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Abstract

Nonseparable models are not additively separable in unobserved heterogeneity and there-

fore allow responses to policy interventions to vary across individuals with identical observed

characteristics. This dissertation is a collection of three essays, each contributing to a dif-

ferent aspect of nonseparable econometrics models with endogeneity and sample selection.

Binary response is a very important special case of nonseparable models, as it has many

applications. In the first chapter, we consider a triangular simultaneous equations model

with a binary outcome that is identified under a weak quantile restriction which allows for

general forms of heteroskedasticity. The proposed two-step estimation procedure combines

Horowitz’s (1992) smoothed maximum score estimator in semiparametric binary response

models with a control function approach to the endogeneity problem. Rates of convergence

and the asymptotic distribution are derived. In a simulation study, we present the finite-

sample performance of the estimator and illustrate advantages of the proposed approach by

comparing with other alternatives.

The second chapter provides an application of the methodology developed in Chapter

1 to an empirical context of female labor market participation with endogenous non-labor

income. Using the data set extracted from the 2011 March Supplement to the US Current

Population Survey, we find that, qualitatively similar to the probit estimates, accounting

for endogeneity leads to a substantial increase in the magnitude of the non-labor income

coefficient, being 62% ∼ 77% larger than that in the smoothed maximum score estimation.

The coefficient estimates for different quantiles are considerably different, implying that



x

strong full conditional independence may fail or heteroskedasticity may be present in the

data set considered.

In the third chapter, we discuss what features of sample selection models without im-

posing additivity can be identified under various restrictions. We focus on a nonparametric

nonseparable sample selection model with possibly endogenous regressors. Using a control

function approach, we provide identification results and develop a three-step nonparametric

estimator for the average structural function given selection. Convergence rates are derived.

A simulation study compares the numerical performance of the proposed estimator with

Das, Newey, and Vella (2003) estimator and Heckman’s two-step estimator under correct

specifications and misspecifications.
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Chapter 1

Triangular Models of Binary Response under Quantile

Restrictions

1.1 Introduction

The triangular simultaneous equations model has long been an important special class

of structural models, with a recent interest in generalizing identification in linear triangular

models to nonparametric setups under weak assumptions. This chapter considers identifi-

cation and estimation of a triangular simultaneous equations model with a binary outcome

under a weak nonparametric quantile restriction, allowing for both endogeneity and het-

eroskedasticity of general forms while being less susceptible to misspecification. The binary

response model considered here generalizes the types of quantile restrictions pioneered by

Manski (1975, 1985) and Horowitz (1992) to allow for the presence of (continuous) endoge-

nous regressors.1,2 Using a triangular model that motivates the use of a control function

to correct for endogeneity, the proposed estimation method can be viewed as a partially

linear version of the maximum score type of estimators with a nonparametrically generated

regressor.

1The possibility of using median restrictions in endogenous binary response models was first introduced
to the literature by Blundell and Powell (2004) and later employed by Hoderlein (2009) and Krief (2011).
More discussions on this point follow shortly.

2Another important but fundamentally different setting is nonlinear models with endogenous regressors
that are discretely distributed. Several recent papers have considered identification and estimation of such
models, including, for example, Abrevaya, Hausman, and Khan (2010), Shaikh and Vytlacil (2011), and
Vytlacil and Yildiz (2007).
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There are numerous possible applications in economics that fit into the framework of

heteroskedastic binary response models with endogenous regressors. One example that mo-

tivates this research and provides an application of this chapter concerns estimating the

income effect on labor market participation, where non-labor income is likely to be en-

dogenous (Blundell and Powell (2004)). In addition, accommodating (possibly arbitrary)

heteroskedasticity in the choice model may be important in some applications because it

allows for, for example, the random coefficients model, which is an important tool to model

unobserved heterogeneity. Moreover, heteroskedasticity in the first-stage equation for en-

dogenous income may also arise since the conditional variance of the income variable may

vary with spouse’s education, which serves as an instrumental variable. Another example of

the framework is the impact of endogenous health assessments on the labor supply of older

men, as studied by Maurer, Klein, and Vella (2011). A third example is consumer choice

models with endogenous prices, in which the source of endogeneity comes from the fact that

prices are typically correlated with the unobserved product characteristics.

The problems of endogeneity, heteroskedasticity, and nonnormality/asymmetry frequently

arise in analysing microeconometric data. It appears essential to address these issues simul-

taneously. To do so we present a solution to the endogeneity problem in estimating under-

lying regression coefficients in semiparametric binary response models under weak nonpara-

metric quantile restrictions. Our two-step semiparametric estimation procedure generalizes

Horowitz’s (1992) smoothed maximum score estimator to incorporate endogenous regres-

sors. The first step consists of nonparametric estimation of the control variable, which is

constructed as the conditional cumulative distribution function (CDF) of the endogenous

variable given the instruments, as suggested by Imbens and Newey (2009) for a nonsepara-

ble first-stage model. In the second step, a series method is used to simultaneously estimate

the finite-dimensional parameters and the nonparametric conditional quantile function using

a generated control variable (as the argument) that has been estimated nonparametrically

in the first stage.
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One important feature of our new method is imposition of a weak quantile restriction.

Using a median restriction as a special case, as first pointed out by Blundell and Powell

(2004), one can identify and estimate the regression index coefficients of primary interest

in an endogenous binary response model. This median restriction has recently been em-

ployed by Hoderlein (2009) and Krief (2011). However, this chapter is different from the

aforementioned existing approaches in the following substantial ways. First, the method

proposed here exploits general quantile restrictions, and as a result, this article’s estimator

could be used to develop a test procedure for the conditional independence assumption by

comparing quantile coefficients on different parts of the conditional distribution. Second,

instead of specifying the separable nonparametric (Hoderlein (2009)) or linear (Krief (2011))

first-stage equation, the first-stage model considered here is nonparametric and nonsepara-

ble in the unobservable, which motivates the use of the conditional CDF of the endogenous

regressor given instruments as a control variable. Third, to the best of our knowledge, the

proposed procedure is the first series estimator in the context of binary response models

with endogeneity. The series method is particularly useful in our setting due to its con-

venience in imposing additive separability that arises naturally here through the control

function approach.3 Series also allow a straightforward extension to nonparametric models,

as will be discussed in Section 1.6. Finally, unlike Blundell and Powell (2004) and Krief

(2011) who propose kernel-weighted methods to eliminate the control function, we employ

series methods to estimate the control function that may be useful for constructing tests

for model specification such as endogeneity. On the other hand, our estimation procedure

is also related to those using a series approximation to the infinite-dimensional parameter

with generated regressors (Newey, Powell, and Vella (1999), Lee (2007), Newey (2009), and

Imbens and Newey (2009)4).

3For the estimation of additive models, series methods have some advantages compared to the alternative
kernel estimation methods, see Li (2000) for more discussions on this comparison.

4The framework of Imbens and Newey (2009) and Newey, Powell, and Vella (1999) is nonparametric
mean regression models with nonparametrically generated regressors. Newey (2009) and Lee (2007) consider
semiparametric mean and quantile regression models, respectively, with parametrically generated regressors.
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As will be discussed further in Section 1.4, under quantile restrictions, the model consid-

ered has a semiparametric partially linear structure with the nonparametrically generated

regressor in the binary response framework. From a technical perspective, the main com-

plication for deriving statistical properties of our two-step estimator originates from the

fact that the proposed estimation method involves two types of infinite-dimensional param-

eters: an unknown conditional quantile function that has to be nonparametrically estimated

using a nonparametrically generated regressor. Estimation with generated regressors has

received considerable attention recently in the econometrics literature (e.g., Blundell and

Powell (2004); Blundell and Horowitz (2007), Hahn and Ridder (2010), Lee (2007), Li and

Wooldridge (2002), Mammen, Rothe, and Schienle (2011, 2012), Newey, Powell, and Vella

(1999), Rothe (2009), Song (2008), Sperlich (2009), Su and Ullah (2008), among others).

The central issue of the generated regressor problem is to account for the contribution of the

preliminary estimation uncertainty on the asymptotic behavior of the final estimator. To

do this, we establish a stochastic expansion accounting for the nonparametric estimation er-

ror stemming from estimating the unknown conditional quantile function and the generated

regressor. This result facilitates characterizing the roles played by the nonparametrically

generated regressor. To be precise, using the stochastic expansion derived in the chapter

and smoothing out the (discontinuous) objective function, we expand the first-order con-

dition solved by the estimate of the parameter of interest and investigate the asymptotic

behavior of each term in the expansion.

The literature on estimation of models with endogeneity consists of two main approaches:

instrumental variables (IV) and control function (CF) methods.5 For a general overview, see

Blundell and Powell (2003) and Matzkin (2007). The hard problem with the nonparametric

IV approach is what is known as the ill-posed inverse problem, which leads to difficulty in esti-

mation and inference.6 Furthermore, for the discrete response model, which can be viewed as

5In linear models, the IV method is the most common approach to deal with endogeneity. In fact, there
are equivalences between the approaches between IV, CF, and two-stage least square in linear models.

6Several regularization procedures such as Tikhonov regularization and series truncation have been pro-
posed to overcome this difficulty. See Horowitz (2011) for an excellent illustration of the ill-posed inverse
problem and a summary of recent literature.
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a class of nonseparable models without strict monotonicity, the IV approach (assuming that

the instruments are independent of the structural error) is in general not sufficient to achieve

point identification without imposing further assumptions, as set out in Chesher (2010). In

a series of recent papers, Chesher and his coauthors (Chesher (2009, 2011); Chesher, Rosen,

and Smolinski (2011)) have provided partial identification results using a single-equation IV

approach in the binary response setting. Hong and Tamer (2003) and Shaikh and Vytlacil

(2008) consider identification and estimation under IV median restrictions that the latent

disturbance is median independent of the instruments. Alternatively, one can address endo-

geneity concerns in the context of binary response models by the use of the CF approach.7

Within this literature, in addition to Hoderlein (2009) and Krief (2011) discussed above,

Blundell and Powell (2004) propose a leading estimator by using a pairwise-differencing (or

matching) estimation procedure. More recently, Rothe (2009) develops a semiparametric

maximum likelihood estimator, which is an extension of Klein and Spady (1993) to allow

for endogeneity. These two kernel-based estimators are
√
n-consistent and asymptotically

normal, but impose the strong restriction that the structural error is fully independent of

the endogenous regressors conditional on the control variable. None of these are robust to

the presence of general forms of heteroskedasticity in the binary outcome equation. In the

context of nonseparable triangular models with a continuous outcome, Chesher (2003) uses

a local version of the quantile control function restriction. Another strand of literature con-

cerning both endogeneity and heteroskedasticity in the binary response models is the special

regressor method proposed by Lewbel (2000). See Lewbel (2012) for a recent overview of the

method and its applications and Lewbel, Dong, and Yang (2012) for a comparison to other

types of estimators such as CF, maximum likelihood, and linear probability models.

7There have been many papers using the CF approach to deal with endogeneity in a variety of economet-
ric models, including nonparametric separable and nonseparable triangular simultaneous equations models
(Newey, Powell, and Vella (1999); Imbens and Newey (2009)), nonparametric sample selection models (Das,
Newey, and Vella (2003)), semiparametric censored/uncensored quantile regression models (Blundell and
Powell (2007); Lee (2007); Chernozhukov, Fernandez-Val, and Kowalski (2011)), among others. Kim and
Petrin (2010) propose a hybrid of CF and IV in the nonparametric additive model.
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The remainder of the chapter is organized as follows. Section 1.2 specifies a semipara-

metric triangular model of binary response and discusses the essential stochastic restrictions

employed in this chapter as the identifying assumption. Section 1.3 considers identification

of the model. Section 1.4 describes the proposed two-stage series control function estimator.

Asymptotic properties of the proposed estimator are derived in Section 3.7, including consis-

tency, rates of convergence, asymptotic normality, and more interestingly, how the first-stage

estimation error of the generated regressor affects the asymptotic distribution of the final

estimators. An extension to a fully nonparametric binary response model with endogeneity

is discussed in Section 1.6. Section 3.8 reports the results of a simulation study. Section 3.9

presents concluding comments with suggestions for future research. The appendix contains

the proofs of theorems and intermediate lemmas.

1.2 The Model

We begin with the structural relationship between a binary response variable Y and a

vector of (possibly endogenous) explanatory variables X of the form

Y ∗ =m0(X,U) =X ′γ0 +U, (1.1)

Y = 1{Y ∗ > 0}, (1.2)

where 1{⋅} denotes the usual indicator function that equals one if its argument is true and

zero otherwise, Y is a scalar binary variable indicating the sign of the latent variable Y ∗.

The latent variable Y ∗ is determined by an unknown nonseparable structural function m0 of

a vector of observable covariates X ∈ Rdx and an unobserved disturbance U . The structural

function m0 is assumed to be strictly increasing in its second argument U .

In this chapter, we consider a semiparametric single-index specification that is an impor-

tant special case of the general latent outcome equation: Y ∗ = m0(X,U) = X ′γ0 + U , where

γ0 is a dx × 1 dimensional vector of unknown parameters.8

8In Section 1.6, we further discuss a nonparametric separable specification: m0(X,U) = g0(X) + U as
a possible extension of our estimation procedure. Moreover, there are two other special cases that have
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Let X = (X1, Z ′
1)′, where X1 is a continuously distributed, scalar endogenous explanatory

variable9 in the sense that X1 is possibly correlated with U . The endogenous regressor X1

is assumed to be determined by the following first-stage model

X1 = h0(Z, η), η á Z, (1.3)

where h0 is a real-valued unknown function and is assumed to be strictly monotonic in a

scalar disturbance η and Z = (Z ′
1, Z

′
2)′ ∈ Rdz are exogenous instruments.

To complete the model, we need to impose a crucial stochastic restriction that is the

key to identification of the model. Throughout the chapter, we denote Qτ(⋅) as the τth

quantile of the conditional distribution in question, e.g., Qτ(Y ∣X = x) = F −1
Y ∣X=x(τ) ≡ inf{y ∶

FY ∣X=x(y) ≥ τ} is the τth quantile of a conditional CDF FY ∣X(⋅). Following the idea employed

by Imbens and Newey (2009) to construct the control variable in nonseparable triangular

simultaneous equations models with a nonseparable first-stage equation (1.3), it is easy to

show that, under the strict monotonicity of h0 in η,

V ≡ FX1∣Z(X1 ∣ Z) = Fη(η).

Since V is a one-to-one function of η, conditioning on η is equivalent to conditioning on V .

Then the stochastic restriction considered here is that the conditional distribution function

of U given X and Z, FU ∣X,Z , must satisfy the following quantile exclusion restrictions (QER):

Qτ(U ∣X,Z) = Qτ(U ∣X,V ) = Qτ(U ∣ V ) ≡ λτ(V ) a.s. for some known τ ∈ (0,1),
(1.4)

where λτ(⋅) is a real-valued unknown function referring to the τth conditional quantile func-

tion of U given V . The first equality in (1.4) follows from the usual control function approach

attracted much attention among econometricians and statisticians but we do not pursue in this chapter.
The first one is nonparametric fully additive models of the form: m0(X,U) =m1(X1) + ⋯ +mdx(Xdx) +U ,
where mj ’s are unknown functions. The second is the additive partially linear model: m0(X,U) = X ′

lγ0 +
∑dxj=l+1mj0(Xj), where X = (X ′

l ,Xl+1, . . . ,Xdx)′. The latter is particularly useful when X contains discrete-

valued covariates. See, for example, Li (2000) for a further discussion.
9The estimator developed below can be extended to a multivariate endogenous variable case by specifying

a reduce-form equation for each endogenous variable.
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that conditional on Z, the endogenous variable X1 varies only with V , which also implies

Qτ(U ∣ Z,V ) = Qτ(U ∣ X,V ).10 As a result, equation (1.4) explicitly says that conditional

on V , X and U are independent at τth quantile and hence justifies V as a control variable.

The function λτ(⋅) is left unspecified to reflect the fact that it is difficult to have a correct

specification of the functional form of the stochastic relationship between the unobserved

components U and V conditional on Z. If τ = .5, equation (1.4) reduces to median exclusion

restrictions. As will be discussed in the next section, the restrictions (1.4) imply a set of

moment conditions that provide a basis for inference on β0.

The triangular system (1.1)-(1.3)11 can be viewed as a binary outcome variant of general

triangular models without additivity studied by Imbens and Newey (2009). In comparison

with the existing triangular semiparametric binary response models considered by Blundell

and Powell (2004), Rothe (2009), Hoderlein (2009), and Krief (2011), equation (1.3) is a

general nonparametric nonseparable model that allows the instruments Z to exert the in-

fluence on X1 in flexible ways. For example, it allows for potential missspecification like

non-linearity and heteroskedasticity that are commonly encountered in practice, as further

discussed below.

CF and IV Stochastic Restrictions. We compare the QER (1.4) with other alternative

stochastic restrictions that have been adopted to address endogeneity problems in the liter-

ature. First of all, the leading form of stochastic restrictions imposed in endogenous binary

response models is the distributional exclusion restriction (DER), requiring that U be (fully)

independent of X (or Z) conditional on η (Blundell and Powell (2004) and Rothe (2009)).

Namely,

U ∣X,Z d∼ U ∣X,η d∼ U ∣ Z, η d∼ U ∣ η, (1.5)

where the symbol
d∼ denotes equality of conditional distributions. The first two equalities

follow if there exists a strictly monotonic function C such that η = C(X,Z), implying there

10Equivalently, since V is one-dimensional, strictly increasing in both X1 and Z, there is a one-to-one
mapping between (X,Z), (Z,V ), and (X,V ).

11Equations (1.2) and (1.3) form a triangular structure in the sense that Y is absent in the structural
equation in X1.
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is a one-to-one mapping between (X, Z), (X, η), and (Z, η). The last equality is a key

conditional independence assumption. Restriction (1.5) is weaker than joint independence

(JI) of all unobservable errors and the instruments

(U, η) á Z, 12 (1.6)

because (1.5) allows for dependence of η on Z. On the other hand, compared to the IV (or

the instrument independence) assumption:

U á Z, (1.7)

it is clear that the DER (1.5) is not more or less general than IV (1.7).13 However, imposing

(1.7) only is generally not sufficient to identify the endogenous binary response model, as

pointed out in Section 3.1. In addition, it should be emphasized that the DER (1.5) seems

somewhat restrictive since it implies a key requirement underlying the CF approach: the

source of endogeneity resulting from the correlation between X1 and U is only through their

joint dependence on the first-stage error η. This restriction rules out, for example, direct

dependence between X and U , and motivates us to consider the weaker assumption QER in

the present chapter.

Compared to JI and DER, QER places weaker restrictions on the relation between (X,Z)
and the distribution of U . The DER is equivalent to QER for all quantiles and not just

one. As a result, it is clear that QER allows for not only endogeneity but also general

forms of unknown heteroskedasticity. This generality may be important in some econo-

metric applications. For example, QER permits a form of heteroskedasticity resulting from

random coefficients, where the random coefficients characterize an individual’s unobserved

heterogeneity in preference or tastes regarding the attributes of the corresponding variables.

12This joint independence assumption is used in Florens, Heckman, Meghir, and Vytlacil (2008) and
Imbens and Newey (2009) who deal with nonseparable triangular simultaneous equations models using the
CF approach.

13This is the main reason why the assumptions underlying the CF are fundamentally different from those
underlying IV, unless one is willing to impose the stronger joint independence between the instruments and
unobservables, i.e. (1.6). Note that the rather strong JI encompasses the DER and IV as special cases. In
that case, one may prefer using the IV approach because the CF method requires specifying the first-stage
equation for the endogenous regressor that may suffer from misspecification.
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Accounting for unobserved preference and taste variation is important in many empirical ap-

plications, particularly in labor supply and consumer demand analysis. See Pacifico (2012)

and Horowitz (2009, Chapter 4) for related discussions. Nevertheless, it is worth mentioning

that there is one important advantage of imposing the stronger DER: identifying coefficients

γ0 enables one to recover the probabilities and marginal effects of interest since DER implies

a semiparametric single-index restriction of the form

E(Y ∣X,η) = E(1{U ≤X ′γ0} ∣X,η) = E(1{U ≤X ′γ0} ∣ η) = G0(X ′γ0, η),

where G0 is the conditional distribution function of U given η.14 On the other hand, based

on the same QER as (1.4), Blundell and Powell (2007) and Lee (2007) consider estimation

of censored and uncensored the quantile regression models with endogeneity, respectively.

Example 1.1. (Heterogeneous return to schooling in labor force participation

with endogenous schooling) For an economic example of our model, consider a random

coefficients triangular binary response model: Y = 1{Sγ(ε1)+ε2 ≥ 0} and S = Z ′π+η, where Y

is the indicator of employment status: Y = 1 if employed and Y = 0 otherwise, S is schooling,

ε2 is an unobserved random variable, Z is a set of instruments, and η is scalar individual

ability. The random coefficient γ(ε1) is of the form: γ(ε1) = γ̄ + ε1 with the mean or median

γ̄ of the distribution of γ and an unobserved random variable ε1. Then the model can be

further written as Y = 1{S(γ̄ + ε1) + ε2 ≥ 0} = 1{Sγ̄ + (Z ′π + η)ε1 + ε2 ≥ 0} ≡ 1{Sγ̄ + U ≥ 0},

where U ≡ (Z ′π + η)ε1 + ε2. In general, S is endogenous since S is correlated with U

through η. Also, U is not independent of Z even when conditional on individual ability

η and hence heteroskedastic. It also implies that assumptions JI, IV, and DER do not

hold in this random coefficients context. In contrast, estimating γ̄ under QER allows for

the presence of this type of heteroskedasticity and endogeneity. Moreover, QER leads to

modelling unobserved heterogeneity η nonparametrically, in the sense that it does not require

one to assume parametric distributions for η and ε2. Modelling unobserved heterogeneity in

14This restriction is the one on which the estimators of Blundell and Powell (2004) and Rothe (2009) base.
Blundell and Powell (2004) also require that the function G0 be monotonic in the first argument X ′γ0.
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a flexible way may be important in some empirical applications, see, for example, Pacifico

(2012) and Haan (2006) for more discussions on this point for discrete choice models of labor

supply.

We use the following example adapted from Hoderlein (2009) to illustrate how the QER

can be motivated.

Example 1.2. (Motivating QER) Consider a model of heterogeneous return to schooling

in labor force participation with endogenous schooling: Y = 1{S ⋅ β1(P ) + A ⋅ β2(P ) ≥ 0}
and S = Z ′π + A, where Y is employment; S is schooling; A is ability; P is preferences

for work; Z are instruments; β1 and β2 are random coefficients. This model implies Y =
1{Sβ̄1 + (Z ′π + A)(β1(P ) − β̄1) + Aβ2(P ) ≥ 0} where β̄1 is the mean of β1(P ). Suppose

a strong but economically plausible assumption that we have instruments Z that satisfy

Z á (A, P ), implying E(Aβ2(P ) ∣ S,A) ≡ λ(A). If we further assume that preference for work

P is independent of all economic variables in the model, i.e., P á (S, Z, A), then we have

E(β1(P ) ∣ S,A) = β̄1. Combining these two assumptions yields E[S ⋅ (β1(P ) − β̄1) +Aβ2(P )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡U

∣

S,A] = λ(A). Furthermore, if the conditional distribution Fβ1(P ),Aβ2(P )∣S,A is assumed to

be symmetric about (β̄1, λ(A)), we end up with median exclusion restrictions: Qτ=0.5(U ∣
S,A) = λ(A).

We end the discussion on stochastic restrictions by noting that, in contrast to the IV

independence assumption, in practice it may be difficult to motivate the CF assumption

from economic theory. In this view, QER considered in the chapter may be seen as a way to

strike a balance between the lack of point identification from imposing the IV assumption

(1.7) and the restrictive assumption DER in the CF approach. We note here that, similar

to exogenous binary response models, it is natural to expect that the model implies no

relationship between Y and X if, instead of (1.4), we impose the mean exclusion restrictions:

E(U ∣X,Z) = E(U ∣X,η) = E(U ∣ η).15 (1.8)

15This type of restrictions is employed by, for example, Newey, Powell, and Vella (1999) in a nonparametric
triangular simultaneous equations models. As pointed out by the authors, (1.8) allows for both endogeneity
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Nonseparable first-stage Models. We note that there is another major difference between

the CF and IV approaches: the CF method requires a first-stage equation for the endogenous

variable added to the system of models, whereas IV is a single-equation approach. In this

respect, it seems reasonable to specify a flexible first-stage equation to avoid misspecification

error. Equation (1.3) is of a general form that encompasses several commonly used specifi-

cations as special cases.16,17 One important class of the first-stage specification assumes h to

be additively separable with a conditional mean restriction

X1 = E(X1 ∣ Z) + η, (1.9)

where E(X1 ∣ Z) can be either specified to be linear (e.g., Krief (2011)) or left unspecified

(Newey, Powell, and Vella (1999), Blundell and Powell (2004), Rothe (2009), and Hoderlein

(2009)). Lee (2007) considers a semiparametric quantile regression version of Newey, Powell,

and Vella (1999) with a parametric quantile first-stage equation X1 = Z ′π(τ) + ητ where the

τ conditional quantile of ητ given Z is assumed to be zero.

The presence of heteroskedasticity in the first-stage model can be a concern in practice.

For example, as mentioned in the Introduction, in the empirical data used by Blundell and

Powell (2004), the conditional variance of the logarithm of other income variables may vary

with the education level of the spouse. In particular, additivity in the first-stage model (1.9)

and heteroskedasticity, and the latter often results from individual heterogeneity in demand functions (Brown
and Walker (1989)).

16Strictly speaking, scalar heterogeneity and strict monotonicity imposed on equation (1.3) are restrictive
from an economic perspective. Kasy (2011) shows that one-dimensionality of the first-stage heterogeneity η
is both a necessary and sufficient condition for the existence of control functions that are valid to correct for
endogeneity in the triangular simultaneous equations models. This dimensionality requirement is violated
by, for example, the first-stage random coefficient model where both the intercept and slope coefficient are
random. Interestingly, in his more recent paper, Kasy (2012) further shows that in continuous triangular
models under monotonicity in the instrument while dropping restrictions on heterogeneity and functional
form, the CF approach is still valid even though conditional independence: U á X ∣ V fails to hold. Nonex-
istence of the control function or multi-dimensionality of the first-stage heterogeneity is beyond the scope of
the chapter.

17Hoderlein and Sasaki (2011) consider a nonseparable triangular model allowing for multiple unobservables
in the first stage. They show that the necessary and sufficient condition for identification is monotonicity
in an index of potentially vector-valued unobservables, underscoring the importance of monotonicity in
endogenous nonseparable models.
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would not hold, for example, in the model that exhibits conditional heteroskedasticity of a

multiplicative form, i.e.,

X1 = E(X1 ∣ Z) + σ(Z)η, (1.10)

where σ(Z) is a unknown function of the instruments and the source of endogeneity comes

from potential correlation between U and the homoskedasticity error η. Then in general

QER: Qτ(U ∣ X,η) = Qτ(U ∣ η) does not necessarily imply Qτ(U ∣ X,σ(Z)η) = Qτ(U ∣
σ(Z)η), meaning that recovering and conditioning on the first-stage heteroskedastic error

σ(Z)η may not be able to correct for endogeneity. In contrast, it is straightforward to

observe that, under model (1.10),

FX1∣Z(X1 ∣ Z) = Fη (
X1 −E(X1 ∣ Z)

σ(Z) ) , (1.11)

where Fη(⋅) denotes the CDF of η and is assumed to be strictly monotonic. This observation

shares the same spirit with the well known propensity score as a control variable in the

sample selection literature. Specifically, consider a heteroskedastic sample selection model

(Chen and Khan (2003)): Y =D×Y ∗ =D×(X ′β0+σ2(X)U) and D = 1{µ(Z)−σ1(Z)η ≥ 0},

where σ1(⋅) and σ2(⋅) are unknown scale functions. Then the propensity score defined by

PS(Z) = E(D ∣ Z) = Pr(D = 1 ∣ Z) = Fη (
µ(Z)
σ1(Z))

is robust to heteroskedasticity in the selection equation.

1.3 Identification

In this section, we present the conditions under which the finite-dimensional parameters

β0 in an endogenous binary response model (1.1)-(1.4) can be identified under assump-

tion QER. To begin, note that for any real, monotone increasing function m(⋅), we have

Qτ(m(Y ) ∣X) =m(Qτ(Y ∣X)). For the purposes of identification and estimation, we focus

in this chapter on the following conditional quantile of the observed dependent variable Y
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given the regressors X and instruments Z implied by the model:

Qτ(Y ∣X,Z) = Qτ(1{m0(X,U) > 0} ∣X,Z) = 1{Qτ(m0(X,U) ∣X,Z) > 0}

= 1{m0(X,Qτ(U ∣X,Z)) > 0} = 1{m0(X,Qτ(U ∣ V )) > 0}

= 1{m0(X,λτ(V )) > 0} ≡ 1{m∗
τ(X,V ) > 0}, (1.12)

where the second, third, and fourth equalities follow from the fact that the indicator is a

monotone increasing function, the assumption of monotonicity of m0 in U , and the QER

(1.4), respectively. Note that by definition m∗
τ(X,V ) is the τth quantile of the latent variable

Y ∗ conditional on X and Z (or equivalently on X and V ).

In the nonseparable latent variable formulation (1.1), we might want to know the effects

of certain covariates on the latent variable Y ∗. For example, Y ∗ can be interpreted as the

underlying utility difference in the consumer choice modelling analysis, in which one may

be interested in a consumer’s willingness to pay for a marginal improvement in an attribute

by calculating the ratio of the attribute’s coefficient to the price coefficient. In such cases,

one structural parameter of interest is the quantile structural function (QSF) defined by

Imbens and Newey (2009)18 as the τth quantile of m0(x,U). That is, Qτ(m0(x,U)) =
m0(x,Qτ(U)) ≡m0(x, qτ), where qτ is the τth quantile of the marginal distribution of U .19

Since equation (1.12) plays an essential role in subsequent identification results, we briefly

talk about identification of m∗
τ . The formal justification for identification of m∗

τ in equation

(1.12) implied by models (1.1)-(1.4) is based on Manski (1988) and Matzkin (1992).

Definition Let the function m∗
τ ∶M → R, M ⊂ Rdx+dz . Suppose the vector (X,Z) possesses

a probability density function inducing a probability measure G and denote the support of

18It is also called the quantile structural effect by Chernozhukov, Gagliardini, and Scaillet (2012). Imbens
and Newey (2009) discuss identification and estimation of the quantile structural function in a triangular
model without additivity via the control function. Chernozhukov, Imbens, and Newey (2007), Horowitz
and Lee (2007), and Chernozhukov, Gagliardini, and Scaillet (2012) consider estimation of the QSF in
nonseparable models by using the IV approach.

19With the QSF(x) evaluated at two different values x̄1 and x̄2 of X, we can interpret the difference
m0(x̄1, qτ) −m0(x̄2, qτ) as the quantile treatment effect. In the example of labor market participation for
instance, Y ∗ = m0(X,U) denotes the (latent) willingness of the individual to participate in the labor force.
m0(x̄1, qτ) −m0(x̄2, gτ) measures the structural effect of, say, a change in income from x̄1 to x̄2 on the τth
quantile of the willingness-to-participate Y ∗.
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G by SG and MS ≡ M ∩ SG. We say that m∗
τ is identified in a set M if m∗

τ ∈ M and for

any m̄τ ∈ M such that m∗
τ ≠ m̄τ

20 there exists a set A such that for all (x, z) ∈ A ⊂MS and

G(A) > 0

Pr(Y = 1 ∣ x, z;m∗
τ) ≠ Pr(Y = 1 ∣ x, z; m̄τ).

Note that (1.12) is equivalent to saying that

Pr(Y = 1 ∣X,Z)
> >
= 1 − τ ⇐⇒ m∗

τ(X,V ) = 0.

< <

We also note that m∗
τ is identified if there exists a unique function m∗

τ ∈ M such that the

relationship21

Qτ(Y ∣X,V ) = 1{m∗
τ(X,V ) > 0}

holds for (x, z) ∈ A with positive probability. The first assumption is about identification of

m∗
τ .

Assumption ID. Let m̄τ ≠m∗
τ be any other function that belongs inM and satisfies (1.12).

Then m∗
τ is observationally distinguishable from m̄τ if and only if

Pr((x, z) ∶ {m∗
τ(x, v) < 0 ≤ m̄τ(x, v)} ∪ {m̄τ(x, v) < 0 ≤m∗

τ(x, v)}) > 0. (1.13)

Let A1 be the set of (x, z) such that equation (1.13) holds. Let (m∗
τ , FU ∣X,Z) and

(m̄τ , F̄U ∣X,Z) denote the truth and the specified alternative, respectively. The reason for

the aforementioned identification argument is analogous to Proposition 2 of Manski (1988):

for each pair (x, z) ∈ A1, there exists no F̄U ∣X,Z satisfying both. We will give conditions on

the primitives of the models under which the identification condition (1.13) is fulfilled.

We now turn to identification of semiparametric models (1.1)-(1.4). It is well known

that the index coefficients γ′0 ≡ (γ10, β′0) can only be identified up to scale. As a result, we

20Two functions m∗
τ and m̄τ are said to be different if they attain different values on a subset of SG that

has positive probability.
21An equivalent representation to this relationship is the following nonlinear conditional quantile restric-

tion: E[1{Y ≤ 1{m∗
τ(X,V ) > 0}} − τ ∣X,Z] = 0.
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normalize the coefficient of the endogenous regressor X1, γ10, to be ∣γ10∣ = 1 and represent

the linear index by X ′β0 = X ′(γ10β0 ) for notation convenience. Under the linear structure in

which m∗
τ(X,V ) =X ′β0 + λτ(V ), we immediately have

Qτ(Y ∣X,Z) = Qτ(Y ∣X,V ) = 1{X ′β0 + λτ(V ) > 0}. (1.14)

In words, the conditional quantile of Y is a binary outcome version of a partially linear

regression function with a generated regressor V . If the latent variable Y ∗ underlying the

observed binary data were observed, the model becomes Qτ(Y ∗ ∣X,Z) =X ′β0+λτ(V ). Then

this model is equivalent to endogenous quantile regression models studies by Lee (2007) ex-

cept that the control variable V is parametrically estimated in the first stage there. We also

note that in the absence of the unknown function λτ(⋅), model (1.14) with τ = .5 is Manski

(1975, 1985) exogenous binary response model with median restrictions. The following con-

ditions are sufficient for identification of the index coefficients β0 and the unknown function

λτ .

