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Abstract

Electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging
(MRI) are non-invasive imaging modalities based on similar physical phenomenon. MRI
provides rich anatomical information based on proton imaging, while EPRI offers unique,
quantitative information using spin probes such as tissue oxygenation, acidity, and redox status.
In EPR-oximetry due to extremely short EPR signal lifetime (< 1us) of spin probe (e.g., Ox0-63)
and hardware constraints (e.g., gradient slewrate and RF deadtime), common imaging schemes
utilized in MRI are generally not applicable. Therefore, specialized imaging schemes must be
utilized to allow encoding of the rapidly decaying signal in EPRI. In MRI, single point imaging
(SPI) has been developed for imaging object with short T2* in 1985, and has recently been
revisited as a hybrid technique to improve the imaging of short T2* species. In EPRI, SPI has

shown utility for in vivo characterization of tissue oxygenation.

This thesis explores novel uses of SPI in EPR-oximetry and MRI. In EPR studies, a new
method for image acquisition and reconstruction is studied, which enables accurate T2*
estimation with high spatio-temporal resolution for oxygen imaging. Moreover, a method
utilizing a model-based compressed sensing technique is explored to further accelerate image
acquisition (up to 30x). In MR studies, a novel technique to measure a gradient waveform using
dynamic SPI is developed, where a gradient impulse response function based on LTI concept is
also studied. For improved imaging of short T2* species in MRI, a new imaging scheme using
SPI is developed, termed ramped hybrid encoding (RHE), where encoding time is minimized to

reduce blurriness in object with short T2*. Two applications based on RHE are studied in depth:



ii

a rapid RHE-based attenuation correction for PET/MR and a highly efficient bi-component T2*

estimation in human knee using RHE.
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Chapter 1. Introduction

Electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging
(MRI) are non-invasive imaging modalities based on similar physical phenomenon: electron
paramagnetic resonance (EPR) discovered by Zavoisky in 1945 and nuclear magnetic resonance
(NMR) discovered by Bloch and Purcell in 1944. In MRI, proton is commonly imaged for
clinical use since water is abundant in human body, which allows high SNR (signal to noise
ratio) and rich soft tissue contrast. EPRI images electrons using exogenous spin probes, which

offers unique, quantitative information such as tissue oxygenation, acidity, and redox status.

Although the discovery of EPR was only one year later than the discovery of NMR, EPRI
is still in primitive stage, while MRI has made noticeable advancement in development of
imaging systems with myriads of methodologies to image different body parts and functions
(e.g., imaging of anatomy, tissue micro structure, blood flow, oxygenation, and cardiac motion),
which has been already commercialized and used for clinical diagnosis. A challenge in EPRI is
low SNR due to natural scarcity of unpaired electrons and low external magnetic field strength,
BO, (~10mT) due to high gyromagnetic ratio of electron (660 times higher than proton in MRI)".
Moreover, high resonance frequency (~300MHz to 1GHz) in EPRI makes it difficult to image a

large subject due to limited RF penetration.

In EPRI, paramagnetic species such as transition metal ions (Fe, Cu, Mn, Co, Mo, Ni) or
free radicals (typically carbon, nitrogen or oxygen containing compounds) are imaged using an
exogenous spin probe since there is insufficient populations of free radicals to measure in natural

status. With recent development of a non-toxic spin probe, Oxo0-63, EPRI has become capable of



quantitative in vivo oxygen imaging®, which enables in vivo oncological study of cycling
hypoxia. However, due to the extremely short EPR signal lifetime (< 1ps in 10mT) of Ox0-63
and hardware constraints (e.g., gradient slewrate and RF deadtime), common imaging schemes
utilized in MRI are generally not applicable. Therefore, specialized imaging schemes must be

utilized to allow encoding of the rapidly decaying signal in EPRI.

Imaging tissue with short-decaying signal (i.e., tissue with extremely short T2* decay
such as bone and tendon) is also challenging in MRI. Recently, technological advancements of
imaging hardware in gradient and RF systems have enabled imaging of short T2* species, called
Ultrashort Time Echo (UTE)® imaging. Unfortunately, UTE imaging technique that encodes k-
space (Fourier transform of an image) from center to out using ramping up gradients is not
feasible in EPRI due to limited slewrate in the gradient system (typically < 200mT/m/ms), where
long encoding time (100us~1ms depending on desired resolution) is required to acquire k-space
data. Therefore, a constant gradient is used in EPRI, which limits the possible imaging strategy,
and hence a simple encoding method using constant gradients such as a spin echo based radial
frequency encoding similar with rotating ultra-fast imaging sequence (RUFIS)” or single point

imaging (SPI) has been used.

In MRI, an early study to image solid objects with extremely short relaxation (or signal
decay) was first performed by single point imaging (SPI, pure phase encoding) in 1985°.
However, in SPI each point in k-space must be individually encoded, making 3D imaging an
order of magnitude slower than conventional techniques. Due to the long acquisition time
required, SPI is often denounced as an expensive and obsolete technique in MRI. However, in
EPRI, SPI has recently shown utility for in vivo characterization of tissue oxygenation®’. In the

MR literature, SPI has also recently been revisited as a hybrid technique to improve the imaging



of short T2* species®.

This thesis explores novel uses of SPI in EPRI and MRI. The major developments are

summarized below.

1.1 Development of single acquisition quantitative SPI for EPRI

In SPI, images can be consecutively obtained through phase encoding time delays to
estimate the transverse relaxation parameter (T,*)’ and thus characterize tissue oxygenation in
EPRI oxygen imaging. A new technique using SPI was developed to synthesize k-space in the
temporal domain to maintain effective k-space bandwidth and thus reduce the impact of Gibbs
ringing artifact, which allows single acquisition measurement of the transverse relaxation
parameter to enhance temporal resolution (e.g., at least 3x faster in EPR oxygen imaging). My
abstract regarding this method was first introduced in the preceding of International Society for
Magnetic Resonance in Medicine (ISMRM) 2013 annual meeting, and the journal paper was

published in Magnetic Resonance in Medicine (MRM) '° in 2013.

1.2 Development of accelerated SPI for EPRI

To further enhance spatio-temporal resolution of EPRI, a new imaging scheme was
developed, which benefits from a new sampling pattern, bilateral k-space extrapolation, and
model-based compressed sensing reconstruction. In this method, undersampled k-space data are
combined through temporal domain, and remaining reconstruction errors are effectively
suppressed using compressed sensing techniques based upon principal component coefficient
maps''. T introduced this method in the MRS & Other oral session in ISMRM 2014 annual

meeting, and magna-cum-laude was awarded to this work. The relevant journal paper was



published in MRM'? in 2015.

1.3 Development of rapid and robust gradient measurement technique using
dynamic SPI

Accurate knowledge of the k-space trajectory is critical for artifact-free MR imaging,
particularly in non-Cartesian imaging. In this method, a new gradient measurement technique
based on single point imaging (SPI) was developed, which allows simple, rapid, and robust
measurement of k-space trajectory. In the proposed technique, the zoom-in/out effect of dynamic
SPI is utilized for k-space trajectory measurement. First, 1D SPI data are acquired from a
targeted gradient in each axis, and then relative FOV scaling factors between encoding times are
found, which represents relative k-space position. Improvements in image quality are
demonstrated for UTE, spiral, and ramp-sampled bipolar gradient echo imaging. Moreover, a
gradient impulse response function (GIRF) that characterizes a gradient system with linear time
invariant (LTI) concept was measured in three different MR systems using the proposed method
and applied for image reconstructions. I presented this method in Mapping & Manipulating
Fields electronic poster session in ISMRM 2016 annual meeting. The relevant journal paper was
published in MRM'" in 2016. A patent application describing this method was filed through

WAREF on October 12, 2015.

1.4 Development of ramped hybrid encoding for MRI

In hybrid UTE imaging, SPI is used to acquire data in central k-space that are missing
during RF transmitter/receiver recovery time (deadtime), while frequency encoding is used to
rapidly acquire k-space data in a center-out direction, where gradients are ramped before the RF

excitation to allow faster encoding that is crucial in UTE imaging to improve image quality for



short-lived signals. However, this can introduce undesirable phenomena such as slice selectivity,
chemical shift artifact, and blurriness of short T,* species. The proposed Ramped Hybrid
Encoding (RHE) resolves these issues and allows improved imaging of short T,* objects
compared to other conventional UTE or ZTE imaging schemes. I introduced this new imaging
scheme in Novel Pulse Sequences & Trajectories oral session in ISMRM 2015 annual meeting,
and summa-cum-laude was awarded to this work. The relevant journal paper was published in

MRM" in 2016

1.5 A Novel MR-based attenuation correction for PET/MR using RHE
Recently, ultrashort TE imaging based MR-based attenuation correction (MRAC) has
been proposed in literature to overcome the intrinsic difficulty in MRI to resolve bone contrast
and hence enable more reliable estimation of attenuation map. However, the long acquisition
time required for UTE imaging still remains challenging. In this study, we proposed a novel,
rapid dual echo method for UTE based MRAC, which allows segmentation of bone, air, fat, and
water with high spatial resolution (Imm?®) in a single scan with extremely short scan time

(35sec). A manuscript describing this method is currently under preparation.

1.6 Highly efficient bi-component T2* mapping of knee based on RHE

T2* analysis is used in musculoskeletal imaging to characterize tendon, meniscus, and
cartilage in human joints. With the development of high performance gradient systems, ultrashort
time echo (UTE) imaging has become more feasible, allowing robust bi-component of short and
long T2* tissue components. Many studies have been performed to realize robust and clinically
feasible bi-component T2* imaging, but the long acquisition time required to obtain multiple

echo images remains challenging. In this study, we developed a novel, rapid imaging scheme for



bi-component T2* analysis, based on ramped hybrid encoding (RHE) that allows robust bi-
component T2* estimation within a single scan. A manuscript describing this method is currently

under preparation.

1.7 Overview of the dissertation

In this dissertation, SPI is explored in the two aspects of different imaging modalities,
EPRI and MRI. In Chapter 2, the background of EPR and MR imaging are reviewed. In
Chapter 3, the single point imaging scheme is reviewed. In Chapter 4, a single acquisition
single point imaging based EPRI method using k-space extrapolation is introduced. In Chapter
5, an accelerated single point imaging based EPRI method using bilateral k-space extrapolation
and compressed sensing reconstruction based on principal component analysis (PCA) is
described. In Chapter 6, dynamic SPI based gradient measurement technique is presented. In
Chapter 7, RHE, a novel UTE imaging scheme for MRI, is explored. In Chapter 8, MR-based
attenuation correction for PET/MR imaging utilizing RHE is presented. In Chapter 9, highly
efficient bi-component T2* mapping of the knee based on RHE is described. In Chapter 10, the
main findings of this dissertation are summarized, and remaining issues for future works are

discussed.



Chapter 2. Background

2.1 Physics of EPRI and MRI

2.1.1 Nuclear magnetic resonance / electron paramagnetic resonance

In natural state without external electromagnetic force, an unpaired electron or an
unpaired proton has ' spin that generates a magnetic moment, which creates a small but

measurable magnetization as following equation.

n=vSs (2.1)

, where u is magnetic moment, y is the gyromagnetic ratio, and S is the spin angular momentum.
For example, the gyromagnetic ratio (y/2m) of 'H and electron are 42.58 MHzT"' and -28.02
GHzT™ respectively, where electron has 658x higher gyromagnetic ratio than proton. Other
atomic nuclei such as ° He, 13C, 15N, 170, 19F, 3]P, 129X e also have non-zero spin and thus exhibit
magnet resonance phenomenon; however, for clarity we will focus only on electrons and the

protons in this thesis.

In absence of an external magnetic field, each individual proton or electron spins about
its own axis, generating a magnetic moment. However, net magnetization, a total sum of u’s,
becomes zero since the individual magnetization of each nuclei is oriented in random direction.
To harness this magnetization, an external magnetic field is applied, where the direction of By
field is conventionally considered as the ‘z’ direction. In presence of this By field, protons or
electrons precess (or wobble) about the z-axis in a parallel or anti-parallel direction, resulting in
precessing magnetization (Figure 2.1 (a) and Figure 2.1 (b)). The frequency of precession called

Larmor frequency is determined by the following equation.



Note that electrons spin and precesse in opposite direction to protons, as the opposite sign
of gyromagnetic ratio implies. Naturally, there are slightly more populations in a parallel (+z)
over anti-parallel (-z) direction since spins in anti-parallel direction have higher energy state than
spins in parallel direction, resulting in small but effective net magnetization along z-direction.
The number of nuclei or electrons in parallel or anti-parallel direction is described by Boltzman

distribution as following equation.
— = e kT (2.3)

, where N and N. denote the number of spins in anti-parallel and parallel direction respectively,
k is Boltzman constant, and T is the temperature in Kelvin. The resultant net magnetization is

given by

Y2h?NoBo

pye (2.4)

My = Zh(N, —N_) =

, where Nj is total number of spins, and £ is Planck constant. My is the net magnetization, also
called equilibrium magnetization. Note that the magnetization increases with By, implying that

the more signal can be obtained with higher magnetic field.

2.1.2 RF excitation and free induction decay

To measure the net magnetization, electromagnetic wave (RF pulse) with resonance
frequency w,, is applied perpendicular to the z-axis. With the application of this RF wave (Figure
2.1(c)), the magnetization rotates about this additional field, B;, by absorbing the

electromagnetic energy, and flips onto the x-y plane. The frequency of this precession can be



described by the following equation.
wy = yB; (2.5)

Flip angle, a, is determined by magnitude of the B, field and duration of applied RF
pulse. For example, with constant B, field and a duration of RF pulse 7, a flip angle ¢ = Tw, =
Ty B, 1s obtained. Given the flip angle a, transverse magnetization in x-y plane is calculated as
M,,(0) = Mysina , while the longitudinal magnetization along z-direction is M,(0) =

M, cos a.

Once a desired flip angle is achieved, the RF pulse is cut off immediately, and then
flipped magnetization returns back to equilibrium magnetization, emitting absorbed energy back
in the form of electromagnetic wave, which is called relaxation (Figure 2.1(d)). The relaxation

occurs independently in two folds, in z direction and on x-y plane, which are called T, and T,

Spin z Spin z
magnetic magnetic
moment Mz moment Mz

w,=YB,

B, B, By By

(a) Electron (b) Proton

FID

(c) RF excitation (d) Relaxation
Figure 2. 1. EPR and NMR. Precession of (a) electron and (b) proton, (c) RF excitation, and relaxation.
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recovery respectively. During the recovery, the transverse magnetization can be measured by
receiving the emitted electromagnetic wave (RF signal) oscillating with Larmor frequency w,.
The signal can be modeled as the following equation with time constant T, characterizing the

signal decay in transverse plane.

t
M,y (£) = My, (0) e Tze'®ot (2.6)

In reality, due to imperfect imaging environments such as inhomogeneous By field and
magnetic susceptibility, the transverse magnetizations are dephased with a certain probabilistic
distribution, and the signal decay is accelerated. The contribution of the unknown, miscellaneous

dephasing factors are modeled as an additional time constant T,” as following equation.

1 1

—\ =+t . _L* .
M, () = M,y (0) e <T2 TZ) e'®ot = M, ,(0) e Tze'®ot 2.7
Xy xy y

The total signal decay above is called T>* decay, T,* relaxation, or free induction decay

(FID). Larmor precession term, e!“o', can be removed by assuming that observer is in a

coordinate system rotating with w, called rotating frame.

2.2 Imaging
2.2.1 Overview of EPRI/MRI hardware

In EPRI and MRI, a Fourier transform based pulsed imaging system is commonly used
because of its efficiency, where a broad band RF pulse is applied to simultaneously excite all
magnetization in region of interest, and spatially encode to localize individual magnetization.
There are three essential elements for the Fourier transform based pulsed MRI or EPRI: a main

magnet, a RF system, and a gradient system. A main magnet is used to generate homogeneous
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external magnetic field, By, which is commonly 1.5-7T in MRI and 10-20mT in in vivo EPRI. In
MRI a superconducting magnet is commonly used to obtain high and homogeneous By fields,
while an electromagnet is used in EPRI due to low By field requirements. Active or passive
shimming is standard in a MR system, while no shim is typically incorporated in a EPR system

yet.

A RF system governs transmission and reception of RF signals, which operates at the
Larmor frequency w,. In MRI, various RF coils specialized in different body parts are used for a
clinical use such as a head coil, a knee coil, a wrap coil, and a chest coil other than a body coil
installed in magnetic bore. In EPRI, a coil attached to a small resonator is commonly used. An
extensive review of the RF coils utilized in EPRI and MRI is not possible here. The reader is

referred to these articles'* 2 for further review.

A gradient system is composed of an X, y, and z gradient, which generate linearly varying
magnetic field superimposed on By in each direction. A Helmholtz coil for z-gradient and a
saddle coil for x and y gradient are commonly used®'**. Strength of the gradient is controlled by
a waveform generator, depending on hardware specifications such as a slew rate (temporal
change, in a unit of mT/m/sec) and a maximum gradient amplitude (spatial change, in a unit of

mT/m). Gradients are used for encoding k-space.

2.2.2 Spatial encoding

In pulsed EPRI and MRI magnetizations within the desired field of view (FOV) are
simultaneously excited by RF pulse (B;), and a sum of total signals over space is received. In
MRI and EPRI, Fourier transform based encoding is used, where data acquisition is performed in

spatial frequency domain (k-space).
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Without a gradient field applied, there is ideally no phase term in the transverse

magnetizations observed in rotating frame (Figure 2.2(a)), where the acquired signal is the sum

of all magnetizations over the FOV. This can be interpreted as the DC component, represents a

center of k-space. With a gradient magnetic fields turned on (Figure 2.2(b)), a linearly grading

magnetic field (Gx Tm™) is superimposed to By field which slightly changes resonance

frequency, resulting in a phase shift in transverse magnetizations, M,. The phase shift at spatial

position x after time t elapsed can be calculated by ¢>(x, tp) = [yxG,(t)dt. Therefore, now we

get a sum of phase-modulated signals as following.

S(tp) = fM(x)ei¢(X,tp) dx = fM(x)eifnyx(t)dt dx.

, which can be interpreted as the Fourier transform at the point ky in k-space.

JvGx(t)d )

Sk,) = fM(x)e_lzn( am dx = [ M(x)e 2™k dx,

(a) Gradient
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Figure 2. 2. Spatial encoding. (a) Wlthout gradient and (b) with gradient
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The encoded k-space point is determined by k, = i [ yG,(t)dt. By using various Gy’s,

we can encode other points in k-space. N linearly scaled Gy’s are commonly used to encode N
different points in the first dimension (here x-axis) in k-space. This is called phase encoding, in
which one k-space position (in one axis) is encoded per each TR (time repetition: time interval
divided by each RF excitation). Phase encoding (Figure 2.3(b)) is commonly followed by
frequency encoding (Figure 2.3(c)), where k-space encoding is performed with gradient turned

on. The k-space position in the frequency encoding direction changes over encoding time 7 as
ink, = i fOT yG, (t)dt. To encode 3D k-space, three gradients are simultaneously applied to

move k-space encoding position to the desired position where frequency encoding begins, and

then frequency encoding is performed in the desired trajectory.

2.2.3 Image reconstruction

Once a k-space is acquired, an image can be reconstructed by inverse discrete Fourier

transform. In the case that k-space samples are not on the Cartesian grid (non-Cartesian),

DAQ ky
" ( [ 1

> TX/RX A A A A A A A A

|—J > (a) z gradient
> kx
(b) x gradient
I 1> (c)y gradient ,"
/ "' ¥4 NN
Pulse sequence diagram K-space trajectory

Figure 2. 3. An example of 2D Cartesian encoding (Gradient echo imaging) (a) slice selection in z-direction, (b)
phase encoding in x-direction, and (c) frequency encoding in y-direction. Note that in (a) slice selection is
performed by applying effective z-gradient during RF excitation, which results in selective excitation along z-
direction, depending on RF bandwidth and gradient strength.
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NuFFT?* or convolution gridding* is commonly used to get Cartesian k-space. In this thesis, we

utilize a convolution gridding method for non-Cartesian reconstructions.
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Chapter 3. Single Point Imaging

3.1 Theory
3.1.1 Conventional single point imaging

Single point imaging (SPI), which is also known as a constant time imaging, was first
proposed to image solid objects by Emid and Creyghton in 1985°. In conventional SPI a k-space
is purely phase encoded using constant gradients and a broadband RF pulse, where the phase
encoding gradient is linear scaled from —Gmax to Gmax with equi-spaced encoding steps over
TRs as shown in Figure 3.1. Note that a single k-space data point is acquired in each TR at a
constant phase encoding time delay, t,, where a desired FOV or spatial resolution is achieved.

FOVs of SPI images are calculated using a well-known FOV equation for phase encoding as

DAQ

[ ]
RF |_
Tx/Rx

I Desired
resolution

HAHHQAFAAA FID

Gradients

"« Sampled at same TE
e k-space

trajectory

Figure 3. 1. Single point imaging
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following.
FOV(t,) = 2rN/(y [,” G(t)dt) (3.1)

, where G(t) denotes gradient shape that is a function of encoding time, t. In the convention SPI
where constant gradients are used with maximum phase encoding gradient amplitude, Gmax, a

FOV at t, is calculated as following equation.

Fov(t,) = —— (3.2)

ytpGmax

In the conventional SPI, only one image at t,, is commonly acquired. SPI imposes longer

Deadtime
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k-space
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Figure 3. 2. Dynamic single point imaging
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encoding time than frequency encoding. For example, to obtain NxN or NxNxN Cartesian k-
space, SPI requires N times longer scan time. Therefore, SPI is not a popular imaging scheme in
MRI. However, owing to the k-space data acquired in a constant time, image quality and spatial
resolution in SPI are not limited by readout bandwidth or T,* relaxation effect (or T>* blurring
effect) as in frequency encoding. Moreover, SPI is more robust to magnetic susceptibility

artifact.

3.1.2 Dynamic single point imaging

Dynamic SPI, termed by Jang and McMillan®, harnesses temporal data discarded in
conventional SPI. In dynamic SPI, multiple single point images are consecutively obtained with
highest readout bandwidth (e.g., sampling interval = 2pus in a recent MR system and 4ns in EPR
system). Figure 3.2 shows a simple example of dynamic SPI, where data are acquired after RF
coil deadtime until the end of the encoding gradient. Most important goal in dynamic SPI is to
enable reliable T2* parameter estimation by utilizing the high-resolution temporal data. One

challenge to achieve the goal is time changing FOV or spatial resolution as shown in Figure 3.2.

Moreover, in EPRI where matrix size is limited (typically smaller than 21x21x21), strong
Gibbs ringing artifact is exhibited with the pattern changing over phase encoding time delays in
dynamic SPI, resulting in oscillation in the pixelwise temporal data, which needs to be address
for accurate T2* estimation. In Chapter 4 and 5, novel methods to solve the issues are presented,
where dynamic SPI images with same FOV and time-invariant Gibbs ringing artifacts are

obtained for reliable T2* parameter estimation in EPRI.

In conventional SPI in MRI, it is common to place a broadband RF pulse and perform

encoding at constant part of a gradient as in EPRI, which simplifies calculation of TE with
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Figure 3. 3. FOV correction in dynamic SPI. (a) PSD, (b) SPI images with native FOV, and (c) FOV corrected
images

desired spatial resolution. However, theoretically any shape of gradient can be used for SPI,
which results in error in FOV if actual shape of a gradient waveform is not measured correctly.
In dynamic SPI, accurate estimation of actual gradient shape is more important since inaccurate
estimation of gradient shape can deviate temporal data, misleading T2* estimation, as describe in

the following section.

3.1.3 FOV correction in dynamic SPI

In Dynamic SPI, accurate FOV correction is prerequisite for parameter fitting since the
FOV correction corrects for not only size of subject but also voxel intensity. For example, let’s
think about a simple case shown in Figure 3.3(a), where a circular object is imaged with 2D

dynamic SPI using constant gradients with maximum phase encoding gradient amplitude, Gmax.
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Let’s assume there is no T2* decay over encoding (T2* is infinite). Even though there is no
signal decay inside object, the obtained SPI images show different intensity since voxel size
changes over encoding, depending on prescribed SPI gradients. For example, FOV at TE=t; will
be 2x larger than that at TE=t, if where t;=2t;, according to equation 3.1. Therefore, pixel
intensity in the SPI image at TE=t; will be 4x higher than the image at TE=t, since voxel size is

4x larger at TE=t; as shown in Figure 3.3(b).

