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Abstract 
 

Over the last decade, the role of neutronics modeling has been shifting from analysis of 

each component separately to high fidelity, full-scale analysis of the nuclear systems entire 

domains. The high accuracy, associated with minimizing modeling approximations and including 

more physical and geometric details, is now feasible because of advancements in computing 

hardware and development of efficient modeling methods. The hybrid Monte Carlo/deterministic 

techniques, CADIS and FW-CADIS dramatically increase the efficiency of neutronics modeling, 

but their use in the design of large and geometrically complex nuclear systems is restricted by the 

availability of computing resources for their preliminarily deterministic calculations and the 

large computer memory requirements of their final Monte Carlo calculations. 

To reduce the computational time and memory requirements of the hybrid Monte 

Carlo/deterministic techniques while maintaining their efficiency improvements, three automatic 

mesh adaptivity algorithms were developed and added to the Oak Ridge National Laboratory 

AutomateD VAriaNce reducTion Generator (ADVANTG) code. First, a mixed-material 

approach, which we refer to as the macromaterial approach, enhances the fidelity of the 

deterministic models without having to refine the mesh of the deterministic calculations. Second, 

a deterministic mesh refinement algorithm improves the accuracy of structured mesh 

deterministic calculations by capturing as much geometric detail as possible without exceeding 

the total number of mesh elements that is usually determined by the availability of computing 

resources. Finally, a weight window coarsening algorithm decouples the weight window mesh 

from the mesh of the deterministic calculations to remove the memory constraint of the weight 

window map from the deterministic mesh resolution. 
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To analyze the combined effect of the three algorithms developed in this thesis, they were 

used to calculate the prompt dose rate throughout the entire ITER experimental facility. This 

calculation represents a very challenging shielding problem because of the immense size and 

complexity of the ITER structure and the presence of a two meter thick biological shield. 

Compared to a FW-CADIS calculation with the same storage size of the variance reduction 

parameters, the use of the three algorithms resulted in a 23.3% increase in the regions where the 

dose rate results are achieved in a 10 day Monte Carlo calculation and increased the efficiency of 

the Monte Carlo simulation by a factor of 3.4. Because of this significant increase in the Monte 

Carlo efficiency which was not accompanied by an increase in the memory requirements, the use 

of the three algorithms in FW-CADIS simulations enabled the simulation of this difficult 

shielding problem on a regular computer cluster using parallel processing of Monte Carlo 

calculations. The results of the parallel Monte Carlo calculation agreed at four points with a very 

fine mesh deterministic calculation that was performed on the super-computer, Jaguar. 
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Chapter 1: Introduction 
 

The term neutronics is used to describe the mathematical treatment of neutral particles 

(neutrons and photons) transport through materials. When neutronics calculations are used to 

determine the adequate amounts of shielding materials required to meet the radiation limits with 

minimal costs, they are called neutronics shielding calculations. The term shielding is often used 

to distinguish this type of neutronics calculations from criticality calculations which deal with 

calculating the multiplication factor in nuclear reactors.  

Accurate, predictive neutronics modeling and simulation (M&S) is a critical, 

cross-cutting capability necessary for safe, reliable and cost-effective design analysis of nuclear 

facilities such as fission and fusion reactors. A current focus of the neutronics M&S research is 

to enable high-fidelity, full-scale reactor analyses for more accurate prediction capabilities. The 

high accuracy is associated with minimizing the modeling approximations, traditionally 

necessary for neutronics M&S, and allowing the addition of more physical and geometric detail 

to the neutronics models. The immense sizes and complicated structures of fusion energy 

systems strain the predictive capabilities of the current neutronics M&S techniques and limit 

their use in the design process of fusion reactors. In this thesis several algorithms are developed 

to increase the reliability and enhance the performance of the existing cutting-edge M&S 

methods to allow the accurate modeling of very challenging shielding problems. 

Traditionally, two distinctive approaches have been developed and used for neutronics 

M&S: stochastic Monte Carlo (MC) and deterministic methods. Since the MC methods are 

generally considered more accurate, they have been more widely used in many applications. The 
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better accuracy of the MC methods is attributed to their ability to model the exact geometrical 

and physical details of real-life systems without the need for discretization approximations. The 

drawback of the MC methods is the prohibitive computational time requirements of some 

problems such as deep-penetration shielding problems. For example in a source-detector 

penetration problem with 10 orders of magnitude attenuation between the source and the 

detector, if each history requires one milli-second to simulate, it will require more than 1000 

days for 10 particles reach the detector. The accuracy of the deterministic calculations depends 

on the resolution of the phase-space discretization but enhancing the resolution increases the 

number of unknowns and consequently increases the computational requirements. Accurate 

full-scale deterministic modeling of nuclear reactors requires huge amount of computational 

resources since the number of unknowns required to resolve the geometrical and physical 

domain of these systems is in the order of 10
15

 [1].  

Due to the complementarity of both the deterministic and the MC approaches, each is 

advantageous to certain types of problems. The coupling between both the deterministic and MC 

methods has been known as the hybrid MC/deterministic methods. These hybrid techniques 

increase the overall efficiency of the neutronics M&S and enable the modeling of problems that 

are too difficult to be handled with either of the two approaches individually. This thesis is 

concerned with the two hybrid methods: Consistent Adjoint Driven Importance Sampling 

(CADIS) [2] and Forward Weighted CADIS (FW-CADIS) [3]. Both of these methods calculate 

the MC variance reduction (VR) parameters, used to accelerate the MC calculations, based on 

deterministically calculated fluxes. One or two relatively fast (low resolution) deterministic 

calculations are performed to accelerate the final MC simulation. The CADIS method is used to 
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increase the efficiency of the MC calculations of localized quantities while the FW-CADIS 

method is used for optimizing multiple tallies or tallies distributions.  

Two issues related to obtaining the deterministic solutions, which are used to accelerate 

the MC calculations, need to be emphasized for CADIS and FW-CADIS. First, the total number 

of mesh cells used in the deterministic calculations of CADIS and FW-CADIS simulations of 

large and complicated problems can be O(10
2-3

) less than the total number of mesh cells required 

to model the problem deterministically because the only goal of the deterministic calculations is 

to improve the efficiency of the MC simulation [4]. In addition to slowing down the 

deterministic calculations and increasing their memory requirement, fine meshes also increase 

the memory requirements of MC calculation by increasing the storage space of the VR 

parameters. Second, the automation of the creation of the deterministic input file is necessary for 

any successful implementation of CADIS and FW-CADIS because the manual development of 

such input files is extremely difficult for large and complicated problems. Automatic algorithms 

that manage the materials definitions of the deterministic models are already implemented in 

several codes that apply the CADIS and FW-CADIS methods. 

As for all non-analog MC simulations, the efficiency of the MC calculation depends on 

the accuracy of the VR parameters, which are deterministically calculated in CADIS and 

FW-CADIS. For large and complicated problems, capturing all the physical and geometrical 

details in the CADIS and FW-CADIS deterministic calculations is not certain because the 

automatically developed deterministic input files use coarse meshes. The conceivable 

inconsistencies between the deterministic and the MC models can decrease the efficiency and the 

reliability of the CADIS and FW-CADIS simulations. The goal of this thesis is to enhance the 

efficiency and reliability of CADIS and FW-CADIS simulations of difficult shielding problems 
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by developing automatic mesh adaptivity algorithms to improve the accuracy of the 

deterministic calculations without a large impact on the overall modeling efficiency. It is 

necessary to mention that the reliability of the CADIS and FW-CADIS simulations will not be 

directly measured to demonstrate the improvements of the algorithms developed in this thesis 

because of the difficulty of assessing the reliability of the MC simulations of large and 

complicated shielding problems. Instead, some causes of MC unreliability will be identified. By 

reducing the likelihood of these causes in CADIS and FW-CADIS simulations, the algorithms 

provided in this thesis are expected to enhance the simulations reliability. The three algorithms 

developed in this thesis are: 

1. A mixed-material approach, which we refer to as the macromaterial (MM) approach, 

enhances the fidelity of the deterministic models without having to refine the mesh of the 

deterministic calculations.  

2. A deterministic mesh refinement algorithm improves the accuracy of structured mesh 

deterministic calculations by capturing as much geometric detail as possible without 

exceeding the total number of mesh elements that is usually determined by the 

availability of computing resources. 

3. A weight-window (WW) coarsening algorithm reduces the size of the VR parameters set 

with minimal or no decrease in the efficiency of the MC simulations. 

The global prompt dose rate calculation throughout the entire ITER experimental facility, 

which is described in Ref. [4], was used to analyze the combined effect of the three algorithms 

developed in this thesis. This calculation represents a very challenging shielding problem 

because of the immense size and complexity of the ITER structure and the presence of a 2 m 

thick biological shield. 
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The remainder of this thesis is structured as follows. Chapter 2 reviews the neutral 

particles transport equation, the adjoint transport theory, the physical interpretation of the adjoint 

flux, and the generalized contributon transport theory. Brief descriptions of both deterministic 

and MC radiation transport methods are also presented. The deterministic discussion focuses on 

the solution accuracy of the discrete ordinates (SN) methods and the MC discussion concentrates 

on the different methods of VR, the accuracy and precision of MC calculations, the reliability 

indicators of MC simulations, and the MC calculation efficiency. Several efficiency metrics for 

global MC simulations are also discussed. Finally, Chapter 2 summarizes the history of the 

hybrid MC/deterministic neutronics shielding methods and the theoretical background of the 

importance sampling technique. 

Chapter 3 explains the CADIS and FW-CADIS methods in terms of theory, 

implementations, and applications. A special section is dedicated to demonstrate the efficiency 

and reliability issues of CADIS and FW-CADIS simulations. This section introduces the needs 

for the three algorithms devised in this thesis. 

Chapter 4 describes the implementation of the MM approach for both materials definition 

and adjoint source description in CADIS and FW-CADIS simulations. The advantages of using 

the MM approach on both the deterministic calculations and the CADIS and FW-CADIS MC 

simulations are illustrated by examples. 

Chapter 5 illustrates the deterministic mesh refinement algorithm. The enhancement in 

the accuracy of the deterministic calculations and the efficiency of CADIS and FW-CADIS MC 

simulations are exemplified for the deterministic mesh refinement algorithm. 
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Chapter 6 explains the WW coarsening algorithm and the adjoint flux collapsing formula. 

The advantages of using the adjoint flux collapsing formula and the WW coarsening algorithm 

are illustrated by examples. 

Chapter 7 discusses the use of the MM approach, the deterministic mesh refinement 

algorithm, and the WW coarsening algorithm in calculating the prompt dose rate throughout the 

entire ITER reactor. The advantages of using each of the three algorithms on the efficiency of 

this FW-CADIS simulation are demonstrated. 

Chapter 8 summarizes the conclusions of this thesis and suggests some topics for future 

research. 
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Chapter 2: Background and theory 
 

2.1 Radiation transport theory 
 

The equation describing the steady state neutral particles transport through materials can 

be expressed in the integro-differential form, 

  ̂    ( ̅  ̂  )    ( ̅  ) ( ̅  ̂  )  

∫    ̂ ∫      ( ̅   ̂   ̂     ) ( ̅   ̂   )
 

   
  ( ̅  ̂  ).  

(2.1) 

Equation (2.1) is called the linear Boltzmann transport equation or simply the transport 

equation. The six independent variables, which will be denoted in the rest of this report as the 

phase-space variables, are divided into three for the position,  ̅, two for the direction,  ̂, and one 

for the energy,  . The angular flux  ( ̅  ̂  ) represents the neutral particles flux at phase-space 

( ̅  ̂  ) per unit solid angle per unit energy. The source term,  ( ̅  ̂  ) represents the rate per 

unit volume at which particles are produced at phase-space ( ̅  ̂  ) per unit solid angle per unit 

energy. In fixed source shielding problems  ( ̅  ̂  )  is the external source term while for 

problems with multiplying media,  ( ̅  ̂  ) can be divided to two terms including a fission term 

and an external source term. The first term of the left hand side of Eq. (2.1) represents the loss of 

particles from the phase-space increment   ̅  ̂   by streaming. The second term represents the 

loss of particles from the same increment by collisions where   ( ̅  ) is the total macroscopic 

cross section. The differential scattering cross section   ( ̅   ̂   ̂     ) can be divided into 

two terms as shown in Eq. (2.2), 
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            ( ̅   ̂   ̂     )    ( ̅   ) (  ̂   ̂     ). (2.2) 

In Eq. (2.2),   ( ̅   ) is the macroscopic scattering cross section at the energy    and 

 (  ̂   ̂     ) is the probability per unit solid angle per unit energy that a particle which 

had a collision at energy    while moving in the direction   ̂ will emerge within energy    

around E and a direction   ̂ around  ̂. The   ̂   ̂ notation is often substituted with   ̂   ̂ 

because the angular variation of the differential scattering cross section is only a function of 

  ̂   ̂ except for special cases, such as when the medium is moving or consists of a single crystal 

[5].  

Equation (2.1) can be written in operator form, 

     , (2.3) 

where   is the linear integro-differential operator , 

   ̂      ( ̅  )  ∫    ̂ ∫      ( ̅   ̂   ̂     )
 

   
. 

 

2.1.1 Adjoint transport theory 

 

To be distinguished from the adjoint transport equation and the adjoint fluxes, Eqs. (2.1) 

and (2.3) are often called the “forward” transport equation and their fluxes are called forward 

fluxes. 
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Since the transport equation is a linear integro-differential equation, a related adjoint 

equation can be formulated using the identity, 

 〈     〉  〈      〉, (2.4) 

where    is the adjoint operator and    is the phase-space dependent angular adjoint 

flux corresponding to the angular adjoint flux  . The angle brackets < > signifies integration 

over all phase-space independent variables. The spatial domain of the problem is bounded by a 

surface   across which we will assume that no particles enter (i.e, vacuum boundary conditions). 

Hence the function upon which   operates is constrained to satisfy, 

 ( ̅  ̂  )              ̅     ̂   ̂     

where  ̂ is the outward normal. Using the operator form, the adjoint transport equation can be 

expressed by, 

        , (2.5) 

where    is the adjoint source density function. The adjoint operator, defined as,  

      ̂      ( ̅  )  ∫    ̂ ∫      ( ̅  ̂    ̂     )
 

   
, (2.6) 

can be deduced if we require that 

  ( ̅  ̂  )              ̅     ̂   ̂   . 

Mathematically there are no restrictions on the choice of the adjoint source function; 

however, with a certain choice of the adjoint source function, the adjoint flux can have a very 
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interesting physical significance. To explain this physical significance, the response, which the 

transport equation is calculating, will be represented by, 

    〈    〉, (2.7) 

where    is the response function (e.g. a detector cross-section) and    is the calculated 

response.  

The adjoint identity (Eq. (2.4)) can be expressed as, 

 〈    〉  〈    〉. (2.8) 

According to Eq. (2.7) and Eq. (2.8), if the adjoint source was chosen to represent the 

response function (     ), the response can be expressed as the integral of the adjoint 

weighted source distribution, 

    〈    〉  ∫  ( ) ( )  . (2.9) 

In particular, if the particles are emitted at  ̅ , in direction  ̂ , at energy   at a rate of one 

particle per second, 

   ( ̅   ̅ ) ( ̂   ̂ ) (    ), 

the response will be the adjoint flux at the same phase-space position. 

      ( ̅   ̂    ) (2.10) 

It is this fact that provides the physical significance of the adjoint flux as the importance 

of particles produced at  ̅ ,  ̂ , and    to the objective response [5]. This will be discussed later 

in relation to the hybrid MC/deterministic techniques. 
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2.1.2 Contributon response theory 

 

The generalized contributon transport equation can be obtained by multiplying Eq. (2.1) 

by    and Eq. (2.5) by   and subtracting, 

  ̂    ( ̅    ̂)    ( ̅    ̂) ( ̅    ̂)  

∫ ∫  ( ̅        ̂   ̂) ( ̅      ̂)   ̂   
  ̂   

 ( ̅    ̂)  ( ̅    ̂)    ( ̅    ̂) ( ̅    ̂), 

(2.11) 

where, 

 ( ̅    ̂)   ( ̅   ̂    ) 
 ( ̅   ̂    ) 

is a new variable that is denoted in the literature as the contributon flux [6], 

 ( ̅        ̂   ̂)    (       ̂   ̂)
  ( ̅      ̂)

  ( ̅    ̂)
 

is the double-differential scatter cross section for contributons, and 

  ( ̅    ̂)  ∫ ∫  ( ̅        ̂   ̂) ( ̅      ̂)   ̂   

  ̂  

 

is the total scatter cross section for contributons. Equation (2.11) is similar to the 

transport equation (Eq. (2.1)) but with some distinguishing features. First, only scattering 

reactions appear in the equation. This shows that contributons cannot get absorbed. Second, 

 ( ̅    ̂) must vanish at vacuum boundaries because if the boundary conditions of both the 
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forward and the adjoint fluxes are combined, the boundary conditions for the contributons will 

be 

 ( ̅  ̂  )              ̅   . 

Therefore contributons can never escape from the system by crossing an external 

boundary. 

Since contributons are not absorbed and cannot leak out of the system, they must 

contribute to the detected response. The contributons are all introduced into the system by the 

source    . They transport the response through the system until they flow out at the response 

sink    . The rate the contributons drain from the system through the sink exactly equals the 

rate they flow into the system at the source. 

The contributon concept is well-understood to convey theoretical information about the 

most likely paths that Monte Carlo particles travel from the source to contribute to a detector 

response. It should be noted that the contributon flux identifies regions in phase-space that are 

important to the solution of a source-response system while the adjoint flux identifies regions 

that are important only to the response.  

 

2.2 Deterministic transport methods 
 

Several mathematical methods have been used to solve the radiation transport equation 

deterministically. The two main categories of the deterministic methods are based on the integral 

and integro-differential forms of the transport equation [5]. The techniques based on the integral 
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form of the transport equation will not be discussed in this thesis. There are two widely used 

deterministic transport techniques based on solving the integro-differential methods: the SN 

methods and the truncated spherical harmonics expansion method. 

 

2.2.1 The truncated spherical harmonics expansion method 

 

This class of methods is based on the expansion of the angular distribution of the particle 

flux in a complete set of orthogonal functions, namely the spherical harmonics. The expansions 

are truncated after some terms in order to develop practical methods for solving the resulting 

form of the transport equation. The spatial dependence of the angular flux is obtained by 

imposing a discrete mesh and evaluating the flux via the finite-difference or the finite-element 

methods. The energy variable is divided into a finite number of discrete energy groups. 

A reasonably accurate solution might be obtained with only a few equations if the 

systems under consideration were large and the particles absorption is small. A truncated form 

(P1) that assumes isotropic fluxes and isotropic scattering yields the diffusion approximation 

which played a crucial role in the history of neutron transport even though it is only valid under a 

number of unrealistic assumptions [7]. This class of methods will not be considered in this thesis. 
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2.2.2 The discrete ordinates (SN) method 

 

The SN method has increasingly become the dominant technique for obtaining numerical 

solutions to the integro-differential form of the transport equation. It consists simply of 

evaluating the transport equation in discrete angular directions and is characterized by the 

simplicity of derivation.  The algorithms used with SN methods are marked by their notable 

computational efficiency compared to other deterministic methods. The SN method will be the 

only deterministic methods considered in this thesis.  

This class of solution methodologies is denoted as the SN methods because the angular 

domain is discretized into a set of discrete directions known as SN [5]. The spatial domain is 

discretized into a spatial mesh. Structured and unstructured mesh grids are used by the 

production-level codes for solving the transport equation. The energies are discretized into 

multiple groups with specific boundaries. The resulting linear system can then be solved using 

finite difference or finite elements method. Some of the popular SN production-level codes are: 

PARTISN [8], TORT [9], ATTILA [10], and Denovo [11]. 

 

2.2.2.1 Solution accuracy of the SN method 

 

Truncation errors 

The SN solutions suffer from discretization errors due to the approximate nature of the 

discretization procedure. The solution accuracy of an SN calculation may be suspected if the 

phase-space domain is not properly resolved. Unfortunately, the number of unknowns in a 
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deterministic calculation increases with enhancement of the phase-space resolution. The total 

number of unknowns,   , in an SN calculation can be determined from the formula, 

                  , (2.12) 

where    is the total number of energy groups,    is the number of elements in the 

spatial mesh,    is the number of unknowns per cell that depends on the differencing scheme, 

   is the total number of scattering moments
1
,    is the number of angles of the SN 

discretization [1]. 

Generally, the computer time and memory2 required by the SN calculation scale linearly 

with    [12; 11]. The number of energy groups determined by the multi-group library. The 

number of angles must be large enough to avoid some well-known nonphysical anomalies [13; 

14] that are beyond the scope of this thesis. The number of elements in the spatial mesh,   , 

scales inversely with the size of the elements. For acceptable accuracy, the conventional SN 

schemes require the spatial mesh elements to have dimensions in the order of one mean free path 

at the lowest energy except for materials with high scattering ratios [15]. Since the diffusion 

length represents the relaxation factor of the thermal neutron flux, it is typically used for 

determining the mesh dimensions in materials with high scattering ratios. With these mesh sizes, 

the total number of spatial mesh elements needed to fully resolve the space domain of large 

systems such as fusion reactors will be in the order of 10
9
 and the total number of unknowns for 

resolving the entire phase-space domain will be in the order of 10
15

 [1]. Only very few research 

                                                        
1 Standard SN methods expand the differential scattering cross-section, defined in Eq. (2.2), in Legendre polynomials 

(PN). The total number of scattering moments is (   )  where   is the PN order. 
2 In production-level SN codes, not all the angular fluxes get stored in the memory during the calculation. The 

angular fluxes have only to be stored on the 2-D plane of the current sweep and they get updated as the sweep 

progresses. The number of angles is generally neglected when estimating the memory requirements of SN 

calculations. 
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institutions have access to the computing resources needed for performing accurate 3-D SN 

analysis for these kinds of problems because it requires massive parallelization on tens of 

thousands of processors [4]. 

Geometry discretization errors of structured meshes 

Since realistic geometries do not usually conform to curvilinear coordinates, structured 

meshes can be very inefficient for modeling complex 3-D geometries. Structured meshes cannot 

accurately represent realistic models because geometry discretization errors preclude the 

conservation of relevant physical quantities such as materials masses. Using fine mesh 

resolutions can reduce but not eliminate the geometry discretization errors of structured meshes. 

