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Abstract

The oxygen evolving complex of photosystem II is a tetramanganese complex that catalyzes the oxidation
of water to dioxygen. Many experimental methods have been employed to study this complex, including
a variety of spectroscopic methods. The complexity of the surrounding protein environment challenges re-
liable interpretation of the spectral features and discrimination between changes in the complex and the
many cofactors of photosystem II. We have proposed coherent multidimensional spectroscopy in the mixed
time-/frequency-domain as a strategy for exploring the spectroscopy of this important system. Coherent
multidimensional spectroscopy is performed by the temporal synchronization and spatial overlap of a se-
quence of fields to induce a polarization in the material. The fields induced by polarizations meeting certain
energy- and momentum-criteria are sampled; the intensity of the fields as functions of frequency and time
elucidate the spectral and temporal characteristics of the sample’s quantum states. Here, we describe efforts
to extend the spectroscopy of model transition metal complexes to the femtosecond regime. We present
the implementation of white-light transient absorption and demonstrate our ability to reproduce the spec-
troscopic behavior of manganese (III) tetraphenylporphine with improved time resolution over previously
published results; we discuss the limitations encountered when extending this spectroscopy to homodyne-
detected transient grating methods. We have implemented a strategy for broadband coherent anti-Stokes
Raman spectroscopy, showing the results of these efforts. A theoretical background into the pulse propa-
gation effects in the ultrafast regime of femtosecond spectroscopy has been compiled. We have found these
propagation effects to have profound importance in the tuning and amplification of femtosecond pulses, and
we present the results of simulations exploring how these effects manifest and influence the behavior of a

particular process employed in light generation in a commercial traveling-wave optical parametric amplifier.



CHAPTER 1

Introduction




Photosynthesis in algae, cyanobacteria, and plants is a cooperative effort involving an array of proteins.|1} [2]
As an assembly, these proteins accumulate energy from the sun, using this energy to drive a sequence of redox
reactions with the ultimate goal of sequestering carbon in the form of sugars.|2] The conversion of carbon
dioxide to sugar is also accompanied by the four-electron oxidation of water to form dioxygen.|1}, 2] This
ensemble of reactions is facilitated by a wide variety of cofactors, including: carotenoids and chlorophylls
that facilitate the transfer of energy; redox active species such as quinones and pheophytins that chaperone
the exchange of charge; and, inorganic cofactors such as chloride and calcium.[2] The amino acids of the
proteins are also understood to contribute in these reactions, |1} 2] and the larger protein environment aids
in stabilizing the charge separation required throughout these processes.|1]

The specificity of photosystem II towards the oxidation of water has attracted significant attention in the
hopes of reproducing its capabilities in synthetic catalysts. Photosystem II’s catalytic center is the oxygen
evolving complex (OEC), an inorganic complex constituting four manganese and one calcium, bridged by
oxygen, and coordinated by various residues.|1} |2] The role of the OEC in photosynthesis is the accumulation
of charge and potential to facilitate the four-electron oxidation of water.[2] The necessary charge and potential
is accumulated during the Kok cycle, a five-state model for the catalytic process of the OEC.[1} 2] Each step
of the Kok cycle is initiated by the absorption of a photon by various light-harvesting proteins; this energy
is transferred to P680 by various chlorophyll and carotenoid cofactors.[2] This energy electronically excites
P680, permitting a series of redox reactions involving cofactors such as pheophytins and quinones and
facilitating charge separation: the electron is chaperoned to photosystem I, while the OEC is the final donor
in a chain of exchanges that replace P680’s lost electron.|2] Donation of this electron oxidizes the OEC,
advancing the catalyst to the next stage of the Kok cycle, which is denoted as a transition from the state Sy
to the state Syy1.[1}, 2] Four sequential oxidations provide the requisite charge and potential for catalysis of
water oxidation.[2]

The OEC is tailored specifically towards the oxidation of water to dioxygen: its potential is such that
oxidation only occurs upon the accumulation of four oxidizing equivalents.[2] This specificity has attracted
significant attention, with many different experimental methods employed towards studying the structure
and function of photosystem IT and the OEC. These methods include x-ray absorption,[3-10] fluorescence,[11]
diffraction,|12] and scattering;|13||14] electron paramagnetic resonance;|[6, [15533] electronic spectroscopy; |34
56| vibrational spectroscopy;[57H62] and theoretical calculations. |22 63H75]

However, each of the aforementioned experimental methods has challenges associated with it. X-ray-based
spectroscopies have been shown capable of inducing redox damage to the OEC,[8, [10] raising questions

whether x-ray characterization is truly characterizing the OEC in one of the states of the Kok cycle.[65]



66] While electron paramagnetic resonance (EPR) provides direct sampling of the manganese cluster, this
method has traditionally been considered to be sensitive only to the S, state. More recently, EPR spectra
associated with the Sg,[19} (28} [29] S1,[21} |26] and S3[20} |21}, 32, |76] states have been reported, though some
of these signals require chemical additives in order to be detected.|19, 28-30] Chemical additives and the
removal of certain cofactors can also modify the EPR signature of the different states of the OEC.[15] [21H23]
Care must be taken to account for the changes induced by optical excitation, as near infrared and visible
excitation have been reported to modify various EPR signatures of the OEC;|15H18| 20} |21, |25, |27 [32]
these optically-induced changes are impacted by both temperature and photosystem II source.[18] Finally,
spectroscopic methods - both electronic and vibrational - seek to characterize a complex mixture with many
contributing species. In addition to the protein environment, many of the cofactors of photosystem II have
been shown to exhibit significant spectroscopic contributions, either from changes in redox state or from
changes in the surrounding dielectric environment.[35-38, 40} |46} |48-50, 52} |54H56, [77H84] These changes
in the spectroscopy of the cofactors will also manifest in the difference spectra obtained from advancement
through the Kok cycle, |36, [38] |40} |44} |50, |55, |56, |77, [83] challenging the specific identification of spectral
changes definitively associated with the OEC.[41143] In order to obtain insights from less complex systems, a
variety of mimics have been synthesized and characterized. Some of these samples are structural mimics, |60}
85H88] while others are intended as functional mimics exhibiting catalytic activity.[89-97] It is not always
obvious that similar electronic states and behaviors are expected from these mimics as are observed from
the OEC, however.

We have proposed the application of coherent multidimensional spectroscopy (CMDS) to the OEC as
a means to improve spectral resolution and specificity. As a multidimensional method, CMDS distributes
the spectral information across multiple dimensions, improving our ability to resolve these features. Signals
derived from coupled quantum states increase the specificity of the method, permitting more reliable as-
signment of the observed spectral features. In the mixed time- and frequency-domain, CMDS is performed
through the temporal synchronization and spatial overlap of multiple ultrafast (picosecond or femtosecond)
pulses. The sample serves as a nonlinear medium, coupling the fields through induced polarizations. The
magnitude of these polarizations scales with the effective nonlinear susceptibility of the material; the sus-
ceptibility may be related to the properties of the quantum states of the sample, exhibiting enhancement
through resonance. The resulting polarizations can either induce changes in one of the excitation fields
through self-heterodyning or may be spatially resolved from the input fields through homodyne-detection.
Spectral and spatial discrimination permit the isolation of contributions from distinct polarizations. Varia-

tion in the relative temporal ordering and the frequencies of the excitation fields permits the characterization



of the dynamics and lineshapes of the contributing quantum states.|98H100]

Here we describe efforts aimed towards the goal of characterizing the OEC by CMDS, reporting the
implementation of femtosecond electronic spectroscopy of a representative transition metal complex and
broadband coherent anti-Stokes Raman spectroscopy. We have found implementation of CMDS in the fem-
tosecond domain to be complicated by various pulse propagation effects; we describe a theoretical framework
for understanding these effects and their manifestation in light generation. These topics are organized as
follows. In we provide an overview of the Wright group’s femtosecond laser system and standard

operating procedure; a collection of notes on the maintenance and alignment of the lasers constituting this

system are compiled as a supplement in [Appendix Al In|Ch. 3| we outline a theoretical framework in which

various pulse propagation effects may be understood, building up from the fundamental behavior of electric
fields and polarizations to detailing the derivation of formulae that explicitly account for the effects of dis-
persion and polarizations on the propagation of ultrafast pulses. We apply this theory in [Ch. 4] in which
we attempt to unravel unexpected behavior in the generation of ultrafast pulses within our traveling-wave

optical parametric amplifiers. Finally, [Ch. 5| and [Ch. 6] present experimental results on the topics men-

tioned previously. In [Ch. 5 we describe the setup and implementation of white light transient absorption,
present our ability to reproduce the transient absorption of manganese (IIT) tetraphenylporphine with better
temporal resolution than previously reported, and discuss the extension of spectroscopy on this complex to
homodyne-detected transient grating. Finally, [Ch. 6] details our efforts implementing broadband coherent
anti-Stokes Raman spectroscopy. Appropriate and specific background information on the topics relevant to

ChL. 4] [Ch. 5], and [Ch. 6]is provided in the introduction to each chapter.




CHAPTER 2
Equipment




2.1 Light Generation

Here we will provide a brief description of the design, layout, and operating procedures of the Wright group’s
femtosecond laser system at this time. Throughout this discussion, we will use a tilde (~) to indicate that the
reported value is approximate: this will alternately be used to indicate that the reported value is an optimum
from which some deviation should be anticipated, or to indicate the actual value is unimportant and we wish
to merely provide an estimate of the average observed under standard operation. The information is derived
from the manuals, interactions with the technicians, or experience maintaining and aligning the equipment.
Detailed descriptions of alignment and maintenance procedures for the lasers will not be provided here;
rather, the notes collected during interactions with the service technician have been digitized and appended
in The reader is advised to consult these notes for details as needed.

The system begins with the Millenia V (Spectra-Physics, Santa Clara). This is a cw laser with a Nd:YVOy4
gain medium; the rod is excited by two diode lasers with emission ~ 809 nm. The 1064 nm lasing of
the Nd:YVOy4 undergoes intracavity frequency doubling in a temperature phase matched lithium triborate
crystal. The Millenia V is capable of supplying up to 5.5 W of the resulting 532 nm radiation. Typically, the
Millenia V is set to yield ~ 4 W to pump the Ti:Al;O3 femtosecond oscillator, the Tsunami (Spectra-Physics,
Santa Clara). The Tsunami oscillates with a repetition rate of ~ 80 MHz and yields pulses with ~ 60 nm
FWHM and ~ 30-35 fs duration. Mode locking can be initiated through an acousto-optic modulator via the
Model 3955 electronics module control; it is believed that mode locking is intended to be sustained through
Kerr lensing, though the acousto-optic modulator can also be used. With ~ 4 W from the Millenia V, the
output energy of the Tsunami is expected to be ~ 6 nJ per pulse (~ 500 mW); typically cw operation yields
slightly higher (~ 30 mW) power than mode locked operation.

The pulse train from the Tsunami is split (~ 35%/65%) to seed both the femtosecond (Spitfire Pro XP,
Spectra-Physics, Santa Clara) and the picosecond (Spitfire Ace, Spectra-Physics, Santa Clara) regenerative
amplifiers. The regenerative amplifiers are pumped by Q-switched, Nd:YLF nanosecond lasers (Empower,
Spectra-Physics, Santa Clara). The Empower is a multimode laser with ~ 5 ns duration. The Nd:YLF rod
is pumped by diodes and lases at 1053 nm. Temperature phase matched lithium triborate is again used
for frequency doubling. The Spitfire is designed to be pumped with 20 W from the Empower; ideally, this
should be attained with ~ 20 A of current supplied to the diodes. At this time, the Empower pumping the
femtosecond Spitfire Pro XP requires ~ 22 A to achieve this power: it is believed that the shorting of a diode
clip introduced smoke or debris that is reducing the efficiency of the cavity, and that proper cleaning may

return operation closer to expected specifications. Amplification in the Spitfire is based upon chirped pulse



amplification: the pulses from the Tsunami are stretched from ~ 30-35 fs duration to hundreds of picoseconds
in the stretcher. A pair of Pockels cells isolates single pulses from the Tsunami’s pulse train for amplification;
the isolation of these pulses reduces the repetition rate from ~ 80 MHz to the repetition rate of the Empower,
which is generally operated at the maximum allowed repetition rate of 1 kHz. Optimum amplification can
usually be achieved with only 10 passes through the rod, though the Spitfire is often operated at 11 passes
for long-term stability; if longer build up times are required, it is advisable to check on the alignment of the
amplifier, as additional passes through the cavity will result in the accumulation of nonlinear chirp. The
Pockels cells also provide the Q-switch to release the amplifier pulse from the cavity. After release from the
cavity, the mode of the amplified pulse is expanded by a telescope prior to recompression. The recompressed
output exhibits a bandwidth of ~ 35 nm, a duration of ~ 35-40 fs, and pulse energies of ~4 mJ (~ 4 W at
the standard 1 kHz repetition rate).

Outside the Spitfire, a sequence of beamsplitters and mirrors split the output (~ 50%/45%/5%); the
mirrors route the ~ 50% and ~ 45% portions to pump two traveling-wave optical parametric amplifiers
(TOPAS-C, Light Conversion, Vilnius, Lithuania). Within each OPA, this pump beam is split 97.5%/2.5%.
The smaller portion is split further (distribution unknown) and used to generate a seed pulse: a temporally
dispersed white light continuum is produced using one fraction, and this continuum is overlapped in a 3
barium borate crystal (BBO, 2.5 mm, § = 28°, ¢ = 0°) with the other fraction. With proper angle tuning
and delay compensation, the seed is amplified, ideally to yield ~ 1.5 uJ. The seed is imaged onto a second
BBO (2 mm, 6 = 28°, ¢ = 0°), along with the 97.5% fraction of the pump. Optimization of temporal
overlap and phase matching angle result in significant amplification of the seed: the sum of the energies
of the resulting signal and idler may be as high as 700 uJ, though 500-650 uJ appears to be common.
The TOPAS-C incorporates multiple mixer options for upconversion of the signal and idler to frequencies
throughout ultraviolet, visible, and near infrared. The second harmonic of the signal and idler provide
spectral coverage from ~ 570-800 nm and ~ 800-1140 nm, respectively. The crystal used to phase match
both second-harmonic generation processes is a 0.3 mm BBO (6 = 23°, ¢ = 90°). Upconversion of signal
and idler by sum-frequency generation with the residual pump provides coverage between ~ 470-530 nm and
~ 535-610 nm, respectively. The sum-frequency idler process is generated in the same crystal as second-
harmonic generation (0.3 mm BBO, § = 23°, ¢ = 90°); signal is upconverted in a different 0.3 mm BBO (6
= 23°, ¢ = 90°). It is noted here that the sum-frequency process between pump and idler (SFI) has been
observed to yield unusual spectral character; this is the topic of It is suspected that similar effects
cause the sum-frequency process for signal to also exhibit sub-optimal characteristics, though the features

are more subtle and the necessary characterization has not been performed to date. Though the output is



weak, the fourth harmonics of signal and idler can also be generated; these processes are phase matched in
a 0.15 mm BBO (6 = 35°, ¢ = 90°) and provide spectral coverage between ~ 285-400 nm and ~ 403-480
nm, respectively. Crystals for difference frequency generation have been purchased and tested; they are not
installed on the system at this time.

The TOPAS-C provide two separate tunable colors; for some experiments, including some of those detailed
in later chapters, it is necessary to have a third source available. The third fraction of the fundamental (~ 5%
of the amplifier output) provides this third color. When used, the beam size is reduced by a Galilean telescope
formed from a f = -50 mm and f ~ 100 mm lens pair to better match the beam size of the TOPAS-C processes

and to ensure compatibility with the 1”7 optics on the table.

2.2 Chillers

While the Spitfire rod is thermoelectrically cooled, it still requires an external cooling system. The Millenia
V, Tsunami, and Empower also require the support of chillers. At present, the Millenia V, Tsunami, and
Spitfires (Pro XP and Ace) share a chiller (Neslab Merlin M33), while the Empowers are each connected to a
unique chiller (Polyscience P/N 6360T11SP20C and P/N 6360T11A120C for the femtosecond and picosecond
system Empowers, respectively). Operating temperatures are adjusted to optimize performance of each laser.
The most recent records indicate operating temperatures of 18° C, 24.5° C, and 21° C for Neslab Merlin M33,
the femtosecond Empower Polyscience chiller, and the picosecond Empower Polyscience chiller, respectively.
Maintenance on these chillers should be performed on a six-month cycle, with the procedure adapted from
documentation; parts of this are also available in the dissertation of Nathan Matthew. It has been noted that
Spectra-Physics updates the recommended chiller maintenance procedures from time to time; it is advisable
to consult with Spectra-Physics representatives to be apprised up any changes. The current procedure is

reproduced below for convenience:

e drain the existing chilling fluid. For Polyscience P/N 6360T11SP20C, this is easily done through the
valve installed to the drain outlet on the back of the unit. Neither of the other units have such a valve
installed, and can be drained by various methods, including syphoning and using the chiller’s pump to

drain the fluid. Care should be made to drain the fluid from the hoses and the filter reservoir;
e remove the existing filters;

e reconnect the hoses such that the flow path excludes the lasers, then fill the chillers with Nalco cleaning

solution 460-CCL2567. The change in flow path is necessary to protect the lasers from the cleaning



solution. As the current hardware for the Polyscience P/N 6360T11SP20C does not support the
exclusion of the femtosecond Empower cavity from the flow path, the usage of cleaning solution has
been skipped in this unit, simply cycling distilled water instead. The chillers should be run as indicated

for at least thirty minutes;

e drain the chillers, flushing the cleaning solution using distilled water. Distilled water should be added
and drained from the chillers until suds are no longer observed. This usually takes a few gallons of

distilled water per chiller, though more may be required;

e with the flow paths still excluding the lasers, fill the chillers with distilled water and cycle for at least

fifteen minutes, then drain. Repeat this step, cycling the fresh distilled water for at least five minutes;

e drain the chillers once more, then reconnect the lasers, ensuring the flow direction is correct. Install
fresh filters and refill the chillers with chilling fluid. All units can be run with distilled water as the
chilling fluid. However, as the chilling fluid flows through the optical path of the Empower, Spectra-
Physics recommends the usage of Nalco inhibitor 460-PCCL104.

Distilled water can be obtained from any source, but cannot be replaced by deionized water: deionization
results in water that is too pure, and the usage of deionized water may cause leeching from the pump.
Cleaning usually requires 8-10 gallons of distilled water. The cleaning solution is Nalco 460-CCL2567. This
can be acquired from Spectra-Physics (P/N 1607-0547), though at the time of the most recent purchase,
it could be purchased directly from Nalco for a lower price. Nalco 460-PCCL104 is the inhibitor solution,
and it is also available from either Spectra-Physics (P/N 1607-0546) or Nalco; usually 1 gallon per chiller
is necessary. The filters depend upon the chiller: the Neslab Merlin M33 uses a single Pentek P5-478 spun

polypropylene filter, while a Harmsco PP-S-1 PolyPleat cartridge has been used in the Polyscience chillers.

2.3 Light Manipulation and Detection

Many of the experiments described later were performed in ways that deviate from the standard methodology
and configuration. Such differences will be described when appropriate. Here, a brief discussion will be
presented on the standard operation at this time.

Following light generation, periscopes based upon reflection at the Brewster angle ensure all processes
from the OPAs are vertically polarized; a 90° periscope rotates the polarization of the residual fundamental
from horizontal to vertical. The two OPAs and the residual fundamental permit two- or three-color experi-

ments: for two-color experiments, the output from one OPA is split, yielding a series of interactions labeled
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w1, we, and wy; for three-color experiments, rather than splitting the OPA, the fundamental is introduced,
yielding interactions wi, we, and wggg. One beam is blocked for transient absorption.

The beams needed for an experiment are routed by a series of mirrors. Three delay lines are available
for temporal synchronization of the pulses: these delay lines are corner-cube retroreflectors mounted on
motorized stages. Commonly, a chopper is introduced to one of the beam lines for background subtraction.
From the delay lines, the beams are aligned to an appropriate mask to satisfy the phase matching for a given
experiment. The table is designed around a standard BOXCARS geometry with angles of ~ 1° into the
sample. This mask is robust for most experiments with a phase matching condition of ks = k; — ko + ko/;
a small phase mismatch occurs if the difference between w; and wsy is large (for example, phase matching
within the cw approximation predicts phase mismatch should attenuate the intensity less than ~ 1% for
A1 = 495 nm and Ay = 615 nm). The beams are focused into the sample with a f = 1 m mirror. Signal is
collected, collimated, and focused into a monochromator. A variety of detectors are available for different
frequency regions and different purposes. A homebuilt InGaAs array detector allows increased throughput for
expedited signal tuning. For experiments, an InSb detector and a silicon photodiode are commonly used for
near infrared and visible frequencies, respectively; both detectors are compatible with the same preamplifier.
Photomultiplier tubes are available, but the amplification provided by the current preamplifier’s gain limits
reliable application: the gain of the preamplifier is sufficiently large that preventing saturation of the signal
processing hardware requires operating the PMT with biases significantly below specifications.

The signal from the preamplifier is sampled by a boxcar integrator; synchronization of the integrator
and aforementioned chopper allows active background subtraction. The settings on the boxcar are adjusted
according to the detector and the sensitivity of the experiment. The output from the boxcar is collected
on a National Instrument DAQ card. A LabVIEW program (COLORS) is used to collect the data and
interface with the various hardware components. COLORS includes features that allow: tuning, setting, and
scanning the OPAs; synchronization of the pulses through the motorized delay lines; and, data collection
and processing.

The standard protocol for performing an experiment begins with optimizing light generation. After
aligning the output of the regenerative amplifier into the OPAs, recompression is optimized, generally with
respect to the white light in the TOPAS-C. Further alignment adjustments to the TOPAS-C are made as
needed. The table is aligned according to the appropriate mask for an experiment. Tuning of the signal
process in the OPAs can be completed through an automated routine in COLORS. After confirming the signal
tuning is acceptable, upconversion processes can be tuned as needed: the recommended tuning procedure

is to set the signal to the appropriate color and identify the crystal angle that maximizes the power of
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the upconverted process. Alignment through a pinhole is used to achieve spatial overlap of the modes; the
pinhole is appropriate for the f =1 m mirror, but it has been found that for shorter focal lengths it can be
more accurate to optimize overlap by eye. Temporal overlap is determined through nonlinear processes in
appropriate media. A sequence that has proven convenient is: find and optimize nonlinear signal in KTP,
which provides a high nonlinearity and less sensitivity to crystal angle but limits temporal resolution due
to available crystal lengths; find and optimize signal in BBO, which enables high temporal resolution due
to its shorter length; and, finally, optimize temporal overlap based upon the nonresonant response of an
organic solvent. Generally, the solvent is matched to the sample that will be studied, but at times it can
be convenient to first find signal in carbon tetrachloride or carbon disulfide due to their high nonlinearities.