Now, we want to rescale the object (or rescale FOV) at TE=t; to match with the object
size at TE=t,. Then, a rescaling factor=2 can be determined using following equation based on

equation 3.1.

2N
t1G t 2t
scale(ty, t,) = 5= = t—z = t—l = 2. (3.3)
ytaGmax 1 1

If the scaling factor is correctly estimated, the pixel intensity of object at t; will decrease
to 25% of original intensity after scaling since now the pixel size is 4x smaller, matched with the
intensity of the image at t, as shown in Figure 3.3(c). However, if the scaling factor is incorrectly
estimated, it will distort signal intensity in the scale-corrected image at TE=t;. For example, the
scaling factor is estimated as 1.9 instead of 2, the resultant pixel intensity will be now 27.7% of
original intensity after scaling, which causes 10.8% error (overestimation in intensity) in pixel
intensity. In the case of 3D imaging, this error will be more significant, which causes 16.6%

error (overestimation in intensity) in the example above.

In the case of using constant SPI gradients, this error will be negligibly small since FOV
estimation is trivial. However, when an arbitrary shape of gradient is used, accurate measurement

of gradient waveform is necessary. In Chapter 6, we present a novel way to measure gradients
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Figure 3. 4. Conventional SPI-based EPR oximetry. (a) FOV curves in dynamic SPI with 3 different maximum
phase encoding amplitudes, and (b) T2* estimation.

based on dynamic SPI.

3.2 Related works
3.2.1 EPR oximetry

Due to the extremely short T>* decay in EPR oximetry, SPI has been recently revisited as
an effective imaging scheme’?°. In the methods, multiple data acquisitions are performed with
different maximum phase encoding gradient amplitudes (G;, Gz, Gs,...,Gy). Then, data
acquisition time point in FID, t,(1), in the data acquisition using Gmax=G; can be found based on

the following equation.

2N

tp(i) = GFOV’ 1=1,2,...,n (3.4)

, where FOVp denotes a desired FOV that is kept same between different data acquisitions.
Typically, three data acquisitions (n=3) are performed due to the long scan time. Figure 3.4(a)
shows how FOV changes over phase encoding time delays in three different Gmax’s (8, 10, and
12mT/m). Then, three SPI images with a same FOV (10mm in Figure 3.4(a)) is used for T2*

estimation as shown in Figure 3.4(b).



21

More advanced methods based on dynamic SPI that enable EPR oxygen imaging with a

10,12

single acquisition reduce the total scan time by at least a factor of 3x °, which is described in

Chapter 4 and 5.

3.2.2 MRI

In MRI, SPI has been explored in literature’” >>. One application of SPI has been for
industries to image solid materials with short T,* decay such as concrete, ceramic, or cement,
where scanning time was not an important factor like it is in the clinic”. Recently, hybrid
encoding based on SPI has been lime-lighted again for clinical imaging scheme®>*. In the hybrid
encoding, SPI is used to enable fast radial encoding, where central part of k-space is encoded by
SPI. An advanced hybrid encoding scheme'” and its applications are demonstrated in Chapter 7,

8, and 9.

There have been studies to use SPI concept (or pure phase encoding) to measure actual

gradient waveform?>~>*°

, to benefit from SPI’s robustness to T2* decay effect. More advanced
and rapid method has recently been introduced in literature, using dynamic SPI*’, which is

described in Chapter 6.
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Chapter 4. Single Acquisition Single Point based EPRI

4.1 Introduction

Electron paramagnetic resonance (EPR) is a spectroscopic technique that measures the
magnetic moment of unpaired electron systems. Through the use of paramagnetic spin probes,
EPRI has surfaced as a promising non-invasive technology for dynamically imaging in vivo
tissue oxygenation, where linewidth or R,* is proportional to pO,”">*. Knowledge of the spatial
distribution and dynamic changes of tissue oxygenation allows identification of critical
intratumoral hypoxic regions where hypoxic tumor cells show high resistance against radiation
and chemotherapy”*. Image quality in EPRI benefits from the use of single point imaging (SPI)
techniques due to extremely short spin-spin relaxation times’. The SPI scheme acquires the entire
free induction decay (FID) signal for a single point in k-space under static phase encoding
gradients. Though SPI requires long acquisition time due to point-by-point phase encoding, it is
possible to obtain better imaging quality with less susceptibility artifact’®*'. Additionally, the
signal may be sampled over an extended time range allowing quantification of relaxation

parameters.

One notable characteristic of SPI is the “zoom-in” effect resulting in decreasing field of
view (FOV) and enlargement of the object as time delay increases®. This phenomenon inhibits
the direct fitting of pixelwise T,* since co-located pixel position changes over time. Therefore,
conventional acquisition techniques in EPRI using SPI techniques have required repeated
imaging experiments with differing maximum gradient amplitudes (typically 3) to secure
multiple images. Images can be reconstructed at different phase encoding time delays (tp) with

identical FOV allowing estimation of T2*7, which, however, reduces the achievable temporal
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resolution. In related MRI techniques, the chirp-z transform has been previously used to
reconstruct single-point images into images with a consistent FOV and perform T,*

1,42
measurement9’3 ’

. In this paper, we describe the use of gridding techniques to reconstruct
images with equal FOV. However, equal FOV methods alone are not sufficient to reliably

estimate T>* due to k-space truncation artifacts inherent in the low-resolution of EPR images.

The true object in MRI and EPRI is continuous, thus discrete sampling itself is
windowing of the true k-space. It is from this sampling window that Gibbs ringing occurs in
these modalities. At sufficiently high matrix sizes (e.g., conventional MRI resolution of
256x256), this ringing artifact is minimal (high in frequency). However, due to time constraints
imposed by the SPI acquisition, EPRI acquisitions are limited in spatial resolution. Limited
acquisition matrix size results in truncation of a significant portion of high frequency
components in k-space, resulting in unavoidable and significant Gibbs ringing artifacts in
reconstructed images that are difficult to remove and impair the quality of image as shown in
Figure 4.2. Similar artifacts are apparent in magnetic resonance spectroscopic imaging®**,
which utilizes a similar resolution. In SPI, as images are reconstructed at different phase
encoding time delays (t,), the spatial frequency of ringing artifact increases as the FOV decreases
and the degree of truncation decreases. This time-variant ringing artifact inhibits accurate T,*
estimation as it generates irregular oscillations in the reconstructed FID signal. To resolve this
problem, we have implemented a k-space extrapolation method that improves image quality over
time by propagating the high frequency components in a cascading manner, similar to the
recently reported multi frame SPRITE method utilizing the chirp-z transform®'. Note that Gibbs

ringing is not eliminated; however, it remains constant in the reconstructed images to allow

improved and more reliable estimation of T>* and hence accurate measures of oxygenation.



24

4.2 Methods

4.2.1 Reference FOV and scaling factor

The zoom-in effect of SPI, shown in Figure 4.2, can be expressed with the following

equation.
FOV(t,) = 2m/(y.t,AG) 4.1)

where AG is incremental gradient step, y. 1s gyromagnetic ratio of the electron, and t, is the
phase encoding time delay following the RF pulse. Let reference FOV, FOV(t.f), denote the
desired FOV that images will be reconstructed into. When selecting the reference FOV, it is
desirable to consider using the FOV that minimizes excessive interpolation. Typically this would
suggest that the middle t, should be used; however, due to the implementation of the k-space
extrapolation method described below, we chose FOV(t.f) to be equal to the final FOV in order
to maximize the spatial resolution of the ensemble images. Once the reference FOV is
determined, scaling factor at current time delay t, is estimated as given with equation (4.2),

which will be used in subsequent gridding.

s(t,) = FOV(tyer)/ FOV(t,). 4.2)

To reconstruct images with a constant FOV, we employed the well-known convolution
gridding methods using a Kaiser-Bessel kernel”*’. The sampled k-space data were gridded to a
new k-space with the inter-sample distance scaled by the scaling factor, s(t,). Note that in the
current EPRI spectrometer, deadtime depends on the saturation and recovery of the preamplifier
following the application of the RF pulse, where recovery is generally faster with higher gradient
magnitude. Due to the nonlinear characteristic of recovery in preamplifier, it is difficult to

accurately estimate the actual deadtime. When deadtime is incorrectly estimated, FOV and FOV
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Figure 4. 1. Correction for FOV scaling factor. (a) Uncorrected FOV scaling factor vs. corrected FOV scaling

factor, and (b) Difference between images reconstructed at the first time delay (760 ns) and the last time delay
(1360 ns), with uncorrected (left) or corrected (right) FOV scaling factor. To compensate for FID between two
images, each image was normalized by its average intensity.

scaling factor, s(t,), are also incorrectly estimated, and hence images are reconstructed at
different FOVs as seen in Figure 4.1 (b). To correct the scaling factor, we used nonlinear
optimization (Nelder-Mead Simplex) to automatically determine the optimal scaling factor s(t,)
that minimized the difference between the reference image and current image, both reconstructed
using the gridding mentioned above. Figure 4.1 (a) shows the estimated scaling factors and
corrected scaling factors obtained using the abovementioned method. Figure 4.1 (b) shows
difference between images reconstructed at the first time delay and the last time delay with

estimated or corrected scaling factor.

4.2.2 T,* fitting

Once images with equal FOV are secured, pixelwise T,* may be estimated by fitting the

reconstructed FID signal to the following FID equation.



26

M = Myexp (—t/T3). (4.3)

In this study, we used linear least squares fitting to estimate T,* using the log linearization of the

FID data.

Unfortunately, gridding alone is not sufficient to allow accurate quantification of T,*. In
practice, due to the low resolutions used in EPRI, images are corrupted by Gibbs ringing due to
truncation as a result of the narrow k-space sampling bandwidth. This matter is further
complicated by the time-decreasing FOV, and the time-increasing k-space sampling bandwidth

of SPI, which results in an increasing frequency of Gibbs ringing artifacts as phase encoding

Reconstructed
with native FOV

Reconstructed
with equal FOV

k-space

t=760ns t =960 ns t=1160ns t=1360ns

Figure 4. 2. Time-variant FOV and Gibbs ringing in SPI. 3-tube phantom data was reconstructed into native
FOV (top) or equal FOV (bottom). Gridding was used to obtain images with equal FOV. Note that in both cases,
the frequency of ringing artifact increases with time.
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time delay increases. Figure 4.2 shows images with increasing time delay and characteristic
time-varying ringing artifact, which complicates T,* fitting for images regridded to a consistent
FOV. Although methods have been proposed to alleviate Gibbs ringing artifacts in MRI by

. 47-52
extrapolation®’™

, 1t 1s difficult to apply these techniques to EPRI due to its inherent low-
resolution. To address this issue, in the next section we explore a k-space extrapolation method

that enforces spatially-invariant Gibbs ringing across phase encoding time delay to enable a more

robust measurement of tissue oxygenation status.

4.2.3 k-Space extrapolation

As described above (as shown in Figure 4.2), the frequency of Gibbs ringing changes
with sampling bandwidth in k-space. Thus, if we can keep sampling bandwidth same, then we
can achieve time-invariant Gibb ringing artifact for all reconstructed images. To do this, k-space
from the later time delays (with smaller FOV, and higher spatial resolution) can be extrapolated

to the k-space from earlier time delays (with larger FOV, and lower spatial resolution).

Figure 4.3 (a) shows the concept of k-space extrapolation method used herein, which
propagates high frequency coefficients in later k-spaces to earlier k-spaces in a cascading
manner. The following equation is used to determine the size of the region to be filled with

propagated data, Nijeq, where N is the matrix size of k-space.

Npiea = | N (1= FOV (tref) /FOV (8,)) | (4.4)

Based on equation 4.4, a masking window is constructed for each k-space, which is used
to combine k-spaces. When constructing masking windows, a merging filter can be applied to
smooth the edge of mask, to avoid abrupt changes in k-space. This was implemented by

convolving a 3x3 spatial averaging filter with the masking window. The propagated data is
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Figure 4. 3. k-Space extrapolation. (a) Concept of k-space extrapolation (phase encoding times, tps > tp3 > t; >
t,1), and (b) Reconstructed images with application of k-space extrapolation. Note that the k-space extrapolation
method makes similar Gibbs ringing at different time delays.

multiplied by a scaling factor to compensate for inter image T,* decay, where the scaling factor
is determined by the ratio of the maximum coefficient in each k-space. To test different methods
of k-space extrapolation, we tested implementations without scaling, using scaling as described
above, and using scaling with a merging filter to ensure a smooth transition between the original

and extrapolated k-space. As seen in Figure 4.3 (b), similar pattern of ringing artifact emerges at
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different time points when k-space extrapolation method is applied.

4.2.4 Linewidth and pO; quantification

In EPRI, oxygen concentration (pO;) can be quantified based on the linewidth of the spin

probe that can be expressed with sum of two terms, LW' and LW, as following equation.

LW =LW' +LW, = LW’ + a X p0, (4.5)

where LW' denotes sum of oxygen-independent LW terms and LW, denotes oxygen-dependent
LW broadening that is linearly proportional to pO,. In EPRI, LW (full width at half maximum

height, FWHM) can be calculated from T,* by

LW = 1/(2802 n T,) mGauss. (4.6)

Since LW can be estimated by fitting the sampled FID data, a pO,-LW calibration curve can be

fitted by imaging samples with known pO,.

4.2.5 Experimental setup

To evaluate the capability of quantitative oxygenation measurement using the abovementioned
techniques, a computer simulation, a calibration phantom test, and an in vivo imaging study were
performed. To simulate the calibration phantom experiment, synthetic EPRI images with much
higher resolution than conventional EPRI acquisitions (255x255) were generated using
MATLAB (The Mathworks, Natick, MA). The simulated data consisted of 3 tubes with different
T,*’s (200ns, 160ns and 110ns) that respectively correspond to approximately 3%, 30%, and
90% oxygen levels according to our tube phantom calibration result. T>* shorter than these was
not taken into account since current EPR scanner does not allow imaging of objects with

extremely short T>* due to the relatively long deadtime of RF transmitter/receiver (usually
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longer than 200ns). Moreover, our interest is in detecting hypoxia rather than imaging highly
oxygenated object, hence simulation was performed with object oxygenated less than 90%.
Simulated decay curves were generated for 300 points using a sampling rate of 5ns. To simulate
SPI encoding, inverse gridding was used to sample k-space with a 49x49 matrix with a spreading
Dirac comb function to simulate the zoom-in effect. To create a reference standard for the
simulation, the same 3-tube data was generated as above without a time-decreasing FOV (zoom-
in effect), which does not require equal FOV reconstruction or k-space extrapolation. For both
datasets, the SNR was set to 150 at 800ns (comparable to real experimental results) and the same

level of noise power was applied to the entire FID.

Details regarding the specifications of the EPRI spectrometer have been previously
published®>. For the tube phantom experiment, 3D EPR data was obtained using three-tube
phantom comprised of three tubes containing 2 mM Oxo0-63 (GE Healthcare, Waukesha, WI)
bubbled with respectively 0%, 2% and 5% oxygen. Data was encoded using three orthogonal
phase-encoding gradients incrementally ramping in 19 equal steps from —8 to 8 mT/m, resulting
in 19x19x19 phase-encoding steps. Data points were encoded at constant time, every Sns after
the minimum RF recovery dead time (360ns). 4000 averages per phase encoding point and an
interpulse delay (TR) of 5.5 us was used. Pixelwise T>* was estimated and the mean T,* from
each tube was used to calibrate %-oxygenation to T,* as a first order polynomial using linear
least squares’, which was later used in the in vivo experiment to quantify tissue oxygenation. The
calibration was calculated across a range of phase encoding time delays of 400 ns in duration,
and at an extended range of 600 ns. In addition, datasets obtained under various phase encoding
gradients ranging from 8 to 13 mT/m were tested to verify the influence of the strength of phase

encoding gradient field on T>* estimation. Time range [800 ns, 1200 ns] was used for the test.
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For the in vivo experiment, 3D EPR data was obtained from a SCC (squamous cell
carcinoma) tumor bearing leg of a C3H mouse. Animals (Frederick Cancer Research Center,
Animal Production, Frederick, MD) were housed in a climate controlled room and fed ad
libitum. Tumor (SCCVII) cells were injected subcutaneously as a single suspension of 106 cells
in the right hind leg. Tumors grew to 1.5 cm diameter (~1.8 cm’ in volume) in approximately 10
days. All in vivo experiments were carried out in compliance with the Guide for the Care and
Use of Laboratory Animal Resources (National Research Council, 1996) and approved by the
National Cancer Institute Animal Care and Use Committee. Mice were anesthetized by
isoflurane (1.5%) inhalation and mounted prone with hip positioned downwards on a home built
transmit-receive resonator coil. Breathing rate (60 = 10 per min.) was monitored by a pressure
transducer (SA Instruments, Inc., Stony Brook, NY). Core body temperature was maintained at
37 £ 1 °C by a steady flow of warm air. A 30 gauge needle was cannulated into the tail vein and
extended using an optimum length of polythene tubing to administer the Ox0-63 spin probe (GE
Healthcare, Waukesha, WI). Gradient step size was set to 19x19x19 (Gpax = 11.4 mT/m) and

other settings were set identically to the three-tube phantom data acquisition.

4.2.6 Data Processing

Using the aforementioned methods, T>* was fit over varying ranges of phase encoding
time delays to determine the dependency of chosen time range upon the accuracy of T,*
estimation. For each time range, the latest time delay/minimum FOV was used as the reference
FOV. Images were reconstructed in reverse order, from the largest time delay to the smallest
time delay, and high frequency components were propagated to the earlier time delays, as
explained above. With serial images of differing time reconstructed over a time range, pixelwise

T,* was estimated by fitting the data to the equation 4.3 using linear least squares of the log-
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linearized equation, where the estimated slope represents -1/T>*, and the resultant T,* map was
converted into a LW map. For the tube calibration, the pixelwise LWs were grouped into each

tube, and an average LW for each tube was used to generate a pO,-LW calibration curve.

4.3 Results

4.3.1 Simulation results

To evaluate how accurately our proposed method estimates pixelwise T,*, we simulated
SPI data for three tubes with different T>* (200 ns, 160 ns and 110 ns respectively for upper,
lower-left and lower-right tube). Figure 4.4 (b) shows two FID curves reconstructed at point A
with or without application of k-space extrapolation method. The oscillation caused by time-
changing Gibbs ringing was clearly eliminated by application of the k-space extrapolation
method. With time range [250 ns, 650 ns], the estimated T,* of three tubes of the reference
standard was 199.93 + 0.32 ns, 160.00 = 0.24 ns, and 110.49 + 1.89 ns, respectively. The
estimation of T,*’s using gridding with k-space extrapolation was 198.53 &+ 3.29 ns, 160 = 2.13
ns, and 111.91 £ 4.89 ns, respectively. Using gridding without k-space extrapolation the
estimates were 20691 + 18.30 ns, 164.55 + 11.61 ns, and 111.79 + 5.60 ns, respectively.
Application of k-space extrapolation made the T,* map more spatially consistent while the
unprocessed T,* map was severely distorted by the time-varying ringing artifact, with the
estimated T>* map and the resultant histogram are shown in Figure 4.4 (c),(d),(e). Table 4.1
shows the performance of three different strategies in extrapolating k-space: using raw data with
no scaling, applying a scaling factor and applying scaling and a merging filter. As the root mean
squared error shows, scaling is required for accurate T,* estimation, and the application of a

merging filter further improves the accuracy of estimation.
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Figure 4. 4. Simulation result. (a) Reconstructed image, (b) FID curves at position A, (c) T,* map and the
resultant histogram (without using k-space extrapolation), and (d) T2* map and the resultant histogram (using k-
space extrapolation). (e) T,* map and the resultant histogram (using the reference standard). Time range [250 ns
650 ns] was used. Note that the k-space extrapolation method reduces oscillation in the FID curve in (b), and
hence more reliable T,* estimation is possible.

>

Time range (ns) Root mean squared error (ns)
timin timax Range Without scaling With scaling Scaling + merging filter
200 600 400 29.9 4.5 44
250 650 400 24.9 4.0 4.0
300 700 400 20.6 4.8 4.3
350 750 400 18.2 6.1 5.6
400 800 400 17.5 8.5 7.8
200 800 600 20.0 6.4 6.1

Table 4. 1. Evaluation of k-space extrapolation strategies. As the root mean squared errors show, scaling is
required for k-space extrapolation to perform well, and the merging filter improves accuracy of T, estimation.
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Figure 4. 5. Tube phantom result. (a) Visualization of reconstructed image (at 750 ns), (b) FID curves at position
A, (¢) LW map and the resultant histograms (without k-space extrapolation), and (d) LW map and the resultant
histograms (with k-space extrapolation). Note that Gibbs ringing effect shown in (c) is greatly alleviated by
applying k-space extrapolation in (d).

4.3.2 Tube phantom results

Table 4.2 shows quantitative result of tube calibration obtained using various time ranges.
Since oscillation is not perfectly removed from the FID data in practice, presumably due to noise
sources other than Gibbs ringing, as seen in Figure 4.5 (b), LW may show time range
dependency if the time range used to compute T>* is too short. In Table 4.2, slopes for the 400 ns
time range are distributed within 5.36 = 0.15 mG/% and y-intercepts are distributed within
537.39 + 5.23 mG, with a coefficient of variation of 2.79% and 0.97%, respectively, indicating a
stable estimation of T>* across a wide time range. We determined the pO,-LW calibration curve
for the following in vivo experiments using the larger 600ns time range reconstruction (slope =
5.35 mG/% y-intercept = 549.59 mG). Figure 4.5 (¢),(d) shows two 3D LW images and the
resultant histograms estimated respectively using gridding alone and gridding with k-space

extrapolation within a time range of [750 ns, 1350 ns]. As seen, k-space extrapolation enables



minT (ns) maxT (ns) Range (ns) Slope (mG/%) Y-i(nntqeéc)ept R’
750 1150 400 5.58 531.69 0.9943
800 1200 400 5.41 535.64 0.9906
850 1250 400 533 535.92 0.9658
900 1300 400 5.26 537.85 0.9774
950 1350 400 5.20 545.84 0.9993
750 1350 600 5.35 549.59 0.9803
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Table 4. 2. Calculated LW fit with various time ranges using k-space extrapolation. The slopes and y-intercepts
show little variation according to time ranges.

Phase encoding Avergge Average LW | Average LW
gradient amplitude LWin in Tube 2 in Tube 3
Tube 1
(ImT/m]) (mGauss) (mGauss) (mGauss)
8 534.73 547.98 562.08
Gridding 9 546.88 554.18 569.86
with 10 544.40 545.84 569.93
k-Space 11 544.29 550.30 568.37
extrapolation 12 539.70 548.98 567.00
13 543.87 553.07 571.65
Conventional 8
10 546.72 551.16 572.08
method 12

Table 4. 3. LWs calculated using gridding with k-space extrapolation under various phase encoding gradients or
using conventional method. Time range [800 ns, 1200 ns] was used for gridding with k-space extrapolation.
Three datasets obtained under phase encoding gradients -8~8 mT/m, -10~10 mT/m and -12~12 mT/m were used
to implement the conventional method.

more stable LW estimation less affected by Gibbs ringing. Table 4.3 shows the result of LW

estimation obtained using gridding with k-space extrapolation under increasing phase encoding

gradient and amplitude and the conventional multiple gradient method implemented using 3

different phase encoding gradients. As the result shows, gridding with k-space extrapolation

allows LW estimation as accurate as the conventional method, regardless of the strength of phase

encoding gradient field.
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Figure 4. 6. In vivo result. (a) Experimental setup, (b) Reconstructed images shown in log scale, and (c)
Estimated pO, maps with different slices of anatomy. Note that gridding combined with k-space extrapolation
preserves high frequency details even at early time delays comparing to gridding alone in (b). Note that hypoxic
region can be localized with the estimated pO, maps in (c).

4.3.3 In vivo results

Figure 4.6 (b) shows images reconstructed at different time delays using gridding
combined with k-space extrapolation. The k-space extrapolation method maintains Gibbs ringing
and more notably preserves the high frequency details in the reconstructed image. The resultant
pO, maps are shown in Figure 4.6 (c), which are estimated using several slices of reconstructed
3D image as shown in Figure 4.6 (a), with k-space extrapolation. The pO, maps enable

localization of hypoxic region where SCC tumor cell is embedded. The detected hypoxic region
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shows pO; near 10 mmHg.