Additionally, the SN mesh refinement is limited by the computational resources because the 

number of unkowns scales linearly the total number of mesh elements according to Eq. (2.12).  

Unlike structured meshes, unstructured meshes can accurately describe complex 

geometries [16]. Algorithms for solving the transport equations on unstructured tetrahedral 

spatial meshes have been developed and implemented [17]. Unstructured meshes will not be 

discussed because they were not used in this thesis. 

 

2.3 Monte Carlo transport methods 
 

During the Manhattan project the term Monte Carlo (MC) was first used to express a 

statistical approach that was used for neutronics modeling. The MC methods do not solve the 

transport equation explicitly. Instead the answers are obtained by averaging the scores of 

numerous particles histories simulated by random sampling. The two main processes involved in 
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the MC methods are the sampling and the tallying. The MC methods duplicate the individual 

probabilistic events occurring throughout the particles histories from the moment of their birth at 

the source to their death by absorption or leakage from the system. The sampling process uses 

random numbers to duplicate the physical processes according to the distribution functions 

governing these processes. During the simulation of the particles histories, a history will “score” 

if it contributes to the response of interest. This response of interest can be the interaction rate or 

the particle flux at a certain phase-space region [18]. A tally accumulates a set of scores for the 

response of interest. According to the Strong Law of Large Numbers [19], if the number of 

samples is large, the expected mean value of the underlying probability density function (PDF) 

can represent the tally result. Estimates of the statistical precisions of the results are usually 

tallied alongside with the mean value. 

Because the MC method does not involve phase-space discretization, it is well suited to 

solving complicated 3-D problems. The exact geometries are used during the MC simulations 

and particles trajectories can be sampled from continuous rather than discrete function. 

Interpolation of the available point-wise data as a function of energy is used for providing 

continuous data for some MC codes [20]. 

The main drawback of the MC methods is the time and computer resources requirement.  

To achieve results with acceptably low statistical uncertainty, it is often necessary to simulate 

billions of particles histories consuming many hours or days of computer time. The issue is more 

serious for problems at which only small fraction of particles contribute to the tally of interest. 

Deep penetration shielding problems are the most popular example of these kinds of problems. 

For example in a simple source-detector penetration problem with 10 orders of magnitude 

attenuation between the source and the detector, if one history requires one milli-second to 
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simulate, it will require more than 1000 days for 10 particles to score at the detector. Another 

drawback of the MC methods is their non-global nature. An extra tally is required for calculating 

every additional response.  

Most of the MC simulations used in this thesis uses the general-purpose MC code 

MCNP53 
developed in Los Alamos National Laboratory (LANL) and distributed through the 

Radiation Safety Information Computational Center (RSICC). MCNP is a direct descendent of 

the work of the Manhattan project scientists on the MC methods at LANL [21]. 

 

2.3.1 Non-analog Monte Carlo methods 

 

The simplest form of MC calculations is analog MC. In analog MC, particles are 

followed from birth to death according to natural probabilities. It is called analog MC because it 

is analogous to the natural transport of particles through materials. As noted earlier, the natural 

simulation of particles require huge computing resources especially for deep penetration 

shielding problems. In non-analog MC the physical laws of radiation transport are modified to 

transport particles toward the region of interest as efficiently as possible. In other words there is 

a preferential following of interesting particles more than uninteresting ones. The techniques 

formulated for this non-analog simulation are known as variance reduction (VR) techniques. 

There are four classes of VR techniques: 

1. Truncation Methods 

These are the simplest of VR methods. They speed up calculations by truncating parts of 

                                                        
3 MCNP is a trademark of the Los Alamos National Laboratory operated by the Los Alamos National Security, LLC 

for the National Nuclear Security Administration of the U.S. Department of Energy.  
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phase space that do not contribute significantly to the solution. The simplest example is 

geometry truncation in which unimportant parts of the geometry are simply not modeled. 

2. Modified Sampling Methods: 

Modified sampling methods alter the statistical sampling of a problem to increase the 

number of tallies per particle. For any MC event it is possible to sample from any arbitrary 

distribution rather than the physical probability as long as the particle weights are then adjusted 

according to the equation, 

        ( ̅  ̂  )       ( ̅  ̂  )  

         ( ̅  ̂  )         ( ̅  ̂  ). 

(2.13) 

          is the PDF of the physical process before the modified sampling and          is 

the new PDF after the modified sampling. Similarly           and         are the particles’ 

weights before and after the modified sampling respectively.  Both the particles’ weights and the 

PDFs are functions of all phase-space variables for generality but similar equations can be 

developed if any of these variables is not considered. Thus, with modified sampling methods, 

sampling is done from distributions that send particles in desired directions or into other desired 

regions of phase-space such as time or energy, or change the location or type of collisions.  

3. Population Control Methods 

Population control methods use particle splitting and Russian roulette to control the 

number of samples taken in various regions of phase space. Particles transported to regions of 

lower importance play Russian roulette. In the Russian roulette game, the particles are killed 

with a given probability but with the complementary probability they survive. This way, 

unimportant particles are followed less often. On the other hand, if particles are transported to 
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regions of higher importance, they split. Each of the split particles are simulated independently. 

To ensure that the problem solution remains unbiased, Eq. (2.13) has to be used for adjusting the 

particles weights. 

4. Partially-Deterministic Methods 

Partially-Deterministic Methods circumvent the normal random walk process by using 

deterministic-like techniques, such as next event estimators, or by controlling the random 

number sequence. 

The following summarizes some VR techniques that are relevant to this thesis. A more 

complete discussion can be found in Ref. [22; 23] 

Geometry, time, and energy splitting/roulette 

Splitting and Russian roulette can be implemented in space, time, and energy. To be 

distinguished from the WW technique, the geometry, time, and energy splitting/roulette will be 

denoted as the simple phase-space splitting/roulette in the rest of this report. In the simple 

phase-space splitting/roulette, the particles split and roulette upon entering various phase-space 

regions according to the importance ratio of the regions the particles entered and the regions 

from which they came. 

 Weight-window technique/weight-window Generator 

Although simple phase-space splitting/Russian roulette is very effective at producing 

more statistical samples in regions of interest, it can also cause fluctuation in the scoring values 

leading to statistical instabilities which can delay the MC convergence. The WW method was 

developed, not only to increase the sampling in important phase-space regions, but also to 

control particles’ weights. Upper and lower bounds are assigned to each region of phase-space. If 
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a particle's weight is below the lower weight bound, Russian roulette is performed, and the 

particle's weight is either increased to be within the WW or the particle is terminated. On the 

other hand, if the particle's weight is above the upper weight bound, the particle is split such that 

the split particles all have weights within the WW. If the particle's weight falls within the WW, 

no adjustment is performed. Contrary to the importances, weight bounds decrease in the 

direction of the important regions and increase away from them. 

The WW is usually better than the simple splitting/rouletting technique because the WW 

controls the weight fluctuations by forcing the particles having the similar positions and energy 

to have the same weights. 

Setting the WW bounds is difficult and non-intuitive. Booth and Hendricks developed a 

technique called the forward-adjoint generator, which has since become known as the WW 

generator (WWG) [24]. The WWG statistically estimates the importance of each phase-space 

region as the expected score generated by a unit weight particle after entering a certain phase-

space region. The importance of the phase-space interval,   can be estimated as, 

           ( )  
                                        

                       
. (2.14) 

The WWG has been implemented in MCNP in two flavors. The original WWG is a cell 

based WWG which is restricted to the geometrical components (cells) of the MCNP geometry. 

The second flavor is a geometry independent mesh-based WWG for which weights can be 

generated on a mesh that is not a part of the physical geometry but rather is superimposed over it 

[25]. 



31 

 

 
 

The WWG is a quite simple statistical estimation of the importance function of a given 

phase-space region. The main difficulty of the WWG arises from the poor estimates of the 

importance function caused by the statistical nature of the generator. If a phase-space region is 

not properly sampled during WW generation, either unreliable importance estimate or no 

importance estimate will result. The failure of the MCNP WWG to calculate an importance (or 

weight) for a certain phase-space region appears as “zero” in the WWG output. This occurs if 

none of the particles enter the region or if the particles entering the region do not score. The 

problem of having too many zeros in the MCNP WWG output is very well-known in deep 

penetration shielding problems. There are many ways to enhance the WWG performance; some 

of them are discussed in Ref. [26]. These ways have proved beneficial in many types of problems 

but if used like a black box they can delay the MC convergence and/or bias the answers. None of 

these ways is suitable for enhancing the performance of the WWG for global MC problems [26]. 

Source biasing 

Source biasing allows the simulation of a larger number of source particles in the more 

important phase-space regions. This technique consists of sampling the source from a biased 

PDF. The weights of the source particles have to be adjusted according to Eq. (2.13) [23]. 

 

2.3.2 Accuracy and precision of Monte Carlo calculations 

 

Distinguishing between the accuracy and the precision of the MC calculation is important 

to this thesis. The MC uncertainty estimates refer only to the precision of the results and not to 

the accuracy. The latter is related to systematic errors resulting from multiple factors such as: 
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nuclear data uncertainties, coding errors, and inappropriate modeling. Figure 2.1 shows the 

difference between the statistical uncertainties determining the precision of the MC calculation 

and the systematic error determining its accuracy. The uncertainties in the expected values 

( ( )) results from the fluctuations of the scoring values of each of the sampled histories while 

the systematic errors determine how far this expected value from the true value [27]. 

 

 

Figure 2.1: Systematic (accuracy) versus uncertainty (precision) errors [27] 

 

It is quite possible to calculate a highly precise result that is far from the physical truth 

(not accurate) because nature has not been modeled faithfully [27]. 

Monte Carlo accuracy 

The accuracy of the MC results is affected by many factors that can be grouped into three 

main categories: the code, the problem-modeling, and the user. The code factors encompass: the 

physical and mathematical models used, uncertainties in the data, and coding errors (bugs). The 

problem-modeling factors include the geometrical approximations and the energy and angular 

representation. The user’s input errors can affect the problem accuracy. The user can also abuse 

the VR techniques that some portions of phase-space are not allowed to contribute to the result. 

This last factor is the primary research focus in this thesis [27].  
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Monte Carlo precision 

1. Monte Carlo mean, variance, and standard deviation 

MC results (tallies) are obtained by simulating particle histories and assigning a score    

for each history. The particles histories produce a range of scores depending on the selected tally 

and VR. If  ( ) is the history score probability density function for selecting a particle history 

that scores   to the tally being estimated, the true mean will be the expected value  ( ), 

  ( )  ∫  ( )  . (2.15) 

In MC simulations, the function  ( ) is never known explicitly. Instead  ( ) is 

implicitly sampled by the MC sampling process. The true mean is approximated with the sample 

mean  ̅, 

  ̅  
 

 
∑   

 
   . (2.16) 

According to the Strong Law of Large Numbers [19],  ̅ tends to the limit  ( ) as   

approaches infinity. The variance of   is a measure of the spread of   , 

    ∫(   ( ))
 
 ( )    (  )  ( ( ))

 
. (2.17) 

Estimate of the variance associated with the spread of the distribution of    can be 

approximated from the sampling process, 

    
 

   
∑ (    ̅)    ̅̅ ̅   ̅  

   . (2.18) 
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The estimated variance in the mean  ̅ can be calculated as, 

   ̅
  

  

 
, (2.19) 

and hence the standard deviation in  ̅ is the square root of this variance. The standard 

deviation in  ̅ is what is usually denoted as the MC tally uncertainty not the spread of the scoring 

distribution. It is instructive to note that standard deviation in  ̅ is proportional to   √ . 

To define confidence intervals for the precision of a MC result, the Central Limit 

Theorem (CLT) [28] is used,  

         ( ( )   
 

√ 
  ̅   ( )   

 

√ 
)  

 

√  
∫  

   
 ⁄   

 

 
, (2.20) 

where   and   can be any arbitrary values that can be positive or negative.    ( ) means 

probability of  . 

For large number of samples (   ),   ̅ is approximately equal to  . After replacing 

the true variance with the sample variance and plugging numbers for   and  . 

 ̅    ̅   ( )   ̅    ̅                    

 ̅     ̅   ( )   ̅     ̅                    

The CLT states that the estimated mean will appear to be sampled from a normal 

distribution with a known standard deviation ( ) when   approaches infinity. In practice,   is 

not known and must be approximated by the estimated standard deviation   ̅. The major 

difficulty in applying the CLT correctly to a MC result to form a confidence interval is knowing 

when   has approached infinity. Another key point about the validity of the confidence intervals 



35 

 

 
 

is that the physical phase-space must be adequately sampled by the MC process. For example, if 

an important path in the geometry is not well sampled both  ̅ and   ̅ will be unknowingly 

incorrect and the results will be wrong, usually tending to be too small [27]. The reliability of the 

MC results and the validity of the confidence intervals created by the calculated MC 

uncertainties will be discussed in details in Sec. 2.4.  

2. Factors affecting Monte Carlo precision 

 

There are multiple factors that affect the MC precision such as: the tally type, VR 

techniques, and numbers of histories. In this thesis, we will only concentrate on the number of 

histories and the VR techniques. 

The MC precision is proportional to   √ . Running more histories should increase the 

MC precision but running more histories increases the computer time and therefore should be 

viewed as the last resort for difficult shielding problems.  

Not all the histories score in the tally. For difficult shielding problems the fraction of 

histories with nonzero scores (scoring efficiency) is always very small. The MC precision is 

affected by the scoring efficiency and by the distribution of the scoring values of the histories. 

These scoring values (scores) are affected by the use of VR techniques due to the weights 

adjustments according to the conservation relation (Eq. (2.13)). The hypothetical scoring 

distribution function  ( ) shown in Fig. 2.2 illustrates how the distribution of the scores around 

the mean  ( ) can be affected by both the scoring efficiency of the histories and the fluctuations 

of the scoring values around the mean. 
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Figure 2.2: Hypothetical scoring distribution function [27] 

 

A calculation is more precise when the scoring efficiency is high and the fluctuations of 

the nonzero scores are low. Most of the VR techniques tend to increase the MC precision by 

increasing the number of nonzero scoring histories. Although the use of VR techniques can 

causes scores fluctuations, some VR techniques such as the WW can also increase the MC 

efficiency by decreasing the scores fluctuations [27]. 

 

2.3.3 Efficiency and reliability of Monte Carlo calculations 

 

As noted earlier, multiple factors can cause the MC results to be incorrect or imprecise. 

In this thesis, we will only concentrate on the inappropriate use of VR techniques. If the VR 

parameters are a good match to the sources of variance, the MC calculation usually produces no 

surprises [29]. On the other hand VR techniques can be abused so that some portions of 

phase-space are so heavily sampled in excess to their importance to the tally and other portions 

are not well sampled. In these cases, VR can have undesirable effects on both the accuracy and 

the precision of the MC calculation. While oversampling unimportant phase-space regions 
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decreases the MC efficiency, insufficient sampling of important phase-space regions can prevent 

the MC convergence and/or lead to wrong answers.  

In the next subsection, some indicators for the reliability of the MC calculations are 

explained as used in MCNP and other popular MC codes. Indicators of the unreliability of MC 

calculations are explained in the following subsection. Finally, the factors affecting the 

efficiency metric of a MC calculation of a single tally are explained in subsection 2.3.3.3. 

 

2.3.3.1 Reliability indicators 

 

Relative uncertainties 

The estimated relative uncertainty ( ) in MCNP and many other MC codes is defined as 

   
  ̅

 ̅
. (2.21) 

The relative error is a convenient number because it represents statistical precision as a 

fractional result with respect to the estimated mean. It also acts as a tally reliability indicator. 

For large  ,   can be written as 

 

  [
 

 
(
  ̅̅̅̅

 ̅ 
  )]

 
 ⁄

 [
∑   

  
   

(∑   
 
   )

  
 

 
]

 
 ⁄

. (2.22) 

This form shows that, if all the scores are nonzero and equal,   is zero. Thus reducing the 

spread of the scores fluctuations decreases the variance. If all the scores are zeros,   is defined to 

be zeros. If only one nonzero score is made,   approaches unity as   becomes large. 
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Table 2.1 presents the recommended interpretation of the estimated 1  confidence 

interval  ̅(   ) for various values of   associated with an MCNP tally. These guidelines were 

determined empirically, based on years of experience using MCNP on a wide variety of 

problems [27]. 

 

Table 2.1: MCNP guidelines for interpreting   [27] 

Range of R Quality of tally 

50% to 100% Garbage 

20% to 50% Factor of few 

10% to 20% Questionable 

<10% Generally reliable except for point detector 

<5% Generally reliable for point detector 

 

There is no guarantee that the estimated   will decrease inversely proportional to the √  

as required by the CLT because of the statistical nature of the tallies. Early in the problem,   will 

generally have large statistical fluctuations. Later, the inadequate sampling of important 

phase-space regions can produce large scores causing fluctuations in   ̅ and to a lesser extent in 

 ̅ and therefore in   [27]. 

Figure of merit 

For a single tally, a well-defined figure of merit (FOM) for the MC calculations has been 

established as, 

     
 

   
. (2.23) 
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   should be proportional to  
 ⁄  and the computer time   should be directly 

proportional to  . The quantity     should be approximately constant for a certain MC run with 

certain VR parameters [27]. 

The MC FOM has three uses [27]: 

1. A tally reliability indicator 

 For well-behaved tallies, the FOM should be constant as a function of  . 

2. Optimizing MC efficiency 

 Larger FOM indicates higher MC running efficiency. By several short runs, the 

user can compare between different VR parameters and choose the one with the 

highest FOM. 

3. Estimate the computer time required for reaching certain   

Empirical score PDF and Pareto slope 

A history score posted to a tally can be thought of as having been sampled from an 

underlying and generally unknown history score PDF,  ( ), where the random variable   is the 

score from one complete particle history [30]. The quantity,  ( )   is the probability of 

selecting a history score between   and      for the tally. As a PDF,  ( ) is normalized 

(∫  ( )    ).  

For valid confidence intervals, the CLT requires the first two moments of  ( ) to exist. 

To assess whether  ( )  appears to have been completely sampled, the behavior of  ( ) for 

large history scores can be examined. If complete sampling has occurred, the largest values of 

the sampled scores should have reached the upper bound (if such a bound exists) or should 

decrease faster than    ⁄  so that  (  )  ∫   ( )   exists. This means that   is finite and the 

confidence interval is valid according to the CLT.  
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During the MC simulation, the slope   of the logarithm of  ( ) at the largest score can 

be estimated to determine if and when the largest history scores decrease faster than    ⁄ . It is 

postulated that if such decreasing behavior in the empirical  ( ) is not faster than    ⁄ , then   

is not large enough to satisfy the CLT because  ( ) has not been completely sampled [31]. 

Therefore, a larger   is required before a confidence interval can be formed.  

Variance of the variance  

Another quantity that can help the user establish more reliable confidence intervals is the 

variance of the variance (VOV). The quantity is analogous to the square of  , except it is the 

relative uncertainty in  , itself, not the mean. It is defined as, 

     
  (  ̅

 )

  ̅
 , (2.24) 

where   ̅
  is the estimated variance of  ̅ and   (  ̅

 ) is the estimated variance in   ̅
 .  

The VOV is a measure of the relative statistical uncertainty in the estimated   and is 

important because   ̅ must be a good approximation of   to use the CLT to form confidence 

intervals.  

The estimated VOV can be defined as, 

     
∑(    ̅) 

(∑(    ̅) ) 
 

 

 
. (2.25) 

With some mathematical manipulation, it can be proven that the desired VOV behavior is 

to decrease inversely with   [27]. This criterion is necessary but not sufficient condition for a 

statistically well-behave tally. Because the VOV involves the estimated third and fourth 
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moments of the empirical PDF  ( ), it is a much more sensitive indicator to large scores 

fluctuations than   and the mean [27]. Some cases of “unreliability” can be detected by 

estimating higher statistical moments which are more sensitive to statistical anomalies than the 

standard deviation [32]. 

MCNP statistical checks 

To allow users to build confidence in the results and detect statistical anomalies, MCNP 

prints the results of ten statistical checks of one of the tally bins [27]. The quantities involved in 

these checks are the estimated mean,  , VOV, FOM, and the large score behavior of  ( ). The 

MCNP statistical checks [27] are: 

1. A nonmonotonic behavior in the estimated mean as a function of the number of histories 

( ) in the last half of the problem. 

2. Magnitude of   (      for point detector tallies and      for all other tallies). 

3. A monotonically decreasing   as a function of  . 

4. A  
√ 

⁄  decrease in   in the last half of the problem. 

5. Magnitude of VOV (     for all types of tallies). 

6. A monotonically decreasing VOV as a function of   in the last half of the problem. 

7. A   ⁄  decrease in the VOV as a function of   in the last half of the problem. 

8. A statistically constant FOM as a function of   in the last half of the problem. 

9. A nonmonotonic behavior in the FOM as a function of   in the last half on the problem. 

10. A Pareto slope of 3 or greater. 

Passing all the checks should provide additional assurance that the confidence intervals 

will cover the expected result the correct fraction of time. Not passing several of the checks is an 
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indication that the confidence interval may not be correct. A nonmonotonic trend in the mean for 

the last half of the problem is a strong indicator that the confidence interval is likely to produce 

incorrect coverage rates. The magnitudes of   and the VOV should be less than the 

recommended values to increase the likelihood of a valid confidence interval. Small jumps in the 

 , VOV, and/or the FOM as a function of   are not threatening to the quality of the result. The 

slope of the empirical  ( ) is an especially strong indicator that   has not approached infinity in 

the sense of the CLT [27]. 

 

2.3.3.2 Unreliability and undersampling  

 

When running MCNP, it is recommended to check all the MCNP statistical checks. Not 

passing some of the checks might be an indication of inappropriate sampling [27]. Excess 

splitting due to single event is another unreliability indicator. The MC code Monaco [33] prints a 

message with position and velocity information of the event at which more than 1000 particles 

are created by splitting.  

One of the unreliability indicators of the MC calculations is the appearance of erratic 

uncertainties. Erratic uncertainties appear when scores from high-weight (low-importance) 

particles, coming from important phase-space regions that have not been well sampled, 

contribute to the tally. To avoid high-weight particles in important regions, the user should 

ensure all phase-space regions are well sampled by many particles as well as try to control the 

weights’ fluctuations. If, despite the user’s efforts, erratic uncertainties appeared, user should 

print the event logs for those particles causing the erratic uncertainties. The event logs should be 

studied to learn what is special about these particles. When the special nature of these particles is 
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understood, the user can adjust the VR parameters to sample these particles more often. This will 

cause their weight to be smaller so that they will be less likely to cause erratic uncertainties. 

