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Abstract

The oxygen evolving complex of photosystem II is a tetramanganese complex that catalyzes the oxidation

of water to dioxygen. Many experimental methods have been employed to study this complex, including

a variety of spectroscopic methods. The complexity of the surrounding protein environment challenges re-

liable interpretation of the spectral features and discrimination between changes in the complex and the

many cofactors of photosystem II. We have proposed coherent multidimensional spectroscopy in the mixed

time-/frequency-domain as a strategy for exploring the spectroscopy of this important system. Coherent

multidimensional spectroscopy is performed by the temporal synchronization and spatial overlap of a se-

quence of fields to induce a polarization in the material. The fields induced by polarizations meeting certain

energy- and momentum-criteria are sampled; the intensity of the fields as functions of frequency and time

elucidate the spectral and temporal characteristics of the sample’s quantum states. Here, we describe efforts

to extend the spectroscopy of model transition metal complexes to the femtosecond regime. We present

the implementation of white-light transient absorption and demonstrate our ability to reproduce the spec-

troscopic behavior of manganese (III) tetraphenylporphine with improved time resolution over previously

published results; we discuss the limitations encountered when extending this spectroscopy to homodyne-

detected transient grating methods. We have implemented a strategy for broadband coherent anti-Stokes

Raman spectroscopy, showing the results of these efforts. A theoretical background into the pulse propa-

gation effects in the ultrafast regime of femtosecond spectroscopy has been compiled. We have found these

propagation effects to have profound importance in the tuning and amplification of femtosecond pulses, and

we present the results of simulations exploring how these effects manifest and influence the behavior of a

particular process employed in light generation in a commercial traveling-wave optical parametric amplifier.
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CHAPTER 1

Introduction
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Photosynthesis in algae, cyanobacteria, and plants is a cooperative effort involving an array of proteins.[1, 2]

As an assembly, these proteins accumulate energy from the sun, using this energy to drive a sequence of redox

reactions with the ultimate goal of sequestering carbon in the form of sugars.[2] The conversion of carbon

dioxide to sugar is also accompanied by the four-electron oxidation of water to form dioxygen.[1, 2] This

ensemble of reactions is facilitated by a wide variety of cofactors, including: carotenoids and chlorophylls

that facilitate the transfer of energy; redox active species such as quinones and pheophytins that chaperone

the exchange of charge; and, inorganic cofactors such as chloride and calcium.[2] The amino acids of the

proteins are also understood to contribute in these reactions,[1, 2] and the larger protein environment aids

in stabilizing the charge separation required throughout these processes.[1]

The specificity of photosystem II towards the oxidation of water has attracted significant attention in the

hopes of reproducing its capabilities in synthetic catalysts. Photosystem II’s catalytic center is the oxygen

evolving complex (OEC), an inorganic complex constituting four manganese and one calcium, bridged by

oxygen, and coordinated by various residues.[1, 2] The role of the OEC in photosynthesis is the accumulation

of charge and potential to facilitate the four-electron oxidation of water.[2] The necessary charge and potential

is accumulated during the Kok cycle, a five-state model for the catalytic process of the OEC.[1, 2] Each step

of the Kok cycle is initiated by the absorption of a photon by various light-harvesting proteins; this energy

is transferred to P680 by various chlorophyll and carotenoid cofactors.[2] This energy electronically excites

P680, permitting a series of redox reactions involving cofactors such as pheophytins and quinones and

facilitating charge separation: the electron is chaperoned to photosystem I, while the OEC is the final donor

in a chain of exchanges that replace P680’s lost electron.[2] Donation of this electron oxidizes the OEC,

advancing the catalyst to the next stage of the Kok cycle, which is denoted as a transition from the state Sn

to the state Sn+1.[1, 2] Four sequential oxidations provide the requisite charge and potential for catalysis of

water oxidation.[2]

The OEC is tailored specifically towards the oxidation of water to dioxygen: its potential is such that

oxidation only occurs upon the accumulation of four oxidizing equivalents.[2] This specificity has attracted

significant attention, with many different experimental methods employed towards studying the structure

and function of photosystem II and the OEC. These methods include x-ray absorption,[3–10] fluorescence,[11]

diffraction,[12] and scattering;[13, 14] electron paramagnetic resonance;[6, 15–33] electronic spectroscopy;[34–

56] vibrational spectroscopy;[57–62] and theoretical calculations.[22, 63–75]

However, each of the aforementioned experimental methods has challenges associated with it. X-ray-based

spectroscopies have been shown capable of inducing redox damage to the OEC,[8, 10] raising questions

whether x-ray characterization is truly characterizing the OEC in one of the states of the Kok cycle.[65,
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66] While electron paramagnetic resonance (EPR) provides direct sampling of the manganese cluster, this

method has traditionally been considered to be sensitive only to the S2 state. More recently, EPR spectra

associated with the S0,[19, 28, 29] S1,[21, 26] and S3[20, 21, 32, 76] states have been reported, though some

of these signals require chemical additives in order to be detected.[19, 28–30] Chemical additives and the

removal of certain cofactors can also modify the EPR signature of the different states of the OEC.[15, 21–23]

Care must be taken to account for the changes induced by optical excitation, as near infrared and visible

excitation have been reported to modify various EPR signatures of the OEC;[15–18, 20, 21, 25, 27, 32]

these optically-induced changes are impacted by both temperature and photosystem II source.[18] Finally,

spectroscopic methods - both electronic and vibrational - seek to characterize a complex mixture with many

contributing species. In addition to the protein environment, many of the cofactors of photosystem II have

been shown to exhibit significant spectroscopic contributions, either from changes in redox state or from

changes in the surrounding dielectric environment.[35–38, 40, 46, 48–50, 52, 54–56, 77–84] These changes

in the spectroscopy of the cofactors will also manifest in the difference spectra obtained from advancement

through the Kok cycle,[36, 38, 40, 44, 50, 55, 56, 77, 83] challenging the specific identification of spectral

changes definitively associated with the OEC.[41–43] In order to obtain insights from less complex systems, a

variety of mimics have been synthesized and characterized. Some of these samples are structural mimics,[60,

85–88] while others are intended as functional mimics exhibiting catalytic activity.[89–97] It is not always

obvious that similar electronic states and behaviors are expected from these mimics as are observed from

the OEC, however.

We have proposed the application of coherent multidimensional spectroscopy (CMDS) to the OEC as

a means to improve spectral resolution and specificity. As a multidimensional method, CMDS distributes

the spectral information across multiple dimensions, improving our ability to resolve these features. Signals

derived from coupled quantum states increase the specificity of the method, permitting more reliable as-

signment of the observed spectral features. In the mixed time- and frequency-domain, CMDS is performed

through the temporal synchronization and spatial overlap of multiple ultrafast (picosecond or femtosecond)

pulses. The sample serves as a nonlinear medium, coupling the fields through induced polarizations. The

magnitude of these polarizations scales with the effective nonlinear susceptibility of the material; the sus-

ceptibility may be related to the properties of the quantum states of the sample, exhibiting enhancement

through resonance. The resulting polarizations can either induce changes in one of the excitation fields

through self-heterodyning or may be spatially resolved from the input fields through homodyne-detection.

Spectral and spatial discrimination permit the isolation of contributions from distinct polarizations. Varia-

tion in the relative temporal ordering and the frequencies of the excitation fields permits the characterization
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of the dynamics and lineshapes of the contributing quantum states.[98–100]

Here we describe efforts aimed towards the goal of characterizing the OEC by CMDS, reporting the

implementation of femtosecond electronic spectroscopy of a representative transition metal complex and

broadband coherent anti-Stokes Raman spectroscopy. We have found implementation of CMDS in the fem-

tosecond domain to be complicated by various pulse propagation effects; we describe a theoretical framework

for understanding these effects and their manifestation in light generation. These topics are organized as

follows. In Ch. 2, we provide an overview of the Wright group’s femtosecond laser system and standard

operating procedure; a collection of notes on the maintenance and alignment of the lasers constituting this

system are compiled as a supplement in Appendix A. In Ch. 3, we outline a theoretical framework in which

various pulse propagation effects may be understood, building up from the fundamental behavior of electric

fields and polarizations to detailing the derivation of formulae that explicitly account for the effects of dis-

persion and polarizations on the propagation of ultrafast pulses. We apply this theory in Ch. 4, in which

we attempt to unravel unexpected behavior in the generation of ultrafast pulses within our traveling-wave

optical parametric amplifiers. Finally, Ch. 5 and Ch. 6 present experimental results on the topics men-

tioned previously. In Ch. 5, we describe the setup and implementation of white light transient absorption,

present our ability to reproduce the transient absorption of manganese (III) tetraphenylporphine with better

temporal resolution than previously reported, and discuss the extension of spectroscopy on this complex to

homodyne-detected transient grating. Finally, Ch. 6 details our efforts implementing broadband coherent

anti-Stokes Raman spectroscopy. Appropriate and specific background information on the topics relevant to

Ch. 4, Ch. 5, and Ch. 6 is provided in the introduction to each chapter.
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CHAPTER 2

Equipment
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2.1 Light Generation

Here we will provide a brief description of the design, layout, and operating procedures of the Wright group’s

femtosecond laser system at this time. Throughout this discussion, we will use a tilde (∼) to indicate that the

reported value is approximate: this will alternately be used to indicate that the reported value is an optimum

from which some deviation should be anticipated, or to indicate the actual value is unimportant and we wish

to merely provide an estimate of the average observed under standard operation. The information is derived

from the manuals, interactions with the technicians, or experience maintaining and aligning the equipment.

Detailed descriptions of alignment and maintenance procedures for the lasers will not be provided here;

rather, the notes collected during interactions with the service technician have been digitized and appended

in Appendix A. The reader is advised to consult these notes for details as needed.

The system begins with the Millenia V (Spectra-Physics, Santa Clara). This is a cw laser with a Nd:YVO4

gain medium; the rod is excited by two diode lasers with emission ∼ 809 nm. The 1064 nm lasing of

the Nd:YVO4 undergoes intracavity frequency doubling in a temperature phase matched lithium triborate

crystal. The Millenia V is capable of supplying up to 5.5 W of the resulting 532 nm radiation. Typically, the

Millenia V is set to yield ∼ 4 W to pump the Ti:Al2O3 femtosecond oscillator, the Tsunami (Spectra-Physics,

Santa Clara). The Tsunami oscillates with a repetition rate of ∼ 80 MHz and yields pulses with ∼ 60 nm

FWHM and ∼ 30-35 fs duration. Mode locking can be initiated through an acousto-optic modulator via the

Model 3955 electronics module control; it is believed that mode locking is intended to be sustained through

Kerr lensing, though the acousto-optic modulator can also be used. With ∼ 4 W from the Millenia V, the

output energy of the Tsunami is expected to be ∼ 6 nJ per pulse (∼ 500 mW); typically cw operation yields

slightly higher (∼ 30 mW) power than mode locked operation.

The pulse train from the Tsunami is split (∼ 35%/65%) to seed both the femtosecond (Spitfire Pro XP,

Spectra-Physics, Santa Clara) and the picosecond (Spitfire Ace, Spectra-Physics, Santa Clara) regenerative

amplifiers. The regenerative amplifiers are pumped by Q-switched, Nd:YLF nanosecond lasers (Empower,

Spectra-Physics, Santa Clara). The Empower is a multimode laser with ∼ 5 ns duration. The Nd:YLF rod

is pumped by diodes and lases at 1053 nm. Temperature phase matched lithium triborate is again used

for frequency doubling. The Spitfire is designed to be pumped with 20 W from the Empower; ideally, this

should be attained with ∼ 20 A of current supplied to the diodes. At this time, the Empower pumping the

femtosecond Spitfire Pro XP requires ∼ 22 A to achieve this power: it is believed that the shorting of a diode

clip introduced smoke or debris that is reducing the efficiency of the cavity, and that proper cleaning may

return operation closer to expected specifications. Amplification in the Spitfire is based upon chirped pulse



7

amplification: the pulses from the Tsunami are stretched from ∼ 30-35 fs duration to hundreds of picoseconds

in the stretcher. A pair of Pockels cells isolates single pulses from the Tsunami’s pulse train for amplification;

the isolation of these pulses reduces the repetition rate from ∼ 80 MHz to the repetition rate of the Empower,

which is generally operated at the maximum allowed repetition rate of 1 kHz. Optimum amplification can

usually be achieved with only 10 passes through the rod, though the Spitfire is often operated at 11 passes

for long-term stability; if longer build up times are required, it is advisable to check on the alignment of the

amplifier, as additional passes through the cavity will result in the accumulation of nonlinear chirp. The

Pockels cells also provide the Q-switch to release the amplifier pulse from the cavity. After release from the

cavity, the mode of the amplified pulse is expanded by a telescope prior to recompression. The recompressed

output exhibits a bandwidth of ∼ 35 nm, a duration of ∼ 35-40 fs, and pulse energies of ∼ 4 mJ (∼ 4 W at

the standard 1 kHz repetition rate).

Outside the Spitfire, a sequence of beamsplitters and mirrors split the output (∼ 50%/45%/5%); the

mirrors route the ∼ 50% and ∼ 45% portions to pump two traveling-wave optical parametric amplifiers

(TOPAS-C, Light Conversion, Vilnius, Lithuania). Within each OPA, this pump beam is split 97.5%/2.5%.

The smaller portion is split further (distribution unknown) and used to generate a seed pulse: a temporally

dispersed white light continuum is produced using one fraction, and this continuum is overlapped in a β-

barium borate crystal (BBO, 2.5 mm, θ = 28◦, φ = 0◦) with the other fraction. With proper angle tuning

and delay compensation, the seed is amplified, ideally to yield ∼ 1.5 μJ. The seed is imaged onto a second

BBO (2 mm, θ = 28◦, φ = 0◦), along with the 97.5% fraction of the pump. Optimization of temporal

overlap and phase matching angle result in significant amplification of the seed: the sum of the energies

of the resulting signal and idler may be as high as 700 μJ, though 500-650 μJ appears to be common.

The TOPAS-C incorporates multiple mixer options for upconversion of the signal and idler to frequencies

throughout ultraviolet, visible, and near infrared. The second harmonic of the signal and idler provide

spectral coverage from ∼ 570-800 nm and ∼ 800-1140 nm, respectively. The crystal used to phase match

both second-harmonic generation processes is a 0.3 mm BBO (θ = 23◦, φ = 90◦). Upconversion of signal

and idler by sum-frequency generation with the residual pump provides coverage between ∼ 470-530 nm and

∼ 535-610 nm, respectively. The sum-frequency idler process is generated in the same crystal as second-

harmonic generation (0.3 mm BBO, θ = 23◦, φ = 90◦); signal is upconverted in a different 0.3 mm BBO (θ

= 23◦, φ = 90◦). It is noted here that the sum-frequency process between pump and idler (SFI) has been

observed to yield unusual spectral character; this is the topic of Ch. 4. It is suspected that similar effects

cause the sum-frequency process for signal to also exhibit sub-optimal characteristics, though the features

are more subtle and the necessary characterization has not been performed to date. Though the output is
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weak, the fourth harmonics of signal and idler can also be generated; these processes are phase matched in

a 0.15 mm BBO (θ = 35◦, φ = 90◦) and provide spectral coverage between ∼ 285-400 nm and ∼ 403-480

nm, respectively. Crystals for difference frequency generation have been purchased and tested; they are not

installed on the system at this time.

The TOPAS-C provide two separate tunable colors; for some experiments, including some of those detailed

in later chapters, it is necessary to have a third source available. The third fraction of the fundamental (∼ 5%

of the amplifier output) provides this third color. When used, the beam size is reduced by a Galilean telescope

formed from a f = -50 mm and f ≈ 100 mm lens pair to better match the beam size of the TOPAS-C processes

and to ensure compatibility with the 1” optics on the table.

2.2 Chillers

While the Spitfire rod is thermoelectrically cooled, it still requires an external cooling system. The Millenia

V, Tsunami, and Empower also require the support of chillers. At present, the Millenia V, Tsunami, and

Spitfires (Pro XP and Ace) share a chiller (Neslab Merlin M33), while the Empowers are each connected to a

unique chiller (Polyscience P/N 6360T11SP20C and P/N 6360T11A120C for the femtosecond and picosecond

system Empowers, respectively). Operating temperatures are adjusted to optimize performance of each laser.

The most recent records indicate operating temperatures of 18◦ C, 24.5◦ C, and 21◦ C for Neslab Merlin M33,

the femtosecond Empower Polyscience chiller, and the picosecond Empower Polyscience chiller, respectively.

Maintenance on these chillers should be performed on a six-month cycle, with the procedure adapted from

documentation; parts of this are also available in the dissertation of Nathan Matthew. It has been noted that

Spectra-Physics updates the recommended chiller maintenance procedures from time to time; it is advisable

to consult with Spectra-Physics representatives to be apprised up any changes. The current procedure is

reproduced below for convenience:

• drain the existing chilling fluid. For Polyscience P/N 6360T11SP20C, this is easily done through the

valve installed to the drain outlet on the back of the unit. Neither of the other units have such a valve

installed, and can be drained by various methods, including syphoning and using the chiller’s pump to

drain the fluid. Care should be made to drain the fluid from the hoses and the filter reservoir;

• remove the existing filters;

• reconnect the hoses such that the flow path excludes the lasers, then fill the chillers with Nalco cleaning

solution 460-CCL2567. The change in flow path is necessary to protect the lasers from the cleaning
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solution. As the current hardware for the Polyscience P/N 6360T11SP20C does not support the

exclusion of the femtosecond Empower cavity from the flow path, the usage of cleaning solution has

been skipped in this unit, simply cycling distilled water instead. The chillers should be run as indicated

for at least thirty minutes;

• drain the chillers, flushing the cleaning solution using distilled water. Distilled water should be added

and drained from the chillers until suds are no longer observed. This usually takes a few gallons of

distilled water per chiller, though more may be required;

• with the flow paths still excluding the lasers, fill the chillers with distilled water and cycle for at least

fifteen minutes, then drain. Repeat this step, cycling the fresh distilled water for at least five minutes;

• drain the chillers once more, then reconnect the lasers, ensuring the flow direction is correct. Install

fresh filters and refill the chillers with chilling fluid. All units can be run with distilled water as the

chilling fluid. However, as the chilling fluid flows through the optical path of the Empower, Spectra-

Physics recommends the usage of Nalco inhibitor 460-PCCL104.

Distilled water can be obtained from any source, but cannot be replaced by deionized water: deionization

results in water that is too pure, and the usage of deionized water may cause leeching from the pump.

Cleaning usually requires 8-10 gallons of distilled water. The cleaning solution is Nalco 460-CCL2567. This

can be acquired from Spectra-Physics (P/N 1607-0547), though at the time of the most recent purchase,

it could be purchased directly from Nalco for a lower price. Nalco 460-PCCL104 is the inhibitor solution,

and it is also available from either Spectra-Physics (P/N 1607-0546) or Nalco; usually 1 gallon per chiller

is necessary. The filters depend upon the chiller: the Neslab Merlin M33 uses a single Pentek P5-478 spun

polypropylene filter, while a Harmsco PP-S-1 PolyPleat cartridge has been used in the Polyscience chillers.

2.3 Light Manipulation and Detection

Many of the experiments described later were performed in ways that deviate from the standard methodology

and configuration. Such differences will be described when appropriate. Here, a brief discussion will be

presented on the standard operation at this time.

Following light generation, periscopes based upon reflection at the Brewster angle ensure all processes

from the OPAs are vertically polarized; a 90◦ periscope rotates the polarization of the residual fundamental

from horizontal to vertical. The two OPAs and the residual fundamental permit two- or three-color experi-

ments: for two-color experiments, the output from one OPA is split, yielding a series of interactions labeled
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ω1, ω2, and ω2′ ; for three-color experiments, rather than splitting the OPA, the fundamental is introduced,

yielding interactions ω1, ω2, and ω800. One beam is blocked for transient absorption.

The beams needed for an experiment are routed by a series of mirrors. Three delay lines are available

for temporal synchronization of the pulses: these delay lines are corner-cube retroreflectors mounted on

motorized stages. Commonly, a chopper is introduced to one of the beam lines for background subtraction.

From the delay lines, the beams are aligned to an appropriate mask to satisfy the phase matching for a given

experiment. The table is designed around a standard BOXCARS geometry with angles of ∼ 1◦ into the

sample. This mask is robust for most experiments with a phase matching condition of k4 = k1 − k2 + k2′ ;

a small phase mismatch occurs if the difference between ω1 and ω2 is large (for example, phase matching

within the cw approximation predicts phase mismatch should attenuate the intensity less than ∼ 1% for

λ1 = 495 nm and λ2 = 615 nm). The beams are focused into the sample with a f = 1 m mirror. Signal is

collected, collimated, and focused into a monochromator. A variety of detectors are available for different

frequency regions and different purposes. A homebuilt InGaAs array detector allows increased throughput for

expedited signal tuning. For experiments, an InSb detector and a silicon photodiode are commonly used for

near infrared and visible frequencies, respectively; both detectors are compatible with the same preamplifier.

Photomultiplier tubes are available, but the amplification provided by the current preamplifier’s gain limits

reliable application: the gain of the preamplifier is sufficiently large that preventing saturation of the signal

processing hardware requires operating the PMT with biases significantly below specifications.

The signal from the preamplifier is sampled by a boxcar integrator; synchronization of the integrator

and aforementioned chopper allows active background subtraction. The settings on the boxcar are adjusted

according to the detector and the sensitivity of the experiment. The output from the boxcar is collected

on a National Instrument DAQ card. A LabVIEW program (COLORS) is used to collect the data and

interface with the various hardware components. COLORS includes features that allow: tuning, setting, and

scanning the OPAs; synchronization of the pulses through the motorized delay lines; and, data collection

and processing.

The standard protocol for performing an experiment begins with optimizing light generation. After

aligning the output of the regenerative amplifier into the OPAs, recompression is optimized, generally with

respect to the white light in the TOPAS-C. Further alignment adjustments to the TOPAS-C are made as

needed. The table is aligned according to the appropriate mask for an experiment. Tuning of the signal

process in the OPAs can be completed through an automated routine in COLORS. After confirming the signal

tuning is acceptable, upconversion processes can be tuned as needed: the recommended tuning procedure

is to set the signal to the appropriate color and identify the crystal angle that maximizes the power of
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the upconverted process. Alignment through a pinhole is used to achieve spatial overlap of the modes; the

pinhole is appropriate for the f = 1 m mirror, but it has been found that for shorter focal lengths it can be

more accurate to optimize overlap by eye. Temporal overlap is determined through nonlinear processes in

appropriate media. A sequence that has proven convenient is: find and optimize nonlinear signal in KTP,

which provides a high nonlinearity and less sensitivity to crystal angle but limits temporal resolution due

to available crystal lengths; find and optimize signal in BBO, which enables high temporal resolution due

to its shorter length; and, finally, optimize temporal overlap based upon the nonresonant response of an

organic solvent. Generally, the solvent is matched to the sample that will be studied, but at times it can

be convenient to first find signal in carbon tetrachloride or carbon disulfide due to their high nonlinearities.

Zero delay is determined as a function of frequency to permit automatic delay compensation.
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CHAPTER 3

Theory
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3.1 Description of Electromagnetic Radiation

3.1.1 Light as Electromagnetic Wavesi

In order to apply Maxwell’s equations towards understanding the effects of a medium on the propagation of

ultrafast pulses and the resulting consequences within nonlinear spectroscopic experiments, we will require

both a qualitative and mathematical understanding of light. As we will see in § 3.3, Maxwell’s equations

predict that the propagation of electric and magnetic fields in free space will assume a functional form

consistent with the classical wave equation:

∂2

∂z2
f(z, t) =

1

v2

∂2

∂t2
f(z, t) (3.1.1)

The solutions to the classical wave equation are expected to be wave functions, f(z, t), consistent with some

functional form propagating at a constant phase velocity, v. Within this definition of a wave, it is trivial to

show the functional dependence of f on z and t. For example, let us consider that we have some functional

form corresponding to the wave function at t = 0, f(z, t = 0). If we want to know the functional form of

f(z, t), then we simply have to consider: at time t, how much have we displaced the wave function? For a

velocity of v, this corresponds to z = vt. Therefore, we would anticipate that f(z, t) = f(z ± vt, 0), where

±vt describes displacement of the wave function through propagation in either direction along the z axis.

Since both cases (+vt or by −vt) can be shown to be solutions to Eq. 3.1.1, we can generalize the solution

f(z, t) as their linear combination:[101]

f(z, t) = g(z − vt) + h(z + vt) (3.1.2)

While any function consistent with Eq. 3.1.2 could describe a wave, a common functional form - and one

that will prove a convenient starting point as a description for light - is the sinusoid:ii

f(z, t) = A cos [k(z − vt) + φ] (3.1.3)

Within the functional form of Eq. 3.1.3,iii k is the wavenumber of the sinusoid, describing the angular

iThis section is strongly influenced by Griffiths’ text on electrodynamics.[101]

iiWhile the functional dependence of the sinusoid is given by the cosine function in Eq. 3.1.3, this is functionally equivalent
to the sine function, differing only in the initial phase, φ. However, it is more straightforward to relate the complex wave
function to the cosine function (see Eq. 3.1.13).

iiiNote that in Eq. 3.1.3 we have taken the dependence of f(z, t) upon z and t to be z − vt; we could have just as easily
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frequency of the wave’s spatial oscillations: over a distance of ∆z = 2π/k, the sinusoid completes one cycle.

We can recognize this distance as one period of the wave and assign it to be the wavelength, λ, yielding the

following relationship between the wavelength and the wavenumber:

kλ = 2π (3.1.4)

However, the functional form of Eq. 3.1.3 indicates that changes in time will also cause an evolution of the

wave function, with a characteristic frequency of kv. We can assign this frequency as the angular frequency,

ω, yielding the following relationships between the wavelength (λ), linear frequency (ν), and the velocity (v)

of the wave or between the spatial (k) and angular (ω) frequencies and the velocity of the wave:

v =
ω

k
= νλ (3.1.5)

Finally, φ in Eq. 3.1.3 describes the initial phase of the wave, defining the relative delay of the oscillations.

In addition to predicting wave-like behavior for both electric and magnetic fields, Maxwell’s equations

predict the co-propagation of electric and magnetic fields, yielding electromagnetic radiation: light. The

propagation of each field is consistent with the form in Eq. 3.1.3. We will take the electric and magnetic

fields as plane waves propagating along an arbitrary z-axis. For now, it is sufficient to assume both fields to

be monochromatic - each consisting of a single frequency component - and to behave as plane waves - with

minimal dependence upon the transverse coordinates, taken to be the x- and y-axes.i Within this model,

Maxwell’s equations can provide some insight regarding the manner in which the electric and magnetic

fields will co-propagate. We will identify the key relationships from Maxwell’s equations when appropriate;

otherwise, the reader is directed to § 3.3.2, where the forms of Maxwell’s equations are presented.

First, since Maxwell’s equations describe the behavior of electric and magnetic fields through vector op-

erations, we should assume it is most appropriate to consider the fields as vectors, with separate components

oriented along the x, y, and z axes. We will assume all three components of each field oscillate in phase and

taken as convention that the field propagates in the opposite direction, z + vt. However, the direction of propagation being
z − vt appears to be a common convention.

iThe plane wave limit is cited as a reasonable approximation as long as the radius of curvature is sufficiently larger than
the wavelength of the fields.[101]
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at the same frequency:i

Ẽ(z, t) =


E0x cos(kEz − ωEt+ φE)x̂

E0y cos(kEz − ωEt+ φE)ŷ

E0z cos(kEz − ωEt+ φE)ẑ

 (3.1.6a)

B̃(z, t) =


B0x cos(kBz − ωBt+ φB)x̂

B0y cos(kBz − ωBt+ φB)ŷ

B0z cos(kBz − ωBt+ φB)ẑ

 (3.1.6b)

In Eq. 3.1.6a and 3.1.6b, x̂, ŷ, and ẑ represent the unit vectors aligned with the x-, y-, and z-axis, respectively,

specifying the contribution of each available polarization state to the total field. The magnitude of the

contribution of a given polarization state is described as a sinusoid with an amplitude represented by the

scalar quantities E0x, E0y, E0z, B0x, B0y, and B0z. As mentioned previously, each polarization state of a

given field is presumed to exhibit the same sinusoidal oscillations as functions of z and t. For now, we will

maintain a distinction between the frequencies and phases of the two fields, reflected in the notation kE

versus kB , vE versus vB , and φE versus φB . We will find that this distinction is unnecessary, however, as

Maxwell’s equations predict co-propagation of the electric and magnetic fields with matched frequency and

phase.

The first simplification of Eq. 3.1.6a and 3.1.6b can be made by invoking Gauss’ law and Gauss’ law

of magnetism. In free space, these laws define the divergence of both fields to be zero, i.e. ∇ · Ẽ(r, z, t) =

∇· B̃(r, z, t) = 0. Since the plane wave limit describes both fields propagating along an arbitrary axis (taken

to be the z-axis) without dependence upon the transverse coordinates, the derivative of the x̂-polarized

component of each field with respect to x must be zero; the same must also be true of the derivative of

the ŷ-polarized component with respect to y. Gauss’ laws then leave E0z
∂/∂z cos(kEz − ωEt+ φE) = 0 and

B0z
∂/∂z cos(kBz−ωBt+ φB) = 0. As the derivative of a sinusoid is a sinusoid,ii these relationships can only

iNote that we are introducing a notation consistent with Boyd[102] in which quantities oscillating rapidly (i.e. at optical
frequencies) in time are denoted by a tilde.

iiRecalling ∂/∂x cos(x) = − sin(x) and ∂/∂x sin(x) = cos(x).
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be satisfied if E0z = 0 and B0z = 0. This conclusion allows us to simplify Eq. 3.1.6a and 3.1.6b, yielding:

Ẽ(z, t) =


E0x cos(kEz − ωEt+ φE)x̂

E0y cos(kEz − ωEt+ φE)ŷ

0ẑ

 (3.1.7a)

B̃(z, t) =


B0x cos(kBz − ωBt+ φB)x̂

B0y cos(kBz − ωBt+ φB)ŷ

0ẑ

 (3.1.7b)

From these results, we must conclude that both the electric and magnetic fields are transverse waves, and

can only be polarized perpendicular to the direction of propagation.

The other simplification to Ẽ (z,t) and B̃ (z,t) can be made through either Faraday’s law or Ampere’s law.

In free space, these laws parallel each other: ∇×Ẽ(r, z, t) = −∂/∂tB̃(r, z, t) and∇×B̃(r, z, t) ∝ ∂/∂tẼ(r, z, t).i

Following Faraday’s law (∇× Ẽ(r, z, t) = −∂/∂tB̃(r, z, t)), we can evaluate the expressions on both sides of

the equality (∇× Ẽ(r, z, t) and −∂/∂tB̃(r, z, t)):

∇× Ẽ(z, t) =


E0ykE sin(kEz − ωEt+ φE)x̂

−E0xkE sin(kEz − ωEt+ φE)ŷ

0ẑ

 (3.1.8a)

− ∂

∂t
B̃(z, t) =


−B0xωB sin(kBz − ωBt+ φB)x̂

−B0yωB sin(kBz − ωBt+ φB)ŷ

0ẑ

 (3.1.8b)

Faraday’s law requires the results of Eq. 3.1.8a and 3.1.8b to be equivalent; we therefore end up with the

following pair of equalities:

E0ykE sin(kEz − ωEt+ φE) = −B0xωB sin(kBz − ωBt+ φB)

−E0xkE sin(kEz − ωEt+ φE) = −B0yωB sin(kBz − ωBt+ φB)

(3.1.9)

The equalities of Eq. 3.1.9 informs on two key properties of the co-propagating electric and magnetic fields.

First, comparison of the sinusoidal terms on the opposing sides of each equality necessitates coherence

between the fields: the equalities can only be satisfied if the electric and magnetic fields exhibit the same

iFor now, it is sufficient to leave the relationship of Ampere’s law as a proportionality.
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frequency and phase. With this conclusion, we can divide through both equalities in Eq. 3.1.9 by the

sinusoidal terms, leaving E0y ∝ −B0x and E0x ∝ B0y. It is trivial to show that this pair of relationships is

consistent with:

B̃(z, t) ∝ ẑ× Ẽ(z, t) (3.1.10)

The relationship of Eq. 3.1.10, defining B̃(z, t) by the cross-product of ẑ - the direction of propagation -

and Ẽ(z, t), imposes a requirement on the relative polarization of B̃(z, t) and Ẽ(z, t): not only must both

fields be transverse, but the fields must be perpendicular to each other and satisfy the right-hand-rule with

respect to the direction of propagation.

Despite light constituting both electric and magnetic fields, our current scope is exploring the interaction

of light and matter within the context of optical spectroscopies. The frequencies relevant to such experiments

will generally exclude regimes for which we need to consider interactions between the magnetic field and the

material.[99] Consequently, while experiments for which the material response to the magnetic field needs

to be considered do exist, we will proceed throughout the following sections considering only the electric

field. We will also generally only sample the electric field, and therefore be limited to characterizing the

polarizations of two electric fields relative to each other. Even then, while the relative polarizations of

interacting fields can be important, we will often be able to make approximations permitting the treatment

of the fields as scalar quantities (as we will show in § 3.2.2). Under such assumptions, we can simplify the

system described by Eq. 3.1.7a and 3.1.7b to a single expression:

Ẽ(z, t) = E0(ω) cos(kz − ωt+ φ) (3.1.11)

While Eq. 3.1.11 is consistent with the observed behavior of light and conveniently yields a real-valued

function, the form of the wave equation illustrates that the theoretical treatment of field propagation and

nonlinear interactions will involve differential equations. In such circumstances, trigonometric functions

increase the difficulty in evaluating the relevant expressions. Fortunately, we can make the treatment more

tractable through Euler’s formula (exp(iθ) = cos(θ)+i sin(θ)), which demonstrates that complex exponentials

are also oscillatory and - as linear combinations of solutions to the wave equation - valid descriptions of waves.
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Therefore, we can consider the complex function:i

Ẽ(z, t) = E0(ω)e−i(kz−ωt+φ) (3.1.12)

as a valid representation for the behavior of an electric field. However, though exponentials are more

compatible with differential equations, we still need to ensure that the electric field evaluates to be a real

valued function.[101, 102] Some authors[101] address this by defining the real-valued field as the real part of

the complex exponential, i.e. Ẽ(z, t) = <{E0(ω) exp[−i(kz−ωt+φ)]}; many other authors instead recognize

the relationship:

Ẽ(z, t) ∝ E0(ω)e−i(kz−ωt+φ) + c.c.

∝ E0(ω)e−i(kz−ωt+φ) + E∗0 (ω)ei(kz−ωt+φ)

∝ E0(ω) [cos(kz − ωt+ φ)− i sin(kz − ωt+ φ) + cos(kz − ωt+ φ) + i sin(kz − ωt+ φ)]

∝ E0(ω) cos(kz − ωt+ φ)

(3.1.13)

where c.c. represents the complex conjugate of the complex field, E∗0 (ω) exp[i(kz−ωt+φ)]. In the second step

of the scheme in Eq. 3.1.13, we have assumed E0(ω) = E∗0 (ω): since we have assumed E0(ω) cos(kz−ωt+φ)

is real-valued, E0(ω) must be real-valued and therefore equal to its conjugate. In the scheme in Eq. 3.1.13,

we emphasize the relationship as a proportionality to raise awareness that different authors will scale this

relationship differently: while a coefficient of 1/2 will yield a result that matches Eq. 3.1.11,[103] other

authors use a coefficient of 1 for each exponential.[102] In order to maintain consistency with Boyd,[102]

we will employ the convention that the coefficient of each exponential is 1; when evaluating nonlinear

polarizations (see § 3.2), this will result in degeneracy factors that differ from those of other authors by a

factor of 2.[103, 110]

3.1.2 Polychromatic Electric Fields

Throughout § 3.1.1, we have limited our focus to monochromatic fields - electric fields consisting of a single

frequency. While this is a convenient starting point, it is rarely relevant in laser spectroscopy: even in a

HeNe laser, it is trivial to end up with multiple cavity modes contributing to the output.[105] However, if a

monochromatic field of the form in Eq. 3.1.12 is a valid solution to the relevant wave equation, polychromatic

iNote that we are taking the component with phase exp[−i(kz−ωt+φ)] to be our complex wave function; this selection is
made to ensure compatibility with our adopted mathematical conventions. This is consistent with some authors,[103–105] but
the opposite of others.[99, 101, 102, 106–109]
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fields defined as linear combinations of such monochromatic fields must also be valid solutions to the wave

equation.[101] Such polychromatic fields can be defined as sums in the manner of Eq. 3.1.14:[102, 105, 111]

Ẽ(r, z, t) =
∑
n

Ẽn(r, z, t) + c.c. {n : ωn ≥ 0} (3.1.14)

where Ẽn(r, z, t) is the monochromatic electric field at frequency ωn. This is equivalent to Eq. 3.1.15, where

we have substituted for Ẽn(r, z, t) according to the form in Eq. 3.1.12:

Ẽ(r, z, t) =
∑
n

E0(r, z, ωn)e−i[k(ωn)z−ωnt+φ(ωn)] +E∗0 (r, z, ωn)ei[k(ωn)z−ωnt+φ(ωn)] {n : ωn ≥ 0} (3.1.15)

In Eq. 3.1.14 and 3.1.15, we have introduced the notation r to generalize the transverse coordinates (x,

y); as noted before, we can still treat the fields as plane waves as long as the functional dependence on the

transverse coordinates involves changes at scales significantly larger than the wavelength of the field.[101]

It should also be noted that we have allowed for the possibility that the amplitude, E0(r, z, t), exhibits a

functional dependence upon the spatial coordinates. This will facilitate our treatment of propagation effects

(see § 3.4); we still require the amplitude to be real at this time. We can simplify Eq. 3.1.15 by introducing

a complex amplitude that incorporates the phase factor, exp[−iφ(ω)].[101] Defining this complex amplitude

function, â(r, z, ω):i

â(r, z, ω) = E0(r, z, ω)e−iφ(ω) (3.1.16)

we can simplify Eq. 3.1.15 to yield:

Ẽ(r, z, t) =
∑
n

â(r, z, ωn)e−i[k(ωn)z−ωnt] + â∗(r, z, ωn)ei[k(ωn)z−ωnt] {n : ωn ≥ 0} (3.1.17)

However, we will once again give consideration to mathematical convenience. At the limit in which

the summation in Eq. 3.1.17 is sampled over a continuous range of frequencies,[101–103] this summation

tends towards the equivalent integral over ω. Introducing the appropriate integration factor,ii[112, 113] the

iThe notation of the envelope function as â will be clear when we consider the form of the electric field in the regime of
continuously varying frequencies.

iiThe factor of 2π introduced with the integration factor dω accounts for the variable of integration being angular fre-
quency.[112, 113] We will ultimately show that the integral in Eq. 3.1.18 represents an inverse Fourier transform (see Eq.
3.1.26), and the one-dimensional Fourier transform between time and angular frequency requires this factor of 2π for normal-
ization. While a factor of

√
2π in both the Fourier transform and the inverse Fourier transform would ensure a unitary Fourier

transform,[114] for now we will follow the example of Boyd and account for the normalization constant on the inverse Fourier
transform only.[102]
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summation approaches the limit of an integral with the following form:

Ẽ(r, z, t) =

∫ ∞
0

â(r, z, ω)e−i[k(ω)z−ωt] + â∗(r, z, ω)ei[k(ω)z−ωt] dω

2π
(3.1.18)

Eq. 3.1.18 is consistent with a Laplace transform from the angular frequency domain to a purely imaginary

Fourier domain.[112] This restriction of Eq. 3.1.18 corresponding to a Laplace transform arises from the

bounds of integration: as negative frequencies have no meaning, we can only allow the integral to span

between the bounds of 0 and ∞.[102] One approach in the literature[102] is to invoke the relationship

between k, ω, and v (see Eq. 3.1.5), recognizing that we can define the wavenumber: k = ω/v. With this

definition for the wavenumber, we can consider the conjugate of the complex electric field:

[
â(r, z, ω)e−i[k(ω)z−ωt]

]∗
=
[
â(r, z, ω)e−i[(

ω/v)z−ωt]
]∗

= â∗(r, z, ω)ei[(
ω/v)z−ωt]

= â∗(r, z, ω)e−i[(
(−ω)/v)z−(−ω)t]

(3.1.19)

From this scheme, we see that if we assume â(r, z, ω) is Hermitian, that is we assume the equality â∗(r, z, ω) =

â(r, z,−ω), we can simplify Eq. 3.1.18 by extending the integration to all frequencies - positive and nega-

tive:[102]

Ẽ(r, z, t) =

∫ ∞
−∞

â(r, z, ω)e−i[k(ω)z−ωt] dω

2π
(3.1.20)

Within the form of Eq. 3.1.20, we now ensure the resulting field, Ẽ(r, z, t), is real-valued by allowing the

negative frequencies in the integral to correspond to the conjugate terms of the positive frequency components

according to Eq. 3.1.19.[102]

Unfortunately, this strategy is not robust: previously (see Eq. 3.1.16), we defined the complex amplitude

function, â(r, z, ω), in order to incorporate the phase factor, exp[−iφ(ω)]. As this phase factor is the only

imaginary contribution to â(r, z, ω),i if we assume â(r, z, ω) to be a Hermitian function, we are implicitly

assuming exp[−iφ(−ω)] = exp[iφ(ω)]. This assumption restricts the functional forms of φ(ω) to only those

functions that exhibit odd symmetry. As φ(ω) is not required to be a function with odd symmetry, we must

find an alternative approach to manipulate Eq. 3.1.18.

In contrast to Boyd’s approach of assuming â(r, z, ω) exhibits Hermitian symmetry,[102] we will instead

begin by considering the distribution defined by â(r, z, ω). If we consider that this distribution can be

iRecalling Eq. 3.1.16, the only other contribution to â(r, z, ω) is E0(r, z, ω). We have taken E0(r, z, ω) to represent a scalar
amplitude, thereby requiring it to be real-valued.
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characterized by a distribution around a central frequency, ω0, we can find this characteristic frequency

through the first moment of the distribution in the manner of Brabec and Krausz:[115]

ω0 =

∫∞
0
ω|â(ω)|2dω∫∞

0
|â(ω)|2dω

(3.1.21)

where |â(ω)|2 = â(ω)â∗(ω) = E(ω)E∗(ω) and E(ω) is defined as the Fourier transform of E(t). While

Fourier transformation of E(t) will remove the terms describing the temporal oscillations, E(w) will still

include a complex exponential describing the spatial oscillations. However, the product of E(ω) and its

complex conjugate, E∗(ω), will remove the exponentials, leaving only the amplitude function â(ω), as in Eq.

3.1.21.

Having defined the characteristic carrier frequency, let us now reconsider the form of the continuously

defined electric field from Eq. 3.1.18. As the integral of the sum of two functions is equal to the sum of the

integrals of the same two functions,[116] we can express the integral in Eq. 3.1.18 in the form:

Ẽ(r, z, t) =

∫ ∞
0

â(r, z, ω)e−i[k(ω)z−ωt] dω

2π
+

∫ ∞
0

â∗(r, z, ω)ei[k(ω)z−ωt] dω

2π
(3.1.22)

From Eq. 3.1.22, we will consider two separate substitutions, introducing a new variable of integration, ∆ω.

For the first integral of Eq. 3.1.22, we will consider this variable to be defined ∆ω = ω − ω0, where ω0 is

the carrier frequency determined according to Eq. 3.1.21. Substitution for ∆ω will shift the lower bound of

integration from ω = 0 to ∆ω = −ω0, but the upper bound will remain ∞. As for the integration factor,

since ∂∆ω/∂ω = 1, dω can be directly replaced by d∆ω. For the second integral in Eq. 3.1.22, we will define

∆ω to be ∆ω = ω0 − ω. With this substitution, we will observe the opposite changes in our bounds of

integration: instead of spanning ω = 0 to ω = ∞, substitution according to ∆ω = ω0 − ω will shift the

bounds to span ∆ω = ω0 to ∆ω = −∞. Additionally, since ∂∆ω/∂ω = −1 for this second substitution, the

integration factor dω will need to be replaced by −d∆ω. Recognizing that these substitutions permit the

definition of ω as ω = ω0 + ∆ω for the first integral and ω = ω0 −∆ω for the second, we can proceed with

these substitutions to yield:

Ẽ(r, z, t) =

∫ ∞
−ω0

â(r, z, ω0 + ∆ω)e−i[k(ω0+∆ω)z−(ω0+∆ω)t] d∆ω

2π

+

∫ −∞
ω0

â∗(r, z, ω0 −∆ω)ei[k(ω0−∆ω)z−(ω0−∆ω)t] (−d∆ω)

2π

(3.1.23)

As the integral from ω0 to −∞ just yields the negative value of the integral from −∞ to ω0, we can recall
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our earlier definition of the wavenumber, k = ω/v, permitting the simplification of Eq. 3.1.23 slightly:

Ẽ(r, z, t) = e−ik0zeiω0t

∫ ∞
−ω0

â(r, z, ω0 + ∆ω)e−i(
∆ω/v)zei∆ωt

d∆ω

2π

+ eik0ze−iω0t

∫ ω0

−∞
â∗(r, z, ω0 −∆ω)ei[

(−∆ω)/v]zei∆ωt
d∆ω

2π

(3.1.24)

where k0 = k(ω0) = ω0/v.

From Eq. 3.1.24 we can make two further simplifications. First, if we assume that the behavior of

â(r, z, ω) is such that it does not evaluate to non-zero values beyond the allowed bounds of integration,

i.e. for negative values of ω, there is no functional difference between the integrals in Eq. 3.1.24 spanning

∓ω0 and ±∞ and the same integrals spanning the bounds of −∞ to ∞. Second, let us consider a second

function, Â(r, z,∆ω), that we will define relative to â(r, z, ω) simply by shifting the center of the distribution:

Â(r, z,∆ω) = â(r, z, ω0 + ∆ω). In other words, Â(r, z,∆ω) is a function that exhibits the same functional

behavior as â(r, z, ω), but is centered such that the distribution’s carrier frequency, ω0, serves as the origin

(∆ω = 0). With these two changes, we can modify Eq. 3.1.24 to define the electric field:

Ẽ(r, z, t) = e−ik0zeiω0t

∫ ∞
−∞

Â(r, z,∆ω)e−i(
∆ω/v)zei∆ωt

d∆ω

2π

+ eik0ze−iω0t

∫ ∞
−∞

Â∗(r, z,−∆ω)ei[
(−∆ω)/v]zei∆ωt

d∆ω

2π

(3.1.25)

The forms of the integrals in Eq. 3.1.25 correspond to the inverse Fourier transforms with respect to the

difference frequency, ∆ω.i We can therefore consider Eq. 3.1.25 to be equivalent to:

Ẽ(r, z, t) = e−ik0zeiω0tF−1
{
Â(r, z,∆ω)e−i(

∆ω/v)z
}

+ eik0ze−iω0tF−1
{[
Â(r, z,−∆ω)e−i[

(−∆ω)/v]z
]∗} (3.1.26)

where F−1{} represents the inverse Fourier transform of the term in brackets.

If we define an envelope function A(r, z, t) = F−1{Â(r, z,∆ω) exp[−i(∆ω)/vz]},ii we can use the identity

F−1{f̂∗(−ω)} = f∗(t) [112] to see that Eq. 3.1.26 predicts the behavior of a polychromatic field to be

iNote that the form of our inverse Fourier transforms in Eq. 3.1.25 do not agree with the notation employed by Boyd.[102]
Boyd takes the convention that the inverse Fourier transform is achieved by multiplying the frequency domain function by
exp(−iωt) and integrating over ω. While this convention is consistent with some authors,[113, 117] we will follow the convention
in which the Fourier transform is performed by multiplying the time domain function by exp(−iωt) and the inverse Fourier
transform by multiplying by exp(iωt).[112, 114]

iiWe can simplify the assignment of A(r, z, t) by considering the contributions from exp[−i(∆ω/v)z] to be negligible. We

will generally adopt this approximation going forward, i.e. we will generally consider F{A(r, z, t)} ≈ Â(r, z,∆ω). However,
we will note when it is convenient to relax this approximation. It is also trivial to explicitly account for this additional phase
component numerically in a manner similar to Wang and Wang.[118]
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consistent with that of the time domain envelope, A(r, z, t), propagating with carrier frequency, ω0:

Ẽ(r, z, t) = A(r, z, t)e−i(k0z−ω0t) + c.c. (3.1.27)

Ignoring the factor of 1/2 as previously discussed,[102, 103, 110] this result is identical to the solution reported

by Akhmanov et al.[103] The form of Eq. 3.1.27 suggests that it is satisfactory to consider the propagation

of the complex field, A(r, z, t) exp[−i(k0z − ω0t)], and determine the resulting real-valued field through the

predicted result and its complex conjugate.

Akhmanov et al give some insight into the nature of this pulse envelope A(t). They treat the function as

the product of a real-valued envelope, ρ(t), and a phase factor, exp[iφ(t)]. Within this notation, a transform-

limited pulse can be considered to be characterized by a pulse envelope that is real-valued, and thereby

characterized by a phase dependence of φ(t) = 0. Other functionalities of φ(t) yield different behaviors

associated with the resulting phase-modulation. For example, phase-modulation of the time-domain envelope

according to φ(t) = −(α/2)t2 corresponds to frequency modulation of the form ω(t) − ω0 = dφ(t)/dt = −αt,

yielding a linear chirp.[103]

As we see in the derivation of Eq. 3.1.27, the formation of ultrashort pulses is predicated on forming

polychromatic electric fields. However, not only does pulse formation require many contributing frequencies,

it also requires a fixed phase relation between the various frequency components in order to permit its

characterization as a single pulse envelope. This is demonstrated in Fig. 3.1. This figure illustrates how the

linear combination of various monochromatic fields can introduce a beat pattern in the total field observed,

resulting in a pulse train. More meaningfully, when there is a characteristic distribution applied to the

amplitudes of the monochromatic fields, mode locking by defining a fixed phase relationship between the

different frequency components results in the transformation of this distribution into the time-domain, as

predicted by Eq. 3.1.26. On the other hand, the loss of a phase relation between the different frequency

components prevents a well-defined pulse from forming.

This regime in which the time-dependent behavior of a pulse is adequately described as the product of an

envelope function and a term describing the rapid oscillations at a central or carrier frequency is referred to

as the slowly varying amplitude or envelope approximation. Unfortunately, there is a limit to the conditions

for which this approximation is considered valid: if the pulse envelope is too short relative to the oscillations

at the carrier frequency, it is no longer appropriate to consider the time evolution of the envelope distinct

from the rapid oscillations at the carrier frequency. The limit to this approximation is therefore related to

the pulse width, τ , and the carrier frequency, ω0. However, different authors cite different limits to this



24

regime. Akhmanov et al cite the limiting bounds as τω0 ≈ 20π.[103] On the other hand, Brabec and Krausz

present calculations that suggest the limit may even be as low as τω0 ≈ 2π.[115] For fields in the regime

we commonly work on the Wright group’s femtosecond system (in the visible and near infrared), ω0 is in

the range of 1− 4× 1015 Hz.i According to Akhmanov et al, the shortest pulse lengths at these frequencies

for which the slowly varying envelope approximation would be considered valid are 16-60 fs; by Brabec and

Krausz’s conditions, though, the slowly varying envelope approximation should be reasonable down to pulse

lengths as short as 2-6 fs.[103, 115]

3.2 Polarizations

Throughout § 3.1, we have focused on electromagnetic radiation propagating through free space. In such a

scenario, Maxwell’s equations predict the propagation of electric and magnetic fields to behave perfectly as

a wave: propagating without distortion to the wave function. This behavior is expected as the propagation

predicted by Maxwell’s equations exhibits a functional form consistent with Eq. 3.1.1:ii

∂2

∂z2
Ẽ(r, z, t) =

1

v2

∂2

∂t2
Ẽ(r, z, t) (3.2.1)

However, when light propagates through matter, the field can interact with the dipoles of the material,

perturbing the potential energy of the system according to:[99, 109]

Ṽ = µ · Ẽ (3.2.2)

where µ is the dipole operator, er. As the potential energy defined by Eq. 3.2.2 is of the form of a dot

product, the relative orientation of the dipole and the field polarization is important; we will represent

appropriate quantities as vectors until we note the assumptions that allow us to represent the system with

scalar quantities.

The additional potential energy introduced by the interactions between the dipole and the field can be

iCorresponding to wavelengths between approximately 500 nm and 1500 nm, which covers the bounds of the sum-frequency
signal, sum-frequency idler, second-harmonic signal, second-harmonic idler, and signal processes.

iiA result identical to Eq. 3.2.1 can also be predicted for magnetic fields.
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Figure 3.1: Formation of a polychromatic electric field through summation of monochromatic fields. (A) and
(B) demonstrate the beating that arises in the polychromatic field (B) from the summation of a discrete set
of monochromatic fields (A). The beats in (B) correspond to a pulse train with pulses occurring at points
where all contributing fields are in phase. (C) shows a Gaussian amplitude envelope over a distribution of
frequencies, while (D) shows two scenarios for the phase relation between the different frequency components:
all frequencies have the same initial phase (dashed line), or the frequencies exhibit random phases (solid line).
The polychromatic field resulting from the mode-locked frequencies exhibits the Gaussian temporal profile
in (E): the solid line is the polychromatic field amplitude, and the dashed line outlines the Gaussian profile
predicted by Fourier transformation of the frequency domain envelope in (C), scaled to match the peak of
the solid trace. The randomly phased frequencies yield the polychromatic field in (F).
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treated as a perturbation to the Hamiltonian, H, describing the system:i

H = H0 + Ṽ

= H0 + µ · Ẽ
(3.2.3)

where H0 is the unperturbed Hamiltonian of the system. The effects of this perturbed Hamiltonian are

described by the Liouville equation:

∂

∂t
ρ =

1

ih̄
[H, ρ] (3.2.4)

The resulting density matrix, ρ, permits prediction of the properties of the system, including the expectation

value for the electric polarization induced by the field:

〈P̃〉 = Ntr(ρµ) (3.2.5)

where N is the number density of the source of the dipole and tr is the trace.[99, 109] Going forward, we

will simply express the polarization as P̃.

As we have implied by the notation of P̃, this resulting polarization will exhibit an oscillatory character,

which we can consider to be of the form:[102, 109]

P̃(t) = P(ω)eiωt + c.c. (3.2.6)

where P(ω) is the amplitude of the polarization at the frequency of oscillation, ω. This polarization can couple

to the electric field oscillating at the same frequency, modifying the manner in which the field propagates.

The effect of this induced polarization upon the electric field manifests in the introduction of a new quantity:

the displacement, D̃(t). The displacement describes the coupling of the electric field and induced polarization

according to the relationship:

D̃(t) = ε0Ẽ(t) + P̃(t) (3.2.7)

in the mks system of units, or:

D̃(t) = Ẽ(t) + 4πP̃(t) (3.2.8)

in the cgs or esu systems. In Eq. 3.2.7, ε0 is the permittivity of free space.[101, 102, 109]

Thus far, we have only allowed for linear interactions between the field and the material. However, it is

iNote that an additional perturbation can be introduced corresponding to the interactions that provide relaxation pathways
for the density matrix predicted by the Hamiltonian. Such a relaxation matrix is not explicitly noted in Eq. 3.2.3.
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possible to expand the perturbation to higher terms in the electric field, resulting in a series of higher order

perturbations to the density matrix. The nth-order density matrix, ρ(n), will contribute a corresponding

nth-order polarization, P̃ (n)(t). The total polarization will be the sum of all such resulting polarizations:[109]

P̃(t) = P̃(1)(t) + P̃(2)(t) + P̃(3)(t) + · · ·

= P̃L(t) + P̃NL(t)

(3.2.9)

In the second line of Eq. 3.2.9, we have introduced the notations P̃L(t) and P̃NL(t) to describe the linear

and nonlinear polarizations, respectively: the linear polarization, P̃L(t), corresponds to the first order term,

P̃(1)(t), and the nonlinear polarization, P̃NL(t), generalizes the higher order terms. This reduction will prove

useful going forward: we will show that the linear term describes absorptive and dispersive effects on the

propagation of an ultrashort pulse, while we will generally only need to consider one term from the series

represented by P̃NL(t).

Since the nth-order polarization requires an expansion of the Hamiltonian to provide an nth-order per-

turbation, we can also express the series in Eq. 3.2.9 as an expansion in increasingly higher powers of the

field. This expansion describes the increasingly higher order of interactions between the total field and the

material:[99, 102, 109]

P̃(t) = ε0χ
(1) · Ẽ(t) + ε0χ

(2) : Ẽ2(t) + ε0χ
(3) : Ẽ3(t) + · · · (3.2.10)

in the mks system, or:

P̃(t) = χ(1) · Ẽ(t) + χ(2) : Ẽ2(t) + χ(3) : Ẽ3(t) + · · · (3.2.11)

when the quantities are in cgs or esu units. Note that the : operator in Eq. 3.2.10 and 3.2.11 provides an

operation analogous to the dot product between the tensor, χ(n), and the electric field product, Ẽn(t).[109]

Within the expansions of Eq. 3.2.10 and 3.2.11, the coefficient χ(n) is the nth-order susceptibility. These

susceptibilities are appropriately considered to be (n + 1)th-order tensors. However, we will generally be

able to apply approximations or manipulations that allow us to consider the susceptibility as an effective

scalar value representing a linear combination of the appropriate elements of the tensor as they are sampled

according to the experimental conditions.[102, 106, 119] Under such approximations, it is sufficient to consider

the following alternatives to Eq. 3.2.10 and 3.2.11, in which the relationship between the polarization and
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the field is treated as a scalar relationship:

P̃ (t) = ε0χ
(1)Ẽ(t) + ε0χ

(2)Ẽ2(t) + ε0χ
(3)Ẽ3(t) + · · · (3.2.12a)

P̃ (t) = χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + · · · (3.2.12b)

We will discuss how this can be approached in birefringent media, as well as provide a brief discussion of the

contributions to the susceptibility, in § 3.2.2. However, in the context of later sections, it will be sufficient

to consider the susceptibility at the phenomenological level of Eq. 3.2.10 and 3.2.11, or Eq. 3.2.12a and

3.2.12b.

Unfortunately, the expansion of the polarization into a series in the manner of Eq. 3.2.10 - 3.2.12b

introduces another inconsistency in the treatment of different authors. The forms that have been presented

are consistent with the convention of Boyd,[102] in which the polarization as an expansion of increasing

powers in the electric field is considered to be a time-domain description of the interaction. In contrast, Shen

expands the polarization as increasing powers of the field in the frequency domain.[109] The significance of

this distinction relates to the behavior of multiplication between the time and frequency domains. For two

functions f(t) and g(t) with Fourier transforms F{f(t)} = f̂(ω) and F{g(t)} = ĝ(ω), we can define the

following relationships:[112]

F {f(t)g(t)} =
1

2π
(f̂ ∗ ĝ)(ω) (3.2.13a)

F {(f ∗ g)(t)} = f̂(ω)ĝ(ω) (3.2.13b)

where ∗ denotes the convolution of the functions.i

As can be seen from the relationships of Eq. 3.2.13a and 3.2.13b, Boyd and Shen are implying specific

behaviors in their respective conventions. By taking the expansion of the polarization in powers of the

field as the frequency domain description, Shen imposes behavior in the time-domain corresponding to the

convolution of the fields and the material response, which allows the polarization to exhibit transient behavior

corresponding to relaxation properties in the material.[99, 109] In contrast, Boyd’s treatment describes an

instantaneous response of the medium, with a response - the polarization - that requires the presence of the

electric field to be sustained; such behavior is consistent with a nonresonant interaction, in which the field

iIt should be noted that the factor of 2π in Eq. 3.2.13a is necessary to compensate for the additional normalization
constant that arises from the pair of Fourier transforms necessary to yield f̂ and ĝ. This normalization constant should be
changed according to the normalization convention being taken. Upon a change in normalization convention, it is also necessary
to consider whether a normalization coefficient needs to be introduced to Eq. 3.2.13b.[114]
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is not resulting in the formation of long-lived polarizations. Within this treatment, the polarization must be

able to be defined in the frequency domain as a convolution; this is consistent with Boyd’s treatment of the

polarization for a χ(2) experiment corresponding to the summation:[102]

Pi(ωn + ωm) =
∑
jk

∑
(nm)

χ
(2)
ijk(ωn + ωm, ωn, ωm)Ej(ωn)Ek(ωm) (3.2.14)

where i, j, and k correspond to the available polarization states and the summation over (nm) corresponds

to summing over m and n in such a manner so as to maintain a constant sum, ωn + ωm. Ignoring the

symmetry (the terms corresponding to summation of i, j, and k in Eq. 3.2.14) and extending the summation

to the form of a continuous integral, this is consistent with the convolution:

P (ω) =

∫
χ(2)E(ω′)E(ω − ω′)dω′ (3.2.15)

In contrast to Shen’s approach, this treatment allows us to explicitly consider the permutations resulting from

the frequency content of ultrafast pulses. Since the problems we will be seeking to address predominantly

involve interactions reasonably considered nonresonant, we will adopt Boyd’s convention moving forward.

This convention has also been adopted by a variety of other authors concerned with systems involving both

resonant and nonresonant response from the medium.[120–124]

If we wish adopt this treatment in order to consider fields with a broad frequency distribution, we will

also need to consider the possibility of the polarization exhibiting a frequency distribution. Examining Eq.

3.2.6, it is clear that this mathematical description can be considered to describe a polarization exhibiting

a single frequency, thereby coupling to a monochromatic field. To extend to the scenario in which multiple

frequencies are present, we can treat the polarization defined by Eq. 3.2.6 in a manner similar to our

extension of Eq. 3.1.13 to Eq. 3.1.14 in § 3.1.2, yielding the summation:[102]

P̃ (r, z, t) =
∑
n

P (r, z, ωn)eiωnt + c.c. {n : ωn ≥ 0} (3.2.16)

Note that we have also introduced the spatial dependence (r,z) we previously allowed the field to exhibit

(see Eq. 3.1.15). Given our previous treatment of polychromatic fields, though, we expect that we might

be able to extend this summation in a manner similar to the result of Eq. 3.1.27, allowing us to treat the

polarization as the product of some envelope function, p(r, z, t), and rapid oscillations around the carrier
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frequency:

P̃ (r, z, t) = p(r, z, t)eiω0t + c.c. (3.2.17)

If such a treatment holds, we would predict that the envelope function would contain information on the

frequency distribution in a manner analogous to the field envelope, A(r, z, t):

p̂(r, z,∆ω) = P (r, z, ω0 + ∆ω) (3.2.18)

where P (r, z, ω0 + ∆ω) = P (r, z, ω) is the coefficient in Eq. 3.2.16 and p̂(r, z,∆ω) is defined as the Fourier

transform of p(r, z, t), p̂(r, z,∆ω) = F{p(r, z, t)}.

If we consider a representative nonlinear process, we can show that the form of Eq. 3.2.17 is just a conse-

quence of the pulse-like propagation of ultrafast electric fields, with p(r, z, t) inheriting a form corresponding

to the envelope functions of the driving fields, A(r, z, t). We will show how this might be evaluated for a

representative example - second-harmonic generation - though extending this treatment to other nonlinear

experiments simply requires an appropriate expansion of the total electric field.

In the case of second-harmonic generation, we are concerned with a total electric field consisting of

contributions from two fields: the fundamental, characterized by a carrier frequency ω0 = ω1, and the

second harmonic, which will exhibit a carrier frequency ω0 = ω2 = 2ω1. If we consider these fields to be

defined in a manner consistent with Eq. 3.1.27, we expect the fields to propagate in the manner:

Ẽ1(r, z, t) = A1(r, z, t)e−ik1zeiω1t +A∗1(r, z, t)eik1ze−iω1t (3.2.19a)

Ẽ2(r, z, t) = A2(r, z, t)e−ik2zeiω2t +A∗2(r, z, t)eik2ze−iω2t (3.2.19b)

where Eq. 3.2.19a describes the fundamental field (noted Ẽ1) and Eq. 3.2.19b represents the second-harmonic

field (noted Ẽ2). We can then define the total field, Ẽ:

Ẽ(r, z, t) = Ẽ1(r, z, t) + Ẽ2(r, z, t)

= A1(r, z, t)e−ik1zeiω1t +A∗1(r, z, t)eik1ze−iω1t

+A2(r, z, t)e−ik2zeiω2t +A∗2(r, z, t)eik2ze−iω2t

(3.2.20)

Substituting the total field of Eq. 3.2.20 into the appropriate term of the polarization expansion in Eq.

3.2.12a, P̃ (2)(r, z, t) = ε0χ
(2)(Ẽ(r, z, t))2,i and expanding the quadratic dependence on the total field yields

iNote that the appropriate term from Eq. 3.2.12b, P̃ (2)(r, z, t) = χ(2)(Ẽ(r, z, t))2, would be treated in an identical manner,
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the result of Eq. 3.2.21:

P̃ (2)(r, z, t) = ε0χ
(2)
[
A1(r, z, t)A1(r, z, t)e−i2k1zei2ω1t + 2A1(r, z, t)A2(r, z, t)e−i(k1+k2)zei(ω1+ω2)t

+ 2A1(r, z, t)A∗1(r, z, t) + 2A1(r, z, t)A∗2(r, z, t)ei(k2−k1)ze−i(ω2−ω1)t

+A2(r, z, t)A2(r, z, t)e−i2k2zei2ω2t + 2A2(r, z, t)A∗1(r, z, t)e−i(k2−k1)zei(ω2−ω1)t

+ 2A2(r, z, t)A∗2(r, z, t) +A∗1(r, z, t)A∗1(r, z, t)ei2k1ze−i2ω1t

+2A∗1(r, z, t)A∗2(r, z, t)ei(k1+k2)ze−i(ω1+ω2)t +A∗2(r, z, t)A∗2(r, z, t)ei2k2ze−i2ω2t
]

(3.2.21)

Examining this expression, we observe five frequency contributions: two DC components describing optical

rectification; the second harmonics of ω1 and ω2; the sum frequency, ω1 + ω2; and, the difference frequency,

ω2 − ω1. Considering the oscillatory terms, Eq. 3.2.21 consists of two terms at each frequency that simply

differ in phase; we will consider these terms to reflect four complex polarizations - the terms oscillating

according to exp(iωt) - and their complex conjugates, the inclusion of which ensures the polarization is real

valued. Thus, we can consider the four oscillating polarizations to be of a form analogous to Eq. 3.1.27:

P̃
(2)
(2ω1)(r, z, t) = ε0χ

(2)
[
A1(r, z, t)A1(r, z, t)e−i2k1zei2ω1t + c.c

]
(3.2.22a)

P̃
(2)
(2ω2)(r, z, t) = ε0χ

(2)
[
A2(r, z, t)A2(r, z, t)e−i2k2zei2ω2t + c.c.

