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Abstract

This dissertation focuses on the identification and estimation of discrete choice models. In

practice, if the error term is independent of the covariates and follows some known distribu-

tion, the discrete choice model is usually estimated using some parametric estimator, such as

Probit and Logit. However, when the distribution of the error is unknown, misspecification

would in general cause the estimators inconsistent even if the independence between the

covariates and the error still holds. The following two chapters relax the assumptions on the

error distribution in the discrete choice models and propose semiparametric estimators.

Chapter 1: “Least Square Estimation of Semiparametric Binary Response Model

with Endogeneity”

In this chapter we develop new results on the identification and estimation of semipara-

metric binary response model with an endogenous explanatory variable. The identification is

achieved based on a control variable approach. We also propose a semiparametric estimator,

which is
p
n-consistent and asymptotically normal distributed. The estimation is based on a

nonlinear least square criterion, which we show is equivalent to an integrated maximum score

criterion. In literature there is still no result about whether nonlinear least square estimator

would be dominated by other estimators in terms of efficiency regarding semiparametric

binary response model with endogeneity. Therefore, we provide a model averaging estimator,

which combines the least square estimator and the maximum likelihood estimator of Rothe

(2009). Monte Carlo simulation shows the performance of our estimator is consistent with

our theory in finite samples. We also apply our estimator to the study of the causal effect

of economic conditions on civil conflicts as in Miguel et al. (2004). In their paper, they use

two-stage least square to estimate the effect of economic conditions on civil conflicts. We

re-estimate their model using our semiparametric least square estimator.

Chapter 2: “A Semiparametric Estimator for Binary Response Models with

Endogenous Regressors”
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This chapter proposes a new semiparametric estimator for the binary response model

with endogenous explanatory variables. We assume a triangular structure and use the control

variable approach to account for endogeneity. In order to identify the model, we construct

a control variable and assume the error is quantile independent of the covariates given the

control variable for a given quantile. This quantile independence assumption compared to the

statistical independence is rather flexible in that it admits heteroskedasticity. The semipara-

metric series estimator in this chapter is an extension of Khan (2013) with control variables.

It can estimate both the coefficients and the error distribution, and we prove this estimator is

consistent and derive its convergence rate. In the Monte Carlo experiment, our estimator in

general has smaller bias and standard deviation in comparison with the parametric two-stage

Probit estimator for the binary response model with continuous endogenous regressors.
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Chapter 1

Least Square Estimation of

Semiparametric Binary Response Model

with Endogeneity

1.1 Introduction

This chapter is concerned with the identification and estimation of a semiparametric binary

response model with endogeneity. The binary response model we consider is represented in

the form

Y = 1[X 0� � u � 0],

where X is an observed vector of explanatory variables, and Y is an indicator of the event

that the value of X 0��u is non-negative. In addition, u is the unobserved error term, and �

is the coefficient vector of our interest. If X and u are independent, and u follows a known

distribution, this binary response model is usually estimated via some parametric estimation

procedures, such as the standard Probit or Logit; see McFadden (1984) for a detailed survey.

However, when the distribution of u is unknown, Probit or Logit can be misspecified and
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lead to inconsistent estimators even if the independence between X and u still holds. More

generally, the independence between X and u may also fail.

In this chapter, we develop new results on identification and estimation of semiparametric

binary response model with endogeneity, in which the conditional distribution of u given X is

not parametrically specified and may depend on X. This chapter contributes to the literature

by providing a new set of identification conditions which allows for bounded support of the

regressor, and by proposing a semiparametric least square estimator and a model averaging

estimator for the binary response model with endogeneity.

First, we extend the identification results under quantile independence in Manski (1975,

1985), to allow for bounded support of the regressors. In order to identify the coefficients

in binary response model without endogeneity, there is a trade-off between the support

requirement for regressors and the extent to which we specify the distribution of the error

term; see Manski (1988). The identification conditions in Manski (1975, 1985) are rather

weak compared to previous parametric estimators: the conditional distribution of u given

X is median independent, i.e. Med(u|X) = 0. However, large (unbounded) support for at

least one component of X is required to achieve uniform identification of the coefficients.

In the first section of this chapter, we extend Manski’s quantile independence identification

strategy and assume independence between regressors X and error term u. Although this

seems more strict than Manski’s quantile independence assumption, we do not require the

large support of any regressor.

Second, we introduce a new least square estimator for the semiparametric binary response

model. Based on the identification results above, we integrate the maximum score criterion

function under ⌧th quantile independence over ⌧ from 0 to 1. We show that the integral is

a least square criterion. In the binary response model without endogeneity, this leads to the

semiparametric single index estimator of Ichimura (1993).

Third, we extend the identification and estimation results above to the semiparametric

binary response model with endogenous explanatory variables. In this chapter, we use
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the control variable approach of Blundell and Powell (2004). The control variable may

be an observable variable or a variable constructed using instrumental variables. Our

estimator allows both cases. This estimator extends Ichimura (1993)’s semiparametric single

index estimator to incorporate endogenous regressors and is shown to be
p
n-consistent and

asymptotic normal.

Fourth, we also propose a model averaging estimator in addition to the semiparametric

least square estimator, in order to improve efficiency. The model averaging estimator is a

weighted average of estimators from different models. Here we use two models: the preceding

least square estimation and the semiparametric maximum likelihood estimation by Rothe

(2009). Although in the exogenous case semiparametric maximum likelihood estimator

is proved to achieve the semiparametric efficiency bound. There is little evidence that

maximum likelihood estimators is more efficient than least square estimators when some

of the explanatory variables are endogenous. In this case, we provide a linear combination

of these two types of estimators and prove that it has smaller asymptotic variance than both

least square and maximum likelihood estimators.

Several semiparametric estimators for the binary response model have been proposed

in literature, such as the maximum score estimator (Manski (1975, 1985)), the smoothed

maximum score estimator (Horowitz (1992)), the semiparametric maximum likelihood es-

timator (Klein and Spady (1993)), etc. When some regressors are endogenous, unlike the

separable models, the parameters in the binary response model, are not generally identified

under the standard independence assumption between the instruments and the error term

u, see Blundell and Powell (2003), Chesher (2010), Chesher and Rosen (2013) and references

therein. Instead, identification of the coefficients is achieved by the control variable approach.

This approach has been used in parametric binary response models. For example, Smith and

Blundell (1986) and Rivers and Vuong (1988) introduce a two-stage Probit estimator (2SPro-

bit) for the binary response triangular system with continuous endogenous regressors. As

for semiparametric binary response models with endogeneity, the control variable approach
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is first proposed by Blundell and Powell (2003, 2004). Blundell and Powell (2004) used the

control variable to account for endogeneity in the semiparametric binary response model.

The estimator they considered was based on the matching estimator proposed by Ahn,

Ichimura, and Powell (1996). Rothe (2009) extended Klein and Spady (1993)’s estimator

to the endogenous case by forming a triangular system and estimated it using a two-step

semiparametric maximum likelihood method. Our model is closely related to Blundell and

Powell (2004) and Rothe (2009), but the estimator is different from theirs.

In order to investigate finite sample performance, we provide Monte Carlo simulations

and compare all the three estimators: Rothe’s maximum likelihood estimator, least square

estimator and the model averaging estimator. The results show the finite sample performance

of our estimators is consistent with our theory.

We also apply our estimators to the study of the causal effect of economic conditions

on civil conflicts. This example is taken from Miguel, Satyanath, and Sergenti (2004). In

this application, rainfall variation is used as an instrument of economic conditions. In their

chapter, they use two-stage least square to estimate a linear probability model. We re-

estimate a semiparametric binary response model using our least square estimator. Contrary

to their results, we verify that the effect of economic conditions on civil conflicts is smaller

and not statistical significant.

The remainder of this chapter is organized as follows. In the next section, we show our

identification conditions for the semiparametric binary response model with endogeneity. In

Section 1.3, we describe our least square estimator based the identification result. In Section

1.4, we discuss asymptotic properties of our estimator and propose the model averaging

estimator. In Section 1.5, we present the simulation results. In Section 1.6, we apply our

estimator to an empirical application. Section 1.7 concludes.
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1.2 The model and identification

We formalize a basic linear index threshold-crossing binary response model

Y
i

= 1(X 0
i

�0 � u
i

� 0) (1.1)

where Y is the binary dependent variable, X
i

= (X1i, ˜Xi

) 2 R1+K is the vector of regressors,

u
i

is an unobserved random error term, and 1(E) is the indicator function that equals 1 when

E is true and 0 otherwise. Here we assume that X
i

does not include the constant term. X1i

is a variable with continuous support. 1 The parameter of interest for this type of model

is �0, and the conditional distribution function of the error u given X, denoted as F0, is a

nuisance infinite dimensional parameter.

In this section, we discuss the identification conditions for binary response model without

and with endogenous regressors, respectively.

1.2.1 Binary response model without endogenous regressors

In this subsection we introduce the identification result in a simplified setting, where the

disturbance u and the regressors X are statistical independent without endogeneity. We

do this to highlight the main strategy of our approach. In next subsection we develop

identification results when some of the regressors are endogenous.
1Other than in special cases, a regressor whose support contains continuous part is necessary to point

identify the parameters, and if all the regressors are discrete, �0 would be set identified, unless a finite-
dimensional parametric distribution of ui is assumed; see Horowitz (2009). Komarova (2013) proposes a
consistent estimators of the identified set using linear programming in a binary response model with all
discrete regressors.
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Conditional median independence with bounded regressors

To fix ideas, it might help to recall the identification results under conditional median

independence proposed by Manski (1975, 1985):

Median(u | X) = c (1.2)

where c is an unknown constant. Large support of at least one continuous regressor is

required for uniform identification. In practice, though, it is not uncommon to have data

sets where all the continuous regressors are not unbounded, such as income, consumption

and commute time. In these cases, the large support requirement cannot be satisfied. But

as followed, no large support does not necessarily indicate lack of point identification.

We first show a revised set of conditions under which �0 is point identified in the binary

response model with conditional median independence Equation (1.2) and the continuous

regressors are allowed to have bounded support. This result resembles Corollary 3.1.1 in

Horowitz (2009). We restate it here for completeness, and present a new proof in Appendix.

Assumption MID. (a) (X 0
i

, Y
i

) for i = 1, · · · , n is an i.i.d. sample and the data generating

process follows Equation (1.1) and Equation (1.2);

(b) There exists a subset ˜C of RK , where the conditional support of X1 given ˜X = x̃ contains

an interval [a
x̃

, b
x̃

] for all x̃ 2 ˜C;

(c) sup

x12[a
x̃

,b

x̃

] Pr(Y = 1 | X1 = x1, ˜X = x̃) > 1
2 and inf

x12[a
x̃

,b

x̃

] Pr(Y = 1 | X1 = x1, ˜X =

x̃) < 1
2 for all x̃ 2 ˜C;

(d) E[(

1

˜X
)(1, ˜X 0

)1(

˜X 2 ˜C)] has full rank;

(e) k �0 k= 1.

Assumption MID(b) and Assumption MID(c) together imply that the support of E(Y |
X1, ˜X = x̃) contains a neighborhood of 0.5. Assumption MID(d) ensures that there is a
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Figure 1.1: Identified under Median Independence

sufficiently rich set of values of ˜X at which Assumption MID(b) and Assumption MID(c)

are satisfied. Assumption MID(e) is a standard normalization for binary response models.

Proposition 1.1. Under Assumption MID, �0 is identified.

Figure 1 illustrates Assumptions MID(b) and (c) in a simple setting. In this example, X1

is a continuous variable and X2 is a dummy variable. The solid line shows Pr(Y = 1 | X1 =

x1, X2 = 1) is between 0.3 and 0.6. If the dashed line represents Pr(Y = 1 | X1 = x1, X2 = 0),

both the dashed and the solid lines cross 0.5 and according to Proposition 1, �1 and �2 are

identified. In Figure 2 the dotted line stands for Pr(Y = 1 | X1 = x1, X2 = 0), however, it

doesn’t cross 0.5. Then �1 and �2 may not be point identified.

Intuitively, the identification under Assumption MID is achieved by a special group

of observations. Individuals in this group share the property E[Y | X] = 0.5. Suppose

c in Equation (1.2) is zero for simplicity. In this case, for this group, X 0�0 = 0, as

illustrated by Assumption MID(c). As long as there are sufficiently many different value of

X, demonstrated in Assumption MID(d), �0 is uniquely determined with the normalization.
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Figure 1.2: Unidentified under Median Independence

This heuristic example shows that under Manski’s median independence assumption,

identification is possible when regressors have bounded support, rather than large support.

What is required is that Pr(Y = 1 | X1, ˜X = x̃) has a density around 0.5 for a rich

set of x̃ values. If not, point identification may still be impossible unless a more strict

assumption about the error term distribution is imposed. In the next subsection, we propose

new identification results which assume full independence between X and u while relaxing

the support condition above.

Statistical independence with bounded regressors

If we assume that X and u are fully independent with each other, it implies u is quantile

independent of X at every quantile. Therefore, even if the conditional choice probabilities

given different ˜X values do not overlap around 0.5, we can still achieve identification of

�0 using the same strategy if they overlap around some quantile. Denote the cumulative

distribution function of u as F0 2 F , where F is some space of distribution functions on R.

Assumption IID. (a) X and u are independent;
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(b) The set F is a family of continuous and strictly increasing distribution functions on R;

(c) k �0 k= 1;

(d) There exists a subset ˜X of the support of ˜X and 0 < � < ¯� < 1. For any x̃ 2 ˜X ,

[�, ¯�] ✓ supp(E(Y | X1, ˜X = x̃));

(e) E[(

1

˜X
)(1, ˜X 0

)1(

˜X 2 ˜X )] has full rank .

Assumption IID(b) is a standard restriction on error term distribution. Assumption

IID(c) is the usual scale normalization for binary response models without a parametric

error distribution. Assumption IID(d) is the key condition for point identification of �0

in this chapter. It imposes the main restrictions on the conditional support of X1 given

˜X. It requires that for any quantile � 2 (�, ¯�), we can find certain values of ˜X = x̃

conditional on which the support of X1 contains an interval in R with the property that

Pr(Y = 1 | X1, ˜X = x̃) contains some neighborhood of �. Note that the support of X1 under

these assumptions can be bounded. The continuity of Pr(Y = 1 | X1, ˜X) around � provides

information for identification of �0. Note that � and ¯� need not be known in our model.

The size of the quantile set (�, ¯�) can be very small. Intuitively once one quantile is found

satisfying the support condition above, other quantiles close enough will generally possess the

same property because of the continuous support of X1. Assumption IID(e), together with

Assumption IID(d), ensures that there are enough distinct values of ˜X such that conditional

on each of them the support of the probability of Y = 1 contains some neighborhood of

the same quantile �0. The intuition behind this condition is that if the distribution of the

conditional probability of Y = 1 is dense over a neighborhood of a certain quantile, there will

be sufficient information to identify the coefficients �0 by arguments similar to the quantile

independence analysis by Manski (1975), etc.