Ignoring these particles will cause the MC results to be inaccurate [26]. For large and 

complicated problems, it might be very difficult to understand the reason for the appearance of 

these high-weight particles especially because the event logs of these particles are usually 

composed of millions of lines. 

It is necessary to mention that even though the reliability indicators existing in many MC 

codes can be very useful in detecting the “unreliability” of the MC calculations, the reliability of 

the MC calculations cannot be guaranteed especially for large and complicated shielding 

problems. In some cases, the insufficient sampling of important phase-space regions can be so 

severe that the final MC results are unrealistically small while their uncertainties and the other 

reliability checks do not indicate the seemingly acceptable results. These cases, generally known 

as “undersampling”, can lead to results that are so far from the physical truth (not accurate) 

with no clues that anything is missing [34; 32]. This will be demonstrated by a realistic example 

in Sect. 3.3. 

 

2.3.3.3 Efficiency of Monte Carlo methods 

 

For a single tally, the MC efficiency is measured by the FOM defined in Eq. (2.23). In 

this thesis, the single tally FOM will be used as the efficiency metric for each single response in 

an MC calculation. The VOV, which MCNP already estimates, will be used to express the 
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statistical uncertainty in the FOM because it determines the statistical uncertainty in   . The 

uncertainty in the single tally FOM will be computed using the relation, 

     

   
 √   . (2.26) 

It is important to notice that the statistical uncertainties in the FOMs described in this 

thesis are biased but they provide a good first estimate. The reason for biasing is that the 

expectation value of the reciprocal of an integral is not equal to the reciprocal of the expectation 

values of the integral [35]. The uncertainty in the MC calculation time is also ignored in Eq. 

(2.26). 

The FOM should be constant for well-behaved tallies. Higher FOM indicates smaller   

for the given time,   can be expressed as, 

 
  

 
√ 

⁄

 ̅
. (2.27) 

For a fixed time, either decreasing    or increasing   can lead to a smaller   and a higher 

FOM. Unfortunately, these two goals usually conflict. Decreasing    normally requires more 

time per history because better information is required. Therefore, for a fixed time, increasing   

normally increases    because less time is spent per history. However, using VR techniques it is 

possible to substantially decrease   without too much decrease in    or to substantially increase 

  without too much increase in  . VR techniques attempt to decrease   by either producing 

particles in important phase-space regions or destroying particles in unimportant phase-space 

regions. In general, techniques that produce histories attempt to decrease   and techniques that 

destroy histories attempt to increase   [27]. 
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2.3.4 Efficiency metrics of global Monte Carlo problems  

 

For assessing some of the improvements of the algorithms developed in this thesis, the 

efficiency of global MC calculations needs to be quantified. Extending the concept of the FOM 

of a single tally to several tallies or mesh tallies is not straightforward since   is not well-defined 

for a tally distribution. There are many valid possibilities for global MC FOMs, but their 

practicality and usefulness as efficiency metrics depend on what the user desires from a global 

MC calculation. 

Several efficiency metrics have been suggested in the literature for global MC problems 

but a unified global MC FOM has not been established. Some FOM metrics for tally 

distributions are described in this section. 

Cumulative distribution function   

To compare the uncertainties of a mesh tally, a histogram of the cumulative distribution 

function (CDF) can be used. The CDF histogram shows the fractions of mesh tally elements that 

have   below a given value [36]. By comparing the CDF histograms of different MC cases with 

fixed runtime, one can deduce which case is more efficient at certain   because a higher fraction 

of mesh tally cells with low   is an indicator for a better MC calculation efficiency. 

Care should be taken when assessing the efficiency of different MC cases at a fixed 

runtime if the CDFs of the mesh tally  s cross each other. As the runtime continues, the   at 

which the different CDFs cross can change and different regions of the CDFs may become more 

important for the efficiency assessment.  
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FOM based on maximum   

An FOM for several tallies or mesh tallies can be defined as 

     
 

    
  

, (2.28) 

where      is the maximum   in all the tallies or the mesh tally elements and   is the 

computation time. 

Since this FOM is based on the voxel with the slowest convergence rate, it can be used 

for characterizing the MC simulation efficiency if the user is interested in acquiring low  s 

everywhere. This is usually the case for MC calculations of few tallies at specific locations. This 

FOM can also be suitable for assessing the MC calculation efficiency for multi-physics analysis 

because uniform low  s are often required when the MC calculations are coupled with other 

types of calculations such as structural analysis, thermal-hydraulics, or neutron activation. 

FOM based on average variance 

An FOM based on the mean of the relative variances    of the mesh tally elements was 

suggested in Ref. [37], 

     
 

  ̅̅ ̅̅  
. (2.29) 

In Eq. (2.29),   ̅̅̅̅  is the mean of the distribution function of the relative-variances (  ) of 

the mesh tally elements and   is the MC computation time.  

As a consequence of the CLT,   ̅̅̅̅  scales as   ⁄ , where   is the number of histories. 

Since   scales with  , this FOM should be asymptotically constant with time. In Ref. [37], the 

basic assumption for this FOM was that the user desires as many elements having all   below a 
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specific value for the lowest time possible. This FOM was not recommended for problems with 

non-scoring tallies because   is undefined for the voxels without MC scoring. 

Frequently in MC calculations of large and complicated problems, the calculations need 

to be stopped before MC scoring occurs in all the tallies. The uncertainties in the tallies without 

scoring are undefined. The scoring efficiency in some tallies can also be very small that the 

calculated uncertainties in these tallies are unreliable. Since tallies without MC scoring are 

expected to have the lowest scoring efficiency, this FOM has to be combined with the fraction of 

non-zero scoring tallies for difficult shielding problems. A typical procedure for calculating   ̅̅̅̅  is 

to assign        for all the tallies without MC scoring.  Since the tallies without any MC 

scoring are expected to have a slower convergence rate than the tallies with       , the 

FOM is expected to be overestimated with this assumption. The magnitude of the overestimation 

in the calculated FOM is expected to be lower for the cases with larger fractions the non-zero 

scoring tallies.  

If the MC scoring did not occur in all the voxels, the computational time of the different 

MC cases has to be set constant for reliable comparisons of the MC efficiencies because this 

FOM is not expected to be constant with time until    of all the tallies achieved the   ⁄  

behavior. For constant time comparisons using this FOM, the time in the denominator of Eq. 

(2.29) does not need to be included. 

FOM based on maximum   of tallies above certain threshold 

In global MC calculations, the most difficult tallies are usually the tallies with smallest 

values. The constant asymptotic behavior of any FOM based on the reciprocal of    multiplied 

by the time can be significantly delayed because of the small scoring efficiency in these tallies.  
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Fortunately, the user might not be interested in calculating the tally response below a certain 

threshold. For example, it might not be necessary to calculate the dose rates in the vicinity of a 

nuclear facility at locations where the dose rate because of the radiation sources is below the 

background level. In these cases,   of the mesh tally elements can be filtered below a specific 

threshold and the FOM can be based on   of the smallest tally above this threshold. 

 

2.4 Hybrid Monte Carlo/deterministic techniques 
 

While accurate 3-D deterministic modeling requires huge computational resources the 

computational requirements of some analog MC problems (eg. deep penetration problems) are 

strictly prohibitive. Non-analog MC requires the manual development of the VR parameters- a 

process often viewed to be more art than science and is very difficult for large and complicated 

problems [38].  

Techniques that couple both the MC and the deterministic methods are known as the 

hybrid techniques. These techniques use the information obtained from computationally 

inexpensive deterministic calculations to distribute the particles advantageously through the 

phase-space domain of the MC problem and hence increase the MC calculation efficiency [39]. 

The solutions of both the forward and the adjoint transport equations have been used in the 

hybrid techniques. A brief discussion of some efforts in coupling the deterministic and the MC 

methods for neutronics shielding simulations is presented in the next section. 
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2.4.1 Literature review 

 

The perturbation theory, first proposed by E. P. Wigner during the Manhattan project, 

introduced the adjoint flux concept for studying fundamental quantities in nuclear reactors such 

as the reactivity worth of difference materials in the reactor core [40]. Because the adjoint flux 

represents the phase-space importance to a certain response, it was extensively used in 

non-analog MC calculations. Inspired by the work of John Von Neumann and Stanislaw Ulam 

and with the emphasis of reducing the amount of work needed to perform the MC simulation, 

Kahn described the importance sampling technique and showed the theoretical existence of the 

zero-variance MC simulation scheme. Kahn modified the probabilities of contribution and death 

using an importance function. He suggested the use of some approximate analytic, numerical, or 

experimental procedures to calculate the importance function. He also indicated the possibility of 

interchanging the roles of the “normal” (forward) and adjoint equations in the MC simulations 

and correcting both the importance function and the MC results (tally) through iterating between 

the normal and adjoint simulations [41].  

Because finding the exact adjoint (importance) function is too much to expect, Goertzel 

and Kalos suggested “the use of good intuition in selecting a physically plausible importance 

function with the hopes of significant decrease in variance over a more naïve game” with the 

absolute ignorance of the importance function [42]. Later in 1963, Kalos demonstrated the 

benefits of importance sampling by using analytic approximations of the adjoint flux 

representing the importance function. He showed that choosing from the altered transport kernel 

can be “facilitated, in part, by particle splitting” and Russian roulette and successfully 

reproduced the MC results in a 179 mean free path 1-D MC problem [43]. In 1967, the merits of 



50 

 

 
 

using the adjoint flux for the importance function were demonstrated by Coveyou et al. who 

investigated several biasing techniques namely, source biasing, implicit capture, and density 

(splitting and Russian roulette at certain events) biasing for deep penetration problems. Coveyou 

et al. developed an inverse relation between particles weights and the importance function and 

used this importance function for source and density biasing [44].  

The early work by Kalos and Coveyou explained the benefits of using the adjoint fluxes 

for importance functions of non-analog MC simulations but the demonstration was limited to 

simple problems due to the limited computational power. As computational power increased and 

production-level deterministic and MC codes became available, the use of the hybrid techniques 

expanded to more realistic problems. The production-level implementations of the hybrid 

techniques started in the Oak Ridge National Laboratory (ORNL) Standard Computer Analysis 

for Licensing Evaluation (SCALE) package [45]. Tang and Hoffman automated the procedure 

for an adjoint calculation, biasing parameters generation, and non-analog MC calculation in the 

SAS4 [46] module of SCALE. The multigroup MC code, MORSE-SGC/S [47] was used for the 

MC calculation and the one-dimensional SN code XSDRNPM-S [48] was used for the adjoint 

calculation. A one-to-one correspondence was imposed between the XSDRNPM-S zones and the 

MORSE-SGC/S regions. They used the zone-averaged and group-dependent adjoint flux 

calculated by XSDRNPM-S for the importance function and explained the use of this function  

for source energy biasing, energy biasing at collision sites, splitting and Russian roulette, and 

exponential transform [49]. The commercial MC code, MCBEND uses a 3-D adjoint diffusion 

code to automatically generate a space- and energy- dependent importance map in an orthogonal 

    or     mesh [50]. The principal method of VR in MCBEND is the use of splitting and 

Russian roulette under the control of the importance map [51]. The French Monte Carlo code, 
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TRIPOLI [52] uses a deterministically evaluated importance function for several biasing 

schemes, including source biasing, exponential transform, and biasing at collision sites. For 

automating the use of the analytically developed importance map in biasing, the phase-space 

domain of the MC model is discretized in a 3-D grid and several energy groups. Using the 

Dijkstra algorithm [53], the analytic importance function is computed for each cell and energy 

group [54].  

MCNP has frequently been coupled with specifically developed deterministic solvers or 

production-level deterministic solvers for automating the process of variance reduction. Several 

attempts successfully demonstrated large boosts in the simulations efficiencies compared to 

analog and manual non-analog MCNP calculations [55]. One of the first attempts of coupling 

MCNP with a deterministic solver was demonstrated by Mickael. Mickael used a short analog 

simulation to obtain the effective groups parameters of the time-dependent adjoint diffusion 

equation. A finite differencing scheme is used to solve the set of difference equations derived 

from the adjoint diffusion equation on a 1-D or 3-D grid.  At any point in space, time, and 

energy, the adjoint flux is calculated using logarithmic interpolation on the grid. The particles’ 

weights based on this interpolated (continuous) adjoint fluxes are used during the histories 

simulations [56]. Gardner and Liu combined Mickael method with the MCNP geometry 

independent (mesh-based) WWG, originally developed by Liu and Gardner [25]. They showed 

that the converged FOMs, after several iterations, are consistently larger when the initial 

importance map is based on the diffusion deterministic calculation rather than obtained from an 

analog MC calculation [57]. In LANL, the AVATAR method was developed to automatically 

invoke THREEDANT [58] for a 3-D deterministic adjoint calculation on a mesh independent of 

the MC geometry, calculate WWs, and run MCNP. AVATAR inverts the scalar adjoint fluxes to 
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get the lower WW boundary in each mesh element and each group. The weights are then 

normalized so the source particles are born with weights inside the WW. Van Riper et al. stated 

that using the full angular adjoint information, which THREEDANT can produce, will require an 

inordinate amount of storage. The angular component of the adjoint flux was approximated with 

the assumption of a separable angular variation that is symmetric about the average adjoint 

current. The WWs were normalized to a particular source location and energy, and consequently 

the inherent coupling between source and transport biasing is not taken into account [59]. An 

AVATAR-related effort was applied using the 3-D unstructured-mesh SN code, Attila. Because 

of the intensive calculations required by the weight-checking algorithm in unstructured grids, the 

fluxes were interpolated to develop structured mesh weights-windows maps [16].  

In an assessment of the MCNP WW, the incompatibility between source and transport 

biasing has been shown to be problematic due to calculation inefficiency and false convergence 

[60]. Responding to this issue, the CADIS method was developed by Wagner and Haghighat. 

The CADIS method uses the adjoint fluxes for automatic variance reduction of MC calculations 

through source biasing and consistent transport biasing with the WW technique [61]. The 

implementations of the CADIS method included algorithms for automatic generation of 

deterministic adjoint functions and algorithms for generation and usage of space- and 

energy-dependent source biasing and WW parameters [2]. The CADIS method was implemented 

into the Automated Adjoint Accelerated MCNP (A
3
MCNP) code [62] and the AutomateD 

VAriaNce reducTion Generator (ADVANTG) code [63; 64]- both based on MCNP. A
3
MCNP 

uses the SN code, TORT [9] and ADVANTG can be linked to either TORT or the SN code 

Denovo [11] for the deterministic calculation. A
3
MCNP uses a specifically developed 

mesh-based WW algorithm that allows discontinuous mesh while ADVANTG writes a 
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geometry-independent (mesh-based) WW file that is directly usable by the RSICC version of 

MCNP5. The CADIS method was also implemented in the Monaco with Automated Variance 

Reduction using Importance Calculations (MAVRIC) sequence [33; 65; 66]. MAVRIC replaced 

SAS4 as the primary shielding analysis sequence of SCALE6 [67]. MAVRIC uses the 

multigroup MC code Monaco [33] for the MC calculations and the SN code Denovo [11] for the 

deterministic calculations. 

In an unreleased version of MCNP, the deterministic adjoint WW generator (DAWWG) 

was developed. DAWWG employs the PARTISN [8] multi-group SN code to generate 

mesh-based WWs. The adjoint fluxes from PARTISN are converted to WWs for MCNP by 

taking the inverse of the adjoint flux, normalizing the WWs to the WW in the reference mesh. 

The angular WW concept was taken from AVATAR. The WWs also provide source energy 

biasing in a way similar to the CADIS method. For sources that span multiple mesh cells, 

DAWWG does not provide spatial biasing to the source particles which leads to inefficiencies in 

the method [55].  

Turner and Larsen developed the Local Importance Function Transform (LIFT) as a 

practical approximation to the zero-variance method for contributions [68]. In Turner and 

Larsen’s demonstration, the adjoint calculations were performed on an orthogonal grid using the 

diffusion method [69]. The LIFT method approximates the adjoint solution using a 

piecewise-continuous function containing parameters obtained from the adjoint calculation. The 

transport and collision processes of the transformed MC problem bias the source distribution, the 

distance to collision, and the selection of post collision energy groups and directions. Similarly in 

the University of Michigan, Cooper and Larsen developed an automated WW method for global 

MC calculations. In such a hypothetical global MC calculation, the flux estimates are desired at 
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all points in phase-space. The method developed by Cooper and Larsen is based on the use of 

WW that distributes MC particles uniformly throughout the system. The WW is constructed 

from an approximate deterministic solution of the forward transport problem [70].  

For optimizing distributions (e.g., mesh tallies over all or part of the problem space) or 

multiple localized detector regions, an extension of the CADIS method was developed in ORNL. 

The Forward Weighted CADIS (FW-CADIS) method involves determining a function that 

represents the importance of particles to the objective of achieving uniform MC particle density 

in the desired tally regions [3]. The name, Forward Weighted, stems from the fact that the 

method involves weighting the adjoint source strength with information from a forward solution. 

The FW-CADIS method, therefore, involves two deterministic calculations: one forward and one 

adjoint. The FW-CADIS method was implemented in both ADVANTG and MAVRIC.  

Becker developed methods to control the distributions of MC particles throughout the 

phase-space MC domain using a user-specified particle distribution such as the contributon flux. 

Becker used two approaches to achieve the user-specific particle distribution. The first is a WW 

approach which imposes a requirement on the MC particle distribution without changing the 

underlying physics. The second is the transform approach which comprehensively uses many 

biasing techniques to modify the particle physics. Becker’s two approaches still use the standard 

biasing techniques such as source biasing, path length (exponential) biasing, collision biasing, 

and WWs but the biasing techniques are not viewed as individual techniques that can produce 

better results; rather, they are seen as elements of comprehensive tool set to distribute MC 

particles in a user-specified way [71]. 
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The rest of this thesis focuses on the two hybrid methods CADIS and FW-CADIS. These 

two methods use the deterministically evaluated adjoint fluxes to develop the VR parameters for 

the MC calculations. The next section describes the fundamental theory behind using the adjoint 

flux in MC VR. 

 

2.4.2  Importance sampling 

 

The use of the adjoint function in MC VR has had a long history that is almost as old as 

the MC method itself [72]. The MC calculations can be thought as methods of solving integrals 

using random sampling procedures. The role of the adjoint function in MC VR can be illustrated 

by considering the integral form of the transport equation, 

  ( )  ∫ (    ) (  )     ( ). (2.30) 

The transport kernel  (    ) is defined such that  (    )   is the probability of a 

particle emerging in    about   from an event in     about   . This kernel can be thought as 

composed of a collision kernel  (  ̅        ̂   ̂) and the streaming kernel  (  ̅   ̅    ̂). 

MC methods have specific sampling procedures for each of these kernels. With non-analog MC, 

the MC game can be altered by changing the probability densities from which each event is 

sampled. The modification of the transport kernel is necessary to depict this alteration since the 

changes from analog random sampling (for e.g splitting and rouletting) take place at certain 

transport events. The source emission probability can also be altered to depict any non-analog 

sampling in the MC simulation [43]. 
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Equation (2.30) can be modified by multiplying with an arbitrary function  ( ) which is 

positive everywhere. If we define an altered source function, 

  ̂( )   ( ) ( ), (2.31) 

and an altered flux, 

  ̂( )   ( ) ( ). (2.32) 

Eq. (2.30) will be transformed to 

  ̂( )  ∫  ̂(    ) ̂(  )     ̂( ). (2.33) 

The altered transport kernel will be 

  ̂(    )   (    )
 ( )

 (  )
, (2.34) 

which is proportional to the ratio of the value of the arbitrary function at the phase-space of a 

single event to its value at the phase-space of the last event. 

Equation (2.33) is similar to the original integral transport equation (Eq. (2.30)) with 

three changes: 

1. The source function is replaced by a modified source function. 

2. The transport kernel is modified by the ratio of the arbitrary function values at the 

phase-space of this event and the last event. 

3. The phase-space dependent flux is replaced by the product of the original flux and 

the arbitrary function. 
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This suggests a modified sampling scheme for both particles emitted from the source and 

particles that go through the transport events. The number of particles sampled from the source 

or in the transport events is proportional to the arbitrary function  ( ). According to Eq. (2.13), 

the weights of these particles have to be adjusted for the MC final answer (tally result) not to be 

biased. 

Equation (2.9) can be thought as an integral equation describing an extremely efficient 

MC process that calculates a tally response   . In this MC calculation, the source particles 

immediately contribute to the tally response without going into any physical events. To find an 

optimum choice for the function  ( ), Eq. (2.9) should be solved with Eq. (2.31) taking into 

account that the MC calculations require that the source be defined as a PDF (i.e. ∫  ̂( )    ), 

  ( )  
  ( )

  
. (2.35) 

 ( ) is directly proportional to the phase-space dependent adjoint flux. Because of the 

physical interpretation of the adjoint flux, the altered kernel and source function have the 

reasonable property of distributing as many particles in phase-space as the expected contribution 

(importance) of each phase-space position to the detector. The modified sampling technique that 

uses this “importance function” is often known as “importance sampling” [42]. It is worth 

mentioning that this importance function is not directly related to the statistical metrics used to 

characterize the efficiency of the MC simulation such as the variance or the FOM [73]. Despite 

this fact, it is still logical to advantageously distribute the particles throughout the phase-space 

regions of the system. 

Theoretically, if  ( ) is exactly known, the modified sampling process will lead to a MC 

result with zero-variance since all the histories will have the same score. MC codes use different 
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methods to count the tally scores such as track length estimators, collision estimators, and last 

event estimators. It has been proven that for all MC estimators, this modified sampling scheme 

can provide a zero-variance solution with some adjustments to the adjoint source functions [72]. 

In practice the solution of the adjoint equation is as difficult as the solution of the transport 

equation itself. If the importance function is exactly known, performing the random sampling 

process will not be needed because it will be easier to calculate the response using integration 

methods (Eq. (2.9)). However, an approximate estimate of the adjoint function can significantly 

decrease the MC variance if the suggested modified sampling scheme was used in the MC 

calculation. Many hybrid MC/deterministic techniques, including CADIS and FW-CADIS, use 

approximate (fast) adjoint deterministic calculations to provide the MC calculations with the 

phase-space dependent importance function. As a consequence of using this modified sampling 

technique that approximates a zero-variance solution, the efficiency of the MC calculations 

depends on the accuracy of the deterministically calculated fluxes in CADIS and FW-CADIS 

simulations. 

