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Abstract 

Electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging 

(MRI) are non-invasive imaging modalities based on similar physical phenomenon. MRI 

provides rich anatomical information based on proton imaging, while EPRI offers unique, 

quantitative information using spin probes such as tissue oxygenation, acidity, and redox status. 

In EPR-oximetry due to extremely short EPR signal lifetime (< 1µs) of spin probe (e.g., Oxo-63) 

and hardware constraints (e.g., gradient slewrate and RF deadtime), common imaging schemes 

utilized in MRI are generally not applicable. Therefore, specialized imaging schemes must be 

utilized to allow encoding of the rapidly decaying signal in EPRI. In MRI, single point imaging 

(SPI) has been developed for imaging object with short T2* in 1985, and has recently been 

revisited as a hybrid technique to improve the imaging of short T2* species. In EPRI, SPI has 

shown utility for in vivo characterization of tissue oxygenation.  

This thesis explores novel uses of SPI in EPR-oximetry and MRI. In EPR studies, a new 

method for image acquisition and reconstruction is studied, which enables accurate T2* 

estimation with high spatio-temporal resolution for oxygen imaging. Moreover, a method 

utilizing a model-based compressed sensing technique is explored to further accelerate image 

acquisition (up to 30x). In MR studies, a novel technique to measure a gradient waveform using 

dynamic SPI is developed, where a gradient impulse response function based on LTI concept is 

also studied. For improved imaging of short T2* species in MRI, a new imaging scheme using 

SPI is developed, termed ramped hybrid encoding (RHE), where encoding time is minimized to 

reduce blurriness in object with short T2*. Two applications based on RHE are studied in depth: 
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a rapid RHE-based attenuation correction for PET/MR and a highly efficient bi-component T2* 

estimation in human knee using RHE.    
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Chapter 1. Introduction 

 Electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging 

(MRI) are non-invasive imaging modalities based on similar physical phenomenon: electron 

paramagnetic resonance (EPR) discovered by Zavoisky in 1945 and nuclear magnetic resonance 

(NMR) discovered by Bloch and Purcell in 1944. In MRI, proton is commonly imaged for 

clinical use since water is abundant in human body, which allows high SNR (signal to noise 

ratio) and rich soft tissue contrast. EPRI images electrons using exogenous spin probes, which 

offers unique, quantitative information such as tissue oxygenation, acidity, and redox status.  

Although the discovery of EPR was only one year later than the discovery of NMR, EPRI 

is still in primitive stage, while MRI has made noticeable advancement in development of 

imaging systems with myriads of methodologies to image different body parts and functions 

(e.g., imaging of anatomy, tissue micro structure, blood flow, oxygenation, and cardiac motion), 

which has been already commercialized and used for clinical diagnosis. A challenge in EPRI is 

low SNR due to natural scarcity of unpaired electrons and low external magnetic field strength, 

B0, (~10mT) due to high gyromagnetic ratio of electron (660 times higher than proton in MRI)1. 

Moreover, high resonance frequency (~300MHz to 1GHz) in EPRI makes it difficult to image a 

large subject due to limited RF penetration.  

In EPRI, paramagnetic species such as transition metal ions (Fe, Cu, Mn, Co, Mo, Ni) or 

free radicals (typically carbon, nitrogen or oxygen containing compounds) are imaged using an 

exogenous spin probe since there is insufficient populations of free radicals to measure in natural 

status. With recent development of a non-toxic spin probe, Oxo-63, EPRI has become capable of 
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quantitative in vivo oxygen imaging2, which enables in vivo oncological study of cycling 

hypoxia. However, due to the extremely short EPR signal lifetime (< 1µs in 10mT) of Oxo-63 

and hardware constraints (e.g., gradient slewrate and RF deadtime), common imaging schemes 

utilized in MRI are generally not applicable. Therefore, specialized imaging schemes must be 

utilized to allow encoding of the rapidly decaying signal in EPRI.  

Imaging tissue with short-decaying signal (i.e., tissue with extremely short T2* decay 

such as bone and tendon) is also challenging in MRI. Recently, technological advancements of 

imaging hardware in gradient and RF systems have enabled imaging of short T2* species, called 

Ultrashort Time Echo (UTE)3 imaging. Unfortunately, UTE imaging technique that encodes k-

space (Fourier transform of an image) from center to out using ramping up gradients is not 

feasible in EPRI due to limited slewrate in the gradient system (typically < 200mT/m/ms), where 

long encoding time (100µs~1ms depending on desired resolution) is required to acquire k-space 

data. Therefore, a constant gradient is used in EPRI, which limits the possible imaging strategy, 

and hence a simple encoding method using constant gradients such as a spin echo based radial 

frequency encoding similar with rotating ultra-fast imaging sequence (RUFIS)4 or single point 

imaging (SPI) has been used. 

In MRI, an early study to image solid objects with extremely short relaxation (or signal 

decay) was first performed by single point imaging (SPI, pure phase encoding) in 19855. 

However, in SPI each point in k-space must be individually encoded, making 3D imaging an 

order of magnitude slower than conventional techniques. Due to the long acquisition time 

required, SPI is often denounced as an expensive and obsolete technique in MRI. However, in 

EPRI, SPI has recently shown utility for in vivo characterization of tissue oxygenation6,7. In the 

MR literature, SPI has also recently been revisited as a hybrid technique to improve the imaging 



	 3	

of short T2* species8.  

This thesis explores novel uses of SPI in EPRI and MRI. The major developments are 

summarized below.  

1.1 Development of single acquisition quantitative SPI for EPRI 

In SPI, images can be consecutively obtained through phase encoding time delays to 

estimate the transverse relaxation parameter (T2*)9 and thus characterize tissue oxygenation in 

EPRI oxygen imaging. A new technique using SPI was developed to synthesize k-space in the 

temporal domain to maintain effective k-space bandwidth and thus reduce the impact of Gibbs 

ringing artifact, which allows single acquisition measurement of the transverse relaxation 

parameter to enhance temporal resolution (e.g., at least 3x faster in EPR oxygen imaging). My 

abstract regarding this method was first introduced in the preceding of International Society for 

Magnetic Resonance in Medicine (ISMRM) 2013 annual meeting, and the journal paper was 

published in Magnetic Resonance in Medicine (MRM) 10 in 2013.  

1.2 Development of accelerated SPI for EPRI 

To further enhance spatio-temporal resolution of EPRI, a new imaging scheme was 

developed, which benefits from a new sampling pattern, bilateral k-space extrapolation, and 

model-based compressed sensing reconstruction. In this method, undersampled k-space data are 

combined through temporal domain, and remaining reconstruction errors are effectively 

suppressed using compressed sensing techniques based upon principal component coefficient 

maps11. I introduced this method in the MRS & Other oral session in ISMRM 2014 annual 

meeting, and magna-cum-laude was awarded to this work. The relevant journal paper was 
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published in MRM12 in 2015. 

1.3 Development of rapid and robust gradient measurement technique using 
dynamic SPI  

Accurate knowledge of the k-space trajectory is critical for artifact-free MR imaging, 

particularly in non-Cartesian imaging. In this method, a new gradient measurement technique 

based on single point imaging (SPI) was developed, which allows simple, rapid, and robust 

measurement of k-space trajectory. In the proposed technique, the zoom-in/out effect of dynamic 

SPI is utilized for k-space trajectory measurement. First, 1D SPI data are acquired from a 

targeted gradient in each axis, and then relative FOV scaling factors between encoding times are 

found, which represents relative k-space position. Improvements in image quality are 

demonstrated for UTE, spiral, and ramp-sampled bipolar gradient echo imaging. Moreover, a 

gradient impulse response function (GIRF) that characterizes a gradient system with linear time 

invariant (LTI) concept was measured in three different MR systems using the proposed method 

and applied for image reconstructions. I presented this method in Mapping & Manipulating 

Fields electronic poster session in ISMRM 2016 annual meeting. The relevant journal paper was 

published in MRM12 in 2016. A patent application describing this method was filed through 

WARF on October 12, 2015. 

1.4 Development of ramped hybrid encoding for MRI 

In hybrid UTE imaging, SPI is used to acquire data in central k-space that are missing 

during RF transmitter/receiver recovery time (deadtime), while frequency encoding is used to 

rapidly acquire k-space data in a center-out direction, where gradients are ramped before the RF 

excitation to allow faster encoding that is crucial in UTE imaging to improve image quality for 
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short-lived signals. However, this can introduce undesirable phenomena such as slice selectivity, 

chemical shift artifact, and blurriness of short T2* species. The proposed Ramped Hybrid 

Encoding (RHE) resolves these issues and allows improved imaging of short T2* objects 

compared to other conventional UTE or ZTE imaging schemes. I introduced this new imaging 

scheme in Novel Pulse Sequences & Trajectories oral session in ISMRM 2015 annual meeting, 

and summa-cum-laude was awarded to this work. The relevant journal paper was published in 

MRM13 in 2016 

1.5 A Novel MR-based attenuation correction for PET/MR using RHE 

Recently, ultrashort TE imaging based MR-based attenuation correction (MRAC) has 

been proposed in literature to overcome the intrinsic difficulty in MRI to resolve bone contrast 

and hence enable more reliable estimation of attenuation map. However, the long acquisition 

time required for UTE imaging still remains challenging. In this study, we proposed a novel, 

rapid dual echo method for UTE based MRAC, which allows segmentation of bone, air, fat, and 

water with high spatial resolution (1mm3) in a single scan with extremely short scan time 

(35sec). A manuscript describing this method is currently under preparation. 

1.6 Highly efficient bi-component T2* mapping of knee based on RHE 

T2* analysis is used in musculoskeletal imaging to characterize tendon, meniscus, and 

cartilage in human joints. With the development of high performance gradient systems, ultrashort 

time echo (UTE) imaging has become more feasible, allowing robust bi-component of short and 

long T2* tissue components. Many studies have been performed to realize robust and clinically 

feasible bi-component T2* imaging, but the long acquisition time required to obtain multiple 

echo images remains challenging. In this study, we developed a novel, rapid imaging scheme for 
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bi-component T2* analysis, based on ramped hybrid encoding (RHE) that allows robust bi-

component T2* estimation within a single scan. A manuscript describing this method is currently 

under preparation. 

1.7 Overview of the dissertation 

In this dissertation, SPI is explored in the two aspects of different imaging modalities, 

EPRI and MRI. In Chapter 2, the background of EPR and MR imaging are reviewed. In 

Chapter 3, the single point imaging scheme is reviewed. In Chapter 4, a single acquisition 

single point imaging based EPRI method using k-space extrapolation is introduced. In Chapter 

5, an accelerated single point imaging based EPRI method using bilateral k-space extrapolation 

and compressed sensing reconstruction based on principal component analysis (PCA) is 

described. In Chapter 6, dynamic SPI based gradient measurement technique is presented. In 

Chapter 7, RHE, a novel UTE imaging scheme for MRI, is explored. In Chapter 8, MR-based 

attenuation correction for PET/MR imaging utilizing RHE is presented. In Chapter 9, highly 

efficient bi-component T2* mapping of the knee based on RHE is described. In Chapter 10, the 

main findings of this dissertation are summarized, and remaining issues for future works are 

discussed.  
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Chapter 2. Background 

2.1 Physics of EPRI and MRI 

2.1.1 Nuclear magnetic resonance / electron paramagnetic resonance  

In natural state without external electromagnetic force, an unpaired electron or an 

unpaired proton has ½ spin that generates a magnetic moment, which creates a small but 

measurable magnetization as following equation. 

 𝜇 = 	𝛾𝑆 (2.1)  

, where 𝜇 is magnetic moment, 𝛾 is the gyromagnetic ratio, and S is the spin angular momentum. 

For example, the gyromagnetic ratio (𝛾/2𝜋) of 1H and electron are 42.58 MHzT-1 and -28.02 

GHzT-1 respectively, where electron has 658x higher gyromagnetic ratio than proton. Other 

atomic nuclei such as 3He, 13C, 15N, 17O, 19F, 31P, 129Xe also have non-zero spin and thus exhibit 

magnet resonance phenomenon; however, for clarity we will focus only on electrons and the 

protons in this thesis. 

In absence of an external magnetic field, each individual proton or electron spins about 

its own axis, generating a magnetic moment. However, net magnetization, a total sum of 𝜇’s, 

becomes zero since the individual magnetization of each nuclei is oriented in random direction. 

To harness this magnetization, an external magnetic field is applied, where the direction of B0 

field is conventionally considered as the ‘z’ direction. In presence of this B0 field, protons or 

electrons precess (or wobble) about the z-axis in a parallel or anti-parallel direction, resulting in 

precessing magnetization (Figure 2.1 (a) and Figure 2.1 (b)). The frequency of precession called 

Larmor frequency is determined by the following equation. 



	 8	

 𝜔+ = 𝛾𝐵+ (2.2) 

Note that electrons spin and precesse in opposite direction to protons, as the opposite sign 

of gyromagnetic ratio implies. Naturally, there are slightly more populations in a parallel (+z) 

over anti-parallel (-z) direction since spins in anti-parallel direction have higher energy state than 

spins in parallel direction, resulting in small but effective net magnetization along z-direction. 

The number of nuclei or electrons in parallel or anti-parallel direction is described by Boltzman 

distribution as following equation.  

 -.
-/
= 	 𝑒1

234
56  (2.3)  

, where N+ and N- denote the number of spins in anti-parallel and parallel direction respectively, 

k is Boltzman constant, and T is the temperature in Kelvin. The resultant net magnetization is 

given by  

 𝑀+ =
8
9
ℏ 𝑁< − 𝑁1 ≅ ?@ℏ@-4A4

BCD
 (2.4)  

, where N0 is total number of spins, and ℏ is Planck constant. M0 is the net magnetization, also 

called equilibrium magnetization. Note that the magnetization increases with B0, implying that 

the more signal can be obtained with higher magnetic field. 

2.1.2 RF excitation and free induction decay 

To measure the net magnetization, electromagnetic wave (RF pulse) with resonance 

frequency 𝜔+ is applied perpendicular to the z-axis. With the application of this RF wave (Figure 

2.1(c)), the magnetization rotates about this additional field, B1, by absorbing the 

electromagnetic energy, and flips onto the x-y plane. The frequency of this precession can be 
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described by the following equation. 

 𝜔8 = 	𝛾𝐵8 (2.5) 

Flip angle, 𝛼, is determined by magnitude of the B1 field and duration of applied RF 

pulse. For example, with constant B1 field and a duration of RF pulse 𝜏, a flip angle 𝛼 = 𝜏𝜔8 =

𝜏𝛾𝐵8 is obtained. Given the flip angle 𝛼, transverse magnetization in x-y plane is calculated as 

𝑀GH(0) = 	𝑀+ sin 𝛼 , while the longitudinal magnetization along z-direction is 𝑀N 0 =

	𝑀+ cos 𝛼. 

 Once a desired flip angle is achieved, the RF pulse is cut off immediately, and then 

flipped magnetization returns back to equilibrium magnetization, emitting absorbed energy back 

in the form of electromagnetic wave, which is called relaxation (Figure 2.1(d)). The relaxation 

occurs independently in two folds, in z direction and on x-y plane, which are called T1 and T2 

	
Figure	2.	1.	EPR and NMR. Precession of  (a) electron and (b) proton, (c) RF excitation, and  relaxation. 
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recovery respectively. During the recovery, the transverse magnetization can be measured by 

receiving the emitted electromagnetic wave (RF signal) oscillating with Larmor frequency 𝜔+. 

The signal can be modeled as the following equation with time constant T2 characterizing the 

signal decay in transverse plane. 

 𝑀GH 𝑡 = 	𝑀GH 0 	𝑒
1 S
6@𝑒TU4V (2.6)  

In reality, due to imperfect imaging environments such as inhomogeneous B0 field and 

magnetic susceptibility, the transverse magnetizations are dephased with a certain probabilistic 

distribution, and the signal decay is accelerated. The contribution of the unknown, miscellaneous 

dephasing factors are modeled as an additional time constant T2’ as following equation. 

 𝑀GH 𝑡 = 	𝑀GH 0 	𝑒
1 W

6@
< W
6@
X V
𝑒TU4V = 𝑀GH 0 	𝑒

1 S
6@
∗ 𝑒TU4V (2.7)  

The total signal decay above is called T2* decay, T2* relaxation, or free induction decay 

(FID). Larmor precession term, 𝑒TU4V , can be removed by assuming that observer is in a 

coordinate system rotating with 𝜔+, called rotating frame. 

2.2 Imaging 

2.2.1 Overview of EPRI/MRI hardware 

In EPRI and MRI, a Fourier transform based pulsed imaging system is commonly used 

because of its efficiency, where a broad band RF pulse is applied to simultaneously excite all 

magnetization in region of interest, and spatially encode to localize individual magnetization. 

There are three essential elements for the Fourier transform based pulsed MRI or EPRI: a main 

magnet, a RF system, and a gradient system. A main magnet is used to generate homogeneous 
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external magnetic field, B0, which is commonly 1.5-7T in MRI and 10-20mT in in vivo EPRI. In 

MRI a superconducting magnet is commonly used to obtain high and homogeneous B0 fields, 

while an electromagnet is used in EPRI due to low B0 field requirements. Active or passive 

shimming is standard in a MR system, while no shim is typically incorporated in a EPR system 

yet. 

A RF system governs transmission and reception of RF signals, which operates at the 

Larmor frequency 𝜔+. In MRI, various RF coils specialized in different body parts are used for a 

clinical use such as a head coil, a knee coil, a wrap coil, and a chest coil other than a body coil 

installed in magnetic bore. In EPRI, a coil attached to a small resonator is commonly used. An 

extensive review of the RF coils utilized in EPRI and MRI is not possible here. The reader is 

referred to these articles14–20 for further review.  

A gradient system is composed of an x, y, and z gradient, which generate linearly varying 

magnetic field superimposed on B0 in each direction. A Helmholtz coil for z-gradient and a 

saddle coil for x and y gradient are commonly used21,22. Strength of the gradient is controlled by 

a waveform generator, depending on hardware specifications such as a slew rate (temporal 

change, in a unit of mT/m/sec) and a maximum gradient amplitude (spatial change, in a unit of 

mT/m). Gradients are used for encoding k-space. 

2.2.2 Spatial encoding 

In pulsed EPRI and MRI magnetizations within the desired field of view (FOV) are 

simultaneously excited by RF pulse (B1), and a sum of total signals over space is received. In 

MRI and EPRI, Fourier transform based encoding is used, where data acquisition is performed in 

spatial frequency domain (k-space).  
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Without a gradient field applied, there is ideally no phase term in the transverse 

magnetizations observed in rotating frame (Figure 2.2(a)), where the acquired signal is the sum 

of all magnetizations over the FOV. This can be interpreted as the DC component, represents a 

center of k-space. With a gradient magnetic fields turned on (Figure 2.2(b)), a linearly grading 

magnetic field (Gx Tm-1) is superimposed to B0 field which slightly changes resonance 

frequency, resulting in a phase shift in transverse magnetizations, Mxy. The phase shift at spatial 

position x after time t elapsed can be calculated by 𝜙 𝑥, 𝑡] = 	 𝛾𝑥𝐺G 𝑡 𝑑𝑡. Therefore, now we 

get a sum of phase-modulated signals as following. 

 𝑆 𝑡] = 𝑀 𝑥 𝑒T`(G,Va) 𝑑𝑥 = 	 𝑀 𝑥 𝑒T ?Gbc V dV 𝑑𝑥. (2.8)  

, which can be interpreted as the Fourier transform at the point kx in k-space. 

 𝑆 𝑘G = 𝑀 𝑥 𝑒1T9f
2gc S hS
@i G 𝑑𝑥 = 	 𝑀 𝑥 𝑒1T9fCcG 𝑑𝑥. (2.9)  

	
Figure	2.	2. Spatial encoding. (a) Without gradient and (b) with gradient 
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 The encoded k-space point is determined by 𝑘G = 	
8
9f

𝛾𝐺G 𝑡 𝑑𝑡. By using various Gx’s, 

we can encode other points in k-space. N linearly scaled Gx’s are commonly used to encode N 

different points in the first dimension (here x-axis) in k-space. This is called phase encoding, in 

which one k-space position (in one axis) is encoded per each TR (time repetition: time interval 

divided by each RF excitation). Phase encoding (Figure 2.3(b)) is commonly followed by 

frequency encoding (Figure 2.3(c)), where k-space encoding is performed with gradient turned 

on. The k-space position in the frequency encoding direction changes over encoding time 𝜏 as 

in	𝑘H = 	
8
9f

𝛾𝐺H 𝑡 𝑑𝑡
j
+ . To encode 3D k-space, three gradients are simultaneously applied to 

move k-space encoding position to the desired position where frequency encoding begins, and 

then frequency encoding is performed in the desired trajectory.  

2.2.3 Image reconstruction 

Once a k-space is acquired, an image can be reconstructed by inverse discrete Fourier 

transform. In the case that k-space samples are not on the Cartesian grid (non-Cartesian), 

	
Figure	2.	3.	An example of 2D Cartesian encoding (Gradient echo imaging) (a) slice selection in z-direction, (b) 
phase encoding in x-direction, and (c) frequency encoding in y-direction. Note that in (a) slice selection is 
performed by applying effective z-gradient during RF excitation, which results in selective excitation along z-
direction, depending on RF bandwidth and gradient strength.  
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NuFFT23 or convolution gridding24 is commonly used to get Cartesian k-space. In this thesis, we 

utilize a convolution gridding method for non-Cartesian reconstructions. 
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Chapter 3. Single Point Imaging 

3.1 Theory 

3.1.1 Conventional single point imaging 

Single point imaging (SPI), which is also known as a constant time imaging, was first 

proposed to image solid objects by Emid and Creyghton in 19855. In conventional SPI a k-space 

is purely phase encoded using constant gradients and a broadband RF pulse, where the phase 

encoding gradient is linear scaled from –Gmax to Gmax with equi-spaced encoding steps over 

TRs as shown in Figure 3.1. Note that a single k-space data point is acquired in each TR at a 

constant phase encoding time delay, tp, where a desired FOV or spatial resolution is achieved. 

FOVs of SPI images are calculated using a well-known FOV equation for phase encoding as 

 
Figure	3.	1. Single point imaging 
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following. 

 𝐹𝑂𝑉 𝑡] = 2𝜋𝑁/(	𝛾 𝐺 𝑡 𝑑𝑡Va
+ ) (3.1) 

, where G(t) denotes gradient shape that is a function of encoding time, t. In the convention SPI 

where constant gradients are used with maximum phase encoding gradient amplitude, Gmax, a 

FOV at tp is calculated as following equation. 

 𝐹𝑂𝑉 𝑡] = 9f-
	?VabnoG

. (3.2) 

In the conventional SPI, only one image at tp, is commonly acquired. SPI imposes longer 

 
Figure	3.	2.	Dynamic single point imaging 
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encoding time than frequency encoding. For example, to obtain NxN or NxNxN Cartesian k-

space, SPI requires N times longer scan time. Therefore, SPI is not a popular imaging scheme in 

MRI. However, owing to the k-space data acquired in a constant time, image quality and spatial 

resolution in SPI are not limited by readout bandwidth or T2* relaxation effect (or T2* blurring 

effect) as in frequency encoding. Moreover, SPI is more robust to magnetic susceptibility 

artifact.  

3.1.2 Dynamic single point imaging 

Dynamic SPI, termed by Jang and McMillan25, harnesses temporal data discarded in 

conventional SPI. In dynamic SPI, multiple single point images are consecutively obtained with 

highest readout bandwidth (e.g., sampling interval = 2µs in a recent MR system and 4ns in EPR 

system).  Figure 3.2 shows a simple example of dynamic SPI, where data are acquired after RF 

coil deadtime until the end of the encoding gradient. Most important goal in dynamic SPI is to 

enable reliable T2* parameter estimation by utilizing the high-resolution temporal data. One 

challenge to achieve the goal is time changing FOV or spatial resolution as shown in Figure 3.2.  

Moreover, in EPRI where matrix size is limited (typically smaller than 21x21x21), strong 

Gibbs ringing artifact is exhibited with the pattern changing over phase encoding time delays in 

dynamic SPI, resulting in oscillation in the pixelwise temporal data, which needs to be address 

for accurate T2* estimation. In Chapter 4 and 5, novel methods to solve the issues are presented, 

where dynamic SPI images with same FOV and time-invariant Gibbs ringing artifacts are 

obtained for reliable T2* parameter estimation in EPRI.     

 In conventional SPI in MRI, it is common to place a broadband RF pulse and perform 

encoding at constant part of a gradient as in EPRI, which simplifies calculation of TE with 
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desired spatial resolution. However, theoretically any shape of gradient can be used for SPI, 

which results in error in FOV if actual shape of a gradient waveform is not measured correctly. 

In dynamic SPI, accurate estimation of actual gradient shape is more important since inaccurate 

estimation of gradient shape can deviate temporal data, misleading T2* estimation, as describe in 

the following section.  

3.1.3 FOV correction in dynamic SPI 

In Dynamic SPI, accurate FOV correction is prerequisite for parameter fitting since the 

FOV correction corrects for not only size of subject but also voxel intensity. For example, let’s 

think about a simple case shown in Figure 3.3(a), where a circular object is imaged with 2D 

dynamic SPI using constant gradients with maximum phase encoding gradient amplitude, Gmax. 