Figure 3 and Figure 4 use the same design as Figure 1 and Figure 2. In Figure 3, Pr(Y =

1 | X1 = x1, X2 = 0) (dashed line) and Pr(Y = 1 | X1 = x1, X2 = 1) (solid line) overlap

between 0.3 and 0.4. As is illustrated in last subsection, if we impose conditional median
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Figure 1.3: Identified under Independence

Figure 1.4: Unidentified under Independence
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independence here, �0 may not be point identified because the support of the conditional

probabilities of Y = 1 is not rich enough to cover any neighborhood of 0.5. On the other

hand, if we assume full independence between X and u, we can achieve point identification of

�0 using the rich variation of E(Y | X) in [0.3, 0.4]. In Figure 4 Pr(Y = 1 | X1 = x1, X2 = 1)

is the dotted line. However, identification of �0 may still be problematic because Pr(Y = 1 |
X1 = x1, X2 = 0) (dashed line) and Pr(Y = 1 | X1 = x1, X2 = 1) (dotted line) don’t overlap

around any quantile.

Intuitively, Assumption IID ensures that there are a group of people whose support of

E(Y | X1, X2 = x̃), for any x̃ 2 ˜X , contains an interval [�, ¯�]. Fix x̃ and for any � 2 [�, ¯�],

there exists x
x̃

such that E(Y | X1 = x
x̃

, ˜X = x̃) = �. Therefore, for this group of people,

x
x̃

�0,1 + x̃0
˜�0 = F�1

u

(�). As long as there are sufficiently many different values of x̃, �0 and

F�1
u

(�) can be uniquely determined.

We now present our identification results based on the assumptions above. Define the

population criterion function

Q(b, F ) = E

Z 1

0

⇢
⌧

(Y � 1(b1X1 +
˜b0 ˜X � F�1

(⌧) � 0))d⌧ (1.3)

where ⇢
⌧

(u) = u(1(u > 0)� ⌧). The check function ⇢
⌧

(·) is in fact the criterion of Manski’s

maximum score estimation under ⌧th quantile independence. We will show that ⇢
⌧

(Y �
1(b1X1 +

˜b0 ˜X �F�1
(⌧) � 0) achieves its minimum value when b = �0 for any ⌧ 2 (0, 1), and

furthermore, the minimum is achieved uniquely when b = �0 for any ⌧ 2 (�, ¯�). By taking

the integral of the check function from 0 to 1 accordingly, Q(·) will achieve its minimum

value only when b = �0.

Theorem 1.2. Under Assumption IID, for any b 6= �0, we have Q(b, F ) > Q(�0, F0).

By some algebra, we can simplify the function Q(b, F ). We present the equivalence result

in the following lemma, which motives the least square estimator.

Lemma 1.3.
R 1

0 ⇢⌧ (Y � 1(b1X1 +
˜b0 ˜X � F�1

(⌧) � 0))d⌧ =

1
2 [Y � F (b1X1 +

˜b0 ˜X)]

2
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This lemma shows that the integral of the maximum score criterion function over all the

quantiles leads to the least square criterion function. In this least square criterion, there

is an unknown function F (·) resembling the criterion function of the semiparametric single

index model put forward by Ichimura (1993).

1.2.2 Binary response model with endogenous regressors

In this subsection, we extend the preceding identification analysis to binary response model

with endogeneity.

In general, it is difficult to point identify �0 without any further structural assumption

when endogeneity arises. Unlike the linear regression model, in semiparametric nonlinear

models, for example in the binary response model here, single-equation IV approach is often

not enough to point identify the structural coefficients as pointed out by Chesher (2010) and

reference therein. In order to solve this endogeneity problem, we utilize the control variable

approach in this chapter. Following Imbens and Newey (2009), we assume that there exists

a control variable V such that2

Assumption CID. (a) The variables X and u are independent conditional on V, i.e. X ?
u | V ;

(b) The conditional distribution function of u given V , F0,u|V , is continuous and strictly

increasing on R;

(c) k �0 k= 1;

(d) There exists a subset V of the support of V with positive measure. For each v 2 V ,

there exists quantiles 0 < �
v

< ¯�
v

< 1 and a subset ˜X
v

of the conditional support of ˜X given

V = v. For any x̃ 2 ˜X
v

, [�
v

, ¯�
v

] ✓ supp(E(Y | X1, ˜X = x̃));

(e) E[(

1

˜X
)(1, ˜X 0

)1(x̃ 2 ˜X
v

)] has full rank for any v 2 V .

2In this chapter for now, we assume that only one regressor, the continuous one, is endogenous for
simplicity. Most of the conclusions in this chapter can be extended to the case in which more than one
endogenous regressors arise.
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A control variable may come from various sources. In some cases, it is an observable

variable in a data set. Thus, we can directly use it in the estimator in the next section. In

other cases, we need to construct such a control variable, typically from some instrumental

variables Z. Now, we consider two examples of such construction. Suppose X1 is the

endogenous continuous variable and Z is an instrumental variable.

• Following Blundell and Powell (2004), we can assume X1 = h(Z) + V , in which the

error term V is additively separable from the instrument Z. In this case, we can use

the error term V as control variable. The key assumption is a distributional exclusion

restriction: u | X,Z ⇠ u | X, V ⇠ u | V .

• When the reduced form is not additively separable, X1 = h(Z, ⌘), Imbens and Newey

(2009) show that the CDF of ⌘, V = F
X1|Z(X,Z) = F

⌘

(⌘), can be used as the control

variable under the following assumptions: (u, ⌘) and Z are independent, the CDF of ⌘

is strictly increasing, and h(Z, t) is strictly monotonic in t with probability 1.

With Assumption CID(a), we may use the same logic as in the last subsection to show

that �0 is identified with the help of the control variable V . Intuitively, it helps if we

suppose V is discrete. Then the population can be divided into subgroups. Individuals

within each subgroup share the same value of V , and u and X are independent. u follows

some distribution indexed by V . Apply the theorem above to each subgroup, �0 will be

point identified as long as at least one subgroup satisfies the assumptions. Assumption

CID(b) is standard and ensures that the ⌧th quantile of the conditional distribution of u

given V , F�1
0,u|V (⌧, V ), is well defined. Assumption CID(c) is a commonly used normalization

for discrete choice model. Assumption CID(d) imposes similar restrictions as Assumption

IID(d) when endogeneity arises and some control variable is available. Assumption CID(e)

is the rank condition similar as Assumption IID(e).
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Theorem 1.4. Under Assumption CID, for any b 6= �0,

Q(b, F
u|V ) > Q(�0, F0,u|V )

where

Q(b, F
u|V ) = E

Z Z 1

0

⇢
⌧

(Y � 1(b0X � F�1
u|V=v

(⌧, v) � 0))d⌧dF
V

(v)

where the check function ⇢
⌧

(u) = u(1(u > 0)� ⌧).

By Lemma 1, Q(b, F0,u|V ) = E
R

1
2 [Y � F

u|V=v

(b0X)]

2dF
V

(v). Therefore, the criterion

function in the endogenous case is an integral of all the least square criteria evaluated at

each value of the control variable weighted by the density of the control variable. Its sample

analogue is the sum of the least square criterion weighted by the empirical distribution of

the control variable.

1.3 Estimation

In this part, we propose a semiparametric estimator of �0 based on the preceding identifica-

tion results.

We start with the case where the V is an observable control variable. If F0,u|V were

known, we could use the nonlinear least squares method to
p
n-consistently estimate �0 by

minimizing

˜S
n

(�) =
1

n

nX

i=1

[y
i

� F0,u|V (X 0
i

�, V
i

)]

2

that is

˜� = arg min

�2R1+K

˜S
n

(�)

However, the estimator ˜� is not feasible because the function F0,u|V is unknown. Thus we

first need to estimate F0,u|V and replace it in the criterion function with its estimate ˆF
u|V .
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Ichimura (1993) proposes to use the leave-one-out Nadaraya–Watson kernel estimator. In

this chapter, we use the same strategy but with more than one index.

Specifically, we use the estimator

ˆF
u|V (u, v) =

1

nh1nh2n

P
j 6=i

K1(
u�X

0
j

�

h1n
)K2(

v�V

j

h2n
)Y

i

p(u, v)

where K1 and K2 are kernel functions on R, h1n and h2n are two bandwidth sequences that

go to zero as n goes to infinity, and

p(u, v) =
X

j 6=i

K1(
u�X 0

j

�

h1n
)K2(

v � V
j

h2n
)

Therefore, in the case that the control variable V is observed, our semiparametric esti-

mator for �0 could be

ˆ� = arg min

�2R1+K

ˆS
n

(�)

where

ˆS
n

(�) =
1

n

nX

i=1

[y
i

� ˆF0,u|V (X 0
i

�, V
i

)]

2

In many cases, V is not directly observed from data. As discussed in last section, we

estimate V in a first stage regression. Let ˆV be an estimated version of V . We plug ˆV into

the nonparametric estimator of F0,u|V . That is

ˆF
u|V (u, v) =

1

nh1nh2n

P
j 6=i

K1(
u�X

0
j

�

h1n
)K2(

v�V̂

j

h2n
)Y

i

p(u, v)

where

p(u, v) =
X

j 6=i

K1(
u�X 0

j

�

h1n
)K2(

v � ˆV
j

h2n
).
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We finalize our semiparametric estimator of �0 as

ˆ� = arg min

�2R1+K

ˆS
n

(�)

where

ˆS
n

(�) =
1

n

nX

i=1

[y
i

� ˆF0,u|V (X 0
i

�, ˆV
i

)]

2

1.3.1 Response Probability Estimation

In addition to the regression coefficients �0, our semiparametric estimation procedure is also

able to estimate other parameter of interest. The key object is the response probability

given a set of X and how the probability changes if some X is modified exogenously, for

example by policy maker, but keeping other X and the marginal distribution of u untouched.

Blundell and Powell (2003, 2004) propose the average structural function (ASF) to measure

this type of effect.

When all the regressors are exogenous, the marginal probability distribution of the error

term u is F0. Thus, the ASF of some given X equals F0(X
0�0). With the estimator of ˆ�, we

can estimate the index as X 0
ˆ�. Then we can run a nonparametric regression of Y

i

on X
i

ˆ�,

and obtain the estimate for F0, ˆF . The estimator for ASF would be ˆF (X 0
ˆ�).

When some of the regressors are endogenous, the probability distribution of u also

depends on the control variable V . Denote ASF as G(X 0�0). In this case, G(·) can be

identified as the partial mean of the distribution function F0(X
0�0, Vi

) over the control

variable V
i

. That is

G(X 0�0) =
Z

F0(X
0�0, Vi

)dF (V
i

)

In the same way, the index can be estimated as X 0
ˆ�, and then we can obtain the estimate

of the joint distribution function F0 by a nonparametric regression of Y
i

on X
i

ˆ� and ˆV
i

, and
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take a sample average over ˆV
i

.

ˆG(X 0
ˆ�) =

1

n

nX

i=1

ˆF (X 0
ˆ�, ˆV

i

)

1.4 Asymptotic Properties

In this section, we investigate the asymptotic properties of the semiparametric estimator pro-

posed above. We start with results on consistency and then derive the asymptotic normality.

The assumptions needed for each property are listed in the corresponding subsection.

1.4.1 Consistency

Our semiparametric estimator of �0 is consistent under the following assumptions.

Assumption CON. (a) The parameter space B of �0 is a compact subset of R1+K and �0

is in its interior;

(b) Both kernel functions, K1(·) and K2(·), satisfy:
R
K(x)dx = 1;

R
xsK(x)dx = 0, for s =

1, · · · , r � 1, for some r 2 N;
R
xrK(x)dx < 1; K(x) is r times continuously differentiable;

(c) The estimator ˆV
i

of V
i

satisfies max

i

| ˆV
i

� V
i

| = o
p

(1).

Assumption CON(a) is a regularity condition and is standard in the literature. Assump-

tion CON(b) if stronger than what we need to prove consistency, but will be needed for

asymptotic normality. The consistency proof only requires that both K1(·) and K2(·) are

twice differentiable and have bounded second derivatives. Assumption CON(c) requires that

the estimator of the control variable converges to the true control variable uniformly in

probability. This assumption can be easily satisfied by many estimators. For example, for

the separable first stage case in Blundell and Powell (2004), a valid control variable is the

residual of the conditional mean regression. As long as the conditional mean estimator is

uniformly consistent, this control variable estimator satisfies our assumption. Later in the



18

proof of asymptotic distribution, this assumption will get strengthened, where a convergence

rate is assumed.

Theorem 1.5. Under Assumption CID and Assumption CON,

ˆ� = �0 + o
p

(1)

as n ! 1.

We now present the limiting distribution of our semiparametric estimator of �0.

1.4.2 Asymptotic Normality

The limiting distribution of ˆ� is normal under additional assumptions. Because the control

variable may be estimated if not directly observed, this generated regressor is included in

our criterion function. The generated regressor constitutes the main difficulty for the proof

of asymptotic normality. For that we use the general results on a class of semiparametric

optimization estimators provided by Chen, Linton, and Van Keilegom (2003).

When V is constructed via a first stage regression, the construction defines a mapping

V = �(X,Z). Let h ⌘ (F,�) and ˆh ⌘ (

ˆF , ˆ�). Denote the space of h as H = F ⇥ �,

where F and � are the spaces for F and �, respectively. Define the norm of space H as

k h kH= max{k F k1, k � k1}.

Assumption NOR. (a) The bandwidth satisfies h
j

= c
j

n��

j , j = 1, 2, for 1/(2r+1)  �
i

<

1/4;

(b) Let p(·, ·) be the density of X 0� and V . This density function is bounded below by a

positive constant. Both F0 and p are r times differentiable. The r-th derivatives are Lipschitz

continuous uniformly over B;

(c) The matrix E[

@F0(X0
i

�0,V
i

)
@�

@F0(X0
i

�0,V
i

)
@�

0 ] has full rank;
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(d) The estimator ˆV
i

of V
i

satisfies ˆV
i

� V
i

=

1
n

P
n

j=1 gn(Zi

, Z
j

) 

j

+ r
in

with max
i

|r
in

| =
o
p

(n�1/2
), where  

j

is an influence function with E( 

j

| Z
j

) = 0, V ar( 2
j

| Z
j

) < 1 and

E(g
n

(Z
i

, Z
j

)

2
) = o(n);

(e) k ˆ�� � k1= o
p

(n�1/4
);

(f) Pr(

ˆh 2 H) ! 1;

(g) The functional space H satisfies
R1
0

p
logN(�,H, k · kH)d� < 1, where N(�,H, k · kH)

is the covering number with respect to the norm k · kH of the class H. It is the minimal

number of balls of k · kH-radius � needed to cover H.