Zero delay is determined as a function of frequency to permit automatic delay compensation.



CHAPTER 3
Theory
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3.1 Description of Electromagnetic Radiation

3.1.1 Light as Electromagnetic Waves'

In order to apply Maxwell’s equations towards understanding the effects of a medium on the propagation of
ultrafast pulses and the resulting consequences within nonlinear spectroscopic experiments, we will require
both a qualitative and mathematical understanding of light. As we will see in Maxwell’s equations
predict that the propagation of electric and magnetic fields in free space will assume a functional form
consistent with the classical wave equation:
2 2

%f(z,t) = 1712% (2,1) (3.1.1)
The solutions to the classical wave equation are expected to be wave functions, f(z,t), consistent with some
functional form propagating at a constant phase velocity, v. Within this definition of a wave, it is trivial to
show the functional dependence of f on z and t. For example, let us consider that we have some functional
form corresponding to the wave function at ¢ = 0, f(z,¢t = 0). If we want to know the functional form of
f(z,t), then we simply have to consider: at time ¢, how much have we displaced the wave function? For a
velocity of v, this corresponds to z = vt. Therefore, we would anticipate that f(z,t) = f(z & vt,0), where
+ot describes displacement of the wave function through propagation in either direction along the z axis.
Since both cases (vt or by —vt) can be shown to be solutions to Eq. we can generalize the solution

f(z,t) as their linear combination:[101]
f(z,t) = g(z — vt) + h(z + vt) (3.1.2)

While any function consistent with Eq. could describe a wave, a common functional form - and one

that will prove a convenient starting point as a description for light - is the sinusoid:!
f(z,t) = Acos [k(z — vt) + ¢] (3.1.3)

Within the functional form of Eq. [3.1.3]" k is the wavenumber of the sinusoid, describing the angular

IThis section is strongly influenced by Griffiths’ text on electrodynamics.|101]

iWhile the functional dependence of the sinusoid is given by the cosine function in Eq. |3.1.3} this is functionally equivalent
to the sine function, differing only in the initial phase, ¢. However, it is more straightforward to relate the complex wave
function to the cosine function (see Eq. |3.1.13)).

iiNote that in Eq. [3.1.3| we have taken the dependence of f(z,t) upon z and t to be z — vt; we could have just as easily
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frequency of the wave’s spatial oscillations: over a distance of Az = 27/k, the sinusoid completes one cycle.
We can recognize this distance as one period of the wave and assign it to be the wavelength, A, yielding the

following relationship between the wavelength and the wavenumber:
kA =2m (3.1.4)

However, the functional form of Eq. [3.1.3] indicates that changes in time will also cause an evolution of the
wave function, with a characteristic frequency of kv. We can assign this frequency as the angular frequency,
w, yielding the following relationships between the wavelength (), linear frequency (v), and the velocity (v)

of the wave or between the spatial (k) and angular (w) frequencies and the velocity of the wave:

= v\ (3.1.5)

w
U=
Finally, ¢ in Eq. describes the initial phase of the wave, defining the relative delay of the oscillations.

In addition to predicting wave-like behavior for both electric and magnetic fields, Maxwell’s equations
predict the co-propagation of electric and magnetic fields, yielding electromagnetic radiation: light. The
propagation of each field is consistent with the form in Eq. We will take the electric and magnetic
fields as plane waves propagating along an arbitrary z-axis. For now, it is sufficient to assume both fields to
be monochromatic - each consisting of a single frequency component - and to behave as plane waves - with
minimal dependence upon the transverse coordinates, taken to be the z- and y-axes.! Within this model,
Maxwell’s equations can provide some insight regarding the manner in which the electric and magnetic
fields will co-propagate. We will identify the key relationships from Maxwell’s equations when appropriate;
otherwise, the reader is directed to where the forms of Maxwell’s equations are presented.

First, since Maxwell’s equations describe the behavior of electric and magnetic fields through vector op-
erations, we should assume it is most appropriate to consider the fields as vectors, with separate components

oriented along the x, y, and z axes. We will assume all three components of each field oscillate in phase and

taken as convention that the field propagates in the opposite direction, z + vt. However, the direction of propagation being
z — vt appears to be a common convention.

iThe plane wave limit is cited as a reasonable approximation as long as the radius of curvature is sufficiently larger than
the wavelength of the fields.[101]
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at the same frequency:i

Eo; cos(kpz — wpt + ¢p)%
E(z,t) = | Ey,cos(kpz — wpt + ¢p)y (3.1.6a)
Ey, cos(kpz —wgt + ¢p)z
By, cos(kpz —wpt + ¢p)x
B(z,t) = | By, cos(kpz —wpt + ép)y (3.1.6b)

N>

By cos(kpz —wpt + ¢p)

In Eq. B.1.6aland[3.1.6b] X, ¥, and z represent the unit vectors aligned with the z-, y-, and z-axis, respectively,

specifying the contribution of each available polarization state to the total field. The magnitude of the
contribution of a given polarization state is described as a sinusoid with an amplitude represented by the
scalar quantities Eoz, Eoy, Eoz, Bow, Boy, and By.. As mentioned previously, each polarization state of a
given field is presumed to exhibit the same sinusoidal oscillations as functions of z and ¢t. For now, we will
maintain a distinction between the frequencies and phases of the two fields, reflected in the notation kg
versus kp, vg versus vg, and ¢p versus ¢p. We will find that this distinction is unnecessary, however, as
Maxwell’s equations predict co-propagation of the electric and magnetic fields with matched frequency and

phase.

The first simplification of Eq. |3.1.6a] and |3.1.6b| can be made by invoking Gauss’ law and Gauss’ law

of magnetism. In free space, these laws define the divergence of both fields to be zero, i.e. V - E(r, z,t) =
V-B(r, z,t) = 0. Since the plane wave limit describes both fields propagating along an arbitrary axis (taken
to be the z-axis) without dependence upon the transverse coordinates, the derivative of the X-polarized
component of each field with respect to x must be zero; the same must also be true of the derivative of
the y-polarized component with respect to y. Gauss’ laws then leave Fy,9/szcos(kgz — wgt + ¢g) = 0 and

Bo.9/0zcos(kpz —wpt +¢p) = 0. As the derivative of a sinusoid is a sinusoid, these relationships can only

INote that we are introducing a notation consistent with Boyd[102| in which quantities oscillating rapidly (i.e. at optical
frequencies) in time are denoted by a tilde.

iRecalling 8/6x cos(x) = — sin(x) and 9/ox sin(z) = cos(x).
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be satisfied if Ey, = 0 and By, = 0. This conclusion allows us to simplify Eq. [3.1.6a] and [3.1.6b] yielding:

Eo; cos(kpz —wpt + ¢p)%
E(z,t) = | Ey,cos(kpz — wpt + ¢p)y (3.1.7a)
0z
By, cos(kpz —wpt + ¢p)x
B(z,t) = | By, cos(kpz —wpt + ép)y (3.1.7b)
0z

From these results, we must conclude that both the electric and magnetic fields are transverse waves, and
can only be polarized perpendicular to the direction of propagation.

The other simplification to E (z,t) and B (z,t) can be made through either Faraday’s law or Ampere’s law.
In free space, these laws parallel each other: VxE(r, z,t) = —9/atB(r, z,t) and V xB(r, z,t) x 9/atE(r, z,t).}
Following Faraday’s law (V x E(r, z,t) = —9/a:B(r, z,t)), we can evaluate the expressions on both sides of

the equality (V x E(r, z,t) and —9/a:B(r, z,t)):

EoykE sin(kEz - wEt + (bE))A(

V x E(2,t) = | —Egkpsin(kpz —wpt + ¢p)y (3.1.8a)
0z

—Bo,wp sin(kpz — wpt + ¢p)X

—=B(z,t) = | —Bywpsin(kpz — wpt + ¢5)¥ (3.1.8b)

0z

Faraday’s law requires the results of Eq. |3.1.8a] and [3.1.8b| to be equivalent; we therefore end up with the

following pair of equalities:

EoykE Sin(kEZ —wgpt+ ng) = —By,wp Sin(sz —wpt + qj)B) ( )
3.1.9

—FEo: kg sin(kEz —wprt + ¢E) = 7Bowa sin(sz —wpt + gf)B)

The equalities of Eq. [3:1.9] informs on two key properties of the co-propagating electric and magnetic fields.
First, comparison of the sinusoidal terms on the opposing sides of each equality necessitates coherence

between the fields: the equalities can only be satisfied if the electric and magnetic fields exhibit the same

iFor now, it is sufficient to leave the relationship of Ampere’s law as a proportionality.
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frequency and phase. With this conclusion, we can divide through both equalities in Eq. by the
sinusoidal terms, leaving Fo, o —Bo, and Ey, o< By,. It is trivial to show that this pair of relationships is
consistent with:

B(z,t) x z x E(z,t) (3.1.10)

The relationship of Eq. defining B(z, t) by the cross-product of z - the direction of propagation -
and E(z,t), imposes a requirement on the relative polarization of B(z,t) and E(z,t): not only must both
fields be transverse, but the fields must be perpendicular to each other and satisfy the right-hand-rule with
respect to the direction of propagation.

Despite light constituting both electric and magnetic fields, our current scope is exploring the interaction
of light and matter within the context of optical spectroscopies. The frequencies relevant to such experiments
will generally exclude regimes for which we need to consider interactions between the magnetic field and the
material.[99] Consequently, while experiments for which the material response to the magnetic field needs
to be considered do exist, we will proceed throughout the following sections considering only the electric
field. We will also generally only sample the electric field, and therefore be limited to characterizing the
polarizations of two electric fields relative to each other. Even then, while the relative polarizations of
interacting fields can be important, we will often be able to make approximations permitting the treatment
of the fields as scalar quantities (as we will show in . Under such assumptions, we can simplify the
system described by Eq. [3.1.7al and [3.1.7b] to a single expression:

E(z,t) = Ep(w) cos(kz — wt + ¢) (3.1.11)

While Eq. is consistent with the observed behavior of light and conveniently yields a real-valued
function, the form of the wave equation illustrates that the theoretical treatment of field propagation and
nonlinear interactions will involve differential equations. In such circumstances, trigonometric functions
increase the difficulty in evaluating the relevant expressions. Fortunately, we can make the treatment more
tractable through Euler’s formula (exp(i0) = cos(6)+isin(6)), which demonstrates that complex exponentials

are also oscillatory and - as linear combinations of solutions to the wave equation - valid descriptions of waves.
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Therefore, we can consider the complex function:!

E(z,t) = Ey(w)e~kzmwt+e) (3.1.12)

as a valid representation for the behavior of an electric field. However, though exponentials are more
compatible with differential equations, we still need to ensure that the electric field evaluates to be a real
valued function.|101} [102] Some authors[101] address this by defining the real-valued field as the real part of
the complex exponential, i.e. E(z,t) = R{Eo(w) exp[—i(kz —wt+ ¢)]}; many other authors instead recognize

the relationship:

E(z,t) o< Ey(w)e " F==wt+e) 4 ¢ c.

x Eo(w)e—i(kz—wt—o—qﬁ) +E§(w)ei(kz—wt+¢)
(3.1.13)

x Eg(w) [cos(kz — wt + ¢) — isin(kz — wt + @) + cos(kz — wt + @) + isin(kz — wt + @)]

x Eg(w) cos(kz — wt + @)

where c.c. represents the complex conjugate of the complex field, Ej(w) exp[i(kz —wt+¢)]. In the second step
of the scheme in Eq. we have assumed Ey(w) = Ej(w): since we have assumed FEy(w) cos(kz —wt +¢)
is real-valued, Ey(w) must be real-valued and therefore equal to its conjugate. In the scheme in Eq.
we emphasize the relationship as a proportionality to raise awareness that different authors will scale this
relationship differently: while a coefficient of 1/2 will yield a result that matches Eq. |103] other
authors use a coefficient of 1 for each exponential.[102] In order to maintain consistency with Boyd,|102]
we will employ the convention that the coefficient of each exponential is 1; when evaluating nonlinear
polarizations (see , this will result in degeneracy factors that differ from those of other authors by a

factor of 2.[103} |110]

3.1.2 Polychromatic Electric Fields

Throughout [§ 3.1.1} we have limited our focus to monochromatic fields - electric fields consisting of a single
frequency. While this is a convenient starting point, it is rarely relevant in laser spectroscopy: even in a
HeNe laser, it is trivial to end up with multiple cavity modes contributing to the output.|105] However, if a

monochromatic field of the form in Eq. [3:1.12]is a valid solution to the relevant wave equation, polychromatic

INote that we are taking the component with phase exp[—i(kz — wt + ¢)] to be our complex wave function; this selection is
made to ensure compatibility with our adopted mathematical conventions. This is consistent with some authors,|103-105| but
the opposite of others.|99] 101} |102} [{106-109)]
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fields defined as linear combinations of such monochromatic fields must also be valid solutions to the wave

equation.|[101] Such polychromatic fields can be defined as sums in the manner of Eq. [3.1.14}[102

E(r,z,t) ZE ) +c.c. {n:w, >0} (3.1.14)

where E,, (r, z,t) is the monochromatic electric field at frequency w,,. This is equivalent to Eq. [3.1.15, where

we have substituted for E,, (r, z,t) according to the form in Eq. [3.1.12

E(r,z,t) = ZEO(Iyz,wn)e_i[k(W”)Z_““t+¢(w")] + Ej(r, 2, w,, )l lF@n)zmwnt+élwn)l {n:w, >0} (3.1.15)

In Eq. [3.1.14] and [3.1.15] we have introduced the notation r to generalize the transverse coordinates (z,

y); as noted before, we can still treat the fields as plane waves as long as the functional dependence on the
transverse coordinates involves changes at scales significantly larger than the wavelength of the ﬁeld.
It should also be noted that we have allowed for the possibility that the amplitude, Ey(r, z,t), exhibits a
functional dependence upon the spatial coordinates. This will facilitate our treatment of propagation effects
(see ; we still require the amplitude to be real at this time. We can simplify Eq. by introducing
a complex amplitude that incorporates the phase factor, exp[—igb(w)]. Defining this complex amplitude

function, a(r, z,w):!

a(r, z,w) = Ey(r, z,w)e ) (3.1.16)
we can simplify Eq. 3.1.15] to yield:
E(r,z,t) = Z&(r, z,wp e Uk@n)z=wnt] 4 gx(p o g, )ellk@n)zmwnt] {n:w, >0} (3.1.17)

n

However, we will once again give consideration to mathematical convenience. At the limit in which
the summation in Eq. [3.1.17] is sampled over a continuous range of frequencies,|[101H103] this summation

tends towards the equivalent integral over w. Introducing the appropriate integration factor “. - 113] the

IThe notation of the envelope function as @ will be clear when we consider the form of the electric field in the regime of
continuously varying frequencies.

iThe factor of 27 introduced with the integration factor dw accounts for the variable of integration being angular fre-
quency. We will ultimately show that the integral in Eq. represents an inverse Fourier transform (see Eq.
, and the one-dimensional Fourier transform between time and angular frequency requires this factor of 27 for normal-
ization. While a factor of v/27 in both the Fourier transform and the inverse Fourier transform would ensure a unitary Fourier
transform7 for now we will follow the example of Boyd and account for the normalization constant on the inverse Fourier

transform only.
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summation approaches the limit of an integral with the following form:

. o0 4 , d
E(r,z,t) = / a(r, z,w)e @zt o gx(p, z,w)el[k(“)Z*“t]Q—w (3.1.18)
0 m

Eq. [3:1:1§]is consistent with a Laplace transform from the angular frequency domain to a purely imaginary
Fourier domain.[112] This restriction of Eq. corresponding to a Laplace transform arises from the
bounds of integration: as negative frequencies have no meaning, we can only allow the integral to span
between the bounds of 0 and oc0.[102] One approach in the literature[102] is to invoke the relationship
between k, w, and v (see Eq. , recognizing that we can define the wavenumber: k = «/v. With this

definition for the wavenumber, we can consider the conjugate of the complex electric field:

[d(r, 2, w)efi[k(w)ziwt]] [d(ﬂ 2, w)efi[(w/v)szt]}
= a*(r, z,w)ell(/)z -t (3.1.19)

o (I‘, z, w)efi[((—w)/u)zf(fw)t}

From this scheme, we see that if we assume a(r, z,w) is Hermitian, that is we assume the equality a*(r, z,w) =
a(r, z, —w), we can simplify Eq. [3.1.18) by extending the integration to all frequencies - positive and nega-
tive:[102]

~ o0 . dw
E(r,z,t) = / a(r, z,w)e k@)z—wl] o (3.1.20)
77

—oo
Within the form of Eq. we now ensure the resulting field, E(r, z,t), is real-valued by allowing the
negative frequencies in the integral to correspond to the conjugate terms of the positive frequency components
according to Eq. [3.1.19] [102]

Unfortunately, this strategy is not robust: previously (see Eq. , we defined the complex amplitude
function, a(r,z,w), in order to incorporate the phase factor, exp[—i¢(w)]. As this phase factor is the only
imaginary contribution to a(r, z,w),! if we assume a(r, z,w) to be a Hermitian function, we are implicitly
assuming exp[—i¢(—w)] = explid(w)]. This assumption restricts the functional forms of ¢(w) to only those
functions that exhibit odd symmetry. As ¢(w) is not required to be a function with odd symmetry, we must
find an alternative approach to manipulate Eq.

In contrast to Boyd’s approach of assuming a(r, z,w) exhibits Hermitian symmetry,[102] we will instead

begin by considering the distribution defined by a(r, z,w). If we consider that this distribution can be

IRecalling Eq. [3.1.16} the only other contribution to a(r, z,w) is Eo(r, z,w). We have taken Eo(r, z,w) to represent a scalar
amplitude, thereby requiring it to be real-valued.
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characterized by a distribution around a central frequency, wgy, we can find this characteristic frequency

through the first moment of the distribution in the manner of Brabec and Krausz:|115]

(3.1.21)

oo ~ 2d
o — fo w|Aa(w)| w
a

fooo |a(w)|?dw
where |a(w)|]? = a(w)a*(w) = E(w)E*(w) and E(w) is defined as the Fourier transform of E(t). While
Fourier transformation of E(t) will remove the terms describing the temporal oscillations, F(w) will still
include a complex exponential describing the spatial oscillations. However, the product of E(w) and its
complex conjugate, E*(w), will remove the exponentials, leaving only the amplitude function a(w), as in Eq.
B.I21

Having defined the characteristic carrier frequency, let us now reconsider the form of the continuously
defined electric field from Eq. As the integral of the sum of two functions is equal to the sum of the

integrals of the same two functions,[116] we can express the integral in Eq. [3.1.18|in the form:

dw

3.1.22
5 ( )

~ oo . dw o0 .
E(r,z,t) :/ a(r, z,w)e F@)z—wt 2 +/ a*(r, z, w)elk@z—wi]
0 0

2T

From Eq. we will consider two separate substitutions, introducing a new variable of integration, Aw.
For the first integral of Eq. we will consider this variable to be defined Aw = w — wg, where wy is
the carrier frequency determined according to Eq. Substitution for Aw will shift the lower bound of
integration from w = 0 to Aw = —wyq, but the upper bound will remain co. As for the integration factor,
since 98w/aow = 1, dw can be directly replaced by dAw. For the second integral in Eq. we will define
Aw to be Aw = wy — w. With this substitution, we will observe the opposite changes in our bounds of
integration: instead of spanning w = 0 to w = oo, substitution according to Aw = wy — w will shift the
bounds to span Aw = wp to Aw = —oo. Additionally, since 9Aw/a, = —1 for this second substitution, the
integration factor dw will need to be replaced by —dAw. Recognizing that these substitutions permit the
definition of w as w = wy + Aw for the first integral and w = wy — Aw for the second, we can proceed with
these substitutions to yield:

E(r,z,t) = /00 a(r, z,wo + Aw)e~ k@otAw)z—(wotAw)t] dAw
) ? 9 ) 27_[_
—wo

(3.1.23)

+ /700 a* (I‘ 2, wo — Aw)ei[k(wo7Aw)z7(wowa)t] (_dAw)
- ) ) 27_(_

0

As the integral from wy to —oo just yields the negative value of the integral from —oco to wgy, we can recall
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our earlier definition of the wavenumber, k = w/v, permitting the simplification of Eq. [3.1.23 slightly:

ko giwot [ af)s iAwr A
E(r,z,t) = 6ﬂkozewot/ a(r, z,wo + Aw)e ™ /“)Zem‘*’ti2 d
™

—wo

(3.1.24)

«o dAw
ikoz  —i N Aw)eil 2]z i
elk’gze zwot/ a* (I‘, 2z, Wo )ez[( w)/ ]zevAwt 5
™

— 00

where ko = k(wg) = wo/v.