4.4 Discussion

The implementation of our gridding-based k-space extrapolation technique, and other
similar techniques using the chirp-z transform®' have similarities to the keyhole method and
time-resolved techniques that have been explored in MRI’*°. These techniques use varied
approaches to k-space substitution to enable improved image acquisition rate while maintaining
voxel resolution. One substantial difference from the method described herein is that such
techniques are typically used to image dynamic objects where fully acquiring the data would
result in an acquisition time where physiological relevant information might be missed. Here, the
early phase encoding delay images depict differences of only hundreds of nanoseconds in the
evolution of the EPR signal. Because this range is miniscule with respect to the overall time it
takes to acquire an EPR image, there will be no loss in physiologically relevant information in
the extrapolated k-space. The only difference is related to T,*-related signal loss in the
extrapolated regions, which is minimized by extrapolating only the temporally neighboring phase
encoding time delays. This should not result in blurring as the T>* times of the EPR tracers have

been shown not to be resolution limiting in practice using SPI acquisitions’.

A substantial advantage of this new method is that it allows quantification of T,* from a
single dataset. Other techniques have used repeated experiments with differing maximum
gradient amplitudes (typically 3 different amplitudes are chosen) to secure images with equal

FOV at different phase encoding time delay®’*

, which usually takes 7.5 minutes to acquire
image data with 19x19x19 gradient steps®. By using the technique presented herein, temporal

resolution can be improved by a factor of 3. Furthermore this new technique allows T,* to be
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calculated over an extended time range, with many data points (120 as performed above), to
allow for a more accurate parameter estimation. Because tumor hypoxia is known to fluctuate on

30-60 second time intervals®®®

this new technique will allow better characterization of hypoxic
components of the tumor microenvironment. Conversely, because SPI EPR is limited in temporal
resolution as it is a pure phase encoded technique, the improved temporal resolution can be used

to improve spatial resolution by factors of 1.7 and 1.4 for 2D and 3D imaging, respectively, for a

3-fold improvement in temporal resolution.

4.5 Conclusion

In this chapter, we described a technique to allow reconstruction of SPI EPR images at a
consistent FOV. Further, we implemented a k-space extrapolation approach to demonstrate a
new technique for pO, quantification method that requires only a single image acquisition. With
simulation and tube phantom experiment, we have verified that gridding combined with k-space
extrapolation is capable of reliable pO, quantification with enhanced temporal resolution (by a
factor of 3), which enables higher temporal resolution to resolve pO, fluctuations in dynamic

EPR imaging or increased spatial resolution with equivalent temporal resolution.
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Chapter 5. Accelerated 4D Quantitative Single Point EPR

imaging Using Model-based Compressed Sensing

5.1 Introduction
Electron Paramagnetic Resonance Imaging (EPRI) is a non-invasive imaging technique
that measures the spatial distribution of unpaired electrons, akin to protons in MRI. Owing to the

recent development of biologically compatible spin probes®*

, EPRI has emerged as a
promising non-invasive imaging modality capable of dynamically and quantitatively imaging in
vivo tissue oxygenation. However, due to extremely short spin-spin relaxation times, slice-
selective imaging and conventional frequency encoding techniques are difficult to achieve and
single-point imaging (SPI) techniques are often utilized to improve image quality®>. In single
point EPRI (SP-EPRI), gradients remain constant during excitation, and data is acquired
immediately after transmit dead time until no signal remains. Thus SP-EPRI is rich in the

spectral domain, but inherently suffers from reduced spatial and temporal resolution due to the

time needed for a globally phase-encoded acquisition.

SPI also exhibits a “zoom-in” effect due to the use of constant gradients, where k-space
samples spread and objects enlarge (as FOV decreases) at increasing phase encoding time delays.
Recently, we proposed a method based on gridding termed k-space extrapolation (KSE) to
maintain FOV across all phase encoding time delays and to improve the reliability of parameter
estimation'®. Although this method improves temporal resolution (by a factor of 3) by
eliminating the need of multiple data acquisitions’ required to secure multiple images with same
FOV, further reduction in acquisition time is needed for SPI. In MRI, a myriad of techniques

67-69

have been proposed to accelerate imaging, such as parallel imaging ', partial Fourier
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reconstruction’’ (also applied to SP-EPRI’"), and compressed sensing reconstruction’”. Among
them, compressed sensing has recently surfaced as a promising method that can accelerate image

acquisition by enabling high ratio of undersampling without a loss of image quality.

Compressed sensing was first introduced in the area of signal processing and information

theory™ 7

, which was based on the idea that signals can be reconstructed from highly reduced
measurements if the signals show sparse representation. Recently, there have been many
successful efforts employing compressed sensing to medical imaging’> . Since medical images
usually do not show sparse representation by themselves (except some special cases such as

angiography), compressed sensing applications benefit from transform domain sparsity that is

achieved by transformations such as the discrete wavelet transform (DWT).

Unfortunately, the application of compressed sensing is difficult to employ in SP-EPRI
due to its small matrix size that inhibits transform domain sparsity. However, since SP-EPRI
acquires abundant data in the parameter domain (measurement of the T,* decay of the FID) and
the T,* relaxation model is monoexponential and well-known, SP-EPRI can benefit from model-
based compressed sensing techniques that simultaneously use k-p-space data in reconstructing
images. In such model-based methods, an overcomplete dictionary or principal component

analysis (PCA) can be used to sparsify the acquired data and improve T>* estimation’***®!.

In this study, we improved our previous KSE technique to add parameter domain
reconstruction and further enhance spatial and temporal resolution in SP-EPRI. The improved,
bilateral k-space extrapolation (bi-KSE) allows more sample points to be secured in a target k-
space by bilaterally extrapolating k-space samples from the neighboring k-spaces. In addition, a

3 zone sampling strategy was utilized for which a different sampling criterion was applied to
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Figure 5. 1. High degrees of partial Fourier sampling with conjugate symmetry can be utilized in SP-EPRI.

each zone while taking advantage of the large degree of conjugate symmetry possible in EPRI.
Model-based compressed sensing using PCA"™ was implemented to further improve accuracy of
T,* parameter estimation. During the reconstruction process, aliasing artifacts caused by
undersampling are iteratively suppressed by promoting sparsity of PC coefficient maps in the

DWT domain.

5.2 Methods
5.2.1 k-Space Sampling Strategy

An incoherent sampling trajectory is a necessary component for sparsity-promoting
reconstruction techniques where noise-like aliasing artifacts are desirable. The trajectory used
herein utilizes conjugate symmetry and randomized sampling. Owing to pure phase encoding
and low BO field (10 mT), image phase in SP-EPRI is more tractable than in MRI’'. The
reconstructed images in Figure 5.1 show a high degree of conjugate symmetry is possible in SP-
EPRI. Therefore, we exploited conjugate symmetry when prescribing randomized sampling

patterns by avoiding all symmetric points. Further, we designed a hierarchical random sampling
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scheme to effectively maximize the number of k-space samples in an undersampled acquisition.

Figure 5.2 (a) shows an example of the proposed hierarchical random sampling scheme,
where k-space is segmented into 3 zones. Zone 1 is a fully sampled central region. Zone 2 is a
region where k-space is undersampled by a factor of 2, which is converted to a fully sampled
region after the application of conjugate symmetry. This large fully sampled region is required to
maximize the performance of model-based compressed sensing explained in later section. Zone 3

1s more sparsely sampled than Zone 2. In Zone 2, k-space is uniform randomly sampled, whereas

Zone 3
(Gaussian random
sampling, sparse)

Zone 2
(Uniform random
sampling with R=2)

Zone 1
(Full sampling)

b Conventional KSE
( ) for central region
(zone 1 and zone 2)
o 9
0 0 0
0 0 0 .. : .. . bm |\\~ ) 5
oo 0| |
% N (XY oo |"m_J'W N0 -y f
)
\ \ 0 § ’

[ ForwardKSE <_ Backward KSE___ |

Figure 5. 2. (a) Hierarchical random sampling pattern with 127x127 matrix and R=8, and (b) Concept of bilateral

k-space extrapolation (bi-KSE). In (a), sampling positions are first assigned for Zone 1 or Zone 2. Then,
sampling positions are sparsely assigned for Zone 3 until the total number of sampling reaches the desired
number of points for the prescribed acceleration factor. Zone 2 will be effectively fully sampled after applying

conjugate symmetry.
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in Zone 3, Gaussian random sampling is applied. After sampling, the sampled points in Zone 2
and Zone 3 are used to estimate the samples at the symmetric position by the application of
conjugate symmetry. In this study, 10% of matrix size was used for the width of Zone 1, and the
size of Zone 2 was set to 50%, 40%, and 33% respectively for 61x61x61, 95x95x95, and
127x127x127 dataset. 40% of the matrix size was used for the standard deviation of the Gaussian

random sampling in Zone 3.

5.2.2 Bilateral k-space extrapolation

We developed a gridding technique for SP-EPRI, called k-space extrapolation (KSE), to
achieve equal FOV reconstruction with time-invariant Gibbs ringing and thereby enable more
reliable pixelwise To* estimation'’. Unfortunately, this method is not suitable for highly
undersampled k-spaces since high frequency regions will be too sparsely sampled and there exist
too few samples to be extrapolated from the later phase encoding time delays to earlier delays.
Therefore, this method has been improved by performing k-space extrapolation bilaterally as

shown in Figure 5.2 (b).

When performing bilateral k-space extrapolation (bi-KSE) with a hierarchical sampling
pattern, Zone 1 and Zone 2 do not need bilateral extrapolation since those regions are fully
sampled (Zone 2 becomes equivalent to fully sampled after the application of conjugate
symmetry). Therefore, Zone 1 and Zone 2 are extrapolated using unilateral/backwards KSE,
while Zone 3 is extrapolated bilaterally as described in Figure 5.2 (b). The extrapolated k-space
samples need to be scaled to harmonize with the target k-space, compensating for T,* decay.
This scaling factor can be approximated by simply referring to the center of k-space. However,
when performing k-space extrapolation within the central region (low spatial frequencies), small

errors in the estimated scaling factors can lead to severe distortion in image reconstruction and
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Figure 5. 3. (a) Images reconstructed from undersampled k-space (R=6, 61x61 2D digital phantom, data
reconstructed over time range [900 ns, 1300 ns]) using gridding with KSE or gridding with bi-KSE, and (b) 1D
profiles at y=29 (along the dotted line) at t, = 1300 ns.

parameter estimation. To address this issue, the scaling factor is refined iteratively so that the
Gibbs ringing pattern of the extrapolated image becomes similar with the reference image (the
one with the highest bandwidth). To evaluate the similarity between two images, the numerical
gradient of the images were used where gradient values near strong edges were discounted to
purely consider changes resulting from Gibbs ringing. The numerical gradient images were
obtained using the central differencing scheme®. The scaling factor was adjusted by evaluating
the error function that is the I;-norm of error between the target and reference gradient image,
using the Nelder-Mead simplex search algorithm as implemented by MATLAB (The

Mathworks, Inc., Natick, MA).

After bilateral k-space extrapolation, equal FOV images are reconstructed by applying

convolution gridding®>*®. Tterative density correction was used before gridding™, which is an
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indispensable process for reliable quantification, because spatial sampling density changes at
each reconstructed time delay. As the reconstructed images show in Figure 5.3 (a), bi-KSE
dramatically improves the quality of images reconstructed with undersampled k-spaces,
especially for images at later time delays (1300 ns) where reconstruction error is greatly reduced
(Figure 5.3 (b)). The proposed bi-KSE method dramatically increases available k-space samples
(74,379 vs 1,191 at 1300 ns for bilateral and unilateral k-space extrapolation, respectively) and
provides improved image quality compared to previous techniques. However, not all
reconstruction error is removed. Therefore, we employed PCA-based reconstruction to exploit
the rich spectral domain of the SP-EPRI dataset to further improve image quality and resulting

T,* estimation, as explained below.

5.2.3 Model-based compressed sensing

To evaluate compressed sensing reconstruction in highly undersampled SP-EPRI, we
have utilized PCA-constrained reconstruction’®. In PCA-based reconstruction, a training matrix
whose columns consist of training data, which consist of time series for all possible FID signals,
are used to obtain principal components. The eigenvectors or singular vectors obtained from the
training matrix (by using eigenvalue decomposition or singular value decomposition) will span

the signal subspace where true FID signals exist.

The training data is generated within a predefined T,* range and is a factor that affects
the performance of PCA-based reconstruction. Utilizing a T,* range that does not encompass the
T,*’s of targeted objects may result in a false signal space. In hypoxia imaging EPRI, the T,*’s
of Ox0-63 are distributed within a small range, approximately 400-650 ns corresponding to a
dissolved oxygen level between 5% and 0%, respectively. To encompass all possible oxygen

levels (0-100%), a T»* range of [1ns, 700ns] was used in this study.
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With the estimated T,* range [p,q] (p<q), a training matrix can be composed using the

independent monoexponential curves as equation 5.1.

e P e pH e
D=1| _t, _tr— _tr—g (5.1)
e P e Dpt1 e q
_tr _tr _tr
e p e pti e 41

Then, D is decomposed by SVD to yield singular vectors, and L significant singular vectors (L=3
or 4 was used in this study) are selected to compose matrix B. PC coefficient matrix M can be
obtained by equation 5.2, whose n-th column vector represents PC coefficient map

corresponding to n-th PC.

11,1 11,2 Il,T Bl,l Bl,Z BI,L

R 12,1 12,2 IZ,T BZ,I BZ,Z BZ,L
M=IB = ; S : ; (5.2)

IN—1,1 IN—1,2 IN—l,T BT—l,l BT—l,Z BT—l,L

IN,l IN,Z IN,T BT,l BT,Z BT,L

, where I is an image matrix containing vectorized initial images, T is the number of images, and
N is the length of image vector. Now, the model-based compressed sensing problem can be

formulated by the following equation:
M = argminy, {Z]T-=1||FT]- (MBT) — F]”z + Xk, AiPi(M)} (5.3)

,where FTj denotes the operator for discrete Fourier transform with image at time delay j, Z is

measured k-space vector at time delay j, Pi(M) is penalty based on discrete wavelet transform
(Daubechies 4, Wavelet Toolbox in MATLAB 2011b) and total variation® of PC coefficient

maps, and ; is the Lagrange multiplier that is selected differently with each PC coefficient map.
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The penalty term is calculated as in equation 5.4:
Pi(M) = llpM)Ily + a TV (M) (5.4)

, where y is a DWT transform, TV is total variation, M; is i-th PC coefficient map, and a is

tuning constant between two objectives.

In equation 5.3, the first and the second summation term in the brace represent data
fidelity and penalties respectively. In practice, calculation of the data consistency term requires
significant computational power due to repeated gridding and inverse gridding steps (to deal with
non-Cartesian k-space samples accumulated by bi-KSE), especially when dealing with large
numbers of samples in 3D imaging. To improve the speed of reconstruction, we enforced data

fidelity in the image domain rather than in the k-space domain as the following equation shows:

o~

R 2
M = argmin,, {2111 ”(MBT)j - 1]||2 + Zle/liPi(M)} (5.5)

, where (MBT)  and I’ denote j-th column vector in respectively updated and initial image
j J ]

matrix. This approximation is possible owing to the hierarchical random sampling pattern which
provides good quality image reconstruction after the application of bilateral k-space
extrapolation (as seen in Figure 5.3 and Figure 5.6 (g)). In experiments not presented herein,
image-based consistency performed as well as conventional k-space methods, likely due to the

strong performance of bi-KSE alone for undersampled acquisitions.

This optimization problem was solved using the nonlinear Polak-Ribiere Conjugate
Gradient algorithm initiated with steepest gradient and backtracking line search with contraction
factor 0.4. Once the PC coefficient maps are optimized, the image sequence can be reconstructed

by performing a linear combination of PC coefficient maps and PC vectors as equation 5.6.
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In this method, the image sequences were normalized by the maximum value of the
initial image in the sequence. By doing this, we were able to limit the effective range for
parameter setting (o, Aj, A2, A3, and A4), which can be generally applied in different experiments
without dependence on any scaling factors between datasets. The effective parameter ranges
0.1<0<1.0, and 0.1sy < A, < 0.5s;, were empirically found and used, where (sp)ji-; =
(1,2,5,10) for the k-th PC coefficient map. The selected Ax is then scaled by ||M||/||M,]| to
compensate for the scale difference between PC coefficient maps. Note that larger Ay is used for
the less significant PCs that commonly contain more noisy data. By using larger Ax we can
promote sparsity and smoothness in the corresponding PC coefficient map and thereby suppress

noise more effectively.

5.2.4 Simulation

To evaluate the capability of the proposed method for T>* estimation with undersampled
k-space, a computer simulation and a phantom experiment using SP-EPRI were performed. For
the computer simulation using MATLAB (The Mathworks, Natick, MA), synthesized SP-EPRI
images with much higher resolution (187x187x187) than conventional acquisitions (e.g.,
19x19x19) were generated based on the 3D T,* map shown in Figure 5.7 (a). From the 3D T,*
map, FID curves were simulated from Ins to 1800ns using a sampling rate of 5ns and a dead
time of 300ns. To simulate SPI encoding, inverse gridding was used to sample k-space with a
61x61x61, 95x95x95 or 127x127x127 matrix with a spreading Dirac comb function to simulate
the zoom-in effect due to constant gradients. For 2D phantom experiments, only the central slice

of the phantom was used.
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Figure 5. 4. Critical SNR. 8-fold undersampled data was used for reconstruction (127x127 matrix). SNR was
iteratively tuned by adjusting noise level to achieve the targeted SNR before performing undersampling. For

these experimental conditions, an SNR of 3 is the minimum for acceptable quality reconstruction.

5.2.4.1 Simulation - undersampling vs. reduced Averaging

The voxel size for the proposed acquisitions is 25~220x smaller than previous SP-EPRI
acquisitions, which results in a large reduction in SNR. Even for conventional resolutions, a
large number of averages (1000~8000) is typically applied in SP-EPRI to improve SNR.
Therefore, it may be also possible to accelerate imaging by simply reducing the number of
averages rather than undersampling k-space; however, this is not expected to perform well due to
the already low SNR of the data. To verify this, a simulation was performed to compare the
proposed undersampled k-space acquisition to reduced average data, with and without the
proposed PCA-constrained reconstruction. The reduced average method was simulated by
adjusting noise levels to decrease SNR by a factor of VR (R: acceleration factor attained by
reducing average). A 127x127 2D digital phantom was generated as explained above to simulate

comparable undersampled and reduced averaging datasets with R=8.

The 2D simulation was performed at the critical SNR limit for the proposed method,
where critical SNR is the lower SNR limit in the region of shortest T,>* at time delay 1300 ns that

still enables reasonable parameter estimation. For these experimental conditions, this was
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determined to be approximately 3, as shown in Figure 5.4. Simulated data with an SNR of 3 was

undersampled with R=8 and processed by the proposed method explained in the above sections.

For the reduced average method with R=8, the SNR was reduced by a factor of V8 (SNR=1.06),
and then the data were fully-sampled. The sampled k-spaces were processed with the
conventional unilateral KSE and PCA-based reconstruction. 101 consecutive k-spaces from

800ns to 1300ns were used for reconstruction.

5.2.4.2 Simulation - resolution and acceleration

The fully sampled k-spaces were retrospectively undersampled with different
acceleration factors (R) by using the hierarchical random sampling explained in the above
section. The data were generated with low SNRs to highlight the performance of the proposed
method (5 for 127x127x127, 7 for 95x95x95, and 9 for 61x61x61 k-spaces, when measured at
1100 ns). Data were acquired at R=1, 4, 6, 8 for 61x61x61 k-space; R=8, 12, 15 for 95x95x95;

R=15, 30, 60 for 127x127x127 k-space.

5.2.5 Phantom experiment

Details regarding the specifications of the EPRI spectrometer have been previously
published®>. For the tube phantom experiment, 3D EPR data was obtained using three-tube
phantom comprised of three tubes containing 2 mM Oxo0-63 (GE Healthcare, Waukesha, WI)
bubbled with 0%, 2% and 5% oxygen, respectively. Data was encoded using three orthogonal
phase-encoding gradients incrementally ramping in 61 equal steps from —40 to 40 mTm™,
resulting in 61x61x61 phase-encoding steps. 581 data points were encoded with a sampling
period of 5ns after the minimum RF recovery dead time (530 ns). 8000 averages per phase
encoding point and an interpulse delay (TR) of 10 ps was used. A total of 28,373 points

(approximately 8-fold undersampling) with a 61x61x61 matrix size were phase-encoded using
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Figure 5. 5. Data processing flowchart. (a) Bilateral k-space (bi-KSE) extrapolation, (b) gridding, (¢) PCA-based

reconstruction, and (d) pixelwise T,* fitting.

the hierarchical random sampling strategy.

5.2.6 Data Processing

Bi-KSE was performed in the peripheral region (Zone 3), and unilateral/backwards KSE
was independently performed in the central region (Zone 1 and Zone 2) in a reversely cascading
manner, as depicted in Figure 5.5 (a). The extrapolated k-spaces from each phase encoding time
delay were individually gridded into Cartesian k-space to generate equal FOV images (Figure 5.5
(b)). Then, these images were used as input to the PCA-based reconstruction (Figure 5.5 (c)).
With a sequence of final images reconstructed by using above-explained methods, T,* was fit
using a traditional T,* relaxation model for the magnitude of pixelwise transverse magnetization
(Figure 5.5 (d)). Linear least-square curve fitting was applied to the log-linearized FID curve in

which the slope and the y-intercept represent respectively -1/T,* and log(My).
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Figure 5. 6. Reduced average vs. undersampling acquisition. (a) Images reconstructed with native FOV (reduced
average), (b) equal FOV images with gridding only (reduced average), (c) equal FOV images with gridding and
PCA-based reconstruction (reduced average), (d) equal FOV images with unilateral KSE (reduced average), (e)
equal FOV images with unilateral KSE and PCA-based reconstruction (reduced average), (f) equal FOV images
with gridding only (undersampling), (g) equal FOV images with bi-KSE (undersampling), and (h) equal FOV
images with bi-KSE and PCA-based reconstruction (undersampling). 127x127 2D data with initial SNR of 3 was
simulated, and then reduced average or undersampling was applied to obtain 8-fold acceleration. In (d), high
noise in the later images are propagated to the earlier by the KSE process. Note that in the results with reduced
average T,* estimates are biased due to the severe noise resulting from reduced averages. The PCA-based

reconstruction method using undersampling (h) provides the best performance.
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Figure 5. 7. Simulation result with 61x61x61 dataset. (a) Center slice of ground truth T,* map (left), composition

of 3D T,* map (middle), and slice location (right), and (b) estimated T,* maps. Note that the estimated T,* map

is still accurate with 8x acceleration although the detail in small region E was slightly lost.

Segment A B C D E F

mean (ns) 646.92 549.89 441.69 492.76 369.05 302.77
R=38 standard deviation (ns) 2.45 2.19 5.4612 0.98 2.58 8.04
RMSE (ns) 3.93 2.19 9.94 7.30 31.06 8.50

mean (ns) 647.27 549.59 442.97 493.15 366.94 302.04
R=6 standard deviation (ns) 2.35 1.94 5.65 3.36 2.69 7.91
RMSE (ns) 3.60 1.98 9.01 7.62 33.16 8.17

mean (ns) 645.72 549.23 443.95 491.89 365.97 301.77
R=4 standard deviation (ns) 2.10 1.33 3.69 1.40 1.35 6.91
RMSE (ns) 4.76 1.54 7.08 8.23 34.06 7.13

mean (ns) 649.19 550.04 448.82 500.07 383.37 302.13
R=1 standard deviation (ns) 5.54 3.53 4.83 3.36 2.45 6.41
RMSE (ns) 5.60 3.53 4.97 3.35 16.81 6.75

Table 5. 1. Quantitative result of estimated T,* for various acceleration factors with 61x61x61 matrix size. The
result was evaluated with mean, standard deviation, and root mean square error (RMSE) within each segment.