 
Figure	3.	3.	FOV correction in dynamic SPI. (a) PSD, (b) SPI images with native FOV, and (c) FOV corrected 
images 
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Let’s assume there is no T2* decay over encoding (T2* is infinite). Even though there is no 

signal decay inside object, the obtained SPI images show different intensity since voxel size 

changes over encoding, depending on prescribed SPI gradients. For example, FOV at TE=t1 will 

be 2x larger than that at TE=t2 if where t2=2t1, according to equation 3.1. Therefore, pixel 

intensity in the SPI image at TE=t1 will be 4x higher than the image at TE=t2 since voxel size is 

4x larger at TE=t1 as shown in Figure 3.3(b). 

Now, we want to rescale the object (or rescale FOV) at TE=t1 to match with the object 

size at TE=t2. Then, a rescaling factor=2 can be determined using following equation based on 

equation 3.1.  

 𝑠𝑐𝑎𝑙𝑒 𝑡8, 𝑡9 =
@it

	2SWguvc
@it

	2S@guvc
= V@

VW
= 9VW

VW
= 2. (3.3) 

If the scaling factor is correctly estimated, the pixel intensity of object at t1 will decrease 

to 25% of original intensity after scaling since now the pixel size is 4x smaller, matched with the 

intensity of the image at t2 as shown in Figure 3.3(c). However, if the scaling factor is incorrectly 

estimated, it will distort signal intensity in the scale-corrected image at TE=t1. For example, the 

scaling factor is estimated as 1.9 instead of 2, the resultant pixel intensity will be now 27.7% of 

original intensity after scaling, which causes 10.8% error (overestimation in intensity) in pixel 

intensity. In the case of 3D imaging, this error will be more significant, which causes 16.6% 

error (overestimation in intensity) in the example above.  

  In the case of using constant SPI gradients, this error will be negligibly small since FOV 

estimation is trivial. However, when an arbitrary shape of gradient is used, accurate measurement 

of gradient waveform is necessary. In Chapter 6, we present a novel way to measure gradients 
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based on dynamic SPI. 

3.2 Related works 

3.2.1 EPR oximetry 

Due to the extremely short T2* decay in EPR oximetry, SPI has been recently revisited as 

an effective imaging scheme7,26. In the methods, multiple data acquisitions are performed with 

different maximum phase encoding gradient amplitudes (G1, G2, G3,…,Gn). Then, data 

acquisition time point in FID, tp(i), in the data acquisition using Gmax=Gi can be found based on 

the following equation.  

 𝑡](𝑖) =
9f-

	?bxyz{|
,          i=1,2,…,n (3.4) 

, where FOVD denotes a desired FOV that is kept same between different data acquisitions. 

Typically, three data acquisitions (n=3) are performed due to the long scan time. Figure 3.4(a) 

shows how FOV changes over phase encoding time delays in three different Gmax’s (8, 10, and 

12mT/m). Then, three SPI images with a same FOV (10mm in Figure 3.4(a)) is used for T2* 

estimation as shown in Figure 3.4(b). 

 
Figure	3.	4.	Conventional SPI-based EPR oximetry. (a) FOV curves in dynamic SPI with 3 different maximum 
phase encoding amplitudes, and (b) T2* estimation. 
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 More advanced methods based on dynamic SPI that enable EPR oxygen imaging with a 

single acquisition reduce the total scan time by at least a factor of 3x10,12, which is described in 

Chapter 4 and 5. 

3.2.2 MRI 

In MRI, SPI has been explored in literature27–32. One application of SPI has been for 

industries to image solid materials with short T2* decay such as concrete, ceramic, or cement, 

where scanning time was not an important factor like it is in the clinic33. Recently, hybrid 

encoding based on SPI has been lime-lighted again for clinical imaging scheme8,34. In the hybrid 

encoding, SPI is used to enable fast radial encoding, where central part of k-space is encoded by 

SPI. An advanced hybrid encoding scheme13 and its applications are demonstrated in Chapter 7, 

8, and 9. 

There have been studies to use SPI concept (or pure phase encoding) to measure actual 

gradient waveform29,35,36, to benefit from SPI’s robustness to T2* decay effect. More advanced 

and rapid method has recently been introduced in literature, using dynamic SPI25, which is 

described in Chapter 6. 
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Chapter 4. Single Acquisition Single Point based EPRI 

4.1 Introduction 

Electron paramagnetic resonance (EPR) is a spectroscopic technique that measures the 

magnetic moment of unpaired electron systems. Through the use of paramagnetic spin probes, 

EPRI has surfaced as a promising non-invasive technology for dynamically imaging in vivo 

tissue oxygenation, where linewidth or R2* is proportional to pO2
7,37,38. Knowledge of the spatial 

distribution and dynamic changes of tissue oxygenation allows identification of critical 

intratumoral hypoxic regions where hypoxic tumor cells show high resistance against radiation 

and chemotherapy39,40. Image quality in EPRI benefits from the use of single point imaging (SPI) 

techniques due to extremely short spin-spin relaxation times6. The SPI scheme acquires the entire 

free induction decay (FID) signal for a single point in k-space under static phase encoding 

gradients. Though SPI requires long acquisition time due to point-by-point phase encoding, it is 

possible to obtain better imaging quality with less susceptibility artifact26,41. Additionally, the 

signal may be sampled over an extended time range allowing quantification of relaxation 

parameters.   

One notable characteristic of SPI is the “zoom-in” effect resulting in decreasing field of 

view (FOV) and enlargement of the object as time delay increases6. This phenomenon inhibits 

the direct fitting of pixelwise T2* since co-located pixel position changes over time. Therefore, 

conventional acquisition techniques in EPRI using SPI techniques have required repeated 

imaging experiments with differing maximum gradient amplitudes (typically 3) to secure 

multiple images. Images can be reconstructed at different phase encoding time delays (tp) with 

identical FOV allowing estimation of T2*7, which, however, reduces the achievable temporal 
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resolution. In related MRI techniques, the chirp-z transform has been previously used to 

reconstruct single-point images into images with a consistent FOV and perform T2* 

measurement9,31,42. In this paper, we describe the use of gridding techniques to reconstruct 

images with equal FOV. However, equal FOV methods alone are not sufficient to reliably 

estimate T2* due to k-space truncation artifacts inherent in the low-resolution of EPR images.  

The true object in MRI and EPRI is continuous, thus discrete sampling itself is 

windowing of the true k-space. It is from this sampling window that Gibbs ringing occurs in 

these modalities. At sufficiently high matrix sizes (e.g., conventional MRI resolution of 

256x256), this ringing artifact is minimal (high in frequency). However, due to time constraints 

imposed by the SPI acquisition, EPRI acquisitions are limited in spatial resolution. Limited 

acquisition matrix size results in truncation of a significant portion of high frequency 

components in k-space, resulting in unavoidable and significant Gibbs ringing artifacts in 

reconstructed images that are difficult to remove and impair the quality of image as shown in 

Figure 4.2. Similar artifacts are apparent in magnetic resonance spectroscopic imaging43,44, 

which utilizes a similar resolution. In SPI, as images are reconstructed at different phase 

encoding time delays (tp), the spatial frequency of ringing artifact increases as the FOV decreases 

and the degree of truncation decreases. This time-variant ringing artifact inhibits accurate T2* 

estimation as it generates irregular oscillations in the reconstructed FID signal. To resolve this 

problem, we have implemented a k-space extrapolation method that improves image quality over 

time by propagating the high frequency components in a cascading manner, similar to the 

recently reported multi frame SPRITE method utilizing the chirp-z transform31.  Note that Gibbs 

ringing is not eliminated; however, it remains constant in the reconstructed images to allow 

improved and more reliable estimation of T2* and hence accurate measures of oxygenation. 
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4.2 Methods 

4.2.1 Reference FOV and scaling factor 

The zoom-in effect of SPI, shown in Figure 4.2, can be expressed with the following 

equation.  

 𝐹𝑂𝑉 𝑡] = 2𝜋/(	𝛾}𝑡]∆𝐺)  (4.1) 

where ∆G is incremental gradient step, γe is gyromagnetic ratio of the electron, and tp is the 

phase encoding time delay following the RF pulse. Let reference FOV, FOV(tref), denote the 

desired FOV that images will be reconstructed into. When selecting the reference FOV, it is 

desirable to consider using the FOV that minimizes excessive interpolation. Typically this would 

suggest that the middle tp should be used; however, due to the implementation of the k-space 

extrapolation method described below, we chose FOV(tref) to be equal to the final FOV in order 

to maximize the spatial resolution of the ensemble images. Once the reference FOV is 

determined, scaling factor at current time delay tp is estimated as given with equation (4.2), 

which will be used in subsequent gridding.  

 𝑠 𝑡] = 𝐹𝑂𝑉 𝑡�}� /	𝐹𝑂𝑉(𝑡]).   (4.2) 

To reconstruct images with a constant FOV, we employed the well-known convolution 

gridding methods using a Kaiser-Bessel kernel45,46. The sampled k-space data were gridded to a 

new k-space with the inter-sample distance scaled by the scaling factor, s(tp). Note that in the 

current EPRI spectrometer, deadtime depends on the saturation and recovery of the preamplifier 

following the application of the RF pulse, where recovery is generally faster with higher gradient  

magnitude. Due to the nonlinear characteristic of recovery in preamplifier, it is difficult to 

accurately estimate the actual deadtime. When deadtime is incorrectly estimated, FOV and FOV 
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scaling factor, s(tp), are also incorrectly estimated, and hence images are reconstructed at 

different FOVs as seen in Figure 4.1 (b). To correct the scaling factor, we used nonlinear 

optimization (Nelder-Mead Simplex) to automatically determine the optimal scaling factor s(tp) 

that minimized the difference between the reference image and current image, both reconstructed 

using the gridding mentioned above. Figure 4.1 (a) shows the estimated scaling factors and 

corrected scaling factors obtained using the abovementioned method. Figure 4.1 (b) shows 

difference between images reconstructed at the first time delay and the last time delay with 

estimated or corrected scaling factor. 

4.2.2 T2* fitting 

Once images with equal FOV are secured, pixelwise T2* may be estimated by fitting the 

reconstructed FID signal to the following FID equation. 

 
Figure 4. 1. Correction for FOV scaling factor. (a) Uncorrected FOV scaling factor vs. corrected FOV scaling 
factor, and (b) Difference between images reconstructed at the first time delay (760 ns) and the last time delay 
(1360 ns), with uncorrected (left) or corrected (right) FOV scaling factor. To compensate for FID between two 
images, each image was normalized by its average intensity. 
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 𝑀 = 𝑀+exp	(−𝑡/𝑇9∗). (4.3)   

In this study, we used linear least squares fitting to estimate T2* using the log linearization of the 

FID data.  

Unfortunately, gridding alone is not sufficient to allow accurate quantification of T2*. In 

practice, due to the low resolutions used in EPRI, images are corrupted by Gibbs ringing due to 

truncation as a result of the narrow k-space sampling bandwidth. This matter is further 

complicated by the time-decreasing FOV, and the time-increasing k-space sampling bandwidth 

of SPI, which results in an increasing frequency of Gibbs ringing artifacts as phase encoding 

	
Figure 4. 2. Time-variant FOV and Gibbs ringing in SPI. 3-tube phantom data was reconstructed into native 
FOV (top) or equal FOV (bottom). Gridding was used to obtain images with equal FOV. Note that in both cases, 
the frequency of ringing artifact increases with time. 
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time delay increases. Figure 4.2 shows images with increasing time delay and characteristic 

time-varying ringing artifact, which complicates T2* fitting for images regridded to a consistent 

FOV. Although methods have been proposed to alleviate Gibbs ringing artifacts in MRI by 

extrapolation47–52, it is difficult to apply these techniques to EPRI due to its inherent low-

resolution. To address this issue, in the next section we explore a k-space extrapolation method 

that enforces spatially-invariant Gibbs ringing across phase encoding time delay to enable a more 

robust measurement of tissue oxygenation status. 

4.2.3 k-Space extrapolation 

As described above (as shown in Figure 4.2), the frequency of Gibbs ringing changes 

with sampling bandwidth in k-space. Thus, if we can keep sampling bandwidth same, then we 

can achieve time-invariant Gibb ringing artifact for all reconstructed images. To do this, k-space 

from the later time delays (with smaller FOV, and higher spatial resolution) can be extrapolated 

to the k-space from earlier time delays (with larger FOV, and lower spatial resolution). 

Figure 4.3 (a) shows the concept of k-space extrapolation method used herein, which 

propagates high frequency coefficients in later k-spaces to earlier k-spaces in a cascading 

manner. The following equation is used to determine the size of the region to be filled with 

propagated data, Nfilled, where N is the matrix size of k-space. 

 𝑁�T��}d = 	𝑁 1 − 𝐹𝑂𝑉 𝑡�}� /𝐹𝑂𝑉 𝑡] 	 . (4.4) 

Based on equation 4.4, a masking window is constructed for each k-space, which is used 

to combine k-spaces. When constructing masking windows, a merging filter can be applied to 

smooth the edge of mask, to avoid abrupt changes in k-space. This was implemented by 

convolving a 3x3 spatial averaging filter with the masking window. The propagated data is 
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multiplied by a scaling factor to compensate for inter image T2* decay, where the scaling factor 

is determined by the ratio of the maximum coefficient in each k-space. To test different methods 

of k-space extrapolation, we tested implementations without scaling, using scaling as described 

above, and using scaling with a merging filter to ensure a smooth transition between the original 

and extrapolated k-space. As seen in Figure 4.3 (b), similar pattern of ringing artifact emerges at 

	
Figure 4. 3. k-Space extrapolation. (a) Concept of k-space extrapolation (phase encoding times, tp4 > tp3 > tp2 > 
tp1), and (b) Reconstructed images with application of k-space extrapolation. Note that the k-space extrapolation 
method makes similar Gibbs ringing at different time delays. 
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different time points when k-space extrapolation method is applied.  

4.2.4 Linewidth and pO2 quantification 

In EPRI, oxygen concentration (pO2) can be quantified based on the linewidth of the spin 

probe that can be expressed with sum of two terms, LW' and LWo as following equation. 

 𝐿𝑊 = 𝐿𝑊� + 𝐿𝑊� = 	𝐿𝑊� + α	×	pO9 (4.5)  

where LW' denotes sum of oxygen-independent LW terms and LWo denotes oxygen-dependent 

LW broadening that is linearly proportional to pO2. In EPRI, LW (full width at half maximum 

height, FWHM) can be calculated from T2* by 

 𝐿𝑊 = 	1/(2802	𝜋	𝑇9∗)		𝑚𝐺𝑎𝑢𝑠𝑠. (4.6)  

Since LW can be estimated by fitting the sampled FID data, a pO2-LW calibration curve can be 

fitted by imaging samples with known pO2.  

 4.2.5 Experimental setup 

To evaluate the capability of quantitative oxygenation measurement using the abovementioned 

techniques, a computer simulation, a calibration phantom test, and an in vivo imaging study were 

performed. To simulate the calibration phantom experiment, synthetic EPRI images with much 

higher resolution than conventional EPRI acquisitions (255x255) were generated using 

MATLAB (The Mathworks, Natick, MA). The simulated data consisted of 3 tubes with different 

T2*’s (200ns, 160ns and 110ns) that respectively correspond to approximately 3%, 30%, and 

90% oxygen levels according to our tube phantom calibration result. T2* shorter than these was 

not taken into account since current EPR scanner does not allow imaging of objects with 

extremely short T2* due to the relatively long deadtime of RF transmitter/receiver (usually 
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longer than 200ns). Moreover, our interest is in detecting hypoxia rather than imaging highly 

oxygenated object, hence simulation was performed with object oxygenated less than 90%. 

Simulated decay curves were generated for 300 points using a sampling rate of 5ns. To simulate 

SPI encoding, inverse gridding was used to sample k-space with a 49x49 matrix with a spreading 

Dirac comb function to simulate the zoom-in effect. To create a reference standard for the 

simulation, the same 3-tube data was generated as above without a time-decreasing FOV (zoom-

in effect), which does not require equal FOV reconstruction or k-space extrapolation. For both 

datasets, the SNR was set to 150 at 800ns (comparable to real experimental results) and the same 

level of noise power was applied to the entire FID. 

Details regarding the specifications of the EPRI spectrometer have been previously 

published2,53. For the tube phantom experiment, 3D EPR data was obtained using three-tube 

phantom comprised of three tubes containing 2 mM Oxo-63 (GE Healthcare, Waukesha, WI) 

bubbled with respectively 0%, 2% and 5% oxygen. Data was encoded using three orthogonal 

phase-encoding gradients incrementally ramping in 19 equal steps from –8 to 8 mT/m, resulting 

in 19x19x19 phase-encoding steps. Data points were encoded at constant time, every 5ns after 

the minimum RF recovery dead time (360ns). 4000 averages per phase encoding point and an 

interpulse delay (TR) of 5.5 µs was used. Pixelwise T2* was estimated and the mean T2* from 

each tube was used to calibrate %-oxygenation to T2* as a first order polynomial using linear 

least squares6, which was later used in the in vivo experiment to quantify tissue oxygenation. The 

calibration was calculated across a range of phase encoding time delays of 400 ns in duration, 

and at an extended range of 600 ns. In addition, datasets obtained under various phase encoding 

gradients ranging from 8 to 13 mT/m were tested to verify the influence of the strength of phase 

encoding gradient field on T2* estimation. Time range [800 ns, 1200 ns] was used for the test. 
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For the in vivo experiment, 3D EPR data was obtained from a SCC (squamous cell 

carcinoma) tumor bearing leg of a C3H mouse. Animals (Frederick Cancer Research Center, 

Animal Production, Frederick, MD) were housed in a climate controlled room and fed ad 

libitum. Tumor (SCCVII) cells were injected subcutaneously as a single suspension of 106 cells 

in the right hind leg. Tumors grew to 1.5 cm diameter (~1.8 cm3 in volume) in approximately 10 

days. All in vivo experiments were carried out in compliance with the Guide for the Care and 

Use of Laboratory Animal Resources (National Research Council, 1996) and approved by the 

National Cancer Institute Animal Care and Use Committee. Mice were anesthetized by 

isoflurane (1.5%) inhalation and mounted prone with hip positioned downwards on a home built 

transmit-receive resonator coil. Breathing rate (60 ± 10 per min.) was monitored by a pressure 

transducer (SA Instruments, Inc., Stony Brook, NY). Core body temperature was maintained at 

37 ± 1 ºC by a steady flow of warm air. A 30 gauge needle was cannulated into the tail vein and 

extended using an optimum length of polythene tubing to administer the Oxo-63 spin probe (GE 

Healthcare, Waukesha, WI). Gradient step size was set to 19x19x19 (Gmax = 11.4 mT/m) and 

other settings were set identically to the three-tube phantom data acquisition.  

4.2.6 Data Processing 

 Using the aforementioned methods, T2* was fit over varying ranges of phase encoding 

time delays to determine the dependency of chosen time range upon the accuracy of T2* 

estimation. For each time range, the latest time delay/minimum FOV was used as the reference 

FOV. Images were reconstructed in reverse order, from the largest time delay to the smallest 

time delay, and high frequency components were propagated to the earlier time delays, as 

explained above. With serial images of differing time reconstructed over a time range, pixelwise 

T2* was estimated by fitting the data to the equation 4.3 using linear least squares of the log-
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linearized equation, where the estimated slope represents -1/T2*, and the resultant T2* map was 

converted into a LW map. For the tube calibration, the pixelwise LWs were grouped into each 

tube, and an average LW for each tube was used to generate a pO2-LW calibration curve.  

4.3 Results 

4.3.1 Simulation results 

To evaluate how accurately our proposed method estimates pixelwise T2*, we simulated 

SPI data for three tubes with different T2* (200 ns, 160 ns and 110 ns respectively for upper, 

lower-left and lower-right tube). Figure 4.4 (b) shows two FID curves reconstructed at point A 

with or without application of k-space extrapolation method. The oscillation caused by time-

changing Gibbs ringing was clearly eliminated by application of the k-space extrapolation 

method. With time range [250 ns, 650 ns], the estimated T2* of three tubes of the reference 

standard was 199.93 ± 0.32 ns, 160.00 ± 0.24 ns, and 110.49 ± 1.89 ns, respectively. The 

estimation of T2*’s using gridding with k-space extrapolation was 198.53 ± 3.29 ns, 160 ± 2.13 

ns, and 111.91 ± 4.89 ns, respectively. Using gridding without k-space extrapolation the 

estimates were 206.91 ± 18.30 ns, 164.55 ± 11.61 ns, and 111.79 ± 5.60 ns, respectively. 

Application of k-space extrapolation made the T2* map more spatially consistent while the 

unprocessed T2* map was severely distorted by the time-varying ringing artifact, with the 

estimated T2* map and the resultant histogram are shown in Figure 4.4 (c),(d),(e). Table 4.1 

shows the performance of three different strategies in extrapolating k-space: using raw data with 

no scaling, applying a scaling factor and applying scaling and a merging filter. As the root mean  

squared error shows, scaling is required for accurate T2* estimation, and the application of a 

merging filter further improves the accuracy of estimation.  
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Figure 4. 4. Simulation result. (a) Reconstructed image, (b) FID curves at position A, (c) T2* map and the 
resultant histogram (without using k-space extrapolation), and (d) T2* map and the resultant histogram (using k-
space extrapolation). (e) T2* map and the resultant histogram (using the reference standard). Time range [250 ns, 
650 ns] was used. Note that the k-space extrapolation method reduces oscillation in the FID curve in (b), and 
hence more reliable T2* estimation is possible. 
	
	

Time range (ns) Root mean squared error (ns) 

tmin tmax Range Without scaling With scaling Scaling + merging filter 

200 600 400 29.9 4.5 4.4 

250 650 400 24.9 4.0 4.0 
300 700 400 20.6 4.8 4.3 
350 750 400 18.2 6.1 5.6 
400 800 400 17.5 8.5 7.8 
200 800 600 20.0 6.4 6.1 

 
Table 4. 1. Evaluation of k-space extrapolation strategies. As the root mean squared errors show, scaling is 
required for k-space extrapolation to perform well, and the merging filter improves accuracy of T2

* estimation. 
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4.3.2 Tube phantom results  

 Table 4.2 shows quantitative result of tube calibration obtained using various time ranges. 

Since oscillation is not perfectly removed from the FID data in practice, presumably due to noise 

sources other than Gibbs ringing, as seen in Figure 4.5 (b), LW may show time range 

dependency if the time range used to compute T2* is too short. In Table 4.2, slopes for the 400 ns 

time range are distributed within 5.36 ± 0.15 mG/% and y-intercepts are distributed within 

537.39 ± 5.23 mG, with a coefficient of variation of 2.79% and 0.97%, respectively, indicating a 

stable estimation of T2* across a wide time range. We determined the pO2-LW calibration curve 

for the following in vivo experiments using the larger 600ns time range reconstruction (slope = 

5.35 mG/% y-intercept = 549.59 mG). Figure 4.5 (c),(d) shows two 3D LW images and the 

resultant histograms estimated respectively using gridding alone and gridding with k-space 

extrapolation within a time range of [750 ns, 1350 ns]. As seen, k-space extrapolation enables 

	
Figure	4.	5. Tube phantom result. (a) Visualization of reconstructed image (at 750 ns), (b) FID curves at position 
A, (c) LW map and the resultant histograms (without k-space extrapolation), and (d) LW map and the resultant 
histograms (with k-space extrapolation). Note that Gibbs ringing effect shown in (c) is greatly alleviated by 
applying k-space extrapolation in (d). 
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more stable LW estimation less affected by Gibbs ringing. Table 4.3 shows the result of LW 

estimation obtained using gridding with k-space extrapolation under increasing phase encoding 

gradient and amplitude and the conventional multiple gradient method implemented using 3 

different phase encoding gradients. As the result shows, gridding with k-space extrapolation 

allows LW estimation as accurate as the conventional method, regardless of the strength of phase 

encoding gradient field. 

 

minT (ns) maxT (ns) Range (ns) Slope (mG/%) Y-intercept 
(mG) R2 

750 1150 400 5.58 531.69 0.9943 
800 1200 400 5.41 535.64 0.9906 
850 1250 400 5.33 535.92 0.9658 
900 1300 400 5.26 537.85 0.9774 
950 1350 400 5.20 545.84 0.9993 
750 1350 600 5.35 549.59 0.9803 

 
Table 4. 2. Calculated LW fit with various time ranges using k-space extrapolation. The slopes and y-intercepts 
show little variation according to time ranges.  
 
 

  Phase encoding 
gradient amplitude 

Average 
LW in 
Tube 1 

Average LW 
in Tube 2 

Average LW 
in Tube 3 

  (|mT/m|) (mGauss) (mGauss) (mGauss) 

Gridding 
with 

k-Space  
extrapolation  

8 534.73 547.98 562.08 
9 546.88 554.18 569.86 

10 544.40 545.84 569.93 
11 544.29 550.30 568.37 
12 539.70 548.98 567.00 
13 543.87 553.07 571.65 

Conventional 
method 

8 
10 
12 

546.72 551.16 572.08 

 
Table 4. 3. LWs calculated using gridding with k-space extrapolation under various phase encoding gradients or 
using conventional method. Time range [800 ns, 1200 ns] was used for gridding with k-space extrapolation. 
Three datasets obtained under phase encoding gradients -8~8 mT/m, -10~10 mT/m and -12~12 mT/m were used 
to implement the conventional method. 
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4.3.3 In vivo results 

Figure 4.6 (b) shows images reconstructed at different time delays using gridding 

combined with k-space extrapolation. The k-space extrapolation method maintains Gibbs ringing 

and more notably preserves the high frequency details in the reconstructed image. The resultant 

pO2 maps are shown in Figure 4.6 (c), which are estimated using several slices of reconstructed 

3D image as shown in Figure 4.6 (a), with k-space extrapolation. The pO2 maps enable 

localization of hypoxic region where SCC tumor cell is embedded. The detected hypoxic region 

	

Figure 4. 6. In vivo result. (a) Experimental setup, (b) Reconstructed images shown in log scale, and (c) 
Estimated pO2 maps with different slices of anatomy. Note that gridding combined with k-space extrapolation 
preserves high frequency details even at early time delays comparing to gridding alone in (b). Note that hypoxic 
region can be localized with the estimated pO2 maps in (c). 
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shows pO2 near 10 mmHg. 