From Eq. [3:1.24] we can make two further simplifications. First, if we assume that the behavior of
a(r, z,w) is such that it does not evaluate to non-zero values beyond the allowed bounds of integration,
i.e. for negative values of w, there is no functional difference between the integrals in Eq. spanning
Fwp and oo and the same integrals spanning the bounds of —oco to co. Second, let us consider a second
function, A(I‘, z, Aw), that we will define relative to a(r, z,w) simply by shifting the center of the distribution:
A(r, z, Aw) = a(r, z,wo + Aw). In other words, A(r, z, Aw) is a function that exhibits the same functional

behavior as a(r, z,w), but is centered such that the distribution’s carrier frequency, wo, serves as the origin

(Aw = 0). With these two changes, we can modify Eq. [3.1.24] to define the electric field:

ko i - ; g AA
E(r,zt) = eﬂkozew(’t/ A(I‘,Z,Aw)eﬂ(m/“)zem‘*’t72 v
m

— (3.1.25)

[sS)

+ eikgze—iwot / A* (I‘, 2, _Aw)ei[(*AW)/u]zeiAwt dAw
oo 2w

The forms of the integrals in Eq. [3:1.25] correspond to the inverse Fourier transforms with respect to the
difference frequency, Aw.! We can therefore consider Eq. [3.1.25to be equivalent to:

E~’(r7 2,t) = e~ thoz giwot 1 {A(r, Z, Aw)e_i(m/”)z}
. (3.1.26)
4 ¢ikozg—iwot F-1 { {A(r, 2, _Aw)e—i[(*Aw)/u]z} }

where F~1{} represents the inverse Fourier transform of the term in brackets.
If we define an envelope function A(r, z,t) = F~{A(r, z, Aw) exp[—i(Aw)/uz]},1 we can use the identity

F Y *(—w)} = f*(t) [112] to see that Eq. [3.1.26 predicts the behavior of a polychromatic field to be

INote that the form of our inverse Fourier transforms in Eq. |3.1.25|do not agree with the notation employed by Boyd.[102]
Boyd takes the convention that the inverse Fourier transform is achieved by multiplying the frequency domain function by
exp(—iwt) and integrating over w. While this convention is consistent with some authors,[113}[117] we will follow the convention
in which the Fourier transform is performed by multiplying the time domain function by exp(—iwt) and the inverse Fourier
transform by multiplying by exp(iwt).|[112] [114]

iWe can simplify the assignment of A(r,z,t) by considering the contributions from exp[—i(Aw/v)z] to be negligible. We
will generally adopt this approximation going forward, i.e. we will generally consider F{A(r,z,t)} ~ A(r,z, Aw). However,
we will note when it is convenient to relax this approximation. It is also trivial to explicitly account for this additional phase
component numerically in a manner similar to Wang and Wang.|118]



23

consistent with that of the time domain envelope, A(r, z,t), propagating with carrier frequency, wp:

E(r,z,t) = A(r, z,t)e"(Foz=wot) ¢ ¢, (3.1.27)

Ignoring the factor of 1/2 as previously discussed, 102|103} [110] this result is identical to the solution reported
by Akhmanov et al.[103] The form of Eq. suggests that it is satisfactory to consider the propagation
of the complex field, A(r, z,t) exp[—i(koz — wpt)], and determine the resulting real-valued field through the
predicted result and its complex conjugate.

Akhmanov et al give some insight into the nature of this pulse envelope A(t). They treat the function as
the product of a real-valued envelope, p(t), and a phase factor, exp[i¢(t)]. Within this notation, a transform-
limited pulse can be considered to be characterized by a pulse envelope that is real-valued, and thereby
characterized by a phase dependence of ¢(t) = 0. Other functionalities of ¢(t) yield different behaviors
associated with the resulting phase-modulation. For example, phase-modulation of the time-domain envelope
according to ¢(t) = —(@/2)t? corresponds to frequency modulation of the form w(t) — wy = d®)/a = —at,
yielding a linear chirp.[103]

As we see in the derivation of Eq. the formation of ultrashort pulses is predicated on forming
polychromatic electric fields. However, not only does pulse formation require many contributing frequencies,
it also requires a fixed phase relation between the various frequency components in order to permit its
characterization as a single pulse envelope. This is demonstrated in Fig. This figure illustrates how the
linear combination of various monochromatic fields can introduce a beat pattern in the total field observed,
resulting in a pulse train. More meaningfully, when there is a characteristic distribution applied to the
amplitudes of the monochromatic fields, mode locking by defining a fixed phase relationship between the
different frequency components results in the transformation of this distribution into the time-domain, as
predicted by Eq. On the other hand, the loss of a phase relation between the different frequency
components prevents a well-defined pulse from forming.

This regime in which the time-dependent behavior of a pulse is adequately described as the product of an
envelope function and a term describing the rapid oscillations at a central or carrier frequency is referred to
as the slowly varying amplitude or envelope approximation. Unfortunately, there is a limit to the conditions
for which this approximation is considered valid: if the pulse envelope is too short relative to the oscillations
at the carrier frequency, it is no longer appropriate to consider the time evolution of the envelope distinct
from the rapid oscillations at the carrier frequency. The limit to this approximation is therefore related to

the pulse width, 7, and the carrier frequency, wy. However, different authors cite different limits to this
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regime. Akhmanov et al cite the limiting bounds as 7wy & 207.[103] On the other hand, Brabec and Krausz
present calculations that suggest the limit may even be as low as Twy & 2m.[115] For fields in the regime
we commonly work on the Wright group’s femtosecond system (in the visible and near infrared), wq is in
the range of 1 —4 x 10'® Hz.! According to Akhmanov et al, the shortest pulse lengths at these frequencies
for which the slowly varying envelope approximation would be considered valid are 16-60 fs; by Brabec and
Krausz’s conditions, though, the slowly varying envelope approximation should be reasonable down to pulse

lengths as short as 2-6 fs.[103} |[115]

3.2 Polarizations

Throughout we have focused on electromagnetic radiation propagating through free space. In such a
scenario, Maxwell’s equations predict the propagation of electric and magnetic fields to behave perfectly as
a wave: propagating without distortion to the wave function. This behavior is expected as the propagation
predicted by Maxwell’s equations exhibits a functional form consistent with Eq. ii

82 2

@E(I‘,Z,t) = E

However, when light propagates through matter, the field can interact with the dipoles of the material,

perturbing the potential energy of the system according to:[99, 109

V=uE (3.2.2)

where p is the dipole operator, er. As the potential energy defined by Eq. is of the form of a dot
product, the relative orientation of the dipole and the field polarization is important; we will represent
appropriate quantities as vectors until we note the assumptions that allow us to represent the system with
scalar quantities.

The additional potential energy introduced by the interactions between the dipole and the field can be

iCorresponding to wavelengths between approximately 500 nm and 1500 nm, which covers the bounds of the sum-frequency
signal, sum-frequency idler, second-harmonic signal, second-harmonic idler, and signal processes.

A result identical to Eq. [3.2.1] can also be predicted for magnetic fields.
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Figure 3.1: Formation of a polychromatic electric field through summation of monochromatic fields. (A) and
(B) demonstrate the beating that arises in the polychromatic field (B) from the summation of a discrete set
of monochromatic fields (A). The beats in (B) correspond to a pulse train with pulses occurring at points
where all contributing fields are in phase. (C) shows a Gaussian amplitude envelope over a distribution of
frequencies, while (D) shows two scenarios for the phase relation between the different frequency components:
all frequencies have the same initial phase (dashed line), or the frequencies exhibit random phases (solid line).
The polychromatic field resulting from the mode-locked frequencies exhibits the Gaussian temporal profile
in (E): the solid line is the polychromatic field amplitude, and the dashed line outlines the Gaussian profile
predicted by Fourier transformation of the frequency domain envelope in (C), scaled to match the peak of
the solid trace. The randomly phased frequencies yield the polychromatic field in (F).
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treated as a perturbation to the Hamiltonian, 7, describing the system:!

H=Ho+V
(3.2.3)

=Ho+p- E
where Hg is the unperturbed Hamiltonian of the system. The effects of this perturbed Hamiltonian are

described by the Liouville equation:

d 1
5P = Al (3.2.4)

The resulting density matrix, p, permits prediction of the properties of the system, including the expectation

value for the electric polarization induced by the field:

(P) = Ntr(pu) (3.2.5)

where N is the number density of the source of the dipole and tr is the trace.[99} [109] Going forward, we
will simply express the polarization as P.
As we have implied by the notation of P, this resulting polarization will exhibit an oscillatory character,

which we can consider to be of the form:[102} |109)
P(t) = P(w)e™ + c.c. (3.2.6)

where P(w) is the amplitude of the polarization at the frequency of oscillation, w. This polarization can couple
to the electric field oscillating at the same frequency, modifying the manner in which the field propagates.
The effect of this induced polarization upon the electric field manifests in the introduction of a new quantity:
the displacement, ]3(16) The displacement describes the coupling of the electric field and induced polarization
according to the relationship:

D(t) = eoE(t) + P(t) (3.2.7)

in the mks system of units, or:

D(t) = E(t) + 47P(t) (3.2.8)

in the cgs or esu systems. In Eq. €o is the permittivity of free space.|101} 102, [109)

Thus far, we have only allowed for linear interactions between the field and the material. However, it is

INote that an additional perturbation can be introduced corresponding to the interactions that provide relaxation pathways
for the density matrix predicted by the Hamiltonian. Such a relaxation matrix is not explicitly noted in Eq.
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possible to expand the perturbation to higher terms in the electric field, resulting in a series of higher order
perturbations to the density matrix. The n*P-order density matrix, p(n)7 will contribute a corresponding

nth-order polarization, p™ (t). The total polarization will be the sum of all such resulting polarizations:|109]

Pit)=PO)+ PO ) + PO (t) 4 ---
(3.2.9)

P (t) + PNE(1)

In the second line of Eq. we have introduced the notations PY(t) and PN®(¢) to describe the linear
and nonlinear polarizations, respectively: the linear polarization, P (t), corresponds to the first order term,
P (t), and the nonlinear polarization, PN (t), generalizes the higher order terms. This reduction will prove
useful going forward: we will show that the linear term describes absorptive and dispersive effects on the
propagation of an ultrashort pulse, while we will generally only need to consider one term from the series
represented by PN (¢).

Since the n*M-order polarization requires an expansion of the Hamiltonian to provide an n'"-order per-
turbation, we can also express the series in Eq. as an expansion in increasingly higher powers of the
field. This expansion describes the increasingly higher order of interactions between the total field and the

material:[99, 102, [109]

P(t) = eoxM - E(t) + eox®: B2(t) + eox® : B3 () + - -- (3.2.10)

in the mks system, or:

P(t)=x" - E@) +x?: E*(t) + X B3t) + - (3.2.11)

when the quantities are in cgs or esu units. Note that the : operator in Eq. [3.2.10] and [3.2.11] provides an

operation analogous to the dot product between the tensor, x(™, and the electric field product, E"(t).[109)

Within the expansions of Eq. [3.2.10| and [3.2.11] the coefficient x(™ is the n'"-order susceptibility. These

susceptibilities are appropriately considered to be (n + 1)"-order tensors. However, we will generally be
able to apply approximations or manipulations that allow us to consider the susceptibility as an effective
scalar value representing a linear combination of the appropriate elements of the tensor as they are sampled
according to the experimental conditions.|102}|106} 119] Under such approximations, it is sufficient to consider

the following alternatives to Eq. [3.2.10] and [3.2.11] in which the relationship between the polarization and
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the field is treated as a scalar relationship:

P(t) = eox MV E(t) + eox P E2(t) + eox D E3 () + - -- (3.2.12a)

P(t) = xWE®) + xPE(t) + XV E(t) + - - (3.2.12b)

We will discuss how this can be approached in birefringent media, as well as provide a brief discussion of the
contributions to the susceptibility, in However, in the context of later sections, it will be sufficient
to consider the susceptibility at the phenomenological level of Eq. [3.2.10] and [3.2.11] or Eq. and
B2.120

Unfortunately, the expansion of the polarization into a series in the manner of Eq. -

introduces another inconsistency in the treatment of different authors. The forms that have been presented
are consistent with the convention of Boyd, in which the polarization as an expansion of increasing
powers in the electric field is considered to be a time-domain description of the interaction. In contrast, Shen
expands the polarization as increasing powers of the field in the frequency domain. The significance of
this distinction relates to the behavior of multiplication between the time and frequency domains. For two
functions f(t) and g(¢) with Fourier transforms F{f(t)} = f(w) and F{g(t)} = §(w), we can define the

following relationships:|112]

FU 090} = 5 (F *5)(w) (32.130)
F{f*9)®)} = f(w)g(w) (3.2.13b)

where * denotes the convolution of the functions.!

As can be seen from the relationships of Eq. [3.2.13a] and [3.2.13b] Boyd and Shen are implying specific

behaviors in their respective conventions. By taking the expansion of the polarization in powers of the
field as the frequency domain description, Shen imposes behavior in the time-domain corresponding to the
convolution of the fields and the material response, which allows the polarization to exhibit transient behavior
corresponding to relaxation properties in the material. In contrast, Boyd’s treatment describes an
instantaneous response of the medium, with a response - the polarization - that requires the presence of the

electric field to be sustained; such behavior is consistent with a nonresonant interaction, in which the field

i1t should be noted that the factor of 27w in Eq. [3.2.13al is necessary to compensate for the additional normalization
constant that arises from the pair of Fourier transforms necessary to yield f and ¢. This normalization constant should be
changed according to the normalization convention being taken. Upon a change in normalization convention, it is also necessary
to consider whether a normalization coefficient needs to be introduced to Eq.
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is not resulting in the formation of long-lived polarizations. Within this treatment, the polarization must be
able to be defined in the frequency domain as a convolution; this is consistent with Boyd’s treatment of the

polarization for a () experiment corresponding to the summation:[102]

2
Pi(wn +wm) =3 3 X W + Wiy Wi, ) By (wn) Er (wim) (3.2.14)
ik (nm)
where 4, j, and k correspond to the available polarization states and the summation over (nm) corresponds
to summing over m and n in such a manner so as to maintain a constant sum, w, + w;,. Ignoring the
symmetry (the terms corresponding to summation of 7, j, and k in Eq. [3.2.14]) and extending the summation

to the form of a continuous integral, this is consistent with the convolution:
P(w) = / XPE(W)E(w — w')dw (3.2.15)

In contrast to Shen’s approach, this treatment allows us to explicitly consider the permutations resulting from
the frequency content of ultrafast pulses. Since the problems we will be seeking to address predominantly
involve interactions reasonably considered nonresonant, we will adopt Boyd’s convention moving forward.
This convention has also been adopted by a variety of other authors concerned with systems involving both
resonant and nonresonant response from the medium.|120H124]

If we wish adopt this treatment in order to consider fields with a broad frequency distribution, we will
also need to consider the possibility of the polarization exhibiting a frequency distribution. Examining Eq.
[3:2:6] it is clear that this mathematical description can be considered to describe a polarization exhibiting
a single frequency, thereby coupling to a monochromatic field. To extend to the scenario in which multiple

frequencies are present, we can treat the polarization defined by Eq. in a manner similar to our

extension of Eq. [3.1.13|to Eq. [3.1.14]in [§ 3.1.2] yielding the summation:[102]
P(r,z,t) = ZP(r7 2,wp)ent 4 c.c. {n:w, >0} (3.2.16)
n

Note that we have also introduced the spatial dependence (r,z) we previously allowed the field to exhibit
(see Eq. [3.1.15)). Given our previous treatment of polychromatic fields, though, we expect that we might
be able to extend this summation in a manner similar to the result of Eq. [3.1.27] allowing us to treat the

polarization as the product of some envelope function, p(r, z,t), and rapid oscillations around the carrier
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frequency:

P(r, z,t) = p(r, z,t)e™°! + c.c. (3.2.17)

If such a treatment holds, we would predict that the envelope function would contain information on the

frequency distribution in a manner analogous to the field envelope, A(r, z,t):
p(r,z, Aw) = P(r, z,wp + Aw) (3.2.18)

where P(r, z,wop + Aw) = P(r, z,w) is the coefficient in Eq. and p(r, z, Aw) is defined as the Fourier
transform of p(r, z,t), p(r, 2z, Aw) = F{p(r, z,t)}.

If we consider a representative nonlinear process, we can show that the form of Eq. is just a conse-
quence of the pulse-like propagation of ultrafast electric fields, with p(r, z,t) inheriting a form corresponding
to the envelope functions of the driving fields, A(r,z,t). We will show how this might be evaluated for a
representative example - second-harmonic generation - though extending this treatment to other nonlinear
experiments simply requires an appropriate expansion of the total electric field.

In the case of second-harmonic generation, we are concerned with a total electric field consisting of
contributions from two fields: the fundamental, characterized by a carrier frequency wg = wi, and the
second harmonic, which will exhibit a carrier frequency wg = ws = 2w;. If we consider these fields to be

defined in a manner consistent with Eq. [3:1.27] we expect the fields to propagate in the manner:

Fy (r,2,t) = Ay (r, 2z, t)e"F1Zelnt L A%(r, 2, t)et1zemiwnt (3.2.19a)

Ea(r,2,t) = Ag(r, 2, t)e*22ei2t L A3 (r 2, t)eth27emiw2t (3.2.19Db)

where Eq. [3.2.19a]describes the fundamental field (noted El) and Eq. [3.2.19b|represents the second-harmonic
field (noted E5). We can then define the total field, E:

E~(r7 z,t) = E (r,z,t) + E‘g(r, z,t)
= Ay (r, 2, t)e” Pzt 4 A% (v 2, t)eF1Ze it (3.2.20)

+A2(I‘,Z,t)€72k2zelw2t+A;(I‘,Z,t)61k2zeilw2t

Substituting the total field of Eq. [3:2.20] into the appropriate term of the polarization expansion in Eq.
3.2.12a) PA)(r,z,t) = egx? (E(r, 2,t)),! and expanding the quadratic dependence on the total field yields

INote that the appropriate term from Eq. [3.2.12b) ﬁ(Q)(r, z,t) = x@ (E‘(r, 2,1))2, would be treated in an identical manner,
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the result of Eq. [3.2.21

PO (r, 2,t) = ¢gx? {Al(r, 2 D) A (r, 2, £)e K762 L0 A (1) 2 1) Ay (r, 2, 1) e (FIHR2)Z gilwr e )t
+ 241 (v, 2, t) A% (r, 2, t) + 2A1 (r, 2, ) A} (r, 2, t et 2Rz mi(wz—wn)t
+ Ao(r, 2, ) Ao (r, 2, t)e T 2R22 1202t L 9 Ay (r, 2 1) A (r, 2, t)e k2 Rz pilwz —wi)t (3.2.21)
+ 245(r, 2, ) AS(r, 2, 1) + A% (r, 2,t) Al (r, 2, t)et2k12 e 2wt

+2A5(r, z,t) A3 (r, 2, t)ei(kﬁkz)ze_i(“ﬁ”)t + A5(r,z,t)A5(r, 2, t)ei%zze_ﬂ”t]

Examining this expression, we observe five frequency contributions: two DC components describing optical
rectification; the second harmonics of w; and wso; the sum frequency, wy + ws; and, the difference frequency,
wo — wi. Considering the oscillatory terms, Eq. consists of two terms at each frequency that simply
differ in phase; we will consider these terms to reflect four complex polarizations - the terms oscillating
according to exp(iwt) - and their complex conjugates, the inclusion of which ensures the polarization is real

valued. Thus, we can consider the four oscillating polarizations to be of a form analogous to Eq. [3.1.27]

p((fil)(r, z,t) = eox? [Ai(r,z,t) A (r, z,t)e 2Rz giint 4 c.c] (3.2.22a)

13((22;)(1" z,t) = eox? [Aa(r,2,t) As(r, 2z, t)e ™ 2F22ei22t 4 c.c ] (3.2.22D)
p r,z,t) = 2 r,z,t r, z,t)e {kitha)zgilwitwa)t 4 ¢ ¢ 2.22¢
PE) oy 0:2:8) = 260 [Au (12,0 Ao, 2, e hzilontenlt (3:2.220)
p r,z,t) = 2¢ r,2,t) A} (r, 2, t)e k2 mk)zgilwamwn)t 4 ¢ o 2.
P((jifwl)( )%y ) 2 OX(Q) [AQ( )%y )Al( )< ) (ka=hn)z i )t } (3222d)

Therefore, our assumption in treating the polarization in the manner of Eq. appears justified. Within
this treatment, we can consider the envelope function of the polarization, p(r, z,t), exhibiting contributions
from: €, if appropriate; x(™), in the general case; an appropriate product of the temporal envelope functions
of the driving fields, A(r, z,t); and, a term describing the cooperation of the wave vectors, k, of the driving
fields. We will see in that coupling between a field and polarization introduces a wave vector associated
with the field, which together with this sum of wave vectors yields a term, Ak. The quantity Ak describes
the quality of momentum conservation in the nonlinear process and, under conditions of non-zero Ak, can

result in a decrease of the efficiency of the nonlinear process (see[§ 3.2.1))

yielding the same form as the result in Eq. [3.2.21} only omitting the factor of ¢g.
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3.2.1 Phase Matching of Nonlinear Experiments

As shown in Eq. [3.2.21] and [3.2.224] - [3.2.22d], the characteristic frequencies of polarizations induced by

an electric field must satisfy energy conservation: namely, the frequency of the polarization - and the field

to which it couples - must correspond to the appropriate sum of the carrier frequencies of the interacting

pulses. For example, the generation of the second harmonic of w; (Eq. [3.2.21] and [3.2.22a)) must initiate

a polarization at the energy-conserving frequency, ws = w1 + wi. Similarly, it can be shown that optical
parametric generation/amplification and sum-frequency generation must satisfy the energy conservation
corresponding to w3 = wy + wi: in optical parametric generation/amplification, ws, we, and w; would
correspond to the pump, signal, and idler (assuming wy > wy), while in sum-frequency generation, ws would
be the sum frequency generated from w; and ws.

However, Eq. [3.2.21]and [3.2.224]- [3.2.22d] illustrate that the interaction of the frequencies in the nonlinear

medium also imposes a momentum upon the induced polarization: for example, the polarization oscillating
at 2wy also exhibits spatial oscillations at 2k;. We will see in[§ 3.4.1] that the field coupling to the polarization
at 2w; = wo propagates with a dependence upon exp(ikgz)P(le).i Together, the spatial oscillation of the
field, exp(ik2z) and the oscillation of the polarization, exp(—i2k; z), determine the efficiency of the nonlinear
process: when perfect spatial resonance exists between the field and the corresponding polarization,|106]
corresponding to the equality condition ko = 2ki, enhancement of the field is optimized.[106] [125H129]
This condition of momentum conservation can also be described by the quantity referenced previously, Ak,
the phase mismatch; in our example of second-harmonic generation, Ak would be defined as the quantity:
Ak = ko — 2k;.1[102, 125, [127]

The phase mismatch, Ak, can have a wide variety of consequences on nonlinear experiments. Within
the limit of low depletion, it has been shown that the efficiency of the nonlinear process scales according
to sin(A*L/2)/(akr/z) on the amplitude (field) level and sin®(2%L/2)/(arr/2)? on the intensity level, where L is
the length of the nonlinear crystal; this dependence is also reported as the sinc function, sinc(4kL/2) or
sinc?(AkL/2).[99, (102, [130] The fields generated by poorly phase matched processes have also been shown
to exhibit phase modulation,[131] |132] the magnitude of which scales according to AkL/2.|132] The final
consequence of the phase mismatch we will mention is the limit imposed upon the phase matching bandwidth

for a given process: the phase matching bandwidth is commonly taken to be the bandwidth over which Ak is

in§ 3.4.1) we will actually end up with a result in the frequency domain, such that the evolution of the field at wz would
depend upon exp(ik2z) P, ), rather than exp(ik22) P2, ). However, within the CW limit upon which this discussion is based,
the distinction between the two is irrelevant.

iNote that some authors define Ak as the negative value of the definition here; however, as the notation of Barnes and
Corcoran shows,[125] it is generally the magnitude of Ak that matters.
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less than =/r.[125] [127] This limit is imposed in both collinear|126 133] and noncollinear|120
138] geometries. There are a variety of strategies that have been introduced to bypass phase-matching

considerations; these include thin samples and epi-directional detection7 pulse—shaping
to control phase in direct analogy to nuclear magnetic resonetnce7 and high numerical aperture
objectives to introduce a wide angular distribution to the excitation ﬁelds. Otherwise,
phase matching must be considered in both collinear and noncollinear experiments.

