.00451} ,

/∗ Ironwood ∗/ { 0, –0.18438 , 0, 0 },

},
/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
/∗ ∗∗ ATD ∗∗ ∗/
/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
{

///// "Standard" MS – thesis equation set:

/∗ Sugarmaple ∗/ { –0.24524 , 0.88668 , –0.02842 , –0.00788} ,

/∗ Hemlock ∗/ { 0, 0.60313 , –0.01260 , –0.00499} ,

/∗ Yellow birch ∗/ { 0, 0.80514 , –0.03100 , –0.00841} ,

/∗ Red maple ∗/ { –1.34701 , 1.25414 , –0.03392 , –0.00560} ,

/∗ White ash ∗/ { –1.37627 , 1.17654 , –0.03423 , –0.00213} ,

/∗ Basswood ∗/ { 0, 0.61999 , –0.01514 , –0.00451} ,

/∗ Ironwood ∗/ { 0, –0.18438 , 0, 0 },

},
/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
/∗ ∗∗ ATM ∗∗ ∗/
/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/
{

//// "Standard" MS – thesis equation set:

/∗ Sugarmaple ∗/ { –0.24524 , 0.85316 , –0.02842 , –0.00788} ,

/∗ Hemlock ∗/ { 0, 0.60313 , –0.01260 , –0.00617} ,

/∗ Yellow birch ∗/ { 0, 0.66074 , –0.03100 , –0.00841} ,

/∗ Red maple ∗/ { –1.34701 , 1.25414 , –0.03392 , –0.00560} ,

/∗ White ash ∗/ { –1.37627 , 1.17654 , –0.03423 , –0.00213} ,

/∗ Basswood ∗/ { 0, 0.61999 , –0.01514 , –0.00451} ,

/∗ Ironwood ∗/ { 0, –0.18438 , 0, 0 },
}

};

double rmse[ n species ] = {

/∗ Sugarmaple ∗/ 0.6282993 ,

/∗ Hemlock ∗/ 0.7400068 ,

/∗ Yellow birch ∗/ 0.8055433 ,

/∗ Red Maple ∗/ 0.7555859 ,

/∗ White ash ∗/ 0.5085764 ,

/∗ Basswood ∗/ 0.7027019 ,
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/∗ Ironwood ∗/ 0.9074194 ,

};

double bias correction [ n species ] = {

/∗ Sugarmaple ∗/ 1.120 ,

/∗ Hemlock ∗/ 1.199 ,

/∗ Yellow Birch ∗/ 1.225 ,

/∗ Red Maple ∗/ 1.170 ,

/∗ White Ash ∗/ 1.125 ,

/∗ Basswood ∗/ 1.169 ,

/∗ Ironwood ∗/ 1.227 ,

};

int species code ;
// Determine the species code , used to index the tables of coefficients

switch (species){

default:

case sp sugar maple :

species code = 0; break;

case sp hemlock :

species code = 1; break;

case sp yellow birch :

species code = 2; break;

case sp red maple :

species code = 3; break;

case sp american elm :

case sp northern red oak :

case sp green ash :

case sp paper birch :

case sp black cherry :

case sp white ash :

species code = 4; break;

case sp basswood :

species code = 5; break;

case sp mountain maple :

case sp balsam fir :

case sp ironwood :

species code = 6; break;

}

double xi[ n params ];

xi [0]=1; // constant term

xi[1]= log(dbh);

xi[2]= dbh;

xi[3]= stock;

// Preconditions:

assert( isfinite(xi[1]) ); // log(dbh)

assert( isfinite(xi[2]) && 0 <= xi[2] ); // dbh

assert( isfinite(xi[3]) && 0 <= xi[3] ); // stock

double result =0;

for(int i=0; i<n params ; i++) {

result += xi[i] ∗ coefs[ habitat type ][ species code ][i];
}
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double bc = 1; // bias correction factor for this tree

// Apply the stochastic effect , when required

if ( lg growth nsd !=0 ) {

if ( ! stochastic lg grow modifier . is good ){

stochastic lg grow modifier .value = rnorm trunc (0, rmse[ species code ],

lg growth nsd );

stochastic lg grow modifier . is good = true ;
}

result += stochastic lg grow modifier .value ;

} else {

bc = bias correction [ species code ];
}

// back – transform the result of the regression , applying bias correction;

double growth = bc ∗ exp(result)/10;

// Postconditions:

assert(isfinite(growth) && 0 <= growth );

dbh += growth; clear caches ();

return growth;
}

//! Diameter growth

// Predicts diameter growth in terms of stocking and current diameter ,

// with separate equations for each species and habitat type. Also

// has alternate equations for even v. uneven aged conditions.

double Tree:: grow dbh new (double stock , stage t stage){

const int n params = 4;

const int n species = 7;

double coefs [3][3][ n species ][ n params ]={
{ //AOCa:

{ // Split – – Uneven – aged:

{ 1.354065 , 1.832456 , –0.65283 , –0.6116123} , //SM

{ 3.554651 , 0.6213118 , –0.1362489 , –0.8433515} , //Hm

{ 0.05568177 , 2.263826 , –0.8993678 , –0.3768509} , //Yb

{ –2.8837185 , 3.240746 , –1.144422 , –0.07943475} , //Rm

{ 0.26988830 , 1.23624 , –0.2888182 , –0.3020435} , //Ash

{ 0.24351410 , 1.718514 , –0.4657525 , –0.5546132} , //BW

{ 2.517114 , 0, 0, –0.5539939} , //Iw

}, { // Split – – Even – aged:

{ 3.229695 , 1.832456 , –0.65283 , –1.0256956} , //SM

{ 3.554651 , 0.6213118 , –0.1362489 , –0.8433515} , //Hm

{ 3.17845763 , 2.263826 , –0.8993678 , –1.0476214} , //Yb

{ –0.3890647 , 3.240746 , –1.144422 , –0.61756261} , //Rm

{ 0.26988830 , 1.23624 , –0.2888182 , –0.3020435} , //Ash

{ 0.67319572 , 1.718514 , –0.4657525 , –0.5546132} , //BW

{ 2.159450 , 0, 0, –0.5539939} , //Iw

} ,{ // Unified

{ 2.138098 , 1.785612 , –0.6313298 , –0.7842926} , //SM

{ 3.554651 , 0.6213118 , –0.1362489 , –0.8433515} , //Hm

{ 0.7343615 , 2.125094 , –0.8465606 , –0.4910896} , //Yb

{ –0.823174 , 3.1011 , –1.08964 , –0.5144198} , //Rm

{ 0.26988830 , 1.23624 , –0.2888182 , –0.3020435} , //Ash
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{ –0.8262529 , 2.41491 , –0.7779329 , –0.3982128} , //BW

{ 2.340304 , 0, 0, –0.5857937} , //Iw
}

}, { // ATD:

{ // Split – – Uneven – aged:

{ 1.276725 , 1.832456 , –0.65283 , –0.6553158} , //SM

{ 3.554651 , 0.6213118 , –0.1362489 , –0.8433515} , //Hm

{ 2.50847061 , 2.263826 , –0.8993678 , –0.9391122} , //Yb

{ –1.0700185 , 3.240746 , –1.144422 , –0.52898924} , //Rm

{ –0.09283665 , 1.23624 , –0.2888182 , –0.3020435} , //Ash

{ 2.31874145 , 1.718514 , –0.4657525 , –1.0228735} , //BW

{ 2.517114 , 0, 0, –0.5539939} , //Iw

}, { // Split – – Even – aged:

{ 3.152355 , 1.832456 , –0.65283 , –1.0693991} , //SM

{ 3.554651 , 0.6213118 , –0.1362489 , –0.8433515} , //Hm

{ 5.63124647 , 2.263826 , –0.8993678 , –1.6098827} , //Yb

{ 1.4246352 , 3.240746 , –1.144422 , –1.06711710} , //Rm

{ –0.09283665 , 1.23624 , –0.2888182 , –0.3020435} , //Ash

{ 2.74842307 , 1.718514 , –0.4657525 , –1.0228735} , //BW

{ 2.159450 , 0, 0, –0.5539939} , //Iw

}, { // Unified

{ 1.381788 , 1.785612 , –0.6313298 , –0.6751264} , //SM

{ 3.554651 , 0.6213118 , –0.1362489 , –0.8433515} , //Hm

{ 3.1386007 , 2.125094 , –0.8465606 , –1.0441164} , //Yb

{ –1.008771 , 3.1011 , –1.08964 , –0.5144198} , //Rm

{ –0.09283665 , 1.23624 , –0.2888182 , –0.3020435} , //Ash

{ 2.2417766 , 2.41491 , –0.7779329 , –1.0676043} , //BW

{ 2.664816 , 0, 0, –0.5857937} , //Iw
}

}, { // ATM:

{ // Split – – Uneven – aged:

{ 3.705394 , 1.832456 , –0.65283 , –1.1662953} , //SM

{ 3.554651 , 0.6213118 , –0.1362489 , –0.8433515} , //Hm

{ 1.96208177 , 2.263826 , –0.8993678 , –0.9391122} , //Yb

{ –1.0700185 , 3.240746 , –1.144422 , –0.52898924} , //Rm

{ –0.09283665 , 1.23624 , –0.2888182 , –0.3020435} , //Ash

{ –0.46008074 , 1.718514 , –0.4657525 , –0.5546132} , //BW

{ 2.517114 , 0, 0, –0.5539939} , //Iw

}, { // Split – – Even – aged:

{ 5.581024 , 1.832456 , –0.65283 , –1.5803786} , //SM

{ 3.554651 , 0.6213118 , –0.1362489 , –0.8433515} , //Hm

{ 5.08485763 , 2.263826 , –0.8993678 , –1.6098827} , //Yb

{ 1.4246352 , 3.240746 , –1.144422 , –1.06711710} , //Rm

{ –0.09283665 , 1.23624 , –0.2888182 , –0.3020435} , //Ash

{ –0.03039912 , 1.718514 , –0.4657525 , –0.5546132} , //BW

{ 2.159450 , 0, 0, –0.5539939} , //Iw

}, { // Unified

{ 3.776112 , 1.785612 , –0.6313298 , –1.1727903} , //SM

{ 3.554651 , 0.6213118 , –0.1362489 , –0.8433515} , //Hm

{ 2.6315772 , 2.125094 , –0.8465606 , –1.0441164} , //Yb

{ –1.008771 , 3.1011 , –1.08964 , –0.5144198} , //Rm

{ –0.09283665 , 1.23624 , –0.2888182 , –0.3020435} , //Ash

{ –1.8954150 , 2.41491 , –0.7779329 , –0.3982128} , //BW
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{ 2.664816 , 0, 0, –0.5857937} , //Iw
}

}

};

double bias correction [2][ n species ] = {
{ // Split:

/∗ Sm Hm Yb Rm Ash Bw Iw ∗/

1.154889 , 1.221601 , 1.209713 , 1.172483 , 1.126267 , 1.151046 , 1.327567 ,

}, { // Unified:

1.153982 , 1.221601 , 1.215973 , 1.175144 , 1.126267 , 1.165245 , 1.332544 ,
}

};

double rmse [2][ n species ] = {
{ // Split:

/∗ Sm Hm Yb Rm Ash Bw Iw ∗/

0.6650471 , 0.7204375 , 0.7410988 , 0.6976488 , 0.5477915 , 0.6443756 , 0.8188313 ,

}, { // Unified

0.6678621 , 0.7204375 , 0.7456844 , 0.704972 , 0.5477915 , 0.6626826 , 0.8229926 ,
}

};

// Determine the species code , used to index the tables of coefficients

int species ix ;

switch (species){

default:

case sp sugar maple :

species ix = 0; break;

case sp hemlock :

species ix = 1; break;

case sp yellow birch :

species ix = 2; break;

case sp red maple :

species ix = 3; break;

case sp american elm :

case sp northern red oak :

case sp green ash :

case sp paper birch :

case sp black cherry :

case sp white ash :

species ix = 4 ; break;

case sp basswood :

species ix = 5; break;

case sp mountain maple :

case sp balsam fir :

case sp ironwood :

species ix = 6; break;
}

int ht ix ;

switch( habitat type ){

case ht AOCa : ht ix = 0; break;

case ht ATD : ht ix = 1; break;

case ht ATM : ht ix = 2; break;

default:

printf("ERROR: Unknown habitat type %i in grow dbh new () at %s:%i\n",
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habitat type , FILE , L I N E );

exit (1);

break;
}

int structure ix ;

int rmse bc ix ;

if ( use even uneven ){

rmse bc ix = 0;

if ( eu switch age < 0) {

if ( born in sap stand &&

(stage == stage sapling | |

stage == stage pole | |

stage == stage mature ) ) {

structure ix = 1;

} else {

structure ix = 0;
}

} else {

if ( born in sap stand && age < eu switch age ){

structure ix = 1;

} else {

structure ix = 0;
}

}

} else {

rmse bc ix = 1;

structure ix = 2;
}

double xi[ n params ];

xi[0] = 1;

xi[1] = log(dbh);

xi[2] = sqrt(dbh);

xi[3] = log(fmax(1,stock));

double result =0;

for (int i=0; i<n params ; i++) {

result += xi[i] ∗ coefs[ ht ix ][ structure ix ][ species ix ][i];
}

double bc = 1; // bias correction factor for this tree

// Apply the stochastic effect , when required

if ( lg growth nsd !=0 ){

if ( ! stochastic lg grow modifier . is good ){

if ( species ix == 4) { // Species that use the WA equations:

stochastic lg grow modifier .value = rnorm trunc (0, rmse[ rmse bc ix ][ species ix ],

1.0);

} else {

stochastic lg grow modifier .value = rnorm trunc (0, rmse[ rmse bc ix ][ species ix ],

lg growth nsd );
}

stochastic lg grow modifier . is good = true ;
}

result += stochastic lg grow modifier .value ;
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} else {

bc = bias correction [ rmse bc ix ][ species ix ];
}

// back – transform the result of the regression , applying bias correction;

double growth = bc ∗ exp(result) / 10;

// Postconditions:

assert(isfinite(growth) && 0 <= growth );

dbh += growth; clear caches ();

return growth;
}

double Tree::pdie(double stock , double rd, stage t stage , double pct hemlock ){

double rc;

if ( use v2 equations ){

rc = Tree:: pdie old ( stock , stage );

} else {
// On maple – dominated ATM , use the ht – insensitive equations for lack of data.

if ( habitat type == ht ATM && pct hemlock < 0.35 ) {

rc = Tree::pdie(species , dbh , rd, stock , stage);

} else {

switch ( mort equation type ){

case 0:

rc = Tree::pdie(species , dbh , rd, stock , stage);

break;

case 1:

rc = Tree:: pdie ht simple (habitat type , species , dbh , rd , stock , stage);

break;

case 2:

rc = Tree:: pdie ht complex (habitat type , species , dbh , rd, stock , stage);

break;

default:

printf("Unknown mort equation type (%i) requested at %s:%i\n",

mort equation type , FILE , L I N E );

exit (1);
}

}

if ( gentle birch mort && species == sp yellow birch && dbh <= 6) {

rc = min(rc , 0.114);
}

}

return rc;
}

double Tree:: pdie ht complex ( htype t ht , species t species ,

double dbh , double rd , double stock , stage t stage){

const int n params = 4;

const int n species = 8;

double rc;

// For those species where pdie doesn't increase past 50 cm , sub in the SM mort rates

// but with an offset:

const int dbh thresh = 30;

if (dbh > dbh thresh &&
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(species == sp white ash | | species == sp green ash | |

species == sp basswood | | species == sp red maple ) ){

double offset = Tree:: pdie ht complex ( ht , species , dbh thresh , rd , stock , stage ) –

Tree:: pdie ht complex ( ht , sp sugar maple , dbh thresh , rd , stock , stage );

rc = Tree:: pdie ht complex ( ht , sp sugar maple , dbh , rd , stock , stage ) + offset;

rc = fmin(1, fmax(0, rc)); // Limit to 0 –1 range.

} else {
// These coefficients refer to the "full" mortality model

// which includes dbh and stocking interacting with htype.

// Coefficients here

double coefs [3][3][ n species ][ n params ] = {
{ // AOCa

{ // Split – – Uneven – aged

{ –11.0919493729187 , –1.44682983222491 , 0.129409954392803 , 1.98199673918403 },
// sugarmaple

{ 0, –1.4301692508473 , 0.120464391752789 , –0.220688513111923 }, // hemlock

{ 0, –2.57342617882839 , 0.22618393330138 , 0.339104105662145 }, // yellowbirch

{ –2.49513019835464 , –0.990349631587634 , 0.0942201593341137 , 0 }, // redmaple

{ –18.6306014938655 , 0, –0.0277554385091683 , 3.13781080527705 }, // ash

{ –15.3054249627291 , 0, –0.17683340161845 , 2.63859636790818 }, // basswood

{ –8.72132178035137 , –2.67969507054725 , 0.365898550012711 , 1.9035955071559 },
// ironwood

},
{ // Split – – Even – aged

{ –10.7520325224063 , –1.44682983222491 , 0.129409954392803 , 1.98199673918403 },
// sugarmaple

{ 0, –1.4301692508473 , 0.120464391752789 , –0.220688513111923 }, // hemlock

{ 0.99382925346374 , –2.57342617882839 , 0.22618393330138 , 0.339104105662145 },
// yellowbirch

{ –2.49513019835464 , –0.990349631587634 , 0.0942201593341137 , 0 }, // redmaple

{ –19.8141143959989 , 0, –0.0277554385091683 , 3.13781080527705 }, // ash

{ –14.3695805207333 , 0, –0.17683340161845 , 2.63859636790818 }, // basswood

{ –8.72132178035137 , –2.67969507054725 , 0.365898550012711 , 2.0905923002985 },
// ironwood

},
{ // Unified

{ –12.7668011091723 , –1.39566495591577 , 0.123195309542577 , 2.3547048284027 },
// sugarmaple

{ 0, –1.4301692508473 , 0.120464391752789 , –0.220688513111923 }, // hemlock

{ 0, –2.32248168368333 , 0.200322309158145 , 0.281145919306438 }, // yellowbirch

{ –2.49513019835464 , –0.990349631587634 , 0.0942201593341137 , 0 }, // redmaple

{ –16.283566947238 , –0.29742856726233 , 0, 2.60756571300774 }, // ash

{ –24.2717926203571 , 0, –0.164081113113589 , 4.53518694015095 }, // basswood

{ –9.37506083639396 , –2.44890683572759 , 0.3302915397907 , 2.14476792592674 }, //

ironwood

},

},
{ // ATD

{ // Split – – Uneven – aged

{ –3.14141631758702 , –1.61918506190018 , 0.129409954392803 , 0.605462908173403 },
// sugarmaple

{ 0, –1.4301692508473 , 0.120464391752789 , –0.220688513111923 }, // hemlock

{ 0, –2.57342617882839 , 0.22618393330138 , 0.339104105662145 }, // yellowbirch

{ –2.49513019835464 , –0.990349631587634 , 0.0942201593341137 , 0 }, // redmaple

{ –19.6718444022543 , 0, –0.0277554385091683 , 3.13781080527705 }, // ash

{ –15.3054249627291 , 0, –0.17683340161845 , 2.63859636790818 }, // basswood



196

{ –8.72132178035137 , –2.67969507054725 , 0.365898550012711 , 1.9035955071559 },
// ironwood

},
{ // Split – – Even – aged

{ –2.80149946707461 , –1.61918506190018 , 0.129409954392803 , 0.605462908173403 },
// sugarmaple

{ 0, –1.4301692508473 , 0.120464391752789 , –0.220688513111923 }, // hemlock

{ 0.99382925346374 , –2.57342617882839 , 0.22618393330138 , 0.339104105662145 },
// yellowbirch

{ –2.49513019835464 , –0.990349631587634 , 0.0942201593341137 , 0 }, // redmaple

{ –20.8553573043877 , 0, –0.0277554385091683 , 3.13781080527705 }, // ash

{ –14.3695805207333 , 0, –0.17683340161845 , 2.63859636790818 }, // basswood

{ –8.72132178035137 , –2.67969507054725 , 0.365898550012711 , 2.0905923002985 },
// ironwood

},
{ // Unified

{ –2.66112451052846 , –1.5482278645825 , 0.123195309542577 , 0.487725394472917 },
// sugarmaple

{ 0, –1.4301692508473 , 0.120464391752789 , –0.220688513111923 }, // hemlock

{ 0, –2.32248168368333 , 0.200322309158145 , 0.281145919306438 }, // yellowbirch

{ –2.49513019835464 , –0.990349631587634 , 0.0942201593341137 , 0 }, // redmaple

{ –16.283566947238 , –0.29742856726233 , 0, 2.60756571300774 }, // ash

{ –1.70141900871589 , 0, –0.164081113113589 , 0 }, // basswood

{ –10.268141219877 , –2.44890683572759 , 0.3302915397907 , 2.14476792592674 }, //

ironwood

},

},
{ // ATM

{ // Split – – Uneven – aged

{ 0, –1.14345741439302 , 0.129409954392803 , –0.337238409813987 }, // sugarmaple

{ 6.39531972029322 , –1.4301692508473 , 0.120464391752789 , –1.46819654504647 },
// hemlock

{ 0.763885265257845 , –2.57342617882839 , 0.22618393330138 , 0.339104105662145 },
// yellowbirch

{ –1.43982736043819 , –0.990349631587634 , 0.0942201593341137 , 0 }, // redmaple

{ –19.6718444022543 , 0, –0.0277554385091683 , 3.13781080527705 }, // ash

{ –15.3054249627291 , 0, –0.17683340161845 , 2.63859636790818 }, // basswood

{ –8.72132178035137 , –2.67969507054725 , 0.365898550012711 , 1.9035955071559 },
// ironwood

},
{ // Split – – Even – aged

{ 0.339916850512411 , –1.14345741439302 , 0.129409954392803 , –0.337238409813987

}, // sugarmaple

{ 6.39531972029322 , –1.4301692508473 , 0.120464391752789 , –1.46819654504647 },
// hemlock

{ 1.75771451872159 , –2.57342617882839 , 0.22618393330138 , 0.339104105662145 },
// yellowbirch

{ –1.43982736043819 , –0.990349631587634 , 0.0942201593341137 , 0 }, // redmaple

{ –20.8553573043877 , 0, –0.0277554385091683 , 3.13781080527705 }, // ash

{ –14.3695805207333 , 0, –0.17683340161845 , 2.63859636790818 }, // basswood

{ –8.72132178035137 , –2.67969507054725 , 0.365898550012711 , 2.0905923002985 },
// ironwood

},
{ // Unified

{ 0, –1.08491416621476 , 0.123195309542577 , –0.360754423770616 }, // sugarmaple

{ 6.39531972029322 , –1.4301692508473 , 0.120464391752789 , –1.46819654504647 },
// hemlock
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{ 0.557421061207682 , –2.32248168368333 , 0.200322309158145 , 0.281145919306438 },
// yellowbirch

{ –1.43982736043819 , –0.990349631587634 , 0.0942201593341137 , 0 }, // redmaple

{ –16.283566947238 , –0.29742856726233 , 0, 2.60756571300774 }, // ash

{ –1.70141900871589 , 0, –0.164081113113589 , 0 }, // basswood

{ –10.268141219877 , –2.44890683572759 , 0.3302915397907 , 2.14476792592674 }, //

ironwood

},

},

} ;

// Determine a species code , used to index the tables of coefficients

int species ix ;

switch (species){

default:

case sp sugar maple : species ix = 0; break;

case sp hemlock : species ix = 1; break;

case sp yellow birch : species ix = 2; break;

case sp red maple : species ix = 3; break;

case sp green ash :

case sp white ash : species ix = 4; break;

case sp basswood : species ix = 5; break;

case sp black cherry :

case sp mountain maple :

case sp ironwood : species ix = 6; break;
}

// Determine which set of equations to use:

int structure ix ;

if ( use even uneven ){

if (stage == stage sapling | | stage == stage pole | | stage == stage mature ) {

structure ix = 1;

} else {

structure ix = 0;
}

} else {

structure ix = 2;
}

int ht ix ;

switch(ht){

case ht AOCa : ht ix = 0; break;

case ht ATD : ht ix = 1; break;

case ht ATM : ht ix = 2; break;

default:

printf("ERROR: Unknown habitat type %i in pdie() at %s:%i\n",

ht , FILE , L I N E );

exit (1);

break;
}

double xi[ n params ];

xi[0]= 1; // constant term

xi[1]= sqrt( dbh );

xi[2]= dbh;

xi[3]= log( fmax(stock ,1) );
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double result =0;

for(int i=0; i<n params ; i++) {

result += xi[i] ∗ coefs[ ht ix ][ structure ix ][ species ix ][i];
}

rc =1/(1+ exp( – result));
}

return rc;
}

double Tree:: pdie ht simple ( htype t ht , species t species ,

double dbh , double rd , double stock , stage t stage){

const int n params = 4;

const int n species = 8;

double rc;

// For those species where pdie doesn't increase past 50 cm , sub in the SM mort rates

// but with an offset:

const int dbh thresh = 30;

if (dbh > dbh thresh &&

(species == sp white ash | | species == sp green ash | |

species == sp basswood | | species == sp red maple ) ){

double offset = Tree:: pdie ht simple ( ht , species , dbh thresh , rd , stock , stage ) –

Tree:: pdie ht simple ( ht , sp sugar maple , dbh thresh , rd , stock , stage );

rc = Tree:: pdie ht simple ( ht , sp sugar maple , dbh , rd , stock , stage ) + offset;

rc = fmin(1, fmax(0, rc)); // Limit to 0 –1 range.

} else {

double coefs [3][3][ n species ][ n params ] = {
{ // AOCa

{ // Split – – Uneven – aged

{ –5.0796541118625 , –1.62094525443602 , 0.142138481132722 , 0.7880894771428 }, //

sugarmaple

{ 5.39293399204969 , –1.48632826981557 , 0.123484324190217 , –1.22918503828234 },
// hemlock

{ 1.37885584299291 , –2.55442339867376 , 0.224187881831436 , 0 }, // yellowbirch

{ –2.67257079861686 , –1.3164873723464 , 0.131902867460731 , 0 }, // redmaple

{ –18.6345529240607 , 0, –0.0277524745464901 , 3.13862570172295 }, // ash

{ –12.3679215015006 , –1.33825313908912 , 0, 2.53836270278231 }, // basswood

{ –8.71641647085716 , –2.67892649455328 , 0.365790256401635 , 1.90237575371674 },
// ironwood

},
{ // Split – – Even – aged

{ –8.96746373906252 , –1.62094525443602 , 0.142138481132722 , 1.69542461425505 },
// sugarmaple

{ 5.39293399204969 , –1.48632826981557 , 0.123484324190217 , –1.22918503828234 },
// hemlock

{ 2.35302959275649 , –2.55442339867376 , 0.224187881831436 , 0 }, // yellowbirch

{ –2.67257079861686 , –1.3164873723464 , 0.131902867460731 , 0.302848181338032 },
// redmaple

{ –19.8182208575547 , 0, –0.0277524745464901 , 3.13862570172295 }, // ash

{ –11.4339250159705 , –1.33825313908912 , 0, 2.53836270278231 }, // basswood

{ –8.71641647085716 , –2.67892649455328 , 0.365790256401635 , 2.08935677466145 },
// ironwood

},
{ // Unified
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{ –7.48811240415304 , –1.49626852130552 , 0.128446143768754 , 1.32053989937788 },
// sugarmaple

{ 5.39293399204969 , –1.48632826981557 , 0.123484324190217 , –1.22918503828234 },
// hemlock

{ –0.82453232706546 , –2.13477287961369 , 0.184419816268809 , 0.310024962821592 },
// yellowbirch

{ –2.49825279896328 , –0.989439662250345 , 0.0941470570771009 , 0 }, // redmaple

{ –16.2828478940774 , –0.29739997287526 , 0, 2.60740852422047 }, // ash

{ –14.4611554231974 , –1.32692820512033 , 0, 3.1000785071855 }, // basswood

{ –9.3762688828569 , –2.44873080195632 , 0.330257414756533 , 2.14497622317327 },
// ironwood

},

},
{ // ATD

{ // Split – – Uneven – aged

{ –4.22742887337506 , –1.62094525443602 , 0.142138481132722 , 0.7880894771428 },
// sugarmaple

{ 5.39293399204969 , –1.48632826981557 , 0.123484324190217 , –1.22918503828234 },
// hemlock

{ 1.7042421216495 , –2.55442339867376 , 0.224187881831436 , 0 }, // yellowbirch

{ –2.67257079861686 , –1.3164873723464 , 0.131902867460731 , 0 }, // redmaple

{ –19.6761896681554 , 0, –0.0277524745464901 , 3.13862570172295 }, // ash

{ –12.3679215015006 , –1.33825313908912 , 0, 2.53836270278231 }, // basswood

{ –8.71641647085716 , –2.67892649455328 , 0.365790256401635 , 1.90237575371674 },
// ironwood

},
{ // Split – – Even – aged

{ –8.11523850057508 , –1.62094525443602 , 0.142138481132722 , 1.69542461425505 },
// sugarmaple

{ 5.39293399204969 , –1.48632826981557 , 0.123484324190217 , –1.22918503828234 },
// hemlock

{ 2.67841587141307 , –2.55442339867376 , 0.224187881831436 , 0 }, // yellowbirch

{ –2.67257079861686 , –1.3164873723464 , 0.131902867460731 , 0.302848181338032 },
// redmaple

{ –20.8598576016494 , 0, –0.0277524745464901 , 3.13862570172295 }, // ash

{ –11.4339250159705 , –1.33825313908912 , 0, 2.53836270278231 }, // basswood

{ –8.71641647085716 , –2.67892649455328 , 0.365790256401635 , 2.08935677466145 },
// ironwood

},
{ // Unified

{ –7.082225615309 , –1.49626852130552 , 0.128446143768754 , 1.32053989937788 }, //

sugarmaple

{ 5.39293399204969 , –1.48632826981557 , 0.123484324190217 , –1.22918503828234 },
// hemlock

{ –0.468224282272373 , –2.13477287961369 , 0.184419816268809 , 0.310024962821592

}, // yellowbirch

{ –2.49825279896328 , –0.989439662250345 , 0.0941470570771009 , 0 }, // redmaple

{ –16.2828478940774 , –0.29739997287526 , 0, 2.60740852422047 }, // ash

{ –14.4611554231974 , –1.32692820512033 , 0, 3.1000785071855 }, // basswood

{ –10.2692858126261 , –2.44873080195632 , 0.330257414756533 , 2.14497622317327 },
// ironwood

},

},
{ // ATM

{ // Split – – Uneven – aged

{ –3.94309614577309 , –1.62094525443602 , 0.142138481132722 , 0.7880894771428 },
// sugarmaple
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{ 5.39293399204969 , –1.48632826981557 , 0.123484324190217 , –1.22918503828234 },
// hemlock

{ 2.39009821350074 , –2.55442339867376 , 0.224187881831436 , 0 }, // yellowbirch

{ –0.789775377365177 , –1.3164873723464 , 0.131902867460731 , 0 }, // redmaple

{ –19.6761896681554 , 0, –0.0277524745464901 , 3.13862570172295 }, // ash

{ –12.3679215015006 , –1.33825313908912 , 0, 2.53836270278231 }, // basswood

{ –8.71641647085716 , –2.67892649455328 , 0.365790256401635 , 1.90237575371674 },
// ironwood

},
{ // Split – – Even – aged

{ –7.8309057729731 , –1.62094525443602 , 0.142138481132722 , 1.69542461425505 },
// sugarmaple

{ 5.39293399204969 , –1.48632826981557 , 0.123484324190217 , –1.22918503828234 },
// hemlock

{ 3.36427196326431 , –2.55442339867376 , 0.224187881831436 , 0 }, // yellowbirch

{ –0.789775377365177 , –1.3164873723464 , 0.131902867460731 , 0.302848181338032 },
// redmaple

{ –20.8598576016494 , 0, –0.0277524745464901 , 3.13862570172295 }, // ash

{ –11.4339250159705 , –1.33825313908912 , 0, 2.53836270278231 }, // basswood

{ –8.71641647085716 , –2.67892649455328 , 0.365790256401635 , 2.08935677466145 },
// ironwood

},
{ // Unified

{ –6.84445233108611 , –1.49626852130552 , 0.128446143768754 , 1.32053989937788 },
// sugarmaple

{ 5.39293399204969 , –1.48632826981557 , 0.123484324190217 , –1.22918503828234 },
// hemlock

{ 0, –2.13477287961369 , 0.184419816268809 , 0.310024962821592 }, // yellowbirch

{ –1.44225710036038 , –0.989439662250345 , 0.0941470570771009 , 0 }, // redmaple

{ –16.2828478940774 , –0.29739997287526 , 0, 2.60740852422047 }, // ash

{ –14.4611554231974 , –1.32692820512033 , 0, 3.1000785071855 }, // basswood

{ –10.2692858126261 , –2.44873080195632 , 0.330257414756533 , 2.14497622317327 },
// ironwood

},

},

} ;

// Determine a species code , used to index the tables of coefficients

int species ix ;

switch (species){

default:

case sp sugar maple : species ix = 0; break;

case sp hemlock : species ix = 1; break;

case sp yellow birch : species ix = 2; break;

case sp red maple : species ix = 3; break;

case sp green ash :

case sp white ash : species ix = 4; break;

case sp basswood : species ix = 5; break;

case sp black cherry :

case sp mountain maple :

case sp ironwood : species ix = 6; break;
}

// Determine which set of equations to use:

int structure ix ;

if ( use even uneven ){
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if (stage == stage sapling | | stage == stage pole | | stage == stage mature ) {

structure ix = 1;

} else {

structure ix = 0;
}

} else {

structure ix = 2;
}

int ht ix ;

switch(ht){

case ht AOCa : ht ix = 0; break;

case ht ATD : ht ix = 1; break;

case ht ATM : ht ix = 2; break;

default:

printf("ERROR: Unknown habitat type %i in pdie() at %s:%i\n",

ht , FILE , L I N E );

exit (1);

break;
}

double xi[ n params ];

xi[0]= 1; // constant term

xi[1]= sqrt( dbh );

xi[2]= dbh;

xi[3]= log( fmax(stock ,1) );

double result =0;

for(int i=0; i<n params ; i++) {

result += xi[i] ∗ coefs[ ht ix ][ structure ix ][ species ix ][i];
}

rc =1/(1+ exp( – result));
}

return rc;
}

//! Habitat insensitive mortality equations

double Tree::pdie( species t species , double dbh , double rd , double stock , stage t stage){

const int n params = 4;

const int n species = 8;

double rc;

// For those species where pdie doesn't increase past 30 cm , sub in the SM mort rates

// but with an offset:

const int dbh thresh = 30;

if (dbh > dbh thresh &&

(species == sp white ash | | species == sp green ash | |

species == sp basswood | | species == sp red maple ) ){

double offset = Tree::pdie(species , dbh thresh , rd , stock , stage) –

Tree::pdie( sp sugar maple , dbh thresh , rd , stock , stage);

rc = Tree::pdie( sp sugar maple , dbh , rd , stock , stage) + offset;

rc = fmin(1, fmax(0, rc)); // Limit to 0 –1 range.

} else {

double coefs [3][ n species ][ n params ] = {
{// Split – – Uneven – aged
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{ –8.347049 , –1.59610100 , 0.1377459 , 1.596875 }, //Sm

{ 0, –1.8212 , 0.1524 , 0, }, //Hm

{0.0000000 , –2.50960000 , 0.2154519 , 0.3990607} , //Yb

{ –7.523106 , –0.20032720 , 0, 0.8546875} , //Rm

{ –17.52870 , 0, –0.03292095 , 2.736349 }, //Ash

{ –12.36621 , –1.3381990 , 0, 2.53799 }, //Bw

{ –9.113437 , –2.7374680 , 0.3740731 , 1.998865 } //Iw

}, { // Split – – even – aged

{ –8.347049 , –1.59610100 , 0.1377459 , 1.596875 }, //Sm

{ 0, –1.8212 , 0.1524 , 0, }, //Hm

{0.6379802 , –2.50960000 , 0.2154519 , 0.3990607} , //Yb

{ –7.523106 , –0.20032720 , 0, 0.8546875} , //Rm

{ –17.52870 , 0, –0.03292095 , 2.736349 }, //Ash

{ –11.43219 , –1.3381990 , 0, 2.53799 }, //Bw

{ –8.154951 , –2.7374680 , 0.3740731 , 1.998865 } //Iw

}, { // Unified

{ –8.347049 , –1.5961010 , 0.13774590 , 1.596875 }, //Sm

{ 0, –1.8212 , 0.1524 , 0, }, //Hm

{ 0, –2.3386410 , 0.19854060 , 0.3446231} , //Yb

{ –7.523106 , –0.2003272 , 0, 0.8546875} , //Rm

{ –17.52870 , 0, –0.03292095 , 2.736349 }, //Ash

{ –14.46361 , –1.3268370 , 0, 3.100503 }, //Bw

{ –9.799602 , –2.2811360 , 0.31313870 , 2.085597 } //Iw
}

};

// Determine a species code , used to index the tables of coefficients

int species ix ;

switch (species){

default:

case sp sugar maple :

species ix = 0; break;

case sp hemlock :

species ix = 1; break;

case sp yellow birch :

species ix = 2; break;

case sp red maple :

species ix = 3; break;

case sp green ash :

case sp white ash :

species ix = 4; break;

case sp basswood :

species ix = 5; break;

case sp black cherry :

case sp mountain maple :

case sp ironwood :

species ix = 6; break;
}

// Determine which set of equations to use:

int structure ix ;

if ( use even uneven ){

if (stage == stage sapling | |

stage == stage pole | |
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stage == stage mature ) {

structure ix = 1;

} else {

structure ix = 0;
}

} else {

structure ix = 2;
}

double xi[ n params ];

xi[0]= 1; // constant term

xi[1]= sqrt( dbh );

xi[2]= dbh;

xi[3]= log( fmax(stock ,1) );

double result =0;

for(int i=0; i<n params ; i++) {

result += xi[i] ∗ coefs[ structure ix ][ species ix ][i];
}

rc =1/(1+ exp( – result));
}

return rc;
}

//! Probability of mortality

double Tree:: pdie old (double stock , stage t stage){

const int n params = 5;

// Coefficients here for the hemlock and yellow birch species refer

//to the no drought condition.

double coefs [][ n params ]={
// const (dbh)^.5 dbh stock ln (stock)

{ –1.7169 , –1.7679 , 0.15120 , 0.011190 , 0 }, // 0 SM

{ 0, –1.8212 , 0.1524 , 0, 0 }, // 1 Hm

{ –4.9166 , –1.7105 , 0.1368 , 0, 1.0756 }, // 2 YB

{ 0, –1.6860 , 0.15450 , 0, 0 }, // 3 RM

{ 0, –1.9345 , 0.18650 , 0.007032 , 0 }, // 4 BW

{ 0, –1.6391 , 0.20210 , 0, 0 }, // 5 IW

{ 0, –1.5007 , 0.13520 , 0, 0 }, // 6 WA

{ 0, –1.3728 , 0.1204 , 0, –0.2369 }, // 7 Hm – drought

{ 0, –1.1050 , 0.1029 , 0.012220 , –0.5900 }, // 8 YB – drought

};

// Determine a species code , used to index the tables of coefficients

int species code ;

switch (species){

default:

case sp sugar maple :

species code = 0; break;

case sp hemlock :

species code = 1; break;

case sp white ash :

species code = 6; break;

case sp yellow birch :

species code = 2; break;
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case sp red maple :

species code = 3; break;

case sp basswood :

species code = 4; break;

case sp black cherry :

case sp mountain maple :

case sp ironwood :

species code = 5; break;
}

double xi[ n params ];

xi [0]=1; // constant term

xi[1]= sqrt( dbh );

xi[2]= dbh;

xi[3]= stock;

xi[4]= log( fmax(stock ,1) );

// Preconditions:

assert( isfinite(xi[1]) && 0<= xi[1] ); //sqrt(dbh)

assert( isfinite(xi[2]) && 0<= xi[2] ); //dbh

assert( isfinite(xi[3]) && 0<= xi[3] ); // stock

assert( isfinite(xi[4]) ); //log(stock)

double result =0;

for(int i=0; i<n params ; i++) {

result += xi[i] ∗ coefs[ species code ][i];
}

double pdie =1/(1+ exp( – result));

// Postconditions:

assert( isfinite(pdie) && 0<= pdie && pdie <= 1);

return pdie;
}

/// Set storm coefficients a, b.

void Tree:: setStormCoefs( species t species ){

switch ( species ) {

case sp hemlock : storm.a = –3.529; storm.b = 0.486; break;

case sp red maple : storm.a = –0.968; storm.b = –0.021; break;

case sp yellow birch : storm.a = –2.935; storm.b = 0.369; break;

default: storm.a = –4.108; storm.b = 0.525; break;
}

}

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Blowdown

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/

//! Probability of blowdown

double Tree:: blowDown(double si ) {

double probBlowDown;

probBlowDown = exp(storm.a + storm.b ∗( sqrt(dbh))+ si )/

(1 + exp(storm.a + storm.b ∗( sqrt(dbh)) + si ));

return probBlowDown;
}

void Tree:: set dbh (double d){

dbh=d; clear caches ();
}
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void Tree:: set gap area (double a){

if( gap area ==0 && a>0 ){

gap age =0;

} else {

gap age ++;
}

gap area =a;
}

void Tree:: set age (int a){ gap age = a; age = a; }

void Tree:: set born in sap stand () { born in sap stand = true; }

void Tree:: set touching (int i, bool v){ touching[i]=v; }

void Tree:: set shaded (int i, bool v){ shaded[i]=v; }

void Tree:: set facing gap (int i, bool v){ facing gap [i]=v?( facing gap [i]+1) :0; }

double Tree:: get gap area () { return gap area ; }

bool Tree:: is facing gap (int i) {

return 0 < facing gap [i];
}

double Tree:: get cr (int i){ return crown radius [i]; }

//!Reset cached data calculated based on DBH

void Tree:: clear caches () {

total height . is good = false;

widest height . is good = false;

base height . is good = false;

eca. is good = false;

tca. is good = false;

comp sap tca . is good = false;

comp sap ci . is good = false;
}

//! Store a copy of the tree's habitat in the tree.

void Tree:: set habitat ( hdata t ∗ hd ){

int px = (int) floor(treeCoordX /10);

int py = (int) floor(treeCoordZ /10);

habitat type = hd–>hdata[py][px];

assert( habitat type == ht AOCa | |

habitat type == ht ATD | |

habitat type == ht ATM );
}

TreePtr Tree:: get xy neighbor ( int i){ return xy neighbor [i]; }

TreePtr Tree:: get rz neighbor ( int i){ return rz neighbor [i]; }

TreePtr Tree:: get eca neighbor (int i){ return eca neighbor [i]; }

TreePtr Tree:: get gap neighbor (int i){ return gap neighbor [i]; }

void Tree:: set xy neighbor ( int i, TreePtr t) { xy neighbor [i]=t; }

void Tree:: set rz neighbor ( int i, TreePtr t) { rz neighbor [i]=t; }

void Tree:: set gap neighbor (int i, TreePtr t) { gap neighbor [i]=t; }

void Tree:: set eca neighbor (int i, TreePtr t) { eca neighbor [i]=t; }

void Tree:: set ecr (int ix , double r){ exposed crown radius [ix]=r; }
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double Tree:: get ecr (int ix){ return exposed crown radius [ix]; }

double Tree:: get eca () {

if( ! eca. is good ){

if(status == st live ){

double tmp =0;

for(int i=0; i<4; i++) {

tmp += exposed crown radius [i]∗ exposed crown radius [(i+1) %4];
}

eca.value = M PI /4∗ tmp;

} else {

eca.value = 0;
}

eca. is good = true;
}

return eca.value;
}

double Tree:: get tca () {

if( ! tca. is good ){

if(status == st live ){

double tmp =0;

for(int i=0; i<4; i++) {

tmp += crown radius [i]∗ crown radius [(i+1) %4];
}

tca.value = M PI /4∗ tmp;

} else {

tca.value = 0;
}

tca. is good = true;
}

return tca.value;
}

void Tree:: add competitor sapling (TreePtr comp , double dist){

competitor saplings . push back (comp);

competitor distances . push back (dist);
}

void Tree:: clear competitor saplings () {

competitor saplings .clear ();

competitor distances .clear();
}

double Tree:: predict mcr () {

int ix;

switch(species){

default:

if( habitat type == ht AOCa ) { ix=0; } else { ix=1; }

break;

case sp hemlock : ix=2; break;

case sp yellow birch : ix=3; break;

case sp red maple : ix=4; break;

case sp white ash : ix=5; break;

case sp basswood : ix=6; break;

case sp ironwood : ix=7; break;
}

double coefs [][3] = {
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{ /∗ SM AOCa ∗/ 8.13689 , 0.03818 , 18.56050 },

{ /∗ SM ATD/ATM ∗/ 7.91233 , 0.02746 , 24.93295 },

{ /∗ Hemlock ∗/ 4.51000 , 0.04241 , 10.10187 },

{ /∗ Yellow Birch ∗/ 7.76193 , 0.04056 , 25.38926 },

{ /∗ Red Maple ∗/ 5.24100 , 0.09100 , 18.62089 },

{ /∗ White Ash ∗/ 6.01723 , 0.05012 , 20.01200 },

{ /∗ Basswood ∗/ 6.18326 , 0.03983 , 19.18628 },

{ /∗ Ironwood ∗/ 3.24642 , 0.30031 , 5.00321 }};

double B=coefs[ix ][0];

double C=coefs[ix ][1];

double D=coefs[ix ][2];

double mcr = B ∗ exp( – exp( –C ∗ (dbh – D)));

return mcr;
}

int Tree:: get age () { return age; }

int Tree:: get gap age () { return gap age ; }

//! Determine if a tree shoud be saved

/∗ ∗
∗ Trees are saved

∗ 1. as soon as they cross the min save size threshold.

