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abstract
With a focus and concentration on the simulations of real-world phenomena and materials, physics-

based animation has been established as an important research area in computer graphics. However,

the focus has been slightly shifted from methods for simulating new phenomena to methods for

simulating existing phenomena with higher-resolution and higher-efficiency. This thesis focuses

on Sparse Paged Grid (SPGrid), a sparse data structure which leverages modern operating system

and hardware for compact storage and efficient stream processing, as well as its applications in

physics-based simulation techniques, from pure Eulerian methods for simulating fluid dynamics

to particle-grid hybrid methods (e.g., the material point method or MPM) for animating elastic,

elastoplastic and granular materials.

First, by locally adapting T-junctions to power diagrams, we can recover the second-order

accuracy for octree-based fluid simulations even when the free surface or the fluid-solid interface

gets refined. The excellent affinity to SPGrid allows us to easily scale to tens of millions of degrees

of freedom on a single computer.

Along with a new adaptive basis particularly designed for adaptive material point method, we

then develop a practical strategy for particle-grid transfers that leverages the SPGrid for storing sparse

multi-layered grids, leading to an efficient MPM solver that concentrates most of the computation

resources in specific regions of interest.

We further present a mixed explicit and semi-implicit method for simulating particle-laden flows

which accurately captures the interactions between the fluid and the sediment particles. Both species

are modeled by MPM discretization, thus SPGrid again manages to improve the performance by

efficiently storing and transferring information between particles and the background grids.

Finally, we introduce a novel, efficient, and memory-friendly GPU algorithm for accelerated

MPM simulation on a GPU-tailored sparse storage variation of SPGrid. Our explicit and implicit

GPU MPM solvers are further equipped with a heat solver and a novel sand constitutive model to

enable fast simulations of a wide range of materials.
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1 introduction
The objective of this thesis is to investigate algorithmic techniques, data structures and implementation

practices to bridge the divide between the pursuit of versatile features and optimized implementation

in certain instances of physics-based simulation. The application scope in the techniques we target

is focused on visual simulations of solids and fluids in a range of interactions supported by the

popular material point method (MPM, e.g., [Stomakhin et al., 2013]). The cornerstone of this pursuit

is the sparse paged grid (SPGrid) [Setaluri et al., 2014], an optimized data structure for sparse array

storage and high throughput stream processing. We first examine the applications of SPGrid to

adaptive discretizations, and then specifically concentrate on exploiting SPGrid to accelerate the

MPM pipelines in modern parallel computing hardware.

This thesis has a two-fold claim for its merit of contribution. First, we demonstrate quantitative

gains in performance on established simulation tasks, in scenarios that were previously thought

to preclude aggressive optimizations. Second, we deliver qualitative improvements by proposing

solutions to known deficiencies, artifacts, or impediments to visual accuracy in earlier work.

1.1 Motivation

While simulating new materials or phenomena is invariably the primary target for researchers in

the physics-based simulation community, more recent attention has been directed to performance

improvements as the demand for simulations with steadily expanding geometrical complexity has

become increasingly urgent. This trend is largely industry-driven and covers various subjects, e.g. a

sparse data storage scheme (OpenVDB) from Dreamworks [Museth et al., 2013], a multi-threading

character simulation technique (PhysGrid) from Walt Disney Animation Studios [Milne et al., 2016]

and a distributed solver system for simulations from Side Effects [Lait, 2016]. Smoke is one of the

most popular phenomena which has been widely used in both visual effects and video games. It

is noticeable that the resolution of the background grid for simulating smokes has been increased

from 1003 [Fedkiw et al., 2001] to 20003 [Setaluri et al., 2014]; the latter succeeds in providing the

most meticulous details while the former would not be acceptable nowadays. Another example is

simulating cloth whose dynamics is generally difficult to correctly capture due to the tremendous
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amount of intricate self-collisions. A GPU based method proposed by Tang et al. [2016] is capable

of generating one frame within a few seconds for extremely complex scenes.

Even the focus of simulating new featured phenomena has been constantly varying. While

most of the earlier work studied the features involved in a narrow, often isolated type of material or

phenomena, the researchers start to simulate multi-physics interactions, e.g. solid-fluid coupling

[Robinson-Mosher et al., 2008], solid-fluid phase-changing [Stomakhin et al., 2014], and porous

granular material [Tampubolon et al., 2017]. In other words, rather than modeling a completely new

phenomenon, there is more and more interest in combining components of different modalities

in a single framework to reproduce complicated effects in the real world, e.g. landsliding, liquid

blending, volcano eruption, dune migration, which are impossible to capture by a single material.

As these interactions usually require us to simultaneously model multiple materials [Guendelman

et al., 2005] or solve an enlarged coupling system [Robinson-Mosher et al., 2008], the computational

cost could grow tremendously. In such scenarios, performance again becomes a critical concern.

Given those reasons, today, the focus of physics-based simulation has become more balanced

between the features and the performance. While new features are still always receiving attention,

different kinds of methods for improving performance (i.e., saving computational cost) are now also

notable. However, performance enhancements usually do not come at no cost; compromises occur

in physical accuracy, regularity of data structures, parallelism potential and even in the quality of

the final visual results. For instance, Stam [1999] proposes the popular semi-Lagrangian method

to solve the advection equation in fluid simulations. This method is unconditionally stable; thus

the computational time step can be increased. As a result, the overall computational cost is largely

reduced. The accompanying disadvantage is that the accuracy of this method is downgraded to first-

order such that the final visual result can suffer from excessive numerical dissipation and subdued

dynamics. Although it seems to be a notable sacrifice, this method still gets widely accepted in

the graphics community. In this example, the accuracy is a desired property for acquiring the

non-dissipative behavior of fluid dynamics; but it is traded away for the improved performance.

Throughout this thesis, I will use the word feature interchangeably for its original meaning (the

particular material or phenomenon, here, fluid) as well as the corresponding sacrificed property for

the exchange of performance (here, higher order accuracy).
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It’s certainly impossible to earn great performance without the upgrades and advancements

of the computational resources themselves. However, considering the CPU/GPU clock rate has

almost ceased to increase for a few years, it is actually quite challenging to get the performance

required for executing such simulations, especially when one can expect the desired resolution

or the complexity of the scene will continue to expand. Parallel computing is a powerful tool for

mitigating this problem. I will also explore the possibility of applying two different classes of parallel

computing techniques to material point method, namely SIMD (single instruction multiple data)

and SIMT (single instruction multiple threads) to largely improve the performance.

In this thesis, my key contributions are listed as follows :

• The development of an efficient and scalable framework for simulating fluids on adaptive-

resolution discretizations. The approach mimics the storage data structure of traditional

adaptive grids (e.g. octrees), but hybridizes this concept with higher order accuracy represen-

tations, namely power diagrams, to alleviate a host of well-known simulation artifacts.

• The derivation as well as the application of a novel basis function that interpolates physical

attributes between particles and adaptive background grids. The scheme represents a tradi-

tional octree as a pyramid of sparse uniform grids and embeds finer data into coarser levels

of the discretization such that efficient uniform grid operations can be used as the building

blocks which are further optimized by vectorization techniques.

• The development of a multi-material pipeline for simulating particle-laden flows that is capable

of reproducing effects including dune migration, sedimentation, and sediment transportation.

The method exploits the hypothesis that multiple materials can co-exist at any spatial point to

eligibly resolve the interactions between them.

• The proposal of a highly effective GPU acceleration scheme for particle-to-grid interpolation

on sparse background grids. Unlike almost all previous methods which map grid nodes to

GPU threads, the method proves that the opposite direction, mapping particles to threads, can

achieve superior performance. Specifically we exploit GPU hardware intrinsic instructions to

minimize the usage of atomic operations, alleviate the write hazards, and reduce the memory

footprint.
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1.2 Sparse paged grid (SPGrid)

All works in this thesis build upon a recently proposed sparse data structure - Sparse Paged Grid

(SPGrid) [Setaluri et al., 2014]. SPGrid can reduce the storage footprint just as many other sparse

data storage schemes, e.g. OpenVDB [Museth et al., 2013], a popular sparse storage scheme widely

accepted in the graphics community. However, SPGrid is more dedicated to simulation related

applications, which usually involve heavy sequential and stencil access on data. On the other hand,

OpenVDB is applied to various kinds of graphics utilizations, like rendering [Museth, 2014], image

processing [Museth, 2013], and cloud modeling [Miller et al., 2012].

Unlike most of the other sparse data structures, SPGrid relies heavily on established software

and hardware acceleration mechanisms. For example, SPGrid exploits the mmap function in Linux to

reserve a large memory span in the virtual memory space without allocating any physical memory.

The grid is organized by blocks (typicall 4KB in size), and only blocks ever touched will be mapped

to the physical memory space. As shown in Figure 1.1a, although a dense grid is reserved in the

virtual memory space, we only allocate physical memory for the blocks (one block maps to one

memory page in SPGrid) intersecting with the circle shaped narrow band, leading to a total memory

footprint of 52 pages. A similar dense grid (Figure 1.1b) would require 256 memory pages. SPGrid

heavily depends on the hardware to retrieve a physical page/a block unless page faults are triggered,

which by design could only happen at the precomputation stage.

For sparsely populated grids, the irregular memory access pattern, especially for stencil opera-

tions, could easily diminish the prefetching efficiency. To alleviate this problem, a combination of

the lexicographic ordering (inside a block) and the Morton code ordering (across blocks) is utilized

to improve the data locality to fully exploit the hardware prefetching even for stencil kernels (Fig-

ure 1.1c). Given this mapping, translation between the 2D/3D geometric index of a cell and its linear

memory address (64-bit offset in SPGrid) in the virtual space can be conducted by bit-interleaving

and bit-packing respectively. Furthermore, a hardware instruction (pdep) provided on the Haswell

architecture can be utilized to significantly reduce the cost of bit-interleaving operations.

Given a particular cell, one needs to access data from its neighboring cells for performing stencil

computations. On a dense grid, data of neighboring cells are stored in the memory with a constant

offset/distance; while on a sparse grid, it becomes intricate to directly deduce the addresses of cells
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(a) SPGrid (b) Dense grid (c) SPGrid mapping scheme

Figure 1.1: SPGrid. Left: SPGrid in physical memory space; Middle: SPGrid in virtual memory space
or a corresponding dense grid; Right: A combination of lexicographic ordering and Morton coding
ordering.

in the vicinity. The simple alternative is to first translate the memory address to its corresponding

geometric index, compute the index of its neighboring cell, and then translate back to the offset.

However, it is too costly to perform this whole process considering that stencil computations are

usually high density operations in applications of grid-based simulations. SPGrid proposes a way

to effectively decrease the cost of directly computing the neighboring offsets without translating to

geometric index. As a result, SPGrid outperforms OpenVDB in terms of both the sequential and

stencil benchmarks on sparse datasets; furthermore, SPGrid reaches about 70% of the throughput of

the standard C++ dense storage and access [Setaluri et al., 2014].

For adaptive grids, SPGrid represents an octree as a pyramid of sparsely populated uniform

grids (SPGrids of different resolutions) and geometrically overlays the finer cells with their parents to

improve the communication between different levels of the octree. Based on this strategy, by carefully

designing how to exchange data between different resolutions, we can confine all crossing-level

computations to be inside a few narrow bands such that their impacts on the overall performance

can be minimized. As demonstrated in Setaluri et al. [2014], SPGrid manages to reduce the cost per

degree of freedom on an adaptive grid to be comparable to the cost on a uniform grid, which is

uncommon in most previous adaptive data storage schemes.

1.3 Material point method (MPM)

The majority of this thesis adopts material point method (MPM) as the fundamental discretization

method, thus I also include a brief introduction of MPM in this section. Sections in later parts of this

dissertation review the relevant formalizations and modifications enacted by my work. In the graph-



6

Figure 1.2: Hybrid discretization: Particles carry all the physical properties while the background
grid acts as a scratch-pad to solve momentum balance.

ics community (both industry and academia), the material point method is an emerging simulation

technique, which has been proven to be an effective choice for simulating various materials, including

snow [Stomakhin et al., 2013], foam [Yue et al., 2015; Ram et al., 2015], sand [Daviet and Bertails-

Descoubes, 2016; Klár et al., 2016], cloth [Jiang et al., 2017a] and solid-fluid mixture [Stomakhin

et al., 2014].

MPM is a particle-grid hybrid method that combines the advantages of both Lagrangian and

Eulerian methods as shown in Fig. 1.2. MPM particles carry all the physical properties like mass,

momentum, deformation gradient, etc. In MPM, the grid serves mainly as a continuum scratch-

pad, via which particles can communicate with each other without the costly neighboring-search

operation as in mesh-less methods like SPH [Gingold and Monaghan, 1977]. In a typical MPM

simulation pipeline, the physical attributes are first transferred from the particles to the Eulerian

grid via weighting functions. Then we can conduct either implicit or explicit time integration on

the grid for solving the momentum balance. After updating information on the grid, the values

of the physical properties are transferred back to the particles for performing advection to finish

a complete cycle. The grid resolution is usually far less than the number of particles, reducing

the computational cost to a reasonable amount. These properties suggest that MPM is a useful

benchmark for investigating sparsity and adaptivity. As Section 1.4 and Chapter 3 focus on the

adaptivity, in this section we pay more attention to a uniform but sparsely populated grid.

In typical MPM applications, e.g. simulating sand dynamics, the Lagrangian particles tend to

move across a huge space; but at each single time step, the discrete particles always represent a

relatively sparse subset of the whole domain, which indicates the usage of a sparse storage scheme for

the background grid. Furthermore, the computation of the weighting function is a stencil operation;
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Pressure

Velocity, X component

Velocity, Y component

(a) MAC grid (b) Orthogonality

Figure 1.3: Orthogonality in MAC grid. Left: MAC discretization for Poisson solver; Right: Uniform
orthogonality - the line connecting neighboring pressures is perpendicular to the cell face, and is
also parallel to the velocity component stored at that face.

given a single particle, it needs to access 27 grid nodes (e.g. for the quadratic kernel in 3D) in its

immediate vicinity.

In this thesis, I explore the possibility of using SPGrid as the MPM background grid to reduce the

memory footprint as well as improving the performance for both sequential and stencil computations.

Moreover, as the two transfer kernels, i.e. particle-to-grid and grid-to-particle, are identified as

the bottleneck of the MPM pipeline, two effective optimization schemes, based on modern CPU

and GPU hardware respectively, are outlined in Section 1.5 and further detailed in Chapter 3 and

Chapter 5.

1.4 Adaptivity

For the same number of degrees of freedom, adaptive discretizations always generate more visual

richness compared to uniform discretizations since most of the computing resources can be dedicated

to regions of interest. Thus adaptivity is one of the most natural strategies to achieve the balance

between the performance and the feature; however, a perfect balance is generally challenging to

achieve. In the literature, most adaptive algorithms care more about performance, i.e. key features

may get sacrificed. In other instances, adaptive performance is sought only via decreasing the

number of degrees of freedom (DOFs), but not necessarily the cost per DOF. One of the topics in my

thesis is mainly about how to restore the sacrificed properties/features while still attaining efficient

performance to make a better tradeoff.
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Adaptive fluid. The computational bottleneck of fluid simulations is broadly recognized to con-

centrate on the solution of a Poisson equation, which is part of the computational mechanism that

ensures incompressibility of the fluid flow. In a uniform Cartesian grid, the popular Marker-and-Cell

method (MAC, Figure 1.3a) discretizes the Laplace operator via a nested standard central difference

to attain a linear system for solve. This system is symmetric positive definite (SPD), and can be

solved fast and efficiently [McAdams et al., 2010]. Furthermore, this method also attains second-

order accuracy. Given a particular problem on the uniform grid, whose solution can be computed

analytically, the error between the numerical and the analytical results decreases quadratically with

the cell size of the background grid. Both merits, i.e. the SPD system and the second-order accuracy,

originate from the orthogonality, which is an essential property inherent from MAC discretization.

As shown in Figure 1.3b, the line connecting neighboring pressures is perpendicular to the cell face,

and is also parallel to the velocity component stored at that face.

However, when switching to an octree-based discretization, T-junctions (a corner node of a finer

cell that resides on the edge of a coarser cell) make it difficult to retain the orthogonality no matter

whether the velocity is stored at the finer face or the coarser face (Figure 1.4a). In the literature,

many researchers have attempted to tackle this challenge. Popinet [2003] retains second-order

convergence but has to solve a non-symmetric linear system. In contrast, by allowing the discrete

pressure gradient to be non-parallel to the corresponding discrete velocities, Losasso et al. [2004]

obtain a fast SPD solver with the downgraded accuracy. In their follow-up work [Losasso et al.,

2006], when restricting the refined region to interior to the fluid (i.e. no T-junctions are allowed

on the free surface or the solid-fluid interface), they restore second-order accuracy. However, the

interesting visual effects always arise on the free surface (e.g. a boat flees [Enright et al., 2002])

or the solid-fluid interface (e.g. paddles of a submarine generate bubbles [Patkar et al., 2013]). In

this thesis, I propose to utilize a power diagram discretization at the transitional regions between

different resolutions to recover the desired property - orthogonality (Figure 1.4b) . While keeping

the topology of an octree unchanged, we can slightly modify the geometry of the grid cells to make

all the dual edges of the grid, which corresponds to the line segment connecting cell centers, become

perpendicular to the grid faces.
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(a) Quadtree (b) Power diagram

Figure 1.4: Adaptive orthogonality. Left: In quadtree (octrees in 3D), orthogonality cannot be
retained; Right: Our power-diagram based discretization restores orthogonality.

Adaptive MPM. In the material point method, Lagrangian particles carry all the physical proper-

ties while the Eulerian background grid serves as a scratch pad for solving the equations of motion.

Details can be found in the work of Jiang et al. [2016] and a short introduction is in Sec. 1.3. The

most crucial operations are the particle-to-grid and grid-to-particle kernels which transfer physical

attributes (mass, momentum, etc.) between particles and the grid nodes via the weighting function.

For example, when distributing the mass from a particle to grid nodes, the weighting function

decides the amount of mass transferred to a particular node. There are a few constraints on the

weighting function which are essential for the robustness of the MPM method.

Partition of unity is required for the mass and momentum conservation of the whole system.

As discussed by Andersen and Andersen [2007], non-positive weights can render instability issues

in critical cases where the nodal mass becomes zero. C1 continuity is required to obtain a con-

tinuous force field to avoid noisy motions when particles move across cells. On a uniform grid,

dimension independent B-spline functions are suitable for defining weighting functions and fulfill

all requirements described above. However, it becomes challenging for the adaptive case, since

no such simple options are available. Most works on adaptive material point methods [Lian et al.,

2015; Tan and Nairn, 2002] achieve only C0 continuity and others [Lian et al., 2015] fail to enforce

non-negativity universally. Some works [Daphalapurkar et al., 2007; Ma et al., 2006, 2005] acquire

both partition of unity and C1 continuity, but their applications are restricted to nested grids (not

a general octree). In this thesis, I propose a new approach that satisfies all of these constraints

simultaneously. Specifically, I will restore the continuity feature required for large deformation

scenarios in adaptive MPM method.
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(a) MPM (b) GIMP

Figure 1.5: From MPM to GIMP. Left: MPM relates each particle directly to 3 × 3 grid nodes
(3× 3× 3 in 3D); Right: GIMP divides the local domain into cells and each cell contributes to each
node independently.

1.5 Parallel optimization for MPM

While Moore’s law successfully predicted the fast evolution of integrated circuit technology in the

past forty years, the feature size of the transistors is reaching the physical limit; this fact leaves

simulation-oriented researchers no choice but to seek to extract the maximum performance from the

given hardware. Parallel computing has been playing a more and more critical role in simulations.

SIMD (single instruction multiple data) and SIMT (single instruction multiple threads) are the two

most popular parallel techniques for computing acceleration on the CPU and the GPU respectively.

As discussed in Sec. 1.3, since the transfer kernels are the bottleneck in a typical MPM pipeline, it is

worth to exploit modern SIMD and SIMT techniques to boost their performance.

These performance-sensitive kernels are typically tasked with data transfers between a particle

and an associated local, but sizable, neighborhood of grid nodes. Given a particle, one needs to

compute a set of weights associated with 3× 3× 3 grid nodes (3× 3 in 2D, Fig. 1.5a) in its vicinity.

In CPU, to utilize the data level parallelism provided by modern SIMD hardware support, e.g.

Advanced Vector Extensions (AVX), AVX2 or AVX-512, we first need to reformulate the weight

computations to a different form, which is better suitable for the application of SIMD instructions.

On the other hand, in GPU, particles sharing the same set of grid nodes can simultaneously write

data into the same node; thus resolving the write hazards becomes the main challenge.

SIMD. We introduce the generalized interpolation material point method (GIMP [Bardenhagen

and Kober, 2004]) to reformulate the 3× 3× 3 computations into 8× 8 computations (4× 4 in 2D,

Fig. 1.5b). Consider the transfer of the mass from the particle to the blue grid node in the center.
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From the perspective of GIMP, the transferred mass of that node is the sum of the contributions of

the same node from the eight different cells sharing it (four different cells in 2D, Fig. 1.5b). Thus

the computations of 27 weights are separated into the computations of the eight nodes in the eight

different cells; and within each cell, SIMD can be applied to simultaneously compute weights for all

the eight nodes by extracting the embedded symmetry property in GIMP. In this way, the workload

can be reduced from the total 27 node-computations to 8 cell-computations to achieve at least a 3×

speedup.

SIMT. In GPU, we assign each particle to one CUDA thread, and neighboring particles are sorted

such that their threads are always executed in sequential order. Again assume we transfer mass from

particles to the grid. Threads in the same warp simultaneously write the weighted mass into nodes;

and some of them can write into the same node, leading to write hazards, a critical problem which

has been examined in [Huang et al., 2008; Parker, 2006; Stantchev et al., 2008; Zhang et al., 2010].

There are generally two schemes for resolving this problem, scattering and gathering. Scattering

methods simply use atomic operations to avoid conflicts. On the other hand, for gathering, usually

a list of particles is created and maintained for each node during the simulation; thus each node can

track down all the particles within its affecting range. Almost all previous papers are opting for a

gathering approach since it is widely believed that high frequent atomic-operations in scattering can

significantly undermine the performance, especially in GPU-based parallel applications. However,

in this thesis, I propose a scattering-based method to handle most of the write conflicts without

atomic operations, inspired by the concept of parallel reduction sum [Luitjens, 2014], and show that

the performance is superior to the gathering ones.

These two types of interventions are examples of platform-specific optimizations that deliver

significant performance boosts over established implementation practices. Chapter 3 and Chapter 5

detail the specific optimization techniques crafted towards this goal.

1.6 Particle-laden flows

As discussed in Sec. 1.1, multi-phase multi-material simulations are increasingly gaining attention

from computer graphics researchers. It is generally challenging to correctly capture the interactions
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Figure 1.6: Dune migration: Two-dimensional simulations of wind blowing sand. Left: A one-way
coupled simulation where sand does not affect wind fails to produce plausible dynamics. Right:
Two-way coupled simulation from our method captures the characteristic behavior of a sand dune
migrating forward.

between multiple materials. As shown in Fig. 1.6, one-way coupled simulation, where sand does

not affect wind, fails to produce plausible dynamics; while two-way coupled simulation from our

method captures the characteristic behavior of a dune migrating forward.

Particle-laden sediment flow is ubiquitous in natural systems. Typical examples include sediment

transport, sedimentation, volcano eruption, dune migration by erosion with ripples, and dust storms.

In the engineering literature, most previous works [Sun and Xiao, 2016a,b; Xiao and Sun, 2011]

discretize these problems based on a combination of an Eulerian fluid solver and a Discrete Element

Method (DEM) particle solver, which requires velocity interpolation between the two different

discretizations to handle the momentum exchange between them. Furthermore, considering that

DEM has to handle pair-wise particle collisions explicitly, it is usually too expensive to apply DEM

to simulating dynamics in collision-heavy dense flow scenarios.

In this thesis, we propose to employ the MPM discretization for both the fluid phase and the solid

phase to mitigate these problems. For the sediment, to support the massive amount of dense particle

suspensions, it is preferable to formulate the sediment governing equations through continuum

mechanics. However, in practice, sediment particles can get separated from the sediment clump

to behave more like a discrete sphere. We design a density approximation method to measure the

spatial distribution of sediment particles to identify the status of particles and adjust the treatment

accordingly.

The fluid phase has to satisfy the boundary conditions enforced by sediments. However, it is
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impossible to exactly resolve these boundaries in the presence of a large number of sediment particles,

unless an extremely high fluid resolution is used. We instead incorporate the Locally Averaged

incompressible Navier-Stokes theory proposed by Anderson and Jackson [1967] to model the fluid

motion. With the assumption that each spatial point is simultaneously occupied by different phases

or materials, the boundary conditions from sediments can be implicitly handled by embedding the

volume fraction into the traditional mass and momentum equations for fluid.

Furthermore, we propose a momentum-conserving drag force to accurately describe the inter-

actions between the fluid and sediments. Notice that both sediments and fluid are discretized by

MPM, thus the drag force can be directly applied at the grid nodes without doing any velocity

interpolations as in [Xiao and Sun, 2011; Stomakhin et al., 2014].

1.7 Outline

The remaining chapters are organized as follows. In chapter 2, we present an efficient and scalable

octree-inspired fluid simulation framework with the flexibility to leverage adaptivity in any part of

the computational domain, even when resolution transitions reach the free surface. In chapter 3,

we propose an adaptive Generalized Interpolation Material Point (GIMP) method for simulating

elastoplastic materials. In chapter 4, we present a mixed explicit and semi-implicit Material Point

Method for simulating particle-laden flows. In chapter 5, we introduce methods that address the

computational challenges of MPM and extend the capabilities of general simulation systems based

on MPM, particularly concentrating on GPU optimization. We conclude this thesis along with some

consideration about the avenues for the future work in the last chapter.
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2 power diagrams and sparse paged grids

for high resolution adaptive liquids
In this chapter, we present an efficient and scalable octree-inspired fluid simulation framework

with the flexibility to leverage adaptivity in any part of the computational domain, even when

resolution transitions reach the free surface. Our methodology ensures symmetry, definiteness

and second order accuracy of the discrete Poisson operator, and eliminates numerical and visual

artifacts of prior octree schemes. This is achieved by adapting the operators acting on the octree’s

simulation variables to reflect the structure and connectivity of a power diagram, which recovers

primal-dual mesh orthogonality and eliminates problematic T-junction configurations. We show

how such operators can be efficiently implemented using a pyramid of sparsely populated uniform

grids, enhancing the regularity of operations and facilitating parallelization. A novel scheme is

proposed for encoding the topology of the power diagram in the neighborhood of each octree cell,

allowing us to locally reconstruct it on the fly via a lookup table, rather than resorting to costly

explicit meshing. The pressure Poisson equation is solved via a highly efficient, matrix-free multigrid

preconditioner for Conjugate Gradient, adapted to the power diagram discretization. We use another

sparsely populated uniform grid for high resolution interface tracking with a narrow band level

set representation. Using the recently introduced SPGrid data structure, sparse uniform grids in

both the power diagram discretization and our narrow band level set can be compactly stored and

efficiently updated via streaming operations. Additionally, we present enhancements to adaptive

level set advection, velocity extrapolation, and the fast marching method for redistancing. Our

overall framework gracefully accommodates the task of dynamically adapting the octree topology

during simulation. We demonstrate end-to-end simulations of complex adaptive flows in irregularly

shaped domains, with tens of millions of degrees of freedom.

2.1 Introduction

Liquids exhibit complex and detailed motion across a vast range of scales, from tiny ripples to huge

waves; this fact motivates the desire for liquid simulation tools that can handle ever increasing
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Figure 2.1: Two sources inject water into a container forming a thin sheet, with effective resolution
5123. The adaptivity pattern is shown in Figure 1; a narrow band level set at resolution 20483 is used
for interface tracking. As instabilities develop in the flow field over time, the sheet starts to wobble,
creating ripples.

levels of resolution. While a key avenue towards this goal is the development of more efficient

numerical methods on regular uniform grids that conserve mass with large time steps [Lentine et al.,

2011, 2012; Chentanez and Müller, 2012] and allow for fast pressure projection [Molemaker et al.,

2008; Lentine et al., 2010; McAdams et al., 2010; Zhang and Bridson, 2014; Ando et al., 2015; Dick

et al., 2016; Liu et al., 2016], further computational gains can be obtained through spatial adaptivity —

dedicating higher resolution to regions of high importance. Amongst the most natural approaches

for augmenting standard staggered grid discretizations with spatial adaptivity is to replace the

underlying grid structure with that of an octree. The critical challenge that arises for octrees is the

treatment of T-junction (or hanging node) configurations where small cells are incident on larger

cells. This is not solely a matter of bookkeeping in data structures: the discretization of the physics

at these points must be done with care, or disturbing visual and numerical artifacts can emerge.

Losasso et al. [2004] proposed the first method to simulate liquids on octrees. They sacrificed

accuracy in the discretization of pressure gradients near T-junctions in exchange for a simpler

symmetric and positive definite Laplacian matrix that can be solved by Conjugate Gradient. The

price for this choice was the loss of orthogonality between the stored velocity components at the

T-junction cell faces and the corresponding discrete pressure gradients across those faces. This

approximation reduces the accuracy of the pressure to first order, and gives rise to non-physical

parasitic currents at T-junctions even for hydrostatic scenarios, as discussed by various authors

[Losasso et al., 2006; Chentanez et al., 2007; Batty et al., 2010b; Ando et al., 2013; Ferstl et al., 2014].

Losasso et al. [2006] subsequently proposed a modification that raises the accuracy of the pressure
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field to second order, but allows for adaptivity only in regions completely interior to the fluid. It is

not clear how to incorporate solid or free surface boundaries in the presence of adaptivity, which

necessitates uniformly refining all regions near surfaces and boundaries.

In this chapter, we describe a new staggered octree discretization that retains the positive

definiteness and advantageous scaling of Losasso’s scheme, while eliminating inconsistent pressure

gradients and enabling accurate boundary condition enforcement, even across regions of changing

resolution. Inspired by fluid animation approaches relying on Voronoi and power diagrams [Sin

et al., 2009; Brochu et al., 2010; de Goes et al., 2015], we modify the implied geometry of the octree

near T-junctions to have the form of a power diagram; this effectively eliminates the problematic

T-junctions and recovers orthogonality between pressure gradients and cell faces. Embedded free

surface and solid boundary conditions can then be directly incorporated on this hybrid mesh, per

Brochu et al. [2010]. The resulting octree Poisson solver is second order accurate in pressure and

artifact-free. In spite of this different geometric perspective used in our discretization, we retain

(with minor caveats) the ability to store our simulation variables on a traditional octree rather than

an explicit unstructured mesh, and exploit the regularity of this representation in the interest of

performance.