In the collinear geometry, it is sufficient to consider a scalar representation of the phase matching condi-
tion.[106] We will show in that the wave vector can be defined k = n(w)w/c (Eq. [3.4.14)), where n(w)
is the refractive index of the material at frequency w. Generalizing our previous example, we could consider
the frequency conversion process w3z = ws + wy, w3 > ws > wi. For such a process, the phase matching
condition would take the form k3 = ko + k1. By our definition of k£, we can then frame the momentum con-
servation as n(ws)ws = n(wsz)ws 4+ n(wi)wy. In the manner of Boyd,[102] we can manipulate this relationship
to show that this momentum conservation relation would require: n(ws) — n(ws) = [n(w1) — n(wz)](«“1/ws).
Recognizing «1/w; must always be positive, the only way this equality can hold true is for n(ws) > n(ws)
and n(wi) > n(wsz) or for n(ws) < n(wsz) and n(wi) < n(wsz); under our assignment of w3 > wq > wy, this
condition cannot be satisfied under normal dispersion, for which n(w) increases monotonically with w.[102,
While anomalous dispersion could permit momentum conservation, [102] its application is not prac-
tical as it would require sufficiently reduced transparency that conversion is inefﬁcient. Instead, the
birefringence of anisotropic materials is generally used as an alternative strategy for satisfying momentum
conservation in collinear geometries.

Anisotropic crystals may be either biaxial or uniaxial.[106] In biaxial crystals, there are three unique re-
fractive indices available, making consideration of effective index and phase matching more complicated.
However, there are a variety of biaxial crystals employed for different frequency conversion processes, such
as bismuth triborate (BiBO),[149H151] lithium triborate (LBO),[152H157], and potassium titanyl phosphate
(KTP). In contrast, uniaxial crystals exhibit only two refractive indices, the ordinary index (n,)
and the extraordinary index (n.); the relative values of these refractive indices determine the nature of the
uniaxial crystal: for negative uniaxial crystals, n, > n., while n, > n, for positive uniaxial crystals. Many
common uniaxial crystals - including potassium dihydrogen phosphate (KDP), B-barium bo-
rate (BBO), lithium niobate, silver gallium sulﬁde, and silver gallium
selenide - are negative uniaxial crystals; BBO in particular has achieved wide-spread usage due
to its high birefringence, low dependence of index upon temperature, high damage threshold,
low group velocity mismatch, and large nonlinearity. In addition to the broad usage of BBO,
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the behavior of uniaxial crystals is much more straightforward; we will consequently focus our discussion as
related to birefringent media upon uniaxial crystals.

The indices of uniaxial crystals can be described according to the relation between the polarization state
of the field, the wave vector (k) of the field, and the optic axis of the crystal (Z).|106] The orientation of the
wave vector with respect to the crystalline axes is described by two angles: the phase matching angle, 6, is
the angle between the optic axis, Z, and the wave vector, while the azimuthal angle, ¢ is the angle between
the X-axis of the crystal and the projection of the wave vector in the crystal’s XY plane.[106] The field can
be described as an ordinary or extraordinary beam, meanwhile, based upon the alignment of its polarization
state with the principal plane formed by the optic axis and the wave vector. If the polarization of the field
is perpendicular to this plane, the field is an ordinary beam and experiences the ordinary refractive index,
n,. On the other hand, if the polarization of the field is parallel to the principal plane, it is an extraordinary
beam; in contrast to the ordinary polarization, extraordinary beams experience an index that exhibits a

dependence upon 6:

1+ tan?6
0) = n, 3.2.23
n(6) =n \/1+(nn/ne)2tan29 ( )

It should be noted that for uniaxial crystals, the azimuthal angle, ¢, does not play a role in phase matching
considerations.[106] This angle is important, however, in determining the symmetry of the crystal’s nonlinear
susceptibility; this is discussed in

The dependence of the effective refractive index of an extraordinary beam on 6 permits one method of
phase matching, angle tuning. This strategy seeks to optimize 6 so as to minimize the phase mismatch
associated with a particular process involving a certain set of frequencies. Due to the monotonic increase
in index with increasing frequency, it is necessary to polarize the fields such that the highest frequency
involved in the process is polarized such that it experiences the lower refractive index of the crystal:[102,
126}, |169] in a negative uniaxial crystal, this requires extraordinary polarization for the highest frequency,
while for a positive uniaxial crystal the highest frequency would be an ordinary beam. Phase matching
requires the polarization of at least one of the two lower frequencies to be perpendicular to the polarization
of the highest frequency; however, it is possible to have the two lower frequencies have either parallel (Type
I) or perpendicular (Type II) polarization.[102, [106]

In BBO, these two options each present different advantages and disadvantages. Under parallel polar-
ization, the signal and idler exhibit group velocities that cause both pulses to move away from the pump in
the same direction.|126] As a consequence, Type I phase matching exhibits a finite pulse splitting length:

when the crystal length is extended beyond the pulse splitting length, reduced gain is observed; gain ceases
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when the length of the crystal is approximately twice the pulse splitting length.[170] [171] However, Type I
phase matching also exhibits lower group velocity mismatches than Type II, which together with the higher
effective nonlinearity, yields higher gain.[168| [172] This permits usage of lower pump energies.[173] Type I
also exhibits one disadvantage associated with the lower group velocity mismatches: since the signal and
idler exhibit a lower group velocity mismatch, Type I typically yields significantly greater amplification
bandwidths, particularly when tuned close to degeneracy (ws & wy).[173} |174] Unfortunately, the increased
bandwidth is not accompanied by a decrease in pulse duration, and the generated pulses are generally not
near the transform limit.[175| [176)

In contrast, the perpendicular polarization of signal and idler in Type IT phase matching causes the signal
and idler to move in opposite directions with respect to the pump across much of the near infrared.|126} |171}
177] Within this regime, the gain represented by the pump pulse envelope synchronizes the propagation of
the idler and signal pulses: this synchronization causes amplification similar to steady state behavior,[103]
with exponential gain continuing even past the pulse splitting length.[126, |177] The steady state operation
of this process yields consistent bandwidths across the tuning range.[173] While the bandwidths tend to be
smaller than those obtained through Type I phase matching,[126] the pulses generated tend to be closer to the
transform limit.[174} [175] While neither broadening nor gain saturation is expected within this regime,|170]
pump depletion has been reported to have effects on the temporal characteristics of the generated pulses.[168],
171] As noted before, Type II phase matching is possible with either the signal or the idler polarized as an
extraordinary beam; however, polarizing the idler (the lower frequency) parallel to the pump generally proves
more feasible as it requires less birefringence for successful phase matching.[102]

One complication associated with angle tuning is spatial walk-off: due to the birefringence experienced
by extraordinary beams when 6 # 0°,90°, these beams exhibit a walk-off angle that is dependent upon the
phase matching angle, 6.[102, [106] This walk-off angle describes the relative angle between the wave vector
and the Poynting vector,[106] the direction of flow for the energy density of the wave.|101} [106] This walk-off
reduces the efficiency of the nonlinear process.|102] Temperature tuning is a strategy that has been employed
to overcome this limitation.[102} [126] The strategy is based upon the dependence of refractive index upon
temperature: while maintaining a constant phase matching angle, # = 90°, temperature is adjusted to tune
the refractive indices so as to achieve phase matching.|[102] By operating at 8 = 90°, walk off is avoided.
This has been demonstrated in crystals such as LBO[153, [155} |170] and KDP.[127]

In contrast to collinear geometries, phase matching in a noncollinear geometry requires consideration
of the directionality associated with the wave vector, k. While this method is implemented in second-

order frequency mixing processes,|125, 129, 152} |154, 171} [178-184] it is also of relevance in four-wave
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mixing processes that access the third-order nonlinear susceptibility. In these third-order experiments, the
BOXCARS geometry - in which the three excitation fields are aligned so as to occupy three of the four corners
of a rectangle - is a common starting point for determining appropriate phase matching conditions.|[120}
121} [135] (147}, [185H189] Four-wave mixing experiments of this manner can be described according to the
generalized process:

Wg = Clw1 + Cawg + C3w3 (3224)

where the set {¢;} describes the number and phase of interactions of each field in the experiment. For a
given alignment, each field would have a characteristic wave vector k;; according to the phase matching of
the experiment, these wave vectors would cooperate to yield emission with a wave vector, k/j, satisfying the
equation:

ki; = 01k1 + Cgkg + 63k4 (3.2.25)

However, the magnitude of k/; may not necessarily be consistent with a field of frequency wy. If the frequency
wy consistent with the energy conservation condition of Eq. [3:2:24] corresponds to a wave vector magnitude
|k4| = n(waws/c, the phase mismatch, Ak, for the process corresponds to the magnitude of the difference

between k) and the projection of k4 on k/:

k4|

Ak =
LA

K, — K, (3.2.26)

Proper phase matching can be determined by identifying the angles that minimize the difference on the right
hand side of Eq. [3.2.26] It should be noted that these angles correspond to the internal angles; in order to
consider a mask for external alignment, it is necessary to consider the effects of refraction at the interface of

the sample.

3.2.2 Susceptibilities

As we noted above, we will generally find it sufficient to consider the susceptibilities at the phenomenological

level of Eq. [3.2.10] and [3.:2.11] However, in this section we will introduce the various factors that contribute

to the scale of the nonlinear susceptibility, as well as introduce the method of Midwinter and Warner for
reducing the tensor character of uniaxial birefringent materials to an effective nonlinearity.
There are four key factors that contribute to the form of the susceptibility. The first two features we

will discuss can be ascertained from Eq. and First, Eq. illustrates that the nonlinear

susceptibility scales with the number density of the oscillator; this property has a profound impact on the
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contrasting behavior of (self-)heterodyned techniques - in which the signal is proportional to x™ - and
homodyne-detected methods - in which the signal is proportional to \X(”) |2: in the former, the signal scales
as N, while the latter scales as N2. This difference will give differences in the detection level and sensitivity of
heterodyne- and homodyne-detected techniques.|99} [190] Second, and illustrate that the nonlinear
susceptibility provides insight into quantum mechanical properties of the oscillator; it is possible to show that
Eq. and predict the nonlinear susceptibility to provide insight into the dipole strength, central
frequency, and dephasing rate of the transitions.|[99} 102, [109]

The third contribution to the susceptibilities is the local field enhancement factor. While we will generally
know the macroscopic field, E(t), being applied, the interaction between the field and the material will be

determined by the local field, Eloc(t), which will be influenced by induced polarizations. In this context,

if we denote the molecular polarizability, a, we can describe the linear polarization in terms of either the

macroscopic field (Eq. [3.2.27al) or the local field (Eq. [3.2.27b)):!

P(t) = eoxVE() (3.2.27a)

P(t) = NaE.(t) (3.2.27b)

In the mks system of units, the effect of the polarization on the local electric field in an isotropic medium is

described by the Lorentz model:|107]

Broo(t) = B(t) + %f’(t) (3.2.28)

Note that this contrasts with the Lorentz model for quantities in cgs or esu units:[102} 107} [109)

Eioc(t) = E(t) + < P®) (3.2.29)

By requiring the descriptions of the polarization in Eq. [3.2.27a]and[3.2.27h|to be equivalent, we can introduce

the Lorentz model to yield:
coxME(t) = NaEjo.(t)
y 1 5 (3.2.30)
= Na <E(t) + eox<1>E(t)>
360

INote that the form of Eq. [3.2.27a] implies that the forms of these equations are appropriate for a system in which the
quantities are reported in mks units. The following derivation of the local field effect can be reproduced with the appropriate
modifications to describe quantities in cgs or esu units. However, as this derivation is presented by authors such as Boyd, Kittel,
and Shen,|102, 107} [109] we will present the derivation of the appropriate correction for a system described in mks units.




38

Combining terms associated with x(!) allows us to define the susceptibility:

(1) _ Nao

= _ .2.31
-y (3.2.31)

To proceed, we can invoke the definition of the dielectric constant, € = eq(1+x 1)), \\ allowing substitution
for x(:
Na

6 —1= P (3.2.32)

where €, is the relative permittivity, €, = ¢/.[101] If we manipulate Eq. [3.2.32] to isolate a quantity

proportional to Na, we arrive at the Clausius-Mossotti relation:|107]

& —1 Na
= 3.2.33
€+ 2 3€o ( )
which has the analogous result for cgs/esu units:[102} [107]
e—1 4nNa
= 3.2.34
e+2 3 ( )

with e defined in the cgs or esu unit systems as € = 1 + 4rx(M. From Eq. [3.2.33] we may multiply each side

of the equation by —1, then add 1; the result of these operations can then be shown to yield the relationship:

€& +2 1

360 €0 — %

(3.2.35)

Recognizing that Eq. [3.2.31] relates the susceptibility to the product of the quantities Na and 1/(eg—Nays),
we can substitute according to Eq. to define the susceptibility:

X(l) _ € +2

N 3.2.36
3 Ve (3.2.36)

where the term (e-+2)/3¢, is the local field correction factor. This contrasts with the correction factor appro-
priate for cgs or esu units: (¢+2)/3.[102] |109] However, in most materials, we will be able to relate €, (mks

units) or € (cgs/esu units) to the complex index of refraction, 7, according to the relationships:

[ V)

(3.2.37a)

Q)
S

Il

3

]

(3.2.37D)

)
|
3l
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The relationships of Eq. [3.2.37a] and [3.2.37H] allow us to substitute for the complex index of refraction

in the local field correction factor, yielding factors of (7°+2)/3¢, and (7*+2)/3 for mks and cgs/esu units,
respectively.[102] [107]

This analysis can be extended to higher order susceptibilities.[102} [109] However, when this treatment is
extended to consider the form of (™), the result exhibits (n + 1) enhancement terms. In other words, the
local field correction factor will assume the form ((7°+2)/3¢,)" %! (mks units) or ((7*+2)/3)"*+1 (cgs/esu units).
This form arises due to the need to consider the enhancement arising at the frequency of the polarization (1
term) and the enhancement arising at each of the fields contributing to the polarization (n terms).[99} 102,
109]

Finally, the form of the nonlinear susceptibility can provide information regarding the symmetry of the
medium. This behavior is particular pronounced in uniaxial birefringent media, for which it is possible to
derive closed form solutions predicting the symmetry of the effective nonlinear susceptibility for experiments
involving different combinations for the polarization states of the incident fields. The observed symmetry can
have value in characterizing the structure of birefringent materials|191H193| and is an important consideration
in determining the appropriate alignment|194] and efficiency of nonlinear crystals. The symmetry is defined
according to the angles formed between the optical axes (X, Y, and Z) and the wave vectors (k) of the
electric fields.[106, 119} [195] We recall the definitions of the relevant angles (# and ¢) from 6 reports
the angle between k and Z, while ¢ characterizes the angle between X and the projection of k on the XY
plane.[106] From these angles, the projections of the field onto each axis, Fx, Fy, and Ez, can be defined

for ordinary beams:|[119)

B sin(¢)
Ey | = | —cos() | E° (3.2.38)
Eg, 0

where E° is the amplitude of the electric field for the ordinary beam, and for extraordinary beams:[119]

E% —cos(0) cos(¢)
ES | = | —cos(f)sin(¢p) | £ (3.2.39)
ES sin(6)

where E° is the amplitude of the electric field for extraordinary beam.! While the symmetry of the tensor

(2)

x? is rigorously described by three polarization indices, Xij %-1102, 1106] under conditions in which Kleinman

"'We note here that there appears to be an inconsistency in Dmitriev et al. For the effective electric field vectors, Dmitriev
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g,)c or dijr = 1/2)(5-]2-1)C can be reduced to a planar

symmetry is valid, the three dimensional representation of x
representation. This notation reduces d;ji to d;;, where | = 1 represents jk = 11 (or jk = XX), | = 2
corresponds to jk = 22 (or jk = YY), I = 3 arises from jk = 33 (or jk = ZZ), | = 4 replaces jk = 23
and jk = 32 (or jk = YZ and jk = ZY), Il = 5 is a substitute for jk = 31 or jk = 13 (or jk = XZ and
jk = ZX), and I = 6 derives from jk = 12 or jk = 21 (or jk = YX and jk = XY).[102, |106] In addition
to these substitutions, we also have to redefine P; = 2d;;1E; E); in the planar representation, the analogous
form is P; = 2dilEl2 .[102, [119] Alternatively, we can consider that we are sampling a particular polarization

state, in which case the effective polarization is P = P; - (2di1El2). Making substitutions in d;; appropriate

to Kleinman symmetry, this yields:

B
EY
Px din dip diz dia dis dis 2
Z
P=2| Py |- dig doo dog dos dia di2 (3.2.40)
EvyFEz + EzEy
Py dis dos dsz doz diz dia
ExEz + EzFEx
ExEy + EvEx

Population of d;; can be achieved according to the the crystal class of the material.

To demonstrate how this might be applied, we will consider the case of BBO. As BBO belongs to the 3m
point group,[106] it exhibits nonzero tensor elements XZX = YZY, XXZ = YYZ, ZXX = ZYY, ZZZ,
YYY = - YXX = —-XXY = —-XYX.[102] In terms of d;, this corresponds to 15 = 24 (XZX = YZY
and XXZ = YYZ), 31 = 32 (ZXX = ZYY), 33,22 = =21 = —16 (YYY = - YXX = —XXY =

—XYX).[106] Substituting according to these relationships and considering the two major processes for

% —sin(¢)
ES | = cos(¢) E°
Eg, 0

for the ordinary beam, and for the extraordinary beam:|106]

|: E% :| |: cos(0) cos(¢) :I
E$ | = | cos(f)sin(¢) | E°
Eg —sin(0)

et al use the phase:|106|

Note that these phases are opposite those employed by Midwinter and Warner.|119] However, the formulae for the effective
nonlinearities of BBO reported by Dmitriev et al are consistent with the notation of Midwinter and Warner, as well as Boyd.|102},
106, [119] At the intensity level, both results will be identical when only the nonlinearity of BBO is relevant - and it should be
noted that Dmitriev et al acknowledge this by reporting only the relative signs of d22 and d3; |[L06| - but this inconsistency bears
mentioning. As it appears to yield results consistent with all other authors,|102, 106}, [119] we will adopt the phase reported by
Midwinter and Warner.|119]
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41

sin?(¢)
cos?(¢)
— cos(0) cos(¢) 0 0 0 0 dis —da
0
P=2 — COS(G) sm(qS) 7d22 d22 0 d15 0 0 sig iodl
0
sin(9) d15 d15 d33 0 0 0
0
—2cos(¢) sin(¢) (3:2.41)
—cos(0) cos(¢) 2das sin(¢) cos(¢)
=2| —cos(9)sin(¢) —dao sin?(¢) + dag cos?(¢) sig Fial
sin(6) dis
= 2[—da2 cos(0) sin(3¢) + d15 sin(0)] se i
and for Type II phase matching:
— cos(6) cos(o)
P =21 —cos(f)sin(e)
sin(6)
[ _ cos(0) cos(¢) sin(¢) ]
cos(f) cos(¢) sin(g)
0 0 0 0 dis —da
0
7d22 d22 0 d15 0 0 é)ig iodl
— sin(6) cos(o) (3.2.42)
dis dis dzz 0 0 0
sin(0) sin(¢)
cos(f) cos(2¢)
—cos () cos(¢) dy5 sin(6) sin(¢) — das cos(6) cos(2¢)
=2 | —cos(f)sin(¢) 2das cos(0) cos(¢) sin(¢) — dy5 sin() cos() e i
sin(0) 0

= 2[da22 cos? (0) cos(3¢))]E§ig o

o

Considering the effective polarization to be of the form P = 2d.gE?, we can use the results of the schemes

in Eq. [3.2.41] and [3.2.42| to define degg = dy5sin(f) — dao cos(6) sin(3¢) for Type I phase matching and

det = dag cos?(6) cos(3¢) for Type II phase matching. This latter result is consistent with the published
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formulae for deg for Type I phase matching;|102 [106] [119] for Type I phase matching, we note that
Kleinman symmetry causes dy5 = d31,|195] permitting substitution into our result in Eq. [3.2.41| to yield the

more standard form, deg = da; sin(f) — daa cos(0) sin(3¢).[102}, 106, [119]

3.3 Maxwell’s Equations and the Wave Equation

In we claimed that Maxwell’s equations predict that the free space propagation of electric and
magnetic fields are consistent with a wave equation of the form Eq. We also introduced the form of
Maxwell’s equations as they apply to free space in order to explore the expected relationship between the
electric and magnetic fields in light. In the following sections, we will outline the derivation of the wave
equation from Maxwell’s equations with the intention of arriving at a generalized result that can be applied
to systems described in either cgs/esu or mks units. Throughout this section, we will continue to focus
exclusively on the form of these equations as they relate to the electric field; a similar derivation can be
performed to describe the magnetic field.[101] Throughout this section, we will end up alternating between
noting quantities as vector and scalar values, but will explain at the appropriate point in why this

is necessary. Various presentations of the wave equation, the final result of the derivation in [§ 3.3.3 are
presented in [§ 3.3.1| for convenience.

3.3.1 Wave Equation

As we will show in the succeeding sections, Maxwell’s equations show that the propagation of an electric

field, E(r, z,t), under the influence of an induced polarization, ]5(1', z,t), in a medium is predicted:

2 2

~ 0]
2 —
\Y% E(r,Z,t) — EO/A@E(I‘, Z,t) = ’UJ@P(T, Z,t) (331)

when E(r, z,t) and P(r, z,t) are reported in mks units, with €y = 8.85 x 10~ *2F/m describing the permittivity
of free space and y describing the permeability of the material. When E(r, z,t) and P(r, z, t) are represented

by cgs units, the wave equation assumes the form:

~ 2 ~
Ble o) = 79 p (3.3.2)

-
VZE(r,z,t) — 2 52

1 2
c2 o2
where c¢ is the speed of light. We will also adopt the generalization:

2 2

V2E(r, 2, 1) - deG%E(r, o) = ab%%ﬁ(r, 1) (3.3.3)
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where we use a, b, d, and e to stand in for the various constants. In the generalized form of Eq.
the values of ¢ and b are a = b = 1 for the mks unit system or a = 47 and b = ¢~ ! for cgs and esu units.
Meanwhile, d and e are used to represent the permittivity and permeability: in cgs or esu units, d = e =1,
while mks units require d = ¢y and e = pu.