∗ 2. Every save interval years

∗ 3. When they die

∗ Note: trees that don't live long enough to cross min save won't ever

∗ show up in the database.

∗/

int Tree:: need save (int year){

int rc = 0;

// rc = 0 –> no save needed

// rc = 1 –> non – intial save needed

// rc = 2 –> initial save needed.

// rc = 3 –> initial and final save needed.

if ( big enough to save ()){

if (status == st live ){

if ( save status . need initial ){

rc = 2;

save status . need initial = false;

} else if ( save status . need forced ){

rc = 1;

save status . need forced = false;

} else {

rc = (year% save interval == 0) ?1:0;
}

} else if ( save status . need final ){

if ( save status . need initial ){

rc=3;

save status . need initial = false;

} else {

rc=1;
}

save status . need final = false;
}

}

if (rc>0){ save status .last = year; }
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return rc;
}

bool Tree:: big enough to save () { return dbh >= min diameter ; }

void Tree:: force save () { save status . need forced = true; }

C.3 Stand.cp
// –∗ – C++ –∗ –

#include <algo.h>

#include <math.h>

#include <assert.h>

#include <sys/types.h>

#include <sys/stat.h>

#include "Stand.h"

#include "Random.h"

#include "Tree.h"

#include "TreeDB.h"

#include "TreeData.h"

#include "util.h"

#include "StormModel.h"

#include "Harvest.h"

#include "TreeGrid.h"

#include "CanopyGlobals.h"

extern bool use branch growth ;

extern bool use height growth ;

extern bool regen maintain initial saplings ;

extern bool only hm regen ;

extern bool only sm regen ;

extern bool use test regen props ;

extern bool forbid hm regen ;

extern bool use stem exclusion ;

extern int regen recovery time ;

extern int disturbance threshold ;

extern int n saps to maintain ;

//! Initialize the stand:

void Stand :: stand init (TreeList ∗ tl , hdata t ∗ hd , char ∗ db fname ,

int argc , char ∗ argv []) {

year =0;

storm clock = 0;

// Set up the treelists , harest lists , and list of group centers:

babies = new vector<TreePtr>();

living = new TreeList ();

dead = new TreeList ();

blown down = new TreeList ();

harvested = new TreeList ();

harvested left = new TreeList ();

harvesters = new slist<Harvest ∗>();

gcs group centers = new list<point t ∗>();

storm queue = new list<double>();

// Set up the lists of snags / logs / "into the earth" trees
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for( int i=0; i<5; i++) {

cwd log [i] = new TreeList ();

cwd snag [i] = new TreeList ();
}

cwd out = new TreeList ();

// Take the habitat type and live tree list passed in:

hdata = hd;

∗ living = ∗ tl;

// Go through the living list and throw trees onto status – specific lists:

TreeList :: iterator it = living –>begin ();

while ( it != living –>end() ){

status t tgt st = (∗ it)–>GetStatus ();

if ( tgt st != st live ){
// Cut trees go on 'harvested ', everything else is 'dead ',

// And may have some other CWD attributes as well

if ( tgt st == st cut ) { harvested –>push back ( ∗ it ); }

else { dead –>push front ( ∗ it ); }

// Check for a CWD status:

switch ( tgt st ){

case st log 1 : cwd log [0]–> push front ( ∗ it ); break;

case st log 2 : cwd log [1]–> push front ( ∗ it ); break;

case st log 3 : cwd log [2]–> push front ( ∗ it ); break;

case st log 4 : cwd log [3]–> push front ( ∗ it ); break;

case st log 5 : cwd log [4]–> push front ( ∗ it ); break;

case st snag 1 : cwd snag [0]–> push front ( ∗ it ); break;

case st snag 2 : cwd snag [1]–> push front ( ∗ it ); break;

case st snag 3 : cwd snag [2]–> push front ( ∗ it ); break;

case st snag 4 : cwd snag [3]–> push front ( ∗ it ); break;

case st snag 5 : cwd snag [4]–> push front ( ∗ it ); break;

case st dead :

break;

default:

printf("ERROR: Unknown tree status: %i\n", tgt st );

exit (1);

break;
}

it = living –>erase(it);

} else {

it++;
}

}

if( db fname ){

tdb = new TreeDB ();

tdb –>open( db fname );
}

xmax = hdata –>ncol;

ymax = hdata –>nrow;

xmax meters = 10.0 ∗ xmax;

ymax meters = 10.0 ∗ ymax;

// Insert some check to be sure that the trees on the tree list
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//fall inside the xmax ,ymax that the user gave me.

if ( regen maintain initial saplings ){

if ( n saps to maintain < 0) {
// Count up the initial population of saplings , to used in the

//fixed – regeneration mode

target sapling population = 0;

for (it = living –>begin (); it != living –>end(); it++) {

if ( (∗ it)–>GetDBH () <= 6 ){

target sapling population ++;
}

}

} else {
// Presume that the saps to maintain is in per ha , conver to per plot:

target sapling population = n saps to maintain ∗ (xmax ∗ ymax) / 100 ;
}

}

// Set up the counter for stem exclusion / regen delay

regen delay counter = (int ∗∗) malloc(xmax ∗ sizeof(int ∗)); CHK MEM ( regen delay counter ) ;

for (int i=0; i<xmax; i++) {

regen delay counter [i] = (int ∗) malloc( ymax ∗ sizeof(int)); CHK MEM (

regen delay counter [i] );
}

for (int i=0; i<xmax; i++) {

for (int j=0; j<ymax; j++) {

regen delay counter [i][j] = regen recovery time ;
}

}

subplot 100 = init subplot ();

subplot 800 = init subplot ();

subplot 900 = init subplot ();

subplot trees 100 = init subplot trees ();

subplot trees 800 = init subplot trees ();

subplot trees 900 = init subplot trees ();

subplot stages 2500 = ( stage data t ∗∗) malloc(xmax ∗ sizeof( stage data t ∗)); CHK MEM (

subplot stages 2500 );

for(int i=0; i<xmax; i++) {

subplot stages 2500 [i]=( stage data t ∗) malloc(ymax ∗ sizeof( stage data t )); CHK MEM (

subplot stages 2500 [i] );
}

the grid = new TreeGrid(this);

the grid –>add trees (living);

if( db fname ){

tdb –>init(xmax meters , ymax meters );

tdb –>argv ins ( argc , argv );
}

my storm model = NULL;
}

Stand :: subplot t ∗∗ Stand :: init subplot () {

subplot t ∗∗ rc = ( subplot t ∗∗) malloc(xmax ∗ sizeof( subplot t ∗)); CHK MEM ( rc );

for(int i=0; i<xmax; i++) {
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rc[i]=( subplot t ∗) malloc(ymax ∗ sizeof( subplot t )); CHK MEM ( rc[i] );
}

return(rc);
}

TreeList ∗ ∗ ∗ Stand :: init subplot trees () {

TreeList ∗ ∗ ∗ rc = (TreeList ∗∗∗) malloc(xmax ∗ sizeof(TreeList ∗∗) ); CHK MEM ( rc );

for(int i=0; i<xmax; i++) {

rc[i]=( TreeList ∗∗) malloc(ymax ∗ sizeof(TreeList ∗)); CHK MEM ( rc[i] );

for(int j=0; j<ymax; j++) {

rc[i][j] = new TreeList ();
}

}

return rc;
}

/// Stand constructor

/∗ ∗ fname – filename for the treelist

db fname – filename for the output database

mx – number of x replicates

my – number of y replicates

∗/

Stand :: Stand(char ∗ fname , char ∗ db fname , int mx , int my ,

int argc , char ∗ argv []) {

hdata t ∗ hd = NULL;

TreeData ∗ td = new TreeData ();

TreeList ∗ tl = new TreeList ();

td–>ReadTreeList( fname , tl , hd , mx , my);

stand init (tl , hd , db fname , argc , argv);

delete td;

delete tl;
}

/// Erases all the instance varaibles.

Stand ::~ Stand () {

TreeList :: iterator it;

delete living;

delete dead;

delete blown down ;

delete harvested;

delete harvested left ;
}

void Stand :: db close () { if(tdb){ tdb –>close (); } }

void Stand ::save() { tdb –>insert(this); }

void Stand :: inc year () {

the grid –>remove dead ();

year ++;
}

// Perform necessary calculations to simulate growth/mort/etc:

void Stand :: calculate () {

xoff =10∗ urand01 () –5;

yoff =10∗ urand01 () –5;

calculate stocking grid ( living );
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if ( use branch growth | | use height growth ){

calculate crown status ();
}

if ( use height growth ){

find gaps ();
}

}

/∗ ∗ Sums up the relevant basal areas and dbh sums so that computing

stocking on the 100m^2 plots and the 900m^2 donuts is fast/easy.

This could be extended to any plot size that is a multiple of

100m^2. This function does not compute stocking , but

FixedWidthStocking () in Tree.cp uses the data that this computes.

Unfortunately , this needs to be re – run every year because of our

random offset procedure. Otherwise , we could just be updating the

subplot trees lists and calculating all the rest based on those.

∗/

void Stand :: calculate stocking grid ( TreeList ∗ aTreeList){

TreeList :: iterator iter;

int x,y;

sp prop .px = –1;

sp prop .py = –1;

// clear the data entry for this subplot.

for(x=0; x<xmax; x++) {

bzero( (void ∗) subplot 100 [x], ymax ∗ sizeof( subplot t ) );

bzero( (void ∗) subplot 800 [x], ymax ∗ sizeof( subplot t ) );

bzero( (void ∗) subplot 900 [x], ymax ∗ sizeof( subplot t ) );

bzero( (void ∗) subplot stages 2500 [x], ymax ∗ sizeof( stage data t ) );

for(y=0; y<ymax; y++) {

subplot trees 100 [x][y]–>clear ();

subplot trees 800 [x][y]–>clear ();

subplot trees 900 [x][y]–>clear ();
}

}

double yoff 800 [8] = { +10, +10, +10, 0, 0, –10, –10, –10 };

double xoff 800 [8] = { +10, 0, –10, +10, –10, +10, 0, –10 };

double yoff 900 [9] = { +10, +10, +10, 0, 0, 0, –10, –10, –10 };

double xoff 900 [9] = { +10, 0, –10, +10, 0, –10, +10, 0, –10 };

double yoff 2500 [25] = {+20 , +20, +20, +20, +20,

+10, +10, +10, +10, +10,

0, 0, 0, 0, 0,

–10, –10, –10, –10, –10,

–20, –20, –20, –20, –20 };

double xoff 2500 [25] = {+20 , +10, 0, –10, –20,

+20, +10, 0, –10, –20,

+20, +10, 0, –10, –20,

+20, +10, 0, –10, –20,

+20, +10, 0, –10, –20 };

// Step One: Assign each living tree to a subplot.

for( iter = aTreeList –>begin (); iter != aTreeList –>end(); iter++ ){

double tree x = (∗ iter)–>GetXCoord ();

double tree y = (∗ iter)–>GetYCoord ();
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// Calculate x/y plot coordinatees

x = x index ( tree x );

y = y index ( tree y );

// 100 m2 subplot s

subplot trees 100 [x][y]–>push front (∗ iter);

//800m2 'donut ' subplot:

for( int i=0; i<8; i++ ){

int xx= x index ( tree x + xoff 800 [i]);

int yy= y index ( tree y + yoff 800 [i]);

subplot trees 800 [xx][yy]–>push front (∗ iter);
}

//900 subplot:

for( int i=0; i<9; i++ ){

int xx= x index ( tree x + xoff 900 [i]);

int yy= y index ( tree y + yoff 900 [i]);

subplot trees 900 [xx][yy]–>push front (∗ iter);
}

}

//Step two: sort each subplot by height

// calculate ref height for each subplot

for( int i=0; i<xmax; i++) {

for( int j=0; j<ymax; j++) {

subplot 100 [i][j]. ref ht = ref ht ( subplot trees 100 [i][j]);

subplot 800 [i][j]. ref ht = ref ht ( subplot trees 800 [i][j]);

subplot 900 [i][j]. ref ht = ref ht ( subplot trees 900 [i][j]);
}

}

// Iteration 2, Now , knowing who the dom/codom trees are ,

for( iter = aTreeList –>begin (); iter != aTreeList –>end(); iter++ ){
// Calculate x/y plot coordinatees

double tree x = (∗ iter)–>GetXCoord ();

double tree y = (∗ iter)–>GetYCoord ();

x = x index ( tree x );

y = y index ( tree y );

// 100 m2 subplot:

subplot t ∗ cur = &( subplot 100 [x][y]);

process subplot (cur , iter);

//800 m2 'donut' subplot:

for( int i=0; i<8; i++ ){

int xx= x index ( tree x + xoff 800 [i]);

int yy= y index ( tree y + yoff 800 [i]);

subplot t ∗ cur = &( subplot 800 [xx][yy]);

process subplot (cur , iter);
}

//900 m2 subplot:

for( int i=0; i<9; i++ ){

int xx= x index ( tree x + xoff 900 [i]);

int yy= y index ( tree y + yoff 900 [i]);

subplot t ∗ cur = &( subplot 900 [xx][yy]);
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process subplot (cur , iter);
}

// 2500 m2 (50 x50m) subplot for stand stages:

for (int i=0; i<25; i++ ){

int xx= x index ( tree x + xoff 2500 [i]);

int yy= y index ( tree y + yoff 2500 [i]);

if ( (∗ iter)–>GetSpecies () != sp ironwood ){

double dbh = (∗ iter)–>GetDBH ();

double ba = M PI ∗ pow(dbh /200 ,2);

double lrg cutoff =

(hdata –>hdata[yy][xx] == ht ATM )?

44 : 46;

if (dbh<12) {

subplot stages 2500 [xx][yy]. sap ba += ba;

if ((∗ iter)–>get eca () >= 0.25 &&

(∗ iter)–>get gap area () >= 2.75) {

subplot stages 2500 [xx][yy]. gap sap ba += ba;
}

}

else if (dbh<26) { subplot stages 2500 [xx][yy]. pol ba += ba; }

else if (dbh<lrg cutoff ) { subplot stages 2500 [xx][yy]. mat ba += ba; }

else { subplot stages 2500 [xx][yy]. lrg ba += ba; }
}

}
}

}

/∗ ∗ Updates the per – plot summary statistics. Called one per tree on a

subplot. Sorts each tree into a size class (for the q – ratio

calculation in the regeneration model), and totals up subplot ba,

subplot dominant ba , number of saplings , per – species sapling ba ,

and per – species counts of dominants.

∗/

void Stand :: process subplot ( subplot t ∗ cur , TreeList :: iterator tree){

int sp = subplot idx ( (∗ tree)–>GetSpecies () );

double dbh = (∗ tree)–>GetDBH ();

double ba = M PI ∗ pow(dbh /200 ,2);

double height = (∗ tree)–>GetTotalHeight ();

cur –>sum ba +=ba;

cur –>ba[sp]+=ba;

if( height >= 0.66∗ cur –>ref ht ){
//Dom/codom

cur –>N++;

cur –>n[sp]++;

cur –>sum dbh += dbh;

cur –>sum ht += height;
}

if( dbh <= 6 ){

cur –>n sap ++;

cur –>sap sum ba +=ba;

cur –>sap ba [sp]+=ba;
}

}

/∗ ∗ Compute reference height for a given treelist , expects to be used
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on an appropriate 'subplot trees ' entry.

∗/

double Stand :: ref ht (TreeList ∗ cur){

double rc=0;

Tree:: height comp t ht;

cur –>sort(ht);

int n=lround(fmax (1 ,0.10∗cur –>size() ));

if( cur –>size() > 0 ){

TreeList :: iterator it=cur –>begin ();

for(int i=0; i<n; i++) {

rc +=(∗ it++)–>GetTotalHeight ();
}

}

rc/=n;

return(rc);
}

double Stand :: ref ba (double phemlock , double pbasswood , double avg dbh ){

double rc;

avg dbh = fmin(62, avg dbh );

if( (phemlock < 0.2 && pbasswood < 0.2 )) {

rc = 6.7697+0.618∗ avg dbh –0.005∗ pow(avg dbh ,2);

} else if( 0.20 <= phemlock && phemlock < 0.5 ) {

rc = 8.819 + 0.6583∗ avg dbh –0.0055∗ pow(avg dbh ,2);

} else if( 0.50 <= phemlock ){

rc = 12.609 + 0.7498∗ avg dbh – 0.0064∗ pow(avg dbh ,2);

} else if( 0.20 <= pbasswood && pbasswood < 0.5 ){

rc = 6.5779 + 0.7217∗ avg dbh – 0.006∗ pow(avg dbh ,2);

} else if ( 0.50 <= pbasswood ) {

rc = 9.377+0.798∗ avg dbh – 0.0069∗ pow(avg dbh ,2);

} else {

printf("Error at %s:%i – unexpected species proportion \n",

FILE , L I N E );
}

return fmax (0.001 ,rc); // always return nonzero
}

/// RefBA

/∗ ∗ Calculate reference basal area for use in other stocking calculations.

∗/

double Stand :: ref ba ( subplot t ∗ cur ){

double phemlock =cur –>sum ba >0?cur –>ba[ subplot idx ( sp hemlock )]/cur –>sum ba :0;

double pbasswood=cur –>sum ba >0?cur –>ba[ subplot idx ( sp basswood )]/cur –>sum ba :0;

double avg dbh = cur –>sum dbh / fmax(1,cur –>N);

return ref ba ( phemlock , pbasswood , avg dbh );
}

double Stand :: stocking( subplot t ∗cur , double psize , double subj ba ){

double my ref ba = ref ba (cur);

double obs ba = 10000∗( cur –>sum ba – subj ba )/psize;

double stock =100 ∗ obs ba / fmax (0.001 , my ref ba );

return fmax(0,stock);
}
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//The truly lazy programmer will write a program which then writes his

// program :

#define DFN SINGLE PLOT STAT (FNAME ,PSIZE ,FCN) \

double Stand :: FNAME ## ## PSIZE(int xi , int yi){ \

double ps = PSIZE; \

subplot t ∗ cur = &( subplot ## PSIZE[xi][yi] ); \

return FCN; \
}

#define DFN SINGLE TREE STAT (FNAME ,PSIZE ,FCN) \

double Stand :: FNAME ## ## PSIZE(TreePtr t){ \

double ps = PSIZE; \

subplot t ∗ cur = &( subplot ## PSIZE[ x index (t–>GetXCoord ())] \

[ y index (t–>GetYCoord ())] ); \

return FCN; \
}

#define DFN PLOT STAT (FNAME ,FCN) \

DFN SINGLE PLOT STAT (FNAME ,100,FCN) \

DFN SINGLE PLOT STAT (FNAME ,800,FCN) \

DFN SINGLE PLOT STAT (FNAME ,900,FCN)

#define DFN TREE STAT (FNAME ,FCN) \

DFN SINGLE TREE STAT (FNAME ,100,FCN) \

DFN SINGLE TREE STAT (FNAME ,800,FCN) \

DFN SINGLE TREE STAT (FNAME ,900,FCN)

DFN PLOT STAT (stocking ,stocking(cur ,ps ,0) )

DFN PLOT STAT (average height ,(cur –>N>0)?(cur –>sum ht /cur –>N):0 )

DFN TREE STAT (stocking ,stocking(cur ,ps ,t–>GetBA ()) )

DFN TREE STAT (average height ,(cur –>N>0)?(cur –>sum ht /cur –>N):0 )

DFN TREE STAT (average diam , (cur –>N>0)?(cur –>sum dbh /cur –>N):0 )

#undef DFN SINGLE PLOT STAT

#undef DFN SINGLE TREE STAT

#undef DFN PLOT STAT

#undef DFN TREE STAT

// Sometimes , I ∗ really ∗ wish that C++ had actual meta – programming

// features so that I wouldn 't find myself pulling pre – processor

// tricks like this:

#define DFN BA UPDATE (MTYPE) \

void Stand :: update ## MTYPE ## ba ( TreePtr t ){ \

double tree x = t–>GetXCoord (); \

double tree y = t–>GetYCoord (); \

double ba = t–>GetBA (); \

double yoff 900 [9] = {+10 ,+10 ,+10 , 0, 0, 0, –10, –10, –10 }; \

double xoff 900 [9] = {+10 , 0, –10,+10, 0, –10,+10, 0, –10 }; \

for( int i=0; i<9; i++ ){ \

int xx= x index ( tree x + xoff 900 [i]); \

int yy= y index ( tree y + yoff 900 [i]); \

subplot t ∗ cur = &( subplot 900 [xx][yy]); \

cur –>MTYPE ## ba += ba; \
} \

}

DFN BA UPDATE (harv)



217

#undef DFN BA UPDATE

///PercentBA

/∗ ∗ Determine the percent basal area of a given species on a 900m^2 plot

centered at (x,y). The species index sp must be a species index ,

not a species code. If you have a species code , use subplot idx to

convert it to an index.

∗/

double Stand :: PercentBA( species t sp , int xi , int yi){

int sp ix = subplot idx (sp);

subplot t ∗ cur = &( subplot 900 [xi][yi]) ;

return cur –>sum ba>0 ? cur –>ba[ sp ix ] / cur –>sum ba : 0 ;
}

int Stand :: x index (double x ){

double xp = x+xoff;

double xpp= xp – xmax meters ∗ floor(xp/ xmax meters );

return (int)floor( xpp/10 );
}

int Stand :: y index (double y ){

double yp = y+yoff;

double ypp= yp – ymax meters ∗ floor(yp/ ymax meters );

return (int)floor( ypp/10 );
}

///Convert from a species code to a species index.

int Stand :: subplot idx ( species t s){

int rc;

switch(s){

case sp basswood :

rc=0; break;

case sp sugar maple :

rc=1; break;

case sp white ash :

case sp american elm :

case sp northern red oak :

case sp green ash :

case sp paper birch :

case sp black cherry :

rc=2; break;

case sp mountain maple :

case sp balsam fir :

case sp ironwood :

rc=3; break;

case sp hemlock :

rc=4; break;

case sp yellow birch :

rc=5; break;

case sp red maple :

rc=6; break;

case sp white pine :

rc=7; break;

default:

rc=1; break; // Unknown –> SM
}
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return rc;
}

/∗ ∗ Determine the stage of development for a specified 2500 m2 area.

∗/

stage t Stand :: get stage (int x ix , int y ix ){

stage t rc;

double sap ba = subplot stages 2500 [ x ix ][ y ix ]. sap ba ;

double pol ba = subplot stages 2500 [ x ix ][ y ix ]. pol ba ;

double mat ba = subplot stages 2500 [ x ix ][ y ix ]. mat ba ;

double lrg ba = subplot stages 2500 [ x ix ][ y ix ]. lrg ba ;

double all ba = sap ba + pol ba + mat ba + lrg ba ;

double gap sap ba = round( 1000 ∗ subplot stages 2500 [ x ix ][ y ix ]. gap sap ba ) / 1000;

double et thr = (PercentBA(sp hemlock ,x ix , y ix ) >= 0.25) ? 0.10 : 0.08;

// Note: ba thresholds are divided by 4 because we're using a 1/4th HA plot

if ( mat ba + lrg ba >= 20/4) {

if ( lrg ba / all ba > 0.45 &&

lrg ba / mat ba > 1.1) {

if ( lrg ba / mat ba > 1.4 &&

( sap ba + pol ba )/ all ba >= 0.10 &&

gap sap ba >= 0.006 &&

( sap ba + pol ba )/ all ba < 0.20 ) { rc = stage og ss ; }

else {

if ( lrg ba / mat ba > 1.75 &&

( sap ba + pol ba )/ all ba < et thr ) { rc = stage og et ; }

else {

if ( lrg ba / mat ba >= 1.7 &&

( sap ba + pol ba )/all ba <0.20) { rc = stage og lt ; }

else { rc = stage og la ; }
}

}

} else { rc = stage mature ; }

} else {

if ( mat ba + lrg ba > 10/4) {

if ( pol ba / all ba > 0.30) { rc = stage pole ; }

else { rc = stage msm ; }

} else {

if ( pol ba + mat ba + lrg ba >= 10/4 &&

pol ba / all ba > 0.30 ) { rc = stage pole ; }

else { rc = stage sapling ; }
}

}

return rc;
}

stage t Stand :: get stage (TreePtr t){

return get stage ( x index ( t–>GetXCoord () ),

y index ( t–>GetYCoord () ) );
}

/∗ ∗ Generate a new tree with given coordinates and stochastically determined

initial size and species.

∗/

TreePtr Stand :: make baby (double tree x , double tree y , species t sp ,

double st900 , bool is sap stand ){
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// Distribution of initial sapling sizes is distributed lognormally

// with ln(mean)=1.213 , ln(var)=0.04052

double dbh = fmax(2,fmin(6,exp( rnorm (1.213 , sqrt (0.04052)) )));

int sap age = lround (10.31451 + 0.11295∗ st900 );

TreePtr baby (new Tree(tree x ,tree y ,dbh ,sp ,hdata) );

baby –>set gap area (0);

baby –>set age ( sap age );

if ( is sap stand ){

baby –>set born in sap stand ();
}

return baby;
}

TreePtr Stand :: make baby ( double tree x , double tree y , species t sp){

int xi = x index ( tree x );

int yi = y index ( tree y );

double st900 = stocking 900 (xi ,yi);

bool is sap stand = get stage (xi ,yi) == stage sapling ;

return make baby ( tree x , tree y , sp , st900 , is sap stand );
}

TreePtr Stand :: make baby (int xi , int yi , species t sp){

double st900 = stocking 900 (xi ,yi);

double tree x = 10.0∗( xi+urand01 ())+xoff;

double tree y = 10.0∗( yi+urand01 ())+yoff;

tree x = tree x – xmax meters ∗ floor( tree x / xmax meters );

tree y = tree y – ymax meters ∗ floor( tree y / ymax meters );

bool is sap stand = get stage (xi ,yi) == stage sapling ;

return make baby ( tree x , tree y , sp , st900 , is sap stand );
}

int Stand :: number of saplings (int xi , int yi){

double st100 = stocking 100 (xi ,yi);

double st800 = stocking 800 (xi ,yi);

double st900 = stocking 900 (xi ,yi);

int cur saps = subplot 100 [xi][yi]. n sap ;

return number of saplings (xi , yi , st100 , st800 , st900 , cur saps );
}

int Stand :: number of saplings (int xi , int yi , double st100 , double st800 , double st900 ,

int cur saps ){

int rc = 0;

// explosions are bad.

assert(isfinite(st100));

assert(isfinite(st800));

st100 = fmax(st100 , 1);

st800 = fmax(st800 , 1);

double deficit;

if ( regen delay counter [xi][yi] > 0) {
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deficit = 0;

} else {

double sqsap = 14.4564 – 2.0407∗ log(st800) – 0.5332∗ log(st100);

double expected saps = pow( fmax(0,sqsap), 2);

deficit = fmax(0, expected saps – cur saps );

if (deficit > 3) {

deficit /= sapling time to 2cm (xi , yi);
}

// Add in whole numbers of trees

rc += floor(deficit);

deficit –= floor(deficit);
}

// Stochastically add fractional trees:

if (deficit>0){

if (urand01 ()<deficit){ rc+=1; }
}

return rc;
}

//! Length of time for a seedling to reach 2cm.

/∗ ∗ Calculate how many years it should take for a seedling to reach

2.5cm based on pre – removal stocking and including stochastic

variation.

∗/

int Stand :: sapling time to 2cm (int subplot i , int subplot j ){

return 10.31451 + 0.11295 ∗ stocking 900 (subplot i , subplot j );
}

//! Remove sapling layer inside a harvest unit

void Stand :: clean around and delay (TreePtr t){

int xi = x index (t–>GetXCoord ()),

yi = y index (t–>GetYCoord ());

regen delay counter [xi][yi] =

max( regen delay counter [xi][yi],

sapling time to 2cm ( xi , yi ) );
}

//! Plant

void Stand :: plant tree (double x, double y, species t sp , double dbh){

TreePtr baby = make baby (x, y, sp);

baby –>set dbh (dbh);

// If we planted a sapling , update the counts of saplings so that CANOPY sees this one

// when deciding how many saplings should recruit.

if (dbh <= 6) {

int px = x index ( x );

int py = y index ( y );

subplot t ∗ cur =&( subplot 100 [px][py]);

cur –>n sap ++;
}

living –>push front ( baby );

if ( the grid ) { the grid –> add tree ( baby ); }
}

//! Regenerate

/∗ ∗ The regeneration routine.

Adds saplings (random spatial pattern) to 100m^2 plots based on the

stocking and surrounding donut.

Assumes that our plots go from (0,0) to some (xmax ,ymax).
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∗/

void Stand :: regenerate grid () {

for (int xi=0; xi<xmax; xi++) {

for (int yi=0; yi<ymax; yi++) {

int nsap = number of saplings (xi , yi);

for (int s=0; s<nsap; s++) {

species t sp = RandomSpecies(xi ,yi);

TreePtr baby = make baby (xi ,yi , sp);

babies –>push back (baby);
}

}
}

}

/∗ ∗ Perfom regeneration based on group centered stocking assessments.

∗/

void Stand :: regenerate gcs () {

double r100 = sqrt (100/ M PI );

double r900 = sqrt (900/ M PI );

// Grab the new centers from the harvesters

for (slist<Harvest ∗>::iterator it = harvesters –>begin ();

it != harvesters –>end(); it++) {

point t ∗ pt;

while ( (pt =(∗ it)–>get group ()) != NULL ){

gcs group centers –>push back ( pt );
}

}

for (list<point t ∗>::iterator it = gcs group centers –>begin ();

it != gcs group centers –>end(); it++ ){

point t ∗ pt = (∗ it);

TreeList trees 100 , trees 800 , trees 900 ;

TreePtr t;

int current saps = 0;

the grid –>set search center ( pt–>x, pt–>y );

while ( (t=the grid –>get next tree ()) != NULL ){

double gx = (10.0∗ xmax)/2, gy = (10.0∗ ymax)/2;

double dx = gx – pt–>x, dy = gy – pt–>y;

double tx = t–>GetXCoord () + dx , ty = t–>GetYCoord () + dy;

// Warp the tre back in if it was shifted out of the plot

tx = tx – 10.0∗ xmax ∗ floor( tx /(10.0∗ xmax) );

ty = ty – 10.0∗ ymax ∗ floor( ty /(10.0∗ ymax) );

double d = hypot( gx –tx , gy – ty );

if ( d<=r100 ) {

trees 100 . push front (t);

if (t–>GetDBH ()<6) current saps ++;
}

if ( r100<d && d<=r900 ){ trees 800 . push front (t); }

if ( d<=r900 ){ trees 900 . push front (t); }
}

double stock 100 , stock 800 , stock 900 ,

phm 900 , pwa 900 , pbw 900 , piw 900 ;



222

compute circular plot ( &trees 100 , 100, stock 100 );

compute circular plot ( &trees 800 , 800, stock 800 );

compute circular plot ( &trees 900 , 900, stock 900 ,

phm 900 , pwa 900 , pbw 900 , piw 900 );

int nsap = number of saplings ( x index (pt–>x), y index (pt–>y),

stock 100 , stock 800 , stock 900 , current saps );

for (int s=0; s<nsap; s++) {

double tree r = r100 ∗ urand01 ();

double tree theta = 2∗ M PI ∗ urand01 ();

double tree x = pt–>x + tree r ∗ cos( tree theta );

double tree y = pt–>y + tree r ∗ sin( tree theta );

tree x = tree x – 10.0∗ xmax ∗ floor( tree x /(10.0∗ xmax));

tree y = tree y – 10.0∗ ymax ∗ floor( tree y /(10.0∗ ymax));

species t sp = RandomSpecies( x index (pt–>x),

y index (pt–>y), stock 900 ,

phm 900 , pwa 900 , pbw 900 , piw 900 );

TreePtr baby = make baby ( tree x , tree y , sp , stock 900 , true);

babies –>push back (baby);
}

} // foreach group center

// Now to clean up non – delayed groups

list<point t ∗>::iterator it = gcs group centers –>begin ();

while (it != gcs group centers –>end() ){

int xi = x index ( (∗ it)–>x );

int yi = y index ( (∗ it)–>y );

if ( regen delay counter [xi][yi] <= 0) {

free (∗ it);

it = gcs group centers –>erase(it);

} else {

it++;
}

}
}

//! Compute circular plot stocking returning stocking and species proportions.

void Stand :: compute circular plot ( TreeList ∗tl , double plot size ,

double &stock ,

double &pct hm , double &pct wa ,

double &pct bw , double & pct iw ) {

double sum ba =0, sum d =0;

double hm ba =0, bw ba =0, wa ba =0, iw ba =0;

int n=0;

for (TreeList :: iterator it=tl–>begin ();

it != tl–>end(); it++) {

double dbh = (∗ it)–>GetDBH ();

double ba = (∗ it)–>GetBA ();

species t sp = (∗ it)–>GetSpecies ();

sum ba += ba;
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sum d += dbh;

n++;

switch(sp) {

case sp hemlock : hm ba += ba; break;

case sp basswood : bw ba += ba; break;

case sp white ash : wa ba += ba; break;

case sp ironwood : iw ba += ba; break;

default: break;
}

}

pct hm = n>0 ? hm ba / sum ba : 0;

pct bw = n>0 ? bw ba / sum ba : 0;

pct wa = n>0 ? wa ba / sum ba : 0;

pct iw = n>0 ? iw ba / sum ba : 0;

double obs ba = 10000∗ sum ba / plot size ;

stock = 100∗ obs ba / fmax (0.001 , ref ba (pct hm , pct bw , n>0?sum d /n:0));
}

//! Compute circular plot , for just the stocking values

void Stand :: compute circular plot ( TreeList ∗tl , double plot size , double &stock)
{

double pct hm , pct wa , pct bw , pct iw ;

compute circular plot ( tl , plot size , stock , pct hm , pct wa , pct bw , pct iw );
}

void Stand :: regenerate () {
// Update the regen delay counts

for (int i=0; i<xmax; i++) {

for (int j=0; j<ymax; j++) {

if ( regen delay counter [i][j]>0) {

regen delay counter [i][j] – –;
}

}
}

// For pole stands , turn on our "stem exclusion" mode

if ( use stem exclusion ){

for (int xi=0; xi<xmax; xi++) {

for (int yi=0; yi<ymax; yi++) {
// Next determine if we're in stem exclusion

stage t my stage = get stage (xi ,yi);

double sap ba = subplot stages 2500 [xi][yi]. sap ba ;

double pol ba = subplot stages 2500 [xi][yi]. pol ba ;

double mat ba = subplot stages 2500 [xi][yi]. mat ba ;

double lrg ba = subplot stages 2500 [xi][yi]. lrg ba ;

double all ba = sap ba + pol ba + mat ba + lrg ba ;

// Use 1/4 because the 2500 m2 plot is 1/4th ha.

if ( all ba > 20/4 &&

( pol ba / all ba >= 0.20 | | mat ba /all ba >=0.35)) {

regen delay counter [xi][yi] =

max( regen delay counter [xi][yi], sapling time to 2cm (xi , yi));
}

}
}

}

// Before adding anything , take a census of how many babies we're

// working with:

int current sapling population = 0;
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if ( regen maintain initial saplings ){

for (int xi=0; xi<xmax; xi++) {

for (int yi=0; yi<ymax; yi++) {

current sapling population += subplot 100 [xi][yi]. n sap ;
}

}
}

// Do the group – centered stocking evaluation.

regenerate gcs ();

vector<TreePtr>::iterator it;
// Update the counts of saplings on each subplot , as if the babies had all been added

// We'll need to do this so that the grid – based regen sees the stand as it would be

// if all the trees get added:

for (it=babies –>begin (); it!=babies –>end(); it++) {

int px = x index ( (∗ it)–>GetXCoord () );

int py = y index ( (∗ it)–>GetYCoord () );

subplot t ∗ cur = &( subplot 100 [px][py]);

cur –>n sap ++;
}

// Keep track of how many babies were added this way.

int n to skip = babies –>size();

// Next , do the grid – based regeneration.

regenerate grid ();

// Advance our iterator so that it's pointing at the grid – based

// babies

it = babies –>begin ();

for (int i=0; i<n to skip ; i++) { it++; }

//then update our count of saplings per subplot:

while (it != babies –>end()){

int px = x index ( (∗ it)–>GetXCoord () );

int py = y index ( (∗ it)–>GetYCoord () );

subplot t ∗ cur = &( subplot 100 [px][py]);

cur –>n sap ++;

it++;
}

// Our per – sapling counts are now accurate assuming we will add all the babies

if ( regen maintain initial saplings ){
// If we're maintaining a fixed population , select a random subset

// to add. Shuffle the list of babies , then whittle it down

// from the end until we've got the right number of them.

random shuffle (babies –>begin (), babies –>end());

while ( (babies –>size() + current sapling population )

> target sapling population && babies –>size() > 0 ){

TreePtr t = babies –>back();

// Again , twiddle the sapling counts appropriately

// to account for the babies we won't be adding:

int px = x index ( t–>GetXCoord () );

int py = y index ( t–>GetYCoord () );

subplot t ∗ cur = &( subplot 100 [px][py]);

cur –>n sap – –;

babies –>pop back ();
}
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}

// Add the selected babies to the live tree list:

for (it=babies –>begin (); it!=babies –>end(); it++) {

living –>push front ( ∗ it );

if ( the grid ) { the grid –>add tree ( ∗ it ); }
}

// And clear the 'babies ' list

babies –>clear ();
}

///Select a species for a new recruit.

species t Stand :: RandomSpecies(int px , int py){

double pct hm = PercentBA(sp hemlock ,px ,py);

double pct wa = PercentBA( sp white ash ,px ,py);

double pct bw = PercentBA(sp basswood ,px ,py);

double pct iw = PercentBA(sp ironwood ,px ,py);

double st900 = stocking 900 (px ,py);

return RandomSpecies(px , py , st900 ,

pct hm , pct wa , pct bw , pct iw );
}

species t Stand :: RandomSpecies(int px , int py , double st900 ,

double pct hm , double pct wa , double pct bw , double

pct iw ){

species t rc;

const int n species = 7;

const int n params = 9;

if ( only sm regen ){

return sp sugar maple ;
}

if ( only hm regen ){

return sp hemlock ;
}

if (! ( sp prop .px==px && sp prop .py==py) ){

double pi[ n species ], pip[ n species ], sum pi =0;

//For now , the coefficients below for Hemlock refer to the

//not – browsed condition.

double coefs [3][ n species ][ n params ] = {
//AOCa INT lnSt lSt ∗ hb ash bass iron StGr80 HmGr60

LnPctHm

{ /∗ BW ∗/ { –2.89174 , –0.25357 , 0, 0, 0.17670 , 0, 0, 0, 0

},

/∗ SM ∗/ { 0, 0.53854 , 0, 0, 0, 0, 0, 0, 0

},

/∗ WA ∗/ { 2.39251 , –1.77969 , 0, 1.73752 , 0, 0, 0, 0, 0

},

/∗ IW ∗/ { –7.10564 , 0.83489 , 0, 0, 0, 0.81957 , 0, 0, 0

},

/∗ YB ∗/ { 4.97688 , –1.95941 , 0, 0, 0, 0, 0, 0, 0

},

/∗ Hm ∗/ { –4.725 , 0, 0, 0, 0, 0, 1.021 , 4.105 ,

0.759 },
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/∗ RM ∗/ { –5.50000 , 0, 0, 0, 0, 0, 0, 0, 0

}} ,
//ATD

{ /∗ BW ∗/ { –5.50000 , 0, 0, 0, 0.17670 , 0, 0, 0, 0

},

/∗ SM ∗/ { 0, 0.53854 , –2.26847 , 0, 0, 0, 0, 0, 0

},

/∗ WA ∗/ { –5.50000 , 0, 0, 0, 0, 0, 0, 0, 0

},

/∗ IW ∗/ { –7.10564 , 0.83489 , 0, 0, 0, 0.81957 , 0, 0, 0

},

/∗ YB ∗/ { 0, –0.89252 , 0, 0, 0, 0, 0, 0, 0

},

/∗ HM ∗/ { –4.725 , 0, 0, 0, 0, 0, 1.021 , 4.105 ,

0.759 },

/∗ RM ∗/ { –5.50000 , 0, 0, 0, 0, 0, 0, 0, 0

}} ,
//ATM

{ /∗ BW ∗/ { –2.89174 , –0.25728 , 0, 0, 0.17670 , 0, 0, 0, 0

},

/∗ SM ∗/ { –2.94369 , 0.53854 , 0, 0, 0, 0, 0, 0, 0

},

/∗ WA ∗/ { –3.56466 , –0.49267 , 0, 1.73752 , 0, 0, 0, 0, 0

},

/∗ IW ∗/ { –7.10564 , 0.83489 , 0, 0, 0, 0.81957 , 0, 0, 0

},

/∗ YB ∗/ { 4.97688 , –1.61851 , 0, 0, 0, 0, 0, 0, 0

},

/∗ HM ∗/ { –4.725 , 0, 0, 0, 0, 0, 1.021 , 4.105 ,

0.759 },

/∗ RM ∗/ { 0, –0.80890 , 0, 0, 0, 0, 0, 0, 0
}}

};

int ht = hdata –>hdata[py][px];

double xi[ n params ];

xi[0] = 1;

xi[1] = log(st900 +1);

xi[2] = xi [1]∗ fmin (0.5, pct hm );

xi[3] = ( pct wa > 0) ? 1 : 0 ;

xi[4] = ( pct bw > 0) ? 1 : 0 ;

xi[5] = ( pct iw > 0) ? 1 : 0 ;

xi[6] = (st900>80) ? 1 : 0;

xi[7] = (pct hm >=0.6) ? 1 : 0;

xi[8] = (pct hm< 0.6) ∗ log(fmax (1 ,100∗ pct hm ));

// Check preconditions

for (int i=0; i<n params ; i++) {

assert(isfinite(xi[i]));
}

for (int i=0; i<n species ; i++) {

double X=0;

for (int j=0; j<n params ; j++) { X+= xi[j]∗ coefs[ht][i][j]; }
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pi[i]=1/(1+ exp( –X));

sum pi += pi[i];
}

if ( use test regen props && year < 20) {

if (ht== ht AOCa ){

double balance [] = { 20, 60, 15, 0, 5, 0, 0 };

for (int i=0; i<n species ; i++) { pi[i] = balance[i]; }

} else if (ht== ht ATD ){

double balance [] = { 5, 80, 3, 0, 5, 2, 5 };

for (int i=0; i<n species ; i++) { pi[i] = balance[i]; }

} else {

double balance [] = { 5, 40, 5, 0, 30, 5, 15 };

for (int i=0; i<n species ; i++) { pi[i] = balance[i]; }
}

sum pi = 100;
}

if ( forbid hm regen ){

sum pi –= pi[5];

pi[5] = 0;
}

// Normalize evertyhing so that it sums to 1.

for (int i=0; i<n species ; i++) { pip[i]=pi[i]/ sum pi ; }

// Compute the cumulative probabilities for each species:

sp prop . cum pi [0]= pip [0];

for (int i=1; i<n species ; i++) {

sp prop . cum pi [i]= sp prop . cum pi [i –1]+ pip[i];
}

// Save the coordinates for this patch , so that we can re – use

// these cumulative probabilities for the next tree on our patch.

sp prop .px=px;

sp prop .py=py;
}

int sp final = –1;

double rn = urand01 ();

for (int i=0; i<n species ; i++) {

if (rn < sp prop . cum pi [i] ){ sp final =i; break; }
}

switch( sp final ){

case 0: rc = sp basswood ; break;

case 1: rc = sp sugar maple ; break;

case 2: rc = sp white ash ; break;

case 3: rc = sp ironwood ; break;

case 4: rc = sp yellow birch ; break;

case 5: rc = sp hemlock ; break;

case 6: rc = sp red maple ; break;

default:

printf("ERROR: non – existent species "

"in RandomSpecies () %s:%i\n",

FILE , L I N E );

exit (1);

break;
}
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return rc;
}

void Stand ::grow() {

for(TreeList :: iterator iter=living –>begin ();

iter!=living –>end(); iter ++) {

assert( (∗ iter)–>GetStatus () == st live );

(∗ iter)–>grow( stocking 900 (∗ iter),

(∗ iter)–>GetDBH () / average diam 900 (∗ iter),

get stage (∗ iter) );
}

}

void Stand ::die() {

if ( storm clock > 0) {

storm clock – –;

} else {

TreeList :: iterator it = living –>begin ();

while ( it != living –>end() ){

double pct hm = PercentBA( sp hemlock ,

x index ((∗ it)–>GetXCoord ()),

y index ((∗ it)–>GetYCoord ()) );

double pdie = (∗ it)–>pdie( stocking 900 (∗ it),

(∗ it)–>GetDBH () / average diam 900 (∗ it),

get stage (∗ it), pct hm );

if( urand01 () < pdie ){

dead –>push front ( ∗ it );

(∗ it)–>SetStatus( st dead );

it = living –>erase(it);

} else {

it++;
}

}
}

}

void Stand :: add harvester (char ∗ fname){

Harvest ∗h = new Harvest(this , fname);

harvesters –>push front (h);
}

void Stand :: add storm model (char ∗ fname){

if ( my storm model != NULL){

printf("ERROR: Attempt to add more than one storm model .\n");

exit (1);
}

my storm model = new StormModel(fname);
}

void Stand :: harvest () {
// Run each harvester , having all of them mark trees toasted.

for (slist<Harvest ∗>::iterator it = harvesters –>begin ();

it != harvesters –>end(); it++) {

(∗ it)–>do harvest ();
}

// Now that all the harvesters have run , remove the cut trees from

// the living list.
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TreeList :: iterator it = living –>begin ();

while (it != living –>end() ){

status t this st = (∗ it)–>GetStatus ();

if ( this st == st cut | |

this st == st cut leave | |

this st == st cut girdle ) {

update harv ba ( ∗ it );

if ( this st == st cut ) { harvested –>push front ( ∗ it ); }

if ( this st == st cut leave ) {

harvested left –> push front ( ∗ it );

cwd log [0] –> push front ( ∗ it );
}

if ( this st == st cut girdle ) {

harvested left –> push front ( ∗ it );

cwd snag [0] –> push front ( ∗ it );
}

it = living –>erase(it);

} else {

it++;
}

}
}

/// Find the border trees for a sapling

/∗ ∗ Once the border trees are identified , calculate the area of the gap.

