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Abstract

Since it was first performed in humans in 2002, transcatheter aortic valve
replacement (TAVR) has emerged as a successful minimally invasive treatment
for aortic valve disease. In TAVR, an artificial prosthetic valve is deployed
by a catheter, typically under guidance of x-ray fluoroscopy (XRF). Because
proper valve positioning is important for achieving optimal clinical outcomes,
advanced image guidance systems and workflows that use all available imaging
modalities may be able to further improve the success of this procedure.

Recently, image registration between XRF and transesophageal echocardio-
graphy (TEE) has been validated and clinically implemented (Philips EchoNav-
igator). This technology uses image processing to merge the XRF and TEE
coordinate systems, allowing the information from both modalities to be fused
into a single visualization framework. It is hypothesized that image guid-
ance during TAVR can be improved using XRF/TEE registration by allowing
anatomical information from TEE to be combined with device visualization
from XRF.

In this thesis, technical contributions aimed at enhancing image guidance
and clinical workflows for TAVR using XRF/TEE registration are presented.
In the introductory chapter, the history of interventional cardiology is briefly
discussed, followed by a description of the TAVR procedure. Novel clinical
workflows aimed at improving procedural efficiency and prosthetic valve de-
ployment accuracy are proposed, and specific technical problems involving the
proposed workflows are identified and addressed in chapters 2-5.

In chapter 2, a novel implementation of the Hough forest algorithm for
object detection is presented and applied to the problem of automatic TEE
probe and prosthetic valve detection in XRF images. The purpose of this aim
is to minimize the need for user interaction in the image registration process,
enabling enhanced clinical workflows and image guidance. In clinical datasets
from 48 patients, the TEE probe was successfully detected in 95.8% of images
(n=1077) and the prosthetic valve was detected in 90.1% of images (n=388).
These results indicate that the presented method is feasible and has potential
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for clinical use.
Along with a summary of the technical background and prior work concern-

ing XRF/TEE registration, chapter 3 presents two novel algorithms designed
for improved registration accuracy and speed. In chapter 4, these algorithms
were validated in simulated, phantom, and clinical datasets. It is shown that
the first proposed algorithm was an order of magnitude faster and had a higher
success rate than state-of-the-art methods, but was slightly less accurate. The
second proposed algorithm was faster and more accurate than state-of-the-art
methods, but had a lower success rate. When both algorithms were combined
in a hybrid approach, state-of-the-art methods were greatly outperformed in
all categories, leading to the first method for XRF/TEE registration that is
purely image based (requires no extra hardware), accurate, and fast enough
to operate at fluoroscopic frame rates.

In chapter 5, a clinical application of XRF/TEE registration is introduced.
A method for contrast-free, intraprocedural optimization of TAVR projection
angles using XRF/TEE registration was developed and tested in 10 patients.
It was shown that the proposed method agreed with the standard aortographic
method to within 3.46◦ ± 3.28◦, while a previously introduced method using
preoperative CT agreed to within 7.01◦ ± 2.78◦. Furthermore, the proposed
method can be performed intraoperatively with minimal disruption of clinical
workflow and without the use of nephrotoxic x-ray contrast dose.

In the final chapter of this thesis, the potential impact of the presented
algorithms are discussed in the context of future image guidance systems for
TAVR. Limitations of the current methods and future work needed for clinical
translation of the proposed technology are discussed.
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1. Introduction
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Cardiovascular disease (CVD) is the number one cause of death in the

world. At 31% of all deaths, it outnumbered cancer, communicable diseases,

and fatal injury in 2012 [1]. Due to this fact, investigation of causes and

treatment of CVD will remain at the forefront of medical research efforts for

the foreseeable future. Most forms of CVD can be treated pharmacologically,

through lifestyle changes, or through the use of surgical or minimally inva-

sive interventions. The field of interventional cardiology is concerned with

the latter approach, where instruments known as catheters are introduced

percutaneously (“through the skin”) and manipulated within the cardiovas-

cular system to correct structural defects or administer therapies. Medical

imaging for guidance of catheters and visualization of anatomy is critical for

successful performance of cardiac interventions. This is especially true for the

transcatheter aortic valve replacement (TAVR) procedure.

Before addressing the main motivation for the work in this thesis, the bio-

logical and technical background will be introduced, including a brief discus-

sion of cardiac anatomy followed by a history and summary of interventional

cardiac procedures and the medical imaging modalities used to guide them.

1.1 The Cardiovascular System

The cardiovascular system is responsible for transporting nutrients and oxygen

to the organs and tissues of the body via blood. The heart is the primary

organ responsible for pumping blood throughout the cardiovascular system,

which is done through a periodic process known as the cardiac cycle. The
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heart’s electrical system coordinates each phase of the cardiac cycle and helps

it operate at maximum mechanical efficiency when healthy. The heart is self-

perfused by the coronary arteries. The main branches are the right coronary

artery (RCA) and left coronary artery (LCA), which both originate in the

aortic root. Diagrams of the heart and the cardiac cycle are shown in Fig. 1.1

and Fig. 1.2, while a detailed anatomy of the aortic root is shown in Fig. 1.3.

Some common diseases of the heart requiring medical intervention include:

• Coronary artery disease (CAD): Narrowing of the coronary vasculature

that can result in decreased blood flow to the heart, causing chest pain or

myocardial infarction (heart attack). Ischemic heart disease, which cov-

ers all heart disease related to lack of blood supply, is the most common

form of heart disease in the world.

• Congenital heart defects: Structural heart abnormalities that are present

at birth.

• Heart rhythm disorders: Malfunction of the heart’s electrical system re-

sulting in irregular cardiac rhythm (arrhythmia), fast cardiac rhythm

(tachycardia), or slow cardiac rhythm (bradycardia). Heart rhythm dis-

orders can result in sudden death.

• Valvular disease: Malfunction of one of the four cardiac valves. An

example is valvular stenosis, where stiffness and/or narrowing of the

valve force the heart to work harder to pump blood, reducing cardiac

output and leading to heart failure.
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Figure 1.2: The cardiac cycle.

1.2 Interventional Cardiology

Interventional cardiology refers the subspecialty of cardiology that deals with

catheter based treatment of structural heart disease. The history of cardiac
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Figure 1.3: Aortic root anatomy, with an example echocardiographic image
(from [2]).

catheterization dates back to the 1711 when Stephen Hales recorded pressure

measurements from the heart of a living horse using a brass catheter tube.

In 1929, Werner Forssmann tricked a nurse into aiding him with an auto-

cardiac catheterization, where he advanced a ureteral catheter into his own

right atrium and for the first time documented such a procedure by radiog-

raphy. In 1977, Andreas Gruentzig performed the first balloon angioplasty,

which along with coronary stenting is still the gold standard interventional

treatment for occlusion of coronary arteries [3].

It should be noted that one of the most important aspects of Forssmann’s

experiment was that catheter placement was confirmed by x-ray imaging. Im-

age guidance has always been an important aspect of cardiac catheterization.

1.3 Image Guidance for Cardiac Interventions

Interventional cardiology is considered minimally invasive because procedures

are completed using only a small incision (normally in the groin) for catheter
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introduction, as opposed to opening the chest and operating directly on the

heart. Due to the fact that the anatomy cannot be visualized directly, image

guidance is a key component of any interventional procedure. Below is a

list of the primary imaging modalities utilized in interventional cardiology

procedures:

1.3.1 X-ray Fluoroscopy

X-ray fluoroscopy (XRF) is considered the primary imaging modality in the

cardiac catheterization lab (cath lab). In an XRF imaging system, a source

emits x-rays, which pass through the patient and onto an x-ray detector. The

detector in a modern flat panel system consists of a scintillator, which converts

the incident x-rays to visible light, and an array of detector elements, which

convert light produced by the scintillator to a digital signal representing the

image. The source and detector pair are mounted to a movable gantry (aka

C-arm, Fig. 1.4), which allows for rotations about the left-right axis (termed

a cranial-caudal rotation, CRA/CAU) and inferior-superior axis (termed a

left/right anterior oblique rotation, LAO/RAO) of the patient. An XRF sys-

tem that utilizes two C-arms is called a “biplane” system. XRF produces 2D

projection images, where (ignoring the impulse response of the system and

propriety image processing pipelines) the image intensity at each pixel is a

function of the attenuation line integral along a ray passing from the source

to the pixel (see section 3.2.3 for more details). Soft-tissue visualization is

generally poor, but x-ray attenuating contrast dyes can be injected into the

vasculature to temporarily provide visualization of anatomy.



7

XRF gantry (C-arm)

Operating table

After angioplasty

XRF during TAVR

Aortography during 
valve deployment

TEE Probe

Prosthetic 
Valve

Figure 1.4: Left: An example of a cath lab with an XRF C-arm (Philips FD20)
and operating table. Right: Example XRF images during TAVR, with and
without contrast dye for aortography.

XRF is a critical imaging modality for guidance of cardiac interventions

because of its excellent device visualization and fast imaging frame rate (15-30

fps). The main drawbacks of XRF are that it introduces ionizing radiation to

the patient and clinical staff, which can result in skin burns and/or increased

risk of cancer, and the fact that devices and anatomy are complicated 3D

structures while XRF is an inherently 2D imaging modality.

1.3.2 Echocardiography

The term echocardiography (echo) refers to ultrasound imaging of the heart.

Ultrasound imaging operates via the emission of ultrasonic waves from a trans-

ducer array, where images are formed based on the timing and intensity of the
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received signals. Echo has historically been a high temporal frame rate two-

dimensional (2D+t) imaging modality, but in the last decade, technological

advances in hardware have allowed for the introduction of 3D+t echo imaging.

3D+t imaging can be volumetric or consist of intersecting 2D planes (biplane).

Example of volumetric and biplane echo images are shown in Fig. 1.5.

There are four major types of echo transducers used in echocardiography:

• Transthoracic echo (TTE): External echo transducer that images the

heart via the chest wall.

• Transesophageal echo (TEE): An echo transducer that is introduced into

the esophagus, where it images from behind the heart.

• Intracardiac echo (ICE): An echo transducer that is embedded within a

catheter and images the heart from within the cardiac chambers.

• Intravascular ultrasound (IVUS): Another catheter based imaging de-

vice, IVUS is designed for cross-sectional imaging of vessels.

The major advantages of echo are that it can image soft tissue structures in

real time (generally 10-50 fps). Also, exposure to ultrasound carries minimal

health risks. The main problems with echo are that, aside from a low signal

to noise ratio, images often contain artifacts that make manual or automatic

identification of anatomical features challenging or in some cases impossible.

Interventional MRI

Interventional magnetic resonance (MR) imaging guided procedures [4] are

capable of providing the interventionalist with dynamic, high-resolution images
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3D Echo Biplane (Xplane) Echo

Figure 1.5: Left: 3D echo volume of the aortic valve. Right: Biplane echo of
the aortic valve.

of the heart. A comprehensive review of MR guided procedures [5] noted severe

limitations, including the ability to monitor patients, risk of device heating

causing burns, and lack of commercial testing and development of compatible

devices, all contributing to a lack of acceptance for clinical use.

Image Fusion with Preoperative Volumetric Imaging

Preoperative volumetric images are often acquired prior to interventional pro-

cedures and map the 3D anatomy and function of the heart. The most com-

mon modalities are x-ray computed tomography (CT) and MR. In the past,

these modalities were mainly used for diagnosis and preoperative planning,

but recent research has demonstrated their use for aiding procedural guid-

ance by registration with intraoperative modalities such as XRF and echo

[6, 7, 8, 9, 10, 11, 12].
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Electroanatomical mapping

Electroanatomical mapping (EAM) refers to a technology that uses electro-

magnetic tracking (EMT) sensors to create anatomical roadmaps for guidance

of interventional procedures. EMT sensors utilize currents induced in a small

wire coil by an electromagnetic field generator for position and orientation

localization. By placing these sensors in a catheter and moving the catheter

to different positions within a cardiac chamber, a map of the anatomy can be

reconstructed. An advantage of this technology is that the catheter is intrin-

sically registered to the roadmap. Disadvantages are that the mapping step

can take a long time (depending on the type of procedure), patient motion

can invalidate the roadmap, and the roadmap is often a crude, low resolution

representation of the anatomy.

1.4 Complex Interventional Procedures

The most common cardiac interventions are balloon angioplasty and stent

placement, as they have become the gold standard of care for CAD. These

procedures are routinely guided by XRF alone. However, more complicated

procedures have emerged that may require and/or benefit from multiple inter-

ventional imaging modalities. A few examples are:

Cardiac Stem-Cell Therapy (SCT) SCT involves the injection of stem-

cells into the heart following myocardial infarction. The underlying technology

is promising, but still has not been proven to result in improved outcomes for
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patients. It is hypothesized that injections near infarcted tissue are most effec-

tive. For that reason, and for safety reasons, intraprocedural infarct imaging is

required, which can be achieved using preoperative image overlays of delayed

enhancement MRI [7, 6] or EAM [13].

Ablation Procedures In order to correct abnormal heart rhythms, tis-

sue causing the abnormal rhythm is destroyed or isolated via ablation with

a catheter. To do this, the anatomy needs to be visualized along with the

catheter tip location, which is not easily done with XRF alone. Commercial

EAM software (Carto 3, Biosense Webster and Ensite NavX, St. Jude Medi-

cal) has been used to decrease the procedural complexity and radiation dose

associated with these procedures [14].

Transcatheter Aortic Valve Replacement (TAVR) TAVR is a proce-

dure used to replace a malfunctioning aortic valve with a new prosthetic one.

In the following section, the TAVR procedure is explained in detail.

1.5 TAVR: Background and Typical Workflow

TAVR is a minimally invasive approach for treatment of aortic valve stenosis

that involves implanting a prosthetic aortic valve (aka prosthetic heart valve,

PHV) in place of a malfunctioning native valve. An alternative to traditional

surgical approaches, TAVR was first performed in a human patient by Cribier

in 2002 [15].

The two main PHV device models on the market are the Edwards Sapien
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and the Medtronic CoreValve (Fig. 1.6). The Sapien valve is deployed on top

of a balloon, while the CoreValve is self-expanding.

Edwards Sapien XT Medtronic CoreValve

Figure 1.6: Left: Edwards Sapien XT. Right: Medtronic CoreValve

Although the specific clinical workflow for TAVR varies, the one used at

the University of Wisconsin (UW) hospital is described below and contains

many standard procedural elements.

1.5.1 TAVR Workflow at University of Wisconsin Hos-

pital

1. Preoperative valve sizing and initial estimation of optimal XRF

projection angle Prior to the procedure, the patient undergoes CT imaging

of the aortic valve. From the CT image, the size of the native aortic valve is

measured, which is critical for determining the proper PHV size. CT can

also be used to estimate the 3D position of the aortic valve cusps when the

patient arrives in the operating room, which in turn can be used to estimate

the proper XRF projection views to use during the procedure. Finally, CT

helps in determining which access route to use (anterograde or retrograde) via
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analysis of the iliofemoral access route [16].

2. Cardiovascular Access In this step, guide wires and the PHV are

introduced into the cardiovascular system. The most common techniques are

via the aorta (transfemoral retrograde approach) or the apex of the heart

(transapical anterograde approach) [17].