Assumption NOR(a) is used for reducing asymptotic bias of the estimate of F0 and its

derivatives using under smoothing technique. Assumption NOR(c) rules out the singularity

of the asymptotic variance of our estimator. Assumption NOR(d), used also by Rothe (2009)

in the maximum likelihood setting, requires the estimator of V
i

to follow a certain asymptotic

expansion. This condition is not restrictive. Many parametric and nonparametric estimators

of the control variable fulfill it. For example, in a linear first stage, X
i

= Z 0
i

� + V
i

, with

E(V | Z) = 0. ˆV
i

is the residual of the linear regression, ˆV
i

= X
i

� Z 0
i

�̂. In this case, one

can find  
i

= �V
i

and g
n

(Z
i

, Z
j

) = Z 0
i

(

1
n

P
n

k=1 Z
0
k

Z
k

)

�1Z
j

.

Assumption NOR(f) requires the nonparametric/parametric estimators belong to some

well-behaved functional spaces with probability approaching 1. Assumption NOR(g) imposes

entropy restrictions which are needed as one of the primitive conditions for stochastic

equicontinuity in Chen, Linton, and Van Keilegom (2003). This type of assumption is widely

used in semiparametric estimation studies; see, e.g, Linton, Sperlich, and Van Keilegom

(2008). Many commonly used functional spaces can satisfy this requirement; for example,

the Hölder ball defined in Van der Vaart and Wellner (1996)(p. 154).

Definition. Let ↵ be the largest integer smaller than ↵. Define for any vector k =

(k1, · · · , kd) of d integers the differential operator Dk

=

@

|k|

@x

k1
1 ···@xk

d

d

, where |k| = P
k
i

. Then
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for a function f : X 7! R , let

k f k
↵

= max

|k|↵

sup

x

|Dkf(x)|+max

|k|=↵

sup

x6=y

|Dkf(x)�Dkf(y)|
k x� y k↵�↵

where the suprema are taken over all x, y in the interior of X . Let C↵

M

(X ) be the set of all

continuous function f : X 7! R with k f k
↵

 M .

If we assume that for some bounded M > 0 and ↵ > 1+dv

2 , F ✓ C↵

M

(R1+dv

) and Pr(

ˆF 2
F) ! 1. This assumption restricts the space of conditional distribution for the error term

given the control variable. It is not as strict as it seems and allows for many nonparametric

estimators of F0. By Theorem 2.7.1 in Van der Vaart and Wellner (1996), logN(✏, C↵

1 (X ), k
· k1)  const.⇥ (

1
✏

)

dx/↵. Therefore,
R1
0

p
logN(✏,F , k · k1)d✏ < 1. As for the complexity

of the space �, we take the linear first stage for example: X
i

= Z 0
i

�+V
i

, with E(V | Z) = 0.

In this case, V
i

= �(X
i

, Z
i

) = X
i

� Z 0
i

�, the space of � is indexed by �. This space � is

the “type I class” of Andrews (1994), which is manageable. Therefore, � satisfies Pollard’s

entropy condition, which leads to Assumption NOR(g).

The main results concerning the asymptotic distribution of our semiparametric estimator

are given by the following theorem.

Theorem 1.6. Under Assumption CID, Assumption CON and Assumption NOR,

p
n( ˆ� � �0) N(0,⌦)

as n ! 1, where

⌦ = ⌃

�1
(V1 + V2)⌃

�1

and

⌃ = E[

@F0(x
0
i

�0, v0i)

@�

@F0(x
0
i

�0, v0i)

@�0 ]

V1 = E[

@F0(x
0
i

�0, v0i)

@�

@F0(x
0
i

�0, v0i)

@�0 · F0(x
0
i

�0, v0i)[1� F0(x
0
i

�0, v0i)]]
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V2 = E[⇣ 
i

 0
i

⇣ 0]

where ⇣ = E[g
n

(Z,Z
i

)

@F0(x0
�0,v0)

@�

@F0(x0
�0,v0)

@v

| Z
i

].

1.4.3 Estimation of the Covariance Matrix

In order to perform inference on the parameter, we need consistent estimates of the covariance

matrix ⌦. The first estimator is the plug-in estimator.

ˆ

⌦ =

ˆ

⌃

�1
(

ˆV1 +
ˆV2)

ˆ

⌃

�1

where

ˆ

⌃ =

1

n

nX

i=1

@ ˆF (X 0
i

ˆ�, ˆV
i

)

@�

@ ˆF (X 0
i

ˆ�, ˆV
i

)

@�0

ˆV1 =
1

n

nX

i=1

[

@ ˆF (X 0
i

ˆ�, ˆV
i

)

@�

@ ˆF (X 0
i

ˆ�, ˆV
i

)

@�0
ˆF (X 0

i

ˆ�, ˆV
i

)(1� ˆF (X 0
i

ˆ�, ˆV
i

))]

ˆV2 =
1

n

nX

i=1

ˆ⇣
i

ˆ 
i

ˆ 0
i

ˆ⇣ 0
i

Here ˆ⇣
i

is a consistent estimator of E[g
n

(Z,Z
i

)

@F0(x0
�0,v0)

@�

@F0(x0
�0,v0)

@v

| Z
i

]. We are able to use

several methods to construct ˆ⇣
i

, for example, the fitted value of nonparametric kernel (or

series) regression of ĝ
n

(Z,Z
i

)

@F̂ (X0
i

�̂,V̂

i

)
@�

@F̂ (X0
i

�̂,V̂

i

)
@v

on Z
i

.

It is potentially difficult to directly calculate ˆ

⌃, ˆV1 and ˆV2 because the formulas have

derivatives with respect to � and V involved. Chen, Linton, and Van Keilegom (2003)

propose conditions under which the ordinary nonparametric bootstrap can consistently

estimate the asymptotic distribution of
p
n( ˆ���0). Let {X⇤

i

, Y ⇤
i

, Z⇤
i

}n
i=1 be drawn randomly

with replacement from {X
i

, Y
i

, Z
i

}n
i=1 , and let ˆh⇤

= (

ˆF ⇤, ˆV ⇤
) be the same estimator as

ˆh = (

ˆF , ˆV ) but based on the bootstrap data. Then the bootstrap estimator

ˆ�⇤
= argmin

�2B
1

n

nX

i=1

[Y ⇤
i

� ˆF (X⇤0
i

�, ˆV ⇤
)]

2
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Theorem 1.7. Under Assumption CID, Assumption CON and Assumption NOR,

p
n( ˆ�⇤ � ˆ�) N(0,⌦)

in P ⇤-probability.

This theorem indicates that the re-centered bootstrap estimator ˆ�⇤ has the same asymp-

totic distribution as ˆ�, and therefore the ordinary nonparametric bootstrap procedure is

valid to calculate the confidence regions for the unknown parameter �0.

1.4.4 Model Averaging

In this part, we propose a model averaging estimator for the semiparametric binary response

model. The model averaging estimator is a weighted average of estimators from different

models. We use model averaging here in order to reduce asymptotic variance.

The two models we use here are the preceding semiparametric least square estimator,

called Model 1, and the semiparametric maximum likelihood estimator introduced by Rothe

(2009), called Model 2. Here we restate Rothe’s estimator for completeness.

ˆ�2
= argmax

�2B
L
n

(�)

where

L
n

(�) =
1

n

nX

i=1

(Y
i

log

ˆF (X 0
i

�, ˆV
i

)) + (1� Y
i

) log(1� ˆF (X 0
i

�, ˆV
i

)).

Our model averaging estimator follows the form ˆ�MA

= �ˆ�1
+ (1� �) ˆ�2, where ˆ�i is the

estimator of �0 based on Model i. The influence functions for ˆ�1 and ˆ�2 are

infl1
i

= ⌃

�1
[(Y

i

� F0) · @F0

@�
� E[

@F0

@V

@F0

@�
g
n

(Z,Z
i

) | Z
i

]] 

i

infl2
i

= ⌃

�1
[

Y
i

� F0

F0 · (1� F0)
· @F0

@�
� E[

@F0

@V

@F0

@�
· g

n

(Z,Z
i

)

F0 · (1� F0)
| Z

i

]] 

i
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where F0 ⌘ F0(X
0
i

�0, Vi0).

Theorem 1.8. Let
p
n( ˆ�i � �0) N(0,⌦

i

), we have

p
n( ˆ�MA � �0) N(0,⌦),

where ⌦ = �2⌦1 + (1� �)2⌦2 + �(1� �)(A+ A0
), and A = E(infl1

i

⇥ infl2
0

i

);

To minimize the asymptotic variance of each component of ˆ�MA, We need to solve

the minimization problem on the diagonal of ⌦. Let ˆ�MA

k

be the kth dimension of ˆ�MA,

AV ar( ˆ�i

k

)

3 kth element on the diagonal of ⌦
i

, and Cov( ˆ�1
k

, ˆ�2
k

) the kth element on the

diagonal of A+ A0. For each k, we solve the following minimization problem

min

�

k

2[0,1]
AV ar( ˆ�MA

k

) = �2
k

AV ar( ˆ�1
k

) + (1� �
k

)

2AV ar( ˆ�2
k

) + �
k

(1� �
k

)Cov( ˆ�1
k

, ˆ�2
k

)

By simple algebra, we can get the optimal �
k

is �⇤
k

=

AV ar(�̂2
k

)�Cov(�̂1
k

,�̂

2
k

)

AV ar(�̂1
k

)+AV ar(�̂2
k

)�2Cov(�̂1
k

,�̂

2
k

)
.

Corollary 1.9. When �
k

= �⇤
k

, AV ar( ˆ�MA

k

)  min{AV ar( ˆ�1
k

), AV ar( ˆ�2
k

)}.

An estimator of �⇤
k

can be formed by the variances of these two estimators and their

covariance.

Estimation of the covariance between ˆ�1 and ˆ�2 may pose some obstacle here. One way to

calculate this covariance, including the two variances, is bootstrapping. Let {(Y ⇤
i

, X⇤
i

, Z⇤
i

)}n
i=1

be drawn randomly with replacement from {(Y
i

, X
i

, Z
i

)}n
i=1. Let ˆ�1⇤ and ˆ�2⇤ be the minimiz-

ers of the criterion function based on the bootstrap data using least square and maximum

likelihood, respectively. Then resample hundreds of times and we can get an estimator of

the covariance between ˆ�1 and ˆ�2.

But bootstrapping is computationally intensive. if we have large data set or a complicated

estimator this process can be extremely expensive. Another way to calculate the covariance

is using influence function of each estimator. We calculate the estimate of the influence
3“AV ar” means “asymptotic variance” in this chapter.
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function for each estimator and for each observation, and stack them. Then we can calculate

a consistent estimate of both the variance and the covariance.

1.5 Monte Carlo Simulation

In order to investigate the finite sample performance of our estimator, we provide small-scale

Monte Carlo simulation in this part. In each experiment, we compare the estimation results

of our semiparametric nonlinear least square estimator and the model averaging estimator

with the semiparametric maximum likelihood estimator proposed by Rothe (2009). To play

it fair, we adopt the same experiment setup as in Rothe (2009).

Y = I(X1 + Z1�1 > u)

X1 = �0 + Z1�1 + Z2�2 + Z3�3 + V

where �1 = 1

4 and � = (1, 23 ,
2
3 ,

1
3)

0. Z1 follows exponential distribution truncated from

above at 3 and have mean zero and variance two. Z2 , Z3 and V follow standard normal

distribution. u = ⌘ + V . In different designs, we change the joint distribution of the error

terms (u, V ).

For this experiment, it is natural to use V as the control variable, because conditional on

V , other components of X1 are the instruments Z1, Z2 and Z3, which are all independent of

⌘. Therefore, X1 ? u | V . In this case, to correspond with Assumption NOR(d), ˆ

 = � ˆV ,

and ĝ
n

(Z
i

, Z
j

) = Z 0
i

(

1
n

P
k

Z
k

Z 0
k

)Z
j

.

We consider three data-generating designs by changing the distribution of ⌘:

1. ⌘ ⇠ N(0, 5)

2. ⌘ ⇠ 0.8N(�1, 0.6) + 0.2N(4, 2)

4In order to facility comparison of simulation results, we use this normalization which is different from
the one in Section 2. These two ways of normalization are equivalent as long as the sign of �1 is positive.
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3. ⌘ ⇠ N(0, exp(0.1 + 0.5⇥ (X1 + Z1)))

Three sample sizes are used for each design: N=250, 500 and 1000. And for each experiment

we carry out 5000 replications. The bandwidths are chosen, following Hardle, Hall, Ichimura,

et al. (1993) and Delecroix, Hristache, and Patilea (2006), jointly with the other parameters

in the maximization. They are treated as additional parameters which is also the same as

Rothe (2009).

The results of experiments for all three designs are summarized in Table 1-3. The true

value of � is 1. “KS” corresponds to Rothe’s estimator, “LS” our least square estimator, and

“MA” our model averaging estimator. For each estimator, we report the mean bias, standard

deviation, mean squared error, median bias and the coverage rate of the asymptotic and

bootstrap confidence intervals with nominal level of 90%.

Table 1 illustrates the performance of our estimators under Design 1. In general, least

square estimator and model averaging estimator have smaller biases and standard deviations

than Rothe’s semiparametric maximum likelihood estimator. In this design, among all the

estimators, model averaging estimator performs best. The asymptotic confidence intervals

are all below the nominal level 90%, but the bootstrap confidence intervals are all above the

nominal level with proper lengths.

Table 2 shows the simulation results under Design 2. Least square estimator and model

averaging estimator also have smaller biases than Rothe’s. Meanwhile, the model averaging

estimator has the smallest standard deviations across all the sample sizes. As for the

confidence intervals, as sample size increases, the coverage rates of asymptotic intervals

for least square and model averaging estimators are getting close the nominal level. The

bootstrap confidence intervals all have coverage level above the nominal level.

Table 3 demonstrates the performance of our estimators under Design 3, the most complex

one. Least square and model averaging estimators still have smaller mean biases and standard

deviations than semiparametric maximum likelihood estimator. For n=250, model averaging

estimator has smaller standard deviation than both estimators it takes averages. This is
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consistent with our theory. For larger sample n=500 and n=1000, the “ordinary” least

square estimator performs best.

In general, our least square and model averaging estimators perform better than the max-

imum likelihood estimator in these finite-sample experiments. In most cases, the standard

deviations of model averaging estimators are the smallest amongst all the three estimators,

which is consistent with our preceding theory about derivation of the model averaging

estimators. We showed the coverage rates and interval lengths for both asymptotic and

bootstrap confidence intervals at nominal level 90%. From all the three designs, we can

conclude that compared to bootstrap, the asymptotic confidence intervals in general have

coverage rates lower than the nominal rate. Therefore, in finite sample, bootstrap confidence

interval is more reliable.

1.6 An Empirical Example: Economic Conditions and

Civil Conflicts

In this section we apply our semiparametric binary response estimator to investigate the

question whether economic conditions impact the likelihood of civil conflict. This example

is taken from Miguel, Satyanath, and Sergenti (2004). Despite the fact that a large body

of studies have shown the association between economic conditions and civil conflict, they

argue that the existing literature does not adequately address the endogeneity of economic

variables to civil war and therefore the causal relationship has not been established. One of

the sources of the endogeneity can be omitted variable bias: fast-growing countries may be

different from slow-growing counties in many government institutional qualities, which could

drive both economic growth and civil conflicts, producing estimate bias.