We complete our octree simulator to support end-to-end liquid simulation of complex large-scale

scenarios via several complementary enhancements. We leverage the SPGrid data structure [Setaluri

et al., 2014] to allow our solver to process octree data at performance levels competitive with regular

uniform grids containing a similar number of variables. Notably, this standard of efficiency is

notoriously difficult to match with pointer-based octree implementations or unstructured mesh

discretizations, due to the impact that indirect and irregular memory access (or the overhead of

explicit storage of topology) has on the optimal utilization of the available bandwidth. We accurately

track the surface using a uniformly high resolution narrow band level set, exploiting the compact

footprint of the SPGrid structure and an adaptively multi-stepped semi-Lagrangian advection

scheme. To support accurate fast-marching-based level set redistancing on octrees, we perform a

localized Delaunay triangulation of the cell centers incident on T-junctions, and adapt standard

fast marching strategies to the resulting hybrid tetrahedral/hexahedral mesh. We solve the sparse,

symmetric definite linear systems that arise from our Poisson discretization using a lightweight
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multigrid preconditioner for the Conjugate Gradient method. We efficiently store the multigrid

hierarchy using SPGrid, while showing how a first order accurate multigrid V-cycle can be used as a

building block of a very effective preconditioner for the second order problem.

Contributions We developed an accurate and efficient staggered octree-based fluid simulation

framework, featuring support for:

• Second order accurate pressure projection allowing adaptivity even along solid and air bound-

aries;

• Excellent affinity to parallelism-optimized data structures for octree storage (SPGrid), allowing

us to easily scale to tens of millions of degrees of freedom on a single computer;

• A simple and effective narrow band level set interface tracking scheme that uses SPGrid to

reduce memory footprint;

• An enhanced fast marching method for octrees;

• A tailored multigrid-preconditioner for Conjugate Gradient.

2.2 Related work

Our approach builds on standard grid-based fluid animation techniques; Bridson [2008] provides a

useful overview of this family of methods. We adopt a staggered discretization, which naturally

avoids instabilities from odd-even decoupling (“checkerboarding") in the pressure field. Our treat-

ment of irregular free surface and solid boundaries draws on the ghost fluid method [Gibou et al.,

2002; Enright et al., 2003] and the variational/cut-cell solid scheme [Batty et al., 2007; Ng et al.,

2009], respectively. Incorporating these ideas into our solver ensures accurate pressure solutions

and avoids voxelization artifacts. While we focus on adaptive approaches for Eulerian methods,

Lagrangian SPH and vortex methods have also been applied in the context of adaptivity [Adams

et al., 2007; Solenthaler and Gross, 2011; Takahashi and Lin, 2016; Golas et al., 2012].



18

Octrees Popinet [2003] proposed the first octree-based fluid solver, extending earlier adaptive

mesh refinement (AMR) schemes for the Poisson problem in the computational fluid dynamics

community [Martin and Cartwright, 1996; Minion, 1996]. Losasso et al. [2004] extended this approach

with support for free surface flow, and incorporated a simplification to yield symmetric positive

definite systems for pressure projection. Applications of their method have included simulation

of bubbles [Hong and Kim, 2005], coupling with dynamic objects [Guendelman et al., 2005], and

even lightning [Kim and Lin, 2007]. Unfortunately, this approach reduces the pressure accuracy to

first order and introduces visual artifacts in the velocity field. Losasso et al. [2006] later improved

the discretization of the pressure projection to recover second order accuracy while preserving

symmetry, although it is unclear how to incorporate irregular boundary conditions near T-junctions

because the necessary modifications to the Poisson stencil are mutually incompatible; we overcome

this limitation to allow refinement and boundaries to seamlessly co-exist without loss of accuracy.

Ferstl et al. [2014] proposed a finite element method (FEM) that subdivides octree surface cells cut

by surface geometry to yield a conforming mesh, applying Nitsche’s method for the free surface

and stabilization to minimize checkerboarding. Like Losasso’s method, it requires boundaries to be

uniformly resolved. Furthermore, solid boundaries were treated in a voxelized fashion. In contrast

to the preceding methods, our approach also leverages the recent SPGrid data structure [Setaluri

et al., 2014] to overcome the significant efficiency penalties inherent in typical pointer-based octree

structures. Nielsen and Bridson [2016] recently discussed some details of the FEM-based adaptive

tile-tree scheme used in Maya’s Bifrost simulator, although full details are not available. Like our

method, they aim to preserve a regular grid-like structure to maximize efficiency, but do so using

a more rapidly branching octree involving 5× 5× 5 blocks, rather than our pyramid of SPGrids.

Their use of FEM was explicitly motivated by the fact that previous finite volume octree schemes

have struggled to simultaneously provide matrix symmetry, second order accuracy, and support for

non-axis-aligned boundaries; our method achieves all three.

Stretched Grid Cells Another quite useful, albeit more restrictive, approach to spatial adaptivity

is the use of stretched grid cells. For example, portions of a regularly sampled domain may be

replaced with tall cells that have been stretched along a single axis [Irving et al., 2006b; Chentanez
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and Muller, 2011], or larger sections of a regular grid may be stretched along multiple axes by

essentially translating entire grid lines [Zhu et al., 2013]. These approaches preserve most of the

regular grid efficiency while offering some benefits of adaptivity.

Tetrahedral Meshes An important family of alternatives to octrees are unstructured or partially

structured adaptive tetrahedral meshes. An array of staggered Eulerian finite volume discretizations

have been presented for such meshes [Feldman et al., 2005; Klingner et al., 2006; Chentanez et al., 2006;

Elcott et al., 2007; Chentanez et al., 2007; Batty et al., 2010b]. In particular, Batty et al. [2010b] extended

these methods with support for irregular free surfaces and solids to allow straightforward adaptivity

even in the presence of boundaries, a feature we likewise pursue. While purely unstructured

tetrahedral methods incur non-trivial computational costs due to frequent remeshing and data

structure overhead, semi-structured lattice-based variants can somewhat reduce these costs by

exploiting an underlying octree structure [Chentanez et al., 2007], although they still incur greater

overhead than a pure octree. One clear advantage of tetrahedral meshes over basic octrees is that

they support adaptivity without any T-junctions. A drawback is that pressures must be placed at

tetrahedron circumcenters to avoid artifacts arising from the pressure solve, yet circumcenters are

not guaranteed to be inside their corresponding tetrahedra [Batty et al., 2010b]. Ando et al. [2013]

partially circumvent this issue with a finite element variation that instead places velocity vectors

at tetrahedron barycenters and pressures at vertices. However, the authors note that they must

drop back to a first order discretization for poorly shaped tetrahedra which occur near resolution

transitions in their lattice mesh; by contrast, we preserve second order accuracy across transitions

and throughout the domain. Node-based Lagrangian schemes that use dynamically remeshed

unstructured tetrahedral meshes can also support adaptivity [Misztal et al., 2010; Misztal and

Bærentzen, 2012; Clausen et al., 2013]. These methods rely on stabilization terms or extra remeshing

procedures to avoid locking or odd-even pressure decoupling artifacts. Moreover, they are generally

costlier than Eulerian approaches due to the overhead of continuous remeshing and unstructured

mesh manipulation.

Voronoi Diagrams Since the circumcentric dual of a Delaunay tetrahedralization is a Voronoi

diagram, the Poisson equation can be readily discretized on this dual mesh too, using essentially
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Figure 2.2: Four sources pour water that collides with a kinematic rotating object in a container,
with effective resolution 5123. The adaptivity pattern, illustrated on the left, continuously rotates
with the central spinning object. A narrow band level set with 20483 resolution is used to track the
free surface.

the same staggered finite volume approaches as the tetrahedral schemes above. This has been

exploited in several ways. Sin et al. [2009] constructed a particle-based Lagrangian scheme that

performs pressure projection on the Voronoi diagram of the particles at each step. Brochu et al. [2010]

combined a mesh-based surface tracking scheme with a carefully constructed Voronoi diagram to

enable capturing of thin liquid features. English et al. [2013b,a] constructed a nested (Chimera) grid

scheme relying on the flexibility of the local Voronoi structure to stitch together the boundaries

between regular grids of differing resolutions. Voronoi diagrams have similarly been exploited

in computational physics: Guittet et al. improved the ghost-fluid method for two-phase Poisson

problems by aligning Voronoi faces with the fluid interface [Guittet et al., 2015a], and separately

used the Voronoi diagram of fluid face midpoints to treat viscosity on non-graded octrees [Guittet

et al., 2015b].

Power Diagrams Mullen et al. [2011] observed that regular triangulations and their associated

dual power diagrams can offer increased flexibility in meshing, while preserving primal-dual

orthogonality. This property is critical for constructing accurate discrete gradient and divergence

operators [Batty et al., 2010b] in the style of Discrete Exterior Calculus (e.g., [Elcott and Schröder,

2006]). Building on this idea, de Goes et al. [2015] developed a Lagrangian particle method that

constructs a power diagram at each time step for enforcing incompressibility. Krivá et al. [2016]

used the power diagram of a quadtree in two dimensions to solve a Poisson problem in the context

of image processing, although they did not identify their construction as a power diagram. Similarly,

Sifounakis et al. [2016] proposed a so-called virtual slanting approach for a Navier-Stokes solver on
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quad/octrees; however, their strategy of simply slanting faces breaks down in three dimensions,

where proper orthogonality cannot be maintained without (explicitly or implicitly) changing the

local cell connectivity. By contrast, we observe that the desired construction is a power diagram,

and use this fact to easily determine the correct grid geometry and topology.

Interface Tracking We represent the liquid surface using a level set scheme [Sethian, 1999], a

common choice in fluid animation, and specifically a narrow band variant [Adalsteinsson and

Sethian, 1995] which we further customize to our application. The particle level set method of

Enright et al. [2002] is a popular variant; it maintains Lagrangian particles around the Eulerian

interface to accurately reconstruct the surface, building on ideas proposed by Foster and Foster

and Fedkiw [2001]. Rather than exploit particles, however, we employ a purely Eulerian narrow

band method at a resolution higher than the simulation mesh, similar to previous authors (e.g.,

[Kim et al., 2009; Bojsen-Hansen and Wojtan, 2013; Goldade et al., 2016]). We differ in proposing

a multi-stepping semi-Lagrangian strategy for reduced dissipation, and in leveraging the SPGrid

data structure for a highly optimized implementation. Rather than increase resolution, Heo and

Ko [2010] obtained greater detail by proposing a pseudo-spectral level set method. The two most

common alternatives to level sets are pure particle representations, as in PIC or SPH schemes [Foster

and Metaxas, 1996; Desbrun and Gascuel, 1996; Zhu and Bridson, 2005; Jiang et al., 2015], and

Lagrangian triangle meshes with dynamic topology [Brochu and Bridson, 2009; Wojtan et al., 2009;

Müller, 2009]. Various hybrids have also been proposed [Bargteil et al., 2006; Yu et al., 2012]. While

each approach has strengths and weaknesses, level sets stand out for their simplicity, smoothness,

and potential for efficiency. The affinity of narrow band level sets to the SPGrid data structure allows

for a particularly compact surface representation.

2.2.1 SPGrid arrays and sparse uniform grid pyramids

Our algorithmic formulation draws upon the work of Setaluri et al. [2014] and exploits two of their

key proposals. First, it was observed that in lieu of a traditional pointer-based representation, a

Cartesian octree can be stored as a pyramid of sparsely populated uniform grids. Thus, any cell of the

octree can be uniquely identified with a single cell of one of the uniform grids in the pyramid. It
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was shown that the global computation of the Laplace operator can be equivalently performed by

alternating (a) perfectly uniform stencils on each individual grid, and (b) highly structured data

transfers solely between adjacent grids in the pyramid. Section 2.4 describes how we exploit this

capability for our power diagram discretization.

Second, a low-level data structure named SPGrid (or “Sparse Paged Grid”) was proposed for

compact storage and efficient stream processing of sparsely populated uniform grids. SPGrid

leverages the Virtual Memory subsystem, in conjunction with a Morton ordering, to index into a vast

address range, but only materialize into physical memory those parts of the array that are actually

touched. Thus, an array that may occupy more than 1TB if densely allocated, can occupy as little

as 1GB in physical memory if only a spatially coherent 0.1% of this array was actually populated

with data. Recognizing that simulation applications commonly utilize a large number of scalar or

vector fields with nearly (or exactly) identical index domains, SPGrid interleaves several of these

distinct “channels” within a 4KB page. Thus, an SPGrid with 4 float-valued channels fits a geometric

block of 8× 8× 4 variables for each of those channels in a 4KB page, while 16 float-valued channels

would yield a block size of 4× 4× 4. The number of channels can easily vary to cater to different

tasks; for example, we use only 4 channels for interface tracking, and 16 channels for solving the

incompressible Euler equations.

2.3 Method overview

Our simulation methodology necessitates certain interventions in various parts of a standard liquid

simulator. A large fraction of our contributions are centered around pressure projection, which

as many authors have asserted [Molemaker et al., 2008; Lentine et al., 2010; McAdams et al., 2010;

Zhang and Bridson, 2014; Ando et al., 2015; Dick et al., 2016; Liu et al., 2016] is typically the most

expensive component of the simulation loop in high resolution domains. Section 2.4 discusses

several aspects of our pressure solver, including the discretization of the Poisson equation using

power diagrams, the efficient storage of the discrete equations and unknowns in an adaptive grid

structure, and fast solution of the resulting system using a preconditioner for Conjugate Gradient

adapted from a multigrid scheme. Section 2.5 presents our interface tracking approach that uses
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a highly resolved implicit geometry representation of the free surface, localized to a narrow band

around the moving interface and stored in a sparse grid structure (SPGrid) [Setaluri et al., 2014;

Liu et al., 2016]. The same section also discusses details on how this representation is advected

forward in time, interpolation of scalar and vector quantities, and enhancements to fast marching

and velocity extrapolation that are mandated by our power diagram discretization. Important

implementation details and optimizations in our formulation are reviewed in Section 2.6.

2.4 Pressure projection on modified octrees

To achieve an accurate staggered finite volume discretization of the Poisson equation, the faces of the

primal mesh which store velocity components should be orthogonal to the edges of the dual mesh,

which correspond to pressure gradients [Perot and Subramanian, 2007; Batty et al., 2010b]. For

sufficiently regular meshes this gives second order accurate pressures. In this section, we describe

our discretization for the Poisson equation that exploits both the regularity of octrees for aggressive

parallelization and the inherent primal-dual orthogonality of power diagrams for accuracy. Our

objective is to solve the incompressible Euler equations

∂u
∂t

+ (u · ∇)u +
∇p
ρ

= f (2.1)

∇ · u = 0 (2.2)

with a splitting scheme following Stam [1999]. Here, u = (u, v,w) is the vector velocity field, f

encapsulates external forces, p is the scalar pressure field, t is time, and ρ is the liquid density.

2.4.1 Power diagram discretization

Aurenhammer [1987] defines the power of a point xwith respect to a sphere of radius r as d2 − r2,

where d is the distance of the point from the center of the sphere. Given a set of spheres, their power

diagram is then a partition of space where each point is associated to the sphere with minimum

power. We construct an octree-based power diagram by conceptually placing a sphere at each octree

cell center with a radius of ∆x/
√

3 (or ∆x/
√

2 in 2D), where ∆x is the cell’s side length; this yields
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Figure 2.3: (Top) A 2D cell bordering two T-junctions, along with its corresponding power diagram
(middle), and the Voronoi diagram of the cell centers (right). The cells of the power diagram have
the same neighbor relationships as the original quadtree, but the dual edges are orthogonal to cell
faces. The Voronoi diagram of the same geometry creates new face connections between nearby
cells at the same level. (Bottom) A 3D cell bordering three T-junctions, along with its corresponding
power cell. Note the new faces that emerge between neighbors that previously only shared an edge.
Colors imply resolution and neighbor relationship to the central coarse cell.

the circumsphere for each cell. For uniform resolution regions of the tree, the resulting power

diagram leaves the regular Cartesian grid pattern unchanged. More remarkably, for T-junctions

in two dimensional graded quadtrees, this choice gives a power diagram with exactly the same

cell connectivity as the original quadtree, but with the geometry adapted to recover primal-dual

orthogonality (see Figure 2.3(a,b)). However, in three dimensions a minor wrinkle arises: a given

cell remains face-connected to its original face neighbors, but may now also share new faces with its

original edge neighbors (see Figure 2.3(d,e)). Nevertheless, as we describe below, this geometry is

still amenable to efficient computation of the Poisson equation.

We store pressures p at octree cell centers and normal components of the velocity field u at

power cell faces. For computing the pressure, we discretize the Poisson equation in finite volume

fashion over the power cells as

Vcell∇ ·
∇p
ρ

=
∑
faces

Aface

(
∇p
ρ
· n
)

(2.3)
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where n is the unit normal vector pointing out of a face, Aface is the face area, and Vcell is the volume.

We similarly compute the discrete divergence as

Vcell∇ · u =
∑
faces

Aface(u · n). (2.4)

For treating boundary conditions, we adapt an earlier unstructured mesh embedded boundary

approach [Batty et al., 2010b; Brochu et al., 2010]. In our setting, this allows both the free surface and

solid boundaries to arbitrarily cut through the domain, even near T-junctions. It requires only liquid

signed distance values at cell centers and solid signed distance values at cell vertices. By contrast,

previous methods [Losasso et al., 2004, 2006] required uniformly refined cells near boundaries. Our

resulting linear system remains sparse, symmetric and positive definite, and ensures second order

accuracy of the computed pressure field.

Voronoi diagram octrees Another option to recover orthogonality would be the Voronoi diagram

of the octree cell centers. For non-graded trees this can yield very general unstructured meshes that

discard the regularity benefits of the tree structure (see e.g., [Guittet et al., 2015b]). While the variety

of mesh configurations can naturally be reduced by grading, the Voronoi topology still differs more

strongly from the original tree than for the power diagram, even in the simpler 2D setting (see

Figure 2.3(c)). We therefore prefer the power diagram as it provides the necessary orthogonality

while better preserving the original octree structure.

2.4.2 Pyramid of sparse uniform grids

By default, a power diagram would require an explicit mesh for storing the topological connectivity.

However, such a representation would necessitate expensive lookups near T-junctions. Since power

diagrams preserve the original octree structure, with the caveat of introducing some additional

faces between edge neighbors, we adopt an approach similar to Setaluri et al. [2014] of organizing

computation on a pyramid of sparsely populated uniform grids that make much better use of the

available hardware memory bandwidth. We first briefly review this approach and subsequently

highlight the necessary modifications required for power diagrams. To identify cells and faces that
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Figure 2.4: Pyramid of sparse uniform grids. All active cell and face degrees of freedom are shown
along with ghost cells (square outlines) at each level.

carry degrees of freedom, Setaluri et al. [2014] defined active cells and faces as follows:

• A cell at a given level of the pyramid is active if it is geometrically present and undivided in

the octree.

• A face at a given level is active if that face is geometrically present and undivided in the octree,

implying that every active face has at least one active cell neighbor at that level.

For efficiently emulating the building blocks of adaptive fluid simulation, they used two fundamental

algorithmic kernels: stencil operations within a single level, and transfer operations between adjacent

levels in the pyramid. This additionally requires the concept of ghost cells. Suppose we index each

level with 1 6 l 6 L where lower indices denote finer grids, and let ClI denote a cell that natively

lives at level lwith multi-dimensional index I. Then, a cell ClI is ghost if all three of the following

conditions are jointly met:

1. ClI is not active at level l,

2. ClI neighbors a cell that is active at level s 6 l, and

3. An active, coarser parent of ClI exists at some level l? > l.

Figure 2.4 shows the pyramid of sparse grids, along with all ghost cells and active cell/face

degrees of freedom. To transfer data between adjacent levels of the pyramid, two more operators

are used:
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1. GhostValuePropagate(): an upsampling routine in which data from level l is copied to fine ghost

children at level l− 1,

2. GhostValueAccumulate(): a downsampling routine in which data in level l accumulates contri-

butions from any fine ghost children at level l− 1.

Essentially, ghost cells provide a mechanism to combine information that is shared across different

levels of resolution, while only focusing effort one level at a time, enabling optimizations native to

uniform grids. A ghost cell can either be a source of a numerical value originating from a coarser

level in the pyramid (by mirroring the coarse value), or a placeholder for the partial result of an

operation that would have otherwise required access to a coarser variable. We refer the reader to

the work of Setaluri et al. [2014] for details on how this representation can be used to efficiently

compute the discrete gradient, divergence, and Laplace operators.

Enhancements for power diagrams Since power diagrams may introduce new faces between

cells that previously only shared an edge, the definition of ghost cells requires some modifications.

In the second of the three criteria we previously listed for identifying a ghost cell, Setaluri et al.

[2014] considered only face neighbors of ClI to check if any of them were active at level s 6 l; we

now also check all edge neighbors of ClI (in 3D). Moreover, their implementation of the discrete

Poisson operator (which was based on the formulation of Losasso et al. [2004]) yielded stencils with

closed-form coefficients even at level transitions. By contrast, our stencil coefficients are determined

by the geometry of the power diagram. To efficiently retrieve these coefficients at run-time, we

adopt certain restrictions on our grading scheme that make the power diagram geometry of a cell

dependent only on its 1-ring neighborhood. This allows us to retrieve stencil coefficients via a look-up

table, indexed by a compact descriptor of the local topology as we propose in Section 2.6.

As mentioned in Section 2.4.1, we store velocities at all power cell faces. For faces that are exactly

homologous to faces on the original octree, similar to Setaluri et al. [2014], we dedicate 3 channels

for storing the individual components of the velocity field (in the standard octree, those would

have been the u, v,w axis-components of the velocity field; in our case they are normal velocity

components relative to the respective power diagram faces). In our power diagram, however, faces

of the power diagram (and correspondingly normal velocity variables that require storage) can exist
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in 3D between cells that were edge neighbors in the original octree. An edge of the octree can have

up to four cells incident to it; however only two of those four cells can actually be connected in any

given power diagram under our formulation. Specifically, it is possible for the pair of cells indexed

Ci,j,k and Ci,j+1,k+1 (sharing an edge aligned with the x-axis) to share a face of the power diagram.

Likewise, cells Ci,j+1,k and Ci,j,k+1 (incident on the same edge, as far as the octree is concerned)

could instead share a face of the power diagram. However, at most one of the aforementioned pairs

could have a power diagram face connecting them, in any given scenario. Thus, we can associate

the normal velocity component associated with either of these two cases with the same octree edge,

with the understanding that at most one of these two neighboring relations can be present at the

same time; the determination of which of the two cases (if any) we have can be made by examining

the local octreee topology. Hence, velocity components associated with such cases of edge neighbors

can be conceptually stored on 3 offset grids, each of them centered on the midpoint of edges aligned

with the x, y, and z axes, respectively. We simply dedicate three additional channels in SPGrid to

store those special velocity components (we would have called them edge-centered velocities if such a

concept existed in the original octree). We do not explicitly store a description for the direction of

this edge-centered velocity component, as this will be automatically reflected in the stencils of those

cells incident to it.

2.4.3 Multigrid preconditioner

Our power diagram discretization, paired with a topology encoding scheme (see section 2.6) will

allow the Laplace operator to be applied implicitly without building its explicit matrix form. This

gives the opportunity to use a matrix-free method such as Conjugate Gradient for solving the

Poisson equation. Naturally, a good preconditioner is essential; Setaluri et al. [2014] used a very

effective adaptive multigrid preconditioner. However, their approach was specifically tailored

for the first order accurate discretization of Losasso et al. [2004]. Since both our power diagram

discretization, as well as the first-order accurate approach [Losasso et al., 2004; Setaluri et al., 2014]

have exactly the same set of pressure variables, it would be natural to start with the multigrid V-cycle

preconditioner proposed by Setaluri et al. [2014] as a baseline, and attempt to adapt it to the power
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diagram discretization. The most straightforward way to make such an adaptation would be to

replace the discretization at the finest level of the hierarchy with our newly proposed power diagram

formulation, retaining the first-order accurate operators at all coarser levels. This adaptation is

quite effective; in our tests it consistently achieves preconditioning efficiency comparable with what

Setaluri et al. [2014] report for the first-order problem.

Although this approach is effective, there is a modest penalty to be paid in terms of implementa-

tion efficiency. The single most costly component of a multigrid V-cycle is the smoothing routine at

the finest resolution of the discretization hierarchy. This step is now using our second order power

diagram discretization which, although quite efficient, does not permit the full extent of aggressive

optimizations of the first order scheme [Setaluri et al., 2014], which does not require local topology

queries to define its stencils. Thus, we have implemented a hybrid alternative: We first invoke the

smoothing routine, using the second order power diagram discretization, but iterate it only near

boundaries and level transitions. We subsequently update the residual, and use a first order accurate

multigrid V-cycle to solve the error equation and generate a correction across the entire domain. We

follow up with a second sweep of smoothing the second order discretization (near boundaries and

level transitions) to ensure symmetry of the preconditioner thus crafted. Let us denote by L1 the first

order Laplace operator from Setaluri et al. [2014], and let M1 ≈ L−1
1 be the multigrid preconditioner

they defined in their work. Finally, let L2 be our second order Laplace discretization, using the

power diagram. We define a new preconditioner M, whose action w = Mq is computed as follows:

1. Starting with a zero initial guess p0 = 0, execute k iterations of the damped Jacobi method on

the equation L2p = q (input vector is used as right hand side). This is only applied to a band

(about 3 voxels wide) around the boundaries and level transitions. Let p1 be the iterate that

results from this operation, and r1 = q − L2p1 the associated residual.

2. Compute a correction δp = M1r1 by applying the first order accurate preconditioner M1 from

Setaluri et al. [2014] to the residual r1. Add the correction to p1, to obtain a new approximation

p2 = p1 + δp.

3. Repeat k additional iterations of the same Jacobi method on the equation L2p = q, but this

time use p2 as the initial guess. Let w denote the result at the end of this iteration.
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We can easily verify that vectors w and q are related by a linear map w = Mq (there is nothing in

steps 1-3 above that introduces any nonlinearity, and it is easy to verify that when q = 0 we would

also have w = 0). In fact, a careful look at the matrix formula for the Jacobi iteration reveals that

the entire matrix M is symmetric and positive definite, assuming that M1 is SPD as well. We use the

algorithm above to implicitly apply M as a preconditioner to Conjugate Gradient for the system

L2p = f. In our examples, this preconditioner achieved very similar convergence performance to the

straightforward alternative approach of using a second order operator at the finest level of a V-cycle

preconditioner, achieving satisfactory convergence within 6-10 iterations across all resolutions. It

was necessary to perform an adequate number (k ≈ 8) of boundary smoothing iterations in steps

(1) and (3) of the aforementioned preconditioner application to achieve this good convergence

behavior, but the ability to restrict this effort to just the boundary region (while using an aggressively

optimized first order V-cycle) made this a favorable trade-off at large resolutions.

2.5 Interventions in the simulation pipeline

To track the dynamically evolving liquid surface, we designed a level set scheme similar in spirit

to prior work [Bargteil et al., 2006; Kim et al., 2009; Bojsen-Hansen and Wojtan, 2013; Goldade

et al., 2016] in the sense that we use the SPGrid data structure to store an Eulerian description of

a narrow band around the free surface at a significantly higher resolution than the velocity data

— typically by a factor of 4 or 8 (see Figure 2.5). Thus, we use two separate meshes, a background

simulation mesh that is an octree, and an interface tracking grid (or fine level set grid) that is a

single SPGrid (rather than a pyramid). Note that the velocities natively live only on the octree, and

we also store and evolve a separate (coarse) level set on the octree because our fine representation

does not carry inside/outside information beyond a narrow band of the free surface. The fine level

set representation only requires an SPGrid with 4 channels (1 channel for Boolean flags associated

with domain geometry, 1 for the level set, and 2 more channels for fast marching).

Level set advection The time step ∆t is determined by the finest effective resolution of the octree,

since the velocities live natively on the octree. However, this time step will be overly dissipative

for advecting the fine level set forward in time using a standard semi-Lagrangian update, and may
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Figure 2.5: A time-evolving Eulerian description of a narrow band around the interface is stored at
a significantly higher resolution (shown in green) in our framework. This representation is used to
correct the level set field on the octree after every advection step.

require more expensive schemes for volume conservation [Lentine et al., 2012]. We follow a more

accurate approach where we divide this time step by m, where m is the factor by which the fine

level set resolution is higher than the effective resolution of the octree. Next, we take m steps (of

forward Euler) backwards along the velocity field, where each step is performed with a time step

size of ∆t/m.

At each step, we reach a new point pwhere we compute a new interpo-

lated velocity before taking the next step, tracing a piecewise linear curve

in the process (see the figure inset). After the mth step we interpolate

the level set, and assign its value back to the starting cell of the trajectory.

Note that this approach still allows for efficient parallelization without

decreasing the time step size according to the fine level set resolution. Of

course, we maintain a wide enough band so that the free surface still falls

inside this band after advection. Compared to simply upsampling the background octree, tracing

back a piecewise linear curve for semi-Lagrangian advection foregoes the numerical dissipation that

would have been introduced by m individual advection and reinitialization steps, producing more

accurate results (see Figure 2.6). For advecting forward the coarse level set stored on the octree, we

follow the approach of Setaluri et al. [2014]. Subsequently, we use the fine level set to correct the

coarse level set wherever we have valid φ-values.
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Velocity interpolation and advection The discretization of velocity advection is more subtle as

not all faces are axis-aligned, and so velocities are not neatly segregated into orthogonal components.

Fortunately, this problem has been studied in prior work on unstructured mesh fluid simulation. To

interpolate velocities at arbitrary points, we first compute full velocity vectors at all cell centers. For

regular uniform cells, we average the axis-aligned face velocities; for all power cells, we perform a

least squares fit based on all the face normal components [Feldman et al., 2005]. The dual mesh of our

power diagram consists of cubes and tetrahedra, whose vertices are the octree cell centers. Therefore,

having constructed velocity vectors at the vertices of this mesh, we apply trilinear interpolation

inside cubic cells and barycentric interpolation on tetrahedra. For improved efficiency and accuracy

in regular regions away from level transitions, we revert to standard per-axis face-based velocity

interpolation. With this interpolation procedure at hand, we compute full velocity vectors at the

centroid of each face and advect them using a standard semi-Lagrangian update, subsequently

projecting the velocity onto the face normal direction. Likewise, we use this interpolant as needed

for advecting the fine resolution level set.