Note that the result shows error of 1% to 2% for the segment A, B, C, D, and F, whereas it shows relatively
hisher error (arouind 10%) in seoment E. Refer to Fioure 7-a for the laheline and corresnondine resions
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5.3 Results

5.3.1 Simulation Results — Undersampling vs. Reduced Averaging

The reconstructed images and the resultant T>* maps obtained using reduced average or
undersampling are shown in Figure 5.6. Reconstructions with gridding are shown in 5.6(a),
5.6(b), 5.6(c) for reduced average data, and 5.6(f) for undersampled data. KSE is applied to the
reduced average data in 5.6(d) and 5.6(e), and bi-KSE is applied to the undersampled data in
5.6(g) and 5.6(h). PCA-based reconstruction is applied to the reduced average data in 5.6(c) and
5.6(e), and to the undersampled data in 5.6(h). As seen in the reconstructed images and the
resulting estimated T,* maps, undersampling (5.6(h)) outperforms reduced averaging (5.6(c) and

5.6(¢)).

5.3.2 Simulation Results — Resolution and Acceleration

To evaluate how accurately the proposed method estimates T,* with undersampled k-
space data, we performed computer simulations using synthesized 3D data consisting of various
T,*’s (Figure 5.7 (a)). In addition to the proposed method, a conventional k-space extrapolation
method with full sampling (R=1) was also implemented for comparison. 81 consecutive k-spaces
from 700 ns to 1100 ns with a 5 ns time interval were used for reconstruction. Figure 5.7 (b)
shows the estimated T,* maps obtained using undersampled k-spaces with 61x61x61 gradient
steps with acceleration factors of R=1, 4, 6, and 8. Table 5.1 shows the corresponding
quantitative result. Our method enabled accurate T,* estimation up to 8-fold acceleration at this
matrix size. However, the small segment E tends to be blurred due to the large voxel size. Figure
5.8 depicts how the proposed method works with larger matrix sizes. As seen, when higher
matrix size is used, the overall performance of our method tends to be improved at the same

acceleration factor (R=8) due to the larger central region and higher expected transform sparsity.
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Moreover, good quality T,* estimation with even higher acceleration factors (R=15 for a

95x95x95 k-space, and R=30 for a 127x127x127 k-space) is attainable.

5.3.3 Phantom Experiment Results

Figure 5.9 shows the T,* map estimated from prospectively undersampled k-spaces
(R=8). 91 consecutive k-spaces from 1530 ns to 1980 ns with a 5 ns time interval were used for
reconstruction. As seen in Figure 5.9, the proposed method enables reliable parameter estimation
with reduced sampling. The estimate was 684.45 + 39.10 ns, 659.79 £+ 31.11 ns, and 591.10 +
25.52 ns for tube bubbled with 0%, 2%, and 5% oxygen, respectively, which lie within the our
expected range. The estimated numbers show 4%-6% standard deviation, which is presumably
due to the system noise in the current EPR scanner. Fitted %oxygen-R,* curve showed slope of

4.68x107 (ns” %oxygen™) and y-intercept of 1.45x10-3 (ns™) with R,=0.9662.

95x95x95

R=8
127x127x127

R=15 R=30 R=60
Figure 5. 8. Quantitative results with higher matrix sizes. Note that higher matrix size enables higher

acceleration factors.
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5.4 Discussion and Conclusions

The proposed reconstruction method allows significant improvement in the spatial
resolution of single point EPRI. For example, if we acquire data with 61x61x61 gradient steps,
the full sampling scheme will require a scanning time of approximately 75.7 min (226,981 points
x 2,000 averages x 10 ps TR), whereas 8-fold undersampling will enable imaging within
approximately 9.5 min (28,373 points). Compared to methods that require multiple gradient
acquisitions (typically 3), the proposed technique represents a 24-fold increase in temporal
resolution. When using higher matrix size, we were able to achieve higher acceleration factors,
for example R=15 with 95x95x95 or R=30 with 127x127x127 gradient steps. Nonetheless, these
larger matrix sizes may not be realistic for SP-EPRI since a large number of sampled points are

still required, for example 57,158 points and 68,279 points to achieve R=15 with 95x95x95 and

800
700
-1600

-1500

Z-axis

Z=16 2=42
Figure 5. 9. Estimated T,* map in imaging experiment of three tubes of 2 mM Oxo0-63 bubbled with 0%, 2%,

and 5% oxygen. Prospectively undersampled (R=8) k-spaces from 1530ns to 1980ns were used for
reconstruction. The estimated T,* in each tube is quite homogeneous for the 0% (684.45 = 39.10 ns), 2%
(659.79 £ 31.11 ns), and 5% (591.10 + 25.52 ns) tubes.
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R=30 with 127x127x127 matrix size, respectively, which are equivalent to 19.1 min and 22.8
min of scanning time. Such scans might also operate at unrealistic signal to noise levels, despite
our methods strong performance with low SNR data (SNRs of 5 for 127x127x127, 7 for
95x95x95, and 9 for 61x61x61 k-spaces, when measured at 1100 ns were utilized). Therefore,
choosing a lower resolution (61x61x61) and moderate acceleration (R=8) enables reasonable
scanning time (<10 min) but also achieves high spatial resolution to localize hypoxic tissues.
However, with the addition of other complimentary fast imaging techniques, such as parallel
imaging, further improvements may allow higher resolution image will be able to be obtained
within reasonable scanning time, well within the probe clearance time. Improvements in SNR

will be aided by the development of phased-array coils®.

It is not unexpected that undersampling performs better than reduced averaging in SP-
EPRI. In our proposed method, the large central region is secured with a hierarchical random
sampling pattern, where the sampled k-space is acquired with a higher SNR than full sampling
would allow. Even though PCA-constrained reconstruction is applied to both sampling methods,
when the SNR falls below a critical threshold noise (and aliasing) is unable to be separated. By
applying undersampled acquisitions we can trade recoverable aliasing for improved SNR'>. Note
that our simulations comparing reduced averaging to undersampled acquisitions were performed
with R=8. For higher acceleration factors, it is not controversial to expect even greater
improvements for undersampled acquisitions compared to reduced averaging. Finally, because
the KSE techniques propagate k-space points from the periphery of k-space, they perform poorly
in instances of low SNR (Figure 5.6 (d) and (e)). This is also not unexpected due to low signal

levels in the periphery of k-space with a higher noise floor in the case of reduced averaging.

In this chapter, we have explored the methods to accelerate EPR imaging without loss of
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accuracy in the T,*/oxygen quantification. To secure k-space samples as many as possible we
have developed the bi-KSE method. Moreover, the model-based compressed sensing using PCA
has been adapted to further improve the accuracy of T,* estimation. With a computer simulation
and phantom experiment, we have verified that the proposed methods enable significant
acceleration (8-fold, 15-fold, and 30-fold accelerations respectively for 61x61x61, 95x95x95,
and 127x127x127 gradient steps), which realizes more reasonable scan time and higher spatial

resolution in the current SP-EPRI system.
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Chapter 6. A Rapid and Robust Gradient Measurement

Technique Using Dynamic Single Point Imaging

6.1 Introduction

The gradient system is an essential component in modern clinical MR imaging. It
performs temporal-spatial encoding of transverse magnetization through a spatially varying
magnetic field. Gradient waveforms can be synthesized to perform a range of image encoding
strategies including conventional Cartesian image encoding, as well as non-Cartesian
acquisitions such as radial® and spiral®® imaging. Unfortunately, there still exist many factors that

inevitably cause distortions in the realized gradient magnetic field: eddy currents®

1,92
o192 Due to

imperfection induced by the power amplifier, and mechanical/thermal vibrations
these undesired distortions, it is challenging in practice to realize the actual gradient field exactly
as prescribed, which, if the prescribed gradient is assumed during reconstruction, can result in
image artifacts (e.g., blurring, ringing, or phase error). This can be a critical issue in non-
Cartesian acquisitions, and is further exacerbated in acquisition schemes with a long readout

duration such as spiral or echo planar imaging (EPI)”***

. In these cases, the k-space trajectory is
prone to deviate from that prescribed due to accumulated error in the phase evolution resulting

from the distorted gradient.

Methods to estimate the actual gradient shape and the resultant k-space trajectory have
been previously presented in the MR literature, and can be classified as follows: Imaging based
gradient measurement (IGM) and magnetic field monitoring (MFM). In IGM, a (typically) 1D
imaging technique based on a specialized pulse sequence is exploited to measure the gradient

shape. In MFM, several NMR-based field probes are placed inside the magnet bore and used to
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record field characteristics temporally and spatially *>°*. While this provides the most direct
measurement of the gradient field, the use of additional external hardware adds complication and

expense.

According to the methodology of data acquisition, IGM methods can be further classified
into two categories: frequency encoding based gradient measurement (FGM) and phase encoding
based gradient measurement (PGM). In FGM”, off-centered selection of a thin slice is
performed to the avoid signal dephasing effect caused by gradient, followed by measurement of
the phase evolution over encoding time in the manner of frequency encoding. Although the

100,101

efficacy of this measurement scheme has been verified in many critical studies , there still

exist limitations such as the dependency on slice selection and T,* decay. Alternatively, in

previously proposed PGM methods®”*7%!%

, the phase evolution is measured at a constant (and
single) echo time after a RF pulse, which is advantageous in terms of reducing the impact of T,*

decay. However, a series of RF pulses must be applied to measure the whole gradient, which

requires extensive measurement times.

Once the gradient has been characterized, it can be used directly in image reconstruction
to improve image quality. However, such a measurement is specific to the characterized gradient
and pulse sequence parameters and is not typically generalizable to other acquisitions. To enable
more accurate output waveforms, it is routine in current generation MR systems to perform pre-
emphasis correction by inputting a filtered (or intentionally distorted) waveform into the gradient

1
subsystem'”

. Such methods rely on the assumption that gradient systems are generally
characterizable as linear time invariant (LTI) systems'®’. Unfortunately, these system-level

corrections do not realize sufficiently accurate waveforms, which may necessitate the further use

of the gradient measurement techniques described above. Thus, a more generalizable approach to
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gradient measurement is to utilize these techniques and the LTI concept to compute a gradient
impulse response function (GIRF). This approach allows estimation of the distorted gradient
shape instead of directly measuring the realized gradient. By acquiring a comprehensive
measurement of the gradient (e.g., obtained from one of the methods described above), the GIRF
can be determined as a unique finite impulse response filter, and then any gradient shape realized
in the same gradient system can be analytically predicted by convolving an estimated GIRF with

the prescribed gradient 1'%,

In this study, we have developed a new gradient measurement method utilizing 1D
dynamic single point imaging (SPI)’ performed across a range of phase encoding time delays,
which does not require slice selection, additional equipment, or knowledge about the imaged
subject. The field of view (FOV) in SPI changes over phase encoding time delay, exhibiting a
variable FOV property under an applied gradient. In the proposed gradient measurement method,
1D SPI encoding is implemented in each gradient axis by linearly scaling the amplitude of a
tested gradient with each TR (i.e., from -1x to +1x to implement phase encoding). Then, the
FOV scaling factors between different phase encoding time delays are estimated by using k-
space or image domain representations of the 1D SPI data. The FOV scaling factors represent
relative encoding positions in k-space between two phase encoding time delays, and the 1%
derivative of FOV scaling factors represents relative amplitude in the measured gradient. This

measured k-space trajectory can then be utilized in reconstruction to improve image quality.

Three gradient-intensive sequences (ultrashort time echo (UTE) *, spiral, and multi-echo
bipolar gradient echo (GRE)) were tested to evaluate the efficacy of the new SPI-based gradient
measurement scheme. In UTE, a center-out radial acquisition is used to minimize the achievable

echo time and enable contrast for species with ultrashort T>*’s. In spiral imaging, the gradient
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waveforms are simultaneously designed to operate within the peak gradient slew rate and peak
gradient amplitude limits. Finally, multi-echo bipolar GRE with ramp sampling for more robust
reconstruction in quantitative fat-water imaging is demonstrated. GIRFs were also estimated
using the proposed method, and applied to obtain an estimated k-space trajectory in UTE, spiral,

and multi-echo bipolar GRE imaging.

6.2 Methods

6.2.1 Theory

The proposed method is based on assumption that gradient distortion is a LTI function of

104

the gradient input . In the proposed technique, 1D dynamic SPI is performed by linearly

scaling with N,, steps (-1x to 1x) the entire gradient waveform along a single axis to obtain Npx1
data. Note that dynamic SPI differs from conventional SPI approaches where multiple k-spaces

are continuously acquired with a prescribed sampling rate while phase encoding gradients are

10,12,31

on Figure 6.1 (a) shows an example of a trapezoidal readout gradient to be measured, and

Figure 6.1 (b) shows the corresponding dynamic SPI encoding gradient used for the proposed

calibration technique. The FOV at phase encoding time delay (t,, the elapsed time after RF

excitation) in dynamic SPI is determined by the following equation®”'’:

TL'Np

Fov(t,) = o

(6.1)
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, where N, is the number of phase encoding steps, y is a gyromagnetic ratio, and G(7) is an
amplitude of maximum phase encoding gradient at time delay 7, for example, which is the
trapezoidal gradient with solid line in Figure 6.1(b). Figure 6.1(c) shows the RF pulse and data
acquisition window. Note that in dynamic SPI, multiple images can be acquired at every ATs
(sampling interval) which improves sampling efficiency over conventional SPI approaches.
Figure 6.1(d) shows how the SPI sampling trajectory changes, exhibiting a time-decreasing

FOV. The minimum N, can be determined by the required FOV (typically larger than the

(a) e ~.,

(b)

RF ATs

(c)

(d)

o SRR

v
—

(f)

-
N\,
k-space domain /{ Image domain
T

(8) >

Figure 6. 1. 1D dynamic SPI acquisition for gradient measurement. An example of (a) targeted gradient, (b) the
corresponding SPI encoding gradient, (c) RF transmission and data acquisition, (d) k-space trajectory, (e) image
domain SPI data, (f) k-space domain SPI data, and (g) merging filter. 1D SPI sampling can be implemented by
simple linear scaling the gradient amplitude with each TR. Note that the FOV change directly reflects the
gradient shape. The image or k-space domain data can be adaptively used for FOV scaling search, according to
the FOV at encoding time.
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diameter of imaged subject to avoid aliasing), fovg, and gradient amplitude, G(7), as in the

, where T is the end of readout. Data is acquired using the same acquisition window as desired
for imaging, and numerous k-spaces over encoding time can be obtained depending on the

sampling rate.

6.2.2 FOV scaling search

For gradient measurement, a reference point at a certain encoding time is first selected
among the SPI encoded data. Then, the relative FOV scaling factor directly reflects the relative
k-space trajectory with respect to the k-space coordinate at reference encoding time, t;, as

following equation shows:

Fov(ty) _ nyfotG(r)dr _ k(@)

FOv(t)  my JyTG(@adr T k()

FOVscale(t) = (6.3)

, where t denotes a phase encoding time delay, and k(t) is a k-space position in the unit of cycle
m™ at encoding time, t. Note that any data point can be used for the reference encoding time, t.,
however data acquired around the encoding time at which the SPI image has one-half of the
required FOV (fovy) may be desired such that both k-space and image domain 1D profiles
contain enough information (or resolution) for reliable estimation of FOV scaling factors. Two
possible approaches to estimate the relative FOV scaling factor exist: a k-space domain or an
image domain approach, which can be formulated as a minimization problem. k-Space based

optimization is shown in the following equation:
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FOV(t;)
FOV(t)

FOVscale(t) = = argming Ex (K (¢, sk), K (t,, k)) (6.4)

,where K (t, k) denotes the magnitude of k-space encoded at phase encoding time t in 1D SPI, s
is a real number that is local FOV scaling factor, and Ex is an error function between two k-
spaces. In practice since a finite number of data (Np) i1s acquired, data interpolation is used to
synthesize the scaled k-space K(t,sk) from original k-space K(t,k). Image domain optimization is

performed as follows:

FOV(t,)

FOVscale(t) = FoV(D)

= argming E;(I1(t, x/s),1(t,, x)) (6.5)

, where I(t, x) denotes the magnitude of 1D image at encoding time t, and E; is an error function
between two images. As in k-space domain, interpolation is applied to synthesize the scaled

image I(t,x/s).

The 1D profile in the image domain has more resolution (more information that can be
used in FOV scaling search) when the FOV is small (Figure 6.1(¢)), while the k-space profile
shows a broader line-shape when the FOV is large (Figure 6.1(f)). To exploit this property, the

two estimates may be combined using a simple merging filter as shown in Figure 6.1(g).

6.2.3 Absolute k-space trajectory

As shown in equation 6.3 above, the estimated FOV scaling factor, FOVscale(t),
represents the relative k-space position at encoding time t with respect to the k-space position at
the reference encoding time t,. The absolute k-space trajectory, which allows reconstruction of
the image at the prescribed FOV, can be calculated by simply scaling the relative k-space
trajectory. Most trivially, this is done by scaling the unitless measured gradient waveform to

match the prescribed gradient amplitude (e.g., in units of mTm™). Note that potentially more
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accurate scaling could utilize the GIRF-distorted gradient waveform or consider only the
plateaus of trapezoidal gradients. Alternatively, a phantom of known dimension could be
scanned to obtain this calibration if the system gradient amplitude is inaccurate or unknown. If
the targeted gradient system is well calibrated, the DC component at 0 Hz in Fourier transform of

the measured and prescribed gradient can be used to obtain the scaling factor.

6.2.4 GIRF

We have utilized the SPI-based gradient measurement technique herein to estimate GIRF,
using multiple triangular input gradients using methodology analogous to '®°. Figure 6.2(a)
shows the pulse sequence diagram depicting the input gradients used for GIRF measurement.
Note that a “pre-dephasing” gradient is prescribed before the input gradient to remove ambiguity
in FOV scaling estimation due to the large FOV when SPI data is acquired near the center of k-
space. We performed estimation of GIRF in the frequency domain (i.e., the transfer function) by

DAQ
Tx/Rx

RF

|—| DAQ
Tx/Rx

ANANY

Pre-dephaser Input gradient

(a) (b)

Gx

Gy

2

Gz

—2a N —
Tx/Rx TxRx

Q‘H”””\ Gx @—oGX
%&)OOQOU%V—' Gy —@—0 Gz
(c) (d)

Figure 6. 2. Pulse sequence diagrams. (a) GIRF estimation, (b) Ultra-short echo (UTE) imaging, (c) spiral
imaging, and (d) multi-echo bipolar GRE imaging. Note that in (d) a gradient spoiler is implemented by
stretching the readout gradient.
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dividing the measured output gradient by the prescribed input gradient after discrete Fourier
transform to calculate a transfer function of the LTI system. The estimated transfer function is

low-pass filtered to cut off unreliable, high frequency components using a reduced cosine filter.

6.2.5 Experimental setup

The imaging parameters for GIRF measurement, dynamic SPI based gradient
measurement, and imaging experiments performed on three different scanners are shown in
Table 6.1. For GIRF measurement of a 3T MR750 scanner (S1) (GE Healthcare, Waukesha, WI,
USA) utilized 21 triangular gradients with amplitude between 7 mTm™ and 33 mTm™, and a
slew rate = 200 mTm 'ms™ were used. A pre-dephasing gradient with amplitude 21.7 mTm™' was
placed with 464 us spacing before the largest input gradient. To measure the GIRF of a 1.5T
Signa HDxt scanner (S2) (GE Healthcare, Waukesha, WI, USA), 15 triangular gradients with
amplitudes equally spaced between 6.7 mTm™' and 20 mTm™ were prescribed. A pre-dephasing
gradient with amplitude 11.4 mTm™ was prescribed with 476 ps spacing before the largest input
gradient. Slew rate = 118 mTm 'ms™ was used for all triangular gradients. To measure the GIRF
of a 3T Signa PET/MR scanner (S3) (GE Healthcare, Waukesha, WI, USA), 21 triangular
gradients with amplitude between 10 mTm™ and 30 mTm™, and a slew rate = 118 mTm'ms™
were used. A pre-dephasing gradient with amplitude 21 mTm™ was placed with 588 us spacing
before the largest input gradient. GIRFs for all scanners were measured with vender provided
pre-emphasis correction turned on. A GE Healthcare 8-channel receive-only head coil was used,
and a manufacturer-provided 15 cm spherical phantom (with no internal structure) was imaged.
Total scan time to measure GIRF on each of the 3 scanners was 106 sec for S1, 75 sec for S2,

and 106 sec for S3.
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GE MR750 (S1) | GE Signa HDxt (S2) G S‘g';"S;;ET/MR
RF pulse 24ps hardpulse 24ps hardpulse 24ps hardpulse
Np 401 401 401
Flip angle (degree) 6 6 6
Slew rate (nTm"'ms™) 200 118 118
# of input gradient 21 15 21
GIRF Pre-dephaser (mTm™) 21.7 11.4 21.0
measurement .I;lpm gradients (mTm 7~31 6.7~20 10~30
Spacing (us) 464 476 588
TR(ms) 44 44 44
Sampling rate (kHz) 500 250 500
# of data points 988 378 982
RF Coil 8-ch receive only head coil
Scan time (sec) 106 75 106
3D UTE 2D Spiral 3D Ramp sampling
RF pulse 24us hardpulse Sinc pulse 24us hardpulse
Flip angle (degree) 6 30 6
Cartesian: 1.06, 1.97,
2.87,3.77
TE (ms) 0.09 242 Ramp sampling: 0.85,
1.49,2.13,2.77
Imaging Cartesian: 5.2
TR (ms) 33 13 .
Ramp sampling: 3.7
experiment Sampling rate (kHz) 500 250 500
Cartesian: 1234
# of data points 415 512
Ramp sampling: 1830
# of TR 80000 48 101x31
8-ch receive - g
. Single CH T/R coil 8-ch receive only head
RF coil only head coil coil
. Cartesian: 16.3 sec
Scan time 4min 28 sec 0.6 sec
Ramp sampling: 11.6 sec
Np 401 401 401
TR (ms) 33 13 3.7
2.94 for x-axis
Reference time, tr (ms) 0.29 ) 21
SPI-based 3.18 for y-axis
gradient Sampling rate (kHz) 500 250 500
measurement # of data points 415 512 1830
RF coil 8-ch receive only head coil
quick: 42sec
Scan time 4sec 1.5sec

extensive: 385sec

Table 6. 1. Imaging parameters. The proposed method was tested on three different clinical scanners.
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3D radial UTE imaging was performed on system S1 using a GE Healthcare 8 channel
receive-only head coil. k-Space was encoded using a center-out half radial trajectory, using the
pulse sequence shown in Figure 6.2(b). After RF excitation using a 24us hard pulse, 80,000
spokes were scanned at TE=90 ps (after RF coil deadtime) with an encoding duration of 588 ps.
The maximum amplitude of readout gradient was 35 mTm™, slew rate was 118 mTm'ms™, flip
angle was 6 degrees, sampling bandwidth was 500 kHz, and TR was 3.3 ms. SPI-based gradient
measurement was performed in the x, y, and z directions with Np = 401 using the same scan
parameters. An image was reconstructed at FOV = 24x24x24 cm and 1x1x1 mm resolution using
gridding. The brain of a human volunteer was scanned under approval from our institutions IRB,
and a 15 cm spherical phantom was used for gradient measurement as in GIRF measurement.
The scan time for UTE imaging was 4 min 28 sec, and the scan time to perform gradient

measurement for all three gradient axes was 4 seconds in total.

2D spiral imaging was performed on GE Signa HDxt scanner (S2) using the pulse
sequence in Figure 6.2(c). A single channel GE Healthcare transmit/receive head coil was used
for imaging. A sinc pulse was used to achieve 30 degree flip angle, and a single axial slice at iso-
center was obtained. 48 spiral arms with 512 readout points in an arm was encoded with a
sampling bandwidth of 250 kHz. FOV was 12x12 cm, slice thickness was 8 mm, and spatial
resolution was 1.04x1.04 mm. TR was 13 ms, and TE was 2.42 ms. SPI gradient measurement
with Np = 401 was performed in two different ways for comparison: extensive and quick. All 48
different pairs of x and y gradients were measured with the extensive gradient measurement (385
seconds), while 2 pairs of x and y gradients were measured and reproduced to estimate

trajectories for all 48 arms using a linear combination in the quick gradient measurement (42
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seconds). In the quick measurement, the readout gradients in x and y-axis in the arm with

rotational angle 6, gx(0,t) and gy(6,t), can be estimated by the following equation.
. 3
gx(6,t) = cos x gx(0,t) — sinf * gy(—-,t)

gy(6,t) = sinf * gx (g, t) + cosO * gy(0,t). (6.6)

Note that gx(0,t), gx (g,t), gy(0,t), and gy (37”,15) are measured gradient shapes, where
gx (g,t) can be interpreted as a x-gradient waveform realized in physical y-gradient, and

gy (37”, t) is y-gradient waveform realized in physical x-gradient. A 15 cm spherical phantom

was used for gradient measurement as for the GIRF measurement, and a manufacturer-provided
resolution phantom was scanned and reconstructed with the nominal and measured (extensively

and quickly) k-space trajectory.

