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                                            Abstract 

In 2019, researchers revealed that most fungi secrete chitin-based signaling molecules 

called lipo-chitooligosaccharides (LCOs). This finding upended the long-held belief that 

symbiotic microbes exclusively secreted LCOs to initiate symbiotic associations with 

plants. Furthermore, they observed that treating fungi with LCOs leads to significant 

changes in growth and development, as seen in the mold Aspergillus fumigatus and the 

mushroom Laccaria bicolor. This discovery sparked the hypothesis that fungi employ 

LCOs as signals to regulate growth and development through autocrine (acting on the 

same cell) or paracrine (acting on nearby cells) mechanisms. We sought to answer the 

fundamental question: what are the genetic drivers underlying a fungus’ response to 

chitin-based signaling molecules? 

To uncover gene regulators involved in LCO response, we used the MERLIN+P+TFA 

algorithm to infer a comprehensive gene regulatory network in A. fumigatus based on 

publicly available expression datasets. Our network revealed the role of the transcription 

factor, AfAtfA, as a critical regulator of LCO responses. Experimental assays validated 

this prediction by showing that deleting the gene coding for AfAtfA disrupts the ability to 

respond to LCOs. Furthermore, we implemented our network into a free online resource 

called GRAsp (Gene Regulation of Aspergillus fumigatus), allowing users to explore their 

genes and pathways of interest and develop new hypotheses. 

Our research also explored how fungi physically detect LCOs. In plants, LysM domains 

on cell-membrane receptors physically bind chitin-derived molecules, including LCOs. 

Proteins containing LysM domains are conserved throughout fungi, especially within 
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secreted proteins with no catalytic domains called effectors. We found that LysM effector 

AfldpA from A. fumigatus is essential for the fungal responses to LCOs, and we 

hypothesize that these effectors act as LCO receptors. Binding assays between these 

heterologously expressed proteins and LCOs are being conducted to confirm our 

hypothesis. 

Our discoveries significantly advance our knowledge of chitin signaling in fungi; 

continuing to dissect this LCO response pathway, especially with the aid of GRAsp, will 

help us link the activity of LysM effectors to the regulatory activity of AfAtfA. Furthermore, 

the ability to engineer fungi that are non-responsive to LCOs will help us understand the 

importance of these molecules in microbial interactions and possibly manipulate fungal 

beneficial or detrimental behaviors. 
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Chapter 1: Introduction 

 

1.1 Lipo-chitooligosaccharides and its role in plant-microbe symbioses. 

Lipo-chitooligosaccharides (LCOs) are signaling molecules in fungi and nitrogen-

fixing bacteria (1–3). These molecules are derivatives of chitin, the second-most naturally 

abundant polysaccharide, following cellulose, and are made up of N-acetyl-D-

glucosamine monomers (Figure 1A) (4, 5). Specifically, LCOs are fragments of 3-5 N-

acetyl-D-glucosamine residues, a fatty acid attached to the chitin backbone's non-

reducing end, with various possible functional groups (Figure 1B, C) (6). The study of 

LCOs was initially rooted in plant-microbe symbiosis. In particular, legumes have 

symbiotic relationships with nitrogen-fixing bacteria, collectively referred to as rhizobia, 

and these relationships are, in part, enabled by an exchange of signaling cues that involve 

LCOs (7). 

Rhizobia produce LCOs in response to flavonoids secreted from the roots of 

legumes. The plant host further recognizes the secreted LCO molecules via receptor-like 

kinases (8). This recognition activates the Common Symbiosis Pathway (CSP), a 

conserved signaling cascade found across many plant species. It facilitates the 

successful establishment and maintenance of symbiotic relationships with their bacterial 

or fungal partners (8, 9). 

In rhizobia, activating the Common Symbiosis Pathway in legume species is 

required for intracellular infection and developing root nodules, specialized structures that 

house rhizobia (10). This symbiotic association facilitates atmospheric nitrogen 

conversion into ammonium, allowing for an exchange of resources between the host and 
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the microbe. The host receives access to a usable form of nitrogen to carry out processes 

that support growth and development, while the microbe receives sources of carbon from 

the plant host (10). For LCO's role in plant symbioses, these molecules are also called 

Nodulation, or Nod, factors. 

 

Figure 1. Chemical structures of chitin molecules. A) Chitin. (B) Non-

Substituted LCO. (C) Chemically substituted LCO from Rhizobium sp. IRBG74. 



 

 

 

 

3 

Carbamoyl groups are red, fucosyl green, arabinosyl orange, and methyl brown. Modified 

from Khokhani et al. 2021 (3). 

 

The plant host's ability to detect LCOs depends on LysM-containing receptor-like 

kinases (3). These receptors can discriminate between rhizobial symbionts by 

recognizing variations in the degree of chitin polymerization, lipid structure, or the type of 

functional group (3, 11). For example, the legume Vicia Sativa responds to non-sulfated 

LCOs, while another legume, Medicago truncatula, responds to sulfated LCOs (3, 12, 13). 

The specificity of LCOs and their receptors ensures that the plant forms symbiotic 

associations only with compatible rhizobia (14). It was not long, however, before LCO 

signaling was discovered in other symbiotic associations (15, 16). 

The role of LCOs expanded with the discovery that these molecules were also 

crucial for associations between plants and fungi, not just rhizobia (16). Arbuscular 

mycorrhizal fungi are soil fungi that establish mutually beneficial associations with roughly 

90% of land plants (17). Similar to associations with bacteria, the fungus receives carbon 

from the plant, and, in return, the plant gets access to sources of minerals like 

phosphorus, increased water uptake, and improved resistance to abiotic stressors like 

drought (3, 18).  

This symbiotic relationship begins with a chemical dialogue between the 

arbuscular mycorrhizal fungus and the plant host (18). When near plant signals, the 

fungus secretes LCOs that the plant host recognizes via receptor kinases that contain 

LysM domains. This recognition triggers a signaling cascade that activates the Common 

Symbiosis Pathway and pathways that suppress innate immune responses to fungi (3, 
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18). A successful dialogue allows the fungus to colonize the roots. Specifically, the fungus 

can form branched structures, called arbuscules, inside plant root cells, which will, in turn, 

facilitate the exchange of resources (3). To distinguish LCOs from those from rhizobia, 

LCOs from mycorrhizal fungi were colloquially called Myc-LCOs (19).  

While LCOs are essential for microbial cross-talk with plants, derivatives of chitin, 

referred to as chitin oligomers (COs), are also involved in plant-fungal interactions (3, 20). 

The main difference between the two molecules is that COs do not contain the lipid 

moiety. While chitin is known for its structural role in the fungus’ cell wall, smaller chitin 

oligomers have signaling roles in mutualistic and pathogenic plant interactions (20).  

COs are generally categorized by their degree of polymerization, separating 

molecules into either short-chain COs (polymerization of 4-5 N-acetyl-glucosamine 

residues) and long-chain COs (polymerization of 8 or more N-acetyl-glucosamine 

residues) (20). Early evidence suggested that short-chain COs produced by mycorrhizal 

fungi were involved in activating the Common Symbiosis Pathway. In contrast, long-chain 

COs produced by fungal plant pathogens elicited an immune reaction by the plant (3). 

These views are challenged by work that suggests that COs are not limited to eliciting 

specific symbiotic or defense responses from the plant; long-chain COs, for example, can 

trigger the early stages of symbiotic signaling (3, 20, 21). While short-chain and long-

chain COs are essential in a plant’s interaction with a fungus, the ambiguity of their roles 

speaks to a more complex chitin signaling system (3). 

The discovery that LCOs were also crucial in ectomycorrhizal associations 

foreshadowed that LCO molecules are found throughout the fungal kingdom (1, 15). 

Ectomycorrhizal fungi form symbiotic relationships with their plant host, allowing resource 
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transfer (3, 22). Like in arbuscular mycorrhizal fungi, the fungus receives carbon sources 

from the plant while the plant gets increased access to minerals. Unlike arbuscular 

mycorrhizal associations, colonization by ectomycorrhizal fungi occurs by forming a 

sheath around the plant root and penetrating the intercellular space (3). Molecular 

research into these associations commonly uses the ectomycorrhizal mushroom, 

Laccaria bicolor, as a model organism (23). 

In 2019, Cope et al. discovered that L. bicolor secretes a range of LCOs and that 

these molecules facilitated ectomycorrhizal symbiosis (15). Specifically, treating poplar 

plants with LCOs from L. bicolor activated calcium spiking, a critical step of the signaling 

cascade that activates the Common Symbiosis Pathway (3, 15).  

L. bicolor produces two primary forms of LCOs, one that is sulfated and one that 

is non-sulfated. Interestingly, both molecules have different roles in signaling. Sulfated 

LCOs generally increased the efficiency of the fungus’ ability to colonize the plant roots, 

while non-sulfated LCOs increased lateral root formation (15). 

 

1.2 LCOs are signaling molecules found throughout the fungal kingdom. 

It was not until 2019 that Dr. Tomas Rush et al. discovered that LCOs are produced 

by most fungi, irrespective of their ability to develop symbiotic associations with plants 

(1). Researchers tested the exudates of 59 species spanning the fungal kingdom and 

several oomycete species for the presence of LCOs. They found that 53 fungi had 

detectable levels of LCOs (Figure 2). Chemical analyses further revealed that LCO 

structures were similar across fungi, with LCOs containing three to five N-acetyl-

glucosamine residues and sulfated, fucosyl, and methylfucosyl functional groups. The 
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standard lab yeast, Saccharomyces cerevisiae, and oomycetes (filamentous microbes 

that grossly resemble and sometimes are mistaken for fungi) did not have detectable 

LCOs (1, 3). 

 

Figure 2. Fifty-nine fungi representing five of the eight phyla (indicated by colors) 

and three species of oomycetes (Heterokontophyta, green) were tested for the 

presence of (LCO)s in their culture supernatants. Modified from Rush et al. 2020. 
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Another groundbreaking revelation was that LCO treatment altered the growth and 

development of fungi. The filamentous mold Aspergillus fumigatus was treated with 

various LCO, CO, and lipid structures to determine if it affected germination and lateral 

branch formation. Sulfated LCOs with palmitic acid lipid moiety (C16:0 sLCO) reduced 

lateral, or secondary, branches coming off the primary hypha, even at concentrations as 

low as 10−8 M. C16:0 sLCO also increased germination of asexual spores, termed conidia; 

this however was not specific to LCO as oleic acid (C18:1) also elicited a similar 

phenotype. Treatment with C16:0 sLCO altered the transcriptional activity of A. fumigatus 

after 30 minutes and two hours. In the yeast Candida glabrata, all tested LCOs, CO, and 

lipids induced pseudohyphae formation but were most strongly observed in treatments 

C16:0 sLCO in treatments as low as 10−13 M (1, 3).  

 In a follow-up study, treatment of A. fumigatus with LCOs, even those that did not 

elicit germination or secondary branching changes, altered the metabolites produced by 

A. fumigatus (24). The metabolites secreted by LCO-treated A. fumigatus further altered 

the growth of various plant-associated bacteria, supporting the idea that LCOs in non-

symbiotic fungi have roles in inter-kingdom signaling (24). 

Treatments of L. bicolor with LCOs and COs further elicited changes in symbiotic 

fungi. Specifically, treatment with C16:0 nsLCOs, C18:1 sLCOs, C18:1 nsLCOs, and CO4 

reduced radical growth and hyphal branching in L. bicolor (25). Rush et al. also examined 

how LCOs and COs affect clamp connections (25). Clamp connections are structures 

found in fungi from the Basidiomycota division and resemble hooks or loops that protrude 
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from the fungal septum, the wall separating two cells, and play a role in cell division (26). 

Treatment with C16:0 sLCOs, C16:0 nsLCOs, or C18:1 sLCOs elicited increased clamp 

connections (25). 

Proteomic analysis of L. bicolor reveals that sLCO and nsLCOs purified from 

rhizobia, along with CO4 and CO8, reduced protein abundance and induced distinct 

proteomic profiles in the fungus. Gene Ontology (GO) enrichment analyses of these 

proteins revealed that these molecules generally affected processes involved in the 

development and response to environmental triggers (e.g., cellular component assembly, 

the establishment of cell polarity) (25). 

These discoveries altered our understanding of chitin signaling and supported the 

idea that the role of LCOs goes further than established symbiotic associations; LCOs 

are regulatory signal molecules in fungi and are potentially involved in cross-kingdom 

interactions (25). 

 

1.3 LysM domains and binding of chitin oligomers 

As previously mentioned, plants have a system to recognize and respond to LCOs 

and COs; these molecules are recognized by Lysin motif receptor-like kinases (LysM-

RLKs) found on the cell membrane (3). 

LCO recognition occurs through direct binding by two LysM domains, one LysM 

domain from LysM-RLKs proteins with an inactive kinase domain (LYR) and another 

LysM domain from a LysM-RLKs with an active kinase domain, called LYK (3, 27). LCO 

binding creates a protein complex between the LysM-RLKs and other components, such 

as a leucine-rich repeat (LRR)-type receptor kinase, that will transduce the signal into the 

cell (3, 28). In the legume M. truncatula, for example, the binding of LCOs occurs through 
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MtLyk3, which has the LYK domain, and MtNFP, which has the LYR domain. Along with 

MtDMI2, a leucine-rich repeat (LRR)-type receptor kinase, these receptors form a 

complex to activate the plant Common Symbiosis Pathway (3, 11, 29). 

The binding of COs is similar to that of LCOs. For example, binding the eight 

residue chitin oligomer, CO8, by M. truncatula occurs through the receptor complex 

formed by MtLYR4, a LysM-RLK with an inactive kinase domain, and MtCERK1, a LysM-

RLK with an active kinase domain (30). Whether LCOs or COs, it is clear that LysM 

domains are essential for binding chitin molecules in plant species. Fungi could also 

employ LysM-containing proteins to bind and respond to LCOs and COs (3). 

LysM (Lysin Motif) domains are protein sequences conserved throughout bacteria, 

bacteriophages, archaea, and eukaryotes (31, 32). This sequence usually consists of 40-

50 amino acids, translating into a beta-alpha-alpha-beta secondary structure to create 

anti-parallel domains that form a binding groove for carbohydrates containing N-

acetylglucosamine residues (32). There also appear to be two major groups of LysM 

motifs based on phylogenetics: bacterial/fungal and fungal-specific. One of the major 

distinctions between the domains is that the bacterial/fungal has 0-1 cysteine residues 

within the motifs, while the fungal-specific group, on the other hand, has 3-4 cysteine 

residues (31, 33). Various proteins, such as secreted proteins, receptors, and cell wall-

localized proteins, contain these domains (31). While LysM domains can bind chitin 

oligomers, these domains can also bind peptidoglycan. Enzymes in bacteria, such as 

peptidoglycan hydrolases, can contain LysM domains and participate in cell wall 

remodeling (34). As mentioned, plants employ LysM-containing proteins to detect LCOs 

and COs and respond accordingly (32). 
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In fungi, LysM domains generally belong to two types of proteins: catalytic or 

effector proteins. Catalytic proteins contain one or more LysM domains and a catalytic 

activity domain. Chitinases often possess LysM domains (35). LysM effectors are proteins 

with no catalytic domain, one or more LysM, and signal peptides that mark the protein for 

secretion (31).  

LysM effectors are conserved throughout the fungal kingdom. While present in 

non-pathogenic fungi, research into LysM effectors has primarily occurred in the context 

of plant-fungi interactions. 

Early research implicated the LysM effectors of plant pathogenic fungi in three 

primary activities: 1) binding chitin molecules,  2) the suppression of the plant immune 

response, generally by sequestering immunogenic chitin, and 3) protection of the fungus 

from plant chitinases, potentially by physically blocking chitinases thought the 

polymerization of LysM effector; These activities facilitate the successful colonization of 

the fungus’ plant host (36–41). LysM effectors of mycoparasite Clonostachys rosea, 

insect pathogen Beauveria bassiana, plant-beneficial fungus Trichoderma atrovirde, and 

plant symbiont Rhizophagus irregularis have similar roles (42–45). Two LysM effectors, 

ClLysM1 and ClLysM2, from Clonostachys rosea exhibited roles in fungal development, 

such as germination and mycelial growth (42). 

Similar to LysM-receptors in plants, chitin-binding occurs through LysM domain 

dimerization. However, there are two strategies by which LysM domain-containing 

proteins bind chitin: either through 1) intramolecular dimerization, where LysM domains 

on the same protein bind chitin, and 2) intermolecular dimerization, whereby LysM 

domains from two different proteins bind chitin (Figure 3) (46). 
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Figure 3. Two proposed strategies for LysM domain-mediated chitin binding. (I) 

Intermolecular dimerization between two LysM domains from separate proteins. II) 

intramolecular dimerization between LysM domains located on the same protein. Modified 

Tian et al. 2022 (46).  