3. Determination of the optimal XRF projection A critical component

of XRF guided TAVR is finding the optimal XRF projection angle for PHV

deployment. Because XRF creates 2D projection images, the gantry angle

should be chosen such that the relative positions of anatomy and devices in

the XRF image correlate with their true three-dimensional positions. This is

best achieved when the source-detector axis is perpendicular to the long axis of

the aorta, and parallel to the annulus (Fig. 1.7). There are a number of ways

to determine this projection angle, including estimation from preoperative

CT, estimation from intraoperative cone beam CT (CBCT), and iterative

aortography. At UW hospital, a combination of preoperative CT and iterative

aortography is used, where an initial C-arm angulation is determined from

preoperative CT and aortography is used to refine the angulation if deemed

necessary.

4. PHV deployment Prior to deployment of the PHV, valvuloplasty is

performed to dilate the orifice and reduce the mechanical resistance of the

native valve. The PHV is then positioned within the aortic annulus, and the

valve is deployed. Both valvuloplasty and valve deployment are performed
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Figure 1.7: Left: CT volume renderings of an aorta with different virtual XRF
projection views. The view in the middle aligns the inferior portions of all 3
coronary cusps, indicating that the annulus is parallel to the source-detector
axis, as opposed to the view on the left (image modified from [18]). Right: An
example XRF image during an aortogram, where all three cusps are aligned
and therefore at the optimal XRF projection angle (image modified from [19]).

under rapid ventricular pacing and breath hold, minimizing cardiorespiratory

motion and sudden movements of the PHV/balloon during LV contraction.

Proper positioning is critical during deployment. As this is the most challeng-

ing step of the procedure, physician experience and imaging are important

here.

5. Post-deployment Following deployment, the echocardiographer checks

for paravalvular leak and/or regurgitation using Doppler TEE. If the PHV is

not functioning properly, another PHV may be deployed within the first one.

1.5.2 TAVR Outcomes and Complications

The PARTNER (Placement of AoRtic TraNscathetER Valves) trial was the

first prospective, randomized, and controlled trial for TAVR [20]. One co-
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Figure 1.8: XRF guided PHV deployment. The PHV in this example is the
Edwards Sapien, and can be seen expanding on top of a balloon catheter.

hort of patients (A) were those that were considered high-risk for surgery and

were randomly assigned to either surgical aortic valve replacement (SAVR)

or TAVR, while the second cohort (B) were those that were not approved for

SAVR and were assigned to either TAVR or standard non-surgical treatment

(balloon valvuloplasty).

Within cohort A, it was shown that TAVR and SAVR had similar outcomes

in terms of 1-year mortality (TAVR: 24.2%, SAVR: 26.8%, p = 0.44) and that

patients in the TAVR group were more likely to survive after 30 days (TAVR:

3.4%, SAVR: 6.5%, p = 0.07). Major vascular complications were significantly

more common in the TAVR group [21] (TAVR: 11.0%, SAVR: 3.2%, p < 0.001).

For cohort B, TAVR greatly outperformed standard treatment in terms of
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1-year mortality (TAVR: 30.7%, Standard: 50.7%, p < 0.001). A difference in

mortality at 30 days was not statistically significant (TAVR: 5.0%, Standard:

2.8%, p = 0.41). A significant increase in strokes (TAVR: 5.0%, Standard:

1.1%, p = 0.06) and major vascular complications (TAVR: 16.2%, Standard:

1.1%, p < 0.001) were associated with TAVR at 30 days [20] (TAVR: 11.0%,

SAVR: 3.2%, p < 0.001).

Many of the TAVR complications resulting in morbidity and mortality are

possibly related to suboptimal PHV positioning. If the PHV is deployed too

high in the aorta, it can block the coronary arteries or become displaced and

migrate into the aorta. If it is deployed too low, it can become displaced and

embolize into the LV, requiring surgery for removal. In addition, the PHV may

interfere with mitral valve operation, or cause conduction disturbance [22].

Cardiogenic shock is a potential complication that can occur due to hy-

potension resulting from rapid pacing [23]. Rapid pacing causes the LV to

beat rapidly using a pacing catheter, effectively “stunning” the LV, and is

used to minimize cardiac motion while obtaining the optimal XRF projection

and during PHV deployment. Because of potential cardiogenic shock, rapid

pacing during TAVR should be minimized.

Impaired renal function from acute kidney injury (AKI) suffered during

TAVR is associated with increased risk of mortality [24]. Although the cause

of AKI is often multifactorial, it has been shown to be related to the amount

of contrast dose used during the procedure [25, 26].

The PARTNER trial showed that paravalvular leak (PVL) is also an indi-

cator of mortality post-TAVR [27]. PVL results from [28]:
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• Incomplete attachment of the PHV to the aortic annulus due to calcifi-

cations and/or annular eccentricity.

• PHV undersizing.

• PHV malpositioning.

Due to the importance of proper valve positioning, image guidance is a key

component of a successful TAVR outcomes. An image guidance system that

can provide enhanced, simultaneous visualization of devices and the aortic root

may be able to reduce intra- and post-procedural complications. Furthermore,

imaging technologies and clinical workflows that minimize the need for x-ray

contrast and LV rapid pacing may also improve outcomes.

1.6 Potential Clinical Workflows for TAVR

Use of echo during TAVR is mainly relegated to an ancillary role [29]. Valve

deployment is still mainly guided by XRF, mostly due to ease of image inter-

pretation and device visualization.

Recently, image registration between XRF and echo has been validated

[30, 31, 32, 33, 34] and clinically implemented (Philips EchoNavigator). This

technology uses image processing to merge the XRF and echo coordinate sys-

tems, allowing for image information from both modalities to be fused into a

single visualization framework. It is hypothesized that image guidance during

the TAVR procedure can be improved using XRF/TEE registration by allow-

ing echo to assume a larger role during the positioning and deployment of the
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PHV. In the next section, some example clinical workflows utilizing XRF/TEE

registration are considered.

1.6.1 Real-time Anatomical Overlay

One of the main problems with XRF guidance during PHV deployment is

the need for aortography to visualize the anatomy of the aortic root, which

is critical for proper PHV positioning. Real-time, continuous visualization of

anatomical structures without the use of x-ray contrast may allow for more

optimal positioning of the PHV and reduce the risk of contrast induced AKI

during TAVR.

The workflows in Fig. 1.9 show two possibilities for merging anatomical

information from echo with XRF. Both rely on a real-time XRF/TEE regis-

tration. In one scenario, anatomical features (such as the aortic annulus) are

segmented from the echo image in real-time, and then projected onto the XRF

image. In the other, a preoperative CT-based roadmap of the aorta is contin-

uously registered with the echo image, and the roadmap is then projected on

the XRF image. By utilizing anatomical information from echo, cardiorespi-

ratory motion of the aortic root is compensated for without the use of x-ray

contrast.

1.6.2 Optimal XRF Projection via Echocardiography

As pointed out in sections 1.5.1 and 1.5.2, a critical component of successful

XRF guided TAVR is selection of the optimal XRF projection, where the plane

of aortic annulus is parallel to the source detector axis. Obtaining this projec-
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Figure 1.9: Two scenarios for echo-enhanced XRF guidance of TAVR using
real-time anatomical overlays. The first scenario merges XRF with segmented
anatomical features from echo, while the second scenario merges XRF with a
preoperative roadmap via echo as an intermediary modality.

tion is typically achieved by performing repeated aortograms until the inferior

tips of the aortic valve leaflets are co-linear in the XRF image (Fig. 1.7).

This can often be accomplished using only a single aortogram by experienced

physicians. However, due to the distorted and calcified aortic anatomy in some

patients, more than one aortogram is often needed to obtain the optimal pro-

jection, resulting in a high contrast dose and increased use of rapid pacing.

Due to the link between AKI and mortality following TAVR, as well as the

risk of cardiogenic shock from rapid pacing, minimizing the use of aortography

is important for optimizing clinical outcomes.

The workflow presented in this section is designed to minimize, or even
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eliminate, the use of aortography during XRF projection angle optimization.

The idea is to segment the aortic annulus in 3D echo, and use XRF/TEE

registration to place the annulus in the XRF image space. By doing this,

the optimal XRF projection can be obtained by finding the C-arm projection

angle where the elliptical annulus projects as line segment in the XRF image.

Fig. 1.10 demonstrates the proposed workflow.

EchoXRFCT

Detect PHV 
orientation

Guide PHV to 
aortic annulus

Back-project to find 
3D echo cut-planes 

of PHV

Obtain 
estimated 

optimal XRF 
projection

prior to 
procedure

Find annular plane 
in 3D echo

Forward-project 
annular plane

Adjust XRF C-arm so 
that annular plane is 
parallel to source-

detector axis

Echo/XRF 
Registration

Figure 1.10: Workflow for intraoperative C-arm projection optimization using
XRF/TEE registration. Note that the aortic root is visible in the XRF figures
merely to demonstrate imaging concepts, but contrast is not necessary for
this workflow. Note that the line representing the PHV in XRF can be back-
projected to find the PHV centered cut-plane in 3D echo (both are colored
green).

1.7 Thesis Contributions

Both of the workflows in Figs. 1.9 and 1.10 require the development and

validation of novel algorithms. In particular, the first workflow requires a

XRF/TEE registration algorithm that operates at fluoroscopic frame rates
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(15 fps). For the second workflow, real-time performance is not necessary,

but the method needs to be validated in-vivo against a clinical goal-standard.

Both workflows can benefit from algorithms that minimize user interaction.

This includes autonomous TEE probe and PHV localization in XRF images.

This thesis presents work aimed at enabling and validating these clinical

workflows. The first three chapters outline technical contributions related

to device detection and registration in XRF images, while the third clinical

validates an application of XRF/TEE registration for TAVR.

Chapter 2: Fully Automatic, Real-Time Localization of Devices in

XRF Images A novel Hough forest (HF) implementation for automatic de-

tection of devices in XRF images is presented and validated in clinical datasets.

The algorithm is applied to automatic TEE probe and PHV detection for

TAVR. The purpose is to minimize user interaction during XRF/TEE en-

abled TAVR workflows. Validation is performed on XRF datasets from 48

patients.

Chapter 3: XRF/TEE Registration: Prior Work, Technical Back-

ground and Novel Algorithms First, a literature review on XRF/TEE

registration is presented, followed by a technical summary of medical image

registration, 2D/3D registration, and state-of-the-art XRF/TEE registration

methods. Next, a CUDA implementation of state-of-the-art methods is de-

scribed, followed by the introduction of three novel real-time methods.
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Chapter 4: XRF/TEE Registration: Experimental Validation The

novel algorithms presented in chapter 3 are validated in-silico, in-vitro, and in-

vivo against state-of-the-art methods. Results indicated that the novel meth-

ods out-perform the state-of-the-art methods in terms of accuracy, speed, and

success rate.

Chapter 5: A Novel Intraprocedural, Contrast-Free Method for Ob-

taining the Optimal Fluoroscopic Projection Angles for TAVR A

pilot clinical study was designed and carried out that validated a novel method

(Fig. 1.10) for determining the optimal XRF projection for TAVR using XR-

F/TEE registration in 10 patients. The proposed method was compared to

the clinical gold-standard and a method that used preoperative CT. It was hy-

pothesized that the novel method would agree with the clinical gold-standard

to within a mean of 5◦, and that the novel method would outperform the CT

method in terms of comparison with aortography.

Chapter 6: Summary and Future Work A summary of this thesis is

presented, along with a discussion of future work.
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Localization of Devices in

Fluoroscopic Images
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Detection and pose estimation of devices in XRF images is a challenging

but important task for enabling multimodal image fusion for TAVR. This

chapter addresses the problem of fully automatic, real-time detection of the

Philips X7-2t TEE probe and the Edwards Sapien prosthetic valve in XRF

images.

One example application is automatic determination of device-centered

echo cut-planes via PHV detection (Fig. 2.1). By combining automatic PHV

localization and XRF/TEE registration, the line representing the PHV can

be back-projected into the echo volume, providing a device centered cut-plane

that is difficult to achieve manually, even for experienced echocardiographers.

Furthermore, detection of the PHV in biplane XRF and registration to echo

enables the PHV to be virtually rendered within the 3D echo volume (Fig.

2.1), resulting in an alternate imaging tool for guidance of PHV deployment.

A key component of the clinical workflow is automatic localization of the

devices at the beginning of an image sequence. In this chapter, a common

framework for TEE and PHV localization in XRF images is described. A

Hough forest (HF) detector is trained that can detect multiple parts of each

device, allowing for estimation of in-plane pose parameters. The data is vali-

dated on 1077 clinical images for the TEE probe detector and 388 for the PHV

detector.

The work from this chapter is accepted for publication as: Hatt, Charles R., Speidel,
Michael A., and Raval, Amish N.“Hough Forests for Real-time, Automatic Device Local-
ization in Fluoroscopic Images: Application to TAVR” In Medical Image Computing and
Computer–Assisted Intervention-MICCAI 2015. Springer International Publishing, 2015.
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Figure 2.1: Top: Potential workflow enabled by TEE/XRF registration and
PHV detection and tracking. Bottom: Rendered model of the PHV displayed
within the echo volume following detection and XRF/TEE registration.

2.1 Previous work

2.1.1 TEE probe detection

Two papers concerning fully automatic detection of a TEE probe have been

presented in the literature. In [33], the TEE probe was detected using the

probabilistic boosting-tree (PBT) approach with Haar wavelets and steerable

features [35]. The PBT object detector has been used extensively by Siemens
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Corporate Research on many different problems related to automatic anatomy

and device detection in medical images [36, 37, 38, 39]. Like most object detec-

tors, the PBT detector can only estimate in-plane parameters - the location

and orientation of the object in the image plane. In [33], out-of-plane pa-

rameters were estimated using an oriented gradient binary template library.

Average TEE pose-estimation time was 0.53 seconds, and a true-positive rate

of 0.88 and a false-positive rate of 0.22 were reported for in-vivo experiments.

Mean position measurements of 1.10 ± 0.8 mm and 0.70 ± 0.6 mm for tx

and ty were reported for phantoms. Relatively high errors of 11.5◦ ± 12.0◦

and 11.8◦ ± 9.8◦ were reported for rotations about the image axes (θx and θy,

respectively).

In [40] and [41], the work from [33] was extended by focusing on a frame-

work for adapting a classifier generated with in silico training data to perform

more accurately on in-vivo test data. Only in-plane parameters were esti-

mated. Impressive localization results were achieved (position: 0.8 mm ± 0.5

mm, orientation: 1.4◦ ± 1.1◦), as well a low false positive rate (0%) and fast

detection speed (25 ms).

2.1.2 PHV detection

In the literature, only one paper could be found that addressed the topic of

PHV tracking. It should be noted that “tracking” is actually an entirely differ-

ent problem than “detection,” as “tracking ”refers to frame-to-frame motion

estimation of an already located object, while “detection” refers to automatic

or semi-automatic recognition and/or localization of an object. In [42], the
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authors introduced a method to track the PHV in fluoroscopic images using

a normalized cross-correlation based template tracking method. The purpose

was simply to aid in visualization of the PHV prior to deployment, as the

method did not track the PHV as it was being expanded. The template

tracking method required manual initialization. However, a key component of

making computed-aided image guided interventions more usable is the mini-

mization or elimination of user interaction.