In the experiment for multi-echo bipolar GRE imaging, non-selective 3D GRE imaging
was performed on GE Signa PET/MR scanner (S3) using an GE Healthcare 8 channel receive-
only head coil, with 2 mm spatial resolution and FOV = 6x26x20 cm. Phase encoding was
performed in x and z direction with 61 and 201 phase encoding steps, respectively, and
frequency encoding was performed in y direction. 8 vials containing 0%, 5%, 10%, 15%, 20%,
30%, 40%, and 50% fat with a T, shortening agent were used for the experiment. Two different
pulse sequences using the bipolar gradients shown in Figure 6.2(d) were used to acquire 4
gradient echoes, where the readout gradients with a longer and shorter plateau were used for the
conventional Cartesian sampling and ramp sampling, respectively. TE was 1061, 1965, 2869,

and 3773 ps for Cartesian sampling and 847, 1487, 2127, and 2767 ps for ramp sampling. The
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Figure 6. 3. Block diagram. This process is independently performed to obtain the k-space trajectory in each

gradient axis.

maximum amplitude of the readout gradient for Cartesian or ramp sampling acquisition was
respectively 22.6 mTm™ or 33.0 mTm™. Note that a gradient spoiler was applied in the readout
direction by stretching the trapezoidal gradient at the end of the pulse sequence. The minimum
TR was 5.2 ms for Cartesian sampling and 3.7 ms for ramp sampling (a 29% reduction), where
scan time was 16.3 sec for Cartesian and 11.6 sec for ramp sampling. A 24 us hard pulse with a 6
degree flip angle was used, and the sampling rate was 250 kHz and 500 kHz bandwidth for
Cartesian and ramp sampling acquisitions respectively. SPI-based gradient measurement was
performed for ramp sampling in the readout direction (y-axis) with Np = 401. The acquisition
time for gradient measurement was 1.5 sec. A 15 cm spherical phantom was used for gradient

measurement.
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6.2.6 Data processing

Figure 6.3 shows a block diagram delineating the steps in the proposed method. The acquired
data were processed in MATLAB (The Mathworks Inc, Natick, MA, USA). In the FOV scaling
factor search stage, the reference encoding time, t., is selected by referring to the nominal
trajectory. Once the FOV scaling factors are estimated in k-space and image domain, they are
combined using a merging filter. The merging filter was designed to have a linear slope in
transition, where the width of transition was prescribed to cover five data points. Then, the
absolute k-space trajectory is computed by scaling the relative k-space trajectory to physical
gradient units. After estimating trajectories for the sampled k-space data, a convolution gridding

45,46,83,108

reconstruction was performed with oversampling ratio = 1.5 and a gridding kernel

width = 5 pixels.

Note that any non-linear optimization method can be used to solve equation 6.4 and 6.5.
In GIRF estimation, UTE imaging, and ramp sampling experiments, simple unconstrained
optimization based on Nelder-Mead simplex (fminsearch in MATLAB) was used to estimate the
FOV scaling factors. In the spiral imaging experiment, bounded nonlinear function optimization
based on golden section search and parabolic interpolation'® (fminbnd in MATLAB) was used
for the FOV scaling search. The search range was set to £7% of initial guess. The nominal k-
space trajectory was used as an initial guess for the optimization in UTE imaging, and the GIRF-
corrected trajectory was used as an initial guess for spiral imaging and ramp sampling. To scale
the 1D image and k-space data in each iteration of optimization, cubic interpolation was applied.
L2-norm and negative linear correlation were used as an error function for k-space (Ex) and
image (E;) respectively. Image domain SPI data was used for GIRF estimation, while k-space

and image domain data was used for direct gradient measurement in UTE imaging, spiral
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Figure 6. 4. SPI based GIRF estimation. (a) A prescribed gradient, (b) normalized magnitude of 1D SPI images
over phase encoding time delays in the y-gradient, (c) estimated FOV scaling factors, (d) measured gradient
shape. The size of the 1D projected object in (b) directly reflects the FOV scaling factor (or relative k-space

trajectory) in (c).

imaging, and ramp sampling. To scale the unitless, relative gradient shape to an absolute gradient
shape, estimated amplitudes in plateau of the first readout gradient was compared with the
corresponding part in prescribed gradient shape in UTE imaging. In spiral imaging, entire
gradient shape was compared with the GIRF-distorted gradient shape to scale the estimated
gradient shape to obtain the correct FOV in image reconstruction. In multi-echo GRE imaging
and all GIRF measurements in three systems (S1, S2, and S3), the DC component of Fourier
transform measured and prescribed gradient waveform was used to obtain the absolute gradient

shape.

In multi-echo bipolar GRE imaging, conventional Cartesian data (non-ramp sampled
data) was directly reconstructed with no additional phase correction. Data acquired with ramp

sampling was reconstructed using the GIRF-corrected trajectory or the measured trajectory. After
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reconstructing multi echo images, Iterative Decomposition of Water and Fat With Echo
Asymmetry and Least-Squares Estimation (IDEAL) was applied to obtain fat and water

separated images''’, and the fat fraction was calculated.

6.3 Results

6.3.1 GIRF estimation

Figure 6.4(a) shows one input gradient with amplitude of 33 mTm™ following a pre-
dephasing gradient, which was used for GIRF estimation in S1. Figure 6.4(b) shows the
normalized magnitude of the 1D SPI images over encoding time obtained in y-axis, and Figure

6.4(c) shows the estimated FOV scaling factors. Figure 6.4(d) shows the measured gradient

(a) GE MR750 (S1) (b) GE Signa HDxt (S2) (c) GE Signa PET/MR (S3)
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Figure 6. 5. Estimated GIRF. Magnitude and phase of GIRF in the Fourier transform domain and the
corresponding time domain representation in (a) S1, (b) S2, and (c) S3. Note that the off-centered peak in GIRF

implies group delay in gradient system.
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shape. Figure 6.5(a),(b),(c) shows the estimated transfer function in the Fourier transform
domain and the corresponding GIRF in the time domain for three different systems, S1, S2, and
S3, respectively. The magnitude and phase of the estimated transfer functions (discrete Fourier
transform of GIRF) in the frequency domain and the corresponding GIRFs in the time domain
are shown here, which shows suppressed noise up to 20 kHz. The GIRFs were obtained by low-
pass filtering and performing the inverse discrete Fourier transform to the transfer function. The
parameters for the low-pass filter was empirically determined to suppress the amplified noise,
where full width half max was 44.4 kHz, and the transition band was 16 kHz. The off-centered
peak in the GIRF implies a group delay of approximately 8 ps for S1 and S3 and 20 ps for S2,

which matches with an empirically observed delay in the three systems in our group.

6.3.2 Ultra-short echo imaging

Figure 6.6(a) shows the log magnitude of 1D k-space obtained using SPI encoding for
gradient measurement in the x, y, and z-axis, and Figure 6.6(b) shows the magnitude of the
corresponding 1D SPI images that are normalized by the maximum amplitude in each encoding
time. Under the mono-polar trapezoidal gradient, the encoded 1D k-space shows time-narrowing
line shape over encoding, while the 1D image shows a time-broadening shape, where the both k-
spaces and images exhibit time-decreasing FOV. Figure 6.6(c) shows the GIRF measured
trajectory, the SPI measured trajectory, and the nominal trajectory in physical x, y, z-axis, and a
zoomed-in view, where group delay is shown between the nominal and the measured k-space
trajectories. Figure 6.6(d) show the UTE images reconstructed with the nominal, GIRF, and SPI
measured trajectory for a sagittal and axial slice. The image reconstructed with the GIRF and SPI
measured trajectory shows good quality with no visible imaging artifact such as ringing, while

the image with the nominal trajectory exhibits ringing and mis-aligned image components.
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Figure 6. 6. 3D UTE imaging. (a) Log magnitude of k-spaces and (b) normalized images over encoding time in
SPI data used for gradient measurement, (c¢) nominal, GIRF, and SPI measured k-space trajectory, (d) sagittal
and axial slice of the image reconstructed with nominal trajectory, GIRF, and SPI measured trajectory. In the
images with measured trajectory, no ringing artifact is visible, which is present in the images with nominal

trajectory. Note that the coil component is also visible in the images with GIRF and SPI measured trajectory.

6.3.3 Spiral imaging

Figure 6.7(a) shows the nominal, GIRF measured, and SPI measured trajectory. Figure
6.7(b) shows the image reconstructed using the nominal trajectory, and Figure 6.7(c) shows
images reconstructed with the delay-corrected trajectory where a group delay of 20 ps was used.
Figure 6.7(d) shows images reconstructed with trajectory estimated using GIRF. Figure 6.7(e)
and (f) show images reconstructed using the trajectory obtained by extensive and quick
measurement, where all 48 spiral arms were measured independently or only 4 arms of

measurement, respectively. Figure 6.7(g) shows a difference image relative to the image using
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Figure 6. 7. 2D Spiral imaging. Reconstructed images with (a) Nominal and measured trajectory, image
reconstructed with (b) nominal trajectory, (c) delay-corrected trajectory, (d) GIRF trajectory, (e) extensively
measured trajectory, (f) quickly measured trajectory, and (g) difference image with respect to (e). Note that all
48 arms were individually processed in the extensive measurement in (e), while only 4 basis arms were

processed in quick measurement in (f).

the extensively measured trajectory in Figure 6.7(e). The image reconstructed with the delay-
uncorrected trajectory shows a severe blurring artifact, while the image with delay-corrected
trajectory shows reduced blurring artifact, however there is remaining blurriness artifact as
indicated by the red arrows. Images reconstructed using the GIRF-trajectory, extensively
measured trajectory, or quickly measured trajectory show a much better result, while images
with the measured trajectory show sharper edges as indicated by yellow arrows. The quick
gradient measurement shows a comparable result to the full measurement as shown in the
difference image in Figure 6.7(g), with 8.3% of the scan time compared to the extensive

measurement time.
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SNR 0% fat 5% fat 10% fat 15% fat 20% fat 30% fat 40% fat 50% fat
(%) (%) (%) (%) (%) (%) (%) (%)
10.4 12.2 13.0 13.8 132 21.5 34.6 473
Cartesian 55.3
+13.2 +21.5 +2.3 +3.1 +2.8 +2.1 +1.6 +1.8
Ramp sampling
37.9 423 46.7 50.4 48.1 43.5 42.6 48.2
with nominal 45.9
+1.9 +1.7 +1.9 +1.8 +2.0 +2.1 +1.7 +1.7
trajectory
Ramp sampling s6.1 5.9 6.2 9.9 14.8 19.7 29.0 39.6 50.6
with GIRF ' +2.1 +2.0 +2.4 +2.6 +2.6 +1.6 +1.5 +1.7
Ramp sampling
5.4 6.2 10.3 15.3 19.8 29.1 39.8 50.3
with SPI-based 56.4
+2.1 +2.2 +2.3 +3.0 +2.5 +1.7 +1.5 +1.8
measurement

Table 6. 2. Fat fraction. Conventional Cartesian imaging shows apparent error in fat fraction estimation due to
the artefactual phase caused by mis-aligned k-spaces between gradient echoes. SNR was measured with

separated water in all tubes.
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6.3.4 Multi-echo bipolar GRE imaging

Figure 6.8 shows fat and water separated images and the resultant fat fraction map
obtained by three different imaging and reconstruction schemes: conventional Cartesian imaging,
ramp sampling with nominal trajectory, ramp sampling with GIRF, and ramp sampling with SPI-
based gradient measurement. The measured gradients show the raw data (unfiltered) of the
estimated gradient waveform. The SNR measured from the separated water in all tubes, the mean
and standard deviation of estimated fat fraction in each tube are shown in Table 6.2. In
conventional Cartesian sampling, erroneous estimation of fat faction is shown due to the phase
error between the echoes acquired with positive and negative readout gradient. In ramp sampling
with GIRF-estimated or SPI-measured trajectory, the estimation of fat fraction is significantly
improved, which is likely due to a combination of the improved accuracy in the k-space
sampling position that center-aligns k-spaces across echoes as well as the reduced echo spacing,
while use of the nominal trajectory yields an incorrect estimation of fat fraction with lower SNR
than in ramp sampling with the corrected trajectory. The SNR measured in ramp sampling was
comparable with the SNR in Cartesian sampling. The estimated fat fraction shows both GIRF

and SPI-based gradient measurement method allow robust measurement of the readout gradient.

6.4 Discussion

The proposed SPI-based gradient measurement technique does not require any special
hardware unlike other reported methods for PGM and MFM that need specialized equipment
such as NMR field probes(11,12,20,39). While these methods have been shown to be viable
techniques to measure gradient waveforms, the use of external hardware adds complication and
may be cost prohibitive. In the proposed method, a 15 cm spherical phantom was used to

perform gradient waveform measurement; however in theory, any object (including a human
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patient) can be used to perform gradient measurement. However, the imaged object does require
definite boundaries (determined either by object size, coil sensitivity, or slice selectivity) to
allow computation of the relative scale factors. The proposed method is robust to rigid motion of
the object in two ways: the k-space scheme that only use magnitude that does not influenced by
motion, and short measurement times that mitigate possible motion during the scan. The
proposed SPI-based gradient measurement technique requires very minor modifications to the
targeted pulse sequence, requiring only an additional loop during which the to be measured
gradient amplitude is scaled for each gradient channel measured. Thus, this gradient waveform

measurement can be added into existing sequences with little effort.

Compared with previously reported PGM293536

methods, where the number of RF pulses
determines the resolution of estimated trajectory or gradient, the proposed technique allows
higher resolution sampling of the gradient waveform (determined by the sampling bandwidth of
the readout event). Therefore, the k-space position can be directly estimated from the
measurement without any interpolation using the identical sampling rate for image acquisition.
Furthermore, acquisition of the gradient measurement can be extremely rapid when the scan TR
is short (e.g., ~1.5 sec per gradient axis). Furthermore, the use of the proposed methodology to
perform in vivo measurement is feasible, where, for example, a database gradient measurement
(e.g., obtained using a phantom) could be used to provide robust estimates for rapid gradient
measurements. In vivo gradient measurement time for longer readouts (e.g., spiral and echo-
planar imaging) could be further reduced by sub-sampling the number of phase encoding steps,

particularly when a database calibration measurement is used. Note that in vivo calibration could

be challenged when static field gradients due to magnetic field distortion is significant.
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One additional feature of the SPI-based gradient measurement is that k-space trajectory
can be independently recovered without knowing the history of previous k-space position.
Theoretically, the FOV itself in a 1D SPI image is a direct and independent measure of k-space
position as implied in equation 6.1. This allows flexibility to measure k-space trajectory in any
type of pulse sequences even when the central region of k-space is not acquired as in hybrid
encoding®"® and zero TE imaging''*'". Furthermore, in the SPI-based method, noise or mis-
estimation at earlier encoding times is not propagated to the later estimation since no integration

or cumulative summation is required to obtain k-space position.

As demonstrated herein, the proposed gradient waveform method can be used to improve
the quality of reconstructed images. This is particularly important for non-Cartesian imaging
where small k-space trajectory errors lead to significant artifacts as seen in Figure 6.6. Another
application is the use of the technique to measure trajectories in more conventional Cartesian-
type acquisitions. In Figure 6.8, improvement is seen in chemical-shift encoded imaging
(IDEAL) with a multi-echo bipolar readout by reconstructing to a measured trajectory which
reduces artefactual phase due to an inaccurate k-space trajectory''®''®. Furthermore, ramp
sampling reduced the total scan time by approximately 30%. The ability to perform a robust and
rapid gradient measurement technique to enable ramp sampling, particularly for oblique slice
orientations would be beneficial to many MRI sequences (e.g., fast gradient echo, echo-planar
imaging, balanced SSFP, fast-spin echo) to provide moderate scan time reductions (20-30%)

with minimal effect upon SNR.

The key idea of the proposed SPI-based gradient measurement technique is based on the
assumption of linearity of the gradient distortion. This is typically a reasonable assumption when

distortions are mostly caused by eddy currents that linearly scale with gradient amplitude.



82

However, these conditions may be violated in certain instances such as gradient operation close
to the limit of slew rate and amplitude, resulting in nonlinear distortion in the realized gradient
shape, which is a limitation of the proposed method based upon this LTI assumption.
Furthermore, the demonstration of the proposed method relies upon accurate gradient amplitude
calibration (which is already a requirement to enable geometrically precise MR imaging). If mis-
calibrated, global geometric distortions will be apparent relative to the physical x, y, and z
gradient errors. However, this scaling can readily be compensated for by imaging a phantom

with known geometry (for which the proposed method would be particularly well-suited).

Concomitant field effects are another nonlinear factor that cause deviations in the k-space
trajectory. These time-variant, non-linear magnetic fields depend on gradient amplitudes and are
inversely proportional to field strength. The concomitant field effects become more problematic
in imaging with long readout duration and preparation gradients (e.g. velocity encoding). Despite
the efficacy of the proposed gradient measurement method as shown in the experiments herein, it
is difficult to directly measure the concomitant magnetic field or higher order fields since in the
proposed method (and other FGM and PGM methods) the gradient measurement is performed
independently in each axis, based on the linearity assumption of the gradient system. In practice,
concomitant magnetic fields are modeled as second order approximations and several successful
correction methods have been proposed and implemented **''*7'?!. Thus, these additional
correction terms could be readily applied to gradient measurement data obtained using the

proposed method.

The proposed technique can be used as a calibration technique to estimate the GIRF
without external hardware. As shown hereinbefore, the data collection for GIRF requires only

25~35 sec per gradient axis, making it very feasible for measurement during routine (e.g., daily
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or weekly) quality assurance imaging. In the present experiment using triangular gradient blips,
the spectral resolution is inherently limited, and hence it may not be sensitive to long lasting
eddy currents which is not visible in the estimated GIRF. This could potentially be overcome by

107,122

applying frequency sweep methods , which we will explore in future work.

6.5 Conclusions
In this study, we implemented a robust and rapid gradient measurement method based on
dynamic SPI, which allowed accurate measurement of k-space trajectory with high fidelity and

no need of additional equipment to improve reconstructed image quality.
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Chapter 7. Ramped Hybrid Encoding for Improved
Ultrashort Echo Time Imaging

7.1 Introduction

MR imaging of objects with extremely short transverse relaxation times such as
bone"'*'#7% brain'?*'?’, lung'"'?*'?° or teeth''*"** is challenging due to the rapid signal
decay of these tissues and the physical limitations of MR hardware. Particularly, performance of
the gradient system is limited in slew rate and amplitude and thus is a critical factor in the design
of Ultra-short TE (UTE) acquisitions. Conventional nonselective frequency-encoded 3D UTE
(FE-UTE) methods utilize a radial trajectory to rapidly frequency encode k-space, by encoding
the free induction decay as rapidly as possible in a “center-out” acquisition’. In these methods,
data encoding must wait for the signal to recover from transmitter/receiver switching time
(deadtime) to obtain non-corrupted central k-space data. However, overall encoding time is not
optimal because the gradient must be ramped from zero to the maximum amplitude after

deadtime.

Other techniques such as Back-projection Low Angle ShoT (BLAST)"

, Rotating Ultra-
Fast Imaging Sequence (RUFIS)', or Water- And fat Suppressed Projection MR Imaging
(WASPI)"** perform encoding under constant gradients within a short TR, eliminating the need
for gradient ramping during readout. Although this imaging scheme allows simple and fast
imaging, data cannot be collected during the receiver deadtime, thus complicating acquisition of
the central regions of k-space. To address this issue, methods such as Zero TE

(ZTE)! 12412312930 a5 q Pointwise Encoding Time Reduction With Radial Acquisition

(PETRA)® have been proposed. While ZTE and PETRA are highly similar, ZTE utilizes an
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algebraic reconstruction to estimate missing central regions of k-space and PETRA utilizes
single point imaging (SPI) to encode the central regions of k-space. Unfortunately, the maximum
gradient amplitude in these acquisitions is limited by unwanted slice selectivity due to bandwidth

constraints of the RF pulse**!''>!

. Similarly, the family of Sweep Imaging with Fourier
Transform (SWIFT)?* " or Single-Point Ramped Imaging with T, Enhancement

(SPRITE)*"***"7 whose encoding gradients are turned on during RF excitation also exhibit

unwanted slice selectivity issue.

In PETRA/ZTE, gradients are set to the maximum encoding amplitude, Gpn,y, before the
application of a short, high-bandwidth RF pulse, as depicted in the pulse sequence diagram
shown in Figure 7.1 (a), to save the time required to ramp gradients and thereby shorten total
encoding time. However, the effective gradient during RF excitation results in an unwanted slice

selection effect, where the magnetization is not uniformly flipped, but subject to a non-uniform
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Figure 7. 1. Slice selectivity (a) PSD as used in PETRA/ZTE, and (b) Excitation profile of a 24ps hard pulse,
Note that the degree of slice selectivity increases with encoding gradient amplitude in (b).
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(e.g., sinc-shaped) excitation profile as shown in Figure 7.1 (b). The effective orientation and
width of the slice selection change according to the orientation and amplitude of the encoding
gradients. Therefore, encoded k-space data can be considered to come from an object with
different slice selection, resulting in blurring and artifacts in the reconstructed image, manifested
radially from the gradient isocenter. This artifact gets stronger as Guax increases, and a larger

region of the image is affected by the blurriness.

This blurriness can be avoided by simply using an encoding gradient with low amplitude.
However, in that case longer encoding time is required to achieve the desired spatial resolution,
resulting in two significant limitations. First, the long encoding time reduces the spatial
resolution of short T,* species'®, resulting in blurring and loss of detail in the very components
that are being imaged. Second, this results in chemical shift artifacts of the second kind
(intravoxel fat-water interference), which results in an out-of-phase appearance, particularly at
3T and above. Shorter RF pulses with higher bandwidths can be used to alleviate the slice
selection artifact; however, this limits the maximum attainable flip angle and thus reduces SNR
and the capability to achieve T;-weighted contrast. Several methods have been proposed to
address the slice selection problem by performing post processing or modulating RF

34,115,133
pulse .

In this chapter, we have developed a new encoding scheme, termed ramped hybrid
encoding (RHE), which allows reduced per-excitation encoding time and minimized slice
selectivity effects to improve the sharpness of high resolution UTE imaging. In RHE, gradients
are held at low amplitude (e.g., below 7mTm™ with a 24ps hard pulse for FOV=200mm) during
RF excitation to minimize slice selectivity, and ramped to the maximum amplitude immediately

following RF pulse. A 1D SPI-based gradient calibration method was developed to estimate the
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true sampling trajectory of the encoding gradients. The efficacy of RHE was evaluated by
comparing it to other UTE imaging schemes in computer simulation and phantom and in vivo

experiments.

7.2 Methods
7.2.1 Ramped Hybrid Encoding

We propose RHE as a technique to allow the greatest flexibility compared to currently
available methods in controlling unwanted slice selectivity while optimizing overall encoding
time for ultrashort TE imaging. Figure 7.2 (a) shows the pulse sequence diagram for RHE. In
RHE, an initial gradient during RF excitation, Ggyr, is chosen to be small enough to minimize
slice selectivity (by considering the limitations of the frequency profile of the RF pulse). After
application of the RF pulse, the gradient is ramped to the maximum encoding amplitude, Gpax, at
the highest slew rate possible to minimize sampling duration. Data are acquired after RF

deadtime until the desired spatial resolution is achieved.