 

While most research on LysM effectors focused on plant-associated fungi, there is 

research on at least one human pathogen. In 2019, characterization of the two LysM 

effectors, AfLdpA and AfLdpB, in the human pathogen A. fumigatus revealed that deletion 

gene mutants of these effectors had no observable effect on cell wall integrity, chitin 

content and had not affect survival in immunosuppressed mice model (47). 

However, tagging with GFP (Green Fluorescent Protein) revealed that AfLdpA 

localizes to the cell wall while AfLdpB is present mainly in the cell cross-walls, called 

septa. Both LysM effectors are also present in the extracellular matrix, potentially 

signifying that the proteins play a role in biofilm formation. Like bacteria, biofilms are a 

fungal community within an extracellular matrix that allows surface adherence and 

enhanced antibiotic resistance (47).  
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LysM effectors can also bind chitin, chitosan, and chitin oligomers. One effector, 

Blys5 from the insect pathogen Beauveria bassiana, could bind cellulose (43). The LysM 

effector, RiSLM, from the symbiotic fungus, Rhizophagus irregularis, could bind sulfated 

and non-sulfated LCOs. This observation allows us to hypothesize that LysM effectors, 

especially cell-localizing proteins like AfLdpA from A. fumigatus, could have a role as both 

an LCO and CO receptor (45). 

 

1.4 Significance and Objectives. 

LCOs are widespread in fungi, and these molecules alter a fungus’ growth and 

development (1). Current hypotheses suggest that LCOs serve as signaling molecules 

throughout the fungal kingdom, as autocrine and paracrine signaling. Furthermore, the 

discovery that LCOs alter the metabolic profiles of A. fumigatus, which affects the growth 

of neighboring bacteria, suggests that LCOs could also be involved in cross-kingdom 

signaling (1, 3). 

 The role of LCOs in fungi, especially pathogens, has implications for both the 

agricultural and healthcare industries. For example, sellers of fertilizers and plant-growth-

promoting products containing LCOs must now consider how these products could affect 

the fungal community surrounding the plant. Considering that LCOs alter the growth and 

development of pathogenic fungi like A. fumigatus, research into LCO signaling opens up 

new avenues for understanding drivers of virulence (3). 

 Fundamental questions arise from these discoveries, with one asking: what are 

the genetic mechanisms that allow fungi to respond to LCOs? Answering this question 

would help future work in dissecting chitin-signaling among fungi. 
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To expand our understanding of chitin-signaling in fungi, I have focused my Ph.D 

dissertation on unraveling the genetics underlying a fungus’s response to LCOs and COs. 

Most of my work used the ascomycete mold A. fumigatus as a model for studying LCO 

signaling. Chapter 2 of my thesis will discuss how we used regulatory gene networks to 

uncover a fungus's first known regulator of LCO response. Chapter 3 will focus on our 

discovery that LysM effectors are important for LCO response in A. fumigatus. Chapter 

4 will summarize our findings and further discuss how this knowledge impacts the future 

of the field. 
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ABSTRACT  

Aspergillus fumigatus is a notorious pathogenic fungus responsible for various harmful, 

sometimes lethal, diseases known as aspergilloses. Understanding the gene regulatory 

networks that specify the expression programs underlying this fungus’ diverse 

phenotypes can shed mechanistic insight into its growth, development, and 

pathogenicity determinants. We constructed a comprehensive gene regulatory network 

resource, we used eighteen RNA-seq datasets (seventeen publicly available and one 

previously unpublished) of Aspergillus fumigatus. Our resource, named GRAsp (Gene 

Regulation of Aspergillus fumigatus), was able to recapitulate known regulatory 

pathways such as response to hypoxia, iron and zinc homeostasis, and secondary 

metabolite synthesis. Further, GRAsp was experimentally validated in two cases: one in 

which GRAsp accurately identified an uncharacterized transcription factor negatively 

regulating the production of the virulence factor gliotoxin and another where GRAsp 

revealed the bZip protein, AfAtfA, as required for fungal responses to microbial signals 

known as lipo-chitooligosaccharides. Our work showcases the strength of using 

network-based approaches to generate new hypotheses about regulatory relationships 

in Aspergillus fumigatus. We also unveil an online, user-friendly GRAsp version that is 

available to the Aspergillus research community.  

 

INTRODUCTION 

Aspergillus fumigatus is an environmentally and medically relevant filamentous fungus 

found worldwide. While it is considered a soil-dwelling mold, living as a saprotroph and 

taking part in nutrient cycling, the airborne conidia’s small size and abundance lend to 
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its notorious reputation as a lethal opportunistic pathogen (1–3). If the fungus can 

bypass a person’s immune system, such as in immunocompromised individuals, it can 

cause various respiratory and invasive diseases. Invasive aspergillosis is the most 

serious of these diseases (4, 5) and has a high mortality rate (2, 6, 7). The fungus also 

causes a secondary infection of COVID-19, known as CAPA (COVID-19-associated 

pulmonary aspergillosis), that leads to an estimated mortality rate of ca. 50% (8). 

The global success of A. fumigatus in diverse environments, from decaying organic 

matter to immunologically compromised patients, is reflected in significant shifts in 

programmed gene expression. Identifying gene regulatory networks (GRNs) that define 

regulatory relationships between regulatory proteins and target genes and drive these 

expression patterns holds promise in elucidating key genes and pathways required for 

virulence or interactions in different environments. At least seven studies in Aspergillus 

fumigatus have examined different sets of regulatory relationships involved in specific 

biological processes (9–16). For instance, Guthke et al. studied the regulatory 

mechanism(s) that allows A. fumigatus to adapt to a dramatic temperature shift during 

the infection process; in their study, they used an inferred GRN to hypothesize that 

erg11, a gene necessary for ergosterol synthesis, modulates the expression of genes 

encoding heat shock proteins and the allergen RPL3 in response to a temperature shift 

of 30 °C to 48 °C (9). In another instance, Linde et al. inferred and experimentally 

validated the role of the transcriptional regulator SrbA in iron homeostasis (16). While 

these studies have demonstrated how GRNs can capture regulatory mechanisms, they 

have focused on several regulators using small datasets. Uncovering genome-scale 

GRNs within a eukaryotic organism is a significant experimental challenge due to the 
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sheer magnitude of experiments required to comprehensively identify and verify 

regulatory relationships (17, 18). Computational methods for inferring GRNs, which 

leverage large-scale gene expression data (i.e., mRNA transcriptomic profiles) to 

reverse engineer GRN structure, offer a popular and cost-effective technique to provide 

an initial view of the GRN that can be experimentally verified. For example, Acerbi et al. 

applied a computational method using the transcriptome of several A. fumigatus genes 

to infer the regulatory connections involved in tryptophan synthesis (11). Although these 

studies have shed light on GRNs in A. fumigatus, the datasets have been limited to 

specific environmental conditions (e.g., tryptophan, temperature). Our goal in this study 

was to construct a comprehensive genome-wide GRN of A. fumigatus and provide a 

user-friendly interface to query this GRN, enabling the generation of testable 

hypotheses of A. fumigatus molecular responses to diverse environmental conditions. 

To address this goal, we applied a computational GRN inference algorithm called 

MERLIN-P-TFA (Siahpirani et al. in preparation, 2023, https://github.com/Roy-

lab/MERLIN-P-TFA)  on a curated set of publicly available and in-house RNA-seq 

profiles of A. fumigatus. Leveraging transcriptomic data of Aspergillus spp. to infer 

networks was successfully shown in 2019, when Schäpe et al. inferred and validated a 

comprehensive co-expression network in Aspergillus niger (19). MERLIN-P-TFA, 

specifically, uses a probabilistic graphical modeling approach (20) to infer a GRN (18). 

Moreover, MERLIN-P-TFA groups genes into modules where genes belonging to the 

same module have similar regulatory programs. MERLIN modules reflect small 

regulatory programs and provide insight into regulators driving these pathways.  
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The MERLIN-P-TFA inferred network successfully recapitulated known regulatory 

relationships for multiple processes, including ergosterol biosynthesis, iron 

homeostasis, and secondary metabolite regulation. Further, using the network 

predictions of MERLIN-P-TFA, we successfully identified one transcription factor 

involved in mediating A. fumigatus response to microbial signals called lipo-

chitooligosaccharides (LCOs) and one transcription factor regulating the synthesis of 

the bioactive toxin gliotoxin. We have created a user-friendly online resource named 

GRAsp (Gene Regulation of Aspergillus fumigatus, grasp.wid.wisc.edu) that allows for 

visualization and exploration of A. fumigatus’ predicted GRN. 

 

MATERIAL AND METHODS 

Data acquisition and preprocessing  

We obtained raw fastq reads from 17 previously published datasets and a newly 

generated bulk RNA-seq one (Table S1) (7, 15, 21–35). The adapter sequences were 

clipped with Trimmomatic (version 0.32, settings 2:30:10:2:keepBothReads LEADING:5 

TRAILING:5 MINLEN:36) (36). The transcripts were counted with RSEM (37) using A. 

fumigatus strain Af293’s reference transcriptome ASM265v1.49 

(ftp://ftp.ensemblgenomes.org/pub/fungi/release-

49/gff3/aspergillus_fumigatus/Aspergillus_fumigatus.ASM265v1.49.gff3.gz). RSEM 

produced transcripts per million (TPM) matrix for each dataset. In each TPM matrix, the 

rows represent the genes, and the columns represent the samples in that dataset. 

Finally, we log-transformed and quantile-normalized each TPM matrix. These initial 

matrices were given as input to the batch effect correction step. 
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Batch correction 

Each TPM matrix was zero-mean transformed, i.e., the mean of each gene’s expression 

was subtracted from its expression value in each sample. As a result, each gene had a 

mean expression of zero in every TPM matrix after the transformation. Subsequently, 

we performed principal component analysis (PCA) on the transformed matrices. We 

generated PCA plots using the combined matrix before and after zero-mean 

transformation (Figures S5, S6, and S7). PCA components after zero-mean 

transformation demonstrated that the variation between datasets was less prevalent 

than between experimental conditions. We generated correlation and gene expression 

heatmaps to verify further that batch correction was sufficient to remove variation 

between datasets.  We identified one dataset, namely PRJEB2987, which was 

observed to have seven outlier samples: samples S1-S4, and samples from the third 

replicate (rep3), with unexpected correlation structure and expression (Figure S8 and 

S9). We removed these seven samples from our dataset. The final expression matrix 

contained the values of 9,859 genes across 294 samples.  

 

Inference of the gene regulatory network 

To infer a GRN from the expression matrix, we applied a network inference method 

named MERLIN-P-TFA (Siahpirani et al., 2023, https://github.com/Roy-lab/MERLIN-P-

TFA). This method extends our previous method, MERLIN-P, by estimating hidden TF 

activity levels from a noisy input prior network (38). This algorithm takes three inputs: (a) 

an expression matrix, (b) a list of regulators, and (c) a prior network. Only the genes 

mentioned on the input list of regulators are allowed to have outgoing edges in the 

inferred network.  
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Preparation of the list of regulators 

We curated five lists of regulators and combined them to produce the final list of 

regulators. The lists are: (a) the predicted TFs for A. fumigatus strain Af293 in the JGI 

MycoCosm database, (b) the predicted TFs in Furukawa et al. (2020), (c) the signaling 

genes that are annotated for GO terms "G-protein coupled receptor protein signaling 

pathway" (GO:0007186) and “Calcium-mediated signaling” (GO:0019722) in the JGI 

MycoCosm database, (d) the list of G-protein coupled receptors (GPCRs) found in (39–

41), and (e) the genes annotated for “Signal transduction” (GO:0007165) in the AspGD 

gene ontology database (39–42). The combined list comprises 820 distinct regulators 

(Figure S1 (41)). In Furukawa et al., the TF names correspond to A. fumigatus strain 

A1160; hence, we used OrthoFinder to find the orthologous gene names for strain 

Af293 (40, 43, 44). See Supplementary File  S1_regulators.xlsx for a detailed 

description of each sublist. 

 

Construction of the prior network 

MERLIN-P-TFA utilizes a prior network to guide its network inference task by 

incorporating prior knowledge on an edge when available. We utilized putative TF 

binding site sequence motifs to construct the prior network. We downloaded 628 (DNA-

sequence) motifs corresponding to 99 TFs in A. fumigatus from the CIS-BP database 

(45). Additionally, we used four previously characterized A. fumigatus motifs 

corresponding to two TFs (46, 47); for brief descriptions, see Supplementary Method 

S1 (46, 47). We scanned the A. fumigatus reference genome (ASM265v1 release 49) 

for each motif to determine using pwmmatch.exact.r (from the PIQ pipeline), to generate 
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the genome-wide coordinates of the motif instances on the genome (48). Each motif 

instance set of coordinates was then mapped to a gene if the coordinates overlapped a 

region 10 Kbp upstream and 1 Kbp downstream of the gene transcription start site 

(TSS). Our specified distance surrounding the TSS was motivated by experimental 

validation of regulator interactions at least 10kb upstream of the TSS (49, 50). Suppose 

motif M has two sets of coordinates mapped to genes A and B, respectively, and TF X 

can bind to motif M. In that case, two edges were included in the prior network, one 

from X to A, and another from X to B (Figure S2) (48). We designate each gene-motif 

instance pair as an edge in our prior network and assign each edge an edge weight 

corresponding to the log-likelihood of observing the motif-specific precision-weighted 

matrix. Moreover, we assigned each edge a PIQ score representing the likelihood of the 

motif appearing on the binding site of the target gene (48). The scores were calculated 

with the R package “Biostrings” (51, 52). We sorted the candidate binding sites by their 

scores for each motif and retained only the top 100,000 sites. We retained all the motifs 

with less than 100,000 candidate binding sites. The resultant prior network was 

extremely dense (containing 936,557 edges). Hence, we restricted its density to be 20% 

of the total number of possible edges (0.2 x Number of TFs in the prior network, i.e., 96  

Number of target genes, i.e., 9,859), which corresponded to 189,292 edges. Finally, we 

converted all edge scores to a range of scores between 0 and 1 by applying percentile 

ranking to them. The highest score was 1, and the lowest was 0.000101688 

(Supplementary File S2_prior_network.xlsx). 

 

Network inference with MERLIN-P-TFA 

MERLIN-P-TFA performs the network inference in two steps: First, it estimates the 
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transcription factor-level activities (TFA) of the regulators present in the prior network. 

Second, it infers the edges between the regulators and the target genes by regressing 

the estimated TFA profiles of the regulators present in the prior network and the gene 

expression profiles of all the regulators to the gene expression profiles of the candidate 

target genes (Figure 1).  

 

In the first step, MERLIN-P-TFA estimates the TFA matrix. The TFA matrix is a 

regulators-by-samples matrix where the (i, j)th entry denotes the estimated TF-level 

activity (53–55) of the regulators (that are present in the prior network) across all the 

samples (in the expression matrix). To estimate the TFA matrix, P, MERLIN-P-TFA 

solves the minimization problem min( ||Enxs - AnmPms ||22 +  || Anm(Wnm)T ||)   where 

E is the given expression matrix, n is the number of target genes, s is the number of 

samples, A (called the “connectivity matrix” which is derived from the given “prior 

network”) is the prior knowledge on the regulatory edges between the regulators and 

target genes, m is the number of regulators, and W is the prior edge-penalty matrix; W(i, 

j) represents the prior penalty on the edge from the  jth regulator to the ith target gene 

calculated as (1 - the confidence of the edge in the prior network). The regularization 

term  || Anm(Wnm)T || is important for handling noise in the connectivity matrix 

(Siahpirani et al. in preparation, 2023, https://github.com/Roy-lab/MERLIN-P-TFA). The 

level of regularization depends upon  ; the higher the value of , the higher the 

regularization level. In this work, we used =0.1. 

Once the TFA is estimated, MERLIN-P-TFA uses the original MERLIN-P method to infer 

a GRN. Briefly, MERLIN-P represents the relationships between regulators and target 
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genes as a probabilistic graphical model (PGM) known as a “dependency network.” 

Given a dataset D, MERLIN-P infers a network G by solving regression problems. 

Additionally, MERLIN-P groups genes into modules with similar regulatory programs 

assigned to the same module. 

MERLIN-P-TFA infers two items for each gene: (a) a set of directed edges from its 

predicted regulators to the gene itself and (b) a module assignment. We ran the TFA 

estimation step 50 times by randomly initiating the connectivity matrix “A” every time. 