Dynamic topology After each advection step, the topology of the SPGrid storing the high res-

olution level set needs to be updated; new cells may emerge in the narrow band which require

valid signed distance values, and old cells may fall outside the band and should be deleted. We

do this by instantiating a new SPGrid and copying over level set values for all cells at the interface.

Subsequently, we run fast marching on this SPGrid, activating new cells wherever necessary. For

efficiency, we first allocate all pages corresponding to blocks that either contain the interface, or lie

in the 1-ring of a block that contains the interface. After this step, cells that lie within the narrow

band can be safely marked in parallel without any data hazards. We note that Setaluri et al. [2014]

speculated on the utility of an enhancement to SPGrid, that could actually discard physical pages

no longer in use (in Linux, this would be via a variant of the madvise system call), to allow dynamic

additions and removals to the same SPGrid. We did not find such an optimization to be worthwhile

here, as evaluating refinement criteria at the same time while discarding prior data is an unnecessary

complexity.
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Fast marching and velocity extrapolation We store level set valuesφ on cell

centers of the octree, and solve for fast marching in uniform regions similar to

Foster and Fedkiw [2001]. Near T-junctions we adopt the approach of Sethian

and Vladimirsky [2000] and run fast marching on a tetrahedral mesh. Note

that this approach mandates that the solid angle of each tetrahedron incident

at the center of the current cell should be less than π/2, and so we use the

Delaunay tetrahedralization of the centers of the face/edge neighbors and the

current cell. Note that φ-values were stored at grid nodes by Losasso et al. [2004], and they simply

ignored missing neighbors near T-junctions as their grading scheme specifically coarsened away

from the interface. However, our discretization for the pressure specifically requires φ-values at the

cell centers to obtain second order accuracy near the free surface [Gibou et al., 2002], and we adapt

the simulation grid topology even across the interface, thus our different approach. A slight subtlety

is that these tetrahedral meshes should be computed locally per cell. To understand this consider

the 2D illustration shown in the figure inset: ∆p1p2p4 and ∆p1p3p4 must be used at the point p1 to

ensure an acute angle, while ∆p2p1p3 and ∆p2p3p4 should be used at the point p2. To extrapolate

velocities outside the liquid region we first interpolate velocities from power faces to regular octree

faces and use an approach similar to fast marching, this time operating on faces instead of cells

and copying over the velocity value from the face closest to the free surface. For regular uniform

cells, identifying face neighbors is straightforward, while near T-junctions we use the connectivity

of the tetrahedral mesh to identify all faces incident to cells that correspond to nodes in the mesh.

Subsequently, we interpolate back velocities from regular octree faces to all power faces. Figure 2.6

shows a comparison of the particle level set method [Enright et al., 2002] and our interface tracking

scheme for a sphere that undergoes a deformation in a circular velocity field. The background grid

resolution is 1282 in 2D (or 1283 in 3D); particle level set has 256 particles per cell, and our fine level

set has 256 fine cells in 2D (or 4096 fine cells in 3D) per coarse cell.
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Figure 2.6: (Top) A comparison of (left) particle level set on a 1282 grid, and (middle) our interface
tracking scheme on a 20482 grid for a deforming sphere at t = 5 seconds; (right) our scheme at
t = 15 seconds. (Bottom) A comparison of (left) particle level set on a 1283 grid and (right) our
method on a 20483 grid. For particle level set, near-interface cells use 256 particles. The narrow
band level set conserves volume well, over long time periods.

2.6 Topology encoding and operator storage

The affinity of power diagrams to octrees is a crucial precondition for leveraging aggressive opti-

mizations. In Section 2.4, we discussed how ghost cells in a pyramid of sparse uniform grids can

facilitate the transfer of information between variables at different levels. It should be evident from

our earlier discussion that the performance potential of our proposed storage paradigm is strongly

predicated on the ability to easily load and store neighboring variables, and efficiently perform

stencil applications. We now describe our scheme for encoding the local mesh connectivity and the

stencils of the discrete Laplace and divergence operators in a compact form.



35

2.6.1 Encoding of local power diagram topology

Our encoding scheme is based on the observation that the local structure of each power cell is

completely determined by its face and edge neighbors. The octree neighborhood for each cell can be

trivially inferred from the SPGrid pyramid; in fact, every relevant property of its neighborhood can

be inferred by looking exclusively at a single level of the pyramid. If a face/edge neighbor exists

at the same resolution, it is flagged as active. Otherwise, if that same neighbor is flagged as ghost,

there is a coarser neighbor on the other side of that face/edge. If a neighbor is neither present as

an active or ghost cell, cells of finer resolution must reside on the other side. To ensure that each

neighborhood admits a well-defined encoding, we grade such that all neighbors of a cell are (a) at

the same resolution as the current cell or one coarser, or (b) at the same resolution as the current cell

or one finer. We discuss both these cases below:

Cells with no coarser neighbor If a cell has no ghost neighbors, all its neighbors reside at the

same resolution as itself or one level finer, giving rise to exactly 218 distinct possibilities: each of the

6 face neighbors and 12 edge neighbors (18 neighbors total) is present at the same resolution, or

absent (in which case four finer neighbors are present across each face, and two finer neighbors

across each edge). We assemble this into an 18-bit number N = b0b1b2 · · ·b18, where every bit is

defined as

bj =

 1, if the j-th neighbor exists at same resolution

0, otherwise (neighbors are finer)

Cells with no finer neighbor This is the complement of the previous

case; our grading restriction ensures that for such a cell, all its neighbors

reside at the same resolution as itself or one level coarser. To elucidate our

encoding scheme, consider a cell (orange) and its coarser parent (light

blue); there are 8 possible arrangements of the child cell within its parent,

and for each of these configurations, there are only 6 possible coarse

neighbors allowable due to parity reasons (see figure inset). We use 3

bits to encode the position of the child cell within its parent, and 6 bits to

indicate whether this cell has a coarse neighbor in the X, Y, and Z (face) directions, and XY, YZ, and
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XZ (edge) directions. For each configuration of the child cell, there can only be one coarse neighbor

along each of these directions, making this encoding unique and well-defined. Thus, a total of 9 bits

are required for this case.

Ultimately, we dedicate one more bit to encode which of the above two cases we have at hand, for

a maximum of 19 bits that can capture all possible local topologies afforded by our grading scheme.

2.6.2 Retrieval of local Delaunay tetrahedralizations

Section 2.5 described our approach of using local Delaunay tetrahedralizations for fast marching

and velocity interpolation; here we discuss their storage. Under our grading scheme, there are at

most 114 geometrically distinct possibilities for the neighborhood of an octree cell; 18 of those are

face and edge neighbors at the same resolution, 48 are cells of one finer resolution (4 cells across

each of the 6 faces, and 2 across each of the 12 edges), and 48 are cells of one coarser resolution (8

configurations of a child in its parent cell, and 6 possible coarse neighbors in each case). Hence,

all tetrahedra can only choose their vertices from 114 distinct cells, relative to the current cell. As a

consequence, each vertex only requires a byte to encode (or 4 bytes per tetrahedron). We construct a

lookup table with a (conservatively reserved) maximum of 128 tetrahedra incident to each node,

requiring 512 bytes per topological case, or slightly more than 128MB to store the table for each of

the 218 + 29 different local topologies. We populate this table on-demand, constructing the contents

on-the-fly for any newly encountered case; our experiments have indicated that this table is very

sparsely occupied, making it even easier for its contents to remain cached.

2.6.3 Hierarchical evaluation of differential operators

Efficient evaluation of the discrete Laplacian operator is critical to the performance of the Conjugate

Gradient solver. Our treatment leverages the symmetry of this operator, allowing us to only store

the “convenient half" of the coefficient pairs. We first use the routine GhostValuePropagate() helper

to populate all ghost cells with the value of their coarser parent. The following three cases arise:
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Figure 2.7: Close-up view of the simulation of a river flowing through a canyon. The adaptivity
pattern, based on proximity to rigid boundaries, is shown along a vertical cross-section, on the
bottom. A narrow band level set with resolution 20482 × 4096 is used for interface tracking.

Active cells with no finer neighbor The Laplacian for these cells can be readily computed using

their 6 face neighbors and 12 edge neighbors (some of these neighbors may be ghost cells). We use a

lookup table (identical in terms of indexing to the one storing the Delaunay tetrahedra) to retrieve

the 19 stencil coefficients, corresponding to the central cell and its 18 neighbors. The storage cost is

19 floating point values or 76 bytes, for each of the 29 different topologies. To maximize alignment

with cache lines, we pad this stencil up to 128 bytes, for a still nimble lookup table size of 64KB.

Ghost cells For each ghost cell, we use a 6 bit code to record which of its 6 topologically allowable

neighbors (3 face and 3 edge neighbors, the direction being determined by parity) include this ghost

cell in their stencil. Depending on the value of these bits, we look up the stencils of those neighboring

cells and retrieve the coefficient for this ghost cell. All such contributions are added together. At the

end of the Laplacian kernel, the routine GhostValueAccumulate() is invoked to accumulate all partial

Laplace contributions temporarily deposited on ghost cells back to their coarse parents.

Active cells with no coarser neighbor In this case, we only consider the contribution of face/edge

neighbors at the same resolution, and rely on the GhostValueAccumulate() routine to contribute the
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missing stencil spokes to all finer neighbors. We retrieve 19 coefficients from our lookup table of 218

possible local topologies. As one would expect, these coefficients are zero for all fine neighbors.

The evaluation of the discrete divergence operator is similar, with the exception of accessing the

velocity for the corresponding face from one of the 6 different velocity channels. This approach only

requires the storage of 19 coefficients in all cases, and retains the performance potential offered by

the SPGrid framework.

2.7 Results

We simulated a number of examples to demonstrate the effectiveness of our framework. Each uses

two or three levels of refinement, although this is not a strict limitation. For rendering the liquid

surface, we used the fine level set wherever we had valid values, otherwise we used the coarse

level set. Figure 2.1 shows two sources pouring water in a container, creating a thin sheet. The

octree topology is fine near the sources and coarser away from them, with three levels of adaptivity.

Figure 2.2 shows an example with dynamic adaptation, where four sources pour water in a pool with

a rotating object. The octree topology is fine within a bounding box of the object and the sources,

and coarser elsewhere, with two levels of adaptivity. The box enclosing the object is updated every

frame, so that it can track complex solid-fluid interactions. During advection, whenever the mesh

topology changes, we trace back from the new mesh face locations, but perform interpolation into

the old mesh, thereby avoiding a separate mesh transfer step Klingner et al. [2006]. Finally, Figure 2.7

shows river flow in a canyon, with three levels of adaptivity. The thin geometry of this domain

mandates more smoothing effort near the boundary (10 Jacobi smoothing iterations, as opposed to

3 in the other examples), increasing the cost of the projection step.

Table 2.2 shows the memory bandwidth utilization for a streaming copy kernel (for reference),

the first order Laplacian of Setaluri et al. [2014], our optimized second order Laplacian, and an

unoptimized Laplacian that uses an explicit mesh near T-junctions to store the stencil coefficients.

These computations were performed on the river data set from Figure 2.7. Our kernel achieves good

performance by exploiting the ghost cell mechanism of the SPGrid pyramid. Table 2.1 shows the

average timing breakdown of one time step for all our examples. The memory footprint of our fine
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Fig. 2.1 Fig. 2.2 Fig. 2.7
Time Step 80 58 81
Level Set Advection 26 14 14
Reinitialization 20 15 19
Velocity Advection 5 2 5
Projection 24 18 40
Velocity Extrapolation 4 3 2
Grid Adaptation N/A 5 N/A
Number of PCG iterations 5 4 10

Table 2.1: Average timing breakdown (in seconds) for all examples

level set representation was 8.09 GB (543M voxels) for the twin source example from Figure 2.1,

7.36 GB (493M voxels) for the rotating paddle example from Figure 2.2, and 3.84GB (253M voxels)

for the river example from Figure 2.7. In spite of the exceptionally high resolution afforded in the

narrow band, SPGrid yields a storage footprint which is quite acceptable for simulations of this

scale. Finally, as Table 2.1 reveals, maintenance of the narrow band is efficient enough to not be the

bottleneck, even though we rely on a serial Fast Marching method for reinitialization.

In the Appendix A, we use analytical test cases in two and three dimensions to provide numerical

evidence that our projection technique achieves second order accuracy and our fast marching method

achieves first order accuracy.

2.8 Limitations and future work

Our proposed combination of a power diagram discretization, storage using an SPGrid pyramid,

and the use of a highly refined narrow band level set for interface tracking exposes and exploits a

number of opportunities for performance optimizations, but also incurs some conscious limitations.

In this section, we highlight the most notable limitations, and discuss whether they are intrinsic to

our approach, or a temporary exclusion from our scope that could be amended without fundamental

changes to our framework.

Our interface tracking scheme is expressly capable of capturing geometric details at higher

resolutions than its counterpart stored on the power diagram. Since the dynamics are driven by the

level set as sampled onto the octree power diagram, sub-grid droplets or air pockets may at times be
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Streaming 1st Order 2nd order Unoptimized
Copy Laplacian Laplacian Laplacian
14.45 5.71 3.95 0.49

Table 2.2: Memory bandwidth utilization (in GB/sec) for streaming and stencil operations run on
an Intel Xeon E3-1241 at 3.5GHz.

overlooked by the simulation, leading to non-physical motions such as the slender suspended splash

in the rotating paddle scenario. Therefore, a sub-grid treatment similar to prior work [Bojsen-Hansen

and Wojtan, 2013; Goldade et al., 2016] is called for. In addition, our interface tracking scheme uses

first order semi-Lagrangian advection and the fast marching method for reinitialization, both of

which are known to be overly dissipative. In the future, we would like to explore improved advection

schemes, such as FLIP [Zhu and Bridson, 2005] or MacCormack [Selle et al., 2008], and higher order

accurate level set reinitialization. Reconstructing full velocities at tetrahedra circumcenters rather

than nodes and applying generalized barycentric interpolation over polyhedra would also reduce

dissipation [Klingner et al., 2006; Elcott et al., 2007]. Moreover, in principle, it is possible to use

adaptivity even for interface tracking while, for simplicity, we have restricted our implementation to

a single uniform grid. We are presently reinitializing the signed distance with a serial Fast Marching

method on the narrow band; alternative reinitialization schemes that admit parallelism certainly

merit attention in future work. Finally, given that our method makes extensive use of the SPGrid

data structure to solve the Navier-Stokes equations, tracking the surface with a high-resolution

narrow band SPGrid level set was a natural and convenient choice. Nevertheless, our underlying

octree fluid solver is not intrinsically tied to this choice, and we expect that it could alternatively be

paired with a purely particle- or mesh-based surface tracking strategy if desired.

Thus far we have sought to simulate strictly large-scale single-phase inviscid free surface flows,

which leaves ample room for future exploration of more specialized effects such as surface tension,

contact-line dynamics, viscosity, multiple phases, solid-fluid interaction, and so on. Some of these

extensions should be straightforward; for example, explicit surface tension should involve only a

minor modification to the right-hand-side of the linear system based on surface curvature [Enright

et al., 2003].

As discussed in Section 2.4, edge neighbors in the octree may share a face in the power diagram.
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We use three additional channels associated with edges for storing velocities on these faces. These

channels only store meaningful values near T-junctions, resulting in a non-optimal storage density.

It is also possible to use the non-graded approach of Losasso et al. [2006] in regions deep interior

to the liquid, and our power diagram discretization only near the free surface to obtain a lower

cost Laplace operator that still yields a second order accurate pressure field. We have tested this

idea on a simple prototype and plan to include it in our simulation pipeline in future work. Finally,

we have consciously restricted our scope to a grading scheme that mandates that a cell and all its

neighbors span only two levels of resolution; however, there exist weaker grading rules that do not

destroy the essential octree structure in the power diagram, and lifting this restriction would not

prevent us from using the ghost cell mechanism within the SPGrid framework either. However, in

the absence of this grading restriction, our encoding and lookup scheme for local tessellations and

stencils would not apply. We look forward to investigating algorithmic paradigms for more intricate

adaptive topology patterns in future work.
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3 adaptive generalized interpolation

material point method
In this chapter, we present an adaptive Generalized Interpolation Material Point (GIMP) method

for simulating elastoplastic materials. Our approach allows adaptive refining and coarsening of

different regions of the material, leading to an efficient MPM solver that concentrates most of the

computation resources in specific regions of interest. We propose a C1 continuous adaptive basis

function that satisfies the partition of unity property and remains non-negative throughout the

computational domain. We develop a practical strategy for particle-grid transfers that leverages the

recently introduced SPGrid data structure for storing sparse multi-layered grids. We demonstrate

the robustness and efficiency of our method on the simulation of various elastic and plastic materials.

We also compare key kernel components to uniform grid MPM solvers to highlight performance

benefits of our method.

3.1 Introduction

The Material Point Method (MPM) has been attracting considerable interest since it was introduced

to the field of computer graphics by Stomakhin et al. [2013]. Combining advantages from both

Lagrangian particle representation and Eulerian grid representation, MPM proves to be especially ef-

fective for animating elastoplastic materials undergoing large deformation or topology change [Jiang

et al., 2016]. Despite its physical realism and geometrical convenience, a traditional MPM solver

has several disadvantages. First, it is more computationally expensive than mesh-based Lagrangian

approaches such as those based on Finite Element Methods (FEM) [Sifakis and Barbic, 2012]. The

bottleneck of MPM is usually the costly transfer operations between the particles and the grid. The

cost of such transfer operations is particularly evident when we realize that MPM has to maintain

the same grid resolution and a sufficient particle count throughout the simulation domain. The

overhead of this process is highlighted in scenarios such as the example of drawing in a sandbox

from Klár et al. [2016], where the majority of sand grains do not move at all.

Another disadvantage of traditional MPM is related to its ability to resolve (self-) collision events.
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Figure 3.1: Dragon goo. An elastoplastic dragon model is placed on a table carved with intricate
thin slits. Our adaptive simulation (center) refines the background grid in the vicinity of the collision
object, allowing the dragon to seep through, while a simulation on a uniform grid (right) cannot
resolve the contact.

MPM automatically enforces non-slip contact. However it treats two particles as being in contact

whenever they affect some common grid nodes. As a result, the separation distance is inherently

proportional to the grid cell spacing ∆x. High resolution is required in order to prevent visually

noticeable collision gaps even for the simulation with very simple dynamics. Furthermore, MPM

cannot resolve a boundary condition that is finer than the grid resolution. This implies that materials

cannot pass through holes smaller than ∆x. Similarly, a blade that is thinner than ∆x can not cut

through materials.

We propose an adaptive variant of the Generalized Interpolation Material Point (GIMP) method

[Bardenhagen and Kober, 2004] to alleviate these limitations. By only refining regions of particular

interest, we can resolve fine-grained self contact and object collision features with significantly

reduced computational cost. We demonstrate the efficacy of our method on the simulation of

various elastic and plastic materials. We summarize our main contributions as:

• The introduction of the GIMP paradigm to MPM simulation for computer graphics applica-

tions.

• An adaptive GIMP discretization framework with significantly improved shape functions to

enforce important properties such as C1 continuity and non-negativity.

• A memory efficient and highly regular parallel particle-grid transfer scheme that achieves

attractive performance on both uniform and arbitrary non-graded adaptive grids. We show

how all the necessary operations in our adaptive grids can be naturally paired with the SPGrid

data structure, and implemented using efficient, uniform grid operations as building blocks.
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Figure 3.2: Armadillo wire cut. A gooey armadillo is dropped through two thin intersecting wires.
Left: the model just prior to collision; Center: grid refined to 4× the base resolution in the vicinity of
the wires, per our method; Right: A uniform grid with comparable particle count largely misses the
collision event.

• A highly optimized (threaded and vectorized) particle-grid transfer approach with a number

of aggressive vectorization optimizations that were specifically enabled by our proposed

perspective on implementing grid adaptivity via the multi-level SPGrid representation.

Our method is competitive with a uniform gird on a per-cell or per-particle basis. We also

note that as opposed to the approach proposed by Lian et al. [2015] that assumes a graded adaptive

Cartesian grid where neighboring cells do not differ by more than one refinement level, our approach

in constructing an adaptive grid is relatively straightforward and simple to implement. Our grid

adaptivity also remains efficient regardless of the complexity of refinement levels. Additionally,

our transfer operators achieve a very rigorous standard of optimality, matching or exceeding the

bandwidth of state-of-the-art parallel uniform MPM codes with the same grid cell and/or particle

count.

Scope The principal objective of this work is to propose an adaptive MPM scheme, equipping the

weights with all desired properties, which also has the potential to realize competitive performance,

and can facilitate and catalyze follow-up work on this topic. We admit, however, that our current

framework does not prove that adaptive MPM will always deliver performance superior to uniform

MPM, due to the fact that explicit time integration is arguably the least favorable for reaching

aggressive end-to-end performance advantages over uniform schemes.
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3.2 Related work

Adaptive simulation of deformable solids The use of spatial adaptivity to mitigate the cost of

simulating detailed elastic and elastoplastic bodies has been widely documented in the computer

graphics literature. Debunne et al. [1999] proposed one of the early continuum-based adaptive

volumetric simulation techniques using finite differences, departing from prior schemes based on

mass-spring systems. Similar ideas were soon combined with Finite Element (FEM) Methods [Capell

et al., 2002] where a hierarchical deformation basis would be constructed via subdivision, with

individual bases activated or disabled based on deformation. Similarly, Grinspun et al. [2002] cater

to adaptive FEM simulation of volumetric solids and shells by refining the deformation basis, rather

than the elements themselves, providing a natural handling of T-junctions at resolution transitions.

Topology change, instigated by cutting operations and material fracture provided a compelling

context for adaptive simulation, with a number of authors exploring octree-based discretizations of

elastic solids [Seiler et al., 2011] which also allowed the use of efficient multi-resolution solvers [Dick

et al., 2011], while others combined octrees with shape matching techniques in modeling cutting

operations [Steinemann et al., 2008]. Localized adaptation in response to high deformation provided

one of the most natural motivations for Discontinuous Galerkin methods [Kaufmann et al., 2009].

Although several of the aforementioned techniques are based on octrees, a number of researchers

focused on adaptive tetrahedral discretizations readily produced by robust meshing algorithms

[Labelle and Shewchuk, 2007] which have been very popular in modeling elastoplastic deformation

[Wicke et al., 2010]. Specifically, adaptive tetrahedralizations based on BCC lattices have been used

to model viscoelastic [Wojtan and Turk, 2008] as well as hyperelastic materials [Sifakis et al., 2007].

Although contact and collision handling is often designed independently of adaptive refinement, in

certain instances as in the work of Otaduy et al. [2007] the two behaviors are tightly integrated as to

concurrently accelerate elastic simulation and collision detection. Finally, for a deeper survey of

adaptive techniques for deformable models, we refer to the excellent recent report by Manteaux

et al. [2016].

Adaptive fluids Adaptive fluid simulation has been studied extensively by previous approaches

since the work of Losasso et al. [2004] on octree-based water and smoke. Tetrahedral based adaptive
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fluid simulation was combined with embedded boundary methods by Batty et al. [2010a]. Ando

et al. [2012] adopted particle splitting and merging for liquid sheets. Ando et al. [2013] simulated

highly detailed splashes on a novel FLIP scheme discretized on an adaptive tetrahedral mesh. Ferstl

et al. [2016] proposed a narrow band FLIP that couples with an Eulerian solver. Adaptive sampling

methods were also developed for SPH [Adams et al., 2007; Solenthaler and Gross, 2011].

Sparse and adaptive grid structures Although pointer-based tree structures [Losasso et al., 2004]

are the most straightforward choice for storing adaptive grids, the under-utilization of memory

bandwidth associated with indirect access and suboptimal prefetching that is intrinsic to pointer-

based trees has led researchers to explore alternative storage structures. RLE-based techniques

[Houston et al., 2006; Irving et al., 2006a; Chentanez and Muller, 2011] combine the regularity of a

2D uniform grid with the compression of a 1D run-length encoding. Adaptive Mesh Refinement

(AMR) techniques and variants thereof [Patel et al., 2005; Cohen et al., 2010; English et al., 2013a]

combine adaptivity and regularity by patching together uniform grids of different resolutions. One

of the most efficient and broadly used adaptive data structures, OpenVDB [Museth et al., 2013],

is based on a tree with a high branching factor that yields large uniform grids at leaf nodes. Our

present work is based on the recently developed Sparse Paged Grid (SPGrid) data structure [Setaluri

et al., 2014], which targets in-core processing and exploits the hardware accelerated mechanisms

that support the Virtual Memory subsystem of modern CPUs. Apart from a sparse grid structure,

Setaluri et al. [2014] paired SPGrid with a different perspective of octrees, treating them as stacks of

sparsely populated uniform grids, across which the cells of a geometric octree are scattered. This

concept has been subsequently applied to simulation of high-resolution fluids [Liu et al., 2016] and

hybridized with second-order accurate techniques for incompressible flow [Aanjaneya et al., 2017].

Material Point Methods MPM [Sulsky et al., 1995] is a generalization of the hybrid Fluid Implicit

Particle (FLIP) method [Brackbill et al., 1988; Zhu and Bridson, 2005; Bridson, 2008] to solid mechanics.

It has proven to be a promising discretization choice for animating many solid materials including

snow [Stomakhin et al., 2013], foam [Yue et al., 2015; Ram et al., 2015], sand [Daviet and Bertails-

Descoubes, 2016; Klár et al., 2016], cloth [Jiang et al., 2017a] and solid-fluid mixture [Stomakhin

et al., 2014]. The original GIMP concept [Bardenhagen and Kober, 2004] was described in the context
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Figure 3.3: 3D colliding jellos. Two colliding jellos are simulated, where we placed finer particles
and grid resolution near the free surface of the material.

of uniform grids. There is some engineering literature exploring adaptive MPM. Early work of Tan

and Nairn [2002] mainly focused on particle splitting. Some initial ventures into coupling GIMP

and adaptivity [Ma et al., 2005, 2006; Daphalapurkar et al., 2007] managed to enforce both partition

of unity and C1 continuity, but their applications were restricted to nested grids (not a general

octree). Lian et al. [2014] employed the concept of embedding fine T-junctions in coarse parents, but

only along the surfaces separating resolution levels. More recently, Lian et al. [2015] developed the

mesh-grading MPM (MGMPM) that modified the shape functions while maintaining the partition

of unity. However their method, as we will see later, is prone to generating negative interpolation

weights in certain scenarios, risking potential instability. The shape functions in both [Lian et al.,

2014] and [Lian et al., 2015] are not based on GIMP and only C0 continuous. Our method, on the

other hand, guarantees all desired properties: partition of unity, non-negativity and C1 continuity

for the weights.

3.3 Generalized interpolation material point method

The Generalized Interpolation Material Point (GIMP) method, proposed by Bardenhagen and Kober

[2004], is a generalization of the original MPM to allow a wider range of interpolation functions
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between the particles and the grid.

3.3.1 Governing equations

Before discussing GIMP, we first briefly review the original MPM. We refer to [Stomakhin et al.,

2013] for more details. The simulated material is perceived as a continuum body which is a subset

of Rd. Here d denotes the spatial dimension, which can be 2 or 3. At any give time t, there is a

deformation mapping ϕ(·, t) : Rd → Rd, which maps points in the undeformed configuration to

a deformed configuration. More precisely, a point X ∈ Ω0 is mapped to x(X, t) = ϕ(X, t) ∈ Ωt.

The deformation gradient F = ∂ϕ/∂X describes the material deformation and acts as a common

strain measure [Bonet and Wood, 2008]. We denote the determinant of the deformation gradient by

J := det(F).

The governing equations we need to solve are the conservation of mass and conservation of

momentum. They are written as

Dρ

Dt
+ ρ∇ · v = 0 and ρ

Dv
Dt

= ∇ · σ+ ρg (3.1)

respectively, where D/Dt is the material derivative (DfDt :=
∂f
∂t + v · ∇f for a generic scalar function

f), ρ is the density, v is the velocity, g is gravity, σ is the Cauchy stress. We assume that there exists

an elastic energy density function Ψ(F), so that the Cauchy stress can be written as σ = 1
J
∂Ψ
∂F FT (see

Section 3.4 for more discussion on the physical model).

3.3.2 Discretization

First, we explain the notation used in this chapter. Subscript i is an index that enumerates grid

nodes, while p is an index that enumerates discrete particles. Certain quantities relating grid nodes

and particles will carry a double subscript (ip), as will be the case with interpolation functions and

weights. Superscript n identifies the discrete time step associated with a time-varying quantity.

In MPM, particles carry attributes such as mass (mp), position (xp), velocity (vp), deformation

gradient (Fp), and other material parameters. A background grid is used as a scratch pad to discretize
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Figure 3.4: Colliding 2D jello squares. Two hyperelastic jello squares are driven to collide with
each other. Left: A uniformly coarse grid leaves large separation gaps. Middle: A 4×-refined uniform
grid nicely resolves the contact, at the expense of gratuitous computation in the interior. Right: Our
adaptive scheme.

and solve the governing equations. The communication between particles and grid information is

handled through an interpolation function. We denote the weight and the corresponding gradient

between particle p and grid node iwith wip (a scalar) and∇wip (a vector), respectively.

Here we provide an overview of MPM stages in a time step, assuming an explicit symplectic-Euler

time integration. GIMP follows exactly the same procedure.

1. Particle to grid. Assuming we are at time n, particle mass and momentum are transferred

from particles to grid nodes withmni =
∑
pmpw

n
ip and (mv)ni =

∑
pmpvnpwnip. The velocity

of node i is computed as vni = (mv)ni /mni whenmni 6= 0. It is set to 0 otherwise.

2. Compute grid forces. This comes from discretizing the conservation of momentum. For node

i, the force is given by fni = mni g −
∑
p V

0
pJ
n
pσ

n
p∇wnip, where V0

p is the undeformed particle

volume.

3. Grid velocity update. Denoting the updated grid node velocities with v̂i, symplectic Euler

computes it as v̂i = vni + ∆tfni /mni .

4. Collision treatment. v̂i for each grid node is further processed for nodes inside collision

objects. The relative velocity is set to 0 inside “sticky” collision objects. The normal component

is set to 0 in “slip” collision objects.