In their chapter, Miguel et al. use variation in rainfall as an instrumental variable for

income growth in order to solve the endogeneity issue and estimate the impact of economic
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growth on civil conflict. Rainfall variation is a plausible instrument for economic growth in

economies that mostly rely on rain-fed agriculture.

Their key finding is GDP growth is significantly negatively related to the incidence of

civil conflict. The estimation method they use with the instrument is two-stage least square

(IV-2SLS), which is a linear probability model. The reason they explain why they do not

use Rivers and Vuong (1988) method is that strong specification assumptions are required

to justify IV-Probit. It is widely acknowledged that although parametric specification of the

error terms in a binary response model can largely facilitate estimation, misspecification can

make the estimators inconsistent. Therefore, we use our semiparametric estimation method

to reanalyze the data.

Miguel et al. use data of civil conflict, rainfall and economic growth from 41 African

countries during 1981-1999. These countries are all in the Sub-Saharan African region, and

mostly non-industrialized countries without extensive irrigation systems, which is ideal for

rainfall variation to be a valid instrument. The civil conflict data are from the Armed Conflict

Data database developed by the International Peace Research Institute of Oslo, Norway, and

the University of Uppsala, Sweden. This database records all conflicts with a threshold of

25 battle deaths per year. The information about rainfall variation is based on the Global

Precipitation Climatology Project. This database includes both gauge and satellite data,

avoiding systematic errors in gauge measures. Data on the other country characteristics are

drawn mainly from Fearon and Laitin (2003).

The dependent variable is binary, the incidence of civil war in country i in year t

(conflict
it

). The countries with a civil conflict with at least 25 battle deaths per year are

denoted ones, and other observations zeros. Economic growth is measured by GDP per capita

growth rate of country i in year t (growth
it

). Rainfall growth rate (�R
it

) is the proportional

change in rainfall from previous year. Other country characteristics (X
it

) include logarithm

of GDP per capita in year 1979, democracy in previous year, ethnolinguistic fractionalization,
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religious fractionalization, oil-exporting country, logarithm of mountainous, and logarithm

of national population in previous year.

The model we want to estimate is

conflict
it

= 1[X 0
it

� + �0growthit

+ �1growthi,t�1 + �year
t

� ✏
it

]

In this model, growth
it

is considered endogenous, and rainfall variation is used as instrument

to correct. As in Miguel, Satyanath, and Sergenti (2004), we assume the first stage equation

is

growth
it

= a+X 0
it

b+ c0�R
it

+ c1�R
i,t�1 + dyear

t

+ e
it

We estimate this first stage equation using ordinary least square, and use its residual e
it

as a control variable. The variable e
it

can be a valid control variable because it represents

all the factors that are associated with economic growth except X
it

and rainfall variation.

Conditional on e
it

, economic growth should be independent of ✏
it

.

We apply Probit, IV-Probit, and our semiparametric nonlinear least square estimators

to estimate parameters in the equations above. Note that these estimation methods use

different normalizations. In order to compare them, we report the average marginal effects

in Table 4.

Column 1 shows the result of first stage estimate. It is simply OLS of the endogenous

variable growth
it

on the instruments including those two rainfall variation variables �R
it

and �R
i,t�1. It shows that the relationship between economic growth and rainfall variation

is positive, and this relationship is significant at over 95% confidence. The residual from

this regression will be used as a control variable later in our semiparametric least square

regression. Column 2 is the two-stage least square estimate.

Column 3 and 4 show the estimates using Probit without instrument and IV-Probit.

When we do not consider endogenous economic growth, Probit regression shows a negative

relationship between economic growth and the likelihood of civil conflict. This relationship
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Table 1.4: Average Marginal Effects of Economic Growth on Civil Conflicts
Variables First Stage 2SLS Probit IV-Probit SLS IV-SLS

growth_t
Economic Growth Rate, t -0.528 -0.350* -0.725 -0.332 -0.316

(1.434) (0.201) (1.404) (0.368) (0.397)
Economic Growth Rate, t-1 -2.076** -0.127 -0.126 -0.042 -0.069

(1.030) (0.198) (0.198) (0.110) (0.103)
Log(GDP per capita), 1979 -0.002 -0.043 -0.063*** -0.063*** -0.011 -0.028**

(0.002) (0.049) (0.023) (0.023) (0.014) (0.014)
Democracy, t-1 0.000 0.003 0.001 0.001 -0.002 0.001

(0.001) (0.004) (0.003) (0.003) (0.005) (0.004)
Ethnolinguistic Fractionalization 0.001 0.226 0.220*** 0.220*** 0.105 0.099

(0.013) (0.277) (0.081) (0.087) (0.069) (0.062)
Religious Fractionalization 0.002 -0.236 -0.271*** -0.272*** -0.010 -0.098*

(0.012) (0.241) (0.098) (0.098) (0.068) (0.060)
Oil-Exporting Country -0.007 0.044 0.015 0.013 0.056** -0.006

(0.004) (0.214) (0.050) (0.051) (0.028) (0.027)
Log(mountainous) 0.000 0.077* 0.072*** 0.072*** 0.058** 0.111***

(0.001) (0.039) (0.015) (0.013) (0.028) (0.031)
Log(national population), t-1 -0.001 0.068* 0.074*** 0.074*** 0.056** 0.016

(0.002) (0..050) (0.016) (0.016) (0.026) (0.024)
Growth in Rainfall, t 0.055***

(0.016)
Growth in Rainfall, t-1 0.034**

(0.014)

Note: Standard errors are in parentheses. "SLS" is the semiparametric least square estimator without control
variables. "IV-SLS" is the semiparametric least square estimator with control variable to correct endogeneity.
* Significantly different from zero at 90 percent confidence; ** Significantly different from zero at 95 percent
confidence; *** Significantly different from zero at 99 percent confidence.
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is significant at 90% confidence with the current growth, but not the lagged one. When we

consider economic growth may be endogenous, using IV-Probit is one option; see Smith and

Blundell (1986) and Rivers and Vuong (1988). The result shows that although the average

marginal effect of current economic growth doubles compared to Probit, it is not significant

any more. The lagged growth is also not significant.

Column 5 and 6 show the estimates of our semiparametric least square estimator. Column

5 considers the current economic growth as an exogenous variable. The average marginal

effect of current growth is not much different from the one of Probit, but because of its

large standard error, it is not significant. And so is the lagged economic growth. The

last column shows our semiparametric least square estimator for binary response model

with endogeneity. Compared to the exogenous least square, the average marginal effects

of both current economic growth and lagged economic growth do not change much. The

standard errors of these two estimates are too large to conclude there is significantly negative

relationship between economic growth and the likelihood of civil conflict. The estimates of

other average marginal effects in these models are with the expected sign.

Miguel, Satyanath, and Sergenti (2004) use linear two-stage least square to estimate the

above model and find growth is strongly negatively related to civil conflict. The reason why

they choose the linear probability model instead of other available estimation methods is

that they think specification assumptions are strong to justify IV-Probit. IV-Probit assumes

the distribution of error terms is jointly normal distribution. That my be true, but linear

probability models have their own flaws. For example, the fitted value using linear probability

model may be outside the unit interval, and the marginal effect is restricted to be the same

regardless of the initial value of the regressors. The semiparametric least square estimation

proposed in this chapter fits this study better, because on one hand it is a nonlinear model,

on the other hand it does not specify error term distribution parametrically. The results

we found are that although economic growth is negatively related to the likelihood of civil

conflict, the effect of growth is not significant.
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1.7 Conclusions

This chapter proposes a semiparametric nonlinear least square estimator for the binary

response model with an endogenous regressor. The estimator is an extension of semipara-

metric least square estimator for the single index model by Ichimura (1993) that accounts for

regressor endogeneity. The identification is achieved based on a control variable approach.

We also extend Manski’s identification conditions for quantile independence and present a set

of conditions that allow regressors with bounded support. Consistency and asymptotic nor-

mality are established for the estimator, and we prove the ordinary nonparametric bootstrap

works for estimating the covariance matrix.

To the best of our knowledge the current available estimators for semiparametric binary

response model with endogeneity via the control variable approach include the extension

of matching estimator by Blundell and Powell (2004) and maximum likelihood estimator

by Rothe (2009). There is little evidence of which estimator would dominate the others

regarding efficiency. Therefore, we propose a model averaging estimator, which combines our

semiparametric least square estimator and Rothe’s maximum likelihood estimator, in order

to improve efficiency. The Monte Carlo simulation demonstrates that in general our least

square estimator and model averaging estimator behave better than Rothe’s semiparametric

maximum likelihood estimator. We apply the proposed least square estimator to study the

effect of economic conditions on civil conflicts as in Miguel, Satyanath, and Sergenti (2004).

The rainfall variation serves as the instrumental variable for economic growth here. The

findings suggest smaller and insignificant effect of economic growth on the likelihood of civil

conflicts in comparison with the two-stage least square estimates in Miguel, Satyanath, and

Sergenti (2004).
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APPENDIX:

In this appendix, we provide the proofs of Theorem 1-6, Proposition 1, Corollary 1 and several

lemmas used to prove the theorems. Proposition 1 restates similar results in Horowitz (2009), but

present a different proof. Theorem 2 and 3 are the identification results, which serve as necessary

conditions for consistency and asymptotic normality. Lemma 1 establishes an equivalence between

integrated maximum score criterion and least square criterion and is the foundation of our estimation

method. Theorem 3 proves consistency of our estimator via verifying the conditions in Newey and

McFadden handbook chapter. Lemma 1-7 are needed for the proof of Theorem 4, the asymptotic

distribution. Theorem 5 shows that bootstrap standard error is valid. Theorem 6 and Corollary

1 illustrate that model averaging estimator is asymptotically normal and there exists an optimal

weight.

Proof of Proposition 1:

Proof. Let Q(b, c) = E[|Y � 1(b1X +

˜X 0
˜b > c)|]. By simple algebra,

Q(b, c) = E|Y � 1(b1X +

˜X 0
˜b > c)| = E[Y � (2Y � 1) · 1(b1X +

˜X 0
˜b > c)]

Define Q(b, c | x, x̃) = E{[Y � (2Y � 1) · 1(b1X +

˜X 0
˜b > c)] | X = x, ˜X = x̃}. Therefore

Q(b, c)�Q(�0, c0) = E[Q(b, c | X, ˜X)�Q(�0, c0 | X, ˜X)]

= E{(2P (Y = 1|X, ˜X)� 1)[1(�0,1X +

˜X 0
˜�0 > c0)� 1(b1X +

˜X 0
˜b > c)]}

By assumption, P (Y = 1|X, ˜X) > 1
2 if �0,1X +

˜X 0
˜�0 > c0 and P (Y = 1|X, ˜X)  1

2 if �0,1X +

˜X 0
˜�0  c0. Therefore Q(b, c | X, ˜X) � Q(�0, c0 | X, ˜X) � 0 everywhere. Then it follows that

Q(b, c)�Q(�0, c0) is always non-negative, and Q(b, c)�Q(�0, c0) = 0 if b = �0and c = c0.

Next, we show that for any b 6= �0, 8c, c0, such that k b k= 1, Q(b, c) > Q(�0, c0), i.e. �0 is

the unique minimizer of Q(b). Suppose it does not hold, i.e. 9b⇤ 6= �0 such that k b⇤ k= 1 and

Q(b⇤, c⇤) = Q(�0, c0), for some c⇤. Since Q(b, c|X, ˜X)�Q(�0, c0|X, ˜X) � 0 and Q(b, c)�Q(�0, c0) =

E{E[Q(b, c|X, ˜X)�Q(�0, c0|X, ˜X) | ˜X]}, it follows that E[Q(b⇤, c⇤|X, ˜X)�Q(�0, c0|X, ˜X) | ˜X] = 0
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almost everywhere on the support of ˜X. Define Q(b, c| ˜X) = E[Q(b, c|X, ˜X) | ˜X]. Then it is

necessary that Q(b⇤, c⇤| ˜X) = Q(�0, c0| ˜X) almost everywhere on ˜C.

For any x̃ 2 ˜C, by assumptions that the support of X conditional on ˜X = x̃ contains an interval

[a
x̃

, b
x̃

] and that

sup

x2[a
x̃

,b

x̃

]
Pr(Y = 1 | X = x, ˜X = x̃) >

1

2

and

inf

x2[a
x̃

,b

x̃

]
Pr(Y = 1 | X = x, ˜X = x̃) <

1

2

,

there exists x0
x̃

2 [a
x̃

, b
x̃

] such that �0,1x0
x̃

+

˜�0
0
x̃ = c0. We claim that x0

x̃

also satisfies b⇤1x0
x̃

+

˜b⇤
0
x̃ = c⇤

almost everywhere on ˜C. If not, without loss of generality, assume that b⇤1x0
x̃

+

˜b⇤
0
x̃ > c⇤ and �0,1 > 0.

Then there exits ✏ > 0 such that for any x
x̃

2 (x0
x̃

� ✏, x0
x̃

), �0,1xx̃ + ˜�0
0x̃ < c0 and b⇤1xx̃ + ˜b⇤

0
x̃ > c⇤,

because of the continuity of X. In this case, Q(b⇤, c⇤| ˜X = x̃) 6= Q(�0, c0| ˜X = x̃), which can only

happen for finite points on ˜C.

Therefore, we have5

x0
x̃

+

˜�0
0x̃ = c0 ) x0

x̃

+

˜b⇤
0
x̃ = c⇤ ) (

˜�0 � ˜b⇤)x̃ = c0 � c⇤

almost everywhere on ˜C. So when E[(

1

x̃
)(1, x̃0)1(x̃ 2 ˜C)] has full rank. �0 is identified.

Proof of Theorem 1:

Proof. Let b⌧ ⌘ F�1
(⌧) and �⌧

0 ⌘ F�1
0 (⌧). Define

q(⌧, b, b⌧ ) = E⇢
⌧

(Y � 1(b1X1 +
˜b0 ˜X � b⌧ � 0)).