]
(3.2.22b)

P̃
(2)
(ω2+ω1)(r, z, t) = 2ε0χ

(2)
[
A1(r, z, t)A2(r, z, t)e−i(k1+k2)zei(ω1+ω2)t + c.c.

]
(3.2.22c)

P̃
(2)
(ω2−ω1)(r, z, t) = 2ε0χ

(2)
[
A2(r, z, t)A∗1(r, z, t)e−i(k2−k1)zei(ω2−ω1)t + c.c

]
(3.2.22d)

Therefore, our assumption in treating the polarization in the manner of Eq. 3.2.17 appears justified. Within

this treatment, we can consider the envelope function of the polarization, p(r, z, t), exhibiting contributions

from: ε0, if appropriate; χ(n), in the general case; an appropriate product of the temporal envelope functions

of the driving fields, A(r, z, t); and, a term describing the cooperation of the wave vectors, k, of the driving

fields. We will see in § 3.4 that coupling between a field and polarization introduces a wave vector associated

with the field, which together with this sum of wave vectors yields a term, ∆k. The quantity ∆k describes

the quality of momentum conservation in the nonlinear process and, under conditions of non-zero ∆k, can

result in a decrease of the efficiency of the nonlinear process (see § 3.2.1)

yielding the same form as the result in Eq. 3.2.21, only omitting the factor of ε0.
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3.2.1 Phase Matching of Nonlinear Experiments

As shown in Eq. 3.2.21 and 3.2.22a - 3.2.22d, the characteristic frequencies of polarizations induced by

an electric field must satisfy energy conservation: namely, the frequency of the polarization - and the field

to which it couples - must correspond to the appropriate sum of the carrier frequencies of the interacting

pulses. For example, the generation of the second harmonic of ω1 (Eq. 3.2.21 and 3.2.22a) must initiate

a polarization at the energy-conserving frequency, ω2 = ω1 + ω1. Similarly, it can be shown that optical

parametric generation/amplification and sum-frequency generation must satisfy the energy conservation

corresponding to ω3 = ω2 + ω1: in optical parametric generation/amplification, ω3, ω2, and ω1 would

correspond to the pump, signal, and idler (assuming ω2 > ω1), while in sum-frequency generation, ω3 would

be the sum frequency generated from ω1 and ω2.

However, Eq. 3.2.21 and 3.2.22a - 3.2.22d illustrate that the interaction of the frequencies in the nonlinear

medium also imposes a momentum upon the induced polarization: for example, the polarization oscillating

at 2ω1 also exhibits spatial oscillations at 2k1. We will see in § 3.4.1 that the field coupling to the polarization

at 2ω1 = ω2 propagates with a dependence upon exp(ik2z)P̃(2ω1).
i Together, the spatial oscillation of the

field, exp(ik2z) and the oscillation of the polarization, exp(−i2k1z), determine the efficiency of the nonlinear

process: when perfect spatial resonance exists between the field and the corresponding polarization,[106]

corresponding to the equality condition k2 = 2k1, enhancement of the field is optimized.[106, 125–129]

This condition of momentum conservation can also be described by the quantity referenced previously, ∆k,

the phase mismatch; in our example of second-harmonic generation, ∆k would be defined as the quantity:

∆k = k2 − 2k1.ii[102, 125, 127]

The phase mismatch, ∆k, can have a wide variety of consequences on nonlinear experiments. Within

the limit of low depletion, it has been shown that the efficiency of the nonlinear process scales according

to sin(∆kL/2)/(∆kL/2) on the amplitude (field) level and sin2(∆kL/2)/(∆kL/2)2 on the intensity level, where L is

the length of the nonlinear crystal; this dependence is also reported as the sinc function, sinc(∆kL/2) or

sinc2(∆kL/2).[99, 102, 130] The fields generated by poorly phase matched processes have also been shown

to exhibit phase modulation,[131, 132] the magnitude of which scales according to ∆kL/2.[132] The final

consequence of the phase mismatch we will mention is the limit imposed upon the phase matching bandwidth

for a given process: the phase matching bandwidth is commonly taken to be the bandwidth over which ∆k is

iIn § 3.4.1 we will actually end up with a result in the frequency domain, such that the evolution of the field at ω2 would
depend upon exp(ik2z)P(2ω1), rather than exp(ik2z)P̃(2ω1). However, within the CW limit upon which this discussion is based,
the distinction between the two is irrelevant.

iiNote that some authors define ∆k as the negative value of the definition here; however, as the notation of Barnes and
Corcoran shows,[125] it is generally the magnitude of ∆k that matters.
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less than π/L.[125, 127] This limit is imposed in both collinear[126, 127, 133] and noncollinear[120, 125, 127,

133–138] geometries. There are a variety of strategies that have been introduced to bypass phase-matching

considerations; these include thin samples[139] and epi-directional detection,[140–142] pulse-shaping[143–

145] to control phase in direct analogy to nuclear magnetic resonance,[144, 145] and high numerical aperture

objectives to introduce a wide angular distribution to the excitation fields.[139, 140, 146–148] Otherwise,

phase matching must be considered in both collinear and noncollinear experiments.[106]

In the collinear geometry, it is sufficient to consider a scalar representation of the phase matching condi-

tion.[106] We will show in § 3.4.1 that the wave vector can be defined k = n(ω)ω/c (Eq. 3.4.14), where n(ω)

is the refractive index of the material at frequency ω. Generalizing our previous example, we could consider

the frequency conversion process ω3 = ω2 + ω1, ω3 ≥ ω2 ≥ ω1. For such a process, the phase matching

condition would take the form k3 = k2 + k1. By our definition of k, we can then frame the momentum con-

servation as n(ω3)ω3 = n(ω2)ω2 +n(ω1)ω1. In the manner of Boyd,[102] we can manipulate this relationship

to show that this momentum conservation relation would require: n(ω3) − n(ω2) = [n(ω1) − n(ω2)](ω1/ω3).

Recognizing ω1/ω3 must always be positive, the only way this equality can hold true is for n(ω3) > n(ω2)

and n(ω1) > n(ω2) or for n(ω3) < n(ω2) and n(ω1) < n(ω2); under our assignment of ω3 ≥ ω2 ≥ ω1, this

condition cannot be satisfied under normal dispersion, for which n(ω) increases monotonically with ω.[102,

106] While anomalous dispersion could permit momentum conservation,[102, 106] its application is not prac-

tical as it would require sufficiently reduced transparency that conversion is inefficient.[106] Instead, the

birefringence of anisotropic materials is generally used as an alternative strategy for satisfying momentum

conservation in collinear geometries.[102, 106]

Anisotropic crystals may be either biaxial or uniaxial.[106] In biaxial crystals, there are three unique re-

fractive indices available, making consideration of effective index and phase matching more complicated.[106]

However, there are a variety of biaxial crystals employed for different frequency conversion processes, such

as bismuth triborate (BiBO),[149–151] lithium triborate (LBO),[152–157], and potassium titanyl phosphate

(KTP).[158, 159] In contrast, uniaxial crystals exhibit only two refractive indices, the ordinary index (no)

and the extraordinary index (ne); the relative values of these refractive indices determine the nature of the

uniaxial crystal: for negative uniaxial crystals, no > ne, while ne > no for positive uniaxial crystals. Many

common uniaxial crystals - including potassium dihydrogen phosphate (KDP),[152, 160–163] β-barium bo-

rate (BBO), lithium niobate,[128, 133, 161, 162, 164, 165] silver gallium sulfide,[106, 166] and silver gallium

selenide[106, 166] - are negative uniaxial crystals; BBO in particular has achieved wide-spread usage due

to its high birefringence, low dependence of index upon temperature,[167] high damage threshold,[167, 168]

low group velocity mismatch, and large nonlinearity.[126, 131, 168] In addition to the broad usage of BBO,
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the behavior of uniaxial crystals is much more straightforward; we will consequently focus our discussion as

related to birefringent media upon uniaxial crystals.

The indices of uniaxial crystals can be described according to the relation between the polarization state

of the field, the wave vector (k) of the field, and the optic axis of the crystal (Z).[106] The orientation of the

wave vector with respect to the crystalline axes is described by two angles: the phase matching angle, θ, is

the angle between the optic axis, Z, and the wave vector, while the azimuthal angle, φ is the angle between

the X-axis of the crystal and the projection of the wave vector in the crystal’s XY plane.[106] The field can

be described as an ordinary or extraordinary beam, meanwhile, based upon the alignment of its polarization

state with the principal plane formed by the optic axis and the wave vector. If the polarization of the field

is perpendicular to this plane, the field is an ordinary beam and experiences the ordinary refractive index,

no. On the other hand, if the polarization of the field is parallel to the principal plane, it is an extraordinary

beam; in contrast to the ordinary polarization, extraordinary beams experience an index that exhibits a

dependence upon θ:

n(θ) = no

√
1 + tan2 θ

1 + (no/ne)2 tan2 θ
(3.2.23)

It should be noted that for uniaxial crystals, the azimuthal angle, φ, does not play a role in phase matching

considerations.[106] This angle is important, however, in determining the symmetry of the crystal’s nonlinear

susceptibility; this is discussed in § 3.2.2.

The dependence of the effective refractive index of an extraordinary beam on θ permits one method of

phase matching, angle tuning. This strategy seeks to optimize θ so as to minimize the phase mismatch

associated with a particular process involving a certain set of frequencies. Due to the monotonic increase

in index with increasing frequency, it is necessary to polarize the fields such that the highest frequency

involved in the process is polarized such that it experiences the lower refractive index of the crystal:[102,

126, 169] in a negative uniaxial crystal, this requires extraordinary polarization for the highest frequency,

while for a positive uniaxial crystal the highest frequency would be an ordinary beam. Phase matching

requires the polarization of at least one of the two lower frequencies to be perpendicular to the polarization

of the highest frequency; however, it is possible to have the two lower frequencies have either parallel (Type

I) or perpendicular (Type II) polarization.[102, 106]

In BBO, these two options each present different advantages and disadvantages. Under parallel polar-

ization, the signal and idler exhibit group velocities that cause both pulses to move away from the pump in

the same direction.[126] As a consequence, Type I phase matching exhibits a finite pulse splitting length:

when the crystal length is extended beyond the pulse splitting length, reduced gain is observed; gain ceases
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when the length of the crystal is approximately twice the pulse splitting length.[170, 171] However, Type I

phase matching also exhibits lower group velocity mismatches than Type II, which together with the higher

effective nonlinearity, yields higher gain.[168, 172] This permits usage of lower pump energies.[173] Type I

also exhibits one disadvantage associated with the lower group velocity mismatches: since the signal and

idler exhibit a lower group velocity mismatch, Type I typically yields significantly greater amplification

bandwidths, particularly when tuned close to degeneracy (ω2 ≈ ω1).[173, 174] Unfortunately, the increased

bandwidth is not accompanied by a decrease in pulse duration, and the generated pulses are generally not

near the transform limit.[175, 176]

In contrast, the perpendicular polarization of signal and idler in Type II phase matching causes the signal

and idler to move in opposite directions with respect to the pump across much of the near infrared.[126, 171,

177] Within this regime, the gain represented by the pump pulse envelope synchronizes the propagation of

the idler and signal pulses: this synchronization causes amplification similar to steady state behavior,[103]

with exponential gain continuing even past the pulse splitting length.[126, 177] The steady state operation

of this process yields consistent bandwidths across the tuning range.[173] While the bandwidths tend to be

smaller than those obtained through Type I phase matching,[126] the pulses generated tend to be closer to the

transform limit.[174, 175] While neither broadening nor gain saturation is expected within this regime,[170]

pump depletion has been reported to have effects on the temporal characteristics of the generated pulses.[168,

171] As noted before, Type II phase matching is possible with either the signal or the idler polarized as an

extraordinary beam; however, polarizing the idler (the lower frequency) parallel to the pump generally proves

more feasible as it requires less birefringence for successful phase matching.[102]

One complication associated with angle tuning is spatial walk-off: due to the birefringence experienced

by extraordinary beams when θ 6= 0◦, 90◦, these beams exhibit a walk-off angle that is dependent upon the

phase matching angle, θ.[102, 106] This walk-off angle describes the relative angle between the wave vector

and the Poynting vector,[106] the direction of flow for the energy density of the wave.[101, 106] This walk-off

reduces the efficiency of the nonlinear process.[102] Temperature tuning is a strategy that has been employed

to overcome this limitation.[102, 126] The strategy is based upon the dependence of refractive index upon

temperature: while maintaining a constant phase matching angle, θ = 90◦, temperature is adjusted to tune

the refractive indices so as to achieve phase matching.[102] By operating at θ = 90◦, walk off is avoided.

This has been demonstrated in crystals such as LBO[153, 155, 170] and KDP.[127]

In contrast to collinear geometries, phase matching in a noncollinear geometry requires consideration

of the directionality associated with the wave vector, k. While this method is implemented in second-

order frequency mixing processes,[125, 129, 152, 154, 171, 178–184] it is also of relevance in four-wave
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mixing processes that access the third-order nonlinear susceptibility. In these third-order experiments, the

BOXCARS geometry - in which the three excitation fields are aligned so as to occupy three of the four corners

of a rectangle - is a common starting point for determining appropriate phase matching conditions.[120,

121, 135, 147, 185–189] Four-wave mixing experiments of this manner can be described according to the

generalized process:

ω4 = c1ω1 + c2ω2 + c3ω3 (3.2.24)

where the set {ci} describes the number and phase of interactions of each field in the experiment. For a

given alignment, each field would have a characteristic wave vector ki; according to the phase matching of

the experiment, these wave vectors would cooperate to yield emission with a wave vector, k′4, satisfying the

equation:

k′4 = c1k1 + c2k2 + c3k4 (3.2.25)

However, the magnitude of k′4 may not necessarily be consistent with a field of frequency ω4. If the frequency

ω4 consistent with the energy conservation condition of Eq. 3.2.24 corresponds to a wave vector magnitude

|k4| = n(ω4)ω4/c, the phase mismatch, ∆k, for the process corresponds to the magnitude of the difference

between k′4 and the projection of k4 on k′4:

∆k =

∣∣∣∣k′4 − |k4|
|k′4|

k′4

∣∣∣∣ (3.2.26)

Proper phase matching can be determined by identifying the angles that minimize the difference on the right

hand side of Eq. 3.2.26. It should be noted that these angles correspond to the internal angles; in order to

consider a mask for external alignment, it is necessary to consider the effects of refraction at the interface of

the sample.

3.2.2 Susceptibilities

As we noted above, we will generally find it sufficient to consider the susceptibilities at the phenomenological

level of Eq. 3.2.10 and 3.2.11. However, in this section we will introduce the various factors that contribute

to the scale of the nonlinear susceptibility, as well as introduce the method of Midwinter and Warner for

reducing the tensor character of uniaxial birefringent materials to an effective nonlinearity.

There are four key factors that contribute to the form of the susceptibility. The first two features we

will discuss can be ascertained from Eq. 3.2.4 and 3.2.5. First, Eq. 3.2.5 illustrates that the nonlinear

susceptibility scales with the number density of the oscillator; this property has a profound impact on the
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contrasting behavior of (self-)heterodyned techniques - in which the signal is proportional to χ(n) - and

homodyne-detected methods - in which the signal is proportional to |χ(n)|2: in the former, the signal scales

as N , while the latter scales as N2. This difference will give differences in the detection level and sensitivity of

heterodyne- and homodyne-detected techniques.[99, 190] Second, 3.2.4 and 3.2.5 illustrate that the nonlinear

susceptibility provides insight into quantum mechanical properties of the oscillator; it is possible to show that

Eq. 3.2.4 and 3.2.5 predict the nonlinear susceptibility to provide insight into the dipole strength, central

frequency, and dephasing rate of the transitions.[99, 102, 109]

The third contribution to the susceptibilities is the local field enhancement factor. While we will generally

know the macroscopic field, Ẽ(t), being applied, the interaction between the field and the material will be

determined by the local field, Ẽloc(t), which will be influenced by induced polarizations. In this context,

if we denote the molecular polarizability, α, we can describe the linear polarization in terms of either the

macroscopic field (Eq. 3.2.27a) or the local field (Eq. 3.2.27b):i

P̃(t) = ε0χ
(1)Ẽ(t) (3.2.27a)

P̃(t) = NαẼloc(t) (3.2.27b)

In the mks system of units, the effect of the polarization on the local electric field in an isotropic medium is

described by the Lorentz model:[107]

Ẽloc(t) = Ẽ(t) +
1

3ε0
P̃(t) (3.2.28)

Note that this contrasts with the Lorentz model for quantities in cgs or esu units:[102, 107, 109]

Ẽloc(t) = Ẽ(t) +
4π

3
P̃(t) (3.2.29)

By requiring the descriptions of the polarization in Eq. 3.2.27a and 3.2.27b to be equivalent, we can introduce

the Lorentz model to yield:

ε0χ
(1)Ẽ(t) = NαẼloc(t)

= Nα

(
Ẽ(t) +

1

3ε0
ε0χ

(1)Ẽ(t)

) (3.2.30)

iNote that the form of Eq. 3.2.27a implies that the forms of these equations are appropriate for a system in which the
quantities are reported in mks units. The following derivation of the local field effect can be reproduced with the appropriate
modifications to describe quantities in cgs or esu units. However, as this derivation is presented by authors such as Boyd, Kittel,
and Shen,[102, 107, 109] we will present the derivation of the appropriate correction for a system described in mks units.
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Combining terms associated with χ(1) allows us to define the susceptibility:

χ(1) =
Nα

ε0 − Nα/3
(3.2.31)

To proceed, we can invoke the definition of the dielectric constant, ε = ε0(1+χ(1)),[101] allowing substitution

for χ(1):

εr − 1 =
Nα

ε0 − Nα/3
(3.2.32)

where εr is the relative permittivity, εr = ε/ε0.[101] If we manipulate Eq. 3.2.32 to isolate a quantity

proportional to Nα, we arrive at the Clausius-Mossotti relation:[107]

εr − 1

εr + 2
=
Nα

3ε0
(3.2.33)

which has the analogous result for cgs/esu units:[102, 107]

ε− 1

ε+ 2
=

4πNα

3
(3.2.34)

with ε defined in the cgs or esu unit systems as ε = 1 + 4πχ(1). From Eq. 3.2.33, we may multiply each side

of the equation by −1, then add 1; the result of these operations can then be shown to yield the relationship:

εr + 2

3ε0
=

1

ε0 − Nα
3

(3.2.35)

Recognizing that Eq. 3.2.31 relates the susceptibility to the product of the quantities Nα and 1/(ε0−Nα/3),

we can substitute according to Eq. 3.2.35 to define the susceptibility:

χ(1) =
εr + 2

3ε0
Nα (3.2.36)

where the term (εr+2)/3ε0 is the local field correction factor. This contrasts with the correction factor appro-

priate for cgs or esu units: (ε+2)/3.[102, 109] However, in most materials, we will be able to relate εr (mks

units) or ε (cgs/esu units) to the complex index of refraction, n̄, according to the relationships:

εr = n̄2 (3.2.37a)

ε = n̄2 (3.2.37b)
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The relationships of Eq. 3.2.37a and 3.2.37b allow us to substitute for the complex index of refraction

in the local field correction factor, yielding factors of (n̄2+2)/3ε0 and (n̄2+2)/3 for mks and cgs/esu units,

respectively.[102, 107]

This analysis can be extended to higher order susceptibilities.[102, 109] However, when this treatment is

extended to consider the form of χ(n), the result exhibits (n + 1) enhancement terms. In other words, the

local field correction factor will assume the form ((n̄2+2)/3ε0)n+1 (mks units) or ((n̄2+2)/3)n+1 (cgs/esu units).

This form arises due to the need to consider the enhancement arising at the frequency of the polarization (1

term) and the enhancement arising at each of the fields contributing to the polarization (n terms).[99, 102,

109]

Finally, the form of the nonlinear susceptibility can provide information regarding the symmetry of the

medium. This behavior is particular pronounced in uniaxial birefringent media, for which it is possible to

derive closed form solutions predicting the symmetry of the effective nonlinear susceptibility for experiments

involving different combinations for the polarization states of the incident fields. The observed symmetry can

have value in characterizing the structure of birefringent materials[191–193] and is an important consideration

in determining the appropriate alignment[194] and efficiency of nonlinear crystals. The symmetry is defined

according to the angles formed between the optical axes (X, Y, and Z) and the wave vectors (k) of the

electric fields.[106, 119, 195] We recall the definitions of the relevant angles (θ and φ) from § 3.2.1: θ reports

the angle between k and Z, while φ characterizes the angle between X and the projection of k on the XY

plane.[106] From these angles, the projections of the field onto each axis, EX, EY, and EZ, can be defined

for ordinary beams:[119] 
EoX

EoY

EoZ

 =


sin(φ)

− cos(φ)

0

Eo (3.2.38)

where Eo is the amplitude of the electric field for the ordinary beam, and for extraordinary beams:[119]


EeX

EeY

EeZ

 =


− cos(θ) cos(φ)

− cos(θ) sin(φ)

sin(θ)

Ee (3.2.39)

where Ee is the amplitude of the electric field for extraordinary beam.i While the symmetry of the tensor

χ(2) is rigorously described by three polarization indices, χ
(2)
ijk,[102, 106] under conditions in which Kleinman

iWe note here that there appears to be an inconsistency in Dmitriev et al. For the effective electric field vectors, Dmitriev
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symmetry is valid, the three dimensional representation of χ
(2)
ijk or dijk = 1/2χ

(2)
ijk can be reduced to a planar

representation. This notation reduces dijk to dil, where l = 1 represents jk = 11 (or jk = XX), l = 2

corresponds to jk = 22 (or jk = YY), l = 3 arises from jk = 33 (or jk = ZZ), l = 4 replaces jk = 23

and jk = 32 (or jk = YZ and jk = ZY), l = 5 is a substitute for jk = 31 or jk = 13 (or jk = XZ and

jk = ZX), and l = 6 derives from jk = 12 or jk = 21 (or jk = YX and jk = XY).[102, 106] In addition

to these substitutions, we also have to redefine Pi = 2dijkEjEk; in the planar representation, the analogous

form is Pi = 2dilE
2
l .[102, 119] Alternatively, we can consider that we are sampling a particular polarization

state, in which case the effective polarization is P = Pi · (2dilE2
l ). Making substitutions in dil appropriate

to Kleinman symmetry, this yields:

P = 2


PX

PY

PZ

 ·

d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14





E2
X

E2
Y

E2
Z

EYEZ + EZEY

EXEZ + EZEX

EXEY + EYEX


(3.2.40)

Population of dil can be achieved according to the the crystal class of the material.

To demonstrate how this might be applied, we will consider the case of BBO. As BBO belongs to the 3m

point group,[106] it exhibits nonzero tensor elements XZX = YZY, XXZ = YYZ, ZXX = ZYY, ZZZ,

YYY = −YXX = −XXY = −XYX.[102] In terms of dil, this corresponds to 15 = 24 (XZX = YZY

and XXZ = YYZ), 31 = 32 (ZXX = ZYY), 33, 22 = −21 = −16 (YYY = −YXX = −XXY =

−XYX).[106] Substituting according to these relationships and considering the two major processes for

et al use the phase:[106]  EoX
EoY
EoZ

 =

 − sin(φ)
cos(φ)

0

Eo
for the ordinary beam, and for the extraordinary beam:[106] EeX

EeY
EeZ

 =

 cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)

Ee
Note that these phases are opposite those employed by Midwinter and Warner.[119] However, the formulae for the effective
nonlinearities of BBO reported by Dmitriev et al are consistent with the notation of Midwinter and Warner, as well as Boyd.[102,
106, 119] At the intensity level, both results will be identical when only the nonlinearity of BBO is relevant - and it should be
noted that Dmitriev et al acknowledge this by reporting only the relative signs of d22 and d31[106] - but this inconsistency bears
mentioning. As it appears to yield results consistent with all other authors,[102, 106, 119] we will adopt the phase reported by
Midwinter and Warner.[119]
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BBO (Type I: e← oo; Type II: e← oe), we can evaluate Eq. 3.2.40 for Type I phase matching:

P = 2


− cos(θ) cos(φ)

− cos(θ) sin(φ)

sin(θ)

 ·


0 0 0 0 d15 −d22

−d22 d22 0 d15 0 0

d15 d15 d33 0 0 0





sin2(φ)

cos2(φ)

0

0

0

−2 cos(φ) sin(φ)


EosigE

o
idl

= 2


− cos(θ) cos(φ)

− cos(θ) sin(φ)

sin(θ)

 ·


2d22 sin(φ) cos(φ)

−d22 sin2(φ) + d22 cos2(φ)

d15

EosigEoidl

= 2[−d22 cos(θ) sin(3φ) + d15 sin(θ)]EosigE
o
idl

(3.2.41)

and for Type II phase matching:

P = 2


− cos(θ) cos(φ)

− cos(θ) sin(φ)

sin(θ)



·


0 0 0 0 d15 −d22

−d22 d22 0 d15 0 0

d15 d15 d33 0 0 0





− cos(θ) cos(φ) sin(φ)

cos(θ) cos(φ) sin(φ)

0

− sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ) cos(2φ)


EosigE

o
idl

= 2


− cos(θ) cos(φ)

− cos(θ) sin(φ)

sin(θ)

 ·


d15 sin(θ) sin(φ)− d22 cos(θ) cos(2φ)

2d22 cos(θ) cos(φ) sin(φ)− d15 sin(θ) cos(φ)

0

EosigEoidl

= 2[d22 cos2(θ) cos(3φ)]EosigE
o
idl

(3.2.42)

Considering the effective polarization to be of the form P = 2deffE
2, we can use the results of the schemes

in Eq. 3.2.41 and 3.2.42 to define deff = d15 sin(θ) − d22 cos(θ) sin(3φ) for Type I phase matching and

deff = d22 cos2(θ) cos(3φ) for Type II phase matching. This latter result is consistent with the published
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formulae for deff for Type II phase matching;[102, 106, 119] for Type I phase matching, we note that

Kleinman symmetry causes d15 = d31,[195] permitting substitution into our result in Eq. 3.2.41 to yield the

more standard form, deff = d31 sin(θ)− d22 cos(θ) sin(3φ).[102, 106, 119]

3.3 Maxwell’s Equations and the Wave Equation

In § 3.1.1, we claimed that Maxwell’s equations predict that the free space propagation of electric and

magnetic fields are consistent with a wave equation of the form Eq. 3.1.1. We also introduced the form of

Maxwell’s equations as they apply to free space in order to explore the expected relationship between the

electric and magnetic fields in light. In the following sections, we will outline the derivation of the wave

equation from Maxwell’s equations with the intention of arriving at a generalized result that can be applied

to systems described in either cgs/esu or mks units. Throughout this section, we will continue to focus

exclusively on the form of these equations as they relate to the electric field; a similar derivation can be

performed to describe the magnetic field.[101] Throughout this section, we will end up alternating between

noting quantities as vector and scalar values, but will explain at the appropriate point in § 3.3.3 why this

is necessary. Various presentations of the wave equation, the final result of the derivation in § 3.3.3, are

presented in § 3.3.1 for convenience.

3.3.1 Wave Equation

As we will show in the succeeding sections, Maxwell’s equations show that the propagation of an electric

field, Ẽ(r, z, t), under the influence of an induced polarization, P̃ (r, z, t), in a medium is predicted:

∇2Ẽ(r, z, t)− ε0µ
∂2

∂t2
Ẽ(r, z, t) = µ

∂2

∂t2
P̃ (r, z, t) (3.3.1)

when Ẽ(r, z, t) and P̃ (r, z, t) are reported in mks units, with ε0 = 8.85×10−12F/m describing the permittivity

of free space and µ describing the permeability of the material. When Ẽ(r, z, t) and P̃ (r, z, t) are represented

by cgs units, the wave equation assumes the form:

∇2Ẽ(r, z, t)− 1

c2
∂2

∂t2
Ẽ(r, z, t) =

4π

c2
∂2

∂t2
P̃ (r, z, t) (3.3.2)

where c is the speed of light. We will also adopt the generalization:

∇2Ẽ(r, z, t)− b2de ∂
2

∂t2
Ẽ(r, z, t) = ab2e

∂2

∂t2
P̃ (r, z, t) (3.3.3)
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where we use a, b, d, and e to stand in for the various constants. In the generalized form of Eq. 3.3.3,

the values of a and b are a = b = 1 for the mks unit system or a = 4π and b = c−1 for cgs and esu units.

Meanwhile, d and e are used to represent the permittivity and permeability: in cgs or esu units, d = e = 1,

while mks units require d = ε0 and e = µ.

In a similar manner to § 3.1, we will generally define a coordinate system such that the field is taken

to propagate along the z direction. Within such a coordinate system, we can consider that ∇2, defined

according to Eq. 3.3.4:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.3.4)

has two key contributions: a term corresponding to the direction of propagation (∂
2
/∂z2), and two terms

corresponding to evolution of the field perpendicular to the direction of propagation (the transverse compo-

nents, ∂
2
/∂x2 and ∂2

/∂y2). As we introduced in § 3.1.2, we will generally not be concerned with differentiating

x from y, and have accordingly been using the generalized transverse coordinate, r. In a similar manner, we

can introduce the operator ∇2
T to generalize the transverse components of ∇2, defining this operator:

∇2
T =

∂2

∂x2
+

∂2

∂y2
(3.3.5)

With this operator, we can simplify Eq. 3.3.3 by splitting ∇2 accordingly:

∇2
TẼ(r, z, t) +

∂2

∂z2
Ẽ(r, z, t)− b2de ∂

2

∂t2
Ẽ(r, z, t) = ab2e

∂2

∂t2
P̃ (r, z, t) (3.3.6)

However, in the limit that the field can be considered to be a plane wave, we do not anticipate the field

exhibiting any dependence upon the transverse coordinates; at this limit, we can assume ∇2
TẼ(z, t) = 0.

This allows us to simplify Eq. 3.3.6 further, yielding:

∂2

∂z2
Ẽ(z, t)− b2de ∂

2

∂t2
Ẽ(z, t) = ab2e

∂2

∂t2
P̃ (z, t) (3.3.7)

3.3.2 Maxwell’s Equations

Here we will briefly list Maxwell’s equations and discuss appropriate assumptions that might be made for

common material systems. The dependence of the wave equation on the different unit systems indicated in

§ 3.3.1 stems from the forms of Maxwell’s equations in each unit system. However, the variables a and b
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allow these equations to be generalized, yielding the forms in Eq. 3.3.8a - 3.3.8d:

∇ · D̃(t) = aρ (3.3.8a)

∇ · B̃(t) = 0 (3.3.8b)

∇× Ẽ(t) = −b ∂
∂t

B̃(t) (3.3.8c)

∇× H̃(t) = abJ̃(t) + b
∂

∂t
D̃(t) (3.3.8d)

As before, we will allow a = 4π and b = c−1 for cgs or esu unit systems, while we will require a = b = 1 for

the mks unit system.

Gauss’ law (Eq. 3.3.8a) relates the changes in the displacement, D̃(t), to the free charges, ρ, in the

medium. Generally, we will be able to assume that the medium contains no free charges (ρ = 0), under

which conditions Gauss’ law reduces to ∇ · D̃(t) = 0. We have previously introduced the displacement (see

§ 3.2), through which we relate the dependence of the propagating field upon polarizations existing in the

medium (see Eq. 3.2.7 and 3.2.8). However, the forms of Eq. 3.2.7 and 3.2.8 illustrate that we will also need

to consider a generalized form for this quantity. This is achieved through our previous assignment of a and

d, a = 4π and d = 1 for cgs and esu units, or a = 1 and d = ε0 for mks units. The introduction of these

generalized constants yields:

D̃(t) = dẼ(t) + aP̃(t) (3.3.9)

While Gauss’ law of magnetism (Eq. 3.3.8b) and Faraday’s law (Eq. 3.3.8c) do not require further

simplification, we will be able to make some modifications to Ampere’s law (Eq. 3.3.8d). First, it will

generally be reasonable to assume the absence of free currents (J̃(t) = 0), leaving:

∇× H̃(t) = b
∂

∂t
D̃(t) (3.3.10)

Second, we will often be able to assume that the medium is nonmagnetic or nearly so (M̃(t) ≈ 0), in which

case the magnetic field, B̃(t), is simply: B̃(t) = e(H̃(t) + M̃(t)) ≈ eH̃(t), where e = 1 for cgs or esu units,

but e = µ for mks units. This then simplifies Ampere’s law to yield:

∇× B̃(t) = be
∂

∂t
D̃(t) (3.3.11)

We will also note that at optical frequencies, we will generally be able to neglect the magnetic response of

the material, permitting the assumption that µ ≈ µ0 when we are concerned with mks units.
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3.3.3 Derivation of the Generalized Wave Equation

An outline of the derivation of Eq. 3.3.3 is given by Boyd[102] for cgs/esu units. Powers [196] demonstrates

how the wave equation would be derived for mks units, but restricts the derivation to the case of the linear

optical response. These derivations are generalized and reproduced below.

We have previously outlined (§ 3.3.2) a handful of approximations and simplifications that we can make

to Maxwell’s equations, Eq. 3.3.8a - 3.3.8d. We start the derivation with Faraday’s law:

∇× Ẽ(t) = −b ∂
∂t

B̃(t) (3.3.12)

and proceed to take the curl (∇×) of both sides. This results in:

∇×∇× Ẽ(t) = −b∇× ∂

∂t
B̃(t) (3.3.13)

However, since the curl only applies to the spatial variables, while the derivative in Eq. 3.3.13 is with respect

to time, we can reverse the order in which these operations are applied:

∇×∇× Ẽ(t) = −b ∂
∂t
∇× B̃(t) (3.3.14)

However, from Eq. 3.3.11, we know ∇× B̃(t) = be∂/∂tD̃(t); therefore, we can substitute for ∇× B̃(t) in Eq.

3.3.14, yielding:

∇×∇× Ẽ(t) = −b ∂
∂t

(
be
∂

∂t
D̃(t)

)
= −b2e ∂

2

∂t2
D̃(t)

(3.3.15)

At this point, it is common to use the identity:

∇×∇× Ẽ(t) = ∇[∇ · Ẽ(t)]−∇2Ẽ(t) (3.3.16)

The advantage gained from this identity is that we have previously indicated that Gauss’ law can generally

be taken to be of the form: ∇ · D̃(t) = 0. Using the fact that D̃(t) is of the form in Eq. 3.3.9, we can

distribute the dot product to yield:[197]

∇ · D̃(t) = d∇ · Ẽ(t) + a∇ · P̃(t) = 0 (3.3.17)
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Since the polarization is a function of the electric field, it is often assumed that the relationship in Eq. 3.3.17

implies that ∇ · Ẽ(t) = 0.[102] This then allows us to reduce ∇×∇× Ẽ(t) to the second term on the right

hand side of Eq. 3.3.16, −∇2Ẽ(t), yielding:

∇2Ẽ(t) = b2e
∂2

∂t2
D̃(t) (3.3.18)

Splitting the displacement according to Eq. 3.3.9 and combining the terms associated with the electric field

then yields the wave equation:

∇2Ẽ(t)− b2de ∂
2

∂t2
Ẽ(t) = ab2e

∂2

∂t2
P̃(t) (3.3.19)

From Eq. 3.3.19, it is trivial to verify our claim that light behaves as a wave in free space: under such

conditions, P̃(t) = 0, leaving only the left hand side. Since the Laplacian operator contains the propagation

and transverse evolution, we have a form of the wave equation in Eq. 3.3.19, with b2de equal to 1/v2. Using

our definitions for these generalized variables (b = 1, d = ε0, and e = µ ≈ µ0, or b = c−1, d = 1, and e = 1),

we can then show that the speed of the wave predicted by Eq. 3.3.19 is c, the speed of light, in both systems

of units.

Lax et al,[108] however, indicate that substitution according to the identity in Eq. 3.3.16 is not necessarily

rigorous if we are are later splitting the Laplacian operator in the manner of Eq. 3.3.6. Rather, they argue

that it is more accurate to consider the separation of the longitudinal and transverse components in Eq.

3.3.15, taking the curl to be (∂/∂z + ∇T)×. They justify this treatment by showing that the form of the

wave equation resulting from applying the identity of Eq. 3.3.16 prior to separating the transverse and

longitudinal components results in an inconsistency in the behavior of polarized fields. In their treatment

- in which they apply the curl as (∂/∂z +∇T)× - it is relatively straightforward, but tedious, to show that

Maxwell’s equations predict a pair of coupled differential equations, one describing transverse propagation

and the other describing longitudinal propagation, of the form:i

∇T

[
∇T · ẼT(t) +

∂

∂z
Ẽz(t)− ik0Ẽz(t)

]
−
[
∇2

T +
∂2

∂z2
− i2k0

∂

∂z
− k2

0

]
ẼT(t) = − 1

c2
∂2

∂t2
D̃

(1)
T (t) (3.3.20a)

∂

∂z

[
∇T · ẼT(t)

]
− ik0∇T · ẼT(t)−∇2

TẼz(t) = − 1

c2
∂2

∂t2
D̃(1)
z (t) (3.3.20b)

iIt should be noted that Lax et al use the convention that the electric field accumulates phase according to exp(ik0z),
rather than exp(−ik0z). The forms of Eq. 3.3.20a and 3.3.20b are derived in a manner appropriate to our convention; these
only differ from the forms presented by Lax et al by the sign of the imaginary terms (substituting ±ik0 by ∓ik0).[108]
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Unfortunately, these coupled differential equations prove difficult to implement, with Lax et al needing

approximations in order to describe the propagation of the TEM00 mode. Additionally, their result does

not exhibit significant deviation from the model predicted by Eq. 3.3.6. Nevertheless, some authors[104]

acknowledge the simplification introduced within the derivation shown above and consider the resulting wave

equation to more accurately serve as a description for the scalar representation of the wave:

∇2Ẽ(t)− b2de ∂
2

∂t2
Ẽ(t) = ab2e

∂2

∂t2
P̃ (t) (3.3.21)

We will adopt this convention proceeding forward.

3.4 Pulse Propagation in Dispersive Media

In this section, we will apply the wave equation (§ 3.3) to describe the effects of propagation on ultrafast

pulses. This section will be divided into four subsections. In the first, we will derive the general treatment

of ultrafast pulse propagation, concluding in the second section in which we consider the ramifications of

the slowly varying amplitude approximation. The third and fourth sections will consider applications of

the general treatment towards two specific scenarios: a description of TEM00 mode propagation, and the

integration of an arbitrary polarization to predict the emitted field.

3.4.1 General Treatment of Pulse Propagation in Dispersive Media

While Akhmanov et al[103] imply a strategy for deriving the results of the following treatment in the time

domain, we will follow the lead of Boyd [102], who appears influenced by Brabec and Krausz,[115] with

a derivation that proceeds mostly in the frequency domain. This approach relies upon (inverse) Fourier

transformation between the time and frequency domains at multiple points during the derivation; this is

done to make the application of different effects mathematically more tractable. While we will generally not

explicitly show the introduction of the exponential and integration associated with these transforms, we will

note when the introduction of the appropriate quantities has ramifications on the result. We will continue

to follow the conventions we introduced previously: normalization required for transformation into and from

the angular frequency domain will be incorporated during inverse Fourier transformation, and we will apply

the exponentials exp(−iωt) and exp(iωt) for Fourier transformation and inverse Fourier transformation,

respectively. The former convention is consistent with Boyd and others,[102, 112–114] while the latter is not

consistent with Boyd,[102] but has precedence from other authors.[112, 114]. These conventions will result in

a deviation from the derivation shown here and the derivation presented by Boyd;[102] we will note the point
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at which the derivations begin deviating significantly. While we will work with general functions to note

the electric field, polarization, and their respective envelope functions, we will assume these functions are

compatible with Fourier transformation.[114] We will also assume the electric field and polarization exhibit

forms compatible with Eq. 3.1.27 and 3.2.17 but will also assume it is sufficient to consider the propagation

of only the complex field and the associated term of the polarization.

We will begin with the result of Eq. 3.3.7: while we will introduce the transverse propagation in later

sections (see § 3.4.3 and § 3.4.4), it is sufficient to consider the following derivation within the plane wave

limit. From Eq. 3.3.7, we will invoke the behavior of Eq. 3.2.9 and split the polarization on the right hand

side into the linear and nonlinear contributions, P̃L(z, t) = P̃ (1)(z, t) and P̃ (NL)(z, t). Substituting the sum

of these terms into Eq. 3.3.7 yields:

∂2

∂z2
Ẽ(z, t)− b2de ∂

2

∂t2
Ẽ(z, t)− ab2e ∂

2

∂t2
P̃ (1)(z, t) = ab2e

∂2

∂t2
P̃NL(z, t) (3.4.1)

In Eq. 3.4.1, we have also subtracted the term in P̃ (1)(z, t) from both sides; the advantage to doing so

is that it allows us to introduce the linear displacement, D̃(1)(z, t). This quantity is defined in a manner

analogous to Eq. 3.3.9, with the exception that the contributing polarization is restricted to the first-order

term, P̃ (1)(z, t), of the series. The generalized form of the linear displacement is then:

D̃(1)(z, t) = dẼ(z, t) + aP̃ (1)(z, t) (3.4.2)

The definition of D̃(1)(z, t) in Eq. 3.4.2 allows us to combine the second and third terms on the left hand

side of Eq. 3.4.1:

∂2

∂z2
Ẽ(z, t)− b2e ∂

2

∂t2
D̃(1)(z, t) = ab2e

∂2

∂t2
P̃NL(z, t) (3.4.3)

In order to understand the convenience of substituting D̃(1)(z, t) into Eq. 3.4.3, it is necessary to introduce

the definition of this quantity. The linear displacement relates the permittivity of the medium, ε, to the

electric field:[101–103]

D̃(1)(z, t) =

∫
ε(t′)Ẽ(t− t′, z)dt′ (3.4.4a)

D(1)(z, ω) = ε(ω)E(ω) (3.4.4b)

where D(1)(z, ω) = F{D̃(1)(z, t)}. Eq. 3.4.4a provides the time-domain description of the linear displace-

ment, and Eq. 3.4.4b is the frequency-domain description. In Eq. 3.4.4a and 3.4.4b, the dependence of



49

the displacement on ε is independent of unit system. However, between unit systems, the permittivity or

dielectric constant itself is defined differently, though it is always related to the linear susceptibility, χ(1):[101,

107]

ε = ε0(1 + χ(1)) (3.4.5a)

ε = 1 + 4πχ(1) (3.4.5b)

In the mks unit system, an additional quantity - the relative permittivity, εr - is also defined, and it is allowed

to be the ratio of ε and ε0, εr = ε/ε0. The relative permittivity (in mks units) and the permittivity (in cgs/esu

units) are significant, as both quantities are generallyi equal to the square of the complex refractive index,

n̄2 (see Eq. 3.2.37a and 3.2.37b).[99, 101, 102, 107]

Based upon the forms of Eq. 3.4.4a and 3.4.4b, it will clearly be easier to apply the effects of linear

displacement in the frequency domain. To achieve this, we can simply multiply both sides of Eq. 3.4.3

by the necessary exponential and integration factor, then integrate. We can determine the result of this

transform by invoking the Fourier relations associated with the derivative:[112]

F{tnf(t)} = (−i)n ∂n

∂ωn
f̂(ω) (3.4.6a)

F{ ∂
n

∂tn
f(t)} = (iω)nf̂(ω) (3.4.6b)

where f(t) is an arbitrary function with F{f(t)} = f̂(ω). With these relationships, we can show the Fourier

transform of Eq. 3.4.3 to be:

∂2

∂z2
E(z, ω) + b2eω2D(1)(z, ω) = −ab2eω2PNL(z, ω) (3.4.7)

where D(1)(z, ω) is defined as before, and E(z, ω) = F{Ẽ(z, t)} and PNL(z, ω) = F{P̃NL(z, t)}. Substituting

for D(1)(z, ω) in Eq. 3.4.7 according to the frequency-domain definition in Eq. 3.4.4b yields Eq. 3.4.8:

∂2

∂z2
E(z, ω) + b2eω2ε(ω)E(z, ω) = −ab2eω2PNL(z, ω) (3.4.8)

We can simplify Eq. 3.4.8 by spending some time considering the constants on both sides of the equation; in

so doing, we can retain generalization, while reducing the number of terms to keep track of. Unfortunately,

iThe caveat is explicitly included here, as the formal definition of the complex refractive index is n̄2 = (εµ)/(ε0µ0). However,
as µ ≈ µ0 in most materials, we can generally allow n̄2 ≈ εr.[101]
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even though we arrive at the same result, we will need to consider the two unit systems (mks and cgs/esu)

separately.

Starting with mks units, we recall that we have defined a = b = 1, d = ε0, and e = µ. Starting with the

coefficient of the second term on the left hand side of Eq. 3.4.8, we can evaluate b2eε(ω) as follows:

b2eε(ω) = µ(ω)ε(ω)

= µr(ω)εr(ω)µ0ε0

=
µr(ω)εr(ω)

c2

=
[n(ω)− iκ(ω)]

2

c2

(3.4.9)

where we have used the relationship ε0µ0 = c−2 between the second and third lines and have directly

introduced n(ω)− iκ(ω)i in place of the complex index of refraction, n̄.[99, 101, 102] Meanwhile, on the right

hand side of Eq. 3.4.8, we have a coefficient of ab2e = µ(ω) ≈ µ0. However, we can proceed further by

recognizing that, when defined in mks units (see Eq. 3.2.10 or 3.2.12a), PNL(z, ω) will contain a factor of

ε0. Therefore, if we define a new quantity, P̄NL(z, ω) = [PNL(z,ω)]/ε0, we can redefine the right hand side of

Eq. 3.4.8 as µ0ε0ω
2P̄NL(z, ω). With both µ0 and ε0, we can use the identity above, µ0ε0 = c−2, to yield a

right hand side of ω
2
/c2P̄NL(z, ω).

On the other hand, when we are in the cgs or esu unit systems, we have defined a = 4π, b = c−1, and

d = e = 1. With these values, we can show that the coefficients b2eε(ω) of the second term on the left hand

side can be simplified:

b2eε(ω) =
ε(ω)

c2

≈ ε(ω)µ(ω)

c2

≈ [n(ω)− iκ(ω)]
2

c2

(3.4.10)

where we have again directly introduced the quantity n − iκ to represent the complex index of refraction.

We note that in the second line of Eq. 3.4.10, we have retained the approximate relation to emphasize

that we assume µ is negligible for most media. Meanwhile, for the right hand side of Eq. 3.4.8, we have

ab2eω2 = (4πω2)/c2. We have seen that we retain a factor of ω2c−2 in mks units, but the factor of 4π is unique

iNote that this definition for the complex index of refraction differs from most sources.[99, 101, 107] However, since we
have taken as our convention that the field accumulates phase as exp(−ikz), it is necessary for the index of refraction and
extinction coefficient to have opposite sign (see Eq. 3.4.13). Though they appear to work strictly with the linear susceptibility,
Akhmanov et al, also treating the phase accumulation of the complex field as exp(−ikz), take the imaginary component of the
susceptibility to be of opposite sign as the real component.[198] Given n̄2 = [n ± iκ]2 = 1 + aχ(1) (a = 4π for cgs/esu units,
and a = 1 for mks units), <{aχ(1)} = (n2 − κ2)− 1 and ={aχ(1)} = ±2nκ (see Eq. 3.4.17). Since n and κ must both be real,
the real and imaginary components of χ(1) will always have opposite signs only for n̄ = ±n∓ iκ.
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to cgs and esu units. However, we can use our new quantity, P̄NL(z, ω), to mask this term by defining

P̄NL(z, ω) in cgs or esu units: P̄NL(z, ω) = 4πPNL(z, ω). This then leaves ω
2
/c2P̄NL(z, ω).

We see then that we can generalize Eq. 3.4.8 to be:

∂2

∂z2
E(z, ω) +

[n(ω)− iκ(ω)]
2
ω2

c2
E(z, ω) = −ω

2

c2
P̄NL(z, ω) (3.4.11)

with the behavior of P̄NL(z, ω) defined to be P̄NL(z, ω) = [PNL(z,ω)]/ε0 in mks units or P̄NL(z, ω) = 4πPNL(z, ω)

in cgs or esu units.

Before continuing, let us consider the nature of the complex index of refraction in Eq. 3.4.9 and 3.4.10.

The quantity consists of a real component, n(ω), and an imaginary component, κ(ω). While the index of

refraction is routinely encountered, the imaginary component, the extinction coefficient, can be related to

more recognizable quantities. To do so, let us consider the propagation of a plane wave in the absence of a

nonlinear polarization. This is consistent with Eq. 3.4.11 when P̄NL = 0:

∂2

∂z2
E(z, ω) = −

(
[n(ω)− iκ(ω)]ω

c

)2

E(z, ω) (3.4.12)

Recognizing Eq. 3.4.12 as a second-order ordinary differential equation, we might consider a trial solution

for E of the form E(z, ω) = E0 exp(−iaz), where a is an arbitrary coefficient. Introducing this trial solution,

we would find that a2 = ([n(ω)−iκ(ω)]ω/c)2, which yields the solution:

E(z, ω) = E0e
−i[(n(ω)ω)/c]ze−[(κ(ω)ω)/c]z (3.4.13)

We can see that the result in Eq. 3.4.13 exhibits two exponential terms: an oscillatory term with a wavenum-

ber k = [n(ω)ω]/c and a term corresponding to exponential decay at a rate of [κ(ω)ω]/c.

Starting with the first term, we can recall our earlier definition of the wave number, k = ω/v (see Eq.

3.1.5). Comparing these expressions, we see that the real part of the complex index of refraction behaves

consistently with the index of refraction: the refraction of the medium reduces the velocity of light relative

to the vacuum, yielding a speed, v(ω) = c/n(ω).[101] This term also allows us to generalize our definition for

the wavenumber of light:

k =
n(ω)ω

c
(3.4.14)

Here we will note that the notation n(ω) explicitly allows for a frequency dependence to the observed index

of refraction.[99]
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In order to describe κ(ω), it will be more convenient to consider the intensity of the solution in Eq.

3.4.13. Generally, the intensity of the electric field is proportional to the square magnitude of the field; the

proportionality constant is either [cn(ω)]/(8π) (in cgs or esu units) or [cε0n(ω)]/2 (in mks units).[99] However, it

is sufficient to identify that the intensity of the field in Eq. 3.4.13 exhibits a spatial dependence:

I(z) ∝ E2
0e
−2[(κ(ω)ω)/c]z (3.4.15)

Comparing the intensity in Eq. 3.4.15 with the Beer-Lambert law, I(z) = I0 exp[−α(ω)z], we can see that

κ(ω) is related to the absorption coefficient. If we set α(ω) equal to the coefficient in Eq. 3.4.15, we can see

that κ(ω) is defined:

κ(ω) =
c

2ω
α(ω) (3.4.16)

where the notation κ(ω) and α(ω) explicitly allow a potential frequency dependence for these quantities.[99]

Applying these insights, let us continue from Eq. 3.4.11. The first thing we will consider is expressing

the coefficient to the second term on the left hand side, [n(ω)−iκ(ω)]2ω2
/c2, in a more convenient manner. If

we evaluate the term [n(ω)− iκ(ω)]2:

[n(ω)− iκ(ω)]
2

= n2(ω)− i2n(ω)κ(ω)− κ2(ω) (3.4.17)

we can see that the coefficient to this term can be evaluated:

[n(ω)− iκ(ω)]
2
ω2

c2
=
ω2

c2
[
n2(ω)− i2n(ω)κ(ω)− κ2(ω)

]
=

[
n(ω)ω

c

]2

− i2
[
n(ω)ω

c

]
κ(ω)ω

c
− κ2(ω)ω2

c2

(3.4.18)

However, we have previously defined the wavenumber, k(ω) = [n(ω)ω]/c (see Eq. 3.4.14), allowing us to

substitute k(ω) for both terms in brackets in Eq. 3.4.18. We can also consider our result for κ(ω) in Eq.

3.4.16. From κ(ω) = c/(2ω)α(ω), we can see that [2κ(ω)ω]/c in the second term of Eq. 3.4.18 is equivalent to

α(ω). Finally, if we assume α(ω) is sufficiently small, we can consider the third term, proportional to α2(ω),

to be negligible relative to the first two terms due to their proportionality to k2(ω) and k(ω). This then

leaves us:

∂2

∂z2
E(z, ω) +

[
k2(ω)− ik(ω)α(ω)

]
E(z, ω) = −ω

2

c2
P̄NL(z, ω) (3.4.19)

From Eq. 3.4.19, we will make two substitutions: first, we will introduce the form of the electric field and
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evaluate ∂2
/∂z2E(z, ω); second, we will consider k(ω) as a Taylor expansion around the carrier frequency,

ω = ω0.

We indicated that we will consider the field to be of the form in Eq. 3.1.27, but consider it sufficient to

track the propagation of the complex field, i.e. Ẽ(z, t) = A(r, t) exp[−i(k0z − ω0t)]. If we take the Fourier

transform of this equation, we find E(z, ω) = Â(z, ω − ω0) exp(−ik0z),[112] consistent with our result in

§ 3.1.2 within the limit that the contribution of exp[−i(∆ω/v)z] is negligible; it will be trivial to relax this

assumption later. If we then evaluate the first term of Eq. 3.4.19, we find the second derivative to yield:

∂2

∂z2
E(z, ω) =

∂

∂z

[
∂

∂z
Â(z,∆ω)e−ik0z

]
=

∂

∂z

[
−ik0Â(z,∆ω)e−ik0z + e−ik0z

∂

∂z
Â(z,∆ω)

]
=

[
(−ik0)2e−ik0z − i2k0e

−ik0z
∂

∂z
+ e−ik0z

∂2

∂z2

]
Â(z,∆ω)

(3.4.20)

where we have re-introduced our variable ∆ω = ω − ω0. We can substitute the result of the scheme in Eq.

3.4.20 into Eq. 3.4.19. Since the evaluation in Eq. 3.4.20 removes the exponential term from the derivatives,

we can also divide through the resulting expression by exp(−ik0z), leaving:

(
∂2

∂z2
− i2k0

∂

∂z

)
Â(z,∆ω) +

[
k2(ω)− k2

0 − ik(ω)α(ω)
]
Â(z,∆ω) = −ω

2

c2
eik0zP̄NL(z, ω) (3.4.21)

Meanwhile, we can define the Taylor series for the function f(x) around x = a by the general formula:[116]

f(x) =

∞∑
n=0

1

n!

∂n

∂xn
f

∣∣∣∣
x=a

(x− a)n (3.4.22)

From the formula of Eq. 3.4.22, we can therefore evaluate k(ω) around ω = ω0 as the sum:

k(ω) = k0 +
∂k(ω)

∂ω

∣∣∣∣
ω=ω0

(ω − ω0) +
1

2

∂2k(ω)

∂ω2

∣∣∣∣
ω=ω0

(ω − ω0)2 + · · · (3.4.23)

We will adopt the notation of Akhmanov et al and note the derivatives as k1 = ∂k(ω)/∂ω|ω=ω0
and k2 =

∂2k(ω)/∂ω2|ω=ω0 ;[103] Boyd uses a similar notation for the first-order derivative, but generalizes the summa-

tion over all higher order terms into a single variable, D.[102] We can also relate these first two derivatives

to meaningful quantities with respect to pulse propagation. The first-order derivative, k1, is defined as the

inverse of the group velocity, ug,[101, 103] while the second-order derivative is the group velocity disper-

sion.[103] The form and behavior of these quantities will be discussed in a later section (see § 3.5).
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The sum of Eq. 3.4.23 permits evaluation of the terms associated with k(ω) in Eq. 3.4.21. We can

apply some approximations to simplify the treatment, though. First, we will assume that the non-zeroth

order terms are sufficiently small that their products with the absorption coefficient are negligible, leaving

k(ω)α(ω) ≈ k0α(ω). Second, we will recognize that the Fourier relationships of derivatives (see Eq. 3.4.6a

and Eq. 3.4.6b) cause terms in (ω−ω0)n to correspond to the derivatives ∂
n
/∂tn; therefore, we will only keep

terms up to the second order in (ω − ω0). Under this second approximation, we can evaluate k2(ω) to be:

k2(ω) = k2
0 + 2k0k1∆ω +

(
k0k2 + k2

1

)
∆ω2 (3.4.24)

where we have again introduced ∆ω in place of (ω − ω0). Introducing these substitutions into Eq. 3.4.21

results in the form:(
∂2

∂z2
− i2k0

∂

∂z

)
Â(z,∆ω) +

[
2k0k1∆ω +

(
k0k2 + k2

1

)
∆ω2 − ik0α(ω)

]
× Â(z,∆ω) = −ω

2

c2
eik0zP̄NL(z, ω)

(3.4.25)

At this point, it is common to invoke the slowly varying amplitude approximation, which assumes the

effects of 2k0
∂/∂z are significantly greater than the effects of ∂

2
/∂z2, allowing us to neglect the second-order

derivative.[102, 103] We will consider the case in which we do not apply this assumption at this point in

§ 3.4.2, but for now we will apply the slowly varying amplitude approximation, leaving:

− i2k0
∂

∂z
Â(z,∆ω) +

[
2k0k1∆ω +

(
k0k2 + k2

1

)
∆ω2 − ik0α(ω)

]
Â(z,∆ω) = −ω

2

c2
eik0zP̄NL(z, ω) (3.4.26)

Unfortunately, within the context of simulating ultrafast propagation, group velocities tend to be suf-

ficiently large that it is not feasible to define a sufficiently conservative grid that accommodates the delay

introduced by the group velocity over practical distances. To overcome this limit, it is convenient to transfer

to a moving coordinate system (ξ, η), defined relative to the laboratory coordinates (z, t) as:

ξ = z (3.4.27a)

η = t± k1rz (3.4.27b)

In Eq. 3.4.27b, k1r is the reciprocal of the reference group velocity, usually taken as the group velocity of one

of the pulses in the simulation; we will show that this form of η results in the reduction of the effective group

velocity of the pulses. The ± in Eq. 3.4.27b generalizes this expression, as the use of different conventions
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may require the sign of the term k1rz to be either positive or negative. We will ultimately end up needing

the negative sign, i.e. η = t− k1rz.

Recalling that terms in ωn correspond to the derivatives ∂
n
/∂tn (see Eq. 3.4.6a and Eq. 3.4.6b), it is clear

from examining Eq. 3.4.26 that migrating to the moving coordinate system (ξ, η) will require us to identify

the operators equivalent to ∂/∂z and ∂/∂t. To do so, let us consider an arbitrary function, f , expressed as

a function of ξ and η: f(ξ(z, t), η(z, t)). We can then use the chain rule to find the derivatives of f with

respect to z and t, informing on the forms of the operators ∂/∂z and ∂/∂t in the moving frame:[116]

∂

∂z
f (ξ(z, t), η(z, t)) =

[
∂

∂z
ξ(z, t)

∂

∂ξ
+

∂

∂z
η(z, t)

∂

∂η

]
f (ξ(z, t), η(z, t)) (3.4.28a)

∂

∂t
f (ξ(z, t), η(z, t)) =

[
∂

∂t
ξ(z, t)

∂

∂ξ
+
∂

∂t
η(z, t)

∂

∂η

]
f (ξ(z, t), η(z, t)) (3.4.28b)

From the forms of Eq. 3.4.27a and 3.4.27b (recalling we will be using the case of −k1rz), it is trivial to

evaluate ∂/∂zξ = 1, ∂/∂zη = −k1r, ∂/∂tξ = 0, and ∂/∂tη = 1. With these derivatives, we can use Eq. 3.4.28a

and 3.4.28b to find ∂/∂z and ∂/∂t in the moving frame:

∂

∂z
=

∂

∂ξ
− k1r

∂

∂η
(3.4.29a)

∂

∂t
=

∂

∂η
(3.4.29b)

In order to bring Eq. 3.4.26 to the moving frame, we will need to return to the time domain. In contrast

to Boyd,[102] however, we will consider the form of the polarization before applying the inverse Fourier

transform. We assumed that the polarization is of the form in Eq. 3.2.17, i.e. ˜̄PNL(z, t) = p̄NL(z, t) exp(iω0t),

where p̄NL(z, t) is an envelope function defined in the same manner as ˜̄PNL(z, t).i In the same manner as the

electric field, the Fourier transform of this yields P̄NL(z, ω) = ˆ̄pNL(z, ω−ω0).[112] Substituting for P̄NL(z, ω)

then allows us to perform the Fourier transform of Eq. 3.4.26 with respect to ∆ω without having to consider

residual exponentials or the expansion of ∂
2
/∂t2 ˜̄PNL(z, t):[102]

[
−i2k0

(
∂

∂z
+ k1

∂

∂t

)
−(k0k2 + k2

1)
∂2

∂t2

]
A(z, t)−F−1

{
ik0α(ω)Â(z,∆ω)

}
=

ω2

c2∆ω2
eik0z

∂2

∂t2
p̄NL(z, t)

(3.4.30)

where the notation of F−1{ik0α(ω)Â(z,∆ω)} denotes the inverse Fourier transform of the term in brackets.

iRecall we have defined P̄NL(z, ω) to be [PNL(z,ω)]/ε0 in mks units and 4πPNL(z, ω) in cgs or esu units. ˜̄PNL(z, t) is the

time domain form of P̄NL(z, ω), i.e. ˜̄PNL(z, t) = F−1{P̄NL(z, ω)}.
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As α(ω) and Â(z,∆ω) both exhibit frequency dependence, the inverse Fourier transform of this term is likely

to correspond to a convolution in the time domain,[112] but the exact form of the result is of no consequence

at this time; it is sufficient to leave this term in the form presented in Eq. 3.4.30.

From Eq. 3.4.30, we can transition to the moving frame. We will substitute for ∂/∂z and ∂/∂t according

to Eq. 3.4.29a and 3.4.29b and can directly replace dependence upon z for dependence upon ξ. Since η is

only shifted relative to t, we will also assume that A(z, t) and p̄NL can be mapped directly onto η. Making

these substitutions and combining like terms yields:

[
−i2k0

(
∂

∂ξ
+ (k1 − k1r)

∂

∂η

)
−(k0k2 + k2

1)
∂2

∂η2

]
A(ξ, η)−F−1

{
ik0α(ω)Â(ξ,∆ω)

}
=

ω2

c2∆ω2
eik0ξ

∂2

∂η2
p̄NL(ξ, η)

(3.4.31)

The form of Eq. 3.4.31 is not of great utility: it is not feasible to apply the effects of group velocity

dispersion in the time domain in simulations.[118, 199–201] Therefore, we will need to return to the frequency

domain by performing the Fourier transform of Eq. 3.4.31 with respect to the reduced frequency, ∆ω,

yielding:

[
−i2k0

(
∂

∂ξ
+ i∆ω (k1 − k1r)

)
+
(
k0k2 + k2

1

)
∆ω2 − ik0α(ω)

]
Â(ξ,∆ω) = −ω

2

c2
eik0ξ ˆ̄pNL(ξ,∆ω) (3.4.32)

Rearranging the result in Eq. 3.4.32:

∂

∂ξ
Â(ξ,∆ω) =

[
−i∆ω (k1 − k1r)− i

1

2
∆ω2

(
k2 +

k2
1

k0

)
− 1

2
α(ω)

]
Â(ξ,∆ω)

− i ω2

2c2k0
eik0ξ ˆ̄pNL(ξ,∆ω)

(3.4.33)

Finally, from Eq. 3.4.33, it is possible to address a couple approximations:

∂

∂ξ
Â(ξ,∆ω) =

[
−i∆ω (k1 − k1r)− i

1

2
∆ω2k2 −

1

2
α(ω)

]
Â(ξ,∆ω)− i ω2

2c2k0
eik(ω)ξ ˆ̄pNL(ξ,∆ω) (3.4.34)

The first approximation we introduce in Eq. 3.4.34 is that k2
1 will be small relative to k0, allowing us to

neglect this term; while it is possible that close to the limit of the slowly varying amplitude approximation,

the contribution from ∆ω2 may weaken this assumption, it should generally be reasonable.[103] The second

change in Eq. 3.4.34 is that we have recognized that F{A(ξ, t)} = Â(ξ,∆ω) exp[−i(∆ω/v)ξ]. Throughout

the derivation, it was sufficient to mask the contribution of the exponential within the envelope function,

Â(z,∆ω); in Eq. 3.4.34, however, we have reintroduced this contribution explicitly: if we assume ∆ω is
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sufficiently small, the expansion of ∂/∂ξÂ(ξ,∆ω) exp[−i(∆ω/v)ξ] according to the product rule will be ap-

proximately exp[−i(∆ω/v)ξ]∂/∂ξÂ(ξ,∆ω). Dividing through the result by exp[−i(∆ω/v)ξ] yields exp[i(∆ω/v)ξ]

on the right hand side; combining this term with exp(ik0ξ) yields the exponential exp[ik(ω)ξ] (see Eq.

3.1.24).

3.4.2 Relaxing the Slowly Varying Amplitude Approximation

In § 3.4.1, we traced through the derivation of treating pulse propagation effects, but introduced the slowly

varying amplitude approximation prior to shifting to the moving frame. This neglects the term in ∂2
/∂z2;

as ∂/∂z includes two contributions (see Eq. 3.4.29a), it should be expected that retaining this term into the

moving frame will impact the resulting differential equation. We will apply this treatment here.

Starting from Eq. 3.4.25, we will directly shift this expression to the moving frame using Eq. 3.4.29a

and 3.4.29b. As before, we will need to begin by performing an inverse Fourier transform to take Eq. 3.4.25

into the time domain. Substituting for ˆ̄p(z,∆ω) and performing this transformation yields a result similar

to Eq. 3.4.30, only retaining the term associated with ∂2
/∂z2:

[
∂2

∂z2
− i2k0

(
∂

∂z
+ k1

∂

∂t

)
− (k0k2 + k2

1)
∂2

∂t2

]
A(z, t)−F−1

{
ik0α(ω)Â(z,∆ω)

}
=

ω2

c2∆ω2
eik0z

∂2

∂t2
p̄NL(z, t)

(3.4.35)

Much like Eq. 3.4.30, we have left the term associated with absorption noted as simply the inverse Fourier

transformation of the term in brackets, F−1{}, for simplicity.