5. Strain evolution. The particle deformation gradient Fp evolves as Fn+1
p =

(
I + ∆t

∑
i v̂i(∇wnip)T

)
Fnp .
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6. Grid to particle. Particle velocities and positions are updated from grid velocities with vn+1
p =

α(vnp +
∑
i(v̂i − vni )wnip) + (1 − α)

∑
i v̂iwnip and xn+1

p = xnp + ∆t
∑
i v̂iwnip, where α =

0.95 [Stomakhin et al., 2013].

3.3.3 From MPM to GIMP

Traditional MPM [Sulsky et al., 1995] defines the weight wip between particle p and grid node i to

be exactly the interpolation function Ni(x) of node i evaluated at xp:

wip = Ni(xp). (3.2)

Accordingly the weight gradient is ∇wip = ∇xNi(xp). Here Ni(x) is the standard finite element

trilinear basis function in 3D (bilinear in 2D) defined for node i.

While this choice of particle-grid weights works fine for problems with small deformation,

Steffen et al. [2008] observes that it suffers from the “cell crossing instability” for practical problems.

This is because piecewise linear basis functions are only C0 continuous at cell boundaries. The

corresponding gradient∇wip is therefore discontinuous. Two apparent problems are associated

with this property. First of all, it is possible that a huge force is exerted on a node with tiny mass,

causing numerical issues. Secondly, discontinuity of the gradient implies discontinuity of the force

(cf. Step 2 in the the MPM/GIMP stages). Noise and instability may thus occur as a particle travels

across cells. These reasons render this choice of basis function to be ineffective for traditional MPM.

We note that this is not a problem for other hybrid particle-grid methods such as a FLIP fluid solver

because the weight gradient is not needed.

One convenient solution to remedy the cell crossing instability is to use higher order C1 or even

C2 continuous interpolation functions such as quadratic or cubic B-splines as in Stomakhin et al.

[2013]. Unfortunately there are not many other choices of the interpolation function, given the

following constraints:

• Partition of unity:
∑
iwip = 1, ∀xp. This is required for mass and momentum conserva-

tion [Jiang et al., 2015].
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• Non-negativity: wip > 0.

• Interpolation: xp =
∑
iwipxi.

• C1 continuity: wip needs to be at least C1 continuous.

• Local support: wip is only non-zero for xp near xi.

The last requirement is primarily due to practical considerations. The non-negativity constraint rules

out the possibility of high order FEM basis functions such as 9-node quadratic quadrilateral elements

or 8-node serendipity quadrilateral elements in 2D (and their corresponding shape functions for

hexahedral meshes in 3D) [Hughes, 2012]. As we will discuss more in detail in Section 3.5.1, allowing

negative weights may cause serious issues when mass on a grid node becomes negative [Andersen

and Andersen, 2007].

GIMP is another alternative to eliminating the cell crossing instability. Instead of choosingNi(x)

to be C1, GIMP constructs weights with C1 continuity, using as building blocks bases Ni(x) with

just C0 continuity, often chosen to be the standard multilinear basis.

The full simulation domain is denoted byΩ. Associated to a particle p is the notion of particle

domainΩp surrounding it (as yet of unspecified shape; will be chosen to be an axis aligned box in

our implementation). Thus, the volume of a particle can be computed as

V̂p =

∫
Ω∩Ωp

dx. (3.3)

Unlike Equation 3.2, GIMP defines the weight to be

wip =
1
V̂p

∫
Ω

χp(x)Ni(x)dx, (3.4)

with χp(x) being the particle characteristic function defined over the particle domainΩp.

The traditional MPM is a special case of GIMP where χp(x) = V̂pδ(x − xp). Common GIMP
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schemes often choose χp(x) to be the characteristic indicator function centered at xp, i.e.,

χp(x) =


1 if x ∈ Ωp,

0 otherwise.

We modelΩp as an axis-aligned box centered at xp. Another common simplification that is often

made is thatΩp does not rotate or deform. This is also known as uGIMP (undeformed GIMP). Thus

the integral is always evaluated in a box with size V̂p = Ldp, where Lp is the fixed side length of

particle p’s box and d = 2 or 3 is the dimension. Under this choice of χp(x), Equation 3.4 simplifies

to

wip =
1
V̂p

∫
Ωp

Ni(x)dx. (3.5)

Similarly, we define

∇wip =
1
V̂p

∫
Ωp

∇xNi(x)dx. (3.6)

Recall thatNi(x) is piecewise linear and C0 continuous. Since the weights result from a convolution

ofNi(x) with the indicator function ofΩp, wip becomes C1 continuous and∇wip is C0 continuous

if they are viewed as functions of x. Additionally, wip satisfies all constraints mentioned previously.

GIMP weights are inherently smooth. We note that GIMP further recovers traditional MPM

with quadratic B-spline interpolation on a uniform grid when Lp = ∆x. We can see this from the

convolution definition of uniform B-spline functions. More specifically, assuming ∆x = 1 in 1D, the

B-spline of order-0 is given by

N0(x) =


1 if x ∈ [0, 1],

0 otherwise.

If we convoluteN0(x) with itself asN1(x) = N0(x) ∗N0(x), we can seeN1(x) is exactly the piecewise

linear order-1 B-spline with support [−1, 1]. We can further write N2(x) = N1(x) ∗ N0(x) and

N3(x) = N2(x) ∗ N0(x), or generally Nk(x) = N(k−1)(x) ∗ N0(x) to recursively construct uniform

higher order B-splines. Consequently, by noticing N0(x) = χp(x) when Lp = ∆x, we see that the
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Figure 3.5: Negative weights causing instability in a sphere dropping experiment.

GIMP shape function and the quadratic B-spline shape function are identical in this case. This result

generalizes to 2D and 3D due to the property that multi-dimension B-splines are simply tensor

products of univariate 1D B-splines.

Even though B-splines MPM and GIMP can be made equivalent on a uniform grid, it is much

more difficult to generalize high order B-splines to an adaptive grid. Much of the difficulty lies in

the treatment of T-junctions and transition grid cells between different levels. On the other hand, the

GIMP view from Equation 3.4 is naturally defined on an adaptive grid, as long as a C0 continuous

piecewise linear function Ni(x) is well defined. We show how to robustly construct such basis

functions in Section 3.5.

3.4 Elastoplasticity

We adopt finite strain elastoplasticity to model different material behaviors. In this section we follow

[Bonet and Wood, 2008] and assumes that the deformation gradient F is decomposed into elastic and

plastic parts as F = FEFP. In this chapter we only consider (i) purely elastic objects, (ii) elastoplastic

von Mises materials, and (iii) granular Drucker-Prager sand. However, our approach can be easily

combined with any constitutive models.
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3.4.1 Hyperelasticity

In hyperelasticity setting, there exists an elastic energy density function Ψ(FE) that penalizes the

deviation of FE from a pure rotation. As such, the first Piola-Kirchhoff stress is determined by

P = ∂Ψ
∂FE (F

P)−T . The Cauchy stress can be obtained as σ = 1
JPFT . In this chapter, we decided

to choose the fixed-corotated model [Stomakhin et al., 2012] for purely elastic solids due to its

robustness under large deformation, where Ψ is defined as Ψ(FE) = µ‖FE − RE‖2
F +

λ
2 (J
E − 1)2,

where RE is the rotation tensor from the polar decomposition FE = RESE, JE = det(FE), µ and λ

are Lamé parameters. For elastoplastic materials, it is often more convenient to adopt the Hencky

strain ε = 1
2 log(FFT ) from Mast [2013] and to use the St. Venant-Kirchhoff energy density

Ψ(FE) = µtr(log(ΣE)2) +
1
2
λ(tr(log(ΣE)))2, (3.7)

where Σ comes from SVD of FE: FE = UEΣE(VE)T .

3.4.2 Plasticity

In this chapter we consider two plasticity models, namely the Drucker-Prager model with a non-

associative flow rule for granular materials, and the von Mises model with an associative flow rule

for perfectly plastic materials. We use Equation 3.7 for the elastic response.

Drucker-Prager

The Drucker-Prager yield surface can be derived by applying the Mohr-Coulomb friction law in a

continuum. The admissible stress is inside the region given by y(σ) = cFtr(σ) + ‖σ−
tr(σ)
d I‖F 6 0,

where cF is the coefficient of internal friction. Discretely, if the trial stress is outside the yield

region, it is projected back onto the yield surface through an closed-form solution of the return

mapping [Klár et al., 2016]. The original return mapping causes non-physical volume gain when

the material is under expansion. We adopt the volume correction treatment as in Tampubolon et al.

[2017] to eliminate this artifact.
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von Mises

Von Mises plasticity is widely used for metal and ductile materials. It is also closely related to

computer graphics plasticity models that were successfully applied for simulating plastic flow and

gooey materials [Bargteil et al., 2007; Wojtan and Turk, 2008]. In 3D, the von Mises yield surface is

defined as y(σ) =
√

3J2 − σy 6 0, where σy is the yield stress, J2 = 1
2 s : s is the second invariant

of the deviatoric stress s. Here s := σdev = σ + pI and p = −1
3 tr(σ). Unlike the Drucker-Prager

yield surface for granular materials, von Mises plasticity uses an associative flow rule. The discrete

flow rule thus chooses ∂y∂σ as its direction. In the principal stress space, the shape of von Mises

yield surface is an infinitely long cylinder centered at the hydrostatic axis (σ1 = σ2 = σ3, where

σi is the i’th eigenvalue of σ). Following the same methodology in [Klár et al., 2016], we derive

a closed form solution of the return mapping for von Mises plasticity. Assuming εE := log(|FE|)

is the trial Hencky strain in the principal space, when the trial stress is outside the yield region,

we project εE to the yield surface to obtain a new Hencky strain HE = εE − δγ
dev(εE)
‖dev(εE)‖ , where

δγ = ‖dev(εE)‖− σy
2µ and dev(εE) = εE −

tr(εE)
3 I.

3.5 Adaptive basis functions

We employ a spatially adaptive computational grid. As the simulation proceeds, the grid must locally

refine and coarsen to hierarchical refinement levels. Instead of trying to define a C1 continuous

B-spline-like interpolation function that covers all cases and T-junctions, we degrade the problem

into defining a C0 function. As discussed in Section 3.3.3, GIMP will use convolution to convert the

C0 continuous interpolation function Ni(x) to a C1 continuous shape function wip.

3.5.1 Adaptive grid basis with free T-junctions

We start by describing the state-of-the-art multi-level grid approach by Lian et al. [2015]. Cell

spacing of the grid of level n is ∆xn = ∆x0/2n, where ∆x0 is the coarsest cell spacing. This results in

additional hanging nodes at T-junctions at the interface between cells of different refinement levels.

Taking the case of Figure 3.6(a) as an example, cell 2 and 3 are of a level higher than cell 1. Node

b is a T-junction node at the level transition interface. In the formulation of Lian et al. [2015] it is
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Figure 3.6: Illustration of free T-junction. A test case for the adaptive grid basis with free T-
junctions described in Section 3.5.1. The interpolation functions remain non-negative in the case
of (a). However, in the (b) case where there exist two T-junction nodes,Nc may turn negative and
become problematic.

treated as an actual degree of freedom on the grid. Inside cell 2 and 3, the interpolation functions

associated with nodes a,b, c are simply the standard bilinear hat functions. For example, if we

denote the hat function basis of node γ in cell k with Hkγ, and the grid basis interpolation function

with Nkγ, we have

N2
a = H2

a, N2
b = H2

b, N3
b = H3

b, N3
c = H

3
c. (3.8)

In other words, within cells that have no T-junctions in their periphery, the shape functions of

their corner vertices are the standard bilinear hat functions; this is not the case, however for cells

containing T-junctions (such as cell 1 in Figure 3.6), neither for the corner vertices or T-junction nodes

associated with such cells. N1
b must be defined in a way that ensures continuity of Nb along edge

a− b− c. If we parameterize cell 1 with a coordinate system spanning [−1, 1]2 with the origin at its

center and assume node b is at (x = 1,y = 0), then N1
b = 1

2(1 + x)(1 − |y|). To enforce continuity of

Na,Nb and partition of unity, the interpolation function of node a and b inside cell 1 are constructed

as N1
a = H1

a − 1
2N

1
b, N1

c = H
1
c −

1
2N

1
b. A similar strategy can be adopted in 3D, where a transition

cell may have 8 to 26 nodes, depending on the number of T-junctions.

While this approach works fine for the case of Figure 3.6(a), it starts to break the non-negativity

constraint in the case of Figure 3.6(b) where there exists another T-junction node d. Using the same
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Figure 3.7: Illustration for constrained T-junctions. A test case for the our adaptive grid basis with
constrained T-junctions, as described in Section 3.5.2.

local coordinate system defined above, we have

N1
b =

1
2
(1 + x)(1 − |y|), N1

d =
1
2
(1 − |x|)(1 + y), (3.9)

H1
c =

1
4
(1 + x)(1 − y), N1

c = H
1
c −

1
2
N1
b −

1
2
N1
d. (3.10)

It is easy to see that N1
c can sometimes become negative, for example when x = 0.5 and y = 0.1.

As a result, some grid nodes may have negative mass after the particles-to-grid transfer. Negative

weights in MPM causes instability and severe loss of accuracy [Andersen and Andersen, 2007]. For

example, we could construct a case with two particles affecting a grid node with exactly opposite

weights. As a result, the nodal mass becomes zero, resulting in an incorrect value of grid node

velocity. Subsequently, the grid node velocity update and grid-to-particles transfer will be erroneous,

causing the simulation to go unstable or behave non-physically. Figure 3.5 shows a practical case

where such instability happens at a region where negative nodal mass exists.

3.5.2 Adaptive grid basis with constrained T-junctions

To prevent negative interpolation weights, we propose a different strategy for defining a C0 continu-

ousNi(x) for GIMP. The key idea is the same with the classical constrained hanging node treatment

in octree FEM simulations [Legrain et al., 2011; Fries et al., 2011]. In contrast to the approach of Lian

et al. [2015], our treatment does not construct interpolation functions on the T-junctions. T-junction

nodes are constrained to move with their parent nodes at cell corners. Therefore, T-junction nodes

are embedded vertices that do not belong to the set of real degrees of freedom.
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Figure 3.8: Illustration of the shape functions Hγ defined in Section 3.5.2.

We shall use the grid topology shown in Figure 3.7 to illustrate our approach; note that this

arrangement includes a number of real degrees of freedom (colored red) as well as T-junctions

(colored green). Initially, we will ignore any constraints that the T-junction nodes might be subjected

to, and associate a shape function with all enumerated vertices, real or T-junction. For a given

node γ we define a shape function Hγ =
∑
nH

n
γ as the summation of all the standard bilinear

hat functions Hnγ , summed over all cells (indexed by n) for which γ is a corner vertex (not a T-

junction). For example, we would thus have Ha = H1
a +H2

a and Hb = H2
b +H3

b in the scenario of

Figure 3.7. The resulting functions Hγ are plotted in Figure 3.8. Using this basis (in the absence of

any constraints), a scalar field q(x) would be interpolated from nodal values as q(x) =
∑
γ qγHγ(x).

Of course, the reconstructed function q(x) would be discontinuous (since the shape functions Hγ

are discontinuous themselves, most notably along cell faces that contain T-junctions). Restoring

continuity would require us to enforce constraints on the nodal values qγ, such as qb = 1
2qa + 1

2qd,

qc =
1
4qa+

3
4qd, qe = 1

4qa+
1
4qd+

1
2qi andqj = 1

2qi+
1
2qk in our specific example. Substituting these

constraints into equation q(x) =
∑
γ qγHγ(x) replaces this summation with a different expression

q(x) =
∑
η qηNη(x), where now η enumerates only the real (non T-junction) degrees of freedom,

and the new functions Nη(x) have been formed by accumulating partial contributions from the

constrained degrees of freedom that were eliminated after the substitution. For our specific example
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Figure 3.9: Visualization of our C0 continuous shape function basis, defined in Section 3.5.2. Shape
functions are only associated with non-T-junction nodes.

of Figure 3.7, we would have

Na = Ha +
1
2
Hb +

1
4
Hc +

1
4
He, (3.11)

Nd = Hd +
3
4
Hc +

1
2
Hb +

1
4
He, (3.12)

Ni = Hi +
1
2
He +

1
2
Hj, (3.13)

Nk = Hk +
1
2
Hj, (3.14)

while the remaining non-T-junction nodes satisfy Nη = Hη. Note that the contribution from a

constrained degree of freedom to a real degree of freedom (such as from Hc to Na) directly results

from the corresponding nodal value constraint (such as qc). We use these newly defined functions

Nη(x) as our shape basis; these functions are fully C0 continuous, as illustrated in Figure 3.9. We

show a more detailed explanation of how one computes the shape for the basis functions and prove

their properties (continuity and partition of unity) in the Appendix B.

We highlight the dual perspective : we can envision this construction either as an alteration of

the basis functions of real (non T-junction) nodes, or as the result of constraining the coefficients of

the shape functions Hγ associated with all nodes, to enforce embedding constraints; this duality

will be exploited in the next section. Each modified interpolation function is a linear combination

of hat basis functions. When we construct the GIMP shape functions and their gradients through

Equation 3.4 and 3.6, the resulting wip is C1 continuous, and ∇wip is C0 continuous. In practice,

instead of explicitly constructing the modified interpolation functions, we use a ghost cell based

multi-layer scattering approach that is efficient and only require simple uniform grid operations

(see Section 3.6.1).
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Figure 3.10: Particle-grid transfer operations mapped to a multi-level sparse grid structure; opera-
tions involving applications of weights are performed solely on a uniform grid, and information
is propagated across resolutions via the embedding relation. The approach trivially extends to
non-graded grids.

3.6 Accelerated grid-particle transfers

3.6.1 Multi-layer embedding and interpolation

In the previous section, we momentarily treated T-junctions as actual degrees of freedom, and

endowed them with associated shape functions (Hγ). We will see that it is beneficial to take this

exercise one step further. Consider the quadtree topology depicted in Figure 3.10. For the purposes

of this hypothetical exercise, imagine that we fully subdivide the coarse cell on the left (with vertices

x2h
00 , . . . , x2h

11 ) into four finer cells, straddling vertices now referred to as xh00, . . . , xh22 (we are free to

consider collocated vertices i.e. x2h
10 and xh20 either as aliases of one another, or duplicates). Imagine

that, instead of defining the starting shape functions Hγ on just the nodes that appear on the

octree, we defined them on all refined nodes (i.e. define a function Hhij for every refined node xhij).

Refined nodes obey similar embedding relationships as previously seen for T-junctions, for example

xh11 = 1
4(x

2h
00 + x2h

10 + x2h
01 + x2h

11 ). As in the previous section, we can construct the basis functions of

the real degrees of freedom, by eliminating all refined nodes that are not collocated with a real node
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in the quadtree; this would yield for example

N2h
11 = Hh22 +

1
2
Hh12 +

1
2
Hh21 +

1
4
Hh11.

This linear relation could be leveraged to define multi-level weights via the GIMP convolution,

resulting for example in an application of Equation 3.4 to an expression of the form:

w2h
11,p = wh22,p +

1
2
wh12,p +

1
2
wh21,p +

1
4
wh11,p (3.15)

Consider the repercussions of this construction: All weights of the formwhij,p exhibit high regularity,

as they result from the integration of the standard bilinear hat function on a uniform grid; this

is aggressively leveraged in the vectorization optimization discussed in the following subsection.

Finally, consider what Equation 3.15 implies for particle-to-grid transfers such as the mass update

mi =
∑
pmpwip. By substituting Equation 3.15 in this expression, we see that the mass contribu-

tions could be equivalently computed in a two-step process: we first compute partial contributions

m2h
ij =

∑
pmpw

2h
ij,p, and then distribute these contributions to the real quadtree degrees of freedom

by multiplying them with the respective embedding weights, as shown in the left part of Figure 3.10.

We facilitate this hierarchical transfer by introducing the concept of ghost nodes in Figure 3.10,

which are similar in motivation with those formulated by Setaluri et al. [2014] to facilitate Laplacian

stencil application, but different in the number of them that needs to be instanced. In the vicinity

of any T-junction, we create duplicate refined variables by subdividing every cell incident to the

T-junction down to the finest level touched by the T-junction. Among such nodes, those that are

collocated with a real (non-constrained) quadtree node are labeled as “real” degrees of freedom;

the remaining ones are labeled “ghost” and they serve as conduits for implementing the transfer

operations in a hierarchical fashion. For any particle p, we detect the finest level intersecting the

particle domain Ωp, and carry out the particle-to-grid transfer exclusively to the refined nodes,

some of which will be “ghost”. After all particles have transferred their values to the appropriate

uniform level, ghost node values are distributed in bulk to their coarser parents (multiplied by their

embedding weights), until this process reaches all real quadtree nodes. The opposite process is

followed for the grid-to-particle transfer; grid values of ghost nodes are interpolated from their
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embedding “real” parents, and then the weighted transfer to the particle is evaluated exclusively at

the finest level intersectingΩp, as shown in the bottom-right part of Figure 3.10.

3.6.2 Vectorized weight computation

Our hierarchical approach to grid-particle transfers provides two significant regularity properties

that can be leveraged to accelerate the computation of transfer weights, which can form the bulk of

the computational burden if implemented inefficiently, as they need to be updated at every time

step. First, since the actual transfer (modulo the embedding-based distributions) always takes place

at a uniform grid, there is always a full set of 8 grid cells/27 grid nodes (in 3D) that participate in

this transfer. All eight of such cells reside at the same level of resolution, and their contribution to

the weight stencils can be computed in parallel, via SIMD instructions.

In addition to the aforementioned property, our code exploits yet another opportunity for SIMD

computation: Since the shape functions in all cells involved in our transfers have now been reduced

to the standard trilinear basis, we can consider the possibility of computing the weights of all eight

corner nodes of every cell in parallel, using SIMD instructions. We illustrate how this materializes

for the weights themselves, although the process easily extends to the weight gradients as well.

Absorbing the characteristic indicator function into the integral of Equation 3.4 results in

wijk,p =
1
V̂p

∫
Ω∩Ωp

Nijk(x)dx =
1
V̂p

∫b
a

∫d
c

∫f
e

Nijk(x) dxdyz

where we have explicitly used a triple index (i, j,k) ∈ {0, 1}3 to refer to the eight vertices of a cell,

andΩ ∩Ωp = [a,b]× [c,d]× [e, f]. Since the integrand is separable, it can be easily computed in

closed form, e.g. for N111 = 1
dx3xyz we have

W(a,b, c,d, e, f) := 1
V̂p

∫
Ω∩ωp

N111(x)dx =
(b2−a2)(d2−c2)(f2−e2)

8V̂pdx3

We can easily observe that the integral of the shape functionsNijk other than the one given here, can

be easily computed by performing a change of variable xi ← 1−xi for one or more of the coordinate
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indices i = 1, 2, 3. This yields the following results:

w000,p = W(1−b, 1−a, 1−d, 1−c, 1−f, 1−e)

w001,p = W(a,b, 1−d, 1−c, 1−f, 1−e)

w010,p = W(1−b, 1−a, c,d, 1−f, 1−e)

w011,p = W(a,b, c,d, 1−f, 1−e)

w100,p = W(1−b, 1−a, 1−d, 1−c, e, f), etc...

We use this property, in conjunction with the regularity of computation across the eight cells involved,

to implement a SIMD-optimized weight computation that computes the weights of all 8 cell vertices

at once, by executing a vectorized implementation of the expressionW(·) for a properly adjusted set

of integration bounds.

The feasibility of these SIMD optimization, and the ability to structure the entire transfer using

uniform operations as a building block, was a direct consequence of how our theoretical interpolation

scheme was designed. The SIMD optimization would also directly benefit traditional GIMP on a

uniform grid.

3.7 Grid rasterization and particle resampling

3.7.1 Grid rasterization

We index grid levels with 1 6 qg 6 Qg and particle types with 1 6 qp 6 Qp , where lower case

denote finer grid resolution/smaller particles. In pre-process, particles attributes (e.g. position,

mass, volume, and type) are prescribed by the user. Our convention is to place coarser grid resolution

(hence sparser particle distribution) deep inside, and finer grid resolution (hence denser particle

distribution) closer to the free surface or collision boundary. Static grid adaptivity (e.g. Figure 3.1

and 3.2) is accomplished in a pre-process step. However, dynamic grid adaptivity (e.g. Figure 3.4, 3.3,

and 3.12) needs to be computed for each time step.

For hyperelasticity, the grid and particle adaptations are completely determined by the particle

types. Starting from the coarsest level, the smallest particle type qp within a cell of the current grid
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qg is computed. We refine the cell if qp < qg and the number of particles of each sub-cell is no less

than particles per cell prescribed.

For elastoplastic material, we need to perform particle resampling. We first compute the ap-

proximate Manhattan distance d from the “free surface" for each finest cell. Then starting from the

finest grid level, we merge sub-cells into a single cell only if they are beyond a prescribed distance

criterion. However, this simple strategy is prone to the mismatch of particle type and grid level

which can easily lead to numerical fracture Lian et al. [2015]. Another problem is that for highly

energetic motion (c.f. top right corner of Figure 3.11(a)), sparse particles in the interior are easily

driven to the surface, which diminishes surface details.

3.7.2 Particle resampling

To alleviate these problems, we modify the split-and-merge approach proposed by Yue et al. [2015]

to better suit our framework. Split-and-merge is applied to a particle depending on both its particle

type and the corresponding Manhattan distances of the cell containing the particle. We define three

distance parameters dsmall, dmedium and dlarge, if d < dsmall, neither split nor merge of particles is

enforced, otherwise the operations will be visually noticeable. Split is necessary when dsmall < d <

dmedium to retain a detailed surface while merge is required for d > dlarge to reduce computational

cost. In the last case, dmedium < d < dlarge, split-and-merge depends on the particular application.

Moreover, split-and-merge is prohibited if the number of particles within a cell is either too large or

too small which could end up with the sparse particles moving closer to the surface (cf. blue circle

of Figure 3.11(b)). For applications with more than two levels, (e.g. Figure 3.1 and 3.2), we repeat

the process between each level of transition.

Split To split a particle of type q to four particles of type q− 1 in 2D (eight in 3D), we first put a

square(or a cube in 3D) centered at the original particle position with half diagonal length dx
4 (dx is

the size of the cell containing the particle), then randomly rotate the square/cube and place the new

particles in the vertices of the square/cube. To preserve both mass and momentum, the mass and

volume are equally distributed to all new particles while the velocity and the deformation gradient

are directly duplicated.
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Figure 3.11: Sand in a rotating circle. Top: particle split-and-merge turned off. Bottom: particle
split-and-merge turned on.

Merge To merge particles, we start with a single particle and then search for its closest neighbors of

the same particle type. The position of the new particle is the geometric center of the fine ones. The

mass and volume are accumulated while the velocity is computed from a mass-weighted average.

For deformation gradient, we first do the singular value decomposition FE = UEΣE(VE)T . The

matrix Σ̂ is computed from the average of the ΣE’s. We apply quaternion average to the UE’s and

VE’s to get ÛE and V̂E. Finally, we compute the new deformation gradient as F̂E = ÛEΣ̂E(V̂E)T .

3.8 Results

We list the performance and simulation parameters of our 3D simulations in Table 4.2, in which

we also compare against uniform grid simulations. The first two examples (Jello, Figure 3.4 and

Hourglass, Figure 3.12) illustrate the speedup of the adaptive approach against uniform methods

that yield comparable visual detail with e.g., [Klár et al., 2016]. We highlight that the somewhat

modest speedup is due to the fact that we gratuitously refine around the entirety of the free surface,

rather than localizing refinement on regions undergoing contact. The last two examples (Dragon,

Figure 3.1 and Armadillo, Figure 3.2) show that, when spending comparable computation effort with

uniform techniques (with similar particle counts), our adaptive simulation can resolve significantly

higher detail. Note that uniform MPM cannot handle our finest∆x case within reasonable amount of

time and memory usage. Figure 3.3 shows colliding adaptive jellos in 3D. For this test, the memory

usage is 0.18GB for the adaptive case and 0.24GB for the uniform dense case. The cost of particle-grid

transfer operations in relate to the cost of a whole time step is 50% and 70% for them respectively.
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Figure 3.13 illustrates the fact that our adaptive simulation (left) produces a visually similar detailed

dynamics of colliding jellos compared to a regular-dense-grid simulation (right).

Benchmark We compare our accelerated particle-grid transfers to reliable implementations of the

MPM solvers in [Klár et al., 2016] (with a dense uniform grid data structure) and [Tampubolon

et al., 2017] (with the OpenVDB [Museth et al., 2013] sparse grid) on an Intel(R) Core(TM) i7-

4770R. We create a benchmark example with ∆x = 1
128 . The particles are uniformed sampled on

a grid from ( 1
8 , 1

8 , 1
8) to ( 7

8 , 7
8 , 7

8 ) with spacing 1
256 , for a total of just over 7 million particles. SPGrid

(http://www.cs.wisc.edu/˜sifakis/project_pages/SPGrid.html) was sourced from the project website,

while the other MPM benchmarks were graciously shared with us by the respective authors. Table 3.1

lists the timing comparison.

Contact The benefit of using an adaptive discretization include better resolution of the contact

between different MPM objects (as well as self contact). In Figure 3.4, we show a comparison of 2D

colliding jellos on a uniform coarse grid, a uniform dense grid, and our adaptive grid. Adaptivity

allows us to achieve very small separation distance. The adaptive discretization reduces the necessary

computational cost compared to the uniform dense case.

Dynamic Adaptation We simulate dry sand with the Drucker-Prager plasticity model and the

free surface based adaptation criterion ( Figure 3.12). Both the particles and the grid are refined

near the free surface and coarsened in the interior region. The computational resources are thus

focused on the visible part, enabling highly detailed flow resolution.

Table 3.1: Benchmark. We compare our accelerated particle-to-grid (P2G) and grid-to-particle (G2P)
transfers to a dense uniform grid MPM solver [Klár et al., 2016] and a sparse OpenVDB-based MPM
solver [Tampubolon et al., 2017] on an Intel(R) Core(TM) i7-4770R.