5Without loss of generality, we use �0,1 = 1 and b⇤1 = 1 as normalization instead. This would
simplify our proof and meanwhile this is equivalent to the unit Euclidean norm.
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By dominated convergence theorem, the criterion function

Q(b, F ) = E

Z 1

0
⇢
⌧

(Y � 1(b0X � F�1
(⌧) � 0))d⌧

=

Z 1

0
E⇢

⌧

(Y � 1(b0X � F�1
(⌧) � 0))d⌧

=

Z 1

0
q(⌧, b, b⌧ )d⌧

It is sufficient to show that for any (b, b⌧ ) 6= (�,�⌧

0 ), q(⌧, b, b⌧ ) � q(⌧,�,�⌧

0 ) for ⌧ 2 (0, 1) and

q(⌧, b, b⌧ ) > q(⌧,�,�⌧

0 ) for ⌧ 2 (�, ¯�).

q(⌧, b, b⌧ ) = E{E[⇢
⌧

(Y � 1(b1X1 +
˜b0 ˜X � b⌧ � 0)) | X1, ˜X]}

From simple algebra, we can get

E[⇢
⌧

(Y � 1(b1X1 +
˜b0 ˜X � b⌧ � 0)) | X1, ˜X] = (1� ⌧)P + 1(b1X1 +

˜b0 ˜X � b⌧ � 0) · (⌧ � P )

where P ⌘ Pr(Y = 1 | X1, ˜X) = E(Y = 1 | X1, ˜X). By the independence between ✏ and (X1, ˜X),

P = F0(�1X1 +
˜�0

˜X). Since F0 is continuous and strictly increasing, we have for any ⌧ 2 (0, 1),

�1X1 +
˜�0

˜X � �⌧

0 () P � ⌧ (1.4)

�1X1 +
˜�0

˜X < �⌧

0 () P < ⌧ (1.5)

Therefore, F�1
Y |X1,X̃

(1 � ⌧ | X1 = x1, ˜X = x̃) = 1(�1x1 + ˜�0x̃ � �⌧

0 � 0). For any (b, b⌧ ) 6= (�,�⌧

0 ),

⌧ 2 (0, 1),

E[⇢
⌧

(Y � 1(b1X1 +
˜b0 ˜X � b⌧ � 0)) | X1, ˜X]� E[⇢

⌧

(Y � 1(�1X1 +
˜�0

˜X � �⌧

0 � 0)) | X1, ˜X]

= (⌧ � P )[1(b1X1 +
˜b0 ˜X � b⌧ � 0)� 1(�1X1 +

˜�0
˜X � �⌧

0 � 0)]

which is always nonnegative and equals zero if (b, b⌧ ) = (�,�⌧

0 ). So for any ⌧ 2 (0, 1), q(⌧, b, b⌧ ) �
q(⌧,�,�⌧

0 ).
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Consider some � 2 (�, ¯�) in assumption, for any x̃ 2 ˜X , there exists x̄1, x1 2 (a
x̃

, b
x̃

) such that

�1x̄1 + ˜�0x̃ > ��

0 and �1x1 +
˜�0x̃ < ��

0 because F0 is continuous and strictly increasing by (1.4) and

(1.5). Thus, there exits some x⇤1 2 (a�
x̃

, b�
x̃

) such that �1x
⇤
1 +

˜�0x̃ = ��

0 by Assumption IID(d).

Suppose there exists (b, b�) 6= (�,��

0 ) such that q(�, b, b�) = q(�,�,��

0 ). Then we must have

1(b1X1 +
˜b0 ˜X � b� � 0) = 1(�1X1 +

˜�0
˜X � ��

0 � 0) almost surely on (a
x̃

, b
x̃

) given ˜X = x̃. We

claim that b1x
⇤
1 +

˜b0x̃ = b� must also hold. If not, by the continuity of the conditional support

of X1 given ˜X = x̃, it is easy to find either a left or a right neighborhood of x⇤1, N
�

(x⇤1), such

that1(b1X1 +
˜b0x̃ � b� � 0) 6= 1(�1X1 +

˜�0x̃ � ��

0 � 0) for any X1 2 N
�

(x⇤1) \ (a
x̃

, b
x̃

). Therefore,

q(⌧, b, b⌧ ) 6= q(⌧,�,�⌧

0 ). For example, suppose b1x
⇤
1 +

˜b0x̃ > b�, without loss of generality assume

�1 > 0 and b1 > 0. Let � =

b

��b̃

0
x̃

b1
and it is obvious that for any X1 2 (x⇤1 � �, x⇤1) \ (a

x̃

, b
x̃

), we

have �1X1 +
˜�0x̃� ��

0 < 0 and b1X1 +
˜b0x̃� b� > 0 simultaneously.

Now we have both �1x
⇤
1+

˜�0x̃ = ��

0 and b1x
⇤
1+

˜b0x̃ = b�. Since x̃ is arbitrary and by Assumption

IID(e), (b, b�) = (�,��

0 ).

Proof of Theorem 2:

Proof. For any (b1,˜b) 6= (�1, ˜�), we have proved in Theorem 2

E⇢
⌧

(Y � 1(b0X � F�1
(⌧, v) � 0)) � E⇢

⌧

(Y � 1(�0X � F�1
(⌧, v) � 0))

for any ⌧2 (0, 1) and v 2 supp(V ). Therefore, for any v 2 supp(V ),

E

Z 1

0
⇢
⌧

(Y � 1(b0X � F�1
(⌧, v) � 0))d⌧ � E

Z 1

0
⇢
⌧

(Y � 1(�0X � F�1
(⌧, v) � 0))d⌧

For v0 2 V, with Assumption CID(d) and Assumption CID(e), use similar argument in the proof

of Theorem 2 and we get

E

Z 1

0
⇢
⌧

(Y � 1(b0X � F�1
(⌧, v0) � 0))d⌧ > E

Z 1

0
⇢
⌧

(Y � 1(�0X � F�1
(⌧, v0) � 0))d⌧
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Thus, because V has a positive measure,

E

Z

V

Z 1

0
⇢
⌧

(Y � 1(b0X � F�1
(⌧, v0) � 0))d⌧dF

V

(v)

>E

Z

V

Z 1

0
⇢
⌧

(Y � 1(�0X � F�1
(⌧, v0) � 0))d⌧dF

V

(v)

In addition,

E

Z Z 1

0
⇢
⌧

(Y � 1(b0X � F�1
(⌧, v0) � 0))d⌧dF

V

(v)

>E

Z Z 1

0
⇢
⌧

(Y � 1(�0X � F�1
(⌧, v0) � 0))d⌧dF

V

(v)

Proof of Lemma 1:

Proof. Left hand side

⇢
⌧

(Y � 1(b1X1 +
˜b0 ˜X � F�1

(⌧) � 0)) = [Y � 1(b1X1 +
˜b0 ˜X � F�1

(⌧) � 0)]

·[1{Y � 1(b1X1 +
˜b0 ˜X � F�1

(⌧) � 0)}� ⌧ ]

=[Y � 1(b1X1 +
˜b0 ˜X � F�1

(⌧) � 0)]

·[1{Y = 1}1{1(b1X1 +
˜b0 ˜X � F�1

(⌧) � 0) = 0}� ⌧ ]

=[Y � 1(b1X1 +
˜b0 ˜X � F�1

(⌧) � 0)]

·[1{Y = 1}1(b1X1 +
˜b0 ˜X � F�1

(⌧) < 0)� ⌧ ]

When Y = 1, left hand side equals

Z 1

0
[1(b1X1 +

˜b0 ˜X � F�1
(⌧) < 0)� ⌧ + ⌧ · 1(b1X1 +

˜b0 ˜X � F�1
(⌧) � 0)]d⌧



43

where
R 1
0 1(b1X1 +

˜b0 ˜X � F�1
(⌧) < 0)d⌧ =

R 1
F (b1X1+b̃

0
X̃) 1d⌧ = 1� F (b1X1 +

˜b0 ˜X). Then left hand

equals

1� F (b1X1 +
˜b0 ˜X) +

Z 1

0
[�⌧ + ⌧ · 1(b1X1 +

˜b0 ˜X � F�1
(⌧) � 0)]d⌧

=

1

2

� F (b1X1 +
˜b0 ˜X) +

Z 1

0
[⌧ · 1(b1X1 +

˜b0 ˜X � F�1
(⌧) � 0]d⌧

=

1

2

� F (b1X1 +
˜b0 ˜X) +

1

2

F (b1X1 +
˜b0 ˜X)

2

which equals right hand side.

When Y = 0, left hand side equals

Z 1

0
[1(b1X1 +

˜b0 ˜X � F�1
(⌧) � 0) · ⌧ ]d⌧ =

1

2

F (b1X1 +
˜b0 ˜X)

2

which equals right hand side.

Proof of Theorem 3:

Proof. We follow Therorem 2.1 in Newey and McFadden (1994) handbook chapter to prove the

consistency of ˆ�. It requires that

(i) S0(�) is uniquely maximized at �0. This part can be proved by the identification results

above.

(ii) The parameter space is compact. This is satisfied by the assumption B is compact.

(iii) S0(�) is continuous. S0(�) = E[Y
i

�F0(X
0
i

�, v
i0)]

2. The continuity of S0 regarding � holds

because we assume F0 is a continuous CDF.

(iv)sup
�2B | ˆS

n

(�)� S0(�)| ! 0. Uniform convergence of the criterion function. First, define an

infeasible criterion function

˜S
n

(�) =
1

n

nX

i=1

[Y
i

� F0(X
0
i

�, V
i0)]

2
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sup

�2B
| ˆS

n

(�)� S0(�)| = sup

�2B
| ˆS

n

(�)� ˜S
n

(�) + ˜S
n

(�)� S0(�)|

 sup

�2B
| ˆS

n

(�)� ˜S
n

(�)|+ sup

�2B
| ˜S

n

(�)� S0(�)|

First term | ˆS
n

(�) � ˜S
n

(�)| = 1
n

P
n

i=1[2Yi � ˆF (X 0
i

�, ˆV
i

) � F0(X
0
i

�, V
i0)][F0(X

0
i

�, V
i0) � ˆF (X 0

i

�, ˆV
i

)],

therefore

sup

�2B
| ˆS

n

(�)� ˜S
n

(�)|  2 sup

�2B
[F0(X

0
i

�, V
i0)� ˆF (X 0

i

�, ˆV
i

)]

2 sup

�2B
|F0(X

0
i

�, V
i0)� F0(X

0
i

�, ˆV
i

)|+ 2 sup

�2B
|F0(X

0
i

�, ˆV
i

)� ˆF (X 0
i

�, ˆV
i

)|

sup

�2B |F0(X
0
i

�, ˆV
i

)� ˆF (X 0
i

�, ˆV
i

)| = o
p

(1) because of the uniform convergence of kernel estimator.

sup

�2B |F0(X
0
i

�, V
i0)�F0(X

0
i

�, ˆV
i

)| = o
p

(1) because differentiability of F0 and max
i

| ˆV
i

�V0i| = o
p

(1).

Second term, by uniform law of large number, sup
�2B | ˜S

n

(�)� S0(�)| = o
p

(1) .

Therefore, sup
�2B | ˆS

n

(�)� S0(�)| = o
p

(1).

The proof of asymptotic normality is basically done by verifying the conditions given in Theorem

2 in Chen, Linton, and Van Keilegom (2003). In their chapter, they start with moment conditions.

So we first need to form the corresponding first order condition of our criterion function. Let

M(�, h(·,�)) = E[(Y
i

� F (X 0
i

�, V
i

)) · @F (X 0
i

�, V
i

)

@�
]

where h ⌘ (F, V ). Also, M(�, h0) = 0 at � = �0. Define M
n

(�, h) = 1
n

P
n

i=1[(Yi � F (X 0
i

�, V
i

)) ·
@F (X0

i

�,V

i

)
@�

] .

Lemma 1.10. kM
n

(

ˆ�,ˆh)k = inf
�2BkMn

(�, ˆh)k+ o
p

(1/
p
n)

Proof. Because M
n

(

ˆ�, ˆh) is the partial derivative of ˆS
n

with respect to �. By first order condition

of optimization, kM
n

(

ˆ�,ˆh)k = 0, which obviously satisfies this condition.
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Lemma 1.11. The ordinary derivative �1(�, h0) ⌘ @M(�,h0)
@�

in � of M(�, h0) exists for a neigh-

borhood of �0, and is continuous at � = �0.

Proof.

�1(�, h0) = E[(Y
i

� F0(X
0
i

�, V
i0))

@2F0(X
0
i

�, V
i0)

@�@�0 � @F0(X
0
i

�, V
i0)

@�

@F0(X
0
i

�, V
i0)

@�0 ]

=� E
@F0(X

0
i

�, V
i0)

@�

@F0(X
0
i

�, V
i0)

@�0

This lemma is then proved with Assumption NOR(b).

Lemma 1.12. The matrix �1 ⌘ �1(�0, h0) is of full rank.

Proof. This directly follows Assumption NOR(c).

Lemma 1.13. For all � 2 B the pathwise derivative �2(�, h0)[h � h0] of M(�, h0) exists in all

directions [h� h0] and for all (�, h) with a positive sequence �
n

= o(1): (i) kM(�, h)�M(�, h0)�
�2(�, h0)[h�h0]k  ckh�h0kH for a constant c � 0; (ii) k�2(�, h0)[h�h0]��2(�0, h0)[h�h0]k 
o(1)�

n

.

Proof. We first calculate the pathwise derivatives. By definition,

�2(�, h)[¯h� h] = lim

⌧!0

M(�, h+ ⌧(¯h� h))�M(�, h)

⌧

We obtain that

�2(�, h)[¯h� h] = E[�@F (X 0
i

�, V
i

)

@V
i

@F (X 0
i

�, V
i

)

@�
[

¯V � V ]

�@F (X 0
i

�, V
i

)

@�
[

¯F � F ]

�(Y
i

� F (X 0
i

�, V
i

))

@2F (X 0
i

�, V
i

)

@�@V
i

[

¯V � V ]
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Since E(Y | X 0�, V ) = F (X 0�, V ), using law of iterated exceptions on the pathwise derivative

above, we can get

�(�0, h0)[h� h0] = E[�@F (X 0
i

�, V
i

)

@V
i

@F (X 0
i

�, V
i

)

@�
[V � V0]� @F (X 0

i

�, V
i

)

@�
[F � F0]

Because our function F satisfy a Lipschitz property, the two inequalities holds.

Lemma 1.14. ˆh 2 H with probability tending to one and kˆh� h0kH = o
p

(n�1/4
).

Proof. k ˆV � V0k = o
p

(n�1/4
) comes directly from Assumption NOR(e).

k ˆF (X 0�, ˆV )�F (X 0�, V ) kk ˆF (·, ˆV )� ˆF (·, V ) k + k ˆF (·, V )�F (·, V ) k. Consider k ˆF (·, ˆV )�
ˆF (·, V ) k and k ˆF (·, V )� F (·, V ) k, respectively.

k ˆF (X 0�, ˆV )� ˆF (X 0�, V ) k =k
1
n

P
n

i=1K1(
X

0
��X

0
i

�

h1
)K2(

V̂�V̂

i

h2
)Y

i

1
n

P
n

i=1K1(
X

0
��X

0
i

�

h1
)K2(

V̂�V̂

i

h2
)

�
1
n

P
n

i=1K1(
X

0
��X

0
i

�

h1
)K2(

V�V

i

h2
)Y

i

1
n

P
n

i=1K1(
X

0
��X

0
i

�

h1
)K2(

V�V

i

h2
)

k

=k @ ˆF

@V
(

ˆV � V ) k +o
p

(n�1/4
)

Denote F =

m

f

and ˆF =

m̂

f̂

. Then @F̂

@V

=

@m̂

@V

f� @f̂

@V

m

f̂

2
. Here we only consider @f̂

@V

m(

ˆV � V ), the

other term can be treated in the same way.