This resulted in 50 estimated TFA matrices. We combined these matrices into a single 

TFA matrix by taking their mean. Subsequently, we produced a large matrix by 

appending the estimated TFA matrix to the gene expression matrix. This large matrix 

contained the expressions of 9,859 genes and the estimated TFAs of 30 regulators 

across all 294 samples. Then we generated 100 random subsamples of the large matrix 

through random sampling without replacement. Each subsample matrix contained 147 

samples, i.e., half the number of samples in the large matrix. We ran MERLIN-P-TFA 

separately on each of these 100 subsample matrices. This results in 100 distinct GRNs, 

each having a unique module assignment (i.e., gene to module map). We combined 

these 100 GRNs into a single GRN by taking the union of their edges, and each edge 

was assigned a confidence score that reflected how many times the edge had appeared 

in the previous 100 GRNs. For downstream analyses, we only considered the edges 

having a confidence score of 80% or above. We also inferred a consensus module 

assignment requiring genes to be in the same module in at least 30 out of 100 module 

assignments.         
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Interpretation of MERLIN-P-TFA network and modules 

We developed three strategies based on module enrichment and graph-theoretic 

analyses to interpret the results of MERLIN-P-TFA and the generation of new 

hypotheses. All three methods accept input gene lists representing known gene sets, 

such as from a Gene Ontology (GO) database or a gene list from an independent 

differential expression analysis experiment. 

 

Interpretation of MERLIN modules based on enrichment analyses 

MERLIN-P-TFA infers a per-gene module-constrained network. MERLIN-P-TFA 

modules are sets of genes with similar expression profiles and regulatory programs that 

are similar, although not identical. To interpret the MERLIN-P-TFA modules, we tested 

them for enrichment of GO terms using a hypergeometric test with FDR correction for 

multiple hypotheses (56). A module was labeled with a GO term if a significant number 

of genes in this module were enriched for that GO term (FDR<0.05).  In addition to the 

GO enrichment analysis, we tested the modules for enrichment of gene sets identified 

from targeted experiments in Aspergillus, e.g., differentially expressed genes from a 

gene perturbation experiment. A similar FDR-corrected p-value threshold was used to 

test for the enrichment of such gene sets in the modules. Modules were also helpful in 

determining important regulators of specific gene programs. Since MERLIN-P-TFA does 

not require all genes in the same module to have the same set of regulators, we further 

use enrichment tests to determine the critical regulators of a module using a similar 

hypergeometric test with FDR correction (FDR<0.05).  
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Approximate Steiner Tree Construction for Identification of Related Regulatory 

Mechanisms 

While modules capture part of a regulatory program indicated by the gene expression 

pattern, an entire regulatory program likely spans multiple modules and individual genes 

that may not be co-expressed with many other genes but are still part of the GRN. Thus, 

we developed a second method to identify critical pathways that connect a list of genes 

within a program to a set of modules and additional genes. To accomplish this task, we 

implemented a Steiner tree-based method to find approximately minimal trees 

connecting any user-provided set of genes. Briefly, the Steiner tree problem on 

unweighted, undirected graphs is defined as given a graph G=(V,E), where V denotes 

the set of vertices and E denotes the set of edges and a set of terminals T, finds a 

subgraph G = V, E that spans T such that the cardinality of E is minimized. Unfortunately, 

the Steiner tree problem for more than two terminals is computationally intractable; thus, 

an approximation of such a tree is generated (57). Based on the shortest path, the 

closest two genes from the list are connected to create the approximation and form an 

undirected subgraph. The next closest gene is then iteratively added to the new 

subgraph until all terminal genes in T are added. In our application of the Steiner tree 

approach, the terminal nodes come from an input gene list generated from differential 

expression or similar analyses. To guarantee algorithm convergence, genes from the 

gene list are only considered if they are contained within the largest connected 

component of the predicted regulatory network. Although the approximate Steiner tree 

is not unique, the tree can identify hub genes that are important for the regulation of 

multiple different components of the gene regulatory programs.  
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Ranking of Gene Importance via Laplacian Kernel Node Diffusion  

Our third method of determining the relationship between a specific gene pathway and 

the predicted regulatory network is based on a gene prioritization scheme based on 

diffusion on a graph (58). This strategy has been used to predict new genes for 

pathways and examine the impact of genetic mutations in one gene on other genes 

connected via a protein-protein interaction network (58). In this approach, a graph 

kernel defines global similarity between nodes in the input set to all other nodes in the 

graph. In our case, we used the Laplacian graph kernel defined as K=(1+ λL)-1, where  

is a hyper-parameter specifying the bandwidth of the kernel function and L is the graph 

Laplacian matrix defined as L = D - A, where D is the diagonal matrix representation of 

each node degree and A is the symmetric graph adjacency matrix. Diffused scores for 

all genes are defined by V = K  S, where S are the initial scores specified by the user. In 

our setup, the input gene set corresponds to genes from a pathway of interest or 

differentially expressed genes, and the graph is the MERLIN-P-TFA inferred GRN. The 

input gene set is initialized with uniform scores of 1 or based on additional data, such as 

the change in expression in two conditions of interest. Diffused scores are then used to 

prioritize genes based on their connectivity to the input gene set, which can indicate 

particular gene pathways of interest.  

Fungal strains and culture conditions 

Aspergillus fumigatus strains used in this study are listed in Table S2 (59–63).  All 

strains were grown at 25 °C for 9 days in the dark on solid glucose minimal medium in 

sterile 100 x 15 mm Petri dishes (64). Ten thousand spores were used for the initial 

inoculum. Conidia were collected in sterile 0.01% Tween 80, filtered through a 40 μm 
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nylon cell strainer, then quantified using a hemocytometer. For long-term storage, conidia 

were maintained as glycerol stocks at −80 °C. 

Generating rogA mutant strains 

To create the rogA (AFUA_3G11990) deletion strain (TSCP2), its 1.4 kb 5’ flanking 

region and 1.0 kb 3’ flanking region were amplified by PCR from the genomic DNA from 

A. fumigatus strain AF293. The A. parasiticus pyrG gene was used as a selective 

marker and was amplified by PCR from the pJW24 plasmid (65). To make the rogA 

overexpression strain (THWS25), 1.0 kb of the gene’s 5’ flanking region and the entire 1 

kb rogA region, starting with ATG were amplified from Af293 genomic DNA. The pyrG 

linked with the A. nidulans gpdA promoter was amplified from the pJMP9 plasmid (66). 

These fragments were fused by double-joint PCR, respectively (67). About 25 μL of 

Sephadex® G-50 purified third-round PCR product was used to transform TFYL80.1 for 

both the deletion and overexpression mutants. All fungal transformations were done 

using the polyethylene glycol (PEG)-based method previously described (67). Both the 

deletion and overexpression mutants were confirmed by PCR and Southern blot 

(Figure S3). Primer sequences are listed in Table S3. 

Metabolite Extraction 

GMM cultures of WT,  ΔrogA, and OE::rogA strains were grown (culture conditions 

described above) and lyophilized for 3 days in quadruplicate. The dehydrated agar and 

biomass were then crushed to powder. Each sample was extracted with 25 mL of 100% 

methanol and passed through filter paper. Extracts were reduced by air drying, 

weighed, and resuspended in 100% methanol at a final concentration of 1 mg/mL. Two 

authors performed these experiments independently.  
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UHPLC–HRMS and UHPLC–MS/MS analyses 

UHPLC–HRMS was performed on a Thermo Scientific Vanquish UHPLC system 

connected to a Thermo Scientific Q Exactive Hybrid Quadrupole-Orbitrap mass 

spectrometer operated in positive ionization mode. A Waters Acquity UPLC BEH-C18 

column (2.1 × 100 mm, 1.7 μm) was used with acetonitrile (0.1% formic acid) and water 

(0.1% formic acid) at a flow rate of 0.2 mL/min. A screening gradient method was 

implemented as follows: Starting at 10% organic for 5 min, followed by a linear increase 

to 90% organic over 20 min, another linear increase to 98% organic for 2 min, holding at 

98% organic for 5 min, decreasing back to 10% organic for 3 min, and holding at 10% 

organic for the final 2 min, for a total of 37 min. Ten μL of each sample was injected into 

the system for the analysis. Gliotoxin was identified by comparison with a standard 

purchased from Cayman Chemical (Ann Arbor, MI, USA). An analog of gliotoxin, 

BMgliotoxin, was predicted by the analysis of UHPLC–MS/MS data through SIRIUS 

ver.5.5.7. The relative quantification of two compounds was calculated based on 

intensities obtained from UHPLC–MS/MS. 

Analysis of secondary branching and germination in A. fumigatus 

To look at the number of secondary branches in A. fumigatus, 1x106 conidia per mL of 

A. fumigatus strains was inoculated in GMM broth treated with either 10-8 M sulfated 

C16:0 LCO (CERMAV) or the negative control, 0.005% ethanol (64). 100 μL of 

inoculated and treated broth was dispensed into a well in a 96-well flat bottom plate in 

triplicate. The plate was incubated at 37 °C for 11 hours, followed by imaging every 15 

minutes over 3 hours using a Nikon TI inverted microscope with a 40X objective. Each 

frame captures the growth of one hypha, and ten frames were taken per well. The 
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number of secondary branches per apical hyphae was counted using NIS-Elements AR 

Analysis Version 4.30. 

 

To quantify the germination of conidia, 1x105 spores per mL of A. fumigatus strains were 

inoculated in GMM broth treated with either 10-8 M sulfated LCOs (LCO-IV (C:16,S)) or 

0.005% ethanol (negative control). 1 mL of inoculated and treated broth was dispensed 

into a well in 24-well flat-bottom plates and incubated at 37°C for 3 hours. After 3 hours, 

10 different areas in the well were captured as frames using a 40X objective. Each 

frame contained 20-30 conidia and was photographed every hour for 12 hours. 

Germination of conidia was counted using NIS-Elements AR Analysis Version 4.30. 

 

RNAseq extraction from A. fumigatus zfpA mutants 

For mycelial RNA, A. fumigatus wild type, ∆zfpA, and OE::zfpA conidia were inoculated 

at 106 spores per mL in liquid glucose minimal media and incubated at 37˚C shaking at 

250 RPM overnight (63). The total tissue was combined from two 50mL cultures flash 

frozen and lyophilized for each sample. Total RNA was extracted using QIAzol Lysis 

Reagent (Qiagen) according to the manufacturer’s instructions with an additional 

phenol:chloroform:isoamyl alcohol (24:1:1) extraction step before RNA precipitation. For 

conidial RNA, 106 WT, ∆zfpA, or OE::zfpA conidia were inoculated into 8mL of molten 

GMM top agar (0.75% agar) and overlaid onto cooled GMM plates containing 15mL 

bottom media (1.5% agar). Plates were incubated at 37˚C for 3 days before harvesting 

in 0.01% Tween 80 solution. Spore suspensions were filtered twice through two layers 

of sterile miracloth and once through 40µm cell strainers (Falcon) to remove hyphal 

fragments. Filtered conidia were pelleted at 1000 x g for 10 minutes and resuspended in 
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200µL 0.01% Tween 80. Concentrated conidia were lysed by bead beating for 5 

minutes with 0.5mm zirconia/silica beads after adding QIAzol Lysis Reagent and 

chloroform. Total RNA extraction was completed per the manufacturer’s instructions 

with an additional phenol:chloroform:isoamyl alcohol (24:1:1) extraction step before 

RNA precipitation. Total RNA from both mycelial and conidial samples was cleaned 

using RNeasy Mini Kit with on-column DNase digestion (Qiagen) per manufacturer’s 

protocol. RNA integrity was tested via nanodrop, gel electrophoresis, and the Agilent 

2100 Bioanalyzer. Library preparation and RNA sequencing were performed by 

Novogene, Inc. using the TruSeq Stranded mRNA Library Prep Kit and Illumina 

Novaseq 6000 Platform. 

     

Statistical Analysis 

Gliotoxin Mass-spectrometry  

Relative abundance of BMgliotoxin and gliotoxin were measured by two authors in 

independent experiments. Normalization was performed for each author independently 

by dividing all relative abundance measurements by the mean of the WT condition. After 

normalization, data was pooled between authors (total n=8 per strain). Statistical 

analyses between the wild type and the genetically modified strains were performed 

using an Unpaired t-test (Graphpad Prism v9.4.1). 

 

Network Diffusion utilizing differentially expressed genes of LCO-treated samples 

For diffusion analysis, we used a list of differentially expressed genes (DEGs), 

published in Rush et al. 2020, of A. fumigatus 30 minutes after treatment with LCOs 

(Table S1, Serial number 16) (34). Diffusion was performed using Laplacian kernel 
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diffusion with hyperparameter, =10, and the absolute log fold change of the DEGs. 

Regulators with at least 5 targets were sorted to determine importance for the LCO-

treated condition.  

 

AfatfA mutant phenotype quantification in LCO-treated samples 

Secondary branching and percent germination were quantified as described above. 

Germination studies had a n=16 total for WT; △AfatfA, n=19, OE::AfatfA, n=17. 

Branching studies had a  n=60 total for WT; △AfatfA, n=59, OE::AfatfA, n=57. Statistical 

analyses comparing the phenotypic traits in AfatfA relative wildtype after treatment with 

LCO were performed using an Unpaired t-test utilizing Graphpad Prism (v9.4.1).  

 

RESULTS 

Genome-scale Gene Regulatory Network of A. fumigatus identified by MERLIN-P-

TFA 

MERLIN-P-TFA generated a genome-wide gene regulatory network (GRN) based on 

eighteen RNA-seq datasets of multiple A. fumigatus strains in various conditions (Table 

S1, Figure 1). Our network, which consists of 80% confident edges, contains 7,422 

regulatory edges. Each regulatory edge connects one of 669 regulators to one of the 

5274 target genes. Our regulator set includes 12 signaling proteins (Figure S1) and 30 

regulators with motifs. MERLIN-P-TFA estimated the TFA of these 30 regulators. The 

gene encoding the mating type protein MAT1-2 and the stress response protein AfAtfA 

(incorporated based on TFA) are the top two regulators of the network, regulating 216 

and 155 target genes, respectively (Figure 2B). Furthermore, MERLIN-P-TFA identified 
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164 modules with at least five genes. Jointly, they contain 3,381 genes. We performed a 

GO enrichment analysis to interpret these modules' biological relevance. Among the 

164 modules, 74 were enriched with at least one GO term (Supplementary file 

S3_module_details.xlsx). 

GRAsp: a visualization framework for interpretation and hypotheses generation 

of the Aspergillus GRN  

Genome-wide regulatory networks are difficult to interpret due to the many predicted 

interactions between regulators and target genes.  To aid in interpreting and analyzing 

our MERLIN-P-TFA inferred network, we have developed a network visualization 

framework called GRAsp (Gene Regulation of Aspergillus fumigatus) that incorporates 

different graph theoretic tools to examine sets of genes related to a specific process of 

interest. GRAsp allows users to input a list of genes or gene ontology terms and then 

actively generates interactive network diagrams that can be used to determine 

regulators of interest. The networks visualized in the GRAsp display window can be 

extended to include all genes in associated MERLIN modules or the neighborhood of 

the list of selected genes, providing additional information about regulatory mechanisms 

of interest. GRAsp also incorporates a Steiner tree estimation method to connect sets 

across MERLIN modules. Given a list of genes of interest, the Steiner tree method 

connects all genes with an approximate spanning tree (Methods). The final approach in 

GRAsp allows the user to incorporate additional data into the network using node 

diffusion (58). For example, this feature allows users to use differential expression p-

values or fold change information to prioritize regulators. The nodal gene values are 
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assigned to each node and diffused via a Laplacian kernel (58). GRAsp then displays 

the top regulators related to the pathway. The network visualization panel can be 

customized and saved as publication-quality figures. The GRAsp network tool is publicly 

accessible at grasp.wid.wisc.edu.  

 

 

Figure 1. The Network-based Modeling and Analysis Workflow. Data Curation: We 

curated 18 A. fumigatus bulk RNA-seq profiles and combined them to produce a batch-

corrected transcriptome data matrix of 9,859 genes across 294 experiments. We also 

prepared a list of 820 putative regulator genes and 632 TF binding site sequence motifs. 

MERLIN-P-TFA: We used our MERLIN-P-TFA method to infer a gene regulatory 

network from the curated expression data. MERLIN-P-TFA takes a prior network 

constructed based on the TF motif information as additional input. Given the prior 

network, the list of regulators, and the transcriptome data matrix, MERLIN-P-TFA first 

estimated a transcription factor activity (TFA) matrix. This matrix represents the 
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estimated TF-level activity of the regulators (present in the prior network) across all the 

experiments. Subsequently, MERLIN-P-TFA combined the TFA matrix with the 

transcriptome data matrix to infer the gene regulatory network. GRAsp Online Tool: 

GRAsp is an online visualization framework for interacting with the inferred regulatory 

network. GRAsp offers various network analysis techniques, such as gene module 

analysis, Steiner tree estimation, and node diffusion, to recapitulate known pathways 

and hypothesize novel gene regulatory activities (some of which were further 

experimentally validated). Created with Biorender.com. 