P2G
1 Core

G2P
1 Core

P2G
4 Cores

G2P
4 Cores

Dense 3.58 6.84 1.38 1.85
OpenVDB 2.39 5.8 0.64 1.54
SPGrid 3.05 1.26 0.82 0.28
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Table 3.2: Simulation performance and parameters. (ρ is material density, E is Young’s modulus,
ν is Poisson’s ratio and σy is plasticity yield stress.) (1) Jello and Hourglass are run with Intel(R)
Xeon(R) CPU E5-2687W v3. We compare the finest level ∆x, first frame particle count, and per-step
cost of our adaptive scheme with the simulation on a uniform grid that has the same resolution
with our finest grid level. (2) Dragon and Armadillo are run with Intel(R) Xeon(R) CPU E5-1650
v3. Sampling on a uniform grid using our finest grid ∆x causes a total number of over 30 million
particles and cannot be handled within reasonable amount of time. Therefore we adjust the uniform
grid resolution to match the particle count of our adaptive simulation, while maintaining the same
particle-per-cell count.

levels
(adaptive)

∆x

(finest;adaptive)
particle #
(adaptive)

time/step
(adaptive)

∆x

(uniform)
particle #
(uniform)

time/step
(uniform) ρ E ν σy friction angle

Jello (Fig. 3.3) 3 1/256 8.8× 105 1.67 1/256 1.74× 106 2.74 1000 8e3 0.3 - -
Hourglass (Fig. 3.12) 2 1/256 8.1× 105 1.14 1/256 1.68× 106 2.84 1000 1e5 0.3 - 30
Dragon (Fig. 3.1) 3 1/512 1.567× 106 2.78 1/150 1.67× 106 2.83 800 8e3 0.3 10 -
Armadillo (Fig. 3.2) 3 1/512 5.2× 105 1.15 1/128 5.2× 105 0.85 800 8e3 0.3 10 -

Small Features We further demonstrate the effectiveness of our method in resolving small scale

collision object features. In Figure 3.1 we carve thin cracks on a glass table and put a dragon-shaped

von Mises goo on it. We choose a small grid resolution for efficiency. A uniform grid cannot fully

resolve the thin feature. Our method successfully let the goo to slip through the cracks by simply

refining the cells near the crack. The robustness of our method on non-graded adaptivity allows

us to refine the same cell for multiple times without needing to specially take care of neighboring

cells. Note that the refinement is only performed to an extremely small portion of the computational

domain and does not cause much overhead. Figure 3.2 shows another example where we cut an

armadillo with two wires. Similarly, our method resolves the thin wire with a slight increase in

computational cost. Although we adopt three successive levels of refinement in both of these two

examples, all cells are either at the very coarsest or very finest level of resolution with a non-graded

transition between them.

3.9 Discussion

Limitations Even though our adaptive scheme promises significant performance and detail bene-

fits, it also carries a number of intrinsic limitations. Taking full advantage of adaptivity in simulations

involving intricate contact would often require dynamically refining parts of the surface involved in

collision events at any point in time (as opposed to preemptively refining the entire surface). In those

cases, visual artifacts due to resampling might be evident (especially for simulation of granular
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Figure 3.12: Sand in an hourglass. Sand in an hourglass is simulated with finer particles and grid
resolution strategically placed near the collision boundary.

materials, e.g. sand) and would require special attention to mitigate. The GIMP convolution allowed

C0 multilinear bases to be boosted to C1 continuity in the computed weights; however, seeking

a higher order of continuity is highly nontrivial in the adaptive case, as it would likely require a

basis that is C1 pre-convolution. Our use of a hierarchy of sparse grids allowed us to contain costs

associated with expansive uniform grids; nevertheless, tracking the set of particles as they transition

across cells of different resolution requires geometric search structures (e.g. box hierarchies) whose

traversal and update can be less parallel-friendly than what would be necessary for the uniform

case.

Scope restrictions Our initial exploration of adaptive GIMP was consciously restricted in scope to

simple simulations of elastoplasticity and refinement rules. In particular, refinement was triggered

by simplified heuristics, such as the proximity to collision objects and/or the free surface. We

have not investigated more intricate refinement criteria such as those triggered by large values of

strain, or spatially localized to regions undergoing self-collision, for which an accurate and efficient

detection would be less trivial. We have also restricted our investigation to purely explicit time

integration techniques, and did not consider scenarios of fracturing elastic bodies, for which the use

of adaptation would be naturally motivated.

Future work We look forward to investigating extensions to implicit MPM approaches and evaluate

if the SPGrid paradigm can deliver similar accelerations to operator evaluations in assembly-free

iterative solvers. Extensions to MPM fluids and coupling behaviors between solid/granular/fluid
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Figure 3.13: Comparison. The result of our adaptive formulation (left) compared with regular MPM
on a dense grid (right).

phases would also be an exciting direction of investigation. We would also like to investigate the

incorporation of the Affine Particle-In-Cell (APIC) method [Jiang et al., 2015] to our adaptive scheme

for improved stability and angular momentum conservation. Finally, investigating combined use of

adaptivity with fracture scenarios and detailed self-collision would be a very interesting (and likely

nontrivial) future thread.
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4 animating fluid sediment mixture in

particle-laden flows
In this chapter, we present a mixed explicit and semi-implicit Material Point Method for simu-

lating particle-laden flows. We develop a Multigrid Preconditioned fluid solver for the Locally

Averaged Navier Stokes equation. This is discretized purely on a semi-staggered standard MPM

grid. Sedimentation is modeled with the Drucker-Prager elastoplasticity flow rule, enhanced by a

novel particle density estimation method for converting particles between representations of either

continuum or discrete points. Fluid and sediment are two-way coupled through a momentum

exchange force that can be easily resolved with two MPM background grids. We present various

results to demonstrate the efficacy of our method.

4.1 Introduction

Recently, multi-phase multi-material simulations are increasingly gaining attention from computer

graphics researchers. Simulating various phases or materials in a unified framework is particularly

favored. Existing work includes coupled Lagrangian particle simulation with Position Based Dy-

namics (PBD) [Macklin et al., 2014], water-gas mixtures [Nielsen and Østerby, 2013] with an Eulerian

method, solid-fluid phase-change [Stomakhin et al., 2014] and porous granular media [Tampubolon

et al., 2017] with Material Point Method (MPM), as well as interactive solids and fluids based on

the mixture model with Smoothed Particle Hydrodynamics (SPH) [Yan et al., 2016]. Most of the

existing approaches are based on continuum mixture theory [Manninen et al., 1996]. The continuum

assumption for each material phase is essential for simulations of macroscopic porous media (e.g.,

landslides and liquid blending). However, it may fail to capture the correct behavior of particle-laden

flows where the solid phase is on a relatively small scale. Note that particle-laden sediment flow is

ubiquitous in natural systems. Typical examples include sediment transport, sedimentation, volcano

eruption, dune migration by erosion with ripples, and dust storms. The significance of understand-

ing and simulating these phenomena is also recognized in many engineering applications, such as

granular material fluidization [van der Hoef et al., 2006] and coastal erosion prediction [Sun and
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Figure 4.1: Dune migration: Two-dimensional simulations of wind blowing sand. Left: A one-way
coupled simulation where sand does not affect wind fails to produce plausible dynamics. Right:
Two-way coupled simulation from our method captures the characteristic behavior of a sand dune
migrating forward.

Xiao, 2016a].

Our method treats fluid as a continuum and solid sediment as being comprised of small im-

miscible particles. The majority of engineering literature discretizes these sedimentation problems

based on a combination of an Eulerian fluid solver and a Discrete Element Method (DEM) particle

solver, which requires velocity interpolation between the two different discretizations to handle

the momentum exchange between them. DEM is also too expensive for practical animation in

collision-heavy dense flow scenarios. Our framework employs the MPM discretization for both the

fluid phase and the solid phase to mitigate these problems.

In standard DEM, each particle is associated with a rigid sphere, and thus trivially represents

a discrete spherical body with translational and rotational motions. Even for a collection of many

particles, DEM does not make any continuum assumption. In contrast, each MPM particle represents

a patch of the continuum and serves as a quadrature point for the spatial discretization of the

continuous fields. Furthermore, traditional MPM cannot preserve angular momentum. In this

chapter, we tackle both difficulties. We use the Affine Particle-In-Cell (APIC) [Jiang et al., 2015]

method to grant each particle an affine velocity field which enables the representation of local

rigid rotations. Second, we propose a density criterion to allow certain MPM particles to behave as

discrete debris separated from the continuum body. As a result, each MPM particle in the sediment

can essentially act as a separate spherical body, while the continuum elastoplastic relationship is

only activated for clumps of them.
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In contrast to the recent work on wet sand by Tampubolon et al. [2017], which relied on an intricate

modification to the sand elastoplasticity model and is limited in the use of weakly compressible

fluids, our work does not require an ad-hoc modification to the sand constitutive model and supports

an incompressible fluid solver. Unlike the augmented MPM scheme by Stomakhin et al. [2014],

our incompressible fluid solver discretizes velocity degree of freedoms on a semi-staggered grid,

thus eliminating the computationally costly MPM discretization on a MAC grid which requires

the use of cubic kernels. Xiao and Sun [2011] used constant interpolation to approximate the fluid

velocities at solid particle positions, introducing dissipation; instead, our framework circumvents

such interpolation.

We summarize our contributions as follows:

• A unified solver for purely incompressible fluids and particle-laden-flows using MPM back-

ground grids.

• A sub-stepping scheme with accurate momentum exchange for the mixture of solid particles

and fluids, allowing for a larger time-step in the fluid solver.

• A density evaluation strategy for converting particles between continuum clumps and discrete

debris.

• A semi-staggered semi-implicit MPM discretization for Locally Averaged Navier-Stokes with

a variable coefficient multigrid preconditioner.

We demonstrate the efficacy of our method with various sediment-fluid interaction examples.

4.2 Related work

While earlier work in graphics was centered on certain types of physical materials or phenomena,

more recent attention has been focused on the simulation of multi-phase multi-material interactions.

Teng et al. [2016] simulate two-way coupled deformable solids and incompressible flow. Nielsen

and Østerby [2013] used a two-continua mixture model for simulating water droplets in the air,

discretized in an Eulerian fashion. Macklin et al. [2014] proposed a unified Lagrangian particle
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Figure 4.2: Glass flush: Water is poured onto sediment in a glass. The overflow of water transports
the sediment out of the glass.

based solid-liquid-gas coupling framework with PBD [Müller et al., 2007]. Müller et al. [2005] were

the first to simulate fluid-fluid interaction in SPH. Peer et al. [2015] simulated multiphase viscous

SPH fluid with pressure and cohesion forces for their interaction. Ren et al. [2014] simulated both

miscible and immiscible fluids with a mixture model. Yang et al. [2015] further took a Helmholtz

Free Energy based model to achieve improved performance. These SPH frameworks were extended

in Yan et al. [2016] to solids and granular materials, and also by Yang et al. [2017] to a variety of

fluid-solid interactions. Daviet simulated granular flow in Newtonian fluid Daviet [2016] in two

dimensions.

The existance of solid-fluid mixture is also common in porous flow and solid wetting. Lenaerts

et al. [2008] simulated fluids in porous deformable media with an Eulerian discretization of Darcy

flux. Their approach was extended to mixing fluids and granular materials in [Lenaerts and Dutré,

2009]. Rungjiratananon et al. [2008] simulated wet sand with coupled SPH and DEM. They also
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captured capillary flow in anisotropic permeable hair in [Rungjiratananon et al., 2012]. Fei et al.

[2017] adopted a multi-scale model for wet hair, where they used Affine Particle-In-Cell (APIC) [Jiang

et al., 2015] for water and a discrete rod model [Bergou et al., 2008] for the solid. Liquid is also

simulated with APIC in our framework, although we will discretize it on a semi-staggered grid.

In computer graphics, Wojtan et al. [2007] simulated erosion, sedimentation, and corrosion with

Eulerian fluids and level set solids. Krištof et al. [2009] used an SPH-based fluid scheme to model

erosion and avoided the direct simulation of sediments by introducing the boundary particles to

represent the sediment exchange with the terrain.

Our method is based on the Material Point Method (MPM) [Sulsky et al., 1995], which has

recently been popularized in computer graphics for simulating granular materials [Stomakhin et al.,

2013; Klár et al., 2016; Daviet and Bertails-Descoubes, 2016], viscoplasticity [Ram et al., 2015; Yue

et al., 2015] and cloth [Jiang et al., 2017a]. MPM was also used for simulating solid-incompressible

fluid coupling in [Stomakhin et al., 2014] and porous sand-water mixture in [Tampubolon et al.,

2017]. We compare the feature sets of these methods in Table 4.1.

There is a large body of related work in Engineering literature on simulating particle-laden

flows. One of the standard approaches is to couple mesh-based Eulerian fluids with particle systems

described with the discrete element method (DEM). The pioneering work of Xu and Yu [1997]

modeled gas-solid flow in a fluidized bed by combining the Discrete Particle Method (DPM) and

standard Computational Fluid Dynamics (CFD) solvers. Li et al. [1999] extended it to gas–liquid–

solid systems. Xiao and Sun [2011] applied a similar idea to general particle-laden flows and recently

released a general-purpose, open-source CFD-DEM coupling solver called SediFoam [Sun and

Xiao, 2016b]. They treated the fluid-particle interaction term implicitly and this resulted in a highly

Table 4.1: Comparing Augmented MPM (AMPM) [Stomakhin et al., 2014], Multi-species MPM
(MMPM) [Tampubolon et al., 2017] and our method for simulating the mixture of granular solid
particles and fluids.

AMPM MMPM Ours
Reducible to incompressible flow (fluid) 3 7 3

Unmodified hyperelasticity (solid) 3 7 3
Discrete debris support (solid) 7 7 3

Saturation dependent cohesion (solid) 7 3 7
Multi-phase miscibility 7 3 3

Mixed integration 7 7 3
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Figure 4.3: Debris flow: We simulate water-saturated debris flow, which is a common occurrence of
particle-laden flows in nature.

stable integration scheme. Snider [2001] considered dense particle fluid flows with multiphase

Particle-In-Cell (MPIC). Fluid-particle interaction was also achieved with coupled SPH and DEM by

Robinson and Ramaioli [2011]. More recently Mutabaruka and Kamrin [2017] simulated particle-

laden dynamics with lattice Boltzmann fluids and DEM.

Narain et al. [2010] and Daviet and Bertails-Descoubes [2016] investigated free-flowing granular

media as disperse grains in low density regions. Our strategy for treating debris sediment is similar

to the approach by Dunatunga and Kamrin [2015]. Their approach associates a unilateral pressure

with each particle by comparing their density with a threshold and enforcing a disconnected stress-

free state when the density is low. The main difference is that they evolve material point volume

using velocity gradient over time, while we always evaluate the current particle “clumpiness” based

on world space locations which avoids accumulated numerical advection error in highly dynamic

scenarios.

4.3 Continuous equations

Here we describe the governing equations for both fluid and sediment materials in particle-laden

flows. We will use superscript f for fluid and s for sediment. Fluid and sediment velocities are

denoted with u and v respectively.
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4.3.1 Fluid

In particle-laden flows, the fluid has to satisfy the impermeable boundary conditions enforced by

discrete particles. However, it is impossible to exactly resolve these boundaries in the presence of a

large number of sediment particles, unless an extremely high fluid resolution is used. We instead

incorporate the Locally Averaged incompressible Navier-Stokes theory proposed by Anderson and

Jackson [1967] to model the fluid motion. As in other previous work on multiphase simulation,

each spatial point is simultaneously occupied by different phases or materials. Note that the use

of Locally Averaged Navier-Stokes in our work essentially shares the same form for describing the

fluid with the mixture model used by Nielsen and Østerby [2013]. Specifically, the mass equation

for fluid is given by

∂(ερf)

∂t
+∇ · (ερfu) = 0, (4.1)

and the momentum equation is

∂(ερfu)
∂t

+∇ · (ερfu⊗ u) = −ε∇p+ ερfg + ffd, (4.2)

where ε, ρf, u, p, g, and ffd are the fluid volume fraction, fluid intrinsic density, fluid velocity,

pressure, the gravitational constant, and the fluid drag force density respectively. We use the

superscript fd, sd and se for fluid drag force, sediment drag force and sediment elastic force

respectively. Note that ffd and fsd denote the interaction drag force of the sediment on the fluid and

force of the fluid on the sediment. As such, they obey ffd = −fsd. Combining Eq. (4.1) and Eq. (4.2),

we arrive at

∂u
∂t

+ (u · ∇)u = −
1
ρf
∇p+ g +

1
ερf

ffd. (4.3)
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Figure 4.4: Hydraulic jump and sediment transport: A mixture of water and sediment being
poured into a thin channel with a cylindrical obstacle in the middle. The top figure uses an RPIC
ratio of 0.2 (and a smaller gravity value), creating a more turbulent flow, while the bottom figure
uses an RPIC ratio of 0.4, creating a more laminar flow.

4.3.2 Sediment

In the scale of particle-laden flows, granular solid materials are usually treated as discrete spherical

bodies. This perspective eliminates the need to formulate governing equations for the volume

fraction scaled solid material or for the entire mixture as in [Yan et al., 2016]. Normally in a CFD-

DEM coupling framework such as [Sun and Xiao, 2016b], Newton’s second law would be directly

enforced on the discrete spherical particles to describe their translational and rotational motions.

However, in order to support the massive amount of dense particle suspensions, it is preferable to

formulate the sediment governing equations through continuum mechanics, with the extra drag

force density term fsd:

∂(δρs)

∂t
+∇ · (δρsv) = 0, (4.4)

∂(δρsv)
∂t

+∇ · (δρsv ⊗ v) = δ∇ · σs + δρsg + fsd, (4.5)
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where δ, ρs, vs, and σs denote sediment volume fraction, sediment intrinsic density, sediment

velocity, and the Cauchy stress describing the mechanical responses inside solid clumps. From

mixture theory, the volume fraction of fluid and sediment obeys ε+ δ = 1. In the case of debris in

the air without liquid, we have δ = 1 and ε = 0.

As previously mentioned, we treat a clump of sediment particles as an elastoplastic material

which obeys Drucker-Prager plasticity. Our density approximation method provides a measure of

the spatial distribution of sediment particles. As a sediment particle is separated from its neighbor,

it is no longer subject to the elastoplastic constitutive law. We discuss the strategy we adopt for this

density evaluation in more detail in Sec. (§4.4.5).

4.3.3 Mixture incompressibility and interaction term

From the assumption that ε+ δ = 1, we can combine Eq. (4.1) and Eq.(4.4) to get

∇ · (εu + δv) = 0. (4.6)

We would like to note that in this work, the interaction terms between the fluid and the sediment

are limited to drag forces (fsd and ffd), which is a point of departure from [Anderson and Jackson,

1967]. The exact model used is described in Sec. (§4.4.3). This model does not include the effect

of buoyancy (necessary for capturing liquefication phenomena) and lift force. A caveat is that to

conserve momentum, we only apply the drag force model to the sediment whereas in the fluid step

the drag force is computed from the exchanged momentum accumulated during the sediment step.

4.4 Method

We discretize the velocity degrees of freedom and the forces of each constituent with the help of an

MPM grid with grid-spacing ∆x. We will use subscript i for quantities stored at grid node i. We

take a semi-staggered discretization similar to [Zhang et al., 2017] for the fluid momentum equation.

Once we commit to simulating sand using MPM, it is natural to simulate fluid on a semi-staggered

grid since both fluid and sediment will be discretized on colocated nodes. Another advantage of
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Figure 4.5: Pile: Top: Pure sediment particles form a pile with static friction. Bottom: By injecting
liquid, the pile collapses and interacts with the fluid.

this is to avoid the need to extrapolate velocity on the fluid surface, which is needed with FLIP. As a

result, pressure and velocity divergence are stored at cell centers with subscript c. We use subscript

f to denote variables on the faces. Both fluid and sediment materials are tracked and advected with

MPM particles, which will be denoted with subscript p. The physical dimension is denoted by

d ∈ {2, 3}.

4.4.1 Algorithm overview

We use a semi-implicit discretization for the fluid step and a symplectic Euler time integration for the

sediment step. The fluid can thus take a larger time step than the sediment. We use ∆tf,n to denote

a fluid time step from tn to tn+1 =: tn+∆tf,n. We divide one sediment timestep into K substeps, i.e.∑K
k=1∆t

s,nk = ∆tf,n. Note that both time steps are chosen to satisfy the CFL condition [Stomakhin

et al., 2013]. We summarize the essential steps in our method below and provide an illustration in

Fig. 4.6.

First we describe a fluid step from tn to tn+1. We use APIC [Jiang et al., 2015] with a multi-linear

kernel for particle-grid transfers.
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1. Particles to grid: Transfer fluid particle mass mfp and momentum (mu)np to the grid and

divide the mass, giving nodal massmf,ni and velocity uni .

2. Apply forces: Add explicit drag force and gravity to compute the intermediate velocities

u∗i ← uni on the background grid.

3. Pressure projection: Solve mixture pressure projection with proper boundary conditions to

correct the nodal velocities ûn+1
i ← u∗i so that Eq. (4.9) is satisfied.

4. Grid to particles: Particles get velocities un+1
p (and APIC coefficients) by interpolating from

ûn+1
i . Advection is done as xf,n+1

p = xf,np + ∆tf,nun+1
p .

Once we are done with the fluid step, we then integrate the sediment governing equations from

tn to tn+1 (equivalently tn0 , ..., tnK) with symplectic Euler. Multiple sub-steps are usually required

since sediment (which is similar to dry sand) has a considerably high Young’s modulus which

imposes a strong time step restriction. We use APIC with the quadratic B-spline kernel which is

optimized, as in [Gao et al., 2017], for particle-grid transfers. We use the notation Ni(xs,nk
p ) as the

evaluation of the kernel centered at grid node i at position xs,nk
p . In each sub-step from tnk to tnk+1 ,

the procedures are

1. Particles to grid: Transfer sediment particle massmsp and momentum (mv)nkp to the grid and

then average to get nodal massms,nk
i and velocity vnki . We also approximate mass gradient on

grid nodes with (∇ms,nk)(xi). Nodal sediment volume fraction δnki is also updated (§4.4.5).

2. Apply forces: We compute the elastic force, fluid drag force, and gravity on the grid and

update grid velocities based on these forces, i.e. v̂nk+1
i ← vnki . Note that the drag forces

conserve total momentum of the fluid-sediment system. We show more details in Sec. (§4.4.3).

Next, we apply boundary conditions according to [Stomakhin et al., 2013], i.e. vnk+1
i ← v̂nk+1

i

(§4.4.5).

3. Update particles’ states: Particles’ velocities and positions are updated by interpolation from

the grid (§4.4.5).
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Figure 4.6: Algorithm step: The top row illustrates the fluid step, where we perform pressure
projection to solve for the new velocity on the grid. The result of this computation is then used in
the sedimentation step, illustrated in the bottom row. Note that for a single fluid step, there are
multiple (explicit) MPM sediment sub-steps. The drag forces from each of the sediment sub-steps
are accumulated to compute ffd for the fluid step.

4. Strain and representation update: Particle deformation gradients Fnk+1
p are updated using

the Drucker-Prager plastic flow return mapping [Klár et al., 2016] with volume correction as

proposed by [Tampubolon et al., 2017]. We also evaluate the world space sediment particle

density ρs,nk+1
p to determine whether a particle should be treated as being part of the continuum

or as a discrete debris (§4.4.5).

4.4.2 Volume fraction

Sediment particles are extremely stiff elastically, and conserve volume during the non-associative

Drucker-Prager plastic flow [Klár et al., 2016]. In contrast to traditional MPM algorithms, we assume

that the volume of each particle almost remains unchanged during the simulation (Vs,nk
p = Vs,0

p

where Vs,0
p is the original volume). Volume fraction of sediment is then given at each node as :

δnki = min
{
δmax,

Vs,nk
i

∆xd

}
, (4.7)

where Vs,nk
i =

∑
p V

s,nk
p Ni(xs,nk

p ). The value of δmax is chosen for numerical stability (δmax ∈

[0.5, 0.8] in all of our examples). The corresponding nodal fluid volume fraction is then εni = 1−δn0
i ∈
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Figure 4.7: Volume fraction: In this point of view, water cannot enter into sediment. The node at
the center represents 70% fluid and 30% sediment.

[1−δmax, 1]. Note that εni = 1 ifms,n0
i = 0. In the absence of sediment particles, our locally averaged

fluid discretization (§4.4.4) reduces to the standard incompressible flow discretization from [Zhang

et al., 2017].

4.4.3 Drag force

On sediment

In contrast to CFD-DEM approaches where particle-wise drag forces are evaluated by interpolating

fluid velocities to sediment locations, MPM allows us to directly apply drag forces to grid nodes.

Corresponding to the drag force density fsd in the continuum equation, we use a drag force model

proposed by Di Felice [1994] in a discrete setting. On grid nodes where fluid and sediment materials

are present we compute

fsd,nk
i =

1
2
ci(ε

n
i )

−χρfAs,nk
i |un+1

i − vnki |(un+1
i − vnki ), (4.8)

with ci and χ denoting the empirical coefficient and exponent respectively. For high Reynolds

number fluids, χ = 3.7 and ci = 0.39. The term As,nk
i is the cross-sectional area of an imaginary

spherical geometry, given by As,nk
i = 2

(
Vs,nk
i /π

)1/2 in 2D and As,nk
i = π

(
3Vs,nk
i /(4π)

)2/3 in 3D.

This term guarantees nodes with tiny mass will receive a tiny force, thus avoiding potential numerical

instabilities. In practice we adjust ci for controlling the overall strength of the drag force. This drag

force model is more suitable for particle laden flows and differs from the model used by Tampubolon

et al. [2017].
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Figure 4.8: Volume gain problem: Previous MPM granular methods can introduce volume gain for
highly dynamic scenarios. Tampubolon et al. [2017] proposed a method to mitigate this volume
gain effect to a certain extent. Our method successfully resolves this problem.

On fluid

As we proceed from tn0 to tnK , the total momentum change on the sediment is∆Psd,n
i =

∑K
k=1 fsd,nk

i ∆ts,nk .

To enforce total momentum conservation in the fluid-sediment system, we set ffd,n
i = −∆Psd,n−1

i /∆tf,n

when we apply the drag force to fluid. As a result ∆Pfd,n
i = −∆Psd,n−1

i is always satisfied, i.e. any

momentum change to the sediment caused by the drag force is always negated and applied to the

fluid in the upcoming fluid step.

4.4.4 Fluid

Splitting

We apply the standard splitting treatment of fluid simulation (cf. [Bridson, 2008] for details) to

Eq. (4.3) to get separate steps, which includes advection, application of external forces, pressure

projection and velocity correction. Here we focus on the grid solve. Particle-grid transfer steps are

described in Sec. (§4.4.1).

Advection In hybrid particle-grid fluid solvers, the nodal velocities are transferred from fluid

particles, which have been advected at the end of the previous time step through particle advection.

In other words, there is no additional advection required on the grid in this new cycle.

External forces This step includes the application of both drag forces from sediment particles and

gravity to get the intermediate velocities u∗i = uni +

(
ffd,n
i

mf,n
i

+ g
)
∆t. Note that our method is explicit

on the drag force and uses ffd,n
i directly.
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Pressure projection We adopt a semi-implicit discretization to rewrite Eq. (4.6) as

∇ · (εni un+1
i ) = −∇ · (δn0

i vni ), (4.9)

where the divergence of volume fraction weighted sediment velocities is treated explicitly. This

allows us to combine it with
∂u
∂t

+
1
ρ
∇p = 0

to derive a variable coefficient Poisson’s equation for the fluid pressure, namely

−
∆t

ρf
∇ · (εnf∇p) = −∇ · (δn0

i vni ) −∇ · (εni u∗i ), (4.10)

where both εnf and∇p are discretized at cell faces. Considering that εnf is always positive, Eq. (4.10)

corresponds to a symmetric positive (semi-)definite system.

Velocity correction After the pressure values are solved at cell centers, they can be used to correct

fluid velocities as

ûn+1
i − u∗i
∆t

= −
1
ρf
∇p, (4.11)

where ûn+1
i is further transferred back to particles using APIC (§4.4.1).

A Semi-staggered Discretization

As discussed in Sec. (§5.1), constructing an incompressible solid-fluid coupling solver on a fully

staggered MAC grid as done by Stomakhin et al. [2014] would require multiple axis-independent

MPM transfers between particles and cell faces with a cubic kernel. To avoid this overhead, we

adopt the recently proposed semi-staggered MPM incompressible fluid discretization [Zhang et al.,

2017] and adapt it to solve the Locally Averaged Navier-Stokes with a variable coefficient multigrid

preconditioner.

We first summarize the MPM discretization for the pressure solve in a pure fluid pipeline as in
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[Zhang et al., 2017]. A standard pressure solve can be described by

−
∆t

ρ
∇ · (∇p) = −∇ · u. (4.12)

Pressures p are stored at cell centers, while all velocities are stored at cell nodes and are trans-

ferred between MPM particles and the background grid via the standard multi-linear kernel with

FLIP [Brackbill and Ruppel, 1986]. We use the angular momentum conserving APIC [Jiang et al.,

2015] instead for stability and low dissipation. We further adopt the RPIC damping as described

in [Jiang et al., 2017a] as a controllable artificial viscosity for changing liquid behavior. The left-hand

side of Eq. (4.12) can be discretized with a standard 7-point Laplacian stencil. For the right-hand

side, the standard way to compute the divergence of velocity in the semi-staggered discretization is

to first compute the partial derivatives on the edges and then average them to the cell center. Zhang

et al. [2017] compute this differently by directly applying the divergence operator to the interpolated

velocity which is then transferred to the weighting function, ending up with the identical form. It is

well known that this semi-staggered discretization causes spurious hourglass velocity modes which

cannot be eliminated by the pressure projection. We mitigate this problem by using an hourglass

damping as proposed by Zhang et al. [2017].

Ghost pressure We mark a cell to be a water cell whenever there is a water particle present in the

cell, and mark a cell to be Neumann when the cell center is inside an object or a wall. All other cells

are air (Dirichlet) cells.

We use a simplified ghost pressure treatment [Gibou et al., 2002] to get a smooth free surface

without tracking a level set or doing reconstruction from particles. One popular interpretation of

the ghost pressure method is to compute the pressure gradient using a more accurate distance from

the cell center to the free surface θ∆x (cf. Fig. 4.9(a)), instead of the distance between two cell centers

∆x. We first identify the water particle closest to the face separating the water cell and the air cell.

We then assign a sphere of radius ∆x2 to the particle to define an axis-aligned free surface and the

corresponding θ (illustrated in Fig. 4.9(b)). It can be shown that when the water particle crosses the

cell, this new free surface is continuous and passes through the air cell center; thus this scheme is

free from cell-crossing discontinuity artifacts.
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Figure 4.9: Simple ghost pressure computation: Left: With a more accurate free-surface represen-
tation, e.g. using level set, one can compute θ. Right: We propose a simplified way to compute θ
even without the presence of a level set.