4.4 Discussion 

The implementation of our gridding-based k-space extrapolation technique, and other 

similar techniques using the chirp-z transform31 have similarities to the keyhole method and 

time-resolved techniques that have been explored in MRI54–56. These techniques use varied 

approaches to k-space substitution to enable improved image acquisition rate while maintaining 

voxel resolution. One substantial difference from the method described herein is that such 

techniques are typically used to image dynamic objects where fully acquiring the data would 

result in an acquisition time where physiological relevant information might be missed. Here, the 

early phase encoding delay images depict differences of only hundreds of nanoseconds in the 

evolution of the EPR signal. Because this range is miniscule with respect to the overall time it 

takes to acquire an EPR image, there will be no loss in physiologically relevant information in 

the extrapolated k-space. The only difference is related to T2*-related signal loss in the 

extrapolated regions, which is minimized by extrapolating only the temporally neighboring phase 

encoding time delays. This should not result in blurring as the T2* times of the EPR tracers have 

been shown not to be resolution limiting in practice using SPI acquisitions6.  

A substantial advantage of this new method is that it allows quantification of T2* from a 

single dataset. Other techniques have used repeated experiments with differing maximum 

gradient amplitudes (typically 3 different amplitudes are chosen) to secure images with equal 

FOV at different phase encoding time delay6,57,58, which usually takes 7.5 minutes to acquire 

image data with 19x19x19 gradient steps53. By using the technique presented herein, temporal 

resolution can be improved by a factor of 3. Furthermore this new technique allows T2* to be 
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calculated over an extended time range, with many data points (120 as performed above), to 

allow for a more accurate parameter estimation. Because tumor hypoxia is known to fluctuate on 

30-60 second time intervals59–63 this new technique will allow better characterization of hypoxic 

components of the tumor microenvironment. Conversely, because SPI EPR is limited in temporal 

resolution as it is a pure phase encoded technique, the improved temporal resolution can be used 

to improve spatial resolution by factors of 1.7 and 1.4 for 2D and 3D imaging, respectively, for a 

3-fold improvement in temporal resolution. 

4.5 Conclusion  

In this chapter, we described a technique to allow reconstruction of SPI EPR images at a 

consistent FOV. Further, we implemented a k-space extrapolation approach to demonstrate a 

new technique for pO2 quantification method that requires only a single image acquisition. With 

simulation and tube phantom experiment, we have verified that gridding combined with k-space 

extrapolation is capable of reliable pO2 quantification with enhanced temporal resolution (by a 

factor of 3), which enables higher temporal resolution to resolve pO2 fluctuations in dynamic 

EPR imaging or increased spatial resolution with equivalent temporal resolution.  
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Chapter 5. Accelerated 4D Quantitative Single Point EPR 

imaging Using Model-based Compressed Sensing 

5.1 Introduction 

Electron Paramagnetic Resonance Imaging (EPRI) is a non-invasive imaging technique 

that measures the spatial distribution of unpaired electrons, akin to protons in MRI. Owing to the 

recent development of biologically compatible spin probes64–66, EPRI has emerged as a 

promising non-invasive imaging modality capable of dynamically and quantitatively imaging in 

vivo tissue oxygenation. However, due to extremely short spin-spin relaxation times, slice-

selective imaging and conventional frequency encoding techniques are difficult to achieve and 

single-point imaging (SPI) techniques are often utilized to improve image quality6,53. In single 

point EPRI (SP-EPRI), gradients remain constant during excitation, and data is acquired 

immediately after transmit dead time until no signal remains. Thus SP-EPRI is rich in the 

spectral domain, but inherently suffers from reduced spatial and temporal resolution due to the 

time needed for a globally phase-encoded acquisition.  

SPI also exhibits a “zoom-in” effect due to the use of constant gradients, where k-space 

samples spread and objects enlarge (as FOV decreases) at increasing phase encoding time delays. 

Recently, we proposed a method based on gridding termed k-space extrapolation (KSE) to 

maintain FOV across all phase encoding time delays and to improve the reliability of parameter 

estimation10. Although this method improves temporal resolution (by a factor of 3) by 

eliminating the need of multiple data acquisitions7 required to secure multiple images with same 

FOV, further reduction in acquisition time is needed for SPI. In MRI, a myriad of techniques 

have been proposed to accelerate imaging, such as parallel imaging67–69, partial Fourier 
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reconstruction70 (also applied to SP-EPRI71), and compressed sensing reconstruction72. Among 

them, compressed sensing has recently surfaced as a promising method that can accelerate image 

acquisition by enabling high ratio of undersampling without a loss of image quality.  

Compressed sensing was first introduced in the area of signal processing and information 

theory73,74, which was based on the idea that signals can be reconstructed from highly reduced 

measurements if the signals show sparse representation. Recently, there have been many 

successful efforts employing compressed sensing to medical imaging75–79. Since medical images 

usually do not show sparse representation by themselves (except some special cases such as 

angiography), compressed sensing applications benefit from transform domain sparsity that is 

achieved by transformations such as the discrete wavelet transform (DWT). 

Unfortunately, the application of compressed sensing is difficult to employ in SP-EPRI 

due to its small matrix size that inhibits transform domain sparsity. However, since SP-EPRI 

acquires abundant data in the parameter domain (measurement of the T2* decay of the FID) and 

the T2* relaxation model is monoexponential and well-known, SP-EPRI can benefit from model-

based compressed sensing techniques that simultaneously use k-p-space data in reconstructing 

images. In such model-based methods, an overcomplete dictionary or principal component 

analysis (PCA) can be used to sparsify the acquired data and improve T2* estimation78,80,81. 

In this study, we improved our previous KSE technique to add parameter domain 

reconstruction and further enhance spatial and temporal resolution in SP-EPRI. The improved, 

bilateral k-space extrapolation (bi-KSE) allows more sample points to be secured in a target k-

space by bilaterally extrapolating k-space samples from the neighboring k-spaces. In addition, a 

3 zone sampling strategy was utilized for which a different sampling criterion was applied to 
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each zone while taking advantage of the large degree of conjugate symmetry possible in EPRI. 

Model-based compressed sensing using PCA78 was implemented to further improve accuracy of 

T2* parameter estimation. During the reconstruction process, aliasing artifacts caused by 

undersampling are iteratively suppressed by promoting sparsity of PC coefficient maps in the 

DWT domain. 

5.2 Methods 

5.2.1 k-Space Sampling Strategy 

An incoherent sampling trajectory is a necessary component for sparsity-promoting 

reconstruction techniques where noise-like aliasing artifacts are desirable. The trajectory used 

herein utilizes conjugate symmetry and randomized sampling. Owing to pure phase encoding 

and low B0 field (10 mT), image phase in SP-EPRI is more tractable than in MRI71. The 

reconstructed images in Figure 5.1 show a high degree of conjugate symmetry is possible in SP-

EPRI. Therefore, we exploited conjugate symmetry when prescribing randomized sampling 

patterns by avoiding all symmetric points. Further, we designed a hierarchical random sampling 

 
Figure 5. 1. High degrees of partial Fourier sampling with conjugate symmetry can be utilized in SP-EPRI.  
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Figure 5. 2. (a) Hierarchical random sampling pattern with 127x127 matrix and R=8, and (b) Concept of bilateral 

k-space extrapolation (bi-KSE). In (a), sampling positions are first assigned for Zone 1 or Zone 2. Then, 

sampling positions are sparsely assigned for Zone 3 until the total number of sampling reaches the desired 

number of points for the prescribed acceleration factor. Zone 2 will be effectively fully sampled after applying 

conjugate symmetry. 

scheme to effectively maximize the number of k-space samples in an undersampled acquisition.  

Figure 5.2 (a) shows an example of the proposed hierarchical random sampling scheme, 

where k-space is segmented into 3 zones. Zone 1 is a fully sampled central region. Zone 2 is a 

region where k-space is undersampled by a factor of 2, which is converted to a fully sampled 

region after the application of conjugate symmetry. This large fully sampled region is required to 

maximize the performance of model-based compressed sensing explained in later section. Zone 3 

is more sparsely sampled than Zone 2. In Zone 2, k-space is uniform randomly sampled, whereas 
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in Zone 3, Gaussian random sampling is applied. After sampling, the sampled points in Zone 2 

and Zone 3 are used to estimate the samples at the symmetric position by the application of 

conjugate symmetry. In this study, 10% of matrix size was used for the width of Zone 1, and the 

size of Zone 2 was set to 50%, 40%, and 33% respectively for 61x61x61, 95x95x95, and 

127x127x127 dataset. 40% of the matrix size was used for the standard deviation of the Gaussian 

random sampling in Zone 3.  

5.2.2 Bilateral k-space extrapolation 

We developed a gridding technique for SP-EPRI, called k-space extrapolation (KSE), to 

achieve equal FOV reconstruction with time-invariant Gibbs ringing and thereby enable more 

reliable pixelwise T2* estimation10. Unfortunately, this method is not suitable for highly 

undersampled k-spaces since high frequency regions will be too sparsely sampled and there exist 

too few samples to be extrapolated from the later phase encoding time delays to earlier delays. 

Therefore, this method has been improved by performing k-space extrapolation bilaterally as 

shown in Figure 5.2 (b).  

When performing bilateral k-space extrapolation (bi-KSE) with a hierarchical sampling 

pattern, Zone 1 and Zone 2 do not need bilateral extrapolation since those regions are fully 

sampled (Zone 2 becomes equivalent to fully sampled after the application of conjugate 

symmetry). Therefore, Zone 1 and Zone 2 are extrapolated using unilateral/backwards KSE, 

while Zone 3 is extrapolated bilaterally as described in Figure 5.2 (b). The extrapolated k-space 

samples need to be scaled to harmonize with the target k-space, compensating for T2* decay. 

This scaling factor can be approximated by simply referring to the center of k-space. However, 

when performing k-space extrapolation within the central region (low spatial frequencies), small 

errors in the estimated scaling factors can lead to severe distortion in image reconstruction and 
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Figure 5. 3. (a) Images reconstructed from undersampled k-space (R=6, 61x61 2D digital phantom, data 

reconstructed over time range [900 ns, 1300 ns]) using gridding with KSE or gridding with bi-KSE, and (b) 1D 

profiles at y=29 (along the dotted line) at tp = 1300 ns. 

 

parameter estimation. To address this issue, the scaling factor is refined iteratively so that the 

Gibbs ringing pattern of the extrapolated image becomes similar with the reference image (the 

one with the highest bandwidth). To evaluate the similarity between two images, the numerical 

gradient of the images were used where gradient values near strong edges were discounted to 

purely consider changes resulting from Gibbs ringing. The numerical gradient images were 

obtained using the central differencing scheme82. The scaling factor was adjusted by evaluating 

the error function that is the l1-norm of error between the target and reference gradient image, 

using the Nelder-Mead simplex search algorithm as implemented by MATLAB (The 

Mathworks, Inc., Natick, MA).  

After bilateral k-space extrapolation, equal FOV images are reconstructed by applying 

convolution gridding45,46. Iterative density correction was used before gridding83, which is an 
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indispensable process for reliable quantification, because spatial sampling density changes at 

each reconstructed time delay. As the reconstructed images show in Figure 5.3 (a), bi-KSE 

dramatically improves the quality of images reconstructed with undersampled k-spaces, 

especially for images at later time delays (1300 ns) where reconstruction error is greatly reduced 

(Figure 5.3 (b)). The proposed bi-KSE method dramatically increases available k-space samples 

(74,379 vs 1,191 at 1300 ns for bilateral and unilateral k-space extrapolation, respectively) and 

provides improved image quality compared to previous techniques. However, not all 

reconstruction error is removed. Therefore, we employed PCA-based reconstruction to exploit 

the rich spectral domain of the SP-EPRI dataset to further improve image quality and resulting 

T2* estimation, as explained below.  

5.2.3 Model-based compressed sensing 

To evaluate compressed sensing reconstruction in highly undersampled SP-EPRI, we 

have utilized PCA-constrained reconstruction78. In PCA-based reconstruction, a training matrix 

whose columns consist of training data, which consist of time series for all possible FID signals, 

are used to obtain principal components. The eigenvectors or singular vectors obtained from the 

training matrix (by using eigenvalue decomposition or singular value decomposition) will span 

the signal subspace where true FID signals exist.  

The training data is generated within a predefined T2* range and is a factor that affects 

the performance of PCA-based reconstruction. Utilizing a T2* range that does not encompass the 

T2*’s of targeted objects may result in a false signal space. In hypoxia imaging EPRI, the T2*’s 

of Oxo-63 are distributed within a small range, approximately 400-650 ns corresponding to a 

dissolved oxygen level between 5% and 0%, respectively. To encompass all possible oxygen 

levels (0-100%), a T2* range of [1ns, 700ns] was used in this study. 
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With the estimated T2* range [p,q] (p<q), a training matrix can be composed using the 

independent monoexponential curves as equation 5.1.  
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Then, D is decomposed by SVD to yield singular vectors, and L significant singular vectors (L=3 

or 4 was used in this study) are selected to compose matrix 𝐵. PC coefficient matrix M can be 

obtained by equation 5.2, whose n-th column vector represents PC coefficient map 

corresponding to n-th PC. 
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, where I is an image matrix containing vectorized initial images, T is the number of images, and 

N is the length of image vector. Now, the model-based compressed sensing problem can be 

formulated by the following equation:  

 𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛� 𝐹𝑇� 𝑀𝐵D − 𝐾� 9

9D
� 8 +	 𝜆T𝑃T 𝑀�

T 8  (5.3) 

,where FTj denotes the operator for discrete Fourier transform with image at time delay j, 𝐾� is 

measured k-space vector at time delay j,  Pi(M) is penalty based on discrete wavelet transform 

(Daubechies 4, Wavelet Toolbox in MATLAB 2011b) and total variation84 of PC coefficient 

maps, and λi is the Lagrange multiplier that is selected differently with each PC coefficient map. 
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The penalty term is calculated as in equation 5.4: 

 𝑃T 𝑀 = 	 𝜓 𝑀T 8 + 𝛼	𝑇𝑉(𝑀T) (5.4)  

, where ψ is a DWT transform, TV is total variation, Mi is i-th PC coefficient map, and α is 

tuning constant between two objectives. 

In equation 5.3, the first and the second summation term in the brace represent data 

fidelity and penalties respectively. In practice, calculation of the data consistency term requires 

significant computational power due to repeated gridding and inverse gridding steps (to deal with 

non-Cartesian k-space samples accumulated by bi-KSE), especially when dealing with large 

numbers of samples in 3D imaging. To improve the speed of reconstruction, we enforced data 

fidelity in the image domain rather than in the k-space domain as the following equation shows: 

 𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛� 𝑀𝐵D
�
− 𝐼�

9

9
D
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, where 𝑀𝐵D
�
 and 𝐼�  denote j-th column vector in respectively updated and initial image 

matrix. This approximation is possible owing to the hierarchical random sampling pattern which 

provides good quality image reconstruction after the application of bilateral k-space 

extrapolation (as seen in Figure 5.3 and Figure 5.6 (g)). In experiments not presented herein, 

image-based consistency performed as well as conventional k-space methods, likely due to the 

strong performance of bi-KSE alone for undersampled acquisitions. 

This optimization problem was solved using the nonlinear Polak-Ribiere Conjugate 

Gradient algorithm initiated with steepest gradient and backtracking line search with contraction 

factor 0.4. Once the PC coefficient maps are optimized, the image sequence can be reconstructed 

by performing a linear combination of PC coefficient maps and PC vectors as equation 5.6. 
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 𝐼 = 	𝑀	𝐵D (5.6) 

In this method, the image sequences were normalized by the maximum value of the 

initial image in the sequence. By doing this, we were able to limit the effective range for 

parameter setting (α, λ1, λ2, λ3, and λ4), which can be generally applied in different experiments 

without dependence on any scaling factors between datasets. The effective parameter ranges 

0.1≤α≤1.0, and 0.1𝑠C ≤ 𝜆C ≤ 0.5𝑠C  were empirically found and used, where (𝑠C)C 8B =

	(1, 2, 5, 10) for the k-th PC coefficient map. The selected λk is then scaled by 𝑀C / 𝑀8  to 

compensate for the scale difference between PC coefficient maps. Note that larger λk is used for 

the less significant PCs that commonly contain more noisy data. By using larger λk we can 

promote sparsity and smoothness in the corresponding PC coefficient map and thereby suppress 

noise more effectively.  

5.2.4 Simulation 

To evaluate the capability of the proposed method for T2* estimation with undersampled 

k-space, a computer simulation and a phantom experiment using SP-EPRI were performed. For 

the computer simulation using MATLAB (The Mathworks, Natick, MA), synthesized SP-EPRI 

images with much higher resolution (187x187x187) than conventional acquisitions (e.g., 

19x19x19) were generated based on the 3D T2* map shown in Figure 5.7 (a). From the 3D T2* 

map, FID curves were simulated from 1ns to 1800ns using a sampling rate of 5ns and a dead 

time of 300ns. To simulate SPI encoding, inverse gridding was used to sample k-space with a 

61x61x61, 95x95x95 or 127x127x127 matrix with a spreading Dirac comb function to simulate 

the zoom-in effect due to constant gradients. For 2D phantom experiments, only the central slice 

of the phantom was used.  
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Figure 5. 4. Critical SNR. 8-fold undersampled data was used for reconstruction (127x127 matrix). SNR was 

iteratively tuned by adjusting noise level to achieve the targeted SNR before performing undersampling. For 

these experimental conditions, an SNR of 3 is the minimum for acceptable quality reconstruction. 

 

5.2.4.1 Simulation - undersampling vs. reduced Averaging 

The voxel size for the proposed acquisitions is 25~220x smaller than previous SP-EPRI 

acquisitions, which results in a large reduction in SNR. Even for conventional resolutions, a 

large number of averages (1000~8000) is typically applied in SP-EPRI to improve SNR. 

Therefore, it may be also possible to accelerate imaging by simply reducing the number of 

averages rather than undersampling k-space; however, this is not expected to perform well due to 

the already low SNR of the data. To verify this, a simulation was performed to compare the 

proposed undersampled k-space acquisition to reduced average data, with and without the 

proposed PCA-constrained reconstruction. The reduced average method was simulated by 

adjusting noise levels to decrease SNR by a factor of 𝑅 (R: acceleration factor attained by 

reducing average). A 127x127 2D digital phantom was generated as explained above to simulate 

comparable undersampled and reduced averaging datasets with R=8.  

The 2D simulation was performed at the critical SNR limit for the proposed method, 

where critical SNR is the lower SNR limit in the region of shortest T2* at time delay 1300 ns that 

still enables reasonable parameter estimation. For these experimental conditions, this was 
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determined to be approximately 3, as shown in Figure 5.4. Simulated data with an SNR of 3 was 

undersampled with R=8 and processed by the proposed method explained in the above sections. 

For the reduced average method with R=8, the SNR was reduced by a factor of 8 (SNR=1.06), 

and then the data were fully-sampled. The sampled k-spaces were processed with the 

conventional unilateral KSE and PCA-based reconstruction. 101 consecutive k-spaces from 

800ns to 1300ns were used for reconstruction. 

5.2.4.2 Simulation - resolution and acceleration 

 The fully sampled k-spaces were retrospectively undersampled with different 

acceleration factors (R) by using the hierarchical random sampling explained in the above 

section. The data were generated with low SNRs to highlight the performance of the proposed 

method (5 for 127x127x127, 7 for 95x95x95, and 9 for 61x61x61 k-spaces, when measured at 

1100 ns). Data were acquired at R=1, 4, 6, 8 for 61x61x61 k-space; R=8, 12, 15 for 95x95x95; 

R=15, 30, 60 for 127x127x127 k-space. 

5.2.5 Phantom experiment 

 Details regarding the specifications of the EPRI spectrometer have been previously 

published2,53. For the tube phantom experiment, 3D EPR data was obtained using three-tube 

phantom comprised of three tubes containing 2 mM Oxo-63 (GE Healthcare, Waukesha, WI) 

bubbled with 0%, 2% and 5% oxygen, respectively. Data was encoded using three orthogonal 

phase-encoding gradients incrementally ramping in 61 equal steps from –40 to 40 mTm-1, 

resulting in 61x61x61 phase-encoding steps. 581 data points were encoded with a sampling 

period of 5ns after the minimum RF recovery dead time (530 ns). 8000 averages per phase 

encoding point and an interpulse delay (TR) of 10 µs was used. A total of 28,373 points 

(approximately 8-fold undersampling) with a 61x61x61 matrix size were phase-encoded using 
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Figure 5. 5. Data processing flowchart. (a) Bilateral k-space (bi-KSE) extrapolation, (b) gridding, (c) PCA-based 

reconstruction, and (d) pixelwise T2* fitting. 

 

the hierarchical random sampling strategy.  

5.2.6 Data Processing 

 Bi-KSE was performed in the peripheral region (Zone 3), and unilateral/backwards KSE 

was independently performed in the central region (Zone 1 and Zone 2) in a reversely cascading 

manner, as depicted in Figure 5.5 (a). The extrapolated k-spaces from each phase encoding time 

delay were individually gridded into Cartesian k-space to generate equal FOV images (Figure 5.5 

(b)). Then, these images were used as input to the PCA-based reconstruction (Figure 5.5 (c)). 

With a sequence of final images reconstructed by using above-explained methods, T2* was fit 

using a traditional T2* relaxation model for the magnitude of pixelwise transverse magnetization  

(Figure 5.5 (d)). Linear least-square curve fitting was applied to the log-linearized FID curve in 

which the slope and the y-intercept represent respectively -1/T2* and log(M0). 
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Figure 5. 6. Reduced average vs. undersampling acquisition. (a) Images reconstructed with native FOV (reduced 

average), (b) equal FOV images with gridding only (reduced average), (c) equal FOV images with gridding and 

PCA-based reconstruction (reduced average), (d) equal FOV images with unilateral KSE (reduced average), (e) 

equal FOV images with unilateral KSE and PCA-based reconstruction (reduced average), (f) equal FOV images 

with gridding only (undersampling), (g) equal FOV images with bi-KSE (undersampling), and (h) equal FOV 

images with bi-KSE and PCA-based reconstruction (undersampling). 127x127 2D data with initial SNR of 3 was 

simulated, and then reduced average or undersampling was applied to obtain 8-fold acceleration. In (d), high 

noise in the later images are propagated to the earlier by the KSE process. Note that in the results with reduced 

average T2* estimates are biased due to the severe noise resulting from reduced averages. The PCA-based 

reconstruction method using undersampling (h) provides the best performance. 
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Figure 5. 7. Simulation result with 61x61x61 dataset. (a) Center slice of ground truth T2* map (left), composition 

of 3D T2* map (middle), and slice location (right), and (b) estimated T2* maps. Note that the estimated T2* map 

is still accurate with 8x acceleration although the detail in small region E was slightly lost.  

 

  

Segment A B C D E F 

R = 8 

mean (ns) 646.92 549.89 441.69 492.76 369.05 302.77 

standard deviation (ns) 2.45 2.19 5.4612 0.98 2.58 8.04 

RMSE (ns) 3.93 2.19 9.94 7.30 31.06 8.50 

R = 6 

mean (ns) 647.27 549.59 442.97 493.15 366.94 302.04 

standard deviation (ns) 2.35 1.94 5.65 3.36 2.69 7.91 

RMSE (ns) 3.60 1.98 9.01 7.62 33.16 8.17 

R = 4 

mean (ns) 645.72 549.23 443.95 491.89 365.97 301.77 

standard deviation (ns) 2.10 1.33 3.69 1.40 1.35 6.91 

RMSE (ns) 4.76 1.54 7.08 8.23 34.06 7.13 

R = 1 

mean (ns) 649.19 550.04 448.82 500.07 383.37 302.13 

standard deviation (ns) 5.54 3.53 4.83 3.36 2.45 6.41 

RMSE (ns) 5.60 3.53 4.97 3.35 16.81 6.75 

Table 5. 1. Quantitative result of estimated T2* for various acceleration factors with 61x61x61 matrix size. The 
result was evaluated with mean, standard deviation, and root mean square error (RMSE) within each segment. 
Note that the result shows error of 1% to 2% for the segment A, B, C, D, and F, whereas it shows relatively 
higher error (around 10%) in segment E. Refer to Figure 7-a for the labeling and corresponding regions.	
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5.3 Results 

5.3.1 Simulation Results – Undersampling vs. Reduced Averaging 

The reconstructed images and the resultant T2* maps obtained using reduced average or 

undersampling are shown in Figure 5.6. Reconstructions with gridding are shown in 5.6(a), 

5.6(b), 5.6(c) for reduced average data, and 5.6(f) for undersampled data. KSE is applied to the 

reduced average data in 5.6(d) and 5.6(e), and bi-KSE is applied to the undersampled data in 

5.6(g) and 5.6(h). PCA-based reconstruction is applied to the reduced average data in 5.6(c) and 

5.6(e), and to the undersampled data in 5.6(h). As seen in the reconstructed images and the 

resulting estimated T2* maps, undersampling (5.6(h)) outperforms reduced averaging (5.6(c) and 

5.6(e)).  