PHV detection is similar to catheter detection, for which there are quite

a few methods reported in the literature. Most methods deal with detection

and tracking of electrophysiology catheters [43, 44, 45], which can be used

to compensate for cardiorespiratory motion during interventional procedures.

Despite many publications on the topic, there are only a few examples of fully

automatic catheter detection. In [46], a method that used filtering combined

with sparse coding was employed to automatically detect catheters in real-

time. In [47], the authors fused hypotheses from a number of machine-learning

based methods to detect coronary sinus catheters.

2.2 Methods

In this chapter, the HF framework for object localization [48] was employed

for device detection in XRF images. A key component of the implementation

was the simultaneous detection of multiple object parts, which allowed for

estimation of both location and orientation of the device. In the following

section, the HF object detector is described.
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2.2.1 Algorithm

HF detector

A HF is a specific type of random forest that is designed for object detection.

A random forest is a collection of decision trees that perform classification

and/or regression [49]. HFs take image patches as input, and simultaneously

perform both classification (is it part of an object?) and regression (where is

the object?). The term “Hough” comes from the idea that each input image

patch classified as a part of the object votes for the position of the object

center, as is done in the original work on line detection by Hough [50] and

later generic shape detection [51]. Votes are added in an accumulator image

(“Hough” image, Fig. 2.3), and peaks are considered to be object detection

hypotheses. In the original work on HFs [48], the object detector was designed

to localize object centers, with the main example being human pedestrians. In

the implementation presented in this chapter, the HF was designed to locate

two ends of a device, referred to as the “tip” and “tail” (Fig. 2.2).

The HF framework was chosen for the following reasons:

• Because HFs operate by voting from multiple parts, they tend to be

robust to object occlusions, which is a common scenario in XRF images

due to the presence of wires, bones, and contrast agent injections.

• HFs naturally handle object appearance variations through their training

mechanism.

• The data structure used by HFs (trees) are highly amendable to fast,
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Tip

Tail Tail

Tip

Figure 2.2: Left: TEE probe, with tip and tail labeled. Right: PHV, with tip
and tail labeled.

parallel implementation.

Decision Trees A decision tree is an acyclic directed graph where each

node contains a single input edge (except at the root node) and multiple

output edges (except at the terminal nodes). In random forests, each node

only contains two output edges. During testing, data is input into the root

node, and rules based on binary tests (aka features) determine which edge

to travel down. For image patches, these binary tests typically encode patch

appearance. Eventually the data will arrive at a terminal “leaf” node. The leaf

node contains data, learned during training, about how to classify (or regress)

the input data.

Each tree is trained by computing a set of binary tests on labeled training

data, which are used to establish splitting rules. The splitting rules are cho-

sen to maximize class discrimination at each node. In this work, binary pixel

comparison tests are used due to their computational efficiency. Binary pixel



30

comparisons are very simple tests that simply compare two pixels in an image

patch to determine if the difference between the two is greater than a certain

threshold. Multi-channel image patches are used as input data. This means

that, aside from just the raw patch intensities, comparisons can be made be-

tween pixels in the x-gradient of the image, y-gradient of the image, gradient

magnitude of the image, wavelet filtered image, etc... For each multi-channel

input training patch In, a set of binary tests are computed as follows:

Fk,n(pk, qk, rk, sk, τk, zk) = In(pk, qk, zk)− In(rk, sk, zk) < τk (2.1)

Where (p, q) and (r, s) are patch pixel coordinates, τ is a threshold used for

detecting varying contrast, and z is the channel index. Image channels used

in this work were image intensity, the x-gradient and the y-gradient. In order

to make sure that the threshold parameter τ can be meaningfully applied to

any patch, each channel of each patch is normalized to have a range of 1:

Iz(u, v) =
Iz(u, v)

max(Iz)−min(Iz)
) (2.2)

Where Iz is the patch for channel z. (2.3)

Training Training begins by inputing a K × N training matrix with N

training patches and K tests into a root node (Fig. 2.9). The orientation,

offset vectors, and class attributes associated with each patch are known. A

metric is calculated for each test (each row). The metric is computed from all

N samples. Different metrics are used for classification and regression. In this
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work, the metric used for classification is the information gain [52]:

Gc
k = H(S)− |S1|

|S|
H(S1)− |S0|

|S|
H(S0) (2.4)

H(S) = −
∑
c∈C

p(c)log(p(c)) (2.5)

Where S is the entire set of training data, S0 is the set of training data

where Fk is false and S1 is the set of training data where Fk is true, and H(S)

is the Shannon entropy over all classes (device or background) in the set S.

The purpose of this metric is to find the splitting rule, out of all K splitting

rules, that achieves the highest amount of information gain by partitioning the

input data into different classes (device or background).

Alternatively, for regression of continuous variables, the metric is:

Gr
k = |S|var(S)− |S1|var(S1)− |S0|var(S0) (2.6)

Where var(S) is the variance of continuous data describing the device

orientation or offset vectors within each set (non-device patches are ignored

for this calculation).

A random decision is made at each node on which attribute to base the

splitting rule on: class, offsets, or device orientation. If the offsets are chosen,

a random choice about which offsets to regress (“tip” or “tail”) is made. The

test that gives the maximum value of Gc
k or Gr

k is stored as the splitting rule

for that node, and the training data is passed onto the left or right child

node according to the splitting rule. The same process is completed until a
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maximum tree depth D is reached or all of the samples in a node belong to the

background class. The terminal node is termed a “leaf” node, and it stores the

classes labels and offsets associated with all of the training data that arrived

at that node. In order to speed up run-time, offsets in each leaf node are

partitioned into 16 clusters using k-means and the cluster means replace the

original offsets. A small tree trained on 128 image patches is shown in Fig.

2.9.

A key feature of HFs is the use of randomness during training, which helps

prevent over-fitting the classifier to the training data. This is accomplished

by only generating a small random subset of binary pixel tests for each tree,

as well as randomizing whether each node will build a splitting rule based on

class, offset vector, or device orientation. For example, in the implementation

for the TEE probe, only 8192 out of over 1 million binary tests are available

to each tree.

During testing, a new image patch centered on (up, vp) is fed into the

root node of each tree and traverses the tree according to the splitting rules

established during training. When it arrives at a leaf node, each offset (uo, vo)

in the leaf node votes for the device parts in the Hough image, incrementing

the value at pixel (uH , vH) accordingly:

IH(uH , vH)→ IH(uH , vH) +
CL
|DL|

(2.7)

Where (uH , vH) = (up, vp)+(uo, vo), CL is the proportion of device samples

in the leaf node, and |DL| is the number of offsets in the leaf node.
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This process is then repeated at every patch and for every tree in the

HF. The final Hough image is blurred with a Gaussian kernel and peaks are

classified as tip and tail detection hypotheses (Fig. 2.3).

HF input patches can be sampled densely at random locations or sparsely at

salient key-points. For our application, it was found that device detection was

faster and more reliable using densely sampled patches at random locations.

Tip Hough Image Tail Hough Imageo Tip/Tail Detections

TEE Probe

PV

Figure 2.3: TEE probe and valve detection hypotheses with corresponding
Hough images showing clearly defined peaks at the tip and tail of the devices.

Hypothesis scoring A Hough image peak was considered a valid hypothesis

if it was greater than 0.8 ∗max(IH) following non-maximum suppression. At

most, the top 10 peaks were retained as part hypotheses, but in practice usually

only a few peaks survived the first criteria. All L tail and M tip hypotheses
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are combined to form L×M tip-tail pair hypotheses.

Next, unfeasible tail-tip pair hypotheses were removed. This was done

by creating tail-tip pair distance and orientation matrices, and removing pair

hypotheses that fell outside of the ranges of distance and orientation seen in

the training datasets. Remaining tip-tail hypotheses are then given a score:

Slm = IHtip
(ul, vl) · IHtail

(um, vm) (2.8)

The tip-tail pair with the highest score is selected as the detected device.

2.2.2 CUDA C Implementation

The TEE/PHV detection code was implemented in C and CUDA according to

the following procedure:

1. Code initialization: The application starts by reading in a HF data struc-

ture from a text file, as well as image patches from a raw binary file.

The HF data structure is stored as a cudaArray and bound to a 3D

texture. Patch data was transfered to global device memory.

2. HF traversal: The HF was implemented as multichannel 3D cudaArray

in order to allow for fast texture reads from multiple threads (Fig.

2.4). The use of multiple channels allowed for all five node parameters,

((p, q), (r, s), z, τ) and the binary status of whether or not the node was

a leaf node, to be stored. The size of the array is 2D−1×D×T , where D

equals the maximum tree depth and T is the number of trees in the forest.

This limits the maximum depth of the tree to be 12, as the maximum



35

dimension of a 3D cudaArray is currently 2048 elements. Note that

this data structure only needs to store information about non-leaf nodes.

Root 
node

Leaf 
node

Leaf 
node

Leaf 
node Empty

Leaf 
node

Leaf 
node

Leaf 
node

Leaf 
node

T = Number of Trees

D = Tree Depth 2D-1 Leaf nodes

Non-node array elements

Figure 2.4: Structure of the cudaArray used to store the HF. White table
entries indicate active nodes. Leaf nodes are shown but it should be noted
that only non-leaf nodes are included in the array.

During run-time, a CUDA kernel passes each of the input patches

though every tree in the HF. The CUDA kernel is invoked with N

blocks and T threads (N = number of patches ). Each block pro-

cesses a patch and each thread processes a tree, resulting in N ×T total

threads. Before processing the tree, each block uses multiple threads to

load the patch data from global memory to shared memory. This

improved memory access performance for asynchronous patch intensity
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lookups. The following pseudocode showing how a thread passes through

a tree is shown in Fig. 2.5.

//Passing a patch through a tree
goleft=true;
col=0;
row=0;
tree=threadIdx.x;
patch=blockIdx.x;
while(d<MXDEPTH)
{

row = row++;
col = GetCurColumn(col,goleft,depth)
node = tex3D(hfTex,col,row,tree);
thresh = node.threshold;
isleaf = node.isleaf;
channel = node.channel;
goleft = shrPatch[channel][node.q]
- shrPatch[channel][node.r] < thread;
d = row*(!isleaf) + MXDEPTH*isleaf;

}
leafIndices[tree][patch]=col;

Figure 2.5: Pseudocode for HF patch traversal

3. Hough Image Creation: Once each patch has been processed by the

kernel, the Hough image is generated. Each leaf votes for an essentially

random set of pixels, which is known as a “scatter” operation. Scatter

operations are known to be inefficient in a GPU programing environment,

because GPUs are not optimized for random write operations to memory,

especially when many threads are trying to write to the same pixel. For

this reason, the list of HF leaf indices for each patch and tree were
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transfered back to the CPU and Hough image generation was completed

serially. The tip and tail Hough images were then written to file.

4. Device Detection: Peak detection and hypothesis scoring were performed

in MATLAB.

2.2.3 Experimental Validation

Computer Hardware and Software

All experiments were run on a Dell Precision T7500 work station running

Ubuntu Linux with a 3.47 GHz Intel Xeon processor and a NVIDIA Tesla K20

GPU. The Philips X2-7t probe and the Edwards Sapien valve were used in

this study.

Training datasets

Image datasets from real clinical TAVR procedures were used for this study.

XRF image sequences were downloaded and processed following approval by

the local institutional review board. For the TEE probe, the classifier was

trained on simulated XRF images (see chapter 4.3 for details). For the PHV,

389 clinical images from TAVR cases were manually annotated and used for

training. In order to increase the size of the training dataset for the PHV

detector, each training image was randomly rotated and re-used as if it were

a new image. The PHV was only trained and detected in the pre-deployment

state.
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Table 2.1: HF parameters for the TEE and PHV. N = number of training
samples. K = number of tests per tree. T = number of trees. D = tree depth.
P = Number of patches at run-time

Patch size N K T D Image res. P
TEE 17 65536 8192 32 10 1.0 mm 16384
PHV 25 16384 8192 64 8 0.5 mm 16384

Validation The TEE and PHV detector were tested on 1077 and 388 clin-

ical XRF images, respectively. Ground truth data for the TEE images was

obtained by manually registering a model of the TEE probe to the image

(see Appendix, section B.2). The PHV ground truth was obtained by manual

annotation of the tip and tail of the PHV in the test images.

For validation, true positive rate (TPR), mean localization error for true

positives, and orientation error for true positives were measured. HF run-

time was also reported, which was the amount of time it took for the HF to

process all patches for each tree and create the Hough images. A detection

was considered a true positive if the localization error was less than 5 mm and

the orientation error was < 10◦. Localization error was the Euclidean distance

between the true and measured device centers computed at the detector (i.e.

projection magnification was not considered.)

2.2.4 Results

Results are summarized in Table 2.2. True positive detection rate was 95.8%

for the TEE probe and 90.1% for the PHV. In addition to summary statistics,

error histograms for both devices are shown in Fig. 2.10. Although a true

comparison with previous methods from the literature was impossible due to
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Figure 2.6: Validation error metrics for device detection.

lack of code availability, the reported TPR and localization errors for the

TEE probe are competitive with results from the literature [33, 40], especially

when considering that the HF was trained on only simulated images. For

successful detections, both devices resulted in localization errors less than 1.5

mm on average, and orientation errors less than 3.0◦. The histograms indicated

that, for the large majority of cases, position errors were less than 5 mm and

orientation errors were less than 5◦.

Table 2.2: Detection results for the HF device detector
# Test
images

TPR Localization
Error
(mm)

Orientation
Error (◦)

Run-time(ms)

TEE 1077 95.8 1.42 ± 0.79 2.59 ± 1.87 38.8 ± 5.00
PHV 388 90.1 1.04 ± 0.77 2.90 ± 2.37 37.0 ± 2.29

2.2.5 Discussion

The presented method was able to accurately detect both the TEE probe and

the PHV in over 90% of images. Most of the false positive detections were

due to occlusion from x-ray contrast during aortography. The true positive
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rate was high for the PHV, despite the fact that a large percentage of the

PHV test images were recorded during contrast infusion. Furthermore, the

PHV in the training and testing images varied greatly in size and appearance

due to different patient sizes and valve models. This indicates that the Hough

forest classifier is robust to appearance variation and that greater detection

performance may be possible using a classifier trained on specific valve sizes

and models. Examples of challenging images where the device was obscured

by contrast agent and/or catheters are shown in Figs. 2.7 and 2.8.

Figure 2.7: Example of a challenging image for TEE probe detection. Left:
Image. Middle: Tip Hough image. Right: Tail Hough image.

Figure 2.8: Example of a challenging image for PHV detection. Left: Image.
Middle: Tail Hough image. Right: Tip Hough image.