In a similar manner to we will generally define a coordinate system such that the field is taken

to propagate along the z direction. Within such a coordinate system, we can consider that V2, defined

according to Eq.
02 0? 0?

2—7 —_— —_—
v 78m2+8y2+822

(3.3.4)

has two key contributions: a term corresponding to the direction of propagation (82/822), and two terms
corresponding to evolution of the field perpendicular to the direction of propagation (the transverse compo-
nents, 9°/a22 and 9°/ay?). As we introduced in we will generally not be concerned with differentiating
x from y, and have accordingly been using the generalized transverse coordinate, r. In a similar manner, we

can introduce the operator V4 to generalize the transverse components of V2, defining this operator:

0? 0?
Vi=—5++5 3.35
T o2 + 8y2 ( )
With this operator, we can simplify Eq. by splitting V2 accordingly:
VZE(r, z,t) + 6iE(r t) — b2d 6iE(r t) = ab? 8—215(1r t) (3.3.6)
TE(r, z, 52,2, o 2 t) = ab’es P(r. 2, 3.

However, in the limit that the field can be considered to be a plane wave, we do not anticipate the field
exhibiting any dependence upon the transverse coordinates; at this limit, we can assume V%E‘(z,t) = 0.

This allows us to simplify Eq. further, yielding:

2 2 2

O = 2, 0" 5 N _ 2 0 5
@E(z,t) bde@E(z,t)fab 68t2p(z’t) (3.3.7)

3.3.2 Maxwell’s Equations

Here we will briefly list Maxwell’s equations and discuss appropriate assumptions that might be made for
common material systems. The dependence of the wave equation on the different unit systems indicated in

6 3.3.1] stems from the forms of Maxwell’s equations in each unit system. However, the variables a and b
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allow these equations to be generalized, yielding the forms in Eq. -

V -D(t) =ap (3.3.8a)
V-B(t) =0 (3.3.8h)
V x E(t) = —b%B(t) (3.3.8¢)
Vxﬁ@yzwﬂw+b%D@) (3.3.8d)

As before, we will allow a = 47 and b = ¢! for cgs or esu unit systems, while we will require @ = b = 1 for
the mks unit system.

Gauss’ law (Eq. relates the changes in the displacement, f)(t), to the free charges, p, in the
medium. Generally, we will be able to assume that the medium contains no free charges (p = 0), under
which conditions Gauss’ law reduces to V - f)(t) = 0. We have previously introduced the displacement (see
, through which we relate the dependence of the propagating field upon polarizations existing in the
medium (see Eq. and [3.2.8). However, the forms of Eq. and [3.2.8]illustrate that we will also need
to consider a generalized form for this quantity. This is achieved through our previous assignment of a and
d, a = 4w and d = 1 for cgs and esu units, or ¢ = 1 and d = ¢y for mks units. The introduction of these
generalized constants yields:

D(t) = dE(t) + aP(t) (3.3.9)

While Gauss’ law of magnetism (Eq. [3.3.8b) and Faraday’s law (Eq. [3.3.8¢) do not require further
simplification, we will be able to make some modifications to Ampere’s law (Eq. [3.3.8d]). First, it will

generally be reasonable to assume the absence of free currents (J(t) = 0), leaving:

V x H(t) = b%f)(t) (3.3.10)

Second, we will often be able to assume that the medium is nonmagnetic or nearly so (M(t) ~ 0), in which

case the magnetic field, B(t), is simply: B(t) = e(H(t) + M(t)) ~ eH(t), where e = 1 for cgs or esu units,

but e = p for mks units. This then simplifies Ampere’s law to yield:

V x B(t) = be%f)(t) (3.3.11)

We will also note that at optical frequencies, we will generally be able to neglect the magnetic response of

the material, permitting the assumption that u =~ ugo when we are concerned with mks units.
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3.3.3 Derivation of the Generalized Wave Equation

An outline of the derivation of Eq. is given by Boyd|102] for cgs/esu units. Powers [196] demonstrates
how the wave equation would be derived for mks units, but restricts the derivation to the case of the linear
optical response. These derivations are generalized and reproduced below.

We have previously outlined a handful of approximations and simplifications that we can make

to Maxwell’s equations, Eq. [3.3:84] - [3:3.8d] We start the derivation with Faraday’s law:
V x E(t) = —b—B(t) (3.3.12)

and proceed to take the curl (Vx) of both sides. This results in:

V x V x E(t) = —bV x %B(t) (3.3.13)

However, since the curl only applies to the spatial variables, while the derivative in Eq. [3.3.13is with respect

to time, we can reverse the order in which these operations are applied:

V x V x E(t) = —b%V x B(t) (3.3.14)

However, from Eq. [3.3.11} we know V x B(t) = bed/atD(t); therefore, we can substitute for V x B(t) in Eq.

yielding:
V xVxElt)=— 9 <beaf)(t)>

ot > ot (3.3.15)
= —be_D(t
5 D(t)
At this point, it is common to use the identity:
V x V x E(t) = V[V - E(t)] — V2E(t) (3.3.16)

The advantage gained from this identity is that we have previously indicated that Gauss’ law can generally
be taken to be of the form: V - D(t) = 0. Using the fact that D(t) is of the form in Eq. we can

distribute the dot product to yield:|197)

V- D(t)=dV-E(t)+aV-P(t) =0 (3.3.17)
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Since the polarization is a function of the electric field, it is often assumed that the relationship in Eq.

implies that V - E(t) = 0.[102] This then allows us to reduce V x V x E(t) to the second term on the right
hand side of Eq. [3.3.16 —Vzl:](t), yielding:

~ 2 ~
V2E(t) = bze%D(t) (3.3.18)

Splitting the displacement according to Eq. [3:3.9] and combining the terms associated with the electric field

then yields the wave equation:

V2E(t) — b2de§—;1§1(t) = aerg—;f’(t) (3.3.19)
From Eq. it is trivial to verify our claim that light behaves as a wave in free space: under such
conditions, f’(t) = 0, leaving only the left hand side. Since the Laplacian operator contains the propagation
and transverse evolution, we have a form of the wave equation in Eq. [3.3.19, with b%de equal to 1/v2. Using
our definitions for these generalized variables (b= 1, d = ¢, and e = =~ pig, or b=c"1, d =1, and e = 1),
we can then show that the speed of the wave predicted by Eq. is ¢, the speed of light, in both systems
of units.

Lax et al,[108] however, indicate that substitution according to the identity in Eq. is not necessarily
rigorous if we are are later splitting the Laplacian operator in the manner of Eq. Rather, they argue
that it is more accurate to consider the separation of the longitudinal and transverse components in Eq.
taking the curl to be (8/6z + V)x. They justify this treatment by showing that the form of the
wave equation resulting from applying the identity of Eq. [3:3:10] prior to separating the transverse and
longitudinal components results in an inconsistency in the behavior of polarized fields. In their treatment
- in which they apply the curl as (9/6z + V)X - it is relatively straightforward, but tedious, to show that
Maxwell’s equations predict a pair of coupled differential equations, one describing transverse propagation

and the other describing longitudinal propagation, of the form:!

. 9 - o 2 9 ~ 10 -
) ~ _ ~ ) - 1 -,
e (V- Br()] = ikoVr - Br(t) - V3EL (1) = ~ DO (33.200)

i1t should be noted that Lax et al use the convention that the electric field accumulates phase according to exp(ikoz),
rather than exp(—ikoz). The forms of Eq. |3.3.20a] and |3.3.20b| are derived in a manner appropriate to our convention; these
only differ from the forms presented by Lax et al by the sign of the imaginary terms (substituting +iko by Fiko).[108|
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Unfortunately, these coupled differential equations prove difficult to implement, with Lax et al needing
approximations in order to describe the propagation of the TEMgy, mode. Additionally, their result does
not exhibit significant deviation from the model predicted by Eq. Nevertheless, some authors|104]
acknowledge the simplification introduced within the derivation shown above and consider the resulting wave

equation to more accurately serve as a description for the scalar representation of the wave:

V2E(t) — b*d 8—2E(t) = ab? 3—215@) (3.3.21)
68t2 = a eatQ 0.

We will adopt this convention proceeding forward.

3.4 Pulse Propagation in Dispersive Media

In this section, we will apply the wave equation to describe the effects of propagation on ultrafast
pulses. This section will be divided into four subsections. In the first, we will derive the general treatment
of ultrafast pulse propagation, concluding in the second section in which we consider the ramifications of
the slowly varying amplitude approximation. The third and fourth sections will consider applications of
the general treatment towards two specific scenarios: a description of TEMyy mode propagation, and the

integration of an arbitrary polarization to predict the emitted field.

3.4.1 General Treatment of Pulse Propagation in Dispersive Media

While Akhmanov et al|103] imply a strategy for deriving the results of the following treatment in the time
domain, we will follow the lead of Boyd [102], who appears influenced by Brabec and Krausz,[115] with
a derivation that proceeds mostly in the frequency domain. This approach relies upon (inverse) Fourier
transformation between the time and frequency domains at multiple points during the derivation; this is
done to make the application of different effects mathematically more tractable. While we will generally not
explicitly show the introduction of the exponential and integration associated with these transforms, we will
note when the introduction of the appropriate quantities has ramifications on the result. We will continue
to follow the conventions we introduced previously: normalization required for transformation into and from
the angular frequency domain will be incorporated during inverse Fourier transformation, and we will apply
the exponentials exp(—iwt) and exp(iwt) for Fourier transformation and inverse Fourier transformation,
respectively. The former convention is consistent with Boyd and others,[102} [112-114] while the latter is not
consistent with Boyd,[102] but has precedence from other authors.[112} [114]. These conventions will result in

a deviation from the derivation shown here and the derivation presented by Boyd;|102] we will note the point
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at which the derivations begin deviating significantly. While we will work with general functions to note
the electric field, polarization, and their respective envelope functions, we will assume these functions are
compatible with Fourier transformation. We will also assume the electric field and polarization exhibit
forms compatible with Eq. [3.1.27] and [3.2.17] but will also assume it is sufficient to consider the propagation

of only the complex field and the associated term of the polarization.

We will begin with the result of Eq. while we will introduce the transverse propagation in later

sections (see [§ 3.4.3| and [§ 3.4.4)), it is sufficient to consider the following derivation within the plane wave

limit. From Eq. we will invoke the behavior of Eq. and split the polarization on the right hand
side into the linear and nonlinear contributions, P“(z,t) = P(M)(z,t) and P(NY(2,t). Substituting the sum

of these terms into Eq. yields:

? = 2, 0% - 2 0% 5 2 0% 5nL
@E(z,t) -b de@E(z,t) —ab e@P (z,t) = ab ewP (z,1) (3.4.1)

In Eq. we have also subtracted the term in P(l)(z,t) from both sides; the advantage to doing so
is that it allows us to introduce the linear displacement, ﬁ(l)(z,t). This quantity is defined in a manner
analogous to Eq. with the exception that the contributing polarization is restricted to the first-order

term, P(l)(z, t), of the series. The generalized form of the linear displacement is then:
DW(z,t) = dE(z,t) + aPY(z,1) (3.4.2)

The definition of DM (z,t) in Eq. allows us to combine the second and third terms on the left hand

side of Eq. 341}

0% - 2 & = 2 0% 5NL

In order to understand the convenience of substituting D() (2,t) into Eq. [3.4.3] it is necessary to introduce

the definition of this quantity. The linear displacement relates the permittivity of the medium, ¢, to the

electric field:|1014103]

DW(z,t) = / c(tE(t —t, z)dt’ (3.4.4a)

DW(z,w) = e(w)E(w) (3.4.4b)

where DM (z,w) = F{DW(z,t)}. Eq. provides the time-domain description of the linear displace-

ment, and Eq. is the frequency-domain description. In Eq. [3.4.4a] and [3.4.4b| the dependence of
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the displacement on € is independent of unit system. However, between unit systems, the permittivity or
dielectric constant itself is defined differently, though it is always related to the linear susceptibility, x(!): |
107]

e=eo(1+xM) (3.4.5a)

e=1+4my® (3.4.5b)

In the mks unit system, an additional quantity - the relative permittivity, €, - is also defined, and it is allowed
to be the ratio of € and €g, €, = ¢/e;. The relative permittivity (in mks units) and the permittivity (in cgs/esu
units) are significant, as both quantities are generally' equal to the square of the complex refractive index,

n? (see Eq. [3.2.37a] and [3.2.37D)).[99)]

Based upon the forms of Eq. [3.4.4a] and [3.4.4b} it will clearly be easier to apply the effects of linear

displacement in the frequency domain. To achieve this, we can simply multiply both sides of Eq.
by the necessary exponential and integration factor, then integrate. We can determine the result of this

transform by invoking the Fourier relations associated with the derivative:|112]

FI ) = ()" 5 ) (3.4.60)
F10)} = ()" ) (3.4.6b)

where f(t) is an arbitrary function with F{f(¢)} = f(w). With these relationships, we can show the Fourier

transform of Eq. to be:

2

@E(z,w) + 02w’ DY (z,w) = —ab®ew? PNV (2, w) (3.4.7)

where DM (z, w) is defined as before, and E(z,w) = F{E(z,t)} and PNV (2, w) = F{PN"(z,t)}. Substituting
for DM (z,w) in Eq. according to the frequency-domain definition in Eq. [3.4.4b| yields Eq. m

2

%E(z,w) + Vew?e(w)E(z,w) = —ab®ew? PNY(2,w) (3.4.8)

We can simplify Eq. by spending some time considering the constants on both sides of the equation; in

so doing, we can retain generalization, while reducing the number of terms to keep track of. Unfortunately,

IThe caveat is explicitly included here, as the formal definition of the complex refractive index is 72 = (e)/(equo). However,

as p & po in most materials, we can generally allow 722 & €. \
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even though we arrive at the same result, we will need to consider the two unit systems (mks and cgs/esu)
separately.

Starting with mks units, we recall that we have defined a = b =1, d = ¢y, and e = p. Starting with the
coefficient of the second term on the left hand side of Eq. we can evaluate b?ee(w) as follows:

bee(w) = p(w)e(w)

(3.4.9)

where we have used the relationship eppo = c¢~2 between the second and third lines and have directly
introduced n(w) —ix(w)! in place of the complex index of refraction, 7[99, 101} [102] Meanwhile, on the right

hand side of Eq. we have a coefficient of ab’e = u(w) ~ po. However, we can proceed further by

recognizing that, when defined in mks units (see Eq. [3.2.10] or [3.2.12a)), PNV(z,w) will contain a factor of

€o- Therefore, if we define a new quantity, PNY(z,w) = [P™"(2.)]/¢,, we can redefine the right hand side of
Eq. [3.4.8| as uoeowszL(z,w). With both po and ey, we can use the identity above, pgeg = ¢~ 2, to yield a
right hand side of @?/c2PNF(z, w).

L and

On the other hand, when we are in the cgs or esu unit systems, we have defined a = 4w, b = ¢~
d = e = 1. With these values, we can show that the coefficients b%ee(w) of the second term on the left hand

side can be simplified:

blee(w) = (w)

Q

dwlulw) (3.4.10)

Q

where we have again directly introduced the quantity n — ix to represent the complex index of refraction.
We note that in the second line of Eq. [3:4.10, we have retained the approximate relation to emphasize

that we assume f is negligible for most media. Meanwhile, for the right hand side of Eq. [3:4.8 we have

2

ab?ew? = (47w?)/c2. We have seen that we retain a factor of w2c=2 in mks units, but the factor of 47 is unique

INote that this definition for the complex index of refraction differs from most sources.[99, [101, |107] However, since we
have taken as our convention that the field accumulates phase as exp(—ikz), it is necessary for the index of refraction and
extinction coefficient to have opposite sign (see Eq. . Though they appear to work strictly with the linear susceptibility,
Akhmanov et al, also treating the phase accumulation of the complex field as exp(—ikz), take the imaginary component of the
susceptibility to be of opposite sign as the real component.|[198| Given 72 = [n £ ix]2 = 1 4+ ax(1) (a = 47 for cgs/esu units,
and a = 1 for mks units), R{ax(V} = (n? — k2) — 1 and S{ax™M} = £2nx (see Eq. . Since n and k must both be real,
the real and imaginary components of X(l) will always have opposite signs only for n = +n F ik.
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to cgs and esu units. However, we can use our new quantity, PN“(z,w), to mask this term by defining
PNL(z,w) in cgs or esu units: PNY(z,w) = 47 PNY(2,w). This then leaves «?/c2 PNY (2, w).

We see then that we can generalize Eq. to be:

P e ¢ @) Zin@)Fw

0z2 c?

2 w? L
E(z,w) = ——5 P (z,w) (3.4.11)
c

with the behavior of PNL(z, w) defined to be PNY(z, w) = [P™"(2.2)]/¢, in mks units or PNY(2, w) = 47 PN (2, w)
in cgs or esu units.

Before continuing, let us consider the nature of the complex index of refraction in Eq. [3.4.9] and [3.4.10]
The quantity consists of a real component, n(w), and an imaginary component, x(w). While the index of
refraction is routinely encountered, the imaginary component, the extinction coefficient, can be related to
more recognizable quantities. To do so, let us consider the propagation of a plane wave in the absence of a
nonlinear polarization. This is consistent with Eq. when PNF = 0:

%E(z,w) =— ([n(w)—m(w)]w) E(z,w) (3.4.12)

Recognizing Eq. [3.4.12] as a second-order ordinary differential equation, we might consider a trial solution
for E of the form E(z,w) = Eyexp(—iaz), where a is an arbitrary coefficient. Introducing this trial solution,

we would find that a? = (In(w)—is(w)lw/c)2, which yields the solution:
E(Z, (.U) — Eoefi[("(w)w)/c]zef[(N(W)W)/c]z (34.13)

We can see that the result in Eq. exhibits two exponential terms: an oscillatory term with a wavenum-
ber k = [n(w)wl/c and a term corresponding to exponential decay at a rate of [s(w)wl/e.

Starting with the first term, we can recall our earlier definition of the wave number, k¥ = «/v (see Eq.
. Comparing these expressions, we see that the real part of the complex index of refraction behaves
consistently with the index of refraction: the refraction of the medium reduces the velocity of light relative
to the vacuum, yielding a speed, v(w) = ¢/n(w).|101] This term also allows us to generalize our definition for

the wavenumber of light:

(3.4.14)

Here we will note that the notation n(w) explicitly allows for a frequency dependence to the observed index

of refraction.[99]
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In order to describe k(w), it will be more convenient to consider the intensity of the solution in Eq.
3.4.13] Generally, the intensity of the electric field is proportional to the square magnitude of the field; the
proportionality constant is either [en(w)]/(8x) (in cgs or esu units) or [ccon(w)l/2 (in mks units).[99] However, it

is sufficient to identify that the intensity of the field in Eq. [3.4.13| exhibits a spatial dependence:
I(z) o B3 2]z (3.4.15)

Comparing the intensity in Eq. |3.4.15| with the Beer-Lambert law, I(z) = Iy exp[—a(w)z], we can see that
r(w) is related to the absorption coefficient. If we set a(w) equal to the coefficient in Eq. |3.4.15] we can see
that x(w) is defined:

K(w) = —a(w) (3.4.16)

where the notation k(w) and a(w) explicitly allow a potential frequency dependence for these quantities.[99]
Applying these insights, let us continue from Eq. [3.4.11] The first thing we will consider is expressing
the coefficient to the second term on the left hand side, [n(w)—in(w)]*»?/c2 in a more convenient manner. If

we evaluate the term [n(w) — ik(w)]?:
[n(w) — ik(w)]® = n? (W) — i2n(w)r(w) — K (w) (3.4.17)

we can see that the coefficient to this term can be evaluated:

n(w) —ik(w)]?w?  w?

c? c?

_ {n(w)wr o {n(w)w] I C R ()

C

(3.4.18)

However, we have previously defined the wavenumber, k(w) = (w)wl/c (see Eq. [3.4.14), allowing us to
substitute k(w) for both terms in brackets in Eq. We can also consider our result for x(w) in Eq.
3.4.16] From r(w) = ¢/(2w)a(w), we can see that [25(w)w]/c in the second term of Eq. is equivalent to
a(w). Finally, if we assume a(w) is sufficiently small, we can consider the third term, proportional to a?(w),
to be negligible relative to the first two terms due to their proportionality to k*(w) and k(w). This then
leaves us:

2 2

5B w) + W) - ik@)aw)] E(zw) = —%PNL(Z,W) (3.4.19)

From Eq. |3.4.19] we will make two substitutions: first, we will introduce the form of the electric field and
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evaluate 9°/0:2F(z,w); second, we will consider k(w) as a Taylor expansion around the carrier frequency,
w = wp.