Assumption SPID. Define ετ = Y ∗ −X ′γ0 − λτ(V ). Assume that

(a) The conditional density of ετ given X and Z is continuous and bounded away from zero

uniformly in a small neighborhood of 0 and uniformly over X and Z.

(b) The first component of γ0 satisfies ∣γ10∣ = 1 and denote γ′0 = (γ10, β′0).

(c) Conditional on the control variable V , X contains at least one continuously distributed

component Xc with nonzero coefficient. Denote remaining components of X by X−c. For

almost every x−c = (x1, . . . , xc−1, xc+1, . . . , xdx) and z the distribution of Xc conditional

on X−c = x−c and Z = z has an everywhere positive density with respect to the Lebesgue

measure.

(d) The support of the distribution of X−c is not contained in any proper linear subspace of

Rdx−1.

(e) The functions λτ(V ) and FX1∣Z(X1, Z) ≡ v0(X1, Z) are continuously differentiable with

continuous distributions almost everywhere.

(f) There is at least one component of Z that is not included in X, say Z21 ∈ Z2 and with

probability one ∂v0(X1, Z)/∂Z21 ≠ 0.
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(g) 0 < P (Y = 1 ∣X = x,Z = z) < 1 for almost every x and z.

Assumption SPID(a) guarantees uniqueness of the conditional τth quantile of ετ given

X and Z; (b) is a standard scale normalization restriction in the binary response model

literature; (c) requires that in addition to X1 there is at least one exogenous regressors, say

Xc, that is continuously distributed with unbounded support; (d) implies there is no exact

linear relation among components of X−c; (c) along with (d) ensures that for all β̄ ≠ β0 or

λ̄τ(⋅) ≠ λτ(⋅) we have R(β) = ∫Sβ dFX,V > 0, where Sβ = {x ∈ Rdx , z ∈ Rdz ∶ 1{x′β̄ + λ̄τ(v) >
0} ≠ 1{x′β0 + λτ(v) > 0}} and FX,Z is the joint cumulative distribution function of (X,Z);
(f) is an exclusion restriction; (g) is standard for smoothed maximum score estimators.

Theorem 1.1. Suppose Assumption SPID is satisfied in models (1.1)-(1.4). Then the finite-

dimensional parameter vector β0 and the infinite-dimensional parameter λτ(⋅) are identified.

Corollary 1.1. Suppose Assumption SPID is satisfied in models (1.1)-(1.4). Then the finite-

dimensional parameter vector β0 and the infinite-dimensional parameter λτ(⋅) are unique

joint minimizers of the population objective function Q(β̄, λ̄τ) ≡ E([(1 − τ) − Y ]1{X ′β̄ +
λ̄τ(V )}), where (β̄, λ̄τ) is a pair of generic elements in the parameter space.

A potential technical issue arises because the instrument Z is assumed to have com-

pact support for the technical reason in the asymptotic analysis. This is typically required

for establishing the uniform convergence of the first stage CDF estimator for FX1∣Z(X1∣Z).
Horowitz (2009) (Corollary 4.1) gives conditions sufficient for identification of β0 when X

has bounded support in the exogenous case. It seems natural to expect to be able to relax

the unbounded support condition in the endogenous case. Specifically, similar to Horowitz’s

(2009) argument, identification is still possible if Supp(X ′β0 + λτ(V ) ∣ X̃−c, V ) includes an

interval containing X ′β0 + λτ(V ) = 0 for sufficiently many values of X̃−c and V . The set

S(β̄, λ̄τ) = {(x, z) ∶ −x′−cβ̄ − λ̄τ(v) ≤ xc < −x′−cβ0 − λτ(v)} can be equivalently rewritten as

S(β̄, λ̄τ) = {(x, z) ∶ −x̃′−c(β̄ − β0) − (λ̄τ(v) − λτ(v)) ≤ x′β0 + λτ(v) < 0}. We impose conditions

guaranteeing Pr[−x̃′−c(β̄ − β0) − (λ̄τ(v) − λτ(v)) ≠ 0] > 0 if β̄ ≠ β0 or λ̄τ ≠ λτ . For almost
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every (x̃−c, v) ∈ Nδ ∈ Rdx−1, the conditional distribution FX′β0+λτ (V )∣X̃−c=x̃−c, V =v has a positive

probability density everywhere on Iδ ≡ [−δ, δ].
Corollary 1.2 states a result for identification of β0 when Z has bounded support.22?

Corollary 1.2. Suppose Assumption SPID is satisfied except that Z has bounded support in

models (1.1)-(1.4). If for some δ > 0, there are an interval Iδ = [−δ, δ] and a set Nδ ∈ Rdx−1

such that (a) Nδ is not contained in any proper linear subspace of Rdx−1; (b) P (∈ Nδ) > 0;

(c) for almost every x̃−c ∈ Nδ, the distribution of X ′β0 + λτ(V ) conditional on X̃−c = x̃−c has

a probability density that is everywhere positive on Iδ, then the finite-dimensional parameter

vector β0 and the infinite-dimensional parameter λτ(⋅) are identified.

1.4 Estimation

We have presented the identification for the finite-dimensional parameter vector β0 in a

triangular binary response model under a quantile restriction. In this section we propose

a series control function estimator of β0. A straightforward extension to a nonparametric

binary response model with endogeneity is discussed in Section 1.6. An interval estimator

of choice probabilities by looking at a number of different quantiles is given in Appendix

Section 1.9.

We propose to estimate β0 based on equation (1.14). Recall that equation (1.14) looks

like the partially linear form of the conditional quantile function of Y given X and Z. Thus

it can be viewed as a generalization of quantile restrictions in the exogenous case (Kordas

(2006)): Med(Y ∣ X) = 1{X ′β0 > 0} to partially linear models. Using the well-known result

that for any random variable Y , E(τ ∣Y − b∣1{Y ≥ b}+ (1− τ)∣Y − b∣1{Y < b}) is minimized at

22Another interesting question is whether or not instruments are allowed to be discrete to achieve iden-
tification. As pointed out by D’Haultfoeuille and Fvrier (2012), imposing monotonicity restrictions either
on the outcome or on the first stage equation can achieve point identification only when the instrument
is continuous. Examples include Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey
(2007), Imbens and Newey (2009), and our model. They also show that point identification using a discrete
instrument can be achieved with monotonicity on both equations.
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b = Qτ(Y ), we have

E[ρτ(Yi − 1{X ′
i β̄ + λ̄τ(Vi) > 0})]

≡ E[τ ∣Yi − 1{X ′
i β̄ + λ̄τ(Vi) > 0}∣ ⋅ 1{Yi − 1{X ′

i β̄ + λ̄τ(Vi) > 0} > 0}

+ (1 − τ)∣Yi − 1{X ′
i β̄ + λ̄τ(Vi) > 0}∣ ⋅ 1{Yi − 1{X ′

i β̄ + λ̄τ(Vi) > 0} ≤ 0}]

is minimized at β̄ = β0 and λ̄τ(⋅) = λτ(⋅), where ρτ(⋅) is the check function such that ρτ(u) =
∣u∣ + (2τ − 1)u for 0 < τ < 1. Simple algebra yields

E[ρτ(Yi − 1{X ′
iβ + λτ(Vi) > 0})] = E[(1 − τ − Y )1{X ′β + λτ(V ) > 0} + Y ]. (1.15)

For an i.i.d. random sample {(Yi,Xi, Zi) ∶ i = 1, . . . , n}, an (infeasible) estimator of β0

can be formed by minimizing the sample analogue of the population moment representation

(1.15), namely β̃∗ = arg max
β∈B

Q̃∗
n(β), where

Q̃∗
n(β) =

1

n

n

∑
i=1

[Yi − (1 − τ)]1{X ′
iβ + λτ(Vi) > 0}, (1.16)

with B ⊂ Rdx−1 being the compact parameter space.

If the control variable V and the function λτ(⋅) were known, the estimator β̃∗ is a general-

ization of Manski’s (1975, 1985) maximum score estimator to allow for endogeneity. However,

the maximum score estimator has a complicated asymptotic distribution that is hard to use

for inference. Characterizing the asymptotic distribution of the estimator of β0 based on

(1.16) in the presence of a nonparametric quantile function λτ and the generated regressor V

is even much more challenging. We do not pursue this complication in the present chapter

and leave this as an interesting direction for future research. One solution proposed in the

literature to deal with this difficulty is to follow Horowitz’s (1992) strategy of replacing the

discontinuous function 1{X ′β + λτ(V ) > 0} with its smoothed version K (X
′β+λτ (V )

h ) where

the smoothing parameter h satisfies h = hn → 0 as n → ∞ and K(⋅) is chosen to be a cu-

mulative distribution function with lim
s→−∞

K(s) = 0, lim
s→∞

K(s) = 1, and K(t) = ∫
t

−∞K
(1)(s)ds

where K(1) is a kernel function. Using a smoothed maximum score approach, Horowitz
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(1992) improves rates of convergence under certain smoothness conditions. This smoothing

strategy works in our context since as h→ 0,

K (X
′
iβ0 + λτ(Vi)

h
) →

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if X ′
iβ0 + λτ(Vi) > 0

0 if X ′
iβ0 + λτ(Vi) < 0

for each i = 1,⋯, n. We impose the condition Pr(X ′
iβ0 + λτ(Vi) = 0) = 0 and therefore with

probability one, K(⋅) is arbitrarily close to 1{⋅}.

Following this approach, we obtain the semiparametric estimator for β0 by maximizing

the following smoothed criterion function: β̃ ≡ arg max
β∈B

Q̃n(β), where

Q̃n(β) =
1

n

n

∑
i=1

[Yi − (1 − τ)]K (Xiβ + λτ(Vi)
hn

) . (1.17)

Compared with Horowitz’s (1992) smoothed maximum score estimator, there are several

distinctive features in estimation based on (1.17) that are worth pointing out. The sample

objective function in (1.17) contains a linear index and a nonparametric component that is a

unknown conditional quantile function λτ(⋅) with a nonparametrically generated regressor V .

In econometrics, there are many estimation problems involving the partially linear structure

with generated regressors. Examples are econometric models with endogeneity or sample

selection, rational expectation models, and error correction models. See Li and Wooldridge

(2002) for a related discussion. Specifically, previous studies involving partially linear es-

timation procedures with generated regressors include Ahn and Powell (1993), Chen and

Khan (2003), Blundell and Powell (2007), Lee (2007), Newey (2009), and Li and Wooldridge

(2002), among others. Ahn and Powell (1993) and Chen and Khan (2003) study semi-

parametric sample selection models with the propensity scores that are nonparametrically

estimated in the first stage. Blundell and Powell (2007) analyze censored regression quan-

tiles with nonparametric estimation of the control variable. The first three aforementioned

papers use a pairwise-differencing estimation strategy with kernel weights to eliminate the

nuisance nonparametric components in the partially linear structure. Following Robinson’s

(1988) estimation strategy, Li and Wooldridge (2002) consider semiparametric estimation of

a partially linear model with (parametrically) generated regressors.
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In practice, the estimator β̃ is infeasible since λτ(⋅) and V are typically unknown. The

type of estimator we propose is a natural two-step procedure, in which we approximate

the infeasible objective function by substituting the unknown objects by their consistent

nonparametric estimators. Specifically, the first step is to construct estimated conditional

CDF as a control variable. Since the conditional CDF is a regression with X1 = x1 fixed,

FX1∣Z(x1 ∣ Z = z) can be estimated using nonparametric regression methods such as kernel

and series approaches. In this section, we are not specific about the estimation procedure for

the control variable V . Instead, we simply assume that a consistent estimator V̂ is available

and satisfies a certain uniform convergence property, as discussed in Section 3.7. In the

second step, we then use the nonparametrically estimated control variable V̂i obtained in the

first step in replace of Vi and approximate λτ(⋅) and estimate β0 simultaneously using the

series method by maximizing the sample objective function.23

To describe the feasible estimator of β0, let the number of the approximating function

be κ and P̄κ(v) ≡ (p1(v), p2(v), . . . , pκ(v)) denote the κ × 1 vector of the first κ approxi-

mating functions such as polynomials or splines with the property that for large κ a linear

combination of P̄κ(V ) can approximate the unknown function of V well. Denote λ̂τ as an

estimator of the true function λτ . The regularity conditions that κ and h must satisfy are

given in Section 1.5.1. As shorthand notation, let W = (X,V )′, Ŵ = (X, V̂ )′, Wi = (Xi, Vi)′,
Ŵi = (Xi, V̂i)′, Pκi = Pκ(Wi), and P̂κi = Pκ(Ŵi). Using the aforementioned notation, we

define for any positive integer κ,

Pκ(w) = (x′, P̄κ(v)) = (x′, p1(v), . . . , pκ(v)).

Then for θκ0 ≡ (β′0, α′κ0)′ ∈ Rdx+κ−1, Pκ(w)′θκ0 is a series approximation to x′β0 + λτ(v).
Also, let A denote the ((dx−1)×(dx+κ−1)) matrix such that A = (I(dx−1),0(dx−1)×κ), where

Idx−1 is the ((dx − 1) × (dx − 1)) identity matrix and 0(dx−1)×κ is the ((dx − 1) × κ) matrix of

zeros. The feasible series estimator β̂ of β0 is given by

β̂ = Aθ̂nκ,
23Following Chen (2007), in the absence of generated regressors, this approach belongs to a type of sieve

simultaneous M-estimation.
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where θ̂nκ ≡ (β̂′, α̂′nκ)′ is the series estimator of θκ0 ≡ (β′0, α′κ0)′ obtained by maximizing a

sample objective function Q̂nκ(θ), as defined below, with a plug-in preliminary estimate of

V . Specifically, θ̂nκ ≡ arg max
θ≡(β′,α′)′∈Θκ

Q̂nκ(θ), where

Q̂nκ(θ) =
1

n

n

∑
i=1

t(Ŵi)[Yi − (1 − τ)]K (X
′
iβ + P̄κ(V̂i)′α

h
) , (1.18)

Θκ = B ×Λκ ⊂ Rdx+κ−1 is a compact parameter space, and t(w) = 1{(x1, z) ∈ C} is a trimming

function with a compact set C that is appropriately chosen. Note that the estimator of

λτ(v) ≡ Qτ(U ∣ V = v) is given simultaneously by P̄κ(v)′α̂nκ.24

For the purpose of comparison in Section 1.5.2, we also define an estimator β̄∗ ≡ Aθ̄∗nκ
of β0 in a partially linear binary regression quantiles: Qτ(Y ∣ X,V ) = 1{X ′β0 + λτ(V ) ≥ 0},

where the regressor V is assumed to be observed and the series estimator θ̄∗nκ is obtained by

maximizing the sample objective function θ̄∗nκ ≡ arg max
θ≡(β′,α′)′∈Θκ

Q̄∗
nκ(θ), where

Q̄∗
nκ(θ) =

1

n

n

∑
i=1

[Yi − (1 − τ)]K (X
′
iβ + P̄κ(Vi)′α

h
) . (1.19)

We note that the advantage of using series estimation in our context is the relative

ease of implementation: when the series method is implemented, the estimation problem

reduces to a parametric one and, moreover, we get estimates of parametric component β0

and nonparametric component λτ simultaneously. The series method is also convenient for

imposing additive separability restrictions by simply excluding interaction terms.

1.5 Asymptotic Theory

This section presents the main results of the chapter. We give asymptotic theory for

the estimator β̂ of β0 in models (1.1)-(1.4), as described in Section 1.4. To best convey the

issues surrounding estimation, we start with deriving an asymptotic expansion of the series

24Although in our setting the parameter of primary interest is β0, it should be noted that the estimate of
the control function λτ(v) could be of potential interest. For example, since the control function λτ(v) is

constant if all components of X are exogenous, the estimate λ̂τ may be further used for a specification test
for endogeneity by testing whether or not λτ(v) is a constant with probability one. We leave this topic for
future research.
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estimator θ̂nκ in the presence of the nonparametrically generated regressor, which is essential

to characterize the contributions of the first-stage estimation error of the generated regressor

to the asymptotic behavior of the final estimator, including its rates of convergence and

the asymptotic distribution. This asymptotic representation result, along with consistency

and convergence rates of the estimator, are presented in Section 1.5.1. Section 1.5.2 states

asymptotic normality results for the semiparametric model, with a focus on characterizing

the influence of the first-stage estimation error on the first-order asymptotic distribution of

β̂.

Notation Define mτ ≡X ′β0+λτ(V ), mτi ≡X ′
iβ0+λτ(Vi), ετ ≡ Y ∗−mτ , X̃ ≡ (X2, . . . ,Xdx)′,

W̃ = (X̃ ′, V )′, W̄ = (X̃ ′, V̂ )′, and w̃ = (x̃′, v)′. Let Fετ (⋅ ∣ X ′β0, W̃ ) and F
(1)
ετ (⋅ ∣ X ′β0, W̃ ),

respectively, denote the cumulative distribution function and the probability density function

of ετ conditional on X ′β0, W̃ ,25 and fmτ (⋅ ∣ W̃ ) the probability density function of mτ

conditional on X̃ and V . Also note that Fετ (0 ∣ X ′β0, W̃ ) = τ by the QER in Assumption

SPID (a). In what follows, for the sake of simplifying notation, denote Pκ(W̃i) = (X̃ ′
i , P̄κ(Vi)),

Pκ(W̄i) = (X̃ ′
i , P̄κ(V̂i)), F

(1)
ετi = F

(1)
ετ (0 ∣ X ′

iβ0, X̃i, Vi), fmτi = fmτ (0 ∣ X̃i, Vi). Also denote

Kh(⋅) ≡K(⋅/h), K(1)h (⋅) ≡K(1)(⋅/h)/h, and K
(2)
h (⋅) ≡K(2)(⋅/h)/h2.

1.5.1 Consistency, Stochastic Expansions, and Convergence Rates

Under Assumption 1.3(b) below, Q̂nκ(θ) from 1.18 is twice differentiable with respect to

θ. Differentiate Q̂nκ(θ) with respect to θ and under Assumption 1.2 discussed below, with

probability tending to 1, θ̂nκ satisfies the following first order condition

0 = ∂Q̂nκ(θ̂nκ)
∂θ

= n−1
n

∑
i=1

t̂i[Yi − (1 − τ)]K(1)h (Pκ(Ŵi)′θ̂nκ)Pκ(W̄i). (1.20)

25Note that (X ′β0, X̃ ′) and X have one-to-one relation for fixed values of β since ∣β1∣ = 1 by normalization,
we therefore write

E(Y ∣X,V ) = Pr(ετ > −X ′β0 − λτ(V ) ∣X,V ) = 1 − Fετ (−mτ ∣X ′β0, W̃ ).
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Define

Ĝnκ(θ) = Ĥ−1
nκn

−1
n

∑
i=1

t̂i[Yi − (1 − τ)]K(1)h (Pκ(Ŵi)′θ)Pκ(W̄i) and

G̃nκ(θ) = H̃−1
nκn

−1
n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (Pκ(Wi)′θ)Pκ(W̃i)

with Ĥnκ = n−1∑ni=1 t̂i[Yi−(1−τ)]K(2)h (Pκ(Ŵi)′θκ0)Pκ(W̄i)Pκ(W̄i)′ and H̃nκ = n−1∑ni=1 ti[Yi−
(1 − τ)]K(2)h (Pκ(Wi)′θκ0)Pκ(W̃i)Pκ(W̃i)′.

It is useful to rewrite the term Pκ(Ŵi)′θ̂nκ in (1.20) in a form involving the true values

of parameters θκ0 and the estimation errors θ̂nκ − θκ0 and V̂i − Vi. That is, we decompose

Pκ(Ŵi)′θ̂nκ into the following three terms

Pκ(Ŵi)′θ̂nκ = Pκ(Wi)′θκ0 + Pκ(Ŵi)′ (θ̂nκ − θκ0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Channel 1

+(Pκ(Ŵi) − Pκ(Wi))
′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Channel 2

θκ0 (1.21)

≡ Pκ(Wi)′θκ0 +∆κi(θ̂nκ).

Expression (1.21) clearly implies that there are two channels through which the first-stage

estimation error (V̂i − Vi) of the generated regressor affects the asymptotic distribution of

β̂. The first contribution is derived from indirect effects through Channel 1 accounting for

the estimation error of the conditional quantile function Qτ(U ∣ V = v) ≡ λτ(v) by using V̂i

instead of Vi in forming λ̂τ(⋅). In other words, using the estimated control variable {V̂i}ni=1

changes the functional form of the quantile type of nonparametric projection of U onto V ,

i.e., Qτ(U ∣ V ). In our setting, the functional form of Qτ(U ∣ V = v) is determined by

the series coefficients θnκ(v).26 In other words, the first role of the generated regressor V

through Channel 1 changes the shape of the function Qτ(U ∣ V ). On the other hand, the

second contribution comes from the direct effect through Channel 2 reflecting the additional

uncertainty due to estimating β0 via Qτ(U ∣ V = V̂i) ≡ λτ(V̂i), i.e, the first-stage estimate in

V̂i enters the argument at which the conditional quantile is evaluated.27 Note that the first

26We express the series coefficient vector θ̂nκ(v) as a function of v to make explicit the first role that v
plays.

27See Hahn and Ridder (2010) and Mammen, Rothe, and Schienle (2011) for related discussion on the
dual roles played by the first-stage estimate of generated regressors.
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role of the estimation error of {Vi}ni=1 impacts the final estimator through the second-order

term in the expansion, as will be clear later.

We need the following conditions to analyze the asymptotic properties of the series es-

timator involving a nonparametric quantile regression function with the nonparametrically

generated regressor.

Assumption 1.1. The data {(Yi,Xi, Zi) ∶ i = 1, . . . , n} is a random sample.

Assumption 1.2. The true value of the parameter β0 = (β20, . . . , βdx0)′ is an element of the

interior of the compact parameter space B ⊂ Rdx−1.

Assumption 1.3 (Smoothing Functions).

(a) Let the smoothing function K(⋅) be a continuous function of the real line such that

∣K(u)∣ < M for some finite M and all u in (−∞,∞) and limu→−∞K(u) = 0 and

limu→∞K(u) = 1.

(b) The function K(⋅) ∶ R→ R is twice continuously differentiable everywhere with uniformly

bounded first and second derivatives denoted by K(1)(⋅) and K(2)(⋅) and satisfies and

following conditions: ∫
∞
−∞K

(1)(u)du < ∞, ∫
∞
−∞K

(2)(u)du < ∞, and ∫
∞
−∞ ∣u2K(2)(u)∣du <

∞.

(c) Let K(1)(⋅) be ν-times continuously differentiable and satisfies the following conditions:

∫ ujK(1)(u)du = 0 for each integer 1 ≤ j < ν and ∫ ∣uνK(1)(u)∣du < ∞.

Assumption 1.1 describes the data. Assumption 1.2, along with Assumption SPID(b),

contains normalization restrictions that are standard assumptions in the semiparametric es-

timation literature on binary response models and models with index restrictions. Assump-

tion 1.3 places regularity conditions on the smoothing function K(⋅) for smoothed maximum

score estimators. It implies that K(1)(⋅) is a νth order kernel function.

Assumption 1.4 (Series Approximation).

(a) The support of V is V = [0,1] on which V has an absolutely continuous probability density

function that is bounded above by a positive constant, bounded away from zero, and is

twice continuously differentiable.
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(b) The conditional quantile regression function λτ(⋅) is r-times continuously differentiable

on V for some r ≥ 2.

Assumption 1.4 collects regularity conditions that are commonly imposed in the series

approximation literature. Part (a) imposes smoothness restrictions on the conditional density

function, implying that for all κ the smallest eigenvalue of Hκ is bounded away from zero and

the largest eigenvalue of Hκ is bounded, and that there exists a sequence of constants ζ0(κ)
that satisfy supv∈V∥P̄κ(v)∥ ≤ ζ0(κ) and κ = κn such that ζ0(κ)2κ/n → 0 as n → ∞, where

ζ0(κ) will increase with κ and therefore the sample size. Namely, part (a) imposes a uniform

bound on the magnitude of the series term in the support of V . As shown in Newey (1997),

ζ0(κ) = O(κ) for polynomials and ζ0(κ) = O(κ1/2) for splines. In addition, differentiability

of the density of V is used to ensure that the bias of the series estimator converges to zero

sufficiently rapidly. The smoothness condition imposed in part (b) is required to control

the bias of the series estimator and depends on the type of the approximating function. It

follows from part (b) and Lorentz (1966) that for both power series and splines, there exists

a unique series representation Pκ(W )′θκ0, where θκ0 ≡ (β0, α′κ0)′ ∈ Rdx+κ−1 such that the

uniform approximation error to the function X ′γ +λτ(⋅) and its first derivative shrink at the

rates supw ∣x′β0+λτ(v)−Pκ(w)′θκ0∣ = O(κ−r) and supv ∣∂λτ (v)∂v −∑κk=1 (∂pk(v)∂v )αkκ0∣ = O(κ−r+1),
respectively as κ→∞.

Assumption 1.5 (Smoothing Parameters). The smoothing parameters κ = κn and h = hn
satisfy that

(a) κ = Cκnρκ for some constant Cκ satisfying 0 < Cκ < ∞ and some ρκ satisfying ν+1
(2ν+1)r <

ρκ < ν
2(2ν+1) for power series and ν+1

(2ν+1)r < ρκ < 2ν
3(2ν+1) for splines.

(b) The bandwidth satisfies h = hn → 0 and logn
nh4n

→ 0 as n→ 0.

Assumption 1.5(a) states the rates at which κ = κn →∞ and h = hn → 0 as n →∞. The

required rate for κ guarantees that the asymptotic bias and variance of the series estimation

of the conditional quantile function λτ(⋅) are sufficiently small to achieve an (nh)−1/2 rate of

convergence of the final estimator of β0. To be precise, the left inequality for ρκ is used to
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make the estimator have no asymptotic bias introduced by the series approximation, whereas

the right inequality is required to make the remainder terms of the stochastic expansion

derived below negligible, as will be clear later. The necessary smoothness conditions implied

by this assumption is that r ≥ 4 and r ≥ 3 for power series and splines, respectively. Analogous

to kernel density estimation, the bandwidth h is assumed to shrink with the sample size n

at a certain rate.

Assumption 1.6 (First-stage Estimation Accuracy). The support of Z is a compact set

Z ≡ ⊗dz
i=1[zi, z̄i]. The rate of convergence of the estimator V̂ = F̂X1∣Z(X1 ∣ Z) is assumed to

be

sup
x1∈R

sup
z∈Z

∣F̂X1∣Z(x1 ∣ z) − FX1∣Z(x1 ∣ z)∣ = Op(∆v),

satisfying ∆v = op(n1/4h5/4).

Assumption 1.6 is a high-level assumption about the accuracy of the first-stage estimator

V̂ . Throughout this section, we do not treat the specific form of estimation of V = FX1∣Z(X1 ∣
Z), instead the asymptotics are derived for any consistent estimate V̂i of Vi satisfying a

given uniform rate of convergence. The required rate on ∆v reflects the nonparametric

rate of convergence of β̂ and the appearance of the bandwidth h in the denominator in the

argument of the smoothing function K. This assumption is an analogous requirement to the

well-known necessary condition: the difference between V̂ and V vanishes at a rate satisfying

op(n−1/4) that arises frequently in standard semiparametric estimation with
√
n-consistency.

This assumption would be a necessary condition to truncate the expansion that will be

clear later. We note that several uniform convergence results are available for the standard

nonparametric regression estimation. See, for example, Masry (1996) for Nadaraya-Watson,

local linear, and local polynomial estimators and Newey (1997) and de Jong (2002) for series

estimators. However, to derive uniform convergence results for conditional CDF FX1∣Z(x1 ∣
Z = z) estimation, one needs to deal with a potential difficulty that arises due to the fact

that FX1∣Z(x1 ∣ Z = z) is the step function rather than continuous in x1. It is known that

estimation of the conditional CDF can converge uniformly over the conditioning variables Z.
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Furthermore, the uniform convergence result jointly over X1 and Z of the conditional CDF

estimator using kernel methods has been established by Rothe (2010). As far as we know,

joint uniformity over (x1, z) for estimation of FX1∣Z(x1 ∣ Z = z) = E(1{X1 ≤ x1 ∣ Z = z}) using

series methods is not yet available. This is a topic for future research.

Assumption 1.7. Assume that

(a) The first absolute moments E∣Pκ(W̃ )∣, E∣Pκ(W̃ )Pκ(W̃ )′∣, and E∣Pκ(W̃ )Pκ(W̃ )′Pκ(W̃ )Pκ(W̃ )′∣
are finite.

(b) For every integer k, 0 < k < ν, any ε > 0, and any sequence hÐ→ 0,

limn→∞ hk−ν ∫∣hu∣>ε∣ukK(1)(u)∣du = 0 and limn→∞ h−1 ∫∣hu∣>ε∣K(2)(u)∣du = 0.

(c) For each integer k, 0 < k < ν, all mτ in a neighborhood of 0, almost every w̃, and some

finite constant M , f
(k)
mτ (mτ ∣ W̃ ) exists and is a continuous function of mτ satisfying

∣f (k)mτ (mτ ∣ W̃ )∣ <M .

(d) For each integer k, 0 < k ≤ ν, all mτ in a neighborhood of 0, almost every w̃, and

some finite constant M , F
(k)
ετ (−mτ ∣ mτ , W̃ ) exists and is a continuous function of mτ

satisfying ∣F (k)mτ (−mτ ∣mτ , W̃ )∣ <M .

Assumptions 1.7 along with Assumption 1.3 collect standard regularity conditions for

smoothed maximum score estimators,28 as in Horowitz (1992) and Kordas (2006). Assump-

tion 1.7 ensures that B, H, and Σ exist and certain sequences of integrals converge, as shown

in the Appendix.

The following theorem presents the results of consistency, the convergence rate, and

the stochastic expansion for the series estimator θ̂nκ, accounting for the presence of the

nonparametrically generated regressor. This expansion result is an important ingredient

for accurately describing the asymptotic distribution of the final estimator of the finite-

dimensional parameter vector β0, as will be shown in Section 1.5.2.

Theorem 1.2. Suppose Assumptions SPID, 1.1-1.7 below hold. Then as n→∞,

(a) limn→∞∥θ̂nκ − θκ0∥ = 0.

28These assumptions are analogous to those made in kernel density estimation.
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(b) ∥θ̂nκ − θκ0∥ = Op (( κ
nh

)1/2 + κ−r
h1/2 + ( κ

nh3
)1/2

∆v).

(c) The series estimator θ̂nκ has the asymptotic expansion

θ̂nκ − θκ0 =H−1
κ n

−1
n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (mτi)Pκ(W̃i)

+H−1
κ n

−1
n

∑
i=1

ti[Yi − (1 − τ)]K(2)h (mτi)
dλτ(Vi)

dv
(V̂i − Vi)Pκ(W̃i)

+H−1
κ n

−1
n

∑
i=1

ti[Yi − (1 − τ)]K(2)h (mτi)bκ0(Vi)Pκ(W̃i) + R̂n, (1.22)

where the remainder term R̂n satisfies

∥R̂n∥ = Op(ζ0(κ)κ/n + κ−r + ζ0(κ)∥θ − θκ0∥2 + ζ0(κ)κ−2r + ζ0(κ)∆2
v) + op((nh)−1/2).

Remark 1.1. Based on Theorem 1.2(c), it is clear that the asymptotic characterization of

θ̂nκ depends on three terms. The first term on the right hand side of equation (1.22) is

the main one that reflects the uncertainty if we knew λτ and V . By adapting Horowitz’s

(1992) argument to the partially linear structure, this term can be normally handled by a

suitable central limit theorem and law of large numbers. The second term corresponds to the

first-stage estimation error. To characterize the influence of the first-step estimation error

of {V̂i}ni=1 on the asymptotic normality of the final estimator, we will further investigate the

second term on the right hand side of equation (1.22) in Section 1.5.2. Also note that there

is the other term that accounts for the sampling variation in the series estimate λ̂τ which is

smaller than (nh)−1/2 by Assumption 1.5(a) and therefore is asymptotically negligible.

Remark 1.2. The message from Theorem 1.2(a) is that the uniform convergence rate of the

series estimator θ̂nκ is the sum of three terms associated with the standard deviation, bias,

and the first-stage convergence rate, respectively. If κ is chosen faster than n1/(2r+1) (i.e.,

undersmoothing) and V did not have to be estimated in the first stage, then the uniform

convergence rate reduces to Op (( κ
nh

)1/2).

The following corollary states the rate of convergence of the proposed estimator β̂.

Corollary 1.3. Under Assumptions SPID and 1.1-1.6, as n→∞

∥β̂ − β0∥ = Op((nh)−1/2 + (nh3)−1/2∆v).
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The convergence rate of β̂ is the sum of two terms, depending on the bandwidth h and

the first-stage convergence rate ∆v. In particular, if h is chosen proportional to n−1/(2ν+1)

and ∆v is assumed to satisfy ∆v ∝ n−ρv , then the conclusion of Corollary 1.3 is

∥β̂ − β0∥ = Op(max{n−ν/(2ν+1), n−ρv+(1−ν)/(2ν+1)}).

Analogous to kernel density estimation, the rate of the bandwidth h that minimizes mean

square error if we knew λτ and V is n−1/(2ν+1). It then follows that the optimal rate of the

second stage estimator β̂ will be attained when either {Vi}ni=1 did not have to be estimated

from the data or the following condition holds

ρv >
1

2ν + 1
,

implying that ρv depends on the order of the kernel function K(1). We will return to this

point on the required rate of convergence of the first-stage estimator later.

1.5.2 Asymptotic Normality

This subsection presents the result of the distribution theory for the semiparametric

estimator β̂. We now outline the heuristics leading to the asymptotic normality result.

Note that β̂ − β0 = A(θ̂nκ − θκ0). Based on the expansion given in Theorem 1.2(c), the

series estimator β̂ has the following asymptotic expansion

β̂ − β0 = AH−1
κ n

−1
n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (mτi)Pκ(W̃i)

+AH−1
κ n

−1
n

∑
i=1

ti[Yi − (1 − τ)]K(2)h (mτi)
dλτ(Vi)
dv

(V̂i − Vi)Pκ(W̃i) + op((nh)−1/2)

≡ AH−1
κ T1nκ +AH−1

κ T2nκ + op((nh)−1/2). (1.23)

In order to obtain the asymptotic variance of β̂, it is essential to characterize the asymp-

totic behavior of the stochastic components on the right-hand side of (1.23): the first term

T1nκ is the one that reflects the uncertainty induced by replacing the expectation with a

sample average if the nonparametric components λτ and {Vi}ni=1 were known and did not
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have to be estimated from the data; The second term T2nκ captures the sampling variation

in the estimate of the generated regressor V . It is the key to characterizing the influence of

the estimation uncertainty of V̂ on the final estimator β̂.