Also , as the border trees are being scanned , add up the TCA of

spalings within the 80m^2 competition plot.

∗/

void Stand :: find gaps () {

double distance [8];

double angles [8];

// Walk the treelist

for (TreeList :: iterator cur tree =living –>begin ();

cur tree != living –>end(); cur tree ++ ){

// For every tree shorter than 17m:

if ((∗ cur tree )–>GetTotalHeight ()<17){

// Determine if we're on a sapling/pole patch , and therefore

// want to use 'strict gaps' which require an angle to gap

// border trees of at least 20 degrees.

bool strict gaps = false;

stage t this stage = get stage ( x index ( (∗ cur tree )–>GetXCoord () ),

y index ( (∗ cur tree )–>GetYCoord () ) );

if ( this stage == stage sapling | | this stage == stage pole ) {

strict gaps = true;
}

// Check to see if last year's set of gap neighbors are still

// alive and still meet the criteria to be gap neighbors.

bool cache is good = true;

for (int i=0; i<8; i++) {

TreePtr neighbor =(∗ cur tree )–>get gap neighbor (i);

if (neighbor == NULL | | neighbor –>GetStatus () != st live ) {

cache is good = false; break;

} else {

double TH subj = (∗ cur tree )–>GetTotalHeight ();
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double WH comp = neighbor –>GetWidestHeight ();

double Rh900 comp =

neighbor –>GetTotalHeight ()/ average height 900 (neighbor);

double this distance = tree distance xy ( ∗ cur tree , neighbor) –

calculate cr toward competitor xy ( neighbor , ∗ cur tree );

double gap depth = neighbor –>GetWidestHeight () – (∗ cur tree )–>GetTotalHeight ();

double tree angle = 180/ M PI ∗ atan2(gap depth , fmax(0, this distance ) );

if ( !( TH subj <= WH comp && Rh900 comp >= 0.66 && WH comp >=12 &&

(! strict gaps | | tree angle > 20)) ) {

cache is good = false; break;
}

}
}

// If the cached neighbors are still valid , just re – use them and

// keep the list of competitor saplings.

if ( cache is good ){

for( int i=0; i<8; i++) {

TreePtr neighbor =(∗ cur tree )–>get gap neighbor (i);

distance[i]= tree distance xy ( ∗ cur tree , neighbor) –

calculate cr toward competitor xy (neighbor , ∗ cur tree );

angles[i]= tree angle ( ∗ cur tree , neighbor );
}

} else {
// Otherwise , search for a new set of neighbors and competitor saplings.

(∗ cur tree )–>clear competitor saplings ();

for (int i=0; i<8; i++) {

(∗ cur tree )–>set gap neighbor (i, TreePtr () );

distance[i]= 30; // because it's greater than max search

angles[i] = (( float)i) /8∗(2∗ M PI );
}

int found =0; // Bits 0 –8 are flag values for the eight neighbors

//A value of 0xFF indicates that they've all been found.

the grid –>set search center ( (∗ cur tree )–>GetXCoord (),

(∗ cur tree )–>GetYCoord () );

// Note: the TreeGrid limits the search to a 50x50 meter area

// surrounding the current search center

TreePtr neighbor;

while ( (neighbor=the grid –>get next tree ()) != NULL &&

found != 0xFF ){

// Skip over ourselves

if (neighbor == ∗ cur tree ) { continue; }

// Determine which quadrant the neighbor is in:

double angle= tree angle ( ∗ cur tree , neighbor);

int ix=0;

if ( 22.5 < angle && angle <= 67.5 ){ ix=1; }

else if( 67.5 < angle && angle <= 112.5 ){ ix=2; }

else if( 112.5 < angle && angle <= 157.5 ){ ix=3; }

else if( 157.5 < angle && angle <= 202.5 ){ ix=4; }

else if( 202.5 < angle && angle <= 247.5 ){ ix=5; }

else if( 247.5 < angle && angle <= 292.5 ){ ix=6; }

else if( 292.5 < angle && angle <= 337.5 ){ ix=7; }
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// Border trees:

// If this tree is closer than current border , take this tree

// If this tree is the same distance as current border ,

// but this tree is closer to the midline of the search area ,

// take this tree.

double this distance = tree distance xy ( ∗ cur tree , neighbor) –

calculate cr toward competitor xy ( neighbor , ∗ cur tree );

double gap depth = neighbor –>GetWidestHeight () – (∗ cur tree )–>GetTotalHeight ();

double tree angle = 180/ M PI ∗ atan2(gap depth , fmax(0, this distance ) );

double TH subj = (∗ cur tree )–>GetTotalHeight ();

double WH comp = neighbor –>GetWidestHeight ();

double Rh900 comp =

neighbor –>GetTotalHeight ()/ average height 900 (neighbor);

if ( ( TH subj <= WH comp && Rh900 comp >= 0.66 && WH comp >=12 &&

(! strict gaps | | tree angle > 20) ) &&

( this distance < distance[ix]) ) {

found |= (1<<ix);

distance[ix]= this distance ;

angles[ix]=angle;

(∗ cur tree )–>set gap neighbor (ix , neighbor);
}

// Competitor saplings:

// One of our crown – based competiton metrics is on a fixed

// r=5.05m plot , and the other is on a 2.5∗ mcr
// variable – radius plot. However , we only look for new

// competitor saplings when one of the former gap borders

// dies. Therefore , when we're setting our plot radius

// based on MCR , we'll include slightly more than

// necessary to accomodate subject – tree crown growth.

double mcr =(∗ cur tree )–>GetMCR ();

double xy dist = tree distance xy ( ∗ cur tree , neighbor);

if( xy dist <= max (5.05 , 3.5∗ mcr) &&

neighbor –>GetTotalHeight () <= 12) {

(∗ cur tree )–>add competitor sapling ( neighbor , xy dist );
}

} // Foreach neighbor
}

// Neighbors either found or pulled from cache at this point.

double area =0;

for (int i=0; i<8; i++) {

double a0 = angles[i];

double a1 = angles [(i+1) %8];

double theta = a1 – a0;

theta = theta – 90∗ floor(theta /90); // wrap to 0<=theta<90

// If another tree covers us completely , we're overtopped and

// have zero gap area.

if (distance[i]<=0){

area = 0;

break;

} else {
// Area of each triangle is A = 1/2 A ∗B ∗ sin(theta)

double ai = 0.5∗ distance[i]∗ distance [(i+1) %8] ∗ sin( M PI /180∗ theta );

area += ai;
}

}
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(∗ cur tree )–>set gap area (area);

} else {
// For trees taller than 17m, clear the comp sap list

(∗ cur tree )–>clear competitor saplings ();
}

}
}

void Stand :: transform(TreePtr subj , TreePtr comp , coords t & rc){

transform( subj –>GetXCoord (), subj –>GetYCoord (), comp , rc );
}

void Stand :: transform(double s x , double s y , TreePtr comp , coords t & rc){
// Transform the subject and competitor tree into a coordinate system

// where the subject is at the center of the plot. If the competitor

//is outside the plot boundary , warp it back in appropriately.

double dx = (10∗ xmax)/2 – s x ;

double dy = (10∗ ymax)/2 – s y ;

rc.subj.x = (10∗ xmax)/2; // raw sx +dx = raw sx +center – raw sx = center

rc.subj.y = (10∗ ymax)/2; // same here.

double x trans = comp –>GetXCoord ()+dx;

double y trans = comp –>GetYCoord ()+dy;

rc.comp.x = x trans – 10∗ xmax ∗ floor( x trans / (10∗ xmax) );

rc.comp.y = y trans – 10∗ ymax ∗ floor( y trans / (10∗ ymax) );
}

double Stand :: tree distance xy ( TreePtr subj , TreePtr comp ){

double rc;
// we are one plot – width away from ourself (or rather , the us in the mirror).

if( subj == comp){

rc = 5∗ xmax +5∗ ymax;

} else {

coords t coords;

transform(subj ,comp ,coords);

double dx = coords.comp.x – coords.subj.x;

double dy = coords.comp.y – coords.subj.y;

rc = hypot(dx , dy);
}

return rc;
}

double Stand :: tree distance rz ( TreePtr t1 , TreePtr t2){

double dr = tree distance xy (t1 ,t2);

double dz = t1–>GetWidestHeight () – t2–>GetWidestHeight ();

double rc = hypot(dr ,dz);

return rc;
}

double Stand :: tree angle ( TreePtr subj , TreePtr comp) {

coords t coords;

transform(subj ,comp ,coords);

double dx = coords.comp.x – coords.subj.x;

double dy = coords.comp.y – coords.subj.y;
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double angle = 180/ M PI ∗ atan2( dx ,dy ) ;

if( angle<0) { angle = 360+ angle; }

return angle;
}

double Stand :: calculate cr toward competitor xy ( TreePtr subj ,

TreePtr comp ){

coords t coords;

transform(subj ,comp ,coords);

double dx = coords.comp.x – coords.subj.x;

double dy = coords.comp.y – coords.subj.y;

double a,b;

if(dy>=0) { a = subj –>get cr (0); } // North CR

else { a = subj –>get cr (2); } // South CR

if(dx>=0) { b = subj –>get cr (1); } //East CR

else { b = subj –>get cr (3); } //West CR

double theta = tree angle (subj ,comp) ∗ M PI /180 ;

double xr = a ∗ cos (theta);

double yr = b ∗ sin (theta);

double r = hypot(xr ,yr);

return r;
}

double Stand :: calculate cr toward competitor rz ( TreePtr subj ,

TreePtr comp ){

double dr = tree distance xy (subj ,comp);

double dz = comp –>GetWidestHeight () –subj –>GetWidestHeight ();

double theta = atan2(dz ,dr);

double a = calculate cr toward competitor xy (subj ,comp);

double b;

if(dz>=0){ b=subj –>GetTotalHeight () –subj –>GetWidestHeight () ;}

else { b=subj –>GetBaseHeight () –subj –>GetWidestHeight (); }

double xr = a ∗ cos(theta);

double yr = b ∗ sin(theta);

double r = hypot(xr ,yr);

return r;
}

///Determine (for each crown lobe) of a tree if it is in or facing a gap

/∗ ∗ If the maximum percent radial overlap on a given lobe of crown is

50% or greater , then that lobe is not in a gap

If the minimum distance from a given lobe of crown to the next

nearest competitor crown lobe is less than 2.5 m, then that lobe is not

facing a gap.

If the minimum distance from a given lobe of crown to the next

nearest competitor crown lobe is less than 10cm , then those lobes

are touching.

∗/

void Stand :: calculate crown status () {
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TreeList :: iterator subj;

for (subj=living –>begin (); subj!=living –>end(); subj ++) {
// First , compute the relative height:

(∗ subj)–>SetRH( average height 900 ( ∗ subj ) );

//Next , work out the crown competitors:

TreePtr comp;

double margin distance [4];

double crown distance [4];

double pct overlap [4];

double cthresh;

if ( (∗ subj)–>GetSpecies () == sp hemlock ){

cthresh = 0.85∗(∗ subj)–>GetTotalHeight ();

} else {

cthresh = (∗ subj)–>GetWidestHeight ();
}

// Check to see that the stored crown neighbors are still alive

// and still tall enough to be crown neighbors

bool cache is good = true;

for (int i=0; i<4; i++) {

comp = (∗ subj)–>get xy neighbor (i);

if ( comp == NULL | | comp –>GetStatus () != st live | |

comp –>GetTotalHeight () < cthresh ) {

cache is good = false; break;
}

comp = (∗ subj)–>get rz neighbor (i);

if ( comp == NULL | | comp –>GetStatus () != st live | |

comp –>GetTotalHeight () < cthresh ) {

cache is good = false; break;
}

comp = (∗ subj)–>get eca neighbor (i);

if ( comp == NULL | | comp –>GetStatus () != st live | |

comp –>GetWidestHeight () < (∗ subj)–>GetWidestHeight () ){

cache is good = false; break;
}

}

if ( cache is good ) {

for (int i=0; i<4; i++) {
// Determine crown margin distance based on XY neighbor

comp = (∗ subj)–>get xy neighbor (i);

margin distance [i] =

tree distance xy (∗ subj , comp) –

calculate cr toward competitor xy (∗ subj , comp) –

calculate cr toward competitor xy (comp , ∗ subj);

// Determine distance to nearest crown based on RZ neighbor

comp = (∗ subj)–>get rz neighbor (i);

crown distance [i] =

tree distance rz (∗ subj , comp) –

calculate cr toward competitor rz (∗ subj , comp) –

calculate cr toward competitor rz (comp , ∗ subj);

// Determine crown overlap based on ECA neighbor
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comp = (∗ subj)–>get eca neighbor (i);

double subj cr = calculate cr toward competitor xy (∗ subj , comp);

double overlap =

tree distance xy (∗ subj , comp) –

subj cr –

calculate cr toward competitor xy (comp , ∗ subj);

pct overlap [i] = fmin( 1, fmax(0, – overlap)/ subj cr );
}

} else {

for (int i=0; i<4; i++) {

double d = hypot (10.0∗ xmax , 10.0∗ ymax); // one plot away

margin distance [i]=d;

crown distance [i]=d;

pct overlap [i]=0;

(∗ subj)–>set xy neighbor (i, TreePtr () );

(∗ subj)–>set rz neighbor (i, TreePtr () );

(∗ subj)–>set eca neighbor (i, TreePtr () );
}

int found =0; // 12 bits of flag values.

// 0xFFF indicates everything is found

// Bit 0 –3: xy neighbors

// Bit 4 –7: rz neighbors

// Bit 8 –12: eca neighbors

the grid –>set search center ( (∗ subj)–>GetXCoord (),

(∗ subj)–>GetYCoord () );

while( (comp=the grid –>get next tree () ) != NULL &&

found != 0xFFF ) {

// Don't consider competing with ourself.

if (∗ subj == comp) { continue; }

// Determine which quadrant the competitor is in , set an ndex value

double angle= tree angle (∗ subj ,comp);

int ix=0;

if ( 45 <= angle && angle < 135 ) { ix = 1; }

else if ( 135 <= angle && angle < 225 ) { ix = 2; }

else if ( 225 <= angle && angle < 315 ) { ix = 3; }

if ( comp –>GetTotalHeight () >= cthresh ){
// It's a potential XY or RZ neibhor

double this margin distance =

tree distance xy (∗ subj ,comp) –

calculate cr toward competitor xy (∗ subj ,comp) –

calculate cr toward competitor xy (comp ,∗ subj);

if ( this margin distance < margin distance [ix] ) {

found |= (1<<ix);

(∗ subj)–>set xy neighbor (ix , comp);

margin distance [ix] = this margin distance ;
}

double this crown distance =

tree distance rz (∗ subj ,comp) –

calculate cr toward competitor rz (∗ subj ,comp) –

calculate cr toward competitor rz (comp ,∗ subj);
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if ( this crown distance < crown distance [ix] ){

found |= (16<<ix);

(∗ subj)–>set rz neighbor (ix , comp);

crown distance [ix] = this crown distance ;
}

}

if ( comp –>GetWidestHeight () >= (∗ subj)–>GetWidestHeight () ){
// It's a potential ECA neighbor

double this subj cr = calculate cr toward competitor xy (∗ subj ,comp);

double this overlap =

tree distance xy (∗ subj , comp) –

this subj cr –

calculate cr toward competitor xy (comp , ∗ subj);

double this pct overlap =

fmin(1, fmax(0, – this overlap )/ this subj cr );

if( pct overlap [ix] < this pct overlap ){

found |= (256<<ix);

(∗ subj)–>set eca neighbor (ix , comp);

pct overlap [ix] = this pct overlap ;
}

}
} // For each competitor

}

for (int i=0; i<4; i++) {

double touching threshold ;

if( (∗ subj)–>GetSpecies () == sp hemlock ){

touching threshold = –0.1∗ (∗ subj)–>get cr (i);

} else {

touching threshold = 0;
}

(∗ subj)–>set facing gap (i, crown distance [i] > 1 );

(∗ subj)–>set touching (i, crown distance [i] < touching threshold );

(∗ subj)–>set shaded (i, margin distance [i]/(∗ subj)–>get cr (i) <= –0.5 );

double ecr = (∗ subj)–>get cr (i) ∗ (1 – pct overlap [i]);

(∗ subj)–>set ecr (i, ecr );
}

} // For each tree
}

bool Stand ::wind() {

bool rc = false;

// Check for a storm this year , queue it if necessary

double tgt = ( my storm model != NULL) ?

my storm model –>get storm specification (year) :

StormModel :: storm eca removal ();

if (tgt>0) { storm queue –>push back (tgt); }

// Check the queue , do a storm if necessary

double target eca removal = –1;

if ( storm clock > 0 | | storm queue –>empty () ) {

target eca removal = 0;

} else {
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target eca removal = storm queue –>front ();

storm queue –>pop front ();
}

if ( target eca removal >= disturbance threshold ){

rc = true;

TreeList :: iterator it;

// Convenience function for checking set membership

struct {

bool operator ()(TreeSet ∗s, long it) {

return s–>find(it) != s–>end();
}

} in set ;

// Compute the total ECA of the stand

double total eca = 0;

for (it = living –>begin (); it != living –>end(); it++) {

total eca += (∗ it)–>get eca ();
}

double si = StormModel :: severity index ( target eca removal );

double removed eca =0, min error =1000 , error;

TreeSet ∗ best blown down = new TreeSet ();

TreeSet ∗ tmp blown down = new TreeSet ();

int iterations = 0;

printf("Storm Simulation :\n");

do {
// Do a trial storm

double tmp removed eca = StormModel :: storm(si , living , tmp blown down );

// Compute the %removal , and %erorr

double trial eca removal = 100∗ tmp removed eca / total eca ;

error = ( trial eca removal – target eca removal ) / target eca removal ;

// Check to see if this was our best storm yet.

if ( fabs(error) < fabs( min error ) ){

best blown down –>clear ();

swap( best blown down , tmp blown down );

min error = error;

removed eca = trial eca removal ;
}

printf(" iter=%i, tgt=%f, trial =%f, si=%f\n",

iterations , target eca removal , trial eca removal , si);

// If we were 5% high , decrease the si by 5%

// If we were 5% low (neg. error), this will increase si by 5%

si = fmin(1,fmax(0, si – si ∗ error));

iterations ++;

} while ( fabs(error) >= 0.05 && iterations < 100 );

printf(" Post – Iteration step , tgt=%f, removed =%f\n",

target eca removal , removed eca );

// Now , if we removed too much ECA , through the treelist

// Searching for those trees that blew down. For each windthrown tree ,
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// with p=0.05 , remove it from the windthrown list. Keep doing this until

// we're no longer over the target.

it = living –>begin ();

while ( removed eca > target eca removal ) {

if ( in set ( best blown down , (∗ it)–>GetTreeno () ) &&

urand01 () <= 0.05 ){

best blown down –>erase( (∗ it)–>GetTreeno () );

removed eca –= 100 ∗ (∗ it)–>get eca () / total eca ;
}

it++;

if (it == living –>end()) {

it = living –>begin ();
}

}

// Now , we've arrived at our final removal:

printf(" FINAL , tgt=%f, removed =%f\n",

target eca removal , removed eca );

tdb –>storm insert (year , lround( target eca removal ), removed eca );

// Find those trees which blew down in the best storm ,

// And move them off of the living list.

it = living –>begin ();

while ( it != living –>end() ){

if ( in set ( best blown down , (∗ it)–>GetTreeno ()) ) {

blown down –>push front ( ∗ it );

(∗ it)–>SetStatus( st dead );

it = living –>erase(it);

} else {

it++;
}

}

delete tmp blown down ;

delete best blown down ;

storm clock = 10;
}

return rc;
}

void Stand :: decay () {
// There are separate lists for trees in each decay class

// Snag Decay

cwd transition ( cwd snag [3], cwd snag [4], 0.861 , 0.861 , st snag 5 );

cwd transition ( cwd snag [2], cwd snag [3], 0.917 , 0.917 , st snag 4 );

cwd transition ( cwd snag [1], cwd snag [2], 0.965 , 0.965 , st snag 3 );

cwd transition ( cwd snag [0], cwd snag [1], 0.991 , 0.991 , st snag 2 );

// Log Decay

cwd transition ( cwd log [4], cwd out , 0.200000 , 0.090909 , st out );

cwd transition ( cwd log [3], cwd log [4], 0.125000 , 0.040816 , st log 5 );

cwd transition ( cwd log [2], cwd log [3], 0.333333 , 0.074074 , st log 4 );

cwd transition ( cwd log [1], cwd log [2], 0.076923 , 0.071429 , st log 3 );

cwd transition ( cwd log [0], cwd log [1], 0.2, 1.0, st log 2 );

// Next , snag fall
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double coefs [] = { 5.691 , –3.777 , 0.531 , 0.157 };

double xi[4];

for( int i=0; i<5; i++) {

TreeList :: iterator it = cwd snag [i]–>begin ();

while (it != cwd snag [i]–>end() ){

int px = (int)floor( (∗ it)–>GetXCoord ()/10 );

int py = (int)floor( (∗ it)–>GetYCoord ()/10 );

assert( 0<= px && px <= xmax );

assert( 0<= py && py <= ymax );

subplot t ∗ cur = &( subplot 900 [px][py]);

xi[0] = 1;

xi[1] = log( (∗ it)–>GetDBH () );

xi[2] = pow(xi[1] ,2);

xi[3] = cur –>harv ba ∗ (10000)/ 900;

double X=0;

for( int j=0; j<4; j++ ){ X += xi[j]∗ coefs[j]; }

switch( (∗ it)–>GetSpecies () ){

case sp yellow birch : X += –0.380; break;

case sp red maple : X += 0.348; break;

case sp white ash : X += 0.092; break;

case sp basswood : X += 1.163; break;

case sp ironwood : X += 0.837; break;

case sp hemlock : X += –0.293; break;

default: break;
}

switch( i ){

case 1: X += 0.177; break;

case 2: X += 0.542; break;

case 3: X += 0.702; break;

case 4: X += 0.528; break;
}

double p5 = exp(X)/(1+ exp(X));

double p1 = 1 – pow(1 –p5 ,0.2);

if( urand01 () < p1 ){

cwd log [1]–> push front ( ∗ it );

(∗ it)–>SetStatus( st log 2 );

it = cwd snag [i]–>erase(it);

} else {

it++;
}

}
}

// The mortality routine just marks trees as 'dead ', so we need to

// go through dead tree list and move trees into a decay class.

for( TreeList :: iterator it = dead –>begin ();

it != dead –>end(); it++) {
// For all freshly dead trees , determine if they are a snag or a log

// Push them onto the appropriate cwd list , and set their status

if( (∗ it)–>GetStatus () == st dead ){

double coefs [5] = { –0.805 , –0.016 , –0.026 , 3.389 , –0.084 };
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double xi[5];

// Determine harvest status by looking at %mortality on the 900m2

int px = (int)floor( (∗ it)–>GetXCoord ()/10 );

int py = (int)floor( (∗ it)–>GetYCoord ()/10 );

assert( 0<= px && px <= xmax );

assert( 0<= py && py <= ymax );

subplot t ∗ cur = &( subplot 900 [px][py]);

xi[0] = 1;

xi[1] = (∗ it)–>GetDBH ();

xi[2] = M PI ∗ pow(xi[1]/2 ,2);

xi[3] = (cur –>harv ba >0) ? 0 : 1 ;

xi[4] = xi [1]∗ xi[3];

double X=0;

for( int i=0; i<5; i++) { X += xi[i]∗ coefs[i]; }

switch( (∗ it)–>GetSpecies () ){

case sp yellow birch : X += –0.454; break;

case sp red maple : X += 0.336; break;

case sp white ash : X += 0.057; break;

case sp basswood : X += 1.149; break;

case sp ironwood : X += 1.056; break;

case sp hemlock : X += 1.151; break;

default: break;
}

double p5 = exp(X)/(1+ exp(X));

double p1 = 1 – pow(1 –p5 ,0.2);

if( urand01 () < p1 ){

cwd log [0]–> push front ( ∗ it );

(∗ it)–>SetStatus( st log 1 );

} else {

cwd snag [0]–> push front ( ∗ it);

(∗ it)–>SetStatus( st snag 1 );
}

}
}

// Move all the storm – killed trees into log 1

for( TreeList :: iterator it = blown down –>begin ();

it != blown down –>end(); it++) {

cwd log [0]–> push front (∗ it);

(∗ it)–>SetStatus( st log 1 );
}

// Flip the harvested trees into either log 1 or snag 1 .

for( TreeList :: iterator it = harvested –>begin ();

it != harvested –>end(); it++) {

if( (∗ it)–>GetStatus () == st log 1 ){

cwd log [0]–> push front ( ∗ it );
}

if( (∗ it)–>GetStatus () == st snag 1 ){

cwd snag [0]–> push front ( ∗ it );
}

}
}
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void Stand :: cwd transition ( TreeList ∗ from , TreeList ∗ to ,

double sm prob , double hm prob ,

status t status ){

TreeList :: iterator it = from –>begin ();

while ( it != from –>end() ){

double prob = ((∗ it)–>GetSpecies ()== sp hemlock ) ? hm prob : sm prob ;

if( urand01 () < prob ){

(∗ it)–>SetStatus(status);

to–>push front ( ∗ it );

it = from –>erase(it);

} else {

it++;
}

}
}

C.4 Harvest.cp
// –∗ – C++ –∗ –

extern "C" {

#include <lua.h>

#include <lauxlib.h>

#include <lualib.h>
}

#include <assert.h>

#include <algo.h>

#include "util.h"

#include "CanopyGlobals.h"

#include "Harvest.h"

#include "Tree.h"

#include "Stand.h"

Harvest :: Harvest( Stand ∗ s, char ∗ fname ){

my stand = s;

//Set the plot size lua global

l setglobal (" plot size ", 100.0∗s–>xmax ∗s–>ymax );

l setglobal ("xmax", 10.0 ∗ s–>xmax );

l setglobal ("ymax", 10.0 ∗ s–>ymax );

// Tell the harvester about our status codes.

l setglobal (" st live ", (double) st live );

l setglobal (" st dead ", (double) st dead );

l setglobal (" st cut ", (double) st cut );

l setglobal (" st cut leave ", (double) st cut leave );

l setglobal (" st cut girdle ", (double) st cut girdle );

l setglobal (" st log 1 ", (double) st log 1 );

l setglobal (" st log 2 ", (double) st log 2 );

l setglobal (" st log 3 ", (double) st log 3 );

l setglobal (" st log 4 ", (double) st log 4 );

l setglobal (" st log 5 ", (double) st log 5 );

l setglobal (" st snag 1 ", (double) st snag 1 );

l setglobal (" st snag 2 ", (double) st snag 2 );

l setglobal (" st snag 3 ", (double) st snag 3 );
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l setglobal (" st snag 4 ", (double) st snag 4 );

l setglobal (" st snag 5 ", (double) st snag 5 );

// Tell the harvester about our species codes.

l setglobal (" sp basswood ", (double) 2 );

l setglobal (" sp sugar maple ", (double) 4 );

l setglobal (" sp white ash ", (double) 13 );

l setglobal (" sp ironwood ", (double) 24 );

l setglobal (" sp hemlock ", (double) 5 );

l setglobal (" sp yellow birch ", (double) 6 );

l setglobal (" sp red maple ", (double) 9 );

l setglobal (" sp white pine ", (double) 7 );

l setglobal (" sp paper birch ", (double) 1 );

l setglobal (" sp northern red oak ", (double) 10 );

l setglobal (" sp green ash ", (double) 14 );

l setglobal (" sp american elm ", (double) 21 );

l setglobal (" sp black cherry ", (double) 22 );

l setglobal (" sp mountain maple ", (double) 39 );

l setglobal (" sp balsam fir ", (double) 41 );

l setglobal (" sp white spruce ", (double) 43 );

l setglobal (" sp white cedar ", (double) 46 );

harvestable trees = new vector<TreePtr>();

cwd trees = new vector<TreePtr>();

int error = luaL loadfile (Lua , fname) | | lua pcall (Lua , 0, 0, 0);

if (error) {

fprintf(stderr , "%s", lua tostring (Lua , –1));

lua pop (Lua , 1);

exit (1);
}

// Code to verify functions should probably all go here.

// Need to check and make sure the lua file that was just loaded

// actually includes all of the functions we need.

}

/// Convert a TreePtr to a Lua table sitting on TOS.

void Harvest :: tree to lua (TreePtr t){

double th = t–>GetTotalHeight ();

double rh = th/ my stand –>average height 900 (t);

double st900 = my stand –>stocking 900 (t);

// Crown radii

double n cr = t–>get cr (0);

double e cr = t–>get cr (1);

double s cr = t–>get cr (2);

double w cr = t–>get cr (3);

// exposed crown radii

double n ecr = t–>get ecr (0);

double e ecr = t–>get ecr (1);

double s ecr = t–>get ecr (2);

double w ecr = t–>get ecr (3);

// Crown summaries.

double tca = M PI /4∗( n cr ∗ e cr + e cr ∗ s cr + s cr ∗ w cr + w cr ∗ n cr );

double eca = M PI /4∗( n ecr ∗ e ecr + e ecr ∗ s ecr + s ecr ∗ w ecr + w ecr ∗ n ecr );
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double mcr = ( n cr + e cr + s cr + w cr )/4;

lua newtable (Lua);

l setfield ("treeno", (double) t–>GetTreeno () );

l setfield ("x", t–>GetXCoord () );

l setfield ("y", t–>GetYCoord () );

l setfield ("species", (double) t–>GetSpecies () );

l setfield ("dbh", t–>GetDBH () );

l setfield (" total height ", th);

l setfield (" rh 900 ", rh);

l setfield ("tca", tca);

l setfield ("eca", eca);

l setfield ("mcr", mcr);

l setfield ("stock", st900);

}

void Harvest :: tree vector to lua ( vector<TreePtr> ∗ trees){

int tn=0;

lua newtable (Lua);

for( vector<TreePtr>::iterator it = trees –>begin ();

it != trees –>end(); it++) {

lua pushnumber (Lua , (double)tn++);

tree to lua ( ∗ it );

lua settable ( Lua , –3 );
}

}

void Harvest :: status vector to lua ( vector<double> ∗ status){

int ix=0;

lua newtable (Lua);

for( vector<double>::iterator it = status –>begin ();

it != status –>end(); it++) {

lua pushnumber (Lua , (double)ix++ );

lua pushnumber (Lua , ∗ it );

lua settable ( Lua , –3 );
}

}

bool Harvest :: is it time (int year){

bool rc;

lua getglobal (Lua , " is it time ");

lua pushnumber (Lua , (double)year );

lua pcall (Lua , 1, 1, 0);

assert( lua isboolean (Lua , –1) );

rc = lua toboolean (Lua , –1);

lua pop (Lua , 1);

return rc;
}

bool Harvest :: is it inside (TreePtr t){

bool rc;

lua getglobal (Lua , " is it inside ");

lua pushnumber (Lua , t–>GetXCoord ());

lua pushnumber (Lua , t–>GetYCoord ());

lua pcall (Lua ,2,1,0);

assert( lua isboolean (Lua , –1) );
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rc = lua toboolean (Lua , –1);

lua pop (Lua , 1);

return rc;
}

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
rc=0 –> leave it be

rc=1 –> thwack

rc=2 –> girdle

rc=3 –> thwack and leave

∗/

int Harvest :: cut this tree (TreePtr t){

int rc;

lua getglobal (Lua , " cut this tree ");

tree to lua (t);

lua pcall (Lua ,1,1,0);

assert( lua isnumber (Lua , –1));

rc = (int) lua tonumber (Lua , –1);

lua pop (Lua , 1);

assert( 0 <= rc && rc <= 3);

return rc;
}

void Harvest :: prepare () {
// First , clear out the group centers

while( ! group centers .empty () ){

free( group centers .top() );

group centers .pop();
}

// See if there 's a cwd prepare , call it if so.

lua getglobal (Lua , " cwd prepare ");

if( lua isfunction (Lua , –1) == 1 ) {

vector<double> cwd status ;

cwd trees –>clear ();

TreeList ∗∗ cwd log , ∗∗ cwd snag ;

cwd log = my stand –>cwd log ;

cwd snag = my stand –>cwd snag ;

double log status [] =

{( double) st log 1 , (double) st log 2 , (double) st log 3 ,

(double) st log 4 , (double) st log 5 };

double snag status [] =

{( double) st snag 1 , (double) st snag 2 , (double) st snag 3 ,

(double) st snag 4 , (double) st snag 5 };

for( int i=0; i<5; i++) {

for( TreeList :: iterator it = cwd log [i]–>begin ();

it != cwd log [i]–>end(); it++) {

if( is it inside ( ∗ it ) ){

cwd trees –>push back ( ∗ it );

cwd status . push back ( log status [i] );
}

}

for( TreeList :: iterator it = cwd snag [i]–>begin ();

it != cwd snag [i]–>end(); it++) {

if( is it inside ( ∗ it ) ){
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cwd trees –>push back ( ∗ it );

cwd status . push back ( snag status [i] );
}

}
}

tree vector to lua ( cwd trees );

status vector to lua ( & cwd status );

lua pcall (Lua , 2, 0, 0);

} else {

lua pop (Lua , 1);
}

TreeList ∗ living = my stand –>living;

harvestable trees –>clear ();
// Build the list of harvestable trees.

for( TreeList :: iterator it = living –>begin ();

it != living –>end(); it++) {

if( is it inside ( ∗ it ) ){

harvestable trees –>push back ( ∗ it );

(∗ it)–>force save ();
}

}

random shuffle ( harvestable trees –>begin (), harvestable trees –>end() );

// Assemble the args for prepare , and call it.

lua getglobal (Lua , "prepare");

tree vector to lua ( harvestable trees );

lua pcall (Lua ,1,0,0);
}

void Harvest :: perform () {

for( vector<TreePtr>::iterator it = harvestable trees –>begin ();

it != harvestable trees –>end(); it++) {

int c = cut this tree ( ∗ it );

if (c>20) {

c –= 20;

my stand –>clean around and delay (∗ it);
}

switch(c){

case 1: (∗ it)–>SetStatus( st cut ); break;

case 2: (∗ it)–>SetStatus( st cut girdle ); break;

case 3: (∗ it)–>SetStatus( st cut leave ); break;
}

}

harvestable trees –>clear ();
}

void Harvest :: do harvest () {

if( is it time ( my stand –>year ) ){

prepare ();

perform ();

l fetch groups ();

do planting ();
}

}
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void Harvest :: l fetch groups () {

point t ∗ pt;

lua getglobal (Lua , " gcs group centers ");

if( lua istable (Lua , 1) ){

lua pushnil (Lua);

while ( lua next (Lua , 1) != 0) {

lua getfield (Lua , –1, "x");

lua getfield (Lua , –2, "y");

pt = ( point t ∗) malloc(sizeof( point t )); CHK MEM (pt);

pt–>y = lua tonumber (Lua , –1);

pt–>x = lua tonumber (Lua , –2);

group centers .push(pt);

lua pop ( Lua , 3 );
}

lua newtable (Lua);

lua setglobal (Lua , " gcs group centers ");
}

lua pop (Lua , 1);
}

void Harvest :: do planting () {

lua getglobal (Lua , " trees to plant ");

if ( lua istable (Lua ,1) ){

lua pushnil (Lua);

while ( lua next (Lua , 1) != 0) {

lua getfield (Lua , –1, "x");

lua getfield (Lua , –2, "y");

lua getfield (Lua , –3, "sp");

lua getfield (Lua , –4, "dbh");

double dbh = lua tonumber (Lua , –1);

int sp = lua tointeger (Lua , –2);

double y = lua tonumber (Lua , –3);

double x = lua tonumber (Lua , –4);

lua pop ( Lua , 5);

my stand –>plant tree ( x, y, ( species t ) sp , dbh);
}

lua newtable (Lua);

lua setglobal (Lua , " trees to plant ");
}

lua pop (Lua , 1);
}

/∗ ∗ Gets the next group center , or NULL if none exists.

It's the caller 's job to free the point t returned.

∗/

point t ∗ Harvest :: get group () {

point t ∗ rc = NULL;

if( ! group centers .empty () ){

rc = group centers .top();

group centers .pop();
}

return rc;
}
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C.5 TreeDB.cp
// –∗ – C++ –∗ –

#include <assert.h>

#include <stdlib.h>

#include <math.h>

#include "version.h"

#include "Tree.h"

#include "TreeDB.h"

#include "Stand.h"

#include "util.h"

extern int save interval ;

class sqlite exception {

public:

const char ∗ error message ;

int error code ;

sqlite exception (sqlite3 ∗ db){

error message = sqlite3 errmsg (db);

error code = sqlite3 errcode (db);

printf("sqlite error %i: %s\n", error code , error message );
}

};

void TreeDB :: db prepare ( sqlite3 stmt ∗∗ st , const char ∗ cmd){

int rc;

if( (rc= sqlite3 prepare (db ,cmd , –1,st ,0)) != SQLITE OK )

throw sqlite exception (db);
}

void TreeDB :: db finalize ( sqlite3 stmt ∗ st){

int rc;

if( (rc= sqlite3 finalize (st))!= SQLITE OK ) throw sqlite exception (db);
}

void TreeDB :: db step ( sqlite3 stmt ∗ st){

int rc;

if( (rc= sqlite3 step (st))!= SQLITE DONE ) throw sqlite exception (db);

if( (rc= sqlite3 reset (st))!= SQLITE OK ) throw sqlite exception (db);
}

void TreeDB :: db bind double ( sqlite3 stmt ∗ st , int pos , double d){

if( sqlite3 bind double (st , pos , d)!= SQLITE OK ) throw sqlite exception (db);
}

void TreeDB :: db bind int ( sqlite3 stmt ∗ st , int pos , int d){

if( sqlite3 bind int (st , pos , d)!= SQLITE OK ) throw sqlite exception (db);
}

void TreeDB :: db bind text ( sqlite3 stmt ∗ st , int pos , char ∗ d){

if( sqlite3 bind text (st, pos , d, strlen(d), SQLITE STATIC )!= SQLITE OK )

throw sqlite exception (db);
}

void TreeDB ::open(char ∗ fname){

if( sqlite3 open (fname , &db) != SQLITE OK ) throw sqlite exception (db);
}

void TreeDB :: close () {
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db finalize (stmt. begin tx );

db finalize (stmt. end tx );

db finalize (stmt. trees ins );

db finalize (stmt. size ins );

db finalize (stmt. gap ins );

db finalize (stmt. birth ins );

db finalize (stmt. live ins );

db finalize (stmt. dead ins );

db finalize (stmt. cut taken ins );

db finalize (stmt. cut left ins );

db finalize (stmt. wind ins );

db finalize (stmt. storm ins );

db finalize (stmt. cwd out ins );

db finalize (stmt. stocking ins );

for( int i=0; i<5; i++) {

db finalize (stmt. cwd log ins [i]);

db finalize (stmt. cwd snag ins [i]);
}

if( sqlite3 close (db)!= SQLITE OK ) throw sqlite exception (db);
}

void TreeDB ::sql(const char ∗ cmd){

if( sqlite3 exec (db, cmd , 0, 0, 0) != SQLITE OK )

throw sqlite exception (db);
}

void TreeDB ::init(int xmax , int ymax){

sql("begin transaction ;\n"
// CANOPY information

"create table schema version (value int);\n"

"insert into schema version values (22) ;\n"

"create table canopy version (value text);\n"

"create table canopy changes (value text);\n"

// Simulation information

"create table sim args (value text);\n"

// Tree – level information

"create table trees (treeno int , x float , y float , species int ,\n"

" primary key(treeno));\n"

"create table sizes (treeno int , year int ,\n"

" n float , e float , s float , w float , \n"

" nexp float , eexp float , sexp float , wexp float , \n"

" dbh float , ht float , hbc float , hwc float , \n"

" relht float , reld float , \n"

" age int , \n"

" primary key(treeno ,year));\n"

// Gap information:

"create table gaps (treeno int , year int ,\n"

" gap age int , gap area float , comp sap tca float , comp sap ci float , \n"

" primary key(treeno ,year));\n"

"create table birth(treeno int , year int , primary key(treeno));\n"

"create table live (treeno int , year int , primary key(treeno ,year));\n"
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"create table dead (treeno int , year int , primary key(treeno));\n"

"create table cut taken (treeno int , year int , primary key(treeno));\n"

"create table cut left (treeno int , year int , primary key(treeno));\n"

"create table wind (treeno int , year int , primary key(treeno));\n"

//CWD information

"create table cwd log 1 (treeno int ,year int ,primary key(treeno ,year));\n"

"create table cwd log 2 (treeno int ,year int ,primary key(treeno ,year));\n"

"create table cwd log 3 (treeno int ,year int ,primary key(treeno ,year));\n"

"create table cwd log 4 (treeno int ,year int ,primary key(treeno ,year));\n"

"create table cwd log 5 (treeno int ,year int ,primary key(treeno ,year));\n"

"create table cwd snag 1 (treeno int ,year int ,primary key(treeno ,year));\n"

"create table cwd snag 2 (treeno int ,year int ,primary key(treeno ,year));\n"

"create table cwd snag 3 (treeno int ,year int ,primary key(treeno ,year));\n"

"create table cwd snag 4 (treeno int ,year int ,primary key(treeno ,year));\n"

"create table cwd snag 5 (treeno int ,year int ,primary key(treeno ,year));\n"

"create table cwd out (treeno int , year int , primary key(treeno));\n"

// Plot – level information

"create table plotinfo (xmax int , ymax int);\n"

"create table stocking (year int , x int , y int ,\n"

" type int , stocking level float);\n"

"create table storms (year int , target int , severity double , primary key(year));\n"

// Views , to make extracting stuff user – friendly

"create view cut as select ∗ from cut taken union \n"

" select ∗ from cut left ;\n"

"create view live trees as select ∗ from \n"

" (select ∗ from live left outer join trees using(treeno)) \n"

" join sizes using(treeno ,year);\n"

"create view new trees as select ∗ from \n"

" birth join live trees using(treeno ,year);\n"

"create view dead trees as select ∗ from \n"

" (select ∗ from dead left outer join trees using(treeno)) \n"

" join sizes using(treeno ,year);\n"

"create view cut taken trees as select ∗ from \n"

" (select ∗ from cut taken left outer join trees using(treeno)) \n"

" join sizes using(treeno ,year);\n"

"create view cut left trees as select ∗ from \n"

" (select ∗ from cut left left outer join trees using(treeno)) \n"

" join sizes using(treeno ,year);\n"

"create view cut trees as select ∗ from \n"

" (select ∗ from cut left outer join trees using(treeno)) \n"

" join sizes using(treeno ,year);\n"

"create view wind trees as select ∗ from \n"

" (select ∗ from wind left outer join trees using(treeno)) \n"

" join sizes using(treeno ,year);\n"

"commit ;\n");
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char ∗ tmp = (char ∗) malloc (50+ strlen( full version string )); CHK MEM (tmp);

sprintf(tmp , "insert into canopy version values (\ ’%s\’);",

full version string );

sql(tmp);

free(tmp);

tmp = (char ∗) malloc (50+ strlen( local changes string )); CHK MEM (tmp);

sprintf(tmp , "insert into canopy changes values (\ ’%s\’);",

local changes string );

sql(tmp);

free(tmp);

char cmd [1024];

snprintf(cmd ,1024 ,"insert into plotinfo values (%i,%i);\n",xmax ,ymax);

sql(cmd);

sql("pragma synchronous = off;");

db prepare ( &stmt.begin tx , "begin transaction");

db prepare ( &stmt.end tx , "end transaction");

db prepare ( &stmt.trees ins ,

"insert or ignore into trees (x,y,species ,treeno) "

"values (?,?,?,?)");

db prepare ( &stmt.size ins ,

"insert into sizes (year ,treeno ,dbh ,n,e,s,w,"

" nexp ,eexp ,sexp ,wexp ,ht,hbc ,hwc ,age ,relht ,reld)"

" values (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)");

db prepare ( &stmt.gap ins ,

"insert into gaps (year ,treeno ,gap age ,gap area , comp sap tca , comp sap ci ) "

" values (?,?,?,?,?,?)");

db prepare ( &stmt.birth ins ,"insert or ignore into birth values (?,?)");

db prepare ( &stmt.live ins , "insert or ignore into live values (?,?)");

db prepare ( &stmt.dead ins , "insert or ignore into dead values (?,?)" );

db prepare ( &stmt. cut taken ins , "insert or ignore into cut taken values (?,?)");

db prepare ( &stmt. cut left ins , "insert or ignore into cut left values (?,?)");

db prepare ( &stmt.wind ins , "insert or ignore into wind values (?,?)");

db prepare ( &stmt.storm ins ,"insert or ignore into storms values (?,?,?)");

db prepare ( &stmt. cwd out ins , "insert or ignore into cwd out values (?,?)");

db prepare ( &stmt.stocking ins , "insert or ignore into stocking values (?,?,?,?,?)");

for( int i=0; i<5; i++) {

char cmd [200];

sprintf(cmd , "insert or ignore into cwd log %i values (?,?)", i+1);

db prepare (&stmt. cwd log ins [i], cmd);

sprintf(cmd , "insert or ignore into cwd snag %i values (?,?)", i+1);

db prepare (&stmt. cwd snag ins [i], cmd);
}

}

void TreeDB :: size ins (TreePtr t, int year){

assert(year>=0);

int ns status = t–>need save (year);

if ( ns status ==2 | | ns status ==3) {
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// Check data before insertion.