The real-time performance of the method is contingent on the full image

processing workflow. However, we expect that the bulk of processing is re-
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quired by the Hough forest, which was shown to have a maximum run-time

less than 50 ms. The other steps, which comprise random patch location

generation and extraction, can be implemented very efficiently in CUDA us-

ing texture reads. It is expected that the full image processing workflow can

be completed in less than 60 ms, which is sufficient for typical fluoroscopic

imaging frame rates (15 fps)

The main application of these methods is to enable XRF/Echo image fu-

sion, where the PHV will either be rendered in the echo image, or soft-tissue

information from echo will be projected onto the XRF image. It is expected

that these image processing tools will minimize the need for use of x-ray con-

trast, which is not only healthier for the patient, but also decreases the risk of

device detection failure. For the TEE probe, future work will focus on detec-

tion of the out-of-plane pose parameters, which is often a necessary step for

fully automatic initialization of 2D/3D registration. For the PHV, future work

will focus not only on detecting the PHV location and orientation, but also on

the deployment state during implantation. This will allow a dynamic model

of the PHV to be rendered in echo images, resulting in new image guidance

paradigms for TAVR.

2.2.6 Conclusion

A method for real-time, automatic detection of devices in fluoroscopic images

is presented. Based on the Hough forest object detection framework, the

method is fully automatic, and has the potential to operate at fluoroscopic

frame rates. The percentage of successful device detections was 95.8% for
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the TEE probe and 90.1% for the prosthetic valve, despite the presence of x-

ray contrast in many of the image frames. Future work will focus on detecting

PHV deformation during and after valve deployment for enhanced multi-modal

guidance of TAVR.
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Figure 2.9: A simple example of a decision tree trained on a single image of the
TEE probe. Top: Example TEE probe image, with locations of background
(red) and device (green) training patches. Bottom: Example of a simple de-
cision tree. Input data traverses the nodes based on binary test results and
arrives at leaf nodes. In this example, all of the patches from the training
image are shown in their destination leaf nodes.
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Figure 2.10: Histograms for the device detection error metrics. CDF=90%
refers to the error value corresponding to the cumulative error distribution
function (CDF) equaling 0.9.
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The focus of this chapter is XRF/TEE registration via image-based pose

estimation of the TEE probe. Specifically, we discuss recent work on the

topic, provide a technical background on the subject of image registration in

general, discuss prior methods of XRF/TEE registration and our optimized

implementation of those methods, and finally introduce novel methods aimed

at increasing the speed of XRF/TEE registration while maintaining clinically

acceptable accuracy.

3.1 Literature Review

3.1.1 XRF/TEE Registration

The first paper to propose a method for XRF/TEE image registration was

[53]. In that work, registration was accomplished by:

1. Calibrating the spatial relationship between the EMT sensor on the TEE

probe and the echo volume.

2. Attaching EMT sensors to the TEE probe.

3. Registering the EMT and XRF coordinate systems using a specially

designed phantom.

Portions of the work from this chapter are accepted for publication as: Hatt, Charles
R., Speidel, Michael A., and Raval, Amish N.“Robust 5DOF Transesophageal Echo Probe
Tracking at Fluoroscopic Frame Rates” In Medical Image Computing and Computer–
Assisted Intervention-MICCAI 2015. Springer International Publishing, 2015.
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By doing this, the spatial relationship between echo image volume and

the XRF coordinate system was known, and the two images could be regis-

tered. The main problems with this method were that extra hardware and

modifications to the TEE probe were required, and the system was prone to

inaccuracies due to electromagnetic fields generated by the XRF system.

The first image based TEE/XRF registration algorithm was presented by

Gao et. al. [30, 54]. In this work, the feasibility of using GPU accelerated

raycasting techniques to quickly generate DRRs of the TEE probe for 2D/3D

registration was demonstrated. The initial results indicated that the method

was accurate (mean projection distance = 1.8±1.13 mm). Registration time

was 8.0±2.0 s for 1024 × 1024 images and 1.8±0.6 s for 512 × 512 images. The

authors found that cardiorespiratory motion caused projection errors up to 4

mm, and noted that a real-time algorithm was necessary to overcome these

errors. In follow up work [31], the same group implemented their algorithm

on a system that was able to stream echo and XRF data and display both in

a common coordinate system. They reported a registration speed-up (0.5-1.0

seconds per registration), a mean projection error of 2.9 mm, and a maximal

projection error of 10.9 mm in 13 clinical data sequences.

In [32, 55, 56], radio-opaque fiducials were attached to the TEE probe to

perform feature based registration, rather than image based registration as in

[30]. The use of fiducials made the registration problem more accurate and

faster. A registration time of 50 ms (20 fps) was reported, as well as a point

projection accuracy of 1.20±0.91 mm and a 3D point registration accuracy

of 2.23 ± 0.72 mm. The main issue with this approach, however, was that
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the excellent speed and accuracy results could only be achieved through the

addition of the external fiducials, which increased the size of the probe. Aside

from the fact that this solution required a custom modification that could not

easily be reproduced, it was also undesirable due to increased risk of esophageal

injury.

The image-based 2D/3D registration approach was re-visited in [57]. A new

method for fast DRR generation was presented, which accelerated the process

by modeling the TEE probe as a mesh. This enabled the use of very-fast

OpenGL rendering primitives for DRR creation. DRR generation was indeed

significantly accelerated (0.05 ms), but the overall timing still depended on

the computation of the similarity between the DRR and the XRF image. The

combined process was reported as 1 ms per iteration. This was much faster

than the method reported in [30], but likely not fast enough for registration

rates faster than 4 fps, based on the assumption that the mean number of

similarity function evaluations is roughly 250. Furthermore, the accuracy of

the method was not reported.

It was shown in [30] that using two XRF views can result in more accurate

TEE pose estimation. This can be done using a biplane system or imaging the

probe from multiple views with a single-plane system. In [58], the problem

of accurate multi-view TEE pose-estimation was addressed. The authors de-

veloped a method for oblique bi-plane registration that was more robust than

previous methods in terms of capture range.

Machine learning based techniques have also been used for XRF/TEE reg-

istration, and were discussed in chapter 2.
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Based on a review of the literature, there still appeared to be a need for an

algorithm that could perform accurate image-based registration at fluoroscopic

image frame rates (15 fps) without the use of external hardware or fiducials.

3.1.2 XRF/TEE Registration Applications

Most of the prior work on XRF/TEE registration has focused on methods

demonstrating feasibility or presenting incremental improvements. Some ap-

plications, however, have been presented.

XRF/TEE registration was used to improve the accuracy of 3D echo mo-

saicking in [59]. Since 3D echo has as relatively small field-of-view (FOV),

previous research efforts have focused on fusing multiple acquisitions to create

a larger image. This can be done using echo-to-echo image registration, but

the initialization is important for getting this technique to work well. Track-

ing of the TEE probe in XRF images allowed for accurate initialization, which

improved robustness of the multi-view mosaicking approach.

Catheter visualization and segmentation in 3D echo is challenging due to

appearance and intensity variations of the catheter and echo imaging artifacts.

In [60], a method was presented for improved catheter segmentation in 3D echo

using XRF/TEE registration. Catheter segmentation was first performed in

XRF, which is a much easier problem. The segmented catheter from XRF was

then back-projected into the echo volume using the XRF/TEE registration

transformation, which helped initialize and improve the echo based catheter

segmentation.
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3.2 Technical Background

3.2.1 Medical Image Registration

Medical image registration is the process of aligning images so that there is a

maximal spatial correlation between corresponding anatomical features. Typ-

ically, one image (the “moving” image) undergoes a spatial transformation,

while the other image remains static (the “fixed” image). The standard pro-

cess begins with estimation of an initial spatial transformation, defined by

parameters φ. A medical image registration process consists of the following

components:

• Spatial transformation (aka warping): The spatial transformation de-

fines the ways in which the moving image can be transformed so that it

matches the fixed image. For rigid transformations, the moving image

can only undergo translations and rotations, while for affine transfor-

mations, it can undergo translations, rotations, anisotropic scaling, and

shearing. Deformable transformations define more complicated image

warps that are characterized by many local spatial transformations, and

tend to have many parameters and are therefore usually slower and less

accurate.

• Similarity metric (FS, aka cost, objective, or energy function): The simi-

larity metric is a scalar or vector value that determines how well the fixed

and moving images are aligned. If the images are well-aligned, then the

similarity (cost) metric will have a high (low) value. Some common
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metrics are sum of squared differences, normalized cross-correlation, and

mutual information.

• Optimizer: The optimizer is the specific method used to maximize the

similarity between the fixed and moving image. Typically, some initial

spatial transformation parameters φ0 are provided, from which an initial

similarity (FS0) can be computed. It is the job of the optimizer to it-

eratively compute a new set of transformation parameters, evaluate the

similarity metric for those new parameters, and from that information,

determine how to keep searching the parameter space until the similarity

(cost) is at a maximal (minimal) value.

The iterative process of medical image registration is shown in Fig. 3.1,

and proceeds as follows:

1. Initialization: An initial set of transform parameters φ0 are chosen.

2. Moving image transformation: The moving image is transformed accord-

ing to φ0 (ÎM = Tφ0(IM)).

3. Similarity function computation: The similarity between the transformed

moving image and the fixed image is computed (FS(ÎM , IF )).

4. Update parameters: The parameters φ are updated by the optimizer and

the process repeats (starting at to step 2). The process terminates when

a maximum number of iterations have occurred or when changes in FS

and φ are smaller than a predefined threshold.
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Figure 3.1: Image registration process.

When evaluating an image registration algorithm, three things need to be

considered: accuracy, speed, and capture range. These attributes are used to

answer the following questions:

• Accuracy: How accurate is the registration? Specifically, what are the

alignment errors, usually in mm, between homologous points in each

modality after registration? How does this relate to the needs of the

clinical application?

• Speed: How fast can the registration problem be solved on a computer?

Does it fit the clinical requirements?

• Capture range: How accurately does the registration need to be initial-

ized in order to consistently converge to an acceptably accurate solution?

How much user interaction is needed to ensure that the registration will

properly converge, and how can failure be detected?
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3.2.2 2D/3D Registration

Medical image registration is mostly used to align images that have the same

dimensionality. For example, when registering two brain MRI scans, both

volumes are three-dimensional. However, there is a class of image registration

problems that attempts to align 3D volumes with 2D projection images. This

is referred to as “2D/3D registration”, also known as “pose estimation” as

it essentially attempts to estimate the 3D pose of an object from a set of

projection images. The standard process is shown in Fig. 3.2 and explained

below:

• Initialization: An initial set of transform parameters φ are chosen.

• Moving volume transformation: The moving volume is transformed ac-

cording to the provided parameters (V̂M = Tφ(VM)).

• DRR generation: A DRR (D) is generated given the pose of transformed

moving volume. This is done by modeling the projection imaging process

using a projection matrix (P , see section 3.2.3).

• Similarity function computation: The similarity between the DRR and

the fixed image is computed (FS(D, IF )).

• Update parameters: The parameters φ are updated by the optimizer and

the process repeats. The process terminates when a maximum number

of iterations have occurred or when changes in FS and φ are smaller than

a predefined threshold.
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Moving 
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VM

TΦ FS(D,IF)

Initial 
Parameters Φ

Update 
Parameters Φ
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Figure 3.2: 2D/3D image registration process

An exhaustive survey of the topic is found in [61]. The main application

of 2D/3D registration is alignment of preoperative data, usually from CT, to

intraoperative x-ray images. The moving image in 2D/3D registration is a

simulated x-ray image, called a digitally reconstruction radiograph (DRR),

and the fixed image is the clinical x-ray image. In the next section, the x-ray

image formation process is briefly discussed along with methods for generating

DRRs via raycasting.

3.2.3 XRF Projection Geometry

The XRF image formation process is often modeled assuming a point x-ray

source and a detector grid. In this thesis, the convention is that the XRF coor-

dinate system is centered on the detector (Fig. 3.3). The following parameters

define the projection geometry:

• xs, ys, zs: The coordinates of the x-ray source relative to the origin of the

detector. zs is often referred to as the source-to-image distance (SID).

• px, py: The detector element spacing of the detector, also known as
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“pitch”. Expressed in units of del
mm

or px
mm

.

These parameters are used to compute the projection matrix P :

P =



1
px

0 0 xs

0 1
py

0 ys

0 0 0 0

0 0 − 1
zs

1


(3.1)

SID = zs

zobject

x

y

z

x

origin
(0,0,0)

origin
(0,0,0)

Source

xs

detector

Figure 3.3: XRF coordinate system and projection geometry. The black rect-
angle illustrates object magnification.
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The projection of a point onto the detector (p3D = [x, y, z, 1]> → pdetector =

[u, v]>) is calculated using the following equations:

pdetector = [u, v]> = [
x̂

w
,
ŷ

w
]> (3.2)

[x̂, ŷ, 0, w]> = P · [x, y, z, 1]> = P · p3D (3.3)

From Eqs. 3.2 and 3.3 and Fig. 3.3, note that the magnification of the

projected object depends on its z-position.

3.2.4 XRF Image Formation and DRR Generation

During XRF imaging, x-rays are emitted from the source and pass through

the patient before arriving at the detector. The image intensity at each pixel

(I(u, v)) is proportional to the source intensity times the exponential function

of the attenuation (µ) line integral along a ray (l) passing from the source to

the detector:

I(u, v) = I0e
−

∫
l µ(l)dl (3.4)

Clinical XRF images are therefore of function of the attenuation of organs

and/or devices such as catheters and TEE probes. To imitate real XRF im-

ages, simulated XRF images (DRRs) attempt to recreate this process using

volumetric data (usually a CT image) in place of a real object (patient) and

discretely sampled virtual x-rays instead of real x-rays. The most natural

method of simulation is known as raycasting, shown in Fig. 3.4 and Fig. 3.6.
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Source

CT Volume

Figure 3.4: DRR generation via raycasting. Line integrals through a CT
volume are computed at each pixel.

The equation for generating a DRR (D) via raycasting is:

D(u, v) = e−
∑

n∈S V (V Txrf · ~xn)∆l, ~xn = [xn, yn, zn, 1]> (3.5)

S = {n|P · ~xn = [u, v]} (3.6)

where V is the data volume, ~x is a set of discrete points passing along a

ray from pixel (u, v) to the source (xs, ys, zs), ∆l is the path length between
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Source

Point Cloud

Figure 3.5: DRR generation via splatting. Voxels (points) are projected onto
discrete pixel locations and summed.

each discrete point in the ray, and V Txrf is the spatial transformation matrix

registering the XRF coordinate system to the coordinate system of the data

volume.

An alternative DRR generation method is known as splatting (Fig. 3.5

and Fig. 3.6). In splatting, rather than estimating line integrals through a

data volume, the voxels from the data volume are considered points and are

directly projected onto the image. Wherever a point lands on the image, that

pixel is incremented by the intensity value associated with that point. The
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equation for generating splat rendered DRRs is:

D(ui, vi) =
∑
j∈Si

−V (~xj), Si = { j | bP ·xrf TV · ~xje = [ui, vi] } (3.7)

Here, Si refers to the set of points that project onto pixel i after the model

has been spatially transformed, ~xj = [xj, yj, zj, 1]> is the 3D coordinate of

the jth model point, and V (xj) is the intensity value associated with the jth

model point.