Let q(w̃) denote the residual from t(w)F (1)ετ (0 ∣ 0, w̃)fmτ (0 ∣ w̃)-weighted mean square

projection of X̃ on the function λτ(V ), i.e.,

q(w̃) = x̃ − E[t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )X̃ ∣ V = v]
E[t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ ) ∣ V = v]

.

Define

ϕ(w̃) = (E[t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )q(W̃ )q(W̃ )′])−1
q(w̃).

It can be shown that β0 and A can be represented as

β0 = E[t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )ϕ(W̃ )mτ(W )] and

A = E[t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )ϕ(W̃ )Pκ(W̃ )′].

To characterize the influence of the first-stage estimator on β̂, we take a further step

by specifying the bias and variance of the first-stage estimator {V̂i}ni=1. The asymptotic

distribution will be derived for any consistent estimator {V̂i}ni=1 with given bias and variance.

As we choose the kernel estimator for the generated regressor Vi in simulation experiments

and empirical applications, we follow Sperlich (2009) by giving the bias and variance of V̂i

in terms of a bandwidth g, satisfying g → 0 as n →∞. The following assumption states the

bias and variance of the first-stage estimator {V̂ }ni=1.

Assumption 1.8 (Bias and Variance of the First-stage Estimator).

(a) The function FX1∣Z(x1, z) is r-times differentiable with respect to z, and the derivatives

are uniformly continuous and bounded.

(b) For the first-stage estimator V̂ using the smoothing parameter g that satisfies g → 0 as

n → ∞, the bias, denoted by bv, is assumed to be of order O(gr), whereas the variance

σ2
ζv

is of order O((ngdz)−1), both uniformly over the two arguments x1 and z.

(c) Both bv(⋅) and σζv(⋅) are Lipschitz continuous and the covariance E[ζiσζv(Vi)ζjσζv(Vj)] =
O(1/n) uniformly for i ≠ j = 1, . . . , n.
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(d) The conditional quantile function Qτ(U ∣V ) ≡ λτ(V ) is assumed to be strictly monotonic.

The order of magnitude of the bias and variance specified in Assumption 1.8 (b) are

directly based on Rothe (2010), who shows that for the Nadaraya-Watson-type estimator

F̂X1∣Z(x1, z), the uniform rate of convergence can be given by

sup
x1∈R

sup
z∈Z

∣F̂X1∣Z(x1, z) − FX1∣Z(x1, z)∣ = Op (gr + ( logn

ngdz
)

1/2
) .

Furthermore, given Assumption 1.8, it will be useful to rewrite the estimation error of

the first-stage estimator {V̂i}ni=1 as

V̂i − Vi = bv(Vi) + ζiσζi(Vi), i = 1, . . . , n, (1.24)

where ζv satisfies E(ζv ∣ V = v) = 0 and Var(ζv ∣ V = v) = 1.29

To formally state the asymptotic results for the estimator, we need the following addi-

tional assumptions to prove asymptotic normality.

Assumption 1.9. As function of v, E[t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )X̃ ∣ v] and E[t(W )F (1)ετ (0 ∣
0, W̃ )fmτ (0 ∣ W̃ ) ∣ v] are continuously differentiable.

Assumption 1.9 is similar to Assumption 3.9 in Lee (2007), implying that for both

power series and splines, there exists a sequence of ((dx − 1) × κ) matrices Ψκ such that

E[t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )∥ϕ(W̃ ) −ΨκPκ(W̃ )∥2] → 0 as κ→∞.

Assumption 1.10. The matrix H = E[t(W )q(W̃ )q(W̃ )′F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )] is nega-

tive definite.

Assumption 1.10 guarantees the nonsigularity of the asymptotic covariance matrix.

The following theorem gives the main results concerning the asymptotic bias, asymp-

totic variance, and asymptotic normality of the proposed two-step estimator of the finite-

dimensional parameter vector β0.

29As pointed out by Sperlich (2009), the expression (1.24) just assumes that the estimator V̂ has the
additive bias and stochastic error rather than assuming an additive error of the original model that generates
V . This additivity property is satisfied for almost all nonparametric and semiparametric estimators.
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Theorem 1.3. Suppose Assumptions SPID, 1.1-1.10 hold.

(a) Let αν(L) = ∫
∞
−∞ u

νL(u)du. Then the bias, E(β̂−β0), can be expressed as hνB1+hν−2B2+
o(hν + hν−2gr) where the two leading terms B1 and B2 are given by

B1 = −αν(K(1)) ×
ν

∑
j=1

1

j!(ν − j)!E[F (j)ετ (0 ∣ 0, W̃ )f (ν−j)mτ (0 ∣ W̃ )ϕ(W̃ )],

B2 = −αν−1(K(2))

×
ν−1

∑
j=1

1

j!(ν − j − 1)!E[t(W )F (j)ετ (0 ∣ 0, W̃ )f (ν−j−1)
mτ (0 ∣ W̃ )dλτ(V )

dv
bv(λ−1

τ (−X ′β0))ϕ(W̃ )].

(b) Let R(L) = ∫
∞
−∞L(u)2du. Then the variance of β̂, Var(β̂), is Ω1

nh +
Ω2

nh3 + o( 1
nh + 1

n2h3gdz
),

where

Ω1 = R(K(1))τ(1 − τ)E[t(W )ϕ(W̃ )ϕ(W̃ )′fmτ (0 ∣ W̃ )] and

Ω2 = R(K(2))E [t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )dλτ(V )
dv

ϕ(W̃ )]E[σ2
ζ(λ−1

τ (−X ′β0))]

×E [t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )dλτ(V )
dv

ϕ(W̃ )′] .

(c) Let δ = min{nh,n2h3gdz}. Then the asymptotic distribution of β̂ is

Ω−1/2 [
√
δ(β̂ − β0) −B] dÐ→ N(0, I)

with B =
√
δ[hνB1 + hν−2B2] and Ω = Ω1

nh +
Ω2

nh3 .

Theorem 1.3(a) and (b) are analogous to the asymptotic results for estimation of kernel

density of predicted (or generated) variables studied in Sperlich (2009). For kernel density

estimation in which the variables are nonparametrically predicted, Sperlich (2009) shows

that the bias and variance of the density estimator are augmented by an additive factor

that is proportional to the bias and variance of the generated predictor, respectively. In

other words, the bias of the predictor only affects the bias of the density estimator, the

contribution of the variance of the predictor to the density estimator is only through the

variance. Analogous results apply to our estimator of β0. The deterministic bias of β̂ is of

order O(hν + hν−2gr) and the variance is of order Op( 1
nh + 1

n2h3gdz
).
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Theorem 1.3(c) is a generalization of Theorem 2 in Horowitz (1992) to the partially

linear model with a nonparametrically generated regressor for general quantiles. The form

of the first component Ω1 of the asymptotic variance has intuitive interpretations: (1) The

terms τ(1 − τ) and F
(1)
ετ (0 ∣ 0, W̃ ) are usual in standard quantile regression, implying that

the estimator is more precise in the tails and less precise in regions of low density; (2)

The presence of fmτ (0 ∣ W̃ ) follows from the fact that the dependent variable Y is binary

and fmτ (0 ∣ W̃ ) is used to approximate E[1{X ′β0 + λτ(V ) = 0}] = Pr(X ′β0 + λτ(V ) = 0).
This is the main reason that leads to the nonparametric rate of convergence of β̂ to β0.

As a consequence, the terms R(K(1)) and fmτ (0 ∣ W̃ ) are analogous to those in standard

kernel density estimation; (3) The q(W̃ )q(W̃ )′ term (implicitly through ϕ(W̃ )ϕ(W̃ )′) arises

stemming from the fact that the model implies a partially linear form X ′β0 + λτ(V ) for the

regression function.

Observe that, under the assumption that the control variable {Vi}ni=1 is observed, based on

Theorem 1.3 we can derive the asymptotic distribution of the estimator β̃ defined in (1.17) for

the finite-dimensional parameters in partially linear binary regression quantiles.30 This new

result, as stated in Corollary 1.4 below, extends the single-index specification in smoothed

binary regression quantiles in Horowitz (1992) and Kordas (2006) to the partially linear

specification, which serves as an important compromise between the desire for parametric

estimation precision and for nonparametric flexibility. Moreover, if the control variables

{Vi}ni=1 are parametrically generated or if the bandwidths h and g are appropriately chosen

satisfying the conditions in Assumption 1.12 below, it can be shown that the replacement

of {Vi}ni=1 with its estimate {V̂i}ni=1 does not affect the first-order asymptotic distribution of

the final estimator. Namely, the final estimator β̂ has the same asymptotic distribution as

it would have if {Vi}ni=1 were known. We summarize these results in the following corollaries

below.

30Partially linear models have received much attention in the mean, quantile, and censored regression
contexts. But we are not aware of the asymptotic results in the literature for estimating binary response
models using partially linear specifications.
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Corollary 1.4 (Partially Linear Binary Regression Quantiles). Define µ ≡ limn→∞ nh2ν+1.

Suppose Assumptions SPID, 1.1-1.10 hold and, additionally, {Vi}ni=1 were observed. Then the

smoothed estimator β̄∗ ≡ Aθ̄∗nκ of the finite-dimensional parameters β0 based on the estimation

procedure (1.19) in the partially linear binary regression quantiles: Qτ(Yi ∣Xi, Zi) = 1{X ′
iβ0+

λτ(Vi) > 0} has the asymptotic distribution

√
nh(β̄∗ − β0)

dÐ→ N(µ1/2B1, Ω1),

where B1 and Ω1 are given in Theorem 1.3(a) and (b).

The asymptotic distribution of the estimator β̃ has a similar form to the estimator β̂,

as stated in Theorem 1.3(c), except for the absence of the B2 and Ω2 components since no

first-stage estimator of {Vi}ni=1 is needed.

Assumption 1.11 (Parametrically Generated Regressor). The first-stage estimator V̂i is

parametrically estimated, namely, the terms bv and σζv are both uniformly bounded by O(n−1/2).

Assumption 1.12 (Relative Rates of Bandwidths). The smoothing parameter sequences

h = hn and g = gn go to zero as n→∞ and satisfy that nh2ν−3g2r → 0 and n3h5g2dz →∞.

Assumption 1.12 insures that the bias and variance of the first-stage estimator of {Vi}ni=1

are sufficiently small, i.e., the first-stage estimation error is of smaller order than (nh)−1/2.

Furthermore, if the bandwidths h and g are assumed to satisfy h ∝ n−1/(2ν+1) and g ∝ n−ρg ,

then this assumption requires that

2

r(2ν + 1) < ρg <
3ν − 1

(2ν + 1)dz
, (1.25)

which in turn requires that the order of the kernel function K(1), ν, and the dimension of Z,

dz, have to satisfy the condition: dz < 3r − r/ν (leading to dz < 5 if ν = r = 2 for instance), so

that the interval in (1.25) is not empty. Since the optimal bandwidth of the kernel estimator

of V satisfies ρg = 1/(2r + dz), it is interesting to note that there is a variety of combinations

of ν, r, and dz, for example, when ν = 3, r = 2, and dz = 2 such that the following inequalities

hold
2

r(2ν + 1) < 1

2r + dz
< 3ν − 1

(2ν + 1)dz
,
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implying that in such cases undersmoothing, which is common in the semiparametric es-

timation literature, is not needed to insure the bias of the first-stage estimator to vanish

sufficiently rapidly. On the other hand, when ν = 4, r = 2, and dz = 5 for example, the

undersmoothing first-stage bandwidth can be chosen to satisfy ρg = 1/(2r + dz − 1).

Corollary 1.5. Suppose Assumptions SPID, 1.1-1.10, and, additionally, either 1.11 or 1.12

hold. Then
√
nh(β̂ − β0) has the same asymptotic distribution as that in Corollary 1.4.

Remark 1.3. Comparing the result of Theorem 1.3(c) to that of Corollary 1.5, we can

see that when the smoothing parameters h and g are chosen such that n3h5g2dz = O(1), Ω

contains an additional term ngdzΩ2.

Remark 1.4. It is also interesting to compare Theorem 1.3 with the existing asymptotic

theory in the literature. It is known that the rate of convergence of the estimator for binary

response models with the median restriction is slower than the n−1/2 rate of semiparametric

single-index estimators under the independence assumption, i.e., the error terms are inde-

pendent of the explanatory variables.31 For these semiparametric single-index estimators

converging at a parametric
√
n rate, the generated regressor problem in general affects the

asymptotic variance but not the
√
n convergence rate of the estimator, unless the asymp-

totic orthogonality conditions between the preliminary and final estimators are satisfied (e.g.,

Assumption N(c) in Andrews (1994) for the “MINPIN” estimators).

Remark 1.5. Under Assumption 1.12, our asymptotic results show that the first-stage

estimation error of the generated regressor {Vi}ni=1 does not appear in the asymptotic dis-

tribution of the final estimator. Specifically, the centered, suitably scaled estimator of the

finite-dimensional parameters β0 has the same asymptotic distribution that it would have if

the nonparametric components λτ and {Vi}ni=1 were known. This property resembles many

other multi-stage nonparametric procedures involving generated regressors in which the es-

timation error of the generated regressors does not contribute to the asymptotic variance of

31Chamberlain (1986) has proven that the semiparametric efficiency bound is zero for the exogenous binary
response model if only the median restriction is assumed.
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the final estimator, provided the smoothing parameters in the first and second steps are well

chosen, see, for example, Su and Ullah (2008) and Sperlich (2009).

Asymptotic normality given in Theorem 1.3 can be used to carry out asymptotic inference

on β0. To this end, the value of µ has to be determined and consistent estimators of H,

B, and Ω must be constructed. The (infeasible) optimal bandwidth is of the form h∗ =
C × n−1/(2ν+1). Then under Assumption 1.12 the optimal bandwidth h∗ = µ∗1/(2ν+1)n−1/(2ν+1)

is set by minimizing the asymptotic mean square error:

AMSE ≡ E[(β̂ − β0)′(β̂ − β0)]

= trace[E[(β̂ − β0)(β̂ − β0)′]]

= trace[n−2ν/(2ν+1)µ−1/(2ν+1)Ω1 + µ2ν/(2ν+1)B1B
′
1].

Analogous to Horowitz (1992) and Kordas (2006), it can be shown that

µ∗ = trace(Ω1)/(2νB′
1B1).

Then in applications one can choose the bandwidth h by the plug-in method, as suggested

by Horowitz (1992). Namely, the estimate µ̂ is obtained based on µ∗ by replacing Ω1 and

B1 with their estimates. We turn to consistent estimators of H, B1, and Ω1. Define

ĝnκi = t(Ŵi)[Yi − (1 − τ)]K(1)h (Pκ(Ŵi)′θ̂nκ)Pκ(W̄i).

Let hε = hεn ∝ n−ε/(2ν+1) for some 0 < ε < 1 and σ̂2
v a consistent estimator of σ2

v . One can

consistently estimate the asymptotic bias B1 by −µ̂1/2A
ˆ̂
H−1
nκB̂nκ and the asymptotic variance

Ω by

Ω̂nκ ≡ A ˆ̂
H−1
nκ (Σ̂nκ + Γ̂nκσ̂

2
vΓ̂

′
nκ)

ˆ̂
H−1
nκA

′,
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where

ˆ̂
Hnκ =

1

n

n

∑
i=1

t(Ŵi)[Yi − (1 − τ)]K(2)h (Pκ(Ŵi)′θ̂nκ)Pκ(W̄i)Pκ(W̄i)′,

B̂nκ = (hε)−νn−1
n

∑
i=1

t(Ŵi)[Yi − (1 − τ)]K(1)hε (Pκ(Ŵi)′θ̂nκ)Pκ(W̄i),

Σ̂nκ = hn−1
n

∑
i=1

ĝnκiĝ
′
nκi, and

Γ̂nκ = n−1
n

∑
i=1

t(Ŵi)[Yi − (1 − τ)]K(2)hε (Pκ(Ŵi)′θ̂nκ)
dλ̂τ(V̂i)

dv
Pκ(W̄i).

Assumption 1.13. For power series ν+1
(2ν+1)r < ρκ < 2ν+3

9(2ν+1) and for splines ν+1
(2ν+1)r < ρκ <

2ν+3
5(2ν+1) .

The following theorem establishes the consistency of the estimators for the asymptotic

bias and variance.

Theorem 1.4. Under Assumptions SPID, 1.1-1.10, and 1.12,
ˆ̂
Hnκ

pÐ→H, −µ̂ν/(2ν+1)A
ˆ̂
H−1
nκB̂nκ

pÐ→
B1 and ∥Σ̂nκ −Σκ∥ = op(1). It follows that ∥Ω̂nκ −Ω∥ = op(1) as n→∞.

1.6 Extension to Nonparametric Binary Response Models with
Endogeneity

In this section, we discuss a straightforward extension to address the endogeneity problem

in a fully nonparametric binary response model. Formal asymptotic property results are left

for future research. Consider a nonparametric binary response model with a latent outcome

specification

Y ∗ = g0(X) +U, (1.26)

where g0 is assumed to satisfy mild regularity conditions but does not belong to a known,

finite-dimensional parametric family. We emphasize here that models (1.2)-(1.4) and (1.26)

do not impose any parametric structure either on the systematic component g0 or the dis-

tribution of the random term U .

While imposing the additive separability structure on the model, latent outcome specifica-

tion (1.26) is still important because of the sensitivity of the parametric and semiparametric
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estimators to misspecification of functional form. However, fully nonparametric identifica-

tion and estimation of binary response models have received relatively little attention in the

literature. Matzkin (1992) is the first to deal with nonparametric and distribution-free bi-

nary response models, which can also be viewed as a special case of Han’s (1987) generalized

regression model: Y =H(g0(X), U), where H is a known function. Interestingly, in the set-

tings of binary regressions, Nadaraya-Watson (with E(Y ∣X = x) = θx) and local linear (with

E(Y ∣ X = x) = x′θx) approaches should be regarded as local parametric methods where θx

is a unknown coefficient vector that is allowed to vary with x.32

The model (1.2)-(1.4) and (1.26) implies that the τth conditional quantile of Y ∗ given

X and V reduces to an additive function with a generated regressor, namely, m∗
τ(X,V ) =

g0(X) + λτ(V ).33 To recover the additive components g0 and λτ , we conjecture that, in

addition to the typical exclusion restriction to separate the influence of g0 from the influence

of λτ on the object m∗
τ(X,V ), more structure on g0 is needed. For example, a continuous

and additive “special regressor,” say Xc, with a full support (conditional on V), i.e., g0(X) =
Xc + g̃0(X̃−c) may be sufficient for identification of g̃0.

If g0 is identified, we can then develop an estimator of the nonparametric structural

function g0. The first-stage control variable estimator V̂ is the same as before. To describe

the second-stage estimator, let Pgκ(w) = (p1(x), . . . , pκ(v)) be a κ×1 vector of approximating

functions of w = (x′, v)′ with each component depending either on x or on v, but not both.

That is, we use series methods to impose additive separability, as previously mentioned.34

Analogously, the series coefficient estimates are obtained by maximizing the sample objective

32The usual Nadaraya-Watson or local linear methods are not well suited for nonparametric regression
with a binary dependent variable, as the same spirit as linear probability models usually performing poorly
compared to probit or logit models. Frandouml (2006) studies estimation of local likelihood logit regression

with E(Y ∣X = x) = 1/(1+ex
′θx) and shows that the local logit estimator has better finite-sample performance

than Nadaraya-Watson, local linear, and Klein-Spady alternatives.
33Analogous to the semiparametric case, as we discussed before, if the latent variable Y ∗ were known, the

model Qτ(Y ∗ ∣X,Z) = g0(X)+λτ(V ) becomes the quantile version of nonparametric triangular simultaneous
equations models analyzed by Newey, Powell, and Vella (1999).

34Alternatively, one can use the partial mean (or marginal integration) approach to estimate the additive
component function g0(x) of m∗

τ(x, v). That is, ∫ m∗
τ(x, v)l(v)dv = g0(x) + ∫ λτ(v)l(v)dv where l is a

nonnegative function satisfying ∫ l(v)dv = 1.
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function (1.18) with Pgκ(Ŵi)′θ in place of Pκ(Ŵi)′θ. By collecting those terms that depend

only on x and those that depend only on v, estimators of the additive components g0(x) and

λτ(v) can be constructed.

As before, we can deal with the generated regressor problem by using an asymptotic

expansion analogous to that given in Theorem 1.2. Yet, the derivation of the rate of conver-

gence of ĝ to g0 is more complicated than the semiparametric case when g0 is unknown up

to finite-dimensional parameters. This is because the estimation variance and bias caused

by nonparametrically estimating g0 invalidate asymptotic properties in the semiparametric

setting. Specifically, since g0 is nonparametric, the number of regressors κ in series estima-

tion grows with the sample size and hence decreases the approximation error at a cost of

slowing down the convergence rate of the estimation variance. This is in contrast to the

semiparametric case which treats κ fixed and therefore changes the asymptotic properties of

the estimator.

Using series methods without imposing additivity, the proposed estimation procedure

can be possibly further extended to the triangular model without additivity, as described in

(1.12). Specifically, it is straightforward to construct an estimator of m∗
τ in which the control

variable V enters the model in a nonseparable way. The estimator of m∗
τ may serve as an

intermediate object in forming estimators of some parameters of interest such as the average

structural function. We leave this possibility to future research.

1.7 Monte Carlo Simulation

1.7.1 Simulation Designs

To illustrate the implementation of the proposed estimation procedure and evaluate the

finite-sample properties of the estimator β̂ in the semiparametric model, this section con-

ducts a simulation study and reports small-scale Monte Carlo results. We then consider an

empirical illustration in the next section. To begin, we are concerned with estimating the
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scalar parameter β0 based on the following data generating process (DGP)

Y1 = 1{X + β0Z1 > U},

X = α0 + α1Z1 + α2Z2 + σ(Z2)η,

U = λ̃τ(η) +U∗,

with the exogenous explanatory variable Z1 ∼ N(1,1), the excluded instrument Z2 ∼ N(0,1),
the first-stage error η ∼ N(0,4/9), and the control function λ̃τ(η). We consider two different

DGPs, depending on the distribution of U∗ and the functional forms of σ(z2) and the control

function:

DGP 1 ∶

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ̃τ(η) = η,
U∗ ∼ N(0,1),
σ(z2) = 1,

and

DGP 2 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̃τ(η) = −0.4 + 0.5η + φ(η),
φ(η) = exp(−(η − 1)2),
U∗ ∼ N(0, exp(0.1 + 0.5Z1)/

√
4.5),

σ(z2) = exp(z2/2).

The first design implies that (U, η) are bivariate normally distributed and the control

function is linear: λ̃τ(η) = η under which the model is correctly specified for the 2SProbit

estimator. The second design allows for the presence of heteroskedasticity in both outcome

and first-stage equations and a control function with a nonlinear component φ(η). The

function λ̃τ(η) = −0.4 + 0.5η + φ(η) is taken with slight modification from Lee (2007). These

two designs are chosen to share some common features. In particular, it holds that E(X) ≈ 0,

Var(X) ≈ 1, E(U∗) ≈ 0, Var(U∗) ≈ 1, E(U) ≈ 0, and Var(U) ≈ 1.5.

To investigate the potential gain from using our approach, we compare the proposed

estimator with the following two estimators available in the literature:

(a) The two-stage probit estimator of Smith and Blundell (1986) or Rivers and Vuong (1988).
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(b) The two-stage least square (i.e. linear probability) estimator that is frequently used in

applied work.35

The above alternative estimators and the estimator introduced in this chapter are referred

to in this section as 2SProbit, 2SLS, and TBRQ, respectively. For each DGP, each estimator

is calculated using three sample sizes: n = 250, 500 and 1,000. We set the true values of

parameters: β0 = 1 and (α0, α1, α2) = (1, 2/3, 2/3). The number of Monte Carlo replications

per experiment is set to B = 500. We consider the median case: τ = 0.5 throughout this

section.

For the TBRQ estimator, we assume that all instruments Z are continuously distributed36

and in the first stage estimate the conditional CDF FX1∣Z(X1i ∣ Zi) at X1i and Zi by using

the Nadaraya-Watson estimator (smoothing the dependent variable and covariates)37 of the

form

V̂i = F̂X1∣Z(X1i ∣ Zi) =
∑nj=1,j≠iGg(Zj −Zi)Gg0(X1j −X1i)

∑nj=1,j≠iGg(Zj −Zj)
,

whereGg0(ui) = G(ui/g0) withG and g0 being a univariate kernel function and the bandwidth

associated with X1i, respectively and Gg(u) = Πdz=2
i=1 (G(ui/gi)/gi) is a dz-dimensional kernel

function constructed by the product of the univariate kernel function G and a vector of

bandwidth g = (g1, g2). The second step carries out the series smoothed maximum score

estimation procedure using the regressors (X1, Z1, V̂ ) and requiring the choice of the basis

function and the number of series terms κ to approximate the unknown function Q0.5(U ∣
V ) ≡ λ0.5(V ). In the experiments, we use piece-wise quadratic B-splines as base functions

to approximate the unknown control function λ0.5(V ). The smoothing function K is taken

35Theoretically speaking, applying the two-stage least square to endogenous binary response models is not
appropriate since its consistency requires orthogonality conditions that arise in the linear models. Moreover,
2SLS is incompatible with the nature of the observed data.

36In applied settings, the presence of a mix of discrete and continuous instruments is frequently encoun-
tered. In that case, to deal with discrete covariates, one can use the conventional frequency method or the
new approach suggested by Li and Racine (2008) by smoothing the discrete covariates. See Li and Racine
(2008) for details.

37From the theoretical point of view, the advantage of the smoothed version of the CDF estimator is the
improvement of the higher-order estimation efficiency in the sense that when using smoothing along with
the optimal bandwidths, the higher order terms associated with the bandwidth for the dependent variable
in the integrated mean square error are of the smaller order as the covariates are of higher dimension.
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to be the cumulative normal distribution function. Our estimation procedure involves three

kinds of smoothing parameters: one (g) for nonparametric conditional CDF estimation,

one (κ) for the series approximation to the conditional quantile λτ , and one (h) for the

smoothing function K. When estimating the conditional CDF in the first stage, to reduce

the computational cost we follow Silverman (1986) by using the bandwidths (g0, g1, g2) of

the form gi = 1.06 × σ̂i × n−ρg , i = 0,1,2, where σ̂ is a robust measure of spread given by

σ̂ = min(sample standard deviation, interquartile range/1.349) for the respective variable

and ρg = 1/7 is the convergence rate of the bandwidth gi, i = 0,1,2. Data-based methods

for choosing the first-stage bandwidth are precluded in the experiments since they entail

lengthy computing times. Note that in our simulation designs, the combination of ν = 4,

r = 2, and dz + 1 = 3 due to smoothing the X1-direction satisfies equation (1.25) implied by

Assumption 1.12, so that undersmoothing the first-stage bandwidth gi is not required. We

choose the values of the number of the series expansion terms κ that satisfy Assumption 1.5(a)

and allow 4 different values of κ for each sample size. Based on the formula κ = Cκnρκ , we

choose Cκ = 1 and ρκ = 1/4, leading to approximately κ = 4, 5, 6 for n = 250, 500, and 1000,

respectively.

Regarding the computational methods, it is known that the smoothed score function

(1.18) can have many local optima and the use of a global optimization method is necessary.

The method to compute the parameter estimates is based on generalized simulated annealing

(GSA), proposed by Tsallis and Stariolo (1996), which generalizes both the fast simulated

annealing and classical simulated annealing procedures. All experiments were carried out in

R.

1.7.2 Simulation Results

The performance of each estimator of β0 = 1 for each design, with the sample size of 100,

500, and 1000, is summarized in Tables 1.1-1.2, which report the bias, standard deviation

(SD), root-mean-square error (RMSE), median absolute deviation (MAD), and the 25%,

50%, and 75% sample quantiles.



44

Tables 1.1-1.2 indicate some general findings. First, in Design 1 where the parametric

model is correctly specified, 2SProbit performs best, as expected, whereas the TBRQ exhibits

the nonnegligible bias and has larger RMSE than the 2SProbit for all values of κ under

consideration when n = 250. This is to be expected as the TBRQ uses several nonparametric

estimates, which can be inaccurate for the small sample size. However, the bias of the

TBRQ decreases dramatically as the sample size increases from n = 250 to 500 and the

performance of the TBRQ seems to be satisfactory for n = 1000. In addition, the biases

of TBRQ accounts for relatively small fraction of MSE. Also note that for some certain

range of κ in the sample size considered, the choice of κ has an important effect on the

performance of the TBRQ, in the sense that both bias and variance decrease as the number of

approximating functions increases. This implies that the performance of the TBRQ estimator

can be improved by choosing the number of series terms effectively. This is indeed an

important topic for future research. For Design 2, the results in Table 1.2 reflect the benefits

of the TBRQ when heteroskedasticity is present in both outcome and first-stage equations.

It’s somewhat surprising that, unlike the 2SProbit, the 2SLS in Design 2 performs relatively

well in terms of its RMSE and MAD. A possible explanation for this result is that there may

be a certain offsetting effect on the imprecision caused by the outcome and first-stage model

misspecifications, because in the experiments not reported here, the 2SLS exhibits large

opposite biases when heteroskedasticity is present either in the outcome or in the first-stage

model but not both. Moreover, the 2SLS has low variance but its bias does not vanish as the

sample size increases. This is similar to the simulation results in Rothe (2009). On the other

hand, the 2SProbit estimator performs badly, exhibiting the biases in the neighborhood of

0.5 regardless of the sample size, indicating its inconsistency under misspecifications such as

heteroskedasticity and the nonlinear control function. In contrast, in terms of RMSE, our

TBRQ outperforms 2SProbit uniformly over different values of κ in sample sizes of n = 500

and n = 1000 in Design 2. In summary, the results in simulation experiments indicate that

the proposed TBRQ estimator works reasonably well in finite samples.
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We end this section by discussing some further efforts needed to investigate the pro-

posed TBRQ estimator. First, it is desirable to compare the TBRQ with the other existing

semiparametric estimators in endogenous binary response models, proposed by Blundell and

Powell (2004), Rothe (2009), and Krief (2011), under the designs of DER and QER. Sec-

ondly, more exercises are needed to investigate the sensitivity of the TBRQ to the first- and

second-stage bandwidth selection, different choices of base functions, and different distribu-

tional specifications of U∗ such as mixed or asymmetric distributions.

1.8 Conclusion

Endogeneity in the nonlinear econometric models is an important but difficult problem.

The primary objective of this chapter is to develop a semiparametric (or distribution-free)

estimator for the binary response model under the presence of endogeneity and general forms

of unknown heteroscedasticity. To do so we have presented a two-step control function pro-

cedure by imposing a weak nonparametric quantile restriction. Following the insights of

Newey, Powell, and Vella (1999), Lee (2007), Newey (2009) and Horowitz (1992), our esti-

mation procedure is based upon series approximation and kernel-based smoothing techniques

to impose additive separability restrictions and to facilitate the asymptotic analysis, respec-

tively. The semiparametric estimator is shown to be consistent and asymptotically normally

distributed. We have also given the conditions under which the estimator has the same

asymptotic distribution that it would have if the nonparametric components were known.

Our approach can be extended in a straightforward fashion to the fully nonparametrically

binary response model with endogeneity, whereas existing approaches are not applicable to

such cases.

The work here leaves open several important directions for future research. One of these

is to find a way to carry out consistent model specification tests for endogeneity and tests

for additivity. Specifically, the former is to test whether or not the control function varies

with the control variable. For the latter, several tests of additivity have been proposed in the

context of nonparametric conditional mean models (with a link function), see Horowitz (2012)
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for a review. It would be interesting to develop analogous tests for a partially linear and

additive specification against a general nonparametric nonseparable alternative in our model.

Such tests will be useful to test if the control variable enters the model in an additive fashion.