assert( isfinite( t–>GetXCoord () ));

assert( isfinite( t–>GetYCoord () ));

assert( isfinite( t–>GetSpecies () ));

assert( isfinite( t–>GetTreeno () ));

db bind double ( stmt.trees ins , 1, t–>GetXCoord () );

db bind double ( stmt.trees ins , 2, t–>GetYCoord () );

db bind int ( stmt.trees ins , 3, t–>GetSpecies () );

db bind int ( stmt.trees ins , 4, t–>GetTreeno () );

db step ( stmt. trees ins );

if ( ns status ==2) {

db bind int ( stmt.birth ins , 1, t–>GetTreeno () );

db bind int ( stmt.birth ins , 2, year);

db step ( stmt. birth ins );
}

}

if (ns status >0){
// Extract data from the tree obj:

int treeno = t–>GetTreeno ();

double dbh = t–>GetDBH ();

double n = t–>get cr (0);

double e = t–>get cr (1);

double s = t–>get cr (2);

double w = t–>get cr (3);

double nexp = t–>get ecr (0);

double eexp = t–>get ecr (1);

double sexp = t–>get ecr (2);

double wexp = t–>get ecr (3);

double th = t–>GetTotalHeight ();

double bh = t–>GetBaseHeight ();

double wh = t–>GetWidestHeight ();

double age = t–>get age ();

double relht = t–>GetRH ();

double reld = t–>GetRD ();

// Check the data. If it's become corrupted , we want to explode.

assert( 0<= treeno );

assert( isfinite( dbh ) && 2 <= dbh );

assert( isfinite( n ) && 0<= n );

assert( isfinite( e ) && 0<= e );

assert( isfinite( s ) && 0<= s );

assert( isfinite( w ) && 0<= w );

assert( isfinite( nexp ) && 0<= nexp );

assert( isfinite( eexp ) && 0<= eexp );

assert( isfinite( sexp ) && 0<= sexp );

assert( isfinite( wexp ) && 0<= wexp );

assert( isfinite( th) && 0 <= th );

assert( isfinite( wh ) && 0 <= wh );

assert( isfinite( age ) && 0 <= age );

assert( isfinite( relht ) && 0 <= relht );

db bind int ( stmt.size ins , 1, year);
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db bind int ( stmt.size ins , 2, treeno );

db bind double ( stmt.size ins , 3, dbh );

db bind double ( stmt.size ins , 4, n );

db bind double ( stmt.size ins , 5, e );

db bind double ( stmt.size ins , 6, s );

db bind double ( stmt.size ins , 7, w );

db bind double ( stmt.size ins , 8, nexp );

db bind double ( stmt.size ins , 9, eexp );

db bind double ( stmt.size ins , 10, sexp );

db bind double ( stmt.size ins , 11, wexp );

db bind double ( stmt.size ins , 12, th );

db bind double ( stmt.size ins , 13, bh );

db bind double ( stmt.size ins , 14, wh );

db bind double ( stmt.size ins , 15, age );

db bind double ( stmt.size ins , 16, relht );

db bind double ( stmt.size ins , 17, reld );

if ( th<=17 && t–>GetSpecies () != sp ironwood ){

double g area = t–>get gap area ();

double g age = t–>get gap age ();

double comp sap tca = t–>get comp sap tca ();

double comp sap ci = t–>get comp sap ci ();

db bind int ( stmt.gap ins , 1, year);

db bind int ( stmt.gap ins , 2, treeno);

db bind double ( stmt.gap ins , 3, g age );

db bind double ( stmt.gap ins , 4, g area );

db bind double ( stmt.gap ins , 5, comp sap tca );

db bind double ( stmt.gap ins , 6, comp sap ci );

db step ( stmt. gap ins );
}

db step ( stmt. size ins );
}

}

void TreeDB :: insert(Stand ∗ st){

assert( st–>year >= 0 );

db step (stmt. begin tx );

TreeList :: iterator iter , stop;

stop=st–>living –>end();

for(iter=st–>living –>begin (); iter!=stop; iter ++) {

if( (∗ iter)–>big enough to save () ){

db bind int ( stmt.live ins , 1, (∗ iter)–>GetTreeno ());

db bind int ( stmt.live ins , 2, st–>year );

db step ( stmt. live ins );

size ins ( ∗ iter , st–>year);
}

}

stop=st–>dead –>end(); //haha!

for(iter=st–>dead –>begin (); iter!=stop; iter ++) {

if( ∗ iter == NULL ) {
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printf ("WARNING: null tree on the dead tree list \n");

} else {

if( (∗ iter)–>big enough to save () ){

db bind int (stmt.dead ins , 1, (∗ iter)–>GetTreeno ());

db bind int (stmt.dead ins , 2, st–>year );

db step (stmt. dead ins );

size ins ( ∗ iter , st–>year );
}

}
}

stop=st–>blown down –>end();

for(iter=st–>blown down –>begin (); iter!=stop; iter ++) {

if( (∗ iter)–>big enough to save () ){

db bind int (stmt.wind ins , 1, (∗ iter)–>GetTreeno ());

db bind int (stmt.wind ins , 2, st–>year);

db step (stmt. wind ins );

size ins ( ∗ iter , st–>year );
}

}

stop=st–>harvested –>end();

for(iter=st–>harvested –>begin (); iter!=stop; iter ++) {

if( (∗ iter)–>big enough to save () ){

db bind int (stmt. cut taken ins , 1, (∗ iter)–>GetTreeno ());

db bind int (stmt. cut taken ins , 2, st–>year);

db step (stmt. cut taken ins );
}

size ins (∗ iter , st–>year);
}

stop=st–>harvested left –>end();

for(iter=st–>harvested left –>begin (); iter!=stop; iter ++) {

if( (∗ iter)–>big enough to save () ){

db bind int (stmt. cut left ins , 1, (∗ iter)–>GetTreeno ());

db bind int (stmt. cut left ins , 2, st–>year);

db step (stmt. cut left ins );
}

size ins (∗ iter , st–>year);
}

if (st–>year% save interval ==0) {

for( int i=0; i<5; i++) {

stop=st–>cwd log [i]–>end();

for( iter= st–>cwd log [i]–>begin (); iter!= stop; iter++ ){

db bind int (stmt. cwd log ins [i], 1, (∗ iter)–>GetTreeno ());

db bind int (stmt. cwd log ins [i], 2, st–>year );

db step (stmt. cwd log ins [i] );
}

stop=st–>cwd snag [i]–>end();

for( iter= st–>cwd snag [i]–>begin (); iter!= stop; iter++ ){

db bind int (stmt. cwd snag ins [i], 1, (∗ iter)–>GetTreeno ());

db bind int (stmt. cwd snag ins [i], 2, st–>year );

db step (stmt. cwd snag ins [i]);
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}
}

stop=st–>cwd out –>end();

for( iter=st–>cwd out –>begin (); iter != stop; iter ++) {

db bind int (stmt. cwd out ins , 1, (∗ iter)–>GetTreeno ());

db bind int (stmt. cwd out ins , 2, st–>year);

db step (stmt. cwd out ins );
}

// Insert 900m2 stocking values:

for( int i=0; i<st–>xmax; i++ ){

for( int j=0; j<st–>ymax; j++ ){

db bind int ( stmt.stocking ins , 1, st–>year);

db bind int ( stmt.stocking ins , 2, i );

db bind int ( stmt.stocking ins , 3, j );

db bind int ( stmt.stocking ins , 4, 900 );

db bind double ( stmt.stocking ins , 5, st–>stocking 900 (i,j) );

db step ( stmt. stocking ins );
}

}
}

db step (stmt. end tx );
}

void TreeDB :: storm insert ( int year , int target , double severity){

db bind int (stmt.storm ins , 1, year);

db bind int (stmt.storm ins , 2, target);

db bind double (stmt.storm ins , 3, severity);

db step (stmt. storm ins );
}

void TreeDB :: begin tx () { db step (stmt. begin tx ); }

void TreeDB :: end tx () { db step (stmt. end tx ); }

void TreeDB :: argv ins (int argc , char ∗ argv []) {

int length = 0;

for( int i=0; i<argc; i++) {

length += strlen(argv[i]);

length += 1; // for a space or a null termination
}

char ∗ all args = (char ∗) calloc(length , sizeof(char)); CHK MEM ( all args );

for( int i=0; i<argc; i++) {

strcat(all args , argv[i]);

if (i< (argc –1) ) { strcat( all args , " "); }
}

sqlite3 stmt ∗ stmt;

db prepare ( &stmt , "insert into sim args values (?)");

db bind text ( stmt , 1, all args );

db step (stmt);

db finalize (stmt);

free( all args );
}
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C.6 LuaHelper.cp
// –∗ – C++ –∗ –

#include "LuaHelper.h"

extern "C" {

#include <lua.h>

#include <lauxlib.h>

#include <lualib.h>
}

LuaHelper :: LuaHelper( void ){

Lua = lua open ();

luaL openlibs (Lua);
}

//! Set a global value in this helper 's environment

void LuaHelper :: l setglobal (const char ∗ name , double value){

lua pushnumber (Lua , value );

lua setglobal (Lua , name);
}

//! Set a field in the Lua table sitting at TOS.

void LuaHelper :: l setfield (const char ∗ key , double value){

lua pushstring (Lua , key);

lua pushnumber (Lua , value);

lua settable (Lua , –3);
}

C.7 Random.cp
// –∗ – C++ –∗ –

#include <limits.h>

#include <stdlib.h>

#include <stdint.h>

#include <math.h>

#include <assert.h>

#include "util.h"

#include "Random.h"

#ifndef UINT32 MAX

#warning No definition found for UINT32 MAX ... Defining it myself

#define UINT32 MAX 0xffffffffU

#endif

double urand01 () {

double rc = (double)arc4random ()/ UINT32 MAX ;

assert(isfinite(rc) && 0< rc && rc < 1);

return rc;
}

double rnorm(double mean , double sd){

double rc;

do {

double u1= urand01 ();

double u2= urand01 ();

double z = sqrt ( –2∗ log( u1 )) ∗ cos (2∗ M PI ∗ u2);
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rc = mean + sd ∗ z;

} while ( ! isfinite(rc) );

return rc;
}

double rnorm trunc (double mean , double sd , double nsd){

double rc;

do {

rc = rnorm(mean ,sd);

} while( fabs(rc – mean) > nsd ∗ sd );

assert(isfinite(rc));

return rc;
}

double rnorm trunc (double mean , double sd){

return rnorm trunc (mean ,sd ,1.96);
}

C.8 StormModel.cp
// –∗ – C++ –∗ –

extern "C" {

#include <lua.h>

#include <lauxlib.h>

#include <lualib.h>
}

#include <assert.h>

#include "StormModel.h"

#include "Tree.h"

#include "Random.h"

/// This must determine storm severity.

/∗ ∗ If the severity is <10% ECA , there is no storm. ∗/

double StormModel :: storm eca removal (void){

double RN , percentECA;

RN = urand01 ();

// Roll a random number (RN) between 0 and 1:

// Like the old STORM simulation , work down from the most intense

// disturbance:

if (RN > 0.999732191) { percentECA = 70; return percentECA ;}

if (RN > 0.999479167) { percentECA = 60; return percentECA ;}

if (RN > 0.998986829) { percentECA = 50; return percentECA ;}

if (RN > 0.998031496) { percentECA = 40; return percentECA ;}

if (RN > 0.996168582) { percentECA = 30; return percentECA ;}

if (RN > 0.992537313) { percentECA = 20; return percentECA ;}

if (RN > 0.985507246) { percentECA = 10; return percentECA ;}

return 0;
}

double StormModel :: severity index (double percent eca ){

double X = ( –0.00482864898067599) + ( 0.00770638698811676) ∗ percent eca ;

return fmin(1,fmax(0,X));
}

/// determine if there is a storm.

/∗ If so , determine its severity and convert to severity index (Si)

for each tree in the list living
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if rand() < Tree:: blowdown(Si) {
add to blown down ∗/

double StormModel :: storm(double si , TreeList ∗ living , TreeSet ∗ blown down ){

double eca removed = 0;

blown down –>clear ();

for(TreeList :: iterator it = living –>begin ();

it != living –>end(); it++) {

if ( urand01 () < (∗ it)–>blowDown(si) ){

blown down –>insert( (∗ it)–>GetTreeno () );

eca removed += (∗ it)–>get eca ();
}

}

return eca removed ;
}

StormModel :: StormModel(char ∗ fname){

l setglobal (" storm stochastic ", –1 );

l setglobal (" storm none ", 0 );

int error = luaL loadfile (Lua , fname) | | lua pcall (Lua , 0, 0, 0);

if (error) {

fprintf(stderr , "%s", lua tostring (Lua , –1));

lua pop (Lua , 1);

exit (1);
}

}

int StormModel :: get storm specification (int year){
// –1 : stochastic storm simulation

// 0 : no storm in this year

// Other: Specified removal given by return value

int rc;

lua getglobal (Lua , " get storm specification ");

lua pushnumber (Lua , (double)year );

lua pcall (Lua ,1,1,0);

assert( lua isnumber (Lua , –1));

rc = (int) lua tonumber (Lua , –1);

lua pop (Lua , 1);

return rc;
}

C.9 TreeData.cp
// –∗ – c++ –∗ –

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ CTreeData.cp ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/

#include <assert.h>

#include <unistd.h>

#include "util.h"

#include "TreeData.h"

#include "Tree.h"

#include "CanopyGlobals.h"

#include "Random.h"

/// Convert a string to an htype t

htype t TreeData :: string to htype (char ∗ string){
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htype t rc;

if ( strcmp(string ,"AOCa")==0 ){ rc= ht AOCa ; }

else if( strcmp(string ,"ATD" )==0 ){ rc= ht ATD ; }

else if( strcmp(string ,"ATM" )==0 ){ rc= ht ATM ; }
// Equivalents:

else if( strcmp(string , "TD" )==0 ){ rc= ht ATD ; }

else if( strcmp(string , "TMC")==0 ){ rc= ht ATM ; }

else if( strcmp(string , "FI" )==0 ){ rc= ht AOCa ; }

else {

printf("ERROR (%s:%i): Unknown habitat type: %s\n",

FILE , LINE , string );

exit (1);
}

return rc;
}

///ReadHabSpec

/∗ ∗ Reads a habitat specification from a file. ∗/

hdata t ∗ TreeData :: ReadHabSpec(char ∗ file){

FILE ∗ fp = fopen(file ,"r");

int nrow =0;

int ncol =1;

char c;

hdata t ∗ rc = ( hdata t ∗) malloc( sizeof( hdata t ) ); CHK MEM (rc);

// Count the number of columns in the first row.

while( (c=fgetc(fp)) != ’\n’ ) {

if( c==’,’ ) ncol ++;
}

fseek(fp ,0, SEEK SET );

while( (c=fgetc(fp)) != EOF ){

if( c==’\n’ ) nrow ++;
// Should assert () that all ncol are equal.

}

fseek(fp ,0, SEEK SET );

rc–>hdata =( htype t ∗∗) malloc( (nrow) ∗ sizeof( htype t ∗)); CHK MEM (rc–>hdata);

for(int i=0; i<nrow; i++) {

rc–>hdata[i]=( htype t ∗) malloc( ncol ∗ sizeof( htype t )); CHK MEM (rc–>hdata[i]);
}

rc–>ncol = ncol;

rc–>nrow = nrow;

int row =0;

int col =0;

int bufpos =0;

char buf [20];

while( (c=fgetc(fp)) != EOF ){
// if c ~= m/[A –Za –z]/

if( (’A’<=c && c<=’Z’) | | (’a’<=c && c<=’z’) ){

buf[bufpos ++]=c;
}

if( c==’,’ | | c==’\n’ ){
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buf[bufpos ]=’\0 ’;

rc–>hdata[row][col]= string to htype (buf);

if(c==’,’){ col ++; }

if(c==’\n’){

col =0;

row ++;
}

bufpos = 0;
}

}

fclose(fp);

// 0,0 is the soutwest corner.

// Because I read in row – ordering , my habitat types are upside down.

// fix this:

for(row = 0; row<=floor( (nrow –1) /2 ); row ++) {

htype t ∗ tmp;

int first = row;

int second = nrow – row –1;

tmp = rc–>hdata[second ];

rc–>hdata[second ]=rc–>hdata[first ];

rc–>hdata[first ]=tmp;
}

return rc;
}

hdata t ∗ TreeData :: GenerateHabitatSpec(char ∗ type ,

double width , double height){

int nrow = floor( height /10 );

int ncol = floor( width /10 );

htype t tgt type = string to htype (type);

hdata t ∗ rc = ( hdata t ∗) malloc( sizeof( hdata t ) ); CHK MEM (rc);

rc–>nrow = nrow;

rc–>ncol = ncol;

rc–>hdata =( htype t ∗∗) malloc( (nrow) ∗ sizeof( htype t ∗)); CHK MEM ( rc–>hdata);

for(int i=0; i<nrow; i++) {

rc–>hdata[i]=( htype t ∗) malloc( ncol ∗ sizeof( htype t )); CHK MEM ( rc–>hdata[i] )
}

for(int i=0; i<nrow; i++) {

for( int j=0; j<ncol; j++) {

rc–>hdata[i][j] = tgt type ;
}

}

return rc;
}

void TreeData :: ReadTreeList(char ∗ file , TreeList ∗ aTreeList , hdata t ∗ &hd ,

int nx , int ny){

int rc;
// First , check to see if there is an hdata file

char hdata fname [1024]; // PATH MAX , maybe ?

rc = snprintf(hdata fname , 1024, "%s.ht", file);
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if (rc>1024) { exit (1); }

if ( access( hdata fname , R OK ) == 0 ){

hd = ReadHabSpec( hdata fname );

} else {

hd = NULL;
}

FILE ∗ fp = fopen(file ,"r");

int line =1;

// Read in comments in the header , ditch them.

char c;

while( (c=getc(fp)) == ’#’ ){

while( getc(fp) != ’\n’) { ; }

line ++;
}

ungetc(c, fp); // We went one too far. put it back.

char file type [512];

rc = fscanf(fp , "%[A –z0 –9 –]\n", file type ); line ++;

assert(rc==1);

if ( strcmp(file type , "CANOPY spatial TreeList rev 1")==0 ){

this –>read spatial t1 ( aTreeList , fp , line , hd );

} else if ( strcmp(file type , "CANOPY non – spatial TreeList rev 1")==0) {

rc=fscanf(fp , "Treeno Species dbh cm ht m \n"); line ++;

assert(rc==0);

this –>read nonspatial t1 (aTreeList , fp , line , hd);

} else if ( strcmp(file type , "CANOPY non – spatial TreeList rev 2")==0) {

rc=fscanf(fp , "Plot Treeno Species dbh cm ht m \n"); line ++;

assert(rc==0);

this –>read nonspatial t2 (aTreeList , fp , line , hd);

} else if ( strcmp(file type , "CANOPY non – spatial TreeList rev 3")==0) {

int nx , ny;

double width , height;

char habitat type [512];

// Read the header specifying the format.

rc = fscanf(fp , "Plot Width (m,ncells): %lf , %i\n", &width , &nx); line ++;

assert(rc==2);

rc = fscanf(fp , "Plot Height (m,ncells): %lf , %i\n", &height , &ny); line ++;

assert(rc==2);

rc = fscanf(fp , "Habitat type: %s\n", habitat type ); line ++;

assert(rc==1);

rc = fscanf(fp , "Px Py Treeno Species dbh cm \n"); line ++;

assert(rc==0);

hd = GenerateHabitatSpec( habitat type , width , height);

double cell width = width / nx;

double cell height = height / ny;

this –>read nonspatial t3 (aTreeList , fp , line , hd ,

cell width , cell height );

} else {
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printf("Unknown file format \n");

exit (1);
}

if( nx > 1 | | ny > 1 ) {

this –>multiply tl (aTreeList , hd , nx , ny);

this –>multiply ht (hd , nx , ny);
}

fclose(fp);
}

void TreeData :: read spatial t1 (TreeList ∗ tl , FILE ∗ fp ,

int& line , hdata t ∗ hd){

int TreeNo;

double xCoord , yCoord , DBH , TotalHeight;

double BaseHeight , WidestHeight;

double NorthTotal , NorthExp , EastTotal , EastExp;

double SouthTotal , SouthExp , WestTotal , WestExp;

double Distance , Azimuth;

int Species , CC , Status;

double BasalArea , PreviousBA;

int count;

while( (count=fscanf(fp ,

"%li \t%lf \t%lf \t%i\t%i\t%lf \t%lf \t%lf \t"

"%lf \t%lf \t%lf \t%lf \t%lf \t%lf \t%lf \t%lf \t"

"%lf \t%lf \t%lf \t%i\t%lf \t%lf \n",

&TreeNo , &xCoord , &yCoord , &Species , &CC, &DBH ,

&TotalHeight , &BaseHeight , &WidestHeight ,

&NorthTotal , &NorthExp , &EastTotal , &EastExp ,

&SouthTotal , &SouthExp , &WestTotal , &WestExp ,

&Distance , &Azimuth , &Status ,

&BasalArea , &PreviousBA )) >0 ){

if(count ==22) {

xCoord = fmin (10.0∗hd–>ncol –0.01 , fmax(0, xCoord));

yCoord = fmin (10.0∗hd–>nrow –0.01 , fmax(0, yCoord));

TreePtr tree ( new Tree(TreeNo , xCoord , yCoord , DBH , ( species t ) Species ,

NorthTotal , EastTotal , SouthTotal , WestTotal , hd) );

tree –>SetStatus( ( status t )Status );

tl–>push front (tree);

} else {

printf("ERROR: %i data items (need 22) on line %i\n",

count , line);

exit (1);
}

line ++;
}

}

void TreeData :: read nonspatial t1 (TreeList ∗ tl , FILE ∗ fp ,

int& line , hdata t ∗ hd){

int treeno , sp;

double dbh , ht;

int count;

while( (count=fscanf(fp , "%i %i %lf %lf \n", &treeno , &sp , &dbh , &ht)) >0 ){

if(count ==4) {
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TreePtr tree (new Tree(5, 5, dbh , ( species t )sp , –1, –1, –1, –1, hd) );

tree –>SetStatus( st live );

tl–>push front (tree);

} else {

printf("ERROR: file format seems wrong (line %i)\n",line);

exit (1);
}

line ++;
}

}

void TreeData :: read nonspatial t2 (TreeList ∗ tl , FILE ∗ fp ,

int& line , hdata t ∗ hd){

int plot , treeno , sp , count;

double dbh , ht;

while( (count=fscanf(fp ,"%i %i %i %lf %lf \n",

&plot ,&treeno ,&sp ,&dbh ,&ht)) >0 ){

if( count ==5) {

TreePtr tree (new Tree (10∗( plot –1) +5,5,dbh ,( species t )sp , –1, –1, –1, –1,hd) );

tree –>SetStatus( st live );

tl–>push front (tree);

} else {

printf("ERROR: file format seems wrong (line %i)\n", line);

exit (1);
}

line ++;
}

}

void TreeData :: read nonspatial t3 (TreeList ∗ tl , FILE ∗ fp ,

int& line , hdata t ∗ hd ,

double cell width , double cell height ){

int px , py, treeno , species , count;

double dbh;

while ( (count = fscanf(fp , "%i %i %i %i %lf \n",

&px , &py , &treeno , &species , &dbh)) >0 ){

if (count ==5) {

if ( dbh >= 2.0 ) {

double x = cell width ∗ urand01 () + (px –1) ∗ cell width ;

double y = cell height ∗ urand01 () + (py –1) ∗ cell height ;

TreePtr tree (new Tree( x, y, dbh , ( species t )species ,

–1, –1, –1, –1,

hd) );

tree –>SetStatus( st live );

tl–>push front (tree);
}

} else {

printf("ERROR: file format seems wrong (line %i)\n", line);

exit (1);
}

line ++;
}

}

/∗ ∗ Multiply a habitat type grid.

htype – the habitat type to be multiplied

nx – the number of replicates to make in the x direction

ny – the number of replicates to make in the Y direction
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∗/

void TreeData :: multiply ht ( hdata t ∗ hd , int nx , int ny){

check init flips (nx ,ny);

int old ncol = hd–>ncol;

int old nrow = hd–>nrow;

int ncol = nx ∗ old ncol ;

int nrow = ny ∗ old nrow ;

// Expand this htype to be big enough:

hd–>hdata =( htype t ∗∗) realloc(hd–>hdata ,nrow ∗ sizeof( htype t ∗)); CHK MEM (hd–>hdata);

// Expand the existing rows:

for( int i=0; i< old nrow ; i++) {

hd–>hdata[i]=( htype t ∗) realloc(hd–>hdata[i],ncol ∗ sizeof( htype t ));

CHK MEM (hd–>hdata[i]);
}

// Create new rows as needed:

for( int i= old nrow ; i<nrow; i++) {

hd–>hdata[i]=( htype t ∗) malloc( ncol ∗ sizeof( htype t )); CHK MEM ( hd–>hdata[i] );
}

hd–>ncol = ncol;

hd–>nrow = nrow;

// Now , iterate through the area , scattering copies as required:

for(int i=0; i<nrow; i++) {

for( int j=0; j<ncol; j++) {
// If we're in a new area (eg. outside the old bounds):

if( old nrow <= i | | old ncol <= j ){

int old i = i% old nrow ;

int old j = j% old ncol ;

int fx = floor(j/ old ncol );

int fy = floor(i/ old nrow );

if( flips[fx][fy] & 0x1 ){ old i = (old ncol –1) – old i ; }

if( flips[fx][fy] & 0x2 ){ old j = (old nrow –1) – old j ; }

hd–>hdata[i][j]=hd–>hdata[ old i ][ old j ];
}

}
}

}

/∗ ∗ Multiply a treelist.

tl – the source treelist

ht – the source habitat type grid (matching the source tl).

nx – the number of replicates to make in the x direction

ny – the number of replicates to make in the y direction

∗/

void TreeData :: multiply tl (TreeList ∗ tl , hdata t ∗ hd , int nx , int ny){

double xmax = 10.0∗hd–>ncol;

double ymax = 10.0∗hd–>nrow;

TreeList ∗ tmp = new TreeList ();

check init flips (nx ,ny);

for( TreeList :: iterator iter = tl–>begin ();
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iter != tl–>end(); iter ++) {

for( int i=0; i<nx; i++ ){

for( int j=0; j<ny; j++ ){

if( i>0 | | j>0 ){

TreePtr t(new Tree());

// Do a member – wise copy of the current tree.

∗t = ∗(∗ iter);

double xi = (∗ iter)–>GetXCoord ();

double yi = (∗ iter)–>GetYCoord ();

if( flips[i][j] & 0x1 ) { xi = xmax – xi; }

if( flips[i][j] & 0x2 ) { yi = ymax – yi; }

//Do coord transform.

t–>SetXCoord( xmax ∗i + xi );

t–>SetYCoord( ymax ∗j + yi );

// Push the transformed tree onto the new treelist.

tmp –> push front (t);
}

}
}

}

tl–>splice(tl–>end(), ∗ tmp);

delete tmp;
}

void TreeData :: check init flips (int nx , int ny){

if( flips == NULL) {

flip x = nx;

flip y = ny;

flips = (short ∗∗) malloc(nx ∗ sizeof(short ∗)); CHK MEM (flips);

for( int i=0; i<nx; i++) {

flips[i] = (short ∗) malloc(ny ∗ sizeof(short)); CHK MEM (flips[i]);
}

for( int i=0; i<nx; i++) {

for( int j=0; j<ny; j++) {

if( i==0 && j == 0 ) {

flips[i][j]=0;

} else {

flips[i][j] = 1∗ round(urand01 ())+2∗ round(urand01 ());
}

}
}

} else {

assert( nx == flip x );

assert( ny == flip y );
}

}

TreeData :: TreeData () {

flips=NULL;
}

TreeData ::~ TreeData () {

if (flips != NULL) {
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for (int i=0; i<flip x ; i++) {

free(flips[i]);
}

free(flips);
}

}

C.10 TreeGrid.cp
// –∗ – c++ –∗ –

#include <list.h>

#include <assert.h>

#include "util.h"

#include "CanopyGlobals.h"

#include "Tree.h"

#include "TreeGrid.h"

#include "Stand.h"

TreeGrid :: TreeGrid(Stand ∗ st in ){
// Initialize the grid , start empty.

st = st in ;

grid = (TreeList ∗∗∗) malloc( st–>xmax ∗ sizeof(TreeList ∗∗) ); CHK MEM ( grid );

for (int i=0; i<st–>xmax; i++) {

grid[i]=( TreeList ∗∗) malloc( st–>ymax ∗ sizeof(TreeList ∗)); CHK MEM (grid[i]);

for( int j=0; j<st–>ymax; j++) {

grid[i][j] = new TreeList ();
}

}
}

///Add trees in to the TreeGrid

void TreeGrid :: add trees (TreeList ∗ trees){

for( TreeList :: iterator it = trees –>begin (); it != trees –>end(); it++) {

add tree ( ∗ it );
}

}

void TreeGrid :: add tree ( TreePtr t){

int i = floor( t–>GetXCoord () / 10 );

int j = floor( t–>GetYCoord () / 10 );

grid[i][j]–>push front ( t );
}

/// Start a new search and specify where it will be

void TreeGrid :: set search center (double x, double y){

cur i = floor(x/10);

cur j = floor(y/10);

cur i = cur i – st–>xmax ∗ floor( cur i /st–>xmax);

cur j = cur j – st–>ymax ∗ floor( cur j /st–>ymax);

center x = x;

center y = y;

cur n =0;

cur list = grid[ cur i ][ cur j ];
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// Need to sort?

Stand :: fixed dist comp t cmp;

cmp.xc = center x ;

cmp.yc = center y ;

cmp.st = st;

cur list –>sort(cmp);

cur tree = cur list –>begin ();
}

/// When we've finished in one bucket , determine the next bucket

/∗ ∗ The math in this one is a little hairy. It will produce a sequence

of x/y offsets that when added to the current search center will

form a grid like this , with center at (0):

[ 9] [10] [11] [12] [16]

[24] [ 1] [ 2] [ 4] [15]

[23] [ 8] ( 0) [ 3] [14]

[22] [ 7] [ 5] [ 6] [13]

[21] [17] [18] [19] [20]

int ∗ o is a pointer to an int [2] which will receive the offset

int n is the index number of the requested tile.

∗/

void TreeGrid :: perform offset (int ∗ o, int n){

if( n>0 ){

int r=0;

int np = n;

while( np > 8∗r ){

np –= 8∗r;

r++;
}

np – –;

int w=2∗r+1;

if ( 0 <= np && np < 2∗r ) { o[0]= np%w –r; o[1]= r; }

else if( 2∗r <= np && np < 4∗r ) { o[1]=(np –2∗ r)%w –r+1; o[0]= r; }

else if( 4∗r <= np && np < 6∗r ) { o[0]=(np –4∗ r)%w –r+1; o[1]= – r; }

else if( 6∗r <= np && np < 8∗r ) { o[1]=(np –6∗ r)%w –r; o[0]= – r; }

else {

assert (0);
}

} else {

o[0]=0;

o[1]=0;
}

}

/// Pull a tree out in distance order

/∗ ∗
Starts at the search center , presents trees in order if their

distance to the search center. Goes one bucket at a time outward

from there in the order defined by perform offset ()

Note: this stops after the 24th bucket , as that's enough for a

50x50 meter search area , 2500m^2, which is larger than the largest

gap in any of our data sources.

∗/

TreePtr TreeGrid :: get next tree () {

TreePtr rc;

while( cur tree == cur list –>end() && cur n <= 24 ){

int offset [2];
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perform offset (offset , ++ cur n );

int xp = cur i + offset [0];

int yp = cur j + offset [1];

xp = xp – st–>xmax ∗ floor( (float)xp / st–>xmax);

yp = yp – st–>ymax ∗ floor( (float)yp / st–>ymax);

cur list = grid[xp][yp];

Stand :: fixed dist comp t cmp;

cmp.xc = center x ;

cmp.yc = center y ;

cmp.st = st;

cur list –>sort(cmp);

cur tree = cur list –>begin ();
}

if( cur n <= 24 ){

rc = ∗ cur tree ;

cur tree ++;

} else {

rc.reset ();
}

return rc;
}

//Pull dead trees out of the grid

void TreeGrid :: remove dead () {

for (int i=0; i<st–>xmax; i++) {

for (int j=0; j<st–>ymax; j++) {

TreeList :: iterator it = grid[i][j]–>begin ();

while (it != grid[i][j]–>end() ){

if ( (∗ it)–>GetStatus () != st live ){

it = grid[i][j]–>erase(it);

} else {

it++;
}

}
}

}
}
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APPENDIX D
CANOPY source code: C++ header files

D.1 CanopyGlobals.h

#ifndef CanopyGlobals h

#define CanopyGlobals h

#include <list>

#include <set>

#include <tr1/memory>

// Constant definitions

typedef enum {

ht AOCa =0,

ht ATD =1,

ht ATM =2

} htype t ;

typedef struct {

int nrow , ncol;

htype t ∗∗ hdata;

} hdata t ;

typedef enum {
// Statuses that occur in datafiles.

// For these we need to define particular status codes.

st live =0, st dead =1, st cut =2,

st log 1 =11, st log 2 =12, st log 3 =13, st log 4 =14, st log 5 =15,

st snag 1 =21, st snag 2 =22, st snag 3 =23, st snag 4 =24, st snag 5 =25,
// Status codes used internally.

// Particular values don't matter.

st cut leave , st cut girdle , st out

} status t ;

typedef enum {

sp basswood = 2,

sp sugar maple = 4,

sp white ash = 13,

sp ironwood = 24,

sp hemlock = 5,

sp yellow birch = 6,
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sp red maple = 9,

sp white pine = 7,

sp paper birch = 1,

sp northern red oak = 10,

sp green ash = 14,

sp american elm = 21,

sp black cherry = 22,

sp mountain maple = 39,

sp balsam fir = 41,

sp white spruce = 43,

sp white cedar = 46

} species t ;

typedef enum {

stage sapling ,

stage pole ,

stage msm ,

stage mature ,

stage og la ,

stage og et ,

stage og lt ,

stage og ss

} stage t ;

// Type definitions needed nearly everywhere

class Tree;

typedef std::tr1:: shared ptr<Tree> TreePtr;

typedef std::list<TreePtr> TreeList;

struct ltlong {

bool operator ()(const long a, const long b) const {

return a < b;
}

};

typedef std::set<long , ltlong> TreeSet;

#endif

D.2 Harvest.h
// –∗ – C++ –∗ –

#ifndef harvest h

#define harvest h

#include "LuaHelper.h"

#include <vector.h>

#include <stack.h>

class Stand;

class Tree;

typedef struct {

double x,y;

} point t ;
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class Harvest : LuaHelper {

public:

Harvest(Stand ∗, char ∗);

void do harvest ();

point t ∗ get group ();

private:

Stand ∗ my stand ;

vector<TreePtr>∗ harvestable trees ;

vector<TreePtr>∗ cwd trees ;

stack<point t ∗> group centers ;

// Interfaces to Lua functions.

bool is it time (int);

bool is it inside (TreePtr);

int cut this tree (TreePtr);

void prepare ();

// Utility functions.

void tree to lua (TreePtr);

void tree vector to lua (vector<TreePtr >∗);

void status vector to lua ( vector<double >∗);

void perform ();

void l fetch groups (void);

void do planting (void);

};

#endif

D.3 LuaHelper.h
// –∗ – C++ –∗ –

#ifndef lua helper h

#define lua helper h

extern "C"{

#include <lua.h>
}

class LuaHelper {

public:

LuaHelper(void);

protected:

lua State ∗ Lua;

// Utility functions.

void l setfield (const char ∗, double);

void l setglobal (const char ∗, double);

};

#endif

D.4 Random.h
// –∗ – C++ –∗ –
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#ifndef Random h

#define Random h

double urand01 ();

double rnorm(double ,double);

double rnorm trunc (double ,double);

double rnorm trunc (double ,double ,double);

#endif // Random h

D.5 Stand.h
// –∗ – C++ –∗ –

#ifndef S t a nd h

#define S t a nd h

#include <list.h>

#include <slist.h>

#include "CanopyGlobals.h"

#include "Harvest.h"

#include "Tree.h"

class TreeDB;

class TreeGrid;

class StormModel;

typedef enum {

regen normal ,

regen stem exclusion ,

regen recovery

} regen mode ;

#define DFN PLOT STAT (FNAME) \

double FNAME ## ##100(int ,int); \

double FNAME ## ##800(int ,int); \

double FNAME ## ##900(int ,int)

#define DFN TREE STAT (FNAME) \

double FNAME ## ##100( TreePtr); \

double FNAME ## ##800( TreePtr); \

double FNAME ## ##900( TreePtr)

class Stand {

friend class Harvest;

friend class TreeDB;

friend class TreeGrid;

public:

Stand(char ∗,char ∗,int ,int , int , char ∗∗) ;

~Stand ();

void calculate (); // Calculates stocking , gap sizes , etc.

void regenerate ();

void grow();

void die();

void decay ();

bool wind(); // windstorm simulation
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void add harvester (char ∗);

void add storm model (char ∗);

void harvest ();

void plant tree (double , double , species t , double);

void inc year ();

void save();

void db close ();

private:
// Constant defs:

static const int n subplot species = 8;

// Type definitions:

typedef struct {

int n[ n subplot species ];

double ba[ n subplot species ];

double sap ba [ n subplot species ];

int N, n sap ;

double sum dbh , sum ba , harv ba ;

double sap sum ba ;

double sum ht , ref ht ;

} subplot t ;

typedef struct {

double sap ba , pol ba , mat ba , lrg ba , gap sap ba ;

} stage data t ;

typedef struct {

struct { double x, y; } subj;

struct { double x, y; } comp;

} coords t ;

typedef struct {

double xc , yc;

Stand ∗ st;

bool operator ()( const TreePtr T1 , const TreePtr T2) const {

double dist1 , dist2;

coords t T1 c , T2 c ;

T1 c .subj.x = xc;

T1 c .subj.y = yc;

T1 c .comp.x = T1–>GetXCoord ();

T1 c .comp.y = T1–>GetYCoord ();

T2 c .subj.x = xc;

T2 c .subj.y = yc;

T2 c .comp.x = T2–>GetXCoord ();

T2 c .comp.y = T2–>GetYCoord ();

st–>transform( xc , yc , T1 , T1 c );

st–>transform( xc , yc , T2 , T2 c );

dist1 = hypot( T1 c .comp.x – T1 c .subj.x,

T1 c .comp.y – T1 c .subj.y );
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dist2 = hypot( T2 c .comp.x – T2 c .subj.x,

T2 c .comp.y – T2 c .comp.y );

return dist1 < dist2;
}

} fixed dist comp t ;

// Instance variables:

TreeList ∗ living;

TreeList ∗ dead;

TreeList ∗ blown down ;

TreeList ∗ harvested;

TreeList ∗ harvested left ;

TreeList ∗ cwd log [5], ∗ cwd snag [5], ∗ cwd out ;

slist<Harvest∗> ∗ harvesters;

list<point t ∗> ∗ gcs group centers ;

list<double> ∗ storm queue ;

vector<TreePtr> ∗ babies;

TreeGrid ∗ the grid ;

StormModel ∗ my storm model ;

int storm clock ;

int year;

double xoff , yoff;

TreeDB ∗ tdb;

// The grid of subplots:

subplot t ∗∗ subplot 100 , ∗∗ subplot 800 , ∗∗ subplot 900 ;

TreeList ∗ ∗ ∗ subplot trees 100 , ∗ ∗ ∗ subplot trees 800 , ∗ ∗ ∗ subplot trees 900 ;

stage data t ∗∗ subplot stages 2500 ;

// For the "maintain smallest" mode:

unsigned int target sapling population ;

hdata t ∗ hdata;

int xmax , ymax;

double xmax meters , ymax meters ;

int ∗∗ regen delay counter ;

struct {

int px ,py;

double cum pi [7];

} sp prop ;

int SaplingCount(double x, double y);

int TreeCount(double x, double y);

int subplot idx ( species t s);

int x index (double x);

int y index (double y);

void stand init (TreeList ∗, hdata t ∗, char ∗, int , char ∗∗) ;

subplot t ∗∗ init subplot ();

TreeList ∗ ∗ ∗ init subplot trees ();

double stocking( subplot t ∗,double ,double);
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double stocking sm ( subplot t ∗,double ,double);

double stocking( subplot t ∗,double ,double ,bool);

DFN TREE STAT ( average height );

DFN TREE STAT ( average diam );

DFN TREE STAT (stocking);

DFN PLOT STAT (stocking);

DFN PLOT STAT ( stocking sm );

DFN PLOT STAT ( ref ba );

DFN PLOT STAT ( average height );

double ref ba (double ,double ,double);

double ref ba ( subplot t ∗);

double ref ht (TreeList ∗);

stage t get stage (int ,int);

stage t get stage (TreePtr);

void calculate stocking grid (TreeList ∗);

void compute fixed regen ();

void calculate whole plot ();

void calculate delay ();

void regenerate grid ();

void regenerate gcs ();

void update harv ba ( TreePtr );

species t RandomSpecies(int ,int);

species t RandomSpecies(int ,int ,double ,double ,double ,double ,double);

double PercentBA(species t , int , int);

void find gaps (void);

double triangle area (double ,double ,double);

double tree distance xy (TreePtr , TreePtr);

double tree distance rz (TreePtr , TreePtr);

double tree angle (TreePtr , TreePtr);

double calculate cr toward competitor xy (TreePtr , TreePtr);

double calculate cr toward competitor rz (TreePtr , TreePtr);

void check proximity to competitors ();

bool is tree harvestable (TreeList :: iterator);

void process subplot ( subplot t ∗, TreeList :: iterator);

void calculate crown status ();

void transform(double ,double ,TreePtr , coords t &);

void transform(TreePtr ,TreePtr , coords t &);

void cwd transition (TreeList ∗, TreeList ∗, double , double , status t );

void clean treelist (TreeList ∗);

void clean treelist rm (TreeList ∗);

int number of saplings (int ,int);

int number of saplings (int ,int ,double ,double ,double ,int);

TreePtr make baby (int ,int , species t );

TreePtr make baby (double ,double , species t );

TreePtr make baby (double ,double ,species t , double , bool);

void compute circular plot ( TreeList ∗, double , double &);

void compute circular plot ( TreeList ∗, double ,double&,double&,double&,double&,double &);

int sapling time to 2cm (int ,int);

void clean around and delay (TreePtr);

};

#undef DFN PLOT STAT
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#undef DFN TREE STAT

#endif // S t a nd h

D.6 StormModel.h
// –∗ – C++ –∗ –

#ifndef StormModel h

#define StormModel h

#include "CanopyGlobals.h"

#include "LuaHelper.h"

class StormModel : LuaHelper {

public:

StormModel(char ∗);

int get storm specification (int);

static double storm eca removal ();

static double severity index (double);

static double storm(double , TreeList ∗, TreeSet ∗);

};

#endif

D.7 Tree.h
// –∗ – C++ –∗ –

#ifndef T r e e h

#define T r e e h

class TreeDB;

#include <vector.h>

#include <math.h>

#include "CanopyGlobals.h"

#include "Random.h"

#include "TreeData.h"

//! Functions and data for dealing with individual trees

/∗ ∗
∗ Data contained:

∗ diamter , location , crown area

∗ Functions contained:

∗ growth , mortality prob , windthrow prob , allometric size relations.