We can now substitute according to Eq. 3.4.29a and 3.4.29b, yielding:

[
∂2

∂ξ2
− 2k1r

∂

∂ξ

∂

∂η
− i2k0

(
∂

∂ξ
+ (k1 − k1r)

∂

∂η

)
−
(
k0k2 + (k2

1 − k2
1r)
) ∂2

∂η2

]
A(ξ, η)

−F−1
{
ik0α(ω)Â(ξ,∆ω)

}
=

ω2

c2∆ω2
eik0ξ

∂2

∂η2
p̄NL(ξ, η)

(3.4.36)

Performing the Fourier transform on Eq. 3.4.36 to return to the frequency domain yields:

[
∂2

∂ξ2
−i2

[
(k0 + k1r∆ω)

∂

∂ξ
+ ik0∆ω(k1 − k1r)

]
+ (k0k2 + (k2

1 − k2
1r))∆ω

2

]
Â(ξ,∆ω)− ik0α(ω)

× Â(ξ,∆ω) = −ω
2

c2
eik0ξ ˆ̄p(ξ,∆ω)

(3.4.37)

From Eq. 3.4.37, we could take two approaches. The first would be to rearrange Eq. 3.4.37 in the manner of a

second-order differential equation; though more difficult to evaluate numerically than a first-order differential
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equation, it is still possible to arrive at a solution (see § 3.6).

Alternatively, it would also be possible to delay making the slowly varying amplitude approximation, only

ignoring the second-order derivative after transferring to the moving frame. Eq. 3.4.38 shows the analogous

expression to Eq. 3.4.34 within this treatment:

∂

∂ξ
Â(ξ,∆ω) =

[
−i k0

k0 + k1r∆ω
∆ω(k1 − k1r)− i

1

2

k0

k0 + k1r∆ω
k2∆ω2 − 1

2

k0

k0 + k1r∆ω
α(ω)

]
× Â(ξ,∆ω)− i ω2

2(k0 + k1r∆ω)c2
eik(ω)ξ ˆ̄p(ξ,∆ω)

(3.4.38)

where we have assumed the term associated with (k2
1 − k2

1r) is negligible when divided by (k0 + k1r∆ω) and

have reintroduced the term exp[−i(∆ω/v)ξ]. Comparing Eq. 3.4.38 to the earlier equation, Eq. 3.4.34, we

see that this treatment retains the first order term of the Taylor expansion of k(ω) (see Eq. 3.4.23) when

considering the derivative of the field. At the limit of narrow bandwidth pulses, the contributions of the

first-order term (k1r∆ω) are negligible, and Eq. 3.4.38 approaches the same limiting behavior as Eq. 3.4.34.

However, this first-order term in Eq. 3.4.38 allows for the deviation from the limiting behavior predicted by

Eq. 3.4.34 as the pulse bandwidth broadens.

3.4.3 The Propagation of Pulsed Gaussian Beams

In § 3.4.1, we considered the effects of a medium upon the propagation of a pulsed electric field within the

plane wave limit. The standard model for a TEM00 mode arises from treating the field as a distortion to

the plane wave limit,[104, 105] imposing the transverse coordinate dependence demonstrated by the TEM00

mode. In this section, we will extend the treatments of Svelto[104] and Verdeyen[105] to account for the

propagation effects of a medium upon a TEM00 mode.

Starting from the plane wave limit, i.e. E(z) = E0e
−ik0z,i Verdeyen and Svelto consider TEM00 mode

propagation to reflect a functional distortion describing the transverse dependence exhibited by the field:

whereas Svelto considers the distortion to reflect a spatially-dependent amplitude, U(r, z), in place of the

constant E0,[104] Verdeyen treats the distortion as a function, ψ(r, z), with the full field defined E(z) =

E0ψ(r, z) exp(−ik0z).[105] For clarity, we will adopt the style of Verdeyen; in this manner, we will assume we

can consider the total field in a manner similar to Eq. 3.1.27, consisting of a frequency- or time-dependent

envelope and oscillations at the carrier frequency, but with an additional function describing the distortion

to the plane wave. However, as we will be incorporating dispersive effects into this distortion, we will not be

iSvelto and Verdeyen both treat the electric field amplitude as a scalar and consider propagation at the limit that the field
is monochromatic.[104, 105] We will retain the previous approximation as noted in § 3.3.3, but will extend the treatment of
TEM00 mode propagation within the behavior of a pulsed electric field as described by Eq. 3.1.27.
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able to consider the envelope function and the distortion separable in both the time and frequency domains:

due to the Fourier relation between time and frequency, if these functions are separable in one domain, they

must be convolved in the other. Considering the derivation in § 3.4.1, we will consider the envelope function

and distortion to be separable in the frequency domain, which gives us the following descriptions for the

field:

Ẽ(r, z, t) = A(r, z, t)e−ik0zeiω0t (3.4.39a)

E(r, z, t) = Â(∆ω)e−i(
∆ω/v)zψ(r, z,∆ω)e−ik0z (3.4.39b)

The time-domain model of the field in Eq. 3.4.39a is based upon the treatment of the field in Eq. 3.1.27,

where we have allowed the envelope function, A(r, z, t), to exhibit the spatial dependence characteristic of the

field. The frequency-domain model in Eq. 3.4.39b, meanwhile, is the Fourier transform with respect to ω of

Eq. 3.4.39a, with F{A(r, z, t) exp(iω0t)} = Â(∆ω) exp[−i(∆ω/v)z]ψ(r, z,∆ω). The first two terms (Â(∆ω)

and exp[−i(∆ω/v)z]) arise in a similar manner as the treatment of Eq. 3.1.26 yields Eq. 3.1.27, though in the

case of the Fourier transform, we recognize the relation F{f(t) exp(±ω0t)} = f̂(ω∓ω0)[112]. Meanwhile, the

function ψ(r, z,∆ω) reflects the distortion to the plane wave, isolating the spatial dependence of Â(r, z,∆ω)

in Eq. 3.1.26 into a separate function.

In contrast to § 3.4.1, we will begin our treatment with Eq. 3.3.6. In a manner similar to § 3.4.1,

though, we will consider P̃ (r, z, t) as the sum of the linear and nonlinear contributions, P̃ (1)(r, z, t) and

P̃NL(r, z, t), respectively. We will assume that the field being considered has sufficiently low intensity that it

does not experience any self-induced nonlinear effects, allowing us to let P̃NL(r, z, t) equal zero. Combining

the derivatives of Ẽ(r, z, t) and P̃ (1)(r, z, t) with respect to time yields the derivative with respect to the

linear displacement, D̃(1)(r, z, t); in the same manner as Eq. 3.4.3, we obtain:

∂2

∂z2
Ẽ(r, z, t) +∇2

TẼ(r, z, t)− b2e ∂
2

∂t2
D̃(1)(r, z, t) = 0 (3.4.40)

From Eq. 3.4.40, we will next evaluate ∂2
/∂z2Ẽ(r, z, t) in the manner of the scheme in Eq. 3.4.20; this yields:

e−ik0z

[
−k2

0 − i2k0
∂

∂z
+

∂2

∂z2

]
A(r, z, t)eiω0t +∇2

TẼ(r, z, t)− b2e ∂
2

∂t2
D̃(1)(r, z, t) = 0 (3.4.41)

Next, let us consider the Fourier transformation of the result in Eq. 3.4.41. We will also make two simplifica-

tions: multiplying through the equation by exp(ik0z), and substituting for the linear displacement according
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to Eq. 3.4.4b. These changes yield:

[
−k2

0 − i2k0
∂

∂z
+

∂2

∂z2
+ eik0z∇2

Te
−ik0z + b2eω2ε(ω)

]
Â(∆ω)e−i(

∆ω/v)zψ(r, z,∆ω) = 0 (3.4.42)

From Eq. 3.4.42, we can achieve a couple further simplifications. First, since the transverse Laplacian

operator (∇2
T) only involves the transverse coordinates, we can swap the order of ∇2

T and exp(−ik0z); we

can then multiply exp(ik0z) and exp(−ik0z) to remove both exponentials. Second, we can substitute for

b2eω2ε(ω) according to Eq. 3.4.9, 3.4.10, and 3.4.18; as before, these terms reduce to k2(ω) − ik(ω)α(ω),

and can be combined with the leading term of k2
0. Third, since Â(∆ω) does not exhibit any dependence on

the spatial coordinates, we can move it outside each derivative and divide Eq. 3.4.42 by this term. These

changes yield:

[
∂2

∂z2
− i2k0

∂

∂z
+∇2

T +
(
k2(ω)− k2

0 − ik(ω)α(ω)
)]
e−i(

∆ω/v)zψ(r, z,∆ω) = 0 (3.4.43)

From Eq. 3.4.43, we can achieve a few more simplifications. First, let us consider the remaining exponen-

tial. Once again recalling that the transverse Laplacian, ∇2
T, has no longitudinal dependence, we can again

switch the order of the Laplacian and the exponential, namely: ∇2
T exp[−i(∆ω/v)z] = exp[−i(∆ω/v)z]∇2

T.

We can also consider the derivatives with respect to z. Considering these derivatives to be generalized

in the form of the nth-order derivative with respect to z, ∂
n
/∂zn exp[−i(∆ω/v)z]ψ(r, z,∆ω), each operation

of one of the n derivatives should yield two terms due to the product rule:[116] one corresponding to the

derivative of the exponential (∂/∂z exp[−i(∆ω/v)z] = −i(∆ω/v) exp[−i(∆ω/v)z]), and one corresponding to the

derivative of the function ψ(r, z,∆ω). However, if we take ∆ω to be reasonably small, we can neglect the

terms arising from the derivative of the exponential, thereby assuming: ∂n

∂zn exp[−i(∆ω/v)z]ψ(r, z,∆ω) ≈

exp[−i(∆ω/v)z][∂
n
/∂znψ(r, z,∆ω)]. This allows us to divide through the equation by this remaining expo-

nential. We can then also invoke the slowly varying amplitude approximation, 2k0
∂/∂z � ∂2

/∂z2, and ignore

the second-order derivative. Finally, we can also substitute for k2(ω) and k(ω) according to Eq. 3.4.23 and

3.4.24. These changes and assumptions yield:

[
−i2k0

∂

∂z
+∇2

T + 2k0k1∆ω + (k0k2 + k2
1)∆ω2 − ik0α(ω)

]
ψ(r, z,∆ω) = 0 (3.4.44)

The last consideration we will introduce before determining the nature of ψ(r, z,∆ω) is to bring Eq.

3.4.44 to the moving frame. Assuming an inverse Fourier transform of ψ(r, z,∆ω) exists, we can perform
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the inverse Fourier transform of Eq. 3.4.44 to yield:

[
−i2k0

(
∂

∂z
+ k1

∂

∂t

)
+∇2

T − (k0k2 + k2
1)
∂2

∂t2

]
F−1{ψ(r, z,∆ω)} −F−1{ik0α(ω)ψ(r, z,∆ω)} = 0 (3.4.45)

In Eq. 3.4.45, it is sufficient to consider the inverse Fourier transforms of ψ(r, z, t) and of ik0α(ω)ψ(r, z,∆ω)

to be noted as, F−1{ψ(r, z,∆ω)} and F−1{ik0α(ω)ψ(r, z,∆ω)}, respectively. With Eq. 3.4.45, we can

directly apply the substitutions (Eq. 3.4.29a and 3.4.29b) necessary to migrate to the moving frame:

[
−i2k0

(
∂

∂ξ
+(k1 − k1r)

∂

∂η

)
+∇2

T − (k0k2 + k2
1)
∂2

∂η2

]
×F−1{ψ(r, ξ,∆ω)} − F−1{ik0α(ω)ψ(r, ξ,∆ω)} = 0

(3.4.46)

With Eq. 3.4.46 now describing propagation within the moving frame, we can return to the frequency

domain. We will also take the opportunity to divide through Eq. 3.4.46 by the term −i2k0 at the beginning;

in addition to reducing the number of terms dependent upon k0, it will also allow us to invoke the assumption

that k
2
1/k0 is likely small and can be neglected. This leaves us with:

[
∂

∂ξ
+ i(k1 − k1r)∆ω + i

1

2k0
∇2

T + i
1

2
k2∆ω2 +

1

2
α(ω)

]
ψ(r, ξ,∆ω) = 0 (3.4.47)

Moving forward, we will also introduce a new variable, δk(∆ω):i

δk(∆ω) = i(k1 − k1r)∆ω + i
1

2
k2∆ω2 +

1

2
α(ω) (3.4.48)

Introducing δk(∆ω) simplifies Eq. 3.4.47 further, leaving:

[
∂

∂ξ
+ i

1

2k0
∇2

T + δk(∆ω)

]
ψ(r, ξ,∆ω) = 0 (3.4.49)

In Eq. 3.4.49, we now have a compact description of the effects of field propagation on the distortion

function, ψ(r, ξ,∆ω), within a moving coordinate system. Now, we will seek to develop a closed-form solution

for this distortion function. We begin by considering the form of the transverse Laplacian, ∇2
T. We previously

considered this operator in the form of Eq. 3.3.5, in which it is described in (x,y) coordinates. Since we

expect the TEM00 mode to exhibit Gaussian symmetry, though, it will prove more convenient to begin with

iRecall ∆ω has been introduced as a compact variable for ω − ω0. Therefore, we could reasonably consider δk to be a
function of either ω or ∆ω, but it would be redundant to consider δk to be a function of both. As we have been describing the
distortion as a function of ∆ω, we have opted to treat δk as a function of this variable rather than of ω.
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∇2
T in cylindrical coordinates. In this coordinate system, the full Laplacian operator is defined:[101]

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂φ2
+

∂2

∂ξ2
(3.4.50)

However, we have already defined the transverse Laplacian, ∇2
T, as encompassing the terms of the Laplacian

operator not associated with the longitudinal direction, ξ; we can therefore neglect the last term in Eq.

3.4.50. We can also neglect the angular dependence in Eq. 3.4.50: since the distortion to the plane wave,

ψ(r, ξ,∆ω),i is expected to describe a two-dimensional Gaussian, we can invoke the cylindrical symmetry

of this function to assume ∂2
/∂φ2ψ(r, ξ,∆ω) = 0.[104, 105] We are then left only with the first term, the

dependence upon the radial coordinate, r. Through evaluation by the product rule, we can show that this

remaining term leaves the following form of the transverse Laplacian operator:

∇2
T =

1

r

∂

∂r
+

∂2

∂r2
(3.4.51)

Substitution for the transverse Laplacian according to Eq. 3.4.51 then leaves:

[
∂

∂ξ
+ i

1

2k0

(
1

r

∂

∂r
+

∂2

∂r2

)
+ δk(∆ω)

]
ψ(r, ξ,∆ω) = 0 (3.4.52)

With Eq. 3.4.52, we can now determine the functional behavior of ψ(r, ξ,∆ω), beginning by defining

a trial solution as well as appropriate boundary conditions. Starting with the latter, we will define the

position ξ = 0 as the focus of the mode. In the absence of dispersive effects, we will expect the radial

dependence of ψ(r, ξ = 0,∆ω) to be consistent with a two-dimensional Gaussian of width w0; in other

words, we will expect a functional form of exp(−r2
/w2

0). Meanwhile, when we introduce dispersive effects,

we will assume that dispersion from the medium functionally depends upon the pathlength through the

medium; in other words, we will require no dispersive effects at a point ξ = ξ′ that corresponds to the

beginning of the medium. Meanwhile, for a trial solution, we have two examples to consider. Verdeyen

assumes a specific form for ψ(r, ξ), taking the model exp[−i(P (ξ)+ (kr2)/[2q(ξ)])];[105] while this trial solution

is convenient when considering the final result for ψ(r, ξ) for free space propagation, it may not prove

adequately general when dispersion is incorporated. Consequently, we will instead adopt a trial solution

similar to that of Svelto, in which U(r, ξ)ii is taken as a functional form incorporating two functions α(ξ)

iIt is noted here that since we are now considering the functional form of ψ(r, ξ,∆ω) within the cylindrical coordinate
system, we no longer have to consider the generalized vector r for the transverse coordinates; it is sufficient to consider the
functional dependence upon the scalar radial coordinate, r.

iiRecall, Svelto’s model for distortion to the plane wave adopts the function U(r, ξ) in the same manner that Verdeyen
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and β(ξ), U(r, ξ) = exp[α(ξ)−β(ξ)r2].[104] Using Svelto’s treatment as a starting point, we also need to allow

for frequency dependence due to our generalized dispersion variable δk(∆ω); we will therefore tentatively

allow α and β to both exhibit a frequency dependence, yielding:

ψ(r, ξ,∆ω) = eα(ξ,∆ω)−β(ξ,∆ω)r2

(3.4.53)

Introducing this trial solution:

[
∂

∂ξ
+ i

1

2k0

(
1

r

∂

∂r
+

∂2

∂r2

)
+ δk(∆ω)

]
expα(ξ,∆ω)−β(ξ,∆ω)r2

= 0 (3.4.54)

From Eq. 3.4.54, we see that we will need to evaluate the derivatives of our trial solution with respect

to ∂/∂r, ∂
2
/∂r2, and ∂/∂ξ. It can be shown that these derivatives evaluate to yield:

∂

∂r
eα(ξ,∆ω)−β(ξ,∆ω)r2

= −2β(ξ,∆ω)reα(ξ,∆ω)−β(ξ,∆ω)r2

(3.4.55a)

∂2

∂r2
eα(ξ,∆ω)−β(ξ,∆ω)r2

=
[
−2β(ξ,∆ω) + 4β2(ξ,∆ω)r2

]
eα(ξ,∆ω)−β(ξ,∆ω)r2

(3.4.55b)

∂

∂ξ
eα(ξ,∆ω)−β(ξ,∆ω)r2

=

[(
∂

∂ξ
α(ξ,∆ω)

)
− r2

(
∂

∂ξ
β(ξ,∆ω)

)]
eα(ξ,∆ω)−β(ξ,∆ω)r2

(3.4.55c)

If we consider the forms of Eq. 3.4.55a, 3.4.55b, and 3.4.55c, we see that evaluation of the derivatives leaves

the exponential unchanged and no longer within derivative expressions. Upon substituting the results of Eq.

3.4.55a, 3.4.55b, and 3.4.55c into Eq. 3.4.54, we can then divide through the resulting expression by the

exponential, leaving:

[(
∂

∂ξ
α(ξ,∆ω)

)
− r2

(
∂

∂ξ
β(ξ,∆ω)

)]
+ i

1

2k0

[
−4β(ξ,∆ω) + 4β2(ξ,∆ω)r2

]
+ δk(∆ω) = 0 (3.4.56)

Examining Eq. 3.4.56, we see that the five terms can be divided into two groups: two terms with a dependence

upon r2, and three terms with no dependence upon r. Separating the terms accordingly yields:

r2

[
−
(
∂

∂ξ
β(ξ,∆ω)

)
+ i

2

k0
β2(ξ,∆ω)

]
+

[(
∂

∂ξ
α(ξ,∆ω)

)
− i 2

k0
β(ξ,∆ω) + δk(∆ω)

]
= 0 (3.4.57)

However, we still require the left hand side of Eq. 3.4.57 to equal zero. In Eq. 3.4.57, though, we have terms

dependent upon r2 as well as terms independent of r; the only way to maintain the required equality is for

adopts E0ψ(r, ξ).[104, 105]
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both terms in brackets to individually equal zero.[104, 105] Eq. 3.4.57 then is consistent with the following

pair of differential equations:

∂

∂ξ
β(ξ,∆ω) = i

2

k0
β2(ξ,∆ω) (3.4.58a)

∂

∂ξ
α(ξ,∆ω) = i

2

k0
β(ξ,∆ω)− δk(∆ω) (3.4.58b)

This system of differential equations can be evaluated to determine the functional forms of α(ξ,∆ω) and

β(ξ,∆ω).

Of the differential equations in Eq. 3.4.58a and 3.4.58b, the former will be the more straightforward

to solve, as it exhibits a dependence only upon the function β(ξ,∆ω). However, we note that the only

dependence upon ∆ω in Eq. 3.4.58a is the dependence implied by our assumed function, β(ξ,∆ω). We can

assume, therefore, that it is sufficient to consider β(ξ), a function of ξ only. Framing Eq. 3.4.58a to be of

the form ∂/∂ξβ(ξ) = iaβ2(ξ), with a = 2/k0, it can be shown that the general solution is of the form:i

β(ξ) = (C − iaξ)−1 (3.4.59)

where C is a constant of integration. In order to determine the value of C, let us consider the evaluation

of this general solution at ξ = 0. We previously indicated that we require the mode at the focus (ξ = 0)

to be consistent with a Gaussian function with size w0, exp(−r2
/w2

0). Since our trial function is of the form

exp[α(ξ,∆ω) − β(ξ)r2], we therefore require β(ξ = 0) = w−2
0 . Given the general solution in Eq. 3.4.59,

β(ξ = 0) = C−1, allowing us to assign C = w2
0 and to define the solution for β(ξ):

β(ξ) =

(
w2

0 − i
2

k0
ξ

)−1

(3.4.60)

However, we can follow the example of Verdeyen[105] and make the solution in Eq. 3.4.60 more meaningful

by relating it to the quantities w(ξ) and R(ξ), which describe the beam waist and radius of curvature,

respectively, as a function of longitudinal position. The functional forms of these parameters are:

w(ξ) = w0

√
1 + (

ξ

ξ0
)2 (3.4.61)

iThe general differential equation was evaluated with the calculator at wolframalpha.com.
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R(ξ) =


ξ(1 + ( ξ0ξ )2), for z 6= 0,±∞

0, for z = 0,±∞
(3.4.62)

where the quantity ξ0 in Eq. 3.4.61 and 3.4.62 is the Rayleigh length of the mode;i this quantity is defined:

ξ0 =
πw2

0

λ
(3.4.63)

Considering Eq. 3.4.61, we can see ξ0 corresponds to the distance over which the beam waist expands by a

factor of
√

2 from the focus. Returning to the beam waist and radius of curvature, the first step to relating

β(ξ) to these quantities is to show that the solution for β(ξ) (Eq. 3.4.60) is equivalent to:

β(ξ) = i
k0

2
(ξ + iξ0)−1 (3.4.64)

We can simplify the form for β(ξ) in Eq. 3.4.64 by multiplying this result by (ξ−iξ0)/(ξ−iξ0), from which β(ξ)

is equivalent to the sum:

β(ξ) =
k0

2

ξ0
ξ2 + ξ2

0

+ i
k0

2

ξ

ξ2 + ξ2
0

(3.4.65)

From Eq. 3.4.65, the next step is to multiply the first term by ξ−2
0 /ξ−2

0 and the second term by ξ−2
/ξ−2. This

yields:

β(ξ) =
k0

2ξ0

1

(ξ/ξ0)2 + 1
+ i

k0

2

1

ξ[1 + (ξ0/ξ)2]
(3.4.66)

Considering the definitions of w(ξ), R(ξ), and ξ0 (Eq. 3.4.61, 3.4.62, and 3.4.63), it is now straightforward

to show Eq. 3.4.66 reduces to:

β(ξ) =
1

w2(ξ)
+ i

k0

2R(ξ)
(3.4.67)

With a solution for β(ξ), it is now possible to consider Eq. 3.4.58b to determine the solution for α(ξ,∆ω).

It will turn out most convenient to use the form of Eq. 3.4.64 for substitution into Eq. 3.4.58b; introducing

this solution yields:

∂

∂ξ
α(ξ,∆ω) = i

2

k0

[
i
k0

2
(ξ + iξ0)−1

]
− δk(∆ω) (3.4.68)

In a similar manner to our treatment of β(ξ), we can consider Eq. 3.4.68 to be of the generalized form

∂/∂ξα(ξ,∆ω) = −(ξ + ia)−1 − b(∆ω), with a = ξ0 and b(∆ω) = δk(∆ω). A differential equation of this form

iNote that it is more common to describe the Rayleigh length as z0; however, because we are using the coordinate of the
moving frame, ξ, we are noting this length as ξ0 in an analogous manner. Note that because ξ = z (see Eq. 3.4.27a), ξ0 = z0.
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will have a solution of the form:i

α(ξ,∆ω) = − ln(a− iξ)− ib(∆ω)(a− iξ) + C (3.4.69)

Considering the form of the general solution in Eq. 3.4.69, we see that it involves two terms with dependence

upon ξ: the first term, ln(a − iξ), depends only upon ξ; the second, −ib(∆ω)(a − iξ), on the other hand

exhibits a dependence upon ∆ω in addition to a dependence upon ξ. Therefore, let us consider α(ξ,∆ω) to

represent the sum of two functions, α1(ξ) and α2(ξ,∆ω), corresponding to the first and second terms in Eq.

3.4.69, respectively:

α1(ξ) = − ln(a− iξ) + C1 (3.4.70a)

α2(ξ,∆ω) = −ib(∆ω)(a− iξ) + C2 (3.4.70b)

where the sum of C1 (Eq. 3.4.70a) and C2 (Eq. 3.4.70b) is C (Eq. 3.4.69). The division of α(ξ,∆ω) into α1(ξ)

and α2(ξ,∆ω) isolates the frequency-dependence of α(ξ,∆ω) to α2(ξ,∆ω). The advantage of doing so is

clear if we consider the scenario of free space propagation, for which δk(∆ω) = 0: recalling b(∆ω) = δk(∆ω),

δk(∆ω) = 0 causes α2(ξ,∆ω) to be constant, allowing it to be incorporated into C1. Therefore, α1(ξ) should

be the solution for α(ξ,∆ω) when considering free-space propagation of the TEM00 mode, with α2(ξ,∆ω)

providing the correction necessary to account for the dispersion introduced by a medium.

Within the treatment of α(ξ,∆ω) as the sum of α1(ξ) and α2(ξ,∆ω), we can address α1(ξ) and α2(ξ,∆ω)

separately. Starting with α1(ξ), and recalling our assignment of the temporary variable a = ξ0, we can show

the formulation in Eq. 3.4.70a is identical to:

α1(ξ) = − ln

(
1− i ξ

ξ0

)
− ln(ξ0) + C1 (3.4.71)

As ln(ξ0) will just have a constant value, we can incorporate it into the constant, C1, leaving:

α1(ξ) = − ln

(
1− i ξ

ξ0

)
+ C1 (3.4.72)

We must then determine the appropriate value of C1, first recalling that we have taken α1(ξ) to describe

the behavior of α(ξ,∆ω) for free-space propagation of the TEM00 mode. Previously, we indicated that in

iThe general differential equation was evaluated with the calculator at wolframalpha.com; when evaluating, it is sufficient
to consider b(∆ω) as a constant as the differential equation is associated with the derivative with respect to ξ.
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the absence of dispersion, or for free-space propagation, we expect a form consistent with exp(−r2
/w2

0) at

ξ = 0. This necessitates α1(ξ = 0) = 0. Given the general solution of Eq. 3.4.72, α1(ξ = 0) = − ln(1) + C1.

However, ln(1) = 0, so α1(ξ = 0) = C1, requiring C1 = 0 in order to satisfy our assignment of α1(ξ = 0) = 0.

The solution for α1(ξ) must then be:

α1(ξ) = − ln

(
1− i ξ

ξ0

)
(3.4.73)

However, we can simplify the solution in Eq. 3.4.73 by considering (1− iξ/ξ0) as a value in the complex plane:

namely, as the product of its magnitude and a phase factor, exp(iφ), where φ = arctan={1−iξ/ξ0}/<{1−iξ/ξ0}.

In this manner, we can find (1− iξ/ξ0) to be equivalent to:i

(
1− i ξ

ξ0

)
=

√
1 +

(
ξ

ξ0

)2

e−i arctan(ξ/ξ0) (3.4.74)

Substitution for (1− iξ/ξ0) according to Eq. 3.4.74 into Eq. 3.4.73 then yields:

α1(ξ) = − ln

√
1 +

(
ξ

ξ0

)2

+ i arctan

(
ξ

ξ0

)
(3.4.75)

Continuing with α2(ξ,∆ω), we can substitute according to our assignments of a = ξ0 and b(∆ω) = δk(∆ω)

and distribute the term corresponding to −ib(∆ω) to yield:

α2(ξ,∆ω) = −iξ0δk(∆ω)− δk(∆ω)ξ + C2 (3.4.76)

In the same manner that we incorporated ln(ξ0) into C1 in Eq. 3.4.72, we can consider −iξ0δk(∆ω) as a

constant relative to mode propagation and combine it with C2 to yield the simplified result:

α2(ξ,∆ω) = −δk(∆ω)ξ + C2 (3.4.77)

From this simplified general solution for α2(ξ,∆ω), the last remaining step is to determine the exact solution

by evaluating C2. In contrast to β(ξ) and α1(ξ), however, for α2(ξ,∆ω), it will not prove convenient to

consider the behavior at ξ = 0; we instead must consider what δk(∆ω) represents. In Eq. 3.4.48, we defined

δk(∆ω) to represent the various contributions of the medium’s dispersion upon the propagation of the field,

and we expect these effects to scale with the propagation distance. Recalling that we have defined the point

iNote that tan is an odd function (tan(−θ) = − tan(θ)).[116] From this, it is possible to show arctan(−ξ/ξ0) = − arctan(ξ/ξ0),
i.e. that arctan must also be odd.
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ξ = ξ′ to represent the point at which the field enters the medium, we therefore consider that at ξ = ξ′, we

have accumulated no effects of dispersion, and at all other points within the medium, we accumulate the

effects of dispersion according to ξ − ξ′. Therefore, we will need to define C2 such that α2(ξ,∆ω) assumes

the form:

α2(ξ,∆ω) = −δk(∆ω)(ξ − ξ′) (3.4.78)

Having obtained solutions for α1(ξ), α2(ξ,∆ω), and β(ξ), we can substitute these results into our trial

solution (Eq. 3.4.53), yielding:

ψ(r, ξ,∆ω) =
1√

1 + (ξ/ξ0)
2
ei arctan ξ/ξ0e−δk(∆ω)(ξ−ξ′)e−

r2/w2(ξ)e−i
k0/[2R(ξ)]r2

(3.4.79)

Incorporating the definition of δk(∆ω) (Eq. 3.4.48), then substituting this solution for ψ(r, ξ,∆ω) into our

original frequency-domain model for the field (Eq. 3.4.39b), we arrive at a result very consistent with the

results of Svelto and Verdeyen:[104, 105]

E(r, ξ,∆ω) = Â(∆ω)
1√

1 + (ξ/ξ0)
2

exp

[
− r2

w2(ξ)

]
(3.4.80a)

× exp(−ik0ξ) exp

(
−i∆ω

v
ξ

)
exp

(
i arctan

ξ

ξ0

)
(3.4.80b)

× exp

(
−i k0

2R(ξ)
r2

)
(3.4.80c)

× exp

[
−i(k1 − k1r)∆ω (ξ − ξ′)− i1

2
k2∆ω2 (ξ − ξ′)

]
(3.4.80d)

× exp

[
−1

2
α(ω) (ξ − ξ′)

]
(3.4.80e)

The presentation of the field across Eq. 3.4.80a - 3.4.80e allows us to separately consider the various

contributions to the field in the manner of Verdeyen.[105] Eq. 3.4.80a contains the three terms that combine

to describe the amplitude of the field independent of the medium (i.e. neglecting absorptive effects) and as a

function of the spatial coordinates (r or ξ) or of detuning (∆ω). Eq. 3.4.80b encompasses the contributions

to the longitudinal phase of the field; these contributions may arise from either the spatial oscillations of the

field, exp(−ik0ξ) and exp[−i(∆ω/v)ξ], or from the Guoy phase, exp[i arctan(ξ/ξ0)]. Eq. 3.4.80c describes the

phase accumulated by the field due to the radius of curvature of the phase front. Finally, Eq. 3.4.80d and

Eq. 3.4.80e provide the corrections necessary to account for the effects of a dispersive medium, introducing

the changes arising from dispersion and absorption, respectively.
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3.4.4 Integration of the Nonlinear Polarization Outside the Plane Wave Limit

In this section, we will discuss the adaptation of the method presented by Moosmüller et al[202] for inte-

gration of the polarization induced by Gaussian beams, extending the approach to ultrashort pulses and

crossed beam geometries. A variety of authors have addressed the integration of the nonlinear polarization

induced by Gaussian beams in the literature.[139, 202–205] Some of these authors emphasize the importance

of incorporating the effects of the Guoy phase,[139, 203] particularly in experiments that do not involve

oppositely phase interactions of the same frequency. When two oppositely phase interactions have the same

frequency, the Guoy phases of the interactions cancel; otherwise, the Guoy phase introduces additional in-

terference effects in the same manner as phase mismatch. However, many of these authors focus on collinear

experiments;[139, 202, 203] those that consider crossed beams appear to make approximations[204] or adopt

similar methods that are less straightforward or less thoroughly documented than the method presented by

Moosmüller et al.[205]

In a manner similar to § 3.4.3, we will allow the electric field to exhibit a transverse dependence. However,

in contrast to the treatment in § 3.4.3, we cannot expect a closed-form solution for the transverse dependence;

therefore, we will consider it sufficient to treat the field in the same manner as Eq. 3.1.27, with the envelope

functions explicitly exhibiting dependence upon the spatial coordinates:

Ẽ(r, z, t) = A(r, z, t)e−ik0zeiω0t (3.4.81a)

E(r, z, ω) = Â(r, z,∆ω)e−i(
∆ω/v)ze−ik0z (3.4.81b)

In Eq. 3.4.81a and 3.4.81b, we return to our notation of r to generalize the transverse coordinates (x, y).

We make a similar assumption as in § 3.4.3, taking the relationship between the time- and frequency-domain

models to be similar to Eq. 3.1.26, namely F{A(r, z, t) exp(iω0t)} = Â(r, z,∆ω) exp[−i(∆ω/v)z] when the

Fourier transform is with respect to ω. In contrast to § 3.4.3, however, we will consider the field described

by Eq. 3.4.81a or 3.4.81b as it couples to a nonlinear polarization oscillating with central frequency ω0. In

the same manner as Eq. 3.2.17 and 3.2.18, and in analogy with Eq. 3.4.81a and 3.4.81b, we will consider

this nonlinear polarization to be described:

P̃NL(r, z, t) = pNL(r, z, t)eiω0t (3.4.82a)

PNL(r, z, ω) = p̂NL(r, z,∆ω) (3.4.82b)
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In the same manner as the field exhibits dependence upon both the transverse and longitudinal coordinates,

the polarization is also allowed to do so through the envelope function, pNL(r, z, t) or p̂NL(r, z,∆ω). Whereas

the spatial dependence of the field will be assumed to arise from the spatial dependence of the polarization

- which is to assume the field is created from the initiated nonlinear polarization - the polarization will be

assumed to exhibit spatial dependence due to the manner of excitation.

We will begin our treatment in a very similar manner to § 3.4.3, starting from Eq. 3.3.6 and consider-

ing two contributions to the polarization: a linear polarization, P̃ (1)(r, z, t), and a nonlinear polarization,

P̃NL(r, z, t). However, whereas we were satisfied considering P̃NL(r, z, t) = 0 in § 3.4.3, we will now consider

there to be a previously induced nonlinear polarization existing within the medium, described according to

Eq. 3.4.82a. From these assumptions, we can arrive at a result very similar to Eq. 3.4.40:

∂

∂z2
Ẽ(r, z, t) +∇2

TẼ(r, z, t)− b2e ∂
2

∂t2
D̃(1)(r, z, t) = ab2e

∂2

∂t2
P̃NL(r, z, t) (3.4.83)

where we have again combined the derivatives of the field and of the linear polarization with respect to time

according to Eq. 3.4.3 to yield the linear displacement. Evaluating the derivative with respect to z yields:

e−ik0z

[
− k2

0 −i2k0
∂

∂z
+

∂2

∂z2

]
A(r, z, t)eiω0t +∇2

TẼ(r, z, t)

− b2e ∂
2

∂t2
D̃(1)(r, z, t) = ab2e

∂2

∂t2
P̃NL(r, z, t)

(3.4.84)

Again following a similar strategy to § 3.4.3, we will Fourier transform Eq. 3.4.84 to yield the frequency-

domain equivalent. We will proceed to substitute for the resulting frequency-domain terms E(r, z, ω) and

PNL(r, z, ω) according to Eq. 3.4.81b and 3.4.82b, though for convenience we will currently make the

approximation that the term exp[−i(∆ω/v)z] in Eq. 3.4.81b is negligible as in § 3.4.1; as before, we will be

able to relax this assumption later. Finally, we will multiply through the result by exp(ik0z). These changes

yield:

[
∂2

∂z2
− i2k0

∂

∂z
− k2

0 + eik0z∇2
Te
−ik0z + b2eω2ε(ω)

]
Â(r, z,∆ω) = −ab2eω2eik0z p̂NL(r, z,∆ω) (3.4.85)

From Eq. 3.4.85, we can apply a handful of simplifications that have previously been introduced. First,

since the transverse Laplacian, ∇2
T, is only associated with the transverse coordinates, ∇2

T exp(−ik0z) =

exp(−ik0z)∇2
T; this identity allows us to remove the exponentials from this term in Eq. 3.4.85. Second,

Eq. 3.4.9, 3.4.10, and 3.4.18 have shown we can introduce k2(ω)− ik(ω)α(ω) as a substitute for b2eω2ε(ω);

we can combine this result with the term k2
0 in Eq. 3.4.85, and use the expansion of Eq. 3.4.24 to yield
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2k0k1∆ω + (k0k2 + k2
1)∆ω2 − ik0α(ω). In § 3.4.1, we also showed that, by introducing ˆ̄pNL(r, z,∆ω),i

we can substitute for ab2eω2, yielding ω2
/c2 in both unit systems. Finally, we will also make the slowly

varying amplitude approximation, assuming 2k0
∂/∂z � ∂2

/∂z2. The result of applying these substitutions

and approximations is:

[
−i2k0

∂

∂z
+∇2

T + 2k0k1∆ω + (k0k2 + k2
1)∆ω2 − ik0α(ω)

]
Â(r, z,∆ω) = −ω

2

c2
eik0z ˆ̄pNL(r, z,∆ω) (3.4.86)

As in § 3.4.1 and § 3.4.3, we will want to transfer Eq. 3.4.86 to the moving frame as defined by Eq.

3.4.27a and 3.4.27b. Performing the inverse Fourier transform to bring Eq. 3.4.86 back to the time domain

yields: [
−i2k0

(
∂

∂z
+ k1

∂

∂t

)
+∇2

T − (k0k2 + k2
1)
∂2

∂t2

]
A(r, z, t)

−F−1{ik0α(ω)Â(r, z,∆ω)} =
ω2

c2∆ω2
eik0z

∂2

∂t2
p̄NL(r, z, t)

(3.4.87)

With Eq. 3.4.87 in the time domain, we can substitute according to Eq. 3.4.29a and 3.4.29b to yield:

[
−i2k0

(
∂

∂ξ
+ (k1 − k1r)

∂

∂η

)
+∇2

T − (k0k2 + k2
1)
∂2

∂η2

]
A(r, ξ, η)

−F−1{ik0α(ω)Â(r, ξ,∆ω)} =
ω2

c2∆ω2
eik0ξ

∂2

∂η2
p̄NL(r, ξ, η)

(3.4.88)

Once again, now that Eq. 3.4.88 represents propagation within the moving frame, we will return to the

frequency domain; the Fourier transform of Eq. 3.4.88 yields:

[
−i2k0

(
∂

∂ξ
+ i(k1 − k1r)∆ω

)
+∇2

T + (k0k2 + k2
1)∆ω2 − ik0α(ω)

]
× Â(r, ξ,∆ω) = −ω

2

c2
eik0ξ ˆ̄pNL(r, ξ,∆ω)

(3.4.89)

We can simplify the result of Eq. 3.4.89 slightly by dividing the equation by −i2k0. As before, we will

assume the resulting term k2
1/k0 is sufficiently small so as to be negligible. This leaves:

[
∂

∂ξ
+ i(k1 − k1r)∆ω + i

1

2k0
∇2

T + i
1

2
k2∆ω2 +

1

2
α(ω)

]
Â(r, ξ,∆ω) = −i ω2

2c2k0
eik0ξ ˆ̄pNL(r, ξ,∆ω) (3.4.90)

Note that at this point, we can adopt the approach of § 3.4.1 and relax the assumption that exp[−i(∆ω/v)ξ] is

negligible; if we again allow ∆ω to be sufficiently small that the expansion of ∂/∂ξÂ(r, ξ,∆ω) exp[−i(∆ω/v)ξ]

iRecall that the quantity P̄NL(z, ω) was defined P̄NL = [PNL(z,ω)]/ε0 for mks units and P̄NL = 4πPNL(z, ω) for cgs or esu
units. Here, we take ˆ̄pNL(r, z∆ω) in the same manner, only including the transverse dependence neglected in the plane wave
limit of § 3.4.1.
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is approximately exp[−i(∆ω/v)ξ]∂/∂ξÂ(r, ξ,∆ω), we can divide through the result by the exponential. Re-

combination of exp[i(∆ω/v)ξ] with exp(ik0ξ) yields exp[ik(ω)ξ] on the right hand side. We will apply this

consideration going forward. We will also take the opportunity to introduce two variables to simplify the

form of Eq. 3.4.90. Similar to § 3.4.3, we will introduce the variable δk(∆ω):

δk(∆ω) = i(k1 − k1r)∆ω + i
1

2
k2∆ω2 +

1

2
α(ω) (3.4.91)

Second, in a manner similar to Moosmüller et al,[202] we will introduce a function representing the right

hand side of Eq. 3.4.90:i

ρ(r, ξ,∆ω) = −i ω2

2c2k0
eik(ω)ξ ˆ̄pNL(r, ξ,∆ω) (3.4.92)

With these variables, Eq. 3.4.90 becomes:

[
∂

∂ξ
+ i

1

2k0
∇2

T + δk(∆ω)

]
Â(r, ξ,∆ω) = ρ(r, ξ,∆ω) (3.4.93)

From Eq. 3.4.93, we will begin applying the approach outlined by Moosmüller et al.[202] Their method is

predicated upon performing a two-dimensional Fourier transform with respect to the transverse coordinate,

masking the transverse propagation of the field by converting from the spatial domain to the spatial frequency

domain. For example, if we consider the generalized transverse coordinate r to correspond to a (x, y)

coordinate system, this two-dimensional Fourier transform takes (x, y)→ (kx, ky), where kx and ky are the

spatial frequencies associated with x and y, respectively. We will generalize this transform as r → kT.

However, given Eq. 3.4.93, we can see that we will need to understand how the transverse Laplacian, ∇2
T,

transforms. By considering our definition for this operator (Eq. 3.3.5) and its application to an arbitrary

function, f(r), we can use the appropriate Fourier relationii (see Eq. 3.4.6b) to determine the transform of

iMoosmüller et al notate this function as f ; as we have consistently used f throughout this chapter as an arbitrary,
representative function, we have chosen to use a different notation in this capacity (ρ). Additionally, in a manner similar to
how we previously assumed it was sufficient to consider δk in § 3.4.3 as a function of just ∆ω while it contained both terms
dependent upon ω and upon ∆ω, we will consider it sufficient to treat ρ in Eq. 3.4.92 as a function of ∆ω.

iiIt should be noted that the form of Eq. 3.4.6b is specific for Fourier transformation to the angular frequency do-
main.[112] When the Fourier transform is being taken to the linear frequency domain, the transform is instead F{∂n/∂tnf(t)} =

(i2πν)nf̂(ν), where ν is the linear frequency.[114] We note here that we are using this relationship because we will be taking the
generalized frequency kT to be a linear spatial frequency. Unfortunately, Moosmüller et al do not explicitly indicate whether
they take their version of the generalized transverse spatial frequency to be angular or linear,[202] but by omitting the factor
of (2π)2 that appears in Eq. 3.4.94, it appears to have been their intention to consider the frequency to be angular.
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∇2
T:

F
{
∇2

Tf(r)
}

= F
{(

∂2

∂x2
+

∂2

∂y2

)
f(r)

}
=
[
(i2π)2k2

x + (i2π)2k2
y

]
f̂(kT)

= −4π2|kT|2f̂(kT)

(3.4.94)

where we have used the relationship, |kT|2 = k2
x + k2

y, appropriate for kT providing generalization of the

(kx, ky) coordinates.

Using the result of Eq. 3.4.94, the two-dimensional Fourier transform of Eq. 3.4.93 with respect to the

transverse coordinates yields:

[
∂

∂ξ
− i2π

2

k0
|kT|2 + δk(∆ω)

]
Â(kT, ξ,∆ω) = ρ(kT, ξ,∆ω) (3.4.95)

The next step is to define a function, â(kT, ξ,∆ω):

â(kT, ξ,∆ω) = Â(kT, ξ,∆ω) exp

[(
−i2π

2

k0
|kT|2 + δk(∆ω)

)
ξ

]
(3.4.96)

The advantage of defining â(kT, ξ,∆ω) is in recognizing that the derivative of â(kT, ξ,∆ω) with respect to

ξ yields:

∂

∂ξ
â(kT, ξ,∆ω) =

∂

∂ξ

[
Â(kT, ξ,∆ω) exp

[(
−i2π

2

k0
|kT|2 + δk(∆ω)

)
ξ

]]
= exp

[(
−i2π

2

k0
|kT|2 + δk(∆ω)

)
ξ

]
∂

∂ξ
Â(kT, ξ,∆ω) + Â(kT, ξ,∆ω)

× exp

[(
−i2π

2

k0
|kT|2 + δk(∆ω)

)
ξ

]
∂

∂ξ

[(
−i2π

2

k0
|kT|2 + δk(∆ω)

)
ξ

]
= exp

[(
−i2π

2

k0
|kT|2 + δk(∆ω)

)
ξ

]
×
{[

∂

∂ξ
− i2π

2

k0
|kT|2 + ∂k(∆ω)

]
Â(kT, ξ,∆ω)

}
(3.4.97)

If we examine the term in curly brackets in the last line of the scheme in Eq. 3.4.97, we see that this quantity

is identical to the left hand side of Eq. 3.4.95. Therefore, we can substitute according to Eq. 3.4.95 to relate

â(kT, ξ,∆ω) to the polarization function, ρ(kT, ξ,∆ω):

∂

∂ξ
â(kT, ξ,∆ω) = exp

[(
−i2π

2

k0
|kT|2 + δk(∆ω)

)
ξ

]
ρ(kT, ξ,∆ω) (3.4.98)

Integrating both sides of Eq. 3.4.98 from the beginning of the sample, ξ′, to the end of the sample, ξend,
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yields:

â(kT, ξend,∆ω)− â(kT, ξ
′,∆ω) =

∫ ξend

ξ′
exp

[(
−i2π

2

k0
|kT|2 + δk(∆ω)

)
ξ

]
ρ(kT, ξ,∆ω)dξ (3.4.99)

Recalling we have defined â(kT, ξ,∆ω) as proportional to the field envelope Â(kT, ξ,∆ω) (see Eq. 3.4.96),

Eq. 3.4.99 describes the regime in which we are concerned with the changes induced in an existing field by

the polarization. The opposite limit is the scenario in which the polarization creates the field, in which case

â(kT, ξ
′,∆ω) = 0. This scenario is described:

â(kT, ξend,∆ω) =

∫ ξend

ξ′
exp

[(
−i2π

2

k0
|kT|2 + δk(∆ω)

)
ξ

]
ρ(kT, ξ,∆ω)dξ (3.4.100)

We will continue forward considering the regime described by Eq. 3.4.100.

However, we will again recall that â(kT, ξ,∆ω) is only proportional to the field amplitude envelope,

Â(kT, ξ,∆ω), which is the quantity with which we are actually concerned. Using Eq. 3.4.96, we can relate

the integral over the polarization in Eq. 3.4.100 back to the field envelope at ξ = ξend:

Â(kT, ξend,∆ω) =

∫ ξend

ξ′
exp

[(
i
2π2

k0
|kT|2 − δk(∆ω)

)
(ξend − ξ)

]
ρ(kT, ξ,∆ω)dξ (3.4.101)

To obtain the form presented in Eq. 3.4.101, both sides have been divided by the exponential at ξend arising

from the definition of â(kT, ξ,∆ω) (see Eq. 3.4.96); this term has been incorporated into the integral, yielding

the difference between ξend and ξ. Eq. 3.4.101 can be considered to attribute the final field envelope as the

summation of “slices” of ρ(kT, ξ,∆ω) along ξ, incorporating the phase effects associated with the transverse

frequency and material dispersion based upon the distance that “slice” has needed to propagate through the

material.

3.5 Group Velocity, Group Velocity Mismatch, and Group Velocity Dispersion

In § 3.4.1, we presented the expansion of k(ω) as a Taylor series in Eq. 3.4.23. From this series and the

resulting expansion of k2(ω) (see Eq. 3.4.24), our retention of terms with ∆ωn, n ≤ 2 left the first and

second derivatives of k(ω) with respect to ω remaining. While there are circumstances in which the third-

order term can become important,[206, 207] it is generally sufficient to terminate the expansion after the

second-order term.[103] These remaining terms correspond to the group velocity, ug = 1/k1, and the group

velocity dispersion, k2. In this section, we will consider the effects of these two quantities upon ultrafast pulse
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propagation and present formulae that allow the calculation of these quantities under various circumstances.

3.5.1 Effects of Group Velocity and Group Velocity Dispersion

We will begin considering the effects of group velocity and group velocity dispersion through the lens of

§ 3.4.1. In § 3.4.1, we derived Eq. 3.4.34, which describes the changes in the envelope function of a plane

wave as it is influenced by dispersion or absorption by the medium (the term in brackets) or by an induced

nonlinear polarization within the medium. If we ignore absorption (α(ω) = 0) and assume no polarizations

have been induced (ˆ̄pNL = 0), Eq. 3.4.34 reduces to:

∂

∂ξ
Â(ξ,∆ω) =

[
−i(k1 − k1r)∆ω − i

1

2
k2∆ω2

]
Â(ξ,∆ω) (3.5.1)

As Eq. 3.5.1 is a differential equation, it would not be surprising to find an exponential to serve as a valid

solution; taking the trial solution to be Â(ξ,∆ω) = exp(αξ), it is trivial to show that Eq. 3.5.1 yields a

solution of the form:

Â(ξ,∆ω) = Â(ξ = ξ′,∆ω) exp

[(
−i(k1 − k1r)∆ω − i

1

2
k2∆ω2

)
ξ

]
(3.5.2)

where ξ′ corresponds to some initial position in space.

Considering the form of Eq. 3.5.2, it is straightforward to gain insight into the effects of group velocity.

In the absence of group velocity dispersion (k2 = 0), the general solution in Eq. 3.5.2 reduces to:

Â(ξ,∆ω) = Â(ξ = ξ′,∆ω) exp[−i(k1 − k1r)∆ωξ] (3.5.3)

From the form of Eq. 3.5.3, it is clear that propagation through the medium results in a frequency-dependent

accumulation of phase governed by (k1−k1r). However, the effects become more obvious in the time domain.

If we consider taking the inverse Fourier transform of the result in Eq. 3.5.3, we can identify the following

transform relationship:[112]

F{f(t± t0)} = f̂(ω) exp(±iωt0) (3.5.4)

where f(t) and f̂(ω) are defined such that F{f(t)} = f̂(ω) and t0 represents some delay in the time domain.

Applying this relationship shows that the phase introduced by the exponential in the frequency domain is
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equivalent to the time-domain representation:

A(ξ, t) = A(ξ = ξ′, t− (k1 − k1r)ξ) (3.5.5)

Therefore, the group velocity introduces a distance-dependent delay, (k1−k1r)ξ, relative to the pulse envelope

at the initial position.

This behavior is exhibited in Fig. 3.2. In this figure, we show the effects of group velocity on the pulse

envelope of a 35 fs pulse centered at 400 nm as a function of propagation distance, both on the intensity

level - (A) and (D) - and on the real and imaginary components of the amplitude - (B), (C), (E), and (F).

The consider how these effects manifest in both the time - (A), (B), and (C) - and frequency - (D), (E), and

(F) - domains. (A) illustrates our conclusion from Eq. 3.5.5: we observe a linear change in the delay of the

pulse envelope with increasing propagation distance. In Fig. (B) and (C), it is clear that this shift in delay

does not influence the phase of the envelope: the envelope retains a purely real value at all distances. The

frequency-domain profile, however, exhibits strong phase modulation, as shown in (E) and (F). This phase

modulation does not create new frequencies: as shown in (D), the spectrum of the pulse is invariant.

Looking at the scale of the propagation distance in Fig. 3.2, though, it is clear that considering the

group velocity referenced only to the laboratory frame is limiting: in these calculations, we observe the pulse

envelope begin leaving the range of our time variable over only 50 μm. This is the utility of considering

the group velocity mismatch: the value of k1 for a given field relative to some other reference value. In the

scenario of a single pulse, as in Fig. 3.2, it would be far more convenient to consider the pulse itself to be the

reference, which would make the pulse appear to exhibit a constant center for all propagation distances. On

the other hand, for the copropagation of multiple pulses, we might consider defining one to be the reference

pulse, as is illustrated in Fig. 3.3.

In this figure, we consider the copropagation of two 35 fs pulses: one centered at 400 nm and the other at

800 nm. In (A), we display the total intensity of the two pulses: in this case, it is clear that we are observe

the pulses beginning to split after approximately 100 μm with essentially complete resolution between the

pulses after approximately 200 μm. This is in good agreement with the calculated pulse-splitting length of

107 μm (Lw = τ/|∆u−1|, where τ is the pulse length and |∆u−1| is the group velocity mismatch) for 35 fs

pulses at these colors. Once again, however, we see that the group velocity mismatch does not impact the

spectral content of the pulses, shown in (B) and (C).

The functional form for the effects of group velocity dispersion is much less straightforward to evaluate,

as there is not a tabulated result for the Fourier transformation of the exponential, exp(−ik2∆ω2
/2). However,
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Figure 3.2: Simulations showing the effects of group velocity on the propagation of a 35 fs pulse centered
at 400 nm when polarized along the ordinary axis of β-barium borate (k1 = 5942 fs/mm[208]). (A), (B),
and (C) show the effects on the time-domain envelope, A(t): (A) shows the intensity of the field, |A(t)|2;
(B) shows the amplitude of the real component, <{A(t)}; and (C) shows the amplitude of the imaginary
component, ={A(t)}. (D), (E), and (F) show the effects on the frequency-domain envelope, Â(∆ω): (D)
shows the intensity of the field, |Â(∆ω)|2, (E) shows the amplitude of the real component, <{Â(∆ω)}; and,
(F) shows the amplitude of the imaginary component, ={Â(∆ω)}. In the complex representation of (B),
(C), (E), and (F), white corresponds to zero amplitude, while red and blue represent positive and negative
amplitudes, respectively.
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Figure 3.3: Simulation showing the effects of group velocity mismatch on the co-propagation of two 35 fs
pulses, each polarized along the ordinary axis of β-barium borate: one centered at 400 nm (k1 = 5942
fs/mm[208]) and the other centered at 800 nm (k1 = 5615 fs/mm[208]), corresponding to a group velocity
mismatch of 327 fs/mm. The 800 nm pulse is taken as the reference. (A), (B), and (C) all report the intensity
of the field: (A) shows |A400(t)|2 + |A800(t)|2 in the time domain, where A400(t) and A800(t) are the temporal
pulse envelopes of the 400 nm and 800 nm pulses, respectively. (B) and (C) show |Â(∆ω)|2 for the 400 nm
(B) and 800 nm (C) pulses.
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it is still trivial to simulate its effects, as shown in Fig. 3.4. Once again considering a 35 fs pulse at 400

nm, we see that the effects of group velocity dispersion are a little more complicated. (E) and (F) illustrate

that the group velocity dispersion influences the phase of the envelope in the frequency domain; given the

dependence of the effects of group velocity dispersion upon ∆ω2, it is also not surprising that the effects

are symmetric about ∆ω = 0. Unlike group velocity, however, the phase applied in the frequency domain

does manifest in the time domain, as seen in (B) and (C). This phase applied to the time domain envelope

worsens the time-bandwidth product of the pulse, and we consequently see broadening of the pulse in the

time domain in (A). However, this broadening is only a consequence of the phase added to the envelope: the

frequency content of the pulse, shown in (D), exhibits no changes as a function of propagation distance.

3.5.2 Calculating Group Velocity and Group Velocity Dispersion

In order to calculate the group velocity and group velocity dispersion in an arbitrary medium, we must first

recall the Taylor expansion in Eq. 3.4.23. In this expansion, we assigned the coefficients k1 and k2 as:

k1 =
∂k(ω)

∂ω

∣∣∣∣
ω=ω0

(3.5.6a)

k2 =
∂2k(ω)

∂ω2

∣∣∣∣
ω=ω0

(3.5.6b)

With the definition we obtained for k(ω) (Eq. 3.4.14), it is trivial to find the result of the derivative defining

k1, and only slightly more difficult to evaluate the derivative for k2. One form for these derivatives is:

k1 =
1

c

[
n(ω0) + ω0

∂n(ω)

∂ω

∣∣∣∣
ω=ω0

]
(3.5.7a)

k2 =
1

c

[
2
∂n(ω)

∂ω

∣∣∣∣
ω=ω0

+ ω0
∂2n(ω)

∂ω2

∣∣∣∣
ω=ω0

]
(3.5.7b)

However, we describe Eq. 3.5.7a and 3.5.7b as one form of the derivatives, as it will generally be more

convenient to consider the dispersion of materials as ∂n(λ)/∂λ. The reason for this is that the dispersion

of many materials is reported either in the form Cauchy’s formula[101] or in the manner of the Sellmeier

formula;[209] in both models, the index is considered to be a function of wavelength, λ, rather than frequency.

However, we can recognize that wavelength and frequency are related: recalling Eq. 3.1.5 and recognizing

ω = 2πν, λω = 2πc. Therefore, we can use the chain rule to expand the derivatives in Eq. 3.5.7a and 3.5.7b
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Figure 3.4: Simulations showing the effects of group velocity dispersion on the propagation of a 35 fs pulse
centered at 400 nm when polarized along the ordinary axis of β-barium borate (k2 = 215.17 fs2

/mm[208]). (A),
(B), and (C) show the effects on the time-domain envelope, A(t): (A) shows the intensity of the field, |A(t)|2;
(B) shows the amplitude of the real component, <{A(t)}; and (C) shows the amplitude of the imaginary
component, ={A(t)}. (D), (E), and (F) show the effects on the frequency-domain envelope, Â(∆ω): (D)
shows the intensity of the field, |Â(∆ω)|2, (E) shows the amplitude of the real component, <{Â(∆ω)}; and,
(F) shows the amplitude of the imaginary component, ={Â(∆ω)}. In the complex representation of (B),
(C), (E), and (F), white corresponds to zero amplitude, while red and blue represent positive and negative
amplitudes, respectively.
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to leave a wavelength-dependence:

k1 =
1

c

[
n(λ0)− λ0

∂n(λ)

∂λ

∣∣∣∣
λ=λ0

]
(3.5.8a)

k2 =
λ3

0

2πc2
∂2n(λ)

∂λ2

∣∣∣∣
λ=λ0

(3.5.8b)

With Eq. 3.5.8a and 3.5.8b, determining the group velocity or group velocity dispersion of a material requires

only the derivatives of ∂n(λ)/∂λ or ∂2n(λ)/∂λ2. These quantities can be determined from the appropriate

dispersion curves, with several examples worked out in Appendix B.

3.6 Numerical Integration of Ordinary Differential Equations

The treatment of pulse propagation in § 3.4 focused upon the consideration of a single field, with that field

coupling in some cases (§ 3.4.1 and § 3.4.4) to an induced nonlinear polarization. However, as we introduced

in § 3.2, the induction of nonlinear polarizations can often involve the interaction of multiple pulses, thereby

coupling the evolution and propagation of the field envelopes. In some circumstances, it is reasonable to

approximate that the nonlinear interaction within the medium does not significantly deplete some of the

fields, and that it is reasonable to consider the changes induced in a single field; under such circumstances,

we are left with a single differential equation. However, there are also many conditions under which this

approximation is not appropriate, such as simulation of the parametric processes within optical parametric

amplifiers or oscillators.[102, 103, 118, 199–201, 208, 210–217] In such scenarios, it is necessary to consider

the propagation of the fields as a system of coupled differential equations.

Fortunately, algorithms exist for numerical integration of systems of both first-order and second-order

differential equations. While it is straightforward to consider a method as straightforward as the Euler

method, there are fortunately more accurate methods, such as the Runge-Kutta algorithm. In the following

sections, a background of such methods is provided with significant influence from the works of Press et

al;[113, 218] for more information and information on computational implementation, the reader is directed

to these sources.

Most methods of numerical integration are designed to evaluate a set of first order ordinary differential

equations, described generically:

d

dx
yi(x) = fi{x, y1, . . . , yN} (3.6.1)

where i spans the range 1, 2, . . . N and fi{} is of a known functional form and describes the coupling between
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the set of functions {y1, y2, . . . , yN}. However, while most methods are intended towards evaluation of first-

order differential equations, systems of higher-order ordinary differential equations can generally be reduced

to an equivalent set of first-order differential equations that can be evaluated by these methods.

Systems of first-order differential equations can be reduced to two generic categories based upon the known

information: initial-value and two-point boundary problems. In the former, the entire set of functions is

defined at an initial point, and the goal is to project the evolution of the set of functions according to the

system of differential equations. Meanwhile, two-point boundary problems involve knowledge of the values

of the functions at more than one point. Two-point boundary problems are consequently more complicated

to solve, and require more advanced algorithms. Fortunately, the evolution of electric fields - where the fields

are known for some initial condition and the goal is to calculate their propagation - is an example of an

initial-value problem, for which the methods of evaluation are simpler.

The most simplistic approach to numerical integration of initial-value problems is the Euler method. In

this method, the appropriate derivative, dy/dx is removed from the limit of infinitely small step sizes, yielding

the case described by discrete steps, ∆y/∆x. The change in the function y(x) can therefore be projected from

its value at some position x, y(x), to its value at some position x+ ∆x, y(x+ ∆x), according to Eq. 3.6.2:

y(xn+1) = y(xn) + ∆xf{xn, y(xn)} (3.6.2)

Unfortunately, in this simple form, numerical integration of a system of differential equations can be unreli-

able. However, the reliability of the method can be improved by increasing the amount of information used

to guide the evaluation of the differential equation.

This improvement is the basis of Runge-Kutta methods, in which a series of steps identical to the Euler

method are evaluated; the results are then used to reconstruct a Taylor series expansion. These expansions

can be evaluated to any arbitrary order, but the most common is the fourth-order Runge-Kutta method,

which is outlined below. Runge-Kutta methods are not always the most efficient method for evaluating a

system of differential equations, but the advantages associated with these methods are reliability, reasonable

accuracy, and simple implementation. Two more efficient approaches to numerical integration - Richardson

extrapolation, such as Bulirsch-Stoer methods, and predictor-corrector methods - are available, but both

can be more difficult to implement and may not be robust to all problems. In methods based on Richardson

extrapolation, the goal is to numerically evaluate the result that would be achieved at the limit of infinitely

small step sizes. Predictor-corrector methods, on the other hand, base the value of the next point in

the integration on the results of the prior point, using evaluation of the derivative to adjust the results
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appropriately.

While these methods for numerical integration are oriented towards solving systems of first-order differ-

ential equations, it may be necessary to consider systems of second-order differential equations, generically

described:

∂2

∂ξ2
An(ξ) + C

∂

∂ξ
An(ξ) = Fn{Am(ξ)} (3.6.3)

where Eq. 3.6.3 describes the evolution of the envelope An(ξ) according to its functional dependence (Fn)

on a set of envelopes {Am(ξ)}. However, if a new function, Bn(ξ), is defined:

Bn(ξ) =
∂

∂ξ
An(ξ) (3.6.4)

It is possible to define the second order differential equation in Eq. 3.6.3 as a pair of first-order differential

equations:

∂

∂ξ
An(ξ) = Bn(ξ) (3.6.5a)

∂

∂ξ
Bn(ξ) = −CBn(ξ) + Fn{Am(ξ)} (3.6.5b)

While this treatment doubles the number of functions that need to be considered, we have now represented

our previous system of second-order differential equations as a system of first-order differential equations.

By reducing the system to first-order differential equations, it is now trivial to apply any desired method to

evaluate the system.

The Euler method, which we introduced previously, serves as the starting point for the Runge-Kutta

method. While using a single evaluation to project the evolution of the function can be unreliable, the

Runge-Kutta method introduces additional evaluations to improve the projection of the function. At the

lowest order, the Runge-Kutta method relies upon an additional evaluation of the derivative at the midpoint

of the steps; for example, the derivative appropriate for the Euler method would be evaluated at x, then this

information would be used to evaluate the derivative at x+ ∆x/2. These results would then be combined to

project y(x + ∆x). As this improvement to the Euler method involves an evaluation at the midpoint, it is

also called the midpoint method.