We indicated that we will consider the field to be of the form in Eq. but consider it sufficient to
track the propagation of the complex field, i.e. E(z t) = A(r,t)exp[—i(koz — wot)]. If we take the Fourier
transform of this equation, we find E(z,w) = A(z,w — wo) exp(—ikoz),[112| consistent with our result in
within the limit that the contribution of exp|[—i(Aw/v)z] is negligible; it will be trivial to relax this

assumption later. If we then evaluate the first term of Eq. [3.4.19] we find the second derivative to yield:

0? a0 ; ko=
= 9 —ikoA(z, Aw)e™ ko= 4 e_ik‘)zg/l(z Aw) (3.4.20)
0z 0 0z 7 o

- 2 —ikoz - —ikoz 6 —ikoz 82 7\
= |(—iko)’e —i2kge P +e E) Az, Aw)

where we have re-introduced our variable Aw = w — wy. We can substitute the result of the scheme in Eq.
3.4.20|into Eq. [3.4.19] Since the evaluation in Eq. |3.4.20| removes the exponential term from the derivatives,

we can also divide through the resulting expression by exp(—ikz), leaving:

<8622 — 12/4,‘0(;92) A(z, Aw) + [/{;2(00) — k(2) — zk(w)a(w)} A(Z, AOJ) = _%eikaPNL(Z,W) (3421)

Meanwhile, we can define the Taylor series for the function f(z) around x = a by the general formula:[116]

=1 o
f(x):Zm@
n=0

(x —a)" (3.4.22)

r=a

From the formula of Eq. [3.4.22] we can therefore evaluate k(w) around w = wy as the sum:

Ok(w)

k(w) =k
w) o+t ow

(w—wp)?+--- (3.4.23)

w=wp ‘w—wo

We will adopt the notation of Akhmanov et al and note the derivatives as k1 = 9%(w)/ow|,,—y,, and ky =
9%k(w) /8| 4= w0y 3]103] Boyd uses a similar notation for the first-order derivative, but generalizes the summa-
tion over all higher order terms into a single variable, D.[102] We can also relate these first two derivatives
to meaningful quantities with respect to pulse propagation. The first-order derivative, k1, is defined as the
inverse of the group velocity, ug,[101} [103] while the second-order derivative is the group velocity disper-

sion.[103] The form and behavior of these quantities will be discussed in a later section (see [ 3.5]).
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The sum of Eq. permits evaluation of the terms associated with k(w) in Eq. We can
apply some approximations to simplify the treatment, though. First, we will assume that the non-zeroth
order terms are sufficiently small that their products with the absorption coefficient are negligible, leaving
k(w)a(w) = koa(w). Second, we will recognize that the Fourier relationships of derivatives (see Eq.
and Eq. cause terms in (w—wp)™ to correspond to the derivatives 9" /at"; therefore, we will only keep

terms up to the second order in (w — wp). Under this second approximation, we can evaluate k?(w) to be:
k(W) = kg + 2kok1Aw + (koka + k) Aw? (3.4.24)

where we have again introduced Aw in place of (w — wp). Introducing these substitutions into Eq. |3.4.21
results in the form:

0% 0\ & 2 9 .

— — i2ko— | A(z, Aw) + [2k0k1Aw + (kokg + kl) Aw® — zkoa(w)]

2
0z 0z (3.4.25)

2
x Az, Aw) = —w—zeikOZPNL(z7w)
¢

At this point, it is common to invoke the slowly varying amplitude approximation, which assumes the
effects of 2kg9/o= are significantly greater than the effects of 9°/o:2, allowing us to neglect the second-order
derivative.|102, [103] We will consider the case in which we do not apply this assumption at this point in
[3:42] but for now we will apply the slowly varying amplitude approximation, leaving:

O - . 2 _
— 12k &A@’ Aw) + [QkoklAw + (kokg + k%) Aw? — ik:oa(w)] Az, Aw) = —%e’k"ZPNL(z,w) (3.4.26)

Unfortunately, within the context of simulating ultrafast propagation, group velocities tend to be suf-
ficiently large that it is not feasible to define a sufficiently conservative grid that accommodates the delay
introduced by the group velocity over practical distances. To overcome this limit, it is convenient to transfer

to a moving coordinate system (&, 1), defined relative to the laboratory coordinates (z, t) as:

=2 (3.4.27a)

n=ttkyz (3.4.27b)

In Eq. [3.4.27b| k1, is the reciprocal of the reference group velocity, usually taken as the group velocity of one
of the pulses in the simulation; we will show that this form of n results in the reduction of the effective group

velocity of the pulses. The + in Eq. [3.4.27b] generalizes this expression, as the use of different conventions
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may require the sign of the term k1,2 to be either positive or negative. We will ultimately end up needing
the negative sign, i.e. n =1t — ky,2.

Recalling that terms in w™ correspond to the derivatives 9"/at™ (see Eq. and Eq. , it is clear
from examining Eq. that migrating to the moving coordinate system (&, ) will require us to identify
the operators equivalent to 9/6- and 9/a¢t. To do so, let us consider an arbitrary function, f, expressed as
a function of £ and n: f(&(2,1t),m(z,t)). We can then use the chain rule to find the derivatives of f with

respect to z and ¢, informing on the forms of the operators /- and 9/s¢ in the moving frame:|[116)

S € 0..0) = | el 0 + a0 | £ 0 (3.4.25)
510 (€ 00.0) = |03 + g0 | Flelente ) (3.4.25)

From the forms of Eq. [3.4.27a] and [3.4.27b| (recalling we will be using the case of —kj,.z), it is trivial to

evaluate 9/0z€ = 1, 9/azn = —ky,, 9/5t£ = 0, and 9/aen = 1. With these derivatives, we can use Eq. [3.4.28a
and [3.4.28b| to find 9/5- and 9/a¢ in the moving frame:

0 0 0
0 0
5= b (3.4.20b)

In order to bring Eq. to the moving frame, we will need to return to the time domain. In contrast
to Boyd,[102] however, we will consider the form of the polarization before applying the inverse Fourier
transform. We assumed that the polarization is of the form in Eq. i.e. PNL (z,t) = pVE (2, t) exp(iwot),
where pN¥(z,t) is an envelope function defined in the same manner as PNL (2,t).! In the same manner as the
electric field, the Fourier transform of this yields PN (z,w) = pN¥ (2, w —wp).[112] Substituting for PN*(z, w)
then allows us to perform the Fourier transform of Eq. with respect to Aw without having to consider

residual exponentials or the expansion of 32/at213NL(z, t):|102]

2

|:_i2k0 ({i + klgt) —(kokz + k%)gt?] Az, t) = F 1 {ikoa(w)A(z’ Aw)} (3.4.30)

ko= 0 NI
_ ikoz —
T 2Aw? ’ 2P (z1)

where the notation of F~{ikoa(w)A(z, Aw)} denotes the inverse Fourier transform of the term in brackets.

iRecall we have defined PNE(z,w) to be [PN"(2,w)l/e; in mks units and 47 PNL(z, w) in cgs or esu units. IENL(z,t) is the
time domain form of PNU'(z, w), i.e. PNU(2,t) = F~1{PNL (2, w)}.
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As a(w) and A(z, Aw) both exhibit frequency dependence, the inverse Fourier transform of this term is likely
to correspond to a convolution in the time domain,[112] but the exact form of the result is of no consequence
at this time; it is sufficient to leave this term in the form presented in Eq.

From Eq. [3.4.30] we can transition to the moving frame. We will substitute for 9/a- and 9/a¢ according

to Eq. [3.4.29a] and [3.4.29b| and can directly replace dependence upon z for dependence upon €. Since 7 is

only shifted relative to ¢, we will also assume that A(z,t) and pN“ can be mapped directly onto 1. Making

these substitutions and combining like terms yields:

[_i2ko (865 + (k- “ai) T kj)(‘f;} Alem) =7~ kool d(e, )] (3.4.31)

2
_ v ikoe 97 L

The form of Eq. [3.4.31] is not of great utility: it is not feasible to apply the effects of group velocity
dispersion in the time domain in simulations.|118}|199H201] Therefore, we will need to return to the frequency
domain by performing the Fourier transform of Eq. [3.4.31] with respect to the reduced frequency, Aw,

yielding:
) : 2 s
[m:o <8«£ +iAw (k1 — klr)> + (koka + k7) Aw? — ikoa(w)] A(E, Aw) = f%elkoprL(g, Aw) (3.4.32)

Rearranging the result in Eq.

0 - 1 k2 .
a—gA(f,Aw) = [—iAw (k1 — k1) — iiAwQ (kg + k1> - a(w)} A(g, Aw)
, 0 (3.4.33)
Wik aNL
zZCQkOe D (€, Aw)
Finally, from Eq. it is possible to address a couple approximations:

ﬁA(g, Aw) = |—iAw (k1 — k1) — i%AoﬂkQ - %a(w) Ag, Aw) — iﬁ)eik(“)%NL(f, Aw) (3.4.34)
The first approximation we introduce in Eq. is that k? will be small relative to ko, allowing us to
neglect this term; while it is possible that close to the limit of the slowly varying amplitude approximation,
the contribution from Aw? may weaken this assumption, it should generally be reasonable.[103] The second
change in Eq. is that we have recognized that F{A(¢, 1)} = A(E, Aw) exp[—i(A«/v)]. Throughout
the derivation, it was sufficient to mask the contribution of the exponential within the envelope function,

A(z,Aw); in Eq. [3.4.34] however, we have reintroduced this contribution explicitly: if we assume Aw is
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sufficiently small, the expansion of 9/acA(€, Aw) exp[—i(Aw/v)¢] according to the product rule will be ap-
proximately exp|—i(Aw/v)£]0/ac A(€, Aw). Dividing through the result by exp[—i(A«/v)¢] yields expli(Aw/v)E]
on the right hand side; combining this term with exp(iko€) yields the exponential exp[ik(w)] (see Eq.
3.1.24).

3.4.2 Relaxing the Slowly Varying Amplitude Approximation

In we traced through the derivation of treating pulse propagation effects, but introduced the slowly
varying amplitude approximation prior to shifting to the moving frame. This neglects the term in 9%/s:2;
as 9/o- includes two contributions (see Eq. , it should be expected that retaining this term into the
moving frame will impact the resulting differential equation. We will apply this treatment here.

Starting from Eq. we will directly shift this expression to the moving frame using Eq.
and As before, we will need to begin by performing an inverse Fourier transform to take Eq.
into the time domain. Substituting for p(z, Aw) and performing this transformation yields a result similar

to Eq. [3.4.30] only retaining the term associated with 9°/a22:

0? 0 0 2 .
[822— i2k (82 + klat) — (koks + k%)] Az, t) = F {z‘koa(wwz, Aw)}

(3.4.35)

Much like Eq. [3:4:30, we have left the term associated with absorption noted as simply the inverse Fourier
transformation of the term in brackets, F~1{}, for simplicity.

We can now substitute according to Eq. [3.4:29a] and [3.4.29H] yielding:

2 2
[8 ok, 29 ok (8+<k1—klr)8) — (koka + (K2 — K2) 8] Alem)

oz "M og an o€ an on?
1 A K (3.4.36)
Ny = - iko§ & &
F {Zkoa(w>A(£7 ALU)} 2 Aw2 € 8772]) (57 77)
Performing the Fourier transform on Eq. [3.4.30] to return to the frequency domain yields:

0?2 . 9 . 2 _ g2 2| A ,
o5 12 [ (ko + k1, Aw) o7 +ikoAw(ky — k1) | + (koke + (k7 — k7,))Aw® | A(§, Aw) — ikoa(w)
¢ ¢ (3.4.37)

2
~ w ; ~
X A(gv AOJ) = _gelkogﬁ(€7 AW)

From Eq. [3:4:37] we could take two approaches. The first would be to rearrange Eq. [3.4:37]in the manner of a

second-order differential equation; though more difficult to evaluate numerically than a first-order differential
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equation, it is still possible to arrive at a solution (see [§ 3.6]).
Alternatively, it would also be possible to delay making the slowly varying amplitude approximation, only
ignoring the second-order derivative after transferring to the moving frame. Eq. shows the analogous

expression to Eq. [3.4.34] within this treatment:

0 . ko 1 ko 1 ko
A i Aw(ky — k1) — s kA __f
o€ Afg, Aw) = ko + ki Aw Wik —kir) =5 ko + k1 Aw k2w T 2k + kerwa(w)
2 (3.4.38)
X A(f Aw) — @ k(@) 5 p(&, Aw)

(]CO + ker(U)

where we have assumed the term associated with (k% — k%, is negligible when divided by (ko + k1,Aw) and
have reintroduced the term exp[—i(A«/v){]. Comparing Eq. to the earlier equation, Eq. we
see that this treatment retains the first order term of the Taylor expansion of k(w) (see Eq. [3.4.23) when
considering the derivative of the field. At the limit of narrow bandwidth pulses, the contributions of the
first-order term (k1,Aw) are negligible, and Eq. approaches the same limiting behavior as Eq.
However, this first-order term in Eq. allows for the deviation from the limiting behavior predicted by
Eq. as the pulse bandwidth broadens.

3.4.3 The Propagation of Pulsed Gaussian Beams

In we considered the effects of a medium upon the propagation of a pulsed electric field within the
plane wave limit. The standard model for a TEMyy mode arises from treating the field as a distortion to
the plane wave limit,[104} |105] imposing the transverse coordinate dependence demonstrated by the TEMqg
mode. In this section, we will extend the treatments of Svelto[104] and Verdeyen|105] to account for the
propagation effects of a medium upon a TEMgyy mode.

Starting from the plane wave limit, i.e. E(z) = Ege~"*0* ! Verdeyen and Svelto consider TEMgy mode
propagation to reflect a functional distortion describing the transverse dependence exhibited by the field:
whereas Svelto considers the distortion to reflect a spatially-dependent amplitude, U(r, z), in place of the
constant Ey,|104] Verdeyen treats the distortion as a function, (r, z), with the full field defined E(z) =
Ept(r, z) exp(—ikoz).[105] For clarity, we will adopt the style of Verdeyen; in this manner, we will assume we
can consider the total field in a manner similar to Eq. consisting of a frequency- or time-dependent
envelope and oscillations at the carrier frequency, but with an additional function describing the distortion

to the plane wave. However, as we will be incorporating dispersive effects into this distortion, we will not be

iSvelto and Verdeyen both treat the electric field amplitude as a scalar and consider propagation at the limit that the field
is monochromatic.[104}, [105] We will retain the previous approximation as noted in [§ 3.3.3] but will extend the treatment of
TEMgp mode propagation within the behavior of a pulsed electric field as described by Eq. [3.1.27
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able to consider the envelope function and the distortion separable in both the time and frequency domains:
due to the Fourier relation between time and frequency, if these functions are separable in one domain, they
must be convolved in the other. Considering the derivation in we will consider the envelope function
and distortion to be separable in the frequency domain, which gives us the following descriptions for the

field:

E(r,z,t) = A(r, z,t)e oz giwol (3.4.39a)

BE(r,z,t) = A(Aw)e /)2y (x, 2, Aw)e~Ho* (3.4.39Db)

The time-domain model of the field in Eq. is based upon the treatment of the field in Eq.
where we have allowed the envelope function, A(r, z,t), to exhibit the spatial dependence characteristic of the
field. The frequency-domain model in Eq. meanwhile, is the Fourier transform with respect to w of
Eq. with F{A(r, z,t) exp(iwot)} = A(Aw) exp[—i(A«/v)z]ih(r, z, Aw). The first two terms (A(Aw)
and exp[—i(A«/v)z]) arise in a similar manner as the treatment of Eq. [3.1.26] yields Eq. though in the
case of the Fourier transform, we recognize the relation F{f(t) exp(£wot)} = f(wTwp) . Meanwhile, the
function ¥ (r, z, Aw) reflects the distortion to the plane wave, isolating the spatial dependence of A(r, z, Aw)
in Eq. [3:1.26] into a separate function.

In contrast to we will begin our treatment with Eq. [3:3.6] In a manner similar to [§ 3.4.1]
though, we will consider P(r,z,t) as the sum of the linear and nonlinear contributions, P! (r, z,¢) and
15NL(r7 z,t), respectively. We will assume that the field being considered has sufficiently low intensity that it
does not experience any self-induced nonlinear effects, allowing us to let PNL (r, z,t) equal zero. Combining
the derivatives of E(r,z,t) and P! (r, z,t) with respect to time yields the derivative with respect to the

linear displacement, D) (r, z,¢); in the same manner as Eq. we obtain:

2

- - 8% -
et + V3E(r, z,t) — bzewD(l)(r, z,t) =0 (3.4.40)

From Eq. [3.4.40} we will next evaluate 32/6z2E(I‘7 z,t) in the manner of the scheme in Eq. [3.4.20} this yields:

— ., 0 07 iw ~ 0? -
e ko | g2 z2k0£ + 9.2 Alr, z,t)e™0t + V2 E(r, 2,t) — er@D(l)(r, 2,t) =0 (3.4.41)

Next, let us consider the Fourier transformation of the result in Eq. We will also make two simplifica-

tions: multiplying through the equation by exp(ikoz), and substituting for the linear displacement according



60

to Eq. These changes yield:

2

—k2 — i2/€082 + % + ethor g2 emtkoz 1 p2e2e(w) | A(Aw)e "3 2h(x, 2, Aw) = 0 (3.4.42)
z z

From Eq. [B:4:42] we can achieve a couple further simplifications. First, since the transverse Laplacian
operator (VZ) only involves the transverse coordinates, we can swap the order of V2 and exp(—ikoz); we

can then multiply exp(ikoz) and exp(—ikoz) to remove both exponentials. Second, we can substitute for

b2ew?e(w) according to Eq. [3.4.9} [3.4.10, and [3.4.18} as before, these terms reduce to k?(w) — ik(w)a(w),

and can be combined with the leading term of k2. Third, since A(Aw) does not exhibit any dependence on
the spatial coordinates, we can move it outside each derivative and divide Eq. by this term. These
changes yield:

82

57~ i2k0% + V3 + (K (w) — k — ik(w)a(w)) | e 2 (r, 2, Aw) = 0 (3.4.43)

From Eq. we can achieve a few more simplifications. First, let us consider the remaining exponen-
tial. Once again recalling that the transverse Laplacian, V2., has no longitudinal dependence, we can again
switch the order of the Laplacian and the exponential, namely: V32 exp[—i(A«/v)z] = exp[—i(Aw/v)z] V3.
We can also consider the derivatives with respect to z. Considering these derivatives to be generalized
in the form of the n'M-order derivative with respect to z, 9"/az" exp[—i(2«/v)2]1(r, 2z, Aw), each operation
of one of the n derivatives should yield two terms due to the product rule:[116] one corresponding to the
derivative of the exponential (9/az exp[—i(Aw/v)z] = —i(Aw/v) exp[—i(Aw/v)z]), and one corresponding to the
derivative of the function 9 (r, z, Aw). However, if we take Aw to be reasonably small, we can neglect the
terms arising from the derivative of the exponential, thereby assuming: %exp[—i(AW/v)z]w(r,z,Aw) R~
exp[—i(Aw/v)z][0"/o:"1)(r, 2z, Aw)]. This allows us to divide through the equation by this remaining expo-
nential. We can then also invoke the slowly varying amplitude approximation, 2ky3/a= > 9°/022, and ignore
the second-order derivative. Finally, we can also substitute for k(w) and k(w) according to Eq. and
[3:4:24] These changes and assumptions yield:

0
—2-2]6087 + V% + 2kok1Aw + (k‘ok’g + k%)AwQ — z’koa(w) ’(/J(I‘, z, Aw) =0 (3444)
z

The last consideration we will introduce before determining the nature of i (r, z, Aw) is to bring Eq.

3.4.44) to the moving frame. Assuming an inverse Fourier transform of ¥(r, z, Aw) exists, we can perform
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the inverse Fourier transform of Eq. to yield:

FHap(r, 2, Aw)} — F Hikoa(w)(r, 2, Aw)} = 0 (3.4.45)

: ) ) 9?
[—z%o (az + k:18t> + V& — (koks + kf)ﬁ

In Eq. |3.4.45] it is sufficient to consider the inverse Fourier transforms of ¥ (r, z,t) and of ikga(w)¥(r, 2, Aw)
to be noted as, F~Hy(r,z, Aw)} and F~Hikoa(w)y(r, z, Aw)}, respectively. With Eq. [3.4.45] we can

directly apply the substitutions (Eq. |3.4.29a) and [3.4.29b)) necessary to migrate to the moving frame:

[i%(a +(ky — k )8>+v2 (kok +/<2)‘92
- 0\ 3¢ 1= ~Mr)q- T oh2 1) 49 o
o¢ on on? (3.4.46)

X ‘7:71{1/)(1‘753 Aw)} - fﬁl{ikoa(w)ﬂ)(r,fa Aw)} =0

With Eq. [B:4.40] now describing propagation within the moving frame, we can return to the frequency
domain. We will also take the opportunity to divide through Eq. [3:4:46] by the term —i2kg at the beginning;
in addition to reducing the number of terms dependent upon kg, it will also allow us to invoke the assumption

that 3/k, is likely small and can be neglected. This leaves us with:

1 1 1
— +i(k — A | —— V% ik Aw? + = Aw) = 44
8§+Z<kl k1y) w—l—szOVT—i—zsz w” + 2a(w) P(r, &, Aw) =0 (3.4.47)
Moving forward, we will also introduce a new variable, Jk(Aw):!
) 1 5 1
0k(Aw) = (k1 — k1) Aw + zikgAw + ia(w) (3.4.48)
Introducing 0k(Aw) simplifies Eq. [3.4.47| further, leaving:
9 bV 4 Sk(Aw) | (r, &, Aw) =0 (3.4.49)
o€ " 2k T Y B o

In Eq. we now have a compact description of the effects of field propagation on the distortion
function, ¢(r, &, Aw), within a moving coordinate system. Now, we will seek to develop a closed-form solution
for this distortion function. We begin by considering the form of the transverse Laplacian, V3. We previously
considered this operator in the form of Eq. in which it is described in (z,y) coordinates. Since we

expect the TEMgy mode to exhibit Gaussian symmetry, though, it will prove more convenient to begin with

iRecall Aw has been introduced as a compact variable for w — wp. Therefore, we could reasonably consider 5k to be a
function of either w or Aw, but it would be redundant to consider dk to be a function of both. As we have been describing the
distortion as a function of Aw, we have opted to treat 0k as a function of this variable rather than of w.
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V2. in cylindrical coordinates. In this coordinate system, the full Laplacian operator is defined:|101]

, 10 0 18 &

However, we have already defined the transverse Laplacian, V4, as encompassing the terms of the Laplacian
operator not associated with the longitudinal direction, £; we can therefore neglect the last term in Eq.
[3:450 We can also neglect the angular dependence in Eq. [3:4.50} since the distortion to the plane wave,
P(r, &, Aw),! is expected to describe a two-dimensional Gaussian, we can invoke the cylindrical symmetry
of this function to assume 9°/0¢23(r, €, Aw) = 0.]104, [105] We are then left only with the first term, the
dependence upon the radial coordinate, r. Through evaluation by the product rule, we can show that this

remaining term leaves the following form of the transverse Laplacian operator:

10 0?2
2 = —_—— R
Vi= o T o (3.4.51)
Substitution for the transverse Laplacian according to Eq. [3.4.51| then leaves:
0 1 /10 2
e tig | ot 55 ) TOR(A Aw) = 4.
[85 +Z2k0 <r6r + 8r2> + 0k( w)} P(r, &, Aw) =0 (3.4.52)

With Eq. we can now determine the functional behavior of 1 (r, &, Aw), beginning by defining
a trial solution as well as appropriate boundary conditions. Starting with the latter, we will define the
position £ = 0 as the focus of the mode. In the absence of dispersive effects, we will expect the radial
dependence of (r,& = 0,Aw) to be consistent with a two-dimensional Gaussian of width wg; in other
words, we will expect a functional form of exp(—"/w?). Meanwhile, when we introduce dispersive effects,
we will assume that dispersion from the medium functionally depends upon the pathlength through the
medium; in other words, we will require no dispersive effects at a point £ = &’ that corresponds to the
beginning of the medium. Meanwhile, for a trial solution, we have two examples to consider. Verdeyen
assumes a specific form for ¥(r, £), taking the model exp[—i(P (&) + (-7*)/124(£)])];|105] while this trial solution
is convenient when considering the final result for (r, &) for free space propagation, it may not prove
adequately general when dispersion is incorporated. Consequently, we will instead adopt a trial solution

similar to that of Svelto, in which U(r, &)l is taken as a functional form incorporating two functions «/(¢)

iTt is noted here that since we are now considering the functional form of w(r, ¢, Aw) within the cylindrical coordinate
system, we no longer have to consider the generalized vector r for the transverse coordinates; it is sufficient to consider the
functional dependence upon the scalar radial coordinate, r.

liRecall, Svelto’s model for distortion to the plane wave adopts the function U(r,€) in the same manner that Verdeyen
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and B(€), U(r, &) = expla(£)—B(£)r?].[104] Using Svelto’s treatment as a starting point, we also need to allow
for frequency dependence due to our generalized dispersion variable dk(Aw); we will therefore tentatively

allow a and B to both exhibit a frequency dependence, yielding:
b(r, €, Aw) = (&AW =B AW (3.4.53)

Introducing this trial solution:

0 1 10 0? 2
; a(§,Aw)=B(&Aw)r®
[ ¢ + 22190 (r - + rz) + 6k(Aw)] exp 0 (3.4.54)

From Eq. we see that we will need to evaluate the derivatives of our trial solution with respect

to 9/or, 9*/or2, and 9/o¢. It can be shown that these derivatives evaluate to yield:

%ea(g’m)*ﬁ(““w = —2B(¢, Aw)ren©Aw) A& A0 (3.4.550)
2 , .