Secondly, following the idea that was initially suggested by Koenker and Bassett (1982),

imposing quantile restrictions here could provide a Kolmogorov-Smirnov or Cramer-von-

Mises type testing procedure for the DER or the presence of heteroskedasticity by comparing

quantile coefficients on different parts of the conditional distribution. Additionally, it would

be desirable to investigate the efficiency gain by (optimally) combining information over

different quantiles. Another challenging and important task is to find data-based methods

for optimally choosing the number of the series expansion terms κ in practice. Finally, it

would also be useful to generalize the approach of this chapter to the model with multinomial

responses.
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Table 1.1 Simulation results: Design 1

Bias SD RMSE MAD 25% 50% 75%

n=250 2SProbit 0.031 0.307 0.309 0.276 0.822 0.999 1.212

2SLS 0.032 0.339 0.340 0.302 0.817 0.987 1.229

TBRQ (κ = 4) 0.903 2.216 2.393 0.595 0.875 1.295 2.037

TBRQ (κ = 5) 0.558 1.165 1.292 0.578 0.864 1.277 1.842

TBRQ (κ = 6) 0.497 0.966 1.086 0.589 0.870 1.309 1.832

TBRQ (κ = 7) 0.452 0.732 0.860 0.606 0.932 1.320 1.773

n=500 2SProbit 0.008 0.206 0.206 0.204 0.860 0.998 1.133

2SLS 0.013 0.222 0.223 0.227 0.850 1.004 1.156

TBRQ (κ = 5) 0.266 0.616 0.671 0.472 0.866 1.140 1.516

TBRQ (κ = 6) 0.254 0.581 0.634 0.459 0.855 1.155 1.479

TBRQ (κ = 7) 0.257 0.472 0.537 0.423 0.933 1.186 1.510

TBRQ (κ = 8) 0.271 0.417 0.498 0.369 0.975 1.205 1.471

n=1000 2SProbit 0.004 0.132 0.132 0.136 0.910 1.003 1.092

2SLS 0.007 0.153 0.154 0.152 0.900 0.994 1.110

TBRQ (κ = 6) 0.116 0.334 0.353 0.319 0.871 1.070 1.310

TBRQ (κ = 7) 0.133 0.328 0.354 0.296 0.894 1.082 1.311

TBRQ (κ = 8) 0.175 0.299 0.347 0.254 0.974 1.133 1.327

TBRQ (κ = 9) 0.235 0.272 0.359 0.230 1.051 1.196 1.380
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Table 1.2 Simulation results: Design 2

Bias SD RMSE MAD 25% 50% 75%

n=250 2SProbit 0.581 0.573 0.816 0.507 1.189 1.478 1.888

2SLS 0.064 0.358 0.363 0.317 0.702 0.888 1.138

TBRQ (κ = 4) 0.603 1.554 1.667 0.543 0.803 1.149 1.824

TBRQ (κ = 5) 0.361 0.939 1.007 0.512 0.804 1.133 1.622

TBRQ (κ = 6) 0.321 0.777 0.841 0.522 0.806 1.143 1.659

TBRQ (κ = 7) 0.331 0.666 0.743 0.530 0.889 1.193 1.652

n=500 2SProbit 0.535 0.357 0.643 0.313 1.305 1.492 1.725

2SLS 0.078 0.223 0.237 0.206 0.769 0.904 1.048

TBRQ (κ = 5) 0.152 0.549 0.570 0.363 0.819 1.050 1.316

TBRQ (κ = 6) 0.153 0.536 0.557 0.364 0.818 1.057 1.315

TBRQ (κ = 7) 0.148 0.445 0.469 0.357 0.849 1.071 1.331

TBRQ (κ = 8) 0.171 0.370 0.407 0.328 0.915 1.116 1.369

n=1000 2SProbit 0.521 0.228 0.569 0.214 1.371 1.511 1.659

2SLS 0.079 0.161 0.180 0.159 0.804 0.911 1.020

TBRQ (κ = 6) 0.019 0.289 0.289 0.252 0.824 0.978 1.188

TBRQ (κ = 7) 0.035 0.281 0.284 0.262 0.846 0.999 1.210

TBRQ (κ = 8) 0.066 0.264 0.272 0.226 0.879 1.021 1.195

TBRQ (κ = 9) 0.117 0.222 0.251 0.214 0.956 1.098 1.245
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1.9 Appendix

The Interval Estimator of Response Probabilities

In addition to the finite-dimensional coefficients β0, the choice probability Pr(Y = 1 ∣X)
and marginal effects of the covariates say x1 , ∂Pr(Y = 1 ∣X)/∂x1, are also key parameters of

interest in the binary response model. General speaking, to point identify and consistently

estimate Pr(Y = 1 ∣ X), one needs to strengthen the QER to the DER. To see this, recall

that under the QER the model imply

Pr(Y = 1∣X ′β0 + λτ(V )
> >
= 0) = 1 − τ.

< <

The intermediate conditional probability Pr(Y = 1 ∣X,V ) is given by

∫
R

1{X ′β0 +U > 0}dFU ∣X,V = ∫
1

0
1{X ′β0 + λτ(V ) > 0}dτ,

where the equality follows from a change-of-variable: U → F −1
U ∣X,Z by assuming that the QER

holds for all τ ∈ (0,1). Thus it is clear that Pr(Y = 1 ∣ X,V ) is point identified only under

the DER. On the other hand, Pr(Y = 1 ∣ X,V ) is not identified if QER holds for just a

single quantile. Between these two extreme cases, partial identification arises by looking at

a number of different quantiles.

Following Blundell and Powell (2003), we define the average structural function, ASF(x),
that summarizes the effect on the whole distribution by integrating Pr(Y = 1 ∣ X = x,V )
over the marginal distribution of V , i.e.,

ASF(x) ≡ ∫ Pr(Y = 1 ∣X = x,V )dFV .

Using the idea similar to that of Kordas (2006), we summarize below how to partially

identify and consistently estimate the interval of the choice probability by looking at a

number of different quantiles. Fix X = x and let a grid T = {τ 1, . . . , τm ∶ τ 1 < ⋅ ⋅ ⋅ < τm}.

Define

τ̂min
i (x) ≡ arg min

τ∈T
{τ ∶ m̂∗

τ(x, V̂i) > 0}, i = 1, . . . , n,
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where m̂∗
τ(x, V̂i) = x′β̂ + λ̂τ(V̂i).

An interval estimate of F (x,Vi) ≡ Pr(Yi = 1 ∣X = x,Vi) can be formed by

1 − τ̂min
i (x) ≤ P̂r(Yi = 1 ∣X = x, V̂i) < 1 − τ̂min−1

i (x).

Then given the interval estimate of Pr(Yi = 1 ∣X = x,Vi), the interval estimate of ASF(x)
is immediately obtained by

1 − 1

n

n

∑
i=1

τ̂min
i (x) ≤ 1

n

n

∑
i=1

P̂r(Yi = 1 ∣X = x, V̂i) < 1 − 1

n

n

∑
i=1

τ̂min−1
i (x).

Despite the ASF(x) is not point identified under the weak QER, the parameter that may

be of interest is the average quantile structural function (AQSF), which is an immediate

extension of Hoderlein’s (2009) average median structural function, defined as

AQSF(x) = ∫ Qτ(Y ∣X = x,V )dFV = ∫ 1{x′β0 + λτ(V ) > 0}dFV .

The identification of AQSF(x) may allow the researcher to examine and compare the

structural effect for different quantiles.

The following appendix gathers the proofs of theorems in the main text and of lemmas

used to prove the theorems. For the following proof, let C denote a generic positive constant

that may be different in different uses. Let λmin(A) and λmax(A) denote the minimum and

maximum eigenvalues of a symmetric matrix A. For the sake of simplifying notation, we will

write ≃ for up to higher-order terms.

Proof of Theorem 1.1

The proof of identification is similar to the argument used in the exogenous binary re-

sponse model by Manski (1988) and Horowitz (2009). Let γ̄ ≠ γ0 and λ̄τ ≠ λτ be any respec-

tive alternatives of parametric and nonparametric components satisfying the scale normal-

ization, i.e., γ0 = (1, β′0)′ and γ̄ = (1, β̄′)′. Define the set S(γ̄, λ̄τ) ≡ {(x, z) ∶ {x′γ0 + λτ(v) <
0 ≤ x′γ̄ + λ̄τ(v)} ∪ {x′γ̄ + λ̄τ(v) < 0 ≤ x′γ0 + λτ(v)}}. Since the first components of γ0

and γ equal 1, the set S(γ̄, λ̄τ) can be rewritten as {(x, z) ∶ {x1 + x̃′β0 + λτ(v) < 0 ≤
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x1 + x̃′β̄ + λ̄τ(v)} ∪ {x1 + x̃′β̄ + λ̄τ(v) < 0 ≤ x1 + x̃′β0 + λτ(v)}}. Since the distribution of X1 is

assumed to have everywhere positive density conditional on X̃ = x̃ and V = v, the set S(γ̄, λ̄τ)
has positive probability whenever −x̃′β̄−λ̄τ(v) < −x̃′β0−λτ(v) or −x̃′β0−λτ(v) < −x̃′β̄−λ̄τ(v).
This would occur if we can show Pr(x̃′β0+λτ(v) = x̃′β̄+λ̄τ(v)) < 1. It is equivalent to showing

that Pr(x̃′(β0− β̄)+(λτ(v)− λ̄τ(v)) = 0) = 1 implies β0 = β̄ (and therefore γ0 = γ̄) and λτ = λ̄τ .
To show this, by the differentiability assumption on λτ and v0 and ∆λ̄τ(V ) ≡ λτ(V )− λ̄τ(V )
is continuously differentiable, differencing the identity X̃ ′(β0 − β̄) +∆λ̄τ(V ) = 0 with respect

to Z21 and X yields
∂∆λ̄τ(V )

∂V

∂v0(X1, Z)
∂Z21

= 0

and
∂X̃ ′(β0 − β̄)

∂X
+ ∂∆λ̄τ(V )

∂V

∂v0(X1, Z)
∂X

= 0,

respectively. By part (c) of Assumption 1.3, we have ∂v0(X1, Z)/∂Z21 ≠ 0 implying ∂∆λ̄τ(V )/∂V =
0. It then follows from the second equation that ∂X̃ ′(β0 − β̄)/∂X = 0. This along with the

linear index restriction must be the case that X̃ ′(β0 − β̄) = 0. Finally, Assumption 1.3 (b)

implies that this is only possible if β0 = β̄ and therefore λτ = λ̄τ . This completes the proof of

the theorem.

Proof of Corollary 1.1

Recall that the model implies

Qτ(Y ∣X,Z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if P (Y = 1 ∣X,Z) ≤ 1 − τ ⇐⇒ P (U > −X ′β0 ∣X,Z) ≤ 1 − τ ⇐⇒ X ′β0 ≤ −λτ(V )
1 if P (Y = 1 ∣X,Z) > 1 − τ ⇐⇒ P (U > −X ′β0 ∣X,Z) > 1 − τ ⇐⇒ X ′β0 > −λτ(V ).

Define the population objective function Q(β̄, λ̄τ) ≡ E[((1 − τ) − Y )1{X ′β̄ + λ̄τ(V ) > 0}]

where (β̄, λ̄τ) is a pair of generic elements in the respective parameter spaces. We want to

show that Q(β̄, λ̄τ) is uniquely minimized at β̄ = β0 and λ̄τ = λτ . Note first that by the law

of iterated expectations,

Q(β̄, λ̄τ) = E[((1 − τ) −E(Y ∣X,Z)) ⋅ 1{X ′β̄ + λ̄τ(V ) > 0}]

= E[((1 − τ) −Pr(Y = 1 ∣X = x,Z = z))] ⋅ 1{x′β̄ + λ̄τ(v) > 0}]

= E[((1 − τ) −Pr(U > −X ′β0 ∣X = x,Z = z))] ⋅ 1{x′β̄ + λ̄τ(v) > 0}]
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where x = (x1, z′1)′ and z = (z′1, z′2)′ are arbitrarily chosen and v = FX1∣Z(x1 ∣ z). Notice that

λ̄τ(v) is just a point given v (or x and z). Next consider Q(β̄, λ̄τ) evaluated at β̄ = β0 and

λ̄τ(⋅) = λτ(⋅). Since

1{x′β0 + λτ(v) > 0} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ⇐⇒ x′β0 > −λτ(v) ⇐⇒ Pr(U > −X ′β0 ∣X = x,Z = z) > 1 − τ
0 ⇐⇒ x′β0 ≤ −λτ(v) ⇐⇒ Pr(U > −X ′β0 ∣X = x,Z = z) ≤ 1 − τ

⇐⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q(β0, λτ) is negative

Q(β0, λτ) is zero,
(1.27)

the population objective function evaluated at the truth values of parameters, i.e., Q(β0, λτ),
must be nonpositive. Next Consider Q(β,λ) being evaluated at any β̄ ≠ β0 or λ̄τ ≠ λτ . We

want to show that if the identification condition: Pr[1{X ′β̄+ λ̄τ(V ) ≥ 0} ≠ 1{X ′β0+λτ(V ) ≥
0}] > 0 holds for all β̄ ≠ β0 or λ̄τ ≠ λτ , then we have

E[((1 − τ) − Y )1{X ′β̄ + λ̄τ(V ) > 0}] > E[((1 − τ) − Y )1{X ′β0 + λτ(V ) > 0}].

To see this, fix X = x and Z = z such that 1{x′β0+λτ(v) > 0} = 1 and 1{x′β̄+λ̄τ(v) > 0} = 0

for β̄ ≠ β0 or λ̄τ ≠ λτ . We can do so because by the assumption stated in the theorem there

is a subset of the support of (X,Z) that occurs with nonzero probability and on which the

condition x′β̄ + λ̄τ(v) ≤ 0 < x′β0 + λτ(v) holds. Since the condition 1{x′β0 + λτ(v) > 0} = 1

results in some negative value of Q(β0, λτ) as previously shown in (1.27) and Q(β̄, λ̄τ) = 0

under the condition of 1{xβ̄ + λ̄(v) > 0} = 0 by using the same argument, it then follows

that Q(β̄, λ̄τ) = 0 > Q(β0, λτ). Similarly, we also have Q(β̄, λ̄τ) > Q(β0, λτ) = 0 for the

case of 1{x′β0 + λτ(v) > 0} = 0 and 1{x′β̄ + λ̄τ(v) > 0} = 1. Putting things together, we

conclude that β0 and λτ are the unique joint minimizers of Q(β̄, λ̄τ). The desired result

then follows from the fact that the choices of x1 and z and hence v are arbitrary and that

measurable separability between X and V imposed in Assumption 1, ensuring that X ′β and

V = FX1∣Z(X1, Z) can vary sufficiently independently.
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Proof of Theorem 1.2(a)

To prove consistency, define

Q̂nκ(θ) =
1

n

n

∑
i=1

t(Ŵi)[Yi − (1 − τ)]K (Pκ(Ŵi)′θ
h

) and θ̂nκ ≡ arg max
θ∈Θκ

Q̂nκ(θ),

Q̃nκ(θ) =
1

n

n

∑
i=1

t(Wi)[Yi − (1 − τ)]K (Pκ(Wi)′θ
h

) and θ̃nκ ≡ arg max
θ∈Θκ

Q̃nκ(θ),

Qnκ0(θ) =
1

n

n

∑
i=1

t(Wi)[Yi − (1 − τ)]K (Pκ(Wi)′θ + bκ0(Vi)
h

) and θ̃nκ0 ≡ arg max
θ∈Θκ

Qnκ0(θ),

Q∗
nκ0(θ) =

1

n

n

∑
i=1

t(Wi)[Yi − (1 − τ)]1{Pκ(Wi)′θ + bκ0(Vi)} and θ∗nκ0 ≡ arg max
θ∈Θκ

Q∗
nκ0(θ),

Q∗
κ0(θ) = E[t(W )[Y − (1 − τ)]1{Pκ(W )′θ + bκ0(V ) ≥ 0}] and θ∗κ ≡ arg max

θ∈Θκ
Q∗
κ0(θ).

Write

∣Q̂nκ(θ) −Q∗
κ0(θ)∣ = ∣Q̂nκ(θ) − Q̃nκ(θ)∣ + ∣Q̃nκ(θ) −Qnκ0(θ)∣

+ ∣Qnκ0(θ) −Q∗
nκ0(θ)∣ + ∣Q∗

nκ0(θ) −Q∗
κ0(θ)∣. (1.28)

Uniform convergence of each term on the right hand side of (1.28) is shown by the fol-

lowing lemmas. Then by the usual consistency argument in Theorem 2.1 in Newey and

McFadden (1994), the consistency result in part (a) follows since θ̂nκ and θ∗κ uniquely max-

imize Q̂nκ(θ) and Q∗
κ0(θ), respectively, and uniqueness of the series representation of the

function λτ(V ) implying that ∥θ∗κ − θκ0∥ → 0 as n → 0. This completes the proof of the

theorem.

Lemma 1.9.1. For any η > 0, Q̂nκ(θ̂nκ) − Q̃nκ(θ̂nκ) < η for all sufficiently large n.
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Proof. First it can be shown that the feasible objective function Q̂nκ(θ) and the infeasible

one Q̃nκ(θ) get close to each other uniformly in θ as n→∞, i.e.,

sup
θ∈Θκ

∣Q̃nκ(θ) − Q̂nκ(θ)∣

= sup
θ∈Θκ

∣ 1

n

n

∑
i=1

[Yi − (1 − τ)]K (Pκ(Ŵi)′θ
h

) − 1

n

n

∑
i=1

[Yi − (1 − τ)]K (Pκ(Wi)′θ
h

)∣

≤ C sup
θ∈Θκ

∣K (Pκ(Ŵi)′θ
h

) −K (Pκ(Wi)′θ
h

)∣

≤ C sup
θ∈Θκ

(1

h
∣K(1)(d∗i )∣ ×max

1≤i≤n
∣(Pκ(Ŵi) − Pκ(Wi))

′
θ∣)

≤ C sup
θ∈Θκ

(1

h
∣K(1)(d∗i )∣ ×max

1≤i≤n
∣dλτ(Ṽi)

dv
(V̂i − Vi)∣)

≤ C sup
θ∈Θκ

(1

h
∣K(1)(d∗i )∣ × (max

1≤i≤n
∣dλτ(Ṽi)

dv
(V̂i − Vi)∣))

= Op(h−1ζ1(κ)∆v)

= op(1)

by Lemma A.1 where Ṽi is some value between Vi and V̂i.

Lemma 1.9.2. ∣Q̃nκ(θ) −Qnκ0(θ)∣ → 0 almost surely uniformly over θ ∈ {−1,1} ×Rdx+κ−1.

Proof. This lemma follows since the approximation error bκ0(v) → 0 for almost every v.

Lemma 1.9.3. ∣Qκ0(θ) −Qκ0(θ)∣ → 0 almost surely uniformly over θ ∈ {−1,1} ×Rdx+κ−1.

Proof. Observe that K (Pκ(W )
′θ+bκ0(V )
h ) converges to 1{Pκ(W )′θ + bκ0(V ) ≥ 0} as h → 0 if

Pκ(W )′θ + bκ0(V ) ≠ 0. Thus, Qκ0(θκ) can be arbitrarily close to Q∗
κ0(θκ) for all θ ∈ Θκ as

n→∞. Formally, for any η > 0, write

∣Qκ0(θκ) −Q∗
κ0(θκ)∣ ≤ n−1

n

∑
i=1

∣1{X ′
iβ0 + λτ(Vi) ≥ 0} −K((X ′

iβ0 + λτ(Vi))/h)∣1{∣X ′
iβ0 + λτ(Vi)∣ ≥ η}

+ n−1
n

∑
i=1

∣1{X ′
iβ0 + λτ(Vi) ≥ 0} −K((X ′

iβ0 + λτ(Vi))/h)∣1{∣X ′
iβ0 + λτ(Vi)∣ < η}.

By applying the same argument as that in the proofs of Lemma 4 in Horowitz (1992),

one can show that both terms on the right hand side of the equation above converge to zero

uniformly over θ ∈ Θ∗
κ = {1,−1} ×B ×Λκ as n→∞.
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Lemma 1.9.4. Q∗
nκ0(θ̄) → Q∗

κ0(θ̄) almost surely uniformly over θ̄ ∈ Rdx+κ.

Proof. This proof is given as in the proof in Lemma 4 of Manski (1988).

Proof of Theorem 1.2(b) and (c)

Let K
(2)
hκ0i denote K

(2)
h (Pκ(Wi)′θκ0). Recall that

Hκ = E[t(W )Pκ(W )Pκ(W )′F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )]

and define

Ĥnκ = n−1
n

∑
i=1

t̂i[Yi − (1 − τ)]K(2)hκ0iP̂κiP̂
′
κi,

H̃nκ = n−1
n

∑
i=1

ti[Yi − (1 − τ)]K(2)hκ0iPκiP
′
κi,

and

Ĝnκ(θ) = n−1Ĥ−1
nκ

n

∑
i=1

t̂i[Yi − (1 − τ)]K(1)h (Pκ(Ŵi)′(θ − θκ0) + Pκ(Ŵi)′θκ0)P̂κi,

G̃nκ(θ) = n−1H̃−1
nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (Pκ(Wi)′(θ − θκ0) + Pκ(Wi)′θκ0)Pκi.

The following lemmas are useful to prove Theorem 1.2.

Lemma 1.9.5. As n→∞,

(a) max1≤i≤n ti∥P̂κi − Pκi∥2 = Op(ζ1(κ)2∆2
v).

(b) n−1∑ni=1 ti∥P̂κi − Pκi∥2 = Op(ζ1(κ)2∆2
v).

(c) n−1∑ni=1∥Pκi∥2 = Op(κ).

(d) n−1∑ni=1 ti∣t̂i − ti∣ = Op(∆v).

(e) ∥H̃nκ −Hκ∥ = op(1).

(f) ∥Ĥnκ − H̃nκ∥ = Op(ζ1(κ)2∆2
v + κ1/2ζ1(κ)∆v + ζ0(κ)2∆v) = op(1).

Proof. For part (a), a mean value expansion gives pκ(V̂i) − pκ(Vi) = dpκ(Ṽi)
dv (V̂i −Vi), where Ṽi

lies in between V̂i and Vi. Hence

max
1≤i≤n

ti∥P̂κi − Pκi∥2 = max
1≤i≤n

ti
κ

∑
k=1

[pk(V̂i) − pk(Vi)]2 = max
1≤i≤n

ti
κ

∑
k=1

[dpk(Ṽi)
dv

(V̂i − Vi)]
2

= max
1≤i≤n

ti(V̂i − Vi)2
κ

∑
k=1

[dpk(Ṽi)
dv

]
2

= Op(ζ1(κ)2∆2
v),
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where the last equality follows from the fact that max1≤i≤n ti∣V̂i−Vi∣ = Op(∆v) and ∥dpκ(Ṽi)/dv∥ =
Op(ζ1(κ)). Similarly,

n−1
n

∑
i=1

ti∥P̂κi − Pκi∥2 ≤ Cζ1(κ)2n−1
n

∑
i=1

ti∣V̂i − Vi∣2 = Op(ζ1(κ)2∆2
v),

where the first inequality follows from the fact that by the Cauchy-Schwarz inequality, ∥P̂κi−
Pκi∥ ≤ Cζ1(κ)∣V̂i − Vi∣. This completes the proof of part (b).

For part (c), note that

n−1
n

∑
i=1

∥Pκi∥2 = n−1
n

∑
i=1

trace(P̂κiP̂ ′
κi) ≤ C ⋅ trace(Ĥnκ) = Op(κ).

For part (d), using equation (14) of the Appendix in Lee (2007) by slightly modifying

arguments used in Lemma A3 of Newey, Powell, and Vella (1999) yields

n−1
n

∑
i=1

ti∣t̂i − ti∣ = Op(max
1≤i≤n

ti∣V̂i − Vi∣) = Op(∆v).

For part (e), define θ̈nκ = θ̂nκ−θκ0
h . Let {an} be a sequence such that an →∞ and anθ̈nκ → 0

as n → ∞. Define Wnκ = {w̃ ∶ ∥Pκ(w̃)∥ ≤ an} and {θnκ} = {γn1, θ̂nκ}. For any ε > 0,

limn→∞ Pr[∣H̃nκ(θnκ;h) −Hκ∣ > ε] = limn→∞ Pr[∣H̃nκ(θnκ;h) −Hκ∣ > ε ∣ Wnκ]. Then using the

argument that is analogous to that of Theorem 3 (c) (or Lemma 9) of Horowitz (1992), one

can show that E[Hnκ(θnκ;h) ∣ Wnκ] → Hκ and Var[Hnκ(θnκ;h) ∣ Wnκ] → 0 under Assump-

tion 1.7. Next consider part (f). As in (A.5) of Newey, Powell, and Vella (1999), part (f)
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follows that

∥Ĥnκ − H̃nκ∥ = ∥n−1
n

∑
i=1

(t̂iF (1)ετi fmτiP̂κiP̂
′
κi − tiF

(1)
ετi fmτiPκiP

′
κi)∥

= ∥n−1
n

∑
i=1

[tit̂iF (1)ετi fmτi(P̂κiP̂ ′
κi − PκiP ′

κi)

+ (t̂i − tit̂i)F (1)ετi fmτiP̂κiP̂
′
κi + (tit̂i − ti)F (1)ετi fmτiPκiP

′
κi]∥

≤ Cn−1
n

∑
i=1

tit̂i(∥P̂κi − Pκi∥2 + 2∥P̂κi − Pκi∥∥Pκi∥) +Cζ0(κ)2n−1
n

∑
i=1

ti∣t̂i − ti∣

≤ Cn−1
n

∑
i=1

ti∥P̂κi − Pκi∥2 +C(n−1
n

∑
i=1

ti∥Pκi∥2)
1/2

(n−1
n

∑
i=1

tit̂i∥P̂κi − Pκi∥2)
1/2

+Cζ0(κ)2n−1
n

∑
i=1

ti∣t̂i − ti∣

= Op(ζ1(κ)2∆2
v) +Op(κ1/2ζ1(κ)∆v) +Op(ζ0(κ)2∆v),

where the last equality follows from Lemma 1.9.5 (b), (c), and (d).

Let 1n be the indicator function such that 1{λmin(Ĥnκ) ≥ λmin(Hκ)/2 and λmin(H̃nκ) ≥
λmin(Hκ)/2}.

Lemma 1.9.6. As n→∞,

1nn
−1

n

∑
i=1

∥t̂iĤ−1
nκP̂κi − tiH̃−1

nκPκi∥2 = Op(ζ0(κ)2∆v + ζ1(κ)2∆2
v + κζ1(κ)4∆4

v) = op(1).

Proof. The argument used to prove this lemma is the same as the first equation on page

1145 of Lee (2007) with the adjustment for the nonparametrically generated regressor. That

is, the lemma follows from Lemma 1.9.5 (b)-(d) and (f).

Lemma 1.9.7. As n→∞,

max
1≤i≤n

ti∣(P̂κi − Pκi)′θκ0 −
dλτ(Vi)
dv

(V̂i − Vi)∣ = Op(κ−r+1∆v) + op(∆v).
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Proof. Consider

ti [(P̂κi − Pκi)′θκ0 −
dλτ(Vi)
dv

(V̂i − Vi)]

= ti
κ

∑
k=1

[(pk(Ŵi) − pk(Wi))θkκ0 −
dλτ(Vi)

dv
(V̂i − Vi)]

= ti
κ

∑
k=1

[dpk(W̃i)
dv

θkκ0(V̂i − Vi) −
dλτ(Vi)

dv
(V̂i − Vi)]

= ti [
κ

∑
k=1

dpk(Ṽi)
dv

αkκ0 −
dλτ(Ṽi)

dv
] (V̂i − Vi) + ti [

dλτ(Ṽi)
dv

− dλτ(Vi)
dv

] (V̂i − Vi)

= Op(κ−r+1∆v) +
d2(λτ( ˜̃Vi))

dv2
(Ṽi − Vi)(V̂i − Vi)

≤ Op(κ−r+1∆v +∆2
v),

where the second and third equalities follow from the Taylor expansion approximation and

the fact that supv ∣dλτ(v)/∂v − (∂Pκ(w)/∂v)′θκ0∣ = O(κ−1+r), respectively and the last in-

equality follows from a Taylor expansion with dλτ(v)/dv being continuously differentiable

and ˜̃Vi between V̂i and Vi.

Denote K
(1)
hκ0i ≡K

(1)
h (Pκ(Wi)′θκ0) and K

(2)
hκ0i ≡K

(2)
h (Pκ(Wi)′θκ0).

Lemma 1.9.8. As n→∞,

(a) 1n ∥n−1AH−1
nκ∑ni=1 ti[Yi − (1 − τ)]K(2)hκ0i

dλ(Vi)
dv (V̂i − Vi)Pκi∥ = Op ((nh3)−1/2

∆v) .
(b) 1n ∥n−1H−1

nκ∑ni=1 ti[Yi − (1 − τ)]K(2)hκ0iPκibκ0(Vi)∥ = Op(h−1/2κ−r).
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Proof. For part (a), consider

E
⎡⎢⎢⎢⎢⎣
1n ∥n−1AH−1

nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)hκ0i

dλτ(Vi)
dv

(V̂i − Vi)Pκi∥
2 RRRRRRRRRRR
X1, . . . ,Xn, Z1, . . . , Zn

⎤⎥⎥⎥⎥⎦

≤ 1nn
−2

n

∑
i=1

{E[{[Yi − (1 − τ)]K(2)hκ0i}
2∣Xi, Zi] (

dλτ(Vi)
dv

)
2

(V̂i − Vi)2Pκ(Wi)′H−1
nκA

′AH−1
nκPκ(Wi)}

≤ C1nn
−2O(h−3)max

1≤i≤n
(V̂i − Vi)2

n

∑
i=1

trace[tiPκ(Wi)′H−1
nκA

′AH−1
nκPκ(Wi)]

≤ C1nn
−2h−3∆2

v

n

∑
i=1

⎛
⎝

ti[Yi − (1 − τ)]K(2)hκ0i

mini{ti[Yi − (1 − τ)]K(2)hκ0i}
⎞
⎠

trace[tiPκ(Wi)′H−1
nκA

′AH−1
nκPκ(Wi)]

≤ C1nn
−1h−3∆2

vtrace[AH−1
nκ{n−1

n

∑
i=1

ti[Yi − (1 − τ)]K(2)hκ0iPκ(Wi)Pκ(Wi)′}H−1
nκA

′]

= C1nn
−1h−3∆2

vtrace[AH−1
nκA

′]

≤ C(nh3)−1∆2
v

for some constant C < ∞. The desired result follows from Markov’s inequality.

For part (b), define

Bn = n−1H−1
nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)hκ0iPκibκ0(Vi).

For each i = 1,⋯, n, letDb be the n×1 vector with ith component (ti[Yi−(1−τ)]K(2)hκ0i)
1/2
bκ0(Vi)

and Pκ a n×κ matrix with the ith row (ti[Yi − (1 − τ)]K(2)hκ0i)
1/2
P ′
κi. Then Bn = n−1H−1

nκP
′
κDb,

and 1n∥Bn∥2 = 1nn−2D′
bPκH−2

nκP
′
κDb. Also note thatHnκ = n−1∑ni=1 ti[Yi−(1−τ)]K

(2)
hκ0iPκiP

′
κi =
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P′
κPκ/n. By exactly the same arguments used to prove part (a), we have,

1n ∥n−1H−1
nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)hκ0iPκi∥
2

= 1n∥n−1H−1
nκP

′
κDv∥2

= 1nn
−2D′

vPκH
−2
nκP

′
κDv

≤ 1nn
−2λmax(H−1

nκ)D′
vPκH

−1
nκP

′
κDv

= 1nn
−2λmax(H−1

nκ)D′
vPκ(P′

κPκ/n)−1P′
κDv

≤ 1nn
−1λmax(H−1

nκ)λmax(Pκ(P′
κPκ)−1P′

κ)D′
vDv

≤ Op(h−1)max
1≤i≤n

bκ0(Vi)2 = Op(κ−2r/h),

where the first two inequalities follow from the fact that the matrices H−1
nκ and Pκ(P′

κPκ)−1P′
κ

are symmetric. This completes the proof of the lemma.

Lemma 1.9.9. As n→∞

1nĜnκ(θ) = 1nH
−1
nκn

−1
n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (Pκ(Wi)′θκ0)P ′
κi + 1n(θ − θκ0)

+ 1nn
−1H−1

nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)h (Pκ(Wi)′θκ0)Pκibκ0(Vi)

+ 1nn
−1H−1

nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)h (Pκ(Wi)′θκ0)
dλτ(Vi)
dv

(V̂i − Vi)Pκi +R∗
nκ(θ),

where the remainder term R∗
nκ(θ) satisfies

∥R∗
nκ(θ)∥ = Op(κ1/2∆v + ζ0(κ)h−1∥θ − θκ0∥2 + κ1/2h−1∆2

v + κ−2r+1/2) + op(∆v).

Proof. Define

1nĜ
∗
nκ1(θ) = 1n(θ − θκ0) + 1nn

−1H̃−1
nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)hκ0i

dλτ(Vi)
dv

(V̂i − Vi)Pκi

+ 1nn
−1H̃−1

nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)hκ0ibκ0iPκi

and

1nḠ
∗
nκ(θ) = 1n(θ − θκ0) + 1nn

−1Ĥ−1
nκ

n

∑
i=1

t̂iF
(1)
ετi fmτi(P̂κi − Pκi)′θκ0

+ n−1Ĥ−1
nκ

n

∑
i=1

t̂iF
(1)
ετi fmτibκ0iP̂κi.
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Then the term 1nĜ∗
nκ(α) can be expressed as

1nĜ
∗
nκ(θ) = 1nĜ

∗
nκ1(θ) + [1nḠ∗

nκ(θ) − 1nĜ
∗
nκ1(θ)] + [1nĜ∗

nκ(θ) − 1nḠ
∗
nκ(θ)]

≡ 1nĜ
∗
nκ1(θ) +R∗

nκ1(θ) +R∗
nκ2(θ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡R∗nκ(θ)

.

Notice that X ′
iβ0 + λτ(Vi) = P ′

κiθκ0 + bκ0i, so that

∥R∗
nκ1(θ)∥ ≤ ∥1nn

−1Ĥ−1
nκ

n

∑
i=1

t̂iF
(1)
ετi fmτi(P̂κi − Pκi)′θκ0P̂κi

−1nn
−1Ĥ−1

nκ

n

∑
i=1

t̂iF
(1)
ετi fmτi

dλτ(Vi)
dv

(V̂i − Vi)P̂κi∥

+ ∥1nn
−1Ĥ−1

nκ

n

∑
i=1

t̂iF
(1)
ετi fmτi

dλτ(Vi)
dv

(V̂i − Vi)P̂κi

−1nn
−1H̃−1

nκ

n

∑
i=1

tiF
(1)
ετi fmτi

dλτ(Vi)
dv

(V̂i − Vi)Pκi∥

+ ∥1nn
−1Ĥ−1

nκ

n

∑
i=1

t̂iF
(1)
ετi fmτibκ0iP̂κi − 1nn

−1H̃−1
nκ

n

∑
i=1

tiF
(1)
ετi fmτibκ0iPκi∥

≡ G11 +G12 +G13.

Consider the first term G11:

G11 = ∥1nn
−1Ĥ−1

nκ

n

∑
i=1

t̂iF
(1)
ετi fmτi[(P̂κi − Pκi)′θκ0 −

dλτ(Vi)
dv

(V̂i − Vi)]P̂κi∥

≤ 1nn
−1

n

∑
i=1

∥Ĥ−1
nκP̂κi∥t̂iF

(1)
ετi fmτi ∣(P̂κi − Pκi)′θκ0 −

dλτ(Vi)
dv

(V̂i − Vi)∣

≤ 1n
⎛
⎝
n−1

n

∑
i=1

∥Ĥ−1
nκP̂κi∥2

⎞
⎠

1/2
⎛
⎝
n−1

n

∑
i=1

t̂i(F (1)ετi fmτi)
2 ∣(P̂κi − Pκi)′θκ0 −

dλτ(Vi)
dv

(V̂i − Vi)∣
2⎞
⎠

1/2

= Op(h−1κ1/2∆v) = op(1) (1.29)

as n Ð→ ∞, where the second inequality follows from the Cauchy-Schwarz inequality and

the last equality is by Lemma 1.9.7 and the fact that 1nn−1∑ni=1∥Ĥ−1
nκP̂κi∥2 = Op(κ).