   

 

Figure 2. A. fumigatus gene regulatory network predicted by MERLIN-P-TFA. A) 

Force-directed layout of the inferred network where genes belonging to the same 

module are depicted with the same color.  The network was visualized using Cytoscape 

(v.3.8.2) (68). B) Predicted major regulators ordered by their number of targets. The 

regulators having the “_nca” suffix indicates that the estimated TFA of the regulator was 
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included in the network based on its TFA. For example, “atfA_nca” represents that 

AfatfA was selected as a regulator based on its TFA. The “_nca” suffix refers to the 

regularized “network component analysis” technique used by MERLIN-P-TFA for 

estimating the TFA profiles of the regulators. (Siahpirani et al., 2023, 

https://github.com/Roy-lab/MERLIN-P-TFA). Figure prepared with Biorender.com 

 

Diverse biological processes of Aspergillus are captured in GRAsp 

We first evaluated GRAsp for its ability to recapitulate known regulatory pathways in A. 

fumigatus. Specifically, we looked at four previously characterized transcription factors 

and their roles in regulating different pathways: SrbA and its role in regulating hypoxia 

and various stress responses, ZafA and its response to zinc starvation, HapX and its 

response to iron starvation, and FapR’s regulation of secondary metabolites. 

SrbA and hypoxia The ability of Aspergillus fumigatus to respond to hypoxia, low iron 

availability, and antifungals contributes to the fungus’ pathogenicity. The response to 

these conditions is partly mediated by the sterol regulatory element binding transcription 

factors SrbA and SrbB (16, 69). Chung et al., 2014 employed ChIP-seq technology to 

uncover the downstream targets of these two transcription factors. Under hypoxic 

conditions, SrbA and SrbB regulate each other while also regulating target genes 

involved in adaptation to hypoxia, such as ergosterol biosynthesis (erg1, erg11A, 

erg25A, erg3B, erg5), nitrate assimilation (niaD, niiA), nitric oxygen (NO)-detoxifying 

flavohemoprotein gene (fhpA), heme biosynthesis (hem13), and ethanol fermentation 

(alcC) (70). The module containing srbA, module 5395, recapitulated many known 

regulatory relationships (Figure 3A, B). Additionally, many genes, such as erG3A or 
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niaD, which are not predicted to be directly regulated by either srbA or srbB, are still 

present in the MERLIN module. Only the regulatory relationship between srbB and alcA 

was missed entirely. Most importantly, GRAsp inferred new genes with additional 

functions in these processes, such as sterol biosynthesis (cyp51A) and heme 

biosynthesis (hem14), as well as genes of currently unknown function (in black in 

Figure 3B). 

 

 

Figure 3. Recapitulation of SrbA targets. A) SrbA pathway inferred through ChIP-seq, 

reproduced from Chung et al. 2014 (Published under a Creative Commons attribution 

license). Genes in rectangles represent regulators; gene targets are contained in ovals. 

Gene colors represent each pathway. Created with Biorender.com. B) Module 5395 

includes the transcription factors srbA and srbB visualized with GRAsp. Black circular 

nodes represent gene targets without a gene symbol in the fungiDB database. 22 genes 

within the module that are not part of the known srbA and srbB regulatory system and 

are not regulated by any module regulators have been removed to simplify the figure. 

Figure prepared with Biorender.com 
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ZafA and zinc homeostasis Zinc is important for proper growth and development in A. 

fumigatus (71). In circumstances where the fungus encounters low zinc environments, 

such as within host tissue, the acquisition of zinc ions is essential. To maintain zinc 

homeostasis, the transcription factor ZafA regulates zrfA, zrfB, and zrfC expression, 

which encode transporters involved in zinc uptake (71, 72). Module 5027, which is 

regulated by   ZafA, contains zrfA. Additionally, zrfB and zrfC outside of this module are 

still predicted targets of ZafA (Figure 4A). The resulting subnetwork displays ZafA as 

the primary regulator of 15 target genes, including zrfA, zrfB, and zrfC. The subnetwork 

also reveals uncharacterized targets of ZafA, which could also be involved in zinc 

homeostasis. For example, AFUA_5G02010 has orthologs related to 

metalloendopeptidase activity, and AFUA_1G14700 is related to transmembrane 

transport. 
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Figure 4. Recapitulation of known genetic pathways in GRAsp. Network 

representations of known genetic pathways are visualized with GRAsp. In all figures, 

node colors correspond to similar common name prefixes, i.e., fma, fsq, zrf, and sid. 

Black nodes represent gene targets without a gene symbol in the fungiDB database. 

Regulators are represented as rectangles and squares. Targets are represented as 

circles and ovals. A) The regulatory targets of ZafA were generated by selecting its 

neighbors. B) Modules 4901 and 5283 contain the hapX gene. C) Module 5396 which 

contains the fapR gene. Orange target genes represent fumagilin biosynthesis genes 
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(fma prefix), pink targets represent pseurotin genes (pso prefix), and green targets 

represent fumisoquin genes (fsq prefix). Figure prepared with Biorender.com. 

 

HapX and iron starvation Similar to zinc, iron is a critical cofactor metal in A. fumigatus, 

and processes to acquire iron under iron-limiting conditions are partially regulated by 

the transcription factor HapX (73). Specifically, HapX plays an essential role in 

activating genes involved in the synthesis of specialized iron-acquiring metabolites 

called siderophores (sid genes and estB encoding a siderophore triacetylfusarinine C 

esterase), putative siderophore transporters (sit genes and mirB and mirD), and the 

metalloreductase important during iron starvation (fre2 gene).  The inferred MERLIN-P-

TFA regulatory network contained modules 4901 and 5283 regulated by HapX (Figure 

4B). These modules contain all of the known targets of HapX.  

FapR and secondary metabolites A. fumigatus is renowned for its arsenal of secondary 

metabolites (SMs) that play critical roles in various ecological settings, from 

pathogenesis to encounters with other microbes (74). The genes required to synthesize 

an SM are usually grouped on the genome in what is known as a biosynthetic gene 

cluster, BGC (75). A prime example is the metabolite fumagillin. This compound, a 

virulence factor in invasive aspergillosis, targets methionine aminopeptidase, which 

removes the amino-terminal methionine residue from newly synthesized proteins (76). 

This functionality has led to various fumagillin applications, such as microsporicidal 

activity in treating honeybee hive infections (77). Interestingly, A. fumigatus is resistant 

to fumagillin, presumably due to extra copies of methionine aminopeptidase genes in its 

genome (78). 
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The fumagillin BGC is unique because its biosynthetic genes are intertwined with genes 

of another SM, pseurotin, known for its antibacterial properties (78, 79). The gene 

encoding the transcription factor FapR is embedded in the intertwined cluster, and FapR 

regulates the biosynthesis of both pseurotin (psoF, psoG, psoB, psoA, psoC, psoD, and 

psoE) and fumagillin (fmaB, fmaC, fmaD, fmaG, and fmaA). Querying GRAsp with fapR 

as an input gene found a MERLIN-P-TFA module containing many fma and pso 

biosynthetic genes (Figure 4C). Interestingly MERLIN-P-TFA suggested a relationship 

between fumagillin/pseurotin production and another secondary metabolite, fumisoquin 

(fsq genes) (80). At present, the ecological role of fumisoquin is still unknown.  

MERLIN-P-TFA successfully predicts a novel regulator of gliotoxin 

Considering the accurate recapitulation of known regulatory pathways by MERLIN-P-

TFA, we next asked if we could successfully identify new regulatory connections using 

our resource. We were interested in querying the regulation of the SM gliotoxin, a 

virulence factor in murine models of invasive aspergillosis and a potent antifungal (81, 

82). The gliotoxin BGC (gli BGC) is regulated by an in-cluster transcription factor GliZ 

(Figure 5A); however, how gliZ is regulated is largely unknown (83). Using gliZ as the 

query gene, GRAsp revealed a module enriched in most gli genes (Figure 5B). The 

module was predicted to be regulated by an uncharacterized gene, AFUA_3G11990, 

encoding for a GAL4 type C6 transcription factor. We deleted and overexpressed 

AFUA_3G11990 to see how it affected the production of gliotoxin and its derivative 

bis(methylthio)gliotoxin (Figure 5C), both of which can be detected in human serum and 

are potential diagnostic indicators of Aspergillus infections (84). In the two 
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AFUA_3G11990 deletion mutant siblings, ΔrogA.1 and ΔrogA.2, we observed a 

significant increase in gliotoxin and no change to bis(methylthio)gliotoxin. Furthermore, 

we observed a significant decrease in both gliotoxin production and 

bis(methylthio)gliotoxin in the two AFUA_3G11990 overexpression mutant siblings, 

OE::rogA.1 and OE::rogA.2, suggesting that AFUA_3G11990 is a negative regulator of 

the gli BGC, possibly through regulation of gliZ expression. Thus, we named 

AFUA_3G11990 as rogA for the regulator of gliotoxin. The normalized gene expression 

matrix also observed the repressive regulatory relationship between AFUA_3G11990 

(Figure S4). 

 

 

Figure 5. Validation of a novel predicted regulator from MERLIN-P-TFA and 

GRAsp in Gliotoxin regulation. A) Canonical gliotoxin biosynthetic gene cluster; 
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colored by direction. B) MERLIN-P-TFA module 5349, visualized by GRAsp; nodes are 

colored by gene family with black nodes representing genes without common name in 

fungiDB. C) Production of Gliotoxin and bis(methylthio)gliotoxin in two independent rogA 

transformants of ΔrogA and OE::rogA. Relative abundance of gliotoxin and 

bis(methylthio)gliotoxin (BMgliotoxin) was measured by intensities of UHPLC-HRMS 

spectra. Results are the average relative abundance of eight replicates ±  standard 

deviation. Statistical analysis was performed using an unpaired two-sided t-test when 

comparing quantities to the relative abundance of the WT strain ( * p<0.1, ** p<0.05, *** 

p<0.01). Samples were normalized to the wild type values of each author. Figure 

prepared with Biorender.com. 

 

MERLIN-P-TFA and GRAsp identify the AfAtfA transcription factor as a critical 

component of the LCO signaling pathway in A. fumigatus 

Fungi use diverse signals to interact with their environment (85). Lipo-

chitooligosaccharides (LCOs) are small signaling molecules consisting of a chitin 

backbone, an attached long-chain fatty acyl group, and various functional groups, such 

as sulfated and fucose groups (86–88). For decades, the scientific community thought 

LCOs were solely produced by plant symbiotic microbes, including nitrogen-fixing 

rhizobia and mycorrhizal fungi, as LCOs are critical for recognition by host plants. 

However, we have recently shown that LCOs are synthesized throughout the fungal 

kingdom and that many fungi respond to LCOs in a dose-dependent manner (34). In 

particular, A. fumigatus treatment with a specific endogenous LCO (LCO-IV = C:16, S) 
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led to a significant reduction in hyphal branching (hypobranching) and an increased 

germination rate of conidia (34, 89).  

To identify LCO signaling pathways leading to these phenotypes, Rush et al. performed 

RNA-seq analysis of LCO-IV (C:16, S) treated A. fumigatus cultures. However, the large 

number of differentially expressed genes (DEGs) made it challenging to identify key 

regulators to target with perturbation experiments. We used the node diffusion method 

in GRAsp to incorporate data from the differential expression analysis and prioritize 

regulators involved in LCO signaling. For each node, we associated it with an initial 

score based on the absolute value of the log fold change between A. fumigatus 30 

minutes after treatment with LCOs or with negative control, then applied laplacian kernel 

diffusion ( = 10) (34). After diffusion, we selected the top 10 regulators with at least 5 

targets based on diffusion score (Figure 6A). The most connected of these regulators 

was the g ene AfatfA. AfAtfA is a well-known bZIP transcription factor essential for 

stress tolerance of conidia and reactive oxygen intermediate resistance during invasive 

aspergillosis (60, 90). To test if AfatfA plays a role in fungal response to LCOs, we 

examined the branching and germination rates of A. fumigatus treated or not with LCO-

IV (C:16, S). Figure 6B shows that both △AfatfA and OE::AfatfA strains were 

unresponsive to LCO-IV compared to the wild-type. Furthermore, regardless of LCO 

treatment, the deletion of AfatfA led to increased hyphal branching (hyperbranching, 

top) and slow germination phenotypes (bottom). Reciprocally, the overexpression of 

AfatfA led to an extreme hypobranching phenotype even lower than the wild-type strain 

treated with LCO-IV. These results placed AfatfA as an essential component of the LCO 

signaling pathway and revealed its function in hyphal branching in A. fumigatus. AfatfA 
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loss has been implicated in a germination reduction in A. oryzae, matching our 

observations with A. fumigatus (91). 

 

 

Figure 6. AfatfA is necessary for branching and germination responses to LCO-IV. 

A) Differentially expressed genes integrated with MERLIN-P-TFA network using network 

diffusion within GRAsp. Labeled regulators (rectangles) represent the top 10 regulators 

with at least 5 targets after diffusion of the absolute log fold change signal. Node size 

represents the score after diffusion. AfatfA (referred to as atfA) is a key regulator with 

many differentially expressed targets (large node size). Genes are colored by module 

identity, and black nodes represent genes not assigned to a module. B) Secondary 

branching of AfatfA mutant hyphae 12 hours after treatment with LCO-IV (C:16, S) or 

negative control, 0.005% EtOH. C) Percent germination of AfatfA mutant conidia 10 

hours after treatment with LCO-IV (C:16, S) or negative control, 0.005% EtOH. 

Statistical analysis was performed using an unpaired two-sided t-test ( * p<0.1, ** 
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p<0.05, *** p<0.01, NS, not significant). Germination and branching experiments were 

performed in triplicates. Figure prepared with Biorender.com. 

 

 

 

 

Figure 7. Predicted regulatory relationship of chsA and chsG. A) Network 

representation after searching for modules associated with chsA and chsG. B) An 

estimated Steiner tree generated to connect chsA and chsB. Red edges correspond to 

the Steiner tree, while the remaining edges represent the genes in the associated 

modules. Ovals represent gene targets, while rectangles represent regulators. Genes 

are colored by module identity, and black nodes represent genes not assigned to a 

module. The Steiner tree approximation shows a previously uncharacterized 

relationship between chsA and chsG. Figure prepared with Biorender.com. 
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The final feature of GRAsp we demonstrate in this work is an application of the Steiner 

tree approximation algorithm, which attempts to find connections between any set of 

genes regardless of whether they belong to the same module. As LCO biosynthesis is 

dependent on chitin availability and chitin is a critical component of the cell wall (92, 93), 

we set out to identify regulators targeting chitin synthase genes. In this example, we 

compare the networks that are generated by (i) modules that incorporate two genes 

encoding family one chitin synthases, chsA, and chsG (94)  (Figure 7A), and (ii) the 

Steiner tree generated to connect these two nodes (Figure 7B). Figure prepared with 

Biorender.com. 

 

Steiner tree predicts novel components of the chitin synthesis pathway  

The Steiner tree network notably provides additional modules that capture biologically 

relevant information.  No common regulator of chsA and chsG was identified when 

searching using the MERLIN module method. This can occur when genes are 

associated with independent modules without a common regulator. The Steiner tree 

method is useful for finding common regulators in these instances. After finding an 

approximate Steiner tree (red edges Figure 7B) between chsA and chsG, a common 

regulator AFUA_7G04300 was identified. AFUA_7G04300, an uncharacterized gene 

predicted to contain a RhoGAP and Fes/CIP4 domain, regulates not only chsA and 

chsG but is also predicted to regulate gfa1, a putative glutamine-fructose-6-phosphate 

transaminase. This was particularly interesting because this enzyme would theoretically 

catalyze the first reaction in the chitin synthesis process: the formation of glucosamine 
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6-phosphate (92). This predicted regulatory relationship was identified with the Steiner 

search algorithm.  

AFUA_7G04300 was also implicated in broader cell wall activities, as it was predicted to 

regulate AFUA_5G13090, a putative alpha-1,2-mannosyltransferase and cell wall 

biosynthesis gene (95). AFUA_7G04300 is also connected to rgd1, a putative Rho-

GTPase activating protein whose homolog in Saccharomyces cerevisiae has been 

implicated in cell wall integrity signaling (96). The modules containing the Steiner tree 

also connected rfeF to chsA. RfeF is a transcription factor regulated by CrzA, itself a 

transcription factor known to bind to promoters of both chsA and chsG, and thus is tied 

into chitin synthesis (97). The chsC/chsG Steiner tree presents a plausible connection 

between chitin regulatory pathways that can be further validated and explored. 