∗/

class Tree {
// Allow related classes to access data from this class:

friend class Tester;

friend class TreeGrid;

friend class TreeData;

public:
// Constructors:

Tree();

Tree(double x, double y, double d, species t sp ,

double ncr , double ecr , double scr , double wcr , hdata t ∗);

Tree(int no , double x, double y, double d, species t sp ,

double ncr , double ecr , double scr , double wcr , hdata t ∗);

Tree(int no , double x, double y, double d, species t sp , hdata t ∗);
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Tree(double x, double y, double d, species t sp , hdata t ∗);

~Tree();

Tree& operator =(const Tree&);

void SetTreeData(long TreeNo , double xCoord , double yCoord ,

species t Species , short CC ,

double DBH , double TotalHeight ,

double BaseHeight ,

double WidestHeight , double NorthTotal ,

double NorthExp ,

double EastTotal , double EastExp ,

double SouthTotal ,

double SouthExp , double WestTotal , double WestExp ,

double Distance , double Azimuth , status t Status ,

double BasalArea , double PreviousBA ,

long YearsOnTreeList);

long GetTreeno(void);

long GetYearsOnTreeList(void);

species t GetSpecies(void);

double GetBA(void);

double GetDBH(void);

double GetRH(void);

double GetRD(void);

double GetMCR ();

status t GetStatus(void);

double get cr (int);

double GetBaseHeight ();

double GetWidestHeight ();

double GetTotalHeight ();

double GetXCoord(void);

double GetYCoord(void);

void SetRH(double);

void SetStatus( status t );

void SetTotalHeight(double);

double blowDown(double si );

void set dbh (double d);

double grow(double , double , stage t );

void set age (int);

void set born in sap stand ();

void set gap area (double);

double get gap area ();

void set comp sap tca (double);

double get comp sap tca ();

double get comp sap ci ();

void set shaded (int , bool);

void set facing gap (int , bool);

void set touching (int , bool);
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TreePtr get xy neighbor (int);

TreePtr get rz neighbor (int);

TreePtr get eca neighbor (int);

TreePtr get gap neighbor (int);

void set gap neighbor (int , TreePtr);

void set xy neighbor (int , TreePtr);

void set rz neighbor (int , TreePtr);

void set eca neighbor (int , TreePtr);

void set ecr (int ,double);

double get ecr (int);

double get eca (void);

double get tca (void);

void add competitor sapling (TreePtr , double);

void clear competitor saplings ();

double pdie(double , double , stage t , double);

double pdie old (double , stage t );

int get age ();

int get gap age ();

int need save (int);

bool big enough to save ();

void force save ();

private:

typedef struct {

double value;

bool is good ;

} cache var t ;

long treeNo;

double treeCoordX;

double treeCoordZ;

species t species;

double dbh;

double rel ht , rel diam ;

cache var t total height ;

cache var t base height ;

cache var t widest height ;

cache var t eca;

cache var t tca;

cache var t comp sap tca ;

cache var t comp sap ci ;

htype t habitat type ;

double crown radius [4];

double exposed crown radius [4];

status t status;
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int age , gap age ;

bool born in sap stand ;

bool touching [4], shaded [4];

int facing gap [4];

TreePtr xy neighbor [4];

TreePtr rz neighbor [4];

TreePtr eca neighbor [4];

TreePtr gap neighbor [8];

vector<TreePtr> competitor saplings ;

vector<double> competitor distances ;

double gap area ;

struct { double a,b; } storm;

cache var t stochastic lg grow modifier , stochastic hg modifier ,

stochastic ht dbh modifier ;

public:

typedef struct {

bool operator ()( const TreePtr T1 , const TreePtr T2) const {

return ( T2–>GetTotalHeight () < T1–>GetTotalHeight () );
}

} height comp t ;

private:

static int last treeno ;

struct { int last; bool need initial , need final , need forced ; } save status ;

static double pdie(species t , double , double , double , stage t );

static double pdie ht complex (htype t , species t , double , double , double , stage t );

static double pdie ht simple (htype t , species t , double , double , double , stage t );

void setStormCoefs( species t species );

void set( hdata t ∗, int no , double x, double y, double d, species t sp ,

double ncr , double ecr , double scr , double wcr );

void clear caches ();

double predict mcr ();

void set habitat ( hdata t ∗);

double get hgrow modifier ();

double get ht dbh modifier ();

bool is facing gap (int i);

void total height equation coefs (double ∗);

void SetXCoord(double);

void SetYCoord(double);

void set treeno (int);

double grow dbh (double , stage t );

double grow dbh new (double , stage t );

double grow ht ();

void grow branches (double ,double);

};
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#endif // T r e e h

D.8 TreeDB.h
// –∗ – C++ –∗ –

#ifndef TreeDB h

#define TreeDB h

#include <sqlite3.h>

#include "CanopyGlobals.h"

class Stand;

class TreeDB {

private:

sqlite3 ∗ db;

void sql(const char ∗);

void db prepare ( sqlite3 stmt ∗∗ st , const char ∗ cmd);

void db finalize ( sqlite3 stmt ∗ st);

void db step ( sqlite3 stmt ∗ st);

void db bind double ( sqlite3 stmt ∗ st , int pos , double d);

void db bind int ( sqlite3 stmt ∗ st , int pos , int d);

void db bind text ( sqlite3 stmt ∗st , int pos , char ∗ d);

struct {

sqlite3 stmt ∗ begin tx ;

sqlite3 stmt ∗ end tx ;

sqlite3 stmt ∗ trees ins ;

sqlite3 stmt ∗ size ins ;

sqlite3 stmt ∗ gap ins ;

sqlite3 stmt ∗ birth ins ;

sqlite3 stmt ∗ live ins ;

sqlite3 stmt ∗ cut taken ins ;

sqlite3 stmt ∗ cut left ins ;

sqlite3 stmt ∗ wind ins ;

sqlite3 stmt ∗ dead ins ;

sqlite3 stmt ∗ storm ins ;

sqlite3 stmt ∗ cwd log ins [5];

sqlite3 stmt ∗ cwd snag ins [5];

sqlite3 stmt ∗ cwd out ins ;

sqlite3 stmt ∗ stocking ins ;

} stmt;

public:

void open(char ∗);

void close ();

void begin tx ();

void end tx ();

void init(int ,int);

void insert(Stand ∗);

void storm insert (int , int , double);

void argv ins (int , char ∗∗) ;

private:

bool debug insert check (int ,int);
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void size ins (TreePtr ,int);

};

#endif // TreeDB h

D.9 TreeData.h
// –∗ – c++ –∗ –=

/∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ CTreeData.h ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗/

#ifndef TreeData h

#define TreeData h

#include "CanopyGlobals.h"

class TreeData {

private:

short ∗∗ flips;

int flip x , flip y ;

void check init flips (int ,int);

static htype t string to htype (char ∗);

void read spatial t1 (TreeList ∗, FILE ∗, int&, hdata t ∗);

void read nonspatial t1 (TreeList ∗, FILE ∗, int&, hdata t ∗);

void read nonspatial t2 (TreeList ∗, FILE ∗, int&, hdata t ∗);

void read nonspatial t3 (TreeList ∗, FILE ∗, int&, hdata t ∗, double , double);

static hdata t ∗ ReadHabSpec(char ∗);

hdata t ∗ GenerateHabitatSpec(char ∗, double , double);

void multiply ht ( hdata t ∗, int , int);

void multiply tl (TreeList ∗, hdata t ∗, int , int);

public:

void ReadTreeList(char ∗, TreeList ∗, hdata t ∗& , int , int);

TreeData(void);

~TreeData(void);

};

#endif

D.10 TreeGrid.h
// –∗ – c++ –∗ –

#ifndef TreeGrid h

#define TreeGrid h

#include "CanopyGlobals.h"

#include "Stand.h"

class TreeGrid {

public:

TreeGrid(Stand ∗);

void add trees (TreeList ∗);

void add tree ( TreePtr );

TreePtr get next tree ();

void set search center (double ,double);

void remove dead ();

private:
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void perform offset (int ∗, int);

TreeList ∗ ∗ ∗ grid;

Stand ∗ st;

TreeList ∗ cur list ;

TreeList :: iterator cur tree ;

int cur n , cur i , cur j ;

double center x , center y ;

};

#endif // TreeGrid h

D.11 util.h

#ifndef u t i l h

#define u t i l h

#ifdef OSX

# ifndef isfinite

# define isfinite(x) isfinited (x)

# endif

#endif // OSX

#define CHK MEM (x) \

if (x==NULL){ \

printf("Memory allocation failure at %s:%i\n", \

FILE , L I N E ); \

exit (1); \
}

#endif // u t i l h
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APPENDIX E
CANOPY source code: LUA modules

E.1 dsi_const_regen.lua

trees to plant = {}

function is it time (year) return true end

function is it inside (x,y) return true end

function cut this tree (tree) return 0 end

function prepare(treedata)

local n small = 0

local scale = (100∗100) / (xmax ∗ ymax)

for index ,tree in ipairs(treedata) do

if (tree.dbh <= 6 ) then

n small = n small + scale

end

end

if ( n small < tgt pop ) then

local to add = math.ceil( ( tgt pop – n small ) / scale)

for i=1, to add do

table.insert( trees to plant ,

{x=xmax ∗ math.random (), y=ymax ∗ math.random (), sp=4, dbh =2+4∗ math.random () } )

end

end

end

E.2 dsi_small_q.lua

function is it time (t) return true end

function is it inside (x,y) return true end

do

– – Strangely , Lua doesn ’t provide a math.round.

– – Provide our own , with probabilistic rounding of numbers == 0.5

local function round(x)

local fp = x – math.floor(x) – – fp: fractional part

if (fp < 0.5 or (fp ==0.5 and math.random ()<0.5) ) then
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return math.floor(x)

else

return math.ceil(x)

end

end

– – Size classes are 2 –7, 7 –12, 12 –17, 17 –22

local tgt n = { 0, 0, 0, 0}

local act n = { 0, 0, 0, 0}

function prepare(treedata)

– – Clear the counts of current trees:

for i=1,4 do act n [i] = 0 end

– – And re – compute the target distribution:

– – Count the number of 17 –22 cm trees

– – This will be used as the basis for our residual distribution

tgt n [4] = 0

for index ,tree in ipairs(treedata) do

if ( 17 <= tree.dbh and tree.dbh < 22 ) then

tgt n [4] = tgt n [4] + 1

end

end

– – Compute targets in other size classes based on 17 –22

for i=3,1, –1 do

tgt n [i] = tgt q ∗ tgt n [i+1]

end

– – Now round to the nearest whole number of trees:

for i=1,4 do

tgt n [i] = round( tgt n [i])

end

end

function cut this tree (tree)

local rc=0

if (tree.dbh > 17) then

rc=0

else

local ix

if (tree.dbh < 7 ) then ix=1

elseif (tree.dbh < 12) then ix=2

else ix=3

end

if ( act n [ix] >= tgt n [ix]) then

rc = 1

else

act n [ix] = act n [ix] + 1

rc = 0

end

end
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return rc

end

end
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APPENDIX F
CANOPY source code: post-processing

F.1 mk_std_report.pl
#!/usr/bin/perl

use POSIX qw(ceil);

use List::Util qw(min);

use File::Glob ’:glob’;

sub get cmd name {

my ( $basename) = @ ;

my $cmd name = $basename;

$cmd name =~ s/ (.) /\u \1/g ;

$cmd name =~ s/ –(.) /\u \1/g ;

$cmd name =~ s/0/ Zero/g;

$cmd name =~ s/1/ One/g;

$cmd name =~ s/2/ Two/g;

$cmd name =~ s/3/ Three/g;

$cmd name =~ s/4/ Four/g;

$cmd name =~ s/5/ Five/g;

$cmd name =~ s/6/ Six/g;

$cmd name =~ s/7/ Seven/g;

$cmd name =~ s/8/ Eight/g;

$cmd name =~ s/9/ Nine/g;

return $cmd name ;
}

sub begin doc {

print <<’END’;

\ documentclass[english ,10pt ]{ article }

\ usepackage[T1 ]{ fontenc }

\ usepackage { babel }

\ usepackage { graphicx }

\ usepackage { fancyhdr }

\ usepackage { hyperref }

\ usepackage { longtable }

\ usepackage[landscape ]{ geometry }
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\ geometry { verbose ,tmargin =0.75in ,bmargin =1in ,lmargin =1in ,rmargin =0.75 in }

\ pagestyle { fancy }

\ setlength {\ parindent }{0 pt }

\ begin { document }

END

my $cover page exists = –e ’cover page .tex’;

if ( ! $cover page exists ){

open($fh , ">", " cover page .tex")
}

for $sim (@sims) {

my $basename = $sim;

$basename =~ s/.r01.db//;

chomp( $basename);

$cmd name = get cmd name ( $basename);

$body = $basename;

$body =~ s/ /\\ /g;

print " \\ newcommand {\\ $cmd name }{ $body }\ n";

if ( ! $cover page exists ){

print $fh " \\ renewcommand {\\ $cmd name }{ $body }\ n";
}

}

if ( ! $cover page exists ){

close( $fh);
}

print ‘cat cover page .tex ‘;

print "\n\n \\ vspace {3 em }\ n";

print "Plots in this document which refer to ’canopy trees ’ " .

"include trees >11 cm dbh with >= 20 \\% ECA \n";

print " \\ newpage \n";

print <<’END’

\ tableofcontents

\ newpage

END
}

sub label {

my ( $title) = @ ;

print(’\ subsubsection {’. $title." }\ n\n");
}

sub mk fig {

my ( $fname , $width) = @ ;

–e $fname or die " $fname does not exist";

print ’\ includegraphics[width=’.(( $width)/100).’\ textwidth ]{ ’. $fname.’}’ ;
}

sub mk table {

my ( $fname , $is rba ) = @ ;

my @rows = ();

my $sk;
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my $label="";

if ( $fname =~ /ddist/ | |

$fname =~ /dbh/ ){

$sk = 1;

$label = "DBH";

} else {

$sk =1;

$label="Year";
}

open (FD , $fname) or die "could not open $fname";

my $year offset = 0;

my $i =0;

while(<FD>){

my ($n , $year ,

$x max , $x min , $x bar , $x sd ,

$y max , $y min , $y bar , $y sd ,

$z max , $z min , $z bar , $z sd ,

$a max , $a min , $a bar , $a sd ,

$b max , $b min , $b bar , $b sd ,

$c max , $c min , $c bar , $c sd

) = split (/,/);

if( $i ==1 and $year ==10 ) { $year offset = –10 ; }

if( $i > 0 ) {

$rows[$i –1] = [ $year + $year offset ,

$x max , $x min , $x bar , $x sd ,

$y max , $y min , $y bar , $y sd ,

$z max , $z min , $z bar , $z sd ,

$a max , $a min , $a bar , $a sd ,

$b max , $b min , $b bar , $b sd ,

$c max , $c min , $c bar , $c sd ];
}

$i ++;
}

close(FD);

sub table cell {

my ( $text , $is endr ) = @ ;

print $text ;

if ( $is endr ){

print " \\\\\ n" ;

} else {

print ’ & ’;
}

}

sub table start {

my ( $local cols , $local rows ) = @ ;

print ’\ begin { tabular }{ c | ’;

for $k ( 2 .. $local cols ) { print "c"; }

print " }\ n \\ hline \n";
}
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sub table end { print ’\ end { tabular }’."\n\n" ; }

my $cpT = 18;

my $ntables = ceil( $i /( $sk ∗ $cpT) );

for $T ( 0 .. ( $ntables –1) ) {

my $E = min( $cpT , ceil( $i/ $sk) – $cpT ∗ $T – 1);

my $max row = ( $is rba eq 1 ) ? 24 : 4 ;

table start ( $E +1, $max row + 1);

for $j ( 0 .. $max row ) {

my $sp label = "";

if( $is rba eq 1 ) {

if ( $j <= 4 ){ $sp label = " Sugar maple"; }

elsif ( $j <= 8 ){ $sp label = " Hemlock"; }

elsif ( $j <= 12) { $sp label = " Yellow birch"; }

elsif ( $j <= 16) { $sp label = " Ash"; }

elsif ( $j <= 20) { $sp label = " Red maple"; }

elsif ( $j <= 24) { $sp label = " Basswood"; }
}

if ( $j == 0) { table cell (" $label", 0 ); }

elsif (( $j %4)== 1) { table cell ("Max$ { sp label }", 0 ); }

elsif (( $j %4)== 2) { table cell ("Min$ { sp label }", 0 ); }

elsif (( $j %4)== 3) { table cell ("Mean$ { sp label }", 0 ); }

elsif (( $j %4)== 0) { table cell ("Sd$ { sp label }", 0 ); }

for $k ( 0 .. ($E –1) ){

my $kn = $sk ∗( $k + $cpT ∗ $T);

if( $j ==0 ) {

table cell (sprintf("%i", $rows[ $kn ][ $j ]),$k ==( $E –1));

} else {

$cell number = $rows[ $kn ][ $j ];

if ( $cell number > 100) { $cell text = sprintf("%0.0f",

$rows[ $kn ][ $j ]); }

elsif ( $cell number > 10 ) { $cell text = sprintf("%0.1f",

$rows[ $kn ][ $j ]); }

else { $cell text = sprintf("%0.2f",

$rows[ $kn ][ $j ]); }

table cell ( $cell text , $k ==( $E –1)); }
}

if ( $j ==0) { print(" \\ hline \n"); }
}

table end ();
}

print(" \\ vspace {1 em }\ n\n");
}

sub mk dbh table {

my ( $fname) = @ ;

my $header done =0;

open (FD , $fname) or die "could not open $fname";

print(" \\ begin { longtable }");
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while (<FD>){

chomp;

s/,/&/g;

s/"//g;

if ( $header done ==0) {

my $offset = 0;

my $result = index( $ , ’&’, $offset);

my $count = 0;

while ( $result != –1 ){

$count ++;

$offset = $result +1;

$result = index( $ , ’&’, $offset);
}

$count ++; # For last column

print("{");

for (my $i =0; $i<$count; $i ++) {

print("c");

if ( $i ==0) { print(" | "); }
}

print(" }\ n");

print("Year & \\ multicolumn {".( $count –1)." }{ c }{ Midpoint diameter class (cm)}

\\\\\ n");

print;

print(" \\\\\ n");

print(" \\ hline \n");

print(" \\ endfirsthead \n");

print("Year & \\ multicolumn {".( $count –1)." }{ c }{ Midpoint diameter class (cm)}

\\\\\ n");

print;

print(" \\\\\ n");

print(" \\ hline \n");

print(" \\ endhead \n");

$header done =1;

} else {

print ;

print(" \\\\\ n");
}

}

print(" \\ end { longtable }\ n\n");

close(FD);
}

##### Document starts here ########

@sims = bsd glob ( ’∗. r01.db ’);

begin doc ();

for $sim (@sims) {

my $basename = $sim;

$basename =~ s/.r01.db//;

chomp( $basename);

$cmd name = get cmd name ( $basename);
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print " \\ rhead {\\ ". $cmd name ." }\ n \\ section {\\ ". $cmd name ." }\ n";

print(" \\ subsection { Snapshot DBH and ECA distributions , crown maps }\ n");

@files = bsd glob (" $ { basename } r01 [0 –9][0 –9][0 –9][0 –9] dbh .png");

for $file (@files){

my ( $dbh dist , $eca dist , $stock dist , $top view , $dgr plot ) =

( $file , $file , $file , $file , $file);

$eca dist =~ s/dbh/eca/;

$stock dist =~ s/dbh/stock /;

$top view =~ s/dbh/top/;

$dgr plot =~ s/dbh/ dgr vs dbh /;

mk fig ( $top view ,"20");

mk fig ( $stock dist ,"20");

mk fig ( $dbh dist ,"20");

mk fig ( $eca dist ,"20");

–e $dgr plot && mk fig ( $dgr plot , "20");

print("\n\n");
}

print(" \\ subsection { DBH distribution table (T/ha , avg of all reps) }\ n");

print(" \\ tiny {\ n");

mk dbh table (" $ { basename } dbh sequence .csv");

print(" }\ n");

print(" \\ subsection {DBH , CR , and Age relations , beginning of rep 01}\ n");

mk fig (" $ { basename } r01 diam vs age start .png","45");

mk fig (" $ { basename } r01 cr vs age start .png","45");

print("\n\n");

mk fig (" $ { basename } r01 cr vs diam start .png","45");

print("\n\n");

print(" \\ subsection {DBH , CR , and Age relations , end of rep 01}\ n");

mk fig (" $ { basename } r01 diam vs age .png","45");

mk fig (" $ { basename } r01 cr vs age .png","45");

print("\n\n");

mk fig (" $ { basename } r01 cr vs diam .png","45");

print("\n\n");

print(" \\ subsection { Ages of trees > 25 cm at time of death , rep 01}\ n");

mk fig (" $ { basename } r01 all age dist .png","45");

print("\n\n");

mk fig (" $ { basename } r01 sm age dist .png","45");

mk fig (" $ { basename } r01 hm age dist .png","45");

print("\n\n");

mk fig (" $ { basename } r01 yb age dist .png","45");

mk fig (" $ { basename } r01 wa age dist .png","45");

print("\n\n");

mk fig (" $ { basename } r01 bw age dist .png","45");

mk fig (" $ { basename } r01 rm age dist .png","45");

if ( –e " $ { basename } all age dist over .png" ){

mk fig (" $ { basename } r01 all age dist over .png","45");
}
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print(" \\ subsection { Stand – level summaries , averaged across replicates }\ n");

label("Stocking (\\\%\) ");

mk fig (" $ { basename } stock .png","45"); print("\n\n");

mk table (" $ { basename } stock .csv");

label("Density (T/Ha)");

mk fig (" $ { basename } all trees .png","45"); print("\n\n");

mk table (" $ { basename } all trees .csv");

label("Basal Area (\ $m ^2/Ha \ $)");

mk fig (" $ { basename } ba .png","45"); print("\n\n");

mk table (" $ { basename } ba .csv");

if ( –e " $ { basename } ba over .csv"){

label("Initial Cohort Basal Area (\ $m ^2/Ha \ $)");

mk fig (" $ { basename } ba over .png","45"); print("\n\n");

mk table (" $ { basename } ba over .csv");
}

label("Standing Live Volume (\ $m ^3/ha \ $)");

mk fig (" $ { basename } vol .png","45"); print("\n\n");

mk table (" $ { basename } vol .csv");

if ( –e " $ { basename } vol over .csv"){

label("Initial Cohort Standing Live Volume (\ $m ^3/ha \ $)");

mk fig (" $ { basename } vol over .png","45"); print("\n\n");

mk table (" $ { basename } vol over .csv");
}

label("Standing Live Biomass (\ $mg/ha \ $)");

mk fig (" $ { basename } mg .png","45"); print("\n\n");

mk table (" $ { basename } mg .csv");

if ( –e " $ { basename } mg over .csv" ){

label("Initial Cohort Standing Live Biomass (\ $mg/ha \ $)");

mk fig (" $ { basename } mg over .png","45"); print("\n\n");

mk table (" $ { basename } mg over .csv");
}

label("Ending DBH distribution (Trees/Ha)");

mk fig (" $ { basename } dbh .png", "45");

mk fig (" $ { basename } log dbh .png","45");

print("\n\n");

mk table (" $ { basename } dbh .csv");

label("QMSD");

mk fig (" $ { basename } qmsd .png", "45"); print("\n\n");

mk table (" $ { basename } qmsd .csv");

label("Canopy tree mean diameter");

mk fig (" $ { basename } ct dbar .png","45"); print("\n\n");

mk table (" $ { basename } ct dbar .csv");

label("Canopy tree mean height");

mk fig (" $ { basename } ct hbar .png","45"); print("\n\n");

mk table (" $ { basename } ct hbar .csv");
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label("Canopy tree mean MCR");

mk fig (" $ { basename } ct mcrbar .png","45"); print("\n\n");

mk table (" $ { basename } ct mcrbar .csv");

label("Canopy tree mean age");

mk fig (" $ { basename } ct agebar .png","45"); print("\n\n");

mk table (" $ { basename } ct agebar .csv");

if ( –e " $ { basename } ctg .csv" ) {

label("Canopy Tree Mean Radial Increment (mm/yr)");

mk fig (" $ { basename } ctg .png", "45"); print("\n\n");

mk table (" $ { basename } ctg .csv");
}

label("Canopy Tree Mean Radial Crown Increment (cm/yr)");

mk fig (" $ { basename } ctcg .png","45"); print("\n\n");

mk table (" $ { basename } ctcg .csv");

label("Harvested Volume (\ $m ^3/ha \ $)");

mk fig (" $ { basename } harv .png","45"); print("\n\n");

mk table (" $ { basename } harv .csv");

label("Releative basal area per species (\\%) ");

mk fig (" $ { basename } rba .png","45"); print("\n\n");

mk table (" $ { basename } rba .csv", 1);

label("ECA as a percentage of plot area");

mk fig (" $ { basename } peca .png","45"); print("\n\n");

mk table (" $ { basename } peca .csv");

label("TCA as a percentage of plot area");

mk fig (" $ { basename } ptca .png","45"); print("\n\n");

mk table (" $ { basename } ptca .csv");

label("Average Developmental Stage");

mk fig (" $ { basename } st stage .png","45"); print("\n\n");

mk table (" $ { basename } st stage .csv");

label ("Developmental stages per replication");

print ‘cat $ { basename } stage data .tex ‘;

label ("Residence times for each stage and time to OG");

print ‘cat $ { basename } residence times .tex ‘;

print(" \\ subsection { Growth by component (ingrowth , etc) }\ n");

# BA growth (>4.6 in)

label("BA ingrowth across a 4.6in (11.68 cm) threshold (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } ig .png","45"); print("\n\n");

mk table (" $ { basename } ig .csv");

label("BA survivor growth above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } sg .png","45"); print("\n\n");

mk table (" $ { basename } sg .csv");

label("BA mortality above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } mt .png","45"); print("\n\n");
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mk table (" $ { basename } mt .csv");

label("BA gross growth above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } gg .png","45"); print("\n\n");

mk table (" $ { basename } gg .csv");

label("BA net growth above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } ng .png", "45"); print("\n\n");

mk table (" $ { basename } ng .csv");

if ( –e " $ { basename } s ig .csv"){

# BA growth (> 9.6 in)

label("BA ingrowth across a 9.6in (24.38 cm) threshold (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } s ig .png","45"); print("\n\n");

mk table (" $ { basename } s ig .csv");

label("BA survivor Growth above 9.6in (24.38 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } s sg .png","45"); print("\n\n");

mk table (" $ { basename } s sg .csv");

label("BA mortality above 9.6in (24.38 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } s mt .png","45"); print("\n\n");

mk table (" $ { basename } s mt .csv");

label("BA gross growth above 9.6in (24.38 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } s gg .png","45"); print("\n\n");

mk table (" $ { basename } s gg .csv");

label("BA net growth above 9.6in (24.38 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } s ng .png","45"); print("\n\n");

mk table (" $ { basename } s ng .csv");
}

# Volume growth (>4.6 in)

label("Volume ingrowth across a 4.6in (11.68 cm) threshold (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } m3 ig .png","45"); print("\n\n");

mk table (" $ { basename } m3 ig .csv");

label("Volume survivor growth across a 4.6in (11.68 cm) threshold (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } m3 sg .png","45"); print("\n\n");

mk table (" $ { basename } m3 sg .csv");

label("Volume mortality across a 4.6in (11.68 cm) threshold (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } m3 mt .png","45"); print("\n\n");

mk table (" $ { basename } m3 mt .csv");

label("Volume gross growth across a 4.6in (11.68 cm) threshold (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } m3 gg .png","45"); print("\n\n");

mk table (" $ { basename } m3 gg .csv");

label("Volume net growth across a 4.6in (11.68 cm) threshold (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } m3 ng .png","45" ); print("\n\n");

mk table (" $ { basename } m3 ng .csv");

if ( –e " $ { basename } kg all ig .csv"){

# Biomass growth (>3 cm)

label("Biomass ingrowth across a 3 cm threshold (\ $kg/ha/yr \ $)");
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mk fig (" $ { basename } kg all ig .png","45"); print("\n\n");

mk table (" $ { basename } kg all ig .csv");

label("Biomass survivor growth across a 3 cm threshold (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } kg all sg .png","45"); print("\n\n");

mk table (" $ { basename } kg all sg .csv");

label("Biomass mortality across a 3 cm threshold (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } kg all mt .png","45"); print("\n\n");

mk table (" $ { basename } kg all mt .csv");

label("Biomass gross growth across a 3 cm threshold (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } kg all gg .png","45" ); print("\n\n");

mk table (" $ { basename } kg all gg .csv");

label("Biomass net growth across a 3 cm threshold (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } kg all ng .png","45" ); print("\n\n");

mk table (" $ { basename } kg all ng .csv");
}

if ( –e " $ { basename } kg ig .csv"){

# Biomass growth (>4.6in)

label("Biomass ingrowth across a 4.6in (11.68 cm) threshold (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } kg ig .png","45"); print("\n\n");

mk table (" $ { basename } kg ig .csv");

label("Biomass survivor growth across a 4.6in (11.68 cm) threshold (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } kg sg .png","45"); print("\n\n");

mk table (" $ { basename } kg sg .csv");

label("Biomass mortality across a 4.6in (11.68 cm) threshold (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } kg mt .png","45"); print("\n\n");

mk table (" $ { basename } kg mt .csv");

label("Biomass gross growth across a 4.6in (11.68 cm) threshold (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } kg gg .png","45" ); print("\n\n");

mk table (" $ { basename } kg gg .csv");

label("Biomass net growth across a 4.6in (11.68 cm) threshold (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } kg ng .png","45" ); print("\n\n");

mk table (" $ { basename } kg ng .csv");
}

## Over/under analysis:

if ( –e " $ { basename } over ig .csv" ){

## Overstory BA growth:

label("Initial cohort BA ingrowth above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } over ig .png", "45"); print("\n\n");

mk table (" $ { basename } over ig .csv");

label("Initial Cohort BA survivor growth above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } over sg .png", "45"); print("\n\n");

mk table (" $ { basename } over sg .csv");

label("Initial Cohort BA mortality above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } over mt .png", "45"); print("\n\n");

mk table (" $ { basename } over mt .csv");
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label("Initial Cohort BA net growth above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } over ng .png", "45"); print("\n\n");

mk table (" $ { basename } over ng .csv");

## Understory BA growth:

label("Later cohorts BA ingrowth above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } under ig .png", "45"); print("\n\n");

mk table (" $ { basename } under ig .csv");

label("Later cohorts BA survivor growth above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } under sg .png", "45"); print("\n\n");

mk table (" $ { basename } under sg .csv");

label("Later cohorts BA mortality above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } under mt .png", "45"); print("\n\n");

mk table (" $ { basename } under mt .csv");

label("Later cohorts BA net growth above 4.6in (11.68 cm) (\ $m ^2/ha/yr \ $)");

mk fig (" $ { basename } under ng .png", "45"); print("\n\n");

mk table (" $ { basename } under ng .csv");

## Overstory Volume growth:

label("Initial cohort volume ingrowth above 4.6in (11.68 cm) (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } over ig m3 .png", "45"); print("\n\n");

mk table (" $ { basename } over ig m3 .csv");

label("Initial cohort volume survivor growth above 4.6in (11.68 cm) (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } over sg m3 .png", "45"); print("\n\n");

mk table (" $ { basename } over sg m3 .csv");

label("Initial cohort volume mortality above 4.6in (11.68 cm) (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } over mt m3 .png", "45"); print("\n\n");

mk table (" $ { basename } over mt m3 .csv");

label("Initial cohort volume net growth above 4.6in (11.68 cm) (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } over ng m3 .png", "45"); print("\n\n");

mk table (" $ { basename } over ng m3 .csv");

## Understory Volume growth:

label("Later cohorts volume ingrowth above 4.6in (11.68 cm) (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } under ig m3 .png", "45"); print("\n\n");

mk table (" $ { basename } under ig m3 .csv");

label("Later cohorts volume survivor growth above 4.6in (11.68 cm) (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } under sg m3 .png", "45"); print("\n\n");

mk table (" $ { basename } under sg m3 .csv");

label("Later cohorts volume mortality above 4.6in (11.68 cm) (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } under mt m3 .png", "45"); print("\n\n");

mk table (" $ { basename } under mt m3 .csv");

label("Later cohorts volume net growth above 4.6in (11.68 cm) (\ $m ^3/ha/yr \ $)");

mk fig (" $ { basename } under ng m3 .png", "45"); print("\n\n");

mk table (" $ { basename } under ng m3 .csv");

## Overstory Biomass growth:
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label("Initial cohort biomass ingrowth above 4.6in (11.68 cm) (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } over ig kg .png", "45"); print("\n\n");

mk table (" $ { basename } over ig kg .csv");

label("Initial cohort biomass survivor growth above 4.6in (11.68 cm) (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } over sg kg .png", "45"); print("\n\n");

mk table (" $ { basename } over sg kg .csv");

label("Initial cohort biomass mortality above 4.6in (11.68 cm) (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } over mt kg .png", "45"); print("\n\n");

mk table (" $ { basename } over mt kg .csv");

label("Initial cohort biomass net growth above 4.6in (11.68 cm) (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } over ng kg .png", "45"); print("\n\n");

mk table (" $ { basename } over ng kg .csv");

## Understory Biomass growth:

label("Later cohorts biomass ingrowth above 4.6in (11.68 cm) (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } under ig kg .png", "45"); print("\n\n");

mk table (" $ { basename } under ig kg .csv");

label("Later cohorts biomass survivor growth above 4.6in (11.68 cm) (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } under sg kg .png", "45"); print("\n\n");

mk table (" $ { basename } under sg kg .csv");

label("Later cohorts biomass mortality above 4.6in (11.68 cm) (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } under mt kg .png", "45"); print("\n\n");

mk table (" $ { basename } under mt kg .csv");

label("Later cohorts biomass net growth above 4.6in (11.68 cm) (\ $kg/ha/yr \ $)");

mk fig (" $ { basename } under ng kg .png", "45"); print("\n\n");

mk table (" $ { basename } under ng kg .csv");
}

## CWD analysis:

if ( –e " $ { basename } cwd all .csv") {

print(" \\ subsection { CWD Summary }\ n");

label("CWD Overall Volume (\ $m ^3/Ha \ $)");

mk fig (" $ { basename } cwd all .png", "45" ); print("\n\n");

mk table (" $ { basename } cwd all .csv");

label("CWD Log Volume (\ $m ^3/Ha \ $)");

mk fig (" $ { basename } cwd logs .png", "45"); print("\n\n");

mk table (" $ { basename } cwd logs .csv");

label("CWD Snag Volume (\ $m ^3/Ha \ $)");

mk fig (" $ { basename } cwd snags .png", "45"); print("\n\n");

mk table (" $ { basename } cwd snags .csv");

label("CWD Overall Diameter distribution (Trees/Ha), end of simulations");

mk fig (" $ { basename } cwd ddist all .png", "45" ); print("\n\n");

mk table (" $ { basename } cwd ddist all .csv");

label("Diameter distribution of decayed logs (logs/Ha), end of simulations");

mk fig (" $ { basename } cwd ddist logs .png", "45"); print("\n\n");

mk table (" $ { basename } cwd ddist logs .csv");
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label("Diameter distribution of snags (snags/Ha), end of simulations");

mk fig (" $ { basename } cwd ddist snags .png","45"); print("\n\n");

mk table (" $ { basename } cwd ddist snags .csv");
}

print(" \\ subsection {BA ,ECA ,etc summary by size category }\ n");

if ( –e $basename . " ba summary .tex") {

label ("Per – size BA summary (m2/ha)");

print ‘cat $ { basename } ba summary .tex ‘;
}

if ( –e $basename . " ba summary .tex") {

label ("Per – size relative BA summary");

print ‘cat $ { basename } rel ba summary .tex ‘;
}

if ( –e $basename . " eca summary .tex") {

label ("Per – size ECA summary (m2/ha)");

print ‘cat $ { basename } eca summary .tex ‘;
}

if ( –e $basename . " eca summary .tex") {

label ("Per – size relative ECA summary");

print ‘cat $ { basename } rel eca summary .tex ‘;
}

@var suffix = ("", " ba ", " pba ", " eca "," peca "," rg "," mt ");

@var name = ("Density (T/ha)", "Basal area (\ $m ^2/ha \ $)",

"Percent basal area (\\% of total BA)",

"Exposed crown area (\ $m ^2/ha \ $)",

"Percent exposed crown area (\\% of total ECA)",

"Mean radial growth (mm/yr)",

"BA mortality (m2/yr)");

for ( $i =0; $i< scalar @var suffix ; $i ++) {

for $sc ("seed", "sap", "pole", "mat", "large", "xlarge", "g50"){

my $desc="";

if ( $sc eq "seed" ) { $desc="Seedlings (0 –6 cm)"; }

elsif( $sc eq "sap" ) { $desc="Saplings (0 –11 cm)"; }

elsif( $sc eq "pole" ) { $desc="Poles (11 –26 cm)"; }

elsif( $sc eq "mat" ) { $desc="Mature (26 –46 cm)"; }

elsif( $sc eq "large" ) { $desc="Large (46+ cm)"; }

elsif( $sc eq "xlarge" ) { $desc="X – Large (66+ cm)"; }

elsif( $sc eq "g50" ) { $desc="Large (>50 cm)"; }

if ( –e $basename . " " . $sc . $var suffix [ $i] .".csv" ){

label( $var name [ $i ]." : ". $desc);

mk fig ( $basename . " " . $sc . $var suffix [ $i] .".png", "45");

print("\n\n");

mk table ( $basename . " " . $sc . $var suffix [ $i] .".csv");
}

}
}

print(" \\ newpage \n");
}

print ’\end { document }’."\n";
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F.2 mk_std_3d.pl
#!/usr/bin/perl

use File::Glob ’:glob’;

use File::stat;

if( $^O =~ /MSWin32/ ){

$ENV {"PATH"} .= ";C :\\ Program Files \\ POV – Ray for Windows v3 .6\\ bin";

$frame="perl frame.pl";

$povray="pvengine.exe /EXIT";

} else {

$frame="~/ canopy/util/frame.pl";

$povray="povray36 –D0";
}

# Get a list of all the dbh dists we have.

# Make top – view crown maps for each.

@files = bsd glob (’∗ r01 ∗ dbh .png’);

for $file (@files) {

$file =~ /.∗ r01 ([0 –9]+) dbh \. png/;

$yr = $1;

$dbfile = $file;

$dbfile =~ s/ [0 –9]+ dbh \. png //;

$dbfile =~ s/ r01 /.r01/;

$dbfile .= ".db";

$outfile = $file; $outfile =~ s/dbh/top/;

print(" $outfile \n");

if( ! stat( $outfile) ) {

‘ $frame $dbfile $yr 0.001 90 1.5 > $$ .pov ‘;

‘ $povray +W800 +H800 +Q11 +UL +UV + I$$ .pov +O$outfile ‘;

unlink(" $$ .pov");
}

}

F.3 frame.pl
#!/usr/bin/perl

use DBI;

$db=DBI –>connect("dbi:SQLite:dbname= $ARGV [0]","","");

if( $#ARGV ==6 ){

$sel=$db –>prepare("select treeno ,x,y,species ,year ,n,e,s,w,dbh ,ht ,hbc ,hwc " .

"from live trees where year== $ARGV [1] and " .

" $ARGV [5] <= dbh and dbh < $ARGV [6]");

} else {

$sel=$db –>prepare("select treeno ,x,y,species ,year ,n,e,s,w,dbh ,ht ,hbc ,hwc " .

"from live trees where year== $ARGV [1]");
}

$sel –>execute ();

print("#include \"/ home/crhalpin/canopy/util/tree.ini \"\ n");

while( ( $treeno ,$x ,$z , $species , $year , $north total , $east total ,

$south total , $west total , $dbh , $total height , $base height ,

$widest height )=

$sel –>fetchrow array ){
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if ( $species == 2 ) { $col="Blue"; } # Basswood

elsif( $species == 5 ) { $col=" Med Purple "; } # Hemlock

elsif( $species == 6 ) { $col="Yellow"; } # Yellow Birch

elsif( $species == 7 ) { $col="Black"; } # White Pine

elsif( $species == 9 ) { $col="Red"; } # Red Maple

elsif( $species == 13 ) { $col="Orange"; } # White Ash

elsif( $species == 14 ) { $col="Orange"; } # Green ash

elsif( $species == 24 ) { $col="Cyan"; } # Ironwood

elsif( $species == 4 ) { $col="Green"; } # Sugar maple

else { $col="Grey"; } # Other

if( $base height ==0) { $base height = 0.50∗ $total height ; }

if( $widest height ==0) { $widest height = 0.75∗ $total height ; }

if( $species == 7 | | $species == 5 ){ print("treept"); }

else { print("tree"); }

print("($x ,$z , $dbh /100, $total height , $base height , $widest height ,");

print(" $north total , $east total , $south total , $west total , $col)\n");
}

$sel=$db –>prepare("select ∗ from plotinfo");

$sel –>execute ();

( $xmax , $ymax)= $sel –>fetchrow array ; $sel –>fetchrow array ;

if($# ARGV ==4 | | $#ARGV ==6 ){

$cx =( $xmax /2)+ $xmax ∗ $ARGV [2]∗ cos (3.14159∗ $ARGV [3]/180);

$cy= $xmax ∗ $ARGV [4];

$cz =( $ymax /2)+ $ymax ∗ $ARGV [2]∗ sin (3.14159∗ $ARGV [3]/180);

} else {

($cx ,$cy , $cz)=( $xmax /2, $dist , $xmax);
}

print(" light source { <$xmax /2,300, $ymax/2> color White shadowless }\ n");

print("camera { right 1∗x location <$cx ,$cy ,$cz> look at <$xmax /2,10, $ymax/2> }\ n");

print("cylinder { <0,0,0>, <$xmax ,0,0>,0.1 pigment { color Red } }\ n");

print("cylinder { <0,0,0>, <0,0,$ymax >,0.1 pigment { color Red } }\ n");

$db –>disconnect ();

F.4 tree.ini

#include "colors.inc" // The include files contain

#include "shapes.inc" // pre – defined scene elements

#macro tree(xc ,zc ,dbh ,top ,bot ,mid ,ni ,ei ,si ,wi,col)

#local U=max (0.001 ,top – mid);

#local L=max (0.001 ,mid – bot);

#local n=max(dbh ,ni);

#local s=max(dbh ,si);

#local e=max(dbh ,ei);

#local w=max(dbh ,wi);

cylinder { <xc ,0,zc>, <xc ,mid ,zc>, dbh/2 pigment { color Brown } }

union {

intersection { sphere { <0,0,0>,1 scale <e,U,n> } box{<0,0,0>,< e, U, n>}}

intersection { sphere { <0,0,0>,1 scale <e,L,n> } box{<0,0,0>,< e, –L, n>}}
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intersection { sphere { <0,0,0>,1 scale <e,U,s> } box{<0,0,0>,< e, U, –s>}}

intersection { sphere { <0,0,0>,1 scale <e,L,s> } box{<0,0,0>,< e, –L, –s>}}

intersection { sphere { <0,0,0>,1 scale <w,U,s> } box{<0,0,0>,<–w, U, –s>}}

intersection { sphere { <0,0,0>,1 scale <w,L,s> } box{<0,0,0>,<–w, –L, –s>}}

intersection { sphere { <0,0,0>,1 scale <w,U,n> } box{<0,0,0>,<–w, U, n>}}

intersection { sphere { <0,0,0>,1 scale <w,L,n> } box{<0,0,0>,<–w, –L, n>}}

translate <xc , mid , zc>

pigment { color col }
}

#end

#macro treept(xc ,zc,dbh ,top ,bot ,mid ,ni ,ei ,si ,wi ,col)

#local ch=max (0.002 ,top – bot); // height

#local cm=max (0.001 ,mid – bot); // height to the middle

#local cr=ch/2;

#local n=max(dbh ,ni);

#local s=max(dbh ,si);

#local e=max(dbh ,ei);

#local w=max(dbh ,wi);

cylinder { <xc ,0,zc>, <xc ,mid ,zc>, dbh/2 pigment { color Brown } }

union {

intersection { //ne

union {

cone{<0,00,0>,00,<0,cm,0>,cr }

cone{<0,cm,0>,cr,<0,ch ,0>,00}
}

box{<0,0,0>,<+cr,ch ,+cr>}

scale <e/cr ,1,n/cr>
}

intersection { //se

union {

cone{<0,00,0>,00,<0,cm,0>,cr }

cone{<0,cm,0>,cr,<0,ch ,0>,00}
}

box{<0,0,0>,<+cr,ch , –cr>}

scale <e/cr ,1,s/cr>
}

intersection { //nw

union {

cone{<0,00,0>,00,<0,cm,0>,cr }

cone{<0,cm,0>,cr,<0,ch ,0>,00}
}

box{<0,0,0>,<–cr ,ch ,+cr>}

scale <w/cr ,1,n/cr>
}

intersection { //sw

union {

cone{<0,00,0>,00,<0,cm,0>,cr }

cone{<0,cm,0>,cr,<0,ch ,0>,00}
}

box{<0,0,0>,<–cr ,ch , –cr>}

scale <w/cr ,1,s/cr>
}

pigment { color col }
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translate <xc , bot , zc>
}

#end

plane { y, 0 pigment { color White } finish { ambient 1} }

sky sphere {

pigment {

gradient y

color map {

[0 color Red]

[1 color Blue]
}

scale 2

translate –1
}

}

F.5 standard_analysis.r

# standard analysis .r

# Routines to analyze a batch of simulations.

#################################

source ("~/ canopy/util/util.r");

library(xtable)

plot sim = function(base , label , n, all details =T){

clear caches ()

limit lines = function(bottom , top ,managed=F){

if( managed ){ pc = 1 } else { pc = 3 } # 1 = circle , 3 = x

lines(c(0, max year ), rep(bottom ,2), type="b", pch=pc , lwd=2);

lines(c(0, max year ), rep(top ,2), type="b", pch=pc , lwd =2);
}

plot save ( base , ’stock ’, function () {

plot job (base , stock data , 300, ’Stocking (%) ’,n) } )

plot save ( base , ’ba ’, function () {

plot job (base ,ba data ,70,’BA (m2/ha)’,n) })

plot save ( base , ’peca ’, function () {

plot job (base ,peca data , 125, ’ECA as a percentage of plot area ’,n) })

plot save ( base , ’ptca ’, function () {

plot job (base , ptca data , 225, ’TCA as a percentage of plot area ’,n) })

plot save ( base , ’ct dbar ’, function () {

plot job (base , canopy tree mean diam , 50, ’Canopy tree mean diameter ’,n) })

plot save ( base , ’ct hbar ’, function () {

plot job (base , canopy tree mean th , 25, ’Canopy tree mean height ’,n) })

plot save ( base , ’ct agebar ’, function () {

plot job (base , canopy tree mean age , 200, ’Canopy tree mean age ’,n) })

plot save ( base , ’ct mcrbar ’, function () {

plot job (base , canopy tree mean mcr , 5, ’Canopy tree mean MCR ’,n) })
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plot save ( base , ’qmsd ’, function () {

plot job (base , qm stand diameter , 50, ’QM stand diameter ’,n) })