62

Similarly, for the term G12:

G12 ≤ 1nn
−1

n

∑
i=1

F
(1)
ετi fmτi∥t̂iĤnκP̂κi − tiH̃−1

nκPκi∥ ∣
dλτ(Vi)
dv

(V̂i − Vi)∣

≤ C1n
⎛
⎝
n−1

n

∑
i=1

∥t̂iĤnκP̂κi − tiH̃−1
nκPκi∥2

⎞
⎠

1/2
⎛
⎝
n−1

n

∑
i=1

∣dλτ(Vi)
dv

(V̂i − Vi)∣
2⎞
⎠

1/2

≤ op(1)Op(∆v) = op(∆v) = op(1) as nÐ→∞. (1.30)

Similar arguments give G13 satisfying

G13 = ∥1nn
−1Ĥ−1

nκ

n

∑
i=1

t̂iF
(1)
ετi fmτibκ0(Vi)P̂κi − 1nn

−1H̃−1
nκ

n

∑
i=1

tiF
(1)
ετi fmτibκ0(Vi)Pκi∥

≤ op(1)Op(κ−r) = op(1). (1.31)

Summing up equations (1.29), (1.30), and (1.31) gives that as nÐ→∞

∥R∗
nκ2(θ)∥ = Op(κ1/2∆v) + op(∆v) + op(1) = op(1).

Now consider the term R∗
nκ2(θ). Using the first-order Taylor expansion yields

∥R∗
nκ2(θ)∥ ≡ ∥1nĜ∗

nκ(θ) − 1nḠ
∗
nκ(θ)∥

≤ Ch−1[n−1
n

∑
i=1

t̂i∥Ĥ−1
nκP̂κi∥(P ′

κi(θ − θκo) + (P̂κi − Pκi)′θκ0 + bκ0i)2]

≤ Ch−1 max
1≤i≤n

∥Ĥ−1
nκP̂κi∥(θ − θκ0)′ {

n

∑
i=1

t̂iP̂κiP̂
′
κi}(θ − θκ0)

+Ch−1 {n−1
n

∑
i=1

t̂i∥Ĥ−1
nκP̂κi∥}max

1≤i≤n
[((P̂κi − Pκi)′θκ0)2 + b2

κ0i]

≤ Ch−1ζ0(κ)λmax(Ĥnκ)(θ − θnκ)′(θ − θκ0) +Ch−1κ1/2(∆2
v + κ−2r)

= Op(h−1ζ0(κ)∥θ − θκ0∥2 + h−1κ1/2∆2
v + h−1κ−2r+1/2).

The desired result then follows by combining the last two equations.

Lemma 1.9.10. As n→∞,

(a) ∥G̃nκ(θκ0)∥ = Op((κ/(nh))1/2).
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(b) ∥AG̃nκ(θκ0)∥ = Op((nh)−1/2).

Proof. By using the kernel smoothing arguments, it is not difficult to show that

E[{[Yi − (1 − τ)]K(1)h (Pκ(Wi)′θκ0)}
2∣Xi, Zi] = O(h−1). (1.32)

Now Consider

E[∥AG̃nκ(θκ0)∥2∣X1, . . . ,Xn, Z1, . . . , Zn]

≤ n−2
n

∑
i=1

{tiE[([Yi − (1 − τ)]K(1)h0i)2∣Xi, Zi]P ′
κiH

−1
nκA

′AH−1
nκPκi}

≤ O(h−1)n−2
n

∑
i=1

trace(tiP ′
κiH

−1
nκA

′AH−1
nκPκi)

= O(h−1)n−2
n

∑
i=1

trace(tiAH−1
nκPκiP

′
κiH

−1
nκA

′)

≤ O(h−1)n−2
n

∑
i=1

{min
i
F
(1)
ετi fmτi}

−1

F
(1)
ετi fmτitrace(tiAH−1

nκPκiP
′
κiH

−1
nκA

′)

= O(h−1)n−1trace(AH−1
nκn

−1
n

∑
i=1

tiF
(1)
ετi fmτiPκiP

′
κiH

−1
nκA

′)

= O((nh)−1)trace(AH−1
nκA

′)

= O((nh)−1),

where the first inequality follows from the data being i.i.d. and the second inequality follows

from (1.32). This proves part (b) by Markov’s inequality. Part (a) then follows from replacing

A with the identity matrix and applying Markov’s inequality.

Proof of Theorem 1.2(b) and (c): By Lemma 1.9.9 and the fact that Ĝnκ(θ̂nκ) = 0, we have

1n(θ̂nκ − θκ0) =H−1
nκn

−1
n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (Pκ(Wi)′θκ0)P ′
κi

+ 1nn
−1H−1

nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)h (Pκ(Wi)′θκ0)Pκibκ0(Vi)

+ 1nn
−1H−1

nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)h (Pκ(Wi)′θκ0)
dλτ(Vi)
dv

(V̂i − Vi)Pκi +R∗
nκ(θ̂nκ).

(1.33)
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To prove part (b), suppose that ∥θ̂nκ − θκ0∥ ≤ C((κ/(nh))1/2 + h−1/2κ−r + (κ/(nh3))1/2∆v)

for any constant C > 0. Then applying Lemmas 1.9.9 and 1.9.10 to equation (1.33), we have

1n∥θ̂nκ − θκ0∥ ≤ 1n∥G̃nκ(θκ0)∥ + 1n ∥n−1H̃−1
nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)hκ0i

dλτ(Vi)
dv

(V̂i − Vi)Pκi∥

+ 1n∥n−1H̃−1
nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(2)hκ0ibκ0iPκi∥ + ∥R∗
nκ(θ̂nκ)∥

≤ Op((κ/(nh))
1/2) +Op(κ1/2(nh3)−1/2∆v) +Op(h−1/2κ−r)

+Op(κ1/2∆v + ζ0(κ)∥θ̂nκ − θκ0∥2 + ζ0(κ)∆2
v + ζ0(κ)κ−2r) + op(∆v). (1.34)

(1.35)

The desired result follows since the right-hand side of equation (1.34) is less than C((κ/(nh))1/2+
h−1/2κ−r+κ1/2(nh3)1/2∆v) with probability approaching one and Pr(1n = 1) Ð→ 1 as nÐ→∞.

For part (c), define

Ḡnκ(θκ0) = n−1H̃−1
nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (mτi)Pκi.

By using the arguments similar to those used in the proof of Lemma 1.9.10, we have

E
⎡⎢⎢⎢⎢⎣
1n ∥Ḡnκ(θκ0) − n−1H̃−1

nκ

n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (Pκ(Wi)′θκ0)Pκi∥
2 RRRRRRRRRRR
X1, . . . ,Xn, Z1, . . . , Zn

⎤⎥⎥⎥⎥⎦
≤ C(κ/n) sup

i
∣bκ0i∣.

Hence,

1n ∥Ḡnκ(θκ0) − n−1H̃−1
nκ

n

∑
i=1

[Yi − (1 − τ)]K(1)h (Pκ(Wi)′θκ0)Pκi∥ = op((nh−1/2))

by Markov’s inequality. It then follows from part (e) of Lemma 1.9.5: ∥H̃nκ −Hκ∥ = op(1)
that

1n ∥Ḡnκ(θκ0) − n−1H−1
κ

n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (mτi)Pκi∥ = op((nh)−1/2).

This completes the proof of the theorem since Pr(1n = 1) Ð→ 1 as nÐ→∞.
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Proof of Theorem 1.3

Define

Γκ = E [t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )dλτ(V )
dv

Pκ(W )] ,

Σ1κ = Var(n−1
n

∑
i=1

[Yi − (1 − τ)]Pκ(Wi)K(1)h (mτi)),

Σ2κ = Var(n−1
n

∑
i=1

[Yi − (1 − τ)]Pκ(Wi)K(2)h (mτi))
dλτ(V )

dv
,

Ω1κ ≡ AH−1
κ Σ1κH

−1
κ A

′, and

Ω2κ ≡ AH−1
κ Σ2κH

−1
κ A

′.

Then Σ1κ and Σ2κ can be approximated by

1

nh
τ(1 − τ)(∫ K(1)(u)2 du)E[t(W )Pκ(W )Pκ(W )′fmτ (0 ∣ X̃,Z)]

and 1
nh3 Γκσ2

ζ(V )Γ′
κ, respectively.

Let

ϕκ(w) = AH−1
κ Pκ(w)

= E[t(W )F (1)ετ (0 ∣ 0, X̃,Z)fmτ (0 ∣ X̃,Z)ϕ(W )Pκ(W )′]×

(E[t(W )F (1)ετ (0 ∣ 0, X̃,Z)fmτ (0 ∣ X̃,Z)Pκ(W )Pκ(W )′])−1
Pκ(w).

Then

nhΩ1κ = nhAH−1
κ ΣκH

−1
κ A

′

= τ(1 − τ) (∫ K(1)(u)2 du)E[t(W )ϕκ(W )ϕκ(W )′fmτ (0 ∣ X̃,Z)]

Ð→ τ(1 − τ) (∫ K(1)(u)2 du)E[t(W )ϕ(W )ϕ(W )′fmτ (0 ∣ X̃,Z)],

since E[t(W )∥ϕ(W ) − ϕκ(W )∥2] → 0 as κ→∞.
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For part (a), recall that in the text ετ ≡ U − λτ(V ), β̂ − β0 = AH−1
κ T1nκ + AH−1

κ T2nκ +
op((nh)−1/2), and V̂i − Vi = b(Vi) + ζiσζi(Vi), i = 1, . . . , n. Consider

E[T1nκ + T2nκ] = n−1
n

∑
i=1

E[ti[Yi − (1 − τ)]K(1)h (mτi)Pκ(Wi)]

+ n−1
n

∑
i=1

E [ti[Yi − (1 − τ)]K(2)h (mτi)
dλτ(Vi)

dv
(b(Vi) + ζiσζi(Vi))Pκ(Wi)] .

(1.36)

For the first term on the right hand side in (1.36), standard kernel smoothing arguments

yield

n−1
n

∑
i=1

E[ti[Yi − (1 − τ)]K(1)h (mτi)Pκ(Wi)]

= E[ti[E(Yi ∣Xi, Vi) − (1 − τ)]K(1)(mτi)Pκ(Wi)]

= E[ti[1 −Pr(Ui ≤ −X ′
iβ0 ∣Xi, Vi) − (1 − τ)]K(1)h (mτi)Pκ(Wi)]

= E[ti[τ − Fετ (−mτi ∣mτi, X̃i, Vi)]K(1)h (mτi)Pκ(Wi)]

= ∬ t(w)[τ − Fετ (−s ∣ s, w̃)]K(1)h (s)Pκ(w)fmτ (s ∣ w̃)dsdFW̃ (w̃),

where the first equality follows from the i.i.d. assumption and the law of iterated expectation.

Now making standard change-of-variables to s = hu, expanding and combining both Fετ (−hu ∣
hu, w̃) and fmτ (hu ∣ w̃) around hu = 0 in Taylor expansions, and using the fact that Fετ (0 ∣
X,V ) = τ , we have the following expression as a polynomial in hu

∬ t(w) {[τ − Fετ (−hu ∣ hu, w̃)]K(1) (u)Pκ(w)fmτ (hu ∣ w̃)dudFW̃ (w̃)}

= −∬ t(w){( 1

ν!
F
(ν)
ετ (−ξν ∣ ξν , w̃)fmτ (0 ∣ w̃) +

ν−1

∑
i=1

1

i!(ν − i)!F
(i)
ετ (0 ∣ 0, x̃, V )f (ν−i)mτ (ξi ∣ w̃))hνuν

−
ν−1

∑
i=1

ν−i−1

∑
j=0

1

i!j!
F
(i)
ετ (0 ∣ 0, w̃)f (j)mτ (0 ∣ w̃)hi+jui+j}K(1)(u)Pκ(w)dudFW̃ (w̃)

= O(hν),

where ζ1, . . . , ζν are scalars with values between 0 and hu.
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Then

E(AH−1
κ T1nκ)

= hν × αν(K(1)) ×
ν

∑
j=1

1

j!(ν − j)!E[t(W )F (j)ετ (0 ∣ 0, W̃ )f (ν−j)mτ (0 ∣ W̃ )AH−1
κ Pκ(W )]

= hν × αν(K(1)) ×
ν

∑
j=1

1

j!(ν − j)!E[t(W )F (j)ετ (0 ∣ 0, W̃ )f (ν−j)mτ (0 ∣ W̃ )ϕκ(W )].

Since E[t(W )∥ϕκ(W )−ϕ(W )∥2] → 0 by Assumption 1.9, we have ∥E(AH−1
κ T1nκ)−B1∥ →

0. This proves the expression of B1 in part (a).

By the analogous arguments to those used in Lemma 5 (a) of Horowitz (1992), Assump-

tion 1.7, and Lebsegue’s dominated convergence, one can show that E[h−νAH−1
κ T1nκ] → B

and therefore limn→∞
√
nhhνH−1

κ E(h−νAT1nκ) = µH−1B where µ = limn→∞ nh2ν+1.

Next we turn to the second term on the right hand side in (1.36). Plugging V̂i − Vi =
bv(Vi) + ζiσζi(Vi), the expectation of the term T2nκ can be approximated by

n−1
n

∑
i=1

E [ti[Yi − (1 − τ)]dλτ(v)
dv

bv(Vi) + ζiσζi(Vi)
h2

K(2)(mτi

h
)Pκi]

= E [ti(τ − Fετ (−mτi ∣mτi, X̃i, Vi))
dλτ(v)

dv

bv(Vi) + ζiσζi(Vi)
h2

K(2)(mτi

h
)Pκi]

= ∬ t(w)(τ − Fετ (−s ∣ s, x̃, v))dλτ(v)
dv

bv(v) + ζσζ(v)
h2

K(2)( s
h
)Pκ(w)fmτ (s ∣ w̃)dsdFW̃ (w̃)

= ∬ t(w)(τ − Fετ (−hu ∣ hu, w̃))K(2)(u)dλτ(v)
dv

bv(λ−1
τ (hu − x′β0)) + ζσζ(λ−1

τ (hu − x′β0))
h

× Pκ(w)fmτ (hu ∣ w̃)dudFW̃ , (1.37)

where the third equality follows from the fact that E[σζ(V ) ∣ W̃ ] = 0.
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Similarly, using a Taylor expansion of the terms Fετ (−hu ∣ hu, w̃), bv(λ−1
τ (hu − x′β0)),

and fmτ (hu ∣ w̃) in the argument hu and the fact that Fετ (0 ∣ 0, w̃) = τ yields

(τ − Fετ (−hu ∣ hu, W̃ ))
bv(λ−1

τ (hu −X ′β0))
h

fmτ (hu ∣ W̃ )

= −
⎧⎪⎪⎨⎪⎪⎩

1

(ν − 1)!F
(ν−1)
ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ ) + 1

(ν − 2)!1!
F
(ν−2)
ετ (0 ∣ 0, W̃ )f (1)mτ (0 ∣ W̃ )

1

(ν − 3)!2!
F
(ν−3)
ετ (0 ∣ 0, W̃ )f (2)mτ (0 ∣ W̃ ) + ⋅ ⋅ ⋅ + 1

1!(ν − 2)!F
(1)
ετ (0 ∣ 0, W̃ )f (ν−2)

mτ (0 ∣ W̃ )
⎫⎪⎪⎬⎪⎪⎭

× bv(λ−1
τ (−X ′β0))hν−2uν−1. (1.38)

Substituting (1.38) into (1.37), we end up with the following expression:

hν−2 (∫ uν−1K(2)(u)du)

×
ν−1

∑
j=1

1

j!(ν − j − 1)!E [t(W )F (j)ετ (0 ∣ 0, W̃ )f (ν−j−1)
mτ (0 ∣ W̃ )dλτ(V )

dv
bv(λ−1

τ (−X ′β0))Pκ(W )] .

(1.39)

The same arguments as those used for the term T1nκ gives E[AH−1
κ T2nκ] → B2. The

expression (1.39) makes it clear that the bias of the adjustment term AH−1
κ T2nκ is of the

order O(hν−2gr).
To calculate the variance in part (b), consider

E[(T1nκ + T2nκ)2]

= E[{n−1
n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (mτi)Pκ(Wi) + ti[Yi − (1 − τ)]K(2)h (mτi)
dλτ(Vi)

dv
(V̂i − Vi)Pκ(Wi)}

2

]

= I1 + 2I2 + I3,
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where

I1 = E [ 1

n2

n

∑
j=1

n

∑
i=1

1

h2
titj[Yi − (1 − τ)][Yj − (1 − τ)]K(1)(mτi

h
)K(1)(mτj

h
)Pκ(Wi)Pκ(Wj)′] ,

I2 = E
⎡⎢⎢⎢⎢⎣

1

n2

n

∑
j=1

n

∑
i=1

titj[Yi − (1 − τ)][Yj − (1 − τ)]1

h
K(1)(mτi

h
)K(2)(mτj

h
)dλτ(Vj)

dv

b(Vj) + ζjσζ(Vj)
h2

× Pκ(Wi)Pκ(Wj)′
⎤⎥⎥⎥⎥⎦
,

I3 = E
⎡⎢⎢⎢⎢⎣

1

n2

n

∑
j=1

n

∑
i=1

1

h2
titj[Yi − (1 − τ)][Yj − (1 − τ)]K(2)(mτi

h
)dλτ(Vi)

dv

Vi − V̂i
h2

K(2)(mτj

h
)dλτ(Vj)

dv

Vj − V̂j
h2

Pκ(Wi)Pκ(Wj)′
⎤⎥⎥⎥⎥⎦
.

For the first term I1, it is not difficult to show that I1 is equal to β0 + 2β0B1 +B2
1 +Σ1κ

up to higher-order terms, where

Σ1κ ≡ Var [n−1
n

∑
i=1

[Yi − (1 − τ)]K(1)h (mτi)Pκ(Wi)]

= n−1Var [[Yi − (1 − τ)]K(1)h (mτi)Pκ(Wi)]

= n−1E [[Yi − (1 − τ)]2K
(1)
h (mτi)

2
PκiP

′
κi] − n−1 (E [[Yi − (1 − τ)]K(1)h (mτi)Pκ(Wi)])

2

= n−1∬ K
(1)
h (s)2Pκ(w)Pκ(w)′fmτ (s ∣ s, w̃)dsdFW̃ (w̃) + o(1)

= τ(1 − τ)
nh ∬ K(1)(u)2Pκ(w)Pκ(w)′fmτ (hu ∣ hu, w̃)dudFW̃ (w̃) + o(1)

= τ(1 − τ)
nh

(∫ K(1)(u)2 du) E [Pκ(W )Pκ(W )′fmτ (0 ∣ W̃ )] + op(1), (1.40)

where the first equality follows from the i.i.d. assumption of (Yi,Xi, Zi), the third uses the

law of iterated expectations and exploits the fact that E[(Yi − (1 − τ))2 ∣ Xi, Vi] = τ(1 − τ),
and the remaining lines follow from the standard change-of-variables to s = hu and Taylor

expansion arguments.



70

For the term I3, we have

1

n2

n

∑
i=1

n

∑
j=1

E
⎡⎢⎢⎢⎢⎣
titj[Yi − (1 − τ)][Yj − (1 − τ)]dλτ(Vi)

dv

dλτ(Vj)
dv

ζiζjσζ(Vi)σζ(Vj) + b(Vi)b(Vj)
h4

×K(2)(mτi

h
)K(2)(mτj

h
)Pκ(Wi)Pκ(Wj)′

⎤⎥⎥⎥⎥⎦

= τ(1 − τ)
n ∫ t(w)h−4[K(2)( s

h
)]

2

(dλτ(v)
dv

)
2

fmτ (s ∣ w̃)dsdFW̃ (w̃) +O(n−1)

+∭ h−4b(λ−1
τ (−x′β0 + s1))b(λ−1

τ (−x′β0 + s1))K(2)(
s1

h
)K(2)(s2

h
)

× fmτ (s1 ∣ w̃)fmτ (s2 ∣ w̃)ds1 ds2 dFW̃ (w̃)

≃ τ(1 − τ)
nh3

Σ2κ

+ h2(ν−2) (∫ uν−1K(2)(u)du)
2

× {
ν−1

∑
j=1

1

j!(ν − j − 1)!E [t(W )F (j)ετ (0 ∣ 0, W̃ )f (ν−j−1)
mτ (0 ∣ W̃ )dλτ(V )

dv
bv(λ−1

τ (−X ′β0))Pκ(W )]}
2

.

Part (b) follows from subtracting (E[T1nκ + T2nκ])
2

from E[(T1nκ + T2nκ)2].
For part (c), using the expressions of Σ1κ and Σ2κ derived above, we have

Ωκ = min{nh,n2h3gdz}[Ω1κ +Ω2κ]

= min{nh,n2h3gdz}
⎧⎪⎪⎨⎪⎪⎩

R(K(1))τ(1 − τ)
nh

E[t(W )ϕκ(W )ϕκ(W )′fmτ (0 ∣ X̃,Z)]

+ R(K(2))
nh3

E [t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )dλτ(V )
dv

ϕκ(W )]σ2
ζ(λ−1

τ (−X ′β0))

×E [t(W )F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃ )dλτ(V )
dv

ϕκ(W )′]
⎫⎪⎪⎬⎪⎪⎭
.

Note that

Ω
−1/2
κ A(θ̂nκ − θκ0) = −Ω

−1/2
κ AH−1

κ n
−1

n

∑
i=1

ti[Yi − (1 − τ)]K(1)h (mτi)Pκi

+Ω
−1/2
κ AH−1

κ n
−1

n

∑
i=1

ti[Yi − (1 − τ)]K(2)h (mτi)
dλτ(Vi)

dv
(V̂i − Vi)Pκi + op((nh)−1/2).
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Define

νin = AH−1
κ Ω

−1/2
κ ti[Yi − (1 − τ)] {K(1)h (mτi) +K(2)h (mτi)

dλτ(Vi)
dv

(V̂i − Vi)}Pκi

and

Wn =
√
δn−1

n

∑
i=1

[νin −E(νin)],

where δ ≡ min{nh,n2h3gdz}, E(νin) = B1 +B2, and E(ν2
in) = 1/min{nh,n2h3gdz}.

For any nonstochastic (dx−1)×1 vector c with c′c = 1, consider the asymptotic distribution

of c′Ω
−1/2
κ Wn. Using the arguments analogous to those in Lemma 6 of Horowitz (1992), it

can be shown that

√
δc′Ω

−1/2
κ A(θ̂nκ − θκ0) = c′Ω−1/2

κ Wn + op(1)
dÐ→ N(0, c′c). (1.41)

The desired result follows by combining (1.41) with the expression of B1 and B2 derived

above, Cramér-Wold device, and the fact that ∥Ωκ −Ω∥ → 0.

Proof of Theorem 1.4

We begin with the following lemmas that are used to prove the consistency of Ωnκ.

Lemma 1.9.11. ∥Ĥnκ −Hκ∥ = op(1).

Proof. Define

H̄nκ = nh−2
n

∑
i=1

t̂i[Yi − (1 − τ)]K(2) (mτi

h
) P̂κiP̂ ′

κi

and consider

∥Ĥnκ − H̄nκ∥ ≤ h−2 max
1≤i≤n

t̂i∣K(2) (
Pκ(Ŵi)′θ̂nκ

h
) −K(2) (mτi

h
)∣n−1

n

∑
i=1

t̂i∥P̂κi∥2

≤ h−2 max
1≤i≤n

t̂i{∣K(2) (
Pκ(Ŵi)′θ̂nκ

h
) −K(2) (Pκ(Wi)′θ̂nκ

h
)∣

+ ∣K(2) (Pκ(Wi)′θ̂nκ
h

) −K(2) (mτi

h
)∣}n−1

n

∑
i=1

t̂i∥P̂κi∥2

≤ Ch−3κ[max
1≤i≤n

t̂i∣V̂i − Vi∣ + (κ/n)1/2]

= Op(h−3κ[∆v + κ1/2n−1/2]) = op(1),
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where the last equality follows from Assumption 1.13.

Next consider

Ξnκ1 ≡ n−1h−2
n

∑
i=1

t̂i {[Yi − (1 − τ)]K(2) (mτi

h
) −E [[Yi − (1 − τ)]K(2) (mτi

h
)∣W̃i]} P̂κiP̂ ′

κi

and Ξnκ2 ≡ n−1
n

∑
i=1

t̂i {E [[Yi − (1 − τ)]K(2) (mτi

h
)∣W̃i] − F (1)ετ (0 ∣ 0, W̃ )fmτ (0 ∣ W̃i)} P̂κiP̂ ′

κi.

Following the same argument as that in the proof of Lemma A.9 of Lee (2007), it can be

shown that ∥Ξnκ1∥ = op(1) and ∥Ξnκ2∥ = Op(h3κ) = op(1) by Assumption 1.13. The desired

result then follows from the triangle inequality.

Lemma 1.9.12. ∥Σ̂nκ −Σκ∥ = op(1).

Proof. The arguments used to prove this theorem are identical to those used to prove

Lemma 1.9.5(e) and (f).

Lemma 1.9.13. ∥Γ̂nκ − Γκ∥ = op(1).

Proof. Note that

max
1≤i≤n

t̂i ∣
dλ̂τ(V̂i)

dv
− dλτ(Vi)

dv
∣

≤ max
1≤i≤n

t̂i ∣
dλ̂τ(V̂i)

dv
− dλτ(V̂i)

dv
∣ +max

1≤i≤n
t̂i ∣

dλτ(V̂i)
dv

− dλτ(Vi)
dv

∣

≤ Op(ζ1(κ)(κ/n)1/2) +Op(max
1≤i≤n

ti∣V̂i − Vi∣)

≤ Op(ζ1(κ)(κ/n)1/2 +∆v).

Define

Γ̄nκ = n−1
n

∑
i=1

t̂i[Yi − (1 − τ)]K(2)h (P̂κ(Ŵi)′θ̂nκ)
dλτ(Vi)

dv
P̂ ′
κi.

Then

∥Γ̂nκ − Γ̄nκ∥

≤ max
1≤i≤n

t̂i ∣
dλ̂τ(V̂i)

dv
− dλτ(Vi)

dv
∣ ζ0(κ)n−1h−2

n

∑
i=1

t̂i ∥[Yi − (1 − τ)]K(2) (P
′
κ(Wi)θ̂nκ

h
)∥

= Op(h−1ζ0(κ)ζ1(κ)(κ/n)1/2) = op(1),
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provided that for power series ρκ < 2ν+3
9(2ν+1) and for splines ρκ < 2ν+3

5(2ν+1) , as described in

Assumption 1.13. Using the same argument as that in Lemma 1.9.11, one can show that

∥Γ̄nκ − Γκ∥ = op(1) and the desired result follows by the triangle inequality.

Proof of Theorem 1.4. This theorem can be proven by combining Lemmas 1.9.11-1.9.13 with

the identical argument to that of Theorem 3.2 of Lee (2007).
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Chapter 2

An Empirical Analysis of Female Labor Market Partic-

ipation and Endogenous Non-labor Income

2.1 Introduction

This chapter illustrates estimation of a triangular binary response model for labor market

participation with endogenous income. To motivate our approach, we begin by reviewing

the background of the (static) labor supply analysis. In the area of labor economics, labor

supply modelling has received a great deal of attention in the literature, with a particular

interest in implications for responsiveness of labor supply to wages, taxes, and transfers, see

Blundell, MaCurdy, and Meghir (2007) and Keane (2011) for recent surveys of the literature

on labor supply models. In a static labor supply model, in contrast to the utility function

approach that is typically employed in dynamic settings, it is convenient to directly specify

labor supply regressions of hours of work on wages and non-labor income. As discussed in

Keane (2011, p.971), there are several econometric issues in estimating a static labor supply

model. Among the most obvious problem is the endogeneity of wages and non-labor income

arising from correlation with unobserved heterogeneity in preferences for work. For example,

preferences for work would be positively correlated with wages through productivity. We

discuss the endogeneity source of non-labor income in more detail later. To address the

endogeneity problem, one can use the IV (or 2SLS) approach in linear models or adopt a fixed

effects specification in the panel data context. When the labor supply function is nonlinear,

nonparametric IV and CF methods are available, e.g., Newey and Powell (2003) and Newey,

Powell, and Vella (1999). On the other hand, due to the selection problem, incorporating
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labor market participation is essential for modelling female labor supply decisions. However,

the presence of endogenous regressors in a binary response participation model makes the

analysis fundamentally different from that in continuous models for hours of work. In the

context of modelling labor market participation with endogenous non-labor income, the CF

method is particularly useful. But unlike the IV assumption, in practice it may be difficult

to justify the CF assumption from economic theory, as pointed out by Blundell, MaCurdy,

and Meghir (2007). This motivates the use of our methodology proposed in Chapter 1 under

weak restrictions in the current application.

The literature on binary response models of labor market participation is large. Most

of the previous work assume that explanatory variables are exogenous, e.g., ,among others.

More recently, the endogeneity problem in labor market participation has been addressed

in the literature. For example, Blundell and Powell (2004) allow for the other income to be

endogenous and demonstrate the importance of accounting for endogenous other income in

their empirical findings. Carrasco (2001) considers estimating the effect of endogenous fertil-

ity on female labor participation in the panel data setting. Maurer, Klein, and Vella (2011)

use a semiparametric binary choice panel data model to estimate the effect of endogenous

subjective health assessment on the labor market participation of older men.

This chapter is organized as follows. Section 2.2 presents the empirical model. Section 2.3

briefly describe the 2011 U.S. Current Population Survey used to estimate the relationship

between wives’ non-labor income and their labor market participation. Section 2.4 presents

estimation results using CPS data. Section 2.5 concludes.

2.2 Empirical Model

We turn to formulating the empirical models. Observed hours of work hi of individual i

can be represented by

hi = max{h∗(Wi, Z1i, Ii, ζi) − hri , 0},

where h∗i and hri represent desired and reservation hours of work, respectively, Wi is the

hourly wage rate, Z1i are observable social demographic variables, Ii is wife’s non-labor
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income including the earned income of the spouse, and ζi is unobserved heterogeneity.1 Let

Yi denote a binary variable that is unity if individual i participates and zero otherwise. The

participation decision may be formulated by comparing h∗i and hri :
2

Yi = 1{h∗i > hri}. (2.1)

The empirical specification of the labor market participation model is based on Blundell

and Powell (2004):

h∗i = δ0 +Z ′
1iδ1 + lnWiδ2 +X1iδ3 + ζi, (2.2)

hri = π0 +Z ′
1iπ1 + ξi, (2.3)

where X1i = ln Ii and ζi is unobserved heterogeneity. Combining (2.1), (2.2), and (2.3) and

replacing the unobserved wage rate for non-participants with the wage equation: lnWi =
θ0 +Z ′

1iθ1 + ωi yields the model for labor force participation

Yi = 1{β00 +Z ′
1iβ10 +X1iβ20 +Ui > 0}. (2.4)

The key parameter of interest is β20 (expected sign is negative). It may be well be the

case that wife’s non-labor income is endogenous to labor force participation. As discussed

in Blundell, MaCurdy, and Meghir (2007, section 2.2), the main estimation issue of the

participation model (2.4) is the endogeneity of non-labor income X1i, in the sense that X1i

is correlated with the unobserved term Ui. There are at least three reasons why non-labor

income is likely to be endogenous. First, if non-labor income partly represents asset income,

it may be correlated with unobserved heterogeneity in preferences for work since individuals

1In order to take into account fixed costs upon entry into the labor market, Cogan (1981) defines reser-
vation hours of work hr as U(H − hr, I − F +Whr) = U(H,I) where U is the utility function, H is time
endowment, and F is a fixed cost.

2As pointed out by Cogan (1981), this formulation is equivalent to the market wage-reservation wage
characterization. That is, hi > 0 ⇐⇒ h∗i > hri ⇐⇒ Wi > W r

i where W r
i is defined implicitly by

h∗(W r
i , Z1i, Ii, ζi) = hri . Note that if there are fixed costs of labor market entry, the reservation hours

would be positive and can be described by the discontinuity of the labor supply function at the reservation
wage. Another advantage of introducing the reservation hours equation into the model is that, relative to
the classic Heckman’s labor supply model, it leads to fewer constraints between the parameters in equations
of participation and hours-to-work. For details see Zabel (1993).
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who worked more in the past are likely to have higher levels of non-labor income today.

Second, hard-working individuals may tend to marry due to positive assortative mating. As

such, non-labor income including the earned income of the spouse may well be correlated

with unobservables affecting taste for work. Third, it is often the case that measurement

error in the income measure, inducing correlation between X1 and U , exists. To handle this

endogeneity problem, wife’s non-labor income is assumed to be determined by the following

general reduced-form model

X1i = f(Zi, ηi), (2.5)

where Zi = (Z ′
1i, Z2i)′ and Z2i is the education level of the spouse, which is the excluded

instrument.

2.3 Data

To estimate the model we use the data set extracted from the 2011 March Supplement to

the US Current Population Survey. The sample comprises 6,645 white married women aged

between 22 and 65 with non-hispanic origin residing in the Midwest region.3 The binary

dependent variable Y is the indicator variable for labor force participation, defined as 1 if

wife’s usual hours worked were positive and 0 otherwise. We select the following explanatory

and excluded instrumental variables: the endogenous regressor (X1) is the logarithm of

wife’s non-labor income, where wife’s non-labor income is computed by subtracting wife’s

wage and salary earnings from total family income; the Z1 matrix contains educational

attainment, potential labor market experience, squared potential labor market experience,

and the presence and age of children in the household. Following Blundell and Powell (2004),4

we use as an instrument spouse’s education level (Z2) since it should affect wife’s non-labor

3To justify treating schooling as exogenously determined, we follow Eckstein and Lifshitz (2011) by
drawing married women starting at age 22, at which schooling is implicitly assumed to be given.

4Another instrumental variable that is used in the empirical application in Blundell and Powell (2004)
is a welfare benefit entitlement variable, for the construction of this variable see Blundell and Powell (2004,
p.669).
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income but has no direct influence on wife’s labor force participation. Some descriptive

statistics for these variables are summarized in Tables 2.1 and 2.2.

2.4 Estimation Results

To facilitate comparisons, we exclude the intercept and normalize the coefficient on the

education variable to unity. We first estimate the participation equation (2.4) by parametric

approaches, including standard probit and two-stage probit (2SProbit) accounting for en-

dogeneity. The latter uses the residual from the linear reduced form model for non-labor

income as an additional regressor, which does not directly account for heteroskedasticity in

the reduced form model. The coefficient estimates are reported in columns 1-3 of Table ??,

respectively, with standard errors in parentheses. The reduced form results in column 1 indi-

cate that the spouse’s education level plays an important role in the determination of wife’s

non-labor income. The coefficient of wife’s non-labor income is of the expected sign (neg-

ative), showing that non-labor income influences negatively on the probability of working.