One advantage of splatting is that voxels with low intensities do not con-

tribute much information to the final DRR and therefore can be discarded. In

some cases, this can lead to a dramatic reduction in the size of the volumetric

data needed to generate a DRR. Discarding even the meaningful voxels can

also be used to further reduce the volumetric data size, resulting in faster DRR

rendering. Fig. 3.6 shows a comparison of TEE probe DRRs generated using

raycasting and splatting with multiple levels of point (voxel) downsampling.

3.3 Implementation of XRF/TEE Registration

Using Raycasting

3.3.1 Fast Implementation of Raycasting in CUDA

In order to compare the novel algorithms presented in this chapter with prior

methods of TEE/XRF registration, it was necessary to implement the al-
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Raycasting Splatting
1,048,576 
points

Splatting
65,536 
points

Figure 3.6: Methods for generating probe DRRs.

gorithm from [30]. This required a GPU implementation of raycasting for

DRR generation, which was implemented using CUDA. The volumetric image

(CTprobe(x, y, z)) used for generating DRRs of the TEE probe was a 432×150×146

CBCT image with 0.1037 mm3 pixel resolution acquired with a Philips FD20

system. The raycasting implementation was designed with some special fea-

tures that improved computational efficiency compared to the method pre-

sented in [30] by precalculating a DRR region-of-interest (ROI) and only per-

forming computations at the pixels within the ROI.

The CUDA accelerated DRR generation algorithm is presented below:

1. CPU Program:

• Transform the corners (Fig. 3.7) of the CT volume to the XRF im-

age space using the spatial transformation parameters φ = (tx, ty, tz, θx, θy, θz):

p(XRF )
corners =XRF TCT · p(CT )

corners (3.8)
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Tφ =



1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1





cz −sz 0 0

sz cz 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 cx −sx 0

0 sx cx 0

0 0 0 1





cy 0 −sy 0

0 1 0 0

sy 0 cy 0

0 0 0 1


(3.9)

Where cα = cos(θα), sα = sin(θα).

Record the minimum and maximum z-coordinates of CT bounding

box after transformation to the XRF coordinate system:

zstart = min(z(XRF )
corners) (3.10)

zstop = max(z(XRF )
corners) (3.11)

• Project the transformed corners of the CT volume onto the image:

p(image)
corners = (ucorners, vcorners) = P · p(XRF )

corners (3.12)

• Record the minimum and maximum projected corners coordinates

defining bounding box ROI:

BROI = (min(ucorners),max(ucorners),min(vcorners),max(vcorners))

(3.13)

• Compute the inverse spatial transform CTTXRF =XRF T−1
CT
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• Transfer all spatial transform and bounding box information (CTTXRF , BROI , zstart, zstop)

to CUDA constant memory.

• Transfer all image information (CTprobe, Ixrf ) to CUDA texture

and global memory.

2. GPU Program:

• Launch 1 thread for every pixel within the bounding box BROI .

• Set DRR(u, v)=0.

• Trace a ray r through the volume according to the following proce-

dure:

– Compute the current position of the ray: rcurrent = (xcurrent, ycurrent, zcurrent).

Set zcurrent = zstart. Compute xcurrent and ycurrent from the pixel

position and the XRF system geometry P .

– Spatially transform rcurrent: r̂current =CT TXRF · rcurrent.

– Sample and record the CT value: DRR(u, v)+ = CT (r̂current)

– Set zcurrent = zcurrent + ∆z

– Repeat until zcurrent > zstop

• Set DRR(u, v) = exp(−DRR(u, v))

Note in Fig. 3.7 that the projected bounding box is much smaller than the

entire image, which results in a much faster DRR generation step compared

to when rays are cast at every pixel.
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CT bounding box

Bounding box surrounding projected CT corners

Figure 3.7: Illustration of the probe CT image used to generate the DRRs
via raycasting, as well as the bounding box scheme for acceleration of the
procedure.

3.3.2 Similarity Metrics

In this work, the normalized cross-correlation (NCC) and gradient correla-

tion (GCC) similarity metrics were used due to their relative computational

simplicity, as well as the fact that these metrics were used in prior work on

XRF/TEE registration [30, 55]. They are defined with the following equations:

FNCC(I,D) =
∑
i

∑
j

Î(ui, vj) D̂(ui, vj) (3.14)
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Î(ui, vj) =
I(ui, vj)− µI

σI
(3.15)

FGCC(I,D) = FNCC(
dI

du
,
dD

du
) + FNCC(

dI

dv
,
dD

dv
) (3.16)

These functions were implemented in CUDA using the parallel reduction

method presented in [62] for mean and standard deviation calculation and

finite differences for gradient calculation.

To show that these standard optimization methods combined raycasting

with the NCC and GCC metrics, they are termed “rcNCC” and “rcGCC”.

3.3.3 Optimization Framework

The final requirement for implementation of XRF/TEE registration using ray-

casting was the optimization framework. Open-source optimization libraries

(VNL) were used, from which two methods were chosen for experiments: the

Nelder-Mead method and the Powell method. These methods were chosen

because:

• They work well for low-dimensional optimization problems.

• They can perform optimization without needing analytical similarity

function derivatives, which are unavailable in this case.

In [63], a tutorial on combining the VNL non-linear optimization libraries

with CUDA was presented.
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3.4 Novel Algorithms

In this section, two novel 2D/3D registration algorithms are introduced. The

main design goal was to achieve large speed-ups in registration time while

maintaining reasonable accuracy compared to the standard algorithms pre-

sented in section 3.3.

3.4.1 Direct Splat Correlation

Since 2D/3D registration is an iterative process, a key determinant of overall

registration speed is the time needed to generate the DRR at each step of

the optimization. For our application, optimization typically requires 150-300

similarity computations, depending on how close the initial pose is to the final

solution. This means that both DRR generation and similarity computation

need to be completed in roughly 300 µs on average for 15 fps registration.

In section 3.2.4, the concept of splatting for DRR generation was intro-

duced. When using a CPU for computation, splatting can be more computa-

tionally efficient than raycasting, especially when the size of the point cloud is

small compared to the size of the data volume it was derived from. However,

splatting does not necessarily translate well to the GPU, because every pro-

jected point must perform an indirect write operation at a random pixel (see

Fig. 3.8, left, line 3). However, it can be shown that the correlation similarity

metric can be reformulated so that all of the write operations are replaced

with extremely fast texture reads on the GPU.

Consider the correlation (CC) between an XRF image I(u) and a DRR
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D(u):

CC =
∑
i

I(ui)D(ui) (3.17)

For a splat-generated DRR, we can substitute the D(u) term to obtain:

CC =
∑
i

I(ui)
∑
j∈Si

−V (xj) = −
∑
i

∑
j∈Si

I(P · T · xj)V (xj) (3.18)

Finally, this simplifies to a sum over all 3D points:

CC = −
∑
j

I(P · T · xj)V (xj) (3.19)

This expression simply states that the correlation is equal to the sum,

over all 3D points, of the point intensity times the value of the pixel that it

projects onto. Equation 3.19 shows that the DRR does not need to be explicitly

generated to compute the similarity, enabling more efficient computation (Fig.

3.8).

//Splat correlation w/
DRRs

1 for each point x
2 u = P*T*x
3 DRR[u]=DRR[u]+V[x]
4 for each pixel u
5 cc+=DRR[u]*I[u]

//Direct method w/o DRRs
1 for each point x
2 u = P*T*x
3 cc+=I[u]*V[x]
4
5

Figure 3.8: Pseudo-code for computation of correlation for explicit DRR gen-
eration (left) and the proposed method (right).

Because this similarity is inspired by splatting and is directly computed
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from the image, without the explicit generation of a DRR, we refer to it as

“direct splat correlation” (DSC).

Point Cloud Representation

A point cloud representation of the probe (PCprobe) was required for the im-

plementation of the DSC algorithm, and was created using the following pro-

cedure:

1. High-intensity features in the TEE probe CT (CTprobe) were manually

segmented.

2. Segmented voxels were organized into 4×4×4 cubes, which was done

to make sure that voxels located nearby each other in space were also

located nearby each other in memory. This was done to improve the

efficiency of the 2D texture read operations, which are faster when

threads within the same warp access nearby spatial locations in an image.

3. 2N points were randomly generated within the segmented region. The

number of points affects the algorithm’s run-time and accuracy, and so

varying values of N (10-20) were tested.

4. Linear interpolation was used to assign an intensity value to each point.

3.4.2 Patch Gradient Correlation

The DSC method was designed to perform similarity computations without

the need for generating DRRs, potentially resulting in fast registration speeds.
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Figure 3.9: Manual segmentation of high-intensity voxels from the TEE probe
CT.

TEE probe point cloud 
model (2^16 points)

Figure 3.10: Point cloud model of the probe. The dimensions are in mm.

This was achieved by reformulating the cross-correlation similarity metric.

However, other, more complicated similarity metrics have been introduced

that, although much more computationally expensive, perform better in terms
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of registration accuracy. Some examples include GCC and pattern intensity

[64].

As an alternative to DSC, an algorithm was designed with a goal of achiev-

ing accuracy equal to or better than the GCC method, while achieving faster

registration speeds. One of the key features of device pose estimation in XRF

images is that the device typically has a high degree of saliency compared to

other components of the image. This means that the device produces many

high-contrast, high-entropy patches in the image that can be used as regis-

tration features. It was hypothesized that focusing on these salient features,

rather than the entire image, would allow for accurate registration with a much

lower computational burden. To that end, the new algorithm computed the

GCC metric on a subset of patches rather than the whole image, and was

therefore called “patch gradient correlation” (PGC).

In the PGC algorithm, a set of K key-points on the TEE probe are man-

ually defined. The key-points are chosen based on their proximity to high

contrast features on the probe (Fig. 3.11). During each optimization itera-

tion, the key-points are projected on the image. At all K projected key-points,

16 × 16 DRR patches (D1...DK) are generating by raycasting. Patches are

also extracted from the XRF image at same locations (I1...IK). The similarity

metric is the sum of the gradient correlation over all patches:

FPGC =
K∑
k

FGCC(Dk, Ik) (3.20)

The location of key-points and patch extraction process is illustrated in

Fig. 3.11.
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a b

c d

Key-point patches x-gradient y-gradient

Figure 3.11: The PGC method. a) 3D point cloud model of the probe. b)
Location of 18 key-points. c) An example of probe key-points projected onto
an image of the probe, as well as the spatial footprint of the corresponding
patches d) Patches extracted from the locations of the projected key-points,
with x and y gradients

The following procedure is used to compute the PGC metric:

1. CPU:

• Transform the key-points to the XRF image space using the spatial

transform (XRFTCT , see Eq. 3.9) generated from the parameters

φ = (tx, ty, tz, θx, θy, θz):

p
(XRF )
key−points =XRF TCT p

(CT )
key−points (3.21)
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• Project the key-points onto the XRF image.

p
(image)
key−points = P XRFTCT p

(CT )
key−points (3.22)

• As specified in section 3.3.1, transform the CT bounding box co-

ordinates to the XRF image space using XRFTCT and record the

minimum and maximum z-coordinates of CT bounding box after

transformation to the XRF coordinate system (zstart, zstop).

• Compute the inverse spatial transform CTTXRF =XRF T−1
CT

• Transfer all spatial transform and bounding box information to

CUDA constant memory (CTTXRF , p
(image)
key−points, zstart, zstop).

2. GPU:

• Launch 1 block for every key-point, and launch 256 (16×16) threads

per block.

• Using the same procedure from section 3.3.1, raycast through the

CT volume to produce a 16×16 DRR patch Dk centered on a pro-

jected key-point.

• Using finite differences, compute the x-gradient and y-gradient of

the DRR patch.

• Using a 2D texture read, extract a (16×16) patch Ik from the

image centered on the projected key-point.

• Using finite differences, compute the x-gradient and y-gradient of

the image patch.
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• Compute the gradient correlation between the DRR patch and the

image patch (Eq. 3.16).

• Transfer the gradient correlation for each patch back to the CPU.

3. Sum all the gradient correlations into a single scalar value. Report to

optimizer.

3.4.3 Hybrid Method

In the previous sections, two novel 2D/3D registration algorithms were pre-

sented: DSC and PGC. It was hypothesized that the DSC method would be

faster, while the PGC method would be more accurate. With this in mind,

a hybrid (HYB) method was designed that combined both methods. In the

hybrid method, DSC was first used to arrive at an initial solution, while PGC

was used to refine the solution. The idea was that this strategy would de-

crease the total number of iterations needed for the PGC method to converge

by using the DSC method to provide a fast and accurate initialization. It

was hypothesized that the hybrid method could achieve the same accuracy as

PGC, but with a faster registration speed and higher capture range.

3.5 Discussion and Conclusion

In this chapter, the technical principles and prior art concerning XRF/TEE

registration were presented. A modified implementation of TEE pose estima-

tion via standard 2D/3D registration methods (rcNCC,rcGCC), inspired by

the work in [30], was then described. Finally, two novel algorithms aimed at
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faster and more accurate registration were introduced (DSC, PGC, and HYB),

as well as details about implementation.

In the next chapter, the DSC, PGC and HYB methods are validated against

the standard XRF/TEE registration methods. The results of experiments in

simulated, phantom, and clinical datasets are presented.
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4. XRF/TEE Registration:

Experimental Validation
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In this chapter, experiments are presented characterizing the performance

of the standard (rcNCC,rcGCC) and novel (DSC,PGC,HYB) XRF/TEE regis-

tration methods presented in the previous chapter. Prior to presenting exper-

imental results, cost function curves were generated for each method in order

to qualitatively characterize the capture range and accuracy. Next, three dif-

ferent experimental scenarios were tested: simulated, phantom, and clinical

datasets.

4.1 Common Materials and Methods

In the following sections, experimental materials and methods common to all

experiments are described.

4.1.1 Computer Hardware and Software

A Philips X7-2t TEE probe was used in this study. All experiments were run

on a Dell Precision T7500 work station running Ubuntu Linux with a 3.47

GHz Intel Xeon processor and a NVIDIA Tesla K20 GPU. VNL libraries were

used for optimization. Retrospective clinical dataset processing was approved

by the local institutional review board.

Portions of the work from this chapter are accepted for publication as: Hatt, Charles
R., Speidel, Michael A., and Raval, Amish N.“Robust 5DOF Transesophageal Echo Probe
Tracking at Fluoroscopic Frame Rates” In Medical Image Computing and Computer–
Assisted Intervention-MICCAI 2015. Springer International Publishing, 2015.
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4.1.2 Optimization Strategy

All experiments assumed a single x-ray projection, which typically results in

inaccurate estimates of tz. Therefore, we focused on optimization of the other

five parameters, which resulted in a smaller optimization problem. Optimiza-

tion consisted of two stages, first dealing with in-plane parameters (tx,ty,θz),

and then all of the parameters except tz ( tx,ty,θx,θy,θz, Fig. 4.1). For the

hybrid method, optimization consisted of three stages, shown in Fig. 4.1.