In order to combine the results of the evaluations at x and x+ ∆x/2, the model used mimics the Taylor

series. However, just as the Taylor series can be extended to higher orders, so too can the Runge-Kutta

methods. A common approach is to combine function evaluations to mimic the fourth-order Taylor series,
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yielding the fourth-order Runge-Kutta method. This method is accomplished by evaluating the derivative of

the function for four different points (Eq. 3.6.6a - 3.6.6d), then the results are used to project the propagation

of the function according to Eq. 3.6.6e.

k1 = ∆xf{xn, y(xn)} (3.6.6a)

k2 = ∆xf{xn +
∆x

2
, y(xn) +

k1

2
} (3.6.6b)

k3 = ∆xf{xn +
∆x

2
, y(xn) +

k2

2
} (3.6.6c)

k4 = ∆xf{xn + ∆x, y(xn) + k3} (3.6.6d)

y(xn+1) = y(xn) +
k1

6
+
k2

3
+
k3

3
+
k4

6
(3.6.6e)

One limitation of Runge-Kutta methods that should be noted is the importance of step-size. Though

Runge-Kutta methods are generally reliable, care should be taken when implementing these methods to

ensure that appropriate step sizes are used in the calculation. In order to do so, the integration should be

repeated with at least two step sizes (such as ∆x and ∆x/2) and the results compared to ensure consistent

behavior. Alternatively, controlling the algorithm with a program that monitors the results and adapts the

step size as appropriate can achieve the same result: guaranteeing that the numerical integration predicts

the proper result, rather than a result influenced by the step size. Introducing a routine that facilitates

adaptive stepping should allow the integration to be performed slightly more efficiently, as larger steps can

be taken when the functional behavior is characterized by slow changes and smaller steps when faster changes

occur.[218]

In § 3.4, we derived the wave equation describing the propagation of a field, leaving the result in the

frequency domain. The reason is clear in the context of the Runge-Kutta method: while the algorithm

can be directly implemented to solve the wave equation in the frequency domain to any desired order of

dispersion,[118, 200, 201] the standard Runge-Kutta algorithm accommodates only derivates with respect

to one dimension, preventing direct consideration of dispersive effects in the time domain. However, Bakker

et al[199] demonstrated a modified Runge-Kutta algorithm that directly incorporates first-order dispersive

effects in the time domain. While we will consider the above discussion regarding the Runge-Kutta algorithm

sufficient to discuss solution of the wave equation in the frequency-domain, we will outline the method

presented by Bakker et al.

The modified Runge-Kutta algorithm described by Bakker et al treats the differential equation of each
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field to be of the form:

∂

∂z
fn(z, η) = Cn

∂

∂η
fn(z, η) + Fn{fm(z, η)} (3.6.7)

where η is a time coordinate in a moving frame of reference traveling at the group velocity of one of the fields;

Cn corresponds to the GVM between the field described by fn(z, η) and the field to which η is referenced; and

Fn{fm(z, η)} describes the functional dependence of the propagation of the field corresponding to fn(z, η)

on the set of fields {fm(z, η)}. In this form, Bakker et al claim that the fourth-order Runge-Kutta method

can be reproduced using the scheme described in Eq. 3.6.8:

Kn
1 (z, η) = Fn{fm(z, η)}

Kn
2

(
z +

∆z

2
, η

)
= Fn

{
fm
(
z, η +

Cm∆z

2

)
+

∆z

2
Km

1

(
z, η +

Cm∆z

2

)}
Kn

3

(
z +

∆z

2
, η

)
= Fn

{
fm
(
z, η +

Cm∆z

2

)
+

∆z

2
Km

2

(
z +

∆z

2
, η +

Cm∆z

2

)}
Kn

4 (z + ∆z, η) = Fn
{
fm(z, η + Cm∆z) + ∆zKm

3

(
z +

∆z

2
, η +

Cm∆z

2

)}
fn(z + ∆z, η) = fn(z, η + Cn∆z) +

h

6
Kn

1 (z, η + Cn∆z)

+
h

3
Kn

2

(
z +

∆z

2
, η +

Cn∆z

2

)
+
h

3
Kn

3

(
z +

∆z

2
, η +

Cn∆z

2

)
+
h

6
Kn

4 (z + ∆z, η)

(3.6.8)

While it is valuable to recognize this algorithm for treating the effects of dispersion on the propagation of

electric fields in the time-domain, it is also important to note the limitations that arise in the method. First,

examination of the scheme in Eq. 3.6.8 demonstrates that evaluation of Kn
1 is required for six different time

scales:i η; η+ (∆z/2)(u−1
g1 −u

−1
g2 ); η+ (∆z/2)(u−1

g1 u
−1
g3 ); η+ ∆z(u−1

g1 −u
−1
g2 ); η+ (∆z/2)(2u−1

g1 −u
−1
g2 −u

−1
g3 ); and,

η + ∆z(u−1
g1 − u

−1
g3 ). This necessitates nine different evaluations of the derivatives of each field, as opposed

to the four required for frequency-domain evaluation. The second main limitation is that evaluating the

functions at each of these positions requires the temporal grid to have sufficient resolution that δ∆z/2 can be

evaluated for the different pairs of fields. This resolution can require several thousand points to adequately

define the temporal grid. The burden of computing so many points limits the effects that can be considered in

the calculations, such as the radial distribution of intensity in the TEM00 beam and the explicit consideration

of the amplification bandwidth limit imposed by the crystal, which would require Fourier transformation of

all fields during each integration step.

iIt should be noted that the particular points noted here are predicated on following the model of Bakker et al in which
the field noted by the subscript 1 is the field to which η is referenced. In their example, this corresponds to either the signal or
idler field in parametric amplification.
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CHAPTER 4

Simulation of Sum-Frequency Idler Generation
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4.1 Background

When doped in sapphire (Al2O3), the electronic structure of Ti3+ is interpreted as a consequence of a cubic

environment with distortions that result in splitting of the 2T2 and 2E degeneracies. The otherwise triply

degenerate 2T2 ground state is split by a combination of a trigonal field and spin-orbit coupling, while the

two 2E excited states are split by the Jahn-Teller effect.[219] The resulting system exhibits both absorption

and emission characterized by broad absorption and emission bands: both are approximately 150 nm full

width at half maximum, with the absorption centered near 500 nm and emission peaking near 750 nm. Under

lasing conditions, the gain is slightly red-shifted to 800 nm, and the gain profile exhibits an approximately

200 nm full width at half maximum.[219]

The broad gain bandwidth of Ti:sapphire easily provides the breadth necessary to achieve ultrafast pulses,

with sub-10 fs pulses having been reported.[220–224] These ultrashort pulses are described as “soliton-like”,

exhibiting propagation very similar to solitons within optical fibers: the pulse is maintained by balancing

the accumulation of linear phase and nonlinear phase from self-phase modulation with appropriate negative

dispersion compensation.[222, 225–227] It is possible to optimize dispersion such that the pulse is limited

by third- or fourth-order dispersion,[226, 228] but optimum performance is often observed with a slightly

negative total group delay dispersion.[223, 226, 229] While other methods have been described,[224] the

introduction of a prism pair is a common strategy for introducing negative dispersion.[159, 207, 220, 222,

226, 228, 230–232] However, as the integrated group delay dispersion is the quantity that matters,[222] some

degree of flexibility exists in the functional dependence of the dispersion upon wavelength. However, pushing

the limits of this tolerance is attributed as one source for the copropagation of multiple pulses within the

cavity: this complication arises when different frequencies within the bandwidth experience dramatically

different dispersion, incorrect applied dispersion,[226, 228] or a sufficiently low dispersion that third-order

effects become dominant.[233] Copropagation of multiple pulses may also be observed in systems that sustain

mode locking through Kerr lensing when over-pumping results in saturation of the Kerr effect.[229, 234]

Soliton-like propagation within an oscillator is both initiated and maintained through mode locking.

Various methods of active and passive mode locking have been reported,[231, 232, 235] though regenerative

methods[236] and external feedback[237] have also achieved the desired behavior. Active and passive mode

locking introduce periodic modulations to the gains or losses of the cavity, inducing pulsed behavior.[238]

Active mode locking yields temporal pulse envelopes that are Gaussian, but the use of active methods will

generally limit the achievable pulse duration.[238] In contrast, passive mode locking schemes are capable of

yielding shorter pulses[238] and exhibit very stable pulse trains with minimal timing jitter.[239] However,
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the pulse envelope resulting from passive mode locking is a hyperbolic secant,[238, 240, 241] which exhibits

broader wings than the Gaussian envelope of actively mode locked pulses.[242] Some authors have reasonably

described passively mode locked systems within a Gaussian approximation, though.[243] While saturable

absorbers can be used for passive mode locking, the broad bandwidth required for ultrashort pulses can

make this a poor choice to achieve the shortest pulse durations.[221] The Kerr lens provides a much more

convenient method for sustaining an ultrashort mode locked pulse:[220, 243] since it is based upon the

intensity-dependent Kerr lens to reduce the losses or increase the gain of a pulse over cw operation during

the pulse duration,[224, 238] it achieves the periodic gains and losses necessary for mode locking without

the bandwidth limitations inherent to saturable absorbers.[221] Kerr lens mode locking can be achieved

through either a hard or soft aperture.[224] Despite the advantages, one drawback to Kerr lens mode locking

is initiation of mode locking: while the Kerr lens is an effective method for sustaining pulse propagation, it

is less effective for self-starting.[221, 243] However, there are reports of self-starting oscillators based upon

Kerr lens mode locking;[222, 231, 244] the key to such systems is that they must be designed such that the

pulse experiences sufficiently greater gain than cw lasing.[244] As mentioned previously, systems based on

Kerr lensing can also be subject to saturation of the Kerr effect, which allows copropagation of longer pulses

or cw modes in addition to the desired ultrashort pulse.[229, 234]

The soliton-like propagation of Ti:sapphire oscillators provides a convenient avenue for the stable, reliable

generation of ultrashort pulses. However, the oscillation of these lasers tend to be at high repetition rates,

around 100 MHz.[221, 243] Such a high repetition rate results in a very low pulse energy, with values as low

as 1-10 μJ.[245] Additionally, while the Ti:sapphire gain medium does exhibit a very broad gain bandwidth,

allowing some tunability, the bandwidth still restricts oscillation and amplification to wavelengths around

800 nm. Fortunately, both of these limits can be addressed.

To overcome the pulse energy limits, regenerative amplification has been adapted to Ti:sapphire systems.

Through a separate pump and cavity, regenerative amplification selects individual pulses from the oscillator’s

pulse train and amplifies these pulses by several orders of magnitude.[246] Such high pulse energies would

result in catastrophic self-focusing in the cavity,[247] so these systems are generally based upon chirped pulse

amplification.[245] This strategy is predicated upon introducing linear frequency modulation (chirp) to the

pulses from the oscillator in order to generate longer pulses; the degree of stretching can vary based upon

application: whereas it may be sufficient to stretch the pulses to a few picoseconds for low gain systems,[248]

systems yielding higher energy may require significantly greater chirp.[249, 250] While a variety of strategies

for pulse stretching and recompression exist,[248–251] care must be taken to minimize the introduction of

effects such as pulse front tilt.[179] Regenerative amplification will often result in some degree of broad-
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ening and residual chirp regardless of the stretching/recompression strategy.[245, 252, 253] Gain narrowing

contributes part of the limit by introducing spectral narrowing and temporal broadening.[246, 248, 253] Addi-

tionally, the number of round trips required for optimum amplification allow the accumulation of both linear

and nonlinear phase. Compressors generally cannot reduce any third-order dispersion accumulated.[245, 252]

Meanwhile, the nonlinear phase accumulation described by the B-integral will exhibit a radial dependence

due to the radial distribution of the mode’s intensity, making compensation challenging.[247, 254]

Increasing the tuning range of Ti:sapphire based solid state systems is generally accomplished through

a variety of parametric processes. If we consider the fundamental frequency of these Ti:sapphire systems

to be ωF, harmonic generation makes the second, 2ωF, and third, 3ωF, harmonics accessible. However, the

discretization of these available frequencies can be overcome through optical parametric generation (OPG)

and optical parametric amplification (OPA).[126] In these nonlinear processes, a strong pump field at ωP

interacts with a weak field at the signal frequency, ωS, or the idler frequency, ωI. The convention is for

ωS > ωI. In a nonlinear medium, the pulse envelopes of these fields can be shown to evolve along the

direction of propagation, z, according to a system of equations;[102, 103, 118, 126, 199–201, 210, 211, 215,

216] when incorporating effects of pulse propagation, the equations of this system adopt the form of Eq.

3.4.34:
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ÂS − i

ω2
S

2c2k0,S
χ

(2)
eff F{APA

∗
I } (4.1.1b)

∂

∂z
ÂI =

[
−i∆ω(k1,I − k1,P)− i1

2
∆ω2k2,I −

1

2
α(ωI)

]
ÂI − i

ω2
I

2c2k0,I
χ

(2)
eff F{APA

∗
S} (4.1.1c)

where we have taken the pump to be the reference pulse and retained the definitions of all quantities as

in Ch. 3. We also mask the importance of symmetry in the nonlinear susceptibility through the use of

the effective nonlinear susceptibility, χ
(2)
eff (see § 3.2.2).[106, 119] For compactness, we have omitted the

contributions of phase matching and do not explicitly note the frequency, space, or time dependence of the

envelope functions.

The system of equations in Eq. 4.1.1a-4.1.1c illustrates a few key characteristics of OPA and OPG. First,

in order for the polarizations corresponding to the product of pulse envelopes on the right hand side to feed

the corresponding fields, the frequencies must satisfy the equality, ωP = ωS + ωI. Additionally, it illustrates

the need for the initial weak field at either ωS or ωI: if both fields have no initial amplitude, the only changes

predicted by the system of equations are the effects of dispersion on the pump. It is adequate to provide
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a white light continuum as a broadband source for this initial interaction.[255] However, with a sufficiently

strong pump, the vacuum field can be sufficient to initiate OPG; this superfluorescence requires much higher

pump energies for stability[170] and may be limited by the presence of on- and off-axis components.[255] It

is generally inadvisable to simultaneously seed the process with both signal and idler fields,[150, 170, 256]

as group velocity differences can result in the formation of multiple pulses[170] and differences in phase can

cause interference.[256] In the absence of pump depletion and dispersion, the system of equations predicts

exponential growth of the amplitude of the signal and idler fields.[126] At high conversion rates, though,

reconversion of the signal and idler according to Eq. 4.1.1a can become meaningful;[257–259] to avoid

these effects, a conversion limit of ∼ 20% has been cited.[258] Group velocity mismatch also has important

consequences on the behavior of different processes.[125, 126, 129, 138, 154, 163, 168, 170, 171, 173, 178,

179, 182, 260–269]

Frequency conversion by parametric generation can be achieved through many different strategies. A

weaker pump can be used by enhancing the conversion through oscillation in a cavity. This strategy, optical

parametric oscillation, can be achieved with different pump sources, including Ti:sapphire lasers;[126, 127,

164, 181, 211, 270, 271] however, while this achieves the goal of tuning the field, it still results in low pulse

energy at high repetition rates,[126] and the oscillator may require some considerations for stability.[266]

Alternatively, optical parametric amplification requires higher pump energy in order to achieve appreciable

conversion; however, since the optical parametric amplifiers (OPAs) do not require a cavity, they can be more

straightforward to operate. When OPAs are taken to the limit of high gain, amplification can be achieved

in only a few passes through the nonlinear medium; such systems are described as traveling-wave optical

parametric generators (TOPG).[170, 173, 174, 177, 272]

While reported conversion efficiencies of TOPGs suggest reconversion can be relevant, there are many

potential advantages. At high gain, the TOPG operates in saturation: at this limit, the performance is

relatively insensitive to fluctuations in the seed, improving operating stability.[170, 178, 273] While OPA

ideally yields tunable pulses at approximately the duration of the pump pulse,[173, 174, 269] this should

be more feasible by minimizing the number of passes: each pass through the nonlinear crystal reduces the

amplification bandwidth,[178] limiting the achievable pulse duration.[271] However, there will be a limit as to

how few passes are feasible. Decreasing the number of passes requires higher gain to achieve saturation,[178]

but this increased gain also increases the chance of superfluorescence, which can negatively impact the

performance of the amplifier.[269] Besides the effects of amplification bandwidth, the generated signal and

idler are rarely at the transform limit,[133, 266] especially for femtosecond pulses.[176] The chirp accumulated

by the signal and idler is attributed to group velocity dispersion and group velocity mismatch between the
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pump and signal;[266] it is not uncommon for the signal and idler to exhibit similar bandwidths, but to

exhibit opposite chirp.[172]

In contrast to lasers, in which the bandwidth is restricted by the resonances of the gain medium, OPA is

usually achieved in a nonresonant medium.[154, 179] However, while resonances are generally not considered

relevant in determining the bandwidth of the OPA, absorption associated with resonances can limit tuning

ranges; for example, in BBO, the tuning range is limited in the infrared by absorption[131, 166, 170, 173, 177,

208, 263] by phonon modes[208] and in the UV by two-photon absorption.[138] Rather, the bandwidth of the

OPA is generally a consequence of the need to satisfy momentum conservation by phase matching.[125, 127,

129, 138, 154] With broadband pulses, it may prove impossible to simultaneously satisfy phase matching for

all relevant frequencies,[161, 162] introducing the limits described above upon the number of passes.[178, 271]

The importance of the number of passes can be understood by considering the phase matching bandwidth.

By expanding the phase mismatch in a Taylor series in a manner similar to Eq. 3.4.23, it is possible to

show that the phase matching bandwidth will be restricted by both increasing crystal length[106, 126] and

by increasing group velocity mismatch between the signal and the idler fields.[125, 126, 129, 138, 154, 170,

178, 179, 182, 267–269]

The effect of increasing group velocity mismatch proves a limit when trying to generate visible pulses:[168,

260, 265] in a collinear geometry, the group velocity mismatch becomes restrictive,[263, 272] especially with

decreasing pulse duration.[168, 173, 260, 265] In addition to the limits imposed by the phase-matching

bandwidth, collinear geometries also exhibit a lower range of acceptance angles into the crystal.[125] While

the range of acceptance angles does not prove limiting if beam divergence is minimized,[181] noncollinear

geometries have been found to exhibit broader ranges of acceptance angles,[125, 128, 167, 181] improving effi-

ciency.[128, 167] Noncollinear geometries can also demonstrate improved phase matching bandwidth through

group velocity compensation.[125, 152, 182] When the phase matching angle θ 6= 0◦, 90◦, the birefringence

causes a mismatch between the Poynting vector (the direction of energy) and the wave vector, k;[106] in

a noncollinear geometry, this walk-off angle yields an effective change in group velocity.[274] This walk-off

can have consequences,[128, 181, 270, 275] particularly with respect to mode structure[275] and interaction

length,[128] though some authors have reported strategies that achieve some compensation.[164, 276] How-

ever, walk-off is utilized in a noncollinear geometry as the change in effective group velocity it causes can

help match group velocities in the crystal.[125, 129, 152, 154, 171, 178–184] Phase matching in such non-

collinear geometries is facilitated by the formation of an angularly dispersed idler;[126, 154, 269] additionally,

it has been demonstrated that there exists a noncollinear angle such that the proper phase matching angle

of BBO is nearly independent of wavelength.[152, 277] However, with a noncollinear geometry, changing
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the desired signal frequency can also change the output direction.[255] Some authors have achieved similar

group velocity mismatch compensation with tilted pulse-fronts[255, 260, 261, 274] or chirped pulses.[278] An

appropriate amount of negative chirp has also been reported to improve efficiency.[131] Meanwhile, while

tilted pulse-fronts can compensate for changes in output direction,[255] it can result in other distortions that

also manifest in a noncollinear geometry.[154, 171, 182, 183]

An alternative approach for achieving a broad tuning range is to couple OPA in the near infrared with

appropriate upconversion processes,[265, 272] the strategy employed in the TOPAS-C. While absorption of

the idler is attributed as the limit for this tuning range,[126, 131, 166, 170, 173, 177, 208, 263] near infrared

conversion can be pumped by the fundamental of Ti:sapphire lasers directly. Avoiding harmonic generation

makes higher pump energies available; when coupled with the lower group velocities in the near infrared,

significantly higher energies can be achieved.[126, 263] Upconversion is accomplished by a variety of processes

between the pump, signal, and idler from the initial near infrared OPA:[272] the combination of harmonics

and sum-frequency generation with the pump provides tuning throughout the visible and near infrared. It

has been reported that upconversion can restrict the available bandwidth;[184] group velocity mismatch

can also prove limiting.[171, 262] However, a wide variety of reports have demonstrated that upconversion

processes can have pronounced consequences on the spectral or temporal character,[133, 154, 156, 163, 170,

176, 258, 264, 265, 273, 274, 279, 280] particularly under conditions of significant conversion or depletion[154,

170] and pronounced effects of group velocity.[156, 163, 262, 264] The behavior can also change according to

the initial delay between the involved fields.[264]

We believe that such behaviors are to account for unusual behavior observed when generating the sum-

frequency between the idler and residual pump (SFI), as shown in Fig. 4.1.i Exploring the effects of changing

the delay between the pump and the signal seed in the OPA showed that the spectral characteristics observed

can be changed with this adjustment, and that optimized signal and idler conversion did not necessarily

contribute to optimum sum-frequency generation. Despite the unusual spectral character observed in the

SFI process, the signal process appeared consistent with normal operation (see Fig. 4.2); it is difficult to

reliably characterize the idler, but the literature suggests the bandwidth of the signal and idler processes

should be similar.[172] The unexpected behavior of SFI is consistent with the observations of Danielius et

al.[272] When using a very similar system, but with longer pulses (∼ 100 fs rather than ∼ 30 fs) and slightly

longer (4 mm and 0.6 mm rather than 2 mm and 0.3 mm BBO for OPA and SFI, respectively), Danielius

et al report very low conversion for the sum-frequency generation process between the idler and the pump

iExperimental data collected with Eric Hagee, Daniel Kohler, and Blaise Thompson.
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except near 600 nm, where they observe ∼ 50% higher efficiency.[272] They do not observe similar behavior

for sum-frequency generation between the pump and signal.[272] Their explanation for these observations is

that the group velocity mismatch between signal and pump is nearly independent of signal wavelength and

non-zero in the Type II phase matching of the OPA;[126, 172] when sum-frequency generation is performed,

however, this reverses the group velocity mismatch, limiting the effects of the accumulated group delay

between the pump and the signal on sum-frequency generation. In contrast, as Type II phase matching

results in parallel polarizations for the pump and idler, the accumulated group delay between the pump and

the idler is not reversed during sum-frequency generation; rather the group delay is increased by continued

co-propagation through additional crystals. Unlike signal, though, the pump-idler group velocity mismatch

exhibits significant dependence on idler wavelength, crossing zero near 2400 nm (signal wavelength, 1200

nm).[126, 172] The sum frequency of 2400 nm and the fundamental occurs at 600 nm, where Danielius et al

observe the unusually high efficiency.[272] This is also near the wavelength at in which we observe the unusual

spectral characteristics of Fig. 4.1. Unfortunately, Danielius et al do not provide spectral characterization

of their system. The simulations reported here seek to confirm that the features in Fig. 4.1 are expected

behavior for our system and improve our understanding of the underlying mechanisms.

4.2 Methodology

A wide variety of authors have attempted to explore the simulation of parametric processes.[118, 199–201,

212–217] Bakker et al appear to have described one of the earlier methods towards simulating ultrafast pulse

propagation, introducing a modified Runge-Kutta algorithm that allowed solving a system exhibiting both

spatial and time dependence (see § 3.6).[199] However, there are multiple drawbacks to their approach. First,

the algorithm can only handle behaviors associated with the first derivative with respect to time.[199, 201]

Second, while this algorithm can be coded and implemented, the number of evaluations and the density of

data points necessary to incorporate the temporal dependence make the calculation prohibitively expensive.

Gale et al have documented an alternative approach for evaluating the system of differential equations

describing OPA, which permits evaluation to an arbitrary order of dispersion.[200, 201] This is possible

through operating in both the time and frequency domains. At each step of the numerical integration, the

polarization at each frequency is calculated, the results are Fourier transformed to the frequency domain, and

the evolution of the fields projected. Evaluation of the field changes in the frequency domain permits direct

application of the Runge-Kutta algorithm:[218] as shown in § 3.4.1, Fourier transformation of the relevant

system of equations masks the differential behavior associated with dispersion. While Fourier transformation
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Figure 4.1: Results of sum-frequency idler process tuning. (A) shows the two dimensional representation
of the tuning data, plotted as the detuning, λm − λ0, versus assigned sum-frequency idler center color, λ0,
where λm is the wavelength of the monochromator at each point. (B), (C), (D), and (E) show the differences
in spectral profile along different slices in the two-dimensional data set; the color and style of the line in each
plot provide color- and style-coding to the slices in (A).
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Figure 4.2: Results of signal process tuning prior to sum-frequency idler tuning of Fig. 4.1, plotted as the
detuning, λm−λ0, versus assigned signal center color, λ0, where λm is the wavelength of the monochromator
at each point.
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permits consideration of dispersion to an arbitrary order, we follow the assumption in § 3.4.1 and only consider

effects up to the second order in time/frequency. While this method follows the example of Gale et al[200,

201] and later authors employing the same approach,[118] we note that the system of equations we employ

based upon the derivation in § 3.4.1 deviates slightly from the equations used by these authors.

The Python code developed for these calculations - with some modifications for presentation - is presented

in Appendix C. It consists of a series of scripts containing discrete parts of the calculation. It should be

noted that during development of the code, the architecture necessary for several features - such as support

for isotropic media and adaptive stepping - were incorporated; however, as these features were not needed,

they have not been developed. In earlier versions, the code necessary for evaluating second-order differential

equations was maintained; however, testing has indicated it is reasonable to operate within the slowly varying

amplitude approximation. Maintenance of this portion of the code has since been discontinued, and much

of these portions of the code have been omitted in the appendix.

Before discussing the strategy we employed for simulating the SFI process, we will first outline the

approximations implicit within the code. First, we adopt the plane wave limit for each field and neglect

effects such as walk-off, phase effects of a TEM00 mode, refraction, and imaging. The effects of spatial

walk-off are neglected for convenience: due to the short crystal lengths in the crystals in the TOPAS-C, the

effects of walk-off that would be expected are comparable to the resolution we adopt in radial sampling. As it

is common to put the crystal just after the focus of the pump,[126] the propagation of the TEM00 mode has

the potential to be an important effect, especially when considering the imaging of the pump and the idler

modes on the sum-frequency crystal. However, as we do not know the exact engineering of the TOPAS-C

units, we neglect the phase terms associated with the TEM00 mode and simply consider the amplification

and sum-frequency crystals to be in direct sequence. While we neglect the phase terms of the TEM00 mode,

we do consider a radial intensity distribution consistent with a Gaussian profile; the handling of this is

functionally equivalent to appropriately weighting the contributions of plane waves with different fluence.

The beam sizes employed in the calculations are reported with the other characteristic parameters below;

these have been adjusted within seemingly reasonable bounds so as yield conversion efficiencies comparable

to those observed in the TOPAS-C.

In contrast with Gale et al and Wang and Wang,[118, 200, 201] we do not incorporate the effects of

third-order nonlinear polarizations. While some authors suggest that the effects of third-order nonlinear

polarizations during OPA may be important,[131, 281] others question the magnitude of their effects.[259]

We also point out that some authors indicate TOPGs may be operated at lower gain levels in the later

amplification stages;[170] the correspondingly lower pump intensities would be expected to reduce the sig-
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nificance of any third-order effects. There also appear to be questions whether perceived third order effects

are the result of third-order polarizations or cascaded effects;[118] see for instance that cascaded side bands

can exhibit phase matching consistent with “self-diffraction” without clearly requiring a third-order polariza-

tion.[282–284] In addition to third-order polarizations, we also do not account for the possibility of parasitic

processes,[172, 275, 285, 286] though it is clear that these can have consequences on the behavior of a system,

either through spectral distortions or inefficiencies.[275]

While the Selmeier coefficients provided by Kato and Eimerl et al appear to be the standard description

for the dispersion of BBO[106, 287, 288] and other authors have indicated they are reasonably accurate in the

near infrared,[289] we have opted to employ the modified dispersion formulae reported by Zhang et al.[208]

We note here that the group velocity mismatch curves projected by all three sources (Fig. 4.3) exhibit

similarities, including a crossing point at which the pump-idler group velocity mismatch ∆u−1
pi = 0 fs/mm;

however, as Fig. 4.3 shows, this crossing point is projected at signal wavelengths as short as λs = 1108 nm

(λi = 2878 nm)[288] or as long as λs = 1330 nm (λi = 2008 nm).[287] Consequently, while we hope to observe

similar behavior as seen in Fig. 4.1 in our simulations, we do not anticipate an exact match for the wavelength

at which the features might occur. Absorption data has been simulated to reproduce available information.

Data describing the absorbance of BBO has been published by Eimerl et al,[287] but a clearer set of data

are available online.i While no crystal length was reported for the online reference, comparison with the

reported absorbance by Eimerl et al allowed approximate scaling. We estimated absorption coefficients at

various colors and interpolated as necessary. The results of these interpolations yield a higher coefficient

at 532 nm (∼ 0.05 cm-1 instead of 0.01 cm-1) and a lower coefficient near 2.55 μm (∼ 0.3 cm-1 instead of

0.5 cm-1) than those reported by Dmitriev et al.[106] As the interpolated values are of the correct order

of magnitude, our interpolated absorbance should provide a reasonable approximation, especially given the

short crystal lengths employed in the TOPAS-C.

Because the generation of the seed in the TOPAS-C is accomplished in a noncollinear geometry, we

could not accurately model this. Some testing was done approximating the noncollinear interaction using

an effective group velocity as calculated according to the formula reported by Dubietis et al.[274] In this

treatment, we used the model for white light described by Reisner and Gutmann.[217] The calculation of

the white light field proved computationally expensive, but in these tests we found that the resulting seed

was comparable to an envelope with a phase of ∼ 40◦. We therefore have assumed the seed envelope to

be described by a Gaussian profile of 35 fs duration with an initial phase of 40◦. This neglects residual

iLocated at u-oplaz.com.
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Figure 4.3: A comparison of the group velocity mismatch curves projected by the BBO dispersion curves
from different authors, from top to bottom: Eimerl et al;[287] Kato;[288] and Zhang et al.[208] Magenta
curves are pump-idler group velocity mismatch, ∆u−1

pi = 1/up− 1/ui, and black curves are pump-signal group

velocity mismatch, ∆u−1
ps = 1/up − 1/us. Dashed lines represent the group velocity mismatch curves for Type

I (e ← oo) phase matching, and solid lines are the curves resulting for Type II (e ← oe) phase matching.
The phase matching angle was determined within the CW limit. The green lines identify the point at which
each source for BBO dispersion data predicts ∆u−1

pi = 0 fs/mm.
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chirp, which is also neglected in the pump. It has been reported that a slight negative chirp can compensate

for dispersion in the crystal and improve performance accordingly;[131] as we optimize recompression in

the regenerative amplifier to TOPAS-C performance, this is undoubtedly meaningful, but we have no good

estimate for the effects.

In attempting to reproduce the behavior of Fig. 4.1, we have sought to emulate the tuning procedure

employed on the femtosecond system as closely as possible. According to our approximation regarding the

seed, we have assumed that the first amplification stage has already been well-tuned and that a signal seed at

any desired frequency can be generated. We proceed to simulate the acquisition of multidimensional tuning

data at a distribution of signal colors: two of these dimensions arise from changing the phase matching

angle and the temporal delay between the seed and the pump, while the third represents the distribution

of frequencies within the fields. This is directly analogous to the acquisitions of D2 versus C2 versus λm

collected during tuning of the TOPAS-C. The resulting data set is reduced to two two-dimensional data sets

that track the functional dependence upon phase matching angle and delay of the zeroth (integrated energy)

and the first (mean, or central color) moments of the signal field. These metrics were selected as the data in

Fig. 4.1 question the validity of the parameters of Gaussian fits as reliable characterization metrics. Tuning

curves were generated by picking the optimum point in the two dimensional space of phase matching angle

and delay; the corresponding tuning curve point was obtained by assigning these values to the central color

as determined by the first moment. The first metric for determining the optimum point was to require the

first moment to be within ∼ 1.5 nm of the central color of the seed; of points satisfying this first metric, the

appropriate tuning position was then assigned on the basis of maximum integrated energy.

The resulting tuning curves (phase matching angle versus signal color and delay versus signal color) were

interpolated using the UnivariateSpline function from scipy.interpolate. The knots/smoothing factor

were set to 5/10000 for the phase matching angle and 3/1000 for the delay. These interpolation functions

were used to tune the sum-frequency process. For a distribution of SFI colors, the appropriate signal color

was calculated on the basis of energy conservation; the generation of this signal color and its corresponding

idler were calculated using the phase matching angle and delay interpolated by the splined tuning curves.

The pump and idler fields from this simulation were retained and assigned as the pump and idler fields for

sum-frequency generation. The sum-frequency generation of these fields was simulated for a distribution of

phase matching angles. For each SFI color, the optimum phase matching angle was chosen by maximizing

the SFI energy, and the first moment of the corresponding sum-frequency spectrum was calculated. The

functional dependence of phase matching angle and energy-conserving SFI color upon these first moments

provided the SFI tuning curves: for a desired SFI color, the latter curve permitted identification of the
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appropriate signal color for simulating pump and idler generation, while the former indicated the proper

phase matching angle for sum-frequency generation. Both tuning curves were interpolated using the same

UnivariateSpline function (5/10000 knots/smoothing factor).

With these tuning curves, both the base OPA and the SFI upconversion processes were simulated with an

even distribution of assigned colors. These simulations are reported in the following section. The parameters

used for these simulations are reported in Table 4.1. The field parameters for the SFI simulation were

inherited from the appropriate OPA simulation.

4.3 Results and Discussion

In order to test the performance of the script, we simulated the second-harmonic generation of 2 ps, 800

nm pulses. Within the framework of § 3.4.1, this process would occur according to the system of equations

relating the fundamental (F) and second harmonic (SH):
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However, with such long pulse durations, dispersive effects should be negligible for reasonable crystal lengths.i

Additionally, we can approximate the pulse envelope as the amplitude at the central frequencies, A0,F and

A0,SH; this allows us to also treat the frequencies of each field ωF and ωSH as the central frequencies, ω0,F and

ω0,SH. Within this limit of narrowband pulses, we should also be able to assume phase matching is reasonably

well satisfied across the spectrum. Finally, as we are dealing with visible frequencies, the absorbance of BBO

should be minimal. This reduces the system of Eq. 4.3.1a and 4.3.1b to:
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Note that as we are operating within the narrowband limit, we are no longer retaining a distinction between

the frequency-domain amplitude (Â) and the time-domain amplitude (A). In the regime of low conversion,

the effects of Eq. 4.3.2a will be perturbative to the fundamental field, allowing us to adopt the assumption

iFor the dispersion curves given by Zhang et al,[208] the predicted group velocity mismatch for the second harmonic gener-
ation of 800 nm is 232 fs/mm. For 2 ps pulses, then, neglecting group velocity mismatch should be a reasonable approximation
up to 8-9 mm.
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Parametric Amplification Parameters
Process Parametric Amplification

Phase Matching Type II
Crystal Length 0.2 cm

Azimuthal Angle 0◦

Steps 250

Sum-Frequency Generation Parameters
Process Sum-Frequency Generation

Phase Matching Type I
Crystal Length 0.03 cm

Azimuthal Angle 90◦

Steps 150

Shared Parameters
Dispersion Curve Zhang et al[208]

Time Samples 128
Radial Samples 32

(a) Simulation Parameters

Parameter Pump Signal Idler
Wavelength 800 nm (variable) (variable)

Center 0 fs (variable) 0 fs
Gaussian Width 35 fs 35 fs 35 fs

Energy 1500 μJ 1 μJ 0 μJ
1/e2 Size 1.0 cm 0.5 cm 0.5 cm

Envelope Phase 0◦ 40◦ 0◦

(b) Field Parameters

Table 4.1: Parameters used for sum-frequency idler simulations.
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that ∂/∂zA0,F = 0. This leaves only Eq. 4.3.2b with a constant source, A0,F. The solution to this equation

is straightforward to evaluate, yielding:

A0,SH = −i
ω2

0,SH

2c2k0,SH
χ

(2)
eff A

2
0,Fz (4.3.3)

under the assumption that no second harmonic is present at z = 0. In terms of energy, this result is equivalent

to:

ESH

f(w0)
=

ω4
0,SH

4c4k2
0,SH

|χ(2)
eff |

2 E2
F

f(w0)2
z2 (4.3.4)

where ESH and EF are the energy of the second harmonic and fundamental pulses, respectively; f(w0) is a

beam size dependent distribution of that energy, and other variables are defined as before. From Eq. 4.3.4,

we therefore anticipate that in the low conversion limit, the energy of the second harmonic should scale with

a quadratic dependence upon length (z) and fundamental energy (EF) and a reciprocal dependence upon

the energy distribution function.i The parameters employed for these calculations are summarized in Table

4.2, and the results are summarized in Fig. 4.4.

In these simulations, we found the behavior of Eq. 4.3.4 to be observed until approximately 10% conver-

sion; at this point, deviations from the expected dependence began to become significant. This is comparable

to reported bounds at which reconversion begins to be expected in OPA (∼ 20%).[258] As indicated by the

result of Eq. 4.3.4, the energy of the second harmonic is expected to exhibit quadratic dependence upon the

fundamental energy and the crystal length, in very good agreement with the results in (A) and (C) of Fig.

4.4, where we observe high correlation with models that scale according to E1.9717
F and L1.9183. Meanwhile,

the energy distribution we employ in the calculations is [(π/2)w2
0]−1 exp[−2(r/w0)2], where w0 is half the

provided 1/e2 beam size. Within this model, we should expect the functional dependence upon beam size

to scale as the non-exponential term, [(π/2)w2
0]−1. In (D), we see that the low conversion regime of second

harmonic generation exhibits a very strong match to this model, scaling as w−1.9682
0 . The one limitation that

is apparent in the script comes in (B): ideally, we should observe energy conservation in the process. It is

clear that at low energies this is not the case. We attribute this limitation at small second-harmonic energies

to the limited resolution of our sampling grid (32 spatial points, 128 temporal points). It is clear that the

script converges to the correct behavior with respect to energy conservation at higher energies; from this,

we take the sensitivity of the script to be at the level of 10−2-10−1
μJ. As we will be simulating TOPG, we

iWe note, too, that Eq. 4.3.4 exhibits a dependence upon central frequency, and that we have previously noted the omission
of a phase matching dependence. Neither of these prove straightforward to incorporate cleanly, however. As the frequency

influences χ
(2)
eff through the phase matching angle θ and k0 through both ω0 and the phase velocity, the dependence upon ω0

ends up more complicated than the quadratic dependence that first appears to be evident. Meanwhile, exploring the influence
of ∆k is computationally challenging as the phase modulation changes the characteristic step size between runs.
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Dispersion Curve Zhang et al.[208]
Process Second-Harmonic Generation

Phase Matching Type I
Crystal Length 0.5 cm

Azimuthal Angle 90◦

Step Size 10 μm
Time Samples 128

Radial Samples 32

(a) Simulation Parameters

Parameter Fundamental Second Harmonic
Wavelength 800 nm 400 nm

Center 0 fs 0 fs
Gaussian Width 2 ps 2 ps

Energy 5 μJ 0 μJ
1/e2 Size 1.0 cm 0.5 cm

Envelope Phase 0◦ 0◦

(b) Field Parameters

Table 4.2: Parameters used for second-harmonic test simulations.
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Figure 4.4: Results of simulations of second-harmonic generation as a function of fundamental energy (A),
crystal length (C), and beam size (D). Simulations performed according to the parameters in Table 4.2. (B)
shows the change in energy predicted for the fundamental and second harmonic at each initial fundamental
energy tested in (A).
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should generally be operating safely beyond this regime.

Having demonstrated that the behavior of the script is consistent with expectations and recognizing the

sensitivity limits, we will present the results of the simulations of the sum-frequency idler process; after

presenting the results, we will attempt to explain them in the context of published treatments of OPA and

sum-frequency generation.

As noted in our outline of the methodology, the first step in these simulations was to emulate the tuning

procedure employed on the femtosecond system. With the assumption that the preamplification stage has

already been “well-tuned” and that nearly Gaussian seed profiles can be generated at any desired signal

color, we explored the space corresponding to the pump-seed delay and the amplification crystal angle for

a distribution of signal colors. As the resulting data forms a four-dimensional data set (amplitude/intensity

versus frequency versus crystal angle versus delay), it is not convenient to analyze in its original state.

However, in Fig. 4.5 and 4.6, we have reduced this four-dimensional data set to two three-dimensional data

sets, characterizing the amplitude/intensity versus frequency dimensions according to their zeroth and first

moments.

For seed colors with wavelengths longer than 1180 nm, we observe behavior in these results consistent

with expectations. When examining the first moment (central color) as a function of angle versus delay

in Fig. 4.5, we observe a dependence upon angle only. In the model example of these simulations, this

is completely reasonable, as neither the seed nor pump have any time dependence; if we introduced chirp

into the seed, which is likely more consistent with the character of the seed in the TOPAS-C, we would

expect to observe some curvature or tilt to the contours appropriate to the functional form of the frequency

modulation. The relationship between color and crystal angle is made clear by examining the phase matching

angles predicted for BBO (as calculated from the dispersion curves described by Zhang et al[208]) within

the cw approximation in Fig. 4.7: in the phase matching curve predicted for Type II phase matching, there

is a monotonic trend of increasing phase matching angle with increasing signal color for all wavelengths

longer than 1150 nm. This matches the behavior observed in Fig. 4.5, where a blue (red) shift is observed

for decreasing (increasing) crystal angle. Meanwhile, at first glance, the results of the zeroth moment

(integrated energy) in Fig. 4.6 for wavelengths longer than 1180 nm seem unusual. While it is not clear

from Fig. 4.6 (the tuning curves shown in Fig. 4.8 illustrate this more clearly), there is a clear trend that

the optimum delay is slightly negative; it seems reasonable that a slight delay would be optimum in order to

compensate for the group velocity mismatch between the pump and the seed. However, the unusual trend

is that optimum amplification appears to occur at smaller crystal angles than the angle assigned as the

optimum tuning point. However, recall from § 3.2.2 that, in Type II phase matching, deff scales with respect
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to d22 according to d22 cos2(θ) cos(3φ). Consequently, we would anticipate deff to actually increase as we

decrease the phase matching angle; this would be expected to increase the gain at these smaller angles. We

attribute the optimum amplification at smaller phase matching angles to this effect.

In contrast to wavelengths longer than 1180 nm, the results for 1140-1180 nm appear less straightforward;

each of these wavelengths exhibits less straightforward behavior as a function of crystal angle and delay, both

in terms of the trends observed and in the rate of these changes. However, recalling Fig. 4.3, we note that

this region is where the dispersion curves of Zhang et al predict the pump-idler group velocity to reach

zero.[208] As a consequence, this is where we anticipate deviations from ideal behavior to begin manifesting;

under the high gain of the TOPG, reconversion between the pump and the signal and idler is expected, likely

exacerbating any deviations already occurring.

The tuning curves projected by these optimum points are shown in Fig. 4.8 (A). As these tuning curves

show, the optimum delay appears quite dynamic at lower wavelengths, likely due to the pump-idler group

velocity mismatch crossing zero; otherwise, the behavior of the delay tuning curve appears to mostly be

limited by the resolution of our sampling in the simulations. The combination of these two does appear to

limit the accuracy of the tuning curve in predicting the optimum delay: this is apparent in Fig. 4.5 and

4.6, where the tuning point assigned by the tuning curve is predominantly shifted from the optimum point

horizontally - along the delay axis. In contrast to delay, the tuning curve as a function of crystal angle

is much more monotonic. At wavelengths longer than 1250 nm, the curve exhibits a trend very similar

to the theoretical curves (Fig. 4.7) predicted using the dispersion curves of Zhang et al.[208] At shorter

wavelengths, deviation from the theoretical curve is observed; in contrast to the behavior of delay, though,

this deviation is relatively smooth and can be interpolated quite well.

The signal tuning curves permitted simulated tuning of the sum-frequency idler; the results of these

simulations are much less insightful as they are interpreted solely on the basis of maximizing the zeroth

moment (integrated energy). The resulting tuning curves from these simulations are shown in Fig. 4.8

(B). In the same manner as (A), there are two axes of relevance when trying to simulate a desired sum-

frequency idler color: a phase matching angle and a color corresponding to the energy conservation condition

of an appropriate signal point. The latter of these curves is quite monotonic and can be well described

by an interpolated curve. On the other hand, the results for the phase matching angle are reasonably

well interpolated as the sum-frequency idler wavelength increases until ∼ 605 nm, where a deviation from

monotonic behavior is observed. This deviation occurs at frequencies corresponding to signal wavelengths of

1180 nm; from the group velocity mismatch curves in Fig. 4.3, it seems reasonable to attribute this lack of

monotonicity to the pump-idler group velocity mismatch crossing from positive to negative values.
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Figure 4.5: Results of simulations of signal tuning, presenting detuning of the first moment as a function of
angle detuning and delay detuning. Angle (delay) detuning reflects the detuning of the phase matching angle
(initial pump-signal delay) relative to the angle (delay) position assigned as optimum. Detuning of the first
moment is measured relative to the first moment of the optimum point; contours reflect 5 nm increments
to the blue (dashed) or the red (solid). The unfilled marker at (0,0) corresponds to the assigned optimum
point; the filled marker indicates the delay and angle assigned by interpolation of the tuning curve. The
label identifies the center wavelength of the seed used for the simulations.
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Figure 4.6: Results of simulations of signal tuning, presenting the zeroth moment (integrated signal pulse
energy) as a function of angle detuning and delay detuning. Angle (delay) detuning reflects the detuning
of the phase matching angle (initial pump-signal delay) relative to the value assigned as optimum. The
contours represent steps corresponding to 10% of the maximum energy observed in the range of simulations
for that seed wavelength. The unfilled marker at (0,0) corresponds to the assigned optimum point; the filled
marker indicates the delay and angle assigned by interpolation of the tuning curve. The label identifies the
center wavelength of the seed used for the simulations.
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Figure 4.7: Theoretical tuning curves predicted for Type I and Type II phase matching in a BBO OPA
according to the dispersion curves reported by Zhang et al[208] within the cw approximation.
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Figure 4.8: The tuning curves for the simulated optical parametric amplification (A) and sum-frequency
idler (B) processes.
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The results of simulating signal and idler amplification are shown in Fig. 4.9. (A) shows the spectrum

predicted for the signal process; the results is reasonably symmetric and is consistent with some of the cleaner

data sets collected of a well-tuned signal process. The idler, meanwhile, is also quite symmetric at shorter

wavelengths. As the idler wavelength increases, though, the spectrum clearly becomes broader. However,

due to the scaling of frequency and wavelength, it is difficult from visual examination to directly attribute

the breadth to spectral broadening or to the scaling of a constant bandwidth at longer wavelengths. We will

leave a more detailed analysis for later in this discussion of the simulation results. Unfortunately, we are

not aware of a good data set exhibiting experimental analysis of the idler process: past efforts to do so have

proven challenging due to a variety of software and hardware limitations.

The final set of results is the simulated sum-frequency idler spectrum. However, before discussing the

results in detail, two details bear mentioning. First, we recall our conclusion from Fig. 4.3 that all models

of BBO dispersion predict a different wavelength where pump-idler group velocity mismatch crosses from

positive to negative; consequently, we will avoid making direct comparison of the wavelengths at which

features are observed. We will instead focus on the qualitative observations and the relative ordering of

these features. Second, we will note that we have assigned wavelengths according to the first moment,

whereas COLORS frequently employs Gaussian fits for the assignment of center; this will cause different

definitions of zero detuning for slices in the simulated data relative to slices in the experimental data.

Qualitatively, the two-dimensional data, given in (A) in both Fig. 4.1 and 4.10, exhibit many similarities.

At short sum-frequency idler wavelengths, both appear to exhibit relatively symmetric line shapes, with

a broadened feature extending to longer wavelengths (positive detunings) beginning to occur at longer

wavelengths. After this broadening, the spectrum narrows again, and also reaches its most intense spectral

features as the tuning curve reaches the longest wavelengths.

The progression of spectral distortion is shown more clearly by the slices in (B)-(E) of Fig. 4.1 and

(B)-(G) in Fig. 4.10. Initially, the spectrum is relatively symmetric (Fig. 4.10, B), until a shoulder begins

to develop at longer wavelengths (Fig. 4.1, B and Fig. 4.10, C). This shoulder grows in amplitude until it

nearly matches the higher energy peak (Fig. 4.1, C and Fig. 4.10, D). As the sum-frequency idler color is

tuned further to the red, though, what had been the higher wavelength shoulder becomes the main peak of

the feature (Fig. 4.1, D and Fig. 4.10, E), and the shorter wavelength feature becomes a gradually weakening

shoulder (Fig. 4.10, F). After this shoulder becomes sufficiently weak, all that remains is a skewed spectrum

(Fig. 4.1, E and Fig. 4.10, G).

Before getting into the analysis, we will briefly discuss the metrics we will use throughout the following

discussion. These metrics are based upon quantities analogous to the moments about the origin of a prob-
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Figure 4.9: The results of simulations of optical parametric amplification of signal (A) and idler (B) processes
under traveling-wave operation. Both provide the spectral content at each central frequency of the signal,
presented as intensity versus detuning (λm−λ0) versus central wavelength, λ0, of signal (based upon chosen
wavelength) or idler (as calculated by energy conservation). The spectrum in (A) is provided in comparison
to the signal tuning results in Fig. 4.2.
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Figure 4.10: The results of simulations of sum-frequency idler produced by upconversion of the simulated
idler in Fig. 4.9 (B) with the depleted pump. (A) presents a two-dimensional representation of the spectral
content at each sum-frequency idler central wavelength. This is analogous to (A) in Fig. 4.1, presenting
intensity as a function of detuning (λm − λ0) versus sum-frequency idler central wavelength (λ0). (B)-(G)
present color- and style-coded slices from (A), presented as normalized intensity versus detuning (λm − λ0),
in analogy to (B)-(E) of Fig. 4.1.
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ability distribution; however, since the simulated spectra are not normalized, we will add a normalization

factor in the manner of Eq. 3.1.21. This normalization results in a calculation of the nth moment about the

origin, µ′n:[290]

µ′n =

∫∞
0

∆ωn|Â(∆ω)|2d∆ω∫∞
0
|Â(∆ω)|2d∆ω

(4.3.5)

We will focus particularly upon the second and third moments, µ′2 and µ′3. From the second moment,

we will calculate the standard deviation describing the spectral width according to the first and second

moments:[290, 291]

σ =
√
µ′2 − µ2 (4.3.6)

In Eq. 4.3.6, µ is the mean and is calculated as µ′1 according to Eq. 4.3.5.[290] For the purpose of this

discussion, we will consider the standard deviation as calculated according to Eq. 4.3.6 to be an adequate

representation of the spectral bandwidth. This bandwidth will be reported in units of energy (cm−1) to

allow direct comparison within and across the different tuning regions. The third moment will be used to

calculate the skew of the distribution, reported by α3. This quantity is calculated from the third moment

about the mean, µ3:[290]

α3 =
µ3

σ3
(4.3.7)

where σ is the standard deviation calculated according to Eq. 4.3.6 and µ3 is calculated from µ′3, µ′2, and

µ:[290]

µ3 = µ′3 − 3µ′2µ+ 2µ3 (4.3.8)

The value α3 describes the skew of the distribution, the degree of asymmetry.[290] We generally will not

be concerned with the actual value or sign of α3, but rather whether it is zero or nonzero (symmetric or

asymmetric) and its relative magnitude.

Danielius et al[272] attribute the increased efficiency of idler upconversion in their OPG system near 600

nm to the minimization of the pump-idler group velocity mismatch. This is consistent with the understanding

that the pump-idler and pump-signal group velocity mismatch can limit the gain of an OPA,[126] and that

pre-existing group delay can impede sum-frequency generation.[103] This initially led us to suspect that

the pump-idler group velocity mismatch may be responsible for the distortions observed in Fig. 4.1 and

reproduced in Fig. 4.10.

In Fig. 4.11, we reproduce the two-dimensional representation of our SFI simulations from Fig. 4.10 in

(A); we have also overlaid the simulated pulse energies. We have applied the statistical metrics in Eq. 4.3.6

and 4.3.7 to provide measurements of the bandwidth (σ, shown in (B) of Fig. 4.11) and skew (|α3|, shown in
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(C) of Fig. 4.11). These metrics are compared to the pump-idler and pump-signal group velocity mismatch

as calculated according to the dispersion curves of Zhang et al.[208]

A comparison of the pump-idler group velocity mismatch and the simulated pulse energy does show that

the conversion is optimized when the group delay from the optical parametric amplification is minimized by

the pump and idler exhibiting identical group velocities. This is consistent with the conclusions of Danielius

et al.[272] In contrast, the group velocity mismatch is not minimized when we observe distortion to the

spectral content: rather, as measured by the bandwidth (σ) and skew (|α3|), the distortion to the spectral

character is maximized when mismatch still exists between the pump and idler group velocities.

The disagreement we observe in Fig. 4.11 between the frequencies at which we observe distortions to

the sum-frequency idler spectral character and minimization of the pump-idler group velocity mismatch

required us to consider other explanations for the behavior. We first considered the traditional approach in

the literature for describing the bandwidth of phase matched processes. Within this approach, the phase

matching bandwidth is defined according to the Taylor series expansion of the phase mismatch.[125, 129,

134, 170, 179, 265, 277, 292] Such an expansion is typically considered to predict that the phase matching

bandwidth depends solely upon the signal-idler group velocity mismatch,[125, 129, 134, 170, 179, 265, 277,

292] though it has been noted that this approximation is only valid within the confines of a monochromatic

or nearly monochromatic pump.[170, 172] Despite concerns that the accuracy of such approaches is limited

in the regime of broad bandwidth pulses,[175] within our treatment, we find that the bandwidth predicted

by a similar method yields reasonable results for some regions in the sum-frequency idler process (Fig. 4.12).

As noted above, the traditional view of the phase matching bandwidth is to perform the Taylor series

expansion of the phase mismatch, ∆k = kP − kI − kS , with respect to the signal and idler frequencies:

∆k = ∆k0 +

(
∂kS
∂ω
− ∂kI
∂ω

)
∆ω +

1

2

(
∂2kS
∂ω2

− ∂2kI
∂ω2

)
∆ω2 + · · · (4.3.9)

where the difference in the group velocities or group velocity dispersions arises because an increase (decrease)

in the frequency of the signal must be accompanied by a decrease (increase) in the idler frequency. With

the decrease in signal according to sinc2(∆kL/2), the phase matching bandwidth is typically defined as the

bandwidth, ∆ω, for which |∆k| = π/L, where L is the crystal length.[125] Traditionally, this is only con-

sidered to the first order (only considering group velocities), with the group velocity dispersion taken into

consideration when the group velocity mismatch is zero.[126, 170] As a first approximation, we extended this

approach to consider all possible permutations of the fields in both processes (pump and signal, pump and

idler, and signal and idler in optical parametric amplification and sum-frequency and pump, sum-frequency
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Figure 4.11: The results of simulations of sum-frequency idler generation and comparison to the group
velocity mismatch curves calculated by the dispersion curves from Zhang et al.[208] (A) reproduces the two
dimensional presentation of the simulated sum-frequency idler (see (A) in Fig. 4.10). (A) also contains an
overlay (white markers) indicating the sum-frequency idler pulse energy predicted by the simulations. (B)
and (C) show standard deviation (σ) and skew (|α3|) calculated from the simulation in (A); these values are
calculated according to Eq. 4.3.6 and 4.3.7, respectively. (D) displays the calculated group velocity mismatch
between the pump and either signal or idler based upon the dispersion formulae of Zhang et al.[208] The
faded red line in (C) emphasizes zero, identifying the point at which symmetric spectra should be observed.
The faded green lines in (B), (C), and (D) mark where the pump-idler group velocity mismatch is zero.
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and idler, and pump and idler in sum-frequency generation), generalized in Eq. 4.3.10 to any i,j pair:

∆k = ∆k0 +

(
∂ki
∂ω
− ∂kj
∂ω

)
∆ω +

1

2

(
∂2ki
∂ω2

− ∂2kj
∂ω2

)
∆ω2 (4.3.10)

Explicitly considering the expansion to the second order, we defined the phase matching bandwidth according

to the maximum bandwidth allowed in any given process (optical parametric amplification or sum frequency

generation) based upon the limit of |∆k| = π/L.

From an analysis of the predicted phase matching bandwidth, we found that the predicted bandwidth was

limited by the optical parametric amplification process; based on similar situations described in the literature,

we would therefore expect the bandwidth of the paired processes to be limited by the bandwidth predicted for

optical parametric amplification.[170, 176, 285] In this first process, we found that the bandwidth permitted

based upon the group velocity mismatch between the pump and either the signal or the idler was actually

significantly greater than the limit imposed by the signal-idler group velocity mismatch. At shorter sum-

frequency idler wavelengths, the maximum bandwidth was permitted by the pump-signal group velocity

mismatch; this eventually gave way to the bandwidth allowed by the expansion of the phase mismatch with

respect to the pump and idler. In Fig. 4.12 (B), we compare the maximum allowed bandwidth within this

approximation to the bandwidth predicted by the second moment of the simulated spectra. We find that

this approximation actually describes the bandwidth at shorter sum-frequency idler wavelengths quite well;

however, while the maximum bandwidth predicted by this analysis is comparable to the maximum bandwidth

observed in our simulations, we still observe that the distortion to the sum-frequency idler spectra occurs at

different wavelengths than would be expected.

The theoretical treatment of Akhmanov et al for optical parametric amplification and sum-frequency

generation appears to provide the best qualitative match to the behavior we observe in our simulations.[103]

Unfortunately, we are restricted to a qualitative comparison. In their analysis of optical parametric amplifi-

cation, Akhmanov et al assume equal pump-idler and pump-signal group velocity mismatch, while it is not

clear whether their treatment is robust in the traveling-wave regime of high conversion.[103] On the other

hand, their treatment of sum frequency generation is explicitly in the context of low conversion and does

not incorporate the effects of pre-existing group delay.[103] Nevertheles, their models have been previously

used as qualitative descriptions for the behavior of femtosecond parametric processes,[175, 176] as we shall

do here.

Akhmanov et al describe optical parametric amplification within the typical regime of Type II phase
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Figure 4.12: A comparison of the sum-frequency idler simulation to the estimated phase matching bandwidth.
(A) reproduces the two-dimensional presentation of the simulation shown in Fig. 4.10 (A). (B) compares the
bandwidth as calculated according to the second moment (see Eq. 4.3.6) to the maximum phase matching
bandwidth as estimated by considering all permutations of Eq. 4.3.10.
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matching - in which ∆u−1
i,p∆u−1

s,p < 0,[126, 171] where ∆u−1
j,k is the group velocity mismatch between j and k,

u−1
j − u

−1
k - compatible with permitting the “mode amplification” regime.[103] They consider amplification

under such conditions to be a steady state mode of operation, though the behavior of the process changes

based upon the characteristic lengths. The lengths of relevance are the pulse-splitting (or walk-off) length,

Lw, and the amplification length, La. The pulse-splitting length can be defined in terms of the pulse duration

of the pump: Lw = τP/|∆u−1|, where τP is the pump pulse duration and ∆u−1 is its group velocity mismatch

with respect to another pulse. However, they indicate that it is more robust to consider the pulse-splitting

length with respect to the bandwidth (∆ω) of the interacting pulses:

Lw = (|∆u−1|∆ω)−1 (4.3.11)

Meanwhile, the amplification length is related to the exponential gain observed in the amplification process:

for exponential gain of the signal on the amplitude level according to exp(Γz), the amplification length is

La = Γ−1.[103]

From the ratio of Lw and La, Akhmanov et al define a quantity, m = Lw/La. When m < 1/2, exponential

gain of the signal and idler is observed in the amplification process; they also predict that this steady state

operation contributes to generating pulses with durations τ = τP/
√

ΓL, where τP is the pump pulse duration

and Γ is the gain.[103] Such behavior is consistent with the slight pulse shortening that has been reported

for Type II phase matching.[168] On the other hand, when m > 1/2 and the crystal is longer than the

pulse-splitting width, exponential gain is still observed; however, the amplified pulses exhibit a decrease in

duration, τ = τP/m. In both steady state regimes, the group delay accumulated is τP/2m.[103]

Meanwhile, for sum-frequency generation, Akhmanov et al provide two different regimes in which sum-

frequency generation can occur, with different results for the spectrum of the upconverted field. The difference

between the regimes stems from the pulse-splitting length of the fields being summed; Akhmanov et al label

these fields 1 and 2, with u1 > u2. The pulse-splitting length is defined according to the bandwidth of field

1, Lw = (|∆u−1
2,1|∆ω1)−1. When the crystal length is less than the pulse splitting length, the separation of

fields 1 and 2 is considered inconsequential, and the spectrum depends upon the group velocity of the sum

frequency with respect to these fields, ∆u−1
s,0:

s(∆ω) = sinc2

(
∆u−1

s0 ∆ωL

2

)
sqss(∆ω) (4.3.12)

where ∆ω is the detuning and sqss(∆ω) is the steady-state spectrum. We take that this spectrum should

correspond to the ideal spectrum of the sum frequency, namely the convolution of the spectra of fields 1 and
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2. Meanwhile, when the crystal length is longer than the pulse splitting length, a noticeably different result

is predicted:

s(∆ω) =

1 +

(
∆ω∆u−1

s,2

∆ω1∆u−1
2,1

)2
−1

sqss(∆ω) (4.3.13)

where all terms in Eq. 4.3.13 are defined as before.[103]

From Eq. 4.3.12 and 4.3.13, it is trivial to show that the sum frequency process narrows the steady-state

spectrum according to a bandwidthi of ∆ω40% = π/L∆u−1
s,0 when z < Lw or ∆ω40% = 1.5∆ω1∆u−1

2,1/∆u−1
s,2 when

z > Lw. Alternatively, for z > Lw, this result is identical to ∆ω40% = 1.5/Lw∆u−1
s,2.

In Fig. 4.13, we consider the sum-frequency idler simulations in the context of the theoretical treatment

by Akhmanov et al. In (A), we see that the bandwidth of the sum-frequency idler process (σSFI), is poorly

described by the convolution of the idler and pump bandwidths:ii the convolution exhibits a broader width at

short sum-frequency idler wavelengths (λ <∼ 575 nm), a narrower bandwidth at intermediate wavelengths

(∼ 575 nm < λ <∼ 595 nm), and reaches a peak at longer wavelengths than is observed for the sum-

frequency idler. However, in (B), we see that the bandwidth that is expected to be imposed according to

Eq. 4.3.12 (magenta markers) and Eq. 4.3.13 (cyan markers) exhibit very similar behavior to the sum-

frequency idler bandwidth at shorter sum-frequency idler wavelengths. At longer wavelengths, though, their

behaviors diverge: whereas the bandwidth predicted by Eq. 4.3.12 continues to increase with increasing sum-

frequency idler wavelength, the bandwidth predicted by Eq. 4.3.13 exhibits a peak at approximately the

same sum-frequency idler color as the peak observed in the bandwidth of the sum-frequency idler simulation

in (A).

This change in the behavior predicted by Eq. 4.3.13 is readily apparent from the calculated pulse-splitting

lengths in (E): at the same sum-frequency idler wavelength that we observe the peaks in the bandwidth of

the simulated sum-frequency idler and the bandwidth predicted by Eq. 4.3.13, the pulse-splitting length is

beginning to increase dramatically. This increase in the pulse-splitting length occurs despite the increased

pump and idler bandwidths due to the rapid change in pump-idler group velocity mismatch near these

frequencies (see (D) in Fig. 4.11). The increase in Lw also causes a sharp rise in m, as shown in (C); in

calculating m, we have estimated La using a value of 1.8 mm−1 for Γ. A value of 1.8 mm−1 for Γ corresponds

roughly to amplifying a 1 μJ seed to 400 μJ; the value of Γ changes relatively slowly, though, for different

iHere, we are defining bandwidth as the detuning that results in a decrease in intensity to 40%, the losses induced by the
sinc2 function when the argument in brackets is equal to π/2.[125]

iiHere, we are restricted to considering the bandwidth of the convolved spectra within the limit that the spectra are Gaussian,
namely that the variance of the convolution is the sum of the variances of the initial spectra. However, we note that both the
pump and idler exhibit some degree of skew at longer sum-frequency idler wavelengths (not shown), so the bandwidth predicted
in this manner is not expected to be exact.
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final signal pulse energies.i Finally, we see in (D) that the lower values and gradual changes associated

with m at shorter sum-frequency idler wavelengths result in the largest values and only slight changes in

the group delay, τg, between the pump and idler. When the pulse-splitting length increases dramatically at

longer sum-frequency idler wavelengths, we see a correspondingly fast decrease in τg.

Combining these results, we interpret the distortions observed in the sum-frequency idler spectra in the

following manner. At short sum-frequency idler colors, we do not observe any unexpected behavior during

parametric amplification, yielding reasonably symmetric signal and idler pulses (see Fig. 4.9). However, by

operating at lower values for m at these wavelengths, the pump and idler accumulate the greatest initial

group delay. This large initial group delay reduces the efficiency of the conversion, yielding lower output

energy for the sum-frequency idler process. As we tune to longer sum-frequency idler colors, the decreasing

group velocity mismatch between the sum frequency and the idler/pump (see the behavior for z < Lw in (B)

of Fig. 4.13) increases the bandwidth of the sum-frequency idler according to Eq. 4.3.13. However, while

we interpret the trends in Fig. 4.13 (B) as arising predominantly from the changes in the group velocity

mismatch between the sum frequency and the pump/idler, there are also more gradual changes in the pump-

idler group velocity mismatch. This gradually increases Lw: while not enough to overcome the changes in

the sum frequency-pump/idler group velocity mismatch, it does result in a decrease in the group delay by

increasing m, improving the conversion efficiency. Eventually, the pump-idler group velocity mismatch does

change sufficiently quickly to overcome the decreasing sum frequency-pump/idler group velocity mismatch.

At this point, we simultaneously observe: a sudden decrease in the initial group delay, improving the efficiency

of the sum frequency process; and, a sudden decrease in the bandwidth predicted by Eq. 4.3.13, due to the

increase in Lw. Eventually, the increase in Lw is sufficient to transition from the z > Lw regime to the

z < Lw regime: this results in the sum-frequency idler bandwidth being limited by the convolution of the

idler and pump bandwidths, which appears to be the trend at the longest sum-frequency idler wavelengths

in Fig. 4.13 (A).