## BA Growth summaries for trees >4.6in

plot save ( base , ’ig ’, function () {

plot job (base ,ingrowth ,0.5,’ Ingrowth >= 11.68 cm (m2/ha)’,n) })

plot save ( base , ’sg ’, function () {

plot job (base , survivor growth , 1.5, ’Survivor growth >= 11.68 cm (m2/ha)’, n ) })

plot save ( base , ’mt ’, function () {

plot job (base , mortality ,3,’Mortality >= 11.68 cm (m2/ha)’,n) })

plot save ( base , ’ng ’, function () {

plot job (base , net growth ,c( –3.0, 3.0), ’Net growth >= 11.68 cm (m2/ha)’, n) })

plot save ( base , ’gg ’, function () {

plot job (base , gross growth , 4, ’Gross growth >= 11.68 cm (m2/ha)’, n) })

if ( all details ){

## BA Growth summaries for trees >9.6in

plot save ( base , ’s ig ’, function () {

plot job (base ,ingrowth saw ,0.5,’ Ingrowth >= 24.38 cm (m2/ha)’,n) })

plot save ( base , ’s sg ’, function () {

plot job (base , survivor growth saw , 1.5, ’Survivor hrowth >= 24.38 cm (m2/ha)’, n ) })

plot save ( base , ’s mt ’, function () {

plot job (base , mortality saw ,1.5,’ Mortality >= 24.38 cm (m2/ha)’,n) })

plot save ( base , ’s ng ’, function () {

plot job (base , net growth saw , c( –1.5 ,1.5), ’Net Growth >= 24.38 cm (m2/ha)’, n) })

plot save ( base , ’s gg ’, function () {

plot job (base , gross growth saw , 1.5, ’Gross Growth >= 24.38 cm (m2/ha)’, n) })
}

## Volume growth summaries for trees >4.6in

plot save (base , ’m3 ig ’, function () {

plot job (base , ingrowth m3 , 2, ’Ingrowth >= 11.68 cm (m3/ha)’, n) })

plot save (base , ’m3 sg ’, function () {

plot job (base , survivor growth m3 , 8, ’Survivor growth >= 11.68 cm (m3/ha)’, n) })

plot save (base , ’m3 mt ’, function () {

plot job (base , mortality m3 , 8, ’Mortality >= 11.68 cm (m3/ha)’, n) })

plot save (base , ’m3 ng ’, function () {

plot job (base , net growth m3 , c( –5,5), ’Net growth >= 11.68 cm (m3/ha)’, n) })

plot save (base , ’m3 gg ’, function () {

plot job (base , gross growth m3 , 8, ’Gross growth >= 11.68 cm (m3/ha)’, n) })

## Cohort analysis for clearcut simulations.

if (grepl(’ccut | ctl | empty ’, base) ) {

if (grepl(’ccut | empty ’,base)){

is over <<– function(d){

tn good = sql(’select distinct treeno as tn from live trees where year<=20’) $tn

d$treeno %in% tn good
}

cohort over <<– function(gtype fcn , dlim , metric fcn ){

gtype fcn (

dlim ,

metric fcn ,

function(d){
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tn good = sql(’select distinct treeno as tn from live trees where

year<=20’) $tn

d[d$treeno %in% tn good ,]

} )
}

cohort under <<– function(gtype fcn , dlim , metric fcn ){

gtype fcn (

dlim ,

metric fcn ,

function(d){

tn bad = sql(’select distinct treeno as tn from live trees where year<=20’) $tn

d[ !( d$treeno %in% tn bad ), ]

} )
}

} else {

## Use RD from year=5 because we ’re not setting/saving rd in year =0.

## it gets saved when a tree grows. But , we kind of need a complete census ,

## which happens every 5th year.

is over <<– function(d){

tn good = sql(’select distinct treeno as tn from live trees where year=5 and

reld>=0.7’) $tn

d$treeno %in% tn good
}

cohort over <<– function(gtype fcn , dlim , metric fcn ){

gtype fcn (

dlim ,

metric fcn ,

function(d){

tn good = sql(’select distinct treeno as tn from live trees where year=5 and

reld>=0.7’) $tn

d[d$treeno %in% tn good ,]

} )
}

cohort under <<– function(gtype fcn , dlim , metric fcn ){

gtype fcn (

dlim ,

metric fcn ,

function(d){

tn bad = sql(’select distinct treeno as tn from live trees where year=5 and

reld>=0.7’) $tn

d[ !( d$treeno %in% tn bad ), ]

} )
}

}

plot save ( base , ’ba over ’, function () {

plot job (base ,ba over ,70,’Initial cohort BA (m2/ha)’,n) })

plot save (base , ’vol over ’, function () {

plot job (base ,volume over ,700, ’Initial cohort volume (m3/ha)’, n ); })

plot save (base , ’mg over ’, function () {

plot job (base ,biomass over ,500, ’Initial cohort biomass (Mg/ha)’, n ); })
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plot save (base , ’over ig ’, function () {

plot job (base , ig over cohort , c(0,4), ’Initial cohort ingrowth >= 11.68 cm

(m2/ha)’,n) })

plot save (base , ’over sg ’, function () {

plot job (base , sg over cohort , c(0,4), ’Initial cohort survivor growth >= 11.68 cm

(m2/ha)’,n) })

plot save (base , ’over mt ’, function () {

plot job (base , mt over cohort , c(0,4), ’Initial cohort mortality >= 11.68 cm

(m2/ha)’,n) })

plot save (base , ’over ng ’, function () {

plot job (base , ng over cohort , c( –3,3), ’Initial cohort net growth >= 11.68 cm

(m2/ha)’,n) })

plot save (base , ’under ig ’, function () {

plot job (base , ig under cohort , c(0,4), ’Later cohorts ingrowth >= 11.68 cm

(m2/ha)’,n) })

plot save (base , ’under sg ’, function () {

plot job (base , sg under cohort , c(0,4), ’Later cohorts survivor growth >= 11.68 cm

(m2/ha)’,n) })

plot save (base , ’under mt ’, function () {

plot job (base , mt under cohort , c(0,4), ’Later cohorts mortality >= 11.68 cm

(m2/ha)’,n) })

plot save (base , ’under ng ’, function () {

plot job (base , ng under cohort , c( –3,3), ’Later cohorts net growth >= 11.68 cm

(m2/ha)’,n) })

plot save (base , ’over ig kg ’, function () {

plot job (base , ig kg over cohort , c(0 ,4000), ’Initial cohort ingrowth >= 11.68 cm

(kg/ha)’,n) })

plot save (base , ’over sg kg ’, function () {

plot job (base , sg kg over cohort , c(0 ,4000), ’Initial cohort survivor growth >=

11.68 cm (kg/ha)’,n) })

plot save (base , ’over mt kg ’, function () {

plot job (base , mt kg over cohort , c(0 ,4000), ’Initial cohort mortality >= 11.68 cm

(kg/ha)’,n) })

plot save (base , ’over ng kg ’, function () {

plot job (base , ng kg over cohort , c( –3000 ,3000) , ’Initial cohort net growth >=

11.68 cm (kg/ha)’,n) })

plot save (base , ’under ig kg ’, function () {

plot job (base , ig kg under cohort , c(0 ,4000), ’Later cohorts ingrowth >= 11.68 cm

(kg/ha)’,n) })

plot save (base , ’under sg kg ’, function () {

plot job (base , sg kg under cohort , c(0 ,4000), ’Later cohorts survivor growth >=

11.68 cm (kg/ha)’,n) })

plot save (base , ’under mt kg ’, function () {

plot job (base , mt kg under cohort , c(0 ,4000), ’Later cohorts mortality >= 11.68 cm

(kg/ha)’,n) })

plot save (base , ’under ng kg ’, function () {

plot job (base , ng kg under cohort , c( –3000 ,3000) , ’Later cohorts net growth >=

11.68 cm (kg/ha)’,n) })
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plot save (base , ’over ig m3 ’, function () {

plot job (base , ig m3 over cohort , c(0,2), ’Initial cohort ingrowth >= 11.68 cm

(m3/ha)’,n) })

plot save (base , ’over sg m3 ’, function () {

plot job (base , sg m3 over cohort , c(0,8), ’Initial cohort survivor growth >= 11.68

cm (m3/ha)’,n) })

plot save (base , ’over mt m3 ’, function () {

plot job (base , mt m3 over cohort , c(0,8), ’Initial cohort mortality >= 11.68 cm

(m3/ha)’,n) })

plot save (base , ’over ng m3 ’, function () {

plot job (base , ng m3 over cohort , c( –3000 ,3000) , ’Initial cohort net growth >=

11.68 cm (m3/ha)’,n) })

plot save (base , ’under ig m3 ’, function () {

plot job (base , ig m3 under cohort , c(0,2), ’Later cohorts ingrowth >= 11.68 cm

(m3/ha)’,n) })

plot save (base , ’under sg m3 ’, function () {

plot job (base , sg m3 under cohort , c(0,8), ’Later cohorts survivor growth >= 11.68

cm (m3/ha)’,n) })

plot save (base , ’under mt m3 ’, function () {

plot job (base , mt m3 under cohort , c(0,8), ’Later cohorts mortality >= 11.68 cm

(m3/ha)’,n) })

plot save (base , ’under ng m3 ’, function () {

plot job (base , ng m3 under cohort , c( –5,5), ’Later cohorts net growth >= 11.68 cm

(m3/ha)’,n) })
}

if ( all details ){

## Biomass growth summaries for trees >4.6in

plot save (base , ’kg ig ’, function () {

plot job (base , ingrowth kg , 300, ’Ingrowth >= 11.68 cm (kg/ha)’, n) })

plot save (base , ’kg sg ’, function () {

plot job (base , survivor growth kg , 5000, ’Survivor growth >= 11.68 cm (kg/ha)’, n) })

plot save (base , ’kg mt ’, function () {

plot job (base , mortality kg , 5000, ’Mortality >= 11.68 cm (kg/ha)’, n) })

plot save (base , ’kg ng ’, function () {

plot job (base , net growth kg , c( –2500 ,2500) , ’Net growth >= 11.68 cm (kg/ha)’, n) })

plot save (base , ’kg gg ’, function () {

plot job (base , gross growth kg , 5000, ’Gross growth >= 11.68 cm (kg/ha)’, n) })
}

if ( all details ){

## Biomass growth summaries for trees > 3 cm

plot save (base , ’kg all ig ’, function () {

plot job (base , ingrowth all kg , 300, ’Ingrowth >= 3 cm (kg/ha)’, n) })

plot save (base , ’kg all sg ’, function () {

plot job (base , survivor growth all kg , 5000, ’Survivor growth >= 3 cm (kg/ha)’, n) })

plot save (base , ’kg all mt ’, function () {

plot job (base , mortality all kg , 5000, ’Mortality >= 3 cm (kg/ha)’, n) })

plot save (base , ’kg all ng ’, function () {

plot job (base , net growth all kg , c( –2500 ,2500) , ’Net growth >= 3 cm (kg/ha)’, n) })

plot save (base , ’kg all gg ’, function () {

plot job (base , gross growth all kg , 5000, ’Gross growth >= 3 cm (kg/ha)’, n) })
}
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if ( all details ){

## Canopy tree radial increment

plot save ( base , ’ctg ’, function () {

plot job (base , canopy tree growth , 3, ’Canopy Tree Radial Increment (mm/yr)’,n) })
}

if ( all details ){

## Radial growth summary by size class:

plot save ( base , ’seed rg ’, function () {

plot job (base , seed radial growth ,3,’Seedling (0 –6cm) Radial Increment (mm/yr)’,n) })

plot save ( base , ’sap rg ’, function () {

plot job (base , sap radial growth ,3,’Sapling (0 –11cm) Radial Increment (mm/yr)’,n) })

plot save ( base , ’pole rg ’, function () {

plot job (base , pol radial growth , 3, ’Pole (11 –26cm) Radial Increment (mm/yr)’,n) })

plot save ( base , ’mat rg ’, function () {

plot job (base , mat radial growth , 3, ’Mature (26 –46cm) Radial Increment (mm/yr)’,n) })

plot save ( base , ’large rg ’, function () {

plot job (base , lrg radial growth , 3, ’Large (46+cm) Radial Increment (mm/yr)’,n) })

plot save ( base , ’xlarge rg ’, function () {

plot job (base , xlg radial growth , 3, ’V. Large (66+cm) Radial Increment (mm/yr)’,n) })
}

## Canopy tree crown radial increment

plot save ( base , ’ctcg ’, function () {

plot job (base , canopy tree crown growth , 25, ’Canopy Tree Crown Radial Increment

(cm/yr)’,n) })

if ( all details ){

## Mortality summary by size class:

plot save ( base , ’seed mt ’, function () {

plot job (base ,seed mort , 0.5, ’Seedling (0 –6cm) mortality (m2/yr)’,n) })

plot save ( base , ’sap mt ’, function () {

plot job (base ,sap mort , 0.5, ’Sapling (0 –11cm) mortality (m2/yr)’,n) })

plot save ( base , ’pole mt ’, function () {

plot job (base ,pol mort , 0.5, ’Pole (11 –26cm) mortality (m2/yr)’,n) })

plot save ( base , ’mat mt ’, function () {

plot job (base ,mat mort , 0.5, ’Mature (26 –46cm) mortality (m2/yr)’,n) })

plot save ( base , ’large mt ’, function () {

plot job (base ,lrg mort , 0.5, ’Large (46+cm) mortality (m2/yr)’,n) })

plot save ( base , ’xlarge mt ’, function () {

plot job (base ,xlg mort , 0.5,’V. Large (66+cm) mortality (m2/yr)’,n) })
}

if ( all details ){

## Counts by size category

plot save ( base , ’seed ’, function () {

plot job (base ,seed trees ,800,’ Seedlings (0 –6cm)/ha ’,n) })

plot save ( base , ’sap ’, function () {

plot job (base ,sapling trees ,1500,’ Saplings (11 –26cm)/ha ’,n) })

plot save ( base , ’pole ’, function () {

plot job (base ,pole trees ,400,’Pole trees (11 –26cm)/ha ’,n) })

plot save ( base , ’mat ’, function () {

plot job (base ,mature trees ,300,’ Mature trees (26 –46cm)/ha ’, n) })

plot save ( base , ’large ’, function () {

plot job (base ,large trees ,200, ’Large trees (46+cm)/ha ’,n) })
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plot save ( base , ’xlarge ’, function () {

plot job (base , xlarge trees , 100, ’X – large trees (>66cm)/ha ’, n) })

plot save ( base , ’g50 ’, function () {

plot job (base , g50 trees , 100, ’Large trees (>50cm)/ha ’, n) })

plot save (base , ’all trees ’, function () {

plot job (base , all trees , 5000, ’All trees (#/ha)’, n) })
}

## Basal area by size category

plot save ( base , ’seed ba ’, function () {

plot job (base , seed trees ba ,50, ’Seedlings (0 –6cm) m^2/ha ’,n) })

plot save ( base , ’sap ba ’, function () {

plot job (base , sapling trees ba ,50,’ Saplings (0 –11cm) m^2/ha ’,n) })

plot save ( base , ’pole ba ’, function () {

plot job (base , pole trees ba ,50,’Pole trees (11 –26cm) m^2/ha ’,n) })

plot save ( base , ’mat ba ’, function () {

plot job (base , mature trees ba , 50,’Mature trees (26 –46cm) m^2/ha ’, n) })

plot save ( base , ’large ba ’, function () {

plot job (base , large trees ba , 50, ’Large trees (46+cm) m^2/ha ’,n) })

plot save ( base , ’xlarge ba ’, function () {

plot job (base , xlarge trees ba , 50,’X – large trees (>66cm) m^2/ha ’, n) })

## Basal area by size category

plot save ( base , ’seed pba ’, function () {

plot job (base , seed trees pba ,50, ’Seedlings (0 –6cm) %BA ’,n) })

plot save ( base , ’sap pba ’, function () {

plot job (base , sapling trees pba ,50,’ Saplings (0 –11cm) %BA ’,n) })

plot save ( base , ’pole pba ’, function () {

plot job (base , pole trees pba ,50,’Pole trees (11 –26cm) %BA ’,n) })

plot save ( base , ’mat pba ’, function () {

plot job (base , mature trees pba , 50,’Mature trees (26 –46cm) %BA ’, n) })

plot save ( base , ’large pba ’, function () {

plot job (base , large trees pba , 50, ’Large trees (46+cm) %BA ’,n) })

plot save ( base , ’xlarge pba ’, function () {

plot job (base , xlarge trees pba , 50,’X – large trees (>66cm) %BA ’, n) })

if ( all details ){

## ECA by size category

plot save ( base , ’seed eca ’, function () {

plot job (base , seed trees eca ,100∗100 , ’Seedling (0 –6cm) ECA (m^2/ha)’,n) })

plot save ( base , ’sap eca ’, function () {

plot job (base , sapling trees eca ,100∗100 , ’Sapling (0 –11cm) ECA (m^2/ha)’,n) })

plot save ( base , ’pole eca ’, function () {

plot job (base , pole trees eca ,100∗100 , ’Pole trees (11 –26cm) ECA (m^2/ha)’,n) })

plot save ( base , ’mat eca ’, function () {

plot job (base , mature trees eca , 100∗100 , ’Mature trees (26 –46cm) ECA (m^2/ha)’, n) })

plot save ( base , ’large eca ’, function () {

plot job (base , large trees eca , 100∗100 , ’Large trees (46+cm) ECA (m^2/ha)’,n) })

plot save ( base , ’xlarge eca ’, function () {

plot job (base , xlarge trees eca , 100∗100 , ’X – large trees (>66cm) ECA (m2/ha)’,n) })
}

## %ECA by size category

plot save ( base , ’seed peca ’, function () {
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plot job (base , seed trees peca ,100,’ Seedling (0 –6cm) %ECA ’,n); })

plot save ( base , ’sap peca ’, function () {

plot job (base , sapling trees peca ,100,’ Sapling (0 –11cm) %ECA ’,n) })

plot save ( base , ’pole peca ’, function () {

plot job (base , pole trees peca ,100,’Pole trees (11 –26cm) %ECA ’,n) })

plot save ( base , ’mat peca ’, function () {

plot job (base , mature trees peca , 100,’Mature trees (26 –46cm) %ECA ’, n) })

plot save ( base , ’large peca ’, function () {

plot job (base , large trees peca , 100,’Large trees (46+cm) %ECA ’,n) })

plot save ( base , ’xlarge peca ’, function () {

plot job (base , xlarge trees peca , 100,’X – large trees (>66cm) %ECA ’,n) })

plot save (base , ’harv ’, function () {

plot job (base ,harvest volume ,150,’ Harvest volume (m3/ha)’,n) })

plot save (base , ’vol ’, function () {

plot job (base ,standing volume ,700, ’Standing live volume (m3/ha)’, n ); })

plot save (base , ’mg ’, function () {

plot job (base ,standing biomass ,500, ’Standing live biomass (Mg/ha)’, n ); })

plot save (base , ’mvol ’, function () {

plot job (base ,mort volume ,150,’Dead volume (m3/ha)’,n);})

plot save (base , ’dbh ’, function () {

plot job (base ,dbh dist ,200,’ Trees/Ha ’,n, xlab=’DBH (cm)’,

X=seq(2,118,by=4), xlim=c(11 ,100) ); })

plot save (base , ’log dbh ’, function () {

plot job (base ,dbh dist ,c(0.1 ,200) ,’Trees/Ha ’,n, xlab=’DBH (cm)’,

X=seq(2,118,by=4), xlim=c(11 ,100),log="y") })

plot save (base , ’rba ’, function () { rba plot (base , n, label); })

plot save (base , ’st stage ’, function () {

x= plot job (base , stand dev , 10, ’Developmental stage ’, n )

legend(’top ’,

c(’1: Sapling ’,

’2: Pole ’,

’3: Mat/Sap Mosaic ’,

’4: Mature ’,

’5: Late Agg.’,

’6: Early Tx ’,

’7: Late Tx ’,

’8: Steady State ’), ncol=2, cex =0.75 , y.intersp =1.6)

x })

if ( all details ){

plot save (base , ’cwd logs ’, function () {

plot job (base , vol logs , 200, ’Log volume (m3/ha)’, n); })

plot save (base , ’cwd log1s ’, function () {

plot job (base , vol log1s , 100, ’Log 1 Volume ’, n); })

plot save (base , ’cwd log2s ’, function () {

plot job (base , vol log2s , 100, ’Log 2 Volume ’, n); })

plot save (base , ’cwd log3s ’, function () {
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plot job (base , vol log3s , 100, ’Log 3 Volume ’, n); })

plot save (base , ’cwd log4s ’, function () {

plot job (base , vol log4s , 100, ’Log 4 Volume ’, n); })

plot save (base , ’cwd log5s ’, function () {

plot job (base , vol log5s , 100, ’Log 5 Volume ’, n); })

plot save (base , ’cwd snags ’, function () {

plot job (base , vol snags , 100, ’Snag volume (m3/ha)’, n); } )

plot save (base , ’cwd snag1s ’, function () {

plot job (base , vol snag1s , 50, ’Snag 1 Volume ’, n); } )

plot save (base , ’cwd snag2s ’, function () {

plot job (base , vol snag2s , 50, ’Snag 2 Volume ’, n); } )

plot save (base , ’cwd snag3s ’, function () {

plot job (base , vol snag3s , 50, ’Snag 3 Volume ’, n); } )

plot save (base , ’cwd snag4s ’, function () {

plot job (base , vol snag4s , 50, ’Snag 4 Volume ’, n); } )

plot save (base , ’cwd snag5s ’, function () {

plot job (base , vol snag5s , 50, ’Snag 5 Volume ’, n); } )

plot save ( base , ’cwd all ’, function () {

plot job (base , vol all , 300, ’CWD volume (m3/ha)’, n); } )

plot save ( base , ’cwd ddist log1 ’, function () {

plot job (base , cwd ddist log1 , 50, ’Log 1 DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist log2 ’, function () {

plot job (base , cwd ddist log2 , 50, ’Log 2 DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist log3 ’, function () {

plot job (base , cwd ddist log3 , 50, ’Log 3 DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist log4 ’, function () {

plot job (base , cwd ddist log4 , 50, ’Log 4 DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist log5 ’, function () {

plot job (base , cwd ddist log5 , 50, ’Log 5 DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist snag1 ’, function () {

plot job (base , cwd ddist snag1 , 50, ’Snag 1 DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist snag2 ’, function () {

plot job (base , cwd ddist snag2 , 50, ’Snag 2 DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist snag3 ’, function () {

plot job (base , cwd ddist snag3 , 50, ’Snag 3 DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist snag4 ’, function () {

plot job (base , cwd ddist snag4 , 50, ’Snag 4 DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist snag5 ’, function () {

plot job (base , cwd ddist snag5 , 50, ’Snag 5 DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })
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plot save ( base , ’cwd ddist snags ’, function () {

plot job (base , cwd ddist snags , 50, ’Snag DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist logs ’, function () {

plot job (base , cwd ddist logs , 50, ’Log DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd ddist all ’, function () {

plot job (base , cwd ddist all , 50, ’CWD DBH Distribution ’, n,

xlab=’DBH (cm)’, X=seq(2,118,by=4), xlim=c(11 ,100) ) })

plot save ( base , ’cwd mass all ’, function () {

plot job (base , mass all , 300, ’CWD biomass (Mg/ha)’, n); } )

plot save (base , ’cwd mass snags ’, function () {

plot job (base , mass snags , 100, ’Snag biomass (Mg/ha)’, n); } )

plot save (base , ’cwd mass logs ’, function () {

plot job (base , mass logs , 200, ’Log biomass (Mg/ha)’, n); })
}

generate ddist table (base ,n)

mk std 2d plots (base , n)

mk summary tables (base)
}

## 2d plots for the handout , from replicate 01:

mk std 2d plots = function(base , n){

db open (sprintf(’%s.r01.db ’,base))

fig basename = sprintf(’% s r01 ’,base);

## Set interval for snapshot plots here:

for (yr in seq(0, max year ,by=10) ){

out=sprintf(’% s %04 d dbh .png ’,fig basename ,yr)

if( length(list.files(pattern=’^’ %.% out))==0) {

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 0.25, 0.25 ))

dbh dist one (yr)

dev.off()
}

out=sprintf(’% s %04 d eca .png ’,fig basename ,yr)

if (length(list.files(pattern=’^’ %.% out))==0) {

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 0.25, 0.25 ))

eca dist one (yr)

dev.off()
}

out=sprintf(’% s %04 d stock .png ’,fig basename ,yr)

if (length(list.files(pattern=’^’ %.% out))==0) {

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 0.25, 0.25 ))

stocking dist one (yr)

dev.off()
}

out=sprintf(’% s %04 d dgr vs dbh .png ’,fig basename ,yr)
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if (length(list.files(pattern=’^’ %.% out))==0 &&

yr != max year ){

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 0.25, 0.25 ))

dgr vs dbh plot one (yr)

dev.off()
}

}

crh mode = function(x){

tx = sort(table(x), decreasing=T)

mx = as.numeric( names(tx)[1] )

ifelse (sum(tx==tx[1])>1, NA , mx)
}

mk age dist = function(sp){

sp lut = list()

sp lut [["sm"]] = 4

sp lut [["hm"]] = 5

sp lut [["yb"]] = 6

sp lut [["wa"]] = 13

sp lut [["bw"]] = 2

sp lut [["rm"]] = 9

sp names = list()

sp names [["sm"]] = "Sugar maple"

sp names [["hm"]] = "Hemlock"

sp names [["yb"]] = "Yellow birch"

sp names [["wa"]] = "Ash"

sp names [["bw"]] = "Basswood"

sp names [["rm"]] = "Red maple"

out=sprintf(’% s % s age dist .png ’,fig basename , sp)

if (is.na(file.info(out) $size)){

d sm =sql(sprintf(

’select dbh ,age from dead trees where species =%i and dbh>=25’,

sp lut [[sp]] ) )

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 1.25, 0.25 ))

if (length( d sm$age )>0){

hist( d sm$age , freq=F, right=F,

breaks=seq (0 ,10∗ ceiling(max( d sm$age /10)),by=10),

col=’grey ’, main= sp names [[sp]],

xlab=’Age at time of death (yr)’)

mtext( sprintf ("Mean: %.1f Median: %.1f Mode: %.1f",

mean( d sm$age ),

median( d sm$age ),

crh mode ( 10∗ floor( d sm$age /10)) ), side=3, line = –1 )

} else {

plot( c(0,1), c(0,1), type="n")

text (0.5, 0.5, "No data")
}

dev.off()
}

}
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for (sp in c("sm","hm","yb","wa","bw","rm")){

mk age dist (sp)
}

out=sprintf(’% s all age dist .png ’, fig basename )

if (is.na(file.info(out) $size)){

d all = sql(’select dbh ,age from dead trees where dbh>=25’)

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 1.25, 0.25 ))

if (length( d all$age )>0){

hist( d all$age , freq=F, right=F,

breaks=seq (0 ,10∗ ceiling(max( d all$age /10)),by=10),

col=’grey ’, main=’All species ’,

xlab=’Age at time of death (yr)’)

mtext( sprintf ("Mean: %.1f Median: %.1f Mode: %.1f",

mean( d all$age ),

median( d all$age ),

crh mode ( 10∗ floor( d all$age /10)) ), side=3, line = –1 )

} else {

plot( c(0,1), c(0,1), type="n")

text (0.5, 0.5, "No data")
}

dev.off()
}

## Age at TOD distribution for overstory trees:

out = sprintf ("% s all age dist over .png", fig basename )

if (is.na(file.info(out) $size)){

d all = sql(’select dbh ,age from dead trees where dbh >= 25 and ’ %.%

’treeno in (select treeno from live trees where year<=20) ’)

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 1.25, 0.25 ))

if (length( d all$age )>0){

hist( d all$age ,freq=F, right=F,

breaks=seq (0 ,10∗ ceiling(max( d all$age /10)),by=10),

col=’grey ’, main=’Overstory , all species ’,

xlab=’Age at time of death (yr)’)

mtext( sprintf ("Mean: %.1f Median: %.1f Mode: %.1f",

mean( d all$age ),

median( d all$age ),

crh mode ( 10∗ floor( d all$age /10)) ), side=3, line = –1 )

} else {

plot( c(0,1), c(0,1), type="n")

text (0.5, 0.5, "No data")
}

dev.off()
}

gen pch = function(d){

pch = rep(0, length(d$dbh))

pch[d$species == 2] = 1

pch[d$species == 4] = 2

pch[d$species == 13] = 15

pch[d$species == 5] = 4
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pch[d$species == 6] = 19

pch[d$species == 9] = 6

pch
}

gen col = function(d){

col = rep(’black ’, length(d$dbh) )

col[ d$species == 2] = ’blue ’

col[ d$species == 4] = ’green ’

col[ d$species == 13] = ’orange ’

col[ d$species == 5] = ’purple ’

col[ d$species == 6] = ’yellow ’

col[ d$species == 9] = ’red ’

col
}

cr plot = function(d){

predict mcr = function( species , habitat , dbh ){

if (habitat ==" AOCa" & species ==" sugarmaple ") {

coefs = c( 8.13689 , 0.03818 , 18.56050 )

} else if (species ==" sugarmaple ") {

coefs = c( 7.91233 , 0.02746 , 24.93295 )

} else if (species ==" hemlock ") {

coefs = c( 4.51000 , 0.04241 , 10.10187 )

} else {

stop(’Unknown species ’)
}

B = coefs [1]

C = coefs [2]

D = coefs [3]

B ∗ exp( – exp( –C ∗ (dbh – D)))
}

plot( d$dbh , d$mcr , xlab="DBH (cm)", ylab="MCR (m)",

pch= gen pch (d), col= gen col (d))

dx = seq(min(d$dbh), max(d$dbh))

lines( dx , predict mcr (" sugarmaple", "ATD", dx), col=’green ’)

lines( dx , predict mcr (" hemlock", "ATD", dx), col=’purple ’)

legend(’topleft ’,

c(’Basswood ’, ’Sugar maple ’, ’White ash ’,

’Hemlock ’, ’Yellow birch ’, ’Red maple ’, ’Other ’),

col=c(’blue ’,’green ’,’orange ’,’purple ’,’yellow ’,’red ’,’black ’),

pch=c(1,2,15,4,19,6,0))
}

age plot = function(d) {

plot( d$age , d$mcr , xlab="Age (yr)", ylab="MCR (m)",

pch= gen pch (d), col= gen col (d))

legend(’topleft ’,

c(’Basswood ’, ’Sugar maple ’, ’White ash ’,

’Hemlock ’, ’Yellow birch ’, ’Red maple ’, ’Other ’),

col=c(’blue ’,’green ’,’orange ’,’purple ’,’yellow ’,’red ’,’black ’),

pch=c(1,2,15,4,19,6,0))
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}

dbh age plot = function(d) {

plot( d$age , d$dbh , xlab="Age (yr)", ylab="DBH (cm)",

pch= gen pch (d), col= gen col (d))

legend(’topleft ’,

c(’Basswood ’, ’Sugar maple ’, ’White ash ’,

’Hemlock ’, ’Yellow birch ’, ’Red maple ’, ’Other ’),

col=c(’blue ’,’green ’,’orange ’,’purple ’,’yellow ’,’red ’,’black ’),

pch=c(1,2,15,4,19,6,0))
}

out=sprintf(’% s cr vs diam start .png ’, fig basename )

if (length(list.files(pattern=’^’ %.% out))==0) {

d <– get trees (0)

d <– d[d$species !=24 ,]

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 0.25, 0.25 ))

if (length(d$dbh>0)) { cr plot (d) } else { plot (0,0) }

dev.off()
}

out=sprintf(’% s cr vs diam .png ’, fig basename )

if (length(list.files(pattern=’^’ %.% out))==0) {

d <– get trees ( max year )

d <– d[d$species !=24 ,]

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 0.25, 0.25 ))

if (length(d$dbh)>0) { cr plot (d) } else { plot (0,0) }

dev.off()
}

out=sprintf(’% s cr vs age start .png ’, fig basename )

if (length(list.files(pattern=’^’ %.% out))==0) {

d <– get trees (0)

d <– d[d$species !=24 ,]

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 0.25, 0.25 ))

if (length(d$dbh)>0) { age plot (d) } else { plot (0,0) }

dev.off()
}

out=sprintf(’% s cr vs age .png ’, fig basename )

if (length(list.files(pattern=’^’ %.% out))==0) {

d <– get trees ( max year )

d <– d[d$species !=24 ,]

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 0.25, 0.25 ))

if (length(d$dbh)>0) { age plot (d) } else { plot (0,0) }

dev.off()
}

out=sprintf(’% s diam vs age start .png ’, fig basename )

if (length(list.files(pattern=’^’ %.% out))==0) {
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d <– get trees (0)

d <– d[d$species !=24 ,]

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 0.25, 0.25 ))

if (length(d$dbh)>0) { dbh age plot (d) } else { plot (0,0) }

dev.off()
}

out=sprintf(’% s diam vs age .png ’, fig basename )

if (length(list.files(pattern=’^’ %.% out))==0) {

d <– get trees ( max year )

d <– d[d$species !=24 ,]

png(out ,width =600, height =600)

par(ps=24, mai=c(1.35 , 1.25, 0.25, 0.25 ))

if (length(d$dbh)>0) { dbh age plot (d) } else { plot (0,0) }

dev.off()
}

db close ()

## Residence times

stages = c()

for (i in 1:n){

db open (sprintf(’%s.r%02i.db ’,base , i))

stages = rbind ( stages , stand dev () )

db close ()
}

colnames(stages)=years

sink( sprintf(’% s stage data .tex ’,base) )

for (i in 1: ceiling(length(years)/18)){

ix = ( 18∗(i –1) + 1): min (18∗i, length(years) )

print(xtable(stages[,ix]), floating=F)

cat(’\n\n’)
}

sink()

## Now we have a matrix giving the stand stage at various times.

tot times = matrix( 0, nrow=n, ncol=9 )

entries = matrix( 0, nrow=n, ncol=9 )

entries [,9] = 1

for (i in 1:n) {

hit og = F

for (j in 1: length(stages[i,]) ){

stage i = stages[i,j]

tot times [i, stage i ] = tot times [i, stage i ] + meas interval

if ( stage i >= 5 ){ hit og = T }

if (! hit og ) {

tot times [i, 9] = tot times [i,9] + meas interval
}

if (j==1 | | stages[i,j –1] != stage i ){
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entries[i, stage i ] = entries[i, stage i ] + 1
}

}
}

res times = matrix(0, nrow=n, ncol =9)

for (i in 1:n) {

res times [i,] = tot times [i,] / entries[i,]
}

colnames( res times ) = c(" Sapling", "Pole", "MSM", "Mature",

"OG: LA", "OG: ET", "OG: LT", "OG: SS", "Time to OG")

sink( sprintf(’% s residence times .tex ’, base) )

print( xtable( res times ), floating=F)

cat(’\n\n’)

sink()
}

generate ddist table = function(base ,n){

# To set ’years ’:

db open (sprintf(’%s.r01.db ’,base)); db close ()

out=sprintf(’% s dbh sequence .csv ’,base)

if (length(list.files(pattern=’^’ %.% out))==0) {

rc = c()

for (yr in years){

row i = envelope engine (base , n, function () { dbh dist (yr)} );

rc = rbind( rc , row i$Mu )
}

rc = round(rc[ ,2:30] ,1) # Trim the half – class w/ NA , round diameters to 1/10 cm

colnames(rc) = seq(6,118,by=4)

rownames(rc) = years

write.csv(rc , out)
}

}

mk summary tables = function(base){

## Pull out the BA summary data

d sap ba = read.csv(sprintf(’% s sap ba .csv ’, base))

d pol ba = read.csv(sprintf(’% s pole ba .csv ’, base))

d mat ba = read.csv(sprintf(’% s mat ba .csv ’, base))

d lrg ba = read.csv(sprintf(’% s large ba .csv ’, base))

n items = length( d sap ba [,5])

## Construct a summary of BA by size category:

ba = rbind(

d sap ba [,5],

d pol ba [,5],

d mat ba [,5],

d lrg ba [,5] )

rownames(ba) = c(" Sapling", "Pole", "Mature", "Large ")

colnames(ba) = d sap ba [,2]

## In the perl standard handout , I’m using tables that are 18 cells wide
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## So , replicate that here and chop up the data if it is getting too long.

sink( sprintf(’% s ba summary .tex ’,base) )

for (i in 1: ceiling( n items /18)){

ix = ( 18∗(i –1) + 1): min (18∗i, n items )

print(xtable(ba[,ix]), floating=F)

cat(’\n\n’)
}

sink()

tot ba = apply( ba , 2, sum)

rel ba = rbind(

100 ∗ d sap ba [,5] / tot ba ,

100 ∗ d pol ba [,5] / tot ba ,

100 ∗ d mat ba [,5] / tot ba ,

100 ∗ d lrg ba [,5] / tot ba )

rownames( rel ba ) = rownames(ba)

colnames( rel ba ) = colnames(ba)

sink( sprintf(’% s rel ba summary .tex ’,base))

for (i in 1: ceiling( n items /18)){

ix = ( 18∗(i –1) + 1): min( 18∗i, n items )

print(xtable( rel ba [,ix]), floating=F)

cat(’\n\n’)
}

sink()

## Pull out the ECA summary data:

d sap eca = read.csv(sprintf(’% s sap eca .csv ’, base))

d pol eca = read.csv(sprintf(’% s pole eca .csv ’, base))

d mat eca = read.csv(sprintf(’% s mat eca .csv ’, base))

d lrg eca = read.csv(sprintf(’% s large eca .csv ’, base))

## Construct a summary of BA by size category:

eca = rbind(

d sap eca [,5],

d pol eca [,5],

d mat eca [,5],

d lrg eca [,5])

rownames(eca) = rownames(ba)

colnames(eca) = colnames(ba)

sink( sprintf(’% s eca summary .tex ’,base) )

for (i in 1: ceiling( n items /18)){

ix = ( 18∗(i –1) + 1): min (18∗i, n items )

print(xtable(eca[,ix]), floating=F)

cat(’\n\n’)
}

sink()

tot eca = apply( eca , 2, sum)

rel eca = rbind(

100 ∗ d sap eca [,5] / tot eca ,

100 ∗ d pol eca [,5] / tot eca ,

100 ∗ d mat eca [,5] / tot eca ,
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100 ∗ d lrg eca [,5] / tot eca )

rownames( rel eca ) = rownames(ba)

colnames( rel eca ) = colnames(ba)

sink( sprintf(’% s rel eca summary .tex ’,base))

for (i in 1: ceiling( n items /18)){

ix = ( 18∗(i –1) + 1): min( 18∗i, n items )

print(xtable( rel eca [,ix]), floating=F)

cat(’\n\n’)
}

sink()
}

compute productivity = function () {

sim prod = function( dbase , tgt yr ) {

cut vol = 0;

std vol = 0;

nrep = 3;

for( sr in 1:nrep ){

fname = sprintf(’%s.r%02i.db’, dbase , sr);

db open (fname)

cut = sql(sprintf(’select treeno ,dbh ,ht ’ %.%

’from cut taken trees where year<=%i’, tgt yr ));

standing = sql(sprintf(’select treeno ,dbh ,ht ’ %.%

’from live trees where year ==%i’, tgt yr ));

cut vol = cut vol + sum( estimate volume go ( cut$dbh , cut$ht ));

std vol = std vol + sum( estimate volume go ( standing$dbh , standing$ht ));

db close ()
}

c( cut vol / nrep , std vol / nrep );
}

chvol = c(); chvol50 = c();

fvol = c(); fvol50 = c();

sname = c();

sims=list.files(pattern = ’.∗. r01.db$ ’)

sims=sub(’.r01.db ’,’’,sims ,fixed=T)

for( fname base in sims ){

x = sim prod ( fname base , 300 );

chvol = c(chvol , x[1])

fvol = c(fvol , x[2])

x = sim prod ( fname base , 45);

chvol50 = c(chvol50 , x[1])

fvol50 = c(fvol50 , x[2])

sname = c(sname , fname base )
}

print( data.frame(sname , fv45 =fvol50/9, hv45 =chvol50 /(9∗45 ),

fv300=fvol /9, hv300=chvol /(9∗300) ))
}

F.6 util.r
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library (" RSQLite ")

library ("zoo")

if (! exists(’meas interval ’)){ meas interval =10 }

###################

# Utility functions

’%.%’ = function(s1 ,s2){ paste(s1 ,s2 ,sep=’’) }

my merge = function(x,y, ... ){

if( length(x)>0 & length(y) >0 ){ rc = merge(x,y ,...); }

else if (length(x)>0 ) { rc = x; }

else if (length(y)>0 ) { rc = y; }

else { rc = c(); }

rc;
}

#####################################

# SQL interface

## Provide a caching layer to make repeat queries less unpleasant

sql cache <<– list()

dbi=SQLite (); dbi file =’’

db open = function(fname) {

if (is.na(file.info(fname) $size)) {

stop(’no such file: ’, fname)

} else {

db<<–dbConnect(dbi ,fname)

dbi file<<–fname

if (grepl(’ atm [. ]’,fname)){

db site quality <<– "F"

} else {

db site quality <<– "G"
}

# Provide a generalized result cache

cache fname = sprintf(’% s cache .rd’, fname)

if (is.na(file.info( cache fname ) $size)) {

result cache <<– list()

} else {

load(cache fname , .GlobalEnv)
}

result cache [[" dirty "]] <<– F

# And also a query cache along with a cache for annoyingly

# complex growth analyses.

if (is.null( sql cache [[ dbi file ]]) ){

sql cache file = sprintf(’% s sql cache .rd ’, fname)

if (is.na(file.info( sql cache file ) $size) ) {

sql cache [[ dbi file ]] <<– list()

} else {

load( sql cache file )

sql cache [[ dbi file ]] <<– this sql cache data
}

}
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sql cache [[ dbi file ]][[" dirty "]] <<– F

d=sql(’select max(year) as max year from sizes ’)

max year <<– d$max year

years <<– seq(0, max year ,by= meas interval )
}

}

db close = function () {

if ( dbi file != ’’){

dbDisconnect(db)

# This guy is quick to save , so just do so.

if ( result cache [[" dirty "]])

save( result cache ,

file=sprintf(’% s cache .rd’, dbi file ) )

result cache <<– list()

## Depend on caller(s) to appropriately save the query caches.

dbi file <<–’’
}

}

save caches = function () {

for ( db fn in names( sql cache ) ){

if ( sql cache [[ db fn ]][[" dirty "]] ){

sql cache [[ db fn ]][[" dirty "]] <<– F

this sql cache data = sql cache [[ db fn ]]

save( this sql cache data , file=sprintf(’% s sql cache .rd ’, db fn ) )
}

}
}

sql = function(x){

if ( dbi file == ’’) { stop(’no db open ’) }

if (is.null( sql cache [[ dbi file ]][[x]]) ){

cat(sprintf(’SQL: %s\n’, x))

rs = dbSendQuery(db ,x)

rc = fetch(rs , n= –1)

dbClearResult(rs)

sql cache [[ dbi file ]][[x]] <<– rc

sql cache [[ dbi file ]][[" dirty "]] <<– T
}

sql cache [[ dbi file ]][[x]]
}

clear caches =function () {

save caches ()

sql cache <<– list()
}

## Persistent results cache:

res cache = function(fcn) {

## To generate indices from a list of parameters

## Note that the parameters must be unique , which might necessitate

## some use of eval(substitute () )

mk ix = function(x, ... ) {

rc = gsub(" +", " ", paste0( deparse( x ), collapse=’’) )
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if (length(list (...))>0) {

paste( rc , mk ix (...) )

} else {

rc
}

}

ix = mk ix (fcn)

if (is.null( result cache [[ix]]) | |

(is.matrix( result cache [[ix]]) &&

dim( result cache [[ix]]) [2] != length(years)) | |

(is.vector( result cache [[ix]]) &&

length( result cache [[ix]]) != length(years)) ){

result cache [[ix]] <<– fcn()

result cache [[" dirty "]] <<– T
}

result cache [[ix]]
}

## Also try to run as much of the data analsys as possible through a standard set of

## query functions , to maximize the efficiacy of the cache:

get scale =function () {

r <– sql(" select xmax ∗ ymax as size from plotinfo ")

(100∗100)/r$size
}

get trees =function(year){

d <– sql(sprintf(’select x,y,year ,treeno ,species ,age ,dbh ,relht ,ht ,hbc ,hwc ,’ %.%

’3.14/4∗( nexp ∗ eexp+eexp ∗ sexp+sexp ∗ wexp+wexp ∗ nexp) as eca , ’ %.%

’3.14/4∗(n ∗e+e ∗s+s ∗w+w ∗n) as tca , ’ %.%

’(n+e+s+w)/4 as mcr , ’ %.%

’n,e,s,w,nexp ,eexp ,sexp ,wexp ’ %.%

’from live trees where year %%%i=0’, meas interval ))

d[d$year ==year ,]
}

get cwd dbh =function(year , cl){

cwd dbh <– sql(’select ∗ from dead trees union ’ %.%

’select ∗ from cut left trees ’)

treenos <– sql(sprintf(’select year ,treeno from cwd %s’,cl))

treenos <– treenos[treenos$year == year ,]

cwd dbh [ cwd dbh$treeno %in% treenos$treeno , ]
}

#### Data manipulation:

# An engine to compute envelopes for a family of simulations.

envelope engine = function(base name , n, summary fcn ){

get from db = function(base name , i){

dbfi= sprintf(’%s.r%02i.db’,base name ,i)

cat(sprintf(’%s\n’, dbfi))

db open (dbfi)

rc= summary fcn ()

db close ()

if (is.matrix(rc)) { rc = apply(rc , 2, sum) }

rc
}
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my sd = function(x,...) {

if(sum(is.na(x))== length(x) ){ NA; }

else { sd(x, ...) }
}

XX= get from db (base name ,1)

rc = matrix(NA , nrow=n, ncol=length(XX))

rc[1,] = XX

if (n>=2) {

for (i in 2:n){ rc[i,]= get from db (base name , i) }
}

Up=apply(rc , 2, max , na.rm=T)

Dn=apply(rc , 2, min , na.rm=T)