 

DISCUSSION 

In October 2022, the World Health Organization (WHO) published its first-ever report on 

priority fungal pathogens (98). A. fumigatus - along with Cryptococcus neoformans, 

Candida albicans, and Candida auris - was placed in the critical priority group (98). This 

placement was due to a substantial increase in severe aspergillosis cases, burgeoning 

mortality rates, co-infections with COVID-19 and other respiratory pathogens, and 

increasing antifungal resistance of this mold (98). Accordingly, and accompanying this 

recognition of A. fumigatus as a critical infectious agent, laboratories worldwide have 

focused on elucidating the genes and molecules that make A. fumigatus a successful 

pathogen (99, 100). Although a large number of RNA-seq experiments have been 

performed to understand the mode of virulence of A. fumigatus and, to ultimately 
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identify new targets for antifungal development (34, 35, 101, 102), these efforts alone 

have not fully revealed the regulatory networks and pathways required for the 

pathogenicity of this fungus. For example, although it has long been known that 

gliotoxin is a virulence determinant of invasive aspergillosis, a full understanding of the 

signaling networks promoting the synthesis of this toxin remains obscure. Our goal in 

this study was to leverage the wealth of existing RNA-seq datasets available for this 

fungus to construct a genome-scale GRN and make it easily accessible to the research 

community at large and, further, to integrate existing knowledge to predict regulators 

important in regulating fungal development and virulence factors.  

By leveraging publicly available gene-expression data of multiple strains of A. 

fumigatus, MERLIN-P-TFA was able to reconstruct, to our knowledge, the first 

comprehensive gene regulatory network of the organism. We developed GRAsp, a 

user-friendly web portal, to query this inferred GRN with individual genes and gene sets 

to predict novel components of diverse biological pathways using one of three 

integrated features: Regulatory Modules, Steiner trees, or node diffusion. Here, we used 

regulatory modules to successfully recapitulate previously known pathways such as 

SrbA regulation of genes involved in ergosterol biosynthesis, nitrate assimilation, and 

heme biosynthesis during hypoxia; HapX regulation of genes involved in the synthesis 

and transport of siderophores; ZafA regulation of three zinc transporters zrfA, zrfB, and 

zrfC and FapR regulation of genes involved in the synthesis of the secondary 

metabolites, pseurotin and fumagillin.  
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The successful recovery of several known metabolic pathways using MERLIN-P-TFA 

and GRAsp led us to test the ability of GRAsp to identify unknown components 

regulating the modules. For our example, we choose to investigate gliotoxin regulation. 

Gliotoxin was isolated from several fungi in the 1940s, where it was quickly found to 

exhibit strong antifungal activity (103). Consideration of this metabolite for such use 

declined with the finding of its general eukaryotic toxicity. Identifying the A. fumigatus 

gliotoxin gene cluster allowed for molecular characterization and gli gene deletions, all 

leading to the conclusion that gliotoxin is an exacerbating factor in invasive aspergillosis 

(104, 105). Further, these studies showed how A. fumigatus protected itself from its 

toxin. It depended on several enzymes, including GliT and GtmA, that 

modified/prevented the toxic disulfide bridge in the gliotoxin molecule. Although the gli 

BGC regulator GliZ was characterized in 2006, it is unknown how gliZ is regulated (83). 

The input of gliZ into the GRAsp tool revealed a module predicted to be regulated by a 

gene coding for a putative transcription factor AFUA_3G11990, now named rogA 

(Figure 5A). This module contained all of the gli BGC genes and the trans-located gtmA 

gene involved in self-protection. Examination of rogA (AFUA_3G11990) mutants 

revealed that this putative transcription factor is a negative regulator of gliotoxin 

production (Figure 5B). 

The accuracy of MERLIN-P-TFA and GRAsp predicted regulators was further supported 

by identifying AfatfA as a key regulator required for the developmental response of A. 

fumigatus to LCOs. These LCO signals are one of the two endogenous signals we 

identified to regulate lateral branching in A. fumigatus (34, 35). Filamentous fungi such 

as A. fumigatus must balance hyphal extension with lateral branching for optimal colony 
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and invasive growth. Understanding the GRNs transmitting these signals has the 

potential for future therapies to control the growth of A. fumigatus. We used node 

diffusion to discover that AfatfA is required for A. fumigatus to respond to LCOs, thus 

uncovering a previously unknown mechanism of LCO signaling pathway (s) in 

fungi.  Finally, we use Steiner trees to predict AFUA_7G04300 as a new regulator of 

two chitin synthases, chsA and chsG. While it needs to be validated experimentally, the 

prediction is further backed up by the other predicted targets of AFUA_7G04300, which 

are involved in cell wall integrity and possibly the synthesis of chitin precursors. 

Our work shows the strength of our gene regulatory network as a powerful resource for 

generating new hypotheses. Still, at 80% confidence, the network only captures ~30% 

of all genes in the A. fumigatus genome, with 2,940 genes out of this fungus, a total of 

9,859 genes into high confidence modules (Figure 2). One consequence is that some 

well-described pathways, like the BrlA-mediated conidiation pathway (106), are not 

represented in GRAsp. Furthermore, MERLIN-P-TFA and GRAsp did not always pick 

up every gene in the recovered pathways, which we postulate is due to the limitation of 

the number of RNA-seq datasets used in this study. However, as new expression 

datasets become publicly available, we can incorporate them into our framework to 

refine existing pathways and uncover new pathways. Beyond RNA-seq, other 

complementary omic data (e.g., ChiP-seq or ATAC-seq) can also be incorporated into 

the MERLIN-P-TFA framework, increasing our network's coverage and accuracy. 

Follow-up transcriptomic and epigenomic studies guided by the prioritized regulators 

using GRAsp could more efficiently improve the quality and coverage of our GRNs. To 

facilitate community access, GRAsp is available as a free online visualization tool that 
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can be used by individual researchers to examine this GRN and generate model-driven 

testable hypotheses. Such model-driven experiments provide a quantitative assessment 

of the network's quality and enable us to determine the most useful experiments for 

constructing a comprehensive GRN for A. fumigatus. Our inferred GRN and associated 

GRAsp tool will be useful for identifying the key genes and pathways underlying the 

pathogenic traits of A. fumigatus. 

 

AVAILABILITY 

Data preprocessing was performed utilizing Trimmomatic (v0.32), FastQC (v0.11.9), 

MultiQC, RSEM (v1.2.11), Bowtie2 (v2.2.0), and MATLAB (r2017b).  Data 

preprocessing scripts and processed data can be found https://github.com/Roy-

lab/merlin-preprocess.  

Network inference was performed utilizing the MERLIN-P-TFA package 

(https://github.com/Roy-lab/MERLIN-P-TFA, Siahpirani et al. 2023 in preparation). 

MERLIN-P-TFA is dependent on the network component analysis package, 

EstimateNCA (https://github.com/Roy-lab/EstimateNCA), and the network inference 

algorithm, MERLIN-P (https://github.com/Roy-lab/merlin-p). After generating the 

network, analysis of the network structure was performed using the MERLIN-Auxiliary 

package (https://github.com/Roy-lab/merlin-auxillary).   

The GRAsp RShiny app was constructed using the MERLIN-VIZ package 

(https://github.com/Roy-lab/MERLIN-VIZ). The GRAsp branch contains net_data.Rdata, 

which stores all network data. This paper also provides a wrapper function to make all 
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network figures. The GRAsp RShiny app is hosted at https://grasp.wid.wisc.edu/ and is 

a publicly available resource for hypothesis generation. GRAsp was constructed using 

the tidyverse package suite (v2.0.0), tidygraph (v1.2.3), pracma (v2.4.2) and igraph 

(v1.4.1). Network visualization in GRAsp utilizes networkD3 (v0.4), ggraph (v2.1.0),  and 

RColorBrewer (v1.1-3). Tables in GRAsp utilize the DT package (v0.27). 
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Supplementary Tables 

 
Supplementary Table S1. RNAseq datasets used to create GRAsp. Dataset ID refers to Bioproject 

Accession. Sample No. refers to the number of samples from the dataset used to create GRAsp. S.I No., 

Serial Number.   

Sl. 
No. 

Dataset ID Year WIldtype Strain Description 
Sample 

No. 
Reference 

1 PRJEB3185 2012 CEA17 WT and ΔmpkA  6 (21) 

2 PRJEB2987 2014 Af293 WT and ΔgliT  15 (22) 

3 PRJNA390719 2017 Af293 WT, Δrax1, ΔrgsD 6 (23, 24) 

4 PRJNA508764 2018 Af293 WT, ΔatrR, atrR-3X HA ,hspA-atrR 8 (25) 

5 PRJNA554811 2019 ATCC 46645 
WT and cytomegalovirus coinfection of 

human dendritic cells 
16 (26) 

6 PRJNA558954 2019 ATCC 46645 
WT exposure to human dendritic 

cells  (2,4,6 h). MOI of 1,0,5  
9 (26) 

7 PRJNA144647 2011 CEA10 
Treatment of hypoxia or normoxia 

(12,24,36 h) 
4 (27) 

8 PRJNA240324 2014 CEA17 
WT and ΔakuB exposure to 

humidimycin 
12 (28) 

9 PRJNA240892 2014 A1163 
Caspofungin exposure of  WT and 
ΔakuB (0,0.5,1,4,8 h); ΔmpkA and 

ΔsakA (0,1,4 h) 
53 (15) 

10 PRJNA241401 2014 CEA10 
WT exposure to hypoxic or normoxic 

conditions (0,15,30 min) 
12 (29) 

11 PRJNA376829 2017 Af293 
WT grown on sugarcane bagasse or 

fructose 
6 (30) 

12 PRJNA399754 2017 CEA10/Af293 
WT infection of A549 type II 
pneumocyte cell line (6,16 h) 

24 (31) 
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13 PRJNA408076 2017 AFIR964/AFIR974 WT germination (0,2,4,6,8 h)  20 (7) 

14 PRJNA482512 2018 

Af155-40 

Af130–14 

Af147–03 

WT exposure to itraconazole 
(30,60,120,240 min) 

30 (32) 

15 PRJNA622251 2020 CEA17 
WT and ΔfhdA exposure to 

caspofungin (48 h) 
24 (33) 

16 PRJNA642658 2020 Af293 
WT exposure to LCO-IV (30 min and 2 

h) 
16 (34) 

17 PRJNA658306 2020 Af293 
WT and ΔppoA exposure to 5,8-

diHODE (30 min and 2 h) 
16 (35) 

18 GSE231238 2023 Af293 
WT, OE::zfpA, and ΔzfpA at 0 hours 

and after 16 hours of shaking 
incubation 

24 This study 
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Supplementary Table S2. Fungal strains used in this study 

Name Genotype Reference 

CEA17 
KU80 

pyrG1, ∆akuB::pyrG, pyrG1 (59) 

TAJS1.7 pyrG1, ∆akuB::pyrG, pyrG1, ∆AFUB_037850::pyrG (60) 

TAJS2.2 
pyrG1, ∆akuB::pyrG, pyrG1, ∆AFUB_064280::pyrG, 
gpdA(p)::AFUB_037850::argB 

(60) 

TFYL80.1 A.fumigatus fumiargB; ΔnkuA::mluc; pyrG1; argB1 (61) 

TSCP2.1 A.fumigatus fumiargB; ΔnkuA::mluc; pyrG1; argB1; ΔrogA::para_pyrG This study 

THWS25.1 
A.fumigatus fumiargB; 
ΔnkuA::mluc;pyrG1;argB1;argB1;para_pyrG::gpdA(P)::rogA 

This study  

TFYL81.5 A. fumigatus pyrG1; argB1; ∆akuA::mluc; fumiargB; fumipyrG 
(Throckmorton et al. 
2016) 

TJW213.1 A. fumigatus pyrG1; argB1; ∆akuA::mluc; fumiargB; ∆zfpA::parapyrG (Schoen et al. 2023) 

TJW214.2 A. fumigatus pyrG1; argB1; ∆akuA::mluc; fumiargB; parapyrG::gpdA(p)::zfpA 
(Schoen et al. 2023) 
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Supplementary Table S3. PCR primers for this study 

Name Sequence (5'-3') Use 

A. para pyrG For. GTCGACGGTATCGATAAGCTTG                                ΔrogA 

A. para pyrG Rev  ATTCGACAATCGGAGAGGCTGC                           
             

ΔrogA 

del_AFUA3G11990_3'F CTGTCGCTGCAGCCTCTCCGATTGTCGAAT 
GTACGTTCCCAGTACAACTACTGAGCC 

ΔrogA 

del_AFUA3G11990_3'R CATCCACTGAATCCAGTCGTCG                               ΔrogA 

del_AFUA3G11990_5'F AGCAGCCGTTTGAGAGTCATGC                           
             

ΔrogA 

del_AFUA3G11990_5'R CGATATCAAGCTTATCGATACCGTCGACCGTT 
GGCGCAAAGGCTCATGCAAGG   

ΔrogA 
  

OE_AFUA_3G11990_5F CGAGGCTTAGGCTTCTTCGAAC OE::rogA 
  

OE_AFUA3G11990_5R CCTCTCGGGCCATCTGTTCGTATAAGCTTCTCGACG
ATGACGTTGGCGCAAAGGC 

OE::rogA 
  

OE_AFUA_3G11990_3F CTACCCCGCTTGAGCAGACATCACCATATGGCCGCC
AATTCCAGTCCGTTC 

OE::rogA 
  

OE_AFUA_3G11990_3R CCGGAGGGGTATCATAGATTCG OE::rogA 

PyrG+gpdA(P) F CGTAATACGACTCACTATAGGGC OE::rogA 

PyrG+gpdA(P) R GGTGATGTCTGCTCAAGCGGG OE::rogA 
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Supplementary Figures 

 

 

 

  

Supplementary Figure S1. The number of regulator genes curated from five different sources. The 

Venn diagram presents the number of unique regulators contributed by each source. For example, we 

curated 617 regulators from the JGI MyCoCosm database (Grigoriev et al. 2014). However, only 220 of 

them are unique to this database i.e., they were not present in the sublists of regulators collected from 

other sources. Combining all the sources resulted in a list of 820 distinct regulators. Full list of regulators 

can be found in Supplementary File S1_regulators.xlsx. 
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Supplementary Figure S2. The rationale behind the construction of the prior network based on 

sequence motifs. If transcription factor (TF) X can bind to DNA-sequence motif M, we scanned the A. 

fumigatus reference genome to find matches for motif M using the pwmmatch.exact.r of PIQ package 

from Sherwood et al. 2014. We defined the binding region of a gene to be 10 Kbp upstream of the gene 

through 1 Kbp downstream of the gene. If a match was found on the binding region (such as the 

promoter) of Gene A in chromosome 1, we added an edge from TF X to Gene A in the prior network. 
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Supplementary Figure S3. Confirmation of rogA mutants. A) Southern confirmation of ΔrogA mutants. 

Genomic DNA was digested by BmgBI (Parent: P, 11198 bp; Transformants: T, 4258 and 6715 bp). B) 

Southern blot confirmation of OE::rogA mutants. Genomic DNA was digested by ApaLI (Parent: P, 7601 

bp; Transformants: T, 2462 and 8655 bp). 
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Supplementary Figure S4. A heatmap of 

the zero means quantile-normalized data 

of genes in module 5349. Systematic 

names for genes are on rows, and samples 

are on columns. The profiles of regulators 

are depicted below in the genes in the 

modules, in the last two rows. Regulator-

target interactions are also labeled in the first 

two columns with light blue squares. 

AFUA_3G11990 is anti-correlated with many 

of the genes in the module, suggesting that it 

is a repressor of gliotoxin biosynthesis. The 

transcription factor activity of 

AFUA_3G11990, AFUA_3G11990_nca, is 

also depicted. The TFA profile is correlated 

with the gliotoxin genes within the module. 
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Supplementary figure S5. Principal components of samples SI 1-SI 8. Principal component 

scores of all samples were calculated simultaneously. Displayed are the PCA scores of samples 

from SI 1-SI 8. PCA of unnormalized and quantile normalized data demonstrates batch effects, 

that is, samples are clustered together by batch (shape) regardless of the experimental 

condition  (color). After zero mean normalization, the batch effect is largely removed. Samples 

are clustered by similar experimental conditions, regardless of batch.  
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Supplementary figure S6. Principal components of samples SI 9-SI 13. Principal 

component scores of all samples were calculated simultaneously. Displayed are the PCA 

scores of samples from SI 9-SI 13. PCA of unnormalized and quantile normalized data 

demonstrates batch effects. Samples are clustered by batch (shape) regardless of the 

experimental condition (color). After zero mean normalization, the batch effect is largely 

removed. Samples are clustered by similar experimental conditions, regardless of batch. 
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Supplementary figure S7. Principal components of samples SI 14-SI 18. Principal 

component scores of all samples were calculated simultaneously. Displayed are the PCA 

scores of samples from SI 14-SI 18. PCA of unnormalized and quantile normalized data 

demonstrates batch effects. Samples are clustered by batch (shape) regardless of the 

experimental condition (color). After zero mean normalization, the batch effect is largely 

removed. Samples are clustered by similar experimental conditions, regardless of batch. 
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Supplementary Figure S8: Reference SI 2 (PRJEB2987) sample correlation: Samples of SI 

2 are all strongly correlated before batch correction by zero-mean normalization. After zero-

mean correction, replicates 1 and 2 of each condition are strongly correlated, e.g., WT rep1 and 

2. Rep 3 samples are strongly correlated regardless of condition and were removed before 

network inference.  
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Supplementary Figure S9: Reference SI 2 (PRJEB2987) expression heatmaps: Expression 

of genes per sample before and after zero-mean normalization. Expression of SI 2 genes in 

quantile normalized data is increased relative to other samples (~1.75). These samples were 

removed before network inference because of this inconsistency.  