The proposal from Light Conversion to address the observed issues with sum-frequency idler genera-

tion is an upgrade that replaces the “depleted pump” upconversion strategy with one based upon a “fresh

pump.”[194] Within the “fresh pump” strategy, the existing pump is split prior to parametric amplification:

one fraction is used for amplification of the signal and the idler, while the other is routed through an ex-

ternal delay and recombined with the signal and idler for upconversion. Based upon the results of these

simulations and previous reports in the literature, it seems reasonable to conclude that this would improve

iFor example, a final pulse energy of only 180 μJ corresponds to Γ ≈ 1.4 mm−1.
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Figure 4.13: Interpretation of the sum-frequency idler simulation results in the context of the theory presented
by Akhmanov et al.[103] (A) Comparison of the bandwidth observed for the simulated sum-frequency idler,
the simulated pump, the simulated idler, and the square root of the sum of the variances of the simulated
pump and idler. (B) Calculated bandwidth (at the 40% intensity level) of sum frequency idler generation for
z < Lw (magenta markers) and for z > Lw (cyan markers) according to the theory of Akhmanov et al. See
Eq. 4.3.12 and 4.3.13. (C) Estimation of m = Lw/La according to the bandwidths observed from the sum-
frequency idler simulations. Lw is the pulse-splitting length and La is the amplification length for Γ = 1.8
mm−1. (D) Estimated group delay between the pump and idler accumulated during simulated parametric
amplification, as calculated τg = 35/2m fs. (E) Estimated pulse-splitting length in the sum frequency crystal
according to the bandwidths calculated in sum-frequency idler simulations.
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the performance of the sum-frequency idler process with respect to conversion efficiency.[103, 126] However,

from the conclusions described above, it is not clear that compensating for the group delay would improve

the spectral quality of the sum-frequency idler: while it seems reasonable to attribute the inconsistent con-

version efficiency to the accumulated group delay, it appears more likely that the spectral character of the

sum-frequency idler is controlled by the interplay of the group velocities of the sum-frequency, the pump,

and the idler. It is not clear that the delay compensation incorporated in this “fresh pump” strategy would

improve the spectral quality. While simulations could be performed to explore this behavior, it would also

warrant communication with Light Conversion to determine what behavior they observe and anticipate from

the proposed upgrade.

Additionally, while the sum-frequency signal process generally does not exhibit the asymmetric line shapes

that are observed from the sum-frequency idler process, our experimental work with the sum-frequency signal

process has led us to suspect that similar effects impact its time-bandwidth product. At this time, there has

not been the opportunity to experimentally explore these suspicions, but it should be straightforward and

more convenient to take the time to explore this possibility in silico.
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CHAPTER 5

Manganese Tetraphenylporphine
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5.1 Background

In various efforts to characterize photosystem II, a variety of authors have reported evidence of activity

from the protein under near infrared (NIR) excitation.[15, 17–21, 34, 39, 44, 45, 61] Early detection of

this signature was reported by Dismukes and Mathis,[39] but this signature has since been characterized

further. Boussac et al published a sampling of reports in which they observe a change in the electron

paramagnetic resonance (EPR) signal associated with the oxygen evolving center upon NIR exposure.[15,

17–21] By determining the yield of signal conversion, they have been able to trace out an activity spectrum

exhibiting a peak near 820 nm. Baxter et al extended this to directly detect the absorbance of photosystem

II, tracking the NIR transient absorbance upon the S2 → S1 dark-adaptation of a flash-excited sample.[34]

The spectral profile they determine is very consistent with the activity spectrum reported by Boussac et al.

Though their data set is limited, they find their data to be consistent with a Gaussian fit with center of

12300 cm-1 (813 nm) and half-width of approximately 1000 cm-1. From estimating the chlorophyll content

of their sample, Baxter et al estimate a transient absorptivity of 50 cm-1 M-1. Cua et al provide additional

evidence for NIR activity through the observation of enhancement to low-frequency Raman modes with

excitation near 820 nm; this enhancement is reduced when the excitation color is changed and is absent

upon illumination or manganese depletion.[61] Most recently, Morton et al have published the results of NIR

absorption and magnetic circular dichroism of photosystem II.[44] The combination of absorbance and MCD

data allow Morton et al to make the strongest case for the origin of this feature, attributing the weak, with

absorptivity < 30 cm-1 M-1, absorbance found near 770 nm to d-to-d transitions localized on a manganese

of the oxygen evolving center.[44]

The literature on the spectroscopy of manganese (III) provides support for this assignment. Many

high-spin, monovalent coordination complexes of manganese (III) exhibit transitions in the NIR region, with

different coordinating ligands resulting in NIR transitions at transition energies as low as 5500 cm-1 (1800 nm)

and as high as 14000 cm-1 (714 nm).[293, 294] These transitions are characterized by very low absorptivities

(≤ 100 cm-1 M-1), with the absorptivity generally decreasing with increasing transition energy.[294] The origin

of these transitions is traced to the Jahn-Teller effect: due to its d4 electron configuration, six-coordinate

manganese (III) centers are inclined to exhibit a distortion from octahedral symmetry in order to reduce

the overall energy of the ground state.[293–299] The high resolution crystal structure of photosystem II has

been interpreted to support the presence of Jahn-Teller distortions in the oxygen-evolving complex.[64]

As a representative system, manganese (III) trisacetylacetonate, Mn(acac)3, was selected as an initial test

sample due to the convenient position of its NIR transition at the shorter wavelengths of the signal process
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in the TOPAS-C optical parametric amplifiers and its availability from commercial sources. Unfortunately,

experiments with this sample proved unsuccessful, with no signal clearly distinguishable in either transient

absorption or transient grating experiments. Coming across the work of McCusker and co-workers, it became

clear that a priori knowledge of the photophysics, or the ability to ascertain such information through

methods such as white-light transient absorption, would be key in guiding future experiments.[300–302]

These publications also traced the photophysics of a species, Cr(acac)3, with an absorptivity of very similar

magnitude to the Jahn-Teller-allowed transition of manganese (III) coordination complexes. However, even

in efforts to reproduce the reported results, we proved unable to replicate them: while very weak signal may

have been present in transient absorption geometries, transient grating experiments yielded no signal.

At this point, it seemed probable that the low transition dipoles indicated by the low absorptivity of

Mn(acac)3 and Cr(acac)3 may be proving limiting. Porphyrins and phthalocyanines seemed a convenient

starting point for samples with stronger transitions. While manganese phthalocyanines seemed promising

due to the presence of a NIR transition and evidence that the macrocycle and transition metal states exhib-

ited significant interaction,[303–306] it became clear that manganese phthalocyanines also did not exhibit

satisfactory stability in solution.[307] However, manganese (III) porphyrins also exhibit strong interaction

between the transition metal and macrocycle states: the manganese d-orbitals are believed to be close in

energy to the π and π∗ states usually responsible for the Soret and Q-band in normal porphyrins.[306,

308, 309] The coupling between the metal and macrocycle states yields several transitions throughout the

visible;[308] while it is not clear a definitive assignment of these transitions exist, it seems to be accepted

that the states of the manganese (III) are involved in the spectroscopy.[308–311] While manganese (III) por-

phyrins generally exhibit little to no luminescence,[312] a variety of reports have explored the photophysics

of manganese (III) tetraphenylporphine (MnTPP) following excitation with both pico- and femtosecond

pulses.[313–316] The behavior observed in these experiments has been attributed to excitation of the 5S0

ground state to one of various 5Sn excited states, followed by an intersystem crossing to a “tripmultiplet”

manifold including 3T1, 5T1, and 7T1.[313, 315, 316] The features observed in transient absorption upon

excitation consistently include bleaching signals associated with the ground state features near 480 nm, 560

nm, and 600 nm, and excited state absorption near 500 nm.[314–316] While some reports suggest MnTPP

can undergo photoreduction in tetrahydrofuran or be coordinated by solvents such as pyridine,[308, 317]

there did not appear to be other concerns regarding stability; repeated measurements of solutions prepared

from commercially-obtained MnTPP exhibited no spectral evidence of changes over time when dissolved in

dichloromethane.

Given the exhibited stability and documented spectral signatures, we proceeded to adopt MnTPP as a
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test sample. We hoped to be able to reproduce the transient absorbance results - with white light if feasible

- and to extend the study of this molecule to transient grating geometries. We successfully reproduced the

white light transient absorption for MnTPP. While we were able to observe transient grating signal, we found

the nonresonant response to provide a competitively strong background. We also were unable to extend the

use of white light to transient grating: though we could detect some signal in a nonresonant medium, signal

levels were insufficient to detect with the existing system configuration. A sampling of results are presented

in this chapter.

5.2 White Light Generation

White light generation provides a convenient method for obtaining broadband radiation from an ultrafast

laser pulse; here we will provide a brief overview of the background on white light generation and describe

the procedure used to generate white light for the reported experiments.

When generated from the fundamental of a Ti:Al2O3 laser (near 800 nm), the white light will include

new frequencies in both the near infrared and the visible, potentially spanning the entire visible region.[318,

319] The introduction of these new frequencies is attributed to self-phase-modulation and other nonlinear

processes that arise due to the high intensities within filaments;[318, 320] these processes maintain coherence

between the white light and the original field.[132, 321–326] Filamentation of the beam appears necessary

to achieve the sustained intensity needed for white light generation. The formation of a stable filament is

attributed to the interplay of focusing and defocusing mechanisms. The initial focusing of the laser arises

through the Kerr effect, in which the intensity distribution of the laser modulates the refractive index,

thereby causing the beam to be lensed: the significance of this contribution is clear by the threshold of

white-light generation matching the threshold for Kerr lensing.[318, 320, 327–335] However, the effects of

self-focusing eventually result in an intensity sufficiently high so as to induce defocusing; from this point, the

filament is maintained by a sustained balance between the Kerr lensing and this defocusing. The traditional

view for the mechanism appears to attribute defocusing to plasma generation; more recently, other authors

have suggested that defocusing through plasma generation is specific to longer pulses, while the focusing of

shorter pulses is arrested by higher order contributions to the Kerr effect.[234, 320, 326, 327, 330, 334–336]

While condensed media provide a convenient route to reliably generate white light,[318–320, 325, 328, 337]

some authors have reported filamentation and white light generation in air.[330–332, 338–341]

Broadening of the pulse during white light generation results in new frequencies at both low (Stokes

broadening) and high (anti-Stokes broadening) frequencies; the breadth of the broadening can be described
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by the derivative of the accumulated nonlinear phase due to self-phase-modulation with time (see § 3.1.2).[320]

Due to the relationship between phase- and frequency-modulation, the Stokes and anti-Stokes components are

attributed to the accumulated nonlinear phase at the leading and trailing edges of the pulse, respectively.[320,

342] The accumulation of nonlinear phase can be described by a quantity called the B-integral.[172, 247, 254,

320] Since they experience different contributions from the temporal envelope of the laser, the Stokes and

anti-Stokes components are generally not symmetric. The anti-Stokes component is generally more enhanced

and exhibits a characteristic plateau - an even energy distribution across the observed frequencies.[320, 328]

Within the approximation that the driving field can be described by a sech field envelope, a closed form

solution for the breadth of the anti-Stokes and Stokes components has been published.[320] While even

energy distributions of the Stokes component have been reported, this behavior appears to be specific to

particular media and is only observed at higher energies.[328] Such high energies can also induce modulations

in the spectra.[328]

In addition to the differences between the Stokes and anti-Stokes components, the medium and experi-

mental approach can also impact the breadth of the white light. In condensed media, correlation has been

reported between the breadth of the anti-Stokes broadening and the band gap of the material: larger band

gaps tend to support additional broadening. This behavior also translates to the wavelength of the initial

beam, as higher frequency lasers exhibit enhanced broadening.[319] This band gap dependence results in

halide crystals, such as LiF and CaF2, yielding far broader white light spectra than other condensed me-

dia.[319, 320] However, this advantage comes at a limitation, as these materials have been reported to be

susceptible to damage when used for white light generation.[138, 178, 337] While the fluoride materials can

be particularly susceptible to damage at the intensities in filaments, care should be taken regardless of the

medium: at high numerical aperture (or short focal lengths), the threshold for optical breakdown can be

lower than the threshold for filamentation.[333, 343]

In order to apply white light in experiments on the femtosecond system, the system described by Niko-

laitchik et al was used as a model.[344] Like the Wright group’s femtosecond system, the system described

is seeded by a Millenia-pumped Tsunami, seeding a Spitfire that yields 100 fs (FWHM) pulses. They report

using a fraction, approximately 0.2-0.3 mJ, of the fundamental to generate white light in a 3 mm sapphire

plate or a 1 cm flow cell of ethylene glycol.[344] It is noted here that this number seems suspiciously high, as

most sources cite threshold energies for white light generation in condensed media at hundreds of nJ to single

μJ.[322, 323, 328, 333, 343] More consistent with the literature, they report generating the white light by

focusing the mode of the fundamental into the white light medium with a 100 mm focal length lens.[344] The

documentation on the Spitfire Pro XP employed on the femtosecond system reports an expected 1/e2 beam
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diameter of 7-9 mm. If this is a reasonable estimate for the Spitfire employed by Nikolaitchik et al, their 100

mm focal length lens should result in a half-width waist within their white light medium of approximately

3 μm,[105] and a numerical aperture of approximately 0.03.[209] This value is consistent with the regime

reported by Ashcom et al for which the threshold for continuum generation is lower than the threshold for

damage to the medium.[343]

At the time of these experiments, the mirrors and beamsplitters dividing the fundamental from the

Spitfire Pro XP also isolate a small fraction of the fundamental. The spot size of this beam was reduced

by a Galilean telescope consisting of a f = −50 mm and f ≈ 100 mm lens pair. The resulting beam was

routed down the table by a series of mirrors; it could be configured to pass through one of the delay lines

for use in three color experiments. After the telescope, the beam diameter is approximately 6 mm, and

the telescope and other optics introduce losses that reduce the energy to approximately 20 μJ. Starting

from the values reported by Nikolaitchik et al, we expected a 50-75 mm lens to yield the correct imaging

properties, but we unfortunately found ourselves limited by the lenses available. While the 35 mm lens

employed yields a numerical aperture of approximately 0.15, exceeding the numerical aperture for which

the damage threshold is below the threshold for continuum generation in silica,[343] we found we could

consistently generate and maintain a white light continuum in sapphire. In order to attain stable white

light, we found we needed to attenuate the fundamental with an optical density of approximately 3.i We also

attempted to generate the continuum in CaF2: consistent with the literature, CaF2 yielded a much broader

continuum than sapphire.[178, 319, 328] Unfortunately, the continuum could only be sustained for a short

period, which we attribute to damage; at this point, we suspect that the stability of sapphire over the CaF2

may be consistent with the behavior of halide crystals as reported by Huber et al, Kohl-Landgraf et al, and

Tzankov et al.[138, 178, 337] White light generation was performed just before the appropriate beam line;

the sapphire plate was followed by a 25 mm lens, which was adjusted to yield the proper spot size at the

sample.

5.3 Experimental Deviations

Experiments with MnTPP were performed by dissolving the sample in dichloromethane to achieve an ap-

propriate absorbance, A ≈ 1, in the spectral region of interest; this was often the frequency of the pump

(in transient absorption) or ω2/ω2′ (in transient grating). Samples were contained in a 1 mm glass cuvet

iIt should be noted that this optical density is based upon the calibration reported by the manufacturer. Calibration has
shown that the optical density of the filters exhibits some wavelength dependence, so the actual optical density is likely slightly
different.
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(Precision Cells).

For experiments not involving white light, standard operating procedures were employed for the experi-

ments described in this section. Experiments were conducted using the second-harmonic and sum-frequency

signal processes of the TOPAS-C. The supplied wavelength selector was used for the sum-frequency signal

process. For second-harmonic signal, the wavelength selector was not used, but a heat filter was introduced

to block the near infrared (wavelengths longer than ∼ 700-740 nm).

For experiments involving white light, white light was generated as described before, and the table was

aligned as described for two color experiments: the fundamental and white light served as ω1, and one of

the OPAs was used to provide ω2 and ω2′ . For transient absorption experiments, signal could be detected

when using the standard f = 1 m mirror; however, the beamsplitter for the OPA had to be removed in order

to provide sufficient pump energy. The silicon photodiode was used for detection, and the monochromator

was scanned across the wavelength range of the white light (the probe). Zero delay compensation was

implemented to reduce the effects of the chirp in the white light. Due to the exploratory nature of these scans,

the chirp in the white light was not determined with sufficient resolution to characterize the nonlinearities

in the chirp rate; however, the compensation was sufficient to ensure zero delay for all colors in the probe

occurred within ∼ 100 fs of the assigned zero delay. For transient grating with the white light, no signal

could be detected with the f = 1 m mirror; however, by decreasing the focal length to f = 500 mm, some

signal was detected. This signal was strongest when ω1 ≈ ω2; the decrease in signal at longer wavelengths is

believed to be a consequence of phase mismatch and changes in output direction. With the current detector

(silicon photodiode), signal could only be detected in solvent. It is suspected that a more sensitive detector

and modifications to the table layout to provide more a more intense white light and retain more energy

from the OPA would be needed to make this method routine.

5.4 Results and Discussion

A summary of experimental data exploring the nonlinear electronic spectroscopy of MnTPP is provided in

Fig. 5.1. (A)-(C) provide insights into the behavior of MnTPP in transient absorption along two different

slices of the three-dimensional space: (A) and (B) present the change in optical density as the pump is tuned

and the monochromator is scanned across the wavelengths of the white light probe; and, (C) explores the

dynamics along delay at different probe wavelengths. (A) and (B) provide two alternative views of the same

data set, while the data of (C) is shown only with the more dynamic color scale of (B). (D)-(H) explore the

response of MnTPP in frequency-frequency and delay-delay space for transient grating/TriEE, the frequency-
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domain analogue of 2D-ES,[345] corresponding to the phase-matched output k4 = k1 − k2 + k2′ . In the

frequency-frequency domain of (D), the detected intensity at ωm = ω1 is presented as a function of ω2 = ω2′

and ω1 = ωm. The time-time domain of (E)-(H) show the detected intensity at ωm = ω1 as a function of the

relative delays τ21 = τ2′1 and τ2′2; in this domain, signal along τ21 = τ2′1 ≤ 0 tracks the population dynamics

of the system, while signal along other directions track the dynamics of coherences under the conditions of

these experiments (ω1 6= ω2 and ω2 = ω2′).

The spectroscopy of MnTPP observed in Fig. 5.1 is consistent with previously described transient

absorption of this compound.[314–316] In solution,i all authorsii report a strong excited state absorption

(ESA) feature peaking near 490-500 nm and a weak ESA feature near 550 nm.[314–316] The broader probe

of Kim et al allow them to also report an ESA feature between 400 and 450 nm;[315] they also show

agreement with Yan et al in reporting a broad ESA feature starting near 650 nm and falling off into the

near infrared.[315, 316] The ground state absorption of MnTPP is bleached, with a strong feature near 480

nm[314, 315] and weaker features near 580 nm and 620 nm.[315, 316]

Within the sensitivity of the white light transient absorption measurements, we observe each of these

features. The bleach near 480 nm is the most pronounced feature of the transient absorption spectrum,

consistent with Kim et al.[315] The contours in (A) hint at features corresponding to the ESA features

reported between 400 and 470 nm and 495 and 530 nm and the bleaches of the ground state transitions near

580 nm and 620 nm. The alternative color bar in (B) accentuates these features. The scale also provides

sufficient contrast to observe features consistent with the ESA near 550 nm and from 650 nm into the near

infrared. The consistency of these features in (A), (B), and the cited works indicate that the transient

absorption of MnTPP is relatively insensitive to excitation wavelength: Yan et al tune the pump to 355 nm

or 532 nm to observe features between 500 and 650 nm or 650 and 900 nm, respectively;[316] Kim et al use a

frequency-doubled Ti:sapphire amplifier at 390 nm;[315] Irvine et al appear to use a 597 nm dye laser;[314]

and (A) and (B) illustrate the changes in transient absorption while scanning across the sum-frequency signal

process (470-515 nm). This is consistent with previous assignments in the literature: excitation of the singlet

states is followed by rapid relaxation to the lowest excited singlet state, which undergoes rapid intersystem

crossing to yield states in the “tripmultiplet” manifold.[313, 315, 316] Consequently, despite the different

iIt should be noted that Kim et al also study the transient absorption of MnTPP in molecular sieves; encapsulation in the
molecular sieves results in changes to the ground state absorbance, attributed to interactions between the electronic states of
MnTPP and the hydroxyl groups of the sieves.[315] When encapsulated, MnTPP also exhibits different spectral features in
transient absorption.

iiIt is noted that the wavelength scale for the data reported by Irvine et al is nearly illegible.[314] Their reported transient
absorption spectra exhibit qualitative consistency with the results of Yan et al and Kim et al,[314–316] and from those numbers
that can be made out, the features they observe appear to occur at the same wavelengths.
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Figure 5.1: (A) and (B): White light transient absorption, λPump versus λProbe at τ ≈ −500 fs. B is the same
data as A, but with a repeating color scheme to emphasize the weaker features. (C): White light transient
absorption, τ versus λProbe at λPump = 475 nm. This is the same repeating color scheme as (B). Optical
density of the samples for (A), (B), and (C) are A ≈ 1 near 480 nm and A ≈ 0.1 − 0.2 near 610 nm. (D):
Transient grating, ω2 = ω2′ versus ω1 = ωm, τ21 = τ2′1 = −500 fs. Data in the side bars is absorbance (red)
and integrated signal (blue). Optical density of the sample for (D) is A ≈ 0.3 near 16100 cm-1 and A ≈ 2.5
near 20900 cm-1. (E), (F), (G), and (H): Transient grating, τ21 versus τ2′1, λ2 = λ2′ ≈ 605 nm and λ1 ≈ 495
nm. (E) and (F) provide a comparison of signal from dichloromethane (E) and MnTPP in dichloromethane
(F), A ≈ 0.7 at both frequencies, near zero delay. (G) and (H) provide a comparison of signal from MnTPP
in dichloromethane at two concentrations: A ≈ 0.7 (G) and A ≈ 0.15 (H). Signal in (E), (F), (G), and (H)
are each normalized according to the maximum amplitude in each spectrum.
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excitation frequencies, each of these reported experiments probe similar dynamics.

Panel (C) in Fig. 5.1 shows the reported configuration for white light transient absorption is also amenable

to collecting the dynamics associated with the features in (A) and (B). Consistent with the literature,[314–

316] the transients of MnTPP are very long lived, exhibiting very little change within the bounds of (C).

Unfortunately, it is not possible to compare the dynamics at early times with the literature: the resolution

of these experiments is much higher than the > 1 ps time resolution of Irvine et al and Yan et al,[314,

316] and still appreciably higher than the 170 fs resolution reported by Kim et al.[315] The profile of the

signal near zero delay illustrates that routine usage of white light transient absorption may be complicated

by the challenge in correctly compensating for the chirp in the continuum. Based upon the behavior of

MnTPP observed in transient grating, however, some of the complicated dynamics near zero delay in (C)

may be attributable to the coherent artifact, which is observed in transient absorption for many different

systems.[346–351]

The spectroscopy of MnTPP has been extended to transient grating, in which the signal consistent with

the phase matching condition (k4 = k1 − k2 + k2′) is homodyne detected. As shown in (D), the response

observed in transient grating is consistent with the behavior in transient absorption and absorption. In

the side-plot on the right of (D), the integrated signal as a function of pump frequency (ω2 = ω′2) closely

matches the absorbance of the sample: this can be seen by comparing the blue and red traces, corresponding

to the integrated transient grating signal and the absorption spectrum, respectively. This behavior is to be

expected.[185] Meanwhile, along the pump, we are observing signal corresponding to the ESA feature in (A)

and (B); the peak of this signal is near 490 nm, consistent with the peak of the ESA in transient absorption.

The sharp drop off in signal is likely the consequence of M-factors,[352] as achieving an appreciable absorbance

at ω2 required A ≈ 2.5 near 480 nm: the decrease in signal from the peak near 20300 cm-1 matches the

increase in absorption from A ≈ 0.3 to A ≈ 1-1.2.

Unfortunately, we were limited in the transient grating experiments of MnTPP to only longer delays; for

example, the scan in (D) was collected at τ21 = τ2′1 = −500 fs. This limit was imposed by the nonresonant

background, as shown in (E)-(H). Between (E) and (F), we compare the dynamics observed at early times

for a purely nonresonant system, dichloromethane (E), and a concentrated solution of MnTPP, A ≈ 0.7 at

ω1 and ω2 (F). As this comparison shows, MnTPP exhibits a delay in the evolution of signal relative to the

purely nonresonant response; we attribute this to the time required for singlet relaxation and intersystem

crossing.[313, 315, 316] In contrast, when the concentration of MnTPP is reduced, the transient characteristic

of MnTPP, (G), is nearly completely overwhelmed by the nonresonant background (H).

The nonresonant background manifests in transient grating due to the use of homodyne detection. Un-
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der such conditions, the signal is proportional to |χ(3)|2,[190] rather than χ(3). As a consequence, the signal

depends upon the real and imaginary components of χ(3), rather than just the imaginary component as in

transient absorption;[190, 349] since the nonresonant response of the medium is predominantly real,[353]

it is suppressed in transient absorption. Competition with resonant signals arise from scaling: since χ(3)

is proportional to the number density, N ,[190] homodyne-detected signals scale with N2,[148] which can

limit the detection limit for such methods.[122, 190, 354, 355] While it has been reported that nonresonant

background may be enhanced under conditions of femtosecond excitation,[139, 140, 146, 356, 357] the mag-

nitude of the problem was surprising: previous experiments on the Wright group’s femtosecond system with

near infrared excitation have been robust at much lower sample absorbance.[358] However, it has also been

reported that nonresonant signal can be influenced by excitation wavelength,[140, 148, 359] as well as pulse

duration;[359] specifically, nonresonant background has been reported to be much worse under conditions of

visible excitation,[140, 148] particularly when two-photon resonances are available.[139, 140]

In order to understand the limit imposed by the nonresonant background, we made measurements aimed

at estimating and comparing the nonresonant response at near infrared and visible wavelengths. Beam

energies were measured with a thermopile, and nonresonant signal was generated in a variety of transparent

solvents. The response of the detector to the nonresonant signal and to one of the excitation beams were

compared to provide an estimate of the energy emitted by the nonresonant process; we assumed the sampling

efficiency was comparable for both color combinations. These measurements were consistent with a hundred-

fold increase in χ(3) from near infrared excitation (λ1 = λ2 = λ2′ = 1300 nm) to visible excitation (λ1 = 495

nm and λ2 = λ2′ = 615 nm). However, all solvents testedi exhibited nonlinear susceptibilities on the same

order of magnitude. Very low correlation was observed between the measured susceptibilities (R2 = 0.46

to a linear trendline). Higher correlation (R2 = 0.75) was observed when the aromatic molecules (benzene

and pyridine) were excluded: this may be consistent with the observation that the nonresonant nonlinear

susceptibility is enhanced when two-photon resonances are available,[139, 140] as the aromatic compounds

would be expected to exhibit the lowest transition energies.

Beyond this limit from higher nonresonant susceptibilities, the previous electronic experiments were able

to achieve similar absorbance over the same pathlength at much lower concentrations than our MnTPP

samples: these experiments would be performed at concentrations of tens of nM[358] rather than hundreds

of μM. It can be shown that this 104 reduction in concentration would be expected to increase the nonlinear

susceptibility by the same factor. If we generalize this factor as φ, this relationship can be shown by

iThe solvents tested were acetone, acetonitrile, benzene, carbon tetrachloride, dichloromethane, methanol, octane, and
pyridine.
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recognizing that the same absorbance over the same pathlength implies α to be the same for both samples.

However, α can be related to both the optical cross-section, σ = α/N, and to the optical properties of a

hypothetical ba transition, α ∝ Nµ2
ba/Γ2

ba,
i where µba and Γba are the transition dipole and dephasing rate

of the transition, respectively.[99] From the former relationship, we can see that a reduction in N by a

factor of φ must be accompanied by an increase in σ by a factor of φ to maintain constant α. Second, by

combining the two relationships, σ ∝ µ2
ba/Γ2

ba, and the factor of φ increase in σ implies µba/Γba must increase

by a factor of
√
φ. However, χ(3) is proportional to Nµ4

ba/Γ4
ba;

ii[99] the factor of φ decrease in N and factor

of
√
φ increase in µba/Γba then suggests χ(3) should be increased by a factor of φ. Thus, since the homodyne-

detected signal scales with |χ(3)|2,[99, 190] these visible experiments with MnTPP not only require resolving

against a background that is 104 times stronger, but seek to detect signals that are weaker by a factor of φ2,

corresponding to a factor of 108 when comparing MnTPP to these prior systems.

In Fig. 5.1, we have demonstrated one of the strategies that is employed for suppression of nonresonant

background: introducing a delay between the pulses to time resolve the resonant signal.[121, 165, 360] How-

ever, this limits access to the initial dynamics, such as those visible in panels (F) and (G). Another strategy

for suppressing nonresonant background is to rotate the polarization of the excitation fields in order to in-

terfere different symmetry components of the nonresonant response.[146, 361] Experiments performed with

different polarization combinations (not shown) indicate that there could be promise to this strategy, though

care would need to be taken to ensure that the consequences of the rotated polarizations are understood

with respect to the analyte’s symmetry. Heterodyne detection is another strategy that has been employed in

electronic spectroscopy,[362–371] permitting discrimination between the nonresonant and resonant response

on the basis of resolving the phase of χ(3).[122, 123, 353–355] However, such a strategy is poorly suited to

frequency-domain methods: it is more effective in collinear geometries,[355] and the change in pointing while

scanning light sources can introduce further experimental complications.[372]

iWe note that this is the case for resonance, i.e. ω = ωba; otherwise, the detuning factor |∆ba|2 = |ωba − ω − iΓba|2
should be used in lieu of Γ2

ab. The other contributions to α are (4πωFΓba)/(h̄cn).[99] Since the experiments being compared are
electronic, ω and Γba should be of the same magnitude, and F/n should be similar for most organic solvents. Otherwise, 4π/h̄c
are constants.

iiOnce again, we assume resonance (|∆ba|2 ≈ Γ2
ba) and the other contributing terms (F/(4Dh̄3)) should be similar or constant.
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CHAPTER 6

Broadband Coherent Raman Spectroscopy
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6.1 Background

Interaction between a medium and light can result in the scattering of photons by the constituent molecules.

The majority of these photons will be scattered without any loss of energy through Rayleigh scattering.

However, some of the photons will exchange energy with the medium through Raman scattering. The

change in the energy of the photon represents the energy associated with a vibrational quantum of one of

the molecule’s Raman-active vibrational modes. For the energy of the vibrational mode, Ω, the exchange of

energy will yield a photons of frequencies, ωout = ωin ±Ω. The two cases reflect the two available directions

for energy exchange: the frequency of the output photon corresponds to the sum in anti-Stokes Raman

scattering, extracting energy from a vibrationally-excited molecule; the frequency will decrease in Stokes

Raman scattering, in which the scattering results in vibrational excitation of the molecule. Identifying

the frequency shifts can provide insight into the Raman-active vibrations of the molecules constituting the

medium.[373]

Raman scattering can be considered to be a four-wave mixing process in which the interaction between the

incident photons and the medium is described according to the third-order nonlinear susceptibility, χ(3).[99]

This third-order nonlinear susceptibility allows the molecules of the medium to mediate interactions between

the incident photons and the vacuum field corresponding to the zero-point energy.[99, 374] The third-order

susceptibility will exhibit a broad nonresonant background in addition to resonances associated with the

vibrational modes; scattering will be enhanced when the energy difference between the incident photons

and the vacuum field match these resonant frequencies.[120–122, 135, 139, 143, 147, 148, 186, 354, 360,

375, 376] The susceptibility is considered to be a complex quantity; according to the standard treatment,

the nonresonant contributions are assumed to be only real, while the resonant parts will add to both the

real and the imaginary components of χ(3).[122, 123, 353, 355] Spontaneous Raman scattering is adequately

described according to only the imaginary part of the susceptibility.[353] In addition to being linear with the

scattering cross-section,[137, 190] the third order susceptibility is proportional to the number density of the

molecules.[190]

Since spontaneous Raman scattering involves an interaction with the vacuum field, the scattered photons

lack coherence,[139, 148, 186] yielding very low signal levels due to the low sampling efficiency.[186] The low

efficiency limits the utility of spontaneous Raman scattering, preventing its application to media with high

levels of background signal that may overwhelm the Raman scatter, or in which the acquisition times required

may limit the ability to track the dynamics of short-lived species.[136, 377] Signal may be enhanced through

electronic resonance, but electronic resonance may also enhance the background through fluorescence.[139,
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378] It is also possible to increase the excitation power, but there are often limits to the extent that this is

feasible.[148, 376]

Many of the disadvantages of spontaneous Raman scattering can be overcome through coherent Raman

scattering, a broad category of different Raman-based nonlinear optical methods. These coherent methods

yield significantly higher signal-to-noise ratios,[190, 377] allowing significantly faster acquisition.[136, 360]

While coherent Raman scattering is generally less sensitive to fluorescence,[136, 375, 379] the higher signal-to-

noise levels often allow the usage of weaker fields, reducing fluorescence and risk of damage to the sample.[148]

Coherent Raman scattering methods still access the third-order nonlinear susceptibility, but are generally

implemented with synchronized fields at different frequencies;[186, 190] the frequency difference between

the fields determines the vibrational modes accessed during the experiment, as well as whether the process

corresponds to anti-Stokes or Stokes Raman scattering.[186] While some authors suggest the improvement

in signal arises from a higher cross-section,[375] most appear to attribute the improved signal-to-noise ratio

in coherent Raman spectroscopies to the cooperative buildup and emission of signal:[139, 148, 186] the

coherence of the scattered photons allows significant improvement is the sampling efficiency.[186]

Development of the various coherent Raman spectroscopies has been motivated by the potential benefits

offered by Raman scattering. It is traditionally more straightforward to obtain broadband vibrational infor-

mation by Raman scattering,[375, 378, 380] while still allowing the use of narrowband methods employing

more sensitive detection.[380] Additionally, Raman-based methods also offer promise in microscopy applica-

tions:[381, 382] while the frequencies necessary for infrared absorbance measurements cannot be focused as

effectively, Raman scattering can be achieved with visible or near infrared frequencies that can be focused

more tightly.[139, 148] Finally, while femtosecond spectroscopy can be performed in the infrared,[383–387]

there are additional challenges in effectively generating the required ultrashort infrared pulses.[137, 166]

Coherent Raman spectroscopies have been realized in a number of ways, with methods having been applied

to a variety of relevant systems, including transition-metal complexes,[388] chlorophyll a,[136] and proteins

such as bacteriorhodopsin.[389]

A straightforward approach to coherent Raman spectroscopy is stimulated Raman spectroscopy. The

general strategy for this method is to introduce two fields of different frequencies and overlap them in the

sample.[190] The sample mediates the four-wave mixing process between these fields; when the frequency

difference matches the frequency of a Raman-active vibration, the interaction will be enhanced. In stimulated

Raman spectroscopies, the interaction is gauged by measuring the intensity of one of the fields: four-wave

mixing will result in attenuation of the pump or gain of the probe.[136, 190, 378] Since the technique is self-

heterodyned,[190, 390] it exhibits a linear dependence on the imaginary part of χ(3). This has the advantage of
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yielding information only associated with the vibrational resonances rather than the nonresonant background;

it also makes the signal proportional to the number density of the Raman-active species.[190] However, the

signal can be difficult to detect, as it requires resolving very small changes on a large background.[136, 137,

190, 391] It should be noted that in this context, we are only considering stimulated Raman spectroscopy

to involve methods of the manner described above: this name has also been used for techniques in which a

laser is focused into a sample, and Raman processes result in enhancement of new frequencies at the onset

of self-focusing and filamentation or plasma generation. While these methods have been described to gain

insight into condensed systems, the mechanism generally results in extreme or abnormal conditions.[392–396]

Of particular interest is femtosecond stimulated Raman spectroscopy (FSRS), a multiplexed version of

stimulated Raman spectroscopy.[397] FSRS is generally accomplished by combining narrow- and broadband

pulses in a single experiment.[137, 398] These experiments may employ either two or three beams.[137, 391,

399] The two beams incorporated in most FSRS implementations are the Stokes probe and Raman pump;

typically the probe is a broadband, femtosecond pulse and the pump is a narrowband, picosecond pulse.[137,

391, 397, 400] Like the more general method of stimulated Raman spectroscopy, when the difference in

frequency between the pump and probe match a vibrational resonance, gain is observed in the probe;[136,

190, 378] however, by implementing a broadband probe, FSRS allows the simultaneous measurement of

many Raman shifts rather than requiring continuous tuning of the fields;[378, 400] this facilitates faster data

acquisition, enabling more averaging and a correspondingly higher signal-to-noise ratio.[400] While the probe

pulse is broadband, the spectral resolution of the method is limited by the convolution of the pump bandwidth

and the line width of the vibrational mode.[136, 137, 378, 391, 399] Some authors also have incorporated

a third beam into the FSRS experiment: the actinic pump which is an additional femtosecond pulse.[137,

391, 399, 400] The presence of this third beam allows the preparation of a particular excited state that is

probed at some delay by the Raman pump and Stokes probe.[137, 391, 399] Despite the picosecond duration

of the Raman pump in these experiments, the temporal resolution with respect to probing the excited state

is determined solely by the cross-correlation of the actinic pump and Stokes probe,[137, 378, 391, 399, 401]

allowing FSRS to simultaneously have spectral resolution on the scale of the vibrational modes and temporal

resolution of tens of femtoseconds.[137, 390, 399] Due to the nature of the method, FSRS does not require

any phase matching considerations,[136] permitting implementation in either a collinear or noncollinear

geometry.[137, 398]

However, despite the advantages, there are also some drawbacks to FSRS. Just like the more general

stimulated Raman spectroscopy, FSRS requires the ability to reliably measure small changes associated with

the Raman gain on a large background.[136, 190, 391] Thus, while data can be acquired rapidly due to
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the broadband nature of the technique,[400] achieving high signal-to-noise ratios does require averaging to

overcome the otherwise inherent low signal-to-noise ratio.[137] There are also artifacts that can manifest in

the data. While contamination from fluorescence is not considered to be a problem,[378, 390] transient ab-

sorption and stimulated emission can occur, manifesting as broad features in the Raman gain spectrum.[136,

137, 378] However, the application of shifted excitation Raman difference spectroscopy[402, 403] has been

demonstrated to allow these artifacts to be corrected.[378] Trying to extend the method to resonant exci-

tation or anti-Stokes configurations results in negative signals and complicated line shapes.[137, 398, 400]

Finally, the use of a sufficiently strong pump has been shown to introduce cross-phase modulation in the

probe;[136, 137] however, ensuring a smooth probe spectrum and shallower change in the pump’s temporal

envelope can minimize the consequences of phase modulation,[136] as can fibrillation of the pump[378] in a

manner similar to correcting for scatter interference in other spectroscopies.[404, 405]

An alternative approach, Raman induced Kerr effect spectroscopy (RIKES), to broadband Raman has

been proposed in the literature to overcome the large background inherent to FSRS.[397] This method is

based on the optical Kerr effect: propagation of an intense, polarized pump results in an intensity-dependent

change in the refractive index, inducing a temporary birefringence within the medium.[406] The birefringence

is a result of the response of the medium, and the change may involve electronic, vibrational, rotational, or

intermolecular contributions.[406–408] The induced birefringence will also affect other fields co-propagating

through the medium by cross-phase-modulation. Specifically, if a linearly-polarized probe is introduced,

the anisotropic change in refractive index will induce a change in the field’s polarization state.[377, 406]

Monitoring the change in the transmission of this probe through a crossed polarizer then informs on the

resonant and non-resonant response of the medium through the third-order nonlinear susceptibility.[190, 377,

379, 397, 406–411] While this method has been applied to electronic resonances,[407, 410, 411] in RIKES,

the goal is to specifically probe the resonance enhancement in the Kerr effect when the pump and probe

frequencies differ by the frequency of one of the medium’s Raman-active vibrational modes.[190, 377, 379,

397, 406]

Much like FSRS, RIKES does not require phase matching considerations,[377] allowing it to be per-

formed in either a collinear or a noncollinear geometry.[190, 377, 379, 406] Broadband implementations of

RIKES have also been reported.[379, 397] In contrast to FSRS, RIKES is dependent upon both the imagi-

nary and real parts of the nonlinear susceptibility;[409, 410] thus nonresonant background is a concern,[190,

377, 397, 406] and the variety of mechanisms capable of contributing to the optical Kerr effect can yield

background signals exhibiting dynamics.[407, 408, 410] However, circular polarization of the pump results in

suppression of the nonresonant background when Kleinmann symmetry is valid.[190, 377, 397] An alterna-
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tive approach to resolving challenges with nonresonant background is the introduction of a local oscillator

for heterodyne-detection.[190, 379, 409, 410] This also has the added benefit of enhancing the sensitivity

of the technique,[379] though it has been shown that RIKES can achieve similar signal-to-noise ratios to

FSRS without optimization.[397] The sensitivity of RIKES can also be improved with enhancement through

electronic resonance.[379]

While FSRS and RIKES have trivial phase matching, it is also possible to perform coherent Raman

spectroscopy through a phase matched process: coherent (anti-)Stokes Raman spectroscopy. While the

Stokes Raman based spectroscopy (CSRS) has been demonstrated,[186] the anti-Stokes process, CARS, is

more common.[120–124, 139, 140, 143, 146–148, 353–357, 360, 375, 376, 380, 412, 413] While some authors

have implemented pulse-shaping methods that allow CARS to be implemented with a single source,[122,

354] the general approach for CARS is based upon spatial and temporal overlap of two or three fields in a

medium.[120, 121, 135, 139, 143, 147, 148, 186, 360, 375, 376] In the three pulse sequence, the pulses provide

the Raman pump, ωP, the Stokes field, ωS, and the probe pulse, ωP′ ;[165, 354, 360] when reduced to two

fields, the interaction with the probe field is replaced by a second interaction with the pump, ωP′ = ωP.[120,

121, 135, 139, 143, 147, 148, 186, 360, 375, 376] The three interactions mediated by the medium will occur

through the third-order susceptibility, yielding an output at the frequency ωAS = ωP − ωS + ωP′ .[120–122,

135, 139, 143, 147, 148, 186, 354, 360, 375, 376] This illustrates the main advantage of CARS: since we

require ωP > ωS for the anti-Stokes process, ωAS will always be a unique frequency and blue-shifted relative

to the excitation fields. This makes CARS detection robust to scatter and fluorescence.[139, 190]

It is most common to implement CARS with homodyne detection.[120, 121, 123, 124, 139, 140, 143,

146, 148, 186, 356, 357, 360, 375, 376, 380, 412, 413] However, homodyne detection of ωAS will yield a

signal proportional to |χ(3)|2.[190] This introduces two main limitations to the method. First, because χ(3)

is proportional to the number density (N), homodyne detection results in signal scaling as N2.[99, 122, 148,

190, 354] While this is valuable when the molecule of interest is a majority species in the sample,[122] it makes

detection challenging for dilute species,[190, 354] imposes a limit on the sensitivity of the technique,[355]

and makes quantification more difficult.[122, 353, 355] Additionally, the scaling of the homodyne-detected

signal with |χ(3)|2 results in the signal containing contributions from both the imaginary and real parts

of the nonlinear susceptibility. Contributions from the nonresonant response results in a background over

which it is ideally possible to observe resonance enhancement when ωP − ωS matches the frequency of a

Raman-active vibrational mode.[120–122, 135, 139, 143, 147, 148, 186, 354, 360, 375, 376] This can still

introduce significant limitations.[121, 123, 139, 148, 165, 190, 355, 357, 360] The interference between the

real components from the resonant and nonresonant responses of the medium distorts the vibrational line



142

shape.[136, 190, 353] Excitation at visible frequencies,[140, 148] especially when a two-photon resonance is

available,[139, 140] can introduce significant levels of nonresonant background. While near infrared excitation

can reduce this background,[140, 148] the scaling of the signal with N2 can still allow the nonresonant

response to overwhelm the resonant signal through a larger number density in many applications.[121]

Though femtosecond excitation allows more efficient delivery of higher peak powers without concern for

damage or heating,[140, 376] it is also important to match the excitation bandwidth of at least one interaction

to the line width of the vibrational modes: besides the spectral resolution made available by picosecond

pulses,[139, 140] the increasing bandwidth of increasingly shorter pulses will eventually saturate the spectral

width of the resonant process; beyond this point, the resonant process will be enhanced no further, while

the nonresonant signal strength will continue to increase.[139, 140, 146, 356, 357] Many techniques have

been shown to help suppress nonresonant background, though each has limitations and drawbacks. Phasing

of the excitation fields by pulse shaping has been shown to help improve the resolution of the signal.[143]

Polarization control can also be used by choosing polarizations for the excitation fields such that Kleinmann

symmetry predicts the cancellation of nonresonant signal.[143, 146, 361] Time resolving the signal by delaying

the final interaction (the probe field) also allows reduction of nonresonant background: by introducing

an appropriate delay, the probe ideally only samples the free-induction decay of the induced vibrational

coherence.[121, 165, 360] However, in highly scattering samples, efforts to control phase and polarization can

be disrupted.[121] Meanwhile, changing the polarization of the excitation fields or delaying the arrival of the

probe reduces the signal available.[355] Additionally, there are advantages to using high numerical aperture

objectives in CARS; however, under such conditions, the paraxial approximation breaks down[139] and it is

difficult to ensure polarization purity.[139, 414]

An alternative strategy to overcome the challenges of nonresonant background is the implementation

of heterodyne detection[122, 353–355] due to its advantages. By interfering the CARS signal with a local

oscillator, the heterodyned signal is proportional to the electric field of the CARS signal, rather than the in-

tensity of the field;[122, 353–355] the signal is therefore proportional to χ(3), rather than |χ(3)|2. This leaves

the signal proportional to the number density,[123] making quantification more straightforward[122, 353,

355] and simplifying the detection of weaker species.[190, 354, 355] The interference with the local oscillator

can amplify the signal, improving sensitivity.[355] Heterodyne detection also allows the real and imaginary

components of the nonlinear susceptibility to be resolved:[353–355] as the nonresonant background is predom-

inantly associated with the real component of the nonlinear susceptibility, this allows the resonant response

to be isolated.[122, 123, 353, 355] Despite these advantages, heterodyne detection is rarely implemented:

while some authors have employed a pulse shaper to achieve heterodyne detection,[122, 354] it generally
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requires an additional source to supply the local oscillator.[354] Additionally, due to the phase-matching of

the process, it is really only practical to implement heterodyne detection in a collinear geometry.[355]

The phase matching requirements of CARS also provides the other challenge in implementing the tech-

nique. While RIKES and FSRS are satisfied by a trivial phase matching in the same manner as transient

absorption,[136, 377] phase matching is important to consider in the CARS experiment. Like other nonlinear

techniques, CARS must be performed such that we simultaneously satisfy the energy conservation condition,

ωAS = ωP−ωS +ωP′ ,[120–122, 135, 139, 143, 147, 148, 186, 354, 360, 375, 376] and momentum conservation,

kAS = kP − kS + kP′ .[135, 361] Different approaches have been used to satisfy the phase-matching of CARS,

but a common one is the BOXCARS geometry, in which the three input fields and the output occupy four

corners of a rectangle.[120, 121, 135, 147, 186] However, this alignment can require relatively significant

angles.[186] Additionally, it can be difficult to simultaneously phase match the CARS processes correspond-

ing to different vibrational frequencies over a broad range of Raman shifts,[120, 136, 137] as changing the

frequencies of the fields necessitates the use of different input angles.[135] The effects of phase matching can

also complicate the interpretation of observed line shapes;[120, 147] care must be taken in alignment and

focusing, as the presence of higher-order transverse modes[205] and the Guoy phase shift[139, 203] can both

complicate the interpretation of phase matching. However, there are some situations where phase matching

can be neglected. If the interaction region is short,[139] phase matching can be ignored: in the limit of

minimal depletion of the excitation fields, signal intensity is proportional to sinc2(L∆k/2), where L is the

interaction length and ∆k is the phase mismatch; short pathlengths then make the experiment less sensitive

to phase matching. Alternatively, if dispersion is sufficiently weak, such as in a gas, the phase matching

condition reduces to the energy conservation condition.[135] Broadband phase matching has also been pro-

posed by introducing a wide-angle probe to simultaneously satisfy the phase-matching of different processes;

such an alignment necessitates moving the detector to measure the intensity of CARS signal associated with

different Raman shifts, however.[135]

The concept of reducing the constraints of phase matching with sufficiently wide-angle excitation has

lead to the implementation of CARS in microscopy.[139, 140, 146, 148, 165, 355–357, 375, 380, 412] In

this application, CARS provides a sensitive, label-free method of imaging;[165, 357, 380, 412] additionally,

the dependence of the signal upon the overlap of multiple beams improves the spatial resolution.[148] In

microscopy, the limit of phase matching the CARS process can be overcome by the use of high numerical

aperture objectives: this provides sufficiently wide-angle excitation so as to relax the phase matching condi-

tion,[139, 140, 146–148] as well as reducing the interaction length.[139] High numerical aperture objectives

even allow collinear geometries,[146] facilitating the application of heterodyne detection.[355] The tighter fo-
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cus also increases spatial selectively[139, 375] and improves the image quality.[139] However, high numerical

aperture objectives cannot be implemented for all systems, and the filtering schemes necessary to isolate the

CARS signal can result in a loss of sensitivity.[147]

While a few reported implementations of CARS employ only picosecond[139, 148, 355] or femtosec-

ond[120, 122, 143, 147, 354, 357, 413] excitation, many other implementations of CARS[121, 146, 186, 353,

356, 360, 375, 376, 412] - as well as various implementations of FSRS[136, 137, 378, 389–391, 398, 399, 401,

415] and RIKES[379, 397] - have sought to achieve multiplexing while retaining spectral resolution on the

order of the line width of vibrational modes.[390, 401] While this could be achieved by synchronization of

femtosecond and picosecond lasers,[390] it is difficult to reliably achieve synchronization without timing jit-

ter.[376, 415] While continuum generation is possible with picosecond pulses,[318, 320, 332, 416] the higher

peak intensity of femtosecond pulses generally yields higher efficiencies[417] since the nonlinear processes

associated with light generation are generally nonresonant.[139, 140, 146, 356, 357] As a consequence, rather

than start with picosecond pulses and achieve multiplexing through continuum generation, most reports

describe starting with femtosecond pulses and the application of a variety of strategies to improve spectral

resolution.[136, 137, 165, 186, 356, 357, 376, 378, 380, 389–391, 397, 399–401, 412, 417–419] In addition to

reporting strategies for narrowing their excitation pulses, some authors also give consideration to increasing

the breadth of their pulses in order to maximize the range of Raman shifts accessible.[122, 354]

Many of the efforts to extend the accessible range of Raman shifts are based upon white light genera-

tion.[136, 137, 356, 375, 378–380, 397, 398, 420] A brief overview on the generation of white light has been

provided in Ch. 5. However, an alternative strategy that has been employed for generating broadband pulses

is cascaded frequency mixing processes.[400] By crossing two beams with wave vectors k1 and k2, various

mixing processes are cascaded to form spatially resolved orders satisfying various phase matching conditions

generalized (n+ 1)k1 − nk2.[282–284, 421] These cascaded side bands are broad and tunable,[283, 306, 400]

providing an alternative to white light generation. However, unlike white light generation, these side-bands

are reasonably well-compressed pulses with durations on the order of the driving fields.[283, 400]

Strategies for developing narrowband pulses from broadband sources are diverse, but can be considered

to fall into three categories: filtering, in which only a small bandwidth from the original broadband source is

retained; methods based on appropriate chirp of the broadband source; and, narrowing through parametric

processes in a nonlinear crystal. Some of these methods also introduce picosecond optical parametric am-

plifiers that are pumped by the narrowed source, providing the capability to tune the narrowed pulse.[391,

400, 415]

Three main strategies for filtering broadband sources have been reported in the literature. All three are
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inherently inefficient, with reported efficiencies less than 0.3%, since they are predicated on passing only a

small bandwidth from the original source.[399, 417, 419] The simplest filtering scheme that has been reported

is the use of a pair of commercial filters that together reduced the bandwidth to 17 cm-1.[136, 137] This

corresponds to a pulse duration slightly shorter than one picosecond ( 800 fs), but this strategy restricts the

tuning of the pump according to the availability of appropriate filters. A limited ability to tune the Raman

pump was introduced through grating-based filters; the design is based upon a 4f pulse shaper: two gratings

separated by a distance of 4f and by two lenses (focal lengths of f), with the lenses positioned to have a

shared image plane at which a slit is positioned.[121, 186, 378] Some authors have simplified the configuration

by using a flat mirror at the image plane, allowing the use of a single grating.[380, 415] These grating-based

filters allow significantly longer pulse durations, up to 8-9 picoseconds, and the ability to tune within the

bandwidth of the broadband source.[378] However, in order to achieve such short pulses, it is necessary to

use very small slits; this can introduce perturbations to the mode.[390] The symmetry of the resulting pulses

have also been reported to introduce ringing,[390] though some authors have suggested it can be reduced for

some temporal profiles.[400] Besides the inherent inefficiency due to the restricted bandwidth, grating-based

filters suffer from further inefficiencies from diffraction off the grating.[390] The final filtering strategy that

has been described is the use of Fabry-Pérot etalons.[390] The motivation for filtering using Fabry-Pérot

etalons is their earlier application in other spectroscopies, such as sum-frequency generation.[422] Fabry-

Pérot etalons offer high efficiency at the central color and are capable of very narrow bandwidths (as low as

3 cm-1 reported).[390] The narrowed pulses exhibit an exponential profile in the time domain: such a profile

helps enhance the vibrationally resonant signal relative to the nonresonant background by matching the

dephasing of the coherence.[390] While it can be difficult to simultaneously achieve a sufficient free spectral

range and a narrow bandwidth affordably, etalons can be combined with other filters to compensate for the

free spectral range.[423] The main additional limitation associated with Fabry-Pérot etalons is that the cost

can be significant.[390]

The inefficiency associated with spectral filtering led a variety of attempts to improve efficiency through

chirped pulses. The first of these methods has been termed “spectral focusing.”[412] This method was

motivated by an earlier observation that the presence of chirp in the excitation fields can actually improve

the resolution of the CARS process.[146] An early implementation of applying chirp followed this observation

by overlapping a broadly chirped pulse and a compressed pulse: as the interaction necessary for the CARS

process is only possible during temporal overlap, the resolution is controlled by the “temporal slit” resulting

from the chirp rate and the femtosecond pulse duration.[376] However, by applying an equal degree of chirp

to both the pump and Stokes pulses, other authors have shown the potential to apply the entire bandwidth of
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broadband pulses to drive processes corresponding to a target Raman shift: with appropriate adjustment of

chirp and delay, the instantaneous frequencies temporally overlapped correspond to excitation of a particular

vibrational mode throughout the entire duration of the pulse.[356, 357, 401, 412] An alternative method for

improving resolution through chirp involves spectral compression by the sum-frequency generation of counter-

chirped pulses. In this scheme, a pulse is split to yield two pulses; each pulse is passed through a stretcher

to apply chirp: however, one pulse has a positive chirp applied, while the other pulse is negatively chirped.

These pulses are then mixed to yield a narrow band pulse.[391, 400, 424]

However, this method involving counter-chirped beams requires careful alignment of a pair of stretchers

so as to add equal chirp to both beams;[419] a handful of authors have reported an alternative that bypasses

this complication. Rather than apply chirp, these authors use the large group velocity mismatch between a

fundamental and its second harmonic to impose a very narrow phase matching bandwidth on the second-

harmonic generation process.[165, 399, 417–419] This allows tuning of the pulse-duration by changing crystal

material - and therefore the group velocity mismatch - or by changing the crystal length.[399] However,

the narrow phase-matching bandwidth does not significantly reduce the efficiency. Rather, the spectral

compression can be considered to arise from a series of mixing processes between frequencies of ω0 + ∆ω and

ω0−∆ω: for any value of ∆ω, the sum-frequency will be 2ω0.[417] Even without the ability to simultaneously

phase-match the sum-frequency generation for every value of ∆ω, the cooperation of the sum-frequency and

second-harmonic generation processes towards spectral narrowing make this method very efficient,[399, 417]

with efficiencies reportedly approaching 40%.[417] The main limitation to this method is in the resulting line

shape: as the mixing process is most efficient at the beginning of the crystal - when the pulses are most intense

- the pulses exhibit a temporal profile with a sharp edge and an approximately quadratic tail.[399, 417, 418]

However, unlike Fabry-Pérot etalons, the tails of these spectrally-compressed pulses decay in the reverse

direction relative to the vibrational dephasing: the edge of the pulse artificially attenuates the free-induction

decay of the coherence, introducing ringing in the spectrum.[399] While a filtering scheme to improve the line

shape and reduce this ringing has been proposed, it calls for a grating-based spectral filter.[399] Additionally,

it has been reported that introducing some phase-mismatch to the second-harmonic generation can influence

the line shape.[417] An alternative solution has been the introduction of periodically-poled crystals, such

as periodically poled lithium niobate or stoichiometric lithium tantalate.[165, 417–419] These engineered

materials exhibit attractive properties for spectral compression: high group velocity mismatch, high second-

order susceptibility, and periodic poling to avoid spatial walk-off.[417] However, by tuning the periodicity

of the materials, it has been demonstrated that it is possible to engineer desired temporal profiles for the

spectrally compressed pulse.[165, 418, 419]
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A variety of methods have been employed to study the vibrational structure of the photosystem II and

various co-factors of the protein,[57] including infrared absorption[60, 62, 84] and (resonance) Raman.[58, 59,

61, 79] However, the number of transitions available in photosystem II results in very complicated absorption

spectra;[62] the resonance-enhancement yields simpler spectra, but the use of spontaneous Raman results

in relatively weak signals[58, 59, 61] and fluorescence can be a concern.[61] Coherent Raman spectroscopies

offer the potential to improve the sensitivity of these latter experiments and provide intrinsic resistance to

fluorescence. For testing the application of broadband coherent Raman spectroscopy, benzene was used as an

initial test sample due to the strong Raman-active mode at 992 cm-1.[406] Manganese tetraphenylporphine

was selected as a model system for exploring resonance enhancement: previous reports indicate that at least

one of the electronic transitions (Band V, near 480 nm) is believed to exhibit strong contributions from the

manganese, and that excitation of this band results in resonance-enhancement of the Raman mode associated

with the low frequency vibration between the manganese and the axial ligand.[309]

6.2 Experimental Deviations

The broadband CARS experiments reported in this section were performed as four color experiments. The

two femtosecond TOPAS-C provided two femtosecond pulses as the Raman pump (ν̄1) and Stokes (ν̄2) pulses

and were tuned so the frequency difference between the TOPAS-C was close to the frequency of the target

vibrational mode. The Raman probe pulse was derived from the residual fundamental from the Spitfire

Pro XP regenerative amplifier. In contrast to the standard alignment of the fundamental, the beam was

not turned directly into the appropriate delay line. Rather, a set of three mirrors was introduced to allow

the introduction of a volume Bragg grating for spectral narrowing with an appropriate angle between the

incident and diffracted beams.

While the enhancement of vibrational dephasing attributed to the temporal profile of pulses narrowed

with Fabry-Pérot etalons[390] was attractive, calculations suggested that it would be difficult for a reasonably

affordable etalon to simultaneously provide wide tuning capability, high throughput, narrow spectral profiles,

and a wide free spectral range. However, it has been reported that etalons with a narrow free spectral range

may be combined with volume Bragg gratings to simultaneously achieve narrow spectral profiles and broad

free spectral ranges.[423] These gratings are prepared by imaging a sinusoidal refractive index grating in a

material; based on the period of these modulations (Λ), the index of the material (n), and the incident angle
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(θ), a very narrow bandwidth centered around a wavelength, λ0:

λ0 = cos

(
arcsin

(
sin(θ)

n

))
Λ

2n
(6.2.1)

is diffracted with high efficiency.[423]

The grating (Optigrate; Oviedo, FL) employed in these experiments was 2.1 mm x 5 mm x 5 mm and

designed to operate around a central wavelength of 805.3 nm, yield a spectral width of ∼ 0.25 nm (FWHM),

and achieve > 97% diffraction efficiency. Testing indicated a ∼ 35◦ angle between the incident beam and

the diffracted beam optimized the overlap of the diffracted color (∼ 785 nm at 30◦ and ∼ 795 nm at 40◦)

with the center of the regenerative amplifier output; it should be noted, though, that these measurements

were collected with an OceanOptics USB-2000 that exhibits a sharp decrease in response near 800 nm

and consequently reports distorted spectra for ∼ 35 fs pulses centered near 800 nm. The central color

observed in these experiments was ∼ 794 nm; however, we are not confident that the Jobin Yvon MicroHR

monochromator provided sufficient resolution to reliably characterize the spectrum. Consequently, Raman

shifts reported in all CARS spectra have been determined by matching the observed vibrational features

to the reported frequencies for the sample; sources for the frequencies are for benzene (993 cm−1),[425]

benzonitrile (1601 cm−1),[426] and pyridine (992 and 1031 cm−1).[186] The temporal profile of the diffracted

pulse, shown in Fig. 6.1, was determined through a nonresonant CARS process in carbon tetrachloride with

the TOPAS-C tuned to ν̄1 = 8000 cm−1 and ν̄2 = 7000 cm−1. It should be noted that this spectrum does

represent convolution of the temporal profile of the diffracted pulse with the TOPAS-C output; however,

as the durations of the latter two pulses are ∼ 40 fs, the convolution should be a minor effect. With the

conventions of delay on the table, the tail of the diffracted pulse should match the dephasing of the vibrational

mode in a manner similar to an etalon.

Phase matching angles for these experiments were calculated within the cw approximation for the center

of each pulse. These calculations indicated two key details. First, it proved necessary to use a faster

focusing mirror for all experiments: the angles calculated for near infrared excitation required a f = 50 cm

mirror, while for the experiments with visible excitation this had to be reduced further to f = 20 cm. The

other key detail indicated by these calculations was the narrow phase matching bandwidths: within this cw

approximation, it was anticipated that the phase matching bandwidth would be significantly narrowed in

the visible.

The CARS experiments were performed as one- or two-dimensional acquisitions involving only the

monochromator frequency and the relative delays. The TOPAS-C were set to generate particular colors
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Figure 6.1: Temporal profile of the narrowed ∼ 794 nm probe as determined by nonresonant CARS (ν̄1 =
8000 cm−1 and ν̄2 = 7000 cm−1) in carbon tetrachloride.



150

for ν̄1 and ν̄2. The convolution of the spectral content of these pulses determined the accessible vibrational

frequencies;[120–124] by scanning the monochromator, we determined the frequencies of the vibrational co-

herences created by this convolution based upon the intensity of the upconverted Raman probe at each

frequency. As before, the preamplifier limited reliable application of available photomultiplier tubes; a sil-

icon photodiode was used for detection instead. Reported usage of “spectral focusing”[356, 357, 401, 412]

indicated the importance of considering any chirp or other frequency modulation present in the pump and

Stokes pulses. Due to suspicions of the upconversion processes in the TOPAS-C, this was expected to be

a particular concern in experiments using sum-frequency signal. Two-dimensional acquisitions monitoring

the CARS spectrum as a function of relative delay between the pump and Stokes pulses suggested this was

not a large concern in the near infrared (data not shown); similar scans collected with the pump and Stokes

pulses derived from the sum-frequency signal process will be shown in the Results and Discussion.

6.3 Results and Discussion

Consistent with previous reports,[399, 417, 419] the use of filtering to achieve spectrally narrow pulses resulted

in a dramatic reduction in beam energy. Prior to introducing the Bragg grating, we measured a per pulse

energy of 40 μJ in the residual fundamental; with the grating in place, this energy was reduced to 370 nJ

per pulse. Even with the reported > 97% diffraction efficiency, these losses correspond to 0.9% efficiency;

based upon the reported efficiencies of other filtering strategies,[399, 417, 419] this observed efficiency is

consistent with the reduction in bandwidth. However, besides the limits to spectral resolution arising from

a femtosecond probe, Fig. 6.2 shows that the picosecond probe also provides a high degree of discrimination

against the nonresonant background. A theoretical foundation for this has been previously reported:[140]

as the pulse duration decreases, both nonresonant and resonant signal increase; however, while nonresonant

signal continues to increase, the resonant response only scales so long as the excitation bandwidth is less

than or comparable to the vibrational line width. Consequently, under purely femtosecond excitation, the

ratio of resonant to nonresonant signal is predicted to be quite small.[139, 140, 146, 356, 357] In Fig. 6.2,

we show that even a single picosecond interaction is sufficient to improve this ratio.

All scans in Fig. 6.2 were collected under conditions of near infrared excitation: ν̄1 = 8000 cm−1

and ν̄2 = 7000 cm−1. Under the conditions of the initial table alignment (femtosecond probe pulse), we

measured the dynamics associated with both carbon tetrachloride (CCl4) and benzene (C6H6). Most of the

signal for both samples was consistent with the nonresonant response arising from cross-correlation of the

three excitation pulses. However, in benzene, we do observe weak signal above the baseline at long delays,
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consistent with the longer dynamics expected for a vibrational coherence. Nevertheless, the ratio of this

signal to the nonresonant response at zero delay is very low: as the scale in (A) shows, it is approximately

one to one hundred, which is reasonable in the context of previous calculations.[140] This contrasts with the

behavior observed when the narrowed, picosecond probe is used, (B). The signal from carbon tetrachloride

suggests that the weaker excitation from the picosecond probe yields a lower sensitivity, as the nonresonant

signal is only two orders of magnitude over the baseline, rather than the three orders of magnitude in (A);

this is consistent with the higher contrast expected due to the peak intensity available from femtosecond

excitation.[140] In exchange for the lower sensitivity, though, (B) shows that we can achieve much greater

specificity for the vibrational dynamics: where the femtosecond probe yielded a resonant to nonresonant

ratio of about one to one hundred, the picosecond probe achieves ratios of about seven to ten, a seventy-fold

improvement.

With the spectrally-narrowed probe, we explored the reliability, sensitivity, and resolution of broadband

CARS with near infrared excitation (ν̄1 = 8000 cm−1 and ν̄2 = 7000 cm−1). A sampling of these results

is reported in Fig. 6.3, 6.4, and 6.5. All three figures present a two-dimensional acquisition (A) reporting

signal on a logarithmic (base-10) scale as a function of delay versus Raman shift; the delay corresponds to

the relative delay of the probe relative to the temporally overlapped pump and Stokes pulses. Zero delay

is defined according to the sharp falling edge in the nonresonant signal due to the rising edge of the probe

pulse. (B) and (C) present one-dimensional views of the data: (B) presenting vertical (delay) slices, and

(C) showing horizontal (frequency) slices. All slices shown in (B) and (C) are color- and style-coded to

correspond to the vertical and horizontal, respectively, slices shown in (A).