Mu=apply(rc , 2, mean , na.rm=T)

Sd=apply(rc , 2, my sd , na.rm=T)

data.frame(Up , Dn , Mu , Sd);
}

##### Plotting functions

# Takes envelope data and generates a plot from it:

plot job = function(

base , func , ylims , ylab , n,

xlab=’Simulation year ’, X=years , xlim=c(0, max year ), ... ) {

cat(sprintf (’== %s ==\n’, ylab));

a = envelope engine (base , n, func )

if (length(ylims)==2) {

ymin=ylims [1]; ymax=ylims [2]

} else {

ymin =0; ymax=ylims;
}

plot( X, a$Mu , type=’l’, cex=2,

lwd=3,ylim=c(ymin ,ymax),ylab=ylab ,xlim=xlim ,xlab=xlab , ... );

lines(X, a$Up , lty = 1, lwd =1);

lines(X, a$Dn , lty = 1, lwd =1);

cbind(X,a)
}

# Checks for the existence of a csv for a given plot.

# If one is not found , plot the data with the given plot fcn

# This function should return the data , which is dumped into a csv.

plot save = function( base , tag , plot fcn ){

if (length(list.files(pattern=’^’ %.% sprintf(’% s %s.csv ’,base ,tag)))==0) {

png(sprintf(’% s %s.png ’,base ,tag), width =600, height =600)

par(ps=24, mai=c(1.25 , 1.25, 0.25, 0.25) )

d= plot fcn ()

dev.off()

write.csv(d, file=sprintf(’% s %s.csv ’,base ,tag))
}

}

# ECA and Diameter distributions for a single replication:

eca dist one = function(year , plt key =T) {
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sum eca = function(sp , others=F){

if (others){

ix = which( !data$species %in% sp )

} else {

ix = which(data$species %in% sp)
}

rc = rep(0, 30)

if(length(ix)>0){

size class = 1+pmin(floor(data$dbh[ix]/4) ,29)

for (i in 1: length(ix) ){

rc[ size class [i]] = rc[ size class [i]] + data$eca[ix[i]]
}

}

rc
}

data=sql(" select species ,dbh ," %.%

"(3.14/4) ∗( nexp ∗ eexp+eexp ∗ sexp+sexp ∗ wexp+wexp ∗ nexp) as eca " %.%

"from live trees where dbh > 3 and year=" %.% year )

sclass=seq (0 ,120 ,4) – 1

eca totals = list()

eca totals [[1]] = sum eca ( c( 2))

eca totals [[2]] = sum eca ( c( 4))

eca totals [[3]] = sum eca ( c(13 ,14))

eca totals [[4]] = sum eca ( c( 5))

eca totals [[5]] = sum eca ( c( 6))

eca totals [[6]] = sum eca ( c( 9))

eca totals [[7]] = sum eca ( c(2,4,13,14,5,6,9), T )

cols = c("blue","green","orange","purple","yellow","red","grey")

labs = c(" Basswood","Sugar maple","White/Green ash", "Hemlock",

"Yellow birch", "Red maple","Other ")

per sp eca = c()

for (i in 1:7) { per sp eca [i] = sum( eca totals [[i]]) }

order = sort( per sp eca , decreasing=T, index.return=T) $ix

z = c()

for (i in 1:7) {

z = rbind( z, get scale () ∗ eca totals [[ order[i] ]] )
}

if (length(data$eca)>0){

tot eca = get scale () ∗ sum( data$eca )

} else {

tot eca = 0
}

barplot(z, names.arg=rollmean(sclass ,2),

xlab="DBH (cm)", ylab="ECA m^2/Ha",

col=cols[order],

legend.text= if( plt key ){ labs[order] } else { NULL },

args.legend=list(x=’right ’),

ylim=c(0 ,1500),
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main=if( plt key ){ paste (" Simulation year",year)} else { NULL })

mtext( sprintf ("ECA/(Plot area): %.3f", tot eca / (100∗100) ),

side=3, line = –2.5)
}

# ECA and Diameter distributions for a single replication:

ba dist = function(year) {

sum ba = function(sp , others=F){

if (others){

ix = which( !data$species %in% sp )

} else {

ix = which(data$species %in% sp)
}

rc = rep(0, 30)

if(length(ix)>0){

size class = 1+pmin(floor(data$dbh[ix]/4) ,29)

for (i in 1: length(ix) ){

rc[ size class [i]] = rc[ size class [i]] + data$ba[ix[i]]
}

}

rc[1] = NA # Drop the partial class

rc
}

data=sql(" select species ,dbh ," %.%

"(3.14/4) ∗( nexp ∗ eexp+eexp ∗ sexp+sexp ∗ wexp+wexp ∗ nexp) as eca " %.%

"from live trees where dbh > 3 and year=" %.% year )

sclass=seq (0 ,120 ,4) – 1

data$ba = pi ∗( data$dbh ^2/200)

ba totals = list()

ba totals [[1]] = sum ba ( c( 2))

ba totals [[2]] = sum ba ( c( 4))

ba totals [[3]] = sum ba ( c(13 ,14))

ba totals [[4]] = sum ba ( c( 5))

ba totals [[5]] = sum ba ( c( 6))

ba totals [[6]] = sum ba ( c( 9))

ba totals [[7]] = sum ba ( c(2,4,13,14,5,6,9), T )

per sp ba = c()

for (i in 1:7) { per sp ba [i] = sum( ba totals [[i]], na.rm=T) }

order = sort( per sp ba , decreasing=T, index.return=T) $ix

z = c()

for (i in 1:7) {

z = rbind( z, get scale () ∗ ba totals [[ order[i] ]] )
}

list(z=z, order=order , sclass=sclass)
}

ba dist one = function(year , plt key =T){

ba data = ba dist (year)
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cols = c("blue","green","orange","purple","yellow","red","grey")

labs = c(" Basswood","Sugar maple","White/Green ash", "Hemlock",

"Yellow birch", "Red maple","Other ")

barplot( ba data$z , names.arg=rollmean( ba data$sclass ,2),

xlab="DBH (cm)", ylab="BA m^2/Ha",

col=cols[ ba data$order ],

legend.text= if( plt key ){ labs[ ba data$order ] } else { NULL },

args.legend=list(x=’topright ’),

ylim=c(0 ,1500),

main=if( plt key ){ paste (" Simulation year",year)} else { NULL })

mtext( sprintf (" Stage %i", stand dev yr ( db site quality , year , 0.25, 3.75)),

side=3, line = –1)
}

dbh dist one = function(year , log plot =F, ymax =200, plt legend =T, plt labels =T,

xaxt="s", yaxt="s") {

get sp = function(sp ,others=F){

clamp = function(x, lim) { if(length(x)>0){ pmin(x,lim) } else { numeric (0) } }

if(others){

ix = which( !data$species %in% sp )

} else {

ix = which( data$species %in% sp )
}

hist(clamp(data$dbh[ix] ,118),breaks=sclass ,plot=F)
}

sclass=seq (0 ,120 ,4) – 1

if ( log plot ){

data=sql(" select dbh from sizes where dbh > 3 and year=" %.% year)

all=hist(clamp(data$dbh ,118) ,breaks=sclass ,plot=F)

z= get scale () ∗ all$counts

plot(all$mids ,pmax(1,z),log="y",xlab="DBH (cm)",ylab="T/Ha",ylim=c(1,ymax),

type="l")

} else {

data=sql(" select species ,dbh from live trees where dbh > 3 and year=" %.% year)

counts = list()

counts [[1]] = get sp ( c(2) )

counts [[2]] = get sp ( c(4) )

counts [[3]] = get sp ( c(13 ,14) )

counts [[4]] = get sp ( c(5) )

counts [[5]] = get sp ( c(6) )

counts [[6]] = get sp ( c(9) )

counts [[7]] = get sp ( c(2,4,13,14,5,6,9), T)

cols = c("blue","green","orange","purple","yellow","red","grey")

labs = c(" Basswood","Sugar maple","White/Green ash", "Hemlock",

"Yellow birch", "Red maple","Other ")

ba mid = pi ∗( rollmean(sclass ,2) /200) ^2

ba list = c()

for (i in 1:7) { ba list [i] = sum(counts [[i]] $counts ∗ ba mid ) }

order = sort(ba list , decreasing=T, index.return=T) $ix
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ba = get scale () ∗ sum( pi ∗( data$dbh /200) ^2 )

z = c()

for (i in 1:7) {

z = rbind( z, get scale () ∗ counts [[ order[i] ]] $counts )
}

if ( plt legend ){

l text = labs[order]

} else {

l text = NULL
}

barplot(z, names.arg=rollmean(sclass ,2),

xlab="", ylab="", ylim=c(0,ymax),

col = cols[order],

legend.text=l text ,

args.legend=list(x=’right ’),

xaxs="i", yaxs="i", xaxt=xaxt , yaxt=yaxt ,xpd=F )

if ( plt labels ){

title(paste (" Simulation year",year))

mtext ("DBH (cm)", side=1, line=2 )

mtext (" Trees/ha", side=2, line=2 )

mtext(sprintf ("BA: %.1f", ba), side=3, line = –2.5)
}

}
}

age dist one = function(year){

sp age = function(i,sp){

ix = which(d$species ==sp & (mids[i] –2) < d$dbh & d$dbh <= (mids[i]+2) )

mean( d$age[ix] )
}

d=sql(" select species ,dbh ,age from live trees where dbh > 4 and year=" %.% year)

mids = seq(6,118,by=4)

bw = rep(0, length(mids))

sm = rep(0, length(mids))

wa = rep(0, length(mids))

hm = rep(0, length(mids))

yb = rep(0, length(mids))

rm = rep(0, length(mids))

for (i in 1: length(mids) ){

bw[i] = sp age (i, 2)

sm[i] = sp age (i, 4)

wa[i] = sp age (i,13)

hm[i] = sp age (i, 5)

yb[i] = sp age (i, 6)

rm[i] = sp age (i, 9)
}

plot( mids , bw , type="l", lwd=2, col="blue", xlab="", ylab="", ylim=c(0 ,500) )

lines( mids , sm, lwd=2, col=" green" )

lines( mids , wa, lwd=2, col=" orange ")

lines( mids , hm, lwd=2, col=" purple ")

lines( mids , yb, lwd=2, col=" yellow ")
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lines( mids , rm, lwd=2, col="red")

legend (" topright", lty=1, lwd=2,

c(" Basswood", "Sugar maple", "White ash",

"Hemlock", "Yellow birch","Red maple"),

col=c("blue","green","orange","purple","yellow","red") )

mtext (" Midpoint diameter class (cm)", side=1, line =2)

mtext ("Mean age (yr)", side=2, line =2)
}

stocking dist one = function(yr){

d = sql(sprintf(’select stocking level from stocking where year=%i and type=900’,

yr))

hist( pmin (499, d$stocking level ), seq(0,500,by=20), xlab=’Stocking (%) ’, main=’’)

mtext( sprintf(’mean = %.1f’, mean( d$stocking level )) )
}

dgr vs dbh plot one = function(yr){

d now = get trees (yr)

d nxt = get trees (yr+10)

d both = merge(d now , d nxt , by=" treeno ")

col = rep(’black ’, length( d both$species .x) )

col[ d both$species .x == 2] = ’blue ’

col[ d both$species .x == 4] = ’green ’

col[ d both$species .x == 13] = ’orange ’

col[ d both$species .x == 5] = ’purple ’

col[ d both$species .x == 6] = ’yellow ’

col[ d both$species .x == 9] = ’red ’

pch = rep(0, length( d both$species .x))

pch[ d both$species .x == 2] = 1

pch[ d both$species .x == 4] = 2

pch[ d both$species .x == 13] = 15

pch[ d both$species .x == 5] = 4

pch[ d both$species .x == 6] = 19

pch[ d both$species .x == 9] = 6

plot( d both$dbh .x, d both$dbh .y – d both$dbh .x,

pch = pch , col = col ,

xlim=c(0 ,90), ylim=c(0 ,10),

xlab=’DBH (cm)’, ylab=’DGR (mm/yr)’,

main=sprintf(’Simulation year %i’,yr) )
}

ba plot = function () {

d = ba data ()

top = min (2∗ median(d), 1.1∗ max(d))

ix = which(d>= top)

plot(years , pmin(d, top), xlab=’Simulation year ’, ylab=’BA (m2/ha)’,

ylim=c(0,top))

points( years[ix], rep(top ,length(ix)), col=2, pch =24)
}

rba plot one = function () {

scale= get scale ()
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r=sql(paste (" select year ,",

scale ,"∗ sum (3.14159∗ dbh ∗ dbh /40000) as ba ,",

scale ,"∗ sum (3.14159∗ dbh ∗ dbh ∗( species == 2) /40000) as bw ba ,",

scale ,"∗ sum (3.14159∗ dbh ∗ dbh ∗( species == 4) /40000) as sm ba ,",

scale ,"∗ sum (3.14159∗ dbh ∗ dbh ∗( species ==13) /40000) as wa ba ,",

scale ,"∗ sum (3.14159∗ dbh ∗ dbh ∗( species ==24) /40000) as iw ba ,",

scale ,"∗ sum (3.14159∗ dbh ∗ dbh ∗( species == 5) /40000) as hm ba ,",

scale ,"∗ sum (3.14159∗ dbh ∗ dbh ∗( species == 6) /40000) as yb ba ,",

scale ,"∗ sum (3.14159∗ dbh ∗ dbh ∗( species == 9) /40000) as rm ba ",

"from live trees where year%", meas interval ,"=0 group by year ;"));

plot (r$year , 100∗ r$bw ba /r$ba , type=’l’, ylim=c(0 ,100), col="blue",

xlab=’Simulation Year ’, ylab=’% BA ’)

lines(r$year , 100∗ r$sm ba /r$ba , col=" green ")

lines(r$year , 100∗ r$wa ba /r$ba , col=" orange ")

lines(r$year , 100∗ r$iw ba /r$ba , col="cyan")

lines(r$year , 100∗ r$hm ba /r$ba , col=" purple ")

lines(r$year , 100∗ r$yb ba /r$ba , col=" yellow ")

lines(r$year , 100∗ r$rm ba /r$ba , col="red")

legend (" topright",c( "Sugarmaple", "Hemlock", "Yellow Birch", "Red Maple",

"Ash", "Basswood", "Ironwood "),

col=c("green","purple","yellow","red","orange","blue","cyan"), lty =1)

invisible(r)
}

#########################

# Growth function engines

# These engines will pull growth data out of the database ,

# run it through a function to compute some size metric ,

# and then summarize by 5 – year interval

#

# d thresh – a diameter threshold , growth is computed above this

# metric – a function of dbh , height , and species to compute

# the size metric of interest (ba , cuft , bdft , etc).

ingrowth engine = function( d thresh , metric , my filter =function(d){d} ){

res cache ( eval(substitute(

function () { ingrowth engine base ( d thresh , metric , my filter ) },

list( d thresh =d thresh , metric=metric , my filter = my filter ) )) )
}

ingrowth engine base = function( d thresh , metric , my filter =function(d){d} ){

rc = matrix(0, ncol=length(years), nrow =8)

colnames(rc) = years

rownames(rc) = c(2,4,13,24,5,6,9,NA)

cat(’i’)

d prv = get trees (years [1])

for( i in 2: length(years)){

cat(’.’)

d now = get trees (years[i])

big prv = d prv [which( d prv$dbh >=d thresh ),]

big now = d now [which( d now$dbh >=d thresh ),]
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tn ig = setdiff( big now$treeno , big prv$treeno )

d = my filter ( d now [ d now$treeno %in% tn ig , ] )

if (dim(d)[1] > 0 ){

rc[8,i] = 0

s2 = tapply( get scale () ∗ metric(d)/meas interval , d$species , sum)

for (j in 1: length(s2)){

ix = which(rownames(rc)== names(s2)[j])

if (length(ix)==0) { ix = 8 }

rc[ix ,i] = rc[ix ,i] + s2[j]
}

}

d prv = d now
}

cat(’\n’)

rc
}

survivor growth engine = function( d thresh , metric , my filter =function(d){d} ){

res cache ( eval(substitute(

function () { survivor growth engine base ( d thresh , metric , my filter ) },

list( d thresh =d thresh , metric=metric , my filter = my filter ) )) )
}

survivor growth engine base = function( d thresh , metric , my filter =function(d){d }) {

rc = matrix(0, ncol=length(years), nrow =8)

colnames(rc) = years

rownames(rc) = c(2,4,13,24,5,6,9,NA)

cat(’s’)

prev live = get trees (years [1])

prev live = prev live [ prev live$dbh >=d thresh ,]

for (i in 2: length(years)){

cat(’.’)

this live = get trees (years[i])

this live = this live [ this live$dbh >=d thresh ,]

r <– sql(’select year ,treeno ,dbh ,species ,ht from cut trees ’)

this cut <– r[r$dbh>=d thresh & years[i–1]<r$year & r$year <= years[i],]

this trees = merge(this live , this cut , all=T)

d = my filter (merge(prev live , this trees , by=" treeno "))

if (dim(d)[1]>0) {

s1=metric(data.frame(dbh=d$dbh.x, ht=d$ht.x, species=d$species.x))

s2=metric(data.frame(dbh=d$dbh.y, ht=d$ht.y, species=d$species.x))

delta s = tapply( get scale () ∗(s2 – s1)/meas interval , d$species.x, sum)

for (j in 1: length( delta s )){

ix = which(rownames(rc) == names( delta s )[j])

if (length(ix) == 0 ){ ix = 8 }
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rc[ix ,i] = rc[ix ,i] + delta s [j]
}

}

prev live = this live
}

cat(’\n’)

rc
}

mortality engine = function( d thresh , metric , my filter =function(d){d} ){

res cache ( eval(substitute(

function () { mortality engine base ( d thresh , metric , my filter ) },

list( d thresh =d thresh , metric=metric , my filter = my filter ) )) )
}

mortality engine base = function( d thresh , metric , my filter =function(d){d }) {

rc = matrix(0, ncol=length(years), nrow =8)

colnames(rc) = years

rownames(rc) = c(2,4,13,24,5,6,9,NA)

cat(’d’)

for( i in 2: length(years)){

cat(’.’)

d <– sql(’select year ,treeno ,dbh from dead trees ’)

dead tn = d[d$dbh>=d thresh & years[i–1]<d$year & d$year<=years[i],] $treeno

prev live = get trees (years[i –1])

dead = my filter ( prev live [ prev live$treeno %in% dead tn , ] )

if (dim(dead)[1] > 0 ){

s dead = tapply( get scale () ∗ metric(dead)/meas interval , dead$species , sum)

for (j in 1: length( s dead )){

ix = which(rownames(rc) == names( s dead )[j])

if (length(ix)==0) { ix = 8 }

rc[ix ,i] = rc[ix ,i] + s dead [j]
}

}
}

cat(’\n’)

rc
}

harvest engine = function( d thresh , metric ){

res cache ( eval(substitute(

function () { harvest engine base ( d thresh , metric ) },

list( d thresh =d thresh , metric=metric) )) )
}

harvest engine base = function( d thresh , metric ){

rc = matrix(0, ncol=length(years), nrow =8)

colnames(rc) = years

rownames(rc) = c(2,4,13,24,5,6,9,NA)

d <– sql(’select year ,treeno ,dbh ,species ,ht from cut trees ’)

for (i in 2: length(years)){

d i <– d[d$dbh>=d thresh & years[i–1]<d$year & d$year<=years[i],]

if (length( d i$treeno )>0){
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d prev = get trees (years[i –1])

d prev = d prev [ d prev$treeno %in% d i$treeno , ]

if (dim( d prev )[1] > 0 ){

s harv = tapply( get scale () ∗ metric( d prev )/meas interval , d prev$species , sum)

for (j in 1: length( s harv )){

ix = which(rownames(rc) == names( s harv )[j])

if (length(ix)==0) { ix = 8 }

rc[ix ,i] = rc[ix ,i] + s harv [j]
}

}
}

}

rc
}

windstorm engine = function( d thresh , metric , my filter =function(d){d} ){

res cache ( eval(substitute(

function () { windstorm engine base ( d thresh , metric , my filter ) },

list( d thresh =d thresh ,metric=metric , my filter = my filter ))))
}

windstorm engine base = function( d thresh , metric , my filter =function(d){d }) {

rc = matrix(0, ncol=length(years), nrow =8)

colnames(rc) = years

rownames(rc) = c(2,4,13,24,5,6,9,NA)

d = sql(’select year ,treeno ,dbh ,species ,ht from wind trees ’);

for (i in 2: length(years)){

d i = d[d$dbh >= d thresh & years[i –1] < d$year & d$year <= years[i],]

if (length( d i$treeno )>0){

d prev = my filter ( get trees (years[i –1]))

d prev = d prev [ d prev$treeno %in% d i$treeno , ]

if (dim( d prev )[1] > 0 ){

s wind = tapply( get scale () ∗ metric( d prev )/meas interval , d prev$species , sum)

for (j in 1: length( s wind )){

ix = which(rownames(rc) == names( s wind )[j])

if (length(ix)==0) { ix = 8 }

rc[ix ,i] = rc[ix ,i] + s wind [j]
}

}
}

}

rc
}

############################

# Misc regression estimators

estimate eca = function(dbh cm , species) {

rc = rep(NA , length( dbh cm ))

for (i in 1: length( dbh cm )){

if (species[i]==5) { rc[i] = 0.145 ∗ ( dbh cm [i]) ^1.34 }

else if (species[i]==6) { rc[i] = 200.0 ∗ exp ( –65.8/ dbh cm [i]) }

else { rc[i] = 0.377 ∗ ( dbh cm [i]) ^1.22 }
}

rc
}

##################################
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# Individual tree volume estimates

# Cubic – foot volumes from G&O:

estimate volume go = function( dbh cm , ht m ){

if (length( dbh cm )>0) {

dbh ft = ( dbh cm /2.54) /12

ht ft = 3.2808399∗ ht m

ba ft = pi ∗( dbh ft /2)^2

V ft =(20<= ht ft ) ∗(0.42 + 0.06∗ pmin(1,pmax (0 ,(30 – ht ft )/10))) ∗ ba ft ∗ ht ft

rc = 0.0283168466∗ V ft

} else {

rc = numeric (0)
}

rc
}

# From Hahn and Hansen (NJAF 8(2) :47 –57)

estimate volume hh = function( dbh cm , ht m ){

S = 65 # SI , assuming Sugar Maple

b1 = 118.80

b2 = 0.2106

b3 = –0.07184/1000

b4 = 2.724

dbh in = dbh cm /2.54

V ft = b1 ∗ S^b2 ∗ (1 – exp(b3 ∗ dbh in ^b4))

0.0283168466∗ V ft
}

estimate scribner volume go = function( dbh cm , logs ){

rc = rep(0, length( dbh cm ))

dbh in = dbh cm / 2.54

## Table 1 from Tech Bull 1104, excluding the softwood numbers

bdft = rbind(

c( NA, NA , NA , NA , NA , NA, NA , NA , NA),

c( 13, NA , NA , NA , NA , NA, NA , NA , NA),

c( 17, 30, NA , NA , NA , NA, NA , NA , NA),

c( 22, 38, 51, NA , NA , NA, NA , NA , NA),

c( 28, 48, 66, 78, NA , NA, NA , NA , NA),

c( 34, 59, 81, 96, 112, NA , NA , NA , NA),

c( 40, 70, 96, 116, 141, 160, NA , NA , NA),

c( 47, 81, 113, 137, 166, 188, 204, NA , NA),

c( 54, 93, 129, 158, 191, 224, 248, 263, NA),

c( 63, 106, 148, 182, 218, 257, 285, 308, 340),

c( 72, 122, 168, 207, 248, 292, 325, 355, 395),

c( 81, 137, 190, 234, 280, 328, 368, 405, 455),

c( 90, 156, 212, 262, 317, 366, 415, 450, 520),

c( 100, 173, 238, 293, 351, 405, 460, 505, 585),

c( 111, 194, 262, 328, 392, 450, 510, 560, 660),

c( 123, 215, 290, 360, 435, 500, 560, 620, 730),

c( 137, 236, 319, 400, 470, 550, 620, 690, 800),

c( 149, 258, 348, 440, 520, 600, 680, 760, 880),

c( 165, 281, 381, 480, 565, 650, 740, 820, 950),
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c( 179, 305, 415, 520, 620, 710, 800, 890, 1030) ,

c( 195, 331, 450, 560, 670, 760, 860, 960, 1120) ,

c( 210, 356, 485, 600, 720, 830, 930, 1030, 1200) ,

c( 227, 383, 520, 650, 770, 890, 1000, 1110, 1290) ,

c( 245, 410, 560, 700, 830, 950, 1080, 1200, 1380) ,

c( 260, 440, 600, 740, 890, 1020, 1150, 1280, 1470),

c( 279, 470, 640, 790, 950, 1080, 1230, 1370, 1560),

c( 294, 500, 680, 840, 1010, 1160, 1300, 1460, 1670) ,

c( 312, 530, 720, 900, 1080, 1230, 1390, 1560, 1790) ,

c( 330, 565, 770, 960, 1140, 1310, 1480, 1650, 1900) ,

c( 349, 600, 820, 1020, 1210, 1390, 1570, 1750, 2010) ,

c( 365, 630, 860, 1070, 1270, 1470, 1660, 1840, 2120) ,

c( 384, 660, 900, 1130, 1330, 1550, 1750, 1940, 2240) ,

c( 405, 700, 950, 1180, 1400, 1630, 1850, 2050, 2350)

)

col ix = c(1,2,3,4,5,6,7,8,8,9)

for (i in 1: length( dbh in )){

if ( dbh in [i] >= 8 && logs[i] > 0) {

ri = min( 40, round( dbh in [i])) – 7

ci = col ix [ min(9,round (2∗ logs[i])) ]

rc[i] = bdft[ ri , ci ]
}

}

rc
}

estimate scribner volume = function (dbh cm , ht m , species ,

dbh cm residual =c() ){

## Coefficients from Table 5 in USFS RP NC –222

## For converting from cubic foot volume to scribner board feet

coefs = rbind (

## SM BW WA YB

c( 1.7, 1.4, 1.3, 2.1 ), # 10

c( 2.3, 2.1, 2.2, 2.5 ), # 10.5

c( 2.8, 2.6, 2.7, 2.7 ), # 11

c( 3.2, 2.9, 3.0, 2.9 ), # 11.5

c( 3.5, 3.2, 3.3, 3.1 ), # 12

c( 3.7, 3.5, 3.4, 3.2 ), # 12.5

c( 3.9, 3.7, 3.5, 3.4 ), # 13

c( 4.2, 3.9, 3.7, 3.6 ), # 14

c( 4.4, 4.1, 3.9, 3.8 ), # 15

c( 4.6, 4.3, 4.0, 3.9 ), # 16

c( 4.7, 4.4, 4.1, 4.0 ), # 17

c( 4.8, 4.5, 4.2, 4.1 ), # 18

c( 4.8, 4.6, 4.3, 4.2 ), # 19

c( 4.6, 4.7, 4.4, 4.3 ) # 10

)

## Glue the cut trees + residual together to get a list of

## stand diameters

dbh stand = c( dbh cm [which(dbh cm >2.54∗10)],

dbh cm residual [which( dbh cm residual >2.54∗10)])
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## Compute the mean stand diameter:

qmsd = sqrt(sum ((2.54∗ dbh stand )^2)/length( dbh stand ));

## Figure out which row in the table to use

if (qmsd < 10 ) { stop(" Stand too small "); }

else if (qmsd < 10.5 ) { row ix = 1 }

else if (qmsd < 11 ) { row ix = 2 }

else if (qmsd < 11.5 ) { row ix = 3 }

else if (qmsd < 12 ) { row ix = 4 }

else if (qmsd < 12.5 ) { row ix = 5 }

else if (qmsd < 13 ) { row ix = 6 }

else if (qmsd < 14 ) { row ix = 7 }

else if (qmsd < 15 ) { row ix = 8 }

else if (qmsd < 16 ) { row ix = 9 }

else if (qmsd < 17 ) { row ix = 10 }

else if (qmsd < 18 ) { row ix = 11 }

else if (qmsd < 19 ) { row ix = 12 }

else if (qmsd < 20 ) { row ix = 13 }

else { row ix = 14 }

## Get the cubic foot volumes

V m = sum( estimate volume go ( dbh cm , ht m ) )

V ft = V m / 0.0283168466

V sbft = 0

for ( i in 1: length( V ft ) ){

if ( dbh cm [i] >= 2.54∗10) {

if ( species[i] == 2 ) { col ix = 2 } # Basswood

else if ( species[i] == 13 ) { col ix = 3 } # White Ash

else if ( species[i] == 6 ) { col ix = 4 } # Yellow Birch

else { col ix = 1 } # Sugar maple , other

V sbft = V sbft + V ft ∗ coefs[row ix , col ix ];
}

}

V sbft
}

estimate international volume go = function(dbh cm , logs){

rc = rep(0, length( dbh cm ))

dbh in = dbh cm / 2.54

## Table 2 from Tech Bull 1104, excluding the softwood numbers

bdft = rbind(

c( NA, NA , NA , NA , NA , NA, NA , NA , NA),

c( 18, NA , NA , NA , NA , NA, NA , NA , NA),

c( 21, 39, NA , NA , NA , NA, NA , NA , NA),

c( 25, 48, 68, NA , NA , NA, NA , NA , NA),

c( 30, 57, 80, 100, NA , NA , NA , NA , NA),

c( 36, 68, 96, 118, 134, NA , NA , NA , NA),

c( 42, 79, 110, 140, 163, 184, NA, NA , NA),

c( 50, 92, 128, 160, 188, 214, 232, NA , NA),

c( 59, 105, 147, 180, 213, 247, 274, 295, NA),

c( 66, 118, 166, 208, 245, 281, 314, 340, 378),

c( 74, 135, 188, 235, 278, 320, 360, 400, 440),
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c( 83, 152, 212, 265, 314, 360, 405, 450, 500),

c( 92, 170, 236, 295, 350, 400, 450, 500, 570),

c( 102, 189, 262, 328, 390, 450, 505, 550, 635),

c( 112, 209, 290, 362, 430, 495, 555, 610, 715),

c( 122, 228, 316, 396, 470, 540, 610, 680, 800),

c( 133, 252, 346, 430, 510, 595, 670, 740, 870),

c( 145, 275, 376, 470, 555, 645, 730, 810, 950),

c( 158, 300, 410, 510, 605, 700, 790, 880, 1020) ,

c( 172, 325, 440, 550, 650, 760, 850, 950, 1100) ,

c( 187, 348, 480, 595, 700, 810, 920, 1020, 1190) ,

c( 203, 378, 515, 640, 760, 870, 990, 1100, 1280) ,

c( 220, 410, 550, 685, 810, 930, 1060, 1180, 1360) ,

c( 237, 440, 595, 740, 870, 1000, 1140, 1260, 1450),

c( 254, 470, 635, 790, 930, 1070, 1210, 1350, 1550),

c( 270, 500, 680, 840, 990, 1140, 1290, 1440, 1650),

c( 291, 530, 725, 900, 1060, 1210, 1380, 1530, 1760) ,

c( 311, 565, 770, 950, 1120, 1290, 1460, 1630, 1880) ,

c( 333, 600, 820, 1010, 1190, 1370, 1550, 1725, 2000) ,

c( 353, 635, 860, 1070, 1260, 1450, 1640, 1830, 2120) ,

c( 374, 670, 910, 1120, 1330, 1530, 1730, 1930, 2240) ,

c( 394, 705, 960, 1180, 1400, 1620, 1830, 2040, 2360) ,

c( 415, 745, 1010, 1250, 1480, 1700, 1930, 2160, 2480)

)

col ix = c(1,2,3,4,5,6,7,8,8,9)

for( i in 1: length( dbh in )){

if ( dbh in [i] >= 8 && logs[i] > 0 ){

ri = min( 40, round( dbh in [i])) – 7

ci = col ix [ min(9,round (2∗ logs[i])) ]

rc[i] = bdft[ ri , ci ]
}

}

rc
}

# From Hahn and Hansen (NJAF 8(2) :47 –57)

estimate international volume hh = function(dbh cm , ht m ){

S = 65 # SI , assuming Sugar Maple

b1 = 585.0

b2 = 0.2590

b3 = –0.03684/1000

b4 = 2.925

dbh in = dbh cm /2.54

b1 ∗S^b2 ∗(1 – exp(b3 ∗ dbh in ^b4))
}

###

# Functions to estimate merchantable height

# The Pubanz Rule:

estimate logs rule 2 = function ( dbh cm ) {

rc = rep(0, length( dbh cm ))

for( i in 1: length( dbh cm )){
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if ( dbh cm [i] < 23 ) { rc[i] = 0 }

else if ( dbh cm [i] < 40 ) { rc[i] = 1.5 }

else if ( dbh cm [i] < 50 ) { rc[i] = 2 }

else {

rc[i] = sample( c(2 ,2.5), 1, prob=rep (0.5 ,2))
}

}

rc
}

# The Schmierer rule:

estimate logs rule 3 = function ( dbh cm ) {

flip = function(heads ,tails) { sample( c(heads ,tails), 1, prob=rep (0.5 ,2)) }

rc = rep(0, length( dbh cm ))

for( i in 1: length( dbh cm )) {

if ( dbh cm [i] < 25 ) { rc[i] = 0 }

else if ( dbh cm [i] < 30 ) { rc[i] = 0.5 }

else if ( dbh cm [i] < 35 ) { rc[i] = flip( 0.5, 1 ) }

else if ( dbh cm [i] < 40 ) { rc[i] = flip( 1.0, 1.5) }

else if ( dbh cm [i] < 45 ) { rc[i] = flip( 1.5, 2.0) }

else { rc[i] = flip( 2.0, 2.5) }
}

rc
}

# Merchantable height estimates calibrated from the NH –25 experiment.

estimate merch ht nh25 = function(dbh) {

logistic = function(x) { 1/(1+ exp( –x)) }

m1 = function(d){ 75.852551 – 6.2071040∗d + 0.1551870∗d^2 – 0.0012440∗d^3 }

m2 = function(d){ –3.014e+01 + 2.272e+00∗d – 6.077e –02∗ d^2 + 4.914e –04∗ d^3 }

m3 = function(d){ 53.7442009 – 4.2361741∗d + 0.1046736∗d^2 – 0.0008441∗d^3 }

m4 = function(d){ 9.818118 – 0.5562640∗d + 0.0065630∗d^2 }

m5 = function(d){ –15.511793 + 0.6627420∗d – 0.0069020∗d^2 }

m6 = function(d){ –33.55647 + 1.5691800∗d – 0.0188500∗d^2 }

m7 = function(d){ –30.04685 + 1.2891100∗d – 0.0151600∗d^2 }

rc = rep(NA , length(dbh))

pr raw = matrix(NA , nrow=length(dbh), ncol =7)

pr raw [,1] = 1.5549∗ logistic( m1(dbh) )

pr raw [,2] = 0.6886∗ logistic( m2(dbh) )

pr raw [,3] = 0.8835∗ logistic( m3(dbh) )

pr raw [,4] = 0.9615∗ logistic( m4(dbh) )

pr raw [,5] = 1.0487∗ logistic( m5(dbh) )

pr raw [,6] = 0.8403∗ logistic( m6(dbh) )

pr raw [,7] = 1.1864∗ logistic( m7(dbh) )

for( i in 1: length(dbh) ){

## Force probability to zero for impossible dbh/size combinations

if (dbh[i] <= 9∗2.54) { pr raw [i ,2:7] = 0 }

else if (dbh[i] <= 10∗2.54) { pr raw [i ,3:7] = 0 }

else if (dbh[i] <= 11∗2.54) { pr raw [i ,4:7] = 0 }

else if (dbh[i] <= 12∗2.54) { pr raw [i ,5:7] = 0 }
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else if (dbh[i] <= 13∗2.54) { pr raw [i ,6:7] = 0 }

else if (dbh[i] <= 14∗2.54) { pr raw [i, 7] = 0 }

rc[i] = sample( seq(0,3,by =0.5) , 1, prob= pr raw [i,]/ sum( pr raw [i,]))
}

rc
}

## Biomass estimation – – needs documetation on equation sources

biomass kg = function(d){

rc = rep(0, length(d$dbh))

for (i in 1: length(d$dbh)){

## Standardize on biomass in grams:

if (d$species[i] == 9) {

## Red maple

rc[i] = 178.9∗ d$dbh[i]^2.334 # Crow and Erdmann 1983

} else if ( d$species[i] == 4) {

## Sugar maple:

rc[i] = 179.1∗ d$dbh[i]^2.3329 # Young 1980

} else if (d$species[i] == 6) {

## Yellow birch:

rc[i] = 158.8∗ d$dbh[i]^2.3376 # Young 1980

} else if (d$species[i] == 13 | | d$species[i] == 14) {

## White/green ash:

rc[i] = 153.5∗ d$dbh[i]^2.3213 # Ker 1980

} else if (d$species[i] == 24 ){

## Ironwood

rc[i] = 1000∗(5.5247 –3.352∗ d$dbh[i ]+0.006551∗(10∗ d$dbh[i])^2) # Monteith 1979

} else if (d$species[i]==5) {

## Hemlock:

rc[i] = 1000∗(6.1371 –2.785∗ d$dbh[i ]+0.004286∗(10∗ d$dbh[i])^2) # Monteith 1979

} else if (d$species[i]==2) {

## Basswood:

rc[i] = 87.2∗ d$dbh[i]^2.3539 # Perala and Alban 1994

} else if (d$species[i]==43) {

## White spruce:

rc[i] = 107.7∗ d$dbh[i]^2.3308 # Ker 1984

} else if (d$species[i]==46) {

## White cedar:

rc[i] = 230.5∗ d$dbh[i]^1.9269 # Young et al 1980

} else if (d$species[i]==41) {

## Balsam fir

rc[i] = 174.6∗ d$dbh[i]^2.1555 # Ker 1984

} else {

## Otherwise , use Monk et al 1970 for "General hardwoods"

rc[i] = 10^(1.9757 + 2.5371∗ log10(d$dbh[i])) # Units checked
}

}

rc /1000 # biomass in kg
}

tx pr table = function(year) {

## Compute the transition probabilities from

## year to year +20.
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tx = matrix(nrow=30, ncol =8);

colnames(tx)=c(" Initial", "NoChange", "+1", "+2", "+3", "+4" ," Died","Final ");

rn=c();

for( sc in 1:30 ){

rn=c(rn , sprintf ("%i <= d < %i", 4∗(sc –1) , 4∗ sc))
}

rownames(tx)=rn;

present=sql(sprintf(’select treeno ,dbh from sizes where year ==%i’,year));

future =sql(sprintf(’select treeno ,dbh from sizes where year ==%i’,year +20));

fdead =sql(sprintf(’select treeno from dead where year between %i and %i’,

year , year +20));

colnames(tx)=c(" Initial", "NoChange", "+1", "+2", "+3", "+4" ," Died","Final ");

for( sc in 1:30 ){

lwr = 4∗(sc –1);

upr = 4∗ sc;

cur trees = present$treeno[which(lwr<=present$dbh & present$dbh<upr)];

tx[sc ,1]= length( cur trees );

n=max(1,tx[sc ,1]);

for( up in 0:4 ){

ix=which( lwr +4∗ up <= future$dbh & future$dbh < upr +4∗ up );

tx[sc ,2+up] = length( intersect( cur trees , future$treeno[ix]))/n;
}

tx[sc ,7]= length(intersect(cur trees , fdead$treeno))/n;

tx[sc ,8]= length( which( lwr<= future$dbh & future$dbh < upr ) );
}

print(tx ,3);
}

volume plot go = function( sm lwr =NA , sm upr =NA) {

scale= get scale () /2.47105381;

d=sql(’select year ,dbh ,ht from cut trees ’);

if( length(d)>0 ){

tree vol = estimate volume go ( d$dbh , d$ht );

harvest vol = tapply( tree vol , d$year , sum );

plot( unique(d$year), scale ∗ harvest vol ,

xlab=’Simulation Year ’, ylab=’Harvested Volume (ft^3/ac) ’);

lines(c(min(d$year),max(d$year)),rep(sm lwr ,2),col =3);

lines(c(min(d$year),max(d$year)),rep(sm upr ,2),col =3);
}

}

###################

## standard analysis .r

## Routines to analyze a batch of simulations.

yearly summary engine = function( metric , use scale =T ){

res cache ( eval(substitute(

function () { yearly summary engine base ( metric , use scale ) },

list( metric=metric , use scale = use scale ) )) )
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}

yearly summary engine base = function( metric , use scale =T ){

rc = rep(NA , length(years))

if ( use scale ) { scale factor = get scale () }

else { scale factor = 1 }

for (i in 1: length(years)){

rc[i] = scale factor ∗ metric( get trees (years[i]) )
}

rc
}

stock data = function () { res cache ( function () { stock data base () } ) }

stock data base = function () {

rc = rep(NA , length(years))

for (i in 1: length(years)){

d = sql(sprintf(’select avg( stocking level ) as x from stocking ’ %.%

’where year = %i and type =900’ , years[i] ))

rc[i] = d$x
}

rc
}

ba data = function () {

yearly summary engine ( function(d){ sum(pi ∗( d$dbh /200) ^2) } )}

peca data = function () {

yearly summary engine ( function(d){ sum(d$eca)/100} )}

ptca data = function () {

yearly summary engine ( function(d){ sum(d$tca)/100} )}

standing volume = function () {

yearly summary engine ( function(d){ sum(

ifelse(d$dbh >=4.6∗2.54 , estimate volume go (d$dbh ,d$ht) ,0))} )}

standing biomass = function () {

yearly summary engine ( function(d){ sum( ifelse(d$dbh >=4.6∗2.54 , biomass kg (d) ,0))/1000

} )}

## Need is over to be defined elsewhere:

ba over = function () {

yearly summary engine ( function(d){ sum( ifelse( is over (d), pi ∗( d$dbh /200)^2, 0)) } )}

volume over = function () {

yearly summary engine ( function(d){ sum( ifelse(d$dbh >=4.6∗2.54 & is over (d),

estimate volume go (d$dbh ,d$ht) ,0))} )}

biomass over = function () {

yearly summary engine ( function(d){ sum( ifelse(d$dbh >=4.6∗2.54 & is over (d),

biomass kg (d) ,0))/1000 } )}

cnt summary by size = function(lwr ,upr) {
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yearly summary engine (

eval( substitute( function(d){ sum(d$sp !=24 & lwr<=d$dbh & d$dbh<upr)},

list(lwr=lwr , upr=upr) )) )}

ba summary by size = function(lwr ,upr) {

yearly summary engine (

eval(substitute( function(d){ sum( (d$sp !=24 & lwr<=d$dbh &

d$dbh<upr) ∗ pi ∗( d$dbh /200) ^2 )},

list(lwr=lwr , upr=upr) )) )}

pba summary by size = function(lwr ,upr) {

yearly summary engine ( eval( substitute( function(d){

ba = pi ∗( d$dbh /200) ^2

100 ∗ sum( (d$sp !=24 & lwr<=d$dbh & d$dbh<upr) ∗ ba) / sum(ba) }, list(lwr=lwr ,

upr=upr))) ,F )}

eca summary by size = function(lwr ,upr) {

yearly summary engine (

eval(substitute( function(d){ sum( (d$sp !=24 & lwr<=d$dbh & d$dbh<upr) ∗ d$eca )},

list(lwr=lwr , upr=upr) )) )}

peca summary by size = function(lwr ,upr) {

yearly summary engine (

eval(substitute( function(d){ 100∗ sum(( d$sp !=24 & lwr<=d$dbh &

d$dbh<upr) ∗ d$eca)/sum(d$eca)},

list(lwr=lwr , upr=upr) )), F )}

est eca by size = function(lwr ,upr) {

yearly summary engine (

eval(substitute(

function(d){ sum( (d$sp !=24 & lwr<=d$dbh & d$dbh<upr) ∗ estimate eca (d$dbh ,

d$species) ) },

list(lwr=lwr , upr=upr) )) )}

seed trees = function () { cnt summary by size ( 2, 6) }

sapling trees = function () { cnt summary by size ( 2, 11) }

pole trees = function () { cnt summary by size (11, 26) }

mature trees = function () { cnt summary by size (26, 46) }

large trees = function () { cnt summary by size (46 ,1000) }

xlarge trees = function () { cnt summary by size (66 ,1000) }

g50 trees = function () { cnt summary by size (50 ,1000) }

all trees = function () { cnt summary by size ( 2 ,1000) }

seed trees ba = function () { ba summary by size ( 2, 6) }

sapling trees ba = function () { ba summary by size ( 2, 11) }

pole trees ba = function () { ba summary by size ( 11, 26) }

mature trees ba = function () { ba summary by size ( 26, 46) }

large trees ba = function () { ba summary by size ( 46, 1000) }

xlarge trees ba = function () { ba summary by size ( 66, 1000) }

lm ba ratio = function () {

large trees ba () / pmax( mature trees ba () ,0.01) }

seed trees pba = function () { pba summary by size ( 2, 6) }

sapling trees pba = function () { pba summary by size ( 2, 11) }
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pole trees pba = function () { pba summary by size ( 11, 26) }

mature trees pba = function () { pba summary by size ( 26, 46) }

large trees pba = function () { pba summary by size ( 46, 1000) }

xlarge trees pba = function () { pba summary by size ( 66, 1000) }

gap sap trees pba = function( eca thresh =0.25 , area thresh =3.25) {

res cache ( eval(substitute(

function () { gap sap trees pba base ( eca thresh , area thresh ) },

list( eca thresh =eca thresh , area thresh = area thresh ) )) )
}

gap sap trees pba base = function( eca thresh =0.25 , area thresh =3.25) {

rc = rep(NA , length(years))

for (i in 1: length(years)){

d trees = get trees (years[i])

d gaps = sql(sprintf(

’select year , treeno , gap area from gaps where year %%%i=0’, meas interval ))

d gaps = d gaps [ d gaps$year == years[i], ]

d = merge( d trees , d gaps , by=" treeno", all.x=T)