@ ˆf

@V
m(

ˆV � V ) =

1

nh2dv2

nX

i=1

K1
@K2

@V

nX

j=1

Y
j

K1K2 · ( ˆV � V )

=

1

n2hdv2

nX

i=1

K1
@K2

@V

nX

j=1

Y
j

K1K2 · 1
n

nX

k=1

g
n

(Z,Z
k

) 

k

+ o
p

(n�1/2
)

=

1

n3hdv2

nX

i=1

nX

j=1

nX

k=1

K1i
@K2i

@V
Y
j

K1jK2jgn(Z,Z
k

) 

k

+ o
p

(n�1/2
)

= O
p

(n�1/2h�dv

)
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By Assumption NOR(a), h = cn��, O
p

(n�1/2h�dv

) = O
p

(ndv��1/2
). dv�� 1

2 < �1
4 then � < 1

4dv .

Now turn to k ˆF (·, V )�F (·, V ) k, by Masry (1996), the uniform rate of convergence of constant

kernel regression is

sup

x

| ˆF (x)� F (x)| = O(

(lnn)1/2

(nh1 · · ·hq)1/2
+

qX

s=1

h2
s

) almost surely

Therefore, k ˆF (X 0�, V )�F (X 0�, V ) k= O
p

(

(lnn)1/2

(nh1+dv)1/2
+dv ·h2) = O

p

(

(lnn)1/2

(nn��dv��)1/2
+dv ·n�2�

). Let

n�2� < n�1/4 , � > 1
8 . Let (lnn)1/2

(nn��dv��)1/2
> n�1/4, first (lnn)1/2

(nn��dv��)1/2
> 1

n

1
2� 1

2 �dv��

for enough large n

(n > e), then 1

n

1
2� 1

2 �dv� 1
2 �

> n�1/4, � < 1
2dv+1 . As stated in Assumption NOR(a).

Lemma 1.15. For all sequences of positive numbers {�
n

} with �
n

= o(1)

sup

k���0k�

n

,kh�h0kH�

n

kM
n

(�, h)�M(�, h)�M
n

(�0, h0)k = o
p

(n�1/2
)

Proof. Theorem 3 in Chen, Linton, and Van Keilegom (2003) propose primitive conditions for

stochastic equicontinuity. We use it here to prove this condition. First, we need to prove that
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)
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i

�F (X 0
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i

))· @F (X0
i

�,V

i

)
@�

. Denote m(�, F, V ) = (Y
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And then
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is also bounded almost everywhere. Therefore,

E sup
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for some K2 > 0.
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The third term

|m(�, F, V 0
)�m(�, F, V )|2 = |@m(�, F, ˜V )

@V
(V 0 � V )|2

by mean value theorem.
@m
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Second, we need to show that B is compact, and
R1
0

p
logN(✏,H, k · kH)d✏ < 1. This follows

from Corollary 2.7.4 in Van der Vaart and Wellner (1996), together with Assumption NOR(g).

Lemma 1.16. For some finite matrix V ,
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Proof. We have that

�2(�0, h0)[ˆh� h] = E[�@F0(X
0
i

�0, Vi0)

@V
i

@F0(X
0
i

�0, Vi0)

@�
[

ˆV
i

� V
i0]� @F0(X

0
i

�0, Vi0)

@�
[

ˆF � F0]]

=E[�@F0(X
0
i

�0, Vi0)

@V
i

@F0(X
0
i

�0, Vi0)

@�
(

ˆV
i

� V
i0)

� @F0(X
0
i

�0, Vi0)

@�
(

ˆF (X 0
i

�, V
i

)� F0(X
0
i

�, V
i

))]

Consider E(

@F0(X0
i

�0,V
i0)

@�

| X 0
i

�0, Vi0), by Klein and Spady (1993), this term equals zero. There-

fore, by law of iterated expectation
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By Assumption NOR(d),
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Note that the expectations above are all with respect observation i. Next, we have

p
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Because  
i

and Y
i

� F0(X
0
i

�0, Vi0) are orthogonal, by central limit theorem,

p
n{M

n

(�0, h0) + �2(�0, h0)[ˆh� h]} =) N(0, V )

where V = V1 + V2.

Proof of Theorem 4:

Proof. Lemma 1-7 show that the conditions of Theorem 2 in Chen, Linton, and Van Keilegom (2003)

are satisfied. Together with the consistency result, Theorem 4, the asymptotic distribution of the

semiparametric least square estimator is implied by Theorem 2 in Chen, Linton, and Van Keilegom

(2003).
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Proof of Theorem 5:

Proof. This proof will generally verify the conditions of Theorem B in Chen, Linton, and Van Kei-

legom (2003).

The first condition is that with P ⇤-probability tending to one, ˆh⇤ 2 H, and k ˆh⇤ � ˆh kH=
o
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⇤
(n�1/4

). This condition can be verified in a similar way as Lemma 6 above.
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for all positive values �
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= o(1). This can be verified in the same way as Lemma 7 above.
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Following Chen, Linton, and Van Keilegom (2003), under standard regularity conditions the bias

of ˆF ⇤, E⇤
ˆF ⇤ � ˆF can be majorized by some bounded continuous function times o(n�1/2

). Also by
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Assumption NOR(d), ˆV ⇤ � ˆV =
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where the last equal sign follows from change of variables and Taylor expansion. In the last equation,

the first three terms are independent and zero mean random variables. Therefore, they satisfies

central limit theorem and hence the third condition is satisfied.

Proof of Theorem 6:

Proof. First we need to find the asymptotic joint distribution of ˆ�1 and ˆ�2. Since
p
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Proof of Corollary 1:

Proof. AV ar( ˆ�MA

k

) is no greater than both AV ar( ˆ�1
k

) and AV ar( ˆ�2
k

) when using optimal weight

�⇤
k

. The reason is simple that the minimization is conducted on the interval [0, 1]. If �⇤
k

2 (0, 1), it

means the value of AV ar( ˆ�MA

k

) at �⇤
k

is smaller than the values at �
k

= 1 and �
k

= 0, which

imply AV ar( ˆ�1
k

) and AV ar( ˆ�2
k

), respectively. Otherwise, there would be a contradiction

with the operation of minimization.



Chapter 2

A Semiparametric Estimator for Binary

Response Models with Endogenous

Regressors

2.1 Introduction

This chapter is concerned with estimating a semiparametric binary response model with

endogenous explanatory variables. In particular, a triangular simultaneous equations model

with binary outcome is discussed here. The binary response model we consider is represented

of the form

Y = I[X 0� � U � 0]

where X is an observed vector of explanatory variables and Y is an indicator of the event

that the value of X 0� � U is non-negative. In addition, U is the unobserved error term

and � is the coefficient vector of interest. If X and U are independent and U follows some

known distribution, this binary response model can be estimated via standard parametric

estimation procedures, such as Probit or Logit, see McFadden (1984) for a detailed survey.
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However, when the distribution of U is unknown, misspecification would in general cause

the estimators inconsistent even if the independence between X and U still holds. Therefore,

semiparametric estimators of � have been proposed in the literature, where the conditional

distribution of U given X is not specified. For example, Manski (1975) and Manski (1985)

introduce the maximum score estimator for �. It requires that along with the full support

of X, the conditional distribution of U given X is median independent, i.e. Med(U |X) = 0.

This identification condition is rather weak compared to previous parametric estimators. The

convergence rate is n�1/3 by Kim and Pollard (1990). Horowitz (1992) maintains the median

independence condition for identification and modifies Manski’s maximum score estimator

by smoothing the objective function with kernel functions. As a result, under smoothness

conditions, Horowitz’s smoothed maximum score estimator can attain a faster convergence

rate, at least n�2/5 with asymptoticly normal distribution. Unlike linear regression models,

conditional mean independence is generally not enough to achieve identification of the binary

response model, as noted by Manski (1988) and Horowitz (2009). Ichimura (1993) and Klein

and Spady (1993) employ the single-index restriction and propose semiparametric estimators

for the binary response model.

When some components of X are endogenous, we need more information, for example

some instrumental variables, to account for the endogeneity. Unlike the separable models,

the parameters in the binary response model, one type of non-separable models, are not uni-

versally identified under the standard independence assumption between the instruments and

the error term U , see Blundell and Powell (2003), Chesher (2010), Chesher and Rosen (2013)

and references therein. Alternatively, the control function approach has been widely used in

the estimation of the simultaneous equation models with discrete dependent variable. Smith

and Blundell (1986) and Rivers and Vuong (1988) introduce a two-stage Probit estimator

(2SProbit) for the binary response triangular system with continuous endogenous regressors

by specifying the joint distribution of error terms as normal distribution. Their estimation

procedure take the residuals from the reduced equation for the endogenous regressors as the
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covariates in the binary response structural equation to account for endogeneity. However,

the shortcoming of this type of parametric estimators is the same as mentioned above.

Newey, Powell, and Vella (1999) propose a two-step nonparametric estimator for a separable

triangular system using the control function approach. Blundell and Powell (2004) firstly

use the control function to account for endogeneity in the semiparametric binary response

model. The estimator they consider is the extension of the matching estimator proposed

by Ahn, Ichimura, and Powell (1996). Rothe (2009) extends the Klein and Spady (1993)

estimator to the endogenous case by forming a triangular system and estimates it using

two-step semiparametric maximum likelihood. The endogeneity is also accounted for by

a control variable obtained from the first-step reduced form regression. These studies in

the semiparametric settings rely on conditional independence for identification, i.e. the

endogenous explanatory variable X and the error term U are independent conditional on

a control variable. Lee (2007) applies a control function approach to a linear triangular

simultaneous equations models with conditional quantile independence restrictions. He

proposes a two-step semiparametric estimation procedure in which the control function is

estimated by series estimator. Liao (2012) proposes a two-step estimator for the triangular

system with binary response. The key identification condition of this estimator relies on is

that conditional on a control variable, the quantile of the error term U is independent of X

as well as the instruments.

This chapter proposes a new semiparametric estimator for the binary response model with

endogeneity. The identification conditions we employ here are mainly following the model

setting in Liao (2012), because the quantile independence condition is not as restrictive as

full independence used by previous studies.. However, one primary difference lies in that in

our procedure not only the structural parameters � but also the choice probability can be

consistently estimated. The estimator proposed by Liao (2012) follows Horowitz’s smoothed

maximum score estimation procedure, which can only provide an estimator for �. However,

in some applications, such like policy evaluation, it is the choice probability and even the
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marginal effects of the covariate change that are more practical and useful. The basic idea

here is to obtain more information on the characteristics of the error term distribution

via nonparametric estimating additional functional structures attached to the model. In

the appendix of Manski (1988), the existence of the dual models with binary outcomes

is proved. It implies the possibility of transforming the linear-index binary response model

under quantile independence assumption into a class of models whose error terms follow some

known distributions. Khan (2013) exhibits that under mild assumptions, the binary response

model without endogeneity under Manski’s median independence condition is equivalent to

a multiplicative heteroskedastic binary response model. Under this equivalence, it suffices to

estimate the binary response model by maximizing standard Probit/Logit criterion functions

while the heteroskedasticity is pinned down using sieve estimation. This chapter follows

this approach to restore the choice probability estimates when some components of the

explanatory variables are endogenous.

The remainder of this chapter is organized as follows. Section 2.2 describes the model

specification. Section 2.3 establishes an equivalence result between the binary response

model with endogeneity and a heteroskadastic one we use for estimation, and identification

can be achieved . Section 2.4 describes our semiparametric estimation procedure. In Section

2.5, asymptotic properties of our estimator are analyzed. Section 2.6 studies finite sample

properties of our estimator via Monte Carlo simulations. Theorem proofs are provided in

the Appendix.

2.2 Model

The binary response model we consider has the form

Y ⇤
i

= X 0
i

�0 � U
i

(2.1)

Y
i

= I[Y ⇤
i

� 0] (2.2)
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where I[·] is the indicator function, y
i

is the observed binary response variable, and X 2
X ✓ Rd

x is a vector of observed covariates. Y ⇤ is a latent variable which can be affected

by the change of X and determines Y through its sign. U is the scalar unobserved error

term whose conditional distribution given other observables can impact the identification

of the parameters of interest. �0 is the d
x

�dimensional unknown parameter of interest.

If U is assumed to be independent of X and follow some parametric distribution, E[Y |
X = x] = F

U

(x0�0), where F
U

(·) is the cumulative distribution function of U . Therefore,

�0 can be estimated by maximum likelihood estimation. However, when endogeneity and

heteroscedasticity arise, the independence between X and U no longer holds and other

conditions for identification are needed. Moreover, the assumption that U follows some

specific parametric distribution is restrictive in economic applications, and weaker conditions

on the distribution of U need to be imposed.

Denote X = (X1, Z
0
1)

0, where X1 is a scalar endogenous variable and X1 is a d
z1�dimensional

sub-vector of the instruments Z = (Z 0
1, Z

0
2)

0 2 Z ✓ Rd

z1+d

z2 . In a triangular simultaneous

equations model, X1 is assumed to be determined by a reduced form equation

X1 = h0(Z, ⌘) (2.3)

where h0 is a real-valued measurable function mapping the exogenous instruments Z and

a disturbance ⌘ 2 R to the endogenous explanatory variable X1. Here ⌘ is assumed

independent of Z and h0 is strictly monotone in ⌘. Following Blundell and Powell (2004) and

Liao (2012), the condition imposed for the identification of this model is through a control

variable V 2 R satisfying

Q
U |X,Z

(⌧ | x, z) = Q
U |V,Z(⌧ | v, z) = Q

U |V (⌧ | v) ⌘ �
⌧

(v) (2.4)

where Q
U

(⌧) is the ⌧th quantile of the random variable U , i.e. Q
U

(⌧) = inf{u : F
U

(u) � ⌧},
and correspondingly Q

U |X,V

(⌧ | x, v) is the ⌧th quantile of U conditional on X and V . The
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condition in (2.4), known as the quantile exclusion restriction, is crucial to the identification

of our semiparametric binary response model with endogeneity defined in (2.1), (2.2) and

(2.3). It essentially requires that the control variable V can adjust for the endogeneity in

the structural equation (2.1). This quantile exclusion restriction is more flexible than full

independence between U and X conditional on control variables. For example, it admits

heteroskedasticity in (2.1). This model is a semiparametric binary response version of Lee

(2007).