%ea(&Aw)*B(f’Aw)r _ [726(§,Aw) +452(§,Aw)7"2] (& Aw)=B(€,Aw)r (3.4.55b)
%ea@,Aw)—ﬁ(s,Aw)ﬁ _ Kgga(f’ Aw)> 2 ((;1 B(e, Aw)ﬂ o2 (€.Aw)— (€, Aw)r? (3.4.550)

If we consider the forms of Eq. [3.4.55a], [3.4.55b] and [3.4.55d, we see that evaluation of the derivatives leaves

the exponential unchanged and no longer within derivative expressions. Upon substituting the results of Eq.

3.4.55a, [3.4.55b] and [3.4.55d into Eq. we can then divide through the resulting expression by the

exponential, leaving:

[(gfa(§7 Aw)) — 2 (ggﬁ(g, Aw)ﬂ + ZTllco [—4B8(&, Aw) + 458% (&, Aw)r?] 4+ 6k(Aw) =0 (3.4.56)

Examining Eq. [3.4.56] we see that the five terms can be divided into two groups: two terms with a dependence

upon 72, and three terms with no dependence upon r. Separating the terms accordingly yields:

- (et nn) ) i )| + | (gpalecAm) — i 0l &) + ak(aw)| =0 (3457

However, we still require the left hand side of Eq. to equal zero. In Eq. though, we have terms

2

dependent upon r< as well as terms independent of r; the only way to maintain the required equality is for

adopts Egu(r, 5)‘ 105
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both terms in brackets to individually equal zero.[104} |105] Eq. [3.4.57| then is consistent with the following

pair of differential equations:

9
SP(E Aw) = i (€ Aw) (3.4.580)
%a(g, Aw) = ik%ﬁ(f, Aw) — 5h(Aw) (3.4.58h)

This system of differential equations can be evaluated to determine the functional forms of «(¢, Aw) and

B(&, Aw).
Of the differential equations in Eq. [3.4.58a] and [3.4.58b], the former will be the more straightforward

to solve, as it exhibits a dependence only upon the function (£, Aw). However, we note that the only
dependence upon Aw in Eq. [3.4.58a is the dependence implied by our assumed function, 5(§, Aw). We can
assume, therefore, that it is sufficient to consider 5(¢), a function of ¢ only. Framing Eq. [3.4.58a] to be of

the form 9/0¢3(&) = iaB?(€), with a = 2/k,, it can be shown that the general solution is of the form:!

B(€) = (C —ia)™! (3.4.59)

where C' is a constant of integration. In order to determine the value of C, let us consider the evaluation
of this general solution at £ = 0. We previously indicated that we require the mode at the focus (£ = 0)
to be consistent with a Gaussian function with size wg, exp(—*/w?). Since our trial function is of the form
expla(€, Aw) — B(€)r?], we therefore require B(¢ = 0) = wy 2. Given the general solution in Eq. [3.4.59

B(& =0) = C~1, allowing us to assign C' = w? and to define the solution for 8(€):

BE) = (w§ - 2506) h (3.4.60)

However, we can follow the example of Verdeyen[105] and make the solution in Eq. [3.4.60| more meaningful
by relating it to the quantities w(§) and R(&), which describe the beam waist and radius of curvature,

respectively, as a function of longitudinal position. The functional forms of these parameters are:

w(§) = wom (3.4.61)

iThe general differential equation was evaluated with the calculator at wolframalpha.com.
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£0)2 for z o0
R(§) = . 70 (3.4.62)

0, for z =0, +o00

where the quantity & in Eq. |3.4.61| and |3.4.62| is the Rayleigh length of the mode;' this quantity is defined:

§o=—+ (3.4.63)

Considering Eq. [3:4.61] we can see & corresponds to the distance over which the beam waist expands by a
factor of /2 from the focus. Returning to the beam waist and radius of curvature, the first step to relating

B(€) to these quantities is to show that the solution for 5(£) (Eq. [3.4.60)) is equivalent to:
_ .kO . —1
B&) =i (€ +i&) (3.4.64)

We can simplify the form for 5(¢) in Eq. [3.4.64 by multiplying this result by (§—i0)/(¢—i¢), from which 5(¢)

is equivalent to the sum:

ko & ko €
O=Serg ag

(3.4.65)

From Eq. [3.4.65] the next step is to multiply the first term by & °/e;? and the second term by ¢ */¢=2. This

yields:
ko 1 ko 1

PO = e T2 v 1 2 T (G

(3.4.66)

Considering the definitions of w(§), R(£), and & (Eq. |3.4.61} [3.4.62] and [3.4.63)), it is now straightforward

to show Eq. [3.4.66] reduces to:

1 L ko
I T
w?(§)  2R(E)

With a solution for 3(€), it is now possible to consider Eq. [3.4.58b|to determine the solution for a (£, Aw).

B) = (3.4.67)

It will turn out most convenient to use the form of Eq. [3.4.64] for substitution into Eq. [3.4.58b} introducing

this solution yields:
0

a—éa(g, Aw) = i2 [i";o(g + z{o)_l] — 0k(Aw) (3.4.68)

ko

In a similar manner to our treatment of 5(§), we can consider Eq. [3.4.68| to be of the generalized form
9/oea(€, Aw) = —(€ +ia) ™! — b(Aw), with a = & and b(Aw) = §k(Aw). A differential equation of this form

INote that it is more common to describe the Rayleigh length as zp; however, because we are using the coordinate of the
moving frame, £, we are noting this length as &y in an analogous manner. Note that because £ = z (see Eq. [3.4.27a)), &9 = zo.
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will have a solution of the form:!
alé, Aw) = —In(a — i€) — ib(Aw)(a — i) + C (3.4.69)

Considering the form of the general solution in Eq. [3:4.69} we see that it involves two terms with dependence
upon &: the first term, In(a — i€), depends only upon &; the second, —ib(Aw)(a — i£), on the other hand
exhibits a dependence upon Aw in addition to a dependence upon &. Therefore, let us consider a(§, Aw) to

represent the sum of two functions, oy (€) and as (€, Aw), corresponding to the first and second terms in Eq.

[3:4:69] respectively:

ar(§) = —In(a —i§) + C (3.4.70a)

s (€, Aw) = —ib(Aw)(a — i€) + Cy (3.4.70D)

where the sum of C; (Eq. [3.4.70a)) and Cs (Eq. [3.4.70b)) is C' (Eq. [3.4.69)). The division of a(£, Aw) into a (§)

and as (€, Aw) isolates the frequency-dependence of a(€, Aw) to as(€, Aw). The advantage of doing so is
clear if we consider the scenario of free space propagation, for which dk(Aw) = 0: recalling b(Aw) = dk(Aw),
dk(Aw) = 0 causes as(§, Aw) to be constant, allowing it to be incorporated into C;. Therefore, a; () should
be the solution for a(§, Aw) when considering free-space propagation of the TEMyy mode, with as(&, Aw)
providing the correction necessary to account for the dispersion introduced by a medium.

Within the treatment of «(§, Aw) as the sum of a; () and as (€, Aw), we can address a; (§) and as (€, Aw)
separately. Starting with (&), and recalling our assignment of the temporary variable a = £y, we can show

the formulation in Eq. is identical to:

a1(6) = —In (1 - z§> —In(&) + € (3.4.71)

0

As In(&) will just have a constant value, we can incorporate it into the constant, C, leaving:

a1(¢) = —In (1 - zf) +G (3.4.72)

0

We must then determine the appropriate value of Cy, first recalling that we have taken a4 () to describe

the behavior of a(&, Aw) for free-space propagation of the TEMyy mode. Previously, we indicated that in

iThe general differential equation was evaluated with the calculator at wolframalpha.com; when evaluating, it is sufficient
to consider b(Aw) as a constant as the differential equation is associated with the derivative with respect to &.



67

the absence of dispersion, or for free-space propagation, we expect a form consistent with exp(—"*/w2) at
& = 0. This necessitates a;(§ = 0) = 0. Given the general solution of Eq. a1(§ =0)=—In(1) + C;.
However, In(1) = 0, so a1({ = 0) = C}, requiring Cy = 0 in order to satisfy our assignment of o (£ = 0) = 0.
The solution for a;(£) must then be:

a1(¢) =—In (1 - f@) (3.4.73)

However, we can simplify the solution in Eq. [3.4.73| by considering (1 —1i¢/¢,) as a value in the complex plane:
namely, as the product of its magnitude and a phase factor, exp(i¢), where ¢ = arctan S{1-i%/e0}/R{1—-i¢/¢,}.

In this manner, we can find (1 — i€/¢,) to be equivalent to:!

2
(1 — 25()) =4/1+ (é) e~ taretan(t/o) (3.4.74)

Substitution for (1 — #¢/¢,) according to Eq. [3.4.74|into Eq. [3.4.73| then yields:

2
a1(§) =—Iny/1+ <£> + iarctan (£> (3.4.75)
€o €o

Continuing with as (€, Aw), we can substitute according to our assignments of a = £ and b(Aw) = dk(Aw)

and distribute the term corresponding to —ib(Aw) to yield:
as (&, Aw) = —i&ok(Aw) — 0k(Aw)é + Cs (3.4.76)

In the same manner that we incorporated In(§p) into Cy in Eq. [3.4.72] we can consider —i§pdk(Aw) as a

constant relative to mode propagation and combine it with Cs to yield the simplified result:
as(é, Aw) = —0k(Aw)¢ + Cy (3.4.77)

From this simplified general solution for (€, Aw), the last remaining step is to determine the exact solution
by evaluating Cy. In contrast to §(£) and aq(§), however, for as(€, Aw), it will not prove convenient to
consider the behavior at £ = 0; we instead must consider what 0k(Aw) represents. In Eq. we defined
0k(Aw) to represent the various contributions of the medium’s dispersion upon the propagation of the field,

and we expect these effects to scale with the propagation distance. Recalling that we have defined the point

iNote that tan is an odd function (tan(—0) = — tan(0)).|116| From this, it is possible to show arctan(—&/¢y) = — arctan(¢/¢),
i.e. that arctan must also be odd.
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£ = ¢ to represent the point at which the field enters the medium, we therefore consider that at £ = £, we
have accumulated no effects of dispersion, and at all other points within the medium, we accumulate the
effects of dispersion according to & — &’. Therefore, we will need to define Cy such that ay (€, Aw) assumes
the form:

az(§, Aw) = —0k(Aw)(§ — &) (3.4.78)

Having obtained solutions for aq(§), as(€, Aw), and B(£), we can substitute these results into our trial

solution (Eq. [3.4.53)), yielding:

w(n 57 Aw) _ ;ei arctan 6/&0e—&k(Aw)(g—g/)e_r2/w2(g)e—iko/[zR(g)]rZ (3'4.79)

L+ (&)
Incorporating the definition of §k(Aw) (Eq. |3.4.48)), then substituting this solution for ¥ (r, ¢, Aw) into our
original frequency-domain model for the field (Eq. |3.4.39b|), we arrive at a result very consistent with the

results of Svelto and Verdeyen:|104}

. 1 r?
E(r, ¢ Aw) = A(Aw)m exp [_U}Q(@} (3.4.80a)
x exp(—iko) exp (—iAvwg) exp (z arctan é}) (3.4.80b)
ok
X exp (lQR(()f) r2) (3.4.80c)
X exp [—z’(kl ) Aw (6 — &) — i%kgAwg (€ g’)] (3.4.80d)
X exp [—;a(w) (€ - 5’)} (3.4.80e)

The presentation of the field across Eq. [3.4.80a] - [3.4.80¢| allows us to separately consider the various

contributions to the field in the manner of Verdeyen. Eq. contains the three terms that combine
to describe the amplitude of the field independent of the medium (i.e. neglecting absorptive effects) and as a
function of the spatial coordinates (r or £) or of detuning (Aw). Eq. encompasses the contributions
to the longitudinal phase of the field; these contributions may arise from either the spatial oscillations of the
field, exp(—iko€) and exp[—i(Aw/v)€], or from the Guoy phase, exp|i arctan(¢/¢)]. Eq. describes the
phase accumulated by the field due to the radius of curvature of the phase front. Finally, Eq. and
Eq. provide the corrections necessary to account for the effects of a dispersive medium, introducing

the changes arising from dispersion and absorption, respectively.
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3.4.4 Integration of the Nonlinear Polarization Outside the Plane Wave Limit

In this section, we will discuss the adaptation of the method presented by Moosmiiller et al for inte-
gration of the polarization induced by Gaussian beams, extending the approach to ultrashort pulses and
crossed beam geometries. A variety of authors have addressed the integration of the nonlinear polarization
induced by Gaussian beams in the literature. Some of these authors emphasize the importance
of incorporating the effects of the Guoy phase, particularly in experiments that do not involve
oppositely phase interactions of the same frequency. When two oppositely phase interactions have the same
frequency, the Guoy phases of the interactions cancel; otherwise, the Guoy phase introduces additional in-
terference effects in the same manner as phase mismatch. However, many of these authors focus on collinear
experiments; those that consider crossed beams appear to make approximations or adopt
similar methods that are less straightforward or less thoroughly documented than the method presented by
Moosmiiller et al.

In a manner similar to[§ 3.4.3] we will allow the electric field to exhibit a transverse dependence. However,
in contrast to the treatment in[§ 3.4.3] we cannot expect a closed-form solution for the transverse dependence;
therefore, we will consider it sufficient to treat the field in the same manner as Eq. with the envelope

functions explicitly exhibiting dependence upon the spatial coordinates:

E(r,z,t) = A(r, z, t)e~ Fozeiwot (3.4.81a)

BE(r,z,w) = A(r, z, Aw)e {8z —ikoz (3.4.81b)

In Eq. [3.4.81a] and [3.4.81b we return to our notation of r to generalize the transverse coordinates (z, y).

We make a similar assumption as in taking the relationship between the time- and frequency-domain
models to be similar to Eq. [3.1.26, namely F{A(r, z,t) exp(iwot)} = A(r, 2, Aw) exp[—i(A«/v)z] when the

Fourier transform is with respect to w. In contrast to[§ 3.4.3] however, we will consider the field described

by Eq. [3.4.81a]or [3.4.81b| as it couples to a nonlinear polarization oscillating with central frequency wg. In

the same manner as Eq. [3.2.17] and [3.2.18] and in analogy with Eq. [3.4.81a] and [3.4.81b] we will consider

this nonlinear polarization to be described:

PNY(r, 2 t) = pNE(r, 2, t)eio? (3.4.82a)

PNY(r, 2, w) = pNE(r, 2, Aw) (3.4.82D)
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In the same manner as the field exhibits dependence upon both the transverse and longitudinal coordinates,
the polarization is also allowed to do so through the envelope function, pNt(r, z,t) or pNE(r, 2, Aw). Whereas
the spatial dependence of the field will be assumed to arise from the spatial dependence of the polarization
- which is to assume the field is created from the initiated nonlinear polarization - the polarization will be
assumed to exhibit spatial dependence due to the manner of excitation.

We will begin our treatment in a very similar manner to starting from Eq. and consider-
ing two contributions to the polarization: a linear polarization, ]5(1)(1‘7 z,t), and a nonlinear polarization,
PNL(r, 2, t). However, whereas we were satisfied considering PN(r, 2, ) = 0 in we will now consider
there to be a previously induced nonlinear polarization existing within the medium, described according to

Eq. [3.4.82al From these assumptions, we can arrive at a result very similar to Eq. [3.4.40

2

a n 2 17 2 8 (1 2 82 PNL
53 B, 2,1) + VRE(r,2,1) = b e@D( )(r,2,t) = ab ooz P 2 1) (3.4.83)

where we have again combined the derivatives of the field and of the linear polarization with respect to time

according to Eq. to yield the linear displacement. Evaluating the derivative with respect to z yields:

e—zkoz o ]fg _i2k0§ + % A(I‘, Z,t)elwot + V?PE(I‘, Z,t)
z z

s 0% =) 2 0% snL e

—b e@D (r,z,t) = ab eﬁp (r, 1)

Again following a similar strategy to we will Fourier transform Eq. to yield the frequency-

domain equivalent. We will proceed to substitute for the resulting frequency-domain terms E(r,z,w) and

PNE(r, 2, w) according to Eq. [3.4.81b| and [3.4.82b] though for convenience we will currently make the

approximation that the term exp[—i(A«/v)z] in Eq. [3.4.81b| is negligible as in [§ 3.4.1} as before, we will be

able to relax this assumption later. Finally, we will multiply through the result by exp(ikgz). These changes

yield:

2 . . A~ .
% - '2k0% — kZ 4 ehorv2emhoz L p2e?e(w) | A(r, 2, Aw) = —abew?e™ 02 pNl(r 2, Aw)  (3.4.85)

From Eq. [3:4:8F] we can apply a handful of simplifications that have previously been introduced. First,
since the transverse Laplacian, VZ, is only associated with the transverse coordinates, VZ exp(—ikoz) =

exp(—ikoz)V34; this identity allows us to remove the exponentials from this term in Eq. [3.4.85] Second,

Eq. [3.4.9] [3.4.10] and [3.4.18 have shown we can introduce k?(w) — ik(w)a(w) as a substitute for b?ew?e(w);
we can combine this result with the term k2 in Eq. |3.4.85) and use the expansion of Eq. [3.4.24] to yield
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2kok1 Aw + (koka + k3)Aw? — ikoa(w). In |§ 3.4.1) we also showed that, by introducing p~t(r,z, Aw),!
we can substitute for ab’ew?, yielding «’/c* in both unit systems. Finally, we will also make the slowly
varying amplitude approximation, assuming 2ko9/a= > 9°/a22. The result of applying these substitutions

and approximations is:

2
{iZkoaaZ + V& 4 2kok1 Aw + (koks + k2) Aw? — ikoa(w)} A(r, z, Aw) = f%e’k"zﬁNL(r, z, Aw) (3.4.86)

As in [§ 3:4.0] and [§ 3:4.3] we will want to transfer Eq. [3.4:86] to the moving frame as defined by Eq.