Adaptation to the mixture pipeline For solving the mixture projection Eq. (4.10), we need to

compute the divergence of the volume-fraction-averaged mixture velocity: û = δn0
i vni + εni u∗i . It

is also located at cell nodes, so the divergence operator remains the same. Moreover, the 7-point

stencil becomes a variable coefficient Laplacian ∇ · (εnf∇p). εnf is usually stored at the cell faces to

be collocated with the standard finite difference pressure gradient. Instead, we choose to interpolate

nodal water volume fractions εni to cell centers to store them as εnc and compute the face average

whenever needed. In this way, the system to be solved remains symmetric. This choice also simplifies

the definition of the restriction operator for the volume fraction in the multigrid preconditioner as

discussed below.

Notice that the velocity correction Eq. (4.11) remains the same as in the standard pure fluid

pipeline [Zhang et al., 2017]. Pressure gradients are first computed for each face; then the weighted

average of these is used to update the nodal velocities. The face weight is set to be one whenever

that face belongs to a water cell; otherwise it is set to be zero.

A variable coefficient multigrid preconditioner A multigrid preconditioner is utilized to improve

the convergence rate of the conjugate gradient solver. Since the fluid volume fraction term εnf is

confined within a narrow range (due to clamping), we are able to slightly modify the technique

proposed by McAdams et al. [2010] to achieve a reasonable convergence acceleration. In the multigrid

V-cycle, two operators, namely the prolongation and restriction operators, are defined to act on the
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pressure degrees of freedom. The restriction operator averages the finer data to be more coarse, and

the prolongation operator interpolates finer values from the coarser grid. During each iteration,

the pressures at each level are updated. In contrast, volume fraction coefficients only need to be

restricted from finer levels to coarser levels once because they do not act as real degrees of freedom

and can be re-used during the whole V-cycle.

As mentioned, although εnf is required to solve the variable coefficient Poisson equation, we

choose to store the volume fraction at cell centers and use them to compute εnf whenever needed.

This choice preserves the symmetry of the system. Furthermore, the restriction of volume fractions

can be computed by averaging the interior cells. Our method differs from McAdams et al. [2010]

in that we do not average values from all finer cells with zeros substituted into non-interior cells.

With this modification, we make sure that when all of the volume fractions are one, the variable

coefficient multigrid preconditioner can transform back to the constant coefficient case.

4.4.5 Sediment

The following sections describe each of the steps involved in advancing the states of the sediment

particles from sub-step nk to nk+1, with 0 6 k < K.

Particles to Grid

Following [Klár et al., 2016], we transfer mass and momentum from particles to the grid using

quadratic basis function according to

ms,nk
i =

∑
p

mspNi(xs,nk
p ), (4.13)

(mv)nki =
∑
p

mspNi(xs,nk
p )

(
vnkp +

4
(∆x)2 Bs,nk

p (xi − xs,nk
p )

)
, (4.14)

where the APIC Bs,nk
p is originally set to zero and is updated at each substep according to Eq.(4.21).

This is an APIC transfer [Jiang et al., 2015], with the factor 4/(∆x)2 applied to a quadratic kernel.

The velocity on the grid is then computed as vnki =
(mv)nki
m
s,nk
i

.

In addition to this standard MPM transfer, we also compute mass gradients on grid nodes which
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will be used later in our particle density approximation, namely

(∇ms,nk)(xi) = −
∑
p

msp∇Ni(xs,nk
p ). (4.15)

Furthermore, we update the nodal sediment volume fraction according to Eq.(4.7) during the

transfer.

Update grid momentum and boundary conditions

In this step, we update the velocity vnki → v̂nk+1
i by taking into account the drag force in regions

where the fluid and sediment materials overlap along with the elastic forces from the sediment

constitutive law. The drag force is given by Eq.(4.8). The elastic force is computed as in [Klár et al.,

2016]:

fse,nk
i = −

∑
p

V0
p

(
∂ψ

∂F
(Fnkp )

)
(Fnkp )>∇Ni(xs,nk

p ), (4.16)

with

∂ψ

∂F
(F) = U

(
2µΣ−1 lnΣ+ λ tr(lnΣ)Σ−1

)
V>, (4.17)

where F = UΣV> is the SVD of F. The parameters λ and µ are the Lamé coefficients. The velocity

update on the sediment grid is given by

ms,nk
i v̂nk+1

i = ms,nk
i vnki + ∆t

(
fsd,nk
i + fse,nk

i +ms,nk
i g

)
. (4.18)

Finally, we apply the boundary conditions following [Stomakhin et al., 2013] to get the final update

on the grid vnk+1
i ← v̂nk+1

i .
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Figure 4.10: Sedimentation 2D: A box of dirt is dropped into a water container, creating interesting
vortices before settling down.

Grid to particles

In this step, we update the velocity, position, and Bs,nk+1
p of each particle following [Jiang et al.,

2015]:

vnk+1
p =

∑
i

Ni(xs,nk
p )vnk+1

i , (4.19)

xs,nk+1
p = xs,nk

p + ∆ts,nkvnk+1
p , (4.20)

Bs,nk+1
p =

∑
i

Ni(xs,nk
p )vnk+1

i (xi − xs,nk
p )>. (4.21)

Strain update with density-based projection

To update the deformation gradient, we first compute

Fnk+1
p =

(
I + ∆t

∑
i

vnk+1
i ∇Ni(xs,nk

p )>

)
Fnkp .

This deformation is then projected so that it obeys the Drucker-Prager plasticity model as in [Tam-

pubolon et al., 2017]. However, particles that are separated from clumps should not be subject to

plasticity and should be treated as discrete debris with zero stress.

We approximate the particle density using a first-order accurate formula. Specifically, we expand

m(x) around xi as m(x) ≈ m(xi) + (∇m)(xi) · (x − xi). If we reconstruct this mass field at xp

accordingly, we getmi(xp) ≈ m(xi)+ (∇m)(xi) · (xp− xi), where we use the superscript i to denote

the use of node i for linearizing the mass field. We estimate particle density using the weighted
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Table 4.2: Simulation performance and parameters. Superscript f and s represent fluid and sedi-
ment quantity respectively. The terms c, RPIC, and ρ are the drag force coefficient, RPIC damping
coefficient, and density respectively. Inflow ‖v‖ indicates the magnitude of source velocity. The
parameter ρf choices are adhoc and do not always reflect reality. We denote the number of particles
by #P and grid resolution by ∆x. The frame rate of all the examples listed above are 48. The young’s
modulus and Poisson’s ratio of all examples are 1000 and 0.3 respectively. Both Transports (Fig. 4.4
Top and Bottom) were run with Intel(R) Xeon(R) CPU E3-1270 v3; Pile (Fig. 4.5) was run with
Intel(R) Xeon(R) CPU E3-1241 v3; Flushing (Fig. 4.2) was run with Intel(R) Xeon(R) CPU E5-1650 v3;
Sedimentation (Fig. 4.11) was run with Intel(R) Core(TM) i7-8700K; Debris (Fig. 4.3) was run with
Intel(R) Core(TM) i7-7700K.

Min/frame Initial #Pf Initial #Ps Max #Pf Max #Ps ∆x c RPIC ρf ρs Inflow ‖vf‖ Inflow ‖vs‖

Transport (Fig. 4.4 Top) 4.9 0 3.1× 105 1.0× 106 3.9× 105 1/512 0.9 0.2 1000 17 0.6 0.06
Transport (Fig. 4.4 Bottom) 4.9 0 3.1× 105 1.0× 106 3.9× 105 1/512 0.9 0.4 1000 17 0.6 0.06
Pile (Fig. 4.5) 11.1 0 6.5× 105 3.0× 105 9.5× 105 1/256 4 0 100 10 0.4 0.4
Flushing (Fig. 4.2) 21 0 2.3× 105 1.9× 106 2.3× 105 1/256 2 0 1000 17 0.6 0
Debris (Fig. 4.3) 2.5 0 0 9.3× 105 1.0× 105 1/256 0 0 1000 150 0.15 0.015
Sedimentation (Fig. 4.11) 6.7 1.5× 106 0 1.5× 106 1.0× 105 1/256 12 0.2 100 20 0 0.01

average of grid masses:

ρp =
∑
i

Ni(xp)mi(xp) ≈
∑
i

Ni(xp)(mi + (∇m)(xi) · (xp − xi)). (4.22)

In the discrete case, this is written as

ρ
s,nk+1
p =

∑
i

Ni(xs,nk
p )

(
ms,nk
i + (∇ms,nk)(xi)>(xs,nk

p − xi)
)

,

where ∇ms,nk(xi) is defined in Eq. (4.15). One can view the gradient of mass term as the first

order approximation of nodal mass from the mass of the surrounding particles. We validated the

accuracy of this strategy for a fluid simulation based on a weakly compressible Equation-of-State

model [Becker and Teschner, 2007] and found that an interpolation solely based on mass produces

grid artifacts. We would like to note that the gradient term can be seen as a second-order term in

the Taylor expansion of the mass expression.

To utilize this density approximation, at time t = 0, we compute the initial average density

ρ̂ :=
1
Np

Np∑
p=1

ρs,0
p , (4.23)

where the average is taken over all sediment particles that exist at time 0. If the current density
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Figure 4.11: Sedimentation 3D: We pour sediment into a box of water until it settles at the bottom
of the container.

approximation is lower than this initial average density, i.e. ρs,nk+1
p < ρ̂, we then identify the particle

as a discrete kinematic body that does not undergo any elastic deformation. This is equivalent to

setting

Fnk+1
p = I.

Note that due to the usage of APIC, the discrete particle still acts as an independent body with a

finite volume and maintains its angular momentum.

4.5 Results

We summarize the performance of our implementation in Table 4.2. In our pipeline, the Precondi-

tioned Conjugate Gradient (PCG) projection remains the most expensive component (this step takes

about 6.25 seconds in the 3D transport example, compared to 3.3 seconds for all the other operations).

The sediment substep count depends on the CFL condition. In the debris flow simulation, we take

60 − 100 sediment substeps per fluid step.

Fig. 4.8 shows the benefit of our debris treatment. As a block stirs a pile of sand, previous

elastoplastic MPM algorithms introduce a severe volume gain. Tampubolon et al. [2017] proposed a
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method to mitigate this volume gain effect to a certain extent. However, in a highly dynamic scenario

like this, disconnected particles tend to suffer from intense resistance when connecting back to a

more massive bulk. Our method offers a way to approximate state change, i.e., when particles act

like debris based on the surrounding density. For a more accurate ballistic motion, more careful

modeling is necessary [Smith et al., 2012].

Our algorithm can reproduce classical particle-laden phenomena such as sand dune migration

(Fig. 4.1). In this example, a source of wind blows over a pile of sand as it moves from the left to

the right, forcing sand to migrate. The left of the figure depicts the result of a simulation that is

one-way-coupled (the wind affects the sand), which produces a non-physical behavior. The right

figure depicts a two-way-coupled simulation, which creates more physically plausible dynamics

on both the fluid and sand materials. The fluid (wind) part of this example is based on the node-

based Eulerian fluid solver as proposed by [Guendelman et al., 2005] with vorticity confinement

as described in [Fedkiw et al., 2001]. Note that all of the other examples with water as fluids (i.e.,

based on [Zhang et al., 2017]) do not use vorticity confinement.

Fig. 4.4 depict a particle-laden phenomenon that is created when a mixture of sand and water is

being poured into a thin channel. The movement of the fluid transports the sediment. The presence

of a cylindrical obstacle in the channel creates a hydraulic jump that carries the sand over to the

other side. The use of RPIC blending helps to create a more laminar motion of the fluid (Fig. 4.4

bottom). A similar phenomenon of debris flow, where a water and sand mixture is poured into a

wider channel with more complex collision objects is illustrated in Fig. 4.3.

Our algorithm can also handle sedimentation phenomena, which is depicted by Fig. 4.10 and

Fig. 4.11. In these 2D and 3D simulations, a box of sand is being dropped into a water container. We

can observe vortices that are created by the interaction between water and sand materials. The sand

materials eventually settle down at the bottom of the container.

Fig. 4.5 depicts a simulation where pure sediment particles form a pile due to static friction (top).

When liquid is injected, the pile collapses and interacts with the fluid. Similarly, water is poured on

top of a pile of sediment that initially sits at the bottom of a glass container in Fig. 4.2. The overflow

of water washes the sediment out of the glass.
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4.6 Discussion

Our model qualitatively captures a number of distinctive dynamic features of particle-laden flows

(such as dune migration and sediment transport) and stands as a practical tool in animation and

VFX. As suggested in Sec. (§4.3.3), our model of the interaction term only uses drag forces based

on [Di Felice, 1994]. We do not make any claims on how broadly this model effectively captures

empirical experiments. As such, a more rigorous study of sediment-fluid interaction would require

careful modeling of the other nontrivial effects such as the lift force as discussed by Sun and Xiao

[2016b].

Another limitation of our method is the clamping of the sediment volume fraction (at locations

where sediment and fluid co-exist), which is motivated by numerical stability considerations. As

such, our simulations cannot capture the variations of granular flow as studied in [Pailha et al., 2008].

Furthermore, at the interface of dry and immersed sand, we do not apply any special treatment

for the sudden jump of sediment volume fraction from δ = 0.8 (the case of liquid and sediment

co-existing) to δ = 1 (the case of pure sediment) as no noticeable artifacts were observed.

We presently rely on artificial viscosity from RPIC for adjusting the extent of fluid turbulence.

More physical and accurate viscosity models incorporated into the Locally Averaged Navier-Stokes

discretization would be appropriate to investigate in future work.

Due to the explicit treatment of the drag force, we occasionally encounter numerical instability

when the relative velocity is too high, or the fluid volume fraction is too low (thus resorting to the

usage of a clamping threshold). Exploring a fully implicit treatment of the interaction term would be

a potential direction for future study. Furthermore, the design of a preconditioner explicitly tailored

to the variable-coefficient Poisson system is an interesting research question.
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5 gpu optimization of material point

methods
The Material Point Method (MPM) has been shown to facilitate effective simulations of physically

complex and topologically challenging materials, with a wealth of emerging applications in com-

putational engineering and visual computing. Borne out of the extreme importance of regularity,

MPM is given attractive parallelization opportunities on high-performance modern multiproces-

sors. Unlike the conceptually simple CPU parallelization, a GPU optimization of MPM that fully

leverages computing resources presents challenges that require exploring an extensive design-space

for favorable data structures and algorithms. In this chapter we introduce methods for addressing

the computational challenges of MPM and extending the capabilities of general simulation systems

based on MPM, particularly concentrating on GPU optimization. In addition to our open-source

high-performance framework, we also perform performance analyses and benchmark experiments

to compare against alternative design choices which may superficially appear to be reasonable, but

can suffer from suboptimal performance in practice. Our explicit and implicit GPU MPM solvers

are further equipped with a Moving Least Squares MPM heat solver and a novel sand constitutive

model to enable fast simulations of a wide range of materials. We demonstrate that more than an

order of magnitude performance improvement can be achieved with our GPU solvers. Practical

high-resolution examples with up to ten million particles run in less than one minute per frame.

5.1 Introduction

The Material Point Method (MPM) is a hybrid Lagrangian/Eulerian computational scheme that

has been shown to simulate a large variety of traditionally-challenging materials with visually

rich animations in computer graphics. Recent examples of MPM-based methods developed for

such materials include simulations of snow [Stomakhin et al., 2013], granular solids [Klár et al.,

2016], multi-phase mixtures [Stomakhin et al., 2014; Tampubolon et al., 2017; Gao et al., 2018],

cloth [Jiang et al., 2017a] and many others. MPM has been shown to be particularly effective for

simulations involving a large number of particles with complex interactions. However, the size
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and the complexity of these simulations lead to substantial demands on computational resources,

thereby limiting the practical use cases of MPM in computer graphics applications.

Using the parallel computation power of today’s GPUs is an attractive direction for addressing

computational requirements of simulations with MPM. However, the algorithmic composition of

an MPM simulation pipeline can pose challenges in fully leveraging compute resources in a GPU

implementation. Indeed, MPM simulations include multiple stages with different computational

profiles, and the choice of data structures and algorithms used for handling some stages can have

cascading effects on the performance of the remaining computation. Thus, discovering how to

achieve a performant GPU implementation of MPM involves a software-level design-space explo-

ration for determining the favorable combinations of data structures and algorithms for handling

each stage.

In this chapter we introduce methods for addressing the computational challenges of MPM and

extending the capabilities of general simulation systems based on MPM, particularly concentrating

on a high-performance GPU implementation. We present a collection of alternative approaches

for implementing all components of the MPM simulation on the GPU and provide test results

that identify the favorable design choices. We also show that design choices that may superficially

appear to be reasonable can suffer from suboptimal performance in practice. Furthermore, we

introduce novel methods for thermodynamics and simulation of granular materials with MPM.

More specifically, this chapter includes the following contributions:

1. A novel, efficient, and memory-friendly GPU algorithm for accelerated MPM simulation on a

GPU-tailored sparse storage variation of CPU SPGrid [Setaluri et al., 2014].

2. A performance analysis of crucial MPM pipeline components, with several alternative strate-

gies for particle-grid transfers.

3. A collocated, weak form-consistent, MLS-MPM-based implicit heat solver that enables thermo-

mechanical effects on elastoplasticity.

4. An easy-to-implement unilateral hyperelasticity model with non-associative flow rule for

cohesionless granular media.
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Figure 5.1: How to melt your dragon. Melting an elastoplastic dragon with 4.2 million particles on
a 2563 grid using our GPU-optimized implicit MPM dynamics and heat solvers on a Nvidia Quadro
P6000 GPU at an average 10.5 seconds per 48Hz frame.

Our experiments show that more than an order of magnitude performance improvement can be

achieved using the favorable choices for data structures and algorithms, as compared to optimized

solutions using different computational models. We demonstrate that complex MPM simulations

with up to 10 million particles can be simulated within a minute per frame using the methods we

describe. We also present results showing that our heat solver can effectively handle phase transi-

tion effects and that our hyperelasticity model for granular materials allows achieving consistent

simulation results with explicit and implicit integrations.

5.2 Background

Material point method. MPM was introduced by Sulsky et al. [1995] as the generalization of the

hybrid Fluid Implicit Particle (FLIP) method [Brackbill, 1988; Zhu and Bridson, 2005; Bridson, 2008]

to solid mechanics. It has been recognized as a promising discretization choice for animating various

solid materials including snow [Stomakhin et al., 2013], foam [Ram et al., 2015; Yue et al., 2015],

sand [Daviet and Bertails-Descoubes, 2016; Klár et al., 2016], cloth [Jiang et al., 2017a; Guo et al.,

2018], fracture [Wretborn et al., 2017], cutting [Hu et al., 2018] and solid fluid mixture [Stomakhin

et al., 2014; Gao et al., 2018; Tampubolon et al., 2017].

GPU-based simulation methods. Many researchers also divided Eulerian simulation domain in

order to to parallelize computation on the GPU [Horvath and Geiger, 2009; Liu et al., 2016; Chu
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Figure 5.2: How to stack your dragon. Stacking elastic dragons in a glass. This simulation contains
9.0 million particles on a 5123 grid with an average 21.8 seconds per 48Hz frame.

et al., 2017]. Wang [2018] performed a GPU optimization on sewing pattern adjustment system

for cloth. Others explored solutions to the computational heavy task of self-collision detection,

using GPUs [Govindaraju et al., 2005, 2007] with improved spatio-temporal coherence and spatial

hashing [Tang et al., 2013, 2016, 2018; Weller et al., 2017; Wang et al., 2018]. In particular, the

spatial hashing table [Weller et al., 2017] has been proposed as both an acceleration structure and

a substitution to the hierarchy of uniform grids for collision query in order to lower the memory

consumption. Furthermore, the histogram sort (alternative for radix sort) has been proven to be

capable to significantly reduce the overhead of sorting if the number of bins is adequately smaller

than the total elements count [Wang et al., 2018]. These practices provided great foundations for

our MPM pipeline as they fit well with the sparse grid structure.

Sparse grid data structures. From the Eulerian view, simulation domain is represented by dis-

cretized grid. Museth et al. [2013] developed OpenVDB, which is a tree with a high branching factor

that yields a large uniform grid at leaf nodes. This adaptive data structure has been shown to be

very efficient and broadly used. Hoetzlein [2016] proposed an GPU sparse grid structure, GVDB
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Voxels, inspired by OpenVDB. The voxel data is represented in dense n3 bricks allocated from a

pool of sub-volumes in a voxel atlas. The atlas is implemented as a 3D hardware texture to enable

trilinear interpolation and GPU texture cache. Recently, Wu et al. [2018] extended GVDB [Hoetzlein,

2016] with dynamical topology update and GPU optimized matrix-free conjugate gradient solver

for fluid simulations with tens of millions particles. Although the use of texture to store volumetric

data can benefit performance for general purpose usage, such as hardware trilinear interpolation

and fast data accessing, it prevents GVDB using scattering rather than gathering because atomic

operations on texture are not allowed to be used under current GPU hardware.

SPGrid [Setaluri et al., 2014] provided an alternative sparse data structure; it has been adopted

in large-scale fluid simulations [Aanjaneya et al., 2017; Setaluri et al., 2014; Liu et al., 2016] and in the

MPM context [Gao et al., 2017, 2018; Hu et al., 2018]. SPGrid improves the data locality by mapping

from a sparse 2D/3D array to a linear memory span by following a modified Morton coding map.

Furthermore, it exploits hardware functions to accelerate the translation between geometric indices

and the 64-bit memory offsets. The neighborhood accesses can be achieved in O(1), rather than

O(logn) for traditional tree-based sparse storage schemes (n is the depth of the tree).

5.2.1 MPM Overview

MPM, as a hybrid spatial discretization method, benefits from the advantages from both Lagrangian

and Eulerian views. MPM uses Lagrangian particles to carry material states including mass mp,

position xp, velocity vp, volume Vp, deformation gradient Fp, etc. The grid acts as an Eulerian

scratchpad for computing stress divergence and performing numerical integration. Grid nodes

represent the actual degrees of freedom, which store massmi, position xi and velocity vi on each

node i.

A typical first-order MPM time integration scheme for incremental dynamics from t0 to t1 (with

∆t = t1 − t0) contains the following essential steps:

1. Particles-to-grid (P2G) transfer of masses and velocities: {m0
i, v0

i}← {mp, v0
p};

2. Grid velocity update using either explicit or implicit integration: v1
i ← v0

i ;

3. Grid-to-particles (G2P) transfer of velocities and strain increments: {v1
p, F1

p}← v1
i
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Figure 5.3: Elasticity simulation of Gelatin bouncing off Gelatin with 6.9 million particles on a 5123

grid at an average 6.72 seconds per 48Hz frame.

4. Particle-wise stress evaluation and plasticity treatment that modifies F1
p.

Assuming the usage of a matrix-free Krylov solver for the linearized system (due to its superior

efficiency), both explicit and implicit Euler time integrations of MPM break the entire computation

procedures in (1)-(3) into particle-grid transfer operations of physical quantities and their differentials.

As such, the key to high-performance MPM is the optimization of particle-grid transfer operators.

Unsurprisingly, the algorithmic choice of the transfer scheme plays a considerable part in affecting

the computing performance. We design our benchmarks based on three possible choices of the

transfer scheme: FLIP [Zhu and Bridson, 2005], APIC [Jiang et al., 2015] and the recently proposed

MLS-MPM [Hu et al., 2018]. Note that MLS-MPM provides an additional algorithmic speed-up by

avoiding kernel weight gradient computations in step (2) (discussed in more detail in §5.4 and by

Hu et al. [2018]).

5.2.2 Particle-to-Grid Transfer

As in many other Lagrangian-Eulerian hybrid methods, the particles carry material states and

transfer them to the grid as mentioned in §5.2.1 step (1). In GPU, the two most common approaches

for performing parallel state transfer are gathering and scattering. The former one gathers states from
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all nearby particles to one particular grid node; while the latter one distributes all states of one

particular particle to all influenced grid nodes.

Domain decomposition technique is commonly used in the gathering strategy [Huang et al.,

2008; Parker, 2006; Zhang et al., 2010; Stantchev et al., 2008]. Using this strategy the simulation

domain is divided into several small sub-domains such that each node only needs to check all the

particles within the neighboring sub-domains instead of the whole domain. [Klár et al., 2017] not

only group particles but also group nearby sub-domains to obtain better data accessing pattern.

Ghost particles are introduced to minimize the number of communications and barriers within

sub-domains [Parker, 2006; Ruggirello and Schumacher, 2014]. Chiang et al. [2009] maintain and

update particle lists for each node during the simulation. Obviously, it requires a huge amount

of GPU memory as well as the processing time for updating particle lists. In order to reduce the

workload, Dong et al. [2015] extend the influencing range the grid nodes and further adapt their

method to multiple-GPU [Dong and Grabe, 2018]. Wu et al. [2018] pre-compute a subset of the

particles for each grid cell. However, their method still needs to unnecessarily examine a large

amount of particles within each voxel. Furthermore, for storing the subsets, it not only requires

expensive data movements but also consumes a large amount of memory. To summarize, all the

fundamental issues of gathering are due to the need for accessing associated particles of a node.

There is no satisfying solution reading the data efficiently as well as saving the extra memory for

particle lists, etc. The other inherent problem is that the workload of each GPU thread is closely

related to the length of particle list of each grid node, thus thread divergence generally exists and

slows down P2G.

On the contrary, the scattering method is free from all these critical issues, but its performance

suffers from the write-conflict. Both Harada et al. [2007] and Zhang et al. [2008] introduced parallel

scattering methods to distribute particle attributes to neighboring particles in SPH. In their methods,

particle attributes are written into 2D texture buffer simultaneously using graphic rasterization

pipeline to solve write-conflicts. However, their scattering methods cannot be easily employed in a

3D Eulerian simulation framework because the current hardware rasterization technique only works

for 2D texture, not to mention the added complexity to build a mapping between a sparse grid

and 2D texture during rasterization. To the best of our knowledge, this chapter proposes the first
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parallel particle-to-grid transferring technique based on scattering, which utilizes modern graphics

hardware features.

5.3 Optimized GPU scheme for MPM

In this section we describe our optimized GPU scheme for MPM using a GPU-tailored sparse paged

grid data structure. The overall algorithm is summarized in Algorithm 1.

5.3.1 GSPGrid Tailored to MPM

We introduce GSPGrid, the GPU adaptation of the SPGrid [Setaluri et al., 2014] data structure which

facilitates the sparse storage required for efficient simulations. Though not limited to such a choice,

a 4× 4× 4 spatial dissection of the computational domain into GSPGrid blocks is assumed in our

implementation.

We take a similar strategy to [Gao et al., 2017], and briefly summarize it here. We use the

quadratic B-spline functions as the weighting kernel, so each particle is associated with 3× 3× 3

grid nodes (3× 3 in 2D as shown in the Fig. 5.4). We assign each particle to the cell whose “min”

corner collocates with the “smallest" node in the particle’s local 3× 3× 3 grid. All particles whose

corresponding cells are within the same GSPGrid block are attached to that block. Geometrically, the

particles of a particular GSPGrid block all reside in the same dual block, i.e. the ∆x/2-shifted block

(the red dashed block in Fig. 5.4). All computations for transferring particles’ properties to/from

the grid will be conducted locally in the same GSPGrid block.

We associate each particle with one CUDA thread. The particles are sorted such that the com-

putations of particles sharing the same dual cell are always conducted in sequential threads. In

scenarios involving high particle densities, the number of particles within a single GSPGrid block

can easily go beyond the maximum number of threads allowed in a CUDA block under the current

graphic architecture. To solve this issue, we assign each GSPGrid block to one or several CUDA

blocks and generate the corresponding virtual-to-physical page mapping. In this way, we can treat

each CUDA block separately without considering their geometric connections.
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smallest node

dual cell

block

dual block

node

affected nodes of
particles in dual cell 

Figure 5.4: Mapping from particles to blocks: All particles in the yellow dual cell interact with the
same set of the 27 nodes (9 in 2D). Notice that these particles also distribute their states to the grid
nodes of the top neighboring block.

Notice that, for some particles, e.g. the ones in the yellow cell in Fig. 5.4, reading and writing

will involve nodes from neighboring blocks. To deal with such particles, the shared memory of

each CUDA block temporarily allocates enough space for all 8 neighboring blocks (4 in 2D). One

CUDA block usually handles hundreds of particles in parallel, which makes it affordable to allocate

enough shared memory for all neighboring blocks. For example, in Grid-To-Particle transfer, we can

first fetch all required data into the shared memory from the global grid, and then use the data to

update particles’ properties.

As discussed above, it is possible for a particular block to access data from its neighboring

blocks. In SPGrid, the offsets of the neighboring blocks can be easily computed for addressing them.

However, without the support of virtual memory space in GPU, we also need to store the address

information of neighboring blocks. Fortunately, the spatial hashing algorithm is able to construct

the topology of neighboring blocks in O(1) complexity on the GPU.
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Algorithm 1 Sparse MPM simulation on the GPU
1: procedure SparseMPM( )
2: P ← initial points
3: P ← sort(P) . Section 5.3.3
4: for each timestep do
5: dt← compute_dt(P)
6: V ← GSPGrid structure(P) . Section 5.3.1
7: M← particle_grid_mapping(P,V) . Section 5.3.1
8: V ← particles_to_grid(P,M) . Section 5.3.2
9: V ← apply_external_force(V)

10: V ← grid_solve(V ,dt)
11: P ← grid_to_particles(V ,M)
12: P ← update_positions(P,dt)
13: P ← sort(P) . Section 5.3.3

5.3.2 Parallel Particle-to-Grid Scattering

For particle-to-grid transfers, geometrically-neighboring particles can write into the same nodes,

making write hazards a critical problem which has been examined in many Eulerian-Lagrangian

hybrid methods as discussed in §5.2.2. There are generally two schemes for resolving this problem,

scattering and gathering. Scattering methods simply use atomic operations to avoid conflicts. On

the other hand, for gathering, usually a list of particles are created and maintained during the

simulation; thus each node can track down all the particles within its affecting range.

Almost all previous papers are opting for a gathering approach since it is widely believed

that high frequent atomic-operations in scattering can significantly undermine the performance

especially in GPU-based parallel applications. However, we propose a method to handle most of the

write conflicts for scattering without atomic operations, inspired by the concept of parallel reduction

sum [Luitjens, 2014] and show that the performance is superior to the gathering ones. As we divide

the whole grid domain as well as their corresponding particles into blocks, there are two levels of

write hazards in P2G, within-block hazards and crossing-block hazards. As observed in practice,

the within-block conflicts are the absolute majority. The within-block ones can be further divided

into within-warp and crossing-warp conflicts and our solution particularly tackles the within-warp

ones.