 

 

 

 

74 

Supplementary Methods 

Supplementary Method S1. Descriptions of the previously characterized TF 

binding site sequence motifs 

This section describes the previously characterized TF binding site sequence motifs used in this 

study. There are a total of four such motifs corresponding to two TFs – somA and xanC – as 

described below. 

TF name: somA 

Protein: Transcriptional activator somA                       

(ORF) GENEID: AFUA_7G02260 (source: https://www.uniprot.org/uniprot/Q4WAR8 )              

The following motif preferences were recently characterized by Chen et al. [DOI: 

https://doi.org/10.1128/mBio.02329-20]. 

Motif 1: GTACTCCGTAC 

Motif 2: RTGGBMTGATS 

Motif 3: CCTMCAGAGCAG 

Note 1: IUPAC symbols for bases are used  

(Reference for the IUPAC symbols: https://www.bioinformatics.org/sms/iupac.html ).  

R = A/G 

B = C/G/T 

M = A/C 

S = C/G 

Note: We assumed that the probability of having a base other than the base(s) given for a 

particular base position is low. 
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TF name: xanC 

Protein: Xanthocillin biosynthesis cluster transcription factor xanC 

(ORF) GENEID: AFUA_5G02655 (source: https://www.uniprot.org/uniprot/A4DA05) 

The following motif preference was recently characterized by Wang et al. [DOI: 

https://doi.org/10.1128/mBio.01399-21] 

The motif is 5’-(A)GTCAGC(A)-3’ (motif 4)  

The parenthesized “(A)” implies that we are not certain whether the binding motif contains A's. 

All of the xan promoters had 5’-AGTCAGCA-3’, but variations could exist. Hence, we decided to 

exclude the parenthesized parts and use 5’-GTCAGC-3’ as the motif. 

 

XanC is the bZip transcription factor of the xanthocillin biosynthetic gene cluster. We 

conjectured that XanC might be a regulator of the copper homeostasis genes. That motivated 

us to include XanC’s binding motifs in this study. 

Converting sequence motifs into position weight matrices (PWMs) 

We produced a position weight matrix (PWM) for each of the four motifs by using 0.9 to indicate 

a high probability. Let us illustrate with an example. Suppose a particular base position in a 

given motif has a high probability for G and very low probability for the remaining letters. Then, 

G will be assigned a probability value of 0.9, and 0.1 will be equally distributed between the 

remaining letters. Similarly, if more than one letter has a high probability for a particular position, 

then 0.9 will be equally distributed among them. Again, 0.1 will be equally distributed between 

the remaining letters. Thus, we produced the PWMs of the previously characterized motifs; the 

PWMs are presented below. 
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The position weight matrix of motif 1 (GTACTCCGTAC):  

Position A C G T 

1 0.1 0.1 0.9 0.1 

2 0.1 0.1 0.1 0.9 

3 0.9 0.1 0.1 0.1 

4 0.1 0.9 0.1 0.1 

5 0.1 0.1 0.1 0.9 

6 0.1 0.9 0.1 0.1 

7 0.1 0.9 0.1 0.1 

8 0.1 0.1 0.9 0.1 

9 0.1 0.1 0.1 0.9 

10 0.9 0.1 0.1 0.1 

11 0.1 0.9 0.1 0.1 

 
The position weight matrix of motif 2 (RTGGBMTGATS): 
R = A/G; B = C/G/T; M = A/C; S = C/G. 

Position A C G T 

1 0.45 0.05 0.45 0.05 

2 0.1 0.1 0.1 0.9 

3 0.1 0.1 0.9 0.1 

4 0.1 0.1 0.9 0.1 

5 0.1 0.3 0.3 0.3 

6 0.45 0.45 0.05 0.05 

7 0.1 0.1 0.1 0.9 

8 0.1 0.1 0.9 0.1 

9 0.9 0.1 0.1 0.1 

10 0.1 0.1 0.1 0.9 

11 0.05 0.45 0.45 0.05 

 
The position weight matrix of motif 3 (CCTMCAGAGCAG): 
R = A/G; B = C/G/T; M = A/C; S = C/G. 

Position A C G T 

1 0.1 0.9 0.1 0.1 

2 0.1 0.9 0.1 0.1 

3 0.1 0.1 0.1 0.9 

4 0.45 0.45 0.05 0.05 

5 0.1 0.9 0.1 0.1 

6 0.9 0.1 0.1 0.1 
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7 0.1 0.1 0.9 0.1 

8 0.9 0.1 0.1 0.1 

9 0.1 0.1 0.9 0.1 

10 0.1 0.9 0.1 0.1 

11 0.9 0.1 0.1 0.1 

12 0.1 0.1 0.9 0.1 

 
The position weight matrix of motif 4 (GTCAGC): 

Position A C G T 

1 0.1 0.1 0.9 0.1 

2 0.1 0.1 0.1 0.9 

3 0.1 0.9 0.1 0.1 

4 0.9 0.1 0.1 0.1 

5 0.1 0.1 0.9 0.1 

6 0.1 0.9 0.1 0.1 
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Abstract 

Lipochitooligosaccharides (LCOs) are chitin-based signaling molecules that influence 

the growth and development of fungi. While it is widely believed that these molecules 

act as autocrine and paracrine agents, the genetic processes involved in how fungi 

perceive these signals are not yet fully understood. Our research aimed to analyze the 

expression of Aspergillus fumigatus genes when exposed to different chitin-based 

molecules. We observed significant changes in the expression of genes encoding 

secreted LysM effectors. LysM domains, which are known to bind chitin molecules and 

function as LCO receptors in plants, led us to investigate whether LysM effectors also 

play a role in responses to LCOs in fungi. Our findings indicate that LysM effector 

AfLdpA in the human pathogen A. fumigatus is absolutely required for fungal 

developmental responses to LCOs. Strikingly, we found that, unlike the A. fumigatus 

wild-type strain, the transcriptome of the ∆AfldpA mutant remains unchanged in 

response to LCOs. Our ongoing goal is to confirm that LysM effectors act as receptors 

and are capable of binding these chitin-based molecules. This significant discovery 

expands our understanding of the LCO-signaling pathway in fungi and new functions of 

fungal LysM effectors. 

Introduction 

Lipo-chitooligosaccharides (LCOs) are a class of signaling molecules found 

throughout the fungal kingdom (1, 2). These chitin-based molecules comprise short 

chitin oligomers, an attached lipid chain, and various functional groups (1–4). LCOs 

were initially found to be involved in plant-microbe interactions, where nitrogen-fixing 
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bacteria collectively called rhizobia would synthesize and secrete these molecules to 

initiate symbioses with their plant hosts (5, 6). While initially thought to be exclusive to 

rhizobia, these molecules would eventually be found in arbuscular mycorrhizal fungi in 

2011 (7) and in ectomycorrhizal fungi in 2019 (8). Like in rhizobia, LCOs from 

mycorrhizal fungi also serve to initiate plant-microbe symbioses (8, 9).  

In 2020, researchers discovered that most fungi, regardless of lifestyle, 

synthesize LCOs, expanding the role of these molecules (1). Furthermore, fungi treated 

with exogenous LCOs exhibit a variety of regulatory responses. For example, treatment 

of Aspergillus fumigatus with C:16 sulfated LCOs (sLCOs) leads to an increase in the 

germination of conidia and a decrease in the number of secondary branches coming off 

the primary hypha (1). In the ectomycorrhizal fungus, Laccaria bicolor, treatment with a 

variety of LCOs and short chitin oligomers (COs) generally reduced both radial growth 

and hyphal branching while increasing hyphal clamp connections (10). Thus, LCOs 

could function as autocrine and paracrine signals within the fungal kingdom (1).  

While we do not yet know the receptors necessary for LCO perception in fungi, 

the receptors in plants are well-studied. In plant-microbe interactions, plants utilize 

transmembrane receptors containing LysM domains to bind chitin molecules (2, 11). 

These receptors are, therefore, instrumental in initiating a signaling cascade that 

activates the Common Signaling Pathway, a conserved genetic mechanism crucial for 

most plant-microbe symbiotic interactions (12, 13). Regarding defense, plants also use 

LysM-domain-containing receptors to recognize pathogenic fungi (14). Whether the 

scenario is mutualism or pathogenicity, the LysM domain in plant chitin receptors binds 

LCOs and COs (14). While LysM transmembrane receptors are well characterized in 
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plants, recent findings suggest that plant LysM effectors, proteins containing one or 

more LysM domains and a signal peptide, can bind LCOs and COs to enhance 

symbiosis (15, 16). 

LysM effectors are also found throughout the fungal kingdom (17, 18). These 

effectors have been implicated in two major functions: disrupting the host immune 

response by sequestering chitin fragments and protecting the cell wall from host 

chitinases (19–31). The fact that these effectors are present in fungi that aren’t 

associated with plants could mean that LysM effectors have broader functions.  

Interestingly, Zeng et al. found that RiSLM, the LysM effector of the arbuscular 

mycorrhizal fungus Rhizophagus irregularis, can physically bind COs and LCOs, 

facilitating symbiosis by sequestering chitin molecules and disrupting plant immune 

response (32). We suggest that fungal proteins with LysM domains, found throughout 

the fungal kingdom, act as chitin receptors that allow fungi to respond to LCOs and 

COs.  

A. fumigatus has two LysM effectors, AfLdpA and AfLdpB (33). However, 

Muraosa et al. 2019 found that deleting these genes did not affect radial growth or 

pathogenicity in murine models. Interestingly, AfLdpA localized to the cell wall and 

extracellular matrix, while AfLdpB localized to the septa. If one of these molecules plays 

a role in LCO binding, it could be AfLdpA as it is localized to areas where it is most likely 

to encounter exogenous LCOs.  

Thus, we hypothesize that AfLdpA acts as a receptor for chitin molecules and is 

necessary for the observable phenotypes that A. fumigatus exhibits in response to LCO 
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treatment. While past research surrounding these proteins focuses on fungi-plant 

interactions, our study highlights their potential functions beyond this context. 

 

Materials and Methods 

Fungal Strains and Cultural Conditions  

Table S1 lists the strains we used in this study. For three days, A. fumigatus 

strains were grown on glucose minimal media (GMM) agar plates. We collected conidia 

using sterile water containing Tween 80 (0.01%). GMM was prepared as described in 

Shimizu and Keller, 2001 (34). Strains were maintained in 50% glycerol at −80 °C for 

long-term storage. 

Analysis of secondary branching in A. fumigatus strains 

To quantify secondary branches in A. fumigatus, we inoculated 1x106 conidia per 

mL of A. fumigatus strains in GMM containing either 10-8 M sulfated LCOs purified from 

Sinorhizobium meliloti or 0.005% ethanol/water (v/v) negative control (1, 10, 34). 100 μL 

of inoculated and treated broth was dispensed into a well in a 96-well flat bottom plate in 

triplicate. The plate was incubated at 37 °C for 11 hours, followed by imaging every 15 

minutes over 3 hours using a Nikon TI inverted microscope with a 40X objective. Each 

frame captures the growth of one hypha, and ten frames were taken per well. We 

counted the number of secondary branches per apical hyphae using NIS-Elements AR 

Analysis Version 4.30. 

RNAseq extraction from A. fumigatus AfldpA mutant 

We inoculated 106 spores per mL of A. fumigatus strains in liquid glucose 

minimal media and incubated for 48 hours at 37˚C shaking at 250 RPM overnight (35). 
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For our expression analysis of ∆AfldpA in response to LCOs, we treated the 

AFS35 wildtype and ∆AfldpA strains with a two-hour treatment of 10-8 M of sulfated 

LCOs purified from Sinorhizobium meliloti or 0.005% ethanol/water (v/v) negative 

control (10, 34). RNA was extracted using QIAzol Lysis Reagent (Qiagen) according to 

the manufacturer’s instructions with an additional phenol:chloroform:isoamyl alcohol 

(24:1:1) extraction step before RNA precipitation. 

For our expression analysis of A. fumigatus treated with various LCOs and COs, 

we treated the AF293 wildtype for two hours with 10-8 M  sLCOs purified from 

Sinorhizobium meliloti, nsLCOs purified from Rhizobium sp. IRBG74, chitotetraose 

(CO4), chitooctaose (CO8), or 0.005% ethanol/water (v/v) negative control. COs were 

acquired from IsoSep, Tullinge, Sweden. RNA was extracted using a Sigma Aldrich 

Spectrum Plant Total RNA kit. 

RNA integrity was tested via nanodrop, gel electrophoresis, and the Agilent 2100 

Bioanalyzer. Library preparation and RNA sequencing were performed by Novogene, 

Inc. using the TruSeq Stranded mRNA Library Prep Kit and Illumina Novaseq 6000 

Platform.  

Quality filtering of RNA-Seq single-end reads was done using fastp v0.20.1 (36). 

Paired-end reads were aligned using HISAT2 v2.2.1 (37) with the reference 

transcriptome of A. fumigatus Af293 (ASM265v1) downloaded from NCBI. Conversion 

of SAM files into BAM files, sorting, and indexing using Samtools v1.19.2 (38). Reads 

were further counted FeatureCounts v2.0.1 (39). Count normalization and differential 

expression analysis were done using DESeq2 v1.42.1 (40). We defined transcripts as 

differentially expressed if they had an adjusted p-value < 0.05 and log2 Fold Change 
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values < −1 or >1. GRAsp module tables were created by uploading a loading list of 

DEGs to GRAsp.WID.WISC.edu. Tables were subsequently trimmed by only taking the 

top-scoring regulators and GO-enrichment terms. 

Reconstruction of the fungal kingdom’s species tree 

We ran the coalescent model, ASTRAL v5.7.8(41, 42), on a set of 290 BUSCO(43) 

gene trees. We utilized the same pipeline to create all gene trees. First the sequences 

were aligned with MAFFT v7.475(44) with the '-auto' parameter. All alignments were 

then trimmed using trimAl v1.2(45) with the '-gappyout' parameter. Lastly, the gene 

trees were generated using the maximum likelihood software IQTree v2.0.3(46) with 

1000 ultrafast bootstrap replicates. The most suitable model of sequence evolution for 

each gene tree was determined using ModelFinder(47). We forced multiple isolates 

within the same species (as determined from NCBI taxonomic metadata) to be 

monophyletic by passing a species map file. The tree was rooted using the most recent 

common ancestor of Cryptomycota and Microsporidia, which are the earliest diverging 

lineages within the Kingdom Fungi(48). All visualizations and phylogenetic plots were 

made with the ape v5.7-1(49), ggtree v3.11.0(50) and ggplot2 v3.4.4(51). 

Analysis of LysM domain-containing proteins across the fungal kingdom  

Publicly available annotated and assembled fungal genomes (n = 3077) were 

downloaded from the NCBI database on 12/1/2023 using the NCBI’s Dataset tool, 

version 11.32.1. Protein domain predictions were obtained for every protein using 

HMMER v3.1b2(52) (e-value <= 1e-5) with the Pfam database v34(53). To identify 

putative proteins with LysM domains, we searched for the Lysin motif PF01476. Lastly, 

all extracted proteins containing LysM domains were analyzed using DeepTMHMM 



 

 

 

 

95 

(Deep Learning Model for Transmembrane Topology Prediction and Classification) 

v1.0.24(54) to identify potential signal peptides and transmembrane domains. 

 

Results 

Chitin oligomers alter the expression of AfldpA and AfldpB genes in A. fumigatus 

While only sLCO induced changes to secondary branching in A. fumigatus and 

was further shown to alter the fungus’ transcriptome, treatment with non-sulfated LCOs 

(nsLCO), chitin oligomers CO4 and CO8, interestingly, also induced unique 

transcriptomic profiles depicted by separate clustering in principal component analysis 

Figure S1.A. sLCO treatment differentially regulated the most amount of genes (835 

genes total), followed by CO4 (94 genes total), nsLCO (92 genes total) and CO8 (30 

genes total) Figure S2. There were also shared genes among treatments where the 

highest overall amount occurs between sLCO and nsLCO treatments (68 overlapping 

genes). The four treatments have 48 genes in common Figure S1.B.  