5.3.2 Simulation Results – Resolution and Acceleration  

To evaluate how accurately the proposed method estimates T2* with undersampled k-

space data, we performed computer simulations using synthesized 3D data consisting of various 

T2*’s (Figure 5.7 (a)). In addition to the proposed method, a conventional k-space extrapolation 

method with full sampling (R=1) was also implemented for comparison. 81 consecutive k-spaces 

from 700 ns to 1100 ns with a 5 ns time interval were used for reconstruction. Figure 5.7 (b) 

shows the estimated T2* maps obtained using undersampled k-spaces with 61x61x61 gradient 

steps with acceleration factors of R=1, 4, 6, and 8. Table 5.1 shows the corresponding 

quantitative result. Our method enabled accurate T2* estimation up to 8-fold acceleration at this 

matrix size. However, the small segment E tends to be blurred due to the large voxel size. Figure 

5.8 depicts how the proposed method works with larger matrix sizes. As seen, when higher 

matrix size is used, the overall performance of our method tends to be improved at the same 

acceleration factor (R=8) due to the larger central region and higher expected transform sparsity. 
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Figure 5. 8. Quantitative results with higher matrix sizes. Note that higher matrix size enables higher 

acceleration factors. 

Moreover, good quality T2* estimation with even higher acceleration factors (R=15 for a 

95x95x95 k-space, and R=30 for a 127x127x127 k-space) is attainable.  

5.3.3 Phantom Experiment Results 

Figure 5.9 shows the T2* map estimated from prospectively undersampled k-spaces 

(R=8). 91 consecutive k-spaces from 1530 ns to 1980 ns with a 5 ns time interval were used for 

reconstruction. As seen in Figure 5.9, the proposed method enables reliable parameter estimation 

with reduced sampling. The estimate was 684.45 ± 39.10 ns, 659.79 ± 31.11 ns, and 591.10 ± 

25.52 ns for tube bubbled with 0%, 2%, and 5% oxygen, respectively, which lie within the our 

expected range. The estimated numbers show 4%-6% standard deviation, which is presumably 

due to the system noise in the current EPR scanner. Fitted %oxygen-R2* curve showed slope of 

4.68x10-5 (ns-1 %oxygen-1) and y-intercept of 1.45x10-3 (ns-1) with R2=0.9662. 
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5.4 Discussion and Conclusions 

The proposed reconstruction method allows significant improvement in the spatial 

resolution of single point EPRI. For example, if we acquire data with 61x61x61 gradient steps, 

the full sampling scheme will require a scanning time of approximately 75.7 min (226,981 points 

x 2,000 averages x 10 µs TR), whereas 8-fold undersampling will enable imaging within 

approximately 9.5 min (28,373 points). Compared to methods that require multiple gradient 

acquisitions (typically 3), the proposed technique represents a 24-fold increase in temporal 

resolution. When using higher matrix size, we were able to achieve higher acceleration factors, 

for example R=15 with 95x95x95 or R=30 with 127x127x127 gradient steps. Nonetheless, these 

larger matrix sizes may not be realistic for SP-EPRI since a large number of sampled points are 

still required, for example 57,158 points and 68,279 points to achieve R=15 with 95x95x95 and 

 
Figure 5. 9. Estimated T2* map in imaging experiment of three tubes of 2 mM Oxo-63 bubbled with 0%, 2%, 

and 5% oxygen. Prospectively undersampled (R=8) k-spaces from 1530ns to 1980ns were used for 

reconstruction. The estimated T2* in each tube is quite homogeneous for the 0% (684.45 ± 39.10 ns), 2% 

(659.79 ± 31.11 ns), and 5% (591.10 ± 25.52 ns) tubes. 
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R=30 with 127x127x127 matrix size, respectively, which are equivalent to 19.1 min and 22.8 

min of scanning time. Such scans might also operate at unrealistic signal to noise levels, despite 

our methods strong performance with low SNR data (SNRs of 5 for 127x127x127, 7 for 

95x95x95, and 9 for 61x61x61 k-spaces, when measured at 1100 ns were utilized). Therefore, 

choosing a lower resolution (61x61x61) and moderate acceleration (R=8) enables reasonable 

scanning time (<10 min) but also achieves high spatial resolution to localize hypoxic tissues. 

However, with the addition of other complimentary fast imaging techniques, such as parallel 

imaging, further improvements may allow higher resolution image will be able to be obtained 

within reasonable scanning time, well within the probe clearance time. Improvements in SNR 

will be aided by the development of phased-array coils85. 

It is not unexpected that undersampling performs better than reduced averaging in SP-

EPRI. In our proposed method, the large central region is secured with a hierarchical random 

sampling pattern, where the sampled k-space is acquired with a higher SNR than full sampling 

would allow. Even though PCA-constrained reconstruction is applied to both sampling methods, 

when the SNR falls below a critical threshold noise (and aliasing) is unable to be separated. By 

applying undersampled acquisitions we can trade recoverable aliasing for improved SNR75. Note 

that our simulations comparing reduced averaging to undersampled acquisitions were performed 

with R=8. For higher acceleration factors, it is not controversial to expect even greater 

improvements for undersampled acquisitions compared to reduced averaging. Finally, because 

the KSE techniques propagate k-space points from the periphery of k-space, they perform poorly 

in instances of low SNR (Figure 5.6 (d) and (e)). This is also not unexpected due to low signal 

levels in the periphery of k-space with a higher noise floor in the case of reduced averaging. 

In this chapter, we have explored the methods to accelerate EPR imaging without loss of 
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accuracy in the T2*/oxygen quantification. To secure k-space samples as many as possible we 

have developed the bi-KSE method. Moreover, the model-based compressed sensing using PCA 

has been adapted to further improve the accuracy of T2* estimation. With a computer simulation 

and phantom experiment, we have verified that the proposed methods enable significant 

acceleration (8-fold, 15-fold, and 30-fold accelerations respectively for 61x61x61, 95x95x95, 

and 127x127x127 gradient steps), which realizes more reasonable scan time and higher spatial 

resolution in the current SP-EPRI system.  
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Chapter 6. A Rapid and Robust Gradient Measurement 

Technique Using Dynamic Single Point Imaging  

6.1 Introduction 

The gradient system is an essential component in modern clinical MR imaging. It 

performs temporal-spatial encoding of transverse magnetization through a spatially varying 

magnetic field. Gradient waveforms can be synthesized to perform a range of image encoding 

strategies including conventional Cartesian image encoding, as well as non-Cartesian 

acquisitions such as radial3 and spiral86 imaging. Unfortunately, there still exist many factors that 

inevitably cause distortions in the realized gradient magnetic field: eddy currents87–90, 

imperfection induced by the power amplifier, and mechanical/thermal vibrations91,92. Due to 

these undesired distortions, it is challenging in practice to realize the actual gradient field exactly 

as prescribed, which, if the prescribed gradient is assumed during reconstruction, can result in 

image artifacts (e.g., blurring, ringing, or phase error). This can be a critical issue in non-

Cartesian acquisitions, and is further exacerbated in acquisition schemes with a long readout 

duration such as spiral or echo planar imaging (EPI)93,94. In these cases, the k-space trajectory is 

prone to deviate from that prescribed due to accumulated error in the phase evolution resulting 

from the distorted gradient.  

Methods to estimate the actual gradient shape and the resultant k-space trajectory have 

been previously presented in the MR literature, and can be classified as follows: Imaging based 

gradient measurement (IGM) and magnetic field monitoring (MFM). In IGM, a (typically) 1D 

imaging technique based on a specialized pulse sequence is exploited to measure the gradient 

shape. In MFM, several NMR-based field probes are placed inside the magnet bore and used to 
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record field characteristics temporally and spatially 95–98. While this provides the most direct 

measurement of the gradient field, the use of additional external hardware adds complication and 

expense. 

According to the methodology of data acquisition, IGM methods can be further classified 

into two categories: frequency encoding based gradient measurement (FGM) and phase encoding 

based gradient measurement (PGM). In FGM99, off-centered selection of a thin slice is 

performed to the avoid signal dephasing effect caused by gradient, followed by measurement of 

the phase evolution over encoding time in the manner of frequency encoding. Although the 

efficacy of this measurement scheme has been verified in many critical studies100,101, there still 

exist limitations such as the dependency on slice selection and T2* decay. Alternatively, in 

previously proposed PGM methods29,35,36,102, the phase evolution is measured at a constant (and 

single) echo time after a RF pulse, which is advantageous in terms of reducing the impact of T2* 

decay. However, a series of RF pulses must be applied to measure the whole gradient, which 

requires extensive measurement times. 

Once the gradient has been characterized, it can be used directly in image reconstruction 

to improve image quality. However, such a measurement is specific to the characterized gradient 

and pulse sequence parameters and is not typically generalizable to other acquisitions. To enable 

more accurate output waveforms, it is routine in current generation MR systems to perform pre-

emphasis correction by inputting a filtered (or intentionally distorted) waveform into the gradient 

subsystem103. Such methods rely on the assumption that gradient systems are generally 

characterizable as linear time invariant (LTI) systems104. Unfortunately, these system-level 

corrections do not realize sufficiently accurate waveforms, which may necessitate the further use 

of the gradient measurement techniques described above. Thus, a more generalizable approach to 
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gradient measurement is to utilize these techniques and the LTI concept to compute a gradient 

impulse response function (GIRF). This approach allows estimation of the distorted gradient 

shape instead of directly measuring the realized gradient. By acquiring a comprehensive 

measurement of the gradient (e.g., obtained from one of the methods described above), the GIRF 

can be determined as a unique finite impulse response filter, and then any gradient shape realized 

in the same gradient system can be analytically predicted by convolving an estimated GIRF with 

the prescribed gradient 105–107. 

In this study, we have developed a new gradient measurement method utilizing 1D 

dynamic single point imaging (SPI)5 performed across a range of phase encoding time delays, 

which does not require slice selection, additional equipment, or knowledge about the imaged 

subject. The field of view (FOV) in SPI changes over phase encoding time delay, exhibiting a 

variable FOV property under an applied gradient. In the proposed gradient measurement method, 

1D SPI encoding is implemented in each gradient axis by linearly scaling the amplitude of a 

tested gradient with each TR (i.e., from -1x to +1x to implement phase encoding). Then, the 

FOV scaling factors between different phase encoding time delays are estimated by using k-

space or image domain representations of the 1D SPI data. The FOV scaling factors represent 

relative encoding positions in k-space between two phase encoding time delays, and the 1st 

derivative of FOV scaling factors represents relative amplitude in the measured gradient. This 

measured k-space trajectory can then be utilized in reconstruction to improve image quality.  

Three gradient-intensive sequences (ultrashort time echo (UTE) 3, spiral, and multi-echo 

bipolar gradient echo (GRE)) were tested to evaluate the efficacy of the new SPI-based gradient 

measurement scheme. In UTE, a center-out radial acquisition is used to minimize the achievable 

echo time and enable contrast for species with ultrashort T2*’s. In spiral imaging, the gradient 
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waveforms are simultaneously designed to operate within the peak gradient slew rate and peak 

gradient amplitude limits. Finally, multi-echo bipolar GRE with ramp sampling for more robust 

reconstruction in quantitative fat-water imaging is demonstrated. GIRFs were also estimated 

using the proposed method, and applied to obtain an estimated k-space trajectory in UTE, spiral, 

and multi-echo bipolar GRE imaging. 

6.2 Methods 

6.2.1 Theory 

The proposed method is based on assumption that gradient distortion is a LTI function of 

the gradient input 104. In the proposed technique, 1D dynamic SPI is performed by linearly 

scaling with Np steps (-1x to 1x) the entire gradient waveform along a single axis to obtain Npx1 

data. Note that dynamic SPI differs from conventional SPI approaches where multiple k-spaces 

are continuously acquired with a prescribed sampling rate while phase encoding gradients are 

on.10,12,31 Figure 6.1 (a) shows an example of a trapezoidal readout gradient to be measured, and 

Figure 6.1 (b) shows the corresponding dynamic SPI encoding gradient used for the proposed 

calibration technique. The FOV at phase encoding time delay (tp, the elapsed time after RF 

excitation) in dynamic SPI is determined by the following equation6,7,10:  

 𝐹𝑂𝑉 𝑡] = f-a
? b j djSa

4
 (6.1) 
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, where Np is the number of phase encoding steps, 𝛾 is a gyromagnetic ratio, and 𝐺 𝜏  is an 

amplitude of maximum phase encoding gradient at time delay 𝜏 , for example, which is the 

trapezoidal gradient with solid line in Figure 6.1(b). Figure 6.1(c) shows the RF pulse and data 

acquisition window. Note that in dynamic SPI, multiple images can be acquired at every ∆Ts 

(sampling interval) which improves sampling efficiency over conventional SPI approaches. 

Figure 6.1(d) shows how the SPI sampling trajectory changes, exhibiting a time-decreasing 

FOV. The minimum Np can be determined by the required FOV (typically larger than the 

 
Figure 6. 1. 1D dynamic SPI acquisition for gradient measurement. An example of (a) targeted gradient, (b) the 
corresponding SPI encoding gradient, (c) RF transmission and data acquisition, (d) k-space trajectory, (e) image 
domain SPI data, (f) k-space domain SPI data, and (g) merging filter. 1D SPI sampling can be implemented by 
simple linear scaling the gradient amplitude with each TR. Note that the FOV change directly reflects the 
gradient shape. The image or k-space domain data can be adaptively used for FOV scaling search, according to 
the FOV at encoding time. 
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diameter of imaged subject to avoid aliasing), 𝑓𝑜𝑣ª , and gradient amplitude, 𝐺 𝜏 , as in the 

following equation:  

 𝑁] = 	
8
f
𝑓𝑜𝑣ª	𝛾 max 𝐺 𝜏 𝑑𝜏V

+ 	 , 𝑤ℎ𝑒𝑟𝑒	0 ≤ 𝑡 < 𝑇  (6.2) 

, where T is the end of readout. Data is acquired using the same acquisition window as desired 

for imaging, and numerous k-spaces over encoding time can be obtained depending on the 

sampling rate.  

6.2.2 FOV scaling search 

For gradient measurement, a reference point at a certain encoding time is first selected 

among the SPI encoded data. Then, the relative FOV scaling factor directly reflects the relative 

k-space trajectory with respect to the k-space coordinate at reference encoding time, tr, as 

following equation shows:  

 𝐹𝑂𝑉𝑠𝑐𝑎𝑙𝑒 𝑡 = 	 yz{ V°
yz{ V

=
f? b j djS

4

f? b j djS°
4

= C(V)
C(V°)

  (6.3) 

, where 𝑡 denotes a phase encoding time delay, and 𝑘(𝑡) is a k-space position in the unit of cycle 

m-1 at encoding time, 𝑡. Note that any data point can be used for the reference encoding time, tr, 

however data acquired around the encoding time at which the SPI image has one-half of the 

required FOV (𝑓𝑜𝑣ª) may be desired such that both k-space and image domain 1D profiles 

contain enough information (or resolution) for reliable estimation of FOV scaling factors. Two 

possible approaches to estimate the relative FOV scaling factor exist: a k-space domain or an 

image domain approach, which can be formulated as a minimization problem. k-Space based 

optimization is shown in the following equation:    



	 65	

 𝐹𝑂𝑉𝑠𝑐𝑎𝑙𝑒 𝑡 = yz{ V°
yz{ V

= 𝑎𝑟𝑔𝑚𝑖𝑛±	𝐸³ 𝐾 𝑡, 𝑠𝑘 , 𝐾 𝑡�, 𝑘     (6.4) 

,where 𝐾 𝑡, 𝑘  denotes the magnitude of k-space encoded at phase encoding time t in 1D SPI, s 

is a real number that is local FOV scaling factor, and EK is an error function between two k-

spaces. In practice since a finite number of data (Np) is acquired, data interpolation is used to 

synthesize the scaled k-space K(t,sk) from original k-space K(t,k). Image domain optimization is 

performed as follows:  

 𝐹𝑂𝑉𝑠𝑐𝑎𝑙𝑒(𝑡) = yz{ V°
yz{(V)

= 𝑎𝑟𝑔𝑚𝑖𝑛±	𝐸´ 𝐼 𝑡, 𝑥/𝑠 , 𝐼 𝑡�, 𝑥    (6.5)  

, where 𝐼 𝑡, 𝑥  denotes the magnitude of 1D image at encoding time 𝑡, and EI is an error function 

between two images. As in k-space domain, interpolation is applied to synthesize the scaled 

image I(t,x/s). 

The 1D profile in the image domain has more resolution (more information that can be 

used in FOV scaling search) when the FOV is small (Figure 6.1(e)), while the k-space profile 

shows a broader line-shape when the FOV is large (Figure 6.1(f)). To exploit this property, the 

two estimates may be combined using a simple merging filter as shown in Figure 6.1(g). 

6.2.3 Absolute k-space trajectory 

As shown in equation 6.3 above, the estimated FOV scaling factor, FOVscale(t), 

represents the relative k-space position at encoding time t with respect to the k-space position at 

the reference encoding time 𝑡�. The absolute k-space trajectory, which allows reconstruction of 

the image at the prescribed FOV, can be calculated by simply scaling the relative k-space 

trajectory. Most trivially, this is done by scaling the unitless measured gradient waveform to 

match the prescribed gradient amplitude (e.g., in units of mTm-1). Note that potentially more 
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accurate scaling could utilize the GIRF-distorted gradient waveform or consider only the 

plateaus of trapezoidal gradients. Alternatively, a phantom of known dimension could be 

scanned to obtain this calibration if the system gradient amplitude is inaccurate or unknown. If 

the targeted gradient system is well calibrated, the DC component at 0 Hz in Fourier transform of 

the measured and prescribed gradient can be used to obtain the scaling factor.     

6.2.4 GIRF 

 We have utilized the SPI-based gradient measurement technique herein to estimate GIRF, 

using multiple triangular input gradients using methodology analogous to 105. Figure 6.2(a) 

shows the pulse sequence diagram depicting the input gradients used for GIRF measurement. 

Note that a “pre-dephasing” gradient is prescribed before the input gradient to remove ambiguity 

in FOV scaling estimation due to the large FOV when SPI data is acquired near the center of k-

space. We performed estimation of GIRF in the frequency domain (i.e., the transfer function) by 

 
Figure 6. 2. Pulse sequence diagrams. (a) GIRF estimation, (b) Ultra-short echo (UTE) imaging, (c) spiral 
imaging, and (d) multi-echo bipolar GRE imaging. Note that in (d) a gradient spoiler is implemented by 
stretching the readout gradient. 
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dividing the measured output gradient by the prescribed input gradient after discrete Fourier 

transform to calculate a transfer function of the LTI system. The estimated transfer function is 

low-pass filtered to cut off unreliable, high frequency components using a reduced cosine filter. 

6.2.5 Experimental setup 

The imaging parameters for GIRF measurement, dynamic SPI based gradient 

measurement, and imaging experiments performed on three different scanners are shown in 

Table 6.1. For GIRF measurement of a 3T MR750 scanner (S1) (GE Healthcare, Waukesha, WI, 

USA) utilized 21 triangular gradients with amplitude between 7 mTm-1 and 33 mTm-1, and a 

slew rate = 200 mTm-1ms-1 were used. A pre-dephasing gradient with amplitude 21.7 mTm-1 was 

placed with 464 µs spacing before the largest input gradient. To measure the GIRF of a 1.5T 

Signa HDxt scanner (S2) (GE Healthcare, Waukesha, WI, USA), 15 triangular gradients with 

amplitudes equally spaced between 6.7 mTm-1 and 20 mTm-1 were prescribed. A pre-dephasing 

gradient with amplitude 11.4 mTm-1 was prescribed with 476 µs spacing before the largest input 

gradient. Slew rate = 118 mTm-1ms-1 was used for all triangular gradients. To measure the GIRF 

of a 3T Signa PET/MR scanner (S3) (GE Healthcare, Waukesha, WI, USA), 21 triangular 

gradients with amplitude between 10 mTm-1 and 30 mTm-1, and a slew rate = 118 mTm-1ms-1 

were used. A pre-dephasing gradient with amplitude 21 mTm-1 was placed with 588 µs spacing 

before the largest input gradient. GIRFs for all scanners were measured with vender provided 

pre-emphasis correction turned on. A GE Healthcare 8-channel receive-only head coil was used, 

and a manufacturer-provided 15 cm spherical phantom (with no internal structure) was imaged. 

Total scan time to measure GIRF on each of the 3 scanners was 106 sec for S1, 75 sec for S2, 

and 106 sec for S3. 
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    GE MR750 (S1) GE Signa HDxt (S2) GE Signa PET/MR 
(S3) 

  RF pulse  24µs hardpulse 24µs hardpulse 24µs hardpulse 

  Np 401 401 401 

  Flip angle (degree) 6 6 6 

  Slew rate (mTm-1ms-1) 200 118 118 

  # of input gradient 21 15 21 

GIRF Pre-dephaser (mTm-1) 21.7 11.4 21.0 

 measurement Input gradients (mTm-

1) 7~31 6.7~20 10~30 

  Spacing (µs) 464 476 588 

  TR(ms) 4.4 4.4 4.4 

  Sampling rate (kHz) 500 250 500 

  # of data points 988 378 982 

  RF Coil 8-ch receive only head coil 

  Scan time (sec) 106 75 106 

    3D UTE 2D Spiral 3D Ramp sampling 

  RF pulse 24µs hardpulse Sinc pulse 24µs hardpulse 

  Flip angle (degree) 6 30 6 

  
TE (ms) 0.09 2.42 

Cartesian: 1.06, 1.97, 
2.87, 3.77  

  Ramp sampling: 0.85, 
1.49, 2.13, 2.77 

Imaging 
TR (ms) 3.3 13 

Cartesian: 5.2 

   Ramp sampling: 3.7 

experiment Sampling rate (kHz) 500 250 500 

  
# of data points 415 512 

Cartesian: 1234 

  Ramp sampling:  1830 

  # of TR 80000 48 101x31 

  

RF coil 

8-ch receive  
Single CH T/R coil 8-ch receive only head 

coil   only head coil 

  
Scan time 4min 28 sec 0.6 sec 

Cartesian: 16.3 sec 

  Ramp sampling: 11.6 sec 

  Np 401 401 401 

  TR (ms) 3.3 13 3.7 

  
Reference time, tr (ms) 0.29 

2.94 for x-axis  
21 

SPI-based 3.18 for y-axis 

 gradient  Sampling rate (kHz) 500 250 500 

measurement # of data points 415 512 1830 

  RF coil 8-ch receive only head coil 

  
Scan time 4sec 

quick: 42sec  
1.5sec 

  extensive: 385sec  
Table 6. 1. Imaging parameters. The proposed method was tested on three different clinical scanners. 
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3D radial UTE imaging was performed on system S1 using a GE Healthcare 8 channel 

receive-only head coil. k-Space was encoded using a center-out half radial trajectory, using the 

pulse sequence shown in Figure 6.2(b). After RF excitation using a 24µs hard pulse, 80,000 

spokes were scanned at TE=90 µs (after RF coil deadtime) with an encoding duration of 588 µs. 

The maximum amplitude of readout gradient was 35 mTm-1, slew rate was 118 mTm-1ms-1, flip 

angle was 6 degrees, sampling bandwidth was 500 kHz, and TR was 3.3 ms. SPI-based gradient 

measurement was performed in the x, y, and z directions with Np = 401 using the same scan 

parameters. An image was reconstructed at FOV = 24x24x24 cm and 1x1x1 mm resolution using 

gridding. The brain of a human volunteer was scanned under approval from our institutions IRB, 

and a 15 cm spherical phantom was used for gradient measurement as in GIRF measurement. 

The scan time for UTE imaging was 4 min 28 sec, and the scan time to perform gradient 

measurement for all three gradient axes was 4 seconds in total. 

2D spiral imaging was performed on GE Signa HDxt scanner (S2) using the pulse 

sequence in Figure 6.2(c). A single channel GE Healthcare transmit/receive head coil was used 

for imaging. A sinc pulse was used to achieve 30 degree flip angle, and a single axial slice at iso-

center was obtained. 48 spiral arms with 512 readout points in an arm was encoded with a 

sampling bandwidth of 250 kHz. FOV was 12x12 cm, slice thickness was 8 mm, and spatial 

resolution was 1.04x1.04 mm. TR was 13 ms, and TE was 2.42 ms. SPI gradient measurement 

with Np = 401 was performed in two different ways for comparison: extensive and quick. All 48 

different pairs of x and y gradients were measured with the extensive gradient measurement (385 

seconds), while 2 pairs of x and y gradients were measured and reproduced to estimate 

trajectories for all 48 arms using a linear combination in the quick gradient measurement (42 
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seconds). In the quick measurement, the readout gradients in x and y-axis in the arm with 

rotational angle 𝜃, 𝑔𝑥 𝜃, 𝑡  and 𝑔𝑦 𝜃, 𝑡 , can be estimated by the following equation. 