As in PETRA, we have implemented RHE to use SPI to measure the data in central k-
space that frequency encoding omits during RF deadtime. Central k-space is encoded by
Cartesian SPI, and the outer k-space i1s acquired by frequency encoding as shown in Figure 7.2
(b). Note that in Figure 7.2 (a) the solid line in the pulse sequence diagram (PSD) shows gradient
amplitude along the readout direction used to scan half radial spokes (blue arrows in Figure 7.2
(b)). The readout gradient is rotated over TRs to frequency-encode k-space as in a conventional
radial acquisition. In Cartesian SPI sampling (red dots in Figure 7.2 (b)), the maximum gradient
amplitude is linearly scaled as dotted lines in Figure 7.2 (a) shows to encode different k-space

point at the constant encoding time over TRs. Note that the same maximum gradient is applied to
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both SPI and frequency encoding to prevent discontinuity in encoding times at the interface
between the two different encoding schemes. This acquisition can be extended to multi-echo
acquisitions, where Figure 7.2 (c) shows the pulse sequence used to obtain multi-echo RHE
images with 5 half-echoes obtained within a single acquisition. Note that by using SPI encoding

to fill central region of k-space 5 half echoes can be obtained rather than 3 full echoes of the

conventional gradient echo acquisition.

In RHE, the diameter of the SPI-encoded region in k-space, Ngpj, is determined by the

following equation.
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Figure 7. 2. Ramped Hybrid Encoding (RHE). (a) Pulse sequence diagram, (b) sampling scheme, and (c)
example of a multi-echo encoding scheme. RHE allows flexible control of Ggr to minimize slice selectivity
artifacts, and allows the best possible encoding time by rapidly ramping gradient after RF excitation. Like

PETRA, single point encoding is employed to acquire central k-space data.
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Nsp; = [27 fovp (Gretp + 0.5 gs t3)]  if tp < (Gax — Grr)/9s
[27 fovp (Gmaxtp — 0.5 (Gax — Grr)?/9s)] otherwise, (7.1)

where 7 is the gyromagnetic ratio in unit of Hz/T, gs denotes gradient slew rate in units of Tm™'s"
! fovp denotes the desired field of view (FOV), and tp is the desired echo time chosen after
deadtime. Due to eddy currents that effectively derate the gradients in ramping, SPI data are
prone to be slightly oversampled and hence result in a larger FOV than the desired FOV (fovp) at
the desired TE (tp). The FOV can be corrected in the reconstruction stage using conventional
convolution gridding methods. In practice, larger Nsp; can be intentionally used to obtain more
oversampled SPI data allowing some flexibility in selecting TE when RF deadtime is not known

a priori.

The maximum gradient amplitude during RF excitation, Grr, can be selected by
considering both slice selectivity and Ngp. An upper bound for Ggrr can be analytically
determined using the expected RF pulse shape and its frequency profile. However, large Ggr
amplitudes may result in impractical scan times due to a large Ngp; required. In that case, Grr
needs to be reduced to allow reasonable scan times. The maximum readout gradient, Gy, can be
as large as possible within the constraints of the readout bandwidth and safety factors such as

gradient heating and peripheral nerve stimulation.

7.2.2 Gradient calibration

In RHE, data is acquired during ramping gradients. Therefore, timing errors and eddy
current effects may distort the k-space sampling trajectory, and hence naive reconstruction based
on the prescribed gradient parameters is generally not suitable. In this study, we developed a new

calibration method that benefits from the well-known zoom-in effect (decreasing FOV with
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increasing phase encoding time delay) in SPI®*"'*’. For calibration, three sets of 1D projection
images are acquired using an SPI scheme in each gradient axis. 1D SPI imaging can be easily
implemented in any pulse sequence by scaling the gradients to enable pure phase encoding. To
phase encode different points in k-space over TRs, the prescribed gradient is linearly scaled.
Typically this calibration data can be acquired very rapidly, within a few seconds for all gradient

axes.

1D single point images can be reconstructed without calibration. The three sets of 1D

projection images across a range of encoding time are reconstructed at native FOVs (exploiting
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Figure 7. 3. The zoom-in effect of SPI and gradient calibration. (a) 1D SPI image matrix, and (b) the prescribed
gradient shape. Note that the FOV change in (a) directly represents gradient shape in (b), which can be utilized

for gradient calibration.
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the zoom-in effect), as depicted in Figure 7.3. The image matrix shown in Figure 7.3 (a) contains
1D projection images (y-axis) versus phase encoding time delay (x-axis) for a gradient direction
encoded by 1D single point imaging. The size of the object (bright region in center of FOV)
increases with encoding time (zoom-in effect). The speed of FOV change in Figure 7.3 (a) is
directly proportional to the gradient strength shown in Figure 7.3 (b), exhibiting acceleration in
ramping up, constant change in plateau, and deceleration in ramping down. Therefore, the
gradient waveform can be calibrated by estimating the scaling factors between neighboring phase

encoding time delays within the 1D SPI data.

The FOV scaling factors between images are found automatically using unconstrained
nonlinear optimization (Nelder-Mead Simplex). A reference image is first selected as the latest
time delay, t.r, and the relative scaling factors between t.r and other time delays are found by

minimizing the L,-norm of the error function as shown in the following equation.

FOVscale(t) = FOV(tyer)/FOV(t) = argming \/zyzl [(tref,x) = 1(t,s(x — N) + N2 (7.2)

, where I(t,x) denotes magnitude of 1D image at encoding time t and spatial position x, N is 1D
matrix size, s is a scaling factor between images, and N is index for the center of image (e.g., for
matrix size=N, N, = [N/2]). Images are transformed based on the scaling factor, s, to find the
best scaling factor. Scaling transformation can be performed in the either image or k-space
domain by using an affine transform or convolution gridding, respectively. In this study, the
transform was performed in the image domain using bilinear interpolation because it provided

reliable results that could be computed much faster than using a gridding approach.



92

Once proper FOV scaling factors are found across all phase encoding time delays,
relative k-space position can be recovered. Note that the FOV scaling factors only describe the
relative scaling difference between encoding times. To obtain the absolute FOV, we examine the
RHE data acquired during constant gradient. First, the slope of FOV scaling factors is calculated
at a time (t..rf) when the gradient is constant (and known) Gnax. Then, the slope can be used to

calculate the true FOV at the reference encoding time, t.s, using following equation.

FOV(tref) =c(N = 1)/(2¥Gnax) (7.3)

, where c is slope of FOV scaling factor found at constant gradient. Now, the FOV for the entire
encoding time, FOV(t), can be recovered by simply using equation 7.2 with the given

FOVscale(t) and FOV (tyef).

7.2.3 Image reconstruction

After the k-space trajectories are calculated via the above gradient calibration method, the
acquired SPI and radial data are combined together. 3D convolution gridding is applied to obtain
the k-space with desired FOV***® To control variable density sampling within k-space,
iterative density compensation'®® is applied. Note that the sampling density along a half radial
spoke in frequency encoding is determined by readout bandwidth and the shape of the encoding
gradient, while within the SPI region it is determined by TE and the shape of the encoding
gradient. In Figure 7.4, a block diagram shows how raw data are processed to obtain a final RHE

image.

7.2.4 Computer simulation
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Figure 7. 4. Raw data processing in RHE. Raw data acquired by RHE contains Cartesian SPI data, radially
frequency encoded data, and 3 sets of 1D SPI data for calibration. After calibration, combined data with

estimated k-space position are processed by convolution gridding.

To compare encoding times and the resultant image quality between RHE and other UTE
imaging schemes, a 1D computer simulation was performed. Note that a conventional point
spread function (PSF) simulation is not possible because the PSF is spatially-variant at each
encoding position in k-space, as described above. Therefore, each point in k-space was
independently simulated using a 1D digital phantom. To generate the 1D digital phantom, 11
tubes were generated with different proton densities, 0.7, 1.0, 0.7, 0.3, 0.7, 1.0, 0.7, 0.3, 0.7, 1.0
and 0.7 in arbitrary unit from left to right. The diameter of each tube was 40mm. A mono-

exponential T,* decay model (T>* = 100us or 500us) was simulated for all tubes.

System parameters included a TE of 80ps, a slewrate of 118 mTm-1ms™, and a maximum
gradient of 35 mTm™. For PETRA Gmax = 7 or 20 mTm™' was used. For RHE, GRF = 3.5 or 7
mTm” and Gmax = 35 mTm™ was used. For RHE and FE-UTE, the gradients were ramped

immediately after the RF pulse or after deadtime, respectively. 1D sampling was simulated using
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Phantom Knee Brain
PETRA | PETRA | PETRA UTE RHE RHE PETRA | PETRA | PETRA UTE RHE
Gmax_] 7 14 20 35 35 35 7 14 20 35 35
(mTm™)
GRF_] n/a n/a n/a n/a 7 5 n/a n/a n/a n/a 7
(mTm™)
RF pulse
width 24 24 8,24
(us)
Flip
angle () 6 6 2,6
NSPI 33 33 33 n/a 33 33 33 33 33 n/a 33
# OfS.PI 17707 17707 17707 n/a 17707 17707 17707 17707 17707 n/a 17707
encoding
eflc():dlzfg 80000 80000 80000 | 80000 80000 80000 80000 80000 80000 80000 | 80000
Slew
rate 118 118 118 118 118 118 118 118 118 118 | 118
(mTm
]ms—])
90, 1502,
1550,
TE (ps) 90 90 90 90 90 2900 90 90 90 90 90
2950
Tgne (18) 1680 838 588 588 438 788 1680 838 588 588 438
TR (ms) 33 33 33 33 33 5.6 33 33 33 33 33
RF coil 8ch receive only head coil lfrf:eTc:gl 8ch receive only head coil
Sean | g 036 | 5m23s | 5m23s | ™ | Sm23s | 9m10s | Sm23s | Sm23s | 5m23s | ™ | Om
time 28s 28s 23s

Table 7. 1. Parameters for MR experiments.

frequency encoding or PETRA/RHE encoding to acquire a 500x1 k-space with FOV=500mm,

which achieves approximately Imm resolution. For PETRA and RHE, the slice selectivity effect

was simulated using the spatial profiles of the 24us hard pulse shown in Figure 7.1(b). NSPI was

set to the minimum value according to the prescribed gradient shape (NSPI=24, 69, 29, and 40

respectively for PETRA with Gmax=7mTm", PETRA with Gmax=20mTm”’, RHE with

GRF=3.5mTm", and RHE with GRF=7mTm™"). No eddy current effects were applied in the

computer simulation.
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7.2.5 Experimental setup

To evaluate the proposed encoding scheme, MR experiments were performed on a 3.0T
MR scanner (MR750, GE Healthcare, Waukesha, WI). A phantom experiment was performed to
compare UTE imaging schemes (PETRA, FE-UTE, and RHE) with an object that only has short
T,* components. Human brain imaging was performed with 2 different RF pulses (8us, 24us)
with flip angle 2° and 6° respectively) and gradient settings. A multi-echo RHE experiment to

generate a short T>* image was performed in the human knee.

For phantom experiments, a phantom made of Acrylonitrile Butadiene Styrene (ABS)
plastic (Big ben, item # 21013, a cowboy minifigure from palace cinema, item # 10232, and a
white horse made by LEGO, Billund, Denmark) with T,* approximately 400-500us. An 8-ch
receive-only head coil (GE Healthcare) was used for the phantom experiment. For in vivo
experiments, a human subject was imaged in accordance with local IRB protocols. The 8-ch
receive-only head coil was used for in vivo brain imaging, and an 8-ch transmit-receive knee coil
(GE Precision Eight Knee Array Coil, Invivo, Gainsville, Florida) was used for in vivo knee

imaging.

All parameters used for the phantom, knee, and brain imaging are shown in Table 7.1. A
single echo acquisition (as shown in Figure 7.2 (a)) was performed in phantom and brain
imaging, while multi-echo imaging (as shown in Figure 7.2 (c)) was performed in the knee. For
all datasets the TE was 90us, which is defined as the first encoding time after which the receiver
is fully recovered from RF deadtime (as shown in Figure 7.3 (a)). Deadtime was determined
empirically by observing the signal magnitude at the center of k-space. A sampling period of 2ps
was used. In the phantom and knee imaging experiment comparing PETRA, FE-UTE, and RHE,

Nspr and TR were set identically to allow reasonable comparisons between imaging schemes.
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Ngp was set to 33, the largest Ngp; required by PETRA with largest Gy (=20mTm™), while TR
was set to 3.3ms, is the minimum TR of PETRA with lowest encoding gradient (Gua=7mTm™).

The minimum possible TR for RHE can be significantly shorter (approximately 2ms).

To perform gradient calibration, three 1D 401x1 SPI images were acquired along each
physical gradient axis using linearly scaling encoding gradient over TRs (401 equispaced steps
between -1.0x and 1.0x of gradient shape to calibrate). The additional scan time required for the
calibration was 401(encodings/axis) x 3(axis) x TR, which is 4 sec for a single echo acquisition
and 6.7 sec for multi-echo acquisition. For more reliable calibration, SPI-based calibration was
first performed using a spherical phantom (in a separate imaging session on a separate day and
only once for all experiments), which was then used as the initial guess during calibration. The

proposed SPI-based calibration was applied to both FE-UTE and RHE imaging.

During image reconstruction, convolution gridding was performed using a Kaiser-Bessel
kernel with grid width=5 (for phantom and head imaging) or 7 (for knee imaging) and
oversampling ratio=2. Phantom data were gridded to achieve FOV=200mm and matrix size of
201x201x201, and brain data were gridded to achieve FOV=240mm and matrix size of
241x241x241, which is equivalent to 1mm resolution. In knee experiment five 3D knee images
were reconstructed at TE=90us, 1502us, 1550us, 2900us, and 2950us with FOV=200mm and a
matrix size of 401x401x401, which is equivalent to 0.5 mm resolution. Separate fat and water
images were computed using Iterative Decomposition of water and fat with Echo Asymmetry
and Least-squares estimation (IDEAL)''’. All 5 images at different TE were used for the IDEAL
reconstruction. The image representative of short T>* species was obtained by subtracting the

computed water and fat images from the RHE image at TE=90us.
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7.3 Results

7.3.1 Simulation results

Figure 7.5 shows the simulated curves for the per-excitation encoding time in three
different UTE encoding schemes, conventional FE-UTE, PETRA/ZTE, and RHE, (Figure 7.5 (a))
and the corresponding reconstructed images (Figure 7.5 (b),(c)). As seen in Figure 7.5 (a), RHE
with Ggr=7mTm™" allows the shortest per-excitation encoding time (=429us) between the three
methods (1669us for PETRA with Gpa=7mTm™, 584ps for PETRA with Giae=20mTm™', 562ps
for FE-UTE, and 454us for RHE with Grg=3.5mTm™") while controlling for blurring caused by
T,* or the finite RF pulse duration. The reconstructed images with normalized scales are shown

in Figure 7.5 (b),(c). Root Mean Squared Error (RMSE) was calculated using the normalized

1mages.
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Figure 7. 5. Simulation of (a) per-excitation encoding time and simulated 1D imaging with (b) T,*=100us and
(c) T,*=500us. Ngp; was set to 24, 69, 29, and 40 respectively for PETRA with GmaX:7me'l, PETRA with
GmaXZZOme'l, RHE with GRF:3.5me'l, and RHE with GRF:7me'l. Note that RHE provides the shortest
per-excitation encoding time and the best image reconstruction for short T,* imaging over a wider field-of-view

than PETRA and FE-UTE.
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Figure 7. 6. Gradient calibration. (a) 5 1D images from calibration data in the x-direction exhibiting a zoom-in
effect from SPI, (b) the corresponding scaling factors computed from (a), (c) the measured k-space trajectory in
each gradient axis, (d) comparison with prescribed or delay-corrected trajectory, and (e) the resultant images.
Note that reconstruction with the prescribed trajectory (middle) results in substantial error in the image (ringing)
and an incorrect FOV. The delay-corrected trajectory (right), while having the correct FOV, has blurring and

ringing compared to the image reconstructed with the measured trajectory (left).

When T,* is extremely short (100ps), RHE with Gp=3.5mTm" provides the most
accurate reconstruction (RMSE=0.06) owing to its optimized encoding time and controlled slice

selectivity. PETRA images show good fidelity at the center of the FOV, but exhibit loss of detail
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toward the edges due to the unwanted slice selectivity imposed by high encoding gradients
applied during RF excitation. Note that PETRA with G = 20mTm’ provides good
reconstruction at the center of the FOV owing to the large Ngspi(=69) where encoding time is
constant (=TE), resulting in less intra-readout T,* decay. However, a larger Ngp; significantly
increases the total image acquisition time and is not clinically feasible. FE-UTE shows uniformly
reasonable results over the entire FOV as expected. When T»* is moderately short (=500ps), FE-
UTE shows the overall best reconstruction (RMSE=0.03), while RHE with Ggr=3.5mTm

shows a comparably accurate reconstruction (RMSE=0.05).
7.3.2 Gradient calibration

Figure 7.6 (a) shows 1D projection single point images from the x-axis of a calibration
dataset reconstructed at native FOVs exhibiting the zoom-in effect (decreasing FOV with
increasing phase encoding time delay). Figure 7.6 (b) shows the FOV scaling factors found
between images in x-direction where ‘x’ shows 5 FOV scaling factors corresponding to the 5
images in Figure 7.6 (a). Figure 7.6 (c) shows the calibrated trajectory along 3 gradient
orientations. Note that the estimated trajectories are different between gradient axes. Figure 7.6
(d) shows the measured trajectory, the prescribed trajectory, and delay-corrected trajectory
obtained in the physical z-gradient direction. The delay-corrected trajectory was obtained by
matching the linear part of the prescribed k-space trajectory with the measured trajectory. The
two superimposed curves for measured trajectory and the delay-corrected trajectory show little
difference in the ramping portion of the encoding gradient. As seen in the images reconstructed
with the three different k-space trajectories in Figure 7.6 (e), small errors result in significant and

obvious reconstruction error as shown in the region yellow arrow indicates, which shows
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PETRA PETRA PETRA FE-UTE RHE
Gmax =7 mT/m Gmax = 14 mT/m Gmax =20 mT/m Gmax = 35 mT/m Gmax =35 mT/m
TE =90 s TE =90 ps TE =90 s TE =90 ps Grr =7 mT/m

Tenc = 1680 ps Tenc = 838 ps Tenc = 588 ps Tenc = 588 ps TE =90 ps
Tenc =438 ps

Figure 7. 7. Phantom experiment. PETRA with (a) Guax=7mTm™, (b) Gpax=14mTm™", (¢) Gyax=20mTm", (d)
FE-UTE with GmaX:35me'l, and (e) RHE with GRF:7me'l and GmaX:35me'l. RHE allows the shortest per-
excitation encoding time, yielding the best image quality.

misalignment between low and high frequency component in image due to the erroneous

gradient calibration.

In our computational environment, the proposed calibration took approximately 2 sec to
process one image, which requires 2 (sec/image) x 230 (images) / 12 (# of parallel computation)
= 38 sec for single echo imaging and 2 (sec/image) x 1,630 (image) / 12 (# of parallel

computation) = 272 sec for multi-echo imaging.

7.3.3 Phantom experiment

Figure 7.7 shows the results of the phantom experiment. Note that in the reconstructed
images, RHE (Figure 7.7 (e)) preserves the high frequency details of the phantom much better
than PETRA’s (Figure 7.7 (a),(b),(c)) and FE-UTE (Figure 7.7 (d)), owing to the faster encoding

that imposes less impact of T>* decay.
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PETRA with G = 7 mTm™ (Figure 7.7 (a)) exhibits severe blurriness across the image,
due to the long encoding time. PETRA with Guax = 14 mTm™ (Figure 7.7 (b)) shows a more
detailed depiction of the object, but it exhibits blurriness along radial direction at edge of FOV,
which is due to unwanted slice selectivity. PETRA with Gmax = 20 mTm™ (Figure 7.7 (c)) shows
the best spatial resolution in center of FOV and the worst slice selectivity artifact in corners of

FOV due to the large gradient applied during RF excitation. FE-UTE (Figure 7.7 (d)) shows a

Figure 7. 8. In vivo knee experiment. Coronal slice of RHE images at TE of (a) 90us, (b) 1502ps, (c) 1550us, (d)
2900us, (e) 2950us, (f) water image, (g) fat image, (h) short T,* image, sagittal slice of RHE images at TE of (i)
90us, (G) 1502us, (k) 1550pus, (1) 2900us, (m) 2950us, (n) water image, (o) fat image, and (p) short T,* image. To
separate water and fat image IDEAL was applied using 5 images at TE= 90us, 1502pus, 1550us, 2900us, and
2950us after image reconstruction. Short T,* image was obtained by subtracting water and fat images from the
RHE image at TE=90us. Short T,* tissues are clearly visible (white arrow: medial collateral ligament and lateral
collateral ligament, yellow arrow: medial meniscus, blue arrow: quadriceps femoris tendon, green arrow: patellar

ligament, red arrow: anterior cruciate).



102

detailed description of object with no slice selectivity artifact. RHE (Figure 7.7 (e)) shows higher
detail and less noise (measured SNR=10.3) than FE-UTE (measured SNR=8.7) owing to the
shorter per-excitation encoding time and the central k-space encoded by SPI (with TE equal to

90us).

7.3.4 In vivo - knee imaging

Figure 7.8 shows coronal or sagittal slices of knee images at 5 different TEs obtained
using RHE with multi echo imaging capability (Figure 7.8 (a),(b),(c),(d),(e),(1),(),(k),(1),(m)),
water images (Figure 7.8 (f),(n)) and fat images (Figure 7.8 (g),(0)) obtained using IDEAL, and
the resultant short T>* images (Figure 7.8 (h),(p)). Note that in short T,* images, tissues such as
bone, tendon, and ligament are visible with positive contrast. In the coronal plane short T,*
image (Figure 7.8 (h)) the medial collateral ligament and lateral collateral ligament (white arrow)
and the medial meniscus (yellow arrow) are visible. In the sagittal plane short T,* image (Figure
7.8 (p)), the quadriceps femoris tendon (blue arrow), patellar ligament (green arrow), and

anterior cruciate ligament (red arrow) are seen clearly.

7.3.5 In vivo - brain imaging

Figure 7.9 shows brain images obtained by PETRA, FE-UTE, and RHE with two
different RF pulse lengths and readout gradients (only for PETRA). The left 4x5 image matrix
shows 2D slices selected from the reconstructed 3D images, and the right 4x5 image matrix
shows the corresponding zoomed-in images. Figure 7.9 (a) to Figure 7.9 (j) show images at a
mid-sagittal plane, while Figure 7.9 (k) to Figure 7.9 (t) show images at an axial plane. Figure
7.9 (a),(b),(c),(k),(1),(m) and Figure 7.9 (f),(g),(h),(p),(q),(r) show PETRA images obtained with
8us and 24ps respectively. In PETRA with a short RF pulse (8us), slice selectivity is suppressed

owing to its broad excitation bandwidth, but SNR is reduced due to the smaller attainable flip
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PETRA FE-UTE RHE
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Figure 7. 9. In vivo brain experiment. Mid-sagittal plane image obtained by PETRA with 8us RF pulse with (a)
Gax=7mTm™", (b) Gpax=14mTm™, (¢) Gpax=20mTm™"', (d) UTE with 8us RF pulse and Ga=35mTm™, (¢) RHE
with 8ps RF pulse, Grp=7mTm™", and Ga=35mTm"', PETRA with 24us RF pulse with (f) Gyax=7mTm™, (g)
Gmax=14mTm™, (h) Gpax=20mTm™, (i) UTE with 24ps RF pulse and Gp=35mTm™, (j) RHE with 24ps RF
pulse, Gge=7mTm, and Gy, =35mTm™, axial plane image obtained by PETRA with 8us RF pulse with (k)
Gax=7mTm™, (I) Gpax=14mTm™, (M) Gpax=20mTm™", (n) UTE with 8us RF pulse and Ga=35mTm™, (o) RHE
with 8ps RF pulse, Grp=7mTm™", and Ga=35mTm™", PETRA with 24us RF pulse with (p) Gmax=7mTm™, (q)
Gax=14mTm™, (1) Guax=20mTm™, (s) UTE with 24us RF pulse and Gpa=35mTm, (t) RHE with 24ps RF
pulse, Grp=7mTm™, and Gy =35mTm™, and its corresponding zoomed-in images on the right. Note that in
PETRA’s slice selectivity increases and chemical shift artifact decreases as strength of readout gradient
increases. By using a short RF pulse, the slice selectivity artifact can be alleviated, but SNR and T1 contrast are
inevitably reduced due to the smaller attainable flip angle. Both FE-UTE and RHE shows better image quality
with no chemical shift artifact and slice selectivity artifact, but RHE shows more signal intensity from compact

bone structures than FE-UTE.

angle. Note that with an 8us RF pulse, images are more proton density weighted, while with a

longer RF pulse (24ps) increased T; weighting can be achieved. With the 24us RF pulse, the
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slice selectivity artifact is more noticeable in PETRA, substantially deteriorating with higher
Gmax (Figure 7.9 (g),(h),(q),(r)), while the chemical shift artifact is aggravated as encoding time

decreases with lower G, (Figure 7.9 (a),(f),(k),(p)).