The modified source PDF suggested by the importance sampling scheme can be deduced 

by solving Eq. (2.35) and (2.31), 

  ̂( )  
 ( )  ( )

  
. (2.36) 

This is advantageous since the number of source particles sampled in any phase-space 

region is proportional to the region contribution to the detectors. 

The particles flux in non-analog MC simulations ( ̂ in this modified sampling scheme) is 

often denoted as the MC particles flux    . From Eq. (2.35) and Eq. (2.32), the MC particles 

flux simulated using the importance sampling scheme can be expressed by, 
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    ( )  
  ( ) ( )

  
. (2.37) 

Equation (2.37) shows that importance sampling tend to populate the MC particles 

according to the contributon flux  ( )    ( ) ( ) [6]. This is advantageous because the 

contributon flux has higher values in phase-space regions that are more important to the solution 

of the problem. The LIFT method approximates an analog Monte Carlo simulation of the 

contributon fluxes by altering the MC transport mechanics with an approximate solution for the 

adjoint fluxes [68]. The methods developed by Becker and Larsen disperse the MC particles 

throughout phase-space according to user-specified distribution such as the contributon flux [71]. 

Since the CADIS and the FW-CADIS methods apply this importance sampling technique using 

deterministically calculated adjoint fluxes, these methods tend to populate the MC particles in 

phase-space regions according to the contributon flux.  

The next chapter describes the efficiency and reliability of two hybrid MC/deterministic 

methods, CADIS and FW-CADIS which are based on the same theory described in this section.  
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Chapter 3: CADIS and FW-CADIS 
 

 

3.1 Methods description 
 

The CADIS method provides consistent formulations for source and transport biasing 

parameters and their implementation within the WW technique [2]. The biased source 

distribution,  ̂( ̅  ) is given by, 

  ̂( ̅  )  
  ( ̅  ) ( ̅  )

  
, (3.1) 

where    is the total detector response given by Eq. (2.7) and Eq. (2.9),  ( ̅  ) is the 

unbiased source distribution, and   ( ̅  ) is the scalar adjoint flux. Equation (3.1) is similar in 

form to Eq. (2.36) if the angular variations are considered. Direction-based CADIS has been 

implemented and used in limited applications [74], but it will not be considered in this thesis. 

The reason for this similarity is that the biased source PDF of the CADIS method is derived from 

the same importance sampling procedure described in Sec. 2.4 [2]. By sampling from the biased 

source distribution, source particles are sampled in proportion to their expected contribution to 

the detector response.  

For the transport biasing, the WW technique is employed. In MCNP, the WW input 

requires lower WW bounds   . The width of the window is controlled by the input parameter  , 

which is the ratio of upper and lower WW bounds (  
  

  
⁄ ). The space- and 

energy-dependent WW lower bounds are given by,  
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   ( ̅  )  
  

  ( ̅  )(
   

 
)
. (3.2) 

In the CADIS method, the source and transport biasing parameters are consistent. The 

source particles, which are sampled from the biased source distribution of Eq. (3.1), start with 

statistical weights   , 

  ( ̅  )  
  

  ( ̅  )
. 

 These weights are within the WWs as desired. This consistency eliminates the 

incompatibility between the source and transport biasing that was problematic in previous 

approaches leading to poor efficiency and/or false convergence [60]. Furthermore, for problems 

in which the adjoint (importance) function varies significantly within the source phase-space 

region, the source biasing is very effective for improving computational efficiency [23; 2].  

As noted in Sect. 2.1, the adjoint source has to be defined as the response function for the 

adjoint flux to represent the importance of each phase-space region to a desired response. For the 

CADIS method, the user specifies an adjoint source with space and energy distributions similar 

to the tally to be optimized. 

The CADIS method is effective for optimizing classic source/detector problems for 

which the adjoint source has to be specified at a single location and has to have a specific 

response. For simultaneously optimizing distributions (mesh tallies) or multiple responses 

(multiple tallies) for which the responses vary significantly over the phase-space regions of the 

tallies, the CADIS method did not prove to be as successful. When multiple adjoint sources 

corresponding to multiple tallies are specified, the tally closest to the true physical source 

converges faster showing that the closest adjoint source is attracting more particles. Specification 
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of the adjoint source at the furthest region from the physical source encourages the MC particles 

to move further but raises concerns regarding the convergence reliability in the inner regions of 

the problem. The hybrid method, developed by Cooper and Larsen, which uses the inverted 

forward flux as an importance function in an attempt to distribute the MC particles uniformly 

throughout the system, demonstrated its benefit for global MC calculations [70]. Although this 

method encourages particles to move toward regions of lower flux and discourages particles 

from moving toward regions of higher flux, when applied to large realistic applications where 

the desired tally regions are a subset of the total problem space, the method tends to have slow 

convergence because of distributing the particles in undesired regions [3].  

For the simultaneous optimization of several tallies or the cells of a mesh tally, the 

FW-CADIS was developed in ORNL. In the FW-CADIS method, the source biasing and WW 

parameters are calculated from the adjoint fluxes using the same procedures as for the CADIS 

method but the deterministic adjoint calculation is preceded by a forward deterministic 

calculation that estimates the space-dependent response in the required tally regions [3]. The 

source of the adjoint deterministic calculation is represented by the user-specified adjoint source 

(tally cross section) weighted by the inverse of the response estimated from the forward 

deterministic calculation. In other words, the adjoint source in a FW-CADIS calculation would 

be, 

   ( ̅  )  
  ( ̅  )

∫  ( ̅  )  ( ̅  )   

. (3.3) 

Weighting the adjoint source by the inverse of the total response estimate, the adjoint 

source strengths and thus the adjoint fluxes (importances) will be higher at regions further from 
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the physical source. This tends to distribute the MC particles uniformly throughout the tally 

regions [3]. 

The practicality and usefulness of the hybrid techniques are determined by their time 

savings compared to using either the deterministic or the MC methods individually. The manual 

creation of the input files for deterministic transport codes require substantial familiarity with 

deterministic methods and can be very time consuming.  In both MAVRIC [33] and ADVANTG 

[64], the user only specifies the mesh boundaries and the adjoint source description. Based on 

these inputs and MC geometry, the codes automatically create the deterministic input files and 

run the deterministic calculations. Since only approximate deterministic solutions are needed to 

develop reasonable WW maps and source biasing parameters, the deterministic calculations do 

not need to fully resolve the phase-space domain. The deterministic mesh needs to capture 

significant material changes and geometrical details but does not need the fineness required of a 

stand-alone deterministic calculation [75]. 

 

3.2 Applications 
  

Table 3.1 summarizes the objective and the number of deterministic calculations needed 

by each of the CADIS and the FW-CADIS methods. 
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Table 3.1: Uses of CADIS and FW-CADIS and deterministic calculations involved [75] 

Method Use 
Deterministic 

calculations 

CADIS 
Optimization of localized detector (tally) 

regions 
Adjoint 

FW-CADIS 
Optimization of distributions (mesh tallies) or 

multiple localized detector regions 

Forward and 

adjoint 

 

For over a decade, the CADIS method has been used in a variety of shielding applications 

involving neutron, gamma, and coupled neutron-gamma source-detector problems [75]. Table 

3.2 shows examples of the problems the CADIS method has been applied to and the observed 

speed-ups. 

 

Table 3.2: Examples of applications and associated speed-ups of CADIS [75] 

Application 
Observed speed-up relative 

to analog
4
 MC 

PWR cavity dosimetry O(10
4
) 

DPA in BWR core shroud O(10
3
) 

Neutron well-logging tool O(10
2
) 

Gamma well-logging tool O(10
3-4

) 

Dose from single spent fuel storage cask O(10
3-4

) 

PWR ex-core thermal detector response O(10
4
) 

Passive threat detection O(10
2-4

) 

Active-interrogation detection O(10
4
) 

ITER shielding O(10
2-4

) 

HFIR DPA calculations O(10
4
) 

Criticality accident alarm system analyses O(10
2-3

) 

 

                                                        
4 MC simulations that are identified as “analog” or “without variance reduction” usually still include the standard 

implicit capture method. For comparing the efficiency of these MC simulations with CADIS or FW-CADIS, the 

implicit capture was not switched off since the CADIS and the FW-CADIS calculations were also combined with 

the implicit capture. Implicit capture is switched on by default in MCNP and many other MC codes. 
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For the past few years the FW-CADIS method has been used in a variety of neutron, 

gamma, and coupled neutron-gamma fixed-source problems in which the results are sought 

throughout large portions of the problem space or at multiple detectors. Table 3.3 shows 

examples of problems to which the FW-CADIS was applied. The enhancement in the MC FOM 

is not specified since a MC FOM for global MC problems has not yet been established. In many 

cases it is either very difficult or impossible to obtain meaningful results with analog MC, and 

hence the speed-up is clearly very large but was not quantified [75]. 

  

Table 3.3: Examples of applications of FW-CADIS [75] 

Application 

Dose rate throughout full-scale PWR facility 

Multiple detector responses in nuclear well-logging tools 

Site boundary dose rate from an array of spent fuel casks 

ITER shielding and material heating analysis 

Dose rates throughout a critical facility 

Dose rates throughout an urban model from a nuclear weapon detonation 

Dose rates throughout IRIS reactor containment 

 

The noticeable success of CADIS and FW-CADIS can be attributed to four reasons: (1) 

the consistency between the source and transport biasing, (2) the automation of the creation of 

the deterministic input file, (3) the automation of the generation of the space- and energy-

dependent source biasing and WW parameters, and (4) the use of mature production-level SN 

codes such as Denovo [11] and TORT [9]. 
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3.3 Efficiency and reliability of CADIS and FW-CADIS 
 

As mentioned in Sect. 2.4.2, the efficiency of the MC calculations depends on the 

accuracy of the deterministically calculated fluxes in CADIS and FW-CADIS simulations. In 

Sect. 2.3.3, it was noted that the VR techniques can be abused so that some phase-space regions 

are not well sampled and/or other regions are so heavily sampled in excess to their importance to 

the MC calculation. This can cause the calculation of seemingly acceptable MC results that is far 

from being realistic (unreliable). The deterministically calculated VR parameters of CADIS and 

FW-CADIS can have an overall span of tens of orders of magnitude. This increases the risk of 

producing inaccurate and unreliable results because of the undersampling and instability issues 

discussed previously. This section discusses the efficiency and reliability issues of CADIS and 

FW-CADIS simulations. 

Before discussing the efficiency and reliability of the CADIS and FW-CADIS methods, 

two of their important features have to be considered. First, coarse meshes are usually used with 

CADIS and FW-CADIS simulations due to the limited availability of computing resources for 

the deterministic calculations. Another limitation for the CADIS and FW-CADIS mesh 

resolution is the storage size of the VR parameters. Since the WW are developed using the same 

mesh and energy groups’ structure of the deterministic calculation, the mesh used for CADIS 

and FW-CADIS deterministic calculation has to be limited by the storage size of the WW file
5
. 

Production-level MC codes (e.g. MCNP) depend on replication of the MC data (geometry, cross-

sections, VR parameters, etc.) for parallel processing rather than domain-decomposition  [76]. 

                                                        
5 The WW file, wwinp is the file written by ADVNATG for MCNP. The same argument supported in the 

text can be extended to the mesh important map file for SCALE/MAVRIC. 
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Running parallel MC calculations is often difficult for CADIS and FW-CADIS simulations 

because of the large amount of computer memory that needs to be allocated for each processor. 

For large and complicated problems, the deterministically calculated VR parameters may require 

several gigabytes of memory even with O(10
2-3

) fewer elements than the mesh needed to solve 

the problem deterministically. Second, the manual creation of the input files for deterministic 

transport codes requires substantial familiarity with deterministic methods and can be very time 

consuming. The deterministic input files have to be automatically developed for any successful 

implementation of CADIS and FW-CADIS. Capturing all physical and geometrical details in the 

CADIS and FW-CADIS deterministic calculations cannot be guaranteed with these coarse, 

automatically generated meshes. Inconsistencies between the deterministic and the MC models 

in CADIS and FW-CADIS simulations can significantly decrease the MC calculation efficiency 

and, if severe, they can cause inaccurate and unreliable MC results. This will be demonstrated in 

the next examples.  

Each of the next examples focuses on a different aspect of the effects of the deterministic 

and the WW meshes on the efficiency and reliability of CADIS and FW-CADIS simulations. 

 

3.3.1 ITER toroidal field coils heating 

 

This example shows how severe inconsistencies between the deterministic and the MC 

models in CADIS and FW-CADIS simulations can cause the MC calculations to be inaccurate 

and unreliabile. The example explains some circumstances that occurred during the calculation 

of the nuclear heating in the inboard (IB) leg of the toroidal field coils (TFC) of ITER. The 

nuclear heating in the IB TFC represents one of the main drivers of the shielding design of ITER. 
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The details of this calculation, which are not pertinent to this thesis, can be found in Ref. [77; 

78].  

Problem description 

 

Each of the IB TFC legs has a height of 8 m, a radial thickness of 70 cm, and a toroidal 

extent of 80 cm. The simplified computer aided design (CAD) model of Fig. 3.1 shows the IB 

TFC of ITER together with the shielding layers separating them from the neutron source in the 

deuterium tritium (D-T) plasma region. The IB leg of the ITER TFC was divided into 10 

segments for assessing the nuclear heating profile. 

 

 

Figure 3.1: Inboard (IB) toroidal field coil (TFC) 
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For the analysis in this thesis, the nuclear heating was calculated at the lower IB TFC 

segment, denoted as segment 10 in Fig. 3.1. 

Methodology 

The ITER model used in this analysis represented a 40° sector of the ITER machine with 

reflecting boundaries. The MC calculations in this analysis used the University of Wisconsin-

Madison (UW-Madison) CAD based MC code, Direct Accelerated Geometry MCNP 

(DAGMCNP) [79]. DAGMCNP is a MC code that replaces the ray tracing routines of MCNP 

with CAD routines defined in an external software library. It has been extensively used in the 

neutronics analysis of several fusion applications such as ITER, HAPL, and ARIES [80]. The 

CAD model used in the DAGMCNP analysis model had a 5 cm gap at each side of the vacuum 

vessel (VV) in the toroidal direction. The gap extended all the way through the IB VV.  

ADVANTG was used to apply the FW-CADIS method to optimize the fluxes at all the 

10 IB TFC segments. The adjoint source was specified to be the total neutron and gamma 

heating in a rectangular parallelepiped enclosing all the IB-TFC segments in the MC model. 

ADVANTG used a native MCNP input file, for generating the Denovo models of the 

FW-CADIS calculations. This input file, which did not have the 5 cm gap surrounding the VV, 

was created from the ITER CAD model by the Karlsruhe Institute of Technology (KIT) using the 

McCAD translator [81]. The WWs developed by ADVANTG were then used with the 

subsequent MC simulations that used the DAGMCNP model, which had a gap in the VV.  Figure 

3.2 shows a simplified version (only VV and void) of the two ITER models used for the 

DAGMCNP simulation and the ADVANTG WW creation.  



70 

 

 
 

 

 

Figure 3.2: ITER model with and without the air gap in the VV 

 

The IAEA fusion evaluated nuclear data library (FENDL-2.1) [82] was used in this 

analysis. A continuous energy library was used for the DAGMCNP calculations and a 

multi-group 46 neutron/21 gamma library for the Denovo calculation. 
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Results 

While the inconsistency between the deterministic and the MC models impacted the 

accuracy of the tally mean, that has been discussed elsewhere [78] and is not the topic of this 

analysis. Rather, this example provides a very clear demonstration of the risk of obtaining 

unreliable results because of the conceivable inconsistencies between the deterministic and the 

MC models in CADIS and FW-CADIS simulations. 

Erratic uncertainties appeared in the MC tally results of the FW-CADIS simulation. 

Table 3.4 shows the tally fluctuation chart of the DAGMCNP calculation of the nuclear heating 

in the lower IB TFC segment. 

 

Table 3.4: DAGMCNP tally fluctuation chart for one of IB TFC segments 

 

 

If one stops the calculation at 896,000 histories, the tally passes the 10 MCNP statistical 

checks. If one stops the MC simulation at 1,286,700 histories, then the tally passes all the 10 

MCNP statistical checks except for the Pareto slope which was 2.58 (i.e close to the threshold 3). 

nps mean error vov slope fom

128000 2.58E-02 0.1801 0.3847 2.2 3.10E-01

256000 2.81E-02 0.1147 0.144 3.2 3.50E-01

384000 2.84E-02 0.0935 0.0792 2.9 3.60E-01

512000 2.83E-02 0.0798 0.0583 2.8 3.70E-01

640000 2.62E-02 0.0706 0.0529 2.9 3.90E-01

768000 2.71E-02 0.0697 0.0528 2.7 3.30E-01

896000 2.68E-02 0.063 0.045 3 3.50E-01

1024000 2.65E-02 0.0577 0.0398 2.8 3.50E-01

1152000 2.64E-02 0.055 0.0344 2.7 3.50E-01

1280000 2.60E-02 0.0516 0.0314 2.5 3.60E-01

1286701 3.85E-02 0.3194 0.976 2.3 9.30E-03
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Because of history number 1,286,701 the nuclear heating tally mean increased from 0.026 

watt/cm
3
 to 0.039 watt/cm

3
, the   increased from 5.1% to 31.9%, the VOV increased from 3% to 

97.6%, and the FOM decreased from 0.36 to 0.0093. With 1,286,701 histories, the tally failed 8 

MCNP statistical checks. The mean heating value using 896,000 histories is 0.0267 watt/cm
3
 is 

30.6% smaller than the value with 1,286,701 histories which shows that the MC simulation using 

896,000 histories is undersampled and inaccurate despite passing the 10 MCNP statistical 

checks.  

Following the event log of history number 1,286,701, it was found that this particle had 4 

consecutive 5:1 splitting events at the front insulation casing of the IB TFC segment. Before the 

consecutive splitting events, the last collision for this history occurred in one of the divertor 

cassettes. If the DAGMCNP model had not had the gap, the streaming of this particle with the 

relatively low energy (0.2 Mev) from the divertor cassette to the IB TFC casing would have been 

highly unlikely because the two regions would have been shielded by the 35 cm thick IB VV. 

Figure 3.3 shows a schematic view describing some of the events occurring to this history. 

 

 

Figure 3.3: Events occurring to one history in IB TFC ITER problem 



73 

 

 
 

 

ADVANTG used the KIT native MCNP model, which did not have the VV gap, to create 

the WWs. The low energy neutrons in front of the VV were assigned high weights because, 

without the gap, they have a very low probability of reaching the IB TFC without splitting. These 

neutrons were harshly rouletted in front of the gap and their survival probability was very low. 

The high nuclear heating values because of neutrons streaming through the gap would not have 

been noticed if the calculation was stopped before particle 1,286,701. This shows that unreliable 

MC results, including false indications of statistical quality and incorrect mean value, can be 

caused by severe inconsistencies between the deterministic and the MC models in CADIS and 

FW-CADIS simulations. 

 

3.3.2 Steel box with air pipes 

 

This example shows how inconsistencies between the deterministic and the MC models 

in FW-CADIS simulations can decrease the efficiency of the MC calculation by slowing down 

its convergence. 

Problem description 

The simple model of Fig. 3.4 was designed to test the effect of the SN mesh on the overall 

simulation efficiency of MAVRIC. 
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Figure 3.4: MAVRIC model for steel box with air pipes problem 

 

The Monaco model had an isotropic neutron source uniformly distributed in a 475 

cm×100 cm×60 cm rectangular parallel-pipe. The neutron source energy was uniform in the first 

group of the 27 neutron/19 gamma ENDF-VI library (6.38-20 Mev) [83]. The source was 

surrounded by steel boxes from both ends in the X direction. The dimensions of the box on the 

right were 48 cm in X direction, 100 cm in Y direction and 60 cm in Z direction. Eight air pipes, 

10 cm in diameter, penetrated this box and went all the way through it in the X direction. Another 

steel box of similar dimensions covered this box from the other side of the source.  

A uniform Cartesian mesh tally was used to tally the total neutron flux within the steel 

box with the air pipes. The mesh tally contained 2,880 total number of mesh cells. Each mesh 

cell was cubical with a side length of 5 cm.  

Reflecting boundaries were mimicked by positioning the original model in the center of a 

lattice of nine similar models. The mesh tally was only used to tally the neutron fluxes in the 

center model. 
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Methodology 

Two Cartesian mesh grids were used for the Denovo SN calculations. The two grids were 

similar in every aspect except for a 5 cm shift in the Y and Z directions. Inside and around the 

mesh tally box, the grid had cubic elements with side length of 10 cm. Figure 3.5 shows the 

Denovo models for the steel box with the air pipes. 

 

 

Figure 3.5: Denovo mesh for the steel box with air pipes problem 

 

The materials definitions of the MAVRIC SN calculations are based on the materials at 

the center of each mesh cell in the Monaco model. In the first grid, the circular cylindrical air 

pipes were transformed into rectangular parallel pipes having a square cross sectional area of 

side length of 10 cm and going all the way through the mesh tally box. The second grid 

completely missed the air pipes because none of the mesh cells’ centers hit the pipes. The steel 

box, at which the neutron flux was tallied, did not have any penetrations in the SN calculations of 

the second case. The Monaco model with the air pipes did not change for both cases. 



76 

 

 
 

Results 

The importance map based on the first grid, with square air pipes, resulted in higher 

efficiency Monaco simulation. Figure 3.6 shows the CDF of the mesh tally uncertainties for 

1-day Monaco runs with both of the importance maps based on the grid with the air pipes and the 

grid without the air pipes.  

 

 

Figure 3.6: CDFs for steel box with air pipes problem 

 

While the maximum   for the Monaco case that used the importance map based on the 

grid with the air pipes was only 2%, the maximum   for the other case without the air pipes was 

13%. For every   below 13%, a larger fraction of voxels had relative uncertainties lower than 

this   with the FW-CADIS calculation for which the SN model had the air pipes. The global MC 

FOM, defined by Eq. (2.29), of the first FW-CADIS case with the Denovo model that does not 

include the air pipes was 4.0 times lower than the FOM of the FW-CADIS case with the Denovo 

model that includes the air pipes. This shows that in FW-CADIS the efficiency of the MC 
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simulations are affected by the accuracy of the SN fluxes and the ability of the SN model to 

replicate the MC one. 