Optimize in-plane 
parameters:

[tx,ty,θz]

Optimize all parameters 
except out-of-plane 
translation :

[tx,ty,θx,θyθz]

rcNCC, rcGCC, DSC, PGC

DSC Optimize in-
plane parameters:

[tx,ty,θz]

DSC Optimize all 
parameters except out-of-
plane translation :

[tx,ty,θx,θyθz]

Hybrid

PGC Optimize all 
parameters except out-of-
plane translation :

[tx,ty,θx,θyθz]

Figure 4.1: Optimization strategy for the simulation, phantom, and clinical
experiments.

4.2 Cost function curves

In order to characterize the topology of each method, cost function curves were

generated for a few representative TEE probe orientations. These curves were
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generated by setting all of the registration parameters except one (φα) to the

ground truth, varying φα over a range of values, and plotting the cost function

at each value. The purpose was to investigate how the cost function behaves for

different initial position and orientation errors, and how accurately the correct

pose can be recovered. In particular, these curves can be used to examine

how convex the cost functions are, which in turn can be used to estimate

the capture range. Furthermore, the position of the cost function minimum

relative to the origin indicates how accurately the parameter in question can be

recovered. An example plot is shown in Fig. 4.2. These plots were generated

from simulated images, which are described in section 4.3. Plots for different

probe orientations are included in Appendix C.

By examining the cost function plots, a few interesting properties of the

algorithms can be seen:

• The rcNCC and DSC methods have very similar topologies, with a wide,

convex curve indicating a large capture range for in-plane position and

all rotations.

• DSC consistently performs the worst for the θx parameter (TEE probe

pitch), although it does converge to within less than 2.0◦ in all plots.

• DSC doesn’t accurately estimate tz (translation along the source-detector

axis) indicating that it is only accurate for 5DOF 2D/3D registration.

• The rcGCC and PGC methods have similar topology, with a small trans-

lational capture range.. However, they are both more accurate than

rcNCC and DSC for all parameters.
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Figure 4.2: Cost function curves for a simulated image (θx = 0◦, θy = 0◦)

• All algorithms perform very well for estimation of the θz parameter (in-

plane rotation).



79

4.3 Simulations

4.3.1 Experimental Design

The simulation experiments tested the accuracy and speed of the DSC, PGC,

rcNCC, rcGCC, and HYB methods in silico. Simulation images (Isim) were a

hybrid of real background anatomy (Ixrf ) and synthetic DRRs (Idrr).

A DRR of the probe was rendered using the splatting method with a point

cloud large enough to generate a high quality DRR (221 points). The back-

ground anatomy was obtained using images from TAVR procedures and the

hybrid image was formulated as:

Isim = Ixrf · e−αIdrr (4.1)

The parameter α controlled the probe to background contrast and was

randomly varied to generate a contrast ratio ranging from 0.45 to 0.85 for

each experiment. Fig. 4.3 shows a few examples of the simulated images.

Figure 4.3: Examples of simulated images.

For each experiment, the TEE probe was placed at a random location and
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orientation within the XRF C-arm image space. Based on our observations

from an image database of TAVR cases, the TEE probe rarely has Euler angle

rotations outside the range of -75◦ to 75◦ about its primary axis (y-axis), -30◦

to 30◦ about the x-axis of the image detector, and -45◦ to 45◦ about the source-

detector axis (z-axis). Therefore, the initial pose was randomly generated from

a uniform distribution within those ranges. Once an initial pose was created,

a random mis-registration was applied, which the experiments attempted to

recover. The random mis-registration was chosen from a zero mean normal

distribution with standard deviations of 1.5 mm, 1.5 mm, 2.5 mm, 10◦, 10◦,

5◦ for the parameters tx, ty, tz, θx, θy, θz, respectively.

Registration
Finish
(pTRE=1.14 mm)

Registration
Start
(pTRE=9.01 mm)

o Virtual target ground truth
● Virtual target location estimated from registration 

Figure 4.4: Virtual targets used to compute pTRE before and after registra-
tion.

When projecting echo data onto the XRF image, the errors in the estima-

tion of tz have little effect on target projection errors (for the same reason that
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tz is difficult to estimate in the first place). Therefore, the accuracy metric

used was projection target registration error (pTRE), which was the root-

mean-square error between known target points in XRF and estimated target

points from echo following registration and projection to the XRF image:

pTRE =

√√√√ 1

N

∑
n

(∥∥∥∥ 1

mn

(p
(xrf)
n − P · T · p(echo)

n )

∥∥∥∥
2

)2

(4.2)

where mn is the projective magnification of point T · p(echo)
n .

pTRE, % of successful registrations, and frame rate were reported for each

experiment. We chose to define a successful registration as a pTRE < 5.0 mm

based on results from [31] where pTRE of 2.9 mm was the mean error, but

in reality this measure is application dependent. pTRE is only computed for

successful registrations, to avoid large registration errors skewing the statistics.

For all experiments, virtual target points were used to compute pTRE.

The virtual target points were randomly generated from within the center of a

virtual ultrasound volume emanating from the TEE probe, at a mean distance

of 50 mm from the probe face (Fig. 4.4). Errors from the probe model to echo

volume calibration (echoTprobe) were not considered in the analysis.

The first set of experiments were conducted to examine the effect of point

cloud size on the accuracy, speed, and success rate of the DSC algorithm. This

was done by generating point cloud models of the TEE probe (see section

3.4.1) with varying numbers of points (210-220). The Nelder-Mead optimizer

was used, and a total of 1000 simulated experiments were performed.

For the second set of experiments, all algorithms (DSC, PGC, rcNCC,
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rcGCC, HYB) were tested with the Nelder-Mead and Powell methods. A point

cloud size of 216 was used for the DSC method. 5000 simulated experiments

were performed.

4.3.2 Results

DSC Timing and Accuracy

For the experiments examining DSC accuracy, speed, and success rate, results

are shown in Fig. 4.6. A surprising aspect of these results was that mean

registration errors and success rates for small point clouds were comparable to

those from large point clouds. Statistical tests were therefore performed to de-

termine if the error distributions showed meaningful differences with respect

to pTRE. A paired t-test was used to determine the p-values between each

point cloud size, which are shown in Table 4.1, where the null hypothesis was

that different point cloud sizes produced the same values of pTRE. Finally,

median pTRE and the pTRE value corresponding to the cumulative distri-

bution function (CDF) equaling 90% were calculated and reported in Table

4.2.

Based on these statistics, it was determined that a point cloud size of

216 provided the best trade-off between accuracy and registration speed, as in-

creasing the number of points did not increase the median pTRE. Furthermore,

there was no statistically significant difference between the 216 point cloud and

larger point clouds in terms of pTRE. In general, increasing the point cloud

size by a magnitude of 4 roughly doubled the mean registration time, and 216
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Figure 4.5: Timing and accuracy of different sized point clouds used for the
DSC method.

points resulted in registration times well above fluoroscopic frame rates.

Algorithm Comparison

Results for the algorithm comparison studies are shown in Fig. 4.6. In ad-

dition, pTRE histograms are shown in Fig. 4.7 and Fig. 4.8. The following

observations can be drawn from these results:

• The DSC method is an order of magnitude faster than the rcGCC and

rcNCC methods, averaging 30±10 fps. The PGC and HYB methods

are faster as well, both averaging faster than 10 fps registration speeds.

• Mean registration accuracy was different for the Nelder-Mead and Powell
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Table 4.1: p-values between pTRE distributions for different point cloud sizes.
A value of 0 indicates a p-value of less than 0.005. p > 0.05 in bold. The
p-value represents the probability that differences in error distributions are
due to chance.
Point
cloud
size 210 211 212 213 214 215 216 217 218 219 220

210 - 0 0 0 0 0 0 0 0 0 0
211 - 0 0 0 0 0 0 0 0 0
212 - .542 .634 .015 0 0 0 0 0
213 - .940 .011 0 0 0 0 0
214 - .006 0 0 0 0 0
215 - .006 .022 .078 .023 .069
216 - .997 .461 .729 .354
217 - .477 .756 .412
218 - .670 .874
219 - .579
220 -

methods. For the Nelder-Mead method, pTRE was similar for all meth-

ods except HYB, which had the lowest errors. However, for the Powell

method, mean pTRE is highest for DSC, similar for PGC and rcNCC,

2nd lowest for rcGCC, and finally lowest for HYB.

• DSC and HYB clearly outperformed the other methods in terms of reg-

istration success rate, which is a proxy measure for capture range. PGC

appeared to have the smallest capture range.

• The distributions in Fig. 4.7 and Fig. 4.8 show that the error modes

were more distinct than the error means for the DSC method. For the

PGC, rcNCC, rcGCC, and HYB methods, the error modes were all less

than 0.5 mm, while for the DSC method, the error mode was slightly
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Table 4.2: Median pTRE and threshold T such that the CDF = 90%.
Median pTRE (mm) T | CDF=0.9

10 3.66 12.9
11 2.67 10.6
12 1.52 8.38
13 1.75 8.10
14 1.74 7.68
15 1.45 7.41
16 1.38 6.64
17 1.43 6.28
18 1.39 6.01
19 1.40 6.49
20 1.50 6.69

less than 1 mm. However, the DSC method failed less than the other

methods.

• The HYB method outperformed all methods in terms of success rate and

registration accuracy, and was also the second fastest method. While the

DSC method greatly outperformed even the HYB method in terms of

registration speed, the HYB method was almost fast enough to operate

at fluoroscopic frame rates.

• All methods resulted in mean registration errors lower than the results

reported in [31] for clinical validation. However, errors resulting from

echo to probe calibration were not considered in this study.

• Differences in speed and accuracy between the Nelder-Mead and Powell

optimizers were most likely related to optimization settings controlling

the magnitude of changes in the pose parameters at each iteration, which

generally resulted in a larger number of function evaluations for the
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Powell optimizer. Due to fundamental differences in the optimizers, it

was not possible to keep these settings equal between experiments.

• It is also important to note that the registration speeds obtained for the

rcNCC and rcGCC method were faster than reported in the literature

[30, 31], indicating that the differences in registration speeds were not

artificially inflated.

fps 
(hz)

pTRE
(mm,
pTRE
< 5.0
mm)

% 
pTRE
< 5.0
mm

# Function 
Evals

1167±4
56

Figure 4.6: Summary statistics of pTRE, success rate, frame-rate, and number
of function evaluations for each method in simulated datasets (mean ± std).



87

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10 11.25 12.5 13.75
0

500

1000

1500
D

S
C

pTRE (mm)

 

 

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10 11.25 12.5 13.75
0

500

1000

1500

P
G

C

pTRE (mm)

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10 11.25 12.5 13.75
0

500

1000

1500

N
C

C

pTRE (mm)

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10 11.25 12.5 13.75
0

500

1000

1500

G
C

C

pTRE (mm)

0 1.25 2.5 3.75 5 6.25 7.5 8.75 10 11.25 12.5 13.75
0

500

1000

1500

H
Y

B

pTRE (mm)

The last bin of each histogram contains all errors greater than 14

Median

CDF=90%

Figure 4.7: pTRE histograms for the simulated datasets (Nelder-Mead opti-
mizer).

4.4 Phantom Experiments

4.4.1 Experimental Design

The purpose of this experiment was to measure 5DOF registration accuracy

against ground truth, which was determined using a set of stainless steel mark-

ers attached to the cylinder containing the probe (Fig. 4.9). This was done to

establish a rigid spatial relationship between the TEE probe and the fiducial

markers. Because the markers were discrete, high contrast objects that are

spread out over a larger area than the TEE probe, the marker based regis-
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Figure 4.8: pTRE histograms for the simulated datasets (Powell optimizer).

tration accuracy was assumed to be accurate enough to be used as a ground

truth measure (based on prior studies, see [65] and [66].

Following experimental setup, a CBCT (CTphantom) scan of the probe and

affixed cylinder was acquired. The XRF projections used to create the CBCT

image were also recorded and used for the analysis.

Data Processing

In order to use the stainless steel fiducials as a ground truth reference, it

was necessary to register the fiducials to the TEE probe. The was done by

segmenting the fiducials from the CTphantom volume, and registering the TEE
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Cylinder w/ stainless steel 
fiducial markersXRF Detector

TEE Probe

Chest phantom

Figure 4.9: Setup for the phantom experiment.

probe point cloud (PCprobe) to the CTphantom.

The fiducials (SCT ) were segmented from the CTphantom by manually setting

an intensity threshold that segmented each fiducial into a single connected

component. For each of the N connected components, a segmentation mask

Mn was created, and the centroid of the fiducial was found using a center of

mass calculation.

xn,com = A
H∑
z=1

L∑
y=1

W∑
x=1

x · CT (x, y, z) ·Mn(x, y, z) (4.3)
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yn,com = A

H∑
z=1

L∑
y=1

W∑
x=1

y · CT (x, y, z) ·Mn(x, y, z) (4.4)

zn,com = A

H∑
z=1

L∑
y=1

W∑
x=1

z · CT (x, y, z) ·Mn(x, y, z) (4.5)

A =
1∑H

z=1

∑L
y=1

∑W
x=1CT (x, y, z) ·Mn(x, y, z)

(4.6)

In order to register PCprobe to the CTphantom, the following correlation cost

function was used:

FCC =
N∑
n

CTphantom(CTTprobe · [xn, yn, zn, 1]>) · Vn (4.7)

where [xn, yn, zn] was the nth point in PCprobe and Vn was the image in-

tensity associated with that point. Following initialization, the Nelder-Mead

optimizer was used for registration, providing CTTprobe. The fiducials were then

transformed to the TEE probe space:

Sprobe = (CTTprobe)
−1 · SCT (4.8)

For pose-estimation during the experiment, the ground truth was estab-

lished by finding the pose parameters that aligned the fiducials with their

projected locations in each XRF image frame (It). For this optimization, the

following cost function was used:
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Ffiducials =
N∑
n

Ixrf (P ·xrf T (fiducials)
probe · Sprobe) (4.9)

This was also solved using the Nelder-Mead optimizer following manual

registration for each frame, providing a ground truth measure for xrfT
(fiducials)
probe .

Alternatively, xrfT
(tee)
probe was estimated using the rcNCC, rcGCC, DSC, PGC,

and HYB methods. The pTRE was computed using the following equation:

pTRE =

√√√√ 1

N

∑
n

(∥∥∥∥ 1

mn

(P ·xrf T (fiducials)
probe · Sn)− (P ·xrf T (tee)

probe · Sn)

∥∥∥∥
2

)2

(4.10)

Where mn is the projective magnification of point xrfT
(fiducials)
probe · Sn.

The experiment consisted of tracking the fiducials and TEE probe through-

out the rotational scan, and comparing the pose estimation accuracy. For TEE

tracking, the first frame was initialized to the ground truth result, and then

the pose was estimated using 2D/3D registration. For the following frame, the

previous pose estimation result was used for initialization. In this way, the

experiment tested the ability of the algorithms to accurately track the pose

of the TEE probe during motion. Although in reality the XRF C-arm was

the object moving, we analyzed the results as if it were the probe undergoing

motion relative to a static C-arm. Fig. 4.10 illustrates the probe motion and

example XRF image frames throughout the sequence.
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Frame 1 Frame 31 Frame 62

Figure 4.10: Phantom experiment image sequence, showing the probe DRR
overlaid on the image in blue, as well as the fiducial marker locations as esti-
mated by tracking the probe (P ·xrf T (tee)

probe · Sn).