# Cut out the very big trees.

d=d[d$dbh <=80,]

all ba = get scale () ∗ pi ∗ sum( (d$dbh /200) ^2 )

rc[i] = 100∗ compute gap sap ba (d, eca thresh , area thresh ) / all ba
}

rc
}

sp trees pba = function () { pba summary by size ( 2, 26) }

ml trees pba = function () { pba summary by size ( 26, 1000) }

seed trees eca = function () { eca summary by size ( 2, 6) }

sapling trees eca = function () { eca summary by size ( 2, 11) }

pole trees eca = function () { eca summary by size ( 11, 26) }

mature trees eca = function () { eca summary by size ( 26, 46) }

large trees eca = function () { eca summary by size ( 46, 1000) }

xlarge trees eca = function () { eca summary by size ( 66, 1000) }

seed trees peca = function () { peca summary by size ( 2, 6) }

sapling trees peca = function () { peca summary by size ( 2, 11) }

pole trees peca = function () { peca summary by size ( 11, 26) }

mature trees peca = function () { peca summary by size ( 26, 46) }

large trees peca = function () { peca summary by size ( 46, 1000) }

xlarge trees peca = function () { peca summary by size ( 66, 1000) }

est seed trees eca = function () { est eca by size ( 2, 6) }

est sapling trees eca = function () { est eca by size ( 2, 11) }

est pole trees eca = function () { est eca by size ( 11, 26) }

est mature trees eca = function () { est eca by size ( 26, 46) }

est large trees eca = function () { est eca by size ( 46, 1000) }

est xlarge trees eca = function () { est eca by size ( 66, 1000) }

mort volume = function () {

rc = rep(NA ,length(years));
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for( i in 2: length(years)) {

d <– sql(’select year ,treeno ,dbh ,ht from dead trees ’)

d <– d[ years[i –1] < d$year & d$year <= years[i], ]

rc[i] = sum( estimate volume go ( d$dbh , d$ht ) )
}

get scale () ∗ rc
}

harvest volume = function () {

rc=rep(NA, length(years))

for (i in 2: length(years) ){

r <– sql(’select year ,treeno ,dbh ,ht from cut taken trees ’)

r <– r[ years[i–1]< r$year & r$year <= years[i], ]

rc[i] = sum( estimate volume go ( r$dbh , r$ht))
}

get scale () ∗ rc
}

canopy tree mean diam = function () {

rc = rep(NA ,length(years))

for (i in 1: length(years)){

d = get trees (years[i])

d = d[ d$dbh >= 11 & d$eca / d$tca >= 0.20, ]

rc[i] = mean(d$dbh)
}

rc
}

canopy tree mean th = function () {

rc = rep(NA ,length(years))

for (i in 1: length(years)){

d = get trees (years[i])

d = d[ d$dbh >= 11 & d$eca / d$tca >= 0.20, ]

rc[i] = mean(d$ht)
}

rc
}

canopy tree mean age = function () {

rc = rep(NA , length(years))

for (i in 1: length(years)){

d = get trees (years[i])

d = d[ d$dbh >= 11 & d$eca / d$tca >= 0.20, ]

rc[i] = mean(d$age)
}

rc
}

canopy tree mean mcr = function () {

rc = rep(NA , length(years))

for (i in 1: length(years)){

d = get trees (years[i])

d = d[ d$dbh >= 11 & d$eca / d$tca >= 0.20, ]
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rc[i] = mean(d$mcr)
}

rc
}

qm stand diameter = function () {

rc = rep(NA , length(years))

for (i in 1: length(years)){

d = get trees (years[i])

rc[i] = sqrt( mean(d$dbh ^2) )
}

rc
}

canopy tree growth = function () {

rc = rep(NA ,length(years))

d prv = get trees (years [1])

for( i in 2: length(years)){

d now = get trees (years[i])

d all = my merge (

d prv [ d prv$dbh >= 11 & d prv$eca / d prv$tca >= 0.20, ],

d now [ d now$dbh >= 11 & d now$eca / d now$tca >= 0.20, ],

by=" treeno ");

rc[i]= 10∗ mean( d all$dbh .y – d all$dbh .x )/2

d prv = d now
}

rc/ meas interval
}

canopy tree crown growth = function () {

rc = rep(NA ,length(years));

for( i in 2: length(years)){

d prv = get trees (years[i –1]);

d now = get trees (years[i]);

d all = my merge (

d prv [ d prv$dbh >= 11 & d prv$eca / d prv$tca >= 0.20, ],

d now [ d now$dbh >= 11 & d now$eca / d now$tca >= 0.20, ],

by=" treeno ");

rc[i]= 10∗ mean( d all$mcr .y – d all$mcr .x )/2;
}

100∗ rc/ meas interval # Convert to cm/yr
}

radial growth by size = function(lwr ,upr){

rc = rep(NA ,length(years));

d prv = get trees (years [1])

for( i in 2: length(years)){

d now = get trees (years[i])

d all = my merge (

d prv [ lwr <= d prv$dbh & d prv$dbh < upr , ],

d now [ lwr <= d now$dbh & d now$dbh < upr , ],



344

by=" treeno ");

rc[i]= 10∗ mean( d all$dbh .y – d all$dbh .x )/2

d prv = d now
}

rc/ meas interval
}

seed radial growth = function () { radial growth by size ( 0, 6); }

sap radial growth = function () { radial growth by size ( 0, 11); }

pol radial growth = function () { radial growth by size (11, 26); }

mat radial growth = function () { radial growth by size (26, 46); }

lrg radial growth = function () { radial growth by size (46 ,1000); }

xlg radial growth = function () { radial growth by size (66 ,1000); }

mortality by size = function(lwr ,upr) {

rc <– rep(NA ,length(years));

d <– sql(’select year ,treeno ,dbh ,ht from dead trees ’)

for (i in 2: length(years)){

di <– d[lwr <= d$dbh & d$dbh < upr &

years[i –1] < d$year & d$year <= years[i], ]

rc[i] <– sum( pi ∗( di$dbh /200) ^2 );
}

get scale () ∗ rc/ meas interval
}

seed mort = function () { mortality by size ( 0, 6); }

sap mort = function () { mortality by size ( 0, 11); }

pol mort = function () { mortality by size (11, 26); }

mat mort = function () { mortality by size (26, 46); }

lrg mort = function () { mortality by size (46 ,1000); }

xlg mort = function () { mortality by size (66 ,1000); }

gap formation rate = function () {

data items = ’treeno ,year ,3.14/4∗( nexp ∗ eexp+eexp ∗ sexp+sexp ∗ wexp+wexp ∗ nexp) as eca ’

dead eca = sql(

’select ’ %.% data items %.% ’ from dead trees ’ %.%

’union select ’ %.% data items %.% ’ from wind trees ’ %.%

’union select ’ %.% data items %.% ’ from cut trees ’ )

rc = rep(NA , length(years))

for (i in 2: length(years)){

ix = which( years[i –1] <= dead eca$year & dead eca$year < years[i] )

rc[i] = get scale () ∗ sum( dead eca [ix ,] $eca )
}

rc
}

ingrowth ba = function(dlim){

ingrowth engine (dlim , function(d){pi ∗( d$dbh /200) ^2}) }

survivor growth ba = function(dlim) {

survivor growth engine (dlim , function(d){pi ∗( d$dbh /200) ^2}) }

mortality ba = function(dlim) {
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mortality engine ( dlim , function(d){pi ∗( d$dbh /200) ^2}) }

gross growth ba = function(dlim){

ingrowth ba (dlim) + survivor growth ba (dlim) }

net growth ba = function(dlim){

gross growth ba (dlim) – mortality ba (dlim) }

ingrowth = function () { ingrowth ba ( 4.6∗2.54 ) }

survivor growth = function () { survivor growth ba ( 4.6∗2.54 ) }

mortality = function () { mortality ba ( 4.6∗2.54 ) }

gross growth = function () { gross growth ba ( 4.6∗2.54 ) }

net growth = function () { net growth ba ( 4.6∗2.54 ) }

## Need to define cohort over and cohort under functions

## elsewhere which can be used here.

ig over cohort = function () {

cohort over ( ingrowth engine , 4.6∗2.54 , function(d){pi ∗( d$dbh /200) ^2} )}

sg over cohort = function () {

cohort over ( survivor growth engine , 4.6∗2.54 , function(d){pi ∗( d$dbh /200) ^2} )}

mt over cohort = function () {

cohort over ( mortality engine , 4.6∗2.54 , function(d){pi ∗( d$dbh /200) ^2} )}

ng over cohort = function () {

ig over cohort () + sg over cohort () – mt over cohort () }

ig under cohort = function () {

cohort under ( ingrowth engine , 4.6∗2.54 , function(d){pi ∗( d$dbh /200) ^2} )}

sg under cohort = function () {

cohort under ( survivor growth engine , 4.6∗2.54 , function(d){pi ∗( d$dbh /200) ^2} )}

mt under cohort = function () {

cohort under ( mortality engine , 4.6∗2.54 , function(d){pi ∗( d$dbh /200) ^2} )}

ng under cohort = function () {

ig under cohort () + sg under cohort () – mt under cohort () }

ingrowth saw = function () { ingrowth ba ( 9.6∗2.54 ) }

survivor growth saw = function () { survivor growth ba ( 9.6∗2.54 ) }

mortality saw = function () { mortality ba ( 9.6∗2.54 ) }

gross growth saw = function () { gross growth ba ( 9.6∗2.54 ) }

net growth saw = function () { net growth ba ( 9.6∗2.54 ) }

ingrowth kg = function () { ingrowth engine (4.6∗2.54 , biomass kg ) }

survivor growth kg = function () { survivor growth engine (4.6∗2.54 , biomass kg ) }

mortality kg = function () { mortality engine (4.6∗2.54 , biomass kg ) }

gross growth kg = function () { ingrowth kg () + survivor growth kg () }

net growth kg = function () { gross growth kg () – mortality kg () – wind kg () }

wind kg = function () { windstorm engine (4.6∗2.54 , biomass kg ) }

ig kg over cohort = function () { cohort over ( ingrowth engine , 4.6∗2.54 ,

biomass kg )}

sg kg over cohort = function () { cohort over ( survivor growth engine , 4.6∗2.54 ,

biomass kg )}

mt kg over cohort = function () { cohort over ( mortality engine , 4.6∗2.54 ,

biomass kg )}
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wind kg over cohort =function () { cohort over ( windstorm engine , 4.6∗2.54 ,

biomass kg )}

ng kg over cohort = function () {

ig kg over cohort () + sg kg over cohort () – mt kg over cohort () – wind kg over cohort ()
}

ig kg under cohort = function () { cohort under ( ingrowth engine , 4.6∗2.54 ,

biomass kg )}

sg kg under cohort = function () { cohort under ( survivor growth engine , 4.6∗2.54 ,

biomass kg )}

mt kg under cohort = function () { cohort under ( mortality engine , 4.6∗2.54 ,

biomass kg )}

wind kg under cohort =function () { cohort under ( windstorm engine , 4.6∗2.54 ,

biomass kg )}

ng kg under cohort = function () {

ig kg under cohort () + sg kg under cohort () – mt kg under cohort () –

wind kg under cohort () }

ingrowth all kg = function () { ingrowth engine (3, biomass kg ) }

survivor growth all kg = function () { survivor growth engine (3, biomass kg ) }

mortality all kg = function () { mortality engine (3, biomass kg ) }

gross growth all kg = function () { ingrowth all kg () + survivor growth all kg () }

net growth all kg = function () { gross growth all kg () – mortality all kg () }

#####

# Cubic volume growth functions

survivor growth m3 = function () { survivor growth engine ( 4.6∗2.54 ,

function(d){ estimate volume go (d$dbh ,d$ht)} )}

ingrowth m3 = function () { ingrowth engine ( 4.6∗2.54 ,

function(d){ estimate volume go (d$dbh ,d$ht)} )}

mortality m3 = function () { mortality engine ( 4.6∗2.54 ,

function(d){ estimate volume go (d$dbh ,d$ht)} )}

harvest m3 = function () { harvest engine ( 4.6∗2.54 ,

function(d){ estimate volume go (d$dbh ,d$ht)} )}

gross growth m3 = function () { ingrowth m3 () + survivor growth m3 () }

net growth m3 = function () { gross growth m3 () – mortality m3 () }

ig m3 over cohort = function () { cohort over ( ingrowth engine , 4.6∗2.54 ,

function(d){ estimate volume go (d$dbh ,d$ht) }) }

sg m3 over cohort = function () { cohort over ( survivor growth engine , 4.6∗2.54 ,

function(d){ estimate volume go (d$dbh ,d$ht) }) }

mt m3 over cohort = function () { cohort over ( mortality engine , 4.6∗2.54 ,

function(d){ estimate volume go (d$dbh ,d$ht) }) }

ng m3 over cohort = function () {

ig m3 over cohort () + sg m3 over cohort () – mt m3 over cohort () }

ig m3 under cohort = function () { cohort under ( ingrowth engine , 4.6∗2.54 ,

function(d){ estimate volume go (d$dbh ,d$ht) }) }

sg m3 under cohort = function () { cohort under ( survivor growth engine , 4.6∗2.54 ,

function(d){ estimate volume go (d$dbh ,d$ht) }) }

mt m3 under cohort = function () { cohort under ( mortality engine , 4.6∗2.54 ,

function(d){ estimate volume go (d$dbh ,d$ht) }) }

ng m3 under cohort = function () {

ig m3 under cohort () + sg m3 under cohort () – mt m3 under cohort () }
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############################

# bf Volume growth functions

# These don ’t yet support plotting

# By default , they use the nh25 rule to estimate

# but that can be changed by passing in a different est function

survivor growth bf = function () {

survivor growth engine ( 9.6∗2.54 ,

function(dbh ,ht){

estimate scribner volume go (dbh ,

estimate merch ht nh25 (dbh)) }) }

ingrowth bf = function () {

ingrowth engine ( 9.6∗2.54 ,

function(dbh ,ht){

estimate scribner volume go (dbh , estimate merch ht nh25 (dbh)) }) }

mortality bf = function () {

mortality engine ( 9.6∗2.54 ,

function(dbh ,ht){

estimate scribner volume go (dbh , estimate merch ht nh25 (dbh)) }) }

harvest bf = function () {

harvest engine ( 9.6∗2.54 ,

function(dbh ,ht){

estimate scribner volume go (dbh , estimate merch ht nh25 (dbh)) }) }

## CWD volume:

cwd volume = function(year ,cl ,sp=NA){

scale= get scale ()

d= get cwd dbh (year ,cl);

if( is.na( sp ) ) { ix = which( d$dbh >=20) }

else if ( sp=="HM" ) { ix = which( d$dbh >=20 & d$species ==5) }

else { ix = which( d$dbh >=20 & d$species !=5) }

scale ∗ sum( estimate volume go ( d$dbh[ix], d$ht[ix]));
}

vol log1 = function(year ,sp=NA){ cwd volume (year , ’log 1 ’,sp) }

vol log2 = function(year ,sp=NA){ cwd volume (year , ’log 2 ’,sp) }

vol log3 = function(year ,sp=NA){ cwd volume (year , ’log 3 ’,sp) }

vol log4 = function(year ,sp=NA){ cwd volume (year , ’log 4 ’,sp) }

vol log5 = function(year ,sp=NA){ cwd volume (year , ’log 5 ’,sp) }

vol snag1 = function(year){ cwd volume (year , ’snag 1 ’) }

vol snag2 = function(year){ cwd volume (year , ’snag 2 ’) }

vol snag3 = function(year){ cwd volume (year , ’snag 3 ’) }

vol snag4 = function(year){ cwd volume (year , ’snag 4 ’) }

vol snag5 = function(year){ cwd volume (year , ’snag 5 ’) }

cwd vol compute = function(logs , snags){

rc = rep(0,length(years));

for( i in 1: length(years) ){

if( sum(logs)>0 ) {

rc[i] = rc[i] +

logs [1]∗ vol log1 (years[i]) +

logs [2]∗ vol log2 (years[i],"SM") ∗(1 –0.19) +

logs [3]∗ vol log3 (years[i],"SM") ∗(1 –0.32) +
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logs [4]∗ vol log4 (years[i],"SM") ∗(1 –0.54) +

logs [5]∗ vol log5 (years[i],"SM") ∗(1 –0.73) +

logs [2]∗ vol log2 (years[i],"HM") ∗(1 –0.14) +

logs [3]∗ vol log3 (years[i],"HM") ∗(1 –0.42) +

logs [4]∗ vol log4 (years[i],"HM") ∗(1 –0.73) +

logs [5]∗ vol log5 (years[i],"HM") ∗(1 –0.73)
}

if( sum(snags)>0 ){

rc[i] = rc[i] +

snags [1]∗ vol snag1 (years[i]) +

snags [2]∗ vol snag2 (years[i]) +

snags [3]∗ vol snag3 (years[i]) +

snags [4]∗ vol snag4 (years[i]) +

snags [5]∗ vol snag5 (years[i])
}

}

rc;
}

vol all = function () { cwd vol compute (rep(1,5),rep(1,5)) }

vol logs = function () { cwd vol compute (rep(1,5),rep(0,5)) }

vol snags = function () { cwd vol compute (rep(0,5),rep(1,5)) }

vol log1s = function () { cwd vol compute (c(1,0,0,0,0), rep(0,5)) }

vol log2s = function () { cwd vol compute (c(0,1,0,0,0), rep(0,5)) }

vol log3s = function () { cwd vol compute (c(0,0,1,0,0), rep(0,5)) }

vol log4s = function () { cwd vol compute (c(0,0,0,1,0), rep(0,5)) }

vol log5s = function () { cwd vol compute (c(0,0,0,0,1), rep(0,5)) }

vol snag1s = function () { cwd vol compute (rep(0,5), c(1,0,0,0,0)) }

vol snag2s = function () { cwd vol compute (rep(0,5), c(0,1,0,0,0)) }

vol snag3s = function () { cwd vol compute (rep(0,5), c(0,0,1,0,0)) }

vol snag4s = function () { cwd vol compute (rep(0,5), c(0,0,0,1,0)) }

vol snag5s = function () { cwd vol compute (rep(0,5), c(0,0,0,0,1)) }

## CWD biomass:

cwd biomass = function(year ,cl ,sp=NA){

rc = 0

d = get cwd dbh (year ,cl);

if( is.na( sp ) ) { ix = which( d$dbh >=20) }

else if ( sp=="HM" ) { ix = which( d$dbh >=20 & d$species ==5) }

else { ix = which( d$dbh >=20 & d$species !=5) }

if (length(ix)>0){

rc = get scale () ∗ sum( biomass kg ( d[ix ,])) / 1000
}

rc
}

mass log1 = function(year ,sp=NA){ cwd biomass (year , ’log 1 ’,sp) }

mass log2 = function(year ,sp=NA){ cwd biomass (year , ’log 2 ’,sp) }

mass log3 = function(year ,sp=NA){ cwd biomass (year , ’log 3 ’,sp) }

mass log4 = function(year ,sp=NA){ cwd biomass (year , ’log 4 ’,sp) }

mass log5 = function(year ,sp=NA){ cwd biomass (year , ’log 5 ’,sp) }

mass snag1 = function(year){ cwd biomass (year , ’snag 1 ’) }

mass snag2 = function(year){ cwd biomass (year , ’snag 2 ’) }

mass snag3 = function(year){ cwd biomass (year , ’snag 3 ’) }

mass snag4 = function(year){ cwd biomass (year , ’snag 4 ’) }
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mass snag5 = function(year){ cwd biomass (year , ’snag 5 ’) }

cwd mass compute = function(logs , snags){

rc = rep(0,length(years));

for( i in 1: length(years) ){

if( sum(logs)>0 ) {

rc[i] = rc[i] +

logs [1]∗ mass log1 (years[i]) +

logs [2]∗ mass log2 (years[i],"SM") ∗(1 –0.19) +

logs [3]∗ mass log3 (years[i],"SM") ∗(1 –0.32) +

logs [4]∗ mass log4 (years[i],"SM") ∗(1 –0.54) +

logs [5]∗ mass log5 (years[i],"SM") ∗(1 –0.73) +

logs [2]∗ mass log2 (years[i],"HM") ∗(1 –0.14) +

logs [3]∗ mass log3 (years[i],"HM") ∗(1 –0.42) +

logs [4]∗ mass log4 (years[i],"HM") ∗(1 –0.73) +

logs [5]∗ mass log5 (years[i],"HM") ∗(1 –0.73)
}

if( sum(snags)>0 ){

rc[i] = rc[i] +

snags [1]∗ mass snag1 (years[i]) +

snags [2]∗ mass snag2 (years[i]) +

snags [3]∗ mass snag3 (years[i]) +

snags [4]∗ mass snag4 (years[i]) +

snags [5]∗ mass snag5 (years[i])
}

}

rc;
}

mass all = function () { cwd mass compute (rep(1,5),rep(1,5)) }

mass logs = function () { cwd mass compute (rep(1,5),rep(0,5)) }

mass snags = function () { cwd mass compute (rep(0,5),rep(1,5)) }

mass log1s = function () { cwd mass compute (c(1,0,0,0,0), rep(0,5)) }

mass log2s = function () { cwd mass compute (c(0,1,0,0,0), rep(0,5)) }

mass log3s = function () { cwd mass compute (c(0,0,1,0,0), rep(0,5)) }

mass log4s = function () { cwd mass compute (c(0,0,0,1,0), rep(0,5)) }

mass log5s = function () { cwd mass compute (c(0,0,0,0,1), rep(0,5)) }

mass snag1s = function () { cwd mass compute (rep(0,5), c(1,0,0,0,0)) }

mass snag2s = function () { cwd mass compute (rep(0,5), c(0,1,0,0,0)) }

mass snag3s = function () { cwd mass compute (rep(0,5), c(0,0,1,0,0)) }

mass snag4s = function () { cwd mass compute (rep(0,5), c(0,0,0,1,0)) }

mass snag5s = function () { cwd mass compute (rep(0,5), c(0,0,0,0,1)) }

## CWD DBH distributions.

cwd ddist = function(year , cl){

cl names = c( ’log 1 ’, ’log 2 ’, ’log 3 ’, ’log 4 ’, ’log 5 ’,

’snag 1 ’, ’snag 2 ’, ’snag 3 ’, ’snag 4 ’, ’snag 5 ’ );

rc=NULL;

for( i in 1: length(cl) ){

if( cl[i] ){

d = get cwd dbh (year , cl names [i]);

if( is.null(rc) ){ rc = d }

else { rc = my merge ( rc , d, all.x=T, all.y=T) }
}

}
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sclass=seq (0 ,120 ,4);

if(length(rc$dbh)>0){

XX= get scale () ∗ hist(pmin(rc$dbh ,118) ,breaks=sclass ,plot=F) $counts;

} else {

XX=rep(0,length(sclass) –1);
}

XX
}

cwd ddist log1 = function () { cwd ddist (max year , c(1,0,0,0,0, 0,0,0,0,0)) }

cwd ddist log2 = function () { cwd ddist (max year , c(0,1,0,0,0, 0,0,0,0,0)) }

cwd ddist log3 = function () { cwd ddist (max year , c(0,0,1,0,0, 0,0,0,0,0)) }

cwd ddist log4 = function () { cwd ddist (max year , c(0,0,0,1,0, 0,0,0,0,0)) }

cwd ddist log5 = function () { cwd ddist (max year , c(0,0,0,0,1, 0,0,0,0,0)) }

cwd ddist snag1 = function () { cwd ddist (max year , c(0,0,0,0,0, 1,0,0,0,0)) }

cwd ddist snag2 = function () { cwd ddist (max year , c(0,0,0,0,0, 0,1,0,0,0)) }

cwd ddist snag3 = function () { cwd ddist (max year , c(0,0,0,0,0, 0,0,1,0,0)) }

cwd ddist snag4 = function () { cwd ddist (max year , c(0,0,0,0,0, 0,0,0,1,0)) }

cwd ddist snag5 = function () { cwd ddist (max year , c(0,0,0,0,0, 0,0,0,0,1)) }

cwd ddist logs = function () { cwd ddist (max year , c(1,1,1,1,1, 0,0,0,0,0)) }

cwd ddist snags = function () { cwd ddist (max year , c(0,0,0,0,0, 1,1,1,1,1)) }

cwd ddist all = function () { cwd ddist (max year , c(1,1,1,1,1, 1,1,1,1,1)) }

rba sp = function(sp){

res cache ( eval(substitute(

function () { rba sp base ( sp ) },

list( sp=sp) )) )

}

rba sp base = function(sp){

rc = rep(0,length(years))

for (i in 1: length(years)) {

dbh = get trees (years[i]) $dbh

species = get trees (years[i]) $species

rc[i] = 100∗ sum(dbh ∗ dbh ∗( species ==sp))/sum(dbh ∗ dbh)
}

rc
}

rba plot = function(base , n, label) {

rc = c()

sp = c(4,5,6,13,9,2)

cols=c(’green ’,’purple ’,’yellow ’,’orange ’,’red ’,’blue ’)

ltys = 1:6

plot started =F

for (i in 1: length(sp) ){

d = envelope engine (base , n, function () { rba sp (sp[i]) } )

if (! plot started ){

plot(c(min(years),max(years)), c(0 ,100), type=’n’,

xlab=" Simulation year", ylab=’Relative basal area ’, main=label)

rc = cbind( rc , years )

plot started =T
}
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lines( years , d$Up , lty=ltys[i], lwd=1, col=cols[i])

lines( years , d$Mu , lty=ltys[i], lwd=3, col=cols[i])

lines( years , d$Dn , lty=ltys[i], lwd=1, col=cols[i])

rc = cbind( rc , d )
}

legend (" topright", c(" Sugar maple", "Hemlock", "Yellow birch",

"Ash","Red maple","Basswood "),

lty=1:6, lwd=3, col=cols)

rc
}

dbh dist = function(year= max year ) {

clamp = function(x, lim) {

if(length(x)>0){ rc=pmin(x,lim); }

else { rc = numeric (0); }

rc;
}

data= get trees (year) $dbh

all=hist(clamp(data ,118) ,breaks=seq (0 ,120 ,4),plot=F)

all$counts [1]=NA # Exclude the half – class

get scale () ∗ all$counts
}

eca dist = function(year= max year ) {

rc <– rep(0, 30)

data <– get trees (year)

size class <– 1+pmin(floor(data$dbh /4) ,29)

for (i in 1: length(data$dbh)){

rc[ size class [i]] = rc[ size class [i]] + data$eca[i]
}

rc[1] = NA # Exclude the half – class at the bottom

rc ∗ get scale ()
}

stand dev = function( eca thresh =0.25 , area thresh =3.25) {

res cache ( eval(substitute(

function () { stand dev base ( qual , eca thresh , area thresh ) },

list( qual= db site quality , eca thresh =eca thresh , area thresh = area thresh ) )) )
}

stand dev base = function(qual , eca thresh , area thresh ){

rc = rep(NA , length(years))

for ( i in 1: length(years)){

rc[i] = stand dev yr ( qual , years[i], eca thresh , area thresh )
}

rc
}

compute gap sap ba = function(d, eca thresh , area thresh ){

## d is expected to contain at least:

## species , dbh , eca , tca , gap area
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## Make sure ironwood is excluded:

d = d[d$species != 24, ]

## Pull out just the saplings

d = d[d$dbh <= 11, ]

## With ECA greater than the threshold

d = d[ d$eca / pmax(d$tca , 0.01) >= eca thresh , ]

## For trees which have no gap area computed , force it to zero:

gap area = ifelse( !is.na( d$gap area ), d$gap area , 0)

## And with enough gap area:

d = d[ d$eca >= area thresh | gap area >= area thresh , ]

get scale () ∗ sum( pi ∗ (d$dbh /200) ^2 )
}

stand dev yr = function(site quality , yr , eca thresh , area thresh , diagnostic=F){

## Pull out the needed data:

d trees = get trees (yr)

d gaps = sql(sprintf(

’select year , treeno , gap area from gaps where year %%%i=0’, meas interval ))

d gaps = d gaps [ d gaps$year ==yr , ]

d = merge( d trees , d gaps , by=" treeno", all.x=T)

## Define stand stages

st sap = 1

st pol = 2

st msm = 3

st mat = 4

st og la = 5

st og et = 6

st og lt = 7

st og ss = 8

## Set the min threshold for large based on site quality

if ( site quality =="F") { lrg min = 44 }

else { lrg min = 46 }

## Exclude ironwood

d = d[d$species != 24, ]

## Compute BA for each tree on a per ha basis

ba = get scale () ∗ pi ∗( d$dbh /200) ^2

## Split it out by size class

sap ba = sum( ba[ d$dbh <= 11 ] )

pol ba = sum( ba[ 11 < d$dbh & d$dbh <= 26 ] )

mat ba = sum( ba[ 26 < d$dbh & d$dbh <= lrg min ] )

lrg ba = sum( ba[ lrg min < d$dbh ] )

all ba = sap ba + pol ba + mat ba + lrg ba

et thr = ifelse( sum(ba[d$sp == 5])/ all ba > 0.25, 0.10, 0.08 )

gap sap ba = compute gap sap ba (d, eca thresh , area thresh )
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## Do the decision tree

rc=NA

if ( mat ba + lrg ba >= 20 ){

if ( lrg ba / all ba > 0.45 &

lrg ba / mat ba > 1.1) {

if ( lrg ba / mat ba > 1.4 &

( sap ba + pol ba )/ all ba >= 0.10 &

( sap ba + pol ba )/ all ba < 0.20 &

round( gap sap ba /all ba ,3) >= 0.006) { rc = st og ss }

else {

if ( lrg ba / mat ba > 1.75 &

( sap ba + pol ba )/all ba<et thr ) { rc = st og et }

else {

if ( lrg ba / mat ba >= 1.7 &

( sap ba + pol ba )/all ba <0.20) { rc = st og lt }

else { rc = st og la }
}

}

} else { rc = st mat }

} else {

if ( mat ba + lrg ba > 10) {

if ( pol ba / all ba > 0.30) { rc = st pol }

else { rc = st msm }

} else {

if ( pol ba + mat ba + lrg ba >= 10 &

pol ba / all ba > 0.30) { rc = st pol }

else { rc = st sap }
}

}

## Debugging output:

if (diagnostic){

rc = data.frame(

stage=rc ,

sap ba =sap ba ,

pol ba =pol ba ,

mat ba =mat ba ,

lrg ba =lrg ba ,

all ba =all ba ,

gap sap ba = gap sap ba )
}

rc
}

stand dev old = function () {

# Define stand stages

st sap = 1

st pol = 2

st msm = 3

st mat = 4

st og la = 5

st og et = 6

st og lt = 7
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st og ss = 8

# BA variables that we ’ll need:

sap ba <– sapling trees ba ()

pol ba <– pole trees ba ()

mat ba <– mature trees ba ()

lrg ba <– large trees ba ()

xlg ba <– xlarge trees ba ()

tot ba <– sap ba + pol ba + mat ba + lrg ba + xlg ba

# ECA Variables that we ’ll need:

sap eca <– est sapling trees eca ()

pol eca <– est pole trees eca ()

mat eca <– est mature trees eca ()

lrg eca <– est large trees eca ()

xlg eca <– est xlarge trees eca ()

tot eca <– sap eca + pol eca + mat eca + lrg eca + xlg eca

lm eca ratio <– ( lrg eca + xlg eca )/ mat eca

# Set up the result variable:

rc = rep(NA ,length(years))

# Foreach year:

for (i in 1: length(years)){

# This is the decision tree from

# "Ecological Benchmarks for Stand Structural Stages"

if ( mat ba [i]+ lrg ba [i]+ xlg ba [i] >= 20) {

if (( lrg ba [i]+ xlg ba [i])/ tot ba [i] >= 0.45 & lm eca ratio [i] > 1.0 ){

if ( ( lrg eca [i]+ xlg eca [i])/ tot eca [i] >= 0.58 ) { rc[i] = st og et }

else {

if ( mat eca [i]/ tot eca [i] <= 0.36 &

sap eca [i]/ tot eca [i] >= 0.03 ) { rc[i] = st og ss }

else {

if ( lm eca ratio [i] > 1.5 ) { rc[i] = st og lt }

else { rc[i] = st og la }
}

}

} else { rc[i] = st mat }

} else { # Less than 20m2/ha in mat+lrg+xlg

if( mat ba [i]+ lrg ba [i]+ xlg ba [i] > 10) {

if( pol ba [i]/ tot ba [i] > 0.30) { rc[i] = st pol }

else { rc[i] = st msm }

} else {

if ( tot ba [i] – sap ba [i]>10 &

pol ba [i]/ tot ba [i]>0.30) { rc[i] = st pol }

else { rc[i] = st sap }
}

}
}

rc
}

##

compute productivity = function () {
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sim prod = function( dbase , tgt yr ) {

cut vol = 0;

std vol = 0;

nrep = 3;

for( sr in 1:nrep ){

fname = sprintf(’%s.r%02i.db’, dbase , sr);

db open (fname)

cut = sql(sprintf(’select treeno ,dbh ,ht ’ %.%

’from cut taken trees where year<=%i’, tgt yr ));

standing = sql(sprintf(’select treeno ,dbh ,ht ’ %.%

’from live trees where year ==%i’, tgt yr ));

cut vol = cut vol + sum( estimate volume go ( cut$dbh , cut$ht ));

std vol = std vol + sum( estimate volume go ( standing$dbh , standing$ht ));

db close ()
}

c( cut vol / nrep , std vol / nrep );
}

chvol = c(); chvol50 = c();

fvol = c(); fvol50 = c();

sname = c();

sims=list.files(pattern = ’.∗. r01.db$ ’)

sims=sub(’.r01.db ’,’’,sims)

for( fname base in sims ){

x = sim prod ( fname base , 300 );

chvol = c(chvol , x[1])

fvol = c(fvol , x[2])

x = sim prod ( fname base , 45);

chvol50 = c(chvol50 , x[1])

fvol50 = c(fvol50 , x[2])

sname = c(sname , fname base )
}

print( data.frame(sname , fv45 =fvol50/9, hv45 =chvol50 /(9∗45 ),

fv300=fvol /9, hv300=chvol /(9∗300) ))
}

mort by size class = function () {

mort sim = function(dbase) {

cat( sprintf (’\n\n=== %s ===\n’,dbase));

if( length(list.files(pattern=sprintf (’^% s pct mort .png ’,dbase)))==0 ) {

tot ba = rep (0 ,30)

dead count = rep (0 ,30)

live count = rep (0 ,30)

for( sr in 1:3 ){

fname = sprintf(’%s.r%02i.db’, dbase , sr);

db open (fname)

d prv = get trees (290)

d now = get trees (300)
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tn cut = sql(sprintf(’select treeno from cut where ’ %.%

’%i <= year and year <= %i’, 290, 300))

dead tn = setdiff( d prv$treeno , union( d now$treeno , tn cut$treeno ) )

dbh = d prv$dbh [ d prv$treeno %in% dead tn ]

ba= get scale () ∗ pi /40000 ∗ dbh^2

## Now to compute %ba by size class , and get dead counts

for( i in 1: length(dbh) ){

sc = 1+min(floor(dbh[i]/4) ,29)

tot ba [sc] = tot ba [sc]+ba[i]

dead count [sc] = dead count [sc] + 1
}

## And live counts for %annual mort

for( i in 1: length( d prv$dbh ) ){

sc = 1+min(floor( d prv$dbh [i]/4) ,29)

live count [sc] = live count [sc] + 1
}

db close ();
}

pct mort = 1 –(1 – dead count / live count )^(1/10)

pct ba = tot ba / sum( tot ba )

png(sprintf(’% s pct mort .png ’, dbase), width =600, height =600)

barplot (100∗ pct mort , names.arg = seq(4,120,by=4), ylim=c(0 ,20),

xlab=’DBH (cm)’, ylab=’Percent Annual Mortality ’ )

dev.off()

cat( sprintf (’%%mort(%s): ’,dbase) %.%

paste(signif (100∗ pct mort ,3),collapse =’\t’) %.% ’\n’ )

png(sprintf(’% s pct mort ba .png ’, dbase), width =600, height =600)

barplot (100∗ pct ba , names.arg = seq(4,120,by=4), ylim=c(0 ,20),

xlab=’DBH (cm)’,ylab=’Percenta BA of dead trees (m^2/ha)’ )

dev.off()

cat( sprintf (’%% mortba (%s): ’,dbase) %.%

paste(signif (100∗ pct ba ,3),collapse =’\t’) %.% ’\n’ )
}

}

sims=list.files(pattern = ’.∗. r01.db$ ’)

sims=sub(’.r01.db ’,’’,sims)

for( sim in sims ){ mort sim (sim) }
}

stand dev diagnostic = function(dbfile){

stand dev yr diagnostic = function(

yr , eca change , stdata ,

site quality ="G", eca thresh =0.25, area thresh =3.25) {

sink(’/dev/null ’)

stage data = stand dev yr ( site quality , yr , eca thresh , area thresh , T)

sink()

stage = stage data$stage

all ba = stage data$all ba

sap ba = stage data$sap ba
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pol ba = stage data$pol ba

mat ba = stage data$mat ba

lrg ba = stage data$lrg ba

gap sap ba = stage data$gap sap ba

if (stage ==1) { cat(’Sapling &’) }

else if (stage ==2) { cat(’Pole &’) }

else if (stage ==3) { cat(’MSM &’) }

else if (stage ==4) { cat(’Mature &’) }

else if (stage ==5) { cat(’OG: LA &’) }

else if (stage ==6) { cat(’OG: ET &’) }

else if (stage ==7) { cat(’OG: LT &’) }

else if (stage ==8) { cat(’OG: SS &’) }

else { stop(’Unknown stage ’) }

if (length(stdata$year)>0){

for (i in 1: length(stdata$year)){

cat( sprintf(’ %i:%i,’, stdata$year[i], stdata$severity[i] ))
}

}

cat(’ &’)

cat(sprintf (’%.1f &’, 100∗ eca change ))

cat(sprintf (’%.1f &’, sap ba ))

cat(sprintf (’%.1f &’, pol ba ))

cat(sprintf (’%.1f &’, mat ba ))

cat(sprintf (’%.1f &’, lrg ba ))

if ( mat ba +lrg ba >=20) {

cat(sprintf ( ’\\ textbf {%.2f} &’, mat ba + lrg ba ))

} else {

cat(sprintf (’%.2f &’, mat ba + lrg ba ))
}

if ( lrg ba / all ba > 0.45 ) {

cat(sprintf ( ’\\ textbf {%.1f} &’, 100∗ lrg ba / all ba ))

} else {

cat(sprintf (’%.1f &’, 100∗ lrg ba / all ba ))
}

if ( lrg ba /max (0.01, mat ba ) > 1.1 ) {

cat(sprintf ( ’\\ textbf {%.2f} &’, lrg ba / mat ba ))

} else {

cat(sprintf (’%.2f &’, lrg ba / mat ba ))
}

if ( lrg ba /max (0.01, mat ba ) > 1.4 ){

cat(sprintf ( ’\\ textbf {%.2f} &’, lrg ba / mat ba ))

} else {

cat(sprintf (’%.2f &’, lrg ba / mat ba ))
}

if ( ( sap ba + pol ba )/ all ba >= 0.10 ){

cat(sprintf ( ’\\ textbf {%.1f} &’, 100∗( sap ba + pol ba )/ all ba ))

} else {

cat(sprintf (’%.1f &’, 100∗( sap ba + pol ba )/ all ba ))
}
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if ( gap sap ba / all ba >= 0.006) {

cat(sprintf ( ’\\ textbf {%.2f} &’, 100∗ gap sap ba / all ba ))

} else {

cat(sprintf (’%.1f &’, 100∗ gap sap ba / all ba ))
}

if ( lrg ba /max (0.01, mat ba ) > 1.75 ){

cat(sprintf ( ’\\ textbf {%.2f} &’, lrg ba / mat ba ))

} else {

cat(sprintf (’%.2f &’, lrg ba / mat ba ))
}

if (( sap ba + pol ba )/all ba <0.10) {

cat(sprintf ( ’\\ textbf {%.1f} &’, 100∗( sap ba + pol ba )/ all ba ))

} else {

cat(sprintf (’%.1f &’, 100∗( sap ba + pol ba )/ all ba ))
}

if ( lrg ba /max (0.01, mat ba )>1.75) {

cat(sprintf ( ’\\ textbf {%.2f} &’, lrg ba / mat ba ))

} else {

cat(sprintf (’%.2f &’, lrg ba / mat ba ))
}

if ( mat ba +lrg ba >10) {

cat(sprintf ( ’\\ textbf {%.2f} &’, mat ba + lrg ba ))

} else {

cat(sprintf (’%.2f &’, mat ba + lrg ba ))
}

if ( pol ba / all ba > 0.30 ) {

cat(sprintf ( ’\\ textbf {%.1f} &’, 100∗ pol ba / all ba ))

} else {

cat(sprintf (’%.1f &’, 100∗ pol ba / all ba ))
}

if ( pol ba + mat ba + lrg ba >= 10 ){

cat(sprintf ( ’\\ textbf {%.2f} &’, pol ba + mat ba + lrg ba ))

} else {

cat(sprintf (’%.2f &’, pol ba + mat ba + lrg ba ))
}

if ( pol ba / all ba > 0.30 ) {

cat(sprintf ( ’\\ textbf {%.1f} \\\\\ n’, 100∗ pol ba / all ba ))

} else {

cat(sprintf (’%.1f \\\\\ n’, 100∗ pol ba / all ba ))
}

stage
}

print head = function () {

cat(’Year & Stage & Storms & \\(\\ Delta \\) ECA & S & P & M & L & \n’)

cat(’M+L \\(\\ ge \\) 20 &\n’)

cat ( ’\\%L \\(>\\) 45 & L:M \\(>\\) 1.1 &\n’)

cat(’L:M \\(>\\) 1.4 &\\%( S+P) \\(>\\) 10 & \\% gS \\(>\\) 0.6 &\n’)

cat(’L:M \\(>\\) 1.75 &\\%( S+P) \\(<\\) 10 &\n’)

cat(’L:M \\(>\\) 1.75 &\n’)
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cat(’M+L \\(>\\) 10 &\n’)

cat ( ’\\%P \\(>\\) 30 &\n’)

cat(’P+M+L \\(\\ ge \\) 10 & \\% P \\(>\\) 30 \\\\\ n’)

cat ( ’\\ hline \n’)
}

db open (dbfile)

sink(gsub ( ’\\. db$ ’,’ stdev diagnostic .tex ’,dbfile))

sink(’/dev/null ’)

get trees (0)

get scale ()

st data = sql(’select ∗ from storms ’)

sink()

cat ( ’\\ documentclass [10pt ,landscape ,english ]{ article }\n’)

cat ( ’\\ usepackage[letterpaper ]{ geometry }\n’)

cat ( ’\\ usepackage { longtable }\n’)

cat ( ’\\ usepackage { fancyhdr }\n’)

cat ( ’\\ geometry { verbose ,tmargin =2cm ,bmargin =2cm ,lmargin =1cm ,rmargin =1cm }\n’)

cat ( ’\\ pagestyle { fancy }\ n\n’)

cat ( ’\\ begin { document }\n’)

cat ( ’\\ lhead {’, gsub(’ ’ , ’\\\\ ’,dbfile) ,’}\n’)

cat ( ’\\(\\ Delta \\) ECA is the percent change in ECA from the previous ’)

cat(’to the current measurement .\\\\\ n’)

cat(’Values for S,P,M,L are all in m2/ha .\\\\\ n’)

cat(’Storms column shows Year :\\% ECA removal \\\\\ n’)

cat ( ’\\ tiny \n’)

cat ( ’\\ begin { longtable }{ ’)

cat(’c | c | c | ccccc ’) # Year , ECA , S,P,M,L

cat ( ’ |c’) # M+L ge 20

cat ( ’ | c@ {\\ hspace {2 mm }}c’)

cat ( ’ | c@ {\\ hspace {2 mm }} c@ {\\ hspace {2 mm }} c | c@ {\\ hspace {2 mm }} c | c | c | c | c@ {\\ hspace {2 mm }} c }\n’)

print head ()

cat ( ’\\ endfirsthead \n’)

print head ()

cat ( ’\\ endhead \n’)

d= get trees (years [1])

prev eca = sum(d$eca)

prev eca = NA

for ( i in 2: length(years)){

d = get trees (years[i])

this eca = sum(d$eca)

st ix = which( years[i –1] < st data$year & st data$year <= years[i])

cat(sprintf(’%i &’, years[i]))

stand dev yr diagnostic (

years[i], (this eca – prev eca )/prev eca , st data [st ix ,] )

prev eca = this eca
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}

cat ( ’\\ end { longtable }\n’)

cat ( ’\\ end { document }’)

db close ();

sink();
}

avg q below mode = function(year){

d dist = dbh dist (year)

ba dist = apply( ba dist (year)$z , 2, sum)

ix mode = which.max( ba dist )

# Start at 2 to cut out the half class (it ’s NA anyhow)

# And go up through the mode.

d dist = d dist [2: ix mode ]

qi = rep(0, length( d dist ) –1)

for (i in 2: length( d dist )){

qi[i –1] = d dist [i –1] / max(0.1, d dist [i])
}

mean(qi)
}

pct ba around mode = function(year){

ba dist = apply( ba dist (year)$z , 2, sum)

ix mode = which.max( ba dist )

ix = max(1, ix mode –2):min( length( ba dist ), ix mode +2)

sum( ba dist [ix], na.rm=T ) / sum(ba dist , na.rm=T)
}
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