The better efficiency of the FW-CADIS case with the air pipes was also noticed when the 

amount of splitting was counted for both cases. For every 2687 particles simulated with the grid 

without the air pipes, 1 particle was particle was split more than 1000 times in a single splitting 

event. For this grid, the fraction of particles which were split more than 1000 times in one 

splitting event was 4,320 times higher than the corresponding fraction for the SN grid with the air 

pipes. The excess splitting indicates that the neutrons confront abrupt changes in the phase-space 

importance during the MC simulations using the importance map of the grid without the air 

pipes. 

Figure 3.7 shows the total flux mesh tally results for both of the FW-CADIS cases on a 

transverse (Y-Z) plane that is separated by 40 cm from the front plane and 12 cm from the back 

plane of the steel box. 

 

Figure 3.7: Total neutron flux mesh tally of steel box with air pipes problem 
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The differences between the total flux values of the two FW-CADIS cases exceeded 3σ 

for 15.2% of the mesh tally voxels. The maximum difference between the total flux values in 

terms of number of standard deviations of the FW-CADIS case with highest uncertainty was 

9.1σ. Even though the reliability of MC tally results at these mesh elements with high differences 

cannot be guaranteed for either of the FW-CADIS cases, one would expect that the results of the 

FW-CADIS case with the more accurate Denovo model (with air pipes) is more reliable because 

of the smaller  s. 

 

3.3.3 High enrichment uranium active interrogation 

 

This example shows the impact of increasing the total number of space-energy WW mesh 

elements on the MC FOM in CADIS and FW-CADIS simulations.  

Problem description 

Figure 3.8 represents a standard cargo container (2.44 m × 2.44 m × 6.10 m). The threat 

object is a 5 kg sphere of 95% enriched uranium (3.982 cm radius) placed at the center of the 

container and shielded by 2.35 m × 2.35 m × 2.35 polyethylene cube. The container is being 

irradiated by 14.1 MeV neutrons from a deuterium-tritium (D-T) generator.  
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Figure 3.8: HEU active interrogation problem 

 

Methodology 

 ADVANTG was used to employ the CADIS method to increase the MC efficiency in 

calculating the fission rate in the threat object. A 27-group neutron cross section library, derived 

from ENDF-VII data [84], was used for the Denovo calculation and a continuous-energy neutron 

data was used for the MCNP calculations. The adjoint source was defined as a sphere located at 

the same position and having the same diameter as the high enriched uranium (HEU) sphere. The 

adjoint source strength was defined as the HEU fission cross-section in the 27 group structure of 

the Denovo library.  

A mesh with 19 planes in the X direction, 23 planes in the Y direction, and 19 planes in 

the Z direction was used for the initial deterministic calculation and the initial WW map. To 

analyze the effect of the total number of the WW space-energy elements on the MC FOM, the 
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initial deterministic mesh was refined by inserting a certain number of extra planes between each 

two adjacent planes in each direction. By changing the number of the inserted planes, the total 

number of mesh elements increased by a factor equal to the number of the inserted planes raised 

to the cubic power. The WW meshes of these cases, which will be known as “Full refinement” 

cases, used the same refined meshes of the deterministic calculations. In order to understand the 

impact of simply using WW maps with larger numbers of space-energy elements without 

changing the WW values, the WW mesh was refined separately without refining the 

deterministic calculation. The same weight of each cell in the initial unrefined WW map was 

used for all the corresponding newly inserted cells in the refined WW maps of these cases, which 

will be known as “WW refinement” cases.     

Results 

The calculated fission rate was between 3.0×10
7
 and 3.2×10

7
 fission/source-particle and 

all  s were between 1.0% and 3.2% for all the CADIS cases. 

Figure 3.9 shows the variation of the MC FOM with the total number of space-energy 

elements for both the “Full refinement” and “WW refinement” cases. 
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Figure 3.9: FOM variation with weight-window (WW) mesh for HEU active interrogation 

problem 

 

As shown in Fig. 3.9, the decrease in the FOM due to the refinement of the WW without 

changing the adjoint fluxes did not exceed 5% even with a factor of 1,728 increase in the total 

number of cells in the WW map. This shows that, the computational costs of larger WW meshes, 

including the cost of the binary searches on the mesh, have small impact on the MC FOM if the 

WW values are not changed. 

Even though finer deterministic calculations are expected to calculate more accurate 

fluxes, the FOM decreased by a factor of 8.76 due to refining the mesh of the deterministic 

calculation. As noted in Sect. 2.4.2, the importance function provided by Eq. (2.35) contains only 

information about the expected score of a MC particle. The decrease in the MC simulation 

efficiency can be attributed to the fact that the importance function does not contain any 

information about the variance introduced by the MC particles or the MC FOM. The effects of 

the WW values on the calculation cost, defined as the inverse FOM, of a MC calculation have 
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been recently studied by CJ Solomon [73; 85]. The work of CJ Solomon represented the first 

attempt at deterministic optimization of MC calculations with weight-dependent VR, but the 

demonstration of the applicability of such deterministic optimization has been limited to simple 

problems [85]. The algorithms developed in this thesis will not consider the effects of the WW 

values on the calculation cost of the MC calculations because of the excessive computer time and 

memory required to deterministically optimize the WW values of MC simulations of large and 

complicated problems. 

 

3.3.4 Dose rate in proximity of high-intensity neutron generator 

 

This example shows how the memory requirement of the MC calculation can represent 

the limiting factor of the deterministic mesh resolution in CADIS and FW-CADIS simulations. 

Problem description 

The MCNP model in Fig. 3.10 describes the control area (bunker) of a nuclear 

development facility that utilizes a particle accelerator to produce neutrons. The accelerator uses 

D-D fusion reactions producing 2.45 Mev mono-energetic neutrons. Water barrels with volumes 

between 0.5 and 1 m
3
 are used for shielding. Estimate of the neutron dose rate outside of the 

bunker is necessary for determining the shielding configurations that minimizes the radiation 

dose for occupational safety. For simplicity, only neutrons were considered in this calculation. 
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Figure 3.10: MCNP model for nuclear development facility bunker problem 

 

Methodology 

ADVANTG was used for employing the CADIS method to increase the MC efficiency in 

calculating the neutron dose rate outside the bunker. A 27 neutron multi-group ENDF-VII library 

was used for the ADVANTG/Denovo calculations. A point adjoint source was defined at the 

point of the dose rate calculation. The adjoint source strength was defined as the flux to dose rate 

conversion factors in the 27 energy group structure of the multi-group ENDF-VII calculation. 

Similarly to the last example, the CADIS calculation was repeated with different 

deterministic and WW meshes. An initial deterministic mesh was carefully tailored to capture all 

the geometric detail in the model. The mesh had having 49 planes in X direction, 58 planes in Y 

direction, and 23 planes in Z direction. Analogously to the “Full refinement” cases of the last 

example, the deterministic mesh was refined 5 times by inserting certain number of extra planes 
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between each two adjacent planes in each of the X, Y, and Z directions. For each of these 5 

different deterministic calculations, the WW mesh used the same mesh as the deterministic 

calculation. For the “WW refinement” cases, the WW mesh was separately refined 8 times using 

the same planes insertion procedure. The “WW refinement” cases used the fluxes of the same 

initial deterministic calculation and the WW values of all the new refined cells were similar to 

the corresponding coarse cells in the initial coarse mesh WW map. 

Results 

For a neutron source with total strength of 10
10

 neutron/sec, the neutron dose rate was 

between 238 and 241 microSv/hr and   was between 0.9% to 1.1% for all the CADIS cases. The 

neutron dose rate was 272±20.7 microSv/hr for the analog MC case. 

When the WW mesh was refined by inserting 8 planes in each direction, the MCNP 

calculation stopped because of not being able to allocate enough memory for the WWs on a 

computing node that had 4 GB of RAM. The storage size of the WW file, in its ASCII format 

was 11.9 GB for this case which included 903.69 million space-energy cells. The amount of 

computer memory (RAM) required by such a WW file is half the storage space of the ASCII 

WW file. The restrictions on the WW map size will be stricter with parallel processing because 

of increasing the message passing and/or increasing the total amount of memory required to 

perform the MC calculation in parallel. 

Figure 3.11 shows the FOM versus the total number of energy-space mesh elements in 

the WW file of the MC calculation with changing and without changing the CADIS adjoint 

deterministic calculation. 
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Figure 3.11: FOM variation with WW mesh for nuclear development facility bunker 

problem 

 

The FOMs of the “Full refinement” cases increased by 15.7% because of refining the 

deterministic and the WW meshes. This contradicts with the high decrease in the FOM for the 

“Full refinement” cases in the last example and shows that the variation in the FOM with the 

WW values is problem dependent. As noted in the last example, the effects of the WW values on 

the MC FOM can be attributed to the fact that the importance function does not contain any 

information about the variance introduced by the MC particles.   

For the “WW refinement cases”, the FOM changed by only 2.6% which is less than half 

of the 1σ estimated for the uncertainties of each one of the FOMs. This again shows that the 

computational cost of increasing the number of space-energy elements in the WW mesh without 

changing the WW values is too small to have an impact on the MC FOM. 
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3.4 Conclusion 
 

In CADIS and FW-CADIS simulations, the efficiency of the MC calculations depends on 

the accuracy of the SN fluxes. In addition to the truncation errors, the coarse meshes used in 

CADIS and FW-CADIS deterministic calculations also cause geometry discretization errors, 

which can cause inconsistencies between the deterministic and the MC models. Inaccuracy of the 

deterministic calculations can seriously decrease the efficiency of the MC calculations. Even 

worse, severe inconsistencies between the deterministic and the MC models can also cause the 

MC calculations of CADIS and FW-CADIS simulations to be inaccurate and unreliable.  

Refining the mesh always decreases both the truncation and the geometry discretization 

errors, but the deterministic mesh resolution is limited by the availability of the computing 

resources. Additionally, the storage size of the VR parameters has to be smaller than the 

computer memory allocated for the MC calculation. Large WW maps can also obstruct the 

parallel processing of the MC calculations because of increasing the message passing and/or the 

total memory requirement. This provides a more restrictive limitation to the fineness of the 

deterministic mesh because the WWs created by CADIS and FW-CADIS simulations typically 

use the same mesh and energy group structure of the deterministic calculations. 

The effect of the WW mesh resolution on the MC FOM was studied in two different 

problems. The MC calculation cost of CADIS and FW-CADIS simulations depends on factors 

other than the accuracy of the VR parameters because the importance function contains only 

information about the expected score of the Monte Carlo particles and does not contain 

information about the variance introduced by these particles [73]. Without changing the WW 
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values, the additional calculation cost of increasing the size of the WW maps is relatively small 

and does not affect the MC FOM. 

The goal of this thesis is to enhance the reliability and the overall efficiency of the 

CADIS and FW-CADIS simulations by developing automatic algorithms to facilitate capturing 

more geometrical and physical details in the deterministic calculations without large penalties in 

the overall efficiency of these hybrid techniques. These algorithms will be discussed in the next 

three chapters. 
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Chapter 4: Macromaterial approach 
 

4.1 Motivation 
 

In Sect. 3.3 it was noted that for CADIS and FW-CADIS simulations of geometrically 

complex problems, the mesh is generally coarser than the mesh needed to solve the problem 

deterministically and the automation of the deterministic input file creation is necessary. The 

traditional process of defining the materials for CADIS and FW-CADIS deterministic 

calculations used the cell center (CC) approach. The CC approach assigns a material for each 

mesh cell in the deterministic model based on the material existing at the center point of this cell 

in the MC model. Despite its simplicity, it is difficult to capture the important geometric detail 

and avoid the inconsistencies between the MC and deterministic models using the CC approach. 

The MM approach was developed to enhance the geometry representation without 

increasing the resolution of CADIS and FW-CADIS deterministic meshes. It automatically 

creates a mixture for each mesh cell in the deterministic model by homogenizing the materials 

that coincide with the cell in the MC model [86]. 

For CADIS and FW-CADIS, the user has to define the adjoint source representing the 

tally response function (e.g. cross-sections). If the tally response function is space-dependent, 

describing it manually can be very difficult. Since the MM approach provides access to the 

materials fractions of each mesh cell in the deterministic model, it was also used in defining the 

adjoint sources for space-dependent response functions in CADIS and FW-CADIS simulations 

[87]. 
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4.2 Algorithm 
 

The steps of the MM approach can be summarized as follows: 

1. Construct a sub-grid over each of the user-supplied mesh cells. The number of 

subdivisions, p, in each dimension is supplied by the user and hence the total number of 

sub-voxels is p
3
. 

2. Determine the material associated with each sub-voxel using the CC approach.  

3. Calculate approximate volume fractions associated with each material to calculate a 

homogenized material mixture for each mesh cell.  

4. Loop through the newly created materials and set materials with similar compositions, 

within a preset threshold, to be equivalent.  

Since the materials are queried p
3
 times in each mesh cell, the error in approximating the 

volume fraction of materials, and thus the mass discrepancy, decreases as O((1/p)
3
). The 

drawback of the MM approach is the potential creation of a large number of material mixtures. 

The reduction of the number of materials in step 4 can be used to decrease the memory 

requirements for storing the macroscopic cross-sections of the deterministic calculations; 

otherwise, the number of materials scales with the number of mesh elements in the original grid. 

The MM approach was also used to automatically define the adjoint sources for 

space-dependent responses in CADIS and FW-CADIS simulations. In both MAVRIC and 

ADVANTG, the user defines the adjoint sources as regions in space (points or bounding boxes) 

and energy spectra. For CADIS simulations, the user-defined regions are mapped on the SN grid 

and the adjoint sources are uniformly distributed on the mesh elements coinciding with these 
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regions. In FW-CADIS simulations, the energy- and space-dependent adjoint sources, which are 

set to represent the response functions (  ( ̅  )    ( ̅  )) can be expressed as, 

   ( ̅  )    ( ) ( ̅), (4.1) 

where  ( ̅) is either 0 or 1 for each SN mesh cell (uniformly distributed). Unfortunately this 

description is not suitable for adjoint sources representing cross-sections of some nuclear 

reactions such as atomic displacement, nuclear heating, or helium production. For example, if 

one wants to calculate the atomic displacements in steel and the SN mesh cells of the adjoint 

source have different fractions of steel mixed with other materials,  ( ̅) should have multiple 

values between 0 and 1 depending on the fraction of steel in each mesh cell. For additive 

responses such as nuclear heating, the energy-dependent macroscopic cross-section will vary 

with the materials composition in each mesh cell. In these cases, the space and energy 

dependency of the adjoint sources are not separable (  ( ̅  )    ( ̅  )    ( ) ( ̅)) because 

the energy distribution of the response will vary from one cell to another. 

For defining the energy-dependent adjoint source strength in each mesh cell of CADIS or 

FW-CADIS deterministic grids, the response function of each material is weighted by its MM 

fraction before summing the response functions to represent the adjoint source of the cell. In a 

discretized form, the space- and energy- dependent adjoint source,       
  can be expressed by,  

       
  ∑     

   
    

   , (4.2) 

where   is the total number of materials in the MC model,     
  is the MM fraction of the  th

 

material in the mesh cell defined by the three indices      and  ,   
  is the value of the group-

wise response function (e.g tally-cross section) for group   and material  . In FW-CADIS 
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calculations, the adjoint source strength of cell     gets weighted by the inverse of the total 

response calculated from a forward deterministic calculation according to Eq. (3.3). If the 

response is only required for a certain material, weighting the adjoint source strength balances 

the strength of the adjoint source in each cell according to the MM fraction of this material in the 

cell. Weighting the adjoint source strength by the MM fraction of each material in each cell 

before summing these strengths for each energy group provides the desired energy- and 

space- dependent (inseparable) response for additive responses.  

4.3 Implementations 
 

The MM approach was implemented for the materials definition and the adjoint source 

description of the SCALE [45] shielding analysis sequence, MAVRIC [33] and was released 

with SCALE6.1 [88]. It was also implemented for the materials definition in ADVANTG [64]. 

In the MMGridGen tool [89] of the University of Wisconsin-Madison (UW-Madison) Direct 

Accelerated Geometry Monte Carlo (DAGMCNP) package [79], the MM approach was 

implemented in two flavors. The first flavor, denoted as point-sampling in Ref. 89, is similar to 

the SCALE and ADVANTG implementation. The second flavor, ray-tracing uses the MC 

ray-tracing capabilites for calculating the materials volume fractions [89].  
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4.4 Demonstration 
 

4.4.1 Deterministic accuracy 

 

Problem description 

To demonstrate the effects of the MM approach on the accuracy of the SN calculations, a 

spent fuel shipping cask was modeled in Denovo [11]. The cask had a cylindrical shape with a 

total diameter of 3.4 m and total height of 5.72 m. It is composed of three materials: 

homogenized fuel elements materials, concrete, and steel. Figure 4.1 represents the SCALE 

General Geometry Package (SGGP) model of the shipping cask. 

 

 

Figure 4.1: Spent fuel shipping cask 
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Methodology 

The Denovo input file was created by MAVRIC. Denovo was used to calculate the 

neutron dose rate 1 m away from the shipping cask at its mid plane. A uniform homogenous 

source neutron source with a spent fuel energy spectrum was modeled in the fuel region. A 27 

neutron/19 gamma multi-group ENDF-VII library was used in this analysis. 

Two mesh grids were used for the Denovo calculations. The coarse grid contained 70,000 

cells with variable cells dimensions. The fine grid, containing 560,000 mesh cells, was created 

by inserting extra planes at the midpoints of each two adjacent X, Y, and Z planes in the coarse 

grid. The MM approach was only used with the coarse grid. Figure 4.2 shows the Denovo 

models that used the coarse grid with and without the MM approach and the fine grid. 

 

 

Figure 4.2: Denovo models of shipping cask problem 

 

As shown in Fig. 4.2, the MM approach is especially useful in defining the materials at 

the cells where the mesh overlaps material boundaries.  
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Results 

Table 4.1 shows the results of the three Denovo calculations. 

 

Table 4.1: Shipping cask Denovo results 

Calculation 
Time (min) 

Dose Rate 

(μSv/hr) 

CC (coarse) 7.6 7.2 

MM (coarse) 8.3 5.9 

CC (fine) 62.5 3.6 

 

The calculated neutron dose rate should be more accurate with the fine mesh case 

because refining the mesh decreases the truncation errors, improves the materials representation, 

and improves the source representation. Unfortunately, refining the mesh increases the Denovo 

the computational time and memory requirements run. The fine grid Denovo calculation took 

nearly eight times more time and memory, but the results were definitely more accurate.  

The MM case only required 9.2% more time than the CC case that used the same grid. 

Using the dose rate calculated from the fine case as the reference value, the error of the MM case 

was 36.1% smaller than the error of the CC case. This shows that improvement in the materials 

representation provided by the use of the MM approach enhances the accuracy of the 

deterministic calculations.  
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4.4.2 Monte Carlo efficiency 

Problem description 

The implementation of the MM approach in the SCALE shielding analysis sequence, 

MAVRIC was tested using a source-detector problem. The problem represented a 1.22 m thick 

concrete wall with 5.72 cm diameter steel rebar on 30.48 cm centers in each dimension and 1.27 

cm thick steel plates on each side. The objective was to calculate the dose 1 m from the wall 

from a 1 Ci source of spent fuel photons 1 m on the other side of the wall. Figure 4.3 shows the 

shield in real life and a schematic view for the MAVRIC model. 

 

 

Figure 4.3: Concrete/rebar problem 
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Methodology 

The SN mesh was fixed at 4×10
5
 elements. With a uniformly spaced grid and the CC 

approach, the steel rebar was completely missed in the SN model. The MM capability was used 

with different numbers of cells subdivisions, p=2,3,4,5. For comparison, a non-uniform mesh 

with the same number of elements was also used. The positions of the planes in the non-uniform 

mesh were carefully chosen to preserve as much rebar mass as possible. Figure 4.4 shows the SN 

models used for all the cases. 

 

 

Figure 4.4: Denovo models for concrete/rebar problem 

 

Results 

Table 2.1 shows the running time for both Denovo and Monaco calculations, the Monaco 

calculated dose rates and their  s, the MC FOM, and the statistical uncertainty in the MC FOM 

for each case. The single-tally MC FOM of Eq. (2.23) was used for this source-detector problem. 

The statistical uncertainty in the FOM was calculated using the VOV information using Eq. 

(2.26). 
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Table 4.2: Concrete/rebar CADIS results 

 

 

The dose rate calculated in all the Monaco simulations was 2.5×10
-5

 µSv/hr with 

 <0.5%. The FOM with the MM approach is about a factor of 2 higher than the one with the CC 

approach for the same SN grid and the increase in the Denovo runtime is insignificant. 

Increasing the number of MM test points within each voxel in the SN grid did not significantly 

improve the performance of the Monaco simulation probably because the geometry did not have 

enough heterogeneity to make a difference. The FOM of the MM cases and the non-uniform grid 

case were in the same order with the FOM of the non-uniform grid being about 30% less than the 

MM cases. While it was possible to manually create a good mesh that captures most of the MC 

geometric detail for this relatively simple problem, the process becomes extremely difficult for 

large and geometrically complex problems. 

 

4.4.3 Automating adjoint source definition 

Problem description 

To test the use of the MM approach in defining the adjoint sources in MAVRIC, the 

simple model shown in Fig. 4.5 was created [87].  

Denovo 

time (min)

Dose rate per 

curie (10
-5 

μSv/hr)/Ci

Monaco 

time 

(min)

Normalized 

FOM

CC 18.01 2.5 0.3% 185.24     1.00   ±0.8%

MM: 2
3

18.22 2.5 0.2% 185.18     2.08   ±0.6%

MM: 3
3

18.72 2.5 0.2% 183.99     1.77   ±0.6%

MM: 4
3

17.65 2.5 0.2% 187.97     2.00   ±0.6%

MM: 5
3

18.34 2.5 0.2% 181.16     1.94   ±0.6%

Nonuniform grid 17.12 2.5 0.2% 188.03     1.67   ±0.6%
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Figure 4.5: Steel box with water pipes problem 

 

Water pipes penetrated a 48 cm×100 cm×60 cm steel box in the X direction. The pipes 

had uniform diameters of 5 cm. A monoenergetic neutron source was distributed uniformly in 

475 cm×100 cm×60 cm vacuum box. The energy of the neutron source was uniform in the first 

group (6.38-20 Mev) of the 27 neutron/19 gamma ENDF-VII library which was used in this 

analysis. The model was placed in a lattice of 9 similar models to account for neutrons/photons 

reflections from the other components in the system. 