How to construct a control variable used in this model depends on the structure of the

reduced form equation for X1 in (2.3). If the disturbance term ⌘ is additive in function

h0. A natural way to get the control variable is to obtain the residuals from regressing the

endogenous regressor X1 on the instrumental variables Z, e.g. Smith and Blundell (1986);

Rivers and Vuong (1988); Blundell and Powell (2004); Rothe (2009) et al. The function form

of E(X1 | Z = z) could either be parametric specified like the single index z0↵
o

or be obtained

by nonparametric regressions. When ⌘
i

is not additive in h0, Imbens and Newey (2009)

demonstrated that the control variable V can be constructed as the conditional cumulative

distribution of the endogenous variable given the instruments, i.e. V
i

⌘ F
X1|Z(x1 | z) = F

⌘

(⌘)

if h0 is assumed strictly monotone in ⌘ and U, ⌘ ? Z.

Define ✏ ⌘ U � �
⌧

(V ), and since ✏ is strictly increasing in U ,

Q
✏|X,Z

(⌧ | X = x, Z = z) = Q
✏|X,V

(⌧ | X = x, V = v) = Q
✏

(⌧ | V = v) = Q
U

(⌧ | V = v)��
⌧

(v) = 0

Then the binary response model can be rewritten as

Y = I[X 0�0 � �
⌧

(V )� ✏ � 0] (2.5)
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2.3 Identification

This section aims to establish an observational equivalence between the binary response

triangular system with quantile exclusion restriction (2.4) and a heteroskedastic binary

response model. The main idea is based on Khan (2013).

Consider the binary response model described in (2.5) with the following assumptions:

Assumption 2.1. At lease one component of X 2 Rd

x with nonzero coefficient, given other

components and the control variable V , has positive density everywhere on R with respect to

Lebesgue measure.

Assumption 2.2. The function �
⌧

(·) is continuously differentiable almost everywhere.

Assumption 2.3. F
✏|X,Z

(· | X = x, Z = z) is the conditional CDF of ✏ given X and Z.

F
✏|X,Z

is continuous on R ⇥ X ⇥ Z. f
✏|X,Z

(✏ | X = x, Z = z) =
@F

✏|X,Z

(✏|X=x,Z=z)

@✏

exists and

is continuous and positive on R for all (x, z) 2 X ⇥ Z. F
✏|X,Z

(0|X = x, Z = z) = ⌧ for all

(x, z) 2 X ⇥ Z.

Theorem 2.4. Under Assumption 2.1 - Assumption 2.3, the binary response model defined

by (2.5) is observationally equivalent with the model defined by

Y = I[X 0�0 � �
⌧

(V )� �0(X,Z) · ⇠ � 0] (2.6)

under the following conditions:

Condition 2.5. Assumption 2.1 is satisfied by (2.6).

Condition 2.6. �0 is a continuous measurable function and positive a.e. on X ⇥ Z. ⇠ is

independent of (X,Z) and follows some known distribution . Q
⇠

(⌧) = 0. f
⇠

(·) exists and is

positive and continuous on R.
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Moreover, the identification of the parameters in (2.6) can be achieved. Based on the

identification results by Liao (2012), the parameters �0 and �
⌧

(·) can be identified up to

scale under Assumption 2.1 - Assumption 2.3. Thus due to Theorem 2.4, �0 and �
⌧

in

(2.6) stay the same as in (2.5) and then can be identified up to scale. In addition, since

E(Y |X = x, Z = z) = Pr(Y = 1|X = x, Z = z) = G
⇠

(

x

0
�0��

⌧

(v)
�0(x,z)

) and G
⇠

(·) is strictly

increasing on the real line, for some C > 0, C·�0(·) can be pinned down based on identification

of �0 and �
⌧

as well as E(Y |X = x, Z = z). Therefore, �0, �⌧ and �0 in (2.6) can be identified

up to scale.

2.4 Estimation

As the extension of the exogenous case in Khan (2013), the previous result implies that

a triangular simultaneous equation model with binary outcome can be transformed into a

heteroskedastic binary response model while keeping the finite dimensional parameters and

conditional probability unchanged. This provides us a potential approach to estimate the

endogenous binary response model. Based on (2.6) under Condition 2.5 - Condition 2.6, if the

control variable v
i

and the function �
⌧

(·) are known, the true value of the finite dimensional

parameter vector �0 and the infinite dimensional parameter �0(·, ·) should minimize the

following population objective function:

S(�, �) = E(Y �G
⇠

(

X 0� � �
⌧

(V )

�(X,Z)
))

2 (2.7)

Given an i.i.d sample {Y
i

, X
i

, Z
i

}n
i=1, (�0, �0) can be jointly estimated via nonlinear least

squared (NLS) estimation in which the infinite dimensional parameter space is approximated

by the sieve space. In addition, both the control function v
i

and the function �
⌧

are unknown.

Note that the control variable V can be estimated at the first stage using parametric or

nonparametric regressions. Here, we assume that this part has already been done, and an

estimator for V is available denoted as ˆV . As for the unknown function �
⌧

(·), it is natural
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to incorporate its estimation jointly with estimating �0 and �0. However, all the parameters

of interest can only be identified up to scale. Here, the coefficient of X1 is set as 1 and

�0 = (1, �00)
0, where �0 2 Rd

x

�1. To ensure �0 positive, let l0(x, z) = � ln �0(x, z) and in this

case l0 could be either positive or negative.

Let ✓0 ⌘ (�0,�⌧ , l0) 2 ⇥, where ⇥ is an infinite dimensional parameter space, and

✓
n

⌘ (�,�
n

, l
n

) 2 ⇥
n

, where ⇥
n

is a sieve space. We propose the following sieve estimator:

ˆ✓
n

= arg min

✓

n

2⇥
n

1

n

nX

i=1

{Y
i

�G
⇠

[(X1i + Z 0
1i� � �

n

(

ˆV
i

)) exp(l
n

(X1i, Zi

))]}2 (2.8)

Let bk1n(v) = (b01(v), . . . , b0k1n(v))
0 be a sequence of known basis functions for approx-

imating �
⌧

(v), i.e. �
n

(v) = bk1n(v)0⇧
n

, where ⇧
n

is a k1n dimensional vector of constants.

Similarly, let ck2n(x, z) = (c01(x, z), . . . , c0k2n(x, z))
0 be the basis functions for approximating

l0(x, z). l
n

(x, z) = ck2n(x, z)0 
n

, where  
n

is a k2n dimensional vector of constants. The

estimators for ⇧
n

and  
n

are denoted as ˆ

⇧

n

and ˆ

 

n

, and therefore ˆ�
n

(v) = bk1n(v)0 ˆ⇧
n

and

ˆl
n

(x, z) = ck2n(x, z)0 ˆ 
n

.

2.5 Asymptotic Properties

In this section, we provide large sample properties of our sieve NLS estimator ˆ✓
n

given in (2.8).

First of all, we review some notations which have been widely used in previous literature on

nonparametric estimation. For any 1⇥k vector a = (a1, a2, · · · , ak) of non-negative integers,

let

raf(x) =
@|a|

@xa1
1 · · · @xa

k

k

f(x)

denote the |a|-th derivative of a function f : Rk ! R, where |a| = P
k

i=1 ai. For any � > 0,

let [�] denote the largest integer smaller than � and k · k denote the Euclidean norm. Then
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define the �-th Holder norm:

k f k⇤�

=

X

|a|[�]

sup

x2X
|raf(x)|+

X

|a|=[�]

sup

x 6=x̄

|raf(x)�raf(x̄)|
k x� x̄ k��[�]

A Holder space with smoothness �, denoted as ⇤�

(X ), consists of all functions f 2
C��[�]

(X ) such that k f k⇤� is finite. It has been shown that equipped with the �-th Holder

norm, a Holder space is complete. Since the support of x
i

and z
i

might not be compact

in this study, we confine the parameter space to a weighted Holder ball with radius c,

⇤

�

c

(X ,!1) ⌘ {f 2 ⇤�

(X ) :k f(·)(1+ k · k2)�!1/2 k⇤� c < 1}, where !1 � 0, as indicated

by Ai and Chen (2003) and Chen, Hong, and Tamer (2005). With the weighting function

(1+ k · k2)�!1/2, the functions in the weighted Holder ball are allowed to have unbounded

derivatives. In addition, define the following two norms:

k f(x) k2= (

Z

X
f(x)2dF

X

)

1/2

k f(x) k1,!

= sup

x2X
|f(x)(1+ k x k2)�!/2|

We provide the following assumptions to show the consistency of our sieve NLS estimator

ˆ✓
n

:

Assumption 2.7. Recall the parameters of interest ✓0 ⌘ (�0,�⌧ , l0) 2 ⇥. Assume that the

parameter space ⇥ consists of all (�,�(·), l(·)) such that

(1) � 2 � ⇢ Rd

z1 and � is compact.

(2) G
⇠

((x1 + z01� � �(v)) exp(l(x1, z))) 2 ⇤s

c

(X ⇥ Z,!1) for some s > 0 and !1 � 0.

(3) �(·) is continuously differentiable and its first order derivative �(1)(·) satisfies

sup

v2V
�(1)(v)  C < 1.
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This assumption imposes regularity conditions on the functional space. Assumption

2.7(1) and (2) ensure the compactness of the parameter space and are relatively standard

in the semiparametrics literature, (see Gallant and Nychka (1987) and references therein).

Note that a functional of the two unknown functions �(·) and l(·), rather than themselves, is

assumed to be compact here, which is denoted as �(w, ✓) ⌘ G
⇠

((x1+z01���(v)) exp(l(x1, z))),

where w ⌘ (x1, z
0
)

0. This requirement, to some extent, is weaker compared to that both �

and l are smooth to certain specific degrees and is enough to ensure the consistency of our

sieve estimators with respect to the weighted sup norm. Assumption 2.7(3) states that the

functional � admits at least a first order Taylor expansion with respect to the estimator of

control variable v
i

.

Assumption 2.8. Let X denote the support of X 2 Rd

x and Z the support of Z 2 Rd

z1+d

z2 ,

where d
z1 = d

x

� 1 � 0 and d
z2 � 1. Assume the covariates (Y

i

, X 0
i

, Z 0
i

)

n

i=1 satisfy

(1) The data (Y,X, Z)0 are i.i.d, with V = F
X1|Z (x1|z), satisfying Pr(Y = 1 | X = x, Z =

z) = G
⇠

((x1 + z01�0 � �
⌧

(v)) exp(l0(x1, z))) .

(2) X1 conditional on Z has density function with respect to Lebesgue measure which is

positive almost everywhere on R1.

(3) Z is compact.

(4) W ⌘ (X1, Z
0
)

0. Let f
W

denote the density function of W .

Z
(1+ k w k2)!f

W

(w)dw < 1

where ! > !1 � 0.

(5) E(b1n
(v)b1n

(v)0) and E(c2n
(x1, z)c

2n
(x1, z)

0
) are non-singular for all n.

This assumption collects some conventional support restrictions on the covariates. Large

support requirement on the endogenous variable X1 conditional on all the exogenous variables

Z ensures identification of the binary response model discussed above. The compactness of

Z is only assumed for simplicity and can be relaxed.
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Assumption 2.9. Recall that ˆV is an estimator of the control variable V . Suppose

sup

X12X ,Z2Z
| ˆV � V | = O

p

(�

v

)

where �
v

= o
p

(1).

This is a high level condition on the uniform convergence rate of the control variable

estimator v̂
i

.

Before stating the consistency results of our sieve NLS estimator, we introduce the

following notations for simplicity. Denote �(w, ✓) ⌘ G
⇠

((x1 + z01� � �(v)) exp(l(x1, z))).

Define the metric on the parameter space as k ✓1 � ✓2 k2=k �(·, ✓1) � �(·, ✓2) k2 and

k ✓1 � ✓2 k1,!

=k �(·, ✓1)� �(·, ✓2) k1,!

.

Theorem 2.10. Under Assumption 2.7 - Assumption 2.9, if 1n ^ 2n ! 1 and (1n _
2n)/n ! 0, we have

k �̂
n

� �0 k= o
p

(1)

and

k ˆ✓
n

� ✓0 k1= o
p

(1)

Before we demonstrate the results on the convergence rate of our semi-parametric estima-

tor, several previous assumptions need to be strengthened. These enhancements mainly aim

at improving approximation accuracy of the sieve space and the first stage control variable

estimation.

Assumption 2.11. �(v) 2 ⇤s

c1
(V ,!1), for some s > 0 and !1 � 0; l(w) 2 ⇤s

c2
(X ⇥ Z,!1),

for some s > 0 and !1 � 0.

This condition imposes stronger smoothness requirement on two unknown functions �

and l than Assumption 2.7, which only assumes that a functional of � and l belongs to a

weighted Holder ball. However, Assumption 2.11 does not conflict with Assumption 2.7. The
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same exponent of Holder space s and weighting function !1 make it sufficient to conclude

� : (·,�, l) 7! [0, 1] 2 ⇤s

c

(X ⇥ Z,!1) , for some c1, c2 < 1. Assumption 2.11 is imposed to

detail the accuracy of the sieve space approximating the parameter space.

Assumption 2.12. The smoothness exponent of Holder space s satisfies 2s > d
z

+ 1. For

Assumption 2.8, w > w1 + s.

This condition is a stronger version of Assumption 2.7 and Assumption 2.8. The strength-

ened smoothness of the parameter space and the further controlled tail behavior of the

covariates can improve the approximation accuracy of our sieve space as required by the

convergence rate results.

To establish the convergence rate results, we define the following sieve NLS estimator

when the control variable v
i

is fully observed. Let

˜✓
n

= arg min

✓

n

2⇥
n

1

n

nX

i=1

{Y
i

�G
⇠

[(X1i + Z 0
1i� � �

n

(V
i

)) exp(l
n

(X1i, Zi

))]}2

Theorem 2.13. If Assumption 2.7 - Assumption 2.8 and Assumption 2.11 - Assumption

2.12 are satisfied, then

k ˜✓
n

� ✓0 k2= O
p

(

r
1n _ 2n

n
+ �s

1n + 
�s/(d

z

+1)
2n )

Recall that the L2 metric on the parameter space is actually a measure of the distance

between two probability functions over the sample space. Hence this convergence rate result

is for the choice probability estimator.