As shown in Fig. 5.5, within a warp, a few groups of particles tend to add their attributes to the

corresponding nodes. For particles of a particular group (e.g., particles 1-4), simultaneous write
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lane id 0 1 2 3 4 5 6 7

node id n n+1 n+1 n+1 n+1 n+2 n+2 n+3

boundary mark 1 1 0 0 0 1 0 1

region interval 0 3 2 1 0 1 0 0

region 0 region 1 region 2 region 3

attribute mass 𝒎𝟎 𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒 𝒎𝟓 𝒎𝟔 𝒎𝟕

mass sum 𝒎𝟎 𝒎𝟏 +𝒎𝟐 𝒎𝟐 +𝒎𝟑 𝒎𝟑 +𝒎𝟒 𝒎𝟒 𝒎𝟓 +𝒎𝟔 𝒎𝟔 𝒎𝟕

mass sum 𝒎𝟎

(𝒎𝟏+𝒎𝟐)
+

(𝒎𝟑+𝒎𝟒)

(𝒎𝟐+𝒎𝟑)
+𝒎𝟒

𝒎𝟑 +𝒎𝟒 𝒎𝟒 𝒎𝟓 +𝒎𝟔 𝒎𝟔 𝒎𝟕

iteration 0, stride 1

iteration 1, stride 2

node
n

shared memory
node
n+1

node
n+2

node
n+3

Figure 5.5: Optimized transfer from particles to grid nodes. We apply CUDA warp intrinsics to
accelerate hierarchical attribute summations. The results are first written to the shared memory and
then transfered to global memory in bulk.

operations into the same place need careful treatments to guarantee correctness. We exploit the

warp-level CUDA intrinsics, i.e. ballot and shfl, to resolve this problem. First, a representative of

each group is chosen (i.e. the left most one whose boundary mark is set on). Then attributes from

all the other particles within the same group are added to the representative one by iteratively

shuffling from right to left. The number of iterations can be further reduced by using Algorithm 2.

Finally, the representative thread is responsible for writing the sum to the target node, as illustrated

in Algorithm 3. In this way, all warp-level conflicts are eliminated. To further reduce the impact

of crossing-warp conflicts, the shared-memory acts as a buffer for temporarily holding the results

from different warps by applying atomic-adds. Notice this crossing-warp conflicts only infrequently

happen such that the cost of the corresponding atomic-adds is almost negligible.
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5.3.3 Cell-based Particle Sorting

Since the positions of the particles are updated in each time-step, the GSPGrid data structure should

be refreshed accordingly. To build the new mapping from the GSPGrid blocks to the continuous

GPU memory, we need first to re-sort the particles to help identify all the blocks occupied or touched

by the particles.

SPGrid translates the cell indices to the 64-bit offsets, which can be used as the keyword for

the re-sorting. Radix sort is generally considered the fastest sorting algorithm on GPU. However,

in practice the fraction of the occupied offsets to the maximum capacity that a 64-bit offset can

represent is too sparse. We instead use spatial hashing to register GSPGrid blocks. Whenever a new

block is inserted, the block number to be assigned increments by one. The transformed block indices

of all the particles are thus consecutive, and the maximum block index is usually several orders of

magnitude smaller than the particle number. Also, all particles within the same block are further

partitioned by 4 × 4 × 4 cells. This particular layout is required by the follow-up computations

including pre-calculating the smallest index of each particle and reducing write-conflicts during

P2G transfer (§5.3.2).

With CPU SPGrid, radix sort facilitates proximity (in memory) of geometrically neighboring

blocks to improve prefetching efficiency. In GPU, this is not a concern anymore; thus we use

histogram sort instead of the conventional radix sort. The new keyword, which is a combination of

Algorithm 2 Warp Computation
1: procedure ComputeBoundaryAndInterval(int laneid, int∗ cellids)
2: cellid← cellids[laneid]
3: cellidprev ← cellids[laneid− 1]
4: if laneid = 0 ∨ cellid 6= cellidprev then
5: boundary← true

6: mark← brev(ballot(boundary))
7: interval← countFollowingZeroes(mark, laneid)
8: stride← 1
9: iter← interval

10: while stride < 32 do
11: tmp← shfldown(iter, stride)
12: iter← max(tmp, iter)
13: stride← stride << 1 . //move on to a higher level
14: iter← shfl(iter, 0) . //broadcast the maximum iterations
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Algorithm 3 Warp Write
1: procedure GatherAndWrite(T∗ buffer, T attrib, int iter)
2: stride← 1
3: val← attrib
4: while stride <= iter do . //hierarchical summation
5: tmp← shfldown(val, stride)
6: if stride <= interval then . //only sum within the group
7: val← val+ tmp

8: stride← stride << 1 . //move on to a higher level
9: if boundary then . //only the boundary node needs to write

10: ∗buffer← ∗buffer+ val . //AtomicAdd is applied

the transformed block index and dense cell index within the block, works as the reference to the bin.

This algorithm provides 5× speedup, and in collaboration with delayed ordering technique (§5.3.4),

reordering the particles is no longer a bottleneck.

5.3.4 Particle Reordering

Given the sorted indices from §5.3.3, one natural thing to do next is to reorder all particles’ properties

accordingly since sequential memory accesses are always preferable in CUDA kernels. However,

for a high-resolution simulation, this reordering itself can be the bottleneck, since each particle

carries various different properties such as positions, velocities, and deformation gradient, etc., and

loading and writing those data in a non-coalesced manner can be time consuming. We propose a

practical way to completely dispense with the reordering. We observe that any functions which

take in scattered data and write the updated result back in a sequential order can actually reorder

the data as a byproduct. In essence, a pure reordering function is one of this kind of functions

which simply writes untouched inputs back in a different order. If we choose the functions carefully,

instead of simply using a pure reordering function, the cost/latency due to the scattered memory

reads can be largely mitigated.

The particles’ positions are the only property we decide to reorder since they are essential for

almost all kernels that build mappings between particles and grid blocks/cells, and for all transfer

kernels which need to compute weights and weight gradients from the positions. We treat all the

other properties in several different ways based on their attributes and the scenarios they are being
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used. We list a few of them as the most typical cases. Notice that most CUDA kernels follow the

positions’ order, except for certain material-based computations.

Mass

Since each particle’s mass remains constant, their sequence will never be changed; for retrieving the

correct mass, we only need to map from the current positions’ order to the original masses’ order.

Velocity

Velocities are updated every time-step in the G2P kernel. The new velocities are forced to follow

the order of the threads/positions by simply writing them back sequentially. However, when the

velocities are being used as the inputs to some kernels in the next time-step, they are not matching

with new positions’ order since we choose only to reorder positions at the end of each time-step. As

a result, a mapping from the current order to the previous order is required.

Stress

When computing the stresses, we choose not to change the order of either, the inputs F, or the

outputs P. One reason is that the GPU SVD function can be optimized (§5.4.3) so fast that it may be

inefficient to amortize the scattered writes.

5.4 Benchmarks and performance evaluation

To evaluate our GPU MPM algorithm, we create several benchmarks, starting with the uniform

particle distribution (§5.4.1). Firstly, we compare the performance of the transfer kernels between our

method and one SIMD-optimized multi-core CPU implementation as well as one gathering-based

GPU implementation with GVDB as the sparse background grid. Secondly, with the total number

of particles being fixed, we vary the particle densities (particles per cell, PPC) to examine how our

pipeline can be affected.

We further evaluate the performance with non-uniform particle distributions, e.g. Gaussian

distributions (§5.4.2). In this experiment, we fix both the total number of particles and the total
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number of cells being occupied by the particles; while the PPC of each single cell can vary following

particular Gaussian distributions.

In addition to the explicit pipeline, we also measure the performance of the key kernels merely

used in the implicit time integration [Stomakhin et al., 2013]. Since the results of the singular value

decomposition (SVD) of the deformation gradient are required in the computation of the stress

derivative in every single iteration, one can always pre-compute the SVD and store the results in

advance. However, our experiment (§5.4.3) reveals some interesting findings.

Notice that, as mentioned before, the three-dimensional GSPGrid block with 16 channels is of

resolution 4× 4× 4 and eight particles per cell are usually required for stability considerations in

MPM applications. Hence, we choose to allow each CUDA block to process at most 512 particles,

due to the limitation of the current hardware architecture.

Unless otherwise stated, all of our GPU tests are performed on Quadro P6000.

5.4.1 Uniform Distribution Benchmarks

Comparisons with two state-of-the-art implementations

We create a benchmark with ∆x = 1
128 . The particles are uniformly sampled on a grid from ( 1

8 , 1
8 , 1

8)

to ( 7
8 , 7

8 , 7
8 ) with spacing 1

256 . The total number of the particles is just over 7 million particles. For

this test, the CPU benchmark was performed on an 18-cores Intel(R) Xeon(R) Gold 6140 CPU and

all GPU measurements were performed on a Nvidia Titan Xp. The results are in Fig. 5.6.

We first compare our scattering-based GPU implementation of particle-grid transfers to one

SIMD-optimized CPU implementation in [Gao et al., 2017]. Both P2G and G2P achieve more than

15x speedups.

Then we compare with one most recent GPU gathering implementation with GVDB as the sparse

grid structure [Wu et al., 2018]. Their idea is basically to pre-compute a subset of the particles

for each grid cell. All particles influencing the grid nodes inside the cell will be included in that

list. When performing the particle-to-grid transfer, each node needs to check all points in the

list to determine whether they are close enough. Therefore, each node has to check much more

unnecessary points than needed (only 20% utilization for MPM FLIP with subcell size 43). In order
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Figure 5.6: Transfer benchmark. We compare our scattering GPU transfers (Nvidia Titan Xp) to
a gathering GPU transfer implementation using GVDB [Wu et al., 2018] (Nvidia Titan Xp) and a
SIMD CPU implementation [Gao et al., 2017] on an 18-cores Intel(R) Xeon(R) Gold 6140 CPU. The
transfer scheme of the CPU implementation is FLIP.

to do a comprehensive comparison, we use three different transfer schemes, including FLIP [Zhu

and Bridson, 2005], APIC [Jiang et al., 2015], and MLS [Hu et al., 2018]. Notice that since their

gathering method need to create lists for all particle attributes, such as velocity, position, stress, and

deformation gradients, it takes half of computation time to load and store data. More importantly, it

consumes tremendous amounts of GPU memory.

For our P2G kernels, the computing workload and the memory access workload are well balanced.

Therefore, the timing is bounded by both memory and computations. FLIP only needs to compute

nodal mass, traditional translational momentum and forces; while APIC also needs to load one

additional matrix for including the affine velocity modes. In contrast, MLS completely avoids the

computation of weight gradients, and the two matrix-vector multiplications of APIC (i.e. computing

the force and the affine modes) can be merged into one [Hu et al., 2018].

For our G2P kernels, memory is utilized more heavily than computing units. Compared to APIC

and MLS, FLIP also needs to load the nodal velocity increments for updating the particles’ velocities.

However, APIC and MLS have to refresh one extra matrix for recording the affine velocity modes;

while MLS can merge the updates of F and that extra matrix into one to reduce the total cost [Hu

et al., 2018]. GVDB uses a 3D texture to store volume data to utilize the hardware tri-linear texture

interpolation functions; however MPM cannot benefit from this because of the quadric weighting

functions. Furthermore, we exploit the shared memory to pre-load grid data for all particles within

the same block.
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Figure 5.7: Particle density benchmark. Using our GPU implementation with MLS transfers, we
compare the performance of each critical kernel between four cases with different numbers of
particle per cell on a Nvidia Quadro P6000. The total number of particles is approximately fixed as
3.5M. The stress kernel also includes the SVD computation.

Particle density benchmark

In this subsection, while fixing the total number of particles, we run the benchmarks for cases with

different particle densities (particles per cell, PPC). And we start to also include all other critical

kernels in addition to the transfer kernels; all tests are with MLS transfers. As shown in Fig. 5.7, it is

reasonable to observe that when the particle density increases, the transfer kernels take less time to

finish, since the higher PPC renders a smaller sparse grid structure. For the other kernels, which are

mostly particle-oriented, i.e. the underlying grid structure does not really interfere with them, the

impacts of the varying PPC seem to be negligible.

5.4.2 Gaussian Particle Distribution Benchmarks

To further examine the impacts of non-uniform particle distributions, we also run some benchmarks

in which the particle-per-cell varies based on a Gaussian distribution. All tests are with MLS. We use

the same box domain from ( 1
8 , 1

8 , 1
8) to ( 7

8 , 7
8 , 7

8 ). For the two Gaussian distributions, the minimum

particle-per-cell are 4 while the maximums are 16 and 32; while the corresponding uniform cases are

with particle-per-cell being 10 and 18 respectively. As shown in Fig. 5.8, the performance are almost

identical, proving that our scheme is not affected by the particle distribution when the background

sparse grid remains the same.
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Figure 5.8: Gaussian benchmark. We compare the performance of each critical kernel when the
particle-per-cell distributions following Gaussian distributions and uniform distributions on a Nvidia
Quadro P6000. The transfer scheme is MLS. The stress kernel also includes the SVD computation.

5.4.3 Implicit Iteration and SVD

We adopt the matrix-free Krylov solver for the implicit step in which the multiplication of the

system matrix and a vector can be expressed by concatenating a G2P transfer and a P2G transfer (cf.

[Stomakhin et al., 2013] for more details). Notice those two transfer kernels are not the same as the

ones used in the explicit MPM solver. We name them as P2G-Implicit and G2P-Implicit kernels as in

Fig. 5.9. Both FLIP and APIC (non-MLS) have to compute weight gradients while MLS approximates

weight gradients with weights. From the right half of Fig. 5.9, the G2P-MLS is slightly slower than

G2P-non-MLS because G2P-MLS needs to do additional 9 multiplications due to the extra term

(xp − xi) at all 27 nodes.

We also consider the possibility of precomputing and storing the results of SVD at the beginning

of one time step. Whenever the Stress kernel or Stress-derivative kernel needs, we simply load the

SVD results from memory. It is interesting to notice that, for Stress kernel, it is faster to simply

re-compute SVD repeatedly; while for Stress-derivative kernel, there is only negligible difference.

The main reason for this discrepant behavior in the two kernels is that, the computing workload in

Stress kernel is already lighter than the memory workload, loading more data in can significantly

impede the performance. On the other hand, Stress-derivative has enough computing workload to

mitigate the memory cost for loading SVD results.
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Figure 5.9: On-the-flyload SVD benchmark and MLS comparison. Left: when we pre-compute
SVD and store the results, the stress and stress-derivative kernels load the SVD results directly from
the memory; otherwise they recompute SVD on-the-fly whenever necessary; Right: we compare the
performance for one implicit iteration of MLS and non-MLS implicit integrations.

In the same CPU used in Sec. 5.4.1, a AVX512 SVD implementation of [McAdams et al., 2011]

takes about 2.3 ns per particle; while our GPU implementation takes about 0.37 ns.

5.4.4 Solver benchmark

We compare our explicit solver with the matrix-free implicit Krylov solver by simulating the collision

between two elastic dragons and list the performance in Fig. 5.10. The ∆t of them are set to be

1× 10−4 and 1× 10−3 respectively. Obviously, implicit solver spends less time to converge but also

can use larger time step.

5.5 MPM heat solver with MLS shape functions

MPM can be generalized to derive an implicit scheme for solving the heat equation. We follow Hu

et al. [2018] in deriving a moving least squares (MLS) weak form. The resulting algorithm allows

us to accurately capture heat conduction in virtual materials and enables us to thermo-mechanical

phenomena such as melting.

Stomakhin et al. [2014] also investigated thermo-mechanical effects in the context of MPM. Their

formulation is based on a staggered-grid finite difference discretization which requires heuristic

boundary cell labeling. Our method, in contrast, naturally enforces the zero Neumann boundary

condition (insulated at the free surface) when no surface heat flux is specified. This boundary

condition is analogous to the zero traction boundary condition in discretizing the momentum
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Figure 5.10: Solver benchmark. We compare the performance of the two dragons colliding example
(left) with our GPU explicit and implicit solver along with three different schemes (right). The
total number of particles is 775K and the grid resolution is 2563. The ∆t for them are 1× 10−4 and
1× 10−3 respectively.

equation with MPM. Performing a weak form consistent discretization allows us to treat particles as

mass-full quadrature points. Consequently, unlike Stomakhin et al. [2014], we do not need to transfer

particle-wise heat capacity or conductivity to the grid. We also maintain a consistent discretization

function space for both the momentum and heat equations.

Additionally, our method shares the same collocated MPM grid and transfer kernels as the ones

used for solving the momentum equation. The existing optimization strategies for velocity and force

transfers on the GPUs directly apply to temperature and “thermal force” transfers with negligible

modifications.

5.5.1 Continuous Equation

We start from the Eulerian-form heat equation

ρc
Dθ

Dt
−∇ · κ∇θ+ qext = 0,

where θ(x, t) is temperature, ρ(x, t) is density, c(x, t) is Eulerian specific heat capacity (with its

Lagrangian counter part C(X, t) and unit J/(kg · K)), κ(x, t) is heat conductivity, qext encodes any
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Figure 5.11: How to collide your dragon. Two arrays of elastic dragons colliding with each other.

external body heat source such as radiation.

5.5.2 MLS Discretization

In deriving the weak form of the heat equation, we follow the discretization strategy of Hu et al.

[2018] closely. The backward Euler discretization (from t0 to t1) of the weak form of the heat equation

is given by

M̂0
i(θ

1
i − θ

0
i)

∆t
= q1 + y, (5.1)

where q1(x) =
∫
∂Ω0

(
Φiκ

0(x)θ1
j∇Φj

)
·nds(x) encodes the heat flux Neumann boundary condition,

y(θ1) = −

∫
Ω0
∇Φi ·

(
κ0(x)θ1

j∇Φj
)
dx

is the implicit “thermal force”. M̂0
i =
∑
pmpCpNi(xp) is the lumped thermal mass, withNi(x) being

the quadratic B-spline interpolation function. MLS shape functionsΦi(x) are used to reconstruct

a function space near each particle. The integration domain is further expressed as a summation

over particle domains, where each integral over a particle domain is approximated using one point
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Figure 5.12: New sand constitutive model The left and right columns depict explicit and semi-
implicit simulations respectively. Semi-implicit scheme with the regular St. Venant-Kirchhoff
constitutive model used in [Klár et al., 2016] introduces a severe numerical viscosity, while the
modification proposed by Tampubolon et al. [2017] introduces spreading effect and non-physical
column-collapse profile. Our proposed energy density functions mitigate both of these shortcomings.

quadrature. The resulting formulation for an insulated body with no boundary heat flux is then

1
∆t

(θ1
i − θ

0
i)M̂

0
i = −

∑
j

(∑
p

κpV
0
p∇Φi(xp) · ∇Φj(xp)

)
θ1
j , (5.2)

where θi is temperature of node i, Cp is the specific heat capacity of particle p, and κp is the heat

conductivity of particle p.

After the temperature increment is solved on the grid, we transfer it back to the particles during

the grid-to-particles step. A more detailed explanation of the discretization step is provided in

Appendix C.

5.6 Constitutive models

5.6.1 Temperature Dependent Elasticity

The elastic response of the simulated material is modeled in the isotropic hyperelasticity framework.

In this context, the energy density function is a function of the singular values of the deformation

gradient whose SVD is given by F = UF̂VT , with F̂ = diag{f̂0, f̂1, f̂2}. For temperature dependent

physical model, we adopt the fixed corotated energy density function as proposed in [Stomakhin
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et al., 2012]:

ψ̂(F̂) = µ(θ)
d−1∑
i=0

(f̂i − 1)2 +
λ(θ)

2
(det(F̂) − 1)2. (5.3)

Here, d represents the number of spatial dimensions. We use interpolated grid temperature values

at particle locations instead of θp on particles to drive the phase change. This prevents the influence

of the ringing instability [Jiang et al., 2015, 2017b], i.e., particle temperature modes that are invisible

to the integrator due to the null space in the particles-to-grid transfer operator.

We additionally apply a numerical RPIC damping [Jiang et al., 2017a; Gao et al., 2018] to achieve

the look of viscous flow in the fluid phase.

5.6.2 Stabilizing Shear Compliant Particles

When a phase change occurs, the shear modulus µ is set to 0. In this case the energy density

only penalizes volumetric change without penalizing shearing. This process has been shown to

cause the entries of F to grow unbounded quickly (even close to the square root of FLT_MAX) while

its determinant stays close to 1. Floating point accuracy is correspondingly drastically affected

and floating point overflow can easily get triggered. One solution is to use an equation of states

constitutive model which only depends on the update of the determinant of F as in [Tampubolon

et al., 2017]. Instead, we propose a simple solution by projecting F to the hydrostatic axis and setting

the diagonal entries of it to be J1/d. This corresponds to a plasticity return mapping that absorbs

the isochoric part of the elastic deformation gradient into the plastic part while only keeping its

dilational part. This strategy improves the numerical stability of our algorithm significantly.

5.6.3 Unilateral Model for Cohesionless Granular Material

We simulate cohesionless sand as an elastoplastic material. We propose a full quartic model whose

energy density function is given by

ψ̂(F̂) = aµ
d−1∑
i=0

(log(f̂i))4 +
aλ

2
(
tr(log(F̂))

)4. (5.4)
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Figure 5.13: How to granulate your dragon. Granulated dragons fall on elastic ones. This simulation
contains 6.7 million particles on a 5123 grid at an average 39.4 seconds per 48Hz frame.

The coefficient a is approximately 6.254 and is obtained by minimizing the L2-norm of the difference

between the quartic function with the original logarithm function over the interval [0.25, 1].

The above model gives visually pleasing results for the explicit time integration scheme. Semi-

implicit scheme, where plasticity is treated as a post-process after the elastic response is resolved

implicitly, has been shown to suffer numerical cohesion problem [Klár et al., 2016]. We propose a

unilateral version of the quartic energy density function which mitigates this problem and improves

the visual result of [Tampubolon et al., 2017], namely

ψ̂(F̂) = aµ
d−1∑
i=0

(log(f̂i))4H{log(f̂i)<0}(log(f̂i))+

aλ

2
(
tr(log(F̂))

)4
H{tr(log(F̂))<0}(tr(log(F̂))), (5.5)

where H symbolizes the indicator function.

We use the Drucker-Prager plasticity yield function with a rigorously derived return mapping

algorithm corresponding to the quartic model. Unlike the model in [Tampubolon et al., 2017],

our unilateral elasticity does not require additional parameter tuning and much more closely
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Table 5.1: Average time per frame. All timings are in seconds and frame rate is 48.

Particles # Domain ∆t Mapping Stress P2G Solver* Solver w/ Heat* G2P Sorting Others Total (s)
Dragon Cup 9.0M 5123 1× 10−4 0.64 0.57 2.30 14.87 - 1.00 1.35 1.15 21.88
Granulation 6.7M 5123 2.5× 10−4 0.26 1.34 1.88 34.50 - 0.74 0.41 0.32 39.45
Gelatin 6.9M 5123 1× 10−3 0.08 0.05 0.26 5.95 - 0.10 0.26 0.02 6.72
Melting 4.2M 2563 8× 10−3 0.02 0.01 0.07 - 10.32 0.02 0.03 0.01 10.48

* Implicit solvers were used for all tests in this table.

approximate the visual behavior of the original model from [Klár et al., 2016]. The details of our

algorithm is explained in Appendix C.

5.7 More results

In addition to the benchmarks, we also demonstrate the efficiency of our GPU implementation and

the efficacy of our new heat discretization and the semi-definite sand model with several simulation

demos. We list the performance and the parameters used in these simulations in Table 5.1. Note

that all particles are sampled using Poisson Disk [Bridson, 2007] for uniform coverage.

In Fig. 5.2, eighteen elastic dragons are stacked together in a glass to generate interesting dynam-

ics; and in Fig. 5.11, two arrays of dragon-shaped jellies are dropped to the ground. We can also

simulate a Gelatin jello bouncing off another larger one in Fig. 5.3.

Lava is poured to a cool elastic dragon in Fig. 5.1. Our heat solver is capable of accurately

capturing the process of heat transport and phase change. As the temperature of certain parts of the

dragon increases, the dragon liquefies. Finally, we demonstrate in Fig. 5.13 that our new granular

material model manages to produce visually pleasing dynamics with a semi-implicit solver.

5.7.1 Memory Footprint

Time performance is not the only concern of our implementation. The memory consumption should

also be dealt with appropriately, especially in high-resolution animations. In our simulator, the

memory budget is partitioned into three categories.

Particle This part of the memory is used to store all particles’ attributes. Its size grows linearly

with the particle count and the number of attributes in each particle. It also depends on the type of
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each particle as different materials store different parameters.

Grid This part of the memory is used for the sparse grid structure, where the actual amount of

memory in use has a linear correlation with the number of occupied GSPGrid blocks. The worst

case degenerates to a uniform grid. In our test cases, we mostly set the total amount of memory

allocated to be 60% to that of the uniform grid.

Auxiliary Logically speaking, this part consists of two blocks of memory. Since we use spatial

hashing for particle sorting and block topology construction, we need a hash table to perform

the task. Its capacity also shares a linear correlation with the number of cells (64× that of sparse

GSPGrid blocks). To reduce hash collision conflicts as well as saving memory, the coefficient is

set to 64 as a compromise. Note that the key value in our MPM pipeline is a 64-bit integer. The

other trunk of memory works as the storage for intermediate computation, including the ordering

of particle positions, velocities, deformation gradient F, etc. Its size is basically equivalent to that

of the original particle data. In our actual implementation, since the values in hash table are no

longer in use once its job is finished, we use the memory trunk to perform spatial hashing rather

than allocating another hash table.

As a result, up to 2.4GB is spent on the cube example with 7M particles, 900K cells and 17K

GSPGrid blocks, of which the majority is particle-related, while the memory budget for the dragon

collision example with 95K particles, 6K cells and 500 GSPGrid blocks is only 70MB.

5.8 Limitations and future work

A number of the design choices that led to our demonstrated performance gains also carry some

associated limitations that we consciously commit to. Our decision to mimic the design of the

CPU-oriented SPGrid data structure in our GPU counterpart allows for implementations on the

respective platforms to use similar semantics and maximize code reuse. However, the explicit use of

the virtual memory system in the CPU version of SPGrid allows for computational kernels to be

implemented (at reasonable, albeit not fully optimal efficiency) with computations performed at

per-node granularity or, more realistically, SIMD-line granularity; for example, accessing a stencil
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neighbor of any individual grid node can be done at a reasonable cost, without any set-up overhead.

On the GPU, however, such computations can only reach high efficiency if performed at a larger

scale, e.g. at block granularity, since the overhead of fetching the neighboring blocks of the one

being processed needs to be borne for each kernel invocation. This is not a prohibitive limitation,

as performing computations at block granularity is by-and-large a necessity for efficiency for any

similar GPU kernel.

In addition, for a CPU implementation of SPGrid, accessing a grid node that has not been

referenced before is an operation that can be done without any requisite setup or pre-processing (any

page-faults that might occur are handled transparently). On the GPU, however, our need to explicitly

allocate all active blocks necessitates that the set of all active indices be fully known before their

data storage can be allocated and accessed. Once again, we regard this as a reasonable limitation,

since the frequency at which the topology of the computational domain changes is small relative to

the computational cost of operating on such data during MPM simulation.

Finally, GPU MPM simulations are still limited by the smaller amount of on-board memory,

and it would be an interesting investigation to explore multi-GPU methods, or heterogeneous

implementations to circumvent the size limitation.

While our optimization strategies greatly utilize computational resources on the GPU, high

fidelity MPM simulations are still far from being real-time. This is largely due to the strict CFL

restriction on time step sizes especially in high resolution. It would be interesting future work to

further combine additional algorithmic acceleration of MPM time stepping with our GPU framework.

We would also explore possibilities with spatially adaptive GSPGrid following Gao et al. [2017] for

superior performance.
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6 discussion
In both industry and academia of the graphics community, in-depth exploitations of the present

computational resources to promote the performance of animation algorithms or pipelines have

been attracting more and more attention. SPGrid, a sparse grid storage scheme, is one of the most

recent explorations in this direction, which is capable of squeezing the maximum boost from the

computing potential provided in operating systems and hardware. As presented in [Setaluri et al.,

2014], SPGrid achieves to reduce the cost per degree of freedom on an adaptive grid to be comparable

to the cost on a uniform grid. In this thesis, the application of SPGrid has been extended from

pure Cartesian grid based fluid simulations to particle-grid hybrid techniques. It has been verified

that, equipped with modern parallel techniques, SPGrid or its GPU adaptation can be used as the

scratch-pad in material point method to accelerate the whole pipeline. A future investigation would

be to further introduce SPGrid to non-simulation scenarios, e.g. rendering, geometric modeling, etc.

6.1 General observations

In addition to the findings reported in the individual chapters of this dissertation, my journey

through the challenges in these separate (but occasionally crossing) research threads revealed

certain recurring findings and observations that are worth to mention, in the interest of perspective.

Many elements of my work built upon earlier papers that introduced something new in the

feature set of dynamics simulation. In some cases, compromises are made knowingly, either in

performance or generality, in support of these new features. Sometimes, when enough attempts

meet the same set of challenges, and accept the same set of compromises, an image is painted that

such compromise or limitation is the normal cost of supporting some new capability. For example,

many works that count on adaptivity for improving the performance of simulations rely mostly on

the reduction of the number of degrees of freedom as the way to gain performance. Often times, an

impression is formed that the overhead of using adaptivity instead of a more regular approach is

necessary and unavoidable. I have found this argument to be more complex to answer fully and

honestly. There are many instances that reducing the number of degrees of freedom in a simulation

by, say, 20x-50x would barely result in a performance improvement by more than 2x-3x because (i)
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the time steps needed in a dynamic simulation become smaller, (ii) data structures and algorithms

become less efficient, and (iii) parallelism becomes complicated, not necessarily because an effective

parallel version is impossible, but often tricky to implement.

If I can extract one conclusion from my experience, it would not be that prior work was not

accurate, or truthful in saying that such conflicts exist. I did observe, however, that the things that

one can sacrifice to get the best of features and efficiency come in more different types that one would

think. One possibility is to consider how broad or narrow our solutions can be. If we are willing

to focus our solutions to a specific type of physics-based simulation, and a more narrow range of

simulated phenomena, some opportunities are presented about how to recover good performance

while not disallowing important features. For this reason, it can be said that many of the solutions

presented in this work are specific to MPM simulation, for example. However, the ever-expanding

reach of MPM methods as seen in the activity in this area would make us hopeful that we can still

reach a sizeable spectrum of applications.