𝑔𝑥 𝜃, 𝑡 = 	𝑐𝑜𝑠𝜃 ∗ 𝑔𝑥(0, 𝑡) − 	𝑠𝑖𝑛𝜃 ∗ 𝑔𝑦(
3𝜋
2 , 𝑡) 

 𝑔𝑦 𝜃, 𝑡 = 	𝑠𝑖𝑛𝜃 ∗ 𝑔𝑥 f
9
, 𝑡 + 	𝑐𝑜𝑠𝜃 ∗ 𝑔𝑦 0, 𝑡 . (6.6) 

Note that 𝑔𝑥 0, 𝑡 , 𝑔𝑥 f
9
, 𝑡 , 𝑔𝑦 0, 𝑡 , and 𝑔𝑦 ¸f

9
, 𝑡  are measured gradient shapes, where 

𝑔𝑥 f
9
, 𝑡  can be interpreted as a x-gradient waveform realized in physical y-gradient, and 

𝑔𝑦 ¸f
9
, 𝑡  is y-gradient waveform realized in physical x-gradient. A 15 cm spherical phantom 

was used for gradient measurement as for the GIRF measurement, and a manufacturer-provided 

resolution phantom was scanned and reconstructed with the nominal and measured (extensively 

and quickly) k-space trajectory.  

In the experiment for multi-echo bipolar GRE imaging, non-selective 3D GRE imaging 

was performed on GE Signa PET/MR scanner (S3) using an GE Healthcare 8 channel receive-

only head coil, with 2 mm spatial resolution and FOV = 6x26x20 cm. Phase encoding was 

performed in x and z direction with 61 and 201 phase encoding steps, respectively, and 

frequency encoding was performed in y direction. 8 vials containing 0%, 5%, 10%, 15%, 20%, 

30%, 40%, and 50% fat with a T1 shortening agent were used for the experiment. Two different 

pulse sequences using the bipolar gradients shown in Figure 6.2(d) were used to acquire 4 

gradient echoes, where the readout gradients with a longer and shorter plateau were used for the 

conventional Cartesian sampling and ramp sampling, respectively. TE was 1061, 1965, 2869, 

and 3773 µs for Cartesian sampling and 847, 1487, 2127, and 2767 µs for ramp sampling. The 
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maximum amplitude of the readout gradient for Cartesian or ramp sampling acquisition was 

respectively 22.6 mTm-1 or 33.0 mTm-1. Note that a gradient spoiler was applied in the readout 

direction by stretching the trapezoidal gradient at the end of the pulse sequence. The minimum 

TR was 5.2 ms for Cartesian sampling and 3.7 ms for ramp sampling (a 29% reduction), where 

scan time was 16.3 sec for Cartesian and 11.6 sec for ramp sampling. A 24 µs hard pulse with a 6 

degree flip angle was used, and the sampling rate was 250 kHz and 500 kHz bandwidth for 

Cartesian and ramp sampling acquisitions respectively. SPI-based gradient measurement was 

performed for ramp sampling in the readout direction (y-axis) with Np = 401. The acquisition 

time for gradient measurement was 1.5 sec. A 15 cm spherical phantom was used for gradient 

measurement.  

	

Figure 6. 3. Block diagram. This process is independently performed to obtain the k-space trajectory in each 

gradient axis. 
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6.2.6 Data processing 

Figure 6.3 shows a block diagram delineating the steps in the proposed method. The acquired 

data were processed in MATLAB (The Mathworks Inc, Natick, MA, USA). In the FOV scaling 

factor search stage, the reference encoding time, tr, is selected by referring to the nominal 

trajectory. Once the FOV scaling factors are estimated in k-space and image domain, they are 

combined using a merging filter. The merging filter was designed to have a linear slope in 

transition, where the width of transition was prescribed to cover five data points. Then, the 

absolute k-space trajectory is computed by scaling the relative k-space trajectory to physical 

gradient units. After estimating trajectories for the sampled k-space data, a convolution gridding 

reconstruction 45,46,83,108 was performed with oversampling ratio = 1.5 and a gridding kernel 

width = 5 pixels. 

Note that any non-linear optimization method can be used to solve equation 6.4 and 6.5. 

In GIRF estimation, UTE imaging, and ramp sampling experiments, simple unconstrained 

optimization based on Nelder-Mead simplex (fminsearch in MATLAB) was used to estimate the 

FOV scaling factors. In the spiral imaging experiment, bounded nonlinear function optimization 

based on golden section search and parabolic interpolation109 (fminbnd in MATLAB) was used 

for the FOV scaling search. The search range was set to ±7% of initial guess. The nominal k-

space trajectory was used as an initial guess for the optimization in UTE imaging, and the GIRF-

corrected trajectory was used as an initial guess for spiral imaging and ramp sampling. To scale 

the 1D image and k-space data in each iteration of optimization, cubic interpolation was applied. 

L2-norm and negative linear correlation were used as an error function for k-space (EK) and 

image (EI) respectively. Image domain SPI data was used for GIRF estimation, while k-space 

and image domain data was used for direct gradient measurement in UTE imaging, spiral 
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imaging, and ramp sampling. To scale the unitless, relative gradient shape to an absolute gradient 

shape, estimated amplitudes in plateau of the first readout gradient was compared with the 

corresponding part in prescribed gradient shape in UTE imaging. In spiral imaging, entire 

gradient shape was compared with the GIRF-distorted gradient shape to scale the estimated 

gradient shape to obtain the correct FOV in image reconstruction. In multi-echo GRE imaging 

and all GIRF measurements in three systems (S1, S2, and S3), the DC component of Fourier 

transform measured and prescribed gradient waveform was used to obtain the absolute gradient 

shape. 

In multi-echo bipolar GRE imaging, conventional Cartesian data (non-ramp sampled 

data) was directly reconstructed with no additional phase correction. Data acquired with ramp 

sampling was reconstructed using the GIRF-corrected trajectory or the measured trajectory. After 

	

Figure 6. 4. SPI based GIRF estimation. (a) A prescribed gradient, (b) normalized magnitude of 1D SPI images 

over phase encoding time delays in the y-gradient, (c) estimated FOV scaling factors, (d) measured gradient 

shape. The size of the 1D projected object in (b) directly reflects the FOV scaling factor (or relative k-space 

trajectory) in (c).  
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reconstructing multi echo images, Iterative Decomposition of Water and Fat With Echo 

Asymmetry and Least-Squares Estimation (IDEAL) was applied to obtain fat and water 

separated images110, and the fat fraction was calculated.  

6.3 Results 

6.3.1 GIRF estimation 

Figure 6.4(a) shows one input gradient with amplitude of 33 mTm-1 following a pre-

dephasing gradient, which was used for GIRF estimation in S1. Figure 6.4(b) shows the 

normalized magnitude of the 1D SPI images over encoding time obtained in y-axis, and Figure 

6.4(c) shows the estimated FOV scaling factors. Figure 6.4(d) shows the measured gradient 

	

Figure 6. 5.  Estimated GIRF. Magnitude and phase of GIRF in the Fourier transform domain and the 

corresponding time domain representation in (a) S1, (b) S2, and (c) S3. Note that the off-centered peak in GIRF 

implies group delay in gradient system.   
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shape. Figure 6.5(a),(b),(c) shows the estimated transfer function in the Fourier transform 

domain and the corresponding GIRF in the time domain for three different systems, S1, S2, and 

S3, respectively. The magnitude and phase of the estimated transfer functions (discrete Fourier 

transform of GIRF) in the frequency domain and the corresponding GIRFs in the time domain 

are shown here, which shows suppressed noise up to 20 kHz. The GIRFs were obtained by low-

pass filtering and performing the inverse discrete Fourier transform to the transfer function. The 

parameters for the low-pass filter was empirically determined to suppress the amplified noise, 

where full width half max was 44.4 kHz, and the transition band was 16 kHz. The off-centered 

peak in the GIRF implies a group delay of approximately 8 µs for S1 and S3 and 20 µs for S2, 

which matches with an empirically observed delay in the three systems in our group.   

6.3.2 Ultra-short echo imaging 

Figure 6.6(a) shows the log magnitude of 1D k-space obtained using SPI encoding for 

gradient measurement in the x, y, and z-axis, and Figure 6.6(b) shows the magnitude of the 

corresponding 1D SPI images that are normalized by the maximum amplitude in each encoding 

time. Under the mono-polar trapezoidal gradient, the encoded 1D k-space shows time-narrowing 

line shape over encoding, while the 1D image shows a time-broadening shape, where the both k-

spaces and images exhibit time-decreasing FOV. Figure 6.6(c) shows the GIRF measured 

trajectory, the SPI measured trajectory, and the nominal trajectory in physical x, y, z-axis, and a 

zoomed-in view, where group delay is shown between the nominal and the measured k-space 

trajectories. Figure 6.6(d) show the UTE images reconstructed with the nominal, GIRF, and SPI 

measured trajectory for a sagittal and axial slice. The image reconstructed with the GIRF and SPI 

measured trajectory shows good quality with no visible imaging artifact such as ringing, while 

the image with the nominal trajectory exhibits ringing and mis-aligned image components. 
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6.3.3 Spiral imaging 

Figure 6.7(a) shows the nominal, GIRF measured, and SPI measured trajectory. Figure 

6.7(b) shows the image reconstructed using the nominal trajectory, and Figure 6.7(c) shows 

images reconstructed with the delay-corrected trajectory where a group delay of 20 µs was used. 

Figure 6.7(d) shows images reconstructed with trajectory estimated using GIRF. Figure 6.7(e) 

and (f) show images reconstructed using the trajectory obtained by extensive and quick 

measurement, where all 48 spiral arms were measured independently or only 4 arms of 

measurement, respectively. Figure 6.7(g) shows a difference image relative to the image using 

	

Figure 6. 6. 3D UTE imaging. (a) Log magnitude of k-spaces and (b) normalized images over encoding time in 

SPI data used for gradient measurement, (c) nominal, GIRF, and SPI measured k-space trajectory, (d) sagittal 

and axial slice of the image reconstructed with nominal trajectory, GIRF, and SPI measured trajectory. In the 

images with measured trajectory, no ringing artifact is visible, which is present in the images with nominal 

trajectory. Note that the coil component is also visible in the images with GIRF and SPI measured trajectory. 
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the extensively measured trajectory in Figure 6.7(e). The image reconstructed with the delay-

uncorrected trajectory shows a severe blurring artifact, while the image with delay-corrected 

trajectory shows reduced blurring artifact, however there is remaining blurriness artifact as 

indicated by the red arrows. Images reconstructed using the GIRF-trajectory, extensively 

measured trajectory, or quickly measured trajectory show a much better result, while images 

with the measured trajectory show sharper edges as indicated by yellow arrows. The quick 

gradient measurement shows a comparable result to the full measurement as shown in the 

difference image in Figure 6.7(g), with 8.3% of the scan time compared to the extensive 

measurement time.  

	

Figure 6. 7. 2D Spiral imaging. Reconstructed images with (a) Nominal and measured trajectory, image 

reconstructed with (b) nominal trajectory, (c) delay-corrected trajectory, (d) GIRF trajectory, (e) extensively 

measured trajectory, (f) quickly measured trajectory, and (g) difference image with respect to (e). Note that all 

48 arms were individually processed in the extensive measurement in (e), while only 4 basis arms were 

processed in quick measurement in (f). 
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Figure 6. 8. Multi-echo bipolar GRE imaging. Ramp sampling images were reconstructed with nominal, GIRF-

estimated, or SPI-measured trajectory. A cross sectional view of tubes with 0, 5, 10, 15, 20, 30, 40, and 50% fat 

fraction is shown here. 

  SNR 
0% fat 

(%) 

5% fat 

(%) 

10% fat 

(%) 

15% fat 

(%) 

20% fat 

(%) 

30% fat 

(%) 

40% fat 

(%) 

50% fat 

(%) 

Cartesian 55.3 
10.4 

±13.2 

12.2 

±21.5 

13.0 

±2.3 

13.8 

±3.1 

13.2 

±2.8 

21.5 

±2.1 

34.6 

±1.6 

47.3 

±1.8 

Ramp sampling 

with nominal 

trajectory 

45.9 
37.9 

±1.9 

42.3 

±1.7 

46.7 

±1.9 

50.4 

±1.8 

48.1 

±2.0 

43.5 

±2.1 

42.6 

±1.7 

48.2 

±1.7 

Ramp sampling 

with GIRF 
56.1 

5.9 

±2.1 

6.2 

±2.0 

9.9 

±2.4 

14.8 

±2.6 

19.7 

±2.6 

29.0 

±1.6 

39.6 

±1.5 

50.6 

±1.7 

Ramp sampling 

with SPI-based 

measurement 

56.4 
5.4 

±2.1 

6.2 

±2.2 

10.3 

±2.3 

15.3 

±3.0 

19.8 

±2.5 

29.1 

±1.7 

39.8 

±1.5 

50.3 

±1.8 

Table 6. 2. Fat fraction. Conventional Cartesian imaging shows apparent error in fat fraction estimation due to 

the artefactual phase caused by mis-aligned k-spaces between gradient echoes. SNR was measured with 

separated water in all tubes. 
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6.3.4 Multi-echo bipolar GRE imaging  

Figure 6.8 shows fat and water separated images and the resultant fat fraction map 

obtained by three different imaging and reconstruction schemes: conventional Cartesian imaging, 

ramp sampling with nominal trajectory, ramp sampling with GIRF, and ramp sampling with SPI-

based gradient measurement. The measured gradients show the raw data (unfiltered) of the 

estimated gradient waveform. The SNR measured from the separated water in all tubes, the mean 

and standard deviation of estimated fat fraction in each tube are shown in Table 6.2. In 

conventional Cartesian sampling, erroneous estimation of fat faction is shown due to the phase 

error between the echoes acquired with positive and negative readout gradient. In ramp sampling 

with GIRF-estimated or SPI-measured trajectory, the estimation of fat fraction is significantly 

improved, which is likely due to a combination of the improved accuracy in the k-space 

sampling position that center-aligns k-spaces across echoes as well as the reduced echo spacing, 

while use of the nominal trajectory yields an incorrect estimation of fat fraction with lower SNR 

than in ramp sampling with the corrected trajectory. The SNR measured in ramp sampling was 

comparable with the SNR in Cartesian sampling. The estimated fat fraction shows both GIRF 

and SPI-based gradient measurement method allow robust measurement of the readout gradient. 

6.4 Discussion 

The proposed SPI-based gradient measurement technique does not require any special 

hardware unlike other reported methods for PGM and MFM that need specialized equipment 

such as NMR field probes(11,12,20,39). While these methods have been shown to be viable 

techniques to measure gradient waveforms, the use of external hardware adds complication and 

may be cost prohibitive. In the proposed method, a 15 cm spherical phantom was used to 

perform gradient waveform measurement; however in theory, any object (including a human 
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patient) can be used to perform gradient measurement. However, the imaged object does require 

definite boundaries (determined either by object size, coil sensitivity, or slice selectivity) to 

allow computation of the relative scale factors. The proposed method is robust to rigid motion of 

the object in two ways: the k-space scheme that only use magnitude that does not influenced by 

motion, and short measurement times that mitigate possible motion during the scan. The 

proposed SPI-based gradient measurement technique requires very minor modifications to the 

targeted pulse sequence, requiring only an additional loop during which the to be measured 

gradient amplitude is scaled for each gradient channel measured. Thus, this gradient waveform 

measurement can be added into existing sequences with little effort.  

Compared with previously reported PGM29,35,36 methods, where the number of RF pulses 

determines the resolution of estimated trajectory or gradient, the proposed technique allows 

higher resolution sampling of the gradient waveform (determined by the sampling bandwidth of 

the readout event). Therefore, the k-space position can be directly estimated from the 

measurement without any interpolation using the identical sampling rate for image acquisition. 

Furthermore, acquisition of the gradient measurement can be extremely rapid when the scan TR 

is short (e.g., ~1.5 sec per gradient axis). Furthermore, the use of the proposed methodology to 

perform in vivo measurement is feasible, where, for example, a database gradient measurement 

(e.g., obtained using a phantom) could be used to provide robust estimates for rapid gradient 

measurements. In vivo gradient measurement time for longer readouts (e.g., spiral and echo-

planar imaging) could be further reduced by sub-sampling the number of phase encoding steps, 

particularly when a database calibration measurement is used. Note that in vivo calibration could 

be challenged when static field gradients due to magnetic field distortion is significant. 
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One additional feature of the SPI-based gradient measurement is that k-space trajectory 

can be independently recovered without knowing the history of previous k-space position. 

Theoretically, the FOV itself in a 1D SPI image is a direct and independent measure of k-space 

position as implied in equation 6.1. This allows flexibility to measure k-space trajectory in any 

type of pulse sequences even when the central region of k-space is not acquired as in hybrid 

encoding8,13 and zero TE imaging112–115. Furthermore, in the SPI-based method, noise or mis-

estimation at earlier encoding times is not propagated to the later estimation since no integration 

or cumulative summation is required to obtain k-space position.  

As demonstrated herein, the proposed gradient waveform method can be used to improve 

the quality of reconstructed images. This is particularly important for non-Cartesian imaging 

where small k-space trajectory errors lead to significant artifacts as seen in Figure 6.6. Another 

application is the use of the technique to measure trajectories in more conventional Cartesian-

type acquisitions. In Figure 6.8, improvement is seen in chemical-shift encoded imaging 

(IDEAL) with a multi-echo bipolar readout by reconstructing to a measured trajectory which 

reduces artefactual phase due to an inaccurate k-space trajectory116–118. Furthermore, ramp 

sampling reduced the total scan time by approximately 30%. The ability to perform a robust and 

rapid gradient measurement technique to enable ramp sampling, particularly for oblique slice 

orientations would be beneficial to many MRI sequences (e.g., fast gradient echo, echo-planar 

imaging, balanced SSFP, fast-spin echo) to provide moderate scan time reductions (20-30%) 

with minimal effect upon SNR. 

The key idea of the proposed SPI-based gradient measurement technique is based on the 

assumption of linearity of the gradient distortion. This is typically a reasonable assumption when 

distortions are mostly caused by eddy currents that linearly scale with gradient amplitude. 
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However, these conditions may be violated in certain instances such as gradient operation close 

to the limit of slew rate and amplitude, resulting in nonlinear distortion in the realized gradient 

shape, which is a limitation of the proposed method based upon this LTI assumption. 

Furthermore, the demonstration of the proposed method relies upon accurate gradient amplitude 

calibration (which is already a requirement to enable geometrically precise MR imaging). If mis-

calibrated, global geometric distortions will be apparent relative to the physical x, y, and z 

gradient errors. However, this scaling can readily be compensated for by imaging a phantom 

with known geometry (for which the proposed method would be particularly well-suited). 

Concomitant field effects are another nonlinear factor that cause deviations in the k-space 

trajectory. These time-variant, non-linear magnetic fields depend on gradient amplitudes and are 

inversely proportional to field strength. The concomitant field effects become more problematic 

in imaging with long readout duration and preparation gradients (e.g. velocity encoding). Despite 

the efficacy of the proposed gradient measurement method as shown in the experiments herein, it 

is difficult to directly measure the concomitant magnetic field or higher order fields since in the 

proposed method (and other FGM and PGM methods) the gradient measurement is performed 

independently in each axis, based on the linearity assumption of the gradient system. In practice, 

concomitant magnetic fields are modeled as second order approximations and several successful 

correction methods have been proposed and implemented 94,119–121. Thus, these additional 

correction terms could be readily applied to gradient measurement data obtained using the 

proposed method. 

The proposed technique can be used as a calibration technique to estimate the GIRF 

without external hardware. As shown hereinbefore, the data collection for GIRF requires only 

25~35 sec per gradient axis, making it very feasible for measurement during routine (e.g., daily 
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or weekly) quality assurance imaging. In the present experiment using triangular gradient blips, 

the spectral resolution is inherently limited, and hence it may not be sensitive to long lasting 

eddy currents which is not visible in the estimated GIRF. This could potentially be overcome by 

applying frequency sweep methods 107,122, which we will explore in future work. 

6.5 Conclusions 

In this study, we implemented a robust and rapid gradient measurement method based on 

dynamic SPI, which allowed accurate measurement of k-space trajectory with high fidelity and 

no need of additional equipment to improve reconstructed image quality.  
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Chapter 7. Ramped Hybrid Encoding for Improved 

Ultrashort Echo Time Imaging 

7.1 Introduction 

MR imaging of objects with extremely short transverse relaxation times such as 

bone114,123–125, brain126,127, lung101,128,129, or teeth112,130 is challenging due to the rapid signal 

decay of these tissues and the physical limitations of MR hardware. Particularly, performance of 

the gradient system is limited in slew rate and amplitude and thus is a critical factor in the design 

of Ultra-short TE (UTE) acquisitions. Conventional nonselective frequency-encoded 3D UTE 

(FE-UTE) methods utilize a radial trajectory to rapidly frequency encode k-space, by encoding 

the free induction decay as rapidly as possible in a “center-out” acquisition3. In these methods, 

data encoding must wait for the signal to recover from transmitter/receiver switching time 

(deadtime) to obtain non-corrupted central k-space data. However, overall encoding time is not 

optimal because the gradient must be ramped from zero to the maximum amplitude after 

deadtime.  

Other techniques such as Back-projection Low Angle ShoT (BLAST)131, Rotating Ultra-

Fast Imaging Sequence (RUFIS)4, or Water- And fat Suppressed Projection MR Imaging 

(WASPI)132 perform encoding under constant gradients within a short TR, eliminating the need 

for gradient ramping during readout. Although this imaging scheme allows simple and fast 

imaging, data cannot be collected during the receiver deadtime, thus complicating acquisition of 

the central regions of k-space. To address this issue, methods such as Zero TE 

(ZTE)112,114,115,125,129,130 and Pointwise Encoding Time Reduction With Radial Acquisition 

(PETRA)8 have been proposed. While ZTE and PETRA are highly similar, ZTE utilizes an 
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algebraic reconstruction to estimate missing central regions of k-space and PETRA utilizes 

single point imaging (SPI) to encode the central regions of k-space. Unfortunately, the maximum 

gradient amplitude in these acquisitions is limited by unwanted slice selectivity due to bandwidth 

constraints of the RF pulse34,115,133. Similarly, the family of Sweep Imaging with Fourier 

Transform (SWIFT)134–136 or Single-Point Ramped Imaging with T1 Enhancement 

(SPRITE)27,28,31,137 whose encoding gradients are turned on during RF excitation also exhibit 

unwanted slice selectivity issue. 

In PETRA/ZTE, gradients are set to the maximum encoding amplitude, Gmax, before the 

application of a short, high-bandwidth RF pulse, as depicted in the pulse sequence diagram 

shown in Figure 7.1 (a), to save the time required to ramp gradients and thereby shorten total 

encoding time. However, the effective gradient during RF excitation results in an unwanted slice 

selection effect, where the magnetization is not uniformly flipped, but subject to a non-uniform 

 
Figure 7. 1. Slice selectivity (a) PSD as used in PETRA/ZTE, and (b) Excitation profile of a 24µs hard pulse, 
Note that the degree of slice selectivity increases with encoding gradient amplitude in (b). 
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(e.g., sinc-shaped) excitation profile as shown in Figure 7.1 (b). The effective orientation and 

width of the slice selection change according to the orientation and amplitude of the encoding 

gradients. Therefore, encoded k-space data can be considered to come from an object with 

different slice selection, resulting in blurring and artifacts in the reconstructed image, manifested 

radially from the gradient isocenter. This artifact gets stronger as Gmax increases, and a larger 

region of the image is affected by the blurriness. 

This blurriness can be avoided by simply using an encoding gradient with low amplitude. 

However, in that case longer encoding time is required to achieve the desired spatial resolution, 

resulting in two significant limitations. First, the long encoding time reduces the spatial 

resolution of short T2* species138, resulting in blurring and loss of detail in the very components 

that are being imaged. Second, this results in chemical shift artifacts of the second kind 

(intravoxel fat-water interference), which results in an out-of-phase appearance, particularly at 

3T and above. Shorter RF pulses with higher bandwidths can be used to alleviate the slice 

selection artifact; however, this limits the maximum attainable flip angle and thus reduces SNR 

and the capability to achieve T1-weighted contrast. Several methods have been proposed to 

address the slice selection problem by performing post processing or modulating RF 

pulse34,115,133.  

In this chapter, we have developed a new encoding scheme, termed ramped hybrid 

encoding (RHE), which allows reduced per-excitation encoding time and minimized slice 

selectivity effects to improve the sharpness of high resolution UTE imaging. In RHE, gradients 

are held at low amplitude (e.g., below 7mTm-1 with a 24µs hard pulse for FOV=200mm) during 

RF excitation to minimize slice selectivity, and ramped to the maximum amplitude immediately 

following RF pulse. A 1D SPI-based gradient calibration method was developed to estimate the 
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true sampling trajectory of the encoding gradients. The efficacy of RHE was evaluated by 

comparing it to other UTE imaging schemes in computer simulation and phantom and in vivo 

experiments.  

7.2 Methods 

7.2.1 Ramped Hybrid Encoding 

We propose RHE as a technique to allow the greatest flexibility compared to currently 

available methods in controlling unwanted slice selectivity while optimizing overall encoding 

time for ultrashort TE imaging. Figure 7.2 (a) shows the pulse sequence diagram for RHE. In 

RHE, an initial gradient during RF excitation, GRF, is chosen to be small enough to minimize 

slice selectivity (by considering the limitations of the frequency profile of the RF pulse). After 

application of the RF pulse, the gradient is ramped to the maximum encoding amplitude, Gmax, at 

the highest slew rate possible to minimize sampling duration. Data are acquired after RF 

deadtime until the desired spatial resolution is achieved.  