4.4.2 Results

The pTRE for each frame in the image sequence is shown in Fig. 4.11 for

the Nelder-Mead optimizer and Fig. 4.12 for the Powell optimizer. Summary

statistics are shown in Fig. 4.13. The phantom experimental results reinforce

the conclusions from the simulation experiments in the following ways:

• Again, DSC is less accurate than the other methods (in terms of the

error mode) but an order of magnitude faster.

• The hybrid method is the second fastest method, but is also very ac-
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curate. In this case, the rcGCC method was marginally more accurate

than the hybrid method, but the hybrid method appeared to provide the

greatest trade-off between speed and accuracy, especially for the Nelder-

Mead optimizer.

For the Powell optimizer, neither the DSC, rcNCC or PGC method were

robust enough to track the TEE probe throughout the entire image sequence.

The PGC method failed beyond recovery, rcNCC failed for a large number of

frames, and DSC failed for one frame. This reinforces the conclusion that, al-

though the PGC method is fast and accurate, it has a small capture range and

may not be able to track large inter-frame pose differences. On the other hand,

the Nelder-Mead optimizer resulted in zero failed frames for every method, in-

cluding the PGC method, at slightly faster registration frame rates (except for

DSC, which was faster using the Powell optimizer).

4.5 Clinical Datasets

4.5.1 Experimental Design

In a final set of experiments, validation was performed on images from TAVR

procedures. 91 image sequences from 81 cases (7994 frames) were identified

as containing significant probe movement due to physician manipulation or

cardiorespiratory motion. Due to a lack of ground truth, a surrogate ground

truth was created. It was assumed that the gold standard method used in prior

work, rcGCC [30], was the best alternative in the absence of a true ground
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Figure 4.11: Phantom experiment, frame-by-frame pTRE for each method
using the Nelder-Mead optimizer.

truth, and the following procedure was used to process all 7994 image frames:

1. Manual registration was performed for the first frame of each sequence.

2. The initial manual registration was refined using the rcGCC method

with the Powell optimizer (rcGCC-pwl).
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Figure 4.12: Phantom experiment, frame-by-frame pTRE for each method
using the Powell optimizer. White bars indicate errors over 5.0 mm.

3. rcGCC-pwl was used to define the ground truth registration at each

consecutive frame. Each sequence was then visually checked, frame-by-

frame, for errors. The probe could not be tracked in 2 sequences and

they were removed from the analysis.
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Figure 4.13: Summary statistics for the phantom experiment (mean ± std).

For the clinical datasets, we examined the tracking accuracy and robustness

under real clinical conditions where both image streaming and registration

delays must be considered. Assuming 15 fps image streaming, the registration

lag was calculated as nlag = ceil(15× tregistration) frames. Each skipped frame

was only allowed to use the most recently finished registration result for its

pTRE calculation, and every registration (Tn) was initialized with the most

recently processed registration result (Tn−nlag
). Note that slower registration

times resulted in increased pTRE due to not only more skipped frames but

also less accurate frame-to-frame initialization.

4.5.2 Results

Results from the clinical datasets are summarized in Fig. 4.14. In this case,

DSC and HYB outperformed all other methods in terms of registration ac-

curacy, with HYB having the lowest errors for both optimizers. In terms of
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pTRE, success rate, and registration speed, the Nelder-Mead optimizer out-

performed the Powell method, with the HYB method achieving a nearly 100

% rate of success, the lowest registration errors, and mean pTRE less than 1.5

mm.

In experiments that did not consider x-ray video and image streaming lags,

the DSC method was the least accurate and the HYB method showed com-

parable accuracy to rcGCC. The fact that both the DSC and HYB methods

showed the lowest errors in the clinical experiments, where image streaming

was considered, indicated that target registration error is reduced when track-

ing at imaging frame rates, justifying the need for a real-time algorithm.

4.6 Discussion

In this chapter, the DSC, PGC and HYB methods presented in chapter 3

were validated against the standard rcNCC and rcGCC methods in simulated,

phantom, and clinical datasets. The main conclusions from these experiments

were the following:

• The DSC method was much faster than all of the other methods, and

was capable of achieving registration frame rates that greatly exceeded

clinical requirements (> 15 fps). The DSC method was also more robust

than the other methods in the sense that it converged to less than 5.0

mm pTRE more often.

• The PGC method was similar in terms of accuracy, slightly less robust,

and 2-4 times faster than rcGCC method.
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Figure 4.14: Summary statistics for clinical datasets (mean ± std).

• Results from all experiments indicated that the HYB method was able to

successfully combine the speed and high capture range of DSC with the

accuracy of PGC, resulting in robust and accurate 5DOF registration at

or near fluoroscopic frame rates.

By having a method for performing real-time, accurate, and robust XRF/-

TEE registration, new clinical workflows for TAVR are now possible. Examples

of this are image guidance paradigms envisioned in the introductory chapter
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Figure 4.15: pTRE histogram for the clinical datasets (Nelder-Mead opti-
mizer).

(Fig. 1.9). Under this scenario, image information provided by TEE is used

to visualize the aortic root, removing the need for x-ray contrast throughout

the procedure. In this paradigm, real-time XRF/TEE registration is needed

to minimize errors resulting from cardiorespiratory motion of the probe, which

was shown to be as high as 4.1 mm in [30].

Aside from the problem of tracking the pose of the TEE probe, the DSC

and HYB algorithms may also be applicable to other 2D/3D registration prob-

lems. For example, lung tumor tracking by 2D/3D registration for radiothe-

raphy was proposed in [67], where the authors showed an update rate of 2
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Figure 4.16: pTRE histogram for the clinical datasets (Powell optimizer).

fps. Using the DSC or HYB methods presented in this thesis could result in

improved therapeutic targeting accuracy by improving the update speed. As

another example, an ICE catheter with embedded fiducial markers for XR-

F/ICE registration was recently proposed [68], and the methods presented in

this chapter may be applied to that application as well.
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5. A Novel Intraprocedural,

Contrast-Free Method for

Obtaining the Optimal

Fluoroscopic Projection Angles

for TAVR
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A critical step in the TAVR clinical workflow is deployment of the pros-

thetic valve. In order to minimize the chance of paravalvular leak, device

embolization, coronary obstruction, and/or conduction block, the PHV needs

to be positioned and expanded at the correct location within aortic annulus.

This step is typically guided by XRF, but XRF is a 2D imaging modality, and

in order to successfully position the PHV within the 3D anatomical structure

of the aortic root, the use of an optimal XRF projection angle is required. The

optimal projection angle is defined as the gantry angulation (pair of LAO/RAO

and CRA/CAU angles) that produces a 2D XRF image which is perpendicular

to the aortic annulus. When the aortic annulus is perpendicular to the XRF

image (and therefore parallel to the source-detector axis), the positioning of

the PHV as seen in the 2D XRF image most closely correlates to the true 3D

positioning (Fig. 5.1).

Figure 5.1: Left (Image modified from [18]): CT volume renderings of an aorta
with different virtual XRF projection views. The view in the middle aligns the
inferior portions of all 3 coronary cusps, indicating that the annulus is parallel
to the source-detector axis, as opposed to the view on the left. Right (Image
modified from [19]): An example XRF image during an aortogram, where all
three cusps are aligned and therefore at the optimal XRF projection angle.
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A few methods have been proposed for obtaining the optimal projection

angles, which are outlined below:

Aortography The most common method for obtaining the optimal XRF

projection for TAVR is through the use of aortography. This method is based

on the fact that the aortic annulus is approximately parallel to the plane con-

taining the inferior tips of the three aortic valve cusps. It follows that, when

the inferior tips of the three valve cusps are co-linear in the XRF image (Fig.

5.1), the aortic annulus is parallel to the source-detector axis. The main prob-

lem with this method is that it requires repeated aortography, which in turn

increases the dose of x-ray contrast agent to the patient. Due to the anatom-

ical characteristics of the patient population, even experienced physicians can

have trouble identifying the cusps and aligning them as a result of abnormal

aortic valve anatomy. For example, one of the cusps may be misshaped or

contain extensive calcium, affecting its visibility and rendering the procedure

unreliable. Nevertheless, this method is considered the standard for obtaining

or at least confirming the optimal XRF projection angles.

Preoperative CT Preoperative CT can be used to estimate the optimal

XRF projection by segmenting the cusps in the volumetric CT image, and

finding the angle that projects the cusps onto a straight line in a virtual fluo-

roscopy system [19]. The underlying assumption behind this technique is that

the patient anatomy during the CT scan is in the same position and orientation

relative to the XRF imaging system used during the TAVR procedure. This

may not be the case, as the patient may be positioned differently or internal



104

anatomy may have shifted, especially when the CT scan is taken weeks before

the procedure. In [19], it was shown that using CT to obtain the optimal XRF

projection decreased the number of suboptimal PHV deployments from 35%

to 10% in two 20 patient groups. Despite the fact that this method may not

reflect the exact anatomical pose of the aortic root during the TAVR proce-

dure, it typically gives a good starting position for the aortography method,

decreasing the number of aortograms needed to find the optimal projection.

Intraoperative CBCT Intraoperative CBCT can be used obtain the opti-

mal projection angles at the beginning of the TAVR procedure using the same

principles as preoperative CT, with the main advantage being that the images

more accurately represent the intraprocedural anatomical state of the patient.

In [18], it was shown that the projection predicted by CBCT (Siemens Dyn-

aCT) was closer to the final pose of the deployed valve than the projection

predicted by preoperative CT. Furthermore, it was noted in [18] that CBCT

required less x-ray contrast that preoperative CT due to direct injection into

the aortic root rather than intravenous injection. However, in most cases, pre-

operative CT is performed anyway due to the need for procedural planning,

and therefore in practice CBCT further increases the dose of x-ray contrast

and ionizing radiation. Another important problem with CBCT is that the

acquisition is difficult to perform due to space constraints and the presence of

auxiliary equipment in the cath lab, which often results in non-trivial workflow

disruptions.
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Echocardiography Using echo to determine the optimal XRF projection

has also been explored recently. In [69], the authors developed and validated

an ad hoc technique for finding the optimal projection angle using TTE. First,

the TTE probe was placed on the chest such that the aortic annulus was in

the exact center of the 2D echo slice. Next the TTE probe was kept still, and

a ruler was placed on the chest next to and parallel to the probe. Finally, the

XRF gantry was rotated so that the detector was perpendicular to the ruler.

While this technique was suboptimal in many ways, it essentially worked using

the same principles as the method presented in this chapter.

In the introduction it was noted that XRF/TEE fusion has already been

implemented as a clinical product (EchoNavigator, Philips Healthcare). Re-

cently, a one page letter was published in the Journal of the American College

of Cardiology [70] that presented the idea of using EchoNavigator for optimal

gantry alignment. However, methods and results have not yet been published.

Study Purpose In this study, the optimal projection angle obtained using

multiple methods was compared. As the standard method used at UW hospi-

tal, the deployment projection angles obtained via aortography were used as

a baseline for comparison with:

• The projection angles obtained via preoperative CT (CT method).

• The projection angles obtained via XRF/TEE registration (echo method).

It was hypothesized that the echo method would agree with the aorto-

graphic method to within a mean of 5◦, and that the echo method would

outperform the CT method in terms of comparison with aortography.
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5.1 Methods

Rather than computing differences between the RAO/LAO and CRA/CAU

angles reported by each method as done in [18], the error (θerror) was defined

as the angle between vectors perpendicular to the annular plane as measured

by each modality.

The aortic annulus was modeled as a circular set of points A, with a center

c and a unit vector ~v perpendicular to A. In order to specify the modality

that the annulus was detected in, as well as the modality that the annulus

was registered to, the following notation is adopted: ~v
(originalmodality)
currentmodality . For ex-

ample, the proposed method required the annulus to be segmented in echo

and then registered to XRF. The vector representing the annular plane from

echo following registration to XRF would be would be ~v
(echo)
xrf . When the an-

nulus is optimally aligned with the XRF system, ~vxrf is perpendicular to the

source detector axis, which is defined by the vector [0, 0, 1]. Therefore, θ
(echo)
error

is defined as the angular deviation from perpendicularity, which is computed

as:

θ(echo)
error =

π

2
− cos−1(~v

(echo)
xrf · [0, 0, 1]T ) (5.1)

By definition, ~v
(aortography)
xrf is assumed perpendicular to the source-detector

axis. In order to compute ~v
(echo)
xrf , the following equation is used.

~v
(echo)
xrf =xrf Tprobe

probeTecho ~v
(echo)
echo (5.2)
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The methods for determining xrfTprobe and probeTecho are detailed in chapter

2 other and Appendix B.

A different calculation was used to obtain the difference between the projec-

tion angle determined by preoperative CT and aortography. The preoperative

CT projection is provided as a set of estimated RAO/LAO and CRA/CAU

angles, which can be compared to the RAO/LAO and CRA/CAU angles used

for PHV deployment (available in the DICOM headers). This allows for the

creation of two vectors, one representing the annulus plane estimated via aor-

tography and the other the annulus plane estimated via CT. The angle between

these two vectors is used to determine θ
(CT )
error:

~v(deployment) = R
(deployment)
CC R

(deployment)
RAO · [0, 0, 1]T (5.3)

~v(CT ) = R
(CT )
CC R

(CT )
RAO · [0, 0, 1]T (5.4)

RCC =


1 0 0

0 cCC −sCC

0 sCC cCC

 (5.5)

RRAO =


cRAO 0 −sRAO

0 1 0

sRAO 0 cRAO

 (5.6)

ca = cos(θa), sa = sin(θa) (5.7)
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θ(CT )
error = cos−1(~vdeployment · ~vCT ) (5.8)

Finally, post-deployment PHV angulation was also measured. Similar

methods were used as alternative ground truth measures in [18] and [19]. By

analyzing the post-deployment XRF image, the out-of-plane rotation (tilt) of

the PHV can be estimated. Because the aortic annulus is aligned with the

long-axis of the deployed prosthetic valve, the tilt is used as a measure of

how well the final annulus orientation matched the orientation obtained from

aortography.

The θ
(PHV )
error is computed by examining the struts of the deployed PHV,

which are arrange in a circular pattern. If the deployed PHV is perfectly

perpendicular to the source-detector axis, the struts will form a line segment

in the XRF image. Otherwise, they will form an ellipses with major axes of

length a and minor axes of length b (Fig. 5.2). θ
(PHV )
error is calculated as:

θ(PHV )
error = sin−1(

b

a
) (5.9)

Because there are two pairs of struts on both sides of the PHV, two values of

θ
(PHV )
error are computed, which may not be exactly the same. The final reported

value is the mean of these two values.

The underlying assumptions behind this method are that the annulus ori-

entation isn’t affected by the deployment of the valve, and that the PHV

struts are circular after deployment. One limitation of this method is that

only the absolute value of θ
(PHV )
error can be computed, as it is not clear from the
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Major axis

Minor axis

Figure 5.2: Methodology for computing θ
(PHV )
error for the deployed PHV.