This evidence is consistent with a positive income effect on a wife’s demand for leisure. This

effect becomes more negative when endogeneity is accounted for via the 2SProbit procedure,

being more than twice as large as the probit counterpart. Such estimates indicate that wife’s

non-labor income is positively correlated with unobserved heterogeneity in tastes for work,

as we discussed in Section 2.2. The substantial difference between coefficient estimates of

non-labor income, combined with statistical significance of the coefficient estimate for the

first-stage residual, suggests that non-labor income is endogenous to labor market participa-

tion. As expected, wives with more years of schooling are likely to work than less educated

wives. Labor market experience has a quadratic effect on labor force participation. Wives

with children under the age of six have a larger effect on labor force participation than the

number of older children over the age of six.

While there are some striking difference between Probit and 2SProbit estimates, the

2SProbit estimator is highly biased and inconsistent in the presence of heteroskedasticity in

both outcome and reduced form equations, as shown in simulation work in the preceding
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section. To address this issue, we perform a simple likelihood ratio (LR) test for homoskedas-

ticity based on Probit estimates. The form of heteroskedasticity tested is Var(U) = exp(Z̄ ′c),
where Z̄ is the vector of variables suspected of causing heteroskedasticity and c is a con-

formable vector of parameters. We conduct the LR test for each of the variables in Z and

X1 and report the results in Table 2.3. The test results indicate that heteroskedasticity is

present through several of the variables, including non-labor income, education, and educa-

tion of husband at the 5% level and the number of children aged between 6 and 18 at the

10% level. In addition, it is expected that the conditional variance of the non-labor income

variable may depend on the education level of the spouse, as indicated in Figure 2.1. The

studentized Breusch-Pagan test strongly rejects homoskedasticity (with the p-value 0.0043)

in the linear reduced form model for non-labor income. Evidence of the presence of het-

eroskedasticity in both participation and non-labor income reduced form models strengthens

the value of our TBRQ approach. Moreover, Figure 2.2 gives a graph of kernel density esti-

mates for log non-labor income using the Epanechnikov kernel function and the least square

cross-validation bandwidth (0.140).

We now turn to estimating coefficients in the participation equation (2.4) by Horowitz’s

smoothed maximum score (SMS) (without taking the endogeneity problem into account)

and by the TBRQ. Analogous to simulation experiments, we use the smoothed version of the

Nadaraya-Watson estimator and rule-of-thumb bandwidths when estimating the conditional

CDF in the first stage. To allow the control function λτ to be nonlinear, capturing the

possibly nonlinear relationship between errors U and V , we employ quadratic B-spline base

functions to approximate the unknown control function λτ . Following the simulation results

in the preceding section, we consider κ = 7,8,9,10,11, and 12 and h = Ch×n−1/5 = 0.172 (where

Ch = 1 and n = 6645) in the second stage. For the range of κ considered here, varying Ch

from 1 to 0.5 does not change estimation results dramatically and the coefficients estimates

are not very sensitive to the choice of κ, as presented in Table 2.7. On the other hand, TBRQ

estimates seem somewhat sensitive to the values of the starting point for this data set. To

address this issue, for each κ, we run the TBRQ estimation procedure 100 times using the
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GSA global optimization algorithm with different starting values that are randomly chosen

from the feasible ranges, and then report the best of these solutions. Implementation of 100

runs took approximately 23 ∼ 36 hours (depending on the values of κ) to complete in R 2.15.1

on a 1.70 GHz and 4 GB RAM personal computer. We only report estimation results for κ = 7

and 9 in Table 2.4. The standard errors of the TBRQ estimates are obtained using asymptotic

approximation based on Theorem 1.4 in Chapter 1. In addition to the case τ = 0.5, in

Table 2.5 we perform the TBRQ for different quantiles: τ = 0.1, 0.25, 0.45, 0.55, 0.75, 0.9

and find that coefficients at different quantiles are significantly different, suggesting that

in our application the DER is unlikely to be satisfied, which is consistent with evidence

of the presence of heteroskedasticity in the binary outcome (participation) equation, and

the estimators using the DER are inconsistent. This also explains why estimation results

obtained from the TBRQ and 2SProbit based on strong assumptions are quite different.

In summary, all TBRQ coefficients (for κ = 7 and 9) have expected signs with statistical

significance, but with large differences in the magnitude of coefficients when comparing to

2SProbit and SMS counterparts. However, qualitatively similar to the probit estimates,

accounting for endogeneity leads to a substantial increase in the magnitude of the non-

labor income coefficient, being 62% ∼ 77% larger than that in the SMS. This appears to be

qualitatively similar for quantiles between τ = 0.45 and τ = 0.55 (see Table 2.6). This finding

is analogous to that in Blundell and Powell (2004) using British data. Another noteworthy

difference is that, in contrast to probit estimates, older children have roughly equal negative

effect on the probability of participation to younger children.

The sixth column of Table 2.4 corresponds to the case in which λτ(v) is specified as a

linear function. For this approach we obtain the point estimate for the non-labor income

coefficient being -0.094, with a standard error 0.164. The coefficient estimate of the control

variable is -0.745 and not significantly different from zero. These results provide evidence that

a linear specification of λτ(v) may not be sufficient to capture the endogeneity from wife’s

non-labor income. In contrast, an important aspect of our estimation procedure is the ability

to allow the control function to be nonlinear. To examine this we plot point estimates of the



89

control function λτ=0.5(v) for the linear case and κ = 7 and 9 in Figure 2.3 for comparison

purposes. The graph shows that the control function λτ is unlikely to be constant and the

estimated relationship between errors U and V is highly nonlinear, indicating that a model

that allows for more flexible specification of the control function is needed.

Further interesting extensions of this application will obtain interval estimates of the par-

ticipation probabilities and examine marginal effects by using a set of quantiles, as discussed

in Appendix Section 1.9 in Chapter 1. We leave this for future research.

2.5 Conclusion

We have applied the methodology to deal with the endogeneity problem of non-labor

income in female labor market participation. Three main conclusions emerged from this em-

pirical analysis. First, there is evidence of the presence of heteroskedasticity in the outcome

and reduced form equations, indicating that 2SProbit estimates are biased and inconsistent.

Second, qualitatively similar to the probit estimates, accounting for endogeneity leads to a

substantial increase in the magnitude of the non-labor income coefficient, being 62% ∼ 77%

larger than that in the smoothed maximum score estimation. For the range of the number of

series expansion terms (κ) considered here, varying the second-stage bandwidth by increas-

ing Ch from 1 to 0.5 does not change estimation results dramatically and the coefficients

estimates are not very sensitive to the choice of κ. However, estimation results are some-

what sensitive to the number of series expansion term when Ch = 1.5. This suggests that

a challenging and important task is to find data-based methods for optimally choosing the

bandwidths and the number of the series expansion terms κ in practice.

2.6 Appendix: Figures and Tables
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Figure 2.1 Log wife’s non-labor Income and husband’s education level

Table 2.1 Descriptive statistics

Variable Definition Mean Std. dev. Min Max

Labor Force Participation Participation indicator 0.702 0.458 0 1

Age - 44.161 10.867 22 65

Education of husband Husband’s years of schooling/10 1.422 0.245 0 2

Education Years of schooling/10 1.435 0.224 0 2

Experience Potential labor force experience 2.382 1.132 -0.1 5.6

=(Age/10-Education-0.6)

No. of Children < 6 yrs old - 0.363 0.695 0 5

No. of Children 6 − 18 yrs old - 0.782 1.038 0 7

Non-labor income Log of wife’s non-labor income 1.637 0.897 -9.210 4.791

(in $10,000)

Notes: Non-labor income is defined as total family income excluding wife’s wage and salary earnings.
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Table 2.2 Descriptive statistics grouped by LFP

LFP=1 LFP=0

Variable Mean Std. dev. Mean Std. dev.

Age 43.535 10.324 45.635 11.918

Education of husband 1.425 0.234 1.412 0.267

Education 1.455 0.218 1.386 0.230

Experience 2.299 1.081 2.577 1.223

No. of Children < 6 yrs old 0.346 0.673 0.403 0.741

No. of Children 6 − 18 yrs old 0.783 1.007 0.781 1.108

Non-labor income 1.613 0.893 1.691 0.904

No. of Observations 4663 1982

Table 2.3 p-values for LR tests for
heteroskedasticity

Variable p-values

Non-labor income 0.0069

Education of husband 0.0500

Education 0.0079

Experience 0.9750

No. of Children < 6 yrs old 0.1218

No. of Children 6 − 18 yrs old 0.0988
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Figure 2.2 Kernel density estimates of log wife’s non-labor income
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Table 2.4 Estimation results

Parametric Estimation Semiparametric Estimation

Linear RF Probit 2SProbit SMS TBRQ (τ = 0.5)

Variable for LINC Linear λτ(v) κ = 7 κ = 9

Non-labor income - -0.189 -0.385 -0.261 -0.094 -0.424 -0.463

- (0.034) (0.098) (0.107) (0.164) (0.109) (0.225)

Experience 0.472 0.630 0.611 2.696 2.857 6.809 4.948

(0.043) (0.101) (0.091) (1.057) (0.569) (2.893) (0.983)

Exp. Square -0.074 -0.201 -0.180 -0.681 -0.708 -1.669 -1.207

(0.009) (0.021) (0.019) (0.251) (0.126) (0.704) (0.245)

No. of Children 0.037 -0.426 -0.347 -0.614 -0.619 -1.417 -1.069

< 6 yrs old (0.018) (0.044) (0.039) (0.117) (0.113) (0.537) (0.229)

No. of Children 0.043 -0.210 -0.162 -0.717 -0.735 -1.530 -1.107

6 − 18 yrs old (0.011) (0.029) (0.025) (0.199) (0.102) (0.662) (0.226)

Educ. of husband 1.13 - - - - - -

(0.050) - - - - - -

Education 0.240 1.000 1.000 1.000 1.000 1.000 1.000

(0.057) - - - - - -

Control - - 0.249 - -0.745 - -

variable - - (0.102) - (0.732) - -

Notes: LINC stands for logarithm of wife’s non-labor income. The 2SProbit and TBRQ use

the linear reduced form residual and the conditional CDF of LINC given instruments as control

variables, respectively. The SMS is Horowitz’s (1992) smoothed maximum score estimator.

Standard errors (based on 500 bootstrap replications for 2SProbit and the asymptotic formulas

otherwise) in parentheses.
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Table 2.5 TBRQ estimation results for different quantiles (κ = 7)

TBRQ

Variable τ = 0.1 0.25 0.45 0.5 0.55 0.75 0.9

Non-labor income 1.509 -0.229 -0.548 -0.424 -0.182 -0.731 1.340

(1.876) (0.095) (0.536) (0.109) (0.190) (0.214) (2.011)

Experience -14.739 2.110 8.833 6.809 5.822 5.176 20.000

(17.153) (0.765) (4.088) (2.893) (1.315) (2.760) (30.270)

Exp. Square 2.610 -0.665 -2.182 -1.669 -1.379 -1.145 -4.351

(2.993) (0.254) (1.010) (0.704) (0.316) (0.605) (6.510)

No. of Children -2.048 -1.412 -1.894 -1.417 -1.365 6.816 12.102

< 6 yrs old (2.538) (0.588) (0.946) (0.537) (0.305) (4.112) (5.278)

No. of Children 0.122 -0.706 -1.859 -1.530 -1.497 3.223 -2.276

6 − 18 yrs old (0.133) (0.418) (0.870) (0.662) (0.372) (1.340) (2.373)

Education 1.000 1.000 1.000 1.000 1.000 1.000 1.000

- - - - - - -

Notes: Standard errors in parentheses.
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Table 2.6 SMS estimation results for different quantiles

SMS

Variable τ = 0.1 0.25 0.45 0.5 0.55 0.75 0.9

Non-labor income -2.630 -0.830 -0.323 -0.261 -0.136 0.766 -0.463

(1.223) (0.108) (0.117) (0.107) (0.072) (0.086) (0.225)

Experience -7.079 2.366 1.594 2.696 6.255 13.445 4.948

(3.141) (0.471) (0.505) (1.057) (0.760) (1.721) (0.983)

Exp. Square 1.008 -0.761 -0.429 -0.681 -1.474 -2.923 -1.207

(3.489) (0.139) (0.112) (0.251) (0.178) (0.368) (0.245)

No. of Children -4.878 -1.040 -0.681 -0.614 -1.022 1.007 -1.069

< 6 yrs old (2.866) (0.136) (0.101) (0.117) (0.108) (0.796) (0.229)

No. of Children 0.335 -0.600 -0.485 -0.717 -1.404 -2.873 -1.107

6 − 18 yrs old (0.567) (0.120) (0.080) (0.199) (0.147) (0.379) (0.226)

Education 1.000 1.000 1.000 1.000 1.000 1.000 1.000

- - - - - - -

Notes: Standard errors in parentheses.
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Table 2.7 Coefficient estimates of non-labor income
for different smoothing parameters (τ = 0.5)

Ch = 0.5 Ch = 1.0 Ch = 1.5

κ = 7 -0.400 (0.073) -0.424 (0.109) -0.514 (0.373)

κ = 8 -0.300 (0.039) -0.192 (0.213) -0.473 (1.512)

κ = 9 -0.409 (0.080) -0.463 (0.225) 0.114 (0.205)

κ = 10 -0.264 (0.810) -0.410 (0.154) 0.064 (2.553)

κ = 11 -0.239 (0.236) -0.253 (0.489) 0.015 (1.046)

κ = 12 -0.252 (0.215) -0.300 (0.839) -0.161 (0.487)

Notes: Standard errors in parentheses.
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Chapter 3

Identification and Estimation of Sample Selection Mod-

els Without Additivity

3.1 Introduction

Sample selection models have long been important in modeling two interrelated discrete

and continuous choices made by individual agents (e.g. consumers or firms) in economet-

rics. It is also a leading area of application of flexible estimation methods in economics

(Ichimura and Todd (2007)). In particular, to cope with possible misspecification, a num-

ber of semiparametric and nonparametric procedures that are hopefully more robust have

generated considerable interest since the mid 1980s1 (e.g. Cosslett (1991), Newey (2009),

Powell (2001), and Ahn and Powell (1993), among others). More recently, by applying the

results of Newey, Powell, and Vella (1999) (henceforth NPV), the fully nonparametric esti-

mator in sample selection models (with endogenous regressors) has been suggested by Das,

Newey, and Vella (2003) (hereafter DNV), which allows for both regression functions and

error distributions to be unknown.

This chapter considers more general models than those mentioned above by introducing

nonseparability (in the unobserved component) and endogeneity in the framework of sample

selection. Imbens and Newey’s (2009) nonseparable triangular system is particularly similar

in concept; however, sample selection models deserve a separate treatment because they are

widely used in empirical applications. In other words, we apply the nonadditive model of

1In the semiparametric cases, the researcher tries to relax the normality assumption while retaining the
parametric functional form of the outcome equation. In such settings, the most important task is to estimate
the selection correction term which is unknown since the distribution of the errors is not specified.
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triangular simultaneous equations of Imbens and Newey (2009) to allowing for selection.

The main contribution of this chapter is to extend the existing semi- and non-parametric

estimators of sample selection models to allow for nonseparability and endogeneity. Par-

ticularly, we extend Newey’s (2007) identification results of nonseparable sample selection

model to allow for endogeneity and to consider nonparametric estimation (see Table 3.1 for

the relation to the literature). We adopt the control function approach for identification

and estimation because the control function is particularly convenient for correcting for se-

lection and endogeneity jointly, by simply imposing conditional independence restrictions.

Using the control function approach, we propose a three-step nonparametric estimator for

the average structural function (ASF) given selection. The first step consists of estimating

selection probability (or the propensity score) and the conditional cumulative distribution

function of the endogenous variable given the instruments. In the second step, the first-step

estimates are added as control variables to the outcome equation to account for selectivity

and endogeneity jointly in a nonseparable setting.

Nonparametric structural econometric models have recently received much attention in

the literature since they play an important role in combining economic theories with statis-

tical models. Among them, econometric models that admit nonseparable disturbances have

been a growing focus in research over the past ten years (e.g. Chesher (2003), Matzkin (2003),

Chesher (2005), Chernozhukov and Hansen (2005), Hoderlein and Mammen (2007), Cher-

nozhukov, Imbens, and Newey (2007), Altonji, Ichimura, and Otsu (2012), Rothe (2009) and

Imbens and Newey (2009), Chernozhukov, Fernndez-Val, Hahn, and Newey (2013), amongst

others). There are at least two important economic meanings for the nonseparable models:

(1) nonseparability is likely to generate endogeneity which not only has long been important

in econometrics and but is also a key feature in structural models; (2) instead of explaining

the unobservable error term as the difference between Y and E(Y ∣ X), the error term may

represent individual unobserved heterogeneity, such as tastes, beliefs, ability or productiv-

ity. Taking nonseparability in the error term into account provides one way to allow causal

effects or responses to policy interventions to vary across individuals with identical observed
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characteristics. As for endogeneity, it is another important property that may arise in many

economic models in which explanatory variables are choice variables that are related to the

error. The control function approach is one of the leading approaches that have been used

to deal with endogeneity in econometric models. The basic idea is that conditioning on

unobservable variables can purge the dependence of observable and unobservable explana-

tory variables and thus the endogeneity problem disappears. It has recently been used in a

variety of nonparametric and semiparametric models, including triangular nonparametric si-

multaneous equations models (Ng and Pinkse (1995), NPV, Pinkse (2000)), semiparametric

binary response models (Blundell and Powell (2004), Rothe (2009)), semiparametric quantile

regression models (Blundell and Horowitz (2007) and Lee (2007)), and nonparametric sam-

ple selection models (DNV). Imbens and Newey (2009) apply the control function approach

to nonparametric triangular simultaneous equations models without imposing additivity.

We note that, unlike the conventional sample selection models imposing additive sepa-

rability in the error term on the outcome equation, nonseparable sample selection models

considered here only allow us to identify the average structural function given selection rather

than the unconditional one that is of traditional interest in the sample selection literature.

Whether or not the parameter given selection is of interest will depend on the context.2 Nev-

ertheless, there are at least two approaches to deal with the potential lack of identification

of parameters for the full population due to nonseparability. The first approach is to impose

additional structures on the model to secure point identification. Following this approach,

one possibility is to impose functional form assumptions such as a stochastic polynomial

restriction.3 One can also appeal to the identification-at-infinity argument, as developed

by Heckman (1990) and Andrews and Schafgans (1998), to achieve point identification in

nonseparable sample selection models by focusing only on observations for which the choice

2Recovering the conditional version of parameters of interest rather than the unconditional one appears
to be not satisfactory in some contexts. This is because one of the most significant innovations in microe-
conometrics is the ability to consistently estimate econometric models (for the full population) based on
selected samples.

3This stochastic polynomial structure has been employed by Florens, Heckman, Meghir, and Vytlacil
(2008) in the context of nonseparable models with endogeneity.
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probability is sufficiently high and equal to one in the limit. We discuss these possible exten-

sions in Section 3.4. Lastly, we note that the second response to the above nonidentification

problem is to pursue partial identification. This is an ongoing research topic in the literature

(e.g., Arellano and Bonhomme (2013)).

The chapter is structured as follows. Two economic examples illustrating the importance

of allowing for nonadditivity in sample selection settings are given in Section 3.2. Section 3.3

presents a basic nonseparable sample selection model. Section 3.4 presents the identification

analysis of the average structural function given selection in a variety of sample selection

models without imposing additivity. Section 3.5 discusses possible extensions to identifi-

cation strategies of parameters for the entire population such as the average and quantile

structural functions. Based on identification results in Section 3.4, we suggest a resulting

three-step nonparametric series estimator using a control function approach to correct for

endogeneity and selectivity jointly in Sections 3.6. In Section 3.7 we derive the convergence

rates of the proposed estimator. The estimator is implemented in a Monte Carlo simulation

study in Section 3.8. In Section 3.9 we conclude this chapter.

3.2 Motivating Examples

3.2.1 Nonseparable Education Production Function with Endoge-
nous Schooling

A classic economic example borrowed from Imbens (2006) with a slight modification

motivates our sample selection model without additivity restrictions. Let X be schooling

chosen by the individual agent and Y denote individual earnings determined by g(X,ε).
In this example, it may be important to correct for endogeneity and selectivity jointly and

take nonseparability into account. First, selection clearly comes from the fact that earnings

is observed only for those who has chosen to work. Sample selection bias may occur when

such individual decisions result in a non-random sample not representing the underlying

population. Second, we can think of g(X,ε) as educational production function. Schooling

X is endogenous in the sense that the level of education is chosen optimally by the individual
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agent to maximize expected earnings E(g(X,ε) ∣ η,Z) minus education cost function c(X,Z)
based on his information on, say, the signal of ability η and cost shifters Z. Namely

X(Z, η) = arg max
x

{E(g(x, ε) ∣ η,Z) − c(x,Z)}.

It seems to be the case that a nonseparable educational production function leads to the

decision rule of schooling X(Z, η) taking the form of nonseparability with disturbances η

as well. If, in contrast, we have the educational production function with additive errors:

Y = h(X)+ε, then the solution for the decision rule X would be arg maxx{h(x)+E(ε ∣ η,Z)−
c(x,Z)}. Consequently, the optimal level of X is the function of Z only and independent of η

and thus independent of ε which means X is no longer endogenous. This example illustrates

that endogeneity of the choice variable X is likely to be generated by nonseparability of X

and ε.

3.2.2 Discrete/Continuous Consumer Demand Models with En-
dogenous Prices

For many different kinds of economic behavior, a decision-maker makes two choices,

which consist of discrete and continuous alternatives, respectively. The mixed choice sit-

uation consumers face is the traditional focus of empirical demand analysis, especially in

working with micro data on consumer demand.4 Consider an individual who is assumed

to choose a consumer durable out of a finite set of J competing alternatives and its level

of consumption jointly as the solution to a utility maximization problem. The formula-

tion of the discrete/continuous choice model begin with the random indirect utility function

Vj = Vj(p, y, x, ε) where Vj is defined as referring to the level of utility associated with the

jth alternative of the goods and is a function of price p, income y, the observed attributes

x of the jth alternative, and the unobserved utility ε (including the unobserved characteris-

tics of the product or unobserved advertising). Assuming utility maximization behavior, an

4For example, a consumer decides which brand of a commodity to buy and how many units to consume;
in housing demand analysis, a consumer decides whether to rent or purchase his home and how large a home
to live in; in the transportation economics, a household choose how many cars to own and the level of mileage
traveled.
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individual choosing (discrete) alternative j can be modeled by

dj = 1{Vj(p, y, x, ε) > Vi(p, y, x, ε) for all i ≠ j}.

It is well known that price is endogenous in the choice model in the sense that it is correlated

with, say, the unobserved product attributed or unobserved firms’ advertising activities.

Suppose that firms set prices that is determined by

pj =W (Zj, ηj),

where Zj are exogenous variables and ηj are unobserved cost shifters that might be affected

by unobserved attributes and therefore are possibly correlated with εj. By applying the

control function approach, one can control for endogeneity of prices by using the above

pricing behavior. In addition, the continuous demand for alternative j, qj, is derived by

Roy’s identity

qj =
∂Vj/∂pj
∂Vj/∂y

.

In such a setting, since the specification of the demand model depends on the specification of

the choice model and therefore the disturbances in two models are possibly correlated, sam-

ple selection bias arises. On the other hand, as nonseparable models have received increasing

attention over the past decade, it has motivated researchers to treat the demand unobserv-

ables in a nonseparable manner in preferences (e.g., Gandhi, Kim, and Petrin (2012)). If the

nonseparable utility function is considered, then it is likely that the quantity demanded qj

depends on the demand unobservables in a nonseparable manner as well.5 Furthermore, not

only does endogeneity of prices arise in the discrete choice model, it also carry over in the

continuous demand model. Essentially, nonseparability of the utility function leads to endo-

geneity of prices in the demand model. Demand estimation has to account for endogeneity

of prices as well as the effect of selection bias.

5Newey (2007) considers more general nonparametric formulation and identification of discrete/continuous
choice model by allowing for the nonseparable disturbances in both indirect utility and the demand functions.
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3.3 Basic Model

We consider a nonseparable model of the form

Y ∗ = g(X,ε) (3.1)

Y =D × Y ∗ observed, (3.2)

where Y ∗ is a scalar latent outcome variable affected by a vector of observed variables X

and the general disturbance ε with unknown dimension, Y is the observed outcome, and D

is a binary selection indicator denoting selection status and is assumed to be determined by

a latent-index selection mechanism

D = 1{q(Z) − ν > 0}, (3.3)

where Z is a vector of variables that affects the probability of selection; X and Z may have

common variables but not all the same, i.e., exclusion restrictions; ν is an error term that

could be correlated with ε. The sample selection problem arises when Y ∗ is only observed

on a nonrandomly selected sample. That is, D and ε are possibly correlated due to potential

correlation between ν and ε. Note that (3.1) allows nonlinear effects of X on the outcome

Y to permit random variation due to nonseparability in ε.

3.4 Identification Analysis

3.4.1 Nonidentification Results Without Additivity

To illustrate nonidentification of the parameters for the full population without additive

separability, consider a nonparametric sample selection model of the form Y ∗ = g(X)+ε and

Y =D×Y ∗ observed with the following stochastic restriction as a key identifying assumption

(implied by, for example, the full independence of (ε, ν) and (X,Z))6

E(Y ∣X,Z,D = 1) = g(X) +E(ε ∣X,Z,D = 1),
6A weaker sufficient condition is that the joint distribution of (ε, ν) depends on Z only through the single

index q(Z) or the propensity score P (Z).
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E(ε ∣X,Z,D = 1) = E(ε ∣X,P (Z)) = E(ε ∣ P (Z)) ≡ λ(P (Z)), (3.4)

where the first equality follows from the assumption that ε depends on Z only through

the propensity score P (Z) and the second equality means ε is mean independent of X

conditional of P (Z) so therefore the propensity score P (Z) serves as a control variable.

Then the quantity E(Y ∣ X,Z,D = 1) can be expressed as g(X) + E(ε ∣ X,Z,D = 1) =
g(X) + λ(P ) ≡ h(W ) and W ≡ (X,P ).

However, in more general models in which g(X,ε) is nonadditive in ε, the stochastic

restriction (3.4) is in general not sufficient for identification. In other words, without further

assumptions, the nonseparable sample selection model doesn’t imply the relation between

the functional of h(W ) and the objects of interest for the full population.

To be precise, in the nonadditive models given by Y = g(X,ε), it is well known that the

structural function g(X,ε) and the joint distribution FX,ε cannot be identified simultaneously

even when ε is distributed independently of X and g is strictly increasing in ε (see Matzkin

(2003)). To deal with this issue, on the one hand, one can impose additional restrictions on

g or use a normalization specifying ε to be U(0,1). On the other hand, without imposing

additional restrictions or normalizations, an alternative approach is to shift focus of the

object of interest on the average structural function suggested by Blundell and Powell (2003),

which is an alternative summary version of the structural function g. In particular, the ASF

is represented by

ASF(x) ≡ ∫ g(x, ε)dFε.

As a special case, the average structural function in the additive models of the form

Y = h(X) + ε is given by

ASF(x) = ∫ (h(x) + ε)dFε = h(x) +E(ε ∣X).

Therefore, the average structural function in an additive model reduces to the usual

regression function h(x) = E(Y ∣X) if E(ε ∣X) = 0. In fact, the usual goal of the estimation

approach to the sample selection models is to draw inferences on the parameter of interest

for the full population, even if we can only observe the nonrandomly selected sample. As a
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consequence, it seems natural that the (unconditional) ASF is our potential candidate of the

parameter of interest. Unfortunately, unlike the separable sample selection models, where β

or h(x), the parameter of interest for the full population, can be recovered from the identified

object E(Y ∣X,Z,D = 1), the (unconditional) ASF cannot be identified (and estimated) from

the selected sample only (see Table 3.2). In other words, in the context of sample selection

models, the object the researcher is able to recover from the data is E(Y ∣ X,Z,D = 1).
Imposing separability on sample selection models implies that E(Y ∣X,Z), the parameter of

interest for the full population, can be separated from Ê(Y ∣X,Z,D = 1). However, without

further restrictions as discussed below, we cannot do so in a more general nonseparable

setting.

We start with the full independence assumption.

Assumption FI. (ε, ν) and (X,Z) are independent.

With the full independence assumption, we can define the propensity score P referring

to the conditional probability of selection D = 1 given Z. The propensity score plays an

important role of controlling for selection bias in the nonparametric selection framework in

our identification analysis.

Assumption PS. Suppose Assumption FI is satisfied and the error term ν is continuously

distributed with support on the entire real line with the distribution function Fν(⋅). Then the

selection probability (which is often referred to as the ”propensity score”) is

P = Pr(D = 1 ∣ Z) = Pr(ν < q(Z)) = Fν(q(Z)).

Under Assumption FI and the definition of the propensity score, Newey (2007) shows

that ε and X are independent conditional on P in the selected data, i.e.,

(ε, ν) á (X,Z) ⇒ ε áX ∣ P (Z),D = 1.

On the other hand, under Assumptions FI and PS, we recall a known result that has

commonly been used in semi- and non-parametric sample selection models (e.g., Ahn and



108

Powell (1993), Chen and Khan (2003)): consider the conditional distribution of the outcome

errors ε given D = 1 and the regressors X and Z

Pr(ε ≤ c ∣X,Z,D = 1) = Pr(ε ≤ c ∣X,Z, ν < q(Z))

= Pr(ε ≤ c ∣ q(Z), ν < q(Z))

=H(c, q(Z))

=H(c,F −1
ν (P (Z)))

= G(c,P (Z)),

where the first and second equalities follow from the selection equation (3.3) and Assump-

tion FI and the fourth equality is due to Assumption PS implying an invertible relation

between q(Z) and the propensity score P (Z). This result implies that any functional of the

conditional distribution of ε is only a function of the propensity score.

Assumption FI has often been used to be a sufficient condition to identify the additive

sample selection models. However, it will still not suffice in general for identification of the

ASF in the nonadditive sample selection models. To see this,

E(Y ∣X = x,Z = z,D = 1) = E(g(x, ε) ∣X = x,Z = z, ν < q(z))

= E(g(x, ε) ∣X = x, q(z), ν < q(z))

= E(g(x, ε) ∣X = x, q(z),D = 1)

= E(g(x, ε) ∣X = x,P (z),D = 1)

≡ ∫ g(x, ε)dFε∣X=x,P (z),D=1

= ∫ g(x, ε)dFε∣P (z),D=1

≠ ∫ g(x, ε)dFε∣P (z)

unless the outcome errors ε are independent of the selection errors ν conditional on the

propensity score. This inspection implies nonidentifibility of ASF(x) since identification

of ASF(x) requires E(g(x, ε) ∣ X,P ) be identified. Conversely, ASF(x) is recovered by
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integrating the quantity ∫ g(x, ε)dFε∣P over the marginal distribution of the propensity score

P , i.e.,

∫ ∫ g(x, ε)dFε∣PdFP = ∫ g(x, ε)dFε ≡ ASF(x).7

The loss of identifying power of stochastic restrictions (3.4) in the context of nonseparable

sample selection model is not surprising because the mean restrictions typically have to be

strengthened to the full independence in general nonseparable models. A more interesting

question may be to explore the identifying power of the full independence restriction in

nonseparable models with sample selection. We maintain the full independence restriction

on the model in the following identification analysis.

In response to nonidentification results in nonseparable sample selection models, there

are at least three approaches to deal with the lack of identification of parameters for the full

population due to nonseparability. First, one can shift the focus of attention on the parameter

that is identified given the selected data, e.g., the ASF given selection. This approach is the

main focus of this chapter. We defer the discussion of this approach to Section 3.4.2. The

second approach is to impose additional structures on the model to secure point identification.

Following this approach, one possibility is to impose functional form assumptions such as

a stochastic polynomial structure.8 One can also appeal to the identification-at-infinity

argument, as developed by Heckman (1990) and Andrews and Schafgans (1998), to achieve

point identification in nonseparable sample selection models by focusing only on observations

for which the choice probability is sufficiently high and equal to one in the limit. We discuss

these possible extensions in Sections 3.5.1 and 3.5.2, respectively. Lastly, we note that

the third approach in response to the above nonidentification problem is to pursue partial

identification. This is an ongoing research topic in the literature (Arellano and Bonhomme

(2013)).

7For the outer integral before the first equality to be well-defined, we need to impose the common support
assumption that the conditional support of P given X and the marginal support of P conincides (and vise
versa).

8This stochastic polynomial structure has been employed by Florens, Heckman, Meghir, and Vytlacil
(2008) in the context of nonseparable models with endogeneity.
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3.4.2 Identification of ASFS(x)

In this section, we study the identification of the average structural function given se-

lection based on the first approach as mentioned in the previous section. Corresponding to

the nonparametric separable sample selection models developed by DNV, we move from a

simplest nonseparable sample selection model to progressively more complex models, includ-

ing a nonseparable sample selection model with a continuous endogenous regressor and a

model where the endogenous variable enters the selection equation as well. The parameters

of interest, identifying assumptions, and the identification results are also discussed.

3.4.2.1 The Simplest Nonseparable Sample Selection Model

The simplest nonseparable sample selection models (3.1)-(3.3), relaxing the functional

forms of the outcome equation and the distribution of the error term and assuming that

the observables and the error term are independent, have briefly been considered by Newey

(2007). We repeat his results for completeness and provide a detailed discussion in order to

view them as basic results on which we can make extensions that might be more appropriate

for empirical applications, as discussed below.

The model (3.1)-(3.3) is a general form of sample selection models. Their parametric,

semiparametric and nonparametric counterparts in separable settings are special cases of

this general model. We use the following two examples to illustrate the relationship among

these models.

Example 3.1. Linear Parametric Sample Selection Models with Normality Assumptions

The conventional sample selection models in a fully linear parametric setting are given by

Y ∗ =X ′β + ε,

D = 1{Z ′α − ν > 0},

and Y =D × Y ∗observed.
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Together with assuming that (ε, ν) are jointly normally distributed with full independence

of Z, we then have

E[ε ∣ Z,D = 1] = E[ε ∣ Z, ν < Z ′α] = ρενE[ν ∣ Z, ν < Z ′α]

= −σενφ(Z ′α)/Φ(Z ′α),

where φ(⋅) and Φ(⋅) are the probability density density and distribution functions of the

standard normal distribution.