As in PETRA, we have implemented RHE to use SPI to measure the data in central k-

space that frequency encoding omits during RF deadtime. Central k-space is encoded by 

Cartesian SPI, and the outer k-space is acquired by frequency encoding as shown in Figure 7.2 

(b). Note that in Figure 7.2 (a) the solid line in the pulse sequence diagram (PSD) shows gradient 

amplitude along the readout direction used to scan half radial spokes (blue arrows in Figure 7.2 

(b)). The readout gradient is rotated over TRs to frequency-encode k-space as in a conventional 

radial acquisition. In Cartesian SPI sampling (red dots in Figure 7.2 (b)), the maximum gradient 

amplitude is linearly scaled as dotted lines in Figure 7.2 (a) shows to encode different k-space 

point at the constant encoding time over TRs. Note that the same maximum gradient is applied to 
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both SPI and frequency encoding to prevent discontinuity in encoding times at the interface 

between the two different encoding schemes. This acquisition can be extended to multi-echo 

acquisitions, where Figure 7.2 (c) shows the pulse sequence used to obtain multi-echo RHE 

images with 5 half-echoes obtained within a single acquisition. Note that by using SPI encoding 

to fill central region of k-space 5 half echoes can be obtained rather than 3 full echoes of the 

conventional gradient echo acquisition. 

In RHE, the diameter of the SPI-encoded region in k-space, NSPI, is determined by the 

following equation. 

 

Figure 7. 2. Ramped Hybrid Encoding (RHE). (a) Pulse sequence diagram, (b) sampling scheme, and (c) 

example of a multi-echo encoding scheme. RHE allows flexible control of GRF to minimize slice selectivity 

artifacts, and allows the best possible encoding time by rapidly ramping gradient after RF excitation. Like 

PETRA, single point encoding is employed to acquire central k-space data. 
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 2𝛾	𝑓𝑜𝑣» 𝐺noG𝑡» − 0.5	(𝐺noG − 𝐺ªy 9/𝑔¹) 					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (7.1) 

where 𝛾 is the gyromagnetic ratio in unit of Hz/T, gS denotes gradient slew rate in units of Tm-1s-

1, fovD denotes the desired field of view (FOV), and tD is the desired echo time chosen after 

deadtime. Due to eddy currents that effectively derate the gradients in ramping, SPI data are 

prone to be slightly oversampled and hence result in a larger FOV than the desired FOV (fovD) at 

the desired TE (tD). The FOV can be corrected in the reconstruction stage using conventional 

convolution gridding methods. In practice, larger NSPI can be intentionally used to obtain more 

oversampled SPI data allowing some flexibility in selecting TE when RF deadtime is not known 

a priori. 

The maximum gradient amplitude during RF excitation, GRF, can be selected by 

considering both slice selectivity and NSPI. An upper bound for GRF can be analytically 

determined using the expected RF pulse shape and its frequency profile. However, large GRF 

amplitudes may result in impractical scan times due to a large NSPI required. In that case, GRF 

needs to be reduced to allow reasonable scan times. The maximum readout gradient, Gmax, can be 

as large as possible within the constraints of the readout bandwidth and safety factors such as 

gradient heating and peripheral nerve stimulation.   

7.2.2 Gradient calibration 

 In RHE, data is acquired during ramping gradients. Therefore, timing errors and eddy 

current effects may distort the k-space sampling trajectory, and hence naïve reconstruction based 

on the prescribed gradient parameters is generally not suitable. In this study, we developed a new 

calibration method that benefits from the well-known zoom-in effect (decreasing FOV with 
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increasing phase encoding time delay) in SPI6,31,137. For calibration, three sets of 1D projection 

images are acquired using an SPI scheme in each gradient axis. 1D SPI imaging can be easily 

implemented in any pulse sequence by scaling the gradients to enable pure phase encoding. To 

phase encode different points in k-space over TRs, the prescribed gradient is linearly scaled. 

Typically this calibration data can be acquired very rapidly, within a few seconds for all gradient 

axes. 

1D single point images can be reconstructed without calibration. The three sets of 1D 

projection images across a range of encoding time are reconstructed at native FOVs (exploiting 

 

Figure 7. 3. The zoom-in effect of SPI and gradient calibration. (a) 1D SPI image matrix, and (b) the prescribed 

gradient shape. Note that the FOV change in (a) directly represents gradient shape in (b), which can be utilized 

for gradient calibration. 
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the zoom-in effect), as depicted in Figure 7.3. The image matrix shown in Figure 7.3 (a) contains 

1D projection images (y-axis) versus phase encoding time delay (x-axis) for a gradient direction 

encoded by 1D single point imaging. The size of the object (bright region in center of FOV) 

increases with encoding time (zoom-in effect). The speed of FOV change in Figure 7.3 (a) is 

directly proportional to the gradient strength shown in Figure 7.3 (b), exhibiting acceleration in 

ramping up, constant change in plateau, and deceleration in ramping down. Therefore, the 

gradient waveform can be calibrated by estimating the scaling factors between neighboring phase 

encoding time delays within the 1D SPI data.  

The FOV scaling factors between images are found automatically using unconstrained 

nonlinear optimization (Nelder-Mead Simplex). A reference image is first selected as the latest 

time delay, tref, and the relative scaling factors between tref and other time delays are found by 

minimizing the L2-norm of the error function as shown in the following equation.  

 𝐹𝑂𝑉𝑠𝑐𝑎𝑙𝑒(𝑡) = 𝐹𝑂𝑉 𝑡�}� /𝐹𝑂𝑉(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛±	 |𝐼 𝑡�}�, 𝑥 −-
G 8 𝐼 𝑡, 𝑠 𝑥 − 𝑁½ + 𝑁½ |9	 (7.2) 

, where I(t,x) denotes magnitude of 1D image at encoding time t and spatial position x, N is 1D 

matrix size, s is a scaling factor between images, and Nc is index for the center of image (e.g., for 

matrix size=N, 𝑁½ = 𝑁/2 ). Images are transformed based on the scaling factor, s, to find the 

best scaling factor. Scaling transformation can be performed in the either image or k-space 

domain by using an affine transform or convolution gridding, respectively. In this study, the 

transform was performed in the image domain using bilinear interpolation because it provided 

reliable results that could be computed much faster than using a gridding approach.  
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Once proper FOV scaling factors are found across all phase encoding time delays, 

relative k-space position can be recovered. Note that the FOV scaling factors only describe the 

relative scaling difference between encoding times. To obtain the absolute FOV, we examine the 

RHE data acquired during constant gradient. First, the slope of FOV scaling factors is calculated 

at a time (tref) when the gradient is constant (and known) Gmax. Then, the slope can be used to 

calculate the true FOV at the reference encoding time, tref, using following equation. 

 𝐹𝑂𝑉 𝑡�}� = 𝑐(𝑁 − 1)/(2𝛾𝐺noG) (7.3) 

, where c is slope of FOV scaling factor found at constant gradient. Now, the FOV for the entire 

encoding time, FOV(t), can be recovered by simply using equation 7.2 with the given 

FOVscale(t) and FOV(tref). 

7.2.3 Image reconstruction 

After the k-space trajectories are calculated via the above gradient calibration method, the 

acquired SPI and radial data are combined together. 3D convolution gridding is applied to obtain 

the k-space with desired FOV45,46,83. To control variable density sampling within k-space, 

iterative density compensation108 is applied. Note that the sampling density along a half radial 

spoke in frequency encoding is determined by readout bandwidth and the shape of the encoding 

gradient, while within the SPI region it is determined by TE and the shape of the encoding 

gradient. In Figure 7.4, a block diagram shows how raw data are processed to obtain a final RHE 

image. 

7.2.4 Computer simulation 
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To compare encoding times and the resultant image quality between RHE and other UTE 

imaging schemes, a 1D computer simulation was performed. Note that a conventional point 

spread function (PSF) simulation is not possible because the PSF is spatially-variant at each 

encoding position in k-space, as described above. Therefore, each point in k-space was 

independently simulated using a 1D digital phantom. To generate the 1D digital phantom, 11 

tubes were generated with different proton densities, 0.7, 1.0, 0.7, 0.3, 0.7, 1.0, 0.7, 0.3, 0.7, 1.0 

and 0.7 in arbitrary unit from left to right. The diameter of each tube was 40mm. A mono-

exponential T2* decay model (T2* = 100µs or 500µs) was simulated for all tubes.  

 System parameters included a TE of 80µs, a slewrate of 118 mTm-1ms-1, and a maximum 

gradient of 35 mTm-1. For PETRA Gmax = 7 or 20 mTm-1 was used. For RHE, GRF = 3.5 or 7 

mTm-1 and Gmax = 35 mTm-1 was used. For RHE and FE-UTE, the gradients were ramped 

immediately after the RF pulse or after deadtime, respectively. 1D sampling was simulated using 

	

Figure 7. 4. Raw data processing in RHE. Raw data acquired by RHE contains Cartesian SPI data, radially 

frequency encoded data, and 3 sets of 1D SPI data for calibration. After calibration, combined data with 

estimated k-space position are processed by convolution gridding. 
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frequency encoding or PETRA/RHE encoding to acquire a 500x1 k-space with FOV=500mm, 

which achieves approximately 1mm resolution. For PETRA and RHE, the slice selectivity effect 

was simulated using the spatial profiles of the 24µs hard pulse shown in Figure 7.1(b). NSPI was 

set to the minimum value according to the prescribed gradient shape (NSPI=24, 69, 29, and 40 

respectively for PETRA with Gmax=7mTm-1, PETRA with Gmax=20mTm-1, RHE with 

GRF=3.5mTm-1, and RHE with GRF=7mTm-1). No eddy current effects were applied in the 

computer simulation.  

 Phantom Knee Brain 

 PETRA PETRA PETRA UTE RHE RHE PETRA PETRA PETRA UTE RHE 
Gmax 

(mTm-1) 7 14 20 35 35 35 7 14 20 35 35 

GRF 
(mTm-1) n/a n/a n/a n/a 7 5 n/a n/a n/a n/a 7 

RF pulse 
width 
(µs) 

24 24 8, 24 

Flip 
angle (o) 6 6 2, 6 

NSPI 33 33 33 n/a 33 33 33 33 33 n/a 33 
# of SPI 
encoding 17707 17707 17707 n/a 17707 17707 17707 17707 17707 n/a 17707 

# of FE 
encoding 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 

Slew 
rate 

(mTm-

1ms-1) 

118 118 118 118 118 118 118 118 118 118 118 

TE (µs) 90 90 90 90 90 

90, 1502, 
1550, 
2900, 
2950 

90 90 90 90 90 

TEnc (µs) 1680 838 588 588 438 788 1680 838 588 588 438 

TR (ms) 3.3 3.3 3.3 3.3 3.3 5.6 3.3 3.3 3.3 3.3 3.3 

RF coil 8ch receive only head coil 8ch T/R 
knee coil 8ch receive only head coil 

Scan 
time 5m 23s 5m 23s 5m 23s 4m 

28s 5m 23s 9m 10s 5m 23s 5m 23s 5m 23s 4m 
28s 

5m 
23s 

Table 7. 1. Parameters for MR experiments. 
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7.2.5 Experimental setup 

To evaluate the proposed encoding scheme, MR experiments were performed on a 3.0T 

MR scanner (MR750, GE Healthcare, Waukesha, WI). A phantom experiment was performed to 

compare UTE imaging schemes (PETRA, FE-UTE, and RHE) with an object that only has short 

T2* components. Human brain imaging was performed with 2 different RF pulses (8µs, 24µs) 

with flip angle 2o and 6o respectively) and gradient settings. A multi-echo RHE experiment to 

generate a short T2* image was performed in the human knee. 

For phantom experiments, a phantom made of Acrylonitrile Butadiene Styrene (ABS) 

plastic (Big ben, item # 21013, a cowboy minifigure from palace cinema, item # 10232, and a 

white horse made by LEGO, Billund, Denmark) with T2* approximately 400-500µs. An 8-ch 

receive-only head coil (GE Healthcare) was used for the phantom experiment. For in vivo 

experiments, a human subject was imaged in accordance with local IRB protocols. The 8-ch 

receive-only head coil was used for in vivo brain imaging, and an 8-ch transmit-receive knee coil 

(GE Precision Eight Knee Array Coil, Invivo, Gainsville, Florida) was used for in vivo knee 

imaging. 

All parameters used for the phantom, knee, and brain imaging are shown in Table 7.1. A 

single echo acquisition (as shown in Figure 7.2 (a)) was performed in phantom and brain 

imaging, while multi-echo imaging (as shown in Figure 7.2 (c)) was performed in the knee. For 

all datasets the TE was 90µs, which is defined as the first encoding time after which the receiver 

is fully recovered from RF deadtime (as shown in Figure 7.3 (a)). Deadtime was determined 

empirically by observing the signal magnitude at the center of k-space. A sampling period of 2µs 

was used. In the phantom and knee imaging experiment comparing PETRA, FE-UTE, and RHE, 

NSPI and TR were set identically to allow reasonable comparisons between imaging schemes. 
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NSPI was set to 33, the largest NSPI required by PETRA with largest Gmax (=20mTm-1), while TR 

was set to 3.3ms, is the minimum TR of PETRA with lowest encoding gradient (Gmax=7mTm-1). 

The minimum possible TR for RHE can be significantly shorter (approximately 2ms). 

To perform gradient calibration, three 1D 401x1 SPI images were acquired along each 

physical gradient axis using linearly scaling encoding gradient over TRs (401 equispaced steps 

between -1.0x and 1.0x of gradient shape to calibrate). The additional scan time required for the 

calibration was 401(encodings/axis) x 3(axis) x TR, which is 4 sec for a single echo acquisition 

and 6.7 sec for multi-echo acquisition. For more reliable calibration, SPI-based calibration was 

first performed using a spherical phantom (in a separate imaging session on a separate day and 

only once for all experiments), which was then used as the initial guess during calibration. The 

proposed SPI-based calibration was applied to both FE-UTE and RHE imaging.  

During image reconstruction, convolution gridding was performed using a Kaiser-Bessel 

kernel with grid width=5 (for phantom and head imaging) or 7 (for knee imaging) and 

oversampling ratio=2. Phantom data were gridded to achieve FOV=200mm and matrix size of 

201x201x201, and brain data were gridded to achieve FOV=240mm and matrix size of 

241x241x241, which is equivalent to 1mm resolution. In knee experiment five 3D knee images 

were reconstructed at TE=90µs, 1502µs, 1550µs, 2900µs, and 2950µs with FOV=200mm and a 

matrix size of 401x401x401, which is equivalent to 0.5 mm resolution. Separate fat and water 

images were computed using Iterative Decomposition of water and fat with Echo Asymmetry 

and Least-squares estimation (IDEAL)110. All 5 images at different TE were used for the IDEAL 

reconstruction. The image representative of short T2* species was obtained by subtracting the 

computed water and fat images from the RHE image at TE=90µs. 
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7.3 Results 

7.3.1 Simulation results 

 Figure 7.5 shows the simulated curves for the per-excitation encoding time in three 

different UTE encoding schemes, conventional FE-UTE, PETRA/ZTE, and RHE, (Figure 7.5 (a)) 

and the corresponding reconstructed images (Figure 7.5 (b),(c)). As seen in Figure 7.5 (a), RHE 

with GRF=7mTm-1 allows the shortest per-excitation encoding time (=429µs) between the three 

methods (1669µs for PETRA with Gmax=7mTm-1, 584µs for PETRA with Gmax=20mTm-1, 562µs 

for FE-UTE, and 454µs for RHE with GRF=3.5mTm-1) while controlling for blurring caused by 

T2* or the finite RF pulse duration. The reconstructed images with normalized scales are shown 

in Figure 7.5 (b),(c). Root Mean Squared Error (RMSE) was calculated using the normalized 

images. 

 

Figure 7. 5. Simulation of (a) per-excitation encoding time and simulated 1D imaging with (b) T2*=100µs and 

(c) T2*=500µs. NSPI was set to 24, 69, 29, and 40 respectively for PETRA with Gmax=7mTm-1, PETRA with 

Gmax=20mTm-1, RHE with GRF=3.5mTm-1, and RHE with GRF=7mTm-1. Note that RHE provides the shortest 

per-excitation encoding time and the best image reconstruction for short T2* imaging over a wider field-of-view 

than PETRA and FE-UTE. 
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When T2* is extremely short (100µs), RHE with GRF=3.5mTm-1 provides the most 

accurate reconstruction (RMSE=0.06) owing to its optimized encoding time and controlled slice 

selectivity. PETRA images show good fidelity at the center of the FOV, but exhibit loss of detail 

 

Figure 7. 6. Gradient calibration. (a) 5 1D images from calibration data in the x-direction exhibiting a zoom-in 

effect from SPI, (b) the corresponding scaling factors computed from (a), (c) the measured k-space trajectory in 

each gradient axis, (d) comparison with prescribed or delay-corrected trajectory, and (e) the resultant images. 

Note that reconstruction with the prescribed trajectory (middle) results in substantial error in the image (ringing) 

and an incorrect FOV. The delay-corrected trajectory (right), while having the correct FOV, has blurring and 

ringing compared to the image reconstructed with the measured trajectory (left). 
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toward the edges due to the unwanted slice selectivity imposed by high encoding gradients 

applied during RF excitation. Note that PETRA with Gmax = 20mTm-1 provides good 

reconstruction at the center of the FOV owing to the large NSPI(=69) where encoding time is 

constant (=TE), resulting in less intra-readout T2* decay. However, a larger NSPI significantly 

increases the total image acquisition time and is not clinically feasible. FE-UTE shows uniformly 

reasonable results over the entire FOV as expected. When T2* is moderately short (=500µs), FE-

UTE shows the overall best reconstruction (RMSE=0.03), while RHE with GRF=3.5mTm-1 

shows a comparably accurate reconstruction (RMSE=0.05).  

7.3.2 Gradient calibration 

Figure 7.6 (a) shows 1D projection single point images from the x-axis of a calibration 

dataset reconstructed at native FOVs exhibiting the zoom-in effect (decreasing FOV with 

increasing phase encoding time delay). Figure 7.6 (b) shows the FOV scaling factors found 

between images in x-direction where ‘x’ shows 5 FOV scaling factors corresponding to the 5 

images in Figure 7.6 (a). Figure 7.6 (c) shows the calibrated trajectory along 3 gradient 

orientations. Note that the estimated trajectories are different between gradient axes. Figure 7.6 

(d) shows the measured trajectory, the prescribed trajectory, and delay-corrected trajectory 

obtained in the physical z-gradient direction. The delay-corrected trajectory was obtained by 

matching the linear part of the prescribed k-space trajectory with the measured trajectory. The 

two superimposed curves for measured trajectory and the delay-corrected trajectory show little 

difference in the ramping portion of the encoding gradient. As seen in the images reconstructed 

with the three different k-space trajectories in Figure 7.6 (e), small errors result in significant and 

obvious reconstruction error as shown in the region yellow arrow indicates, which shows 
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misalignment between low and high frequency component in image due to the erroneous 

gradient calibration. 

In our computational environment, the proposed calibration took approximately 2 sec to 

process one image, which requires 2 (sec/image) x 230 (images) / 12 (# of parallel computation) 

= 38 sec for single echo imaging and 2 (sec/image) x 1,630 (image) / 12 (# of parallel 

computation) = 272 sec for multi-echo imaging.  

7.3.3 Phantom experiment 

Figure 7.7 shows the results of the phantom experiment. Note that in the reconstructed 

images, RHE (Figure 7.7 (e)) preserves the high frequency details of the phantom much better 

than PETRA’s (Figure 7.7 (a),(b),(c)) and FE-UTE (Figure 7.7 (d)), owing to the faster encoding 

that imposes less impact of T2* decay.  

 

Figure 7. 7. Phantom experiment. PETRA with (a) Gmax=7mTm-1, (b) Gmax=14mTm-1, (c) Gmax=20mTm-1, (d) 

FE-UTE with Gmax=35mTm-1, and (e) RHE with GRF=7mTm-1 and Gmax=35mTm-1. RHE allows the shortest per-

excitation encoding time, yielding the best image quality. 
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PETRA with Gmax = 7 mTm-1 (Figure 7.7 (a)) exhibits severe blurriness across the image, 

due to the long encoding time. PETRA with Gmax = 14 mTm-1 (Figure 7.7 (b)) shows a more 

detailed depiction of the object, but it exhibits blurriness along radial direction at edge of FOV, 

which is due to unwanted slice selectivity. PETRA with Gmax = 20 mTm-1 (Figure 7.7 (c)) shows 

the best spatial resolution in center of FOV and the worst slice selectivity artifact in corners of 

FOV due to the large gradient applied during RF excitation. FE-UTE (Figure 7.7 (d)) shows a 

 

Figure 7. 8. In vivo knee experiment. Coronal slice of RHE images at TE of (a) 90µs, (b) 1502µs, (c) 1550µs, (d) 

2900µs, (e) 2950µs, (f) water image, (g) fat image, (h) short T2* image, sagittal slice of RHE images at TE of (i) 

90µs, (j) 1502µs, (k) 1550µs, (l) 2900µs, (m) 2950µs, (n) water image, (o) fat image, and (p) short T2* image. To 

separate water and fat image IDEAL was applied using 5 images at TE= 90µs, 1502µs, 1550µs, 2900µs, and 

2950µs after image reconstruction. Short T2* image was obtained by subtracting water and fat images from the 

RHE image at TE=90µs. Short T2* tissues are clearly visible (white arrow: medial collateral ligament and lateral 

collateral ligament, yellow arrow: medial meniscus, blue arrow: quadriceps femoris tendon, green arrow: patellar 

ligament, red arrow: anterior cruciate). 
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detailed description of object with no slice selectivity artifact. RHE (Figure 7.7 (e)) shows higher 

detail and less noise (measured SNR=10.3) than FE-UTE (measured SNR=8.7) owing to the 

shorter per-excitation encoding time and the central k-space encoded by SPI (with TE equal to 

90µs).  

7.3.4 In vivo - knee imaging 

Figure 7.8 shows coronal or sagittal slices of knee images at 5 different TEs obtained 

using RHE with multi echo imaging capability (Figure 7.8 (a),(b),(c),(d),(e),(i),(j),(k),(l),(m)), 

water images (Figure 7.8 (f),(n)) and fat images (Figure 7.8 (g),(o)) obtained using IDEAL, and 

the resultant short T2* images (Figure 7.8 (h),(p)). Note that in short T2* images, tissues such as 

bone, tendon, and ligament are visible with positive contrast. In the coronal plane short T2* 

image (Figure 7.8 (h)) the medial collateral ligament and lateral collateral ligament (white arrow) 

and the medial meniscus (yellow arrow) are visible. In the sagittal plane short T2* image (Figure 

7.8 (p)), the quadriceps femoris tendon (blue arrow), patellar ligament (green arrow), and 

anterior cruciate ligament (red arrow) are seen clearly.  

7.3.5 In vivo - brain imaging 

Figure 7.9 shows brain images obtained by PETRA, FE-UTE, and RHE with two 

different RF pulse lengths and readout gradients (only for PETRA). The left 4x5 image matrix 

shows 2D slices selected from the reconstructed 3D images, and the right 4x5 image matrix 

shows the corresponding zoomed-in images. Figure 7.9 (a) to Figure 7.9 (j) show images at a 

mid-sagittal plane, while Figure 7.9 (k) to Figure 7.9 (t) show images at an axial plane. Figure 

7.9 (a),(b),(c),(k),(l),(m) and Figure 7.9 (f),(g),(h),(p),(q),(r) show PETRA images obtained with 

8µs and 24µs respectively. In PETRA with a short RF pulse (8µs), slice selectivity is suppressed 

owing to its broad excitation bandwidth, but SNR is reduced due to the smaller attainable flip 
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angle. Note that with an 8µs RF pulse, images are more proton density weighted, while with a 

longer RF pulse (24µs) increased T1 weighting can be achieved. With the 24µs RF pulse, the 

 

Figure 7. 9. In vivo brain experiment. Mid-sagittal plane image obtained by PETRA with 8µs RF pulse with (a) 

Gmax=7mTm-1, (b) Gmax=14mTm-1, (c) Gmax=20mTm-1, (d) UTE with 8µs RF pulse and Gmax=35mTm-1, (e) RHE 

with 8µs RF pulse, GRF=7mTm-1, and Gmax=35mTm-1, PETRA with 24µs RF pulse with (f) Gmax=7mTm-1, (g) 

Gmax=14mTm-1, (h) Gmax=20mTm-1, (i) UTE with 24µs RF pulse and Gmax=35mTm-1, (j) RHE with 24µs RF 

pulse, GRF=7mTm-1, and Gmax=35mTm-1, axial plane image obtained by PETRA with 8µs RF pulse with (k) 

Gmax=7mTm-1, (l) Gmax=14mTm-1, (m) Gmax=20mTm-1, (n) UTE with 8µs RF pulse and Gmax=35mTm-1, (o) RHE 

with 8µs RF pulse, GRF=7mTm-1, and Gmax=35mTm-1, PETRA with 24µs RF pulse with (p) Gmax=7mTm-1, (q) 

Gmax=14mTm-1, (r) Gmax=20mTm-1, (s) UTE with 24µs RF pulse and Gmax=35mTm-1, (t) RHE with 24µs RF 

pulse, GRF=7mTm-1, and Gmax=35mTm-1, and its corresponding zoomed-in images on the right. Note that in 

PETRA’s slice selectivity increases and chemical shift artifact decreases as strength of readout gradient 

increases. By using a short RF pulse, the slice selectivity artifact can be alleviated, but SNR and T1 contrast are 

inevitably reduced due to the smaller attainable flip angle. Both FE-UTE and RHE shows better image quality 

with no chemical shift artifact and slice selectivity artifact, but RHE shows more signal intensity from compact 

bone structures than FE-UTE. 
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slice selectivity artifact is more noticeable in PETRA, substantially deteriorating with higher 

Gmax (Figure 7.9 (g),(h),(q),(r)), while the chemical shift artifact is aggravated as encoding time 

decreases with lower Gmax (Figure 7.9 (a),(f),(k),(p)). 