The treatments also differentially express genes that fall into various GRAsp 

modules, small groups of inferred regulatory gene networks Figure S3. GO-term 

enrichment suggests that all modules are involved in processes such as secondary 

metabolite synthesis (helvolic acid biosynthesis, gliotoxin biosynthesis, etc.) and cell-

wall modification (galactoaminogalactan biosynthesis, polysaccharide catabolic 

process).  

We found that treating A. fumigatus with chitin oligomers altered the expression 

of AfldpA and AfldpB. The molecules sLCO, nsLCO, and CO4 downregulated AfldpA. 
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Both sLCO and nsLCO caused differential expression (Adjusted P-Value: < 0.0001) 

Figure 1.  

 

 

Figure 1. Expression AfldpA and AfldpB Expression in response to chitin 

molecules. Log2 fold-change of AfldpA and AfldpB in the Wild-type A. fumigatus strain 

treated with various chitin molecules (Relative to negative control). Significance refers to 

gene’s adjusted p-value ( *, p<0.0332; **, p<0.0021; ***, p<0.0002; ****, p<0.0001; NS, 

not significant). 
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sLCO induced the highest log-fold change out of the molecules, causing a 

downregulation of -0.72 Log2 fold-change, followed by nsLCO with a downregulation of 

-0.50 Log2 fold-change. CO4 also downregulated AfldpA, but with lower significance 

(Adjusted P-Value: = 0.0056) and Log fold-change (-0.28 Log2 fold-change) compared 

to LCOs. CO8 treatment did not differentially alter the expression of AfldpA. 

Furthermore, sLCO also led to the differential expression of AfldpB (Adjusted P-Value: = 

0.006), upregulating expression by 0.90 Log2 fold-change. 

AfldpA is required for LCO-induced hypobranching in Aspergillus fumigatus. 

To test the importance of LysM effectors in A. fumigatus response to LCOs, we 

examined secondary branching in △AfldpA and △AfldpB single and double deletion 

strains after treatment with LCO-IV (C:16, S), referred to as sLCO Figure 2.A. While the 

wild-type AFS35 strain and △AfldpB still exhibited a reduction in the secondary 

branches, this reduction did not occur in △AfldpA and the double deletion mutant 

△AfldpA△AfldpB. Previous studies found that sLCO increased germination in the 

AF293 and CEA10 wild-type strains, but this phenotype was not observed in AFS35 

(Data not shown). This is likely due to AFS35’s reduced response to sLCOs. 

The single and double mutants had altered branching phenotypes even without 

treatment. The △AfldpA strain had a reduction in secondary branches, while △AfldpB 

had an increase. Interestingly, △AfldpA△AfldpB had a level of secondary branching 

similar to that of the wild-type strain, which could signify that the branching of both 

mutants balanced each other out. 

These findings implicate AfldpA as necessary for proper response to sLCOs and 

part of the LCO signaling pathway. Since AfldpA codes for a chitin effector protein and 
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localizes to the cell wall, we suggest this protein acts as an LCO receptor. Specifically, 

AfLdpA binds exogenous LCOs at the cell wall, activating a signaling cascade that leads 

to LCO-induced phenotypes regulated by AfatfA. Furthermore, we propose a genetic 

model: LCO-binding inhibits the expression of AfldpA, which inhibits the expression of 

AfatfA and results in the inhibition of hyphal branching in A. fumigatus Figure 2.B. 
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Figure 2. AfldpA is necessary for branching response to sLCO. A) Secondary 

branching per micrometer of hyphae, 12 hours after treatment with sLCO, LCO-IV 

(C:16, S) or Control, 0.005% EtOH. B) Hypothetical LCO-response pathway where 1, 

AfLdpA (referred to as Ldap), localized to the cell wall, binds an exogenous LCO 

molecule. 2, Through an unknown mechanism, AfLdpA activates a signaling cascade 

that activates transcription factor AfAtfA (referred to as AtfA). 3, Pathways downstream 

of AfAtfA are activated and results in a reduction in hyphal branching. The lower panel 

depicts the proposed genetic model; the Blunt arrows depict inhibition. Multiple two-

sided t-tests were used to compare LCO and negative control treatments within each 

strain. ANOVA test, followed by Dunnett’s multiple comparison test, was performed to 

compare strains of the negative control group. Error bars represent mean ± Standard 

Error ( *, p<0.0332; **, p<0.0021; ***, p<0.0002; ****, p<0.0001; NS, not significant). 

Deletion of AfldpA alters the transcriptome of Aspergillus fumigatus but is non-

responsive to LCOs 

Deletion of AfldpA differentially regulated 328 genes in A. fumigatus Figure 

S4.A. and DEGs belonged to several GRAsp modules. Module 5491 had the highest 

enrichment of DEGs, and the top predicted regulator of this module is AfatfA, which we 

previously found was involved in LCO response Figure S4.B. Other modules suggest, 

via GO-term enrichment, that disrupting AfldpA affects various processes: mRNA 

modification, protein refolding, secondary metabolite synthesis, long-chain fatty acid 

synthesis, membrane lipid metabolism, and reactive nitrogen species metabolism.  

Considering that △AfldpA does not respond to LCOs, we further hypothesized 

that the transcription profile of AfldpA would not be affected by sLCO treatment. The 
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Principal Component Analysis reveals little to no clustering among wild-type and 

△AfldpA strains treated with LCO or negative control Figure S4. 

However, volcano plots reveal that while the A. fumigatus wild-type strain treated 

with sLCOs led to 48 DEGs, the △AfldpA strain treated with sLCOs had only one DEG: 

AFUA_8G06980, a putative GH25 lysozyme Figure 3.A. We further showed that 

△AfldpA strains did not respond to LCOs by demonstrating that the top ten DEGs from 

LCO-treated wild-type did not change expression in sLCO-treated △AfldpA strains 

Figure 3.B. 
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Figure 3. Transcriptomic analysis of △AfldpA mutant treated with LCOs. A) 

Volcano plots of wild-type A. fumigatus (left) or △AfldpA (right) treated with LCOs. The 

Y-axis represents -Log10 P-value, and the X-axis represents the Log2 fold change. Red 

dots represent differentially expressed genes, while black dots are not significant. B) 

Expression levels of the top 10 differentially expressed genes after we treated Wild-type 

A. fumigatus strain with LCOs (relative to negative control). Grey bars (left) represent 

the log2 fold change of the gene in the wild-type strain, and the purple (right) represents 
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the log2 fold change of the gene in △AfldpA treated with LCOs; All are non-significant. 

Significant genes have an adjusted p-value < 0.05 and abs(log2 Fold Change) >= 1.  

 

LysM effectors are found throughout the fungal kingdom 

While previous studies have looked at the presence of LysM domain-containing 

proteins across fungi, we sought to expand upon this work by looking at a larger set of 

fungi and focusing on LysM effectors. We searched 3077 publicly available fungal 

genomes, which span different phyla, for the presence of LysM effectors.  

We find that these effectors are present in most fungi. Generally, LysM effectors 

comprise half of the fungal proteins containing LysM domains, with the other half 

containing either catalytic domains and/or lacking signal peptides. Interestingly, there 

are some fungi where the LysM effectors tend to make up most of LysM-containing 

proteins and seem to be common in Mucoromycota. This could perhaps be due to the 

phylum containing arbuscular mycorrhizal fungi like Rhizophagus irregularis, whose 

LysM effector can bind LCOs (32, 55).  

The number of predicted LysM effectors in a fungus ranges from 1 effector up to 

29 effectors, as seen in the ascomycete Drepanopeziza brunnea from the class 

Leotiomycetes. D. brunnea is a plant pathogen causing leaf spot disease in poplar trees 

(56). There are, however, fungi throughout the fungal kingdom that have low numbers of 

LysM-containing proteins and no predicted LysM effectors. A strain of Candida albicans 

and Ustilago maydis, seven strains of Cryptococcus neoformans, and, surprisingly, five 

strains of Rhizophagus irregularis lack LysM effectors. 
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While these predictions must be characterized and verified, it provides evidence 

that LysM effectors are found throughout the fungal kingdom and could, therefore, 

feasibly act as LCO receptors in fungi.

 

Figure 4. Distribution of LysM effectors in fungi. Bars in the outer ring depicts the # 

of LysM effectors (Green) versus the total # of proteins with predicted LysM domains 

(Purple) in a species. Tree nodes are colored according to phyla. Tree is also labeled in 

the inner ring by the major class and colored accordingly. 
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Discussion 

Research surrounding LysM effectors has primarily focused on its roles in the 

fungus’ interactions with plants (25). Here, we demonstrated that fungal responses to 

LCOs require LysM effectors. Specifically, deletion of the LysM effector AfldpA in the 

human pathogen A. fumigatus no longer exhibited a reduction in secondary branching 

or change in transcription when treated with sLCOs. 

The importance of LysM effectors was alluded to by expression analysis of A. 

fumigatus treated with various chitin molecules: sLCO, nsLCO, CO4, and CO8. sLCO, 

nsLCO, and CO4 downregulated the expression of AfldpA. Interestingly, sLCO also 

upregulated the expression of AfldpB, possibly signifying that it could also be necessary 

for chitin signaling, but our branching assay didn’t capture it. This expression analysis 

also implies that A. fumigatus responds to other chitin molecules besides sLCOs. Still, 

we have not found the appropriate phenotypes to measure the fungus’' response to 

these molecules accurately (1). 

Furthermore, deleting AfldpA resulted in a sizeable transcriptional shift, affecting 

a wide range of regulatory processes from secondary metabolite synthesis to protein 

refolding. Previous work characterized LysM effectors but found no effects on radial 

growth, chitin content, and pathogenicity. While we also saw no noticeable changes to 

radial morphology, our findings expand on this work to show that there are 

consequences to deleting these effectors: a shift in the level of secondary branching, 

response to LCOs, and alteration of the transcriptome (33). This provides compelling 

evidence that AfldpA alters the development of A. fumigatus, thus implying that LysM 
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effectors play roles beyond interactions with plants, as previous studies with other fungi 

have shown (25). 

While our work adds the LysM effector AfldpA to the LCO response pathway, it 

does not yet prove that this effector acts as an LCO receptor. Our next step is to 

conduct structure characterization and binding assays between AfldpA and chitin 

oligomers. Future directions will focus on how effectors relay information back into the 

cell; GRAsp previously implicated the two-component system and the MAP kinase 

pathway as part of the LCO response pathway. These pathways are upstream of 

AfAtfA, so AfLdpA could interact with members of the two-component pathway, like 

histidine kinases, located on the cell membrane to activate LCO signaling (57). 
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Supplementary Table S1. Fungal strains used in this study 

Organism Strain Name Background Genotype Reference 

A. fumigatus WT AF293 AF293 
Clinical Isolate 

 

Brookman & Denning 

2000 (58) 

A. fumigatus WT AFS35 AFS35 ∆akuA::loxP 

 

Wagener et al. 2008 (59) 

A. fumigatus ΔAfldpA AFS35 ΔAfldpA::hph, Δaku::loxP Muraosa et al. 2019 (33) 

A. fumigatus ΔAfldpB AFS35 ΔAfldpB::hph, Δaku::loxP Muraosa et al. 2019 (33) 

A. fumigatus ΔAfldpA/B AFS35 
ΔAfldpA::ptrA, ΔAfldpB::hph, 

Δaku::loxP 
Muraosa et al. 2019 (33) 
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Supplementary figure S1. Transcriptomic analysis of A. fumigatus treated with 

chitin molecules. Principal Component Analysis (PCA) plot visualizes normalized 

expression variance of the four biological replicates of the A. fumigatus AF293 wild-type 

strain treated with sulfated LCOs (sLCO), non-sulfated LCOs, CO4, CO8, and negative 

control. Percentages correspond to the amount of variance that each of the two 

components contributes to. B) Venn diagram depicting the number of shared and 

unique genes across conditions. 
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Supplementary figure S2. Volcano plots of A. fumigatus treated with chitin-

derived molecules. Volcano plot of gene expression in the A. fumigatus AF293 wild-

type strain treated with A) sulfated LCOs, B) CO4, C) non-sulfated LCOs, or D) CO8. 

The Y-axis represents -Log10 P-value and the X-axis represents the Log2 fold change. 

Red dots represent differentially expressed genes (DEGs), while black dots are not 

significant.  
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Supplementary figure S3. GRAsp modules enriched in DEGs of A. fumigatus 

AF293 wild-type strain treated with chitin molecules. Treatments are A) sulfated 

LCOs, B) CO4, C) non-sulfated LCOs, or D) CO8. Gene List Enrichment P-Value refers 

to the probability that the DEGs found in the corresponding module rather than 

anywhere else in the network. Top regulators ending in “_NCA” are predicted regulators 

inferred GRAsp’s Transcription factor activity feature that takes into transcription factor-

target gene binding motifs. DEGs have an adjusted p-value < 0.05 and abs(log2 Fold 

Change) >= 1. 
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Supplementary figure S4. Transcriptomic analysis of △AfldpA mutant compared 

to the wild-type strain. A) Volcano plot of gene expression in the △AfldpA strain 

compared to A. fumigatus AFS35 wild-type strain. The Y-axis represents -Log10 P-

value, and X- axis represents the Log2 fold change. Red dots represent differentially 

expressed genes (DEGs), while black dots are not significant. B) Table of GRAsp 

modules enriched in DEGs of △AfldpA strain compared to AFS35 wild-type. Gene List 

Enrichment P-Value refers to the probability that the DEGs are found in the 

corresponding module rather than anywhere else in the network. Top regulators ending 

in “_NCA” are predicted regulators inferred GRAsp’s Transcription factor activity feature 

that takes into transcription factor-target gene binding motifs. DEGs have an adjusted p-

value < 0.05 and abs(log2 Fold Change) >= 1.  
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Supplementary figure S5. PCA of A. fumigatus wild-type and △AfldpA treated with 

sLCOs or negative control. Principal Component Analysis (PCA) plot visualizes 

normalized expression variance of the four biological replicates of two strains, A. 

fumigatus AFS35 wild-type strain (WT) or △AfldpA (referred to as △ldpA) treated with 

sulfated LCO (sLCOs) or negative control. Percentages correspond to the amount of 

variance contributed by each of the two components. 
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Chapter 4: Discussion 

 

Summary 

The groundbreaking discovery that organisms throughout the fungal kingdom 

produce LCOs, which once were believed to be secreted solely by symbiotic microbes 

to initiate symbiosis with plant hosts, has caused a paradigm shift in our understanding 

of chitin signaling (1–3). This revelation unveils a new dimension of these molecules, 

demonstrating their potential to significantly alter the growth and development of fungi, 

from human pathogenic to ectomycorrhizal fungi. 

The standing hypothesis states that LCOs function as autocrine and paracrine 

signaling molecules in fungi that can also modulate interspecies interactions (2). To 

implicate LCOs in these roles, we must first understand the genetic underpinnings of 

LCO signaling. Once we set this groundwork, we can use our knowledge to explore how 

LCOs affect the ecology of fungi (2, 4–6). 

We set out to explore the genetics of how fungi respond to LCOs. While 

expression analysis of fungi responding to LCOs exists, the genetic determinants have 

not been characterized and validated (2). We used the ascomycete A. fumigatus as our 

primary model organism. While this fungus might not seem like an ideal model 

considering its status as a human pathogen, we chose this fungus for three primary 

reasons: 1) A. fumigatus can both synthesize and respond to LCOs, 2) physiological 

assays can determine if the fungus responds to LCOs and 3) the fungus is a genetically 

tractable organism with decades of research dedicated to it (2, 7, 8). 
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The first part of my thesis discusses how we found one of the genetic 

components required for A. fumigatus response to LCO: AfAtfA, a transcription factor 

involved in the stress tolerance of conidia. We found this component by predicting a 

genome-wide regulatory gene network and asking which regulators are most affected 

by A. fumigatus treated with LCOs.  

Specifically, we used the MERLIN program to reconstruct a regulatory network 

(9). This program requires two main parameters: expression datasets of the organism of 

interest in various conditions and prior knowledge of regulators. We inferred a network 

using eighteen RNAseq datasets of A. fumigatus in multiple conditions and 820 

regulators (9). Our network, called GRAsp (Gene Regulation of Aspergillus fumigatus), 

contained 7,422 regulatory edges, or connections. Our network implicated AfatfA as a 

transcription factor-encoding gene predicted to regulate most differentially expressed 

genes when A. fumigatus received LCO treatment. We hypothesized that this regulator, 

previously implicated in conidial stress tolerance, was important for LCO response (10, 

11). We supported this hypothesis by showing that a deletion mutant of AfatfA no longer 

exhibited a physiologic response to LCOs (2). Thus, we can claim that we found fungi's 

first regulator of LCO-response. However, our work in this chapter went beyond LCOs; 

we demonstrated the predictive power of GRAsp by showing that it could recapitulate 

known pathways in A. fumigatus and uncover a novel regulator of gliotoxin, a toxic 

metabolite (12, 13). This chapter ends with unveiling an online resource 

(grasp.wid.wisc.edu) allowing users to explore the network using their genes of interest. 