2.6 Monte Carlo

This section examines the finite sample performance of our sieve NLS estimator for the

binary response model based on a triangular system. In this experiment, n i.i.d observations,
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{Y
i

, X
i

, Z
i

}n
i=1, are generated through the following data generating process

Y
i

= I{X1i + Z1i�0 � �
⌧

(V
i

)� ✏
i

� 0}

X1i = ↵0 + Z1i↵1 + Z2i↵2 + ⌘
i

The true parameter values are set as �0 = 1, ↵0 = �2, ↵1 =

1
2 and ↵2 =1. The exogenous

variables {Z1i, Z2i} are assumed to follow normal distributions, where Z1i ⇠ N(2, 1) and

Z2i ⇠ N(0, 1). In addition, ⌘
i

⇠ N(0, 1). In this study, we focus on the median independence

case, i.e. ⌧ = 0.5. For the control function �
⌧

and the error distribution in the structural

equation ✏
i

, we use the following designs:

1. �0.5(vi) = ⌘
i

and ✏
i

⇠ N(0, 22)

2. �0.5(vi) = 1 + 2⌘
i

� 2⌘2
i

and ✏
i

⇠Student’s t distribution with df = 2

3. �0.5(vi) = exp(�⌘
i

) and ✏
i

= Z2
2i · ti, where t

i

⇠ N(0, 1)

For each design, we study the performance of the following estimators: two-stage IV Probit

estimator by Smith and Blundell (1986) and Rivers and Vuong (1988) (2SProbit); our sieve

NLS estimator without endogeneity, i.e. �
⌧

(·) is assumed to be known (SNLS-EX); the sieve

NLS estimator with the control variable V as given (SNLS-OR); our sieve NLS estimator

with the control variable V unknown, i.e. a first-step estimator ˆV is used instead of the

true value V (SNLS-2S). To simplify the implementation, we utilize the separable property

of the reduced form equation and use the residual from linear regression of X1 on Z as the

consistent estimator of the control variable V . For all the designs, we consider the sample

size n = 250, 500, 1000 and set the number of replications to 500. The polynomial series are

used to estimate both �
⌧

(v) and l0(x1, z). When n = 250, both series are set of degree 1;

when n = 500, �
n

is of degree 2 and l
n

degree 1; when n = 1000, both are of degree 2. A

standard normal distribution is used as the known zero-median distribution for ⇠.
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Table 2.1: Simulation Design 1

MEAN SD RMSE MAD 25% 50% 75%

n=250 2SProbit 1.036 0.379 0.380 0.245 0.754 0.986 1.245
SNLS-EX 0.989 0.151 0.151 0.106 0.881 0.976 1.085
SNLS-OR 1.076 0.617 0.621 0.293 0.713 0.957 1.297
SNLS-2S 1.071 0.609 0.613 0.316 0.703 0.960 1.340

n=500 2SProbit 1.037 0.258 0.260 0.167 0.852 1.014 1.186
SNLS-EX 0.996 0.114 0.114 0.070 0.922 0.984 1.064
SNLS-OR 1.034 0.322 0.324 0.200 0.807 0.998 1.205
SNLS-2S 1.034 0.338 0.339 0.207 0.796 1.002 1.208

n=1000 2SProbit 1.017 0.185 0.186 0.122 0.886 1.000 1.127
SNLS-EX 1.002 0.074 0.074 0.050 0.954 0.998 1.054
SNLS-OR 1.154 0.395 0.424 0.222 0.891 1.091 1.338
SNLS-2S 1.193 0.467 0.505 0.223 0.924 1.129 1.379

The simulation results are given in Table 2.1 - Table 2.3. For each design, we focus on

the estimator of �0 and report the mean value (MEAN), standard deviation (SD), root mean

squared error (RMSE), median absolute deviation (MAD) and the sample quartiles of �̂
n

from all the replications.

We can drawn some preliminary conclusions from the simulation results. First, in terms

of bias and RMSE, our sieve NLS estimator performs generally well across all three designs.

There was no unexpected large deviation from the true value of �0 in this experiment.

Second, the semiparametric setting and the weak assumption for identification in this chapter

provide flexibility for our estimator under distinct data generating processes. Meanwhile, the

accuracy of the two-stage Probit estimation procedure is sensitive to model misspecification.

For example, in Design 3, the 2SProbit estimators exhibit significant upward biases which are

around 60%. Meanwhile, our semiparametric estimator is more stable in this setting. Third,

the performance of SNLS-EX, the distribution free estimation without endogeneity in Khan

(2013), behaves well in terms of both bias and standard deviation compared to 2SProbit
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Table 2.2: Simulation Design 2

MEAN SD RMSE MAD 25% 50% 75%

n=250 2SProbit 1.103 0.479 0.489 0.259 0.782 1.040 1.323
SNLS-EX 1.008 0.112 0.112 0.072 0.936 0.999 1.079
SNLS-OR 1.218 0.775 0.804 0.320 0.759 1.048 1.441
SNLS-2S 1.250 0.945 0.976 0.372 0.714 1.059 1.474

n=500 2SProbit 1.049 0.313 0.317 0.194 0.829 1.003 1.224
SNLS-EX 1.004 0.077 0.077 0.048 0.952 1.002 1.048
SNLS-OR 1.014 0.240 0.240 0.165 0.838 0.984 1.171
SNLS-2S 1.019 0.272 0.272 0.181 0.818 1.008 1.177

n=1000 2SProbit 1.015 0.196 0.197 0.133 0.878 0.997 1.140
SNLS-EX 1.010 0.056 0.056 0.037 0.974 1.006 1.048
SNLS-OR 0.945 0.318 0.322 0.218 0.721 0.901 1.129
SNLS-2S 0.911 0.311 0.324 0.224 0.704 0.859 1.069

Table 2.3: Simulation Design 3

MEAN SD RMSE MAD 25% 50% 75%

n=250 2SProbit 1.703 0.588 0.917 0.601 1.278 1.601 2.004
SNLS-EX 0.999 0.052 0.052 0.032 0.964 0.998 1.028
SNLS-OR 1.215 0.739 0.769 0.263 0.820 1.081 1.379
SNLS-2S 1.227 0.744 0.777 0.257 0.819 1.049 1.466

n=500 2SProbit 1.642 0.363 0.737 0.602 1.358 1.602 1.896
SNLS-EX 1.001 0.039 0.039 0.021 0.978 1.000 1.020
SNLS-OR 1.058 0.357 0.361 0.209 0.805 0.990 1.229
SNLS-2S 1.070 0.406 0.412 0.200 0.811 0.987 1.221

n=1000 2SProbit 1.600 0.262 0.655 0.574 1.395 1.574 1.771
SNLS-EX 1.002 0.027 0.027 0.018 0.984 1.002 1.020
SNLS-OR 0.952 0.218 0.223 0.156 0.795 0.939 1.094
SNLS-2S 0.954 0.242 0.246 0.165 0.786 0.926 1.081
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estimation even in Design 1, where the 2SProbit model is correctly specified. Therefore,

comparing the simulation results between SNLS-EX and SNLS-OR, we can conclude that

the nonparametric estimation of the control function �
⌧

, rather than the heteroskadasticity

l0, may introduce relatively high variability. Fourth, as shown by the difference between

SNLS-OR and SNLS-2S, the bias and the variance contributed by the first-step generated

regressor v̂
i

are small and even negligible in some cases. This is probably due to the fact that

in our simulation the separability of the reduced form equation is utilized to get a consistent

parametric estimator of v
i

which converges at a faster rate than some nonparametric one

does when the equation is non-separable.

Finally, like most of the semiparametric estimation procedures, a major concern about

our estimator is its computational stability and complexity. Since two unknown functions

need to be estimated nonparametrically and one of them is by nature multivariate, the nu-

merical optimization procedure could be computation intensive, and relatively large sample

size is required to guarantee the estimation accuracy. Moreover, the objective function is

not concave and the computation may potentially suffer from local minimal which could

be densely distributed. Therefore, to better implement our semiparametric estimator in

application in practical application, some stable global numerical optimization algorithm is

preferable.
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Appendix

Proof of Theorem 2.4

Proof. It is obvious that the second model defined in (2.6), under Condition 2.5 - Condition

2.6, implies the first one defined in (2.5). In order to show the reverse holds, we need to

establish that the conditional probability of Y = 1 given X and Z in the first model equals

the one in the second model, as indicated by Khan (2013). Given (X,Z), Pr(Y = 1|X =

x, Z = z) = F
✏|X,Z

(x0�0 � �
⌧

(v)) in (2.5) under Assumption 2.1 - Assumption 2.3.

Suppose the CDF of ⇠ is G
⇠

(·), which is continuous and strictly increasing on the real line.

Then define �0(x, z) = x

0
�0��

⌧

(v)

G

�1
⇠

�F
✏|X,Z

(x0
�0��

⌧

(v))
if x0�0 � �

⌧

(v) 6= 0. And based on Assumption

Assumption 2.1 - Assumption 2.2, x0�0��⌧ (v) = 0 with zero probability and can be ignored.

In addition, it is easy to see that �0 is positive a.e. on X ⇥ Z: when x0�0 � �
⌧

(v) > 0,

F
✏|X,Z

(x0�0 � �
⌧

(v)) > ⌧ and then G�1
⇠

� F
✏|X,Z

(x0�0 � �
⌧

(v)) > 0; when x0�0 � �
⌧

(v) < 0,

F
✏|x,z(x0�0��⌧ (v)) < ⌧ and then G�1

⇠

�F
✏|X,Z

(x0�0��⌧ (v)) < 0. The continuity of �0 follows

the fact that each component in the definition of �0 is continuous.

With �0(x, z) defined above, the conditional probability of Y = 1 given (x, z) equals

G
⇠

(

x

0
�0��

⌧

(v)
�0(x,z)

) = G
⇠

(

x

0
�0��

⌧

(v)
x

0
�0��

⌧

(v)

G

�1
⇠

�F
✏|X,Z

(x0�0��

⌧

(v))

) = G
⇠

(G�1
⇠

� F
✏|X,Z

(x0�0 � �
⌧

(v))) = F
✏|X,Z

(x0�0 �

�
⌧

(v)), which is equal to the conditional probability of Y = 1 given (x, z) defined in (2.5).

Proof of Theorem 2.10

Proof. The proof of Theorem 2.10 follows the consistency theorem in Gallant and Nychka

(1987). In order to show the consistency of our sieve NLS estimator, we need to verify the

following conditions: compactness, denseness, uniform convergence and identification.

The compactness of the closure of our parameter space is ensured by Assumption 2.7.

The finite dimensional parameter � 2 Rd

z1 belongs to a compact set � with respect to

Euclidean norm k · k. A functional of the infinite dimensional parameters �(·) and l(·),
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�(w, ✓) ⌘ G
⇠

((x1+z01���(v)) exp(l(x1, z))), is assumed to be in a weighted Holder ball. Then

the parameter space ⇥ is compact with respect to the weighted sup norm k �(w, ·) k1,!1 .

With weighted Holder ball as the parameter space, the denseness of the sieve space as

n ! 1, i.e. [1
n=1⇥n

, can be guaranteed by many known finite dimensional linear sieves,

including power series, Fourier series, splines and wavelets.

The main task of this proof is to show that the sample object function uniformly converges

to some continuous function (the population object function) as the sample size increases to

infinity. That is

sup

✓=(�,⌧,l)2⇥
| 1
n

nX

i=1

(y
i

� �(ŵ
i

, ✓))2 � E(y
i

� �(w
i

, ✓))2| = o
p

(1)

where �(ŵ, ✓) ⌘ G
⇠

((x1 + z01� � �(v̂)) exp(l(x1, z))).

First, we prove that E[(y
i

� �(w
i

� �(w
i

, ✓))]2 is continuous over ⇥ with respect to the

weighted sup norm k · k1,!1 . For any ✓1 2 ⇥,

|E(y
i

� �(w
i

, ✓1))
2 � E(y

i

� �(w
i

, ✓))2|

 E|2y
i

� �(w
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, ✓1)� �(w
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, ✓)||�(w
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, ✓))|

 2E|�(w
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|�(w

i

, ✓)� �(w
i

, ✓1)|(1+ k w
i

k2)�!1/2
(1+ k w

i

k2)!1/2f
W

dw
i

 2 k �(w
i

, ✓)� �(w
i

, ✓1) k1,!1

Z
(1+ k w

i

k2)!1/2f
W

dw
i

 C k �(w
i

, ✓)� �(w
i

, ✓1) k1,!1

Thus the continuity of E[(y
i

� �(w
i

� �(w
i

, ✓))]2 over ⇥ follows.

Next, to show the uniform convergence of the sample objective function, we need to

deal with the generated regressor v̂
i

, which is a consistent estimator of the control variable
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v
i

= F
x1|z(x1i|zi).

sup

✓=(�,⌧,l)2⇥
| 1
n

nX

i=1

(y
i

� �(ŵ
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i

, ✓))2 � 1

n

nX

i=1

(y
i

� �(w
i

, ✓))2|

+| 1
n

nX

i=1

(y
i

� �(w
i

, ✓))2 � E(y
i

� �(w
i

, ✓))2|

 sup

✓=(�,⌧,l)2⇥
| 1
n

nX

i=1

(y
i

� �(ŵ
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By Lemma 2.14 - Lemma 2.15, we can conclude that
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i

� �(ŵ
i

, ✓))2 � E(y
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� �(w
i

, ✓))2| = o
p

(1)

The last condition that needs to check is identification. As mentioned in Section 2.3,

the identification of (�0,�⌧ (·), l0(·)) is proved. Therefore, we get k �̂
n

� �0 k= o
p

(1) and

k ˆ✓
n

� ✓0 k1,!1= o
p

(1). Note that k ˆ✓
n

� ✓0 k1,!1=k �(·, ˆ✓
n

) � �(·, ✓0) k1,!1 and � is a

bounded function (cdf). Therefore, we can also get k ˆ✓
n

� ✓0 k1= o
p

(1).

Lemma 2.14. As n ! 1,
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Proof. Note
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(ṽ

i

)||v̂
i

�v
i

|

where ṽ
i

is some value between v̂
i

and v
i

. By assumptions, the density of ⇠ is continuous

and �(1)(·) is uniformly bounded. Then
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i

, ✓)� �(w
i

, ✓)|  C sup

w

i

2R⇥Z
|v̂

i

� v
i

|

By the uniform convergence of v̂ to v, we get
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as n ! 1.

Lemma 2.15. sup
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Proof. First, for fixed ✓ 2 ⇥, since {w
i

} are i.i.d and |y
i
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i

, ✓)|  1 < 1, by the weak

law of large number, | 1
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(1) pointwisely.

Next, we need to show the sample objective function satisfies the Lipschitz condition in

probability. For any ✓1, ✓2 2 ⇥,
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Therefore, with the fact that ⇥ is compact and E(y
i

��(w
i

, ✓))2 is continuous, by Lemma

2.9 in Newey and McFadden (1994),
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Proof of Theorem 2.13

Proof. To prove this lemma, we can use some well-established results on convergence rates

of sieve estimators since we don’t take into account of the first stage generated regressor v̂
i

here. We mainly follow Theorem 3.2 in Chen (2007).

First of all, we need to verify the conditions required by the theorem. Note that the first

condition is trivially satisfied by our i.i.d observations.
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Next, we wish to show there is C1 > 0 such that for all small ✏ > 0,
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as desired.

The last condition we need to show is that for any � > 0, there exists a constant s 2 (0, 2)

such that
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Because |�
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(✓)| is bounded by 2, this condition is trivially satisfied with U(w
i

) = 4

and for any � > 0 there must be some s approaching zero as desired.

Therefore by Theorem 3.2 in Chen (2007),
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where for finite dimensional sieves such as power series and B-splines, �
n

= C ·
q

1n_2n
n

for

some constant C < 1, see e.g. Chen and Shen (1998) As for k ✓0�⇡n✓0 k2, the deterministic

approximation error rate, it depends on the smoothness of the functional space and the sieve

space we choose. Note
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