2D projection image which direction the PHV tilts.

5.2 Experimental design

Ten patients undergoing TAVR at UW Hospital were enrolled in the study. All

patients gave written consent. Patients underwent preoperative CT imaging

14-28 days prior to the procedure. The preoperative CT was used to esti-

mate the initial XRF projection via segmentation of the aortic valve cusps by

a trained radiologist. During the procedure, the initial CT based projection

angles were refined using aortography. If it seemed as if the TEE probe would

not obscure the aortic root during aortography, a 3D echo was recorded simul-

taneously with the final aortogram. Otherwise, a second XRF sequence was

recorded following aortography with simultaneous 3D echo imaging.
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5.3 Data Processing

All data was processed offline using custom software (Appendix B). TEE was

registered to XRF using the patch gradient correlation (PGC) method from

(see chapter 3). The transformation between the TEE probe and echo volume

was computed using the method specified in Appendix B. Annulus segmenta-

tion was performed by a trained cardiologist, who adjusted the segmentation

until it conformed to the example specified in [71]. Segmentation was always

performed during systolic frames as this most closely matches the anatomical

position of the aortic root during rapid pacing and hence PHV deployment.

Segmentation results for every case are shown in Appendix D.

Figure 5.3: Example segmentation of the aortic annulus during simultaneous
aortography and echo imaging, with the segmented annulus projected onto the
XRF image.

5.4 Results

Results for each case are shown in Fig. 5.4. The mean and standard deviation

for θ
(echo)
error was 3.46◦±3.28◦, while for θ

(CT )
error it was 9.35◦±6.50◦. A paired t-test

was used to determine the p-value between the echo and CT error measure-
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ments, which was found to be 0.042. The mean difference between the echo

and CT methods was 5.88◦ ± 7.30◦.
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Figure 5.4: θ
(echo)
error and θ

(CT )
error for each case (p = 0.042).

Fig. 5.5 shows the tilt angle θ
(PHV )
error of the PHV following deployment

for each case. The mean ± std error was 7.01◦ ± 2.78◦. This indicates that

optimal gantry alignment via aortography may be suboptimal as a ground

truth measure, with the caveat that the tilt of the deployed valve may not

exactly represent the tilt of the aortic annulus prior to deployment.
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Figure 5.5: θ
(PHV )
error for each case.
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5.5 Discussion

In this study, a novel echo-based method for estimating the optimal projection

for TAVR, as well as a prior method utilizing preoperative CT, were compared

against the standard clinical method using aortography. It was shown that the

optimal projection angle estimated using the echo method was, on average,

more accurate in relation to aortography than preoperative CT (p = 0.042).

This is likely because CT is usually performed under different patient position-

ing and often weeks prior to the procedure, resulting in differing positions of

the aortic root relative to the imaging system. The advantage of the XRF/TEE

registration based method is that it can be performed during the procedure

without disrupting the clinical workflow or adding additional x-ray contrast

dose.

The main limitation of this study is that the ground truth was obtained

via aortography, which both the XRF/TEE registration and CT methods were

compared against. However, as shown by our analysis of post-deployment PHV

tilt, aortography cannot always perfectly predict the proper gantry angle. It

could be argued that a better ground truth would be intraoperative CBCT, as

this method is able to reconstruct the full aortic root anatomy in the middle

of the procedure, and is intrinsically registered to the XRF imaging system.

However, this was not possible in our study, as it was determined at our insti-

tution that the benefits of intraoperative CBCT did not justify its disruption

of the clinical workflow and addition of x-ray contrast dose.

Other limitations include:
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• Although prosthetic valve deployment is performed under rapid pacing,

the 3D echo images were not recorded during rapid pacing except for

in one case. It is unknown if segmenting the annulus in systole is a

close enough substitute for comparison, or if this introduced systematic

segmentation errors.

• A few of the 3D echo scans were recorded at low resolution and/or with

the aortic annulus partially out of the field-of-view, which may have

resulted in segmentation errors.

• This study was conducted using expert segmentations. Therefore, intra

and inter-rater variability in the segmentation should be examined to

determine upper and lower bounds on the accuracy of the method.

• Manual segmentation of the aortic annulus plane in echo is currently

required, and it is unclear how much time is needed to complete this step

in the middle of a real procedure. Automatic methods would resolve this

issue, but accurate algorithms need to be developed and validated.

In future work, echo imaging parameters such as field-of-view, depth, and

image resolution will be standardized. Another interesting topic is the use of

echo-contrast agents to aid with the segmentation of the aortic annulus, as this

may improve accuracy in cases where echo image quality is poor. Finally, the

workflows for intraprocedural use of XRF/TEE registration, such as shown in

Fig. 1.10 of the introduction, will be implemented and validated.
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6. Summary and Future Work
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Thesis Summary In this thesis, novel real-time image processing algo-

rithms and applications aimed at improving TAVR were presented and val-

idated. More specifically, the work focused on designing improved algorithms

for image registration between x-ray fluoroscopy and transesophageal echocar-

diography, which were determined to be necessary for enabling advanced TAVR

clinical workflows.

In the first aim, a GPU-accelerated implementation of the Hough Forest

object detection algorithm was developed and applied to the problem of in-

plane localization of devices in XRF images. The purpose was to minimize the

amount of manual interaction required for 1) XRF/TEE registration, which

was one of the main topics of this thesis and, 2) PHV tracking, which can

be used to automatically selected device centered views in 3D echo images.

It was shown that the TEE probe could be successfully localized in 95.8% of

1077 images and that the PHV could successfully be localized in 90.1% of 388

images.

Next, novel XRF/TEE registration algorithms were introduced that, for

the first time, demonstrated real-time, accurate registration at fluoroscopic

frame rates. These algorithms can be used to enable new clinical workflows,

where moving anatomical targets in echocardiographic images can accurately

be registered to fluoroscopic images.

Finally, a method for determining the optimal XRF projection angles for

prosthetic valve deployment using XRF/TEE registration was presented and

validated in 10 patients. Results indicated that the proposed method was ac-

curate to within 3.46◦± 3.28◦ of the clinical gold standard (aortography), and
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was more accurate than projection angles obtained from CT. A major advan-

tage compared to other methods is that the novel method does not require

the use of iodinated contrast agent and can be quickly performed at any time

during the procedure without disrupting the clinical workflow.

Future Work On the topic of automatic object detection related to the

work presented in chapter 2, the following areas are the focus of future work:

• Following detection of the TEE probe, estimation of the initial out-of-

plane parameters is necessary, otherwise the 2D/3D registration algo-

rithm may not converge properly. A fast, GPU-based template match-

ing approach, similar to the one proposed in [33], is a possible solution.

Another possible solution is to use the Hough Forest algorithm to regress

out-of-plane parameters along with in-plane parameters.

• For the PHV, localization of the undeployed PHV may be useful for pre-

deployment positioning and automatic selection of device centered echo

views. However, the ability to not only detect the PHV position but

also the degree of deployment would enable the ability to visualize valve

deployment in echo, and future work will focus on estimating the valve

deployment process from 1 or 2 XRF projections.

• Because the Hough forest algorithm is generic in the sense that in can

be applied to any type of image, an interesting application would be

automatic detection of aortic root landmarks, which would enable the

method presented in chapter 5 to be automated.
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For the real-time 2D/3D registration presented in chapters 3-4, future work

will focus on the following:

• The presented algorithms will also be validated on a bi-plane XRF sys-

tem, which have been shown to be more accurate but also slower using

prior methods [30].

• Because it is possible to compute the DSC cost function Jacobian analyt-

ically, implementation of the DSC method using optimizers that require

gradient information (e.g. LBFGS) may result in even faster computa-

tions, and will be investigated.

• Application of the proposed algorithms to other 2D/3D registration

problems, such as lung tumor tracking or other types of devices, will

be investigated

Finally, for the work from chapter 5, the following topics will be addressed

• The work presented in this thesis was a from a small initial patient

population, and more robust statistics would likely result from a larger

study.

• Intra and inter-operator variability is an important issue with regard to

obtaining the optimal XRF projection angles using either aortography,

echo, or CT, and future clinical studies should be conducted that measure

not only the mean accuracy of each method, but also the variability

associated with each method.
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In addition, the image processing workflow envisioned in the introduction

depended not only upon real-time XRF/TEE registration, but also on real-

time echo segmentation and/or CT/echo registration. These topics are chal-

lenging, particularly due to the large image volumes and low signal-to-noise

ratios present in echo images, and are also a topic of future work.
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A. Philips 3D Echo DICOM

Accessing the 3D echo volumes created by the Philips iE33 ultrasound system

is a non-trivial task. This section outlines how access to the image data and

metadata was obtained so that it could be analyzed. A listing of important

proprietary DICOM tags and their meanings are included.

A.1 Getting Echo Data From the Philips iE33

The process of obtaining usable echo data from the iE33 machine is as follows:

1. On the iE33 machine, select the desired 3D volumes and press the “Save

Media As..” and export to DVD.

2. The iE33 will export what we will call “Native” DICOM files to DVD.

However, when these files are loaded into MATLAB, the images will be

flattened 2D views of the 3D volume. The 3D data is stored in the file a

proprietary format that cannot be interpreted without special software.

3. In order to generate a usable image volume, the data needs to be pro-
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cessed with a special version of Philips’ US image analysis software called

“Qlab”. The special version of Qlab has a “Cartesian” export option,

which converts the Native DICOM to a Cartesian DICOM.

4. Once the Cartesian DICOM is exported from Qlab, it has to be read

into MATLAB and exported as a .mhd file. Because the volume size of

the image is not stored using standard DICOM tags in the header, a

special trick must be used to read the data properly:

• In the MATLAB file dicomread.m, a break-point should be set line

648.

• Called the dicomread function with the Cartesian DICOM file

name as the first argument.

• When the script stops at the breakpoint, type:

metadata.SamplesPerPixel = N

where N is the size of the z-dimension of the volume.

• Press F5 to continue.

5. Once the data volume has been read into MATLAB as a matrix, we it first

re-sampled to have isotropic resolution, which makes data processing and

segmentation easier. It is then written to disk as a .mhd file using custom

MATLAB functions.
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A.2 Decoding the echo image volume spatial

transformation from the DICOM tags

For the clinical study conducted in Chapter 5, the spatial relationship between

the echo image volume and the echo probe, probeTecho, was needed to transform

voxels from the echo image to the XRF image space. It was not feasible to

perform echo volume calibration for every sequence. Fortunately, this matrix

could be estimated from the DICOM header information. This was done by

finding the origin of the echo signal, which is depicted in Fig. A.1, as well as

the rotation of the echo volume about the z-axis of the TEE probe. probeTecho

is computed using equation A.1:

probeTecho = RzCS (A.1)

where:

Rz =



cos(θseek) −sin(θseek) 0 0

sin(θseek) cos(θseek) 0 0

0 0 1 0

0 0 0 1


(A.2)

C =



1 0 0 −cx

0 1 0 −cy

0 0 1 cz

0 0 0 1


(A.3)
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S =



s 0 0 0

0 s 0 0

0 0 s 0

0 0 0 1


(A.4)

In these equations, s is the voxel spacing ( mm
voxel

), which is used to convert

voxel coordinates to physical coordinates, cx and cy refer to the x and y spatial

coordinates of a virtual ultrasonic point source that emanates from the TEE

probe face (Fig. A), cz is the vertical distance of the z-axis of the volume from

the z-axis of the TEE probe, and θseek is the angle representing the rotation of

the echo volume about the z-axis. Fig. A.1 shows how cx and cy are computed

from steering and elevation angles θ1 − θ4, both of which are provided in the

Native DICOM header.
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Figure A.1: The 3D echo coordinate system in relation to the TEE probe,
with spatial transformation parameters.
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A.3 DICOM tags

The following DICOM tags are necessary for either reading the 3D echo vol-

umes correctly or for generating the probeTecho transform.

• Native DICOM. See Fig. A for drawings that describe each of these

parameters.

– Private 200d 3126: This tag represents the seek angle, θseek.

– Private 200d 3104: This tag represents the steering angle, θ3.

– Private 200d 3105: This tag represents the steering angle, θ4.

– Private 200d 3203: This tag represents the elevation angle, θ1.

– Private 200d 3204: This tag represents the elevation angle, θ2.

– Private 200d 3102: This tag represents the physical coordinate

of the volume z-axis, cz.

• Cartesian DICOM

– Columns: The x-dimension size of the volume.

– Rows: The y-dimension size of the volume.

– Private 3001 1001: The z-dimension size of the volume.

– NumberOfFrames: The number of temporal frames.

– PhysicalDeltaX: The pixel spacing in the x-direction.

– PhysicalDeltaY: The pixel spacing in the y-direction.

– Private 3001 1003: The pixel spacing in the z-direction.
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– FrameTime: The temporal resolution.
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B. Custom software

B.1 Aortic Annulus Segmentation Software

For chapter 5, it was necessary to design a GUI for manual aortic annulus seg-

mentation, as it was not possible to perform this operation using commercial

software and export it to a usable format.

The software, written in MATLAB using GUIDE, worked by allowing the

user to manually change the pose parameters of the aortic annulus, as well

as the temporal frames of the echo and XRF images, using slider controls

(Fig. B.1). This allowed to user to view the cut-planes that were parallel and

perpendicular to the aortic annulus.
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controls

Figure B.1: The annulus segmentation GUI.

B.2 TEE/XRF Manual Pose Estimation Soft-

ware

For the clinical dataset validation in chapters 3 and 4, it was necessary to

manually register the TEE probe to the XRF image in order to generate

pseudo-ground truth measures. In this case, manual registration refers to

manual initialization followed by optimization-based registration refinement.

Therefore, a GUI was designed, again using GUIDE in MATLAB, for performing

XRF/TEE registration. The user was able to quickly change the TEE pose pa-

rameters using hot keys and the mouse-wheel. Immediate visualization of the

registration was provided by projecting a “ghost” of the probe model on top of

the XRF image (Fig. B.2). Three options for registration refinement following

initialization were provided: direct splat correlation, gradient correlation, and
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patch gradient correlation.

DRR “Ghost”

Figure B.2: XRF/TEE manual registration GUI
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C. Cost Function Plots
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Figure C.1: Cost function curves for a simulated image (θx = 0◦, θy = 30◦)
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Figure C.2: Cost function curves for a simulated image (θx = 0◦, θy = 60◦)
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Figure C.3: Cost function curves for a simulated image (θx = 0◦, θy = 90◦)
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Figure C.4: Cost function curves for a simulated image (θx = 30◦, θy = 0◦)
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Figure C.5: Cost function curves for a simulated image (θx = 30◦, θy = 30◦)
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Figure C.6: Cost function curves for a simulated image (θx = 30◦, θy = 60◦)
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Figure C.7: Cost function curves for a simulated image (θx = 30◦, θy = 90◦)
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D. Aortic Annulus

Segmentation
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Figure D.1: Aortic annulus segmentation and XRF projection, cases 1-4.
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Figure D.2: Aortic annulus segmentation and XRF projection, cases 5-8.
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Figure D.3: Aortic annulus segmentation and XRF projection, cases 9-10.
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