Our next chapter focused on uncovering the LCO receptor in fungi. We 

concentrate on fungal proteins containing LysM domains since plants recognize LCOs 
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and COs using LysM-domain-containing receptors (14, 15). While A. fumigatus 

contained no transmembrane proteins with LysM domains, it did have these domains in 

effectors and chitinases (16). LysM effectors, secreted proteins with LysM domains and 

no catalytic activity, have acquired scientific interest in the last decade due to their role 

as virulence factors in host-fungi associations. Fungi employ these effectors to 

sequester their chitin molecules and avoid detection by host organisms (16–28). 

Without detection, the plant is less likely to initiate an immune response, increasing the 

likelihood of fungal colonization. Interestingly, these effectors also protect fungi from 

plant chitinases, though researchers have yet to describe this mechanism fully (14, 25–

29). 

Zeng et al. 2020 supported our hypothesis that the LysM effector can act as an 

LCO receptor (14). The group characterized RiSLM, a LysM effector from the 

mycorrhizal fungus, and asserted its role in promoting symbiosis by sequestering 

immunogenic long-chain COs. When testing the binding affinity of RiSLM to different 

chitin molecules, they found that the effector could bind sLCO and nsLCO molecules; 

this is, to our knowledge, the first reported instance of a LysM effector binding LCO 

molecule (14). Since this work was published before Rush et al., 2020 discovered that 

LCOs were widespread among fungi, this work did not look further into RiSLM’s role as 

a LysM receptor involved in LCO response (2).  

We, thus, decided to pursue the two LysM effectors in A. fumigatus, AfldpA, and 

AfldpB, and ask if they’re involved in LCO signaling (30). Muraosa et al. 2019 previously 

characterized the role of these proteins in A. fumigatus but found no changes to radial 

growth, chitin content, and pathogenicity (30). Interestingly, we found that sLCO, 
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nsLCO, and CO4 significantly reduced the expression of AfldpA and that sLCO 

upregulated the expression of AfldpB.   

Excitingly, we found that the AfldpA deletion strain no longer exhibited a 

physiological response to LCOs, indicating the crucial role of AfldpA in a fungus' 

response to LCOs (30). This discovery, coupled with the fact that the transcriptome of a 

wild-type A. fumigatus undergoes global changes while the transcriptome of the AfldpA 

deletion mutant remains unchanged when challenged with LCOs, provides more 

compelling evidence of AfldpA's significance in LCO response. We are currently 

conducting binding assays between AfLdpA and chitin molecules to determine if this 

effector acts as an LCO receptor in A. fumigatus. 

This work marks the initial strides in unraveling the genetic determinants that 

underlie the complex LCO signaling pathway in fungi. We have identified a transcription 

factor and a potential receptor crucial for LCO response. However, this is just the 

beginning. We have yet to fully explore this field's vast potential, and the following 

sections in this chapter will delve into the exciting future goals and perspectives. 

 

Future directions 

GRAsp and the potential to uncover components of the LCO response pathway 

The comprehensive regulatory gene network we created helped us identify 

AfatfA as a potential regulator of LCO response, which we further verified in vivo. The 

diffusion analysis of A. fumigatus after treatment with LCOs identified AfatfA and nine 

other regulators that warrant further exploration. 
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One regulator of interest is the transcription factor ZfpA; previous work implicated 

this transcription factor in regulating hyphal morphology and the synthesis of 5,8-

diHODE, referred to as oxylipins(31, 32). Oxylipins, like LCOs, are fungal signaling 

molecules altering hyphal branching; while LCOs reduce the number of secondary 

branches, oxylipins have the opposite effect, increasing the number of branches(31, 

32). It would be interesting to see if zfpA also regulates LCO-response. One potential 

experiment would be similar to the one performed in Chapter 2, where we asked if the 

mutants of zfpA lose the ability to respond to LCOs by looking at changes to secondary 

branching.  

Furthermore, GRAsp modules and previous literature provide insight into the 

direct regulators of AfatfA. GRAsp module enrichment of differentially expressed genes 

in A. fumigatus treated with LCOs implicated protein kinases of the high-osmolarity 

glycerol mitogen-activated protein kinase, HOG MAPK, a critical pathway cascade 

involved in the fungus’ response to environmental cues (10). This prediction is 

reasonable, considering researchers already found that the HOG MAPK pathway 

regulates AfAtfA (10). While testing the deletion mutants for loss of hypobranching 

response to LCOs, we could also assay for phosphorylation of protein kinases in 

response to LCOs by western blotting using antibodies capable of detecting 

phosphorylated proteins, such as anti-phospho-p44/42 MAPK antibodies (33).  

Aside from the HOG MAPK pathway, the MERLIN modules also implicate 

histidine kinases, members of the two-component system (TCS) (34, 35). This pathway, 

prevalent across bacteria and fungi, has roles in processing environmental signals 

through the HOG MAPK pathway (34, 36). Since histidine kinases in the TCS localize to 
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the cell membrane, their involvement in LCO response would likely make them early 

responders to exogenous LCOs (37). Similarly to MAP kinases, we can test their role in 

LCO response by testing phosphorylation with western blots and assaying for 

hypobranching response. Combining GRAsp’s predictions with in-vivo validation can 

serve as a valuable tool for unraveling the LCO-response pathway. 

 

GRAsp and the potential to uncover components of the LCO response pathway. 

While we used A. fumigatus, a model organism in LCO-signaling research, the 

fungus has a robust research community dedicated to studying its role in human 

pathogenesis (8). As mentioned in Chapter 2, our regulatory gene network has helped 

the field uncover novel regulators in secondary metabolite synthesis. Specifically, 

collaborators discovered rogA, a novel negative regulator of the toxic metabolite 

gliotoxin (13). Knowing that the network can help other scientists, we were motivated to 

create GRAsp, an easy-to-use online resource. This tool allows researchers to look at 

their genes or pathways of interest and, ideally, uncover new regulators or targets. Still, 

GRAsp remains in its infancy, and we are now focusing on enhancing and expanding its 

capabilities. 

While GRAsp could recapitulate known regulatory interaction pathways, we are 

also interested in quantifying global recapitulation with an unbiased metric. One 

potential way to confirm the network's reliability is to compare it to a "Gold Standard" 

network, a reference network that closely mirrors actual biology (9, 38). One major 

obstacle is that there currently needs to be a wide-scale standard. We seek to create 

our own Gold Standard using the available CHIP-seq dataset. In A. fumigatus, at least 
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15 publicly available CHiP-seq datasets of unique transcription factors (39–51). Our 

current objective is to see how well our network compares to this CHIP-seq standard.  

 As early as next year, we can immediately advance our network by updating it 

with new expression datasets, which we believe will increase GRAsp’s predictive power. 

While we added most of the publicly available RNAseq datasets as of 2023, many more 

have been released since then. We are also interested in integrating DNA microarray 

datasets into GRAsp, having initially focused solely on RNAseq datasets for the 

practical purpose of only working with one dataset type.  

Furthermore, our goal for the online resource was to make it user-friendly. Since 

its inception, we have continuously made updates that enhance user experience 

(addition of tooltips, streamlined data entry, visual customization of the output network, 

etc.). We’ve recently added an online feedback form to our resource that should allow 

user feedback. As the resource gains more popularity, we expect new ideas for 

improved accessibility and new features to make it truly user-friendly. 

Finally, we must consider the longevity of GRAsp and our need to “future-proof.” 

The resource is currently hosted through the University of Wisconsin-Madison, which 

provides a stable hosting environment. Ideally, we’d like to see GRAsp hosted by 

platforms that keep the resource updated years from now. One potential platform is 

FungiDB, an online resource for bioinformatic analysis of fungal genes and genomes, 

which curates data from a wide range of resources. One resource it offers is 

transcriptomic analysis of expression datasets in various fungi, including A. fumigatus. 

We could, thus, envision platforms like FungiDB hosting our network and enhancing it 
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with new transcriptomic data. It also allows for inferring regulatory gene networks in 

other model fungi. 

GRAsp and the inference algorithm that created it, MERLIN+P+TFA, are 

powerful tools in system biology, and we believe that they’ll help make future 

groundbreaking discoveries. 

 

LysM effectors and upstream LCO-signaling 

Chapter 3 revealed that LysM effectors were critical for LCO response in A. fumigatus. 

We hypothesize that these proteins have a role as LCO/CO receptors. The immediate 

next steps are to show that AfLdpA A. fumigatus can bind chitin molecules.  

Muraosa et al. 2024 created the Pichia pastoris strain that heterologously and 

reliably expresses AfLdpA (30, 52). We aim to purify tagged AfLdpA from these strains 

and conduct binding assays with LCOs and COs via Microscale thermophoresis. This 

assay, which measures binding affinity by detecting changes in the movement of 

labeled proteins in response to a temperature gradient, was previously used to 

demonstrate the binding of LCOs/COs in RiSLM, the LysM effector from Rhizophagus 

irregularis (14, 53).  

Follow-up experiments should focus on elucidating the binding structure of LysM 

effectors and LCOs, possibly using techniques like X-ray crystallography. Since AfLdpA 

has multiple LysM domains, it would be interesting to determine which domains bind 

LCOs.  

Structural analysis could also provide insight into which of the two strategies 

AfLdpA uses for LCO/CO binding: intermolecular dimerization, where two LysM 



 

 

 

 

128 

domains from different LysM effectors bind an LCO molecule, or intramolecular 

dimerization, where two LysM domains within the same effector bind LCOs (54). 

The other LysM effector in A. fumigatus, AfldpB, did not seem necessary for 

sLCO response since the AfldpB deletion strain still exhibited hypobranching. However, 

we noted that sLCOs upregulated the expression AfldpB; perhaps this gene still plays a 

role in LCO response, but branching assays do not capture it. If we observe binding, it 

would be worth performing binding assays and subsequent structural elucidation. If it 

does bind, it could further implicate AfLdpB in having a role in chitin signaling, and 

structural analysis could further identify important motifs for LCO binding. 

Suppose the binding assays support our hypothesis that LysM effectors are chitin 

signaling receptors. In that case, it raises a new question: How does a LysM effector 

relate information to the cell? Most of the research involved in LysM effectors focuses 

on its role as an extracellular, or cell wall-localized, component that can sequester chitin 

to prevent host immune signaling; a role as a fungal autocrine and paracrine receptor 

would be groundbreaking.  

Future work should uncover how a LysM effector AfLdpA signals information 

back into the cell. One potential experiment to test if AfLdpA interacts with a cell 

membrane receptor is proximity labeling with TurboID assays (55, 56). With TurboID, 

we can fuse AfLdpA to a biotin ligase, which results in the tagging of interacting proteins 

with biotin; these biotinylated proteins can then be isolated and identified with mass 

spectrometry  (55, 56). However, if evidence suggests that LCO response requires 

membrane-localized histidine kinases from the two-component system, it could imply 

that AfLdpA interacts with this kinase. We could take a more direct approach and test 
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the interaction between the two proteins with a yeast two-hybrid technique (57). This 

finding would be the first reported fungal effector capable of signaling information back 

into the organism's cell that synthesized it. 

 

Develop a reporter system to monitor LCO response in A. fumigatus 

Our current method of detecting LCO response in A. fumigatus relies on 

physiological assays that are not high-throughput and can only respond to sulfated 

LCOs. Future work could leverage our RNAseq dataset of A. fumigatus treated with 

LCO and COs to create a fast, high-throughput assay. Specifically, we envision tagging 

genes upregulated explicitly in response to LCOs and COs with a reporter marker like 

Enhanced Green-Fluorescent Protein (EGFP). Researchers previously used this 

reporter marker to visualize the differential expression of a virulence-associated gene 

under various conditions (58).  

A similar strategy for detecting responsiveness to LCOs has been implemented 

in the legume Medicago truncatula using β-glucuronidase (GUS) reporter assay (2, 59). 

However, we will likely need to make some optimizations: a suitable reporter gene 

would have little to no expression in untreated samples and visually distinguishable 

fluorescence in LCO/CO treatments.  

If successful, Instead of conducting branching experiments, we could test the 

fungus’ response to LCOs by observing whether or not it fluoresces. Since these 

LCO/CO RNAseq experiments occur two hours after treatments, the incubation time 

between treatments and analysis would be much shorter than hyphal branching 

experiments. Furthermore, since our RNAseq analysis in Chapter 3 demonstrated that 
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sulfated LCOs, non-sulfated LCOs, CO4, and CO8 differently expressed their own 

unique set of differentially expressed genes, there is also a possibility that we can 

create reporters specific to each molecule. 

We could also leverage this reporter strain and forward screens to uncover 

genes in the LCO-response pathway. Conducting mutagenesis studies of this proposed 

GFP strain, followed by LCO/CO-induced fluorescent screening, would allow us to find 

genes required for chitin signaling if this gene is downstream of the GFP-tagged 

reporter. 

 

Uncovering the genes involved in fungal LCO synthesis 

Research into rhizobia, like Rhizobium strain IRBG74, reveals three genes 

required to synthesize an LCO: chitin synthesis, chitin deacetylation, and N-acylation. 

Nitrogen-fixing bacteria largely conserve the genes responsible for these processes 

(60); nodC encodes a chitin synthase that creates a chitin backbone, nodB encodes a 

chitin deacetylase that deacetylates the backbone, and nodA encodes an N-

acyltransferase that attaches the lipid chain to the backbone (4, 59).  

A. fumigatus has multiple genes capable of performing these functions; 

researchers have previously deleted and characterized seven chitin deacetylase genes 

and eight chitin synthases (5, 61, 62). To uncover genes responsible for the fungal 

synthesis of LCOs, we could screen these deletion mutants for loss of LCOs. While a 

hyphal branching assay in A. fumigatus or GUS assay in M. truncatula can help us 

detect the presence or absence of LCOs, a GFP-reporter strain in A. fumigatus could 

make this screen efficient and high-throughput (59). 
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We can further validate the fungal genes involved in LCO synthesis with 

complementation assays using nod genes from Rhizobium IRBG74. For example, we 

provide more evidence that a candidate chitin deacetylase from A. fumigatus is involved 

in LCO synthesis by asking if the gene can rescue LCO synthesis in nodC deletion 

strain from Rhizobium IRBG74. 

 

From foundational genetics to fungal behavior 

Our discovery of the genetic determinants underlying LCO-signaling opens up 

new avenues for studying LCO-mediated fungal interactions using our mutants. 

Exploring LCOs' role in these interactions can provide insight into LCO’s role in fungal 

behavior and potential biotechnological applications.  

 Our current hypothesis states that LCOs serve as autocrine and paracrine 

molecules and modulate fungal behavior with other fungi and bacteria. Rush et al. 2022 

found that treatment of A. fumigatus with LCOs altered the fungus’ metabolome and, 

subsequently, its interaction with bacteria (5). We can expand on this work by asking 

how LCO treatment affects fungal-fungal interactions. These interactions could take the 

form of cooperative or competitive behaviors. We could examine these interactions by 

examining the growth of A. fumigatus after treatment with the exudates of LCO-treated 

fungi, similar to the experiment in Rush et al. 2022 (5). 

We could also leverage our understanding of genes required for LCO response. 

Considering that the AfldpA deletion strain in A. fumigatus is non-responsive to LCOs 

and is, thus, practically “blind” to these molecules, we propose using these strains as a 

negative control when studying how LCOs modulate fungal behavior and interactions.  
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Considering that LCOs are secreted molecules, we could also explore LCOs’ 

potential role as a quorum-sensing molecule in A. fumigatus. Like quorum sensing in 

bacteria, fungal quorum sensing modulates fungal behavior in response to population 

density. Specifically, fungi secrete quorum-sensing molecules until the amount of 

molecule reaches a certain threshold. Density-dependent processes are activated once 

the threshold is surpassed (63, 64). We could test if disruption of LCO signaling alters 

known quorum-sensing phenotypes. A notable density-dependent process in fungi is 

the conidia-sclerotia shift in the plant pathogen Aspergillus flavus; when population 

density is low, the production of conidia is low, while the production of sclerotia, a mass 

of vegetative spore, is high. However, conidia development is high at high population 

densities and low sclerotia development. If we can dissect LCO synthesis and response 

response pathways in A. flavus, we could see if LCO signaling plays a role in these 

processes. For example, we could ask if these high-density phenotypes are still 

observed in LCO receptor or synthesis mutants.  

 The information gained from these studies will advance our understanding of 

chitin-signaling in fungi and pave the way for biotechnological applications in the 

medical and agricultural sectors. For the future of our field, we envision pioneering new 

strategies to manipulate microbial communities, which can help enhance beneficial 

symbiotic interactions between fungi and their plant hosts while effectively mitigating the 

growth of dangerous pathogens. 
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