The goal of the analysis was to determine the nuclear heating due to the neutrons and the 

secondary photons in the steel box. A high resolution mesh tally with uniform size voxels (1 cm 

in X, 0.5 cm in Y, and 0.5 cm in Z) was superimposed over one of the center water pipes. 
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Methodology 

The SN mesh sizes were 5 cm in X, 5 cm in Y, and 3 cm in Z over the steel box. With this 

grid, all the mesh elements contained steel but only some of them contained water. 

The adjoint source was defined as a rectangular parallelpiped twice as big as the mesh 

tally in Y and Z directions and with the same length in the X direction. 

The analysis intended to show the effects of different adjoint sources on the efficiency of 

the MC calculation. For the FW-CADIS calculations, eight different adjoint sources were 

defined before they were automatically weighted by the inverse of the response calculated from a 

forward solution (Eq. (3.3)):  

A. Total flux: uniform energy spectrum and total flux for weighting 

B. Group fluxes: uniform spectrum and flux weighting 

C. Water everywhere: water heating cross section for spectrum, response weighting, and no 

MM 

D. Water : water heating cross section for spectrum, response weighting, and MM 

E. Steel everywhere: steel heating cross section for spectrum, response weighting, and no 

MM 

F. Steel: steel heating cross section for spectrum, response weighting, and MM 

G. Steel and water (no weighting): unweighted sum of steel and water heating cross sections 

for spectrum and response weighting 

H. Steel and water (weighted by MM): MM weighted sum of steel and water heating cross 

sections for spectrum and response weighting 
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When MAVRIC uses flux weighting instead of response weighting, the FW-CADIS 

adjoint source gets weighted by the energy-dependent flux instead of the total response. For case 

B, the response weighing of Eq. (3.3) was substituted by, 

   ( ̅  )  
  ( ̅  )

 ( ̅  )
. (4.3) 

Flux weighting is usually used when the MC tally represents energy-dependent 

responses. For case A, the sum of the fluxes was used for the response weighting instead of the 

total nuclear heating. 

Since some of the mesh elements within the adjoint region did not have water, the adjoint 

source of case D only existed in some of the mesh cells. All the elements had steel but with 

different fractions. The MM approach was used to weight the adjoint source strengths with the 

MM fraction of each mesh cell in cases D, F, and H. Figure 4.6 (A to H) shows the different 

adjoint sources used in this analysis. 
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Figure 4.6: Adjoint sources of steel box with water pipes problem 

 

Results 

For all the FW-CADIS cases with the different adjoint sources, the differences in MC 

results were within the uncertainties which were less than 7% everywhere. Figure 4.7 shows the 

total (neutrons+ gamma) nuclear heating in the mesh tally. 
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Figure 4.7: Total heating in steel box with water pipes problem 

 

Figure 4.8 shows the CDF of the  s in the mesh tally voxels for the different FW-CADIS 

cases and Table 4.3 shows the fraction of voxels with  <3%. 
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Figure 4.8: CDFs for steel box with water pipes problem 

 

Table 4.3: Fractions of voxels with      for steel box with water pipes problem 

Case 

Fraction 

of 

voxels 

A 96.7% 

B 97.0% 

C 96.2% 

D 94.8% 

E 97.6% 

F 96.8% 

G 95.4% 

H 98.0% 
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Case H had the largest fraction of voxels with lower  s. For this case, the adjoint source 

was defined as the sum of both the steel and the water heatings weighted by the MM fractions of 

steel and water in each mesh cell. This shows that using the MM approach in defining the adjoint 

source increased the efficiency of the MC simulation. The second best case was case E. For this 

case, the adjoint source strength was uniform in all the mesh cells and the adjoint source 

spectrum was defined to be the steel heating cross section. The good MC efficiency of case E is 

due to the domination of steel heating and the similarity in the overall shape of steel and water 

heating cross section. Case F with steel heating as the adjoint source came third in terms of the 

MC running efficiency for 90% of the voxels, yet it did not perform as well for the remainder 

10%.  In this case, all the cells had adjoint sources but the cells with both steel and water had less 

adjoint source strengths since in this case the adjoint source strengths were weighted by the 

amount of steel in each cell ignoring the water heating. Case D with water heating as the adjoint 

source was one of the cases with the least MC efficiency. For this case, the adjoint source was 

restricted to the cells with water and the overall volume of the adjoint source was smaller than 

the volume covered by the mesh tally. The two cases with the least MC running efficiency were 

the cases with the group fluxes and the total flux as the adjoint source spectrum. This was 

because the adjoint source spectra of these cases were unrelated to the required heating response 

in steel and water.  

 

4.5 Conclusion 
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Compared to the traditional CC approach, the MM approach provides a better technique 

for automating the process of deterministic input file creation in CADIS and FW-CADIS 

simulations.  

By enhancing the materials representation and reducing the geometry discretization 

errors, the MM approach increases the accuracy of the deterministic calculations with only a 

negligible computational time penalty.  

Because of the enhancement in the accuracy of the deterministic calculation, the expected 

improvement in the MC FOM has been demonstrated for CADIS and FW-CADIS simulations. 

The MM approach was also used to automate the adjoint source description of space-dependent 

response functions in CADIS and FW-CADIS simulations.  

The MM approach was implemented for the materials definitions and adjoint source 

description in SCALE6.1. It was also implemented in ADVANTG and DAGMCNP. 



106 

 

 
 

Chapter 5: Deterministic mesh refinement 
 

5.1 Motivation 
 

As shown in Sect. 3.3, the efficiency and reliability of CADIS and FW-CADIS 

simulations depend on the accuracy of the deterministic solutions. To reduce both truncation and 

geometry discretization errors, the mesh used in the deterministic calculations has to be as fine as 

possible. Unfortunately, the computing resources available for the deterministic calculations of 

CADIS and FW-CADIS simulations are usually not enough to resolve the phase-space domain 

of large and geometrically complex problems and capture all the geometric details of the MC 

models.  

In all current CADIS and FW-CADIS implementations, the deterministic mesh has to be 

manually created. Even though the materials specification of the deterministic calculations is 

automatic, developing an efficient mesh for the deterministic calculation is very difficult for 

large and complicated problems especially because the elements’ sizes have to be in the order of 

tens of centimeters.  

The deterministic mesh refinement algorithm was developed to automatically create 

better deterministic models by capturing as much geometric detail as possible from the MC 

models without increasing the total number of mesh cells that is usually determined by the 

availability of computing resources. 
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5.2 Algorithm 
 

The goal of the deterministic mesh refinement algorithm is to minimize the geometry 

discretization errors in CADIS and FW-CADIS deterministic calculations.  

Since the objective is to generate the deterministic mesh for the CADIS and FW-CADIS 

simulations of large and complicated problems, the savings in both human and computer times 

are crucial to determining the effectiveness of the algorithm. In this thesis, the deterministic 

mesh refinement algorithm will only be limited to the automatic process of the deterministic 

input file creation. To avoid the iterative repetition of the deterministic calculations, the 

algorithm implementation will not use fluxes’ information. This excludes addressing some 

important mesh-related issues such as the refinement of the particles’ flow channels between the 

source and the detector, but the algorithm will be much faster and easier to implement. 

Moreover, algorithms based on cross-sections information will not be considered in this thesis. 

The extra computations required by the recalculation of the macroscopic cross-sections might not 

be very expensive, but this thesis will only focus on algorithms based on geometric information 

because of their relative simplicity. 

A mesh potential function has to be devised to determine the regions at which the mesh 

needs to be refined. For the deterministic mesh to be representative of the MC geometry, the 

mesh potential function has to be associated with relevant quantities such as materials masses. 

The MM approach can be used to identify the heterogeneity of each mesh cell. During the MM 

calculations, the constituents of each mesh cell are internally stored in a vector of volume 

fractions. Each element in the vector represents the volume fraction of one of the materials used 

in the MC model not including vacuum. The void fraction can be calculated by subtracting the 
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sum of the fractions from 1.0. The mesh cells are expected to have a wider distribution of MM 

fractions with more heterogeneity and a sharper peaked distribution with less heterogeneity. 

Therefore, the disparity of the MM fractions can be used to formulate a heterogeneity parameter 

for each mesh cell. Additionally, the volume has to be included in calculating the heterogeneity 

parameter of each mesh cell. If two cells have the same disparity of MM fractions but different 

volumes, a more accurate material definition of the larger cell will have a higher impact on 

enhancing the deterministic model than the smaller cell. The heterogeneity parameter used in 

developing the mesh potential function of the deterministic mesh refinement algorithm can be 

expressed as, 

      (         )    , (5.1) 

where      is the heterogeneity parameter of the mesh cell defined by the three indices      and  , 

     is the standard deviation of the fractions in the vector consisting of the materials’ fractions 

and the void fraction of the mesh cell,      is the maximum possible standard deviation of this 

vector, and      is the volume of the cell. Table 5.1 shows an example for calculating the 

standard deviation of the volume fractions vector for a MC model with 3 materials. 
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Table 5.1: Heterogeneity parameter calculation 

Materials\Cells Cell 1 Cell 2 Cell 3 Cell 4 

Vacuum 0.25 0.33 0.50 1.00 

Mat 1 0.25 0.33 0.50 0.00 

Mat 2 0.25 0.33 0.00 0.00 

Mat 3 0.25 0.00 0.00 0.00 

Standard deviations 

σ 0.00 0.17 0.29 0.50 

σmax-σ 0.50 0.33 0.21 0.00 

 

The value of the maximum standard deviation of the materials vector depends on the 

number of materials in the MC model. It corresponds to cells with only one material and no 

heterogeneities. Theoretically the standard deviation can be zero for cells with equal fractions of 

materials including vacuum. These cells have the maximum disparity of materials and should 

have high heterogeneity parameter. Because of subtracting the standard deviation from the 

maximum standard deviation, mesh cells with equal volumes will have maximum heterogeneity 

parameter if they have uniform materials fractions and minimum heterogeneity parameter if they 

are composed of only one material.  

A lot of the existing, widely available SN codes only have the capability of performing 

the calculations on orthogonal, simply connected mesh for which each cell face adjoins one and 

only one neighbor. Performing transport calculations on a simply connected mesh considerably 

simplifies the sweeping algorithm [90]. Currently, Denovo is limited to simply connected 

Cartesian mesh [11]. Since Denovo is the preferred deterministic code for ADVANTG, the 

implementation of the mesh refinement algorithm in ADVANTG was constrained by preserving 
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the connectivity of the orthogonal Cartesian mesh. A block-heterogeneity parameter can defined 

for each X, Y, or Z block as the sum of the heterogeneity parameters of all the cells that belong to 

each block, 

    ∑        ,    ∑        ,    ∑        . (5.2) 

Starting from a user defined “initial guess” for the deterministic mesh, the steps of the 

deterministic mesh refinement algorithms can be summarized as follows: 

1. Calculate the heterogeneity parameter of each mesh element using Eq. (5.1) 

2. Calculate the block heterogeneity parameter of each X, Y, and Z block using Eqns. (5.2). 

3. Modify the mesh by inserting an extra plane at the midpoint between the two bounding 

planes of the X, Y, or Z block with the maximum heterogeneity parameter. 

4. Recalculate the heterogeneity parameter for each of the new elements added by the extra 

plane insertion. 

5. Recalculate all the block heterogeneity parameters. 

6. Repeat step 3, 4, and 5 until a user specified total number of mesh elements is reached or 

until the sum of the heterogeneity parameters of all the mesh elements become zero.  

It is necessary to calculate the MM fractions of all the mesh elements for calculating the 

heterogeneity parameters in step 1. It is not necessary to recalculate the MM fractions of the 

newly inserted mesh elements after each refinement step (step 3). If the MM fractions are not 

updated after each refinement step, the heterogeneity parameters, which will be based on the 

initially calculated MM fractions, will still be updated because of changing the elements’ 

volumes. The later refinement procedure can be useful with fine initial meshes because of the 

savings in the computational time required to develop the deterministic models.  
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For Cartesian meshes, the sum of the heterogeneity parameters of all the mesh elements 

can only be zero for underlying geometries with only rectangular cross sectional areas. The user 

specified total number of mesh elements should be determined by the computing resources 

availability for the deterministic calculation or the computer memory that can be allocated for the 

WW maps of the MC calculations. The maximum number of mesh elements can be specified 

using a mesh refinement parameter representing the ratio between the total number of elements 

in the final mesh and the total number of mesh elements in the initial mesh. The deterministic 

models shown in Fig. 5.1 were developed from two MCNP models of cubic steel boxes having 

an HEU sphere wrapped inside a polyethylene layer.  

 

 

Figure 5.1: Denovo models formed with deterministic mesh refinement algorithm 

 



112 

 

 
 

The polyethylene layer had a cubic geometry in the first model and a spherical geometry 

in the second. An initial mesh having 10 planes in the X direction, 10 planes in the Y direction, 

and 10 planes in the Z direction and fixed refinement parameter of 20 was used for both models. 

For the first model, the refinement stopped after 10 refinement steps because the heterogeneity 

parameters were all zeros. The final mesh had 13 planes in the X direction, 13 planes in the Y 

direction, and 14 planes in the Z direction for this model. For the second model, the maximum 

total number of mesh cells was reached after 52 refinement steps. The final mesh contained 28 

planes in the X direction, 27 planes in the Y direction, and 27 planes in the Z direction. 

 

5.3 Demonstration 
 

5.3.1 Mass conservation 

 

Problem description 

A cylindrical spent fuel shipping cask similar to the one used in Sect. 4.4.1 was used to 

calculate the materials volumes in the Denovo models created by the deterministic mesh 

refinement algorithm. Figure 5.2 shows the spent fuel shipping cask. 
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Figure 5.2: Cylindrical spent fuel shipping cask 

 

The cask had a cylindrical shape with a total diameter of 3.4 m and total height of 5.4 m 

and was composed of three materials: homogenized fuel materials, concrete, and steel. The three 

different materials were modeled as concentric cylinders to simplify the theoretical calculations 

of the materials volumes in the MC model. 

Methodology 

An MCNP model for the cask was used by ADVANTG to create Denovo models 

developed using different refinement methods. For this analysis, the Denovo models were only 

used to calculate the materials volumes of the different refinement methods and were not used in 

performing deterministic calculations. An initial mesh having 4 planes in X direction, 4 planes in 

Y direction, and 6 planes in Z direction was used. The mesh was refined uniformly by inserting p 

extra planes at equidistant positions between each two adjacent planes in each direction. The 
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refinement parameter, p was varied between 1 and 20. The deterministic mesh refinement 

algorithm was then used to refine the initial mesh by a factor of p
3
 without recalculating the MM 

fractions and with the MM fractions recalculations. 

The volumes of each of the three different materials (fuel, concrete, and steel) was 

calculated for each of the 60 cases: 20 cases with uniform refinement, 20 cases with the 

refinement algorithm and no recalculation of the MM fractions, and 20 cases with the refinement 

algorithm and MM fractions recalculation. The MM parameter used for materials sampling was 

set to 15 for all the 40 cases that used the deterministic mesh refinement algorithm. The 

differences between the volumes of each material (not including vacuum) in the MC model and 

the corresponding volumes in the Denovo models were calculated for all the 60 Denovo models. 

The total discrepancy in the materials volumes was calculated using the sum of the absolute 

values of these differences divided by the total materials volume.  

Results 

Figure 5.3 shows the total discrepancy in materials volumes between the MCNP model 

and the Denovo models created using the three different refinement methods: uniform 

refinement, deterministic mesh refinement algorithm without recalculation of the MM fractions, 

and deterministic mesh refinement algorithm with MM fractions recalculation. The time taken by 

ADVANTG to develop these models is also shown in Fig. 5.3 as a function in the total number 

of mesh cells. 
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Figure 5.3: Total discrepancy in materials volumes for spent fuel shipping cask problem 

 

The time taken by ADVANTG to create the Denovo models linearly increases with the 

number of mesh elements for each of the three refinement methods because the number of points 

sampled for materials definitions increases with the number of mesh cells. The slope of the linear 

increase is much higher with the MM fractions recalculation because of the extra time required 

for the MM resampling, but this time is still less than the time needed for the deterministic 

calculation, which was a factor of 6.5 higher for 0.775 million cell model (last point) and a 27 

neutron group library. This shows that, even with the recalculations of the MM fractions, the 

computational efforts of the deterministic mesh refinement algorithm are usually much less than 

the overall computational efforts required in CADIS and FW-CADIS simulations. 

With the deterministic mesh refinement algorithm with the MM fractions recalculation, 

the total discrepancy in materials volumes is monotonically less than the discrepancy with the 



116 

 

 
 

other two refinement methods. Even when the materials volumes discrepancy of the uniformly 

refined mesh is smaller than the discrepancy of the models created by deterministic mesh 

refinement algorithm, the deterministic mesh refinement algorithm provided better deterministic 

models. Figure 5.4 shows the deterministic models created using the three refinement methods 

for p=7 and total numbers of mesh elements around 33,000.  

 

 

Figure 5.4: Deterministic models with similar number of mesh elements for spent fuel 

shipping cask problem 

 

It is apparent that the deterministic model created by the automatic mesh refinement 

algorithm and the MM fractions recalculation has a better representation for the steel 

surrounding the central fuel region even though the difference between the steel volumes in the 

MCNP model and in the automatically refined Denovo model is 12.9 times higher than 

difference in the steel volumes in the MCNP model and in the uniformly refined Denovo model. 
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5.3.2 Deterministic accuracy 

 

Problem description 

The same cylindrical cask of the last example was modeled in Denovo to demonstrate the 

effects of the deterministic mesh refinement algorithm on the accuracy of the SN calculations. A 

uniform homogenous neutron source with a spent fuel energy spectrum was modeled in the fuel 

region. For this example, the goal is to calculate the neutron dose rate at a specific location 187.5 

cm from the central axis of the cask as shown in Fig. 5.5. 

 

 

Figure 5.5: Position of neutron dose rate calculation for spent fuel shipping cask problem 
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Methodology 

The Denovo input files were developed by ADVANTG using an MCNP model of the 

cask. The same initial mesh used in the last example was refined uniformly with eight different 

refinement parameters. The deterministic mesh refinement algorithm was then used to develop 

eight different meshes. For the meshes developed using the deterministic mesh refinement 

algorithm to have similar number of mesh elements as the meshes created by uniform 

refinement, the total number of cells in the meshes created by the deterministic mesh refinement 

algorithm were equal to the number of cells in the initial mesh multiplied by the uniform 

refinement parameter raised to the cubic power.  

The MAVRIC hybrid sequence was used for comparison. This later calculation did not 

suffer from geometry discretization errors because the final Monaco calculation used the exact 

MC model of the cask. 

A 27 neutron groups ENDF-VII library was used for the Denovo and the 

MAVRIC/Monaco calculations. 

Results 

Figure 5.6 shows the neutron dose calculated by Denovo for uniformly refined meshes 

and meshes developed by the deterministic mesh refinement algorithm as a function of the total 

number of mesh cells. The neutron dose calculated by MAVRIC/Monaco is shown as a dotted 

line in Fig. 5.6. 
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Figure 5.6: Neutron dose rate of spent fuel shipping cask problem 

 

 

Except for the meshes representing the first point in Fig. 5.6 for which the deterministic 

running time was less than 10 minutes, the differences in the running time between the 

deterministic calculations with uniform mesh and the deterministic calculations with an 

automatically generated mesh did not exceed 10%.  

With uniform mesh refinement the neutron dose rate calculated for a mesh having 

3.9×10
5
 elements was still a factor of 2.0 higher than the neutron dose rate calculated for a mesh 

with 7.7×10
5
 elements. On the contrary, the differences between all the neutron dose rates 

calculated with meshes having more than 2.6×10
5
 elements did not exceed 40.6% with the 

deterministic mesh refinement algorithm. This shows that, with the deterministic mesh 
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refinement algorithm, the deterministic calculations started to converge at about half of the 

elements needed for convergence when the mesh was refined uniformly. 

 

5.3.3 Monte Carlo efficiency 

 

Problem description 

The MCNP model of the nuclear development facility bunker described in Sect. 3.3 was 

used to demonstrate how the efficiency of the MC calculations in a FW-CADIS simulation can 

be affected by the deterministic mesh refinement algorithm. 

The total dose rate of both neutrons and photons is required at five different locations 

representing the parking lot outside the facility, two locations in the administration office, the 

roof, and the end of the control area. Figure 5.7 shows the five locations for which the dose rate 

was calculated in this problem. 
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Figure 5.7: Locations of dose rate calculations in nuclear development facility bunker 

problem 

 

Methodology 

ADVANTG was used to employ the FW-CADIS method to provide the WW parameters 

to accelerate the MCNP calculation of the dose rates at the five locations. Source biasing was not 

used because the charged particles accelerator only occupies a small volume relative to the 

overall geometry and neutrons are born inside the D-T gas with the very low density (no 

attenuation inside source volume).  

A uniform mesh for which all the elements were cubic with side length of 25 cm was 

used for the first FW-CADIS case. This mesh had 184 planes in X direction, 104 planes in Y 

direction, 24 planes in Z direction, and 4.59×10
5
 total number of elements. Another mesh that 

was carefully tailored to capture all the important geometric detail of the MCNP model was also 

used for comparison purposes. Capturing the important details in this problem was only possible 

because of the simple rectangular geometries of the concrete structure and the water tanks. The 

carefully tailored mesh had 98 planes in X direction, 116 planes in Y direction, 46 planes in Z 

direction, and 5.23×10
5
 total number of elements. Finally a mesh created using the deterministic 
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mesh refinement algorithm, having 83 planes in X direction, 96 planes in Y direction, 58 planes 

in Z direction, and 4.62×10
5
 total number of elements, was used in the analysis. The 

automatically created mesh used an initial mesh that had 7.18×10
3
 of cubic mesh elements with 1 

m side length, a MM parameter of 25, and a refinement parameter of 64. The CC approach was 

used to define the Denovo materials for all the FW-CADIS cases. To isolate the benefit of using 

the MM approach in materials definition from analyzing the benefit of the mesh quality, the MM 

approach was not used after the Denovo mesh was determined using the deterministic mesh 

refinement algorithm. An analog MCNP calculation was also used for comparison. 

A 27 neutron, 19 photon groups ENDF-VII library was used for the Denovo calculations 

and continuous energy libraries were used for the MCNP calculations. 