Alternatively, by introducing the propensity score, E[ε ∣ Z,D = 1] can also be expressed

as the function of the propensity score

P (Z ′α) ≡ Pr(D = 1 ∣ Z) = Pr(ν < Z ′α) = Fν(Z ′α),

which implies

Z ′α = F −1
ν (P (Z ′α))

under the assumption of strict monotonicity of Fν . Therefore

E[ε ∣ Z,D = 1] = E[ε ∣ ν < Z ′α] = E[ε ∣ ν < F −1
ν (P (Z ′α))] = λ0(P ).

We call E[ε ∣ Z,D = 1] the control function or the selection correction term because

entering it as an additional regressor in the outcome equation corrects for selection bias. In

a linear setting with normality assumption of (ε, ν) as shown above, the control function

λ0(P ) becomes a function of the inverse Mills ratio.

Example 3.2. Semi- and Non-parametric Sample Selection Models

In order to avoid the potential misspecification resulting from the assumption of error dis-

tribution, by relaxing the normality assumption, we then have the semiparametric sample

selection model

E[Y ∣X,Z,D = 1] =X ′β + λ1(Z ′α),

where the control function λ1(Z ′α) or λ0(P ) is unknown since Fν is not specified parametri-

cally. In semiparametric settings, the most important task is the estimation of λ0(P ) which
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is unknown. A number of estimators have previously been developed in the literature to

deal with this problem, such as Cosslett’s (1991) dummy variable model and Newey’s (2009)

series approximation etc. In addition, Powell (2001) and Ahn and Powell (1993) develop

an alternate approach by ”pairwise differencing” observations with the same probability of

selection to sidestep the estimation of the unknown λ0(P ). More recently, DNV extends

the parametric and semiparametric sample selection models to nonparametric settings with

separable additivity restrictions. In particular, the model they consider is

E[Y ∣X,Z,D = 1] = h(X) + λ0(P ),

where h(⋅) and λ0(⋅) are unknown functions.

As discussed in the previous section, the object of interest for the full population such

as the (unconditional) ASF can not be separated from the estimate of E(Y ∣ X,Z,D = 1).
As a consequence, instead of the ASF, one identifiable parameter of primary interest in the

nonseparable sample selection models is the ASF given selection:9

ASFS(x) ≡ ∫ g(x, ε)dF S
ε .

For notational simplicity, let the distribution function and expectation with superscript

S denote the corresponding objects in the selected sample, i.e., F S
ε (⋅) ≡ Fε∣D=1(⋅).

We would like to emphasize that whether or not the conditional average structural func-

tion on selection (i.e., ASFS(x)) is of interest depends on the context. We may be more

interested in ASFS(x) than in ASF(x) in some economic applications where there are a lot

of units never being selected. This is because the former measures the effects on those for

whom the program is actually intended and hence is more policy relevant. For example, in

a study of empirically assessing the wage effects of the Job Corps program, a job training

program in the U.S., Lee (2009) mentions that it is useful to assess the impacts on wages

of the job training program conditional on being employed. In contrast, researchers may be

9Newey (2007) shows that, in addition to the ASF given selection, the derivative of the ASF conditional on
selection and the quantile structural function for the selected sample can also be identified in a nonseparable
sample selection model.
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interested in ASF(x) in the case where the effects for the public in general is of primary in-

terests, not just for people who actually participated in treatment, e.g. the effects of exercise

on blood pressure are concerns for the public, not just for people who exercise. Neverthe-

less, (point and partial) identification of the unconditional average structural function or

other parameters of interest for the full population in a nonseparable sample selection model

remains an important direction for future research.

We want to show below that averaging the conditional mean of Y given X, P , and D = 1

over the distribution of P in the selected data gives the ASFS(x) for the nonseparable sample

selection models. By identification we mean that parameters of interest can be recovered from

the distributions of the observable random variables. It is assumed that we have i.i.d. data

on {Yi,Xi, Zi,Di} for i = 1, . . . , n, which ensures that the joint distribution of (Y,X,Z,D) is

by definition identified and conditional distributions and moments can also be consistently

estimated.

Under Assumption FI and the definition of the propensity score, Newey (2007) shows

that ε and X are independent conditional on the propensity score P in the selected data,

i.e.,

(ε, ν) á (X,Z) Ô⇒ ε áX ∣ P (Z),D = 1. (3.5)

Based on the result of conditional independence (3.5), Newey (2007) further applies the

known results of identification of nonseparable models using the control function approach

in Imbens and Newey (2009) to the nonseparable sample selection model and shows that

ASFS(x) and the quantile structural function given selection are identified. Newey also

points out that the average derivative given selection is identified without the common

support assumption.

Assumption CS. For all X ∈ X , the support of P conditional on X and selection equals

the support of P conditional on selection.
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Theorem 3.1. (Newey (2007)) In the model of equations (3.1)-(3.3), if Assumption FI

holds, then X and ε are independent conditional on P in the selected data. If additionally

Assumption CS is satisfied, then the average structural function given selection is identified.

The identification strategy proceeds as follows. First note that for any bounded function

a(X), by independence of X and ε,

ES[a(X) ∣ ε,P ] = ∫ a(X)dF S
X ∣ε,P (x ∣ ε,P )

= ∫ a(X)dF S
X ∣P (x ∣ P )

= ES[a(X) ∣ P ].

Therefore, for any bounded function b(ε) we have

ES[a(X)b(ε) ∣ P ] = ES[ES(a(X)b(ε) ∣ P, ε) ∣ P ]

= ES[b(ε)ES(a(X) ∣ P, ε) ∣ P ]

= ES[b(ε)ES(a(X) ∣ P ) ∣ P ]

= ES[a(X) ∣ P ]ES[b(ε) ∣ P ].

The first equality follows from the law of iterated expectations. Next consider

ES[Y ∣X = x, p] = ES[g(x, ε) ∣X = x,P ]

= ∫ g(x, ε)dF S
ε∣X=x,P

= ∫ g(x, ε)dF S
ε∣P

≡ g∗(x,P,D = 1).

Due to the assumption of common support of P , integrating g∗(x,P,D = 1) over the marginal

distribution of P conditional on selection is well defined and thus gives ASFS(x) as follows

∫ g∗(x,P,D = 1)dF S
P = ∫ ∫ g(x, ε)dF S

ε∣PdF
S
P

= ∫ g(x, ε)dF S
ε

≡ ASFS(x).
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We then conclude that ASFS(x) is identified since both ES[Y ∣ X = x,P ] and F S
P are

identifiable objects.

We emphasize here that there are two implications from the result of Theorem 3.1. First

of all, it is worth noting that g∗(x,P,D = 1) can be regarded as a nonseparable generalization

of the control function for the additive models. In an additive model, g∗(x,P,D = 1) turns

out to be

g∗(x,P,D = 1) ≡ ∫ (h(x) + ε)dF S
ε∣P

= ∫ (h(x) + ε)dF S
ε∣X,P

= h(x) +E(ε ∣X,P,D = 1)

= h(x) + λ0(P ),

where E(ε ∣X,P,D = 1) ≡ λ0(P ) is a control function, as mentioned above. Second, by using

the following equality derived from Theorem 3.1, we have

∫ g∗(x,P,D = 1)dF S
P = ∫ g(x, ε)dF S

ε .

we can see that identification of the object of interest, ASFS(x), can be achieved by

replacing the unidentified objects g(x, ε) and F S
ε with g∗(x,P,D = 1) and F S

P respectively.

3.4.2.2 Nonseparable Sample Selection Models with a Continuous
Endogenous Regressor

Since it is quite often to consider the econometric models with endogenous variables, we

extend the simplest nonseparable sample selection model discussed in the previous section

to allow for endogenous regressors. It is the model that we propose the nonparametric

estimation approach, derive asymptotic theory, and implement simulations in the following
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sections. The nonseparable sample selection model with endogenous regressors is given by

Y ∗ = g(X,ε), (3.6)

X1 = π(Z, η), (3.7)

Y =D × Y ∗ observed, (3.8)

D = 1{q(Z) − ν > 0}, (3.9)

where there is a single endogenous variable X1 included in X = (X1, Z ′
1)′ and instruments

Z = (Z ′
1, Z

′
2)′; ε can be a vector or a scalar; η is a scalar; there are potential correlations

among ε, η, and ν.

Example 3.3. DNV’s Nonparametric Sample Selection Models with Endogenous Regressors

The model (3.6)-(3.9) is a general form of DNV’s nonparametric sample selection model with

endogeneity. In DNV’s model where Y ∗ = g(X1, Z1) + ε, X1 = π(Z1, Z2) + η, and Y = d × Y ∗

observed, the control function λ2(⋅) takes the following form

E[Y ∣X,Z, η,D = 1] = h(X) +E[ε ∣ Z, η,D = 1] = h(X) + λ2(P, η).

Assumption 3.1. (i)(Full independence) (ε, η, ν) and Z are independent;

(ii)(Common support) For all X ∈ X , the support of (P, η) conditional on X and selection

equals the support of (P, η) conditional on selection;

(iii)(Strict monotonicity in η) If π(z, η) > π(z, η′) for some (z, η, η′), then π(z′, η) > π(z′, η′)
for all z′.

The Assumption 3.1 (i) and (ii) are similar to the corresponding assumptions in the

previous model. Assumption 3.1 (iii) is needed because imposing the strict monotonicity in

η enables us to introduce a control variable V ≡ FX1∣Z(X1 ∣ Z) in place of η. The reason

for that will become clear below. However, this is indeed a strong restriction, which implies

that the nature of endogenous regressors has to be continuous. This is because for the case

with a binary endogenous variable X1, imposing strict monotonicity in η forces η to take on

two distinct values only and therefore η is perfectly correlated with X1, meaning that there
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is no variation in X1 conditional on η and hence we learn nothing about the causal effect of

X1. Another reason for ruling out the case of binary endogenous variables is that the control

variable V , as defined above, is legitimate only for a continuous endogenous variable.

Theorem 3.2. In the model of equations (3.6)-(3.9), if Assumptions 3.1 (i) are satisfied,

then X and ε are independent conditional on p and η given selection.

Proof. The proof is similar to that of Theorem 1. For any bounded function a(X), by

independence of Z and (ε, η)

ES[a(X) ∣ ε,P, η] = ∫ a(π(Z, η))dF S
Z∣ε,P,η(z ∣ ε,P, η)

= ∫ a(π(Z, η))dF S
Z∣P (z ∣ p)

= ES[a(X) ∣ P, η].

Therefore, for any bounded function b(ε), by the law of iterated expectations, we have

ES[a(X)b(ε) ∣ P, η] = ES[ES(a(X)b(ε) ∣ ε,P, η) ∣ P, η]

= ES[b(ε)ES(a(X) ∣ ε,P, η) ∣ P, η]

= ES[b(ε)ES(a(X) ∣ P, η) ∣ P, η]

= ES[a(X) ∣ P, η]ES[b(ε) ∣ P, η].

Following the similar argument to Theorem 3.1, we can show below that averaging the

conditional mean of Y given X, P , η, and D = 1 over the joint distribution of (P, η) in the

selected data gives the ASF given selection for the model (3.1)-(3.3).

ES[Y ∣X = x,P, η] = ES[g(X,ε) ∣X = x,P, η]

= ∫ g(x, ε)dF S
ε∣X=x,P,η

= ∫ g(x, ε)dF S
ε∣P,η

≡ g∗(x,P, η,D = 1).
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Integrating g∗(x,P, η,D = 1) over the conditional distribution of P given selection and the

marginal distribution of η conditional on selection, we obtain ASFS(x) as follows

∫ ∫ g∗(x,P, η,D = 1)dF S
P ∣ηdF

S
η = ∫ ∫ ∫ g(x, ε)dF S

ε∣P,ηdF
S
P ∣ηdF

S
η

= ∫ g(x, ε)dF S
ε

≡ ASFS(x).

Since

∫ ∫ g∗(x,P, η,D = 1)dF S
P ∣ηdF

S
η = ∫ ES[Y ∣X = x,P, η]dF S

P,η,

we obtain the similar results indicating that ASFS(x) is the integral over the joint distribu-

tion of (P, η) conditional on selection of ES[Y ∣ X = x,P, η]. Again, the above integral on

the right side is well defined due to common support in Assumption 3.1 (ii).

In an additive model where X1 = π(Z) + η with E(η ∣ Z) = 0, the function π as well as

Fη,Z can be identified (see Matzkin (2007) for proofs). As a consequence, η is identified and

consistently estimated since η =X1−π(Z). However, the problem of identification arises due

to nonseparability of the reduced form for X1. Since the reduced form equation for X1 has

an unknown function π(⋅) with an nonadditive disturbance η, it leads to unidentifiability

of π(Z, η) even when π is assumed to be strictly increasingly in η and η is distributed

independently of Z (see Matzkin (2003)). Under Assumption 3.1 (iii), there is a trick Imbens

and Newey (2009) employ to construct an alternative variable V in place of η as a control

variable by using the following argument

Fη(η̄) = Pr(η ≤ η̄ ∣ Z = z) = Pr(X1 ≤ π(Z, η̄) ∣ Z = z) = Pr(X1 ≤ x1 ∣ Z = z)

= FX1∣Z(x1 ∣ z) = E[1{X1 ≤ x1} ∣ Z = z] ≡ v(x1, z).

Based on the fact that V is a one-to-one function of η, we then obtain, by replacing η

with V and following the same argument above, the immediate results of independence of

X and ε conditional on P , V , and D = 1 and then identification of the ASF given selection,

as stated in Theorem 3.3.
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Theorem 3.3. In the model of equations (3.6)-(3.9), if Assumptions 3.1 are satisfied, then

X and ε are independent conditional on P , V , and selection and the average structural

function given selection is identified.

Theorem 3.3 states that V in place of η, along with propensity score, can be used as

control variables to correct for endogeneity and selection bias jointly. It extends previous

results given by Newey (2007) and Imbens and Newey (2009) to the cases where both selection

and endogeneity are taken into consideration.

3.4.2.3 Nonseparable Sample Selection Models with an Endoge-
nous Variable Entering the Selection Equation

One possible extension of the models considered above is to the case in which not only

does the endogenous variable enters the outcome equation but also enter the selection equa-

tion. This model, for example, can be considered as a labor supply model where X1 are

an endogenous schooling or continuous treatment variable that affects wages (Y ) and the

participation decision at the same time.10 This extended model is given by

Y ∗ = g(X,ε), (3.10)

X1 = π(Z, η), (3.11)

Y =D × Y ∗ observed, (3.12)

D = 1{q(X1, Z) − ν > 0}. (3.13)

10An interesting question is to empirically assess whether any earning gains from participation of
employment-related training programs are achieved through raising individual’s wage rate by an increase of
human capital or simply through increasing the likelihood of employment and hours of work without any
increase in wage rates.
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Example 3.4. The control function in the parametric linear model corresponding to the

above general model can be expressed by

E[ε ∣X1, Z,D = 1] =E[ε ∣X1, Z, ν < (x1δ +Z ′α)] = E[ε ∣X1, Z, ν < (Z ′γ + η)δ +Z ′α)]

=E[ε ∣X1, Z, ν − ηδ < Z ′(γδ + α)]

=σE[ν − ηδ ∣ ν − ηδ < Z ′θ]

= − σφ(Z ′θ)/Φ(Z ′θ) = ρλ3(Z ′θ),

where σ is the covariance between ε and ν − ηδ; θ = γδ + α; φ(⋅) and Φ(⋅) are the normal

density and distribution functions for ν − ηδ.

Theorem 3.4. In the model of equations (3.10)-(3.13), if Assumption 3.1 (i) is satisfied,

then X1 and ν are independent conditional on v and X and ε are independent conditional

on P , V , and selection.

Proof. For any bounded function a(X1), by independence of Z and (ε, η)

ES[a(X1) ∣ ν, V ] = ∫ a(π(Z, η))dF S
Z∣ν,V (z ∣ ν, v) = ∫ a(π(Z, η))dF S

Z∣V (z ∣ v) = ES[a(X1) ∣ V ].

Therefore, for any bounded function b(ν), by iterated expectations, we have

ES[a(X1)b(ν) ∣ V ] = ES[ES(a(X1)b(ν) ∣ ν, V ) ∣ V ] = ES[b(ν)ES(a(X1) ∣ ν, V ) ∣ V ]

= ES[b(ν)ES(a(X1) ∣ V ) ∣ V ] = ES[a(X1) ∣ V ]ES[b(ν) ∣ V ].

The proof of the second part is the same as that of Theorem 3.2.

Theorem 3.5. In the model of equations (3.10)-(3.13), if Assumption 3.1 is satisfied, then

the average structural function given selection is identified.

Proof. The proof is the same as that of Theore 3.3.

Another interesting extension of the nonseparable sample selection model is that not

only does the dependent variable in the outcome equation be only observed in the selected
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sample but also endogenous variables subject to selection. An economic application of such

a model could be a labor supply model where Y is hours worked and X1 are endogenous

wages and both of them are only observed when people choose to work. This extension can

work in an separable setting since we can recover π(Z) (and thus η) from ES(X1 ∣ Z,P )
since ES(X1 ∣ Z,P ) = π(Z) + λ(P ) (see DNV for a detailed discussion). Yet this would be a

challenging extension in a setting of nonseparable reduced forms for X1. The reason for that

difficulty is that the object we can identify and estimate is ES[1{X1 ≤ x1} ∣ Z = z], which

is the conditional expectation of 1{X1 ≤ x1} on selection, rather than E[1{X1 ≤ x1} ∣ Z = z]
for the full population.

3.5 Extension

3.5.1 Identification of ASF(x) in Partially Separable Models

Nonseparable models are motivated by the fact that additive separability is hard to justify

from economic theory or empirical evidence. However, in the context of sample selection, as

discussed in the previous section, fully nonseparable sample selection models are in general

not able to achieve point identification of ASF(x) without further restrictions. It is natural to

ask if point identification can be achieved by restricting the class of underlying models. Here

we provide a special case that can be viewed as the middle ground between fully separable

and fully nonseparable models. In particular, we characterize a class of partially separable

models for which it is possible to (point) identify the (unconditional) ASF.

Consider a structural nonseparable outcome equation of the following partially separable

form

Y ∗ = g(X,ε)

= g1(X) + g2(X,ε)

= g1(X) +
J

∑
j=0

g2j(X)εj (3.14)

with Y = Y ∗ ×D observed, where X is a scalar, g2j(X) ∶ R → R, j = 0, . . . , J are possibly

unknown functions, and J is known. Without loss of generality, we can normalize E(εj) = 0,
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j = 0,1, . . . , J . This specification of the outcome equation can be viewed as a partially sepa-

rable model with nonseparability in ε maintained. By imposing this particular specification,

it is easy to see that ASF(x) can be expressed as

ASF(x) ≡ ∫ g(x, ε)dFε = g1(x) +
J

∑
j=0

g2j(x)E(εj) = g1(x).

We begin the identification analysis of ASF(x) by Assumption FI. Assumption FI ensures

that (ε0, ε1, . . . , εJ) are independent of X conditional on the propensity score in the selected

data, which implies that E(εj ∣ X,Z,D = 1) for j = 0,1, . . . , J is only a function of the

propensity score.

As a consequence, the partially separable specification enables us to express the identifi-

able object E(Y ∣X = x,Z = z,D = 1) as an additive function consisting of the parameter of

interest, ASF(x), and the selection correction term, i.e.,

E(Y ∣X = x,Z = z,D = 1) = ASF(x) +
J

∑
j=0

g2j(x)E(εj ∣X = x,Z = z,D = 1)

= ASF(x) +
J

∑
j=0

g2j(x)E(εj ∣X = x, q(z), ν < q(z))

= ASF(x) +
J

∑
j=0

g2j(x)E(εj ∣X = x,P (z), ν < F −1
ν (P (q(z))))

= ASF(x) +
J

∑
j=0

g2j(x)E(εj ∣ P (z), ν < F −1
ν (P (q(z))))

≡ ASF(x) +
J

∑
j=0

g2j(x)λj(P (z)), (3.15)

where λj(⋅) for j = 0,1, . . . , J are unknown functions of the propensity score. Note that

the selection correction is now a function of the covariate X and the propensity score. The

selection correction involving the covariate X, without further restrictions, is not able to

be expressed as a function of the propensity score alone and therefore fails identification of

ASF(x). However, the stochastic polynomial specification and the smoothness assumption,

as discussed below, play a crucial role for the identification.

Assumption SP. (i) (Stochastic Polynomial Specification) The additive functions g2j(X), j =
0,1, . . . , J take a stochastic polynomial form, i.e., g2j(X) =Xj.
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(ii) (Smoothness) g1(X) is J times differentiable in X.

(iii) (Measurable Separability) Any function of X almost surely equal to a function of the

propensity score P (Z) must be almost surely equal to a constant.

The stochastic polynomial specification, along with the smoothness assumption, enable

us to eliminate the covariate involved in the selection correction by taking derivative enough

times. Similar to the identifying strategy suggested by Florens, Heckman, Meghir, and

Vytlacil (2008), the following theorem shows that ASF(x) is identified.

Theorem 3.6. Suppose Assumptions FI and SP hold in models (3.1)-(3.3) and (3.14). The

average structural function is identified.

Proof. The proof is analogous to that of Theorem 1 in Florens, Heckman, Meghir, and

Vytlacil (2008). We omit the proof for brevity.

Remark 3.1. This argument extends the identification results by Florens, Heckman, Meghir,

and Vytlacil (2008) to the sample selection models. Note that for nonseparable models with

endogenous regressors using the control function approach, imposing a stochastic polynomial

assumption serves as an alternative method to obtain identification without the need to im-

pose the common support assumption employed by Imbens and Newey (2009). Theorems 3.6

and 3.1 below show that these two approaches identify conditional and unconditional ASFs

respectively in the nonseparable models in the presence of sample selection.

The stochastic polynomial specification as equation (3.14) encompasses heteroskedastic

sample selection models as a special case where the outcome equation is of the form

Y ∗ = g1(X) + g20(X)ε0. (3.16)

It is well known that conventional estimation procedures for sample selection models yield

inconsistent estimators in the presence of conditional heteroskedasticity. It is not difficult

to show that the function g1 is identified by employing the strategy adapted from Chen and

Khan (2003), as stated in the following theorem.
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Theorem 3.7. Suppose a heteroskedastic sample selection model 3.1-3.3 and 3.16. Under

Assumptions FI and SP(iii), the average structural function g1(x) for all x ∈ X is identified.

Proof. First note that

E(Y ∗ ∣X = x,Z = z,D = 1) = g1(x) + g20(x)E(ε0 ∣X,Z,D = 1)

= g1(x) + g20(x)λ0(P ).

Then by picking two different quantiles τ1 and τ2 of the observed outcome Y , we have

Qτ1(Y ∗ ∣X = x,Z = z,D = 1) = g1(x) + g20(x)Qτ1(ε0 ∣X = x,Z = z,D = 1)

= g1(x) + g20(x)λτ1(P (z))

and similarly for τ2.

Taking the difference of these two quantiles of the observed outcome Y gives

∆Qτ12 = g20(x)∆λτ12(P ),

where ∆Qτ12 ≡ Qτ1(Y ∗ ∣ X = x,Z = z,D = 1) −Qτ2(Y ∗ ∣ X = x,Z = z,D = 1) and ∆λτ12(P ) ≡
λτ1(P (z)) − λτ2(P (z)).

Define the transformed variables

Ỹ = Y

∆Qτ12

, g̃1(x) =
g1(x)
∆Qτ12

, and λ̃(P ) = λ(P )
∆λτ12(P ) .

Our analysis leads to the following relationship

E(Ỹ ∣X,Z,D = 1) = g̃1(X) + λ̃(P ).

Under the measurable separability assumption (i.e., Assumption SP (iii)), the function g̃1 is

identified and therefore g1(x) = g̃1(x)∆Qτ12 is identified.

3.5.2 Identification of Structural Function g(x, ε)

3.5.2.1 Nonparametric Quantile Regression Representation

The following independence and monotonicity assumptions are standard in nonseparable

models. The independence assumption is weaker than it would be in separable models due



125

to the fact that ε enters the outcome equation in a nonadditive way so that the general

interaction between X and ε is allowed. The model with endogeneity by relaxing the in-

dependence assumption will be considered later. Monotonicity in ε for every x guarantees

invertibility of the structural function in the second argument. Matzkin (2003) discusses

alternative normalization strategies.

Assumption IMN. (Independence) ε is a scalar error term that is distributed, with a

distribution function Fε , independently of X in the population;

(Monotonicity) For every x ∈ X , g(x, ε) is strictly increasing in ε;

(Normalization) The error term ε is uniformly distributed on [0,1].

Matzkin (2003) studies identification and estimation of a nonadditive model Y = g(X,ε).
Matzkin’s Lemma 1 showed that the structural function g is only identified up to a strict

transformation 11 even when g is assumed to be strictly increasing in ε and X is independent

of ε. On the other hand, once g is identified, so is Fε, and vice versa. This is because

Fε(e) = Pr(ε ≤ e)

= Pr(ε ≤ e ∣X = x)

= Pr(g(X,ε) ≤ g(x, e) ∣X = x)

= FY ∗∣X=x(g(x, e)) (3.17)

and therefore

g(x, e) = F −1
Y ∗∣X=x(Fε(e)) (3.18)

provided that the conditional distribution function, FY ∗∣X=x, of Y ∗ given X = x is strictly

increasing, i.e. the density of ε is everywhere positive.

Clearly, g(x, e) is not identified because the conditional distribution function of ε , Fε(e),
is unobserved. Normalization of the structural function or of the distribution of ε is required

for g(x, e) to be identified.

11That is, g(x, ε) and g′(x, s(ε)) are observationally equivalent if and only if g(x, ε) = g′(x, s(ε)) where s
is some continuous and strictly increasing function. See Matzkin (2003, 2007) for details.
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Normalization of Fε: Fε ∼ U(0,1). If Fε(ε̄) is continuous then η = Fε ∼ U(0,1). So we

can write

g(X,ε) = g(X,F −1
ε (η)) ≡ g′(X,η).

This normalization strategy was employed by e.g. Imbens and Newey (2009) and Blundell

and Powell (2003). Under this normalization, equation (3.18) becomes

g(x, e) = F −1
Y ∗∣X=x(e). (3.19)

Equation (3.19) implies that g(x, e) is the eth quantile of the conditional distribution of

Y ∗ given X = x. Therefore, one can estimate the conditional quantile function m(x, e) by

inverting the estimate of conditional distribution function that has been developed in the

literature. One could also equivalently use the check function approach to compute g(x, e),
see e.g. Chaudhuri (1991) and Chaudhuri, Doksum, and Samarov (1997). Clearly, once we

can identify the object FY ∗∣X=x(⋅) from the selected sample, identification of the structural

function g follows immediately. However, this is not usually the case in the presence of

sample selection. We can identify FY ∣X=x,D=1(⋅) rather than FY ∗∣X=x(⋅) from the observed

data without further restrictions.

3.5.2.2 Nonparametric Quantile Regression with Sample Selection

Under Assumption IMD and the normalization, the nonseparable outcome equation Y ∗ =
g(X,ε) can be equivalently represented as the usual nonparametric quantile regression

Y ∗ = gτ(X) + ετ , (3.20)
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where gτ(X) ≡ g(X,τ) and ετ ≡ g(X,ε) − g(X,τ). Note that the τ th quantile of ετ (denoted

by Qτ(ετ)) is equal to zero by construction. To see this,

Qτ(ετ ∣X = x) = Qτ (g(X,ε) − g(X,τ) ∣X = x)

= g(x,Qτ(ε)) − g(x, τ)

= g(x, τ) − g(x, τ)

= 0,

where the second equality follows by the monotonicity assumption and the third equality is

due to normalization of Fε(⋅) to be uniformly distributed on [0,1].

Equation (3.20) provides a basis for the identification analysis of the structural function

g that is convenient to work with in the context of sample selection. Identification and

estimation of the quantile structural function gτ are interesting tasks in empirical work.

For example, in the empirical analysis of wages and participation, estimating gτ allows the

researcher to correct wage inequality for nonrandom selection to work. This correction for

selection bias is particularly important in the case in which employment rates vary over

time or by groups (for details see Arellano and Bonhomme (2013)). In the absence of

sample selection, the structural function gτ can be estimated by the standard nonparametric

regression models (e.g., local polynomial estimation by Chaudhuri (1991)). In the presence

of sample selection, the model reduces to the nonparametric quantile regression with sample

selection. In particular, the conditional quantile of the observed outcome is given by

Qτ(Y ∗ ∣X,Z,D = 1) = gτ(X) +Qτ(ετ ∣X,Z,D = 1), (3.21)

where Qτ(ετ ∣ X,Z,D = 1) is the quantile version of the so-called selection correction term

and in general Qτ(ετ ∣ X,Z,D = 1) ≠ 0 due to the fact that the error term ετ (or ε) is

generally not independent of the selection indicator variable D.

However, unlike the conventional sample selection model, the main difficulty to achieve

identification of the structural function g based on (3.21) is that the selection correction term,
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Qτ(ετ ∣ X,Z,D = 1), is in general no longer separable between X and P (Z),12 indicating

that conditioning on the propensity score is not sufficient to control for selection bias. To

see this, the conditional distribution function of ετ is given by

Pr(ετ ≤ c ∣X,Z,D = 1) = Pr(g(X,ε) ≤ c + g(X,τ) ∣X,Z,D = 1)

= Pr(ε ≤ g−1(X, c + g(X,τ)) ∣X,Z,D = 1)

= G(g−1(X, c + g(X,τ)), P (Z))

≡ f(c, τ,X,P (Z)), (3.22)

where g−1(x, ⋅) denotes the inverse of g(x, ⋅) and G is the conditional distribution function

of ε ∣ Z,D = 1. Hence, Qτ(ετ ∣ X,Z,D = 1) can generally be expressed as f(τ,X,P (Z)). In

this case, it is clear that gτ(x) is not distinguishable from g∗τ (x) since

Y = gτ(X) + f(τ,X,P (Z)) +Uτ

= g∗τ (X) + f∗(τ,X,P (Z)) +Uτ , (3.23)

where g∗τ (X) = gτ(X) − a(X) and f∗(τ,X,P (Z)) = f(τ,X,P (Z)) + a(X) satisfy the same

restriction Pr(Uτ ≤ 0 ∣X,Z,D = 1) = τ .

We note that the fact that the selection correction term in (3.21) involves the covariates

X complicates the point identification of the quantile function gτ . This implies that, as

discussed in Angrist (1997), conditioning on the propensity score P is not sufficient to control

for selection bias.13

One possibility is to achieve point identification of gτ by appealing to identification-at-

infinity, as discussed in the next section.

12Arellano and Bonhomme (2013) show that Qτ(Y ∗ ∣ X,Z,D = 1) is non-additive in X and P (Z), unless
in the linear specification qτ(X) =X ′βτ all coefficients of βτ but the constant are independent of τ , or ε and
ν are statistically independent.

13Buchinsky (1998, 2001) considers linear quantile regression models with sample selection where the
outcome equation is Y ∗ = X ′β0 + ε = X ′βτ + ετ and ετ ≡ X ′(β0 − βτ) + ε satisfying Qτ(ετ ∣ X) = 0.
Under Buchinsky’s (2001) Assumption E, he shows that the propensity score as well as the conditional
distribution function of ετ given Z are only a function of q(Z). It then follows that the selection correction
Qτ(ετ ∣ X,Z,D = 1) depends only on q(Z). However, this assumption implies independence between ε and
X conditional on selection probability and therefore all quantile curves are parallel. This limitation was also
pointed out by Melly and Huber (2012).
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3.5.2.3 Identification at Infinity

Based on equation (3.21), one approach is to appeal to the so-called ”identification at

infinity” argument. That is, the quantile function gτ is point identified by focusing only

on the observations for which the probability of being selected is high, i.e. the group of

observations with the propensity score close to one, i.e.,

P > 1 − γ−1
n ,

where the parameter γn is the bandwidth satisfying γn → ∞ as the sample size n goes to

infinity.

For some value X = x suppose we can find a limit set Z so that for z ∈ Z the regression

function g(z) → ∞ and therefore P = P (D = 1 ∣ Z = z) = P (ν ≤ g(z) ∣ Z = z) → 1, i.e.,

lim
z→Z

P (D ∣ Z = z) = 1.

As a consequence,

lim
P (z)→1

Qτ(Y ∣X = x,Z = z,D = 1) = gτ(x) + lim
P (z)→1

Qτ(ετ ∣X = x,Z = z, ν ≤ q(z))

= gτ(x) +Qτ(ετ ∣X = x,Z = z)

= gτ(x).

Thus gτ is (point) identified. In words, identification at infinity allows us to solve the selection

bias problem by essentially identifying a group of individuals for whom there is no selection

problem.

We briefly discuss the estimation strategy using the identification at infinity argument.

To facilitate the proof of the distribution theory, one can follow Andrews and Schafgans

(1998) and Klein, Shen, and Vella (2011) by replacing the indicator function 1{⋅} with a

smooth function S(⋅). Then the smoothed versions of the local constant and local linear

estimators of the quantile function are given by

ĝlcτ (x) = arg min
α

n

∑
i=1

ρτ(Yi − α)K (Xi − x
hn

)S(ti(P̂i − 1 + γ−1
n ))
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and

(ĝllτ , β̂) = arg min
q,β

n

∑
i=1

ρτ(Yi − q − (Xi − x)′β)K (Xi − x
hn

)S(ti(P̂i − 1 + γ−1
n ))

respectively where S(⋅) is a non-decreasing [0,1]-valued function for which S(x) = 0 for x ≤ 0

and S(x) = 1 for x ≥ b for some 0 < b < ∞, P̂ is the estimator for the propensity score

P (D ∣ Z), and

ti ≡ 1(f̂Z(zi) ≥ Op(n−δ))

is a trimming function restricting the estimate of the density of Z to be away from 0 and δ

is a small positive number. We leave deriving asymptotic properties of the estimators ĝlcτ (x)
and ĝllτ to future research.

3.6 Nonparametric Estimation

In this section, we adopt a control function approach as the estimation strategy to es-

timate the nonseparable sample selection models with continuous endogenous regressors as

discussed in Section 3.4.2.2. Recall that the identification and estimation of ASFS(x) rely on

introducing the CDF of X1 conditional on Z, V ≡ FX1∣Z(X1, Z), along with the propensity

score P , as control variables to correct for endogeneity and selection jointly.