Consistent with the Raman properties of carbon tetrachloride,i Fig. 6.3 shows no evidence of vibrational

resonances for Raman shifts between 850 and 1200 cm−1. This is evidenced by the sharp edge at a delay of

0 ps, and the broad, featureless spectral character across the frequency range. The dip near a Raman shift

of 850 cm−1 is attributed to noise. The slices in (B) and (C) show that the nonresonant response in carbon

tetrachloride gives us sensitivity of approximately one and a half orders of magnitude (signal levels above

baseline) in these experiments.

In contrast to Fig. 6.3, the presence of a vibrational resonance yields a very clear signature in the

two-dimensional spectrum, as shown for neat benzene in Fig. 6.4. In the two-dimensional spectrum, the

vibrational resonance at 993 cm−1 is seen clearly above the baseline. Contrasting the vertical slices at 975

cm−1 and 993 cm−1, the dashed and solid vertical slices respectively, we see in (B) that an exponential

iAvailable at webbook.nist.gov.
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Figure 6.2: Comparison of CARS signal with ps and fs probe pulses. All scans report normalized signal
versus the delay between the probe pulse and the overlapped Raman pump (ν̄ = 8000 cm−1) and Stokes
(ν̄ = 7000 cm−1) pulses; the monochromator was set to the wavelength at which the CARS signal associated
with benzene’s 993 cm−1 vibrational mode was expected. (A) and (B) are the results for carbon tetrachloride
and benzene with a femtosecond, 800 nm probe and the spectrally narrowed picosecond probe, respectively.
The data presented for benzene represent all data accumulated over two scans.
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Figure 6.3: Broadband CARS of carbon tetrachloride (CCl4) with Raman pump pulse ν̄1 = 8000 cm−1,
Stokes pulse ν̄2 = 7000 cm−1, and narrowband probe (∼ 794 nm). (A) Signal (base-10 logarithmic scale) as
a function of delay and Raman shift. Delay is relative delay between the probe pulse and the overlapped
Raman pump and Stokes pulses. Raman shifts are assigned on the basis of matching time-resolved vibrational
resonances in benzene and pyridine to known values.[186, 425] The solid vertical line identifies the slice plotted
in (B), and the solid and dashed horizontal lines represent the points from which the slices in (C) are derived.
(B) and (C) are signal (base-10 logarithmic scale) versus relative probe delay (B) or Raman shift (C).
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decay is clearly visible when the monochromator is set to detect resonant signal (Raman shift of 993 cm−1),

whereas signal is only present during pulse overlap when off resonance. In (C), the solid trace shows a

horizontal slice of the signal during pulse overlap. In this slice, we see clear evidence of interference between

the nonresonant background and the vibrational resonance in the dip in signal near 1025 cm−1 - this is

quite close to the Raman shift at which Levenson and Bloembergen observe a minimum resulting from

this interference (1020 cm−1).[110] However, we observe nearly an order of magnitude of contrast between

the resonant and nonresonant response; the improvement over the signal in Fig. 6.2 is attributed to more

accurate setting of the monochromator: in the data acquired for Fig. 6.2, the monochromator was set based

upon the expected wavelength for the CARS signal rather than the wavelength of maximum signal. Recall,

the dispersion of the MicroHR monochromator limits our ability to know the frequency of the probe with

high precision. In contrast to pulse overlap, time resolution of the signal - given by the dashed line in (C)

- allows isolation of the vibrational resonance; consistent with concerns over the use of time resolution for

nonresonant background suppression,[355] we do observe some loss of signal (∼ 12% on the logarithmic

scale). While the strong response of benzene does leave us with high sensitivity after these losses - signal

approximately one and a half orders of magnitude over baseline - this loss of signal could prove a limitation

with dilute species or those with weaker response.[355]

As expected, the narrowed probe pulse provides significant improvements in resolution. Not only is the

vibrational lineshape in Fig. 6.4 distinguishable, but we see in Fig. 6.5 that we can clearly resolve two close

vibrational modes. In Fig. 6.5, we show the CARS spectrum of a mixture of benzene and pyridine under

near infrared excitation. These compounds exhibit vibrational frequencies very close to each other: benzene

exhibits a Raman-active vibration at 993 cm−1,[425] while pyridine exhibits a pair of resonances, one at 992

cm−1 and the other at 1031 cm−1.[186] Signals consistent with the vibrational frequencies are present in

the two-dimensional acquisition of (A). The time-resolved slice in (C), given by the spectrum in the dashed

line, show that we achieve baseline resolution between the vibrations at 992/993 cm−1 and the vibration at

1031 cm−1; this is comparable with the resolution in the time-resolved CSRS results reported by Pestov et

al, and both data sets appear to exhibit better resolution than the spontaneous Raman spectrum reported

by the same authors.[186] We will also point out the dip in nonresonant signal near a Raman shift of 1150

cm−1; we will address this feature later in this chapter.

In order to increase the applicability of these broadband Raman processes towards resonance enhance-

ment, we sought to extend the methods towards visible excitation. The same methods were employed as

were used to acquire the previously described near infrared excited CARS spectra, only substituting visible

Raman pump and Stokes pulses generated through the TOPAS-C second-harmonic signal (SHS) or sum-
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Figure 6.4: Broadband CARS of benzene (C6H6) with Raman pump pulse ν̄1 = 8000 cm−1, Stokes pulse
ν̄2 = 7000 cm−1, and narrowband probe (∼ 794 nm). (A) Signal (base-10 logarithmic scale) as a function of
delay and Raman shift. Delay is relative delay between the probe pulse and the overlapped Raman pump and
Stokes pulses. Raman shifts are assigned on the basis of matching the time-resolved vibrational resonance
of benzene to its known value.[425] The solid and dashed vertical lines identify the slices plotted in (B), and
the solid and dashed horizontal lines represent the points from which the slices in (C) are derived. (B) and
(C) are signal (base-10 logarithmic scale) versus relative probe delay (B) or Raman shift (C). The faded red
line in (C) marks the vibrational frequency of benzene, 993 cm−1.
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Figure 6.5: Broadband CARS of a mixture of benzene and pyridine (C5H5N) with Raman pump pulse
ν̄1 = 8000 cm−1, Stokes pulse ν̄2 = 7000 cm−1, and narrowband probe (∼ 794 nm). (A) Signal (base-10
logarithmic scale) as a function of delay and Raman shift. Delay is relative delay between the probe pulse
and the overlapped Raman pump and Stokes pulses. Raman shifts are assigned on the basis of matching
the time-resolved vibrational resonances of benzene and pyridine to known values.[186, 425] The vertical
lines are color- and style-coded to match the slices plotted in (B), and the solid and dashed horizontal lines
represent the points from which the slices in (C) are derived. (B) and (C) are signal (base-10 logarithmic
scale) versus relative probe delay (B) or Raman shift (C). The faded red lines in (C) mark the vibrational
frequencies of benzene and pyridine, 993 cm−1 and 1031 cm−1.
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frequency signal (SFS) processes. Fig. 6.6 shows the broadband CARS spectrum acquired for benzonitrile

using SHS-derived pump and Stokes pulses. In this spectrum, we observe a feature consistent with the 1601

cm−1 vibrational mode of benzonitrile. The dynamics exhibited are short but can be clearly resolved. The

sensitivity of this signal is also weaker, which is consistent with the excitation pulses being derived from a

second harmonic process. More energy is available from the SFS process, which was used to acquire the

CARS data in Fig. 6.7.

We have previously discussed the problems that manifest upon upconversion of the idler in the TOPAS-C

(see Ch. 4), and we have consequently speculated that the accumulated group delay and pump-signal group

velocity mismatch may also manifest in the SFS process. For example, in experimental applications of the

SFS process, it is not uncommon to see temporal profiles significantly broader than would be anticipated

(see for instance the vertical line width in (E) of Fig. 5.1). Consequently, rather than collect CARS spectra

studying the dynamics of the vibrational coherence, the two-dimensional acquisition of Fig. 6.7 seemed

for more important. The results of this two-dimensional acquisition are signal (presented on a logarithmic

scale) as a function of relative delay between the pump and Stokes pulses and the Raman shift (A). After

background subtraction, the first moment of the signal was calculated, with the result overlaid in (A) as

the black line; it should be noted that the noise at Raman shifts less than 950 cm−1 yielded a handful of

meaningless data points - such points have been ignored. As the remaining points show, there does appear

to be some degree of frequency-modulation, with the first moment exhibiting a change of ∼ 50 fs between

Raman shifts of 950 and 1220 cm−1. The interpretation of the broadband CARS signal as the convolution

of the pump and Stokes pulses[120–124] complicates the assignment of this result to a particular frequency-

modulation profile, but it warrants consideration in other experiments involving light generation through

this nonlinear process.

The other pane (B) in Fig. 6.7 is the signal (on a base-10 logarithmic scale) of (A) integrated along

vertical slices. Within this treatment, a feature that may be attributed to the 993 cm−1 vibrational mode of

benzene is still apparent. However, the contrast in this scan is significantly lower than in Fig. 6.4: whereas we

observed approximately one order of magnitude contrast between the resonant and nonresonant signal under

near infrared excitation, with the pump and Stokes pulses generated by the SFS process, our contrast is only

approximately half of one order of magnitude. This is consistent with previous reports that nonresonant

background becomes increasingly important at higher frequencies,[140, 148] as well as our measurements of

nonresonant susceptibilities in Ch. 5. We also note that the width of the nonresonant background appears

reduced. Under near infrared excitation, the nonresonant background is above baseline across much of the

∼ 350 cm−1 window of Raman shifts in Fig. 6.3, 6.4, and 6.5 and is visible over a much broader range than
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is shown in these figures. On the other hand, the nonresonant background appears to be above baseline over

a range of only ∼ 200-300 cm−1; this is consistent with the steeper phase matching conditions observed for

visible excitation under the cw approximation and in agreement with concerns over operational bandwidth

in these phase matched experiments.[120, 136, 137]

With pump and Stokes pulses derived from SFS, we also tried to find signal associated with resonance-

enhanced CARS in MnTPP consistent with the reported resonance Raman of the complex.[309] However,

while realignment to a different mask allowed detection of signal at the appropriate Raman shifts (∼ 400

cm−1), we could not detect any signal consistent with MnTPP. Referring back to our concerns in Ch. 5

regarding the sensitivity of experiments involving these metal species, it is not too surprising that we had

difficulty finding signal as we have replaced two electronic resonances with a nonresonant interaction (the

Raman probe). It may be worth returning to these efforts if the capability to tune the Raman probe over

a broader frequency range is developed or acquired. Under such a situation, these CARS processes could

be performed with four resonant interactions: just as we managed to detect signal under some conditions

with MnTPP, the four resonant interactions may be sufficient to enable electronically enhanced CARS

experiments.

Recall we mentioned when discussing Fig. 6.5 the decrease in nonresonant signal near 1150 cm−1. The

behavior yielding this feature is shown more fully in Fig. 6.8, in which it is clear that we observe a sequence

of modulations as a function of Raman shift. However, these features are only observed during pulse overlap.

Characterization of these modulations along different available axes is shown in Fig. 6.9. (C) makes it very

clear that these modulations are not an interference effect associated with the monochromator slits: for

increasing slit size, the only change in the signal is broadening and an increase in amplitude, each consistent

with increasing slit width. Meanwhile, changing the sample from carbon tetrachloride to pyridine or benzene

has a pronounced effect (D), but there is no obvious trend associated with changing the sample composition

with respect to benzene and pyridine. From panes (A) and (B), it is clear that changing the TOPAS-C set

points has pronounced effects. When these effects were first observed, modulations were observed when the

spectral output of the OPAs was checked; however, retuning removed the modulations in the OPA spectral

output, but not in the CARS spectra. Realignment of the table following retuning also changed the position

and spacing of the fringes with respect to the benzene resonance.

We were unable to find any descriptions or reports of similar modulations in the nonresonant background

of CARS spectra in the literature. The only other mention of modulations of any sort is from Pontecorvo et

al,[399] who report the observation of ringing in FSRS spectra when employing a narrowband pump with a

sharp cutoff rather than a sharp rise as we observe. The authors attribute this ringing to the sudden cutoff
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Figure 6.6: Broadband CARS of benzonitrile (C7H5N) with Raman pump pulse ν̄1 = 16400 cm−1, Stokes
pulse ν̄2 = 15100 cm−1, and narrowband probe (∼ 794 nm). (A) Signal (base-10 logarithmic scale) as a
function of delay and Raman shift. Delay is relative delay between the probe pulse and the overlapped
Raman pump and Stokes pulses. Raman shifts are assigned on the basis of matching the time-resolved
vibrational resonance of benzonitrile to its known value.[426] The dashed and solid vertical lines match the
dashed and solid slices plotted in (B), and the solid and dashed horizontal lines represent the points from
which the slices in (C) are derived. (B) and (C) are signal (base-10 logarithmic scale) versus relative probe
delay (B) or Raman shift (C). The faded red line in (C) marks the vibrational frequency of benzonitrile,
1601 cm−1.
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Figure 6.7: Broadband CARS of benzene (C6H6) with Raman pump pulse ν̄1 = 20800 cm−1, Stokes pulse
ν̄2 = 19800 cm−1, and narrowband probe (∼ 794 nm). (A) Signal (base-10 logarithmic scale) as a function
of delay and Raman shift. Delay is the relative delay between the pump and Stokes pulses; overlap of both
pulses with the probe is expected for all relative delays. Raman shifts are assigned on the basis of matching
the vibrational resonance of benzene to its known value.[425] The black trace is the first moment of the
signal, excluding the values calculated for several Raman shifts < 950 cm−1. (B) Is the base-10 logarithm
of the results of (A) integrated over all delay values at each Raman shift. The faded red line marks the
vibrational frequency of benzene, 993 cm−1.
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Figure 6.8: A spectrally broader broadband CARS of benzene (C6H6) with Raman pump pulse ν̄1 = 8000
cm−1, Stokes pulse ν̄2 = 7000 cm−1, and narrowband probe (∼ 794 nm). (A) Signal (base-10 logarithmic
scale) as a function of delay and Raman shift. Delay is relative delay between the probe pulse and the
overlapped Raman pump and Stokes pulses. Raman shifts are assigned on the basis of matching the time-
resolved vibrational resonance of benzene to known value.[425] The horizontal lines are color- and style-coded
to the slices in (B). (B) shows signal (base-10 logarithmic scale) versus Raman shift for different horizontal
slices of (A). The faded red line in (B) marks the vibrational frequency of benzene, 993 cm−1.
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Figure 6.9: Broadband CARS with near infrared Raman pump and Stokes pulses. (A) Monochromator
slices of CARS signal from benzene versus Raman shift for different pairs of Raman pump/Stokes pulse
frequencies with a constant detuning (1000 cm−1). (B) Monochromator slices of CARS signal from benzene
versus Raman shift for constant Raman pump pulse frequency and variable Stokes pulse frequency. (C)
Monochromator slices of CARS signal from benzene versus Raman shift for different monochromator slit
widths for Raman pump ν̄1 = 8000 cm−1 and Stokes pulse ν̄2 = 7000 cm−1. (D) Monochromator slices
of CARS signal from different solvent systems versus Raman shift for Raman pump ν̄1 = 8000 cm−1 and
Stokes pulse ν̄2 = 7000 cm−1. Ratios of benzene:pyridine are volumetric. Data in (A) and (B) collected
before OPA retuning; data in (C) and (D) collected after OPA retuning.
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of the pump during the vibrational dephasing; the artificial attenuation of the natural free induction decay

manifests as ringing with a modulation frequency and amplitude related to how early the cutoff occurs during

the free induction decay.[399] A similar cause would be consistent with the observation of modulations in

pyridine and benzene, but their absence in carbon tetrachloride (see (D) in Fig. 6.9): as the latter is purely

nonresonant, there are no free induction decays to artificially attenuate. It would also be expected to occur

regardless of the state of the system.

However, there are many reasons to dismiss the application of this theory to explain these modulations.

First, the exponential tail of the temporal profile of the Raman probe used here is believed to follow the decay

of the vibrational free induction decay. The sharp leading edge of the pulse gives the sharp edge observed

in the CARS spectra when the probe is delayed relative to the pump and Stokes pulses. This temporal

profile is the reverse of the envelope described by Pontecorvo et al.[399] Additionally, the mechanism for the

ringing observed by Pontecorvo et al is inconsistent with our observation of the modulations only during

pulse overlap, as well as the lack of change in the modulations throughout the pulse overlap region (see

(B) in Fig. 6.8). Thirdly, while ringing would be consistent with the recurrence of the modulations after

retuning and realignment, the ringing should be a function of the vibrational mode’s dephasing and the

attenuation of this decay: this should have little dependence upon the frequencies used to prepare the

coherence, raising questions as to why we would observe such significant changes in the modulations as we

changed the excitation frequencies.

In order to understand these modulations, we attempted to simulate nonresonant processes capturing as

many of the relevant factors, including the phase of the Gaussian field and dispersion across the spectral

profiles of the pump and Stokes pulses; the resulting script is included in Appendix D. However, in capturing

these different effects, the script yielded a parameter space far broader than could be reasonably explored.

Surveys were conducted exploring a few of these parameter spaces, illustrating the complexity of the system;

however, a few key insights were gained.

First, the effects of dispersion on these experiments is very pronounced. When the propagation of the fields

is described only by the central color, the nonresonant contribution to the signal is a very smooth envelope.

This is consistent with the description of the signal inheriting character according to the convolution of

the pump and Stokes pulse envelopes.[120–124] The resulting signal will match this envelope if the sample

exhibits low dispersion,[135] such as a gas,[120] or arises from a thin sample,[139] as when scattering from

a powder.[121] However, the simulations illustrate that when dealing with a bulk sample as in the present

experiments, the dispersion across the spectrum adds a further degree of complexity to interpreting the

anticipated spectral character of the signal. Rather than attempt to explore the several parameters that
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control the phase matching angles in the simulations, it may be more straightforward to perform future

experiments within the previously described limit of thin samples.

The other effect that proved pronounced was the effect of mismatch between the focal planes of the

excitation beams. Various authors have previously discussed the importance of the Guoy phase term in

nonlinear experiments,[139, 203, 427] and this manifested in the simulations: depending upon the relative

focal point of the pump and Stokes pulses, the spectrum of the output could exhibit both pronounced

oscillations and significant changes in amplitude. Unfortunately, this is a very difficult axis to gauge proper

values with any degree of accuracy due to the imaging conditions on the table at the time of these experiments.

When performing these experiments, we performed knife edge measurements to gauge the beam sizes: the

results were consistent with beam waists of 20 μm for the Stokes and probe pulses, but 40 μm for the

pump. This suggests that the pump pulse was smaller than the other beams at the focusing mirror, which is

consistent with estimates of the beam sizes at the mirror based upon the measurement of aperture diameters

that passed half the beam energy. According to the optics of Gaussian beams, this smaller beam waist

for the pump will not only cause the focal spot size to be larger, but will also shift the focus;[105] with

our measurements, this could correspond to shifts in focus of hundreds of micrometers - well within the

range the simulations suggest modulations could be introduced. It is clear that when progressing to three-

and four-color experiments, it is crucial to not only consider our usual quality metrics - spectral content,

energies, alignment, sample - but also consider whether the alignment achieves the correct imaging in order

to minimize artifacts and unexpected behavior induced by phase effects such as the Guoy phase.
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In this section, we will present the evaluation of the derivatives ∂n(λ)/∂λ and ∂2n(λ)/∂λ2 for a variety of systems

employed in the calculations presented in different chapters. These systems include benzene, a representative

glass (BK7), air, and β-barium borate, BBO (at θ = 0◦, 90◦ and θ 6= 0◦, 90◦).

B.1 Dispersion of Benzene

The dispersion curve for benzene follows the model reported by Moutzouris et al:[428]

n(λ) =

√
2.170184597 + 0.00059399λ2 +

0.02303464

λ2
− 0.000499485

λ4
+

0.000178796

λ6
(B.1.1)

The wavelengths from which this dispersion has been determined range from 450 nm to 1550nm. From Eq.

B.1.1, the first derivative with respect to λ necessary to calculate the group velocity can be found:

∂

∂λ
n(λ) =

1

2

1

n(λ)

(
0.00118798λ− 0.04606928

λ3
+

0.00199794

λ5
− 0.001072776

λ7

)
(B.1.2)

where n(λ) is as calculated from Eq. B.1.1. The derivative of Eq. B.1.2 yields the second-order derivative

necessary for calculating the group velocity dispersion:

∂2

∂λ2
n(λ) =

1

2

1

n(λ)

(
0.00118798 +

0.13820784

λ4
− 0.0099897

λ6
+

0.007509432

λ8

)
− 1

n(λ)

(
∂

∂λ
n(λ)

)2

(B.1.3)

where n(λ) is again calculated according to Eq. B.1.1, and ∂/∂λn(λ) is calculated using Eq. B.1.2.

B.2 Dispersion of BK7 Glass

When the dispersion information of glass is required, BK7 is used as a representative glass. The dispersion

is determined according to the dispersion reported by Schott.i The index of refraction can be calculated:

n(λ) =

√
1 +

1.03961212λ2

λ2 − 0.00600069867
+

0.231792344λ2

λ2 − 0.0200179144
+

1.01046945λ2

λ2 − 103.560653
(B.2.1)

The first derivative of n(λ) is then:

∂

∂λ
n(λ) =

1

2

1

n(λ)

(
2.07922424λ

λ2 − 0.00600069867
− 2.07922424λ3

(λ2 − 0.00600069867)2
+

0.463584688λ

λ2 − 0.0200179144

− 0.463584688λ3

(λ2 − 0.0200179144)2
+

2.0209389λ

λ2 − 103.560653
− 2.0209389λ3

(λ2 − 103.560653)2

) (B.2.2)

iThe documentation and formula are available at refractiveindex.info.
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where n(λ) is calculated according to Eq. B.2.1. The second derivative can be evaluated from Eq. B.2.2:

∂2

∂λ2
n(λ) =

1

n(λ)

[
1

2

(
2.07922424

λ2 − 0.00600069867
− 10.3961212λ2

(λ2 − 0.00600069867)2
+

8.31689696λ4

(λ2 − 0.00600069867)3

+
0.463584688

λ2 − 0.0200179144
− 2.31792344λ2

(λ2 − 0.0200179144)2
+

1.854338752λ4

(λ2 − 0.0200179144)3

+
2.0209389

λ2 − 103.560653
− 10.1046945λ2

(λ2 − 103.560653)2
+

8.0837556λ4

(λ2 − 103.560653)3

)
−
(
∂

∂λ
n(λ)

)2
] (B.2.3)

where n(λ) is again determined by Eq. B.2.1, and ∂/∂λn(λ) is calculated with Eq. B.2.2.

B.3 Dispersion of Air

The dispersion for air is derived from Ciddor.[429] The index of refraction is calculated:

n(λ) = 1 +
0.05792105

238.0185− λ−2
+

0.00167917

57.362− λ−2
(B.3.1)

While in calculations we will generally neglect the dispersion from air, the group velocity and group velocity

dispersion are usually still made available, using the first and second derivatives of the index:

∂

∂λ
n(λ) = − 0.1158421

λ3(238.0185− λ−2)2
− 0.00335834

λ3(57.362− λ−2)2
(B.3.2)

∂2

∂λ2
n(λ) =

0.3475263

λ4(238.0185− λ−2)2
+

0.4633684

λ6(238.0185− λ−2)3
+

0.01007502

λ4(57.362− λ−2)2
+

0.01343336

λ6(57.362− λ−2)3
(B.3.3)

B.4 Dispersion of β-Barium Borate

The final material system that will be discussed is BBO. This is also the most difficult, as it is necessary

to consider the dispersion of the ordinary index of refraction, the extraordinary index of refraction, and

the effective index of refraction when the phase-matching angle is neither 0◦ nor 90◦. Further, there are

multiple sources for dispersion formulae with subtle differences. The first two sources - Eimerl et al[287] and

Kato[288] - appear to be the most established; both use the same general formula for the dispersion of BBO:

n(λ) =

√
A+

B

λ2 + C
+Dλ2 (B.4.1)

The coefficients for an ordinary beam are A = 2.7405, B = 0.0184 μm2, C = -0.0179 μm2, and D = -0.0155

μm-2 according to Eimerl et al and A = 2.7359, B = 0.01878 μm2, C = - 0.01822 μm2, D = -0.01354 μm-2
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according to Kato, while those for an extraordinary beam are A = 2.3730, B = 0.0128 μm2, C = -0.0156 μm2,

and D = -0.0044 μm-2 according to Eimerl et al and A = 2.3753, B = 0.01224 μm2, C = -0.01667 μm2, and D

= -0.01516 μm-2 according to Kato.[287, 288] Unfortunately, these coefficients were only determined based

upon characterization of BBO out to 1μm. However, Eimerl et al are among those that report absorption

by BBO beginning around 2 μm;[106, 208, 287] Zhang et al[208] indicate that this absorption arises from

phonon modes and causes corresponding changes to the index of refraction at these longer wavelengths.

While Lu and Liu indicate the formulae of Eimerl et al and Kato are reasonably consistent with sum-

frequency generation involving wavelengths in this region,[289] Zhang et al modeled the behavior of NIR

optical parametric processes in order to expand the model for the refractive index to incorporate higher-order

terms accounting for the phonon modes.[208] The result is a model of the form:

n =

√
A+

B

λ2 + C
+Dλ2 + Eλ4 + Fλ6 (B.4.2)

In modeling the parametric performance of an optical parametric generator/optical parametric amplifier

system, Zhang et al found the following coefficients to be appropriate: for the ordinary refractive index, A =

2.7359, B = 0.01878 μm2, C = - 0.01822 μm2, D = - 0.01471 μm-2, E = 0.0006081 μm-4, and F = -0.00006740

μm-6; and, for the extraordinary refractive index, A = 2.3753, B = 0.01224 μm2, C = -0.01667 μm2, D =

-0.01627 μm-2, E = 0.0005716 μm-4, and F = -0.00006305 μm-6.[208]

The derivation of the form in Eq. B.4.2 from the original dispersion formula, Eq. B.4.1, fortunately

causes the derivatives of Eq. B.4.1 and Eq. B.4.2 to be very similar. The first derivative of Eq. B.4.1 is:

∂

∂λ
n(λ) =

λ

n(λ)

[
D − B

(λ2 + C)2

]
(B.4.3)

while the first derivative of Eq. B.4.2 is:

∂

∂λ
n(λ) =

λ

n(λ)

[
− B

(λ2 + C)2
+D + 2Eλ2 + 3Fλ4

]
(B.4.4)

Extending these to the second derivatives yields:

∂2

∂λ2
n(λ) =

1

n(λ)

[
4Bλ2

(λ2 + C)3
−
(
∂

∂λ
n(λ)

)2
]

+
1

λ

∂

∂λ
n(λ) (B.4.5)
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for the model employed by Kato and Eimerl et al (Eq. B.4.1), or:

∂2

∂λ2
n(λ) =

1

n(λ)

[
4λ2

(
B

(λ2 + C)3
+ E + 3Fλ2

)
−
(
∂

∂λ
n(λ)

)2
]

+
1

λ

∂

∂λ
n(λ) (B.4.6)

for the extended model of Zhang et al (Eq. B.4.2).

However, the derivatives ∂/∂λn(λ) and ∂2
/∂λ2n(λ) in Eq. B.4.3 and Eq. B.4.5 or Eq. B.4.4 and Eq. B.4.6

only hold for ordinary or extraordinary polarizations within the crystal, namely when the phase-matching

angle, θ, is either 0◦ or 90◦. When the phase-matching angle is at neither 0◦ nor 90◦, the effective index of

refraction, nθ(λ), is determined based upon the phase-matching angle and the ordinary and extraordinary

dispersion curves, no(λ) and ne(λ), respectively. The functional dependence of nθ(λ) upon these quantities

is:[106]

nθ(λ) = n0(λ)

√
1 + tan2(θ)

1 + [n
2
o(λ)/n2

e(λ)] tan2(θ)
(B.4.7)

Therefore, when we evaluate the derivative, we end up with a much more complicated expression. While

the proper value of θ will be dependent upon the wavelengths, it will be constant for a given experimental

condition; therefore, we can treat it as a constant and only consider the evaluation of the derivatives based

upon the dispersion curves of no(λ) and ne(λ). Evaluating the first derivative yields:

∂

∂λ
nθ(λ) =

nθ(λ)

no(λ)

∂

∂λ
no(λ) +

n3
θ(λ) tan2(θ)

no(λ)n2
e(λ)[1 + tan2(θ)]

[
no(λ)

ne(λ)

∂

∂λ
ne(λ)− ∂

∂λ
no(λ)

]
(B.4.8)

where ∂/∂λno(λ) and ∂/∂λne(λ) are derivatives evaluated according to Eq. B.4.3 or Eq. B.4.4 with the

appropriate coefficients for the ordinary index (∂/∂λno(λ)) or for the extraordinary index (∂/∂λne(λ)). We

can continue with the result of Eq. B.4.8 to also determine the second derivative of nθ(λ) with respect to λ:

∂2

∂λ2
nθ(λ) =

[
1

no(λ)
− tan2(θ)

1 + tan2(θ)

3n2
θ(λ)

no(λ)n2
e(λ)

](
∂

∂λ
no(λ)

)(
∂

∂λ
nθ(λ)

)
+

[
tan2(θ)

1 + tan2(θ)

n3
θ(λ)

n2
o(λ)n2

e(λ)
− nθ(λ)

n2
o(λ)

](
∂

∂λ
no(λ)

)2

+

[
nθ(λ)

no(λ)
− tan2(θ)

1 + tan2(θ)

n3
θ(λ)

no(λ)n2
e(λ)

](
∂2

∂λ2
no(λ)

)
+

tan2(θ)

1 + tan2(θ)

[
2n3

θ(λ)

no(λ)n3
e(λ)

(
∂

∂λ
no(λ)

)(
∂

∂λ
ne(λ)

)
+

3n2
θ(λ)

n3
e(λ)

(
∂

∂λ
ne(λ)

)(
∂

∂λ
nθ(λ)

)
−3n3

θ(λ)

n4
e(λ)

(
∂

∂λ
ne(λ)

)2

+
n3
θ(λ)

n3
e(λ)

(
∂2

∂λ2
ne(λ)

)]

(B.4.9)
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In Eq. B.4.9, the partial derivatives ∂/∂λno(λ) and ∂/∂λne(λ) are calculated as in Eq. B.4.8. The partial

derivative of nθ(λ), ∂/∂λnθ(λ), can be calculated using the result of Eq. B.4.8. Finally, ∂
2
/∂λ2no(λ) and

∂2
/∂λ2ne(λ) are the second derivatives of the ordinary and extraordinary indices, respectively, with respect

to λ; these may be calculated by Eq. B.4.5 or B.4.6.

We will note that the results of Eq. B.4.8 and B.4.9 are general for any material for which the index at the

phase-matching angle, θ, is determined as in Eq. B.4.7. As this relationship holds for any uniaxial crystal,

the results of Eq. B.4.8 and Eq. B.4.9 can be applied to any such material. However, the appropriate forms

of the necessary derivatives - ∂
n
/∂λnnα(λ), n ∈ {1, 2} and α ∈ {o, e} - would need to be determined. While

there are other crystals - such as lithium niobate[106] - for which dispersion relations of the same form as

Eq. B.4.1 or B.4.2 are used, many other common crystals adopt other models for calculating the refractive

index.
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In this appendix, we present the code developed for the calculations in Ch. 4. This code has been developed

in Python for operation on MacOS and other UNIX-based systems. There are some aspects of operation,

such as the implementation of multiprocessing, that would likely make this code unsuitable for operation

directly on Windows-based systems. The code consists of ten individual scripts, each containing a subset

of the functions and classes. These scripts have been reproduced in the sections that follow, with some

modifications for presentation.

Basic operation of this script requires several packages to be loaded, then a sequence of functions from

the other scripts to be executed. This sequence is outlined in the function basic_operation() below,

which would generate a list fields that may be manipulated further. The list of “developed packages” in

the preamble are the ten scripts mentioned above. These are presented in the subsequent sections of this

appendix.

# Native python packages

import numpy as np

import matplotlib.pyplot as plt

import scipy.interpolate as inter

import multiprocessing, threading, os, itertools

# Developed python packages

import parameters, efield, algorithm, controls

import user_settings as user

import material_params as mat

import gain_formulae as gain

import plotting_routines as pltr

import phasematching as pm

import nl_crystal as nl

def basic_operation():

# Initialize user specifications and parameters

u = user.user_specs()

p = parameters.parameters(u)
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# Modify the parameters appropriately

controls.modify_params(p)

# Initialize the fields

fields = controls.initialize(p)

# Save and plot the fields as appropriate

if p.u.save:

controls.save_output(p, fields, ’initial’)

elif p.u.show:

pltr.plot2d(fields, p, ’initial_fields’)

# Perform the numerical integration

fields = controls.drive_algorithm(p, fields)

# Save and plot the resulting fields as appropriate

if p.u.save:

controls.save_output(p, fields, ’final’)

elif p.u.show:

pltr.plot2d(fields, p, ’final_fields’)

C.1 user settings.py

The script user_settings.py contains the definitions of two classes that provide parameters for the opera-

tion of different parts of the script. The class gain_selections defines the options available to the user for

enabling and disabling the different contributions to the gain functions. The class user_specs outlines the

various settings that define the details of the simulation to be performed.

# Native python packages

import numpy as np

import socket

import os

# Developed python packages

# (none)
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class gain_selections:

def __init__(self):

# Options for calculations within the

# slowly varying amplitude approximation:

self.sva_group_velocity = True

self.sva_GVD = True

self.sva_absorption = True

self.sva_amplification = True

self.sva_in_lab_frame = True

# Options for second order calculations

# (no longer maintained)

self.so_space_time_coupling = True

self.so_gvm = True

self.so_gvd = True

self.so_gvm_sq = True

self.so_absorption = True

self.so_amplification = True

class user_specs:

def __init__(self):

# The following adjust the material properties:

self.L = 0.2 # material length, in cm

self.material = ’BBO (Zhang)’

# Currently supported materials:



223

# Birefringent Materials:

# ’BBO (Kato)’, ’BBO (Eimerl)’, ’LiNbO3’

# Isotropic Materials:

# <none>

self.phi = 0. # for a birefringent material

# the azimuthal angle in deg

# The following define the process that should be simulated:

self.parametric_process = ’parametric amplification’

# valid options are:

# ’self-phase modulation’: uses field 1

# ’second-harmonic generation’: uses fields 1 and 2

# ’parametric amplification’: fields 1, 2, and 3

# ’sum-frequency generation’: fields 1, 2, and 3

self.process = ’Type II’

# For parametric amplification, specify the process.

# Currently only negative uniaxial crystals are

# supported, so options are:

# ’Type I’

# ’Type II’

# ’Type III’

# This is over-ridden for SHG.

# The following define the properties of the fields

# Vacuum wavelengths:

self.wavelengths = { ’1’ : 0.,

’2’ : 0.,

’3’ : 0.}

# field wavelengths (nm)
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self.energy_conservation = 20.

# tolerance in testing energy conservation

# 10 tolerates ~0.05nm in error from MIR idler

# 80 tolerates ~0.05nm in error from a 800nm pump

# 10 tolerates ~0.05nm for SHG

# Initial field conditions:

self.energy = { ’1’ : 0.,

’2’ : 0.,

’3’ : 0.}

# field energies (in uJ)

self.e2_size = { ’1’ : 0.,

’2’ : 0.,

’3’ : 0.}

# 1/e2 beam size (cm)

self.field_envelopes = { ’1’ : ’Gaussian’,

’2’ : ’Gaussian’,

’3’ : ’Gaussian’}

# Identifies field source

# Options are:

# ’zero’: Defines a field that evaluates to

# 0 V/m at all points in time

# ’Gaussian’: Defines a field described

# by a Gaussian intensity

# envelope

# ’file’: Uses the contents of a file to

# define the field. load_params

# must be populated.

self.Gauss_widths = { ’1’ : 0.,

’2’ : 0.,

’3’ : 0.}

# width of Gaussians (fs)
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self.Gauss_centers = { ’1’ : 0.,

’2’ : 0.,

’3’ : 0.}

# centers of Gaussians (fs)

self.load_params = {

’1’ : [’file’, [’re_column’, ’im_column’]],

’2’ : [’file’, [’re_column’, ’im_column’]],

’3’ : [’file’, [’re_column’, ’im_column’]]}

# identifies file (including subdirectories) to be

# used as the source for the field. (Untested)

self.field_phase = { ’1’ : 0.,

’2’ : 0.,

’3’ : 0.}

# pulse envelope phase (deg)

self.loaded_time_scale = 35.

# When loading fields from file, use this to

# estimate the characteristic time of the field.

# The following provide optional modifications or settings to the

# calculations and/or operation of the script.

# The standard "main" function will only save if .save is set to True.

# .save_dir identifies the desired directory.

self.save = True

self.save_dir = ’ ’

# The standard "main" function will only show the results if

# .show is set to True.

self.show = False

# .silent limits the output to terminal during operation.

self.silent = False
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# .timer controls whether time stamps are printed.

self.timer = True

# .threading controls whether multiprocessing is used. .cores allows

# user-defined number of processes. If .cores is ’Default’, N-1

# processes will be initiated, where N is the cores available.

# If .limit_override = False and .cores is greater than N, ’Default’

# behavior will be used.

self.threading = True

self.cores = 0

self.limit_override = True

self.radial_samples = 0

# .adaptive_steps controls whether the simulation is iterated over a

# fixed number of spatial steps or whether an adaptive algorithm is

# employed to use the fewest steps while ensuring accuracy.

self.adaptive_steps = False # NOT YET IMPLEMENTED

self.steps = 1000

self.modify_T_window = False

self.alt_T_window = 800. #fs

# The following allow optional modification of derived parameters:

self.slowly_varying_amp = True

# apply_contrast allows suppression of the wings of the field

# any points with magnitude less than .contrast will be set to 0.

self.apply_contrast = False

self.contrast = 1.e-13

# Modify the phase matching angle
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self.modify_theta = False

self.alt_theta = 22.2

# Modify the effective nonlinearity

self.modify_chi2eff = False

self.modify_chi3eff = False

self.alt_chi2eff = 0.

self.alt_chi3eff = 0.

# Modify the group velocities

self.modify_ug = False

self.alt_ug = {’1’ : 0., ’2’ : 0., ’3’ : 0.}

# These are group velocities and cannot be set to 0.

# Modify the time sampling. Default is 512 samples.

# More than ~5k-7.5k is not advised; numpy broadcasting is

# used throughout the calculations, and this becomes less

# efficient around grids of ~10k points.

self.modify_sampling = True

self.alt_time_samples = 128

# Simulate noncollinearity by changes in the effective

# group velocity according to .gamma.

self.noncollinear = False

self.gamma = 0.5
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C.2 parameters.py

The code in parameters.py defines a class parameters. This class takes the settings defined by the user

in an instance of user_settings.user_specs (see § C.1) and manipulates them: these values are used to

define other necessary parameters and modify existing settings.

# Native python packages

import numpy as np

import matplotlib.pyplot as plt

import sys

# Non-native python packages

import user_settings as user

import material_params as mat

class parameters:

def __init__(self, user_settings):

# Locally define the user settings, and convert to MKS units

self.u = user_settings

if self.u.silent:

pass

else:

print(’Initializing parameters’)

self.user_settings_conversions()

# Initialize parameters describing the material environment

# and phase-matching process

if self.u.parametric_process == ’second-harmonic generation’ \

or self.u.parametric_process == ’parametric amplification’ \

or self.u.parametric_process == ’sum-frequency generation’:
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self.m = mat.birefringent_params(self.u)

self.mat_type_marker = ’birefringent’

elif self.u.parametric_process == ’self-phase modulation’:

self.m = mat.isotropic_params(self.u)

self.mat_type_marker = ’isotropic’

else:

print(’Unsupported process. Ending process.’)

exit()

self.material_conversions()

# Identify the time-scales involved in the interacting pulses

if ’file’ in self.u.field_envelopes:

self.time_scale = min(self.u.loaded_time_scale, np.min(\

np.asarray(self.u.Gauss_widths.values())[np.nonzero(\

self.u.Gauss_widths.values())]))

else:

self.time_scale = np.min(np.asarray(\

self.u.Gauss_widths.values())[np.nonzero(\

self.u.Gauss_widths.values())])

# Initialize time and frequency windows. Determining the ranges

# follows the method described by Gale et al (JOSAB 1998 15(2) 702)

if self.u.modify_sampling:

self.time_samples = self.u.alt_time_samples

else:

self.time_samples = 512.
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if self.u.modify_T_window:

self.T_window = self.u.alt_T_window*1e-15

else:

self.T_window = ((self.time_scale)\

*np.sqrt(self.time_samples/0.44))

self.time = np.linspace(-self.T_window/2, self.T_window/2, \

self.time_samples)

self.freq_samples = self.time_samples

self.freq = np.linspace(-np.pi/abs(self.time[1]-self.time[0]), \

np.pi/abs(self.time[1]-self.time[0]),\

self.freq_samples + 1)[:-1]

self.freq_window = abs(self.freq[-1] - self.freq[0])

# Describe the TEM mode of each field

self.r_max = np.max(np.asarray(self.u.e2_size.values()))

if self.u.radial_samples == ’Default’:

self.r_samples = 15

else:

self.r_samples = self.u.radial_samples

self.r = np.linspace(0., 1.25*self.r_max, self.r_samples)

self.fluence = {}

for j in self.u.e2_size:

if self.u.e2_size[j] == 0:

self.fluence[j] = np.zeros(len(self.r))

else:

self.fluence[j] = (self.u.energy[j]/((np.pi/2)\

*((0.5*self.u.e2_size[j])**2)))\

*np.exp(-2*((self.r/(0.5\

*self.u.e2_size[j]))**2))
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# Define initial position of the fields

self.z = 0.

def n(self, wavelength, field):

if self.mat_type_marker == ’birefringent’:

if self.m.polarization[field] == ’extraordinary’:

return self.m.cry.eff(wavelength, self.m.theta)

elif self.m.polarization[field] == ’ordinary’:

return self.m.cry.ord(wavelength)

elif self.mat_type_marker == ’isotropic’:

exit()

else:

exit()

def user_settings_conversions(self):

self.c = 3.E8

# speed of light, m/s

self.hbar = 1.054571E-34

# Planck’s constant, J*s

self.u.L *= 0.01

# convert material length from cm to m
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for i in self.u.Gauss_widths:

self.u.Gauss_widths[i]*=1.E-15

# convert from fs to s

self.u.Gauss_centers[i]*=1.E-15

# convert from fs to s

self.u.e2_size[i]*=0.01

# convert from cm to m

self.u.energy[i]*=1.E-6

# convert from uJ to J

self.u.loaded_time_scale*=1.E-15

# convert from fs to s

self.cutoff = 0.

if self.u.material == ’BBO (Eimerl)’:

self.cutoff = (2*np.pi*self.c*1.e9)/13290.

elif self.u.material == ’BBO (Kato)’:

self.cutoff = (2*np.pi*self.c*1.e9)/12500.

elif self.u.material == ’BBO (Zhang)’:

self.cutoff = (2*np.pi*self.c*1.e9)/5830.

elif self.u.material == ’LiNbO3’:

self.cutoff = (2*np.pi*self.c*1.e9)/13400.

def material_conversions(self):

for i in self.m.ug:

self.m.ug[i]*=1.e12

# convert mm/fs to m/s

self.m.gvd[i]*=1.e-27

# convert fs2/mm to s2/m

self.m.chi2eff*=1.e-12
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# convert pm/V to m/V

self.m.dk*=100.

# convert from 1/cm to 1/m

def plot_tem(self):

plt.clf()

for j in self.fluence:

plt.plot(self.r, self.fluence[j])

plt.show()

C.3 material params.py

We previously referenced material_params in § C.2. The classes in this script, birefringent_params

and isotropic_params, are called according to the process being simulated. At this time, it has not

been necessary to develop isotropic_params, but birefringent_params performs the calculations and

manipulations necessary to identify the phase matching angle and effective nonlinearity for the process.

# Native python packages

import math

import numpy as np

import sys

# Non-native python packages

import nl_crystal as nl

import phasematching as pm

class birefringent_params:

def __init__(self, user_sett):

self.cry = nl.NLcrystals()

self.cry.selection = user_sett.material
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# populate the local wavelength and field property dictionaries

self.def_mask(user_sett)

# redefine the keys to match internal notation

for i in [user_sett.wavelengths, user_sett.energy, user_sett.e2_size,\

user_sett.field_envelopes, user_sett.Gauss_widths,\

user_sett.Gauss_centers, user_sett.load_params, \

user_sett.field_phase]:

for j in self.mask:

i[j] = i.pop(self.mask[j])

ini_keys = i.keys()

for j in ini_keys:

if j in self.mask:

pass

else:

i.pop(j,None)

self.chi3eff = 0.

if user_sett.parametric_process == ’second-harmonic generation’:

self.shg_pm(user_sett)

elif user_sett.parametric_process == ’parametric amplification’ \

or user_sett.parametric_process == ’sum-frequency generation’:

if user_sett.process == ’Type I’:

self.type_one_pm(user_sett)

elif user_sett.process == ’Type II’:

self.type_two_pm(user_sett)
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elif user_sett.process == ’Type III’:

self.type_three_pm(user_sett)

else:

print(’Unsupported process requested. Ending script.’)

exit()

return

def shg_pm(self, u):

if math.isnan(pm.type_one(self.cry, u.wavelengths[’SHG’],\

u.wavelengths[’Fundamental’])):

print(’No phase matching angle is available.\

Setting theta to 90deg.’)

self.theta = 90.

else:

self.theta = pm.type_one(self.cry, u.wavelengths[’SHG’], \

u.wavelengths[’Fundamental’])

self.ug = {

’Fundamental’ : self.cry.ord_vg(u.wavelengths[’Fundamental’]),

’SHG’ : self.cry.ex_vg(u.wavelengths[’SHG’], self.theta)}

self.gvd = {

’Fundamental’ : self.cry.ord_gvd(u.wavelengths[’Fundamental’]),

’SHG’ : self.cry.ex_gvd(u.wavelengths[’SHG’], self.theta)}

self.rho = {

’Fundamental’ : 0,

’SHG’ : (180/np.pi)*np.arctan((((self.cry.ord(\

u.wavelengths[’SHG’]))**2)\

/((self.cry.ex(u.wavelengths[’SHG’]))**2))\

*np.tan((np.pi/180)*self.theta)) - self.theta}

self.dk = pm.type_one_mismatch(self.cry, u.wavelengths[’SHG’], \

u.wavelengths[’Fundamental’], self.theta)

self.chi2eff = 2*self.cry.deff(self.theta, u.phi, ’Type I’)
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return

def type_one_pm(self, u):

if math.isnan(pm.type_one(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’])):

print(’No phase matching angle is available.\

Setting theta to 90deg.’)

self.theta = 90.

else:

self.theta = pm.type_one(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’])

self.ug = {

’Pump’ : self.cry.ex_vg(u.wavelengths[’Pump’], self.theta),

’Signal’ : self.cry.ord_vg(u.wavelengths[’Signal’]),

’Idler’ : self.cry.ord_vg(u.wavelengths[’Idler’])}

self.gvd = {

’Pump’ : self.cry.ex_gvd(u.wavelengths[’Pump’], self.theta),

’Signal’ : self.cry.ord_gvd(u.wavelengths[’Signal’]),

’Idler’ : self.cry.ord_gvd(u.wavelengths[’Idler’])}

if u.noncollinear:

self.rho = {

’Pump’ : (180/np.pi)*np.arctan((((self.cry.ord(\

u.wavelengths[’Pump’]))**2)\

/((self.cry.ex(u.wavelengths[’Pump’]))**2))\

*np.tan((np.pi/180)*self.theta)) - self.theta,

’Signal’ : 0.,

’Idler’ : 0.}

self.dk = pm.type_one_mismatch(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’], self.theta)

self.chi2eff = 2*self.cry.deff(self.theta, u.phi, ’Type I’)
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return

def type_two_pm(self, u):

if math.isnan(pm.type_two(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’])):

print(’No phase matching angle is available.\

Setting theta to 90deg.’)

self.theta = 90.

else:

self.theta = pm.type_two(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’])

self.ug = {

’Pump’ : self.cry.ex_vg(u.wavelengths[’Pump’], self.theta),

’Signal’ : self.cry.ord_vg(u.wavelengths[’Signal’]),

’Idler’ : self.cry.ex_vg(u.wavelengths[’Idler’], self.theta)}

self.gvd = {

’Pump’ : self.cry.ex_gvd(u.wavelengths[’Pump’], self.theta),

’Signal’ : self.cry.ord_gvd(u.wavelengths[’Signal’]),

’Idler’ : self.cry.ex_gvd(u.wavelengths[’Idler’], self.theta)}

if u.noncollinear:

self.rho = {

’Pump’ : (180/np.pi)*np.arctan((((self.cry.ord(\

u.wavelengths[’Pump’]))**2)/((self.cry.ex(\

u.wavelengths[’Pump’]))**2))*np.tan((np.pi\

/180)*self.theta)) - self.theta,

’Signal’ : 0.,

’Idler’ : (180/np.pi)*np.arctan((((self.cry.ord(\

u.wavelengths[’Idler’]))**2)/((self.cry.ex(\

u.wavelengths[’Idler’]))**2))*np.tan((np.pi\

/180)*self.theta)) - self.theta}

self.dk = pm.type_two_mismatch(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’], self.theta)
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self.chi2eff = 2*self.cry.deff(self.theta, u.phi, ’Type II’)

return

def type_three_pm(self, u):

if math.isnan(pm.type_three(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’])):

print(’No phase matching angle is available.\

Setting theta to 90deg.’)

self.theta = 90.

else:

self.theta = pm.type_three(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’])

self.ug = {

’Pump’ : self.cry.ex_vg(u.wavelengths[’Pump’], self.theta),

’Signal’ : self.cry.ex_vg(u.wavelengths[’Signal’], self.theta),

’Idler’ : self.cry.ord(u.wavelengths[’Idler’])}

self.gvd = {

’Pump’ : self.cry.ex_gvd(u.wavelengths[’Pump’], self.theta),

’Signal’ : self.cry.ex_gvd(u.wavelengths[’Signal’], self.theta),

’Idler’ : self.cry.ord_gvd(u.wavelengths[’Idler’])}

if u.noncollinear:

self.rho = {

’Pump’ : (180/np.pi)*np.arctan((((self.cry.ord(\

u.wavelengths[’Pump’]))**2)/((self.cry.ex(\

u.wavelengths[’Pump’]))**2))*np.tan((np.pi\

/180)*self.theta)) - self.theta,

’Signal’ : (180/np.pi)*np.arctan((((self.cry.ord(\

u.wavelengths[’Signal’]))**2)/((self.cry.ex(\

u.wavelengths[’Signal’]))**2))*np.tan((np.pi\

/180)*self.theta)) - self.theta,

’Idler’ : 0.}
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self.dk = pm.type_three_mismatch(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’], self.theta)

self.chi2eff = 2*self.cry.deff(self.theta, u.phi, ’Type III’)

def def_mask(self, u):

if u.parametric_process == ’second-harmonic generation’:

if abs(u.wavelengths[’1’] - 2*u.wavelengths[’2’])\

*180. < u.energy_conservation \

or abs(u.wavelengths[’2’] - 2*u.wavelengths[’1’])\

*180. < u.energy_conservation:

pass

else:

print(’The chosen colors exceed the specified tolerance \

for energy conservation.’)

exit()

if u.wavelengths[’1’] < u.wavelengths[’2’]:

# Field 2 is the fundamental and Field 1 is the SHG

self.mask = {

’Fundamental’ : ’2’,

’SHG’ : ’1’}

elif u.wavelengths[’2’] < u.wavelengths[’1’]:

# Field 1 is the fundamental and Field 2 is the SHG

self.mask = {

’Fundamental’ : ’1’,

’SHG’ : ’2’}

if u.material == ’BBO (Kato)’ or u.material == ’BBO (Eimerl)’ \

or u.material == ’LiNbO3’ or u.material == ’BBO (Zhang)’:
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self.polarization = {

’Fundamental’ : ’ordinary’,

’SHG’ : ’extraordinary’}

else:

print(’Will not be able to calculate phase matching for\

the selected material. Ending script.’)

sys.exit()

elif u.parametric_process == ’parametric amplification’ \

or u.parametric_process == ’sum-frequency generation’:

if u.wavelengths[’1’] == 0 or u.wavelengths[’2’] == 0 \

or u.wavelengths[’3’] == 0:

print(’Cannot run parametric amplification with a field\

with zero wavelength. Ending script.’)

exit()

if u.wavelengths[’1’] < u.wavelengths[’2’] and\

u.wavelengths[’1’] < u.wavelengths[’3’]:

# Field 1 is the pump

if abs((1E9/u.wavelengths[’1’])-(1E9/u.wavelengths[’2’])\

-(1E9/u.wavelengths[’3’]))<u.energy_conservation:

pass

else:

print(’The chosen colors exceed the specified\

tolerance for energy conservation.’)
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exit()

if u.wavelengths[’2’] < u.wavelengths[’3’] or\

u.wavelengths[’2’] == u.wavelengths[’3’]:

# Field 2 is the signal and Field 3 is the idler

self.mask = {

’Pump’ : ’1’,

’Signal’ : ’2’,

’Idler’ : ’3’}

elif u.wavelengths[’3’] < u.wavelengths[’2’]:

# Field 3 is the signal and Field 2 is the idler

self.mask = {

’Pump’ : ’1’,

’Signal’ : ’3’,

’Idler’ : ’2’}

elif u.wavelengths[’2’] < u.wavelengths[’1’] and\

u.wavelengths[’2’] < u.wavelengths[’3’]:

# Field 2 is the pump

if abs((1E9/u.wavelengths[’2’])-(1E9/u.wavelengths[’1’])\

-(1E9/u.wavelengths[’3’]))<u.energy_conservation:

pass

else:

print(’The chosen colors exceed the specified\

tolerance for energy conservation.’)

exit()

if u.wavelengths[’1’] < u.wavelengths[’3’] or \

u.wavelengths[’1’] == u.wavelengths[’3’]:
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# Field 1 is the signal and Field 3 is the idler

self.mask = {

’Pump’ : ’2’,

’Signal’ : ’1’,

’Idler’ : ’3’}

elif u.wavelengths[’3’] < u.wavelengths[’1’]:

# Field 3 is the signal and Field 1 is the idler

self.mask = {

’Pump’ : ’2’,

’Signal’ : ’3’,

’Idler’ : ’1’}

elif u.wavelengths[’3’] < u.wavelengths[’1’] and\

u.wavelengths[’3’] < u.wavelengths[’2’]:

# Field 3 is the pump

if abs((1E9/u.wavelengths[’3’])-(1E9/u.wavelengths[’2’])\

-(1E9/u.wavelengths[’1’]))<u.energy_conservation:

pass

else:

print(’The chosen colors exceed the specified\

tolerance for energy conservation.’)

exit()

if u.wavelengths[’1’] < u.wavelengths[’2’] or \

u.wavelengths[’1’] == u.wavelengths[’2’]:

# Field 1 is the signal and Field 2 is the idler
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self.mask = {

’Pump’ : ’3’,

’Signal’ : ’1’,

’Idler’ : ’2’}

elif u.wavelengths[’2’] < u.wavelengths[’1’]:

# Field 2 is the signal and Field 1 is the idler

self.mask = {

’Pump’ : ’3’,

’Signal’ : ’2’,

’Idler’ : ’1’}

if u.process == ’Type I’:

self.polarization = {

’Pump’ : ’extraordinary’,

’Signal’ : ’ordinary’,

’Idler’ : ’ordinary’}

elif u.process == ’Type II’:

self.polarization = {

’Pump’ : ’extraordinary’,

’Signal’ : ’ordinary’,

’Idler’ : ’extraordinary’}

elif u.process == ’Type III’:

self.polarization = {

’Pump’ : ’extraordinary’,
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’Signal’ : ’extraordinary’,

’Idler’ : ’ordinary’}

return

class isotropic_params:

def __init__(self, user_sett):

print(’Sorry, this hasn\’t been developed yet. Exiting...’)

exit()

C.4 nl crystal.py

In § C.3, the code references two non-native Python scripts: phasematching.py and nl_crystal.py. Here,

we present the latter (nl_crystal.py), as the class this script contains (NLcrystals) is also referenced

by phasematching.py (§ C.5). The class of nl_crystal.py (NL_crystals) contains the optical properties

of a variety of nonlinear crystals and performs the calculations necessary to determine the index, group

velocity, and group velocity dispersion for both ordinary and extraordinary polarizations and the effective

nonlinearity.

# Native python packages

import numpy as np

# Non-native python packages

# (none)

class NLcrystals:
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selection = ’LiNbO3’

process = ’Type I’

def available_crystals(self):

print(’\’LiNbO3\’, \’BBO (Kato)\’, \’BBO (Eimerl)\’,\

\’BBO (Zhang)\’, \’AgGaS2\’, \’AgGaSe2\’’)

def available_processes(self):

print(’\’Type I\’, \’Type II\’, \’Type III\’’)

def Selmeier(self, ex_or_ord):

# LiNbO3 Selmeier coefficients from Lambda Photometrics data

# coefficients from refractiveindex.info did not give correct performance

# format of Selmeier equation for these coefficients consistent with BBO

if self.selection == ’LiNbO3’:

if ex_or_ord == ’extraordinary’:

return [4.582, 0.099169, -0.044432, -0.02195]

if ex_or_ord == ’ordinary’:

return [4.9048, 0.11768, -0.0475, -0.027169]

if self.selection == ’BBO (Kato)’:

if ex_or_ord == ’extraordinary’:

return [2.3753, 0.01224, -0.01667, -0.01516]

elif ex_or_ord == ’ordinary’:

return [2.7359, 0.01878, -0.01822, -0.01354]

if self.selection == ’BBO (Eimerl)’:

if ex_or_ord == ’extraordinary’:

return [2.3730, 0.0128, -0.0156, -0.0044]

elif ex_or_ord == ’ordinary’:
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return [2.7405, 0.0184, -0.0179, -0.0155]

if self.selection == ’BBO (Zhang)’:

if ex_or_ord == ’extraordinary’:

return [2.3753, 0.01224, -0.01667, -0.01627,\

0.0005716, -0.00006305]

elif ex_or_ord == ’ordinary’:

return [2.7359, 0.01878, -0.01822, -0.01471,\

0.0006081, -0.00006740]

if self.selection == ’AgGaS2’:

if ex_or_ord == ’extraordinary’:

return [3.5873, 1.9533, -0.11066, 2.3391, -1030.7]

elif ex_or_ord == ’ordinary’:

return [3.3970, 2.3982, -0.09311, 2.1640, -950]

if self.selection == ’AgGaSe2’:

if ex_or_ord == ’extraordinary’:

return [3.3132, 3.3616, -(0.38201*0.38201),\

1.7677, -1600]

elif ex_or_ord == ’ordinary’:

return [3.9362, 2.9113, -(0.38821*0.38821),\

1.7954, -1600]

def ord(self, wavelength):

Sel = self.Selmeier(’ordinary’)

l = wavelength/1000.

if self.selection == ’LiNbO3’ or self.selection == ’BBO (Kato)’\

or self.selection == ’BBO (Eimerl)’:
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return np.sqrt(Sel[0]+(Sel[1]/(l*l+Sel[2]))+(Sel[3]*l*l))

if self.selection == ’AgGaS2’ or self.selection == ’AgGaSe2’:

return np.sqrt(Sel[0] + ((Sel[1]*l*l)/(l*l+Sel[2])) \

+ ((Sel[3]*l*l)/(l*l+Sel[4])))

if self.selection == ’BBO (Zhang)’:

return np.sqrt(Sel[0] + (Sel[1]/(l*l + Sel[2])) + (Sel[3]*l*l) \

+ (Sel[4]*l*l*l*l) + (Sel[5]*l*l*l*l*l*l))

def ex(self, wavelength):

Sel = self.Selmeier(’extraordinary’)

l = wavelength/1000.

if self.selection == ’LiNbO3’ or self.selection == ’BBO (Kato)’ \

or self.selection == ’BBO (Eimerl)’:

return np.sqrt(Sel[0]+(Sel[1]/(l*l+Sel[2]))+(Sel[3]*l*l))

if self.selection == ’AgGaS2’ or self.selection == ’AgGaSe2’:

return np.sqrt(Sel[0] + ((Sel[1]*l*l)/(l*l+Sel[2])) \

+ ((Sel[3]*l*l)/(l*l+Sel[4])))

if self.selection == ’BBO (Zhang)’:

return np.sqrt(Sel[0] + (Sel[1]/(l*l + Sel[2])) + (Sel[3]*l*l) \

+ (Sel[4]*l*l*l*l) + (Sel[5]*l*l*l*l*l*l))

def eff(self, wavelength, theta):

no = self.ord(wavelength)

ne = self.ex(wavelength)

q = (np.pi/180)*theta

return no*np.sqrt((1+np.tan(q)*np.tan(q))/(1 \

+ ((no*no)/(ne*ne))*np.tan(q)*np.tan(q)))
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def ord_vg(self, wavelength):

if self.selection == ’LiNbO3’ or self.selection == ’BBO (Kato)’ \

or self.selection == ’BBO (Eimerl)’ \

or self.selection == ’BBO (Zhang)’:

c = 3E10 #cm/s

n = self.ord(wavelength)

l = wavelength/1000.

Sel = self.Selmeier(’ordinary’)

if self.selection == ’LiNbO3’ or self.selection == ’BBO (Kato)’ \

or self.selection == ’BBO (Eimerl)’:

B = Sel[1]

C = Sel[2]

D = Sel[3]

dndl = (l/n)*(D-(B/((l*l+C)*(l*l+C))))

elif self.selection == ’BBO (Zhang)’:

B = Sel[1]

C = Sel[2]

D = Sel[3]

E = Sel[4]

F = Sel[5]

dndl = (l/n)*(D+2*E*l*l+3*F*l*l*l*l\

-(B/((l*l+C)*(l*l+C))))

return c*(1E-14)*(1/(n-l*dndl)) # in mm/fs
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def ex_vg(self, wavelength, theta):

if theta == 90 or theta == 0:

if theta == 90:

if self.selection == ’LiNbO3’ \

or self.selection == ’BBO (Kato)’ \

or self.selection == ’BBO (Eimerl)’ \

or self.selection == ’BBO (Zhang)’:

c = 3E10 #cm/s

n = self.ex(wavelength)

l = wavelength/1000.

Sel = self.Selmeier(’extraordinary’)

if self.selection == ’LiNbO3’ \

or self.selection == ’BBO (Kato)’\

or self.selection == ’BBO (Eimerl)’:

B = Sel[1]

C = Sel[2]

D = Sel[3]

dndl = (l/n)*(D-(B/((l*l+C)*(l*l+C))))

elif self.selection == ’BBO (Zhang)’:

B = Sel[1]

C = Sel[2]

D = Sel[3]

E = Sel[4]



250

F = Sel[5]

dndl = (l/n)*(D + 2*E*l*l + 3*F*l*l*l*l \

- (B/((l*l + C)*(l*l + C))))

return c*(1E-14)*(1/(n-l*dndl))

# in mm/fs

elif theta == 0:

return self.ord_vg(wavelength)

else:

if self.selection == ’LiNbO3’ or self.selection == ’BBO (Kato)’ \

or self.selection == ’BBO (Eimerl)’ \

or self.selection == ’BBO (Zhang)’:

q = (np.pi/180)*theta

c = 3E10 #cm/s

no = self.ord(wavelength)

ne = self.ex(wavelength)

n = no*np.sqrt(((1+np.power(np.tan(q),2))/(1\

+np.power(((no/ne)*np.tan(q)),2))))

l = wavelength/1000

Sel_ord = self.Selmeier(’ordinary’)

Sel_ex = self.Selmeier(’extraordinary’)

if self.selection == ’LiNbO3’ \

or self.selection == ’BBO (Kato)’\

or self.selection == ’BBO (Eimerl)’:

Bo = Sel_ord[1]

Co = Sel_ord[2]

Do = Sel_ord[3]
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Be = Sel_ex[1]

Ce = Sel_ex[2]

De = Sel_ex[3]

dnedl = (l/ne)*(De-(Be/((l*l+Ce)*(l*l+Ce))))

dnodl = (l/no)*(Do-(Bo/((l*l+Co)*(l*l+Co))))

elif self.selection == ’BBO (Zhang)’:

Bo = Sel_ord[1]

Co = Sel_ord[2]

Do = Sel_ord[3]

Eo = Sel_ord[4]

Fo = Sel_ord[5]

Be = Sel_ex[1]

Ce = Sel_ex[2]

De = Sel_ex[3]

Ee = Sel_ex[4]

Fe = Sel_ex[5]

dnodl = (l/no)*(Do + 2*Eo*l*l + 3*Fo*l*l*l*l \

- (Bo/((l*l + Co)*(l*l + Co))))

dnedl = (l/ne)*(De + 2*Ee*l*l + 3*Fe*l*l*l*l \

- (Be/((l*l + Ce)*(l*l + Ce))))

dndl = (n/no)*dnodl \

+ ((n**3)/(no*ne*ne))*(((np.tan(q))**2)/(1\

+((np.tan(q))**2)))*((dnodl) - ((no*dnedl)/(ne)))

return c*(1E-14)*(1/(n-l*dndl)) # in mm/fs

def ord_gvd(self, wavelength):
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if self.selection == ’LiNbO3’ or self.selection == ’BBO (Kato)’ \

or self.selection == ’BBO (Eimerl)’ \

or self.selection == ’BBO (Zhang)’:

c = 3E10 #cm/s

n = self.ord(wavelength)

l = wavelength/1000.