Results 

Figure 5.8 shows the deterministic models created for the regions surrounding the 

accelerator with the three meshes. 
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Figure 5.8: Denovo models for nuclear development facility bunker problem 

 

The roof and front gate of the bunker were missed in the uniform deterministic model but 

were present in the carefully tailored model and the model created by the automatic mesh 

refinement algorithm. 

Figure 5.9 shows the dose rates calculated at the five different locations. None of the 

three FW-CADIS calculations caused any bias in the final MC dose rates results. At each of the 

five locations, the differences between the dose rates calculated using each of the four different 

MC cases including the analog case did not exceed 2σ where σ is the uncertainty of the MCNP 

case with higher uncertainty.  
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Figure 5.9: Dose rates at different locations for nuclear development facility bunker 

problem 

 

 

Since the computational time is controlled by the dose rate tally with the maximum 

statistical uncertainty, the FOM based on the maximum   (Eq. (2.28)) was used. For calculating 

the statistical uncertainty in the FOM, the VOV of the tally with maximum   was used in Eq. 

(2.26). 

Figure 5.10 shows the FOMs of the three FW-CADIS cases normalized by dividing them 

by the analog FOM. The FW-CADIS with uniform mesh provided a factor of 11.0 increase in the 

MC FOM. The MC FOM of the FW-CADIS case with automatically refined mesh was 55.5% 

higher than the MC FOM of the FW-CADIS case with uniform mesh, but 21.9% lower than the 

MC FOM of the FW-CADIS case with the carefully tailored mesh. 
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Figure 5.10: FOMs for nuclear development facility bunker problem 

 

 

 

The highest   in the FW-CADIS case with uniform mesh occurred at the roof, which was 

missed in the uniform mesh deterministic model. The FOM of the roof tally for the uniform case 

was 49.9% lower than the carefully tailored case and 45.9% lower than the automatically refined 

case. The highest uncertainty in the automatically refined case occurred at one of the office 

locations. The water tanks that were used to shield the office from the neutron source at the 

accelerator had a 7 cm gap that was missed in the deterministic model developed by the 

automatic mesh refinement algorithm. Figure 5.11 shows the regions around this gap in both the 

carefully tailored and the automatically refined deterministic models. 
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Figure 5.11: Denovo models around gap between water tanks for nuclear development 

facility bunker problem 

 

For the automatically refined case, the single tally FOM of the dose rate tally in this 

office location was 51.8% less than of the carefully tailored case, but it was still 15.5% higher 

than the single tally FOM of the uniform case. 

 

5.4 Conclusion 
 

The deterministic mesh refinement algorithm can be used to automatically refine a coarse 

initial guess and generate deterministic models that provide good representation of the MC 

geometries in CADIS and FW-CADIS simulations. The use of the deterministic mesh refinement 

algorithm can greatly simplify the difficult and error prone process of manual development of 

meshes suitable for CADIS and FW-CADIS simulations, but it is usually difficult for the 

automatically generated deterministic models to exactly represent the MC geometries. 

The recalculation of the MM fractions increases the computational cost of the 

deterministic mesh refinement algorithm, but the cost of this algorithm is usually small with 
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respect to the other calculations (deterministic and MC) required by CADIS and FW-CADIS 

simulations. 
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Chapter 6: Weight-window coarsening 
 

6.1 Motivation 
 

As shown in Sect. 3.3, the MC calculation will stop if the MC code cannot allocate 

enough memory to store the WWs. The problem will be more pronounced with parallel 

processing because the current production-level MC codes (e.g. MCNP) depend on replication of 

the MC data (geometry, cross-sections, VR parameters, etc.). The parallel MC processes have to 

share the memory of each computing node. This poses a very restrictive limitation to the 

deterministic mesh resolution in large and complicated problems because the WWs are generated 

using the same mesh and energy group structure of the deterministic calculations in CADIS and 

FW-CADIS simulations. Decoupling the WW and deterministic meshes is necessary to allow the 

use of finer deterministic calculation without increasing the storage size of the WW maps. An 

efficient algorithm for reducing the storage size of the WW map should minimize the penalty in 

the MC efficiency that is expected because of the loss of information by storage reduction. 

 

6.2 Algorithm 
 

Adjoint flux collapsing 

It was mentioned in Sect. 2.4.2 that the CADIS and FW-CADIS methods distribute the 

MC particles according to the contributon fluxes. To test this hypothesis, a water block model 

with a monoenergetic neutron source was used. Figure 6.1 shows the one group contributon flux 

and the distribution of the MC particles in a water block with analog MC simulation and with the 
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CADIS method
6
. The total neutron flux at the detector position represented the tally response 

and the CADIS adjoint source for this problem. 

 

 

Figure 6.1: MC particle distribution in a water block 

 

It is apparent that the spatial distribution of the contributon flux represents a good 

estimate for the MC particles distribution of the CADIS calculation. 

For formulating a collapsing formula for the adjoint fluxes in CADIS and FW-CADIS 

simulations, it is logical to try to preserve the contributon flux of the high resolution 

deterministic calculations because they represent the population of the MC particles throughout 

                                                        
6 The MC particle flux/fluence in MCNP can be tallied using a certain tally multiplier that divides the tally scores by 

the particles weights. In this analysis the MCNP source code was modified to tally the MC particle fluxes instead of 

the real fluxes.  
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the phase-space domain of the problem. To simplify the formulation, the angular variation of the 

fluxes will not be considered. By adding the angular dependency to the forward and adjoint 

fluxes, the derivation can be generalized in a straight forward way
7
.  

The forward and contributon fluxes corresponding to one coarse space-energy cell, which 

is composed of several fine space-energy cells, can be evaluated via summation of the fine grid 

fluxes, 

 
       

∑ ∑               

    
 (6.1) 

and 

 
             

        
∑ ∑       

               

    
, (6.2) 

where each space-energy cell in the fine grid is identified by its spatial position     and energy 

group  , each coarse space-energy cell is identified by     and  ,      is the volume of cell     

in the fine grid,      is the volume of the cell     in the coarse grid,        and        are the fine 

and coarse grid fluxes respectively, and       
  and       

  are the fine and coarse grid adjoint 

fluxes respectively. The     and   summations in the R.H.S of Eqs. (6.1) and (6.2) include all the 

fine space-energy cells that compose the coarse space-energy cell      . 

Equation (6.2) is a conservation relation of the contributon flux between the coarse and 

the fine grids. By solving both Eq. (6.1) and Eq.(6.2), the adjoint flux of the coarse grid that 

conserves the contributon flux of the fine grid can be expressed by, 

                                                        
7 CADIS and FW-CADIS have been usually implemented without considering the angular variation of fluxes. The 

following development of the adjoint flux collapsing formula and the block contributon parameters will only be 

accurate for isotropic forward and adjoint fluxes. 
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∑ ∑       

               

          
. (6.3) 

Since more of the particles that populate the coarse cell are expected to belong to fine 

cells with higher forward fluxes, the importance of the coarse cell are expected to be controlled 

by the importance of the fine cells with higher real (forward) fluxes. It is therefore intuitive to 

calculate the adjoint flux (importance) of the coarse cell using a flux-weighted average of the 

adjoint fluxes of the constituent fine cells. 

Choice of cells that need collapsing 

Since most of the MC computational efforts are spent in tracking the particles [73], 

achieving high FOM require focusing the MC particles in important phase-space regions. The 

use of fine meshes increases the fidelity of CADIS and FW-CADIS deterministic calculations, 

and consequently increases the MC FOM. To minimize the reduction in the MC FOM that is 

expected with the mesh coarsening necessary to decrease the size of the WW maps, it is 

desirable to preserve the mesh fidelity in the regions of highest contributon flux, representing the 

MC particles flux, in CADIS and FW-CADIS simulations. Therefore, mesh cells with lower 

contributon fluxes should be collapsed before mesh cells with higher contributon fluxes. 

Block contributon parameter 

Since only structured, simply connected WW maps can be used in MCNP without 

modification, the space-energy cells removal will be restricted to the removal of spatial (X, Y, or 

Z) blocks or energy groups. In this thesis, the term block contributon parameter will be used to 

express the space and energy summations of the product of the contributon flux and the volume 

of all space-energy cells belonging to each X, Y, or Z block, or to each energy group. These block 

contributon parameters can be represented by, 
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    ∑ ∑       
               ,    ∑ ∑       

               , 

(6.4) 

   ∑ ∑       
               ,    ∑       

              , 

where   ,   ,   ,    are the block contributon parameters for each X, Y, and Z block and for each 

energy group respectively. 

Algorithm description 

The steps of the WW coarsening algorithm can be summarized as follows: 

1. Calculate the contributon fluxes for all the space-energy cells using Eq. (6.2). 

2. Calculate the block contributon parameters for all blocks and energy groups using Eqs. 

(6.4). 

3. Calculate the average of the adjoint fluxes for the space-energy cells that belong to the 

spatial block or the energy group (    ) with the lowest block contributon parameter 

and the corresponding space-energy cells of the neighboring block (         ). The 

adjoint flux collapsing formula (Eq. (6.3)) is used for determining the average adjoint 

fluxes. 

4. Update the adjoint fluxes in the space-energy cells of           by replacing them with 

the calculated average. 

5. Update the forward fluxes and the volumes of the space-energy cells of            by 

adding the corresponding forward fluxes and volumes of      to the corresponding 

values of          . No volume changes will occur if      represents an energy group. 

6. Update the block contributon parameter of           by adding the block contributon 

parameter of      to it. 
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7. Remove the adjoint fluxes and forward fluxes of all the space-energy cells that belong to 

     and remove the block contributon parameter of     .  

8. Repeat steps 3-7 until the total number of space-energy elements reaches a user specified 

value. 

If       is not the first or the last spatial block or energy group (has two neighbors), 

          should be the neighboring block or group with the lower block contributon parameter 

of the two neighbors. The user should determine the total number of space-energy elements in 

the final WW mesh according to the computer memory available for the MC calculations. The 

desired final WW mesh resolution can be specified using a collapsing parameter representing the 

ratio between the total number of space-energy elements in the fine deterministic mesh and the 

total number of space-energy elements in the coarse WW mesh. In CADIS and FW-CADIS 

calculations, the total response    is calculated using Eq. (2.9). This requires that both the real 

(forward) source and the adjoint flux use the same mesh. Since the WW coarsening algorithm 

changes the adjoint flux mesh, it should only be implemented after calculating    in CADIS and 

FW-CADIS simulations. 
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6.3  Demonstration 
 

 

6.3.1 Monte Carlo efficiency without deterministic geometry discretization 

 

Problem description 

To study the effect of WW coarsening on the MC FOM without interference of geometry 

discretization errors, the MC model in Fig. 6.2 was used.  

 

 

Figure 6.2: MCNP model for water block problem 

 

The model represents a rectangular parallelepiped water block with a 180 cm length and a 

30×30 cm
2
 cross sectional area. A monenergetic 1 MeV isotropic point source was placed at the 
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center of the cross sectional area, 15 cm from front plane of the water block. A cubic detector 

with side length of 2 cm was separated from the source by 60 cm and from the other end of the 

water block by 105 cm. Only neutrons were modeled in this problem. The total neutron flux at 

the detector was the response being tallied. 

Methodology 

ADVANTG was used to implement the CADIS method for calculating the total neutron 

flux in the detector. The adjoint source was defined as a cube with the same dimensions and at 

the same location as the detector. A multi-group ENDF-VII library with 27 neutron groups was 

used for the Denovo calculations. The adjoint source spectrum was uniform over all the energy 

groups. 

Two spatial grids were used in the deterministic calculations. The coarse grid had 

uniform cubic mesh elements with side length of 6 cm and contained 750 mesh elements. The 

fine grid had uniform cubic mesh elements with side length of 1.2 cm and contained 93,750 

elements. Together with the 27 neutron group structure of the multi-group library, both of these 

grids were used in both the adjoint deterministic calculation and the WW map of the MC 

simulation.  

The adjoint fluxes of the fine grid were then collapsed to the coarse structure. The 

collapsing was performed uniformly by using a flux weighted average of the adjoint fluxes 

according to Eq. (6.3) and using a simple average of the adjoint fluxes. For these two cases, the 

fluxes of each 125 fine cells that coincided with one coarse WW cell were averaged. The WW 

coarsening algorithm was then used to find an efficient WW map with a total number of space-

energy cells similar to the coarse grid and collapse the fine fluxes to this new structure. 
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Results 

Figure 6.3 shows the neutrons weights for the coarse and fine mesh cases and the three 

collapsed cases. To calculate the one group neutrons weights for the cases shown in Fig. 6.3, the 

inverse of the sum of the reciprocals of the group-wise weights generated by ADVANTG was 

used. 

 

 

Figure 6.3: One group neutron weights for water block problem 

 

The WW splitting and rouletting is needed to increase the population of the MC particles 

as they get emitted from the source till they score at the tally location. The coarsening in the 

mesh created by the WW coarsening algorithm only occurred away from the optical path 

between the source and the detector. This shows that the WW coarsening algorithm only 

removes the cells with the least importance to the WW acceleration of the MC calculation. 
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To reduce the size of the WW map, the WW coarsening algorithm increased the 

importance (reduced the weights) of the region behind the detector. The impact of this 

unphysical change in regions importance on decreasing the MC FOM is not expected to be large 

because the MC particles flux, shown in Fig. 6.1, is much smaller behind the detector than 

between the source and the detector. Rouletting the MC particles behind the detector will not be 

as effective in increasing the MC FOM as splitting the particles between the source and the 

detector.  

Table 6.1 shows the results of the fine and coarse meshes and the three collapsed CADIS 

simulations. The FOM was calculated using Eq. (2.23) and the statistical uncertainty in the FOM 

was calculated using Eq. (2.26). The time in the denominator of Eq. (2.23) was corrected to 

include the run time of the deterministic calculation and the MC run time. 

 

Table 6.1: Total flux and FOMs for water block problem 

 

 

Even with the inclusion of the time of the extra forward deterministic calculation, the 

FOM for the uniform adjoint flux collapsing case was 6.3% higher than FOM of the simple 

Calculation

Number of 

space-energy 

cells 

(Thousands)

Neutron flux 

(n/cm
2
-sec)

Normalized FOM 

(deterministic 

correction)

Analog n/a 16.00  ± 48.56% 1.00   ±   56.0%

Coarse 20 10.91  ±   1.73% 3.15E+03   ±  3.2%

Fine 2531 10.85  ±   0.19% 2.52E+05   ±  1.0%

Average adjoint flux 20 10.89  ±   0.21% 2.06E+05   ±  1.0%

Uniform adjoint flux collapsing 20 10.88  ±   0.20% 2.19E+05   ±  1.0%

WW coarsening 19 10.90  ±   0.18% 2.70E+05   ±  1.0%
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average case. The FOM with the WW coarsening algorithm was 23.3% higher than the FOM of 

the uniform collapsing case and 31.1% higher than the simple average case. Compared to the 

coarse mesh calculation, the use of the WW coarsening algorithm in collapsing the fluxes to the 

coarse WW structure provided a factor of 85.7 increase in the FOM even though both cases used 

WW maps with similar overall size. 

The FOM of the WW coarsening case is 7.1% larger than the FOM of the fine case 

although a penalty in MC efficiency is expected because of loss of information with any WW 

storage size reduction. As mentioned in Sect. 2.4.2 and 3.3, the use of more accurate adjoint 

fluxes does not guarantee an increase in the FOM because the importance function used in the 

importance sampling scheme is not directly related to the FOM or the tally variance. Figure 6.4 

shows the effect of the degree of collapsing (collapsing parameter) on the MC FOM with the 

deterministic run time correction for this problem.  
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Figure 6.4: FOM versus degree of WW coarsening for water block problem 

 

Even with a factor of 3,516 reduction in the storage size of the WW map, the reduction in 

the FOM was only 67.25%. This shows that the WW coarsening algorithm minimizes the 

reduction in the MC efficiency because it only removes the cells with the least importance (low 

contributon) to the MC solution. 

 

6.3.2 Generic Monte Carlo efficiency analysis 

 

Problem description 

To analyze the effects of the WW coarsening algorithm on the FOM of realistic FW-

CADIS simulations, the nuclear development facility bunker problem described in Sect. 3.3 and 
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5.3 was used. No changes were made to the problem geometry, the neutron source, or the tallies 

as described in Sect. 5.3.  

Methodology 

In Sect. 5.3, the deterministic model created by the deterministic mesh refinement 

algorithm did not capture the 7 cm gap between the water tanks when the maximum number of 

mesh elements was specified to correspond to the total number of mesh elements in the carefully 

hand-tailored deterministic model which had 0.523 million cells. By allowing the deterministic 

model to have more about 2.6 times more mesh elements, the model created by the deterministic 

mesh refinement algorithm captured all the gaps between the water tanks. Figure 6.5 shows the 

three deterministic models created by the careful manual specification of the locations of the grid 

planes and by the deterministic mesh refinement with an upper limit of 1.4 million cells. 

 

 

Figure 6.5: Denovo models around gap between water tanks for nuclear development 

facility bunker problem 
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For the size of the WW map not to increase by the extra refinement of the deterministic 

mesh, the WW coarsening algorithm was used to reduce it to the size of the WW map used with 

the carefully hand-tailored case. 

Results 

The two additional cases, which used the deterministic mesh refinement algorithm with 

an upper limit of 1.4 million cell (with and without WW coarsening), were compared to the other 

three cases described in Sect. 5.3. The differences between the dose rates calculated in the two 

additional cases and any of the other cases, used for the calculations in Sect. 5.3, did not exceed 

2.2σ for any of the tallies. 

Figure 6.6 shows the FOM of all the cases. The FOM of the automatically refined case, 

which had 2.6 times more mesh elements than the carefully hand-tailored mesh case, was 18% 

lower than the FOM of the carefully hand-tailored mesh case and 68.2% higher than the uniform 

mesh case. 

 



142 

 

 
 

 

Figure 6.6: FOMs for nuclear development facility bunker problem 

 

With the WW-coarsening of this automatically refined case, the FOM did not decrease 

despite of the factor of 2.7 reduction in the size of the WW map. This shows that the decrease in 

the FOM because of the loss of mesh fidelity is minimal with the WW coarsening algorithm, and 

can be even less than the changes in the FOM caused by other contributing factors such as the 

effects of the WW values on the MC variance. As mentioned in Sect. 2.4.2 and Sect. 3.3, the 

later factors [73; 85] are not the focus of this thesis. The FOM of the WW-coarsening case, 

which had the same size of the carefully hand-tailored mesh case, was nearly equal (3.7% 

higher) to the FOM of the carefully hand-tailored mesh case. 
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6.4 Conclusion 
 

The adjoint flux collapsing decouples the space-energy mesh of the WW maps from the 

space-energy mesh of the deterministic calculations. This allows the use of finer mesh 

resolutions in the deterministic calculations of CADIS and FW-CADIS simulations because the 

deterministic mesh will no longer be restricted by the size of the WW maps that can represent a 

problem for running the MC calculations especially with parallel processing. Using a flux-

weighted average of the adjoint fluxes in developing the coarsened WW maps of CADIS 

simulations has proved to provide a better FOM than using a simple average of the adjoint 

fluxes. 

By only removing the cells with the least importance to the MC calculations, the WW 

coarsening algorithm minimizes the reduction in the FOM that is expected with any averaging 

scheme because of the loss of mesh fidelity. 
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Chapter 7: ITER prompt dose rate 
 

For analyzing the effects of the algorithms developed in this thesis, the ITER global 

prompt dose rate calculation described in Ref. [4] was used. The goal of this analysis was to 

emphasize the importance of the high-fidelity, full-scale modeling of large and complicated 

problems. In Ref. [4], it was shown that an accurate MC calculation of the prompt dose rate at a 

single point outside the biological shield (bioshield) will require at least 393 processors-years. 

Because of the difficulty of such a calculation, previous assessments have depended on coupling 

the final 3-D analysis with 1- or 2-D analyses [91]. These approaches ignore critical geometric 

detail such as the large diagnostics ports, which increases the prompt dose rate by a factor higher 

than 100 [4]. 

The FW-CADIS calculation described in Ref. [4] was repeated using the MM approach, 

the deterministic mesh refinement, and the WW-coarsening algorithms. 

Methodology 

 The ITER 3-D model, Alite03, was used in the form of an MCNP5 input file 

representing a 40° sector of the ITER device [92]. Figure 7.1 shows the Alite03 model. The 

MCNP5 input file, for which the geometry description exceeded 19,800 lines, was built from the 

previously used BRAND model [93] and updated using MCAM [94], a CAD-MCNP interface 

program developed by the Fusion Design Study Team at the Institute of Plasma Physics, Hefei, 

China. 
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Figure 7.1: ITER MC model (Alite03) 

 

A Cartesian mesh tally with uniform cubic mesh elements of side length equal 10 cm was 

used to tally the total (neutron+photon) prompt operational dose rates throughout the entire ITER 

experimental facility. 

ADVANTG was used to employ the FW-CADIS method for this analysis. The source 

biasing parameters were not used because, in some testing cases, they did not change by more 

than one order of magnitude because the source particles were emitted in vacuum. The adjoint 
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source was defined to include all the ITER geometry. The group-wise energy spectrum of the 

adjoint source was defined as the flux-to-dose-rate conversion factors in an energy structure 

equivalent to that of the multi-group data library of the deterministic calculation. 

For the forward and adjoint Denovo calculations not to require more than 32 processors, 

the number of mesh elements in all the Denovo calculations was set not to exceed 8 million cells. 

A uniform cubic mesh with side length of 16.36 cm was used with and without the use of the 

MM approach for materials definitions. The automatic deterministic mesh refinement algorithm 

was used to automatically create a mesh with the same total number of mesh elements. An initial 

mesh with 1.3×10
6
 elements was used for the automatically refined case. This initial mesh had 

uniform side lengths of 32.7 cm in the Y direction and 35.3 cm in the Z direction. The 

dimensions of the mesh elements were varied in the X direction to capture the fluxes gradient in 

the bioshield and the inner shielding layers. After the final mesh was automatically developed 

using the deterministic mesh refinement algorithm, the MM approach was used for the materials 

definitions in the Denovo model. The WW coarsening algorithm was also used to collapse the 

fluxes the automatically refined FW-CADIS case by factors of 2, 4, 8, 16, and 32. 

A 46 neutron group 21 gamma group FENDL 2.1 library was used for the Denovo 

calculations and a continuous energy FENDL 2.1 library was used for the MCNP calculation. 
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7.1 Effect of macromaterials and deterministic mesh refinement 
 

Figure 7.2 shows the CDFs of the mesh tally relative uncertainties ( s) for an analog MC 

calculation and the three FW-CADIS cases that did not use the WW coarsening. The MCNP 

running time was fixed at 10 days for each of the four cases. 