First step: the first step is to nonparametrically estimate control variables Pi and Vi,

i = 1, . . . , n. Since Pi ≡ E(Di ∣ Zi) and Vi ≡ FX1∣Z(X1i, Zi) = E[1{X1 ≤ X1i} ∣ Zi], we can

apply nonparametric regression methods directly. We use series methods to obtain the first-

step estimators of Pi and Vi. Let the number of approximating functions for P and V be

L1 and L2 respectively and rpL1(⋅) denote the L1 × 1 vector of the first L1 approximating

functions for P and the similar notation applies to V ,

rpL1(z) = (rp1L1
(z), . . . , rpL1L1

(z))′,

rvL2(z) = (rv1L2
(z), . . . , rvL2L2

(z))′,
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and let Rp and Rv denote the n×L1 and n×L2 matrices whose ith row are given by rpL1(Zi)′

and rvL2(Zi)′ respectively, then

Rp = (rpL1(Z1), . . . , rpL1(Zn))
′
,

Rv = (rvL2(Z1), . . . , rvL2(Zn))
′
.

Let P̂ (z) and V̂ (x1, z) be predicted values from regression of Di on rpL1(Zi) and of

1{X1i ≤ x1} on rvL2(Zi), respectively. We then form the first-step estimators P̂i and V̂i by

P̂i ≡ Ê(Di ∣ Zi) = rpL1(Zi)′β̂p

and

V̂i ≡ Ê(1{X1 ≤X1i} ∣ Zi) = rvL2(Zi)′β̂v(X1i),

where β̂p = (Rp′Rp)−Rp′D, β̂v(X1i) = (Rv′Rv)−Rv′1{X1 ≤ X1i}, D = (D1, . . . ,Dn)′, X1 =
(X11, . . . ,X1n)′, and (⋅)− denotes the generalized inverse of (⋅).

The first step estimates can then be used to construct an estimator ÊS(Y ∣X = x, P̂i, V̂i)
of ES(Y ∣X = x, P̂i, V̂i).

Second Step: recall that averaging the conditional mean of Y given X = x, P , V , and D = 1

over the joint distribution of (P,V ) in the selected data gives ASFS(x), the parameter of

interest. As a result, we obtain nonparametric estimates ÊS(Yi ∣ x, P̂i, V̂i) by regressing Yi on

Ŵi ≡ (Xi, P̂i, V̂i) in the selected data. To describe a series estimator of h(w) ≡ ES(Y ∣W = w)
where w = (x, p, v), let Wi = (Xi, Pi, Vi) as the sample base function transformations. Setting

Yi = h(Wi) + ei, Fi = ∑∞
k=K+1 βkrkK(Wi), and h∗K(Wi) = ∑Kk=0 βkrkK(Wi), we have

Yi = β0 +
∞
∑
k=1

βkrkK(Wi) + ei

= β0 +
K

∑
k=1

βkrkK(Wi) + Fi + ei

= h∗K(Wi) + Fi + ei.

The second-step series estimator for h(w) given in the selected data can be formed by

ĥ(w) = rK(w)′β̂, where

β̂ = (R̂′R̂)−1R̂′Y, R̂ = (rK(Ŵ1), . . . , rK(Ŵn)),
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rK(Ŵi) = (r1K(Ŵi), . . . , rKK(Ŵi)), i = 1, . . . , n, Y = (Y1, . . . , Yn)′,

where R̂ denote R = (rK(W1)′, . . . , rK(Wn)′)′ with the Wi = (Xi, Pi, Vi) replaced by Ŵi =
(Xi, P̂i, V̂i).

Define ŵi = (x, P̂i, V̂i). The estimate of h(ŵi) is ĥ(ŵi) = rK(ŵi)′β̂ and therefore the

estimate of the vector h = (h(ŵ1), . . . , h(ŵn))′ can be formed as

ĥ = R̃β̂ = R̃(R̂′R̂)−1R̂′Y,

where R̃ = (rK(ŵ1)′, . . . , rK(ŵn)′)′.

Third step: an estimator for ASFS(x), ÂSF
S(x), can be obtained by plugging in ÊS(Yi ∣

x, P̂i, V̂i) and by replacing integrals with sample average

ÂSF
S(x) = 1

n

n

∑
i=1

ÊS(Yi ∣ x, P̂i, V̂i).

3.7 Convergence Rates

We impose the following regularity conditions.

Assumption 3.2. The data, {Yi,Xi, Zi,Di} for i = 1, . . . , n are i.i.d., and Var(Y ∣ w) and

Var(X1 ∣ Z) are bounded.

Assumption 3.3. The control variables FX1∣Z(X1 ∣ Z) and P (Z) are continuously differ-

entiable of order dv and dp on the support of (X1, Z) and Z respectively. And h(W ) is

continuously differentiable of order dh on the support of W .

As known in standard series estimation, the smoothness conditions in Assumption 4.2

control the bias of the series estimator. To be precise the derivative orders dp, dv and dh

determine the rates of approximation of P (Z), FX1∣Z(X1 ∣ Z) and h(W ) by the first and

second steps regressors respectively. Let rw be the dimension of w and rz the dimension of

Z. Then for splines and power series the rate of approximation for h(W ) will be O(K−dh/rw).
The following conditions restrict the rate of growth of the number of terms K, L1, and L2

as sample size goes to infinity.
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Assumption 3.4. For splines (K2 +KL1/2
i )[(Li/n)1/2 + L−s/rzi ] → 0 and for power series,

(K3 +K2Li)[(Li/n)1/2 +L−s/rzi ] → 0, i = 1,2 and s = dp when i = 1 and s = dv when i = 2.

The following Lemma gives the results of the mean square convergence rates of the first

step estimators P̂i and V̂i.

Lemma 3.1. If Assumptions 3.2-3.4 are satisfied then

1

n

n

∑
i=1

(P̂i − Pi)2 = Op(L1/n +L−2dp/rz
1 )

and
1

n

n

∑
i=1

(V̂i − Vi)2 = Op(L2/n +L1−2dv/rz
2 ).

Proof. The first part of this Lemma is proven by Theorem 1 of Newey (1997). The proof of

the second part is provided in Appendix.

The mean square convergence rate for P (Z) is the standard result of series estimators:

the term L1/n corresponds to the variance term and the term L
−2dp/rz
1 to the biased term. As

for the mean square convergence rate for v(x1, z), there is an extra term L2 corresponding

to the biased term relative to the standard result. The reason for that is the fact that V̂i =
rvL2(Zi)′β̂v(X1i) where the series coefficients β̂v(X1i) depends on X1i and thus V̂i depends

on X1i as well, which lowers the convergence rate.

The following result gives mean square error and uniform convergence rates for h(w).

Theorem 3.8. Let Fw(w) denote the cumulative distribution function of wi. Suppose that

there exists a sequence of constant ζ0(K) satisfying supw∥rK(w)∥ ≤ ζ0(K) and that Assump-

tions 3.2-3.4 hold. Then

∫ (ĥ(w) − h(w))2dFw(w) = Op (K/n +K−2dh/rw +L1/n +L−2dp/rz
1 +L2/n +L1−2dv/rz

2 )

and

sup
w

∣̂h(w) − h(w)∣ = Op (ζ0(K) (K/n +K−2dh/rw +L1/n +L−2dp/rz
1 +L2/n +L1−2dv/rz

2 ))
1/2
.

Proof. See Appendix.
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This result says that the mean square convergence rate of ĥ(w) depends on the numbers

L1 and L2 of the approximating functions in the first step and the number K in the second

step. If L1 is chosen proportional to nrz/(2dp+rz), L2 proportional to nrz/2dv , and K propor-

tional to nrw/(2dh+rw), then convergence rates would achieve Stone’s (1982) optimal rates,

i.e.

∫ (ĥ(w) − h(w))2dFw(w) = Op (max{n−2dp/(2dp+rz), n(rz−2dv)/2dv , n−2dh/(rw+2dh)}) .

Similar to other two-step series estimators by Newey (1997), NPV, and DNV, this result

shows that the mean square convergence rate of ĥ(w) is determined by the optimal rates in

the first and that in the second steps if p and v did not have to be estimated. Therefore,

the mean square convergence rate of ĥ(w) would achieve the optimal rate if the optimal

rates in the first step are faster than the optimal rate in the second step if the propensity

score P and the conditional CDF V were known. The above result can also be compared to

additive models. In nonparametric sample selection models with additivity, ES(Y ∣X,P,V )
is additively separable in subvectors X and (P,V ) of W , i.e.

ES(Y ∣X,P,V ) = g(X) + λ(P,V ).

Suppose that P and V are known. A series estimator for h(W ) could be constructed by

imposing additivity restrictions, i.e. by including in rK(W ) functions that depend either on

X or (P,V ), but not on both. If both g(X) and λ(P,V ) are continuously differentiable of

order s1, the exclusion of the interaction terms will increase the approximation rate to K−s/χ,

where s is the derivative order of g(X) and λ(P,V ); χ is the maximum of the dimension of

X and of the dimension of (P,V ).

3.8 Simulations

3.8.1 Setup

To illustrate how our methodology may perform in practice, some monte carlo results of

empirical properties of the three-step nonparametric estimator we propose in Section 3.6 are



135

presented. We consider a variety of data generating processes which can be used to evaluate

the performance of our estimator in the correctly specified model as well as the cost our

estimator may incur under possible misspecification.

Apart from our three-step series estimator in nonseparable sample selection models with

an endogenous regressor (labelled 2SNSE), we also consider DNV’s two-step estimator in a

separable setting (labelled 2SSE), and Heckman’s two-step parametric estimator (labelled

2SHK), which is widely used in applied work.

We consider two different sample sizes, n=300 and n=500. The number of replications

is 500. As for nonparametric estimation, we consider polynomial series estimation in the

first and second stages and let L1 = L2 for convenience. Regarding the expansion terms

entering as regressors in both two stages, in the case of L1 = L2 = 6 and K = 8 in an

nonseparable setting for example, the first stage uses regressors (or approximating functions)

(1, Z,Z2, Z3, Z4, Z5). For the estimation of ES[Y ∣ X = x,P,V ] in the second stage, the

regressors are (1, x, P̂ , V̂ , x2, xP̂ , P̂ 2, P̂ V̂ ). As for the 2SSE estimator, under the assumption

ES[ε ∣ X,P, η] = λ(P, η), the conditional expectation of Y conditional on X = x,P, η, and

selection can be expressed as

ES[Y ∣X = x,P, η] = g(x) + λ(P, η),

where η = Y −E(X ∣ Z).
It is worth noting that there are two differences in the estimation procedures between

the 2SNSE and 2SSE estimators. First, to implement the 2SSE estimator, we estimate ηi

rather than Vi by η̂i =Xi − π̂(Zi). Second, additive restrictions are needed to be imposed on

the 2SSE estimator, i.e. the approximating functions depend either on x or on (P, η), but

not on both. That is, the regressors used in the first stage is the same as that of 2SNSE.

The second stage for K = 8 uses regressors (1, x, P̂ , η̂, x2, P̂ 2, P̂ η̂, η̂2).
Regarding the designs considered below, we change the specification of the outcome

equation and the reduced-form equation for the endogenous variable, including the cases in

which both are nonseparable (Design 1), both are nonlinear but separable (Design 2), and
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both are linear equations (Design 3). On the other hand, in order to simplify the calculation

of the truncated mean of ε, E(ε ∣ ν ≤ z′α), which is an ingredient to compute the true value

of the average structural function given selection, we consider the design in which the error

term in the outcome equation, ε, is the combination of two independent uniformly distributed

variables and the error term in the selection equation, ν, is expressed as ρε + u2 where u2 is

uniformly distributed (Design 1). For Designs 2 and 3, we use the same specification of the

joint distribution of the error terms (ε, ν), i.e. the bivariate normal distribution.

The average sample mean squared error is given by

1

R × ne

R

∑
r=1

ne

∑
k=1

[ÂSF
S

(r)(xk) −ASFS(xk)]
2

,

where R is the number of replications, ne is the number of the evaluation points, xk is the

evaluation points and ÂSF
S

(r) is an estimator of ASFS based on (xr1, yr1), . . . , (xrn, yrn), the

rth sample drawn.

3.8.1.1 Design 1

The first design we consider is specified as follows:

Yi = 1 − 0.5Xi +X3
i εi + εi,

Xi = ηiZ1−ηi
1i , Z1i ∼ U(0,1), ηi ∼ U(0,1)

Di = 1{α0 + α1Z2i + νi < 0}, Z2i ∼ U(0,1)

εi = θηi + u1i, u1i ∼ U(0,1)

νi = ρεi + u2i, u2i ∼ U(0,1).

We set the true values of other parameters as follows

α0 = −1, α1 = −1.2, θ = 0.9, and ρ = 0.9.

The coefficient ρ reflects the correlation between εi and νi. Similarly, as ρ increases, the

correlation between εi and ηi increases and the problem of endogeneity bias magnified.
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The true value of the average structural function given selection is given by

ASFS(x) ≡ ∫ g(x, ε)dF S
ε

= E[1 − 0.5X +X3ε + ε ∣X = x,Z,D = 1]

= 1 − 0.5x + (x3 + 1)E[E(ε ∣ Z2,D = 1)],

where

E[E(ε ∣ Z2,D = 1)] = −1

2ρ
(2α0 + α1 + 1) − θ + 1

4
.

3.8.1.2 Design 2

The second design considered here is the nonlinear outcome equation with an nonlinear

reduced form for x in a separable setting

Yi = 1 − 0.5 exp(Xi) + εi,

Xi = log(Z1i) + ηi, Z1i ∼ U(0,1)

Di = 1{α0 + α1Z2i + νi < 0}, Z2i ∼ U(0,1).

Assume that (ε, ν) are jointly normally distributed

⎛
⎜
⎝
εi

νi

⎞
⎟
⎠
= N

⎛
⎜
⎝

0,
⎛
⎜
⎝

1 σεν

σεν σν

⎞
⎟
⎠

⎞
⎟
⎠

and that ηi are determined by

ηi = rεi + ui, ui ∼ N(0,1).

The true values of other parameters are as follows

α0 = −0.3, α1 = −0.8, σν = 1, σεν = 0.8, r = 0.8.

Using the formula of the average structural function given selection, the true value of

ASFS(x) is of the form

ASFS(x) = 1 − 0.5 exp(x) +EZ2[E(ε ∣ Z2,D = 1)]
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where

EZ2[E(ε ∣ Z2,D = 1)] = −ρενEZ2 [
φ(α0 +Z2α1)
Φ(α0 +Z2α1)

] .

3.8.1.3 Design 3

The last design we consider fully exploits the parametric assumptions consisting of the

specifications of the familiar linear outcome equation with normality assumption of errors ε

and ν. We also consider exclusion restrictions to avoid the multicollinearity problem that

would lead Heckman’s estimator to perform poorly. The model in Design 3 is given by

Yi = 1 − 0.5Xi + εi,

Xi = 1 + 2Z1i + ηi, Z1i ∼ U(0,1)

Di = 1{−0.3 − 0.8Z2i + νi < 0}, Z2i ∼ U(0,1)

The true value of ASFS(x) is given by

ASFS(x) = 1 − 0.5x +EZ2[E(ε ∣ Z2,D = 1)].

3.8.2 Results

The average sample mean square errors for ÂSF
S(x) in different designs are shown in

Tables 3.3-3.5. The average of ÂSF
S(x) (top panel) and the median, together with the

upper and lower 0.05 quantiles, of ÂSF
S(x) (bottom panel) across replications for each x

are presented in Figures 3.1-3.4. The numbers of the approximating functions, L1, L2, and

K, are set exogenously and their different combinations are also considered.

When the model is correctly specified for the 2SNSE estimator, some conclusions can

be drawn. First, the 2SNSE estimator is less biased than the 2SSE and 2SHK estimators

to estimate ÂSF
S(x) but the bias tends to be larger as x is close to the boundaries of its

support. In terms of average sample mean square error, the 2SNSE estimator performs well

uniformly over the other two estimators we consider. Also, the average sample mean square

error of ÂSF
S(x) from the 2SNSE procedure falls as the sample size increases. Second,

for a given sample size, the 2SNSE estimator appears to require a lower level of smoothing
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in the first stage and has the smaller average sample mean square error around K = 7 in

the second stage. Third, the true value of ASFS(x) lies inside the quantile range for the

2SNSE estimator. Overall, the 2SNSE estimator performs well when the nonseparable model

is correctly specified. As for Design 2 where the model is correctly specified for the 2SSE

estimator, it is not surprising that the 2SSE estimator performs best in this setting. The

2SSE estimator actually does a good job of fitting ASFS(x). On the other hand, the bias

of the 2SNSE estimator is not very large and is relatively smaller than that of the 2SHK

estimator. Roughly speaking, the 2SNSE estimator still tracks the true value of ASFS(x) (see

Figure 3.2). From a theoretical point of view, the control variable Vi = FX1∣Z(X1i ∣ Zi) of the

2SNSE estimator is the one-to-one function of the reduced form error, which is ηi =X1i−π(Zi)
in the model of Design 2. Therefore, when the model is correctly specified for the 2SSE

estimator, the theory would predict that the 2SNSE and 2SSE estimators would not perform

differently. In fact, when we change the order of the series terms entering the regression in

the second step, i.e. (1, x, x2, x3, P̂ , V̂ , xP̂ , P̂ 2) for 2SNSE and (1, x, x2, x3, P̂ , η̂, P̂ 2, P̂ η̂) for

2SSE, these two estimators have almost the same performance and are close to the true

value of ASFS(x) (see Figure 3.3), although the average sample mean square errors are not

reported here. In addition, even under misspecification, the true value of ASFS(x) almost

lies inside the quantile range for the 2SNSE estimator. As for Desigm 3 that is misspecified

for the 2SNSE estimator, the 2SNSE estimator turns out to have larger bias, especially in the

lower range of x. The average sample mean square error of the 2SNSE estimator (0.10643)

exceeds that of the correctly specified Heckman’s two-step estimator (0.02108) by about

400%. That may be regarded as the cost our estimator incurs under misspecification.

3.9 Conclusion

This chapter has considered a variety of nonseparable sample selection models. In order

for the average structural function given selection to be identified in a nonseparable sample

selection setting with endogeneity, we use the conditional cumulative distribution function of

the endogenous variables given the instruments, as employed by Imbens and Newey (2009),
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along with the propensity score, as control variables. We present a simple three-step control

function approach to identifying and estimating the average structural function conditional

on selection nonparametrically. The convergence rates of the estimator for the average

structural function given selection depend on the convergence rate of the estimator for the

propensity score and that for the conditional CDF of the endogenous variables given the

instruments. The simulation results show that the proposed estimator performs well in

comparison with other existing estimators in a correctly specified model. We further explore

the possibility of identifying the unconditional parameters of interest such as the average

and quantile structural functions in nonseparable sample selection models. This remains an

important extension for future research.
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3.10 Appendix

Proof of Lemma 3.1

Recall that

F̂X1∣Z(x1 ∣ z) = rvL2(z)′ ( 1

n

n

∑
i=1

rvL2(Zi)rvL2(Zi)′)
−

( 1

n

n

∑
j=1

rvL2(Zj)1{X1j ≤ x1}) .

Let qi = rvL2(Zi) and Q̂ = 1/n∑ni=1 qiq
′
i.

The estimate of Vi is given by

V̂i = F̂X1∣Z(X1i ∣ Zi)

= q′iQ̂− 1

n

n

∑
j=1

[qj1{X1j ≤X1i}]

= q′iQ̂− 1

n

n

∑
j=1

[qj [1{X1j ≤X1i} − FX1∣z(X1i ∣ Zj) + FX1∣Z(X1i ∣ Zj) − q′jβv(X1i) + q′jβv(X1i)]]

= q′iQ̂− 1

n

n

∑
j=1

[qj (1{X1j ≤X1i} − FX1∣Z(X1i ∣ Zj) + FX1∣Z(X1i ∣ Zj) − q′jβv(X1i)] + q′iβv(X1i).

Therefore,

V̂i − Vi = {q′iQ̂− 1

n

n

∑
j=1

qj (1{X1j ≤X1i} − FX1∣Z(X1i ∣ Zj))}

+ {q′iQ̂− 1

n

n

∑
j=1

qj (FX1∣Z(X1i ∣ Zj) − q′jβv(X1i))} + {q′iβv(X1i) − FX1∣Z(X1i ∣ Zi)} .

The first term above is of the order Op(L2/n). For the second term, we first have

n

∑
i=1

q′iQ̂
−qi = tr(

n

∑
i=1

q′iQ̂
−qi) =

n

∑
i=1

tr(q′iQ̂−qi) =
n

∑
i=1

tr(qiq′iQ̂−) = tr(
n

∑
i=1

qiq
′
iQ̂

−)

= n × tr(Q̂Q̂−) = nL2.

Hence,

1

n

n

∑
i=1

[q′iQ̂− 1

n

n

∑
j=1

qj (FX1∣Z(X1i ∣ Zj) − q′jβv(X1i))]
2

≤ 1

n

n

∑
i=1

[q′iQ̂−qi
1

n

n

∑
j=1

(FX1∣Z(X1i ∣ Zj) − q′jβv(X1i))
2]

≤ tr(Q̂Q̂−)Op(L−2dv/rz
2 )

= Op(L1−2dv/rz
2 ).
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For the third term, we have

1

n

n

∑
i=1

[q′iβv(X1i) − FX1∣Z(X1i ∣ Zi)]2 = Op(L−2dv/rz
2 ),

by Assumption 3.4.

Combining the above results, we can conclude

1

n

n

∑
i=1

(V̂i − Vi)2 = Op(L2/n +L1−2dv/rz
2 +L−2dv/rz

2 ) = Op(L2/n +L1−2dv/rz
2 ).

Proof of Theorem 3.8

The integrated squared error of ĥ(w) for h(w) is approximately the same as the empirical

average

∫ (ĥ(w) − h(w))2dF (w) ≅ 1

n

n

∑
i=1

(ĥ(Wi) − h(Wi))2 = 1

n
(ĥ − h)′(ĥ − h) = 1

n
∥ĥ − h∥2.

Recall that P̂r = R̂ (R̂′R̂)−1
R̂′. Define the projection matrix M̂ = I − P̂r.

∥ĥ − h∥2 = ∥P̂rY − h∥2

= ∥P̂r(h + e) − h∥2

= ∥P̂re + (P̂r − I)h∥2

= ∥P̂re + (P̂r − I)(Rβ + F )∥2

= ∥P̂re − M̂F − M̂Rβ∥2

= ∥P̂re − M̂F − M̂(R − R̂)β∥2

≤ {∥P̂re∥2 + ∥M̂F ∥2 + ∥M̂(R − R̂)β∥2}

The sixth equality follows since M̂R̂β = (I − P̂r)R̂β = R̂β − R̂(R̂′R̂)−1R̂′R̂β = 0. The last

inequality is due to triangle inequality. Let E(ee′ ∣ W ) = Ω and note that P̂r only depends

on X and Z.

E(∥P̂re∥2 ∣W ) = E[(P̂re)′(P̂re) ∣W ] = E(e′P̂ e ∣W ) = tr(P̂rE(ee′ ∣W )) = tr(P̂rΩ).
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It can be shown that

∥P̂re∥2 = Op(K).

In addition, ∥F ∥2 is the squared bias in estimation of h. And the integrated squared bias

is assumed to be

E(∥F ∥2) = ∫ (h∗K(w) − h(w))2dF (w) ≤ O(K−2dh/rw).

Hence we have ∥F ∥2 = Op(K−2dh/rw).
The last step is to show the convergence rate of ∥(R − R̂)β∥2.

∥(R − R̂)β∥2 =
n

∑
j=1

[
K

∑
i=1

(riK(Wj) − riK(Ŵj))βi]
2

,

which is bounded by C2∑nj=1(Wj − Ŵj)2 (∑Ki=1 ∣βii∣)
2

and C is a constant.

The stochastic order of ∑nj=1(Wj−Ŵj)2 is determined by the slower of the rates of conver-

gence of ∑nj=1(Pj − P̂j)2 and ∑nj=1(Vj − V̂j)2. Therefore, 1/n∑nj=1(Wj − Ŵj)2 can be expressed

as

Op (L1/n +L−2dp/rz
1 +L2/n +L1−2dv/rz

2 )

according to Lemma 3.1.

For the second part,

sup
w

∣̂h(w) − h(w)∣ = sup
w

∣rK(w)′β − h(w) + rK(w)′(β̂ − β)∣

≤ sup
w

∣rK(w)′β − h(w)∣ + sup
w

∣rK(w)′(β̂ − β)∣

≤ O(K−dw/rw) + ζ0(K)∥β̂ − β∥

= Op (ζ0(K) (K−2dw/rw +K/n +L1/n +L−2dp/rz
1 +L2/n +L1−2dv/rz

2 ))
1/2
.

This completes the proof.
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Table 3.1 Relation to the literature

Endogeneity Selection Endogeneity

& Selection

Linear models Y =Xβ + ε Y ∗ =X1β + ε -

E(Xε) ≠ 0 d = 1{X2α + ν > 0}
IA: E(Zu) = 0 Y = Y ∗ × d observed

E(ε ∣X2,D = 1) = λ(x′2α)
where λ(x) = ρφ(x)/Φ(x)

Semiparametric models - λ(x′2α) unknown -

since Pr(D = 1 ∣X2) = F (x′2α)
is unspecified

Nonparametric models

(i)Separable models NPV (1999) DNV (2003) DNV (2003)

Y = g(X) + ε Y ∗ = g(X) + ε Y ∗ = g(X) + ε
X1 = Π(Z) + η Y = Y ∗ × d observed X1 = π(Z) + η

IA/CF: IA/CF: E[ε ∣X,Z,D = 1] Y = Y ∗ × d observed

E[ε ∣X,Z] = E(ε ∣X,η) = λ(p) IA/CF: E[ε ∣X,Z, η,D = 1]
= E(ε ∣ η) = λ(p, η)

(ii)Nonseparable models Imbens & Newey (2009) Newey (2007) Our model

Y = g(X,ε) Y ∗ = g(X,ε) Y ∗ = g(X,ε)
X1 = h(Z, η) Y = Y ∗ × d observed X1 = Π(Z, η)
v=FX1∣z = Fη IA/CF: ε ∣X,Z, p,D = 1 y = y∗ × d observed

IA/CF: ε ∣X,v ∼ ε ∣ v ∼ ε ∣ p,D = 1 IA/CF: ε ∣X,Z, p, v,D = 1

∼ ε ∣ p, v,D = 1

Note: (i) IA: Identifying assumptions; CF: Control function approach; ∼ denotes equality of conditional

distributions; (ii) In the linear models, the orthogonality conditions E(Zε) = 0 (along with the rank condition)

are sufficient for consistency. The conditional mean restriction is imposed for identification and estimation in

separable models. For nonseparable models, the stronger conditional independence assumptions are needed;

(iii) We can also use IV approach to identification and estimation for separable and nonseparable models

with endogenous regressors, see Blundell and Powell (2003) for a detailed discussion; (iv) Newey (2007)

considers identification of the nonseparable sample selection model only.
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Table 3.2 Parameters of interest in sample selection models

Sample Selection Parameters Outcome Estimating objects

Models of Interest equations

Parametric models β Y =Xβ + ε E(Y ∣X,Z,D = 1) = x′β + γIMR

Semiparametric models β Y =Xβ + ε E(Y ∣X,Z, p,D = 1) = x′β + λ(p)

Nonparametric models

(i) Separable models h(X) Y = h(X) + ε E(Y ∣X,Z, p,D = 1) = h(x) + λ(p)

(ii) Nonseparable models ASFS(x) Y = g(X,ε) E(Y ∣X,Z,D = 1)

Note: IMR stands for the inverse Mills ratio.
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Table 3.3 Design 1: average sample mean square error for ÂSF
S(x)

n = 300 n = 500

L1 = L2 K 2SNSE 2SSE 2SHK 2SNSE 2SSE 2SHK

3 5 0.054 2.211 0.111 0.042 0.123 0.129

3 6 0.044 14.479 0.111 0.033 94.254 0.129

3 7 0.029 7.665 0.111 0.022 81.490 0.129

3 8 0.045 49.625 0.113 0.039 31.335 0.129

3 9 0.082 47.841 0.113 0.075 25.868 0.129

4 5 0.074 0.199 0.111 0.061 0.205 0.129

4 6 0.064 0.240 0.111 0.051 0.070 0.129

4 7 0.048 0.251 0.111 0.035 0.064 0.129

4 8 0.066 0.116 0.111 0.060 0.026 0.129

4 9 0.100 0.140 0.111 0.099 0.040 0.129

5 5 0.095 0.205 0.111 0.074 0.211 0.129

5 6 0.084 0.224 0.111 0.064 0.207 0.129

5 7 0.071 0.215 0.111 0.051 0.192 0.129

5 8 0.092 0.199 0.111 0.082 0.175 0.129

5 9 0.126 0.210 0.111 0.121 0.180 0.129

6 5 0.105 0.202 0.111 0.083 0.204 0.129

6 6 0.094 0.204 0.111 0.073 0.191 0.129

6 7 0.082 0.196 0.111 0.062 0.180 0.129

6 8 0.099 0.196 0.111 0.089 0.183 0.129

6 9 0.129 0.205 0.111 0.124 0.193 0.129

7 5 0.112 0.189 0.111 0.093 0.205 0.129

7 6 0.102 0.189 0.111 0.084 0.195 0.129

7 7 0.092 0.181 0.111 0.073 0.185 0.129

7 8 0.103 0.200 0.111 0.099 0.198 0.129

7 9 0.134 0.204 0.111 0.134 0.203 0.129

8 5 0.118 0.184 0.111 0.102 0.207 0.129

8 6 0.108 0.183 0.111 0.092 0.204 0.129

8 7 0.099 0.175 0.111 0.083 0.195 0.129

8 8 0.109 0.183 0.111 0.106 0.204 0.129

8 9 0.138 0.191 0.111 0.139 0.210 0.129
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Table 3.4 Design 2: average sample mean square error for ÂSF
S(x)

n = 300 n = 500

L1 = L2 K 2SNSE 2SSE 2SHK 2SNSE 2SSE 2SHK

4 6 0.412 0.664 1.737 0.363 0.659 1.741

4 7 0.382 0.613 1.737 0.324 0.580 1.741

4 8 0.358 1.148 1.737 0.296 1.060 1.741

4 9 0.517 0.137 1.737 0.394 0.113 1.741

5 6 0.415 0.558 1.737 0.406 0.578 1.741

5 7 0.401 0.515 1.737 0.378 0.526 1.741

5 8 0.385 0.920 1.737 0.357 0.925 1.741

5 9 0.534 0.097 1.737 0.494 0.103 1.741

6 6 0.419 0.516 1.737 0.406 0.532 1.741

6 7 0.403 0.494 1.737 0.389 0.489 1.741

6 8 0.392 0.903 1.737 0.375 0.861 1.741

6 9 0.538 0.097 1.737 0.518 0.094 1.741

7 6 0.446 0.522 1.737 0.417 0.512 1.741

7 7 0.435 0.504 1.737 0.406 0.485 1.741

7 8 0.422 0.874 1.737 0.391 0.837 1.741

7 9 0.574 0.105 1.737 0.542 0.095 1.741

8 6 0.459 0.520 1.737 0.415 0.499 1.741

8 7 0.452 0.513 1.737 0.405 0.478 1.741

8 8 0.439 0.871 1.737 0.391 0.814 1.741

8 9 0.593 0.114 1.737 0.536 0.094 1.741

9 6 0.449 0.496 1.737 0.422 0.495 1.741

9 7 0.440 0.493 1.737 0.414 0.481 1.741

9 8 0.432 0.834 1.737 0.398 0.812 1.741

9 9 0.578 0.104 1.737 0.542 0.096 1.741
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Table 3.5 Design 3: average sample mean square error for ÂSF
S(x)

n = 300 n = 500

L1 = L2 K 2SNSE 2SSE 2SHK 2SNSE 2SSE 2SHK

3 5 0.209 0.208 0.021 0.234 0.183 0.025

3 6 0.223 2.277 0.021 0.250 39.618 0.025

3 7 0.244 2.278 0.021 0.281 28.057 0.025

3 8 0.272 7.302 0.021 0.311 10.512 0.025

4 5 0.146 0.008 0.021 0.139 0.003 0.025

4 6 0.154 0.004 0.021 0.153 0.005 0.025

4 7 0.166 0.005 0.021 0.173 0.007 0.025

4 8 0.173 0.001 0.021 0.191 0.0001 0.025

5 5 0.135 0.010 0.021 0.119 0.004 0.024

5 6 0.141 0.009 0.021 0.127 0.003 0.024

5 7 0.155 0.010 0.021 0.141 0.003 0.024

5 8 0.162 0.002 0.021 0.155 0.0003 0.024

6 5 0.135 0.011 0.021 0.111 0.005 0.024

6 6 0.137 0.011 0.021 0.117 0.004 0.024

6 7 0.149 0.012 0.021 0.128 0.005 0.024

6 8 0.154 0.002 0.021 0.140 0.00002 0.024

7 5 0.139 0.014 0.021 0.106 0.005 0.022

7 6 0.142 0.013 0.021 0.111 0.005 0.022

7 7 0.153 0.014 0.021 0.122 0.006 0.022

7 8 0.157 0.003 0.021 0.129 0.0003 0.022

8 5 0.143 0.016 0.021 0.110 0.007 0.022

8 6 0.145 0.015 0.021 0.114 0.006 0.022

8 7 0.153 0.015 0.021 0.122 0.007 0.022

8 8 0.158 0.004 0.021 0.128 0.001 0.022
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Figure 3.1 Estimates of ASFS(x) in Design 1
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Figure 3.2 Estimates of ASFS(x) in Design 2 (with (1, x, P̂ , V̂ , x2, xP̂ , P̂ 2, P̂ V̂ ) for 2SNSE
and (1, x, P̂ , η̂, x2, P̂ 2, P̂ η̂, η̂2, x3) for 2SSE in the second stage)
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Figure 3.3 Estimates of ASFS(x) in Design 2 (with (1, x, x2, x3, P̂ , V̂ ) for 2SNSE and
(1, x, x2, x3, P̂ , η̂) for 2SSE in the second stage)
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Figure 3.4 Estimates of ASFS(x) in Design 3
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