Compared with PETRA, both FE-UTE (Figure 7.9 (d),(i),(n),(s)) and RHE (Figure 7.9 

(e),(j),(o),(t)) show much better image quality with higher spatial resolution and no or minimal 

slice selectivity artifact respectively. However, as shown in the zoomed-in sagittal images of FE-

UTE in Figure 7.9 (d),(i) and RHE in Figure 7.9 (e),(j), RHE exhibits higher signal intensity than 

FE-UTE in occipital bone indicated by the yellow arrow. In addition, RHE shows higher signal 

in a tooth as indicated by the green arrow in Figure 7.9 (i),(j). In axial images both RHE and FE-

UTE show detailed views of the tissues in the sinuses as shown in zoomed-in images of Figure 

7.9 (s),(t). Note that the red arrow indicates in Figure 7.9 (s),(t) RHE shows higher signal 

intensity than FE-UTE in the region where the meninges are visible. 

Overall, among the UTE imaging schemes presented here, RHE shows the highest spatial 

resolution, best short T2* contrast, no apparent chemical shift artifact owing to the shortest per-

excitation encoding time, and well-controlled slice selectivity with a 8µs or 24µs RF pulse.  

7.4 Discussion 

In this chapter, we proposed a new scheme, termed RHE, for time-optimal per-excitation 

encoding in UTE imaging. While the TE in UTE imaging is conventionally reported as the 

beginning of the readout, reductions in encoding duration improve the spatial resolution for short 

T2
* species138 and reduce chemical shift artifacts. Moreover, the ability to control GRF and the 

resultant slice selectivity allows greater flexibility regardless of the desired FOV for UTE 

imaging. While a high GRF is desired to shorten encoding time, there exists an upper limit of GRF 
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to avoid objectionable slice selectivity artifacts. Increasing the bandwidth of the RF pulse (e.g., 

using a shorter RF pulse) increases the attainable GRF for good quality image; however, shorter 

RF pulses also limit the maximally attainable flip angle and thus can reduce SNR and/or desired 

T1 image contrast. 

The use of higher amplitude encoding gradient to attain faster encoding inevitably 

requires a larger SPI encoded region (NSPI) for hybrid encoding techniques such as PETRA or 

RHE. As seen in Figure 7.5, increased NSPI improves short T2* imaging, with the caveat of 

substantially increasing total scan time. Reduction of NSPI can harm spatial resolution for species 

where the T2* is short relative to the per-excitation encoding duration (e.g., Figure 7.5-b, FE-

UTE vs. RHE [NSPI=29 or 40] with similar encoding durations). Therefore, it may be beneficial 

to prescribe RHE with a reasonably large NSPI to balance between the beneficial qualities of a 

bigger SPI region and total imaging time. Note that the contribution of SPI encoding to spatial 

resolution may be more significant in the 1D simulation than 2D or 3D since 1D radial 

acquisition is more susceptible to T2* decay than 2D or 3D radial acquisiton138. 

Due to a shorter encoding time, the sampling density along a radial spoke in the 

frequency encoded region is reduced in RHE compared to PETRA/ZTE, which penalizes the 

SNR for long T2* components. However, in spite of the SNR advantage that slow encoding 

allows, longer encoding results in overall degradation in image quality (loss of spatial detail for 

short T2* components and chemical shift artifacts). Thus, the reduced readout duration for RHE 

is important for improving image quality for UTE imaging. Indeed, there is no other encoding 

strategy to reach the extent of k-space in a more time-efficient manner than RHE when B1 

limitations prohibit the desired flip angle and field of view. If additional SNR is necessary, 

traditional techniques such as increased averaging or optimal coil configuration would apply.  



	106	

Additional improvements in RHE image quality and functionality are possible. For 

example, post processing strategies proposed to correct slice selectivity in ZTE and 

PETRA34,115,133 can be employed to alleviate blurriness artifacts. Moreover, hybrid encoding 

schemes with an oversampled SPI encoded region may allow reconstruction of images at 

multiple TEs in early encoding times, which can be used to estimate short T2* parameters with a 

single experiment (e.g., using k-space extrapolation methods as recently proposed in single point 

electron paramagnetic resonance imaging10). The additional scanning time imposed by 

oversampling SPI encoded region can be reduced by using variable density sampling pattern and 

appropriate reconstruction method such as compressed sensing using k-space domain data72,75 or 

model-based compressed sensing using k-space domain data and FID data (parameter domain) 

simultaneously12,78. 

Recently, there has been significant interest in developing sequences with extremely low 

acoustic noise levels134,139–141. Using RHE, the acoustic noise will be higher; however, the 

encoding duration will always be lower compared to B1 limited PETRA/ZTE encoding strategies.  

Thus, quiet scanning may be incompatible with high quality imaging of short T2* species. For 

RHE, lower noise scanning could be achieved at the cost of reduced encoding performance.  

Gradient calibration is essential to avoid distortion and reconstruction errors in resultant 

images. In this study, we implemented a new gradient calibration method based on 1D SPI. 

Unlike other techniques, the method is not dependent upon 2D slice selection99 or external 

hardware97, and the identical pulse sequence can be used with very minimal modifications (only 

different encodings need to be obtained). The scanning time required for calibration is also very 

short (less than 5 seconds for the datasets herein), allowing robust estimation of k-space 

trajectory on a per-scan basis. This technique is also likely to be useful to measure the k-space 
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trajectory of other pulse sequences in MRI, and is only limited by the number of encoding 

single-point steps. This paper describes preliminary use of this new calibration technique, and 

further development is planned in future studies.  

 

7.5 Conclusion 

In summary, we have proposed a new encoding technique that allows flexible and time-

optimal encoding for short T2* species. In addition, we developed a new image-based calibration 

technique using single-point encoding to measure the k-space trajectory for improved image 

reconstruction.  

 

 

 

 

 

 

 

 

 



	108	

Chapter 8. Rapid Dual Echo Ramped Hybrid Encoding-

based Attenuation Correction 

8.1 Introduction 

Simultaneous PET/MR system has been recently developed to complement each 

individual imaging modality and obtain molecular-specific contrast with PET along with the rich 

anatomical information with MRI: for example, glucose metabolism (FDG in PET), anatomical 

information (T1W/T2W/PDW imaging in MRI), and tissue micro-structure (DWI in MRI). 

Moreover, functional imaging schemes such as functional MRI or cardiac/flow imaging in MRI 

recently have been studied in PET/MR system to benefit from the information from MRI as 

orthogonal biomarker for more accurate diagnosis. In spite of the promises and benefits in the 

simultaneous PET/MR imaging, it still remains challenging to obtain a reliable photon 

attenuation correction map necessary for accurate PET quantitation since proton is only imaged 

in MRI.  

Many MR-based attenuation correction (MRAC) such as atlas registration-based or 

image segmentation-based method have been proposed to overcome the limitation. Atlas 

registration-based method is indirect estimation of CT contrast using patient database and 

fiducial MR images of the targeted subject 142–146. The atlas registration method does not take the 

uniqueness of individual subject such as damage or deformation (e.g., hole or fracture in bone), 

and hence it can mislead the estimation of attenuation map. Image segmentation-based method 

allows more direct and precise estimation of CT contrast based on MR images with specialized 

imaging schemes or parameters (e.g., images acquired at different TEs to obtain fat and water 

separated images) 147–154. However, it is still difficult to directly image bone due to MRI’s 
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fundamental limitations in imaging short T2* species which has high photon attenuation relative 

to soft tissues.  

It has been recently reported in literature that ultrashort echo time (UTE) or zero echo 

time (ZTE) imaging can be successfully used for MRAC owing to its capability to resolve 

objects with short T2* decay (i.e., bone)114,155–158. Unfortunately, UTE/ZTE techniques are not 

typically rapid (e.g., several minutes of acquisition time, particularly for multi-echo approaches), 

and are thus likely to impede PET/MR workflow (especially for whole body PET/MR where 

only 3-5 minutes may be available for MRI at each bed position).  

In this study, we propose a new framework for MRAC based on dual echo ramped hybrid 

encoding (RHE) 13, where UTE and out-of-phase echo images with high spatial resolution 

(1mm3) are obtained within a short acquisition time (35sec) in a single scan. The original RHE is 

modified as follows. First, a SLR half pulse with zero iso-delay is utilized to select a slab in S-I 

direction and hence reduce streaking and aliasing artifact due to undersampling radial spokes for 

fast imaging. Moreover, oversampled single point imaging (SPI) encoding is applied to allow 

reconstruction of multiple UTE images, which is used for more accurate air segmentation based 

on principal component analysis (PCA). With the multiple UTE images and an out-of-phase 

image, four species segmentation is performed to obtain bone, air, water, and fat component, 

where fat and water are estimated using a UTE image and out-of-phase image by 2-point Dixon 

method159. The segmented images are used to compose a pseudo CT image and the resultant 

attenuation map. In phantom experiments, the proposed imaging scheme was evaluated. In vivo 

experiment, an estimated pseudo CT map and the resultant PET image were compared with 

results obtained with actual CT image.    
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8.2 Methods 

8.2.1 Data acquisition and image reconstruction 

Figure 8.1(a) shows the pulse sequence diagram (PSD) of dual echo UTE imaging, which 

utilizes RHE to minimize per-excitation encoding time and alleviate blurriness of signal in short 

T2* object (bone in UTE-based MRAC). In RHE, frequency encoding is performed in center-out 

direction with fastest and largest encoding gradient turned on before RF coil deadtime (solid line 

in Figure 8.1(a)) to rapidly encode k-space (blue lines in Figure 8.1(b)). Cartesian SPI (dotted 

lines in Figure 8.1(a)) is used to encode central k-space missing in frequency encoding during RF 

 
Figure 8. 1. Dual echo RHE imaging. (a) Pulse sequence diagram, (b) k-space trajectory, (c) oversampled SPIs 
in UTE, and (d) 2D examples of k-space trajectory in UTEs. Note that flying echo is utilized to acquire out-of-
phase image around TE=1.1ms at 3T. By oversampling SPI multiple UTE images are obtained without aliasing 
artifact. 
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coil deadtime (red lines in Figure 8.1-b). In the proposed dual echo UTE acquisition, two 

symmetric encoding gradients are applied with opposite polarity, where UTE encoding is 

immediately followed by encoding of out-of-phase echo (TE = ~1.1ms at 3T), which enables fat 

and water separation based on 2-point Dixon reconstruction. Note that data acquired during 

flying-back to center of k-space are used to reconstruct out-of-phase image to reduce scan time. 

To attain proton density weightig, small flip angle is applied (<2o). 

Although RHE allows highly time-efficient encoding by acquiring k-space data while 

ramping up and down the encoding gradients, strong eddy current effect generated by rapidly 

changing gradients may result in distortion of gradients that deviates k-space trajectory from 

nominal trajectory, resulting in imaging artifacts such as blurring, ringing, scaling, and phase 

error. Therefore, it is crucial to consider the gradient distortion caused by eddy current when 

calculating k-space trajectory for artifact-free image reconstruction. In this study, dynamic SPI-

based gradient measurement technique was used to estimate actual k-space trajectory25.  

In the proposed dual echo UTE acquisition, the original RHE in the literature is further 

modified to incorporate a SLR half pulse with zero iso-delay to enable slab selection in S-I 

direction to alleviate radial streaking and aliasing artifact in reconstructed image, which is 

desired in the proposed fast imaging scheme performed with undersampled radial spokes and 

strong readout gradient with high maximum amplitude, Gmax. Moreover, oversampled SPI was 

applied to allow reconstruction of multiple UTE images. Figure 8.1(c) delineates time-spreading 

k-space sampling position in dynamic SPI (SPIs consecutively encoded over TEs). If SPI is 

oversampled at the first TE after RF coil deadtime, multiple un-aliased SPI data can be acquired 

at its following TEs until the k-space data gets to Nyquist limit (∆k=1/FOVD, where FOVD is a 

desired FOV). Figure 8.1(d) shows a 2D example of the acquisition of multiple k-spaces using 
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the oversampled, dynamic SPI. The multiple UTE images are utilized in two ways. First, the 

UTE images are averaged to yield one image with higher SNR, which is used for initial 

segmentation of bone and air. Second, pixelwise time course (temporal data) of the UTE images 

is used to realized more reliable segmentation of air, which will be explained in the following 

sections.  

8.2.2 Bias correction 

MR image is often biased by several factors such as B1 inhomogeneity resulting in 

uneven excitation of spins or discrepant coil sensitivity for signal reception between channels. 

This spatial bias can be modeled as a bias map multiplied to the ideal as following equation.  

 𝑀GH
� 𝑥, 𝑦, 𝑧 = 𝑠 𝑥, 𝑦, 𝑧 𝑀GH 𝑥, 𝑦, 𝑧  (8.1) 

,where 𝑀GH
�  is a biased transverse magnetization, 𝑀GH is unbiased ideal transverse magnetization, 

and 𝑠 𝑥, 𝑦, 𝑧  is a bias map. 

In this study a pixelwise bias correction method was implemented ahead of segmentation, 

where DC bias for each pixel is estimated in the inversed (negative) log of magnitude of image, 

I′ÁÂÃÄÅÆ, as shown in equation 8.2, which can be directly converted to bias correction map in 

image domain.  

 I′ÁÂÃÄÅÆ = −ln 𝑀GH
� 𝑥, 𝑦, 𝑧 	= − ln 𝑠 𝑥, 𝑦, 𝑧 − ln 𝑀GH 𝑥, 𝑦, 𝑧 	= 𝐷𝐶 +	 IÁÂÃÄÅÆ		 (8.2) 

, where IÁÂÃÄÅÆ  is unbiased inversed log image, and DC is an estimated bias in inversed log 

domain. Once a bias image, DC, is estimated, it can be directly converted to the bias correction 

map, 1/s(x,y,z) by taking exponential.  
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Figure 8.2 delineates the proposed method for bias estimation. First, a targeted image 

(Figure 8.2(a)) is converted to the inversed log image (Figure 8.2(b)). Then, a 3D ROI is used to 

select neighboring pixels in an inversed log image (Figure 8.2(c)). Within the ROI, pixels 

containing soft tissue is first roughly selected based on the histogram (Figure 8.2(d)) of all pixels 

to exclude air (Figure 8.2(e)), and then the median of the selected pixels are determined as DC 

(Figure 8.2(f)). The estimated bias correction map is converted to the image domain (Figure 

8.2(g)) and then applied to the targeted image (Figure 8.2(h)). Since in this intensity based bias 

correction a more proton density weighted image with less soft-tissue contrast is more desired, a 

UTE image is used to estimate the bias correction map in the UTE image itself and other 

gradient echo images.  

 

Figure 8. 2. Bias correction. (a) Targeted UTE image, (b) Inversed log image, (c) 3D ROI, (d) soft tissue 

selection based on histogram, (e) soft tissue pixels, (f) estimated bias map in inversed log domain, (g) estimated 

bias map in intensity domain, and (h) bias corrected UTE image. Intensity-based DC-bias correction is 

performed with 3D ROI, where the ROI includes pixels surrounding a target pixel. A median of intensity of soft 

tissues is determined as DC bias. 

 



	114	

8.2.3 Modeling tissue distributions 

In proton density weighted UTE image, it is expected that pixel intensity for air (noise) is 

darkest, that of soft tissue is brightest, and bone shows intermediate intensity. Thresholds to 

initially segment air, bone, and soft tissue are determined based on histogram of magnitude of an 

averaged UTE image with bias correction as explained above. The distribution of air (noise) is 

first approximated to Gaussian distribution as following equation, which is valid assumption 

when SNR is high (larger than 2) 160. 

 𝑓 𝑥 = C
9fÉ

exp − G1Ê @

9É@
 (8.3) 

 , where k is a scaling factor to compensate for scale difference between the probability density 

function and histogram, x is intensity of pixel, and 𝜎 and 𝜇 are respectively standard deviation 

and mean. The distribution of soft tissue is difficult to model as a single Gaussian curve since it 

is composed of different types of tissue with different contrasts depending on the imaging 

scheme and subject. For example, in this study a proton density weighted image is obtained 

where white matter exhibits slightly darker intensity than gray matter in brain. Moreover, 

imperfect bias-correction or image reconstruction can also deviate the distribution from Gaussian. 

Therefore, a non-Gaussian distribution was used to fit the histogram for soft tissue. Gaussian, 

logistic, and hyperbolic distribution respectively with excess kurtosis=0, 1.2, and 2 were tested 

on the data acquired in the proposed method to empirically choose the best model, and logistic 

distribution was selected as best model, using the following equation.  

 𝑓 𝑥 = C}/
c/Ì
Í

± 8<}/
c/Ì
Í

@ (8.4) 
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, where k is a scaling factor to compensate for scale difference between the probability density 

function and histogram, x is intensity of pixel, 𝜇 is mean, and variance can be calculated as ±
@f@

¸
. 

Bone distribution is indirectly estimated by subtracting the total histogram by the estimated air 

and soft tissue distribution. Figure 8.3(a) shows an example of total histogram in object, which is 

a mixture of air, bone, and soft tissue. Figure 8.3(b) and (c) illustrates estimation of air/soft tissue 

distributions, and the resultant bone distribution, respectively. 

8.2.4 Threshold setup 

Parameters of the estimated Gaussian distribution is used to determine a threshold for air 

 

Figure 8. 3. Modeling tissue distribution. (a) Total histogram, (b) estimation of air and soft tissue distributions. 

(c) estimation of bone distribution, and (d) thresholds set up. Bone distribution is indirectly obtained using the 

estimated air and soft tissue distributions. 
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detection, 𝜃oT�, as following equation. 

 𝜃oT� = 	𝜇oT� + 6𝜎oT� (8.5) 

,where 𝜇oT� and 𝜎oT� are estimated mean and standard deviation of the estimated air distribution, 

respectively. Note that 𝜃oT� is loosely set to embrace the gray zone between air and bone, which 

will be resolved in the following air detection using multiple UTE images based on PCA. 

The threshold for bone detection, 𝜃Ï�Ð}, is set to the intensity at right zero-crossing point 

of the estimated bone distribution as shown in Figure 8.3(d). The gray zone between bone and 

soft tissue will be resolved in refinement step using edge information explained in the later 

section.  

8.2.5 Air detection 

Pixels with intensity less than 𝜃oT� are initially segmented as air pixels. Then, pixelwise 

temporal data in multiple UTE images are utilized to refine air from the gray zone between air 

and bone where air and bone pixels exhibit similar pixel intensity. Note the temporal data does 

not contain physically meaningful information (i.e., T2* or M0) due to the narrow range of TE 

(<30µs) that is highly susceptible to local noise. In this study, PCA-based data analysis is 

performed to analyze and parameterize the temporal data and thereby find correlation that can be 

used for refinement of the air map. First, pixels with intensity less than 𝜇oT� is classified to a trust 

air set, which contains air pixels detected with high possibility. Let’s denote 3D pixel coordinates 

for the pixels in the trust set as 3D vectors, X8, 𝑋9, … , 𝑋ª	, where R is cardinality of the trust set. 

Then, a training matrix is composed as following. 
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 A =
𝐼(𝑋8, 𝑡8) ⋯ 𝐼(𝑋8, 𝑡D)

⋮ ⋱ ⋮
𝐼(𝑋ª, 𝑡8) ⋯ 𝐼(𝑋ª, 𝑡D)

 (8.6) 

, where I(x,t) denotes pixels intensity at pixel coordinate x and TE=t, and t1, t2, .., and tT denote 

TEs of T UTE images. The matrix A is eigenvalue decomposed, and the eigenvectors with two 

largest eigenvalues, V1 and V2, are used to compress pixelwise temporal data. Temporal data at 

the initially segmented air pixel is projected onto each eigenvector to obtain two parameters, c1 

and c2, corresponding to two eigenvectors, V1 and V2. Then, the estimated parameters are used 

to determine whether a targeted pixel is air or not. In the experiments, correlation was shown 

between c1 and air tissue, and between c2 and air/tissue interface. Based on the empirical 

observation, c1 map and c2 map are separately thresholded and combined to make an air 

refinement map. The air refinement map is processed with morphologic image processing 

methods (closing and dilation operation), and then initially segmented air map is refined by 

multiplying the obtained air refinement map. 

8.2.6 Bone detection 

In initial segmentation of bone, pixels with intensity smaller than 𝜃Ï�Ð} are classified as bone, 

excluding the pixels classified as air in the preceding air detection and refinement stage. After 

initial segmentation of bone, mis-classified bone pixels in the gray zone between bone and soft 

tissue are removed using edge information of a UTE image. First, an edge image is obtained 

using Canny edge detection, where 2D edge detection is performed in three slice direction and 

combined by logical summation. A refinement map for bone detection is obtained by applying 

dilation process with a spherical structure element with radius=4, in the assumption that bone 

resides near strong edges. Then, the initial bone segmentation is refined by multiplying the 

obtained refinement map. 
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8.2.7 Generation of pseudo CT map 

Pseudo CT map is generated using the detected bone map, air map, and fat/water 

separated images. First, a CT map for soft tissue is generated based water fraction as follows. 

 𝐶𝑇±��VDT±±Õ} =
´ÖvS×°

´ÖvS×°<´ØvS
	 𝐻𝑈ÛoV}� − 𝐻𝑈�oV + 𝐻𝑈�oV (8.7) 

, where 𝐼ÛoV}�  and 𝐼�oV  are water and fat separated images, and 𝐻𝑈ÛoV}�  and 𝐻𝑈�oV  are 

Hounsfield unit in CT for water and fat, respectively. Then, CT map for bone is generated using 

the detected bone map.  

 𝐶𝑇Ï�Ð} = 𝐵𝑊Ï�Ð}	𝐻𝑈Ï�Ð} (8.8) 

, where 𝐵𝑊Ï�Ð} is a binary map of the detected bone, and 𝐻𝑈Ï�Ð} is Hounsfield unit of bone at 

the desired body part. CT map for air is obtained as following. 

 𝐶𝑇oT� = 𝐵𝑊oT�𝐻𝑈oT� (8.9) 

, where 𝐵𝑊oT� is a binary map of the detected air, and 𝐻𝑈oT� is Hounsfield unit of air in CT. 

Finally, a pseudo CT map is generated using the three CT maps for soft tissue, bone, and air as 

following equation. 

 𝐶𝑇�ªÜÝ = (1 − 𝐵𝑊Ï�Ð} − 𝐵𝑊oT�)	𝐶𝑇±��VDT±±Õ} + 𝐶𝑇Ï�Ð} + 𝐶𝑇oT�. (8.10) 

8.2.8 Experimental setup 

To evaluate the proposed method, phantom and in vivo experiments were performed 

using a 40-channel HNU coil in a 3T PET/MR system (GE Healthcare, Waukesha, WI, USA). 

Imaging parameters are as follows: Gmax=33mT/m, slewrate=118mT/m/ms, FOV=300mm3, 

voxel size=1mm3, TR=4.2ms TE=52/54/56/58/60/62/64/66/68/70/72/74/76/78/1172µs (note that 
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multiple UTE images are obtained at every 2µs), scantime=35sec, sampling bandwidth=250Hz, 

FA=1o, # of radial spokes=7442, and # of SPI encoding=925. 

In phantom experiment, data acquisition and image reconstruction for the proposed 

MRAC were tested with two different subjects: GE provided water phantoms and a custom-made 

MRAC phantom. In the experiment with water phantom, four phantoms were placed on MR 

table as shown in Figure 8.4(a) to mimic human subject in size and test how streaking artifacts 

are exhibited with different slab selection. Four different cases were tested: no slab selection 

(using non-selective 8µs hard pulse), slab selection (using 628µs SLR-half pulse) with slab size 

of 460mm, 346mm, and 269mm. For the experiment with UW-MRAC phantom, a container 

 

Figure 8. 4. Phantom experiments. (a) Water phantoms, and (b) a custom-made UW-MRAC phantom. 
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made of PLA-plastic was manufactured by using a 2D crest of University of Wisconsin as 

illustrated in Figure 8.4(b). The 3D object was made by a 3D printer. Fat, water, and ABS plastic 

were filled in the container as shown in Figure 8.4(b). In vivo experiment, brain imaging was 

performed with a healthy volunteer in compliance with IRB.  

In image reconstruction, a convolution gridding was applied with kernel size=5, 

oversampling ratio=2. After image reconstruction, fat and water separated images were obtained 

based on a 2-point Dixon reconstruction using the GE Healthcare Orchestra SDK. In bias 

correction, a 3D ROI = 31x31x31 was used. 