Sel = self.Selmeier(’ordinary’)

if self.selection == ’LiNbO3’ or self.selection == ’BBO (Kato)’\

or self.selection == ’BBO (Eimerl)’:

B = Sel[1]

C = Sel[2]

D = Sel[3]

dndl = (l/n)*(D-(B/((l*l+C)*(l*l+C))))

d2ndl2 = (dndl/l) - (((dndl)**2)/n) \

+ ((4.*l*l*B)/(n*((l*l+C)**3)))

elif self.selection == ’BBO (Zhang)’:

B = Sel[1]

C = Sel[2]

D = Sel[3]

E = Sel[4]

F = Sel[5]

dndl = (l/n)*(D + 2*E*l*l + 3*F*l*l*l*l \

- (B/((l*l + C)*(l*l + C))))

d2ndl2 = (dndl/l) - ((dndl**2)/n) + ((4.*l*l)/n)\

*(E + 3.*F*l*l + (B/((l*l+C)**3)))
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return ((l**3)/(2*np.pi*c*c))*d2ndl2*(1.E25) # in fs2/mm

def ex_gvd(self, wavelength, theta):

if theta == 90 or theta == 0:

if theta == 0:

return self.ord_gvd(self, wavelength)

if theta == 90:

if self.selection == ’LiNbO3’ \

or self.selection == ’BBO (Kato)’ \

or self.selection == ’BBO (Eimerl)’ \

or self.selection == ’BBO (Zhang)’:

c = 3E10 #cm/s

n = self.ex(wavelength)

l = wavelength/1000.

Sel = self.Selmeier(’extraordinary’)

if self.selection == ’LiNbO3’ \

or self.selection == ’BBO (Kato)’ \

or self.selection == ’BBO (Eimerl)’:

B = Sel[1]

C = Sel[2]

D = Sel[3]

dndl = (l/n)*(D-(B/((l*l+C)*(l*l+C))))

d2ndl2 = (dndl/l) - (((dndl)**2)/n) \

+ ((4.*l*l*B)/(n*((l*l+C)**3)))
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elif self.selection == ’BBO (Zhang)’:

B = Sel[1]

C = Sel[2]

D = Sel[3]

E = Sel[4]

F = Sel[5]

dndl = (l/n)*(D + 2*E*l*l + 3*F*l*l*l*l \

- (B/((l*l + C)*(l*l + C))))

d2ndl2 = (dndl/l) - ((dndl**2)/n) \

+ ((4.*l*l)/n)*(E + 3.*F*l*l \

+ (B/((l*l+C)**3)))

return ((l**3)/(2*np.pi*c*c))*d2ndl2*(1.E25)

# in fs2/mm

else:

if self.selection == ’LiNbO3’ or self.selection == ’BBO (Kato)’\

or self.selection == ’BBO (Eimerl)’\

or self.selection == ’BBO (Zhang)’:

q = (np.pi/180)*theta

c = 3E10 #cm/s

no = self.ord(wavelength)

ne = self.ex(wavelength)

n = no*np.sqrt(((1+np.power(np.tan(q),2))/(1\

+np.power(((no/ne)*np.tan(q)),2))))

l = wavelength/1000

Sel_ord = self.Selmeier(’ordinary’)

Sel_ex = self.Selmeier(’extraordinary’)
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if self.selection == ’LiNbO3’ \

or self.selection == ’BBO (Kato)’\

or self.selection == ’BBO (Eimerl)’:

Bo = Sel_ord[1]

Co = Sel_ord[2]

Do = Sel_ord[3]

Be = Sel_ex[1]

Ce = Sel_ex[2]

De = Sel_ex[3]

dnedl = (l/ne)*(De-(Be/((l*l+Ce)*(l*l+Ce))))

d2nedl2 = (dnedl/l) - (((dnedl)**2)/ne) \

+ ((4.*l*l*Be)/(ne*((l*l+Ce)**3)))

dnodl = (l/no)*(Do-(Bo/((l*l+Co)*(l*l+Co))))

d2nodl2 = (dnodl/l) - (((dnodl)**2)/no) \

+ ((4.*l*l*Bo)/(no*((l*l+Co)**3)))

elif self.selection == ’BBO (Zhang)’:

Bo = Sel_ord[1]

Co = Sel_ord[2]

Do = Sel_ord[3]

Eo = Sel_ord[4]

Fo = Sel_ord[5]

Be = Sel_ex[1]

Ce = Sel_ex[2]

De = Sel_ex[3]

Ee = Sel_ex[4]

Fe = Sel_ex[5]

dnedl = (l/ne)*(De + 2*Ee*l*l + 3*Fe*l*l*l*l\
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- (Be/((l*l + Ce)*(l*l + Ce))))

d2nedl2 = (dnedl/l) - ((dnedl**2)/ne) \

+ ((4.*l*l)/ne)*(Ee + 3.*Fe*l*l\

+ (Be/((l*l+Ce)**3)))

dnodl = (l/no)*(Do + 2*Eo*l*l + 3*Fo*l*l*l*l\

- (Bo/((l*l + Co)*(l*l + Co))))

d2nodl2 = (dnodl/l) - ((dnodl**2)/no) \

+ ((4.*l*l)/no)*(Eo + 3.*Fo*l*l\

+ (Bo/((l*l+Co)**3)))

dndl = (n/no)*dnodl + ((n**3)/(no*ne*ne))\

*(((np.tan(q))**2)/(1.+((np.tan(q))**2)))\

*((dnodl) - ((no*dnedl)/(ne)))

# Because of the length of the expression, the

# calculation of d2ndl2 is broken into pieces

A = ((1/no) - (((np.tan(q))**2)/(1.+((np.tan(q))**2)))\

*((3.*n*n)/(no*ne*ne)))*(dnodl)*(dndl)

B = ((n/no) - (((np.tan(q))**2)/(1.+((np.tan(q))**2)))\

*((n*n*n)/(no*ne*ne)))*(d2nodl2)

C = -((n/(no*no)) - (((np.tan(q))**2)/(1\

+((np.tan(q))**2)))*((n*n*n)/(no*no*ne*ne)))\

*(dnodl)*(dnodl)

# D, E, F, and G need to be multiplied

# by the factor tan2/1+tan2

D = ((2.*n*n*n)/(no*ne*ne*ne))*(dnodl)*(dnedl)

E = ((3.*n*n)/(ne*ne*ne))*(dnedl)*(dndl)

F = - ((3.*n*n*n)/(ne**4))*((dnedl)**2)

G = ((n*n*n)/(ne*ne*ne))*(d2nedl2)

d2ndl2 = A + B + C \

+ ((((np.tan(q))**2)/(1+((np.tan(q))**2)))\

*(D + E + F + G))
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return ((l**3)/(2*np.pi*c*c))*d2ndl2*(1.E25)

# in fs2/mm

def deff(self, theta, phi, process):

if self.selection == ’LiNbO3’ or self.selection == ’BBO (Kato)’\

or self.selection == ’BBO (Eimerl)’ \

or self.selection == ’BBO (Zhang)’:

if self.selection == ’LiNbO3’:

d22 = 2.4

d31 = -4.52

elif self.selection == ’BBO (Kato)’ \

or self.selection == ’BBO (Eimerl)’\

or self.selection == ’BBO (Zhang)’:

d22 = 2.3

d31 = -0.16

if process == ’Type I’:

return abs(d31*np.sin((np.pi/180)*theta)\

-d22*np.cos((np.pi/180)*theta)\

*np.sin(3*(np.pi/180)*phi))

elif process == ’Type II’ or process == ’Type III’:

return abs(d22*np.cos((np.pi/180)*theta)\

*np.cos((np.pi/180)*theta)\

*np.cos(3*(np.pi/180)*phi))

else:
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return

C.5 phasematching.py

The other non-native script called by material_params.py is presented here. Note that while it is not

listed as a dependency, phasematching.py does require nl_crystal.py, as the functions phasematching.py

contains require an object of class NLcrystals.

# Native python packages

import numpy as np

# Non-native python packages

# (none)

# phase matching calculation for e --> oo

# requires:

# - an object of Class nl_crystal.NLcrystals (crystal)

# - two floats (pump and signal)

def type_one(crystal, pump, signal):

idler = 1/((1/pump) - (1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

nop = crystal.ord(pump)

nep = crystal.ex(pump)

ns = crystal.ord(signal)

ni = crystal.ord(idler)

return (180/np.pi)\
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*np.arccos(np.sqrt((1/(nep*nep-nop*nop))\

*(np.power(((wp*nop*nep)/(ni*wi+ns*ws)),2)-nop*nop)))

# phase matching calculation for e --> oe

# requires:

# - an object of Class nl_crystal.NLcrystals (crystal)

# - two floats (pump and signal)

def type_two(crystal, pump, signal):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

nop = crystal.ord(pump)

nep = crystal.ex(pump)

ns = crystal.ord(signal)

noi = crystal.ord(idler)

nei = crystal.ex(idler)

A = np.power(ns*ns*ws*ws*(nei*nei-noi*noi)*(nep*nep-nop*nop),2)

B = 2*((np.power(ns*ns*ws*ws*nop,2)\

-np.power(wp*ns*ws*nop*nep,2))*(nep*nep-nop*nop)\

*(nei*nei-noi*noi)*(nei*nei-noi*noi)+(np.power(ns*ns*ws*ws*noi,2)\

-np.power(ns*ws*wi*noi*nei,2))*(nei*nei-noi*noi)\

*(nep*nep-nop*nop)*(nep*nep-nop*nop))

C = ((np.power(wp*nop*nep,4)+np.power(ns*ws*nop,4)\

-2*np.power(wp*ns*ws*nop*nop*nep,2))*(nei*nei-noi*noi)\

*(nei*nei-noi*noi))+((np.power(wi*nei*noi,4)+np.power(ns*ws*noi,4)\
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-2*np.power(ns*ws*wi*noi*noi*nei,2))*(nep*nep-nop*nop)\

*(nep*nep-nop*nop))+((4*np.power(ns*ns*ws*ws*noi*nop,2)\

-2*np.power(wi*wp*nop*nep*noi*nei,2)\

-4*np.power(wp*ns*ws*nop*nep*noi,2)\

-4*np.power(ns*ws*wi*noi*nei*nop,2))\

*(nep*nep-nop*nop)*(nei*nei-noi*noi))

D = ((2*np.power(wp*nop*nep,4)*noi*noi\

+2*np.power(ns*ws*nop,4)*noi*noi\

-2*np.power(wi*wp*nop*nep*noi*nei*nop,2)\

-4*np.power(wp*ns*ws*nop*nep*noi*nop,2)\

-2*np.power(ns*ws*wi*noi*nei*nop*nop,2))*(nei*nei-noi*noi))\

+((2*np.power(wi*nei*noi,4)*nop*nop\

+2*np.power(ns*ws*noi,4)*nop*nop\

-2*np.power(wi*wp*nop*nep*noi*nei*noi,2)\

-2*np.power(wp*ns*ws*nop*nep*noi*noi,2)\

-4*np.power(ns*ws*wi*noi*nei*nop*noi,2))*(nep*nep-nop*nop))

E = np.power(noi*wp*nop*nep,4)+np.power(wi*nei*noi*nop,4)\

+np.power(ns*ws*noi*nop,4)\

-2*np.power(wi*wp*nop*nep*noi*nei*nop*noi,2)\

-2*np.power(wp*ns*ws*nop*nep*nop*noi*noi,2)\

-2*np.power(ns*ws*wi*noi*nei*noi*nop*nop,2)

roots = np.roots([A,B,C,D,E])

for i in roots:

if i.imag == 0:

if 0<= i.real <= 1:

return (180/np.pi)*np.arccos(np.sqrt(i.real))

# phase matching calculation for e --> eo
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# requires:

# - an object of Class nl_crystal.NLcrystals (crystal)

# - two floats (pump and signal)

def type_three(crystal, pump, signal):

idler = 1/((1/pump)-(1/signal))

return type_two(crystal, pump, idler)

# the following return the phase mismatch (in cm-1) for

# the given process at a given crystal angle

# all require:

# - an object of Class nl_crystal.NLcrystals (crystal)

# - three floats (pump, signal, and theta)

# Type I: e --> oo

def type_one_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

nop = crystal.ord(pump)

nep = crystal.ex(pump)

ns = crystal.ord(signal)

ni = crystal.ord(idler)

npu = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nep),2))\

+(np.power(((np.cos((np.pi/180)*theta))/nop),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))



262

# Type II: e --> oe

def type_two_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

nop = crystal.ord(pump)

nep = crystal.ex(pump)

ns = crystal.ord(signal)

noi = crystal.ord(idler)

nei = crystal.ex(idler)

npu = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nep),2))\

+(np.power(((np.cos((np.pi/180)*theta))/nop),2))))

ni = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nei),2))\

+(np.power(((np.cos((np.pi/180)*theta))/noi),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

# Type III: e --> eo

def type_three_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)



263

nop = crystal.ord(pump)

nep = crystal.ex(pump)

ni = crystal.ord(idler)

nos = crystal.ord(signal)

nes = crystal.ex(signal)

npu = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nep),2))\

+(np.power(((np.cos((np.pi/180)*theta))/nop),2))))

ns = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nes),2))\

+(np.power(((np.cos((np.pi/180)*theta))/nos),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

# Type IV: e --> ee

def type_four_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

nop = crystal.ord(pump)

nep = crystal.ex(pump)

noi = crystal.ord(idler)

nei = crystal.ex(idler)

nos = crystal.ord(signal)

nes = crystal.ex(signal)

npu = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nep),2))\

+(np.power(((np.cos((np.pi/180)*theta))/nop),2))))

ns = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nes),2))\
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+(np.power(((np.cos((np.pi/180)*theta))/nos),2))))

ni = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nei),2))\

+(np.power(((np.cos((np.pi/180)*theta))/noi),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

# Type V: o --> oo

def type_five_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

npu = crystal.ord(pump)

ni = crystal.ord(idler)

ns = crystal.ord(signal)

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

# Type VI: o --> oe

def type_six_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

npu = crystal.ord(pump)

noi = crystal.ord(idler)



265

nei = crystal.ex(idler)

ns = crystal.ord(signal)

ni = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nei),2))\

+(np.power(((np.cos((np.pi/180)*theta))/noi),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

# Type VII: o --> eo

def type_seven_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

npu = crystal.ord(pump)

ni = crystal.ord(idler)

nos = crystal.ord(signal)

nes = crystal.ex(signal)

ns = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nes),2))\

+(np.power(((np.cos((np.pi/180)*theta))/nos),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

# Type VIII: o --> ee

def type_eight_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))
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wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

npu = crystal.ord(pump)

noi = crystal.ord(idler)

nei = crystal.ex(idler)

nos = crystal.ord(signal)

nes = crystal.ex(signal)

ns = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nes),2))\

+(np.power(((np.cos((np.pi/180)*theta))/nos),2))))

ni = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nei),2))\

+(np.power(((np.cos((np.pi/180)*theta))/noi),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

C.6 efield.py

The script efield.py contains the electric_field class; this class has been defined in order to not only

contain the electric fields, but also to provide functionalities and properties necessary throughout the script.

# Native python packages

import numpy as np

import matplotlib.pyplot as plt

import math

import sys

import os

import datetime

from scipy import interpolate

import glob

# Non-native python packages
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import phasematching as pm

import parameters as p

class electric_field:

def __init__(self, field, params):

self.E = (np.empty(len(params.freq)))

self.id = str(field)

self.l = params.u.wavelengths[str(field)]

self.n0 = params.n(self.l, str(field))

self.w0 = 2*np.pi*params.c*(1E9/self.l)

def fill(self, params, fluence):

if params.u.field_envelopes[self.id] == ’Gaussian’:

self.gaussian(params, fluence)

elif params.u.field_envelopes[self.id] == ’zero’:

self.zero()

elif params.u.field_envelopes[self.id] == ’file’:

# Not implemented

exit()

elif params.u.field_envelopes[self.id] == ’rectangular’:

self.rectangular(params, fluence)
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return

def int(self):

return (1.33E-3)*(self.n0)*(np.real(self.E)**2 + np.imag(self.E)**2)

def gaussian(self, params, fluence):

reEt = np.empty(len(params.time))

imEt = np.empty(len(params.time))

sum = ((np.exp((-4.*np.log(2))*(((params.time \

- params.u.Gauss_centers[self.id])\

/params.u.Gauss_widths[self.id])**2)))\

*(params.time[1]-params.time[0])).sum()

reA = ((np.cos((np.pi/180)*params.u.field_phase[self.id]))**2)\

*(fluence/sum)

imA = ((np.sin((np.pi/180)*params.u.field_phase[self.id]))**2)\

*(fluence/sum)

reEt = np.sqrt((reA/((1.33E-3)*self.n0))*np.exp((-4.*np.log(2))\

*(((params.time - params.u.Gauss_centers[self.id])\

/params.u.Gauss_widths[self.id])**2)))

imEt = np.sqrt((imA/((1.33E-3)*self.n0))*np.exp((-4.*np.log(2))\

*(((params.time - params.u.Gauss_centers[self.id])\

/params.u.Gauss_widths[self.id])**2)))

self.ft(reEt, imEt, params)

if params.u.apply_contrast:

retemp = np.real(self.E)
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imtemp = np.imag(self.E)

gmax = max(max(np.abs(retemp)), max(np.abs(imtemp)))

retemp[np.where(np.abs(retemp)<gmax*params.u.contrast)] = 0.

imtemp[np.where(np.abs(imtemp)<gmax*params.u.contrast)] = 0.

self.E = retemp + 1j*imtemp

return

def zero(self):

self.E = np.zeros(len(self.E)) + 1j*np.zeros(len(self.E))

def rectangular(self, params, fluence):

self.E = (np.empty(len(params.freq),dtype=complex))

for i in range(len(params.freq)):

if i < 5 or i > len(params.freq) - 5:

self.E[i] = complex(0.)

else:

self.E[i] = 1.+1j*0.

self.E *= np.sqrt(fluence/(self.int()).sum())*self.E

return

def ft(self, reEt, imEt, params):
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reE = np.empty(len(params.freq))

imE = np.empty(len(params.freq))

self.E = (1/np.sqrt(len(params.time)))*np.sum( (reEt+1j*imEt)[None,:]\

*np.exp(-1j*params.freq[:,None]*params.time[None,:]), axis = 1)

return

def ift(self, params):

return (1/np.sqrt(len(params.time)))*np.sum( self.E[None,:]\

*np.exp(1j*params.freq[None,:]*params.time[:,None]), axis = 1)

def pulse_energy(self, params):

Et = self.ift(params)

return ((1.33e-3)*self.n0*(np.real(Et)*np.real(Et) \

+ np.imag(Et)*np.imag(Et))\

*(params.time[1]-params.time[0])).sum()

C.7 controls.py

The script controls.py contains many of the central functions of the script: once the parameters are

defined through parameters.py, many of the manipulations and executions are executed through functions

in controls.py.

# Native python packages

import numpy as np

import matplotlib.pyplot as plt

import scipy.interpolate as interp



271

import multiprocessing, threading, datetime, os, functools, math

# Non-native python packages

import parameters, efield, algorithm

import user_settings as user

import material_params as mat

import gain_formulae as gain

import plotting_routines as pltr

import phasematching as pm

import nl_crystal as nl

# modify_params modifies constants and values in the parameters object

# appropriate to user specifications

def modify_params(p):

if p.u.modify_theta:

p.m.theta = p.u.alt_theta

if p.u.parametric_process == ’second-harmonic generation’:

p.m.dk = pm.type_one_mismatch(p.m.cry, p.u.wavelengths[’SHG’],\

p.u.wavelengths[’Fundamental’], p.m.theta)

elif p.u.parametric_process == ’parametric amplification’:

if p.u.process == ’Type I’:

p.m.dk = pm.type_one_mismatch(p.m.cry,\

p.u.wavelengths[’Pump’],\

p.u.wavelengths[’Signal’], p.m.theta)

elif p.u.process == ’Type II’:

p.m.dk = pm.type_two_mismatch(p.m.cry,\

p.u.wavelengths[’Pump’],\

p.u.wavelengths[’Signal’], p.m.theta)

elif p.u.process == ’Type III’:

p.m.dk = pm.type_three_mismatch(p.m.cry,\

p.u.wavelengths[’Pump’],\
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p.u.wavelengths[’Signal’], p.m.theta)

p.m.dk*=100.

if p.u.modify_chi2eff:

p.m.chi2eff = p.u.alt_chi2eff

if p.u.modify_chi3eff:

p.m.chi3eff = p.u.alt_chi3eff

if p.u.modify_ug:

for i in [p.u.alt_ug]:

for j in p.m.mask:

i[j] = i.pop(p.m.mask[j])

ini_keys = i.keys()

for j in ini_keys:

if j in p.m.mask:

pass

else:

i.pop(j,None)

for i in p.u.alt_ug:

p.m.ug[i] = p.u.alt_ug[i]*1.e12

def initialize(p):

if p.u.silent:

pass

else:

print(’Initializing fields’)

fields = []
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for i in range(len(p.r)):

fields.append({})

for j in p.u.wavelengths:

fields[i][j] = efield.electric_field(j,p)

fields[i][j].fill(p, p.fluence[j][i])

fields[i][j].E[np.where((fields[i][j].w0+p.freq)<=\

p.cutoff)] = complex(0.)

return fields

def drive_algorithm(p, fields):

if p.u.silent:

pass

else:

print(’Starting algorithm’)

if p.u.slowly_varying_amp:

if p.u.adaptive_steps:

# Adaptive stepping has not yet been developed; when this capability is developed,

# this is how it may be implemented

# fields = adaptive_stepping(p,fields)

pass

else:

fields = fixed_stepping(p, fields)

else:

if p.u.adaptive_steps:

# Adaptive stepping has not yet been developed; when this capability is developed,

# this is how it may be implemented
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# fields = second_order_adaptive_stepping(p, fields)

pass

else:

fields = second_order_fixed_stepping(p, fields)

return fields

def fixed_stepping(p, fields):

step_size = p.u.L/p.u.steps

parameter_dict = {

’curr_position’ : p.z,

’step_size’ : step_size,

’c’ : p.c,

’dw’ : p.freq,

’w’ : {},

’k’ : {},

’n0’ : {},

’w0’ : {},

’chi2eff’ : p.m.chi2eff,

’chi3eff’ : p.m.chi3eff,

’ug’ : {},

’gvd’ : {},

’parametric_process’ : p.u.parametric_process,

’dk’ : p.m.dk,

’cutoff’ : p.cutoff,

’time’ : p.time,

’NaN_flag’ : False}

field_iter = []
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for i in fields[0]:

parameter_dict[’n0’][fields[0][i].id] = fields[0][i].n0

parameter_dict[’w0’][fields[0][i].id] = fields[0][i].w0

parameter_dict[’w’][fields[0][i].id] = p.freq.copy() + fields[0][i].w0

parameter_dict[’ug’][fields[0][i].id] = p.m.ug[fields[0][i].id]

parameter_dict[’gvd’][fields[0][i].id] = p.m.gvd[fields[0][i].id]

parameter_dict[’k’][fields[0][i].id] = \

np.empty(len(parameter_dict[’w’][fields[0][i].id]))

for j in range(len(parameter_dict[’w’][fields[0][i].id])):

if parameter_dict[’w’][fields[0][i].id][j] >= p.cutoff:

wavelength = ((2*np.pi*p.c)\

/(parameter_dict[’w’][fields[0][i].id][j]))*1.e9

parameter_dict[’k’][fields[0][i].id][j] = \

(p.n(wavelength, fields[0][i].id)\

*parameter_dict[’w’][fields[0][i].id][j])/p.c

else:

parameter_dict[’w’][fields[0][i].id][j] = 0.

parameter_dict[’k’][fields[0][i].id][j] = 0.

for i in range(len(p.r)):

field_iter.append({})

for j in fields[0]:

field_iter[i][j] = fields[i][j].E.copy()

counter = 0



276

if p.u.timer:

start_time = str(datetime.datetime.now()).split(’ ’)[-1]

while counter < p.u.steps:

counter += 1

if p.u.silent:

pass

else:

print(’Starting iteration ’+str(counter)+’ of ’+str(p.u.steps)\

+’ at ’+str(datetime.datetime.now()))

if p.u.threading:

if p.u.cores != ’Default’ \

and p.u.cores <= multiprocessing.cpu_count() \

and p.u.cores > 0:

pool = multiprocessing.Pool(processes = p.u.cores)

chunk_size = int(math.ceil(len(field_iter)/p.u.cores))

elif p.u.cores != ’Default’ and p.u.limit_override == True:

pool = multiprocessing.Pool(processes = p.u.cores)

chunk_size = int(math.ceil(len(field_iter)/p.u.cores))

else:

if p.u.cores == ’Default’:

pass
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elif p.u.cores > multiprocessing.cpu_count() \

or p.u.cores<1:

print(’An invalid number of cores was requested.\

Defaulting to ’\

+str(multiprocessing.cpu_count()-1)\

+’ cores.’)

pool = multiprocessing.Pool(processes = \

(multiprocessing.cpu_count()-1))

chunk_size = int(math.ceil(len(field_iter)\

/(multiprocessing.cpu_count()-1)))

results = pool.map(functools.partial(algorithm.Runge_Kutta, \

parameter_dict), field_iter, \

chunksize = chunk_size)

pool.close()

for i in range(len(results)):

for j in results[i]:

field_iter[i][j] = results[i][j].copy()

del results

else:

for i in range(len(p.r)):

results = algorithm.Runge_Kutta(parameter_dict, \

field_iter[i])

for j in results:

field_iter[i][j] = results[j].copy()

parameter_dict[’curr_position’] += step_size
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if parameter_dict[’NaN_flag’]:

break

for i in range(len(p.r)):

for j in fields[0]:

fields[i][j].E = field_iter[i][j].copy()

p.z = parameter_dict[’curr_position’]

if p.u.timer:

end_time = str(datetime.datetime.now()).split(’ ’)[-1]

print ’Run time: ’+str((int(str(end_time).split(’:’)[0]) \

- int(str(start_time).split(’:’)[0]))*60.*60.\

+(int(str(end_time).split(’:’)[1]) \

- int(str(start_time).split(’:’)[1]))*60.\

+(float(str(end_time).split(’:’)[2]) \

- float(str(start_time).split(’:’)[2])))+’ seconds’

return fields

def second_order_fixed_stepping(p, fields):

step_size = p.u.L/p.u.steps

parameter_dict = {

’curr_position’ : p.z,
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’step_size’ : step_size,

’c’ : p.c,

’dw’ : p.freq,

’w’ : {},

’k’ : {},

’n0’ : {},

’w0’ : {},

’chi2eff’ : p.m.chi2eff,

’chi3eff’ : p.m.chi3eff,

’ug’ : {},

’gvd’ : {},

’parametric_process’ : p.u.parametric_process,

’dk’ : p.m.dk,

’cutoff’ : p.cutoff,

’NaN_flag’ : False}

field_iter = []

for i in fields[0]:

parameter_dict[’n0’][fields[0][i].id] = fields[0][i].n0

parameter_dict[’w0’][fields[0][i].id] = fields[0][i].w0

parameter_dict[’w’][fields[0][i].id] = p.freq.copy() + fields[0][i].w0

parameter_dict[’ug’][fields[0][i].id] = p.m.ug[fields[0][i].id]

parameter_dict[’gvd’][fields[0][i].id] = p.m.gvd[fields[0][i].id]

parameter_dict[’k’][fields[0][i].id] = \

np.empty(len(parameter_dict[’w’][fields[0][i].id]))

for j in range(len(parameter_dict[’w’][fields[0][i].id])):

if parameter_dict[’w’][fields[0][i].id][j] >= p.cutoff:

wavelength = ((2*np.pi*p.c)\

/(parameter_dict[’w’][fields[0][i].id][j]))*1.e9
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parameter_dict[’k’][fields[0][i].id][j] = \

(p.n(wavelength, fields[0][i].id)\

*parameter_dict[’w’][fields[0][i].id][j])/p.c

else:

parameter_dict[’w’][fields[0][i].id][j] = 0.

parameter_dict[’k’][fields[0][i].id][j] = 0.

for i in range(len(p.r)):

field_iter.append({})

for j in fields[0]:

field_iter[i][j] = {}

field_iter[i][j][’field’] = fields[i][j].E.copy()

field_iter[i][j][’first derivative’] = \

np.zeros(len(fields[i][j].E)) \

+ 1j*np.zeros(len(fields[i][j].E))

counter = 0

if p.u.timer:

start_time = str(datetime.datetime.now()).split(’ ’)[-1]

while counter < p.u.steps:

counter += 1

if p.u.silent:

pass

else:

print(’Starting iteration ’+str(counter)+’ of ’\
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+str(p.u.steps)+’ at ’+str(datetime.datetime.now()))

if p.u.threading:

if p.u.cores != ’Default’ \

and p.u.cores <= multiprocessing.cpu_count() \

and p.u.cores > 0:

pool = multiprocessing.Pool(processes = p.u.cores)

chunk_size = int(math.ceil(len(field_iter)/p.u.cores))

elif p.u.cores != ’Default’ and p.u.limit_override == True:

pool = multiprocessing.Pool(processes = p.u.cores)

chunk_size = int(math.ceil(len(field_iter)/p.u.cores))

else:

if p.u.cores == ’Default’:

pass

elif p.u.cores > multiprocessing.cpu_count() \

or p.u.cores<1:

print(’An invalid number of cores was requested.\

Defaulting to ’\

+str(multiprocessing.cpu_count()-1)\

+’ cores.’)

pool = multiprocessing.Pool(processes \

= (multiprocessing.cpu_count()-1))

chunk_size = int(math.ceil(len(field_iter)\

/(multiprocessing.cpu_count()-1)))



282

results = pool.map(functools.partial(\

algorithm.second_order_Runge_Kutta, \

parameter_dict), field_iter, \

chunksize = chunk_size)

pool.close()

for i in range(len(results)):

for j in results[i]:

field_iter[i][j][’field’] = \

results[i][j][’field’].copy()

field_iter[i][j][’first derivative’] = \

results[i][j][’first derivative’].copy()

del results

else:

for i in range(len(p.r)):

results = algorithm.second_order_Runge_Kutta(\

parameter_dict, field_iter[i])

for j in results:

field_iter[i][j][’field’] = \

results[j][’field’].copy()

field_iter[i][j][’first derivative’] = \

results[j][’first derivative’].copy()

parameter_dict[’curr_position’] += step_size

if parameter_dict[’NaN_flag’]:

break
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for i in range(len(p.r)):

for j in fields[0]:

fields[i][j].E = field_iter[i][j][’field’].copy()

p.z = parameter_dict[’curr_position’]

if p.u.timer:

end_time = str(datetime.datetime.now()).split(’ ’)[-1]

print ’Run time: ’+str((int(str(end_time).split(’:’)[0]) \

- int(str(start_time).split(’:’)[0]))*60.*60.\

+(int(str(end_time).split(’:’)[1]) \

- int(str(start_time).split(’:’)[1]))*60.\

+(float(str(end_time).split(’:’)[2]) \

- float(str(start_time).split(’:’)[2])))+’ seconds’

return fields

def save_output(p, fields, state):

curr = os.getcwd()

if state == ’initial’:

folder_name = ’’

for i in ((str(datetime.datetime.now()).split(’.’)[0]).split(’:’)):
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folder_name += i+’_’

for i in p.u.wavelengths:

folder_name += str(p.u.wavelengths[i])+’_’

folder_name+=p.u.parametric_process+’_’+p.u.material+’_’+p.u.process

if p.u.save_dir[-1]==’/’:

p.u.save_dir += folder_name

else:

p.u.save_dir += ’/’+folder_name

if os.path.exists(p.u.save_dir):

pass

else:

os.makedirs(p.u.save_dir)

os.chdir(p.u.save_dir)

if state == ’initial’:

write_parameters(p)

write_fields(p, fields, ’initial’)

pltr.plot2d(fields, p, ’initial_fields_freq’)

pltr.plot2dtime(fields, p, ’initial_fields_time’)

pltr.plot2dweighted(fields, p, ’initial_fields_freq_weighted’)

elif state == ’final’:

write_fields(p, fields, ’final’)

pltr.plot2d(fields, p, ’final_fields_freq’)



285

pltr.plot2dtime(fields, p, ’final_fields_time’)

pltr.plot2dweighted(fields, p, ’final_fields_freq_weighted’)

os.chdir(curr)

return

def write_parameters(p):

f = open(’simulation_parameters.txt’, ’w+’)

f.write(’Simulation Parameters\n\n’)

f.write(’Wavelengths\n’)

for i in p.u.wavelengths:

f.write(str(i)+’:\t’+str(p.u.wavelengths[i])+’ nm\n’)

f.write(’\n’)

f.write(’Material Parameters\n’)

if p.mat_type_marker == ’birefringent’:

f.write(p.u.material+’: ’+str(p.u.L*100)+’ cm, theta: ’\

+str(p.m.theta)+’ deg, phi: ’+str(p.u.phi)+’ deg\n’)

elif p.mat_type_marker == ’isotropic’:

f.write(p.u.material+’: ’+str(p.u.L*100)+’ cm\n’)

f.write(’Number of steps: {0}\n’.format(p.u.steps))

if p.u.parametric_process == ’parametric amplification’:

f.write(’Process: ’+p.u.parametric_process+’, ’+p.u.process+’\n’)

else:

f.write(’Process: ’+p.u.parametric_process+’\n’)
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f.write(’\n’)

f.write(’Beam Parameters\n’)

for i, j in [(’Initial Delay’, p.u.Gauss_centers), (’Beam Size’, p.u.e2_size), \

(’Pulse Width’, p.u.Gauss_widths), (’Initial Phase’, p.u.field_phase)]:

curr_string = i+’:’

if i == ’Initial Delay’ or i == ’Pulse Width’:

modifier = 1.e15

unit = ’fs’

if i == ’Beam Size’:

modifier = 100.

unit = ’cm’

if i == ’Initial Phase’:

modifier = 1.

unit = ’deg.’

for k in j:

curr_string += ’\t’+k+’: ’+str(j[k]*modifier)+’ ’+unit+’;’

curr_string+= ’\n’

f.write(curr_string)

del curr_string

f.write(’\n’)

if p.u.noncollinear or p.u.modify_ug or p.u.modify_chi2eff or p.u.modify_chi3eff:

f.write(’Modifications\n’)

if p.u.noncollinear:
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f.write(’Noncollinear angle: ’+str(p.u.gamma)+’ deg\n’)

if p.u.modify_chi2eff:

f.write(’Alternate chi2: ’+str(p.m.chi2eff*1E12)+’ pm/V\n’)

if p.u.modify_chi3eff:

f.write(’Alternate chi3: ’+str(p.m.chi3eff)+’\n’)

if p.u.modify_ug:

f.write(’Group velocities:\n’)

for i in p.m.ug:

f.write(str(i)+’:\t’+str(p.m.ug[i]*1e-12)+’ mm/fs\n’)

f.close()

return

def write_fields(p, fields, state):

if state == ’initial’:

f = open(’initial_fields.txt’, ’w+’)

elif state == ’final’:

f = open(’final_fields.txt’, ’w+’)

for i in range(len(p.r)):

f.write(’Fields at r = ’+str(p.r[i]*1000)+’ mm\n\n’)

f.write(’Detuning (PHz)’)

for j in fields[i]:

f.write(’\tRe(’+str(j)+’)\tIm(’+str(j)+’)’)

f.write(’\n’)

for j in range(len(p.freq)):
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f.write(str(p.freq[j]*1e-15))

for k in fields[i]:

f.write(’\t’+str(np.real(fields[i][k].E[j]))+’\t’\

+str(np.imag(fields[i][k].E[j])))

f.write(’\n’)

f.write(’\n\n’)

f.close()

del f

if state == ’initial’:

f = open(’initial_integrated_spectrum.txt’, ’w+’)

elif state == ’final’:

f = open(’final_integrated_spectrum.txt’, ’w+’)

int_Int = {}

for j in fields[0]:

Int = []

for i in range(len(p.r)):

Int.append(fields[i][j].int())

int_Int[j] = []

for i in range(len(p.freq)):

sum = 0
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for k in range(len(p.r)):

sum+=2*np.pi*Int[k][i]*p.r[k]*(p.r[1]-p.r[0])

int_Int[j].append(sum)

del Int

energy = {}

for j in fields[0]:

sum = 0

for i in range(len(p.r)):

sum += 2*np.pi*(fields[i][j].pulse_energy(p))\

*p.r[i]*(p.r[1]-p.r[0])

energy[j] = sum

f.write(’Final Pulse Energies\n’)

for j in energy:

f.write(j+’:\t’+str(energy[j]*1.e6)+’ uJ\n’)

f.write(’\n\n’)

f.write(’Integrated Spectra\n\n’)

f.write(’Detuning (PHz)’)

for j in int_Int:

f.write(’\t’+str(j))
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f.write(’\n’)

for j in range(len(p.freq)):

f.write(str(p.freq[j]*1e-15))

for k in int_Int:

f.write(’\t’+str(int_Int[k][j]))

f.write(’\n’)

f.close()

C.8 algorithm.py

The two functions in algorithm.py execute one step of the Runge-Kutta algorithm when called.

# Native python packages

import numpy as np

import matplotlib.pyplot as plt

# Non-native python packages

import gain_formulae as gain

import efield

def Runge_Kutta(pd, fields):

fm = {}

fm[’z’] = pd[’curr_position’]

for i in fields:
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fm[i] = fields[i].copy()

KI = {}

for i in fields:

KI[i] = gain.gain(pd, i, fm)

KI[i] *= pd[’step_size’]

del fm

fm = {}

fm[’z’] = pd[’curr_position’] + 0.5*pd[’step_size’]

for i in fields:

fm[i] = (fields[i] + 0.5*KI[i]).copy()

KII = {}

for i in fields:

KII[i] = gain.gain(pd, i, fm)

KII[i] *= pd[’step_size’]

del fm

fm ={}

fm[’z’] = pd[’curr_position’] + 0.5*pd[’step_size’]

for i in fields:

fm[i] = (fields[i] + 0.5*KII[i]).copy()
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KIII = {}

for i in fields:

KIII[i] = gain.gain(pd, i, fm)

KIII[i] *= pd[’step_size’]

del fm

fm ={}

fm[’z’] = pd[’curr_position’] + pd[’step_size’]

for i in fields:

fm[i] = (fields[i] + KIII[i]).copy()

KIV = {}

for i in fields:

KIV[i] = gain.gain(pd, i, fm)

KIV[i] *= pd[’step_size’]

output = {}

for i in fields:

output[i] = (fields[i]+(1./6.)*KI[i]+(1./3.)*KII[i]+(1./3.)*KIII[i]\

+ (1./6.)*KIV[i]).copy()

if np.isnan(output[i].sum()):

print(’nan present in ’+i)

del fm, KI, KII, KIII, KIV

return output

def second_order_Runge_Kutta(pd, fields):
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fm = {}

fm[’z’] = pd[’curr_position’]

for i in fields:

fm[i] = {}

fm[i][’field’] = fields[i][’field’].copy()

fm[i][’first derivative’] = fields[i][’first derivative’].copy()

KI = {}

for i in fields:

KI[i] = gain.second_order_gain(pd, i, fm)

KI[i][’field’] *= pd[’step_size’]

KI[i][’first derivative’] *= pd[’step_size’]

del fm

fm = {}

fm[’z’] = pd[’curr_position’] + 0.5*pd[’step_size’]

for i in fields:

fm[i] = {}

fm[i][’field’] = (fields[i][’field’] + 0.5*KI[i][’field’]).copy()

fm[i][’first derivative’] = (fields[i][’first derivative’] \

+ 0.5*KI[i][’first derivative’]).copy()

KII = {}

for i in fields:

KII[i] = gain.second_order_gain(pd, i, fm)

KII[i][’field’] *= pd[’step_size’]
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KII[i][’first derivative’] *= pd[’step_size’]

del fm

fm ={}

fm[’z’] = pd[’curr_position’] + 0.5*pd[’step_size’]

for i in fields:

fm[i] = {}

fm[i][’field’] = (fields[i][’field’] + 0.5*KII[i][’field’]).copy()

fm[i][’first derivative’] = (fields[i][’first derivative’] \

+ 0.5*KII[i][’first derivative’]).copy()

KIII = {}

for i in fields:

KIII[i] = gain.second_order_gain(pd, i, fm)

KIII[i][’field’] *= pd[’step_size’]

KIII[i][’first derivative’] *= pd[’step_size’]

del fm

fm ={}

fm[’z’] = pd[’curr_position’] + pd[’step_size’]

for i in fields:

fm[i] = {}

fm[i][’field’] = (fields[i][’field’] + KIII[i][’field’]).copy()

fm[i][’first derivative’] = (fields[i][’first derivative’] \

+ KIII[i][’first derivative’]).copy()

KIV = {}

for i in fields:
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KIV[i] = gain.second_order_gain(pd, i, fm)

KIV[i][’field’] *= pd[’step_size’]

KIV[i][’first derivative’] *= pd[’step_size’]

output = {}

for i in fields:

output[i] = {}

output[i][’field’] = (fields[i][’field’] + (1./6.)*KI[i][’field’] \

+ (1./3.)*KII[i][’field’] \

+ (1./3.)*KIII[i][’field’] \

+ (1./6.)*KIV[i][’field’]).copy()

output[i][’first derivative’] = (fields[i][’first derivative’] \

+ (1./6.)*KI[i][’first derivative’] \

+ (1./3.)*KII[i][’first derivative’] \

+ (1./3.)*KIII[i][’first derivative’] \

+ (1./6.)*KIV[i][’first derivative’]).copy()

if np.isnan(output[i][’field’].sum()) \

or np.isnan(output[i][’first derivative’].sum()):

print(’nan present in ’+i)

pd[’NaN_flag’] = True

del fm, KI, KII, KIII, KIV

return output

C.9 gain formulae.py

While the code in § C.8 performs the sequence of calculations necessary for one iteration of the Runge-Kutta

algorithm, it is programmed such that it invokes an external function to provide the gain formulae represent-

ing the system of differential equations. For the parametric processes being simulated, these formulae are
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provided in gain_formulae.py. It should be noted that - as written - the functions defining the gain formu-

lae look to user_settings.py (the gain_selections class) to determine which terms from the differential

equation should be incorporated.

# Native python packages

import numpy as np

import scipy.interpolate as interp

import matplotlib.pyplot as plt

# Non-native python packages

import user_settings as user

def gain(pd, id, fm):

u = user.gain_selections()

if u.sva_absorption:

# Enables accounting of absorption by BBO

wl_array = [150, 170, 190, 195, 220, 235, 255, 280, 300.78125, 335, 375,\

421.875, 500, 578.125, 644.53125, 700, 1000, 1500, 1600, 1660,\

2000, 2085.9375, 2310, 2355, 2400, 2460, 2500, 2610, 2655,\

2725, 2775, 2785.15625, 2899.15966, 2921.875, 3000, 3020,\

3050, 3060, 3100, 3120, 3150, 3170, 3200, 3300, 40000]

alpha_array = [0.2808, 0.195909, 0.14617, 0.129779, 0.089947, \

0.07212557, 0.05990443, 0.04796, 0.125, 0.102, 0.0788, 0.06827,\

0.05797, 0.04194, 0.03528, 0.02354, 0.02518, 0.02518, 0.02518,\

0.01305, 0.01305, 0.025177, 0.3999, 0.3629, 0.3999, 0.1547,\

0.2043, 0.4533, 0.6349, 0.4533, 0.6297, 0.7851, 0.7851, 0.8935,\

1.0038, 1.3202, 1.2058, 1.5426, 1.5426, 1.2808, 1.2808, 1.5931,\

1.7605, 1.7605, 1.7605]
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freq_array = (2*np.pi*3.e8*1.e9*(1/np.asarray(wl_array))).copy()

alpha_array = np.asarray(alpha_array)*100.

# It should be noted that interp.interp1d may require

# ’np.asarray(freq_array)[::-1]’ and

# ’np.asarray(alpha_array)[::-1]’. The behavior of this seemed

# inconsistent between Mint (Linux distribution) and Mac OS.

alpha_func = interp.interp1d(freq_array, alpha_array, kind = ’slinear’,\

bounds_error = False, fill_value = 1.)

if pd[’parametric_process’] == ’second-harmonic generation’ \

or pd[’parametric_process’] == ’parametric amplification’ \

or pd[’parametric_process’] == ’sum-frequency generation’:

if pd[’parametric_process’] == ’second-harmonic generation’:

ref = ’Fundamental’

elif pd[’parametric_process’] == ’parametric amplification’:

ref = ’Pump’

elif pd[’parametric_process’] == ’sum-frequency generation’:

ref = ’Signal’

gain = np.zeros(len(pd[’w’][id])) + 1j*np.zeros(len(pd[’w’][id]))

k0 = (pd[’n0’][id]*pd[’w0’][id])/pd[’c’]

if u.sva_group_velocity:

if id == ref:

pass

else:

if u.sva_in_lab_frame:
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gain += - (1j)*((1/(pd[’ug’][id]))\

-(1/(pd[’ug’][ref])))*(pd[’w’][id] \

- pd[’w0’][id])*fm[id]

else:

gain += - (1j)*((k0)/(k0 + (1/pd[’ug’][ref])\

*(pd[’w’][id] - pd[’w0’][id])))\

*((1/(pd[’ug’][id]))\

-(1/(pd[’ug’][ref])))\

*(pd[’w’][id] - pd[’w0’][id])*fm[id]

if u.sva_GVD:

if u.sva_in_lab_frame:

gain += -(1j)*((pd[’w’][id] - pd[’w0’][id])**2)\

*0.5*pd[’gvd’][id]*fm[id]

else:

gain += - 1j*((k0)/(2.*(k0 + (1/pd[’ug’][ref])\

*(pd[’w’][id] - pd[’w0’][id]))))*pd[’gvd’][id]\

*((pd[’w’][id] - pd[’w0’][id])**2)*fm[id]

if u.sva_absorption:

if u.sva_in_lab_frame:

gain += - (alpha_func(pd[’w’][id])/2.)*fm[id]



299

else:

gain += - ((k0)/(2.*(k0 + (1/pd[’ug’][ref])*(pd[’w’][id]\

- pd[’w0’][id]))))*(alpha_func(pd[’w’][id]))\

*fm[id]

if u.sva_amplification:

if u.sva_in_lab_frame:

coeff = (1./(2.*k0))

else:

coeff = (1./(2.*(k0 + (1/pd[’ug’][ref])*(pd[’w’][id] \

- pd[’w0’][id]))))

if pd[’parametric_process’] == ’second-harmonic generation’:

if id == ’Fundamental’:

temp_fund = fm[’Fundamental’].copy()

temp_SHG = fm[’SHG’].copy()

temp_fund[np.where(pd[’w’][’Fundamental’] \

<= pd[’cutoff’])] = complex(0.)

temp_SHG[np.where(pd[’w’][’SHG’] \

<= pd[’cutoff’])] = complex(0.)

fund_time = (1/np.sqrt(len(pd[’dw’])))\

*np.sum(np.exp(-1j\

*pd[’k’][’Fundamental’][None,:]\

*fm[’z’])*temp_fund[None,:]*np.exp(1j\
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*pd[’dw’][None,:]\

*pd[’time’][:,None]),axis=1)

shg_time = (1/np.sqrt(len(pd[’dw’])))\

*np.sum(np.exp(-1j\

*pd[’k’][’SHG’][None,:]\

*fm[’z’])*temp_SHG[None,:]*np.exp(1j\

*pd[’dw’][None,:]\

*pd[’time’][:,None]),axis=1)

polzn = ((2*pd[’chi2eff’])\

/np.sqrt(len(pd[’dw’])))\

*np.sum(np.conj(fund_time)[None,:]\

*shg_time[None,:]\

*np.exp(-1j*pd[’dw’][:,None]\

*pd[’time’][None,:]), axis=1)

polzn[np.where(pd[’w’][’Fundamental’] \

<= pd[’cutoff’])] = complex(0.)

del temp_fund, temp_SHG, fund_time, shg_time

elif id == ’SHG’:

temp_fund = fm[’Fundamental’].copy()

temp_fund[np.where(pd[’w’][’Fundamental’] \

<= pd[’cutoff’])] = complex(0.)

fund_time = (1/np.sqrt(len(pd[’dw’])))\

*np.sum(np.exp(-1j\

*pd[’k’][’Fundamental’][None,:]\

*fm[’z’])*temp_fund[None,:]*np.exp(1j\

*pd[’dw’][None,:]\

*pd[’time’][:,None]),axis=1)
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polzn = (pd[’chi2eff’]/np.sqrt(len(pd[’dw’])))\

*np.sum(fund_time[None,:]\

*fund_time[None,:]*np.exp(-1j\

*pd[’dw’][:,None]\

*pd[’time’][None,:]), axis=1)

polzn[np.where(pd[’w’][’SHG’] \

<= pd[’cutoff’])] = complex(0.)

del temp_fund, fund_time

elif pd[’parametric_process’] == ’parametric amplification’ \

or pd[’parametric_process’] ==’sum-frequency generation’:

if id == ’Pump’:

temp_signal = fm[’Signal’].copy()

temp_idler = fm[’Idler’].copy()

temp_signal[np.where(pd[’w’][’Signal’] \

<= pd[’cutoff’])] = complex(0.)

temp_idler[np.where(pd[’w’][’Idler’] \

<= pd[’cutoff’])] = complex(0.)

signal_time = (1/np.sqrt(len(pd[’dw’])))\

*np.sum(np.exp(-1j\

*pd[’k’][’Signal’][None,:]\

*fm[’z’])*temp_signal[None,:]*np.exp(1j\

*pd[’dw’][None,:]\

*pd[’time’][:,None]),axis=1)

idler_time = (1/np.sqrt(len(pd[’dw’])))\

*np.sum(np.exp(-1j\
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*pd[’k’][’Idler’][None,:]\

*fm[’z’])*temp_idler[None,:]*np.exp(1j\

*pd[’dw’][None,:]\

*pd[’time’][:,None]),axis=1)

polzn=((2*pd[’chi2eff’])/np.sqrt(len(pd[’dw’])))\

*np.sum(signal_time[None,:]\

*idler_time[None,:]*np.exp(-1j\

*pd[’dw’][:,None]\

*pd[’time’][None,:]), axis=1)

polzn[np.where(pd[’w’][’Pump’] \

<= pd[’cutoff’])] = complex(0.)

del temp_signal, temp_idler,\

signal_time, idler_time

elif id == ’Signal’:

temp_pump = fm[’Pump’].copy()

temp_idler = fm[’Idler’].copy()

temp_pump[np.where(pd[’w’][’Pump’] \

<= pd[’cutoff’])] = complex(0.)

temp_idler[np.where(pd[’w’][’Idler’] \

<= pd[’cutoff’])] = complex(0.)

pump_time = (1/np.sqrt(len(pd[’dw’])))\

*np.sum(np.exp(-1j\

*pd[’k’][’Pump’][None,:]\

*fm[’z’])*temp_pump[None,:]\

*np.exp(1j*pd[’dw’][None,:]\

*pd[’time’][:,None]),axis=1)

idler_time = (1/np.sqrt(len(pd[’dw’])))\
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*np.sum(np.exp(-1j\

*pd[’k’][’Idler’][None,:]*fm[’z’])\

*temp_idler[None,:]*np.exp(1j\

*pd[’dw’][None,:]\

*pd[’time’][:,None]),axis=1)

polzn = ((2*pd[’chi2eff’])\

/np.sqrt(len(pd[’dw’])))\

*np.sum(pump_time[None,:]\

*np.conj(idler_time)[None,:]\

*np.exp(-1j*pd[’dw’][:,None]\

*pd[’time’][None,:]), axis=1)

polzn[np.where(pd[’w’][’Signal’] \

<= pd[’cutoff’])] = complex(0.)

del temp_pump, temp_idler, pump_time, idler_time

elif id == ’Idler’:

temp_pump = fm[’Pump’].copy()

temp_signal = fm[’Signal’].copy()

temp_signal[np.where(pd[’w’][’Signal’] \

<= pd[’cutoff’])] = complex(0.)

temp_pump[np.where(pd[’w’][’Pump’] \

<= pd[’cutoff’])] = complex(0.)

pump_time = (1/np.sqrt(len(pd[’dw’])))\

*np.sum(np.exp(-1j\

*pd[’k’][’Pump’][None,:]*fm[’z’])\

*temp_pump[None,:]*np.exp(1j\

*pd[’dw’][None,:]\

*pd[’time’][:,None]),axis=1)
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signal_time = (1/np.sqrt(len(pd[’dw’])))\

*np.sum(np.exp(-1j\

*pd[’k’][’Signal’][None,:]\

*fm[’z’])*temp_signal[None,:]\

*np.exp(1j*pd[’dw’][None,:]\

*pd[’time’][:,None]),axis=1)

polzn = ((2*pd[’chi2eff’])\

/np.sqrt(len(pd[’dw’])))\

*np.sum(pump_time[None,:]\

*np.conj(signal_time)[None,:]\

*np.exp(-1j*pd[’dw’][:,None]\

*pd[’time’][None,:]), axis=1)

polzn[np.where(pd[’w’][’Idler’] \

<= pd[’cutoff’])] = complex(0.)

del temp_pump, temp_signal, \

pump_time, signal_time

gain += -1j*((coeff)/(pd[’c’]*pd[’c’]))*np.exp(1j\

*pd[’k’][id]*fm[’z’])*(pd[’w’][id]*pd[’w’][id])*polzn

del polzn

return gain

else:

exit()

def second_order_gain(pd, id, fm):
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# This has not been maintained...

C.10 plotting routines.py

The final script, plotting_routines.py, defines the functions previously called for plotting the results of

the simulations.

# Native python packages

import matplotlib.pyplot as plt

import numpy as np

# Non-native python packages

# (none)

def plot2d(fields, p, filename):

Refields = {}

Imfields = {}

Int = {}

int_Int = {}

for j in fields[0]:

Refields[j] = []

Imfields[j] = []

Int[j] = []

for i in range(len(p.r)):

Refields[j].append(np.real(fields[i][j].E))

Imfields[j].append(np.imag(fields[i][j].E))

Int[j].append(fields[i][j].int())
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int_Int[j] = []

for i in range(len(p.freq)):

sum = 0

for k in range(len(p.r)):

sum+=2*np.pi*Int[j][k][i]*p.r[k]*(p.r[1]-p.r[0])

int_Int[j].append(sum)

plt.clf()

plt.figure(1, figsize=(12,8))

subplots = 1

show_title = True

units_y = False

label_x = False

counter = 1

for j in fields[0]:

globalmax = max(np.amax(np.asarray(Refields[j])), \

np.amax(np.asarray(Imfields[j])), \

abs(np.amin(np.asarray(Refields[j]))), \

abs(np.amin(np.asarray(Imfields[j]))))

freqs = (fields[0][j].w0 + p.freq)*(1/(2.*np.pi*3.e10))

for i in range(len(freqs)):

if freqs[i] < 1.4227e14*(1/(2*np.pi*3.e10)):

freqs[i] = 0.

if globalmax == 0:

pass
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else:

cmin = min(np.amin(np.asarray(Refields[j]).T/globalmax), \

np.amin(np.asarray(Imfields[j]).T/globalmax))

cmax = max(np.amax(np.asarray(Refields[j]).T/globalmax), \

np.amax(np.asarray(Imfields[j]).T/globalmax))

globalmin = min(np.amin(np.asarray(Refields[j])), \

np.amin(np.asarray(Imfields[j])), \

abs(np.amax(np.asarray(Refields[j]))), \

abs(np.amax(np.asarray(Imfields[j]))))

plt.subplot(len(fields[0]), 4, subplots)

if globalmax == 0:

plt.contourf(p.r*1000., freqs, np.asarray(Refields[j]).T,200, \

cmap=’seismic’, levels=np.linspace(-1,1,200))

else:

plt.contourf(p.r*1000., freqs, np.asarray(Refields[j]).T\

/globalmax,200, cmap=’seismic’, \

levels=np.linspace(-1,1,200))

if label_x:

plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

if units_y:

plt.ylabel(j+’\nangular frequency (x10-15)’)

else:

plt.ylabel(j+’\n’)

if show_title:
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plt.title(’Re(E)’)

plt.clim(-1,1)

plt.ylim(freqs[0], freqs[-1])

subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

if globalmax == 0:

plt.contourf(p.r*1000., freqs, np.asarray(Imfields[j]).T,200, \

cmap=’seismic’, levels=np.linspace(-1,1,200))

else:

plt.contourf(p.r*1000., freqs, np.asarray(Imfields[j]).T\

/globalmax,200, cmap=’seismic’, \

levels=np.linspace(-1,1,200))

if label_x:

plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’off’)

if show_title:

plt.title(’Im(E)’)

plt.clim(-1,1)

plt.ylim(freqs[0], freqs[-1])

subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

plt.contourf(p.r*1000., freqs, np.asarray(Int[j]).T, 200, cmap=’seismic’)
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if label_x:

plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’off’)

if show_title:

plt.title(’Intensity’)

if np.max(Int[j]) == 0:

plt.clim(-1,1)

else:

plt.clim(-np.max(Int[j]), np.max(Int[j]))

plt.ylim(freqs[0], freqs[-1])

subplots+=1

binned_scaling = 3

plt.subplot(len(fields[0]), 4*binned_scaling, \

binned_scaling*subplots-(binned_scaling-1))

plt.plot(np.asarray(int_Int[j]), freqs)

plt.xticks([])

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’off’)

if max(int_Int[j])==0:

plt.xlim(-0.2,1)

else:

plt.xlim(-0.1*max(int_Int[j]), max(int_Int[j])\

+0.1*max(int_Int[j]))

plt.ylim(freqs[0], freqs[-1])



310

subplots+=1

counter += 1

if counter != 1:

show_title = False

if counter == int(len(fields[0])/2):

units_y = True

else:

units_y = False

if counter == len(fields[0]):

label_x = True

if p.u.save:

plt.savefig(filename+’.png’, format=’png’, transparent=True)

if p.u.show:

plt.show()

plt.close()

return

def plot2dtime(fields, p, filename):

Refields = {}
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Imfields = {}

Int = {}

int_Int = {}

for j in fields[0]:

Refields[j] = []

Imfields[j] = []

Int[j] = []

for i in range(len(p.r)):

Refields[j].append(np.real(fields[i][j].ift(p)))

Imfields[j].append(np.imag(fields[i][j].ift(p)))

Int[j].append((1.33E-3)*(fields[i][j].n0)\

*(Refields[j][i]**2 + Imfields[j][i]**2))

int_Int[j] = []

for i in range(len(p.freq)):

sum = 0

for k in range(len(p.r)):

sum+=2*np.pi*Int[j][k][i]*p.r[k]*(p.r[1]-p.r[0])

int_Int[j].append(sum)

plt.clf()

plt.figure(1, figsize=(12,8))

subplots = 1

show_title = True

units_y = False

label_x = False

counter = 1
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for j in fields[0]:

globalmax = max(np.amax(np.asarray(Refields[j])), \

np.amax(np.asarray(Imfields[j])), \

abs(np.amin(np.asarray(Refields[j]))), \

abs(np.amin(np.asarray(Imfields[j]))))

if globalmax == 0:

pass

else:

cmin = min(np.amin(np.asarray(Refields[j]).T/globalmax), \

np.amin(np.asarray(Imfields[j]).T/globalmax))

cmax = max(np.amax(np.asarray(Refields[j]).T/globalmax), \

np.amax(np.asarray(Imfields[j]).T/globalmax))

globalmin = min(np.amin(np.asarray(Refields[j])), \

np.amin(np.asarray(Imfields[j])), \

abs(np.amax(np.asarray(Refields[j]))), \

abs(np.amax(np.asarray(Imfields[j]))))

plt.subplot(len(fields[0]), 4, subplots)

if globalmax == 0:

plt.contourf(p.r*1000., p.time*1e15, np.asarray(Refields[j]).T,\

200, cmap=’seismic’, levels=np.linspace(-1,1,200))

else:

plt.contourf(p.r*1000., p.time*1e15, np.asarray(Refields[j]).T\

/globalmax,200, cmap=’seismic’, \

levels=np.linspace(-1,1,200))

if label_x:
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plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

if units_y:

plt.ylabel(j+’\ntime (fs)’)

else:

plt.ylabel(j+’\n’)

if show_title:

plt.title(’Re(E)’)

plt.clim(-1,1)

plt.ylim(p.time[0]*1e15, p.time[-1]*1e15)

subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

if globalmax == 0:

plt.contourf(p.r*1000., p.time*1e15, np.asarray(Imfields[j]).T,\

200, cmap=’seismic’, levels=np.linspace(-1,1,200))

else:

plt.contourf(p.r*1000., p.time*1e15, np.asarray(Imfields[j]).T\

/globalmax,200, cmap=’seismic’,\

levels=np.linspace(-1,1,200))

if label_x:

plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \
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labelleft=’off’)

if show_title:

plt.title(’Im(E)’)

plt.clim(-1,1)

plt.ylim(p.time[0]*1e15, p.time[-1]*1e15)

subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

plt.contourf(p.r*1000., p.time*1e15, np.asarray(Int[j]).T, 200, \

cmap=’seismic’)

if label_x:

plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’off’)

if show_title:

plt.title(’Intensity’)

if np.max(Int[j]) == 0:

plt.clim(-1,1)

else:

plt.clim(-np.max(Int[j]), np.max(Int[j]))

plt.ylim(p.time[0]*1e15, p.time[-1]*1e15)

subplots+=1

binned_scaling = 3

plt.subplot(len(fields[0]), 4*binned_scaling, \

binned_scaling*subplots-(binned_scaling-1))

plt.plot(np.asarray(int_Int[j]), p.time*1e15)
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plt.xticks([])

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’off’)

if max(int_Int[j])==0:

plt.xlim(-0.2,1)

else:

plt.xlim(-0.1*max(int_Int[j]), max(int_Int[j])\

+0.1*max(int_Int[j]))

plt.ylim(p.time[0]*1e15, p.time[-1]*1e15)

subplots+=1

counter += 1

if counter != 1:

show_title = False

if counter == int(len(fields[0])/2):

units_y = True

else:

units_y = False

if counter == len(fields[0]):

label_x = True

if p.u.save:

plt.savefig(filename+’.png’, format=’png’, transparent=True)

if p.u.show:

plt.show()
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plt.close()

return

def plot2dweighted(fields, p, filename):

Refields = {}

Imfields = {}

Int = {}

int_Int = {}

Int_for_int = {}

for j in fields[0]:

Refields[j] = []

Imfields[j] = []

Int[j] = []

Int_for_int[j] = []

for i in range(len(p.r)):

Refields[j].append(np.real(fields[i][j].E)*2*np.pi*p.r[i])

Imfields[j].append(np.imag(fields[i][j].E)*2*np.pi*p.r[i])

Int[j].append(fields[i][j].int()*2*np.pi*p.r[i])

Int_for_int[j].append(fields[i][j].int())

int_Int[j] = []

for i in range(len(p.freq)):

sum = 0

for k in range(len(p.r)):
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sum+=2*np.pi*Int_for_int[j][k][i]*p.r[k]*(p.r[1]-p.r[0])

int_Int[j].append(sum)

del Int_for_int

plt.clf()

plt.figure(1, figsize=(12,8))

subplots = 1

show_title = True

units_y = False

label_x = False

counter = 1

for j in fields[0]:

globalmax = max(np.amax(np.asarray(Refields[j])), \

np.amax(np.asarray(Imfields[j])), \

abs(np.amin(np.asarray(Refields[j]))), \

abs(np.amin(np.asarray(Imfields[j]))))

freqs = (fields[0][j].w0 + p.freq)*(1/(2.*np.pi*3.e10))

for i in range(len(freqs)):

if freqs[i] < 1.4227e14*(1/(2*np.pi*3.e10)):

freqs[i] = 0.

if globalmax == 0:

pass

else:

cmin = min(np.amin(np.asarray(Refields[j]).T/globalmax), \

np.amin(np.asarray(Imfields[j]).T/globalmax))

cmax = max(np.amax(np.asarray(Refields[j]).T/globalmax), \
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np.amax(np.asarray(Imfields[j]).T/globalmax))

globalmin = min(np.amin(np.asarray(Refields[j])), \

np.amin(np.asarray(Imfields[j])), \

abs(np.amax(np.asarray(Refields[j]))), \

abs(np.amax(np.asarray(Imfields[j]))))

plt.subplot(len(fields[0]), 4, subplots)

if globalmax == 0:

plt.contourf(p.r*1000., freqs, np.asarray(Refields[j]).T,200,\

cmap=’seismic’, levels=np.linspace(-1,1,200))

else:

plt.contourf(p.r*1000., freqs, np.asarray(Refields[j]).T\

/globalmax,200, cmap=’seismic’, \

levels=np.linspace(-1,1,200))

if label_x:

plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

if units_y:

plt.ylabel(j+’\nangular frequency (x10-15)’)

else:

plt.ylabel(j+’\n’)

if show_title:

plt.title(’Re(E)’)

plt.clim(-1,1)

plt.ylim(freqs[0], freqs[-1])
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subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

if globalmax == 0:

plt.contourf(p.r*1000., freqs, np.asarray(Imfields[j]).T,200, \

cmap=’seismic’, levels=np.linspace(-1,1,200))

else:

plt.contourf(p.r*1000., freqs, np.asarray(Imfields[j]).T\

/globalmax,200, cmap=’seismic’, \

levels=np.linspace(-1,1,200))

if label_x:

plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’off’)

if show_title:

plt.title(’Im(E)’)

plt.clim(-1,1)

plt.ylim(freqs[0], freqs[-1])

subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

plt.contourf(p.r*1000., freqs, np.asarray(Int[j]).T, 200, cmap=’seismic’)

if label_x:
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plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’off’)

if show_title:

plt.title(’Intensity’)

if np.max(Int[j]) == 0:

plt.clim(-1,1)

else:

plt.clim(-np.max(Int[j]), np.max(Int[j]))

plt.ylim(freqs[0], freqs[-1])

subplots+=1

binned_scaling = 3

plt.subplot(len(fields[0]), 4*binned_scaling, \

binned_scaling*subplots-(binned_scaling-1))

plt.plot(np.asarray(int_Int[j]), freqs)

plt.xticks([])

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’off’)

if max(int_Int[j])==0:

plt.xlim(-0.2,1)

else:

plt.xlim(-0.1*max(int_Int[j]), max(int_Int[j])\

+0.1*max(int_Int[j]))

plt.ylim(freqs[0], freqs[-1])
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subplots+=1

counter += 1

if counter != 1:

show_title = False

if counter == int(len(fields[0])/2):

units_y = True

else:

units_y = False

if counter == len(fields[0]):

label_x = True

if p.u.save:

plt.savefig(filename+’.png’, format=’png’, transparent=True)

if p.u.show:

plt.show()

plt.close()

return
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CHAPTER D

Appendix D
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In this appendix, we present code developed to simulate the evolution of signal arising from an arbitrary

polarization. This code has been implemented for operation on MacOS and other UNIX-based systems. We

have sought to incorporate as many considerations in simulating signal generation as could be considered,

including the phase of the driving fields and pulse propagation effects. This code consists of three scripts:

parameters.py, operations.py, and main.py.