Compared with PETRA, both FE-UTE (Figure 7.9 (d),(1),(n),(s)) and RHE (Figure 7.9
(e),(j),(0),(t)) show much better image quality with higher spatial resolution and no or minimal
slice selectivity artifact respectively. However, as shown in the zoomed-in sagittal images of FE-
UTE in Figure 7.9 (d),(1) and RHE in Figure 7.9 (e),(j), RHE exhibits higher signal intensity than
FE-UTE in occipital bone indicated by the yellow arrow. In addition, RHE shows higher signal
in a tooth as indicated by the green arrow in Figure 7.9 (i),(j). In axial images both RHE and FE-
UTE show detailed views of the tissues in the sinuses as shown in zoomed-in images of Figure
7.9 (s),(t). Note that the red arrow indicates in Figure 7.9 (s),(t) RHE shows higher signal

intensity than FE-UTE in the region where the meninges are visible.

Overall, among the UTE imaging schemes presented here, RHE shows the highest spatial
resolution, best short T>* contrast, no apparent chemical shift artifact owing to the shortest per-

excitation encoding time, and well-controlled slice selectivity with a 8us or 24us RF pulse.

7.4 Discussion

In this chapter, we proposed a new scheme, termed RHE, for time-optimal per-excitation
encoding in UTE imaging. While the TE in UTE imaging is conventionally reported as the
beginning of the readout, reductions in encoding duration improve the spatial resolution for short
T, species'® and reduce chemical shift artifacts. Moreover, the ability to control Ggg and the
resultant slice selectivity allows greater flexibility regardless of the desired FOV for UTE

imaging. While a high Ggr is desired to shorten encoding time, there exists an upper limit of Grr
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to avoid objectionable slice selectivity artifacts. Increasing the bandwidth of the RF pulse (e.g.,
using a shorter RF pulse) increases the attainable Ggr for good quality image; however, shorter
RF pulses also limit the maximally attainable flip angle and thus can reduce SNR and/or desired

T, image contrast.

The use of higher amplitude encoding gradient to attain faster encoding inevitably
requires a larger SPI encoded region (Ngp;) for hybrid encoding techniques such as PETRA or
RHE. As seen in Figure 7.5, increased Ngp; improves short T,* imaging, with the caveat of
substantially increasing total scan time. Reduction of Ngp; can harm spatial resolution for species
where the T,* is short relative to the per-excitation encoding duration (e.g., Figure 7.5-b, FE-
UTE vs. RHE [Ngpi=29 or 40] with similar encoding durations). Therefore, it may be beneficial
to prescribe RHE with a reasonably large Ngsp; to balance between the beneficial qualities of a
bigger SPI region and total imaging time. Note that the contribution of SPI encoding to spatial
resolution may be more significant in the 1D simulation than 2D or 3D since 1D radial

acquisition is more susceptible to To* decay than 2D or 3D radial acquisiton'>*.

Due to a shorter encoding time, the sampling density along a radial spoke in the
frequency encoded region is reduced in RHE compared to PETRA/ZTE, which penalizes the
SNR for long T>* components. However, in spite of the SNR advantage that slow encoding
allows, longer encoding results in overall degradation in image quality (loss of spatial detail for
short T>* components and chemical shift artifacts). Thus, the reduced readout duration for RHE
1s important for improving image quality for UTE imaging. Indeed, there is no other encoding
strategy to reach the extent of k-space in a more time-efficient manner than RHE when B;
limitations prohibit the desired flip angle and field of view. If additional SNR is necessary,

traditional techniques such as increased averaging or optimal coil configuration would apply.
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Additional improvements in RHE image quality and functionality are possible. For
example, post processing strategies proposed to correct slice selectivity in ZTE and
PETRA**'">'% can be employed to alleviate blurriness artifacts. Moreover, hybrid encoding
schemes with an oversampled SPI encoded region may allow reconstruction of images at
multiple TEs in early encoding times, which can be used to estimate short T,* parameters with a
single experiment (e.g., using k-space extrapolation methods as recently proposed in single point
electron paramagnetic resonance imaging'’). The additional scanning time imposed by
oversampling SPI encoded region can be reduced by using variable density sampling pattern and

72,75

appropriate reconstruction method such as compressed sensing using k-space domain data’"” or

model-based compressed sensing using k-space domain data and FID data (parameter domain)

. 12
simultaneously'>"®.

Recently, there has been significant interest in developing sequences with extremely low

. . 134,139-141
acoustic noise levels'**!*

. Using RHE, the acoustic noise will be higher; however, the
encoding duration will always be lower compared to B; limited PETRA/ZTE encoding strategies.

Thus, quiet scanning may be incompatible with high quality imaging of short T>* species. For

RHE, lower noise scanning could be achieved at the cost of reduced encoding performance.

Gradient calibration is essential to avoid distortion and reconstruction errors in resultant
images. In this study, we implemented a new gradient calibration method based on 1D SPI.
Unlike other techniques, the method is not dependent upon 2D slice selection” or external
hardware’’, and the identical pulse sequence can be used with very minimal modifications (only
different encodings need to be obtained). The scanning time required for calibration is also very
short (less than 5 seconds for the datasets herein), allowing robust estimation of k-space

trajectory on a per-scan basis. This technique is also likely to be useful to measure the k-space
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trajectory of other pulse sequences in MRI, and is only limited by the number of encoding
single-point steps. This paper describes preliminary use of this new calibration technique, and

further development is planned in future studies.

7.5 Conclusion

In summary, we have proposed a new encoding technique that allows flexible and time-
optimal encoding for short T,* species. In addition, we developed a new image-based calibration
technique using single-point encoding to measure the k-space trajectory for improved image

reconstruction.
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Chapter 8. Rapid Dual Echo Ramped Hybrid Encoding-

based Attenuation Correction

8.1 Introduction

Simultaneous PET/MR system has been recently developed to complement each
individual imaging modality and obtain molecular-specific contrast with PET along with the rich
anatomical information with MRI: for example, glucose metabolism (FDG in PET), anatomical
information (T1W/T2W/PDW imaging in MRI), and tissue micro-structure (DWI in MRI).
Moreover, functional imaging schemes such as functional MRI or cardiac/flow imaging in MRI
recently have been studied in PET/MR system to benefit from the information from MRI as
orthogonal biomarker for more accurate diagnosis. In spite of the promises and benefits in the
simultaneous PET/MR imaging, it still remains challenging to obtain a reliable photon
attenuation correction map necessary for accurate PET quantitation since proton is only imaged

in MRIL

Many MR-based attenuation correction (MRAC) such as atlas registration-based or
image segmentation-based method have been proposed to overcome the limitation. Atlas
registration-based method is indirect estimation of CT contrast using patient database and
fiducial MR images of the targeted subject '**'*°. The atlas registration method does not take the
uniqueness of individual subject such as damage or deformation (e.g., hole or fracture in bone),
and hence it can mislead the estimation of attenuation map. Image segmentation-based method
allows more direct and precise estimation of CT contrast based on MR images with specialized
imaging schemes or parameters (e.g., images acquired at different TEs to obtain fat and water

147-154

separated images) . However, it is still difficult to directly image bone due to MRI’s
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fundamental limitations in imaging short T2* species which has high photon attenuation relative

to soft tissues.

It has been recently reported in literature that ultrashort echo time (UTE) or zero echo
time (ZTE) imaging can be successfully used for MRAC owing to its capability to resolve
objects with short T2* decay (i.e., bone)''*'*>'** Unfortunately, UTE/ZTE techniques are not
typically rapid (e.g., several minutes of acquisition time, particularly for multi-echo approaches),
and are thus likely to impede PET/MR workflow (especially for whole body PET/MR where

only 3-5 minutes may be available for MRI at each bed position).

In this study, we propose a new framework for MRAC based on dual echo ramped hybrid
encoding (RHE) ", where UTE and out-of-phase echo images with high spatial resolution
(1mm®) are obtained within a short acquisition time (35sec) in a single scan. The original RHE is
modified as follows. First, a SLR half pulse with zero iso-delay is utilized to select a slab in S-I
direction and hence reduce streaking and aliasing artifact due to undersampling radial spokes for
fast imaging. Moreover, oversampled single point imaging (SPI) encoding is applied to allow
reconstruction of multiple UTE images, which is used for more accurate air segmentation based
on principal component analysis (PCA). With the multiple UTE images and an out-of-phase
image, four species segmentation is performed to obtain bone, air, water, and fat component,
where fat and water are estimated using a UTE image and out-of-phase image by 2-point Dixon
method'”. The segmented images are used to compose a pseudo CT image and the resultant
attenuation map. In phantom experiments, the proposed imaging scheme was evaluated. In vivo
experiment, an estimated pseudo CT map and the resultant PET image were compared with

results obtained with actual CT image.



110

8.2 Methods
8.2.1 Data acquisition and image reconstruction

Figure 8.1(a) shows the pulse sequence diagram (PSD) of dual echo UTE imaging, which
utilizes RHE to minimize per-excitation encoding time and alleviate blurriness of signal in short
T2* object (bone in UTE-based MRAC). In RHE, frequency encoding is performed in center-out
direction with fastest and largest encoding gradient turned on before RF coil deadtime (solid line
in Figure 8.1(a)) to rapidly encode k-space (blue lines in Figure 8.1(b)). Cartesian SPI (dotted

lines in Figure 8.1(a)) is used to encode central k-space missing in frequency encoding during RF

RF
(a) [\ Deadtime DAQ (C) Nyquist limit Undersampled
I > Tx/Rx

Mk=1/Fov,  A1/FOV

Oversampled \
Ak<1/FOV,
\

(b)

UTE echo | Out-of-phase
® spi echo

® Frequency encoding

Figure 8. 1. Dual echo RHE imaging. (a) Pulse sequence diagram, (b) k-space trajectory, (c) oversampled SPIs
in UTE, and (d) 2D examples of k-space trajectory in UTEs. Note that flying echo is utilized to acquire out-of-
phase image around TE=1.1ms at 3T. By oversampling SPI multiple UTE images are obtained without aliasing
artifact.
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coil deadtime (red lines in Figure 8.1-b). In the proposed dual echo UTE acquisition, two
symmetric encoding gradients are applied with opposite polarity, where UTE encoding is
immediately followed by encoding of out-of-phase echo (TE = ~1.1ms at 3T), which enables fat
and water separation based on 2-point Dixon reconstruction. Note that data acquired during
flying-back to center of k-space are used to reconstruct out-of-phase image to reduce scan time.

To attain proton density weightig, small flip angle is applied (<2°).

Although RHE allows highly time-efficient encoding by acquiring k-space data while
ramping up and down the encoding gradients, strong eddy current effect generated by rapidly
changing gradients may result in distortion of gradients that deviates k-space trajectory from
nominal trajectory, resulting in imaging artifacts such as blurring, ringing, scaling, and phase
error. Therefore, it is crucial to consider the gradient distortion caused by eddy current when
calculating k-space trajectory for artifact-free image reconstruction. In this study, dynamic SPI-

based gradient measurement technique was used to estimate actual k-space trajectory™.

In the proposed dual echo UTE acquisition, the original RHE in the literature is further
modified to incorporate a SLR half pulse with zero iso-delay to enable slab selection in S-I
direction to alleviate radial streaking and aliasing artifact in reconstructed image, which is
desired in the proposed fast imaging scheme performed with undersampled radial spokes and
strong readout gradient with high maximum amplitude, Gmax. Moreover, oversampled SPI was
applied to allow reconstruction of multiple UTE images. Figure 8.1(c) delineates time-spreading
k-space sampling position in dynamic SPI (SPIs consecutively encoded over TEs). If SPI is
oversampled at the first TE after RF coil deadtime, multiple un-aliased SPI data can be acquired
at its following TEs until the k-space data gets to Nyquist limit (Ak=1/FOVp, where FOVp is a

desired FOV). Figure 8.1(d) shows a 2D example of the acquisition of multiple k-spaces using
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the oversampled, dynamic SPI. The multiple UTE images are utilized in two ways. First, the
UTE images are averaged to yield one image with higher SNR, which is used for initial
segmentation of bone and air. Second, pixelwise time course (temporal data) of the UTE images
is used to realized more reliable segmentation of air, which will be explained in the following

sections.

8.2.2 Bias correction

MR image is often biased by several factors such as Bl inhomogeneity resulting in
uneven excitation of spins or discrepant coil sensitivity for signal reception between channels.

This spatial bias can be modeled as a bias map multiplied to the ideal as following equation.
MJ,Cy(xly'Z) = S(XJV’Z)Mxy(x»}’:Z) (81)

,where My, is a biased transverse magnetization, M,,, is unbiased ideal transverse magnetization,

and s(x,y, z) is a bias map.

In this study a pixelwise bias correction method was implemented ahead of segmentation,
where DC bias for each pixel is estimated in the inversed (negative) log of magnitude of image,
I'invLogs s shown in equation 8.2, which can be directly converted to bias correction map in

image domain.
I,InvLog = _ln(|M9,cy(x' Y, Z)D == ln(s(x, Y, Z)) - 1n(|Mxy(x: Y, Z)D =DC + IInvLog (82)

, where Ijny0g 1 unbiased inversed log image, and DC is an estimated bias in inversed log

domain. Once a bias image, DC, is estimated, it can be directly converted to the bias correction

map, 1/s(x,y,z) by taking exponential.



113

Figure 8.2 delineates the proposed method for bias estimation. First, a targeted image
(Figure 8.2(a)) 1s converted to the inversed log image (Figure 8.2(b)). Then, a 3D ROI is used to
select neighboring pixels in an inversed log image (Figure 8.2(c)). Within the ROI, pixels
containing soft tissue is first roughly selected based on the histogram (Figure 8.2(d)) of all pixels
to exclude air (Figure 8.2(e)), and then the median of the selected pixels are determined as DC
(Figure 8.2(f)). The estimated bias correction map is converted to the image domain (Figure
8.2(g)) and then applied to the targeted image (Figure 8.2(h)). Since in this intensity based bias
correction a more proton density weighted image with less soft-tissue contrast is more desired, a
UTE image is used to estimate the bias correction map in the UTE image itself and other

gradient echo images.

4 6 8

(h) (8)

Iterate for |
all pixels

Figure 8. 2. Bias correction. (a) Targeted UTE image, (b) Inversed log image, (c) 3D ROI, (d) soft tissue
selection based on histogram, (e) soft tissue pixels, (f) estimated bias map in inversed log domain, (g) estimated
bias map in intensity domain, and (h) bias corrected UTE image. Intensity-based DC-bias correction is
performed with 3D ROI, where the ROI includes pixels surrounding a target pixel. A median of intensity of soft

tissues is determined as DC bias.
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8.2.3 Modeling tissue distributions

In proton density weighted UTE image, it is expected that pixel intensity for air (noise) is
darkest, that of soft tissue is brightest, and bone shows intermediate intensity. Thresholds to
initially segment air, bone, and soft tissue are determined based on histogram of magnitude of an
averaged UTE image with bias correction as explained above. The distribution of air (noise) is
first approximated to Gaussian distribution as following equation, which is valid assumption

when SNR is high (larger than 2) .

fx) = La exp [— (x_“z)z] (8.3)

2T 20

, where k is a scaling factor to compensate for scale difference between the probability density
function and histogram, x is intensity of pixel, and o and u are respectively standard deviation
and mean. The distribution of soft tissue is difficult to model as a single Gaussian curve since it
is composed of different types of tissue with different contrasts depending on the imaging
scheme and subject. For example, in this study a proton density weighted image is obtained
where white matter exhibits slightly darker intensity than gray matter in brain. Moreover,
imperfect bias-correction or image reconstruction can also deviate the distribution from Gaussian.
Therefore, a non-Gaussian distribution was used to fit the histogram for soft tissue. Gaussian,
logistic, and hyperbolic distribution respectively with excess kurtosis=0, 1.2, and 2 were tested
on the data acquired in the proposed method to empirically choose the best model, and logistic

distribution was selected as best model, using the following equation.

k _x;su
T (8.4)

_x—u
(1)

fGx) =
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, where k is a scaling factor to compensate for scale difference between the probability density

. . « o . . . SZTL'2
function and histogram, x is intensity of pixel, 4 is mean, and variance can be calculated as

Bone distribution is indirectly estimated by subtracting the total histogram by the estimated air
and soft tissue distribution. Figure 8.3(a) shows an example of total histogram in object, which is

a mixture of air, bone, and soft tissue. Figure 8.3(b) and (c) illustrates estimation of air/soft tissue

distributions, and the resultant bone distribution, respectively.

8.2.4 Threshold setup

Parameters of the estimated Gaussian distribution is used to determine a threshold for air

(a) (b)
XY 9air gbone
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Figure 8. 3. Modeling tissue distribution. (a) Total histogram, (b) estimation of air and soft tissue distributions.

(c) estimation of bone distribution, and (d) thresholds set up. Bone distribution is indirectly obtained using the

estimated air and soft tissue distributions.
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detection, 6,;,, as following equation.

Ouir = Uair + 604y (8.5)

,where u,;, and o,;, are estimated mean and standard deviation of the estimated air distribution,
respectively. Note that 8,;,- is loosely set to embrace the gray zone between air and bone, which

will be resolved in the following air detection using multiple UTE images based on PCA.

The threshold for bone detection, 8,,,., is set to the intensity at right zero-crossing point
of the estimated bone distribution as shown in Figure 8.3(d). The gray zone between bone and
soft tissue will be resolved in refinement step using edge information explained in the later

section.

8.2.5 Air detection

Pixels with intensity less than 8,;, are initially segmented as air pixels. Then, pixelwise
temporal data in multiple UTE images are utilized to refine air from the gray zone between air
and bone where air and bone pixels exhibit similar pixel intensity. Note the temporal data does
not contain physically meaningful information (i.e., T2* or My) due to the narrow range of TE
(<30us) that is highly susceptible to local noise. In this study, PCA-based data analysis is
performed to analyze and parameterize the temporal data and thereby find correlation that can be
used for refinement of the air map. First, pixels with intensity less than u,;, 1s classified to a trust
air set, which contains air pixels detected with high possibility. Let’s denote 3D pixel coordinates
for the pixels in the trust set as 3D vectors, X4, X5, ..., Xg , where R is cardinality of the trust set.

Then, a training matrix is composed as following.
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I(Xl' tl) I(X1: tT)

A= : . :
I(Xg,t1) -+ 1(Xg,tr)

(8.6)

, where I(x,t) denotes pixels intensity at pixel coordinate x and TE=t, and ty, t,, .., and tt denote
TEs of T UTE images. The matrix A is eigenvalue decomposed, and the eigenvectors with two
largest eigenvalues, V| and V,, are used to compress pixelwise temporal data. Temporal data at
the initially segmented air pixel is projected onto each eigenvector to obtain two parameters, cl
and c2, corresponding to two eigenvectors, V| and V,. Then, the estimated parameters are used
to determine whether a targeted pixel is air or not. In the experiments, correlation was shown
between cl and air tissue, and between c2 and air/tissue interface. Based on the empirical
observation, ¢l map and c2 map are separately thresholded and combined to make an air
refinement map. The air refinement map is processed with morphologic image processing
methods (closing and dilation operation), and then initially segmented air map is refined by

multiplying the obtained air refinement map.

8.2.6 Bone detection

In initial segmentation of bone, pixels with intensity smaller than 8,,,, are classified as bone,
excluding the pixels classified as air in the preceding air detection and refinement stage. After
initial segmentation of bone, mis-classified bone pixels in the gray zone between bone and soft
tissue are removed using edge information of a UTE image. First, an edge image is obtained
using Canny edge detection, where 2D edge detection is performed in three slice direction and
combined by logical summation. A refinement map for bone detection is obtained by applying
dilation process with a spherical structure element with radius=4, in the assumption that bone
resides near strong edges. Then, the initial bone segmentation is refined by multiplying the

obtained refinement map.
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8.2.7 Generation of pseudo CT map

Pseudo CT map is generated using the detected bone map, air map, and fat/water

separated images. First, a CT map for soft tissue is generated based water fraction as follows.

Iwater
CTsoftTissue = AL __ (HUwater - HUfat) + HUfat (8.7)

Iwater'Hfat

, where I,q4ter and I, are water and fat separated images, and HU,qter and HUgq, are

Hounsfield unit in CT for water and fat, respectively. Then, CT map for bone is generated using

the detected bone map.
CThone = BWhone HUpone (8.8)

, where BW},,,. 1s a binary map of the detected bone, and HU},,, 1s Hounsfield unit of bone at

the desired body part. CT map for air is obtained as following.
CTair = BWair HU g (8.9)

, where BW,;,- is a binary map of the detected air, and HU;, 1s Hounsfield unit of air in CT.
Finally, a pseudo CT map is generated using the three CT maps for soft tissue, bone, and air as

following equation.

CTMRAC = (1 - BWbone - BWair) CTsoftTissue + CTbone + CTair. (8-10)

8.2.8 Experimental setup

To evaluate the proposed method, phantom and in vivo experiments were performed
using a 40-channel HNU coil in a 3T PET/MR system (GE Healthcare, Waukesha, WI, USA).
Imaging parameters are as follows: Gmax=33mT/m, slewrate=118mT/m/ms, FOV=300mm’,

voxel size=lmm’, TR=4.2ms TE=52/54/56/58/60/62/64/66/68/70/72/74/76/78/1172us (note that
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multiple UTE images are obtained at every 2us), scantime=35sec, sampling bandwidth=250Hz,
FA=1°, # of radial spokes=7442, and # of SPI encoding=925.

In phantom experiment, data acquisition and image reconstruction for the proposed
MRAC were tested with two different subjects: GE provided water phantoms and a custom-made
MRAC phantom. In the experiment with water phantom, four phantoms were placed on MR
table as shown in Figure 8.4(a) to mimic human subject in size and test how streaking artifacts
are exhibited with different slab selection. Four different cases were tested: no slab selection
(using non-selective 8us hard pulse), slab selection (using 628us SLR-half pulse) with slab size

of 460mm, 346mm, and 269mm. For the experiment with UW-MRAC phantom, a container

(a) S1S2 S3iso-center

| Table |

ABS water
plastic

Figure 8. 4. Phantom experiments. (a) Water phantoms, and (b) a custom-made UW-MRAC phantom.
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made of PLA-plastic was manufactured by using a 2D crest of University of Wisconsin as
illustrated in Figure 8.4(b). The 3D object was made by a 3D printer. Fat, water, and ABS plastic
were filled in the container as shown in Figure 8.4(b). In vivo experiment, brain imaging was
performed with a healthy volunteer in compliance with IRB.

In image reconstruction, a convolution gridding was applied with kernel size=5,
oversampling ratio=2. After image reconstruction, fat and water separated images were obtained
based on a 2-point Dixon reconstruction using the GE Healthcare Orchestra SDK. In bias

correction, a 3D ROI = 31x31x31 was used.

(@) UTEecho
TE=62us

Out-of-phase
echo
TE=1182us

8us hard SLR S1 (460mm) SLR S2 (346mm) SLR S3 (269mm)

(b)

SPI 4% SPI 2% SP1 1% FE-UTE

(SPI 0%)

(c)

-log(UTE) Out-of-phase Water Fat

Figure 8. 5. Results of phantom experiments. (a) UTE and out-of-phase images with different slab selection, (b)
out-of-phase image reconstructed with different size of SPI, (¢) results with UW-MRAC phantom. Three
different slab size were tested (S1=460mm, S2=346mm, S3=269mm) in (a), where smallest slab size (S3)

showed best image without aliasing/streaking artifact in S-I direction.
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8.3 Results

8.3.1 Phantom experiment

Figure 8.5(a) shows that aliasing/streaking artifact in the S-I direction is suppressed by
utilizing slab selection. The image using 8us hard pulse or larger slab selection exhibits stronger
streaking artifact due to the strong readout gradients utilized and the undersampled number of
radial spokes necessary for fast imaging. Therefore, it is appropriate to use a selective SLR half

pulse with small slab matched the S-I coverage of the PET detector (~25cm). Figure 8.5(b)
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Figure 8. 6. A UTE image and histogram. (a) A UTE image vs. averaged UTE image, (b) histogram w/o and w/
bias correction, (c¢) distribution models for soft tissue, (d) estimation of bone distribution, and (e) threshold
setup. Note that in (a) SNR in air region is noticeably improved. In (c) SoftTissue G, L H denotes fitted curve

with Gaussian, logistic, and hyperbolic distribution.