 

 

Figure 7.2: CDFs of mesh tally   for 10 day MC calculations of analog MC case and three 

FW-CADIS cases for ITER prompt dose rate problem 

 

The maximum   for 90% of the mesh tally voxels is 72.1% for the uniform mesh case, 

54.4% for the MM case with no mesh refinement, and 43.8% for the deterministic mesh 

refinement case. Based on these preliminarily calculations, the minimum MCNP computer time 
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required for any of these FW-CADIS cases to have 90% of the mesh tally voxels with   below 

10% is 191.8 processor-day.   

Table 7.1 shows the computer time taken by the three FW-CADIS cases. The 

initialization times include the time spent in developing the Denovo models for the FW-CADIS 

calculations.  

 

Table 7.1: Computational time of three FW-CADIS cases for ITER prompt dose rate 

problem 

 

 

The adjoint Denovo calculation of the FW-CADIS case that used the MM approach and 

did not use deterministic mesh refinement algorithm took 56.85 processor-days which is at least 

a factor of 9.1 longer than any of the other Denovo calculations. The version of Denovo that was 

used in this calculation stored all the homogenized materials on every processor, which 

dramatically increased the required memory and the calculation time. The current version of 

Denovo only replicates the clean materials and builds only the mixed materials needed on the 

remote processors. Both the deterministic and initialization times will be considered small 

compared to the computer time required by a more accurate and reliable MCNP calculation, 

which exceeds 190 processor-day. For initialization times of the MM case with no mesh 

refinement and the automatic mesh refinement case to be close, the MM parameter used for the 

Initialization Deterministic MC

Uniform 0.6 195.2 240.5

MM 16.6 1514.7 240.5

Automatic 14.1 222.6 240.5

Case
Time (hr)



149 

 

 
 

MM case with no mesh refinement was set to be 5 and the MM parameter of the automatic mesh 

refinement case was set to be 3.  

Table 7.2 shows the fraction of the mesh tally voxels that had MC scoring and the FOM 

defined using Eq. (2.29) for the three FW-CADIS cases. These FOMs were normalized by 

dividing them by the FOM calculated for the analog case. The  s of the zero scoring voxels were 

assumed to be 100%. 

 

Table 7.2: MC FOM and fraction of mesh tally voxels with MC scoring for three FW-

CADIS cases for ITER prompt dose rate problem 

 

 

The use of the MM approach in creating the deterministic models increased the fraction 

of voxels with MC scoring by 2.1% and the use of the deterministic mesh refinement algorithm 

in automatically creating the Denovo models increased the fraction of voxels with MC scoring 

by 2.9%. This is equivalent to 53,120 and 74,002 more voxels with MC scoring due to the use of 

the MM approach and the deterministic mesh refinement respectively. The calculated dose rate 

on the central plane of ITER and on a plane rotated 20° from the central plane are shown in Fig. 

7.3 for the three FW-CADIS cases. The automatically refined case, which also the MM approach 

for materials definitions, had more voxels with MC scoring in the upper diagnostics port, which 

is plugged by 5 m of shielding materials, and in the equatorial port which is plugged by 2 m of 

Case
Fraction of 

nonzero voxels

Normalized 

FOM

Uniform 95.5% 7.2

MM 97.5% 9.1

Automatic 98.3% 11.1
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shielding materials. Since it is difficult for the MC particles to score in the shielding plugs of 

these ports, the extra scoring in these regions shows that the WW parameters of the automatically 

refined case are more accurate.  

 

 

 

Figure 7.3: Dose rate map on central plane and on plane rotated 20° from central plane for 

three FW-CADIS cases of ITER prompt dose rate problem 

 

In addition to the more efficient distribution of the scores of the MC particles, the FOM 

of the MM case is 26.4% higher than the uniform case and the FOM of the automatically refined 

case is 54.2% higher than with the uniform case. 
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7.2 Effect of weight-window coarsening 
 

Figure 7.4 shows the CDFs of the mesh tally  s of 10 day MCNP runs of the 

automatically refined FW-CADIS case and the five FW-CADIS cases that used the WW 

coarsening algorithm to reduce the size of the WW map of the automatically refined FW-CADIS 

case by factors of 2, 4, 8, 16, and 32. The computational time of the WW coarsening algorithm 

was less than 20 hrs for all the cases. 

 

 

Figure 7.4: CDFs of mesh tally   for 10 days MC calculations of FW-CADIS cases with 

WW coarsening for ITER prompt dose rate problem 
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Table 7.3 shows the fraction of scoring voxels and global MC FOM for the 10 day 

MCNP runs of the 6 FW-CADIS cases. The FOMs were calculated using Eq. (2.29) and 

normalized to the analog FOM values. The  s of the zero scoring voxels were assumed to be 

100%. 

 

Table 7.3: MC FOM and fraction of mesh tally voxels with MC scoring for FW-CADIS 

cases with WW coarsening for ITER prompt dose rate problem 

 

 

For all the cases with the reduced size WW maps, the decrease in the fraction of the 

nonzero scoring mesh tally voxels was less than 1% and the decrease in the MC FOM was less 

than 26.1%. The systematic reduction in the fraction of voxels with calculated MC answers is 

0.5% and the systematic reduction in the FOM is 9%. These reductions in the MC efficiency can 

easily be overthrown by the large reduction in the size of the WW map that can greatly facilitate 

the parallel processing of the MC calculation 

 

Case
Size of WW file 

(GB)

Fraction of 

nonzero 

voxels

Normalized 

FOM

No coarsening 6.5 98.3% 11.1

Coarsening 2 3.3 98.3% 11.2

Coarsening 4 1.7 97.8% 9.0

Coarsening 8 0.8 97.5% 8.2

Coarsening 16 0.4 97.6% 9.7

Coarsening 32 0.2 97.8% 10.1
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7.3 Combined effect of macromaterials, deterministic mesh 

refinement, and weight-window coarsening 
 

As noted in Sect. 7.1, even with the FW-CADIS method, an accurate and reliable MCNP 

calculation of a problem with the magnitude and complexity of this problem requires hundreds of 

processors-days. Performing such a calculation without parallel processing is difficult. Since the 

size of the WW map can represent the limiting factor on the number of MCNP jobs that can be 

run in parallel, it is illustrative to compare the MC efficiencies of different FW-CADIS cases 

with similar WW map sizes. 

Figure 7.5 shows the CDFs of the mesh tally   of two 10 day MCNP runs that used two 

FW-CADIS cases, for which the WW maps had similar sizes and occupied about 0.41 GB of 

hard disk space.  
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Figure 7.5: CDFs of mesh tally   for 10 day MC calculations of FW-CADIS cases with 

0.410 GB WW map for ITER prompt dose rate problem 

 

The first FW-CADIS case did not use any of the algorithms developed in this thesis. The 

Denovo model of this calculation used a uniform mesh for which the elements had side lengths 

between 40 cm and 42.33 cm. The total number of space-energy elements in the Denovo model  

of this case was 32.6×10
6
. The second FW-CADIS case used the same automatically refined 

Denovo model created for the automatic refinement case of Sect. 7.1. This Denovo model 

contained 528.0×10
6
 space-energy elements. The WW coarsening algorithm was used to reduce 

the number of space-energy elements in the WW map of this case to 32.7×10
6
. 

Table 7.4 shows the fraction of nonzero scoring mesh tally voxels and the MC FOM of 

the two FW-CADIS cases. The FOMs were calculated using Eq. (2.29) and normalized to the 

analog FOM values. The  s of the zero scoring voxels were assumed to be 100%. 
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Table 7.4: Fraction of mesh tally voxels with scoring and the MC FOM of two FW-CADIS 

cases with 0.410 GB WW map for ITER prompt dose rate problem 

 

 

Similarly, Fig. 7.6 shows the CDF of the mesh tally   of two 10 days MCNP runs of two 

FW-CADIS cases with WW maps which occupied about 0.21 GB of hard disk space. Because of 

the reduced memory requirements, the MCNP runs with these maps were more convenient to 

perform then the cases shown of 7.5. The first FW-CADIS case used Denovo models with mesh 

elements having side lengths between 50.8 cm and 51.43 cm. None of the algorithms developed 

in this thesis were used in this case. The second FW-CADIS case used the automatically refined 

Denovo model. The WW coarsening algorithm was used to refine the number of space-energy 

elements in the WW map to 16.3×10
6
 elements.  

 

Case
Fraction of 

nonzero voxels

Normalized 

FOM

No adaptivity 81.9% 3.5

Adaptivity 97.6% 9.7
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Figure 7.6: CDFs of mesh tally   for 10 days MC calculations of FW-CADIS cases with 

0.206 GB WW map for ITER prompt dose rate problem 

 

Table 7.5 shows the fraction of nonzero scoring mesh tally voxels and the MC FOM of 

these two FW-CADIS cases. The FOMs were calculated using Eq. (2.29) and normalized to the 

analog FOM values. The  s of the zero scoring voxels were assumed to be 100%. 

 

Table 7.5: Fraction of mesh tally voxels with scoring and the MC FOM of two FW-CADIS 

cases with 0.206 GB WW map for ITER prompt dose rate problem 

 

 

Case
Fraction of 

nonzero voxels

Normalized 

FOM

No adaptivity 79.3% 3.0

Adaptivity 97.8% 10.1
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For the FW-CADIS cases with WW maps occupying about 0.21 GB of hard disk space, 

the use of the algorithms developed in this thesis provided 23.3% increase in the fraction of the 

nonzero scoring mesh tally voxels. This is equivalent to 501,477 more voxels with calculated 

MC answers. The calculated increase in the MC FOM was a factor of 3.4. Recalling from Sect. 

2.3.4, the magnitude of the overestimation in the FOM based on the average relative variance 

(  ) is proportional to the number of replacements in the  s of the zero scoring voxels by 100%. 

Because the number of zero scoring voxels with the FW-CADIS case that used the three 

algorithms was 9.4 times smaller than the FW-CADIS case that did not use any of the 

algorithms, the real (asymptotic) increase in the MC FOM is expected to be higher than the 

calculated value. The high increase in the MC FOM can significantly reduce the time needed for 

performing such a difficult MC simulation. 

 

7.4 Reliability of ITER prompt dose rate calculation 
 

The large reduction in the size of the WW map of the automatically refined FW-CADIS 

case enabled performing a 460 days MCNP calculation by parallel processing on the computer 

cluster of the UW-Madison Department of Engineering Physics. For this calculation, 87.5% of 

the mesh tally voxels had  s below 10% and the MC scoring occurred in 98.7% of the voxels. 

Figure 7.7 shows the dose rate map on the central plane of the model and on a plane rotated 20° 

from the central plane. 
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Figure 7.7: Dose rate map on central plane and on plane rotated 20° from central plane for 

220 days MCNP runs of ITER prompt dose rate problem with FW-CADIS and three 

algorithms developed in thesis 

 

The effects of the neutrons and photons streaming through the ITER ports on the dose 

rates at the bioshield is described in Ref. [4]. 

To develop confidence in the accuracy of our FW-CADIS calculation, the global MC 

results at four points were compared to the results of two other complementary approaches. The 

four points represent interesting positions inside and outside the bioshield at mid-plane and 

bottom of the tokomak. The positions of the four points used in the validation of the global MC 

calculation are shown in Fig. 7.8. 
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Figure 7.8: Positions of the four points used in validation of ITER prompt dose rate global 

MC calculation 

 

The results of the global MC calculation at these four points were compared to results 

from a MC calculation using four point-detectors at the four positions. The use of the FW-

CADIS method was necessary for this calculation since the computer time required for doing 

such a calculation using conventional MC simulations is too large. Compared to global 

problems, the MC convergence is much faster when the FW-CADIS method is optimizing 

localized tallies. Four point adjoint sources were specified for this calculation, with an energy 

spectrum equal to the flux-to-dose-rate conversion factors in the 46 neutron/21 gamma energy 
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group structure of the multi-group library used in the deterministic calculation. The use of the 

next event estimator of the point-detector tally instead of the track length estimator of the mesh 

tally provided another sort of complementarity between the two calculations. The dose rates at 

these four positions were also compared to the dose rates calculated deterministically in a very 

fine mesh standalone Denovo calculation. This high-performance-computing (HPC) calculation 

was performed on the ORNL supercomputer, Jaguar, using a 1.34 billion cell model. An 

approximate source peaked in the plasma zone and a 46-neutron/21-gamma FENDL2.1 library 

was used for the HPC Denovo calculation for which the input file was created by ADVANTG. 

Table 7.6 shows the dose rates calculated at the four points using the mesh tally, the point-

detectors, and the HPC Denovo calculations. 

 

Table 7.6: Dose rates calculated at four points for ITER global prompt dose rate problem 

 

 

Considering the 13 to 14 orders of magnitude attenuation between the source region and 

points 2 and 4 and the 7 to 8 orders of magnitude attenuation between the source and points 1 

and 3, the global MC results had very good agreement with both the point-detector and the HPC 

Denovo results. The maximum relative difference between the point-detector results and the 

Points
Mesh tally 

(µSv/hr)

Point-detector 

(µSv/hr)

Denovo 

(µSv/hr)

1 1.9×10
7
 ± 7.9% 2.8×10

7
 ± 5.5% 2.2×10

7

2          17  ± 8.6%       15  ± 4.4% 14.2

3 4.2×10
6
 ± 0.9% 5.3×10

6
 ± 2.1% 4×10

6

4       2.7  ± 21.0%     2.3   ± 2.8% 1.8
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global MC results is 42.1% while the maximum relative difference between the global MC 

results and the Denovo results is 32.6%. These differences are also physically expected because 

the global MC results are averaged across cubical mesh cells 10 cm on a side, the Denovo results 

are averaged across cubical mesh cells 2 cm on a side, and the point detector results are not 

averaged. 

 

7.5 Conclusion 
 

The significant increase in the MC efficiency of FW-CADIS simulations due to the use of 

the MM approach, the deterministic mesh refinement algorithm, and the WW coarsening 

algorithm enable the simulation of very difficult shielding problems. When the three algorithms 

were combined, performing an accurate and reliable FW-CADIS calculation of the prompt dose 

rate throughout the entire ITER reactor was feasible using the computer cluster of the UW-

Madison Engineering Physics Department. The results of such calculation agreed at four points 

with a very fine mesh calculation that was performed on the ORNL super-computer, Jaguar. 
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Chapter 8: Summary and future work 
 

8.1 Summary and conclusions 
 

The high efficiency gains provided by the hybrid MC/deterministic techniques CADIS 

and FW-CADIS methods allow the simulations of problems that are very difficult using analog 

MC or traditional MC techniques. Several practical issues arise when the CADIS and FW-

CADIS methods are being used with large and complicated problems. First, the automation of 

the creation of the deterministic input file is necessary because the manual development of these 

files is extremely difficult for such problems. Second, the resolution of the mesh used in the 

deterministic calculation is limited by the availability of computing resources for the 

deterministic calculations and the memory requirements of the MC calculations. Capturing all 

the physical and geometric details is not guaranteed with the coarse meshes of the deterministic 

calculations that traditionally used unsophisticated automatic algorithms for materials 

definitions. Inconsistencies between deterministic and MC models may arise because of 

“missing” important geometric detail during the development of the deterministic models. These 

inconsistencies decrease the MC efficiency and, if severe, they can affect the MC reliability. The 

goal of this thesis was to enhance the efficiency and the reliability of CADIS and FW-CADIS 

simulations of large and complicated shielding problems by minimizing the inconsistencies 

between the deterministic and the MC models. As explained below, the enhanced fidelity of the 

deterministic calculations provided by the three algorithms developed in this thesis increases 

the efficiency and reliability of the CADIS and FW-CADIS simulations without increasing 

their computational time or memory requirements.   
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To increase the fidelity of the deterministic calculation without exceeding the total 

number of mesh cells which determines the computing resources requirements, the MM 

approach and deterministic mesh refinement algorithm were developed.  

The MM approach provides a method for homogenizing the materials of each mesh cell 

in the deterministic models. By providing better mass conservation and decreasing the geometry 

discretization errors, the MM approach was found to increase the accuracy of the deterministic 

calculations without increasing the computational time requirement. The increased accuracy of 

the deterministic solutions increases the efficiency of the MC calculations of CADIS and FW-

CADIS simulations. The MM approach was also used to automatically define the adjoint sources 

for space-dependent responses in CADIS and FW-CADIS simulations.  

For a fixed number of mesh elements, the deterministic mesh refinement algorithm seeks 

an efficient mesh that can minimize the geometry discretization errors, which are inevitable for 

geometrically complex problems. The algorithm takes the guesswork out of developing an 

appropriate, problem-dependent mesh for the deterministic calculations. By increasing the 

fidelity of the deterministic models, the deterministic mesh refinement algorithm was found to 

increase the accuracy of the deterministic solutions and the efficiency of the MC calculations in 

CADIS and FW-CADIS simulations. 

Using finer mesh resolutions is desirable for CADIS and FW-CADIS simulations 

because it reduces both the truncation and the geometry discretization errors of the deterministic 

calculations, and consequently increases the CADIS and FW-CADIS simulation efficiency. Due 

to the one to one correspondence between the deterministic and the WW mesh in CADIS and 

FW-CADIS simulations, the deterministic mesh resolution is not just limited by the availability 
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of computing resources, but also limited by the size of the WW maps developed for the MC 

calculations. The last limitation can be very restrictive with parallel processing because the 

production-level MC codes (e.g. MCNP) depend on the replication of the MC data (geometry, 

cross-sections, WW parameters, etc.). For overcoming this restrictive limitation, a WW 

coarsening algorithm was developed. The WW coarsening algorithm uses a flux weighted 

average of the adjoint fluxes to decouple the space-energy mesh of the WW maps from the mesh 

and energy group structure of the deterministic calculations. This flux weighted average 

conserves the deterministic estimate of the MC particles as represented by the contributon flux, 

which was approximated by the product of the space- and energy- dependent scalar forward and 

adjoint fluxes of each space-energy cell. By conserving the contributon fluxes of the 

deterministic calculations, the weights generated by the adjoint flux collapsing formula are 

controlled by the weights of the collapsed mesh cells with higher fluxes. The flux-weighted 

average of the adjoint fluxes has proved to provide higher MC efficiency than the simple average 

of the adjoint fluxes. The WW coarsening algorithm carefully chooses the space-energy cells that 

get removed to be the cells with the least MC particles flux (contributon flux). This minimizes 

the reduction in the MC FOM that is expected with any averaging scheme. 

The three algorithms were used in calculating the prompt dose rate throughout the entire 

ITER experimental facility. This calculation represents a very challenging shielding problem 

because of the immense size and complexity of the ITER structure and the presence of a 2 m 

bioshield. Compared to a FW-CADIS calculation with the same storage size of the VR 

parameters, the use of the three algorithms increased the regions for which the MC results were 

achieved by 23.3.% and increased the efficiency of the MC calculation by a factor of 3.4 for a 10 

days MCNP calculation. Because of the significant increase in the MC efficiency without any 
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increase in the memory requirement, the use of the three algorithms with FW-CADIS enabled 

the simulation of this difficult shielding problem on a regular computer using parallel processing 

of the MC calculations. The results of the parallel MC calculation agreed at four points with a 

very fine mesh deterministic calculation that was performed on the ORNL super-computer 

Jaguar. 

 

8.2 Topics for future research 
 

Parallelization of the MM approach and using MC ray-tracing capability for calculating 

the MM fractions 

Even when the MM approach was used, the computer time spent in developing the 

deterministic models for the CADIS and FW-CADIS simulations was much smaller than the 

time of the deterministic or the MC calculations for all the test cases in this thesis. Therefore, no 

attempts were made to speed up the MM sampling. When the MM approach was used in the 

deterministic mesh refinement algorithm, reducing the MM parameter was essential for reducing 

the computer time needed for calculating the MM fractions in some problems. 

To reduce the clock-time needed for creating the deterministic models, the MM approach 

can be implemented using parallel processing. This might not require extensive modifications to 

the current implementation in SCALE6.1 and ADVANTG because the MM sampling in each 

mesh cell is independent on the other cells and only requires information about the original 

materials in the MC model. 
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It has been demonstrated that the MC ray-tracing techniques can calculate the MM 

fractions faster and with higher accuracy than the point sampling method used in this thesis [89]. 

Future implementations of the MM approach will heavily depend on the use of the ray-tracing 

techniques especially in the UW-Madison code DAG-MCNP. 

Optimizing the implementations of the deterministic mesh refinement algorithm 

In the current implementation of the deterministic mesh refinement algorithm, the 

position of the inserted planes is restricted to the midpoint of the block with highest block 

heterogeneity parameter. For large blocks, this implementation can create extra cells which 

might not be needed to capture more geometric detail. If each block was queried for the first 

position at which the heterogeneity occurred, the implementation of the deterministic mesh 

refinement algorithm can be enhanced. Since this information will be readily available if the MC 

ray-tracing techniques are used for calculating the MM fractions, the modification might not 

require extensive work if the MC ray-tracing techniques are used instead of the point sampling 

method. 

Deterministic mesh refinement based on cross-sections 

Since the primary goal of the algorithms developed in this thesis is to enhance the 

efficiency and the reliability of modeling large and complicated problems, the savings in both 

human and computer times were crucial in determining the effectiveness of the algorithms. 

Deterministic mesh adaptivity algorithms based on fluxes information were not investigated 

because they require the iterative repetition of the deterministic calculations. Algorithms based 

on macroscopic cross-sections will require the recalculation of the macroscopic cross-section at 

each refinement step. Even though this might not require much more computationally intensive 
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calculations, these algorithms were not investigated because the details involved are beyond the 

scope of this thesis. 

WW coarsening based on true contributon fluxes 

The WW coarsening algorithm implemented in ADVANTG uses the product of the 

energy-dependent scalar flux and the energy-dependent scalar adjoint flux to calculate the 

deterministic estimate of the MC particles flux in each space-energy cell. This approximation can 

only represent the true contributon flux if both the forward and adjoint fluxes were isotropic. 

Quadrature integrals of the angular moments of the forward and adjoint fluxes can be used to 

provide a better approximation of the contributon flux at each space-energy cell. This might be 

needed for using the WW coarsening algorithms problems that have strong particles streaming 

because of the high angular variations in the forward and adjoint fluxes. 
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