 

Figure 8. 5. Results of phantom experiments. (a) UTE and out-of-phase images with different slab selection, (b) 

out-of-phase image reconstructed with different size of SPI, (c) results with UW-MRAC phantom. Three 

different slab size were tested (S1=460mm, S2=346mm, S3=269mm) in (a), where smallest slab size (S3) 

showed best image without aliasing/streaking artifact in S-I direction. 
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8.3 Results 

8.3.1 Phantom experiment 

Figure 8.5(a) shows that aliasing/streaking artifact in the S-I direction is suppressed by 

utilizing slab selection. The image using 8µs hard pulse or larger slab selection exhibits stronger 

streaking artifact due to the strong readout gradients utilized and the undersampled number of 

radial spokes necessary for fast imaging. Therefore, it is appropriate to use a selective SLR half 

pulse with small slab matched the S-I coverage of the PET detector (~25cm). Figure 8.5(b) 

 

Figure 8. 6.  A UTE image and histogram. (a) A UTE image vs. averaged UTE image, (b) histogram w/o and w/ 

bias correction, (c) distribution models for soft tissue, (d) estimation of bone distribution, and (e) threshold 

setup. Note that in (a) SNR in air region is noticeably improved. In (c) SoftTissue G, L H denotes fitted curve 

with Gaussian, logistic, and hyperbolic distribution. 
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shows the efficacy of hybrid encoding in reducing the ringing artifact in the image acquired 

during the flying-back echo (out-of-phase image), owing to SPI encoded central k-space that is 

more robust to error in k-space trajectory than frequency encoding based UTE (FE-UTE). 

Figure 8.5(c) shows the results with UW-MRAC phantom, where a UTE image at 

TE=52µs, an out-of-phase image at TE=1172µs, and the resultant water and fat image are shown. 

Note that in the UTE image, signal in short T2* component, ABS plastic (T2* = ~500µs), is 

visible (indicated by yellow arrow in inversed log image), which is distinct from air region in 

background, implying that the proposed method is capable of resolving bone required in MRAC. 

Moreover, water and fat were successfully separated by 2-point Dixon reconstruction using the 

given UTE image and out-of-phase image.   

8.3.2 In vivo - bias correction and histogram 

Figure 8.6(a) shows a UTE image at TE = 52µs and an averaged UTE image using 14 

different TEs obtained in imaging with a healthy volunteer. SNR was calculated using two 

region approach where a ROI for signal was set inside brain and a ROI for noise was set outside 

object. The calculated SNR was 34.8 and 37.2 respectively for the UTE image without and with 

averaging, where the averaged image showed slightly higher SNR. The effect of increased SNR 

is shown in the zoomed-in images in Figure 8.6(a), which shows that air segmentation can 

benefit from averaging UTE images. Figure 8.6(b) shows histograms of the averaged UTE image 

without and with application of bias correction, normalized by its maximum intensity. As seen, 

bias correction stretches the distribution of tissue intensity, which makes gray zone smaller, and 

makes it easier to fit the distribution with a simpler model such as Gaussian distribution.  
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In Figure 8.6(c), a black dotted line shows total histogram from the bias corrected UTE 

image. Air distribution was fitted using Gaussian model, and the soft tissue distribution was 

fitted with three different probability models with different kurtosis: Gaussian, Logistic, and 

Hyperbolic. Logistic model showed the best fit for the soft tissue region in the histogram as 

shown in the zoomed-in view, and hence it was used to fit the soft tissue distribution. Figure 

8.6(d) shows the estimated bone distribution, which was obtained by subtracting the total 

histogram by the estimated air and soft tissue distribution. Figure 8.6(e) shows the zoomed-in 

 

Figure 8. 7. Air/bone detection. (a) Air refinement, and (b) bone refinement. In air refinement, PCA is used to 

parameterize 14 UTE images, where c1 map exhibiting DC component shows strong correlation. In bone 

refinement canny edge detection is used to obtain a refinement map. 
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view around air and bone distribution and thresholds set for initial segmentation of air and bone. 

𝜃oT� was set to 0.262, and 𝜃Ï�Ð} was set to 0.386.  

8.3.3 In vivo – Air/bone detection 

Figure 8.7(a) shows the initial segmentation and refinement of air based on PCA. The two 

eigenvalues were 3.85 x 1016 and 1.34 x 1014. Note that c1 map shows strong correlation with air 

pixel where low c1 value tends to indicate air, while c2 map shows relatively weaker correlation 

where high absolute c2 value tends to indicate air or air/soft tissue interface, and c2 value near 

zero tends to indicate bone. Based on the observation, pixels with c1 below 70% of maximum 

value of c1’s in the trust air set (obtained by projecting temporal data in trust set to V1) were 

included in a refinement map. In addition, pixels with c2 above 70% of maximum or below 70% 

of minimum value of c2’s in the trust air set were included the refinement map. Then, the 

refinement map was applied with closing and dilation operation to yield a final refinement map 

with noise removed as shown in Figure 8.7(a). With the refinement process, falsely detected air 

in vicinity of occipital bone and jaw bone as indicated by yellow arrows were removed. Figure 

8.7(b) shows the initial segmentation and refinement of bone. An edge map obtained by canny 

edge detection was dilated to yield refinement map. In the refined bone map, falsely detected 

bone in soft tissue indicated by red arrows were clearly removed.  

8.3.4 In vivo - Pseudo CT 

Figure 8.8 shows six 2D slices in a UTE image obtained by averaging 14 UTE images 

without and with application of bias correction (Figure 8.8-(a),(b)), an out-of-phase echo image 

at TE=1172µs (Figure 8.8-(c)), a water and fat image (Figure 8.8-(d),(e)), a segmented air and 

bone (Figure 8.8-(f),(g)) and the resultant pseudo CT image (Figure 8.8-(h)).  
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8.4 Discussion 

In this study, we proposed a new framework for UTE based MRAC that allows high 

resolution imaging (1mm spatial resolution) of UTE and out-of-phase images with clinically 

feasible scan time (35sec), utilizing RHE. We have shown the feasibility in head imaging herein, 

but it will be more beneficial to use this framework for simultaneous whole body PET/MR 

imaging where several MRAC imaging should be performed for each stations. For example, 

imaging with 4 different stations will require total 2min 20sec scan time with the proposed 

 

Figure 8. 8.  Pseudo CT image. Six 2D slices of (a) a UTE image without bias correction, (b) a UTE image with 

bias correction, (c) an out-of-echo image, (d) a water image, (e) a fat image, (f) a segmented air, (g) a segmented 

bone, and (h) a composed CT image. 
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MRAC, which is still considered as feasible scan time compared to 11min 32sec total scan time 

required in ZTE based MRAC with lower spatial resolution (1.35mm spatial resolution)114. 

Moreover, the proposed method does not require additional fat/water imaging (Dixon or IDEAL) 

owing to the dual echo acquisition where in-phase (UTE) and out-of-phase images are obtained. 

There are two possible ways to reduce total scan time: reduction in the length of a TR and 

the number of TRs. To reduce the length of TR, we have designed the dual echo UTE pulse 

sequence base on RHE, where UTE echo and its following out-of-phase echo (around 1.1ms) are 

acquired in one TR, which reduces the length of pulse sequence by 60 % than the radial 2 point 

Dixon acquisition in conventional way that acquires two echoes at around 1.1ms and 2.2ms in 3T, 

not utilizing UTE as in-phase echo. To further reduce the length of sequence, a flying-back echo 

was acquired, which is 33% reduction in length of pulse sequence compared with the case of 

using conventional center-out echo. Moreover, the design of rapid pulse sequence benefits from 

RHE with fast slewrate and high Gmax, which minimizes readout duration. To reduce the 

number of TR, radial spokes were undersampled. To alleviate streaking/aliasing artifact that can 

be cause by undersampled radial spokes and fast readout (high readout bandwidth), slab selection 

was applied using a SLR-half pulse with zero iso-delay, and we have shown the efficacy. 

The proposed MRAC utilizes RHE, where SPI is used to encode central k-space. Since 

SPI encoding is more robust to error in k-space trajectory, we were able to reconstruct image 

with the data acquired during flying-in with alleviated imaging artifacts. Moreover, slightly 

oversampling SPI encoding enabled dynamic SPI in which consecutive SPI images are acquired 

10,25 to acquire multiple UTE images between TE=52µs and 78µs, which was used to increase 

SNR in a UTE image. In addition, the pixelwise temporal data in the multiple UTE images was 

used in PCA-based air refinement to resolve pixels in gray zone between air and bone. PCA is 
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one of many possible approaches to parameterize the temporal data (e.g., polynomial fitting), but 

we have shown that the estimated parameters are correlated with air pixel. More efficient method 

to utilize the temporal data will be explored in future works. Moreover, parallel imaging161 or 

compressed sensing12 can be used to accelerate SPI encoding or increase sampling density of SPI 

encoding to secure more UTE images. 

8.5 Conclusions 

In this study we have proposed a rapid RHE-based MRAC method that benefits from 

RHE and optimized 2-point Dixon encoding. The utilization of a slice selective 3D RHE 

acquisition improves image quality, while still allowing fast image acquisition. While is also 

possible to accelerate MRAC by reducing voxel size, the partial volume complicates image-

based segmentation techniques. Imaging with a flying-back echo is usually considered to be 

technically demanding in radial sampling and is not routinely performed. However, with the use 

of the RHE acquisition (hybrid encoding of central k-space) and robust gradient waveform 

measurement, it was possible to acquire an out-of-echo in good imaging quality. Such 

acquisitions are expected to be highly useful for MRAC acquisitions to improve quantitative 

accuracy in PET/MR. 
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Chapter 9. Highly Efficient Bi-Component T2* Mapping of 

the Knee using Ultra-short Echo Ramped Hybrid Encoding 

9.1 Introduction 

Quantitative imaging based on T1/T2/T2* parameter has been explored in muscular-

skeletal (MSK) MRI as a clinically meaningful tool to characterize lesion in tendon, meniscus, 

and cartilage. In reality, a voxel in MRI can contain multiple component due to the limited 

spatial resolution, causing partial volume effect. Therefore, single component fitting can lead 

wrong result in clinic. The use of bi-component imaging and reconstruction methods can 

improve the specificity of T2* analysis of musculoskeletal tissues with multiple water 

components.  

With recent development of high performance gradient system, ultrashort echo time 

(UTE) imaging has become feasible, allowing more robust multi-component T2* estimation by 

acquiring images in earlier TEs. In literature UTE-based bi-component T2* mapping techniques 

have been used to evaluate cartilage, tendon, meniscus, ligament, and cortical bone162–165. 

However, long acquisition times (15~20min) to obtain multiple images (typically more than 16) 

required for bi-component fitting, limited anatomic coverage, and image artifacts associated with 

current techniques have reduced the feasibility of bi-component T2* analysis in clinical studies. 

In this study, we explore the feasibility of a rapid UTE imaging method based on ramped 

hybrid encoding (RHE) to provide reliable bi-component T2* analysis of the human knee joint at 

3T. In the proposed method, total 17 images are acquired in a single scan, where a UTE echo is 

followed by 16 gradient echoes. To compensate for eddy current effects, the k-Space trajectory 

was measured using a dynamic SPI-based gradient measurement technique25, which is essential 
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in non-Cartesian gradient echo imaging with a long echo train, where errors in k-space trajectory 

are accumulated over readout, causing severe imaging artifact if reconstructed with nominal k-

space trajectory. To demonstrate feasibility, a knee of a healthy volunteer was imaged with the 

proposed RHE-based method with small or full coverage for knee, and bi-component fitting was 

performed in cartilage, tendon, and ligaments. 

9.2 Methods 

9.2.1 Multi-echo RHE 

In the proposed imaging scheme, multi-echo RHE is utilized to acquire a UTE image 

followed by multiple gradient-echoes in a single scan as shown in Figure 9.1(a). In RHE, 

gradients are turned on before the RF coil deadtime and ramped up to maximum gradient, Gmax, 

to minimize readout duration and alleviate blurriness in short T2* tissues in a UTE image. After 

 
Figure 9. 1. Multi-echo ramped hybrid encoding (RHE). (a) Pulse sequence diagram, and (b) k-space trajectory. 
Note that images at later TEs are also hybrid encoded to benefit from the SPI encoding.  
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UTE acquisition, a flying-back gradient echo train is applied to acquire 16 non-UTE images. A 

SLR half-pulse with zero iso-delay was used to enable slab selectivity.  

k-Space is encoded with a center-out radial trajectory, acquiring multiple half-echoes. As 

in conventional hybrid encoding methods, the central region of k-space is acquired by Cartesian 

SPI (red lines in Figure 9.1(b)), and outer k-space is acquired by radial frequency encoding (blue 

lines in Figure 9.1(b)). Note that non-UTE images are also reconstructed based on the hybrid 

encoding scheme where central k-space region is covered by Cartesian SPI data although there is 

no missing radial frequency encoded data in the very k-space region, to benefit from the 

 

Figure 9. 2. Sampling trajectory. 2D k-space example of (a) x-y plane, and (b) x-z plane, and (c) 3D example. 

Note that k-space coverage in the z-axis was reduced to efficiently match the reduced spatial resolution in the 

slice direction.  
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robustness of SPI to magnetic susceptibility and error in estimation of k-space trajectory166. 

Saturation pulses was applied every TR before the RHE acquisition to suppress signal from fat. 

9.2.2 Sampling trajectory 

Figure 9.2(a) delineates a 2D example of the sampling trajectory in the logical x-y plane. 

Central k-space is encoded at a constant TE by SPI with a diameter, NSPI (phase encoding steps 

in one axis), where one data point in the SPI region is encoded within each TR. Frequency 

encoding acquires outer k-space data up to kmax where the desired in-plane spatial resolution is 

achieved. Note that the size of the SPI region is somewhat exaggerated in illustrations in Figure 

9.2. Figure 9.2(b) shows 2D example of sampling trajectory in logical x-z plane. The frequency 

encoding in logical z-direction is derated by a factor of α depending on the desired slice 

thickness (sptial rsolution in z-axis). In this study, to achieve 0.6x0.6x5mm resolution, Cartesian 

SPI was encoded using 15 phase encoding steps in one axis (NSPI=15), where a 3D spherical 

region in central k-space is covered as shown in Figure 9.2(c). 9180 radial spokes were used for 

frequency encoding to cover k-space with an ellipsoidal shape with reduced coverage in the 

logical z-axis (physical L-R direction) with α=0.5 as shown in Figure 9.2(c). 

9.2.3 k-Space trajectory measurement 

The originally proposed dynamic SPI-based gradient measurement technique is prone to 

be biased by the effects of B0 inhomogeneity when the readout duration is long (~30ms in this 

study), which causes images wrong FOV in the later echoes. Therefore, the original SPI-based 

calibration method needs to be further modified. In the original method, 1D dynamic SPI is 

acquired for each physical gradient axis with optional pre-dephasing gradient to enhance the 

accuracy of trajectory estimation close to the center of k-space as shown in Figure 9.3(a). One 
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reference image (indicated by the red dotted line in Figure 9.3(a)) is selected and FOV scaling 

factors are estimated between the reference image and targeted SPI images (S1, S2, S3, … 

indicated by blue dotted lines in Figure 9.3(a)). In the improved k-space trajectory measurement 

method, another SPI data is acquired with SPI gradients turned off except a pre-dephasing 

gradient, and FOV scaling factors are estimated between reference SPI images and the 

corresponding targeted SPI images as shown in Figure 9.3(b). The estimated FOV scaling factors 

(FOV1, FOV2, … in Figure 9.2) are converted to k-space trajectory. Note that the measurement 

of k-space trajectory needs to be performed only once for a imaging protocol on a given MRI 

scanner, and does not need to be repeated for in vivo imaging experiments106.   

 

Figure 9. 3. Dynamic SPI based k-space trajectory measurement. (a) Original method, and (b) Improved method. 
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9.2.4 Experimental Setup 

Multi-echo RHE was performed on the left knee of one healthy volunteer using a 3T 

scanner (MR750, GE Healthcare, Waukesha, WI) and 8-channel T/R extremity coil under 

approval from our institutions IRB. Imaging parameters are as follows: Gmax=50mT/m, 

slewrate=200mT/m/ms, readout duration=600µs, spatial resolution=0.6x0.6x3mm3, 

FOV=18x18x3cm3 or 15x15x15cm3, TR=33ms, TE=[0.08 2.0 3.9 5.8 7.7 9.6 11.5 13.4 15.3 17.1 

19.0 20.9 22.8 24.7 26.6 28.5 30.4ms], and 7min35sec minute scan time. Note that two imaging 

experiments using RHE were performed on the same subject with different FOVs: 3cm at patella 

tendon and 15cm for fully covered imaging. Trajectory measurement was performed for 3 

physical gradient axis using a body coil with the following imaging parameters: NSPI=1201, 

 

Figure 9. 4. Measured k-space trajectory. (a) Trajectory of UTE and 16-echoes, and (b) zoomed-in view close to 

center of k-space. Note that the later echoes deviate from center of k-space, which can be covered by SPI in the 

proposed hybrid encoding. 
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TR=40ms, and total scan time=4min48sec including reference scan. 

For comparison, a 3D-Cones UTE acquisition with total 16 echoes including UTE was 

performed on the knee of the same subject167, where 4 separated scans were performed with 

acquisition of 4 echoes in each scan. Images with spatial resolution=0.67x0.67x3mm3 and 10 

slices through the patellar tendon were acquired with total 13min scan time (cumulative time for 

the four separate scans).  

9.2.5 Image reconstruction and data analysis 

Images were reconstructed using convolution gridding with oversampling rate=1.5 and 

kernel width=3 pixel, using the k-space trajectory measured by dynamic SPI-based gradient 

measurement as explained above. Iterative convolution-based density compensation was 

performed and applied to gridding. For data fitting, mono-component and bi-component 

exponential signal models implementing a non-linear least square fitting method under the 

assumption of a Rician-distributed noise160 were used to characterize the water components in 

musculoskeletal tissues.  

9.3 Results 

9.3.1 Trajectory Measurement 

Figure 9.4(a) shows the measured k-space trajectory of total 17 echoes in 3 gradient axis. 

Note that this plot shows relative k-space trajectories where 1.0 corresponds to kmax, k-space 

position for desired in-plane resolution, which was 0.6mm resolution in the experiments. As 

shown in the zoomed-in views of Figure 9.4(b), k-space trajectories deviate from the center of k-

space over TE, especially in the x and y-axis, where 2x stronger gradient (Gmax and slewrate) are 

applied to achieve high resolution in plane, which implies an accumulation of errors in k-space 
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trajectory over subsequent echoes. Therefore, if images are reconstructed with only frequency 

encoded data, some data in the central region of k-space can be missed, resulting in imaging 

artifacts and errors in data fitting. In the reconstruction strategy of the proposed method where 

later echo images are also hybrid encoded, SPI encoding covers this missing data in the central 

region of k-space in later echoes. In our experiments, approximately 5% of central k-space 

region was covered by SPI, which is larger than the deviation of k-space trajectory in frequency 

encoding at the last echoes as shown in Figure 9.4(b). 

9.3.2 In Vivo Experiment 

Figure 9.5(a) shows sagittal images through the knee at 17 echoes acquired using RHE 

 

Figure 9. 5. Reconstructed images. (a) RHE images acquired at 17 TEs, and (b) RHE image vs. 3D-Cones. Note 

that RHE shows better resolution, less artifact, and sharper tissue boundaries owing to the shorter readout 

duration in RHE (600µs) compared to 3D-Cones (1.2ms). 



	136	

with small FOV in z-axis (3cm). There was a monotonic decay of the signal for all tissues with 

much stronger decay occurring prior to 2ms for patellar tendon. Figure 9.5(b) compares the UTE 

echo image acquired by RHE and 3D-Cones, where RHE shows better resolution, less artifact, 

and sharper tissue boundaries as indicated by yellow arrows owing to the shorter readout 

duration in RHE (600µs) compared to 3D-Cones (1.2ms).  

Figure 9.6 and 9.7 shows quantitative results obtained from RHE with large FOV in z-

axis (15cm) that fully-covers knee. As shown in Figure 9.6, RHE provides similar parameter 

estimations of the patellar tendon with good fitting quality similar to 3D-Cones in short T2* 

fraction (fs), short T2* (T2*S), and long T2*(T2*L). Figure 9.7 shows bi-component T2* maps of 

ligament, meniscus, and tendon of the knee acquired using RHE which provide similar parameter 

estimations as previously published techniques163,164.   

 

Figure 9. 6. Bi-component T2* map in patellar tendon. RHE provides similar parameter estimations of the 

patellar tendon with fitting quality similar to 3D-Cones. 
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9.4 Discussion and Conclusion 

This study has demonstrated the feasibility of a single acquisition multi-echo RHE imaging 

method to provide bi-component UTE T2* analysis of ligament, meniscus, and tendon within the 

human knee joint at 3T. The current 7min 35sec scan time of RHE could be further reduced by 

optimizing fat saturation, which takes 23% of the total imaging time. In contrast to other 

acquisition techniques, the later echoes in multi-echo RHE are more robust to B0 inhomogeneity, 

magnetic susceptibility artifact, and eddy current induced trajectory distortions due to the 

 

Figure 9. 7. ACL/PCL/Meniscus/Tendon. The estimated T2*s were similar as previously published techniques. 
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benefits of SPI. Moreover, we have shown that the	 center of k-space that	 can	 be missed in 

conventional pure frequency encoding based methods in a long radial gradient echo train that is 

always sampled by SPI in the proposed hybrid encoding scheme. 

With a single scan strategy, all echoes needed to perform bi-component signal fitting are 

acquired at a similar time making the method less sensitive to model fitting errors due to patient 

motion artifact. Furthermore, total scan time was less than 60% of the 3D Cones sequences 

without the use of parallel imaging or optimization of fat saturation pulses. The multi-echo RHE 

sequence can provide rapid bi-component T2* analysis of ligament, meniscus, and tendon. 

Further technical development is necessary to allow the acquisition of later echoes using the 

RHE method to perform bi-component T2* analysis of cartilage.   
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Chapter 10. Summary and Future Works 

10.1 Summary 

In this dissertation, novel uses of SPI were explored. In Chapter 4, k-space extrapolation 

method using dynamic SPI was described, which enables accurate T2* estimation and oxygen 

mapping in EPRI with a single data acquisition that allows at least 3X acceleration. In Chapter 5, 

an accelerated dynamic SPI based EPR-oximetry utilizing PCA-based compressed sensing was 

presented, where a new random sampling pattern and bilateral k-space extrapolation were also 

proposed. In Chapter 6, a novel method for gradient measurement based on 1D dynamic SPI 

were described, which were applied in studies presented in Chapter 7, 8, and 9, showing its 

efficacy in non-Cartesian imaging. In Chapter 7, an improved hybrid encoding scheme, ramped 

hybrid encoding (RHE), was proposed, which alleviates slice-selectivity artifact and minimizes 

per-excitation encoding time to reduce short T2* blurriness effect. In Chapter 8 and 9, two 

applications of RHE were described. In Chapter 8, a new MRAC method based on dual echo 

RHE was proposed, where a UTE image and an out-of-phase image are acquired in a single scan 

to enable 4-species segmentation (water, fat, bone, and air). In Chapter 9, an application of multi-

echo RHE on human knee imaging was presented, where an improved SPI-based gradient 

measurement technique adapted to a long gradient echo train was also proposed.  

Throughout the chapters enumerated above, the efficacy of SPI was explored in EPRI and 

MRI. In the current EPR system where a constant encoding gradient is used due to extremely 

short T2* decay of spin probe (<600µs) and slow gradient system, SPI is one of few choices 

available for encoding. Due to long RF coil deadtime, SPI is only one method that can directly 

measure FID without refocusing RF pulse, which is also beneficial in terms of SNR. Moreover, 
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SPI-based method is more robust to T2* blurriness effect over radial frequency encoding-based 

method168 where signal rapidly decays in long readout causing loss of high spatial frequency in 

image (or k-space). With development of k-space extrapolation, we showed a feasibility of 

dynamic SPI encoding in EPR-oxymetry, which is highly time efficient, where a myriad of 

images is acquired in a single scan. In the studies in MRI, it was shown that SPI played 

important role in qualitative and quantitative imaging in hybrid encoding.  

10.2 Future works 

In this dissertation, dynamic SPI was explored in EPRI, and SPI for hybrid encoding was 

mostly explored in MRI, which implies there still exist undiscovered topics for SPI in EPRI and 

MRI: dynamic SPI in MRI and hybrid encoding in EPRI.  

In Chapter 8, a feasibility of dynamic SPI in hybrid encoding was briefly shown, where 

oversampled SPI encoding was utilized to secure multiple UTE images for more accurate air 

segmentation. In future works, the dynamic SPI in hybrid encoding for improved quantitative 

imaging will be explored in MRI. k-Space extrapolation for quantitative imaging will be also 

explored in MRI.  

I have recently performed a feasibility study on hybrid encoding in EPRI, which showed 

that hybrid encoding is also effective in EPRI to enhance spatial-temporal resolution. The key 

idea was same as oversampling SPI. In vivo experiment will be performed with this topic after 

optimizing imaging parameters and reconstruction methods.  

 Dynamic SPI-based gradient measurement technique will be further explored. First, the 

very technique will be also tested in EPR imaging to enable use of non-constant gradients (e.g., 

sine wave). Second, measurement of higher order gradient terms will be explored using 2D or 
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3D SPI to resolve spatial variation of gradient deviated from a linear gradient model. Third, an 

advanced method for GIRF measurement will be explored, using a frequency-sweeping gradient 

(chirp pulse) instead of gradient blips used in the previous study, which will allow higher 

spectral resolution in the estimated GIRF. 
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