122

shows the efficacy of hybrid encoding in reducing the ringing artifact in the image acquired
during the flying-back echo (out-of-phase image), owing to SPI encoded central k-space that is

more robust to error in k-space trajectory than frequency encoding based UTE (FE-UTE).

Figure 8.5(c) shows the results with UW-MRAC phantom, where a UTE image at
TE=52us, an out-of-phase image at TE=1172us, and the resultant water and fat image are shown.
Note that in the UTE image, signal in short T2* component, ABS plastic (T2* = ~500us), is
visible (indicated by yellow arrow in inversed log image), which is distinct from air region in
background, implying that the proposed method is capable of resolving bone required in MRAC.
Moreover, water and fat were successfully separated by 2-point Dixon reconstruction using the

given UTE image and out-of-phase image.

8.3.2 In vivo - bias correction and histogram

Figure 8.6(a) shows a UTE image at TE = 52us and an averaged UTE image using 14
different TEs obtained in imaging with a healthy volunteer. SNR was calculated using two
region approach where a ROI for signal was set inside brain and a ROI for noise was set outside
object. The calculated SNR was 34.8 and 37.2 respectively for the UTE image without and with
averaging, where the averaged image showed slightly higher SNR. The effect of increased SNR
is shown in the zoomed-in images in Figure 8.6(a), which shows that air segmentation can
benefit from averaging UTE images. Figure 8.6(b) shows histograms of the averaged UTE image
without and with application of bias correction, normalized by its maximum intensity. As seen,
bias correction stretches the distribution of tissue intensity, which makes gray zone smaller, and

makes it easier to fit the distribution with a simpler model such as Gaussian distribution.
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In Figure 8.6(c), a black dotted line shows total histogram from the bias corrected UTE
image. Air distribution was fitted using Gaussian model, and the soft tissue distribution was
fitted with three different probability models with different kurtosis: Gaussian, Logistic, and
Hyperbolic. Logistic model showed the best fit for the soft tissue region in the histogram as
shown in the zoomed-in view, and hence it was used to fit the soft tissue distribution. Figure
8.6(d) shows the estimated bone distribution, which was obtained by subtracting the total

histogram by the estimated air and soft tissue distribution. Figure 8.6(e) shows the zoomed-in
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Figure 8. 7. Air/bone detection. (a) Air refinement, and (b) bone refinement. In air refinement, PCA is used to
parameterize 14 UTE images, where c1 map exhibiting DC component shows strong correlation. In bone

refinement canny edge detection is used to obtain a refinement map.
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view around air and bone distribution and thresholds set for initial segmentation of air and bone.

0,ir was set to 0.262, and 6y, Was set to 0.386.

8.3.3 In vivo — Air/bone detection

Figure 8.7(a) shows the initial segmentation and refinement of air based on PCA. The two
eigenvalues were 3.85 x 10'® and 1.34 x 10"*. Note that c1 map shows strong correlation with air
pixel where low c1 value tends to indicate air, while c2 map shows relatively weaker correlation
where high absolute c2 value tends to indicate air or air/soft tissue interface, and c2 value near
zero tends to indicate bone. Based on the observation, pixels with c1 below 70% of maximum
value of c1’s in the trust air set (obtained by projecting temporal data in trust set to V) were
included in a refinement map. In addition, pixels with c2 above 70% of maximum or below 70%
of minimum value of c2’s in the trust air set were included the refinement map. Then, the
refinement map was applied with closing and dilation operation to yield a final refinement map
with noise removed as shown in Figure 8.7(a). With the refinement process, falsely detected air
in vicinity of occipital bone and jaw bone as indicated by yellow arrows were removed. Figure
8.7(b) shows the initial segmentation and refinement of bone. An edge map obtained by canny
edge detection was dilated to yield refinement map. In the refined bone map, falsely detected

bone in soft tissue indicated by red arrows were clearly removed.

8.3.4 In vivo - Pseudo CT

Figure 8.8 shows six 2D slices in a UTE image obtained by averaging 14 UTE images
without and with application of bias correction (Figure 8.8-(a),(b)), an out-of-phase echo image
at TE=1172pus (Figure 8.8-(c)), a water and fat image (Figure 8.8-(d),(e)), a segmented air and

bone (Figure 8.8-(f),(g)) and the resultant pseudo CT image (Figure 8.8-(h)).
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Figure 8. 8. Pseudo CT image. Six 2D slices of (a) a UTE image without bias correction, (b) a UTE image with

bias correction, (c) an out-of-echo image, (d) a water image, (e) a fat image, (f) a segmented air, (g) a segmented

bone, and (h) a composed CT image.

8.4 Discussion

In this study, we proposed a new framework for UTE based MRAC that allows high
resolution imaging (Imm spatial resolution) of UTE and out-of-phase images with clinically
feasible scan time (35sec), utilizing RHE. We have shown the feasibility in head imaging herein,
but it will be more beneficial to use this framework for simultaneous whole body PET/MR
imaging where several MRAC imaging should be performed for each stations. For example,

imaging with 4 different stations will require total 2min 20sec scan time with the proposed
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MRAC, which is still considered as feasible scan time compared to 11min 32sec total scan time
required in ZTE based MRAC with lower spatial resolution (1.35mm spatial resolution)''*.

Moreover, the proposed method does not require additional fat/water imaging (Dixon or IDEAL)

owing to the dual echo acquisition where in-phase (UTE) and out-of-phase images are obtained.

There are two possible ways to reduce total scan time: reduction in the length of a TR and
the number of TRs. To reduce the length of TR, we have designed the dual echo UTE pulse
sequence base on RHE, where UTE echo and its following out-of-phase echo (around 1.1ms) are
acquired in one TR, which reduces the length of pulse sequence by 60 % than the radial 2 point
Dixon acquisition in conventional way that acquires two echoes at around 1.1ms and 2.2ms in 3T,
not utilizing UTE as in-phase echo. To further reduce the length of sequence, a flying-back echo
was acquired, which is 33% reduction in length of pulse sequence compared with the case of
using conventional center-out echo. Moreover, the design of rapid pulse sequence benefits from
RHE with fast slewrate and high Gmax, which minimizes readout duration. To reduce the
number of TR, radial spokes were undersampled. To alleviate streaking/aliasing artifact that can
be cause by undersampled radial spokes and fast readout (high readout bandwidth), slab selection

was applied using a SLR-half pulse with zero iso-delay, and we have shown the efficacy.

The proposed MRAC utilizes RHE, where SPI is used to encode central k-space. Since
SPI encoding is more robust to error in k-space trajectory, we were able to reconstruct image
with the data acquired during flying-in with alleviated imaging artifacts. Moreover, slightly
oversampling SPI encoding enabled dynamic SPI in which consecutive SPI images are acquired
1023 5 acquire multiple UTE images between TE=52us and 78us, which was used to increase

SNR in a UTE image. In addition, the pixelwise temporal data in the multiple UTE images was

used in PCA-based air refinement to resolve pixels in gray zone between air and bone. PCA is
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one of many possible approaches to parameterize the temporal data (e.g., polynomial fitting), but
we have shown that the estimated parameters are correlated with air pixel. More efficient method
to utilize the temporal data will be explored in future works. Moreover, parallel imaging'®' or
compressed sensing'” can be used to accelerate SPI encoding or increase sampling density of SPI

encoding to secure more UTE images.

8.5 Conclusions

In this study we have proposed a rapid RHE-based MRAC method that benefits from
RHE and optimized 2-point Dixon encoding. The utilization of a slice selective 3D RHE
acquisition improves image quality, while still allowing fast image acquisition. While is also
possible to accelerate MRAC by reducing voxel size, the partial volume complicates image-
based segmentation techniques. Imaging with a flying-back echo is usually considered to be
technically demanding in radial sampling and is not routinely performed. However, with the use
of the RHE acquisition (hybrid encoding of central k-space) and robust gradient waveform
measurement, it was possible to acquire an out-of-echo in good imaging quality. Such
acquisitions are expected to be highly useful for MRAC acquisitions to improve quantitative

accuracy in PET/MR.
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Chapter 9. Highly Efficient Bi-Component T2* Mapping of
the Knee using Ultra-short Echo Ramped Hybrid Encoding

9.1 Introduction

Quantitative imaging based on T1/T2/T2* parameter has been explored in muscular-
skeletal (MSK) MRI as a clinically meaningful tool to characterize lesion in tendon, meniscus,
and cartilage. In reality, a voxel in MRI can contain multiple component due to the limited
spatial resolution, causing partial volume effect. Therefore, single component fitting can lead
wrong result in clinic. The use of bi-component imaging and reconstruction methods can
improve the specificity of T2* analysis of musculoskeletal tissues with multiple water

components.

With recent development of high performance gradient system, ultrashort echo time
(UTE) imaging has become feasible, allowing more robust multi-component T2* estimation by
acquiring images in earlier TEs. In literature UTE-based bi-component T2* mapping techniques
have been used to evaluate cartilage, tendon, meniscus, ligament, and cortical bone!6216,
However, long acquisition times (15~20min) to obtain multiple images (typically more than 16)

required for bi-component fitting, limited anatomic coverage, and image artifacts associated with

current techniques have reduced the feasibility of bi-component T2* analysis in clinical studies.

In this study, we explore the feasibility of a rapid UTE imaging method based on ramped
hybrid encoding (RHE) to provide reliable bi-component T2* analysis of the human knee joint at
3T. In the proposed method, total 17 images are acquired in a single scan, where a UTE echo is
followed by 16 gradient echoes. To compensate for eddy current effects, the k-Space trajectory

was measured using a dynamic SPI-based gradient measurement technique®, which is essential
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Figure 9. 1. Multi-echo ramped hybrid encoding (RHE). (a) Pulse sequence diagram, and (b) k-space trajectory.
Note that images at later TEs are also hybrid encoded to benefit from the SPI encoding.

in non-Cartesian gradient echo imaging with a long echo train, where errors in k-space trajectory
are accumulated over readout, causing severe imaging artifact if reconstructed with nominal k-
space trajectory. To demonstrate feasibility, a knee of a healthy volunteer was imaged with the
proposed RHE-based method with small or full coverage for knee, and bi-component fitting was

performed in cartilage, tendon, and ligaments.

9.2 Methods

9.2.1 Multi-echo RHE

In the proposed imaging scheme, multi-echo RHE is utilized to acquire a UTE image
followed by multiple gradient-echoes in a single scan as shown in Figure 9.1(a). In RHE,
gradients are turned on before the RF coil deadtime and ramped up to maximum gradient, Gmax,

to minimize readout duration and alleviate blurriness in short T2* tissues in a UTE image. After
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UTE acquisition, a flying-back gradient echo train is applied to acquire 16 non-UTE images. A

SLR half-pulse with zero iso-delay was used to enable slab selectivity.

k-Space is encoded with a center-out radial trajectory, acquiring multiple half-echoes. As
in conventional hybrid encoding methods, the central region of k-space is acquired by Cartesian
SPI (red lines in Figure 9.1(b)), and outer k-space is acquired by radial frequency encoding (blue
lines in Figure 9.1(b)). Note that non-UTE images are also reconstructed based on the hybrid
encoding scheme where central k-space region is covered by Cartesian SPI data although there is

no missing radial frequency encoded data in the very k-space region, to benefit from the

(a) (b)
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Figure 9. 2. Sampling trajectory. 2D k-space example of (a) x-y plane, and (b) x-z plane, and (c) 3D example.
Note that k-space coverage in the z-axis was reduced to efficiently match the reduced spatial resolution in the

slice direction.
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robustness of SPI to magnetic susceptibility and error in estimation of k-space trajectory'®®.

Saturation pulses was applied every TR before the RHE acquisition to suppress signal from fat.
9.2.2 Sampling trajectory

Figure 9.2(a) delineates a 2D example of the sampling trajectory in the logical x-y plane.
Central k-space is encoded at a constant TE by SPI with a diameter, Nsp; (phase encoding steps
in one axis), where one data point in the SPI region is encoded within each TR. Frequency
encoding acquires outer k-space data up to kmax where the desired in-plane spatial resolution is
achieved. Note that the size of the SPI region is somewhat exaggerated in illustrations in Figure
9.2. Figure 9.2(b) shows 2D example of sampling trajectory in logical x-z plane. The frequency
encoding in logical z-direction is derated by a factor of a depending on the desired slice
thickness (sptial rsolution in z-axis). In this study, to achieve 0.6x0.6x5mm resolution, Cartesian
SPI was encoded using 15 phase encoding steps in one axis (Nspi=15), where a 3D spherical
region in central k-space is covered as shown in Figure 9.2(c). 9180 radial spokes were used for
frequency encoding to cover k-space with an ellipsoidal shape with reduced coverage in the

logical z-axis (physical L-R direction) with a=0.5 as shown in Figure 9.2(c).

9.2.3 k-Space trajectory measurement

The originally proposed dynamic SPI-based gradient measurement technique is prone to
be biased by the effects of BO inhomogeneity when the readout duration is long (~30ms in this
study), which causes images wrong FOV in the later echoes. Therefore, the original SPI-based
calibration method needs to be further modified. In the original method, 1D dynamic SPI is
acquired for each physical gradient axis with optional pre-dephasing gradient to enhance the

accuracy of trajectory estimation close to the center of k-space as shown in Figure 9.3(a). One
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Figure 9. 3. Dynamic SPI based k-space trajectory measurement. (a) Original method, and (b) Improved method.

reference image (indicated by the red dotted line in Figure 9.3(a)) is selected and FOV scaling
factors are estimated between the reference image and targeted SPI images (Si, Sa, Ss, ...
indicated by blue dotted lines in Figure 9.3(a)). In the improved k-space trajectory measurement
method, another SPI data is acquired with SPI gradients turned off except a pre-dephasing
gradient, and FOV scaling factors are estimated between reference SPI images and the
corresponding targeted SPI images as shown in Figure 9.3(b). The estimated FOV scaling factors
(FOV,, FOV,, ... in Figure 9.2) are converted to k-space trajectory. Note that the measurement
of k-space trajectory needs to be performed only once for a imaging protocol on a given MRI

. . . . . 1
scanner, and does not need to be repeated for in vivo imaging experiments'".
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9.2.4 Experimental Setup

Multi-echo RHE was performed on the left knee of one healthy volunteer using a 3T
scanner (MR750, GE Healthcare, Waukesha, WI) and 8-channel T/R extremity coil under
approval from our institutions IRB. Imaging parameters are as follows: Gmax=50mT/m,
slewrate=200mT/m/ms,  readout  duration=600ps,  spatial  resolution=0.6x0.6x3mm’,
FOV=18x18x3cm’ or 15x15x15cm’®, TR=33ms, TE=[0.08 2.03.95.87.79.6 11.513.4 153 17.1
19.0 20.9 22.8 24.7 26.6 28.5 30.4ms], and 7min35sec minute scan time. Note that two imaging
experiments using RHE were performed on the same subject with different FOVs: 3cm at patella
tendon and 15cm for fully covered imaging. Trajectory measurement was performed for 3

physical gradient axis using a body coil with the following imaging parameters: Ngpi=1201,

(a)

Relative k-space trajectory

Encoding time(ms)
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covered by SPI

Figure 9. 4. Measured k-space trajectory. (a) Trajectory of UTE and 16-echoes, and (b) zoomed-in view close to
center of k-space. Note that the later echoes deviate from center of k-space, which can be covered by SPI in the

proposed hybrid encoding.
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TR=40ms, and total scan time=4min48sec including reference scan.

For comparison, a 3D-Cones UTE acquisition with total 16 echoes including UTE was
performed on the knee of the same subject'®’, where 4 separated scans were performed with
acquisition of 4 echoes in each scan. Images with spatial resolution=0.67x0.67x3mm’ and 10
slices through the patellar tendon were acquired with total 13min scan time (cumulative time for

the four separate scans).

9.2.5 Image reconstruction and data analysis

Images were reconstructed using convolution gridding with oversampling rate=1.5 and
kernel width=3 pixel, using the k-space trajectory measured by dynamic SPI-based gradient
measurement as explained above. Iterative convolution-based density compensation was
performed and applied to gridding. For data fitting, mono-component and bi-component
exponential signal models implementing a non-linear least square fitting method under the
assumption of a Rician-distributed noise'® were used to characterize the water components in

musculoskeletal tissues.

9.3 Results
9.3.1 Trajectory Measurement

Figure 9.4(a) shows the measured k-space trajectory of total 17 echoes in 3 gradient axis.
Note that this plot shows relative k-space trajectories where 1.0 corresponds to kmax, k-space
position for desired in-plane resolution, which was 0.6mm resolution in the experiments. As
shown in the zoomed-in views of Figure 9.4(b), k-space trajectories deviate from the center of k-
space over TE, especially in the x and y-axis, where 2x stronger gradient (Gpax and slewrate) are

applied to achieve high resolution in plane, which implies an accumulation of errors in k-space
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trajectory over subsequent echoes. Therefore, if images are reconstructed with only frequency
encoded data, some data in the central region of k-space can be missed, resulting in imaging
artifacts and errors in data fitting. In the reconstruction strategy of the proposed method where
later echo images are also hybrid encoded, SPI encoding covers this missing data in the central
region of k-space in later echoes. In our experiments, approximately 5% of central k-space
region was covered by SPI, which is larger than the deviation of k-space trajectory in frequency

encoding at the last echoes as shown in Figure 9.4(b).

9.3.2 In Vivo Experiment

Figure 9.5(a) shows sagittal images through the knee at 17 echoes acquired using RHE

(b)

RHE — 80us 3DCone —400us

Figure 9. 5. Reconstructed images. (a) RHE images acquired at 17 TEs, and (b) RHE image vs. 3D-Cones. Note
that RHE shows better resolution, less artifact, and sharper tissue boundaries owing to the shorter readout

duration in RHE (600ps) compared to 3D-Cones (1.2ms).
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with small FOV in z-axis (3cm). There was a monotonic decay of the signal for all tissues with
much stronger decay occurring prior to 2ms for patellar tendon. Figure 9.5(b) compares the UTE
echo image acquired by RHE and 3D-Cones, where RHE shows better resolution, less artifact,
and sharper tissue boundaries as indicated by yellow arrows owing to the shorter readout

duration in RHE (600us) compared to 3D-Cones (1.2ms).

Figure 9.6 and 9.7 shows quantitative results obtained from RHE with large FOV in z-
axis (15cm) that fully-covers knee. As shown in Figure 9.6, RHE provides similar parameter
estimations of the patellar tendon with good fitting quality similar to 3D-Cones in short T2*
fraction (f;), short T2* (72%*s), and long T2*(72%*.). Figure 9.7 shows bi-component T2* maps of
ligament, meniscus, and tendon of the knee acquired using RHE which provide similar parameter

estimations as previously published techniques'®*'*,

fo(%) 72*¢(ms) 72* (ms)

3DCone

RHE

Figure 9. 6. Bi-component T2* map in patellar tendon. RHE provides similar parameter estimations of the

patellar tendon with fitting quality similar to 3D-Cones.
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Figure 9. 7. ACL/PCL/Meniscus/Tendon. The estimated T2*s were similar as previously published techniques.

9.4 Discussion and Conclusion

This study has demonstrated the feasibility of a single acquisition multi-echo RHE imaging
method to provide bi-component UTE T2* analysis of ligament, meniscus, and tendon within the
human knee joint at 3T. The current 7min 35sec scan time of RHE could be further reduced by
optimizing fat saturation, which takes 23% of the total imaging time. In contrast to other
acquisition techniques, the later echoes in multi-echo RHE are more robust to BO inhomogeneity,

magnetic susceptibility artifact, and eddy current induced trajectory distortions due to the
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benefits of SPI. Moreover, we have shown that the center of k-space that can be missed in
conventional pure frequency encoding based methods in a long radial gradient echo train that is

always sampled by SPI in the proposed hybrid encoding scheme.

With a single scan strategy, all echoes needed to perform bi-component signal fitting are
acquired at a similar time making the method less sensitive to model fitting errors due to patient
motion artifact. Furthermore, total scan time was less than 60% of the 3D Cones sequences
without the use of parallel imaging or optimization of fat saturation pulses. The multi-echo RHE
sequence can provide rapid bi-component T2* analysis of ligament, meniscus, and tendon.
Further technical development is necessary to allow the acquisition of later echoes using the

RHE method to perform bi-component T2* analysis of cartilage.
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Chapter 10. Summary and Future Works

10.1 Summary

In this dissertation, novel uses of SPI were explored. In Chapter 4, k-space extrapolation
method using dynamic SPI was described, which enables accurate T2* estimation and oxygen
mapping in EPRI with a single data acquisition that allows at least 3X acceleration. In Chapter 5,
an accelerated dynamic SPI based EPR-oximetry utilizing PCA-based compressed sensing was
presented, where a new random sampling pattern and bilateral k-space extrapolation were also
proposed. In Chapter 6, a novel method for gradient measurement based on 1D dynamic SPI
were described, which were applied in studies presented in Chapter 7, 8, and 9, showing its
efficacy in non-Cartesian imaging. In Chapter 7, an improved hybrid encoding scheme, ramped
hybrid encoding (RHE), was proposed, which alleviates slice-selectivity artifact and minimizes
per-excitation encoding time to reduce short T2* blurriness effect. In Chapter 8 and 9, two
applications of RHE were described. In Chapter 8, a new MRAC method based on dual echo
RHE was proposed, where a UTE image and an out-of-phase image are acquired in a single scan
to enable 4-species segmentation (water, fat, bone, and air). In Chapter 9, an application of multi-
echo RHE on human knee imaging was presented, where an improved SPI-based gradient

measurement technique adapted to a long gradient echo train was also proposed.

Throughout the chapters enumerated above, the efficacy of SPI was explored in EPRI and
MRI. In the current EPR system where a constant encoding gradient is used due to extremely
short T2* decay of spin probe (<600us) and slow gradient system, SPI is one of few choices
available for encoding. Due to long RF coil deadtime, SPI is only one method that can directly

measure FID without refocusing RF pulse, which is also beneficial in terms of SNR. Moreover,



140

SPI-based method is more robust to T2* blurriness effect over radial frequency encoding-based
method'®® where signal rapidly decays in long readout causing loss of high spatial frequency in
image (or k-space). With development of k-space extrapolation, we showed a feasibility of
dynamic SPI encoding in EPR-oxymetry, which is highly time efficient, where a myriad of
images is acquired in a single scan. In the studies in MRI, it was shown that SPI played

important role in qualitative and quantitative imaging in hybrid encoding.

10.2 Future works
In this dissertation, dynamic SPI was explored in EPRI, and SPI for hybrid encoding was
mostly explored in MRI, which implies there still exist undiscovered topics for SPI in EPRI and

MRI: dynamic SPI in MRI and hybrid encoding in EPRI.

In Chapter 8, a feasibility of dynamic SPI in hybrid encoding was briefly shown, where
oversampled SPI encoding was utilized to secure multiple UTE images for more accurate air
segmentation. In future works, the dynamic SPI in hybrid encoding for improved quantitative
imaging will be explored in MRI. k-Space extrapolation for quantitative imaging will be also

explored in MRI.

I have recently performed a feasibility study on hybrid encoding in EPRI, which showed
that hybrid encoding is also effective in EPRI to enhance spatial-temporal resolution. The key
idea was same as oversampling SPI. In vivo experiment will be performed with this topic after

optimizing imaging parameters and reconstruction methods.

Dynamic SPI-based gradient measurement technique will be further explored. First, the
very technique will be also tested in EPR imaging to enable use of non-constant gradients (e.g.,

sine wave). Second, measurement of higher order gradient terms will be explored using 2D or
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3D SPI to resolve spatial variation of gradient deviated from a linear gradient model. Third, an
advanced method for GIRF measurement will be explored, using a frequency-sweeping gradient
(chirp pulse) instead of gradient blips used in the previous study, which will allow higher

spectral resolution in the estimated GIRF.
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