Once again, the code has been formatted for this presentation.

D.1 parameters.py

The code in parameters.py defines a class that outlines the parameters for the system to be simulated and

the functions used to calculate and determine the optical properties of the material. It should be noted that

in these functions, it would be trivial to add additional materials and solvents as desired.

import numpy as np

from numpy import power as pow

import os

import matplotlib.pyplot as plt

from scipy.interpolate import interp1d

from functools import partial

class parameters:

def __init__(self):

### Options

# parameters.diagnostic is a Boolean that controls whether diagnostic plots are

# displayed during operation

self.diagnostic = False

# parameters.smoothing is a Boolean the controls whether the loaded signal files
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# are baseline subtracted and smoothed (True) or are just modified by having the

# baseline subtracted (False). parameters.baseline_percentage is a scalar value,

# N, that defines all points within N% of the maximum difference from the initial

# point in the loaded arrays as "baseline". parameters.boxcar is a scalar value

# that defines the half-width of the smoothing boxcar, and only has an impact

# when smoothing is enabled. parameters.cutoffs defines the threshold of

# smoothing: all points in the arrays for which y(kx)y*(kx) is below the cutoff

# will be smoothed. parameters.smooth_mode has been added to control whether the

# smoothing is performed in the loaded domain or in the Fourier domain; it seems

# that smoothing in the Fourier domain is more effective for suppressing baseline

# noise, whereas smoothing in the loaded domain appears to be better when the

# feature is noisy.

self.smoothing = True

self.smooth_mode = {’w1’ : ’fourier’, ’w2’ : ’fourier’, ’w3’ : ’loaded’}

self.baseline_percentage = 2.

self.boxcar = 8

self.cutoffs = {’w1’ : 2.e-4, ’w2’ : 4.e-4, ’w3’ : 9.e-5}

# parameters.characteristic_length is an estimate for the temporal width of the

# pulses. This value needs to be a reasonable estimate for the shortest pulses

# involved in the experiment, but does not have to be exact; it is just used to

# define time/frequency grids with approximately equal sampling of the

# polarization in both domains. parameters.time_points defines the number of

# points should be used in constructing the grids.

self.characteristic_length = 75.

self.time_points = 128

# parameters.z_points defines the number of transverse slices that should be

# taken for the integration

self.z_points = 701

# parameters.x_points and parameters.y_points defines the desired number of

# points along the x and y axes of each transverse slice. The program has some
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# flexibility to override this if it is necessary to ensure sufficient bounds of

# the transverse slices.

self.x_points = 128

self.y_points = 128

# parameters.absorption, parameters.gvm_in, parameters.gvm_out, parameters.gvd_in

# and parameters.gvd_out control what absorptive and dispersive properties of the

# system should be considered. The dispersion of the air is neglected, but

# the dispersion of windows and material are both considered. The GVM and GVD

# can be enabled/disabled on the input and output fields separately.

self.absorption = True

self.gvm_in = True

self.gvm_out = True

self.gvd_in = True

self.gvd_out = True

self.mono_convolution = False

# parameters.dispersive_k controls whether the wave vector of the fields

# should be treated according to the propagation at the carrier frequency (False)

# of that each frequency should exhibit a unique wave vector (True)

self.dispersive_k = False

# parameters.save controls whether the polarization slices are saved during

# operation. parameters.save_final controls whether the final field is saved.

# parameters.folder directs the program to the desired save location.

# Note that even ~128x128x128 slices will yield ~180MB files, and double the time

# required for the polarization_slice function to execute.

self.save = False

self.save_final = True

self.save_folder=’’

self.save_file = ’final_field’

# Omit format; output will be saved to .txt
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self.multiprocessing = True

self.processes = 8

self.chunksize = 1

# Modification to the nonresonant electronic nonlinear susceptibility reported by

# Levenson and Bloembergen.

self.elec_modifier = 150000.

### Experimental Configuration

# Beam placement and distance of the focusing optics from the sample

self.mask = {’w1’ : [-0.5, 2.0], ’w2’ : [0., -2.], ’w3’ : [1, 1.75]}

self.d = 24.*2.54

# Phase-matching coefficients and experimental degeneracy

self.phase_matching = {’w1’ : 1, ’w2’ : -1, ’w3’ : 1}

self.degeneracy = 6.

# Monochromator characteristics

self.N = 300. # grooves/mm

self.f_len = 140. # mm

# Slit width

self.slits = 100. # microns

### Sample and window characteristics

# Sample path length in mm

self.L = 1.

# Window path length in mm

self.win_len = (12.5-1.)/2.

# Materials

self.sample = {’benzene’ : 1.0}

self.windows = ’glass’

### Imaging Parameters
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self.focus_shift = {’w1’ : 0., ’w2’ : 0., ’w3’ : 0.}

self.focus_offset = {’w1’ : [0., 0.], ’w2’ : [0., 0.], ’w3’ : [0., 0.]}

self.waist = {’w1’ : 40.5, ’w2’ : 23., ’w3’ : 23.}

### Field Properties and Parameters

self.colors = {’w1’ : ’8000’, ’w2’ : ’7000’, ’w3’ : ’delay’}

self.w0 = {’w3’ : ((3.e8)/(794.038e-9))*2*np.pi}

# Define w0 for w3

self.phase = {’w1’ : 0., ’w2’ : 0., ’w3’ : 0.}

self.delay = {’t31’ : 0., ’t32’ : 0.}

self.rel_lengths = {’w1’ : ’short’, ’w2’ : ’short’, ’w3’ : ’long’}

self.energy = {

’w1’ : {’8300’ : 0.000000719,

’8000’ : 0.000001103,

’7700’ : 0.000001198},

’w2’ : {’7300’ : 0.000001074,

’7000’ : 0.000001007,

’6700’ : 0.000000671},

’w3’ : {’delay’ : 0.0000003739}} # in J

### Parameters for file loading and processing

self.folder = ’’

self.files = {

’w1’ : {’8300’ : ’’,

’8000’ : ’’,

’7700’ : ’’},

’w2’ : {’7300’ : ’’,

’7000’ : ’’,

’6700’ : ’’},
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’w3’ : {

’delay’ : ’’}}

self.columns = {’w1’ : [8, 21], ’w2’ : [8, 21], ’w3’ : [12, 16]}

### Other:

self.c = 3.e8

self.L *= 1000. # Convert from mm to microns

self.win_len *= 1000. # Convert from mm to microns

# Calculate external angles

self.theta_ext = {}

for i in self.mask:

self.theta_ext[i] = [ (np.arctan(self.mask[i][j]/self.d)) \

for j in [0,1] ]

# time_freq_grids()

# Uses the provided characterstic_length and time_points parameters to determine

# time and frequency grids that should provide even sampling of the electric

# fields and polarization in both domains.

def time_freq_grids(self):

# Calculate the point spacing required in the time domain

delta = self.characteristic_length*np.sqrt(np.pi/self.time_points)

# Calculate the bounds of the time array (half the full spread of the grid)

half_width = (delta*self.time_points)/2.

# Calculate the grids.

self.t = np.linspace(-1*half_width, half_width, self.time_points)

self.w = np.linspace(-np.pi/(delta*1e-15),np.pi/(delta*1.e-15),\

len(self.t)+1)[:-1]

return

def spatial_grids(self):
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# Calculate the half-width bounds for the x and y axes.

xy_hw = [(0.5 * i * min(self.waist.itervalues()) * np.sqrt(np.pi/i)) \

for i in [self.x_points, self.y_points]]

# Define the x,y grids

self.x = np.linspace(-xy_hw[0], xy_hw[0], self.x_points)

self.y = np.linspace(-xy_hw[1], xy_hw[1], self.y_points)

self.kx = np.linspace(-1/(2*abs(self.x[1] - self.x[0])),\

1/(2*abs(self.x[1] - self.x[0])), self.x_points+1)[:-1]

self.ky = np.linspace(-1/(2*abs(self.y[1] - self.y[0])), \

1/(2*abs(self.y[1] - self.y[0])), self.y_points+1)[:-1]

ds = [self.L*np.tan(self.theta[’w4’][0]), \

self.L*np.tan(self.theta[’w4’][1]), \

self.L]

ds = np.sqrt(np.dot(np.asarray(ds), np.asarray(ds)))

deltaz = max(np.amax(abs(self.x))*np.tan(self.theta[’w4’][0]),\

np.amax(abs(self.y))*np.tan(self.theta[’w4’][1]))

self.z = np.linspace(-(0.5* + deltaz), (0.5*ds + deltaz), self.z_points)

return

# This method calculates the optical properties at the relevant frequencies

# It adds a property to the class for each optical property, with each property

# being a dictionary containing the values of those properties for each field.

def calculate_optical_properties(self, w = ’default’):

if w == ’default’:

del w

w = self.w

self.n0, self.nw, self.nwin, self.nair = {}, {}, {}, {}

# indices of refraction

self.ug = {}



330

# group velocity

self.gvd, self.gvdw = {}, {}

# group velocity dispersions

self.a0, self.aw = {}, {}

# absorption coefficients

for i in self.w0:

self.nair[i] = self.calc_index(((2*np.pi*3.e17)/self.w0[i]),\

’air’)

self.nwin[i] = self.calc_index(((2*np.pi*3.e17)/self.w0[i]), \

self.windows)

# The index of refraction of the sample will be calculated as the sum of the

# products of each component’s refractive index and volume fraction (the

# Arago-Biot model. While it seems that this model is not as accurage as the

# Lorentz-Lorentz model, it is reasonably accurate and much simpler.

self.n0[i] = sum( ((self.calc_index( ((2 * np.pi * 3.e17)\

/self.w0[i]), j)* self.sample[j]) for j in self.sample) )

nw_temp = []

nw_temp.extend( (sum( ((self.calc_index(((2 * np.pi * 3.e17)\

/(self.w0[i] + self.w[j])), k) * self.sample[k]) \

for k in self.sample))) for j in range(len(w)))

self.nw[i] = np.asarray(nw_temp)

# The Arago-Biot model, i.e. n = sum ni*fi where ni and fi are the index and

# volume fraction of the i’th sample component, can be extended to calculate

# the group velocity of a mixture. From the definition of the group velocity

# ug = (dk/dw)^1: given k = nw/c, dk/dw = d/dw (nw/c). If we treat n as the

# index of a mixture: dk/dw = d/dw ((sum ni*fi) w/c) = sum d/dw ((ni*fi) w/c)

# But fi is independent of frequency, so: dk/dw = sum fi * d/dw (ni w/c)

# We can recognize d/dw (ni w/c) as dk/dw of the i’th component, so dk/dw of
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# the mixture is the sum of fi*(dk/dw)i, or ug^-1 = sum (fi/ugi).

self.ug[i] = (1.e18)/(sum((((1/self.calc_gv(((2 * np.pi * 3.e17)\

/self.w0[i]), j))*self.sample[j]) for j in self.sample)))

# Given GVD is d2k/dw2, it is trivial to show (d2k/dw2) = sum fi*(d2k/dw2)i.

self.gvd[i] = 1.E-33 * sum( ((self.calc_gvd(((2 * np.pi * 3.e17)\

/self.w0[i]), j) * self.sample[j]) for j in self.sample))

self.gvdw[i] = self.calc_gvd(((2*np.pi*3.e17)/self.w0[i]),\

self.windows)*1.E-33

self.a0[i] = self.alpha(((2*np.pi*3.e17)/self.w0[i])) * 1.e-4

aw_temp = []

aw_temp.extend( ((self.alpha(((2*np.pi*3.e17)/(self.w0[i]+j))) \

* 1.e-4) for j in w) )

self.aw[i] = np.asarray(aw_temp)

del aw_temp, nw_temp

# If a key for w4 exists, calculate the nonlinear susceptibility

if ’w4’ in self.w0:

chi_temp = []

chi_temp.extend((sum(((self.calc_chi(self.w0[’w4’] + j, i) \

* 1.e12 * self.sample[i]) for i in self.sample)) \

for j in w))

self.chi = np.asarray(chi_temp)

del chi_temp

return

# This method calculates the internal angles of each field

def calculate_internal_angles(self):

self.theta = {}
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# For each key in the property describing external angles (i.e. ’w1’, ’w2’, ’w3’)

# calculate the internal angles for each of these fields using Snell’s law.

for i in self.theta_ext:

self.theta[i] = [(np.arcsin((self.nair[i]*\

np.sin(self.theta_ext[i][j])) \

/self.n0[i])) for j in [0,1] ]

del i

# If a key exists in theta for ’w1’, ’w2’, and ’w3’, calculate the internal

# angles for the output field according to the phase-matching conditions.

if ’w1’ in self.theta and ’w2’ in self.theta and ’w3’ in self.theta:

# Calculate the magnitude of the k-vector for each field in 1/micron

kmag = {}

for i in self.w0:

kmag[i] = (self.w0[i]*self.n0[i]/(3.e8))*1.e-6

# in 1/micron

del i

# Find thetax and thetay for the output field that satisfy the relationships:

# k4x = c1*k1x + c2*k2x + c3*k3x

# k4y = c1*k1y + c2*k2y + c3*k3y

# This may not necessarily be the exact solution since it neglects kz but

# hopefully should be close for most cases.

sums = [sum( ((self.phase_matching[i]*kmag[i]\

*np.sin(self.theta[i][j])) \

for i in self.theta)) for j in [0,1]]

self.theta[’w4’] = [ (np.arcsin(sums[i]/kmag[’w4’])) \

for i in [0,1]]

# Use the calculated angles to calculate the actual k-vectors

k = {}

for i in self.theta:

k[i] = kmag[i]*np.asarray([np.sin(self.theta[i][0]),

np.sin(self.theta[i][0]), np.sqrt(1 \
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- (np.sin(self.theta[i][0])**2) \

- (np.sin(self.theta[i][1])**2))])

del i

# Sum k1, k2, and k3 according to the phase_matching coefficients to find k4’

k4p = sum( (self.phase_matching[i] * k[i]) \

for i in [’w1’, ’w2’, ’w3’])

# Calculate the phase-mismatch as k4’ - k4

# Ideally, k4’ and k4 should be in roughly the same direction; therefore, the

# relative magnitude of the two vectors should correlate with the sign of

# deltak: if k4’ is longer/shorter than k4, deltak should be positive/negative

if np.dot(k4p, k4p) >= np.dot(k[’w4’], k[’w4’]):

self.deltak = np.sqrt(np.abs(np.dot((k4p - k[’w4’]),\

(k4p - k[’w4’]))))

else:

self.deltak = -np.sqrt(np.abs(np.dot((k4p - k[’w4’]),\

(k4p - k[’w4’]))))

return

def calc_index(self, wavelength, material):

# while nm is taken as the default for wavelengths, most forms of the Selmeier

# or Cauchy’s equations uses microns

# convert from nm to micron by dividing by 1000

wl = wavelength/1000.

if material == ’benzene’:

a, b, c, d, e = 2.170184597, 0.00059399, 0.02303464, \

-0.000499485, 0.000178796

return np.sqrt(a + (b*pow(wl,2)) + (c*pow(wl, -2)) \

+ (d*pow(wl, -4)) + (e*pow(wl, -6)))
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elif material == ’glass’:

# Precision Cells does not appear to give the type of glass

# BK7 is used as a representative blend

a1, b1 = 1.03961212, -0.00600069867

a2, b2 = 0.231792344, -0.0200179144

a3, b3 = 1.01046945, -103.560653

return np.sqrt(1 + sum( ((i * pow(wl, 2) * pow((pow(wl, 2) + j),\

-1)) for i,j in [(a1,b1), (a2,b2), (a3,b3)]) ))

elif material == ’air’:

a1, b1 = 0.05792105, 238.0185

a2, b2 = 0.00167917, 57.362

return 1 + sum( ((i * pow((j - pow(wl, -2)), -1)) \

for i,j in [(a1,b1), (a2,b2)]) )

# material_properties.gv(WAVELENGTH, MATERIAL)

# Takes WAVELENGTH (in nm) and the name of a material (as a string)

# Returns the group velocity of MATERIAL at WAVELENGTH in units mm/fs

# Group velocity is dw/dk, or (dk/dw)^-1

def calc_gv(self, wavelength, material):

# Defined as (dw/dk) (or (dk/dw)^(-1))

wl = wavelength/1000.

if material == ’benzene’:

a, b, c, d, e = 2.170184597, 0.00059399, 0.02303464, \

-0.000499485, 0.000178796

dndl = 0.5*pow(self.calc_index(wavelength, material), -1) \

* (2*b*wl - 2*c*pow(wl, -3) - 4*d*pow(wl, -5) \

- 6*e*pow(wl, -7))
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elif material == ’glass’:

a1, b1 = 1.03961212, -0.00600069867

a2, b2 = 0.231792344, -0.0200179144

a3, b3 = 1.01046945, -103.560653

dndl = 0.5*pow(self.calc_index(wavelength, material), -1) \

* sum(((2 * i * wl * pow((pow(wl,2) + j), -1) \

- 2 * i * pow(wl,3) * pow((pow(wl,2) + j),-2)) \

for i,j in [(a1,b1), (a2,b2), (a3,b3)]))

elif material == ’air’:

a1, b1 = 0.05792105, 238.0185

a2, b2 = 0.00167917, 57.362

dndl = sum( ((-2 * i * pow(wl,-3) * pow((j - pow(wl,-2)), -2)) \

for i,j in [(a1,b1), (a2,b2)]))

return self.c * pow((self.calc_index(wavelength, material) - wl*dndl), \

-1)*1.e-12

# in mm/fs

# parameters.gvd(WAVELENGTH, MATERIAL)

# Takes WAVELENGTH (in nm) and the name of a material (as a string)

# Returns the group velocity dispersion of MATERIAL at WAVELENGTH

# in units fs^2/mm

# Group velocity dispersion is d^2k/dw^2

def calc_gvd(self, wavelength, material):

wl = wavelength/1000.

if material == ’benzene’:

a, b, c, d, e = 2.170184597, 0.00059399, 0.02303464,\

-0.000499485, 0.000178796

dndl = 0.5*pow(self.calc_index(wavelength, material), -1) \
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* (2*b*wl - 2*c*pow(wl, -3) - 4*d*pow(wl, -5) \

- 6*e*pow(wl, -7))

d2ndl2 = 0.5*pow(self.calc_index(wavelength, material), -1) \

* (2*b + 6*c*pow(wl, -4) + 20*d*pow(wl, -6) \

+ 42*e*pow(wl, -8)) + -0.5\

*pow(self.calc_index(wavelength, material), -2) \

* dndl * (2*b*wl - 2*c*pow(wl, -3) \

- 4*d*pow(wl, -5) - 6*e*pow(wl, -7))

elif material == ’glass’:

a1, b1 = 1.03961212, -0.00600069867

a2, b2 = 0.231792344, -0.0200179144

a3, b3 = 1.01046945, -103.560653

dndl = 0.5*pow(self.calc_index(wavelength, material), -1) \

* sum(((2 * i * wl * pow((pow(wl,2) + j), -1) \

- 2 * i * pow(wl,3) * pow((pow(wl,2) + j),-2)) \

for i,j in [(a1,b1), (a2,b2), (a3,b3)]))

d2ndl2 = 0.5 * pow(self.calc_index(wavelength, material), -1) \

* sum(((2 * i * pow((pow(wl,2) + j),-1) \

- 10 * i * pow(wl,2) * pow((pow(wl,2) + j),-2) \

+ 8 * i * pow(wl,4) * pow((pow(wl,2) + j),-3)) \

for i,j in [(a1,b1), (a2,b2), (a3,b3)])) \

- 0.5*pow(self.calc_index(wavelength, material),\

-2) * dndl * sum( ((2 * i * wl * pow((pow(wl,2) \

+ j),-1) - 2 * i * pow(wl,3) \

* pow((pow(wl,2) + j),-2)) \

for i,j in [(a1,b1), (a2,b2), (a3,b3)]))

elif material == ’air’:

a1, b1 = 0.05792105, 238.0185

a2, b2 = 0.00167917, 57.362

d2ndl2 = sum(((6 * i * pow(wl,-4) * pow((j - pow(wl,-2)),-2)\

+ 8 * i * pow(wl,-6) * pow((j - pow(wl,-2)),-3))\

for i,j in [(a1,b1), (a2,b2)]))
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return (((wl)**3)/(2*np.pi*(self.c**2))*d2ndl2)*(1e21) #fs2/mm

# parameters.alpha(WAVELENGTH)

# Takes WAVELENGTH (in nm)

# Returns the absorbance coefficient of the sample at WAVELENGTH in units 1/cm

def alpha(self, wavelength):

return 0.

# parameters.chi(p, FREQUENCY, INDICES)

# Takes angular frequency (in 1/s)

# Currently set to return the non-resonant electronic and Raman

# response of benzene’s 992cm-1 mode in a CARS experiment

# in which (w1-w2) prepare the vibrational coherence

# Returns the chi3 value in units of m2/V2

def calc_chi(self, freq, material):

if material == ’benzene’:

# Convert to the frequency shift in wavenumbers from frequency of w3

wn = ((freq - self.w0[’w3’])/(2*np.pi))*(1/3.e10)

# Terms from Levenson and Bloembergen, J Chem Phys 60 1323 with a

# modifier to increase the electronic response under fs excitation. Note

# that we neglect the imaginary contribution described by Levenson and

# Bloembergen. (They do not give a fixed value, and it is >200 times

# weaker than the real, and within the bounds of their reported error.)

chi_elec = 0.64e-36*self.elec_modifier

chi_vib = 1.74e-35 * (992./((992.**2) - (wn**2) + 1j*2.*wn*1.15))

# Local field enhancement factor

F = reduce(lambda x,y: x*y, (((((self.n0[i]**2) + 2.)/3.)) \

for i in self.n0))
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# Chi3 in cgs units; factor of 0.5 accounts for difference in degeneracy

chi_cgs = 6.75e21*(chi_elec+chi_vib)*F*0.5

# Convert chi3 from cgs units to SI units

return chi_cgs*4*np.pi*(1.e-4)*((299.79)**(-2))

D.2 operations.py

The second script associated with these calculations, operations.py, contains many of the functions neces-

sary for proper execution.

import numpy as np

from numpy import power as pow

import os, itertools, datetime

import matplotlib.pyplot as plt

from scipy.interpolate import interp1d

from functools import partial

from itertools import product

# operations.load_field (FOLDER, FILE, COLUMNS)

# Takes two strings (FOLDER and FILE) and a 2-element list (COLUMNS). FOLDER and FILE

# identify the location and name of the file containing the raw tuning data for one

# field. COLUMNS is a two-element list that specifies the indices (with indexing starting

# at 0) of the columns containing the data for the x (COLUMNS[0]) and y (COLUMNS[1]) data.

def load_field(folder, file, columns):

# Initialize the arrays.

x_axis, y_axis = [], []

# Open the target file.

f = open(folder + ’/’ + file)

# Load each line and append the values in the appropriate columns to x and y arrays.

for line in f:

x_axis.append(float(line.split(’\t’)[columns[0]]))

y_axis.append(float(line.split(’\t’)[columns[1]]))
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f.close()

del f, line

# Return the loaded files as a tuple of arrays (x,y)

return np.asarray(x_axis), np.asarray(y_axis)

# Initialize the matplotlib figure and axes objects necessary to ensure proper operation

# for diagnostics enabled or disabled.

def initialize_diagnostics(modes, diagnostic, smoothing):

# Initialize a matplotlib figure object and a dictionary for storing the axes

fig1, fig2 = plt.figure(), plt.figure()

axes1, axes2 = {}, {}

# If diagnostics are not enabled, just populate axes1 and axes2 as dummy variables.

if not diagnostic:

for i in [’w1’, ’w2’, ’w3’]:

axes1[i] = [None,None]

axes2[i] = [None,None]

# Otherwise, populate axes according to whether smoothing is enabled or not.

else:

if smoothing:

# Populate axes1 according to the manner of smoothing.

for i,j,k in [(’w1’,1,1), (’w2’,3,2), (’w3’,5,3)]:

if modes[i] == ’fourier’:

axes1[i] = [fig1.add_subplot(3,2,j), \

fig1.add_subplot(3,2,j+1)]

elif modes[i] == ’loaded’:

axes1[i] = [fig1.add_subplot(3,1,k),None]

del i, j, k

elif not smoothing:

for i,j in [(’w1’, 1), (’w2’, 2), (’w3’,3)]:

axes1[i] = [fig1.add_subplot(3,1,j),None]

for i,j in [(’w1’, 1), (’w2’, 3), (’w3’, 5)]:

axes2[i] = [fig2.add_subplot(3,2,j),fig2.add_subplot(3,2,j+1)]
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return fig1, axes1, fig2, axes2

# operations.smooth(X,Y,CUTOFF, BOXCAR, BASE_PER, DIAG, AX, MODE)

# Takes two numpy arrays (X,Y), three scalar values (CUTOFF, BOXCAR, and BASE_PER), a

# boolean (DIAG), and an axis object from matplotlib.pyplot (only necessary if

# DIAG is True). Performs baseline subtraction and smoothing on the Y array. CUTOFF

# specifies the threshold under which smoothing is performed, and BOXCAR specifies the

# limit for the half-width of the smoothing boxcar. BASE_PER specifies the percentage

# used to define which points in the Y array constitute "baseline". DIAG indicates

# the routine making the function call is performing diagnostic plotting; if True, smooth

# requires an axis object on which it can plot the results of processing.

def smooth(x, y, cutoff, boxcar= 6, base_per= 2., diag= False, ax=None, mode=’fourier’):

# Baseline subtraction.

y = baseline_subtract(y = y, perc = base_per)

# If the smoothing mode is to operate in the Fourier domain:

if mode == ’fourier’:

# If necessary, define an array corresponding to the Fourier domain of the x array

kx = np.linspace(-1/(2*abs(x[1]-x[0])), 1/(2*abs(x[1]-x[0])),\

len(x)+1)[:-1]

# Perform the 1DFT

y_ft = (1/np.sqrt(len(x))) * (y[:,None] \

* np.exp(1j*2*np.pi*x[:,None]*kx[None,:])).sum(axis=0)

# If diagnostics are enabled, plot y(kx)

if diag:

ax.plot(kx, y_ft*np.conj(y_ft), ’k-’)

ax.set_yscale(’log’)

# Initialize the smoothed array as a copy of the original array.

y_ft_sm = y_ft.copy()

# Only perform smoothing for points where y(kx)y*(kx) are below the cutoff. It

# should be noted that this algorithm assumes a feature in the middle of the data

# with continuous background that needs to be smoothed.

for i in np.where(y_ft*np.conj(y_ft) < cutoff)[0]:
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# Define initial averaging window as the span of i +/- boxcar.

upper = i + boxcar + 1

lower = i - boxcar

# If lower < 0, the boxcar reaches the beginning of the array; in this case, only

# average over the points up to the upper bound.

if lower < 0:

y_ft_sm[i] = np.mean(y_ft[:upper])

# If upper extends the range of the boxcar beyond the end of the array, the

# average is taken from the lower bound to the end of the array, incorporating

# the first point, due to the symmetry of the FT.

elif upper > (len(y_ft) - 1):

y_ft_sm[i] = np.mean(np.concatenate((y_ft[lower:],\

y_ft[:1])))

# Otherwise, perform the average between upper and lower. However, so we are

# only averaging out noise, we check to make sure that the bounds of the boxcar do

# not significantly extend into the main features of the array; if the bounds do

# extend into the main features of the array (i.e. those above the cutoff level),

# the bounds are gradually decreased as the index approaches the main feature(s).

else:

upper += -2

lower += 2

check1, check2 = 0,0

while upper not in np.where(y_ft*np.conj(y_ft) \

< cutoff)[0]:

upper += -1

check1 += 1

if check1 > boxcar:

break

while lower not in np.where(y_ft*np.conj(y_ft) \

< cutoff)[0]:

lower += 1

check2 += 1
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if check2 > boxcar:

break

upper += 2

lower += -2

y_ft_sm[i] = np.mean(y_ft[lower:upper])

# If diagnostics are enabled, plot the smoothed y(kx) data.

if diag:

ax.plot(kx, y_ft_sm*np.conj(y_ft_sm), ’r-’)

# Perform the 1DFT to convert the smoothed y(kx) to a smoothed y(x)

y_sm = (1/np.sqrt(len(kx))) * (y_ft_sm[:,None] \

* np.exp(-1j*2*np.pi*kx[:,None]*x[None,:])).sum(axis=0)

del y_ft, y_ft_sm

# Ensure the smoothed array is real-valued.

y_sm = np.real(np.sqrt(y_sm*np.conj(y_sm)))

# Otherwise, just perform smoothing on the background subtracted raw data.

elif mode == ’loaded’:

y_sm = np.empty(np.shape(y))

for i in range(len(y)):

if i < boxcar:

y_sm[i] = np.mean(y[:i+boxcar+1])

elif i > (len(y) - boxcar - 1):

y_sm[i] = np.mean(y[i-boxcar:])

else:

y_sm[i] = np.mean(y[i-boxcar:i+boxcar+1])

# Since the Fourier smoothing algorithm will yield all values greater than or equal to

# zero, we will perform one more baseline subtraction, then return the result.

return baseline_subtract(y = y_sm, perc = base_per)

# operations.baseline_subtract(Y, PERC)

# Takes a numpy array Y and a scalar value PERC (corresponding to the desired cutoff

# percentage). Averages all points within PERC% of the maximum deviation from the
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# initial point in Y, subtracts this value from the array, and returns the result.

def baseline_subtract(y, perc, **kwargs):

baseline = np.mean(y[np.where(abs(y-y[0]) < (perc/100.)\

*np.amax(abs(y - y[0])))[0]])

return y - baseline

# operations.center_freq(GUESS, W, WL, SIG)

# Takes a scalar value (GUESS) and three arrays(W, WL, SIG). WL and SIG define the

# spectrum of the field in question. Starting from the GUESS of the central frequency,

# center_freq interpolates SIG onto a regular frequency grid, W (centered at 0), and

# calculates the true central frequency and returns the result.

def center_freq(guess, w, wl, sig):

# Calculate an angular frequency grid centered at guess from the wavelength grid

f = 2*np.pi*(3.e17/wl) - guess

# Generate a model for interpolating the signal onto an arbitrary frequency grid.

if f[1] > f[0]:

model = interp1d(f, sig, bounds_error = False, fill_value = 0.)

else:

model = interp1d(f[::-1], sig[::-1], bounds_error = False, \

fill_value = 0.)

# Calculate the central frequency sum(I*w)/sum(I)

w0 = ((((model(w))*(w + guess)).sum())/((model(w)).sum()))

# Ensure the value is real-valued, and return it

return float(np.real(np.sqrt(w0*np.conj(w0))))

# operations.grid_spectrum(W0, W, WL, SIG)

# Takes a scalar value (W0) and three arrays (W, WL, SIG). WL and SIG define the

# spectrum of a field that may not necessarily be gridded regularly. grid_spectrum

# takes the WL grid and converts it to a frequency grid centered at 0 (where the

# frequency is W0). A 1D interpolation is then performed to map the SIG array

# onto the provided frequency grid, W.

def grid_spectrum(w0, w, wl, sig):
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# Calculate an angular frequency grid from the loaded wavelength grid

f = (2*np.pi*(3.e17/wl)) - w0

# Generate a model for interpolating the signal onto an arbitrary frequency grid.

if f[1] > f[0]:

model = interp1d(f, sig, bounds_error = False, fill_value = 0.)

else:

model = interp1d(f[::-1], sig[::-1], bounds_error = False, \

fill_value = 0.)

# Return the interpolation of the raw data onto the provided frequency grid.

return model(w)

# operations.calculate_field(X_AX, SIG, N0, WAIST, ENERGY, T_OR_W, diagnostic, returnt)

# Takes two arrays (X_AX and SIG), three scalars (N0, WAIST, and ENERGY), a

# string (T_OR_W), and a boolean (diagnostic). SIG is the intensity-level spectrum on

# the X_AX grid, which should either be an angular frequency grid in 1/s or a time grid

# in femtoseconds. T_OR_W informs whether X_AX is a frequency grid (T_OR_W=’frequency’)

# or a time grid (T_OR_W = ’time’). N0, WAIST, and ENERGY are used to determine the

# proper scaling factor for converting SIG to an electric field gridded onto X_AX. If

# diagnostic is True, the function will also print out a line comparing the energy

# calculated with the resulting scaling factor to the provided energy. returnt allows the

# user to request calculate_field to return the internal t grid.

# The electric field is returned in units of V/micron*s (the per second is essentially

# per unit frequency/per unit time).

def calculate_field(x_ax,sig,n0,waist,energy,t_or_w,perc,diagnostic=False,returnt=False):

if t_or_w == ’frequency’:

# If x_ax is frequency, define a time grid and perform the 1DFT to get I(t)

t = np.linspace(-np.pi/(abs(x_ax[1]-x_ax[0])), np.pi/(abs(x_ax[1]\

-x_ax[0])), len(x_ax)+1)[:-1]

intensity = (1/np.sqrt(len(x_ax))) * (sig[:,None] \

* np.exp(1j*x_ax[:,None]*t[None,:])).sum(axis=0)

# Ensure I(t) is real-valued with a mean baseline of 0.
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intensity = np.real(np.sqrt(intensity*np.conj(intensity)))

intensity = baseline_subtract(y = intensity, perc = perc)

t *= 1.e15 # convert the resulting time axis to fs

elif t_or_w == ’time’:

# If x_ax is in time, only need to copy the x_ax and sig variables.

t = x_ax

intensity = sig.copy()

# Define temporary x,y grids

xy_hw = 64.*waist*np.sqrt(np.pi/128.)

x,y = np.linspace(-xy_hw, xy_hw, 128), np.linspace(-xy_hw, xy_hw, 128)

# Calculate the amplitude spectrum.

amp = np.where(intensity < 0, -np.sqrt(-intensity), np.sqrt(intensity))

# Define the electric field at the waist E(t,x,y)

E = amp[:,None,None] \

* np.exp(-(((x[None,:,None])**2) + ((y[None,None,:])**2))/(waist**2))

# Calculate the integral of EE* over t,x,y, i.e. total energy for current amp

integral = (1.33e-3) * n0 * ((((np.real(E*np.conj(E)) * abs(t[1] - t[0]) \

* 1.e-15 * abs(x[1] - x[0]) * 1.e-6 * abs(y[1] - y[0]) \

* 1.e-6).sum(axis = 2)).sum(axis = 1)).sum(axis = 0))

del E

# If diagnostic is true, the provided energy and integrated energy will be printed.

if diagnostic:

E = (amp*np.sqrt(energy/integral))[:,None,None] \

* np.exp(-(((x[None,:,None])**2) \

+ ((y[None,None,:])**2))/(waist**2))

integral2 = (1.33e-3) * n0 * ((((np.real(E*np.conj(E)) \

* abs(t[1] - t[0]) * 1.e-15 * abs(x[1] - x[0]) \

* 1.e-6 * abs(y[1] - y[0]) \

* 1.e-6).sum(axis = 2)).sum(axis = 1)).sum(axis = 0))

print ’Calculated energy: {0}; Reported energy: {1}’\

.format(integral2, energy)

# Return the normalized amplitude-level signal and - if requested - the time grid
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if returnt:

return amp*np.sqrt(energy/integral)*1.e-6, t

else:

return amp*np.sqrt(energy/integral)*1.e-6

# The factor of 1.e-6 returns the field in unis of V/micron instead of V/m.

# operations.field_slice is a function called by polarization_slice

# **kwargs is expected to provide values associated with specific keywords, so it is not

# advised to use this function directly without reviewing the behavior.

def field_slice(**kwargs):

# Generate rotation matrices to rotate by thetax around the y axis (A) and by -thetay

# around the x-axis (B) (the negative is required due to sign conventions).

A = np.asarray([[np.cos(kwargs[’theta’][0]), 0, np.sin(kwargs[’theta’][0])],\

[0,1,0],\

[-np.sin(kwargs[’theta’][0]), 0, np.cos(kwargs[’theta’][0])]])

B = np.asarray([[1,0,0],\

[0, np.cos(-kwargs[’theta’][1]), -np.sin(-kwargs[’theta’][1])],\

[0, np.sin(-kwargs[’theta’][1]), np.cos(-kwargs[’theta’][1])]])

# Calculate the field’s local coordinates [x’,y’,z’] as A (dot) B (dot) [x,y,z]

xp = np.empty(np.shape(kwargs[’x’]))

yp = np.empty(np.shape(kwargs[’x’]))

zp = np.empty(np.shape(kwargs[’x’]))

# For whatever reason, it proved necessary to calculate the product elementwise.

for i,j in product(range(np.size(kwargs[’x’],axis=0)),\

range(np.size(kwargs[’x’],axis=1))):

[xp[i,j], yp[i,j], zp[i,j]] = np.dot(A, np.dot(B, \

np.asarray([kwargs[’x’][i,j], kwargs[’y’][i,j], \

kwargs[’z’][i,j]])))

# For linear effects, we need the pathlength from the start of the sample.

[x0,y0,z0] = np.dot(A,np.dot(B,np.asarray([kwargs[’x’],kwargs[’y’],\

-kwargs[’L’]/2])))
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dzp = zp - z0

del x0, y0, z0

# Apply the offsets and shift to the sample coordinates.

xp += kwargs[’focus_offset’][0]

yp += kwargs[’focus_offset’][1]

zp += kwargs[’focus_shift’]

# Calculate derived properties: sample wavelength, Rayleigh length, w(z), 1/R(z)

wl = (2*np.pi*(3.e14)/kwargs[’w0’])/kwargs[’n0’]

# sample wavelength, in microns

z0 = (np.pi*(kwargs[’waist’]**2))/(wl)

# Rayleigh length

wzp = kwargs[’waist’]*np.sqrt(1 + ((zp/z0)**2))

Rzpinv = np.where(zp != 0., pow((zp*(1 + ((z0/zp)**2))), -1), 0.)

# For ’long’ pulses, we can calculate the field in time, since dispersion is minor.

# We also do not need to be concerned about the separability of A and psi, as

# neglecting dispersion and treating absorption only according to w0 removes the

# frequency dependence of psi.

if kwargs[’rel_length’] == ’long’:

# The spatial effects of TEM00 mode propagation are calculated.

E = kwargs[’Et’][:,None,None] * (1/np.sqrt(1 + ((zp[None,:,:]/z0)**2))) \

* np.exp(-(((xp[None,:,:])**2) + ((yp[None,:,:])**2))/\

((wzp[None,:,:])**2)) * np.exp(1j\

*np.arctan(zp[None,:,:]/z0)) \

* np.exp(-1j*(((xp[None,:,:])**2) + ((yp[None,:,:])**2))\

*(np.pi/wl) * Rzpinv[None,:,:]) \

* np.exp(-1j * ((kwargs[’n0’]*kwargs[’w0’])/(3.e14)) \

* zp[None,:,:])

# Absorptive effects are applied according to the absorption at w0.

if kwargs[’absorption’]:

E *= np.exp(-0.5*kwargs[’a0’]*dzp[None,:,:])
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# For ’short’ pulses, dispersive effects need to be applied in the frequency domain.

elif kwargs[’rel_length’] == ’short’:

# 1DFT of E(t) to E(w)

E = (1/np.sqrt(len(kwargs[’t’]))) * (kwargs[’Et’][:,None] \

* np.exp(-1j*kwargs[’t’][:,None]*1.e-15\

*kwargs[’w’][None,:])).sum(axis=0)

# Calculation of the spatial effects of TEM00 mode propagation

Ew = E[:,None,None] * (1/np.sqrt(1 + ((zp[None,:,:]/z0)**2))) \

* np.exp(-(((xp[None,:,:])**2) + ((yp[None,:,:])**2))\

/((wzp[None,:,:])**2)) * np.exp(1j\

*np.arctan(zp[None,:,:]/z0)) \

* np.exp(-1j*(((xp[None,:,:])**2) + ((yp[None,:,:])**2))\

*(np.pi/wl) * Rzpinv[None,:,:])

# Apply the effects of longitudinal phase

if kwargs[’disp’]:

Ew *= np.exp(-1j * ((kwargs[’nw’][:,None,None] * (kwargs[’w0’]\

+ kwargs[’w’][:,None,None]))/(3.e14)) * zp[None,:,:])

else:

Ew *= np.exp(-1j * ((kwargs[’n0’]*kwargs[’w0’])/(3.e14)) \

* zp[None,:,:])

del E

# Absorptive effects are applied, accounting for the wavelength-dependence.

if kwargs[’absorption’]:

Ew *= np.exp(-0.5 * kwargs[’aw’][:,None,None] * dzp[None,:,:])

# GVM effects are applied.

if kwargs[’gvm_in’]:

Ew *= np.exp(-1j * ((1/kwargs[’ug’]) - (1/kwargs[’ugr’])) \

* kwargs[’w’][:,None,None] * dzp[None,:,:])

# GVD effects are applied, accounting effects of both the sample and the window.

if kwargs[’gvd_in’]:

if kwargs[’win_len’] > 0:
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thetaw = []

for i in [0,1]:

thetaw.append(np.arcsin((kwargs[’n0’] * \

np.sin(kwargs[’theta’][i]))\

/kwargs[’nwin’]))

del i

d = [kwargs[’win_len’] * np.tan(thetaw[0]), \

kwargs[’win_len’] * np.tan(thetaw[1]), \

kwargs[’win_len’]]

d = np.sqrt(np.dot(np.asarray(d), np.asarray(d)))

else:

d = 0.

Ew *= np.exp(-1j * 0.5 * kwargs[’gvd’] \

* ((kwargs[’w’][:,None,None])**2) \

* dzp[None,:,:]) * np.exp(-1j * 0.5 * kwargs[’gvdw’] \

* ((kwargs[’w’][:,None,None])**2) * d)

# Perform the 1DFT to get E(t,x,y,z) from E(w,x,y,z).

E = np.empty(np.shape(Ew), dtype=complex)

for i in range(np.size(Ew, 2)):

E[:,:,i] = (1/np.sqrt(len(kwargs[’w’]))) * (Ew[:,None,:,i] \

* np.exp(1j * kwargs[’w’][:,None,None] \

* kwargs[’t’][None,:,None] * 1.e-15)).sum(axis=0)

return E # Return the 3D E(t,x,y,z)

def polarization_slice(z, **kwargs):

# Rotation matrices calculate x’,y’,z’ (z’ _|_ the sample) from x,y,z (z||k4); since

# w4’s internal angles are measured relative to sample normal, need their negatives.

# A is the rotation matrix around the y-axis by an angle of -thetax, while B is the

# rotation matrix around the x-axis by an angle of -thetay (actually need --thetay).
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A = np.asarray([[np.cos(-kwargs[’theta’][’w4’][0]), 0, \

np.sin(-kwargs[’theta’][’w4’][0])],\

[0, 1, 0],\

[-np.sin(-kwargs[’theta’][’w4’][0]), 0, \

np.cos(-kwargs[’theta’][’w4’][0])]])

B = np.asarray([[1,0,0],\

[0, np.cos(kwargs[’theta’][’w4’][1]), \

-np.sin(kwargs[’theta’][’w4’][1])],\

[0, np.sin(kwargs[’theta’][’w4’][1]), \

np.cos(kwargs[’theta’][’w4’][1])]])

# Apply the rotation matrices to calculate the sample coordinates x’,y’,z’. These are

# 2D arrays with dimensions inherited from the transverse slice’s x and y coordinates.

[xp, yp, zp] = np.dot(A, \

np.dot(B, np.asarray([kwargs[’x’][:,None],\

kwargs[’y’][None,:], z])))

# Calculate the TEM00 mode for each field. This employs a temporary function that

# reduces the function call to a single field identifier ’fld’.

lam = lambda fld: field_slice(x = xp, y = yp, z = zp, t = kwargs[’t’], \

w = kwargs[’w’], theta = kwargs[’theta’][fld], \

focus_offset = kwargs[’focus_offset’][fld], \

focus_shift = kwargs[’focus_shift’][fld], L = kwargs[’L’], \

w0 = kwargs[’w0’][fld], waist = kwargs[’waist’][fld], \

n0 = kwargs[’n0’][fld], nw = kwargs[’nw’][fld], \

rel_length = kwargs[’rel_length’][fld], \

Et = kwargs[’Et’][fld], a0 = kwargs[’a0’][fld], \

aw = kwargs[’aw’][fld], ug = kwargs[’ug’][fld], \

ugr = kwargs[’ug’][’w3’], gvd = kwargs[’gvd’][fld], \

win_len = kwargs[’win_len’], nwin = kwargs[’nwin’][fld], \

gvdw = kwargs[’gvdw’][fld], absorption = kwargs[’absorption’], \

gvm_in = kwargs[’gvm_in’], gvd_in = kwargs[’gvd_in’], \

disp = kwargs[’disp’])

E1 = lam(’w1’)
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E2 = lam(’w2’)

E3 = lam(’w3’)

del lam

# Multiply the time-domain electric fields according to the phase-matching scheme.

prod = 1.

for i,j in [(’w1’, E1), (’w2’, E2), (’w3’,E3)]:

if kwargs[’phase_matching’][i] > 0:

prod *= (j**kwargs[’phase_matching’][i])

elif kwargs[’phase_matching’][i] < 0:

prod *= (np.conj(j)**abs(kwargs[’phase_matching’][i]))

del i, j#, E1, E2, E3

# Perform the 1DFT to take the product from the time domain to the frequency domain.

P = np.empty(np.shape(prod), dtype=complex)

for i in range(np.size(prod, axis=2)):

P[:,:,i] = (1/np.sqrt(len(kwargs[’t’]))) * (prod[:,None,:,i] \

* np.exp(1j * kwargs[’t’][:,None,None] * 1.e-15\

* kwargs[’w’][None,:,None])).sum(axis=0)

del prod, i

Pk = np.empty(np.shape(P), dtype=complex)

for i in range(len(kwargs[’w’])):

# Multiply the field product by the nonlinear susceptibility and degeneracy.

P[i,:,:] = kwargs[’degeneracy’] * np.where(zp <= kwargs[’L’]/2., \

np.where(zp >= -kwargs[’L’]/2., kwargs[’chi’][i],\

complex(0.)), complex(0.)) * P[i,:,:]

# Perform the 1DFT from x --> kx, generating the 2D array temp(y,kx)

temp = (1/np.sqrt(len(kwargs[’x’]))) * (P[i,:,:,None] \

* np.exp(-1j * 2 * np.pi * kwargs[’x’][:,None,None] \

* kwargs[’kx’][None,None,:])).sum(axis=0)

# Populate the ith 2D slice of Pk with the result of the 1DFT of the array temp,

# yielding the final slice in (kx,ky)
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Pk[i,:,:] = (1/np.sqrt(len(kwargs[’y’]))) * (temp[:,:,None] \

* np.exp(-1j * 2 * np.pi * kwargs[’y’][:,None,None]\

*kwargs[’ky’][None,None,:])).sum(axis=0)

del temp

del i

# If the polarization slices are to be saved, this is accomplished here.

if kwargs[’save’]:

# Save the current directory so that the program can return to it.

curr_dir = os.getcwd()

# If the subdirectories don’t exist, create them.

if not os.path.exists((kwargs[’folder’]+’/slices/’)\

.split(os.path.commonprefix( \

[os.getcwd(), kwargs[’folder’]])+’/’)[-1]):

os.makedirs((kwargs[’folder’]+’/slices/’)\

.split(os.path.commonprefix(\

[os.getcwd(), kwargs[’folder’]])+’/’)[-1])

# Change to the save directory

os.chdir(kwargs[’folder’]+’/slices’)

# Create the file and write the array

f = open(’slice_at_z_{0}_2.txt’.format(z), ’w’)

f.write(’Frequency (Hz) \t x-pos (microns) \

\t y-pos (microns) \t Polarization \n’)

f.writelines(’{0}\t{1}\t{2}\t{3}\n’.format(kwargs[’w’][i[0]]\

+kwargs[’w0’][’w4’], kwargs[’x’][i[1]],\

kwargs[’y’][i[2]], P[i[0], i[1], i[2]]) \

for i in itertools.product(range(len(kwargs[’w’])), \

range(len(kwargs[’x’])), range(len(kwargs[’y’]))))

# Close the file and return to the original directory.

f.close()

del f

os.chdir(curr_dir)
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# To calculate the contribution of this polarization slice to the output field, it

# will be more convenient to have the wave vector magnitude available.

k0 = ((kwargs[’n0’][’w4’]*kwargs[’w0’][’w4’])/(3.e14))

# Now, multiply the polarization by the various relevant contributions:

# Multiply the polarization by the longitudinal phase term, exp(ikz)

if kwargs[’disp’]:

Pk *= np.exp(1j * ((kwargs[’nw’][’w4’][:,None,None] \

* (kwargs[’w0’][’w4’] + kwargs[’w’][:,None,None]))/(3.e14)) * z)

else:

Pk *= np.exp(1j *((kwargs[’n0’][’w4’]*kwargs[’w0’][’w4’])/(3.e14)) * z)

# Multiply the polarization by the frequency, speed of light, and wavenumber

Pk *= -1j* ((kwargs[’w0’][’w4’] + kwargs[’w’][:,None,None])**2) \

* (1/(2 * ((3.e14)**2) * k0))

# Multiply the polarization by the exponential accounting for transverse evolution of

# the plane wave.

Pk *= np.exp(1j * ((2 * (np.pi**2))/k0) * (((kwargs[’kx’][None,:,None])**2) \

+ ((kwargs[’ky’][None,None,:])**2)) * (kwargs[’z_end’] - z))

# Now, we will multiply the polarization by the various terms describing the

# dispersive character of the medium, if enabled:

if kwargs[’gvm_out’]:

Pk *= np.exp(-1j * ((1/kwargs[’ug’][’w4’]) - (1/kwargs[’ug’][’w3’])) \

* kwargs[’w’][:,None,None] * (kwargs[’z_end’] - z))

if kwargs[’gvd_out’]:

Pk *= np.exp(-1j * 0.5 * kwargs[’gvd’][’w4’] \

* ((kwargs[’w’][:,None,None])**2) * (kwargs[’z_end’] - z))

if kwargs[’absorption’]:

Pk *= np.exp(-0.5 * (kwargs[’aw’][’w4’][:,None,None]) \

* (kwargs[’z_end’] - z))

return Pk # Return the modified slice
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def intensity(E, mono_conv, w, t, N, f, slits, n0, w0):

# Intensity of an electric field when the field is in mks units

I = 1.33e-3 * n0 * E * np.conj(E)

if mono_conv:

rec_lin_disp = (1./N)*(1./f)*1.e-3

# reciprocal linear dispersion, nm/microns

# Determine the wavelength grid corresponding to the frequency grid.

dwl = ((2*np.pi*3.e17)/((w0)**2))*w

# Define the instrument function of the monochromator as a triangle function.

mono = np.where((1. - (1/(rec_lin_disp*slits))*abs(dwl)) > 0., (1. - \

(1/(rec_lin_disp*slits))*abs(dwl)), 0.)

# Since convolving functions in a domain is equivalent to multiplication of their

# Fourier transforms, 1DFT both the intensity and instrument functions

It = (1/np.sqrt(len(w))) * (I[:,None] * np.exp(1j * w[:,None] \

* t[None,:] * 1.e-15)).sum(axis=0)

monot = (1/np.sqrt(len(w))) * (mono[:,None] * np.exp(1j * w[:,None] \

* t[None,:] * 1.e-15)).sum(axis=0)

# Convert the Fourier transforms to real-valued functions.

It,monot = np.real(np.sqrt(It*np.conj(It))),\

np.real(np.sqrt(monot*np.conj(monot)))

# Multiply the intensity by the instrument function.

It *= np.sqrt(len(w))*monot

# FT the result back to the frequency domain.

I = (1/np.sqrt(len(t))) * (It[:,None] * np.exp(-1j * t[:,None] \

* w[None,:] * 1.e-15)).sum(axis=0)

del It, monot, mono, dwl, rec_lin_disp

# Return the real-valued result.

return np.real(np.sqrt(I*np.conj(I)))

def save_output(E, E_slice, I, folder, file, w, x, y):

# Save the 3D array E(w, x, y) and integrated 1D slice E(w) to a file.
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curr_dir = os.getcwd()

# If the target save directory doesn’t exist, create it and any higher directories

if not os.path.exists(folder.split(os.path.commonprefix( \

[os.getcwd(), folder])+’/’)[-1]):

os.makedirs(folder.split(os.path.commonprefix( \

[os.getcwd(), folder])+’/’)[-1])

# Navigate to the target directory

os.chdir(folder)

now = datetime.datetime.now()

# Format file names

file1d, file3d = file + ’_1d’, file + ’_3d’

for i in str(now).replace(’-’,’ ’).replace(’:’,’ ’).split(’.’)[0].split(’ ’):

file1d, file3d = file1d + ’_’ + i, file3d + ’_’ + i

file1d, file3d = file1d+’.txt’, file3d+’.txt’

# Write data to files

for i,j in [(file1d, ’1d’), (file3d,’3d’)]:

f = open(i, ’w’)

if j == ’3d’:

f.write(’Frequency (Hz)\tx-pos (microns)\ty-pos (microns)\

\tField (V/m)\n’)

f.writelines(’{0}\t{1}\t{2}\t{3}\n’.format(w[i[0]], x[i[1]],\

y[i[2]], E[i[0], i[1], i[2]]*1.e6) for i in \

itertools.product(range(len(w)), \

range(len(x)), range(len(y))))

if j == ’1d’:

f.write(’Frequency (Hz) \t Field (V/m) \t Power \n’)

f.writelines(’{0}\t{1}\t{2}\n’.format(w[i], E_slice[i], I[i]) \

for i in range(len(w)))

f.close()

del f

# Return to the original directory, and return to the function call

os.chdir(curr_dir)
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return

D.3 main.py

The final script - main.py - initializes an instance of the class from parameters.py, then calls the various

functions from operations.py as necessary. For different applications, this script may need to be heavily

modified according to the desired fields.

import numpy as np

from numpy import power as pow

import os, datetime, itertools

import matplotlib.pyplot as plt

from scipy.interpolate import interp1d

from functools import partial

from multiprocessing import Pool

import parameters, operations

reload(parameters), reload(operations)

def main(p = ’default’, ret_I = False):

# Clear and close existing files; ensure interactive mode is on

plt.clf(), plt.close(), plt.ion()

# Initialize an object of the parameters class.

if p == ’default’:

p = parameters.parameters()

# Define a temporary function for loading files, which calls operations.load_field,

# but reduces the call to a single variable, a string that serves as field identifier.

lam = lambda w: operations.load_field(folder = p.folder, \

file = p.files[w][p.colors[w]], columns = p.columns[w])

w1_col, w1_sig = lam(’w1’)

w2_col, w2_sig = lam(’w2’)
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w3_del, w3_sig = lam(’w3’)

del lam

# I know that my w3_sig data is a negative signal, so I multiply by a factor of -1.

w3_sig *= -1

# Initialize matplotlib figure and axes objects for diagnostic plots.

fig1, ax1, fig2, ax2 = operations.initialize_diagnostics(modes = p.smooth_mode,\

diagnostic = p.diagnostic, smoothing = p.smoothing)

# Generate a temporary function for data processing, whether this is just baseline

# subtraction or baseline subtraction and smoothing. The function generalizes the

# calls of operations.smooth and operations.baseline_subtract, filling an unused kwarg

# with extraneous variables in operations.baseline_subtract.

if p.smoothing:

lam = lambda x,y,w,ax: operations.smooth(x = x, y = y, \

cutoff = p.cutoffs[w], boxcar = p.boxcar, \

base_per = p.baseline_percentage, \

diag = p.diagnostic, ax = ax, mode = p.smooth_mode[w])

elif not p.smoothing:

lam = lambda x,y,w,ax: operations.baseline_subtract(y = y, \

perc = p.baseline_percentage, x = x, w = w, ax = ax)

# Processed data is generated by calling the temporary function for each field.

w1_sig_sm = lam(w1_col, w1_sig, ’w1’, ax1[’w1’][1])

w2_sig_sm = lam(w2_col, w2_sig, ’w2’, ax1[’w2’][1])

w3_sig_sm = lam(w3_del, w3_sig, ’w3’, ax1[’w3’][1])

# Plot the processed and unprocessed data if diagnostics are enabled.

if p.diagnostic:

for i,j,k,l in [(’w1’,w1_col, w1_sig, w1_sig_sm), \

(’w2’,w2_col, w2_sig, w2_sig_sm),\

(’w3’, w3_del, w3_sig, w3_sig_sm)]:

ax1[i][0].plot(j, k, ’k-’, j, l, ’r-’)

else: plt.close(fig1), plt.close(fig2)

# Overwrite the signal variables with the smoothed arrays.

w1_sig, w2_sig, w3_sig = w1_sig_sm.copy(), w2_sig_sm.copy(), w3_sig_sm.copy()



358

del w1_sig_sm, w2_sig_sm, w3_sig_sm, lam

if p.diagnostic: del i, j, k, l

# Create time and frequency grids that should yield even sampling of the polarization

# on each grid. These grids are saved in the existing parameters.parameters object.

p.time_freq_grids()

# Calculate the central frequencies for w1 and w2 fields based on the loaded tuning

# files and save the results in p.w0, then calculate the central frequency for w4.

for i, j, k in [(’w1’,w1_col,w1_sig), (’w2’, w2_col, w2_sig)]:

p.w0[i] = operations.center_freq(guess = (float(p.colors[i])*(3.e10)\

*2*np.pi), wl = j, sig = k, w = p.w)

del i, j, k

p.w0[’w4’] = 0.

for i in [’w1’, ’w2’, ’w3’]:

p.w0[’w4’] += p.phase_matching[i]*p.w0[i]

del i

# Create dictionaries that will contain the optical properties at each w0.

p.calculate_optical_properties()

# Calculate the internal angles for each field

p.calculate_internal_angles()

# Interpolate w1_sig and w2_sig onto the previously calculated w grid.

w1_sig = operations.grid_spectrum(w0 = p.w0[’w1’], w = p.w, \

wl = w1_col, sig = w1_sig)

w2_sig = operations.grid_spectrum(w0 = p.w0[’w2’], w = p.w, \

wl = w2_col, sig = w2_sig)

del w1_col, w2_col

# Convert the loaded spectra to electric field amplitudes, with units V/micron.

lam = lambda x, y, w, tw, returnt: operations.calculate_field(x_ax = x, sig = y,\

n0 = p.n0[w], waist = p.waist[w], energy = p.energy[w][p.colors[w]], \

t_or_w = tw, perc = p.baseline_percentage,\

diagnostic = p.diagnostic, returnt = returnt)
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E1t, t1 = lam(p.w, w1_sig, ’w1’, ’frequency’, True)

E2t, t2 = lam(p.w, w2_sig, ’w2’, ’frequency’, True)

E3t = lam(w3_del, w3_sig, ’w3’, ’time’, False)

del lam, w1_sig, w2_sig, w3_sig

# Grid the resulting electric fields, incorporating assumed initial delays and phase.

Et = {}

for i, j, k, l in [(’w1’, t1, E1t, p.delay[’t31’]), \

(’w2’, t2, E2t, p.delay[’t32’]),\

(’w3’, w3_del, E3t, 0.)]:

if j[1] > j[0]:

model = interp1d(j - l, k*np.exp(1j*p.phase[i]*np.pi/180), \

bounds_error = False, fill_value = complex(0.))

else:

model = interp1d(j[::-1] - l, k[::-1]\

*np.exp(1j*p.phase[i]*np.pi/180), \

bounds_error = False, fill_value = complex(0.))

Et[i] = model(p.t)

del model

if p.diagnostic:

ax2[i][0].plot(p.t, np.real(Et[i]), ’k-’, p.t, \

np.real(Et[i]), ’ko’)

ax2[i][1].plot(p.t, np.imag(Et[i]), ’k--’, p.t, \

np.imag(Et[i]), ’ko’)

del i, j, k, l, E1t, E2t, E3t, t1, t2, w3_del

# Determine the bounds and spacing of the z grid and the x, y, kx, and ky grids

p.spatial_grids()

polzn_call = partial(operations.polarization_slice, x = p.x, y = p.y, kx = p.kx,\

ky = p.ky, t = p.t, w = p.w, Et = Et, \

focus_offset = p.focus_offset, \

focus_shift = p.focus_shift,\

rel_length = p.rel_lengths, waist = p.waist, \
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phase_matching = p.phase_matching, theta = p.theta, \

w0 = p.w0, n0 = p.n0, nw = p.nw, a0 = p.a0, aw = p.aw,

ug = p.ug, gvd = p.gvd, nwin = p.nwin, gvdw = p.gvdw, \

chi = p.chi, L = p.L, win_len = p.win_len,\

deltak = p.deltak, degeneracy = p.degeneracy, \

gvm_in = p.gvm_in, gvm_out = p.gvm_out, \

gvd_in = p.gvd_in, gvd_out = p.gvd_out, \

absorption = p.absorption, save = p.save, \

folder = p.save_folder, z_end = p.z[-1],\

disp = p.dispersive_k)

# Initialize an array to perform the summation.

sum = np.zeros((len(p.w), len(p.kx), len(p.ky)), dtype=complex)

if not p.multiprocessing:

# For each point in the z grid:

for i in p.z:

# Add the result of calculating the polarization slice to the running sum,

# modified by the integration constant dz

sum += polzn_call(z = i) * abs(p.z[1] - p.z[0])

elif p.multiprocessing:

# initialize the multiprocessing pool

pool = Pool(processes = p.processes)

# Perform the calculations asynchronously, adding each result to the running sum

# (modified by the integration factor dz) as that slice is available.

for i in pool.imap_unordered(polzn_call, p.z, chunksize=p.chunksize):

sum+=i * abs(p.z[1] - p.z[0])

pool.close()

pool.join()

del i

# Perform the 2DFT necessary to convert the sum from the (kx,ky) domain to the (x,y)
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# domain.

E = np.empty(np.shape(sum), dtype=complex)

for i in range(len(p.w)):

# Introduce a temporary array temp(ky,x) that is the result of performing the

# 1DFT of kx --> x on the resulting sum.

temp = (1/np.sqrt(len(p.kx))) * (sum[i,:,:,None] * np.exp(1j * 2 * np.pi\

* p.kx[:,None,None] * p.x[None,None,:])).sum(axis=0)

# Perform the second 1DFT (ky --> y) on the temporary array temp and save the

# result to the initialized E array.

E[i,:,:] = (1/np.sqrt(len(p.ky))) * (temp[:,:,None] * np.exp(1j * 2 \

* np.pi * p.ky[:,None,None] * p.y[None,None,:])).sum(axis=0)

del temp

del sum

# The field as a function of frequency is then the integral of E(w,x,y) over the x,y

# dimensions.

E_slice = ((E * 1.e6 * abs(p.x[1] - p.x[0]) * abs(p.y[1] - p.y[0]) \

* 1.e-6 * 1.e-6).sum(axis=2)).sum(axis=1)

# Calculate the intensity, convolving with the monochromator if relevant.

I = operations.intensity(E = E_slice, mono_conv = p.mono_convolution, w = p.w, \

t = p.t, N = p.N, f = p.f_len, slits = p.slits, \

n0 = p.n0[’w4’], w0 = p.w0[’w4’])

if p.save_final:

operations.save_output(E = E, E_slice = E_slice, I = I, \

folder = p.save_folder, file = p.save_file, \

w = p.w+p.w0[’w4’], x = p.x, y = p.y)

if ret_I:

return p.w+p.w0[’w4’], I

else:

return p.w+p.w0[’w4’], E_slice
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Tetra(sulphonatophenyl) Metalloporphyrins. The Journal of Physical Chemistry A 2008, 112, 6522.

(314) Irvine, M. P.; Harrison, R. J.; Strahand, M. A.; Beddard, G. S. Picosecond Spectroscopy and Kinetics

of Metalloporphyrins. Berichte der Bunsengesellschaft fur Physikalische Chemie 1985, 86, 226.

(315) Yanghee, K.; Choi, J. R.; Yoon, M.; Furube, A.; Asahi, T.; Masuhara, H. Excited-State Dynamics of

5,10,15,20-Tetraphenyl-21H,23H-porphine Manganese(III) Chloride Encapsulated in TiMCM-41 and

MCM-41; Proved by fs-Diffuse Reflectance Laser Photolysis. The Journal of Physical Chemistry B

2001, 105, 8513.

(316) Yan, X.; Kirmaier, C.; Holten, D. A Picosecond Study of Rapid Multistep Radiationless Decay in

Manganese(III) Porphyrins. Inorganic Chemistry 1986, 25, 4774.

(317) Jeoung, S. C.; Kim, D.; Cho, D. W. Transient resonance Raman spectroscopic studies of some para-

magnetic metalloporphyrins: effects of axial ligand on charge-transfer and photoreduction processes.

Journal of Raman Spectroscopy 2000, 31, 319.

(318) Brodeur, A.; Chin, S. L. Band-Gap Dependence on the Ultrafast White-Light Continuum. Physics

Review Letters 1998, 80, 4406.

(319) Nagura, C.; Suda, A.; Kawano, K.; Obara, M.; Midorikawa, K. Generation and characterization of

ultrafast white-light continuum in condensed media. Applied Optics 2002, 41, 3735.

(320) Brodeur, A.; Chin, S. L. Ultrafast white-light continuum generation and self-focusing in transparent

condensed media. Journal of Optical Society of America B 1999, 16, 637.

(321) Baltus̆ka, A.; Fuji, T.; Kobayashi, T. Controlling the Carrier-Envelope Phase of Ultrashort Light

Pulses with Optical Parametric Amplifiers. Physical Review Letters 2002, 88, 133901.

(322) Baum, P.; Lochbrunner, S.; Piel, J.; Riedle, E. Phase-coherent generation of tunable visible femtosec-

ond pulses. Optics Letters 2003, 28, 185.

(323) Baum, P.; Riedle, E.; Greve, M.; Telle, H. R. Phase-locked ultrashort pulse trains at separate and

independently tunable wavelengths. Optics Letters 2005, 30, 2028.



389
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(384) Khalil, M.; Demirdöven, N.; Tokmakoff, A. Obtaining Absorptive Line Shapes in Two-Dimensional

Infrared Vibrational Correlation Spectra. Physical Review Letters 2003, 90, 047401.
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