Another type of generality that we might have to compromise is the ability to map our algorithms

to any parallel, throughput-optimized computing platform, among those that are available today or

in the future. My work has included optimizations that used low-level programming on GPUs (e.g.

CUDA intrinsics), that are not guaranteed to have an equivalent on CPUs, or even future generations

of GPUs themselves. I hope that the spirit of some of these optimizations would still be applicable,

although the implementation might be different.

Finally, there is an important question that remains: How easy or practical would it be for a

graphics programmer to reproduce the optimizations in this work, or implement similar optimiza-

tions for a slightly different problem. I would expect that somebody with the necessary background

and experience would be in a better position to do that after reading the work that my colleagues

and myself have produced, but I have to be honest that this is not an easy task. In many cases,

significant performance optimizations were made possible not just by re-arranging code, but by

re-thinking the entire algorithm, the discretization, and its properties. I do believe that being open

to change the theory, the numerical algorithm, and the software engineering is worthwhile, but it

also requires more diverse skills and knowledge from the implementer than what might be practical

in some environments. I hope that, either by using software libraries that hide the complexity of
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low-level operations from implementers, or by some well-designed Domain Specific Language for

this purpose, this task would become more accessible to a larger user base.

6.2 Future work

Rendering Many rendering techniques utilize hierarchical grids for accelerations. Stencil opera-

tions, e.g. the computation of transmission in volume rendering, are crucial to the overall efficiency.

SPGrid specifically optimizes stencil access, making it also suitable for fast rendering applications.

However, large resolution rendering tasks always require the support of out-of-core processing

which is now not implemented in SPGrid. Unlike other sparse data structures, SPGrid relies on the

virtual memory system to allocate physical memory. As a result, a memory page continues to be

occupied unless the user explicitly informs the operating system to free it.

Temporal adaptivity. While spatial adaptivity has been widely studied, temporal adaptivity nearly

remains to be a new research topic. In both Chapter 2 and Chapter 3, although we can refine the grid

at the regions of interest, the whole domain is still running with the same ∆t, which is determined

by the finest resolution. In temporally adaptive simulations, one can imagine that "temporal" T-

junctions may also exist to mess with the final visual results and require appropriate treatments.

Fang et al. [2018] recently propose a way to apply different local time steps to regions with different

stiffness to save the total computations. An even more intimidating case would be to integrate both

spatial and temporal adaptivity - the finer regions can evolve with smaller ∆t.

Geometric skinning with self-collision support. Physics-based skinning methods are attractive

due to their ability to resolve object-collisions and self-collisions; however, the high-valence com-

puting expenses prevent them from being widely adopted in industry, especially in real-time

applications. On the other hand, geometric skinning methods always have enviable computing

performance. Considering that MPM automatically enforces non-slip contact, one interesting future

work would be to equip geometric skinning methods with MPM particles to help handle collisions.
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a appendix: power diagram topology (ch.

2)
Lemma A.1. No face in the power diagram can arise between two cells in the octree that only shared a vertex.

Proof. Consider the points p1 and p2 at the centers of two power cells C1 and C2. From the definition

of the power diagram, the plane P between them satisfies the equation,

d2
1 − r

2
1 = d2

2 − r
2
2 (A.1)

where d1 = |p−p1| and d2 = |p−p2| are the distances of an arbitrary point p, and r1, r2 are the radii

of the circumspheres S1, S2 for the power cells C1, C2. P is the secant plane that passes through the

intersection circle of S1 and S2. The primal-dual orthogonality property of power diagrams ensures

that p1p2 is perpendicular to P, let p0 be the intersection point. It follows that when a face exists

between C1 and C2 in the power diagram, then |p0 − p1| < r1 and |p0 − p2| < r2.

Now assume that the octree cells O1, O2 centered at the points p1, p2 only shared a vertex q.

When the radius of each power cell is ∆x/
√

3 (or ∆x/
√

2 in 2D), then q lies on both S1 and S2.

However, |p1 − q| = r1 and |p2 − q| = r2, so q also satisfies equation (A.1), implying that it lies on

the plane P. It follows that the plane P is tangent to both S1 and S2. Thus, there is no face between

C1 and C2 in the power diagram.

Note that the proof for Lemma A.1 does not assume any grading restrictions on the octree, suggesting

that this property holds in general.

Numerical validation

We now show the numerical convergence of our discretization on some analytic problems. Consider

an analytic pressure field satisfying p = x2 + y2 − r2 and a level set field φ =
√
x2 + y2 − r in the

domain [−0.5, 0.5]× [−0.5, 0.5], where r = 0.25. Regions inside the level set contain pressure degree

of freedom, while those outside serve as Dirichlet boundary conditions. Our quadtree has two levels
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Figure A.1: Computational domain for the two dimensional Poisson problem

Effective resolution 322 642 1282 2562 5122

L∞ error 0.000753682 0.000207968 5.58272e−5 1.44169e−5 3.68431e−6

Order of accuracy − 1.86 1.90 1.95 1.97

Table A.1: Convergence results for the two dimensional Poisson problem

Effective resolution 323 643 1283 2563

L∞ error 0.00115148 0.00030693 8.1405e−5 2.15657e−5

Order of accuracy − 1.91 1.91 1.92

Table A.2: Convergence results for the three dimensional Poisson problem

Effective resolution 322 642 1282 2562 5122

L∞ error 0.0159432 0.0100688 0.00494522 0.0024499 0.00121924
Order of accuracy − 0.58 1.02 1.01 1.01

Table A.3: Convergence results for our fast marching scheme in two dimensions

of adaptivity, with fine resolution on one side and coarse on the other (see Figure A.1). Table A.1

shows the convergence results from our discretization. We similarly consider an analytic pressure

field p = x2 + y2 + z2 − r2 and a level set field φ =
√
x2 + y2 + z2 − r in three dimensions. Table A.2

shows the convergence results. As can be seen, our discretization achieves second order accuracy.

We also evaluated the order of accuracy of our hybrid fast marching scheme. Table A.3 shows the

convergence behavior of our method in the two dimensional setting of Figure A.1, while Table A.4

shows the corresponding behavior in three dimensions.
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Effective resolution 323 643 1283 2563 5123

L∞ error 0.0227256 0.0138875 0.00731823 0.00342631 0.00187874
Order of accuracy − 0.71 0.92 1.09 0.87

Table A.4: Convergence results for our fast marching scheme in three dimensions
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b appendix: properties of adaptive gimp

shape functions (ch. 3)

B.1 From MPM to adaptive GIMP

Since the introduction of the material point method to the graphics community, researchers tend to

focus on defining the weighting function as a direct relation between a particle and the grid nodes in

its immediate vicinity, e.g. a quadratic B-spline function, as shown in Figure B.1a. GIMP is another

alternative which downgrades the C1 requirement to C0 and then uses a convolution to resume the

C1 continuity. We assign an axis aligned range to each particle as in Figure B.1b and the general

form for the weight is

wip =
1
Vp

∫
Ω

χp(x)Ni(x)dx (B.1)

where Vp is the volume of the dashed blue boxΩ, χp is usually an indicator function, and Ni(x) is

the basis function (e.g. a simple hat function) .

(a) MPM (b) GIMP
(c) New interpreta-
tion

(d) Corner node (e) T-junction node (f) GIMP T-junction (g) Non-graded case

Figure B.1: From MPM to Adaptive GIMP
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The conventional GIMP is simply to do an integration for each affected grid node. However, we

propose a new interpretation which is quite essential for all the following procedures. We divide

the particle range into regions which intersect with each single grid cell asΩj = Ω ∩ Cj and then

Ω =
∑
jΩj. So B.1 becomes

wip =
1
Vp

∑
Ωj

∫
Ωj

Ni(x)dx (B.2)

For example, the weight of the center grid node in Figure B.1c is now the sum of the contributions

computed from all four cells. When we switch to quadtrees, the corner nodes are easier to handle

as in Figure B.1d, and the same interpretation works in exactly the same way except that the basis

function used in the right top cell is different.

For dealing with T-junction nodes (blue node in Figure B.1e), we take the classical constrained

hanging node treatment from octree FEM. The blue node is initially regarded as a real degree

of freedom (DOF) in both smaller cells (Figure B.1f), thus contributions from those two cells can

be computed. As to the coarser cell, the T-junction is constrained and its property is completely

determined by its parents (brown nodes). Instead of doing any weight computations in the coarser

cell, we just need to redistribute the contributions collected from finer cells to its parents.

This new approach of computing weights for adaptive grids fulfills all the aforementioned

requirements, and it especially enforces both partition of unity and C1 continuity at the T-junctions,

which are proved in the next sections. Furthermore, there is no principal or practical restrictions

for its extension to non-graded trees. However, one obvious concern is that for dealing with one

T-junction node, weight computations can go across several levels (with different basis functions, as

in Figure B.1g). And the corresponding data retrieval from several levels can soon jeopardize the

memory bandwidth. For this performance related issue, we propose an equivalent way to convert

all cross-level computations into uniform kernels, and the details are presented in Chapter 3.

Lemma B.1. Partition of unity : given a particle, the weights of all grid nodes sum up to one
∑
iwi = 1

Proof. Consider the case in Figure B.2, the T-junction (blue dot H) is constrained by its parents G

and C. In this proof, we concern about the sum of the weights (not the continuity), thus regarding H

as a real DOF (in cell 2 and 3 only) can ease the reasoning.
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A

B
C

D

E

F
G

H

1 2

3

a be c

d

f

Figure B.2: Partition of unity.

Taking the view of GIMP, the weight can be written as

wi =
1
V

∫b
a

∫d
c

Ni dydx (B.3)

where V = (b−a)× (d− c) is the area of the particle range. Furthermore, we can divide the particle

range into the intersections with each cell:

wi = w1
i +w

2
i +w

3
i (B.4)

w1
i =

1
V

∫e
a

∫d
c

N1
i dydx (B.5)

w2
i =

1
V

∫b
e

∫f
c

N2
i dydx (B.6)

w3
i =

1
V

∫b
e

∫d
f

N3
i dydx (B.7)

In this way, each weight wi can be splitted into three of them as w1,2,3
i . It is clear that for some

nodes, not all the three are non-zeros. For example, both w2
A and w3

A are zeros. We collect the

splitted non-zero weights of cell 1 as

∑
i

w1
i = w1

A +w1
B +w1

C +w1
G (B.8)

=
1
V

∫e
a

∫d
c

(N1
A +N1

B +N1
C +N1

G)dydx (B.9)

=
1
V

∫e
a

∫d
c

1 dydx (B.10)

=
(e− a)× (d− c)

V
(B.11)



130

A

B
C

D

E

F
G(x, y0)

H
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3

Figure B.3: Continuity.

where we used the identityN1
A+N1

B+N
1
C+N

1
G = 1 because all are standard hat functions. Similarly,

we can get
∑
iw

2
i =

(b−e)×(f−c)
V and

∑
iw

3
i =

(b−e)×(d−f)
V . Thus

∑
i

wi =
(e− a)× (d− c)

V
+

(b− e)× (f− c)

V
+

(b− e)× (d− f)

V
(B.12)

=
(b− a)× (d− c)

V
= 1 (B.13)

Lemma B.2. C0 continuity: the shape function defined in Chapter 3 is C0 continuous.

Proof. In this section, we denote a modified basis function associated with grid node i by the notation

N̂i. Consider the case in Figure B.3, a particle (at position I) is moving across the interface edge GH

between cell 1 and cell 3. The T-junction (blue dot H) is constrained by its parents G and C, thus it is

not a real DOF anymore, and the weight from it should be redistributed to its parents. Let us focus

on node G, since all others are either the same or much easier cases.

When the particle is still in cell 1, the shape function can be computed :

N̂1,x
G = 1 (B.14)

N̂
1,y
G = 1 −

y− y0
2∆x

(B.15)

where ∆x is the cell size of finer cells. In this scenario, the shape function in the x-direction is always

1, we just ignore it for now.
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After particle moves into cell 3, the shape function should be updated :

N
3,y
G = 1 −

y− y0
∆x

. (B.16)

Notice that the node H should also be computed and then redistributed to its parent as

N
3,y
H =

y− y0
∆x

(B.17)

N̂
3,y
G = N

3,y
G +

1
2
N

3,y
H (B.18)

= 1 −
y− y0
∆x

+
1
2
y− y0
∆x

(B.19)

= 1 −
y− y0

2∆x
(B.20)

Thus N1,y
G = N̂

3,y
G , i.e. the shape function of node G is continuous when particle moves across

the interface edge. Eventually the weight function can acquire C1 continuity after computing the

convolution of the shape function.
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c appendix: mpm-based heat solver and

unilateral sand constitutive model (ch.

5)

C.1 MLS-MPM implicit heat solver

C.1.1 Weak Form

MPM is a general spatial discretization scheme (just like FEM) and can be used to solve the heat equa-

tion. A straightforward application in computer graphics is melting and freezing, where mechanical

material parameters depend on temperature. A more complex case is thermo-elastoviscoplasticity,

where thermal expansion and frictional heating effects are taken into account through thero-

mechanical coupled equations. Here we only focus on deriving the weak form discretization

on MLS-MPM [Hu et al., 2018] for the heat conduction equation.

Let’s start from the Eulerian-form heat equation

ρC
Dθ

Dt
−∇ · κ∇θ+ qext(x) = 0,

where θ(x, t) is temperature, ρ(x, t) is density, c(x, t) is Eulerian specific heat capacity per unit mass

(with its Lagrangian counter part C(X, t)), κ(x, t) is heat conductivity, qext is external body heat

source (let’s ignore this term, this one is similar to gravity in the momentum equation and can

encode effects such as radiation). The Eulerian weak form of this PDE is

∫
Ωt
ρc
Dθ

Dt
−∇ · κ∇θdx = 0.

We follow the same way of discretizing the momentum equation using a Galerkin style weak

form [Jiang et al., 2016]. Commonly in MPM, we take an updated Lagrangian view and look at tn.

Now our temperature θ is like the velocity in the momentum equation. It relates to its Lagrangian
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counter-part Θ as θn+1(x) = Θ(Φ−1(x, tn), tn+1) and θn(x) = Θ(Φ−1(x, tn), tn).

C.1.2 MLS Shape Functions

For any test function w(x, tn) in the proper function space, the time discretization reveals

1
∆t

∫
Ωt

n
w(x, tn)ρ(x, tn)c(x, tn)

(
θn+1(x) − θn(x)

)
dx

=

∫
∂Ωt

n
(w(x, tn)κ(x, tn)∇θ(x, tn)) · nds(x) −

∫
Ωt

n
∇w(x, tn) · (κ(x, tn)∇θ(x, tn))dx.

The next step is MLS style spacial discretization. Following [Hu et al., 2018], we adopt the MLS

shape functionΦi(x) at each node near a particle to discretize both the test function and the physical

fields. That is, we do

wn = wni Φi, θn = θnj Φj, θn+1 = θn+1
j Φj. (C.1)

We refer to [Hu et al., 2018] for the construction of the MLS shape functions in a way that is consistent

with Element Free Galerkin (EFG) methods.

Then

1
∆t

∫
Ωt

n
wni Φiρ(x, tn)c(x, tn)θn+1

j Φjdx −
1
∆t

∫
Ωt

n
wni Φiρ(x, tn)c(x, tn)θnj Φjdx

=

∫
∂Ωt

n

(
wni Φiκ(x, tn)θnj ∇Φj

)
· nds(x) −

∫
Ωt

n
wni ∇Φi ·

(
κ(x, tn)θnj ∇Φj

)
dx.

Utilizing the MLS shape functions avoids differentiating B-spline kernels in high dimensions.

More specifically, if a linear polynomial space with quadratic B-spline weighting is chosen for the

MLS reconstruction, we have [Hu et al., 2018]

∇Φi(xp) = D−1
p Ni(xnp )(xi − xnp ),

where Dp = 1
4∆x

2 for quadratic B-spline weighting in Ni(x).
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C.1.3 Lumped Mass

Similarly to how mass matrix was definened in the momentum case, we can define a “thermal mass”

matrix

Mn
ij =

∫
Ωt

n
Φi(x)ρ(x, tn)c(x, tn)Φj(x)dx

and rewrite the equation as

1
∆t
wni θ

n+1
j Mn

ij −
1
∆t
wni θ

n
j M

n
ij

=

∫
∂Ωt

n

(
wni Φiκ(x, tn)θnj ∇Φj

)
· nds(x) −

∫
Ωt

n
wni ∇Φi ·

(
κ(x, tn)θnj ∇Φj

)
dx. (C.2)

Note that

Mn
ij =

∫
Ωt

n
Φi(x)ρ(x, tn)c(x, tn)Φj(x)dx

Pull back from the Eulerian frame to the Lagrangian frame..

=

∫
Ω0
Φi(x(X))R(X, t)C(X, tn)Φj(x(X))J(X, t)dX

=

∫
Ω0
Φi(x(X))R(X, 0)C(X, tn)Φj(x(X))dX

Adopting one point quadrature over particle domains..

≈
∑
p

mpCpΦi(xp)Φj(xp)

Now in Equation C.2 we choose

wni =

 1, i = î

0, otherwise

then

∑
j

1
∆t

(θn+1
j −θnj )M

n
îj
=

∫
∂Ωt

n

(
Φîκ(x, tn)θnj ∇Φj

)
·nds(x)−

∫
Ωt

n
∇Φî·

(
κ(x, tn)θnj ∇Φj

)
dx. (C.3)

This is the equation for node î.
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Inverting a full mass matrix is not possible in MPM due to its potential singularity. A common

strategy is diagonal mass lumping, meaning replacing M with its diagonal row-sums. Let’s call

each new entry M̂n
i , then

M̂n
i =
∑
j

Mn
ij

=
∑
j

∫
Ωt

n
Φi(x)ρ(x, tn)c(x, tn)Φj(x)dx

=

∫
Ωt

n
Φi(x)ρ(x, tn)c(x, tn)dx

Pull back..

=

∫
Ω0
Φi(x(X))R(X, 0)C(X, tn)dX

≈
∑
p

mpCpΦi(xp).

Now we use Mn
îj
≈ M̂n

î
δîj to rewrite Equation C.3:

1
∆t

(θn+1
î

− θn
î
)M̂n

î
=

∫
∂Ωt

n

(
Φîκ(x, tn)θnj ∇Φj

)
· nds(x) −

∫
Ωt

n
∇Φî ·

(
κ(x, tn)θnj ∇Φj

)
dx. (C.4)

Let’s replace îwith i to get the final equation for the temperature on node i:

1
∆t

(θn+1
i − θni )M̂

n
i =

∫
∂Ωt

n

(
Φiκ(x, tn)θnj ∇Φj

)
· nds(x) −

∫
Ωt

n
∇Φi ·

(
κ(x, tn)θnj ∇Φj

)
dx. (C.5)

Note thatmC is called thermal mass and is fixed on each particle.

C.1.4 Heat Force

Now let’s deal with the right hand side. Let’s look the second one (volume integral):

∫
Ωt

n
∇Φi ·

(
κ(x, tn)θnj ∇Φj

)
dx ≈

∑
p

(∇Φi(xp)) ·
(
κ(xp, tn)θnj ∇Φj(xp)

)
Vnp .
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This is the ‘internal force’ for heat equation. Note that to go implicit we need to change the known

θnj to the unknown θj. We have

fi(θ) =
∑
p

(∇Φi(xp)) ·
(
κpθj∇Φj(xp)

)
Vnp (C.6)

=
∑
j

∑
p

(∇Φi(xp)) ·
(
κpθj∇Φj(xp)

)
Vnp (C.7)

=
∑
j

∑
p

κpV
n
p∇Φi(xp) · ∇Φj(xp)θj (C.8)

=
∑
j

Hijθj (C.9)

whereHij =
∑
p κpV

n
p∇Φi(xp) ·∇Φj(xp). We can see the force is linear in θ. It is easy to verify that

if we use a linear basis, and one particle per cell center, then this is equivalent to finite difference

Laplacian operator.

The boundary term

hi =

∫
∂Ωt

n

(
Φi(x)κ(x, tn)θnj ∇Φj

)
· nds(x)

is the heat flux boundary condition. To apply this, quantity η(x, tn) = (κ(x, tn)∇θ) · n is specified

at the boundary. This is analygoous to the traction boudnary conditon in MPM.

C.1.5 Summarization

Finally, let’s summarize the implicit formulation of heat equation assuming no boundary heat flux:

1
∆t

(θi − θ
n
i )M̂

n
i = −

∑
j

(∑
p

κpV
n
p∇Φi(xp) · ∇Φj(xp)

)
θj, (C.10)

where θi is temperature of node i, M̂n
i =
∑
pmpCpΦi(xp) is lumped thermal mass, Cp is specific

heat capacity per unit mass, κp is heat conductivity. The resulting implicit system is SPD and can be

efficiently solved with Conjugate Gradient on the GPU.
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C.2 Unilateral sand constitutive model

C.2.1 Notations

The letter d ∈ {2, 3} denotes the spatial dimension of the problem. We use F to denote the deformation

gradient of the flow-map ϕ. For isotropic constitutive model, it is useful to work with the singular

value decomposition of F = UF̂VT [Bonet and Wood, 2008]. We write

F̂ =

f̂0 0

0 f̂1

 (in 2D), or F̂ =


f̂0 0 0

0 f̂1 0

0 0 f̂2

 (in 3D). (C.11)

Sometimes, it’s convenient to use an abuse of notation and to write F̂ as a vector

F̂ =

f̂0

f̂1

 (in 2D), or F̂ =


f̂0

f̂1

f̂2

 (in 3D). (C.12)

Mast [2013] and Klár et al. [2016] have shown the usefulness of Hencky-strain in modeling granular

material. The Hencky-strain h is the logarithm of the singular values of F, i.e.

ĥ = log(F̂). (C.13)

C.2.2 Energy density function

The original St. Venant-Kirchhoff with Hencky strain model is [Klár et al., 2016]

ψ̂(F̂) = µtr
(
(log F̂)2

)
+
λ

2
(
tr(log F̂)

)2. (C.14)
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Figure C.1: Full v.s. unilateral. Two-dimensional depiction of the full and unilateral quartic energy
density function in the Hencky-strain space.

In lieu of the original model, we propose a quartic energy density function

ψ̂(F̂) = aµ
d−1∑
i=0

(log(f̂i))4 +
aλ

2
(
tr(log(F̂))

)4. (C.15)

The coefficient a is chosen to be 6.254421582537118, which is the solution of the following minimiza-

tion problem

a = argmina
∫ 1

0.25

(
ax4 − log(x)2

)2
dx. (C.16)

In order to mitigate numerical cohesion that occurs in a semi-implicit time integration scheme

(where the elastic response is computed using an implicit time-integration scheme and plasticity is

done as a post-process), we also consider the unilateral version of (C.15), namely

ψ̂(F̂) = aµ
d−1∑
i=0

(log(f̂i))4H{log(f̂i)<0}(log(f̂i)) +
aλ

2
(
tr(log(F̂))

)4
H{tr(log(F̂))<0}(tr(log(F̂))), (C.17)

which is twice continuously differentiable. The function HI denotes an indicator function, i.e. given

a set I ⊆ R, we have

HI(x) =

 1 if x ∈ I

0 otherwise.
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C.2.3 Stress-strain relationship

Let P be the first Piola-Kirchhoff stress tensor. All of the models above are isotropic, and as such P

can be written as

P = UP̂V>, (C.18)

with

P̂ =
∂ψ̂

∂F̂
. (C.19)

The Cauchy stress tensor is given by

σ = J−1PF> = J−1UP̂V>VF̂U> = J−1UP̂F̂U>, (C.20)

which motivates us to define

σ̂ := P̂F̂. (C.21)

The Kirchhoff stress is τ = Jσ. Arguably, this is a better stress measure for our purposes since we’re

avoiding a division by J. From (C.20), we have

τ = Uσ̂U> =⇒ τ̂ = Jσ.

The stress-strain relationship for the constitutive model defined by (C.15) is

σ̂ = 4aµ(ĥ)3 + 2aλ tr(ĥ)31, (C.22)

with 1 denoting the all-ones vector and (ĥ)3 is defined component-wise.
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C.2.4 Yield surface

To model sand, we use the Drucker-Prager yield criterion. For completeness, we’ll include its form

for both the Cauchy and Kirchhoff stress

ŷ(σ̂) = tr(σ̂)α+

∥∥∥∥σ̂−
tr(σ̂)

3
I
∥∥∥∥
F

6 0, (Cauchy), (C.23)

ŷ(τ̂) = tr(τ̂)α+

∥∥∥∥τ̂− tr(τ̂)
3

I
∥∥∥∥
F

6 0, (Kirchhoff). (C.24)

Combined with (C.22), we can derive the yield function in terms of the Hencky-strain ĥ. We denote

this relationship by

ȳ(ĥ) 6 0. (C.25)

Figure C.2: Yield surface in Hencky-strain space. The outer green surface is the yield function
corresponding to the proposed quartic energy density and the inner red cone corresponds to the
regular St. Venant-Kirchhoff with Hencky strain model. The line denotes the hydrostatic axis.

C.2.5 Trial and projected strain

We adopt the following notation
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Principal strain Hencky strain Cauchy stress

trial state F̂tr ĥtr σ̂tr

projected state F̂ ĥ σ̂

The relationship between the trial state and the projected state is given by

ĥ = δγĜ|ĥ + ĥtr. (C.26)

where

Ĝ = dev
(
∂ŷ

∂τ̂

)
. (C.27)

which is completely determined by the yield surface.

C.2.6 Solving the system of equations

In the projection step, there are d+ 1-unknowns, namely δγ and the projected strain ĥ. Equations

(C.26) and (C.25) gives a total of (d+ 1)-equations to be satisfied.

Solving the system of equations in three-dimensions

It can be proven that the solution h lies in the space of span{(1, 1, 1)>, dev(ĥt)}. The deviatoric part

of h is

dev(ĥt) =


−2ĥ0 + ĥ1 + ĥ2

ĥ0 − 2ĥ1 + ĥ2

ĥ0 + ĥ1 − 2ĥ2

 .

So we can write

ĥ = po + qdev(ĥt). (C.28)
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We can substitute this to (C.26) and solve for p (see mathematica_tech_doc.nb) to get

p =
ĥt0 + ĥ

t
1 + ĥ

t
2

3
. (C.29)

The yield function as a function of p and q is quite long. Its form and its derivative is attached in

the mathematica document. One can solve for the zero of this function using Newton’s method.

The algorithm pseudocode is

p← (htr
0 + htr

1 + htr
2 )/3

if y(htr) 6 0 then

return

else if p > 0 then

h← (0, 0, 0)

else

dev← (−2htr
0 + htr

1 + htr
2 ,htr

0 − 2htr
1 + htr

2 ,htr
0 + htr

1 − 2htr
2 )

q← −1./3.

solve q using Newton

h← p(1, 1, 1) + qdev
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d appendix: dissertator’s contribution to

co-authored work
Chapter 2

Publication: M. Aanjaneya*, M. Gao* (joint first authors), H. Liu, C. Batty, E. Sifakis, "Power

Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids", ACM Transactions on

Graphics (Proceedings of ACM SIGGRAPH), 2017.

Conceptualization: Jointly with Professor Sifakis, Professor Batty; 50% contribution stake among

student participants.

Problem investigation/analysis: 50% contribution stake among students.

Original techniques:

• Co-developed the encoding scheme

• Co-developed the new multigrid preconditioner

• Co-developed the new fine levelset tracking scheme

Implementation/testing: 50% contribution stake among students.

• Co-implemented the final pipeline

• Implemented the tetrahedralization scheme

• Implemented the prototype of the new Poisson solver and verified its convergence

• Implemented the prototype of the new fast marching method and verified its convergence

• Implemented the particle levelset pipeline to generate comparisons

Writing: 15% of the paper and 100% of the supplemental document.
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Chapter 3

Publication: M. Gao, A. Tampubolon, C. Jiang, E. Sifakis, "An Adaptive Generalized Interpolation

Material Point Method for Simulating Elastoplastic Materials", ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH Asia), 2017.

Conceptualization: Jointly with Professor Sifakis, Professor Jiang; 80% contribution stake among

student participants.

Problem investigation/analysis: 80% contribution stake among students.

Original techniques:

• Co-developed the construction of the C0 basis function

• Co-developed the application of GIMP to boost the continuity to C1

• Co-developed the parallelization scheme to accelerate the pipeline

• Co-developed the application of SIMD to uniform particle-to-grid transfers

• Co-developed the particle resampling and grid rasterization

Implementation/testing: 80% contribution stake among students.

• Implemented the prototype and the final pipeline

• Implemented the method of Lian et al. [2015] and identified the negative weight problem

Writing: 35% of the paper and 100% of the supplemental document.
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Chapter 4

Publication: M. Gao, A. Tampubolon, X. Han, Q. Guo, G. Kot, E. Sifakis, C. Jiang, "Animating

Fluid Sediment Mixture in Particle-Laden Flows", ACM Transactions on Graphics (Proceedings of

ACM SIGGRAPH), 2018. (TOG Cover Image)

Conceptualization: Jointly with Professor Sifakis, Professor Jiang; 80% contribution stake among

student participants.

Problem investigation/analysis: 80% contribution stake among students.

Original techniques:

• Co-developed the coupling scheme

• Co-developed the sub-stepping scheme

• Co-developed the variable coefficient multigrid preconditioner

Implementation/testing: 80% contribution stake among students.

• Implemented the prototype and the final pipeline

Writing: 40% of the paper.
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Chapter 5

Publication: M. Gao*, X. Wang*, K. Wu*(joint first authors), A. Tampubolon, E. Sifakis, C. Yuksel,

C. Jiang, "GPU Optimization of Material Point Method", SIGGRAPH Asia 2018 (under review).

Conceptualization: Jointly with Professor Sifakis, Professor Jiang and Professor Yuksel; 50%

contribution stake among student participants.

Problem investigation/analysis: 50% contribution stake among students.

Original techniques:

• Co-developed the new particle-to-grid transfer scheme

• Co-developed the GSPGrid data structure

• Co-developed the implicit re-ordering scheme

• Co-developed the MPM-based heat solver

Implementation/testing: 50% contribution stake among students.

• Implemented the prototype and the final pipeline

Writing: 40% of the paper.
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