3.4.27a] and [3.4:27H Performing the inverse Fourier transform to bring Eq. [3.4:86] back to the time domain

yields:
) 0 0 0?
|:—22k30 <a + k1 8t> + VQ (k‘okjg + kJQ)a 2:| A(I‘,Z,t)

w? e, 02
-5 l{zkoa( ) (I‘ 2 AW)} T 2 A2 elkoz atszL(razat)

With Eq. 3:4.87 in the time domain, we can substitute according to Eq. [3:4.:293] and [3:4.29D] to yield:

(3.4.87)

2

0 0
{—22/{0 ( + (k1 — k:lr)> + V2 — (koks + k‘%)] A(r,&,m)
o€ on on?
(3.4.88)

1y 3 w? e 0
-F 1{2]{)0()4(0J)A(I‘7§,A0J)} = C2Aw26k0£8 2p ( 56377)

Once again, now that Eq. [3.4.88 represents propagation within the moving frame, we will return to the

frequency domain; the Fourier transform of Eq. [3.4.8§] yields:

|:—i2]€0 <aa —+ l(kl — klr)AW) —+ V?F —+ (kokz —+ k%)sz — ikoa(W)
¢ , (3.4.89)
X Alr, €, Aw) = == RGN (r, €, Aw)
C

We can simplify the result of Eq. slightly by dividing the equation by —i2ky. As before, we will

assume the resulting term *i/k, is sufficiently small so as to be negligible. This leaves:

) 1 A 2
g¢ itk klr)Aw—I—z%VT—k%szw + alw) A(r,gAw):—iQCﬁikoemOfﬁNL(r,g,Aw) (3.4.90)

Note that at this point, we can adopt the approach of[§ 3.4.1 and relax the assumption that exp[—i(Aw/v)£] is

negligible; if we again allow Aw to be sufficiently small that the expansion of 3/85A(r, &, Aw) exp[—i(Aw/v)E]

iRecall that the quantity PNV (z,w) was defined PNV = [PN"(z,w)]/¢, for mks units and PNV = 47 PNF(z, w) for cgs or esu
units. Here, we take pNU(r, zAw) in the same manner, only including the transverse dependence neglected in the plane wave

limit of
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is approximately exp[—i(Aw/v)£]d/ocA(r, €, Aw), we can divide through the result by the exponential. Re-
combination of exp[i(Aw/v)¢] with exp(ikof) yields explik(w)€] on the right hand side. We will apply this

consideration going forward. We will also take the opportunity to introduce two variables to simplify the

form of Eq. [3.4.90] Similar to[§ 3.4.3] we will introduce the variable 0k(Aw):
. 1 5 1
0k(Aw) = i(k1 — k1) Aw + z§k2Aw + ia(w) (3.4.91)

Second, in a manner similar to Moosmdiller et al,[202] we will introduce a function representing the right

hand side of Eq. [3.4.90t

. ik(w)€ ANL
p(r, &, Aw) = —lme ( )Ep (r, &, Aw) (3.4.92)
With these variables, Eq. |3.4.90| becomes:
o .1 _, N
— +i—V7 + dk(Aw)| A(r, &, Aw) = p(r, &, Aw) (3.4.93)
o0& 2ko

From Eq. we will begin applying the approach outlined by Moosmiiller et al.[202] Their method is
predicated upon performing a two-dimensional Fourier transform with respect to the transverse coordinate,
masking the transverse propagation of the field by converting from the spatial domain to the spatial frequency
domain. For example, if we consider the generalized transverse coordinate r to correspond to a (z,y)
coordinate system, this two-dimensional Fourier transform takes (x,y) — (ks, ky), where k, and k, are the
spatial frequencies associated with x and y, respectively. We will generalize this transform as r — k.
However, given Eq. we can see that we will need to understand how the transverse Laplacian, V7.,
transforms. By considering our definition for this operator (Eq. and its application to an arbitrary

function, f(r), we can use the appropriate Fourier relation (see Eq. [3.4.6b) to determine the transform of

IMoosmiiller et al notate this function as f; as we have consistently used f throughout this chapter as an arbitrary,
representative function, we have chosen to use a different notation in this capacity (p). Additionally, in a manner similar to
how we previously assumed it was sufficient to consider dk in @ as a function of just Aw while it contained both terms
dependent upon w and upon Aw, we will consider it sufficient to treat p in Eq. [3.4.92] as a function of Aw.

i1t should be noted that the form of Eq. [3.4.6b|is specific for Fourier transformation to the angular frequency do-
main.|112] When the Fourier transform is being taken to the linear frequency domain, the transform is instead F{9" /ot f(t)} =

(i27w1)™ f(v), where v is the linear frequency.|114] We note here that we are using this relationship because we will be taking the
generalized frequency kt to be a linear spatial frequency. Unfortunately, Moosmiiller et al do not explicitly indicate whether
they take their version of the generalized transverse spatial frequency to be angular or linear,|202| but by omitting the factor
of (27)2 that appears in Eq. it appears to have been their intention to consider the frequency to be angular.
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82 92
F{Vif(x)} = f{(aﬁ + 8y2) f(r)}
= [(i2m)2k2 + (i27)?k2] f(kr) (3.4.94)
= —47”[kr|* f(kr)

where we have used the relationship, [kr|* = k7 + k2, appropriate for kr providing generalization of the
(ks ky) coordinates.
Using the result of Eq. [3.4.94] the two-dimensional Fourier transform of Eq. [3.4.93] with respect to the

transverse coordinates yields:

0

% z—|k | + 0k( Aw)] Akr, €, Aw) = p(k, €, Aw) (3.4.95)

The next step is to define a function, a(kr, £, Aw):
N A 272 9
a(kr, &, Aw) = A(kr, &, Aw) exp fzk—\kﬂ + 0k(Aw) ) € (3.4.96)
0

The advantage of defining a(kr, £, Aw) is in recognizing that the derivative of a(kr, &, Aw) with respect to

¢ yields:
0 a(kr, &, Aw) = 0 {A(k ¢, Aw) ex [(—z|k |2 4 k( Aw) ”
aé- T 85 T, S P T
[ 2% 10
= exp (—z|kT| +(5k(Aw))§ —A(kT,g Aw) + (kT,g,Aw)
I ko 1 9¢
2 2
X exp K—f;mﬂ? + 6I<:(Aw)> 5} a% K—f];uq? + 6k(Aw)) g] (3.4.97)
[/ 2x? 9 )
= exp (—z|kT| + 5k(Aw)) ¢

Haag Z|kT|2+8k(Aw)} fl(kT,ﬁ,Aw)}

If we examine the term in curly brackets in the last line of the scheme in Eq. [3.4.97] we see that this quantity
is identical to the left hand side of Eq. [3.4.95] Therefore, we can substitute according to Eq. [3.4.95|to relate

a(kr, &, Aw) to the polarization function, p(kr, &, Aw):

0

2
a—d(kT,ﬁ, Aw) = exp [(z'2|kT|2 + 5k(Aw)> f} p(kr, &, Aw) (3.4.98)
¢ ko

Integrating both sides of Eq. [3.4.98| from the beginning of the sample, &', to the end of the sample, &4,
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yields:

Eend 2
e v ) =l €'.00) = [ x| (<5l + 54 ) € olkr. € A (349

Recalling we have defined a(kr, &, Aw) as proportional to the field envelope A(kT, &, Aw) (see Eq. ,
Eq. 3:4.99] describes the regime in which we are concerned with the changes induced in an existing field by
the polarization. The opposite limit is the scenario in which the polarization creates the field, in which case
a(kr, &', Aw) = 0. This scenario is described:

Eend

. 27 2
a(kT,&ena, Aw) = / exp [(—zko|kT| + 6kz(Aw)) E} p(kr, &, Aw)dg (3.4.100)

’

We will continue forward considering the regime described by Eq.

However, we will again recall that a(kr, &, Aw) is only proportional to the field amplitude envelope,
A(kT, &, Aw), which is the quantity with which we are actually concerned. Using Eq. we can relate
the integral over the polarization in Eq. back to the field envelope at £ = &enqg:

&end

2
Aer, ot ) = [ e [(iijokﬂ? - 5k<Aw>) (ona — g)} pller. € Aw)de (3.4.101)

El

To obtain the form presented in Eq. both sides have been divided by the exponential at £.,q arising
from the definition of a(kr, £, Aw) (see Eq. ; this term has been incorporated into the integral, yielding
the difference between &.q and €. Eq. can be considered to attribute the final field envelope as the
summation of “slices” of p(kr, &, Aw) along &, incorporating the phase effects associated with the transverse
frequency and material dispersion based upon the distance that “slice” has needed to propagate through the

material.

3.5 Group Velocity, Group Velocity Mismatch, and Group Velocity Dispersion

In we presented the expansion of k(w) as a Taylor series in Eq. From this series and the
resulting expansion of k%(w) (see Eq. , our retention of terms with Aw™, n < 2 left the first and
second derivatives of k(w) with respect to w remaining. While there are circumstances in which the third-
order term can become important,[206, 207] it is generally sufficient to terminate the expansion after the
second-order term.[103] These remaining terms correspond to the group velocity, u, = /k:, and the group

velocity dispersion, ko. In this section, we will consider the effects of these two quantities upon ultrafast pulse
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propagation and present formulae that allow the calculation of these quantities under various circumstances.

3.5.1 Effects of Group Velocity and Group Velocity Dispersion

We will begin considering the effects of group velocity and group velocity dispersion through the lens of

[£35.4.1] In[§ 3.4.1] we derived Eq. which describes the changes in the envelope function of a plane

wave as it is influenced by dispersion or absorption by the medium (the term in brackets) or by an induced
nonlinear polarization within the medium. If we ignore absorption (a(w) = 0) and assume no polarizations

have been induced (p~N* = 0), Eq. [3.4.34| reduces to:

(%A(g,Aw) = |—i(ky — k1) Aw — i%mw? A€, Aw) (3.5.1)

As Eq. is a differential equation, it would not be surprising to find an exponential to serve as a valid
solution; taking the trial solution to be A(¢, Aw) = exp(af), it is trivial to show that Eq. yields a

solution of the form:
. . 1
A(f7 Aw) = A(E = f/, Aw) exp |:<—Z(k1 — le)Aw — i2]€2Aw2) f:| (352)

where £ corresponds to some initial position in space.
Considering the form of Eq. it is straightforward to gain insight into the effects of group velocity.

In the absence of group velocity dispersion (ko = 0), the general solution in Eq. reduces to:
A(g, Aw) = A(€ = €', Aw) exp|—i(k; — k1) Awé] (3.5.3)

From the form of Eq. it is clear that propagation through the medium results in a frequency-dependent
accumulation of phase governed by (ki —k1,.). However, the effects become more obvious in the time domain.
If we consider taking the inverse Fourier transform of the result in Eq. we can identify the following
transform relationship:|112]

F{ft £1t0)} = flw)exp(Fiwty) (3.5.4)

where f(t) and f(w) are defined such that F{f(t)} = f(w) and to represents some delay in the time domain.

Applying this relationship shows that the phase introduced by the exponential in the frequency domain is
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equivalent to the time-domain representation:

Therefore, the group velocity introduces a distance-dependent delay, (k1 —k1,.)&, relative to the pulse envelope
at the initial position.

This behavior is exhibited in Fig. [3:2] In this figure, we show the effects of group velocity on the pulse
envelope of a 35 fs pulse centered at 400 nm as a function of propagation distance, both on the intensity
level - (A) and (D) - and on the real and imaginary components of the amplitude - (B), (C), (E), and (F).
The consider how these effects manifest in both the time - (A), (B), and (C) - and frequency - (D), (E), and
(F) - domains. (A) illustrates our conclusion from Eq. we observe a linear change in the delay of the
pulse envelope with increasing propagation distance. In Fig. (B) and (C), it is clear that this shift in delay
does not influence the phase of the envelope: the envelope retains a purely real value at all distances. The
frequency-domain profile, however, exhibits strong phase modulation, as shown in (E) and (F). This phase
modulation does not create new frequencies: as shown in (D), the spectrum of the pulse is invariant.

Looking at the scale of the propagation distance in Fig. though, it is clear that considering the
group velocity referenced only to the laboratory frame is limiting: in these calculations, we observe the pulse
envelope begin leaving the range of our time variable over only 50 ym. This is the utility of considering
the group velocity mismatch: the value of k; for a given field relative to some other reference value. In the
scenario of a single pulse, as in Fig. [3.2] it would be far more convenient to consider the pulse itself to be the
reference, which would make the pulse appear to exhibit a constant center for all propagation distances. On
the other hand, for the copropagation of multiple pulses, we might consider defining one to be the reference
pulse, as is illustrated in Fig. [3.3

In this figure, we consider the copropagation of two 35 fs pulses: one centered at 400 nm and the other at
800 nm. In (A), we display the total intensity of the two pulses: in this case, it is clear that we are observe
the pulses beginning to split after approximately 100 ym with essentially complete resolution between the
pulses after approximately 200 ym. This is in good agreement with the calculated pulse-splitting length of
107 ym (L, = 7/jau~"|, where 7 is the pulse length and |Au~!| is the group velocity mismatch) for 35 fs
pulses at these colors. Once again, however, we see that the group velocity mismatch does not impact the
spectral content of the pulses, shown in (B) and (C).

The functional form for the effects of group velocity dispersion is much less straightforward to evaluate,

as there is not a tabulated result for the Fourier transformation of the exponential, exp(—ik24w?/2). However,
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Figure 3.2: Simulations showing the effects of group velocity on the propagation of a 35 fs pulse centered
at 400 nm when polarized along the ordinary axis of B-barium borate (k1 = 5942 5/mm[208]). (A), (B),
and (C) show the effects on the time-domain envelope, A(t): (A) shows the intensity of the field, |A(t)|?%;
(B) shows the amplitude of the real component, R{A(¢)}; and (C) shows the amplitude of the imaginary
component, S{A(t)}. (D), (E), and (F) show the effects on the frequency-domain envelope, A(Aw): (D)
shows the intensity of the field, |A(Aw)|?, (E) shows the amplitude of the real component, R{ A(Aw)}; and,
(F) shows the amplitude of the imaginary component, S{A(Aw)}. In the complex representation of (B),
(C), (E), and (F), white corresponds to zero amplitude, while red and blue represent positive and negative
amplitudes, respectively.



78

Propagation Distance (mm)

0.1 0.3 0.5
A
300
200
&
3
£
=~
100
0
1.25 m3} @ 1.25
0.75 0.75
N S)
an T
=t =t
AT S —
i —
Z )
&0 &0
= =1
2 2
a a
—0.75 -0.75
-1.25 -1.25

0.1 0.3 0.5 0.1 0.3 0.5
Propagation Distance (mm)

Figure 3.3: Simulation showing the effects of group velocity mismatch on the co-propagation of two 35 fs
pulses, each polarized along the ordinary axis of B-barium borate: one centered at 400 nm (k; = 5942
f5/mm[208]) and the other centered at 800 nm (k; = 5615 f5/mm|208]), corresponding to a group velocity
mismatch of 327 £/mm. The 800 nm pulse is taken as the reference. (A), (B), and (C) all report the intensity
of the field: (A) shows |A400(t)|>+|Asoo(t)|? in the time domain, where A4o9(t) and Aggo(t) are the temporal
pulse envelopes of the 400 nm and 800 nm pulses, respectively. (B) and (C) show |A(Aw)|? for the 400 nm
(B) and 800 nm (C) pulses.
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it is still trivial to simulate its effects, as shown in Fig. Once again considering a 35 fs pulse at 400
nm, we see that the effects of group velocity dispersion are a little more complicated. (E) and (F) illustrate
that the group velocity dispersion influences the phase of the envelope in the frequency domain; given the
dependence of the effects of group velocity dispersion upon Aw?, it is also not surprising that the effects
are symmetric about Aw = 0. Unlike group velocity, however, the phase applied in the frequency domain
does manifest in the time domain, as seen in (B) and (C). This phase applied to the time domain envelope
worsens the time-bandwidth product of the pulse, and we consequently see broadening of the pulse in the
time domain in (A). However, this broadening is only a consequence of the phase added to the envelope: the

frequency content of the pulse, shown in (D), exhibits no changes as a function of propagation distance.

3.5.2 Calculating Group Velocity and Group Velocity Dispersion

In order to calculate the group velocity and group velocity dispersion in an arbitrary medium, we must first

recall the Taylor expansion in Eq. [3.4.23] In this expansion, we assigned the coefficients k; and k, as:

_ Ok(w)

b= o - (3.5.6a)
0%k(w)

ko= | (3.5.6b)

With the definition we obtained for k(w) (Eq. [3.4.14)), it is trivial to find the result of the derivative defining

k1, and only slightly more difficult to evaluate the derivative for k3. One form for these derivatives is:

1 0
b= [n(m tup 22) w:wj (35.78)
1|, on(w) 0?n(w)
kg = E [2 Ow _ wo 8(,02 _ (357b)

However, we describe Eq. [3.5.7a] and [3.5.7D] as one form of the derivatives, as it will generally be more

convenient to consider the dispersion of materials as 97(A)/ax. The reason for this is that the dispersion
of many materials is reported either in the form Cauchy’s formula[l01] or in the manner of the Sellmeier
formula;[209] in both models, the index is considered to be a function of wavelength, A, rather than frequency.
However, we can recognize that wavelength and frequency are related: recalling Eq. and recognizing

w = 27v, A\w = 2mc. Therefore, we can use the chain rule to expand the derivatives in Eq. [3.5.7a] and [3.5.7D)
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Figure 3.4: Simulations showing the effects of group velocity dispersion on the propagation of a 35 fs pulse
centered at 400 nm when polarized along the ordinary axis of B-barium borate (ko = 215.17 ”/mm[208]). (A),
(B), and (C) show the effects on the time-domain envelope, A(t): (A) shows the intensity of the field, | A(t)|?;
(B) shows the amplitude of the real component, R{A(¢)}; and (C) shows the amplitude of the imaginary
component, S{A(t)}. (D), (E), and (F) show the effects on the frequency-domain envelope, A(Aw): (D)
shows the intensity of the field, |A(Aw)|?, (E) shows the amplitude of the real component, R{ A(Aw)}; and,
(F) shows the amplitude of the imaginary component, S{A(Aw)}. In the complex representation of (B),
(C), (E), and (F), white corresponds to zero amplitude, while red and blue represent positive and negative
amplitudes, respectively.
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to leave a wavelength-dependence:

1 on(A)
kl = - TL()\()) — )\0 (358&)
c [ o\ /\ZAO]
Ay 9*n(N)
2= 0 oA |, (35:80)

With Eq. [3.5.8a]and [3.5.8b] determining the group velocity or group velocity dispersion of a material requires

only the derivatives of 9n(\)/ax or 9*n(})/ax2. These quantities can be determined from the appropriate

dispersion curves, with several examples worked out in

3.6 Numerical Integration of Ordinary Differential Equations

The treatment of pulse propagation in focused upon the consideration of a single field, with that field

coupling in some cases (§ 3.4.1|and [§ 3.4.4]) to an induced nonlinear polarization. However, as we introduced

in[§ 3.2] the induction of nonlinear polarizations can often involve the interaction of multiple pulses, thereby
coupling the evolution and propagation of the field envelopes. In some circumstances, it is reasonable to
approximate that the nonlinear interaction within the medium does not significantly deplete some of the
fields, and that it is reasonable to consider the changes induced in a single field; under such circumstances,
we are left with a single differential equation. However, there are also many conditions under which this
approximation is not appropriate, such as simulation of the parametric processes within optical parametric
amplifiers or oscillators.[102, (103} |118} 199201} 1208 [210H217] In such scenarios, it is necessary to consider
the propagation of the fields as a system of coupled differential equations.

Fortunately, algorithms exist for numerical integration of systems of both first-order and second-order
differential equations. While it is straightforward to consider a method as straightforward as the Euler
method, there are fortunately more accurate methods, such as the Runge-Kutta algorithm. In the following
sections, a background of such methods is provided with significant influence from the works of Press et
al;|113} [218] for more information and information on computational implementation, the reader is directed
to these sources.

Most methods of numerical integration are designed to evaluate a set of first order ordinary differential

equations, described generically:
d
i) = fde gyt (3.6.1)

where ¢ spans the range 1,2,... N and f;{} is of a known functional form and describes the coupling between
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the set of functions {y1,ya2,...,yn}. However, while most methods are intended towards evaluation of first-
order differential equations, systems of higher-order ordinary differential equations can generally be reduced
to an equivalent set of first-order differential equations that can be evaluated by these methods.

Systems of first-order differential equations can be reduced to two generic categories based upon the known
information: initial-value and two-point boundary problems. In the former, the entire set of functions is
defined at an initial point, and the goal is to project the evolution of the set of functions according to the
system of differential equations. Meanwhile, two-point boundary problems involve knowledge of the values
of the functions at more than one point. Two-point boundary problems are consequently more complicated
to solve, and require more advanced algorithms. Fortunately, the evolution of electric fields - where the fields
are known for some initial condition and the goal is to calculate their propagation - is an example of an
initial-value problem, for which the methods of evaluation are simpler.

The most simplistic approach to numerical integration of initial-value problems is the Euler method. In
this method, the appropriate derivative, 4v/dz is removed from the limit of infinitely small step sizes, yielding
the case described by discrete steps, 2¥/Az. The change in the function y(z) can therefore be projected from

its value at some position x, y(z), to its value at some position x + Az, y(x + Ax), according to Eq.

y(@ni1) = y(en) + Az fiwn, y(en)} (3.6.2)

Unfortunately, in this simple form, numerical integration of a system of differential equations can be unreli-
able. However, the reliability of the method can be improved by increasing the amount of information used
to guide the evaluation of the differential equation.

This improvement is the basis of Runge-Kutta methods, in which a series of steps identical to the Euler
method are evaluated; the results are then used to reconstruct a Taylor series expansion. These expansions
can be evaluated to any arbitrary order, but the most common is the fourth-order Runge-Kutta method,
which is outlined below. Runge-Kutta methods are not always the most efficient method for evaluating a
system of differential equations, but the advantages associated with these methods are reliability, reasonable
accuracy, and simple implementation. Two more efficient approaches to numerical integration - Richardson
extrapolation, such as Bulirsch-Stoer methods, and predictor-corrector methods - are available, but both
can be more difficult to implement and may not be robust to all problems. In methods based on Richardson
extrapolation, the goal is to numerically evaluate the result that would be achieved at the limit of infinitely
small step sizes. Predictor-corrector methods, on the other hand, base the value of the next point in

the integration on the results of the prior point, using evaluation of the derivative to adjust the results
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appropriately.

While these methods for numerical integration are oriented towards solving systems of first-order differ-
ential equations, it may be necessary to consider systems of second-order differential equations, generically
described:

0? 0

@An(ﬁ) + Ca—gAn(é“) = Fu{An(§)} (3.6.3)

where Eq. describes the evolution of the envelope 4,,(€) according to its functional dependence (F},)

on a set of envelopes {4,,(§)}. However, if a new function, B, (), is defined:

Bn(§) = 5z An () (3.6.4)

o¢

It is possible to define the second order differential equation in Eq. as a pair of first-order differential

equations:

0
g An(&) = Bu(©) (3.6.52)
8%3”(5) = OB(€) + Fu{An(©)) (3.6.5)

While this treatment doubles the number of functions that need to be considered, we have now represented
our previous system of second-order differential equations as a system of first-order differential equations.
By reducing the system to first-order differential equations, it is now trivial to apply any desired method to
evaluate the system.

The Euler method, which we introduced previously, serves as the starting point for the Runge-Kutta
method. While using a single evaluation to project the evolution of the function can be unreliable, the
Runge-Kutta method introduces additional evaluations to improve the projection of the function. At the
lowest order, the Runge-Kutta method relies upon an additional evaluation of the derivative at the midpoint
of the steps; for example, the derivative appropriate for the Euler method would be evaluated at x, then this
information would be used to evaluate the derivative at « + Az/2. These results would then be combined to
project y(z + Az). As this improvement to the Euler method involves an evaluation at the midpoint, it is
also called the midpoint method.

In order to combine the results of the evaluations at xz and = + A%/2, the model used mimics the Taylor
series. However, just as the Taylor series can be extended to higher orders, so too can the Runge-Kutta

methods. A common approach is to combine function evaluations to mimic the fourth-order Taylor series,
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yielding the fourth-order Runge-Kutta method. This method is accomplished by evaluating the derivative of
the function for four different points (Eq. -[3.6.6d)), then the results are used to project the propagation
of the function according to Eq.

k1 = Axf{zn,y(xn)} (3.6.6a)
ke = Az f{x, + %,y(mn) + % (3.6.6b)
ks = Az f{z, + %,y(xn) + % (3.6.6¢)
ks = Axfl{x, + Az, y(z,) + ks} (3.6.6d)
Y(@nt1) = ylzn) + L S (3.6.6¢)

6 3 3 6

One limitation of Runge-Kutta methods that should be noted is the importance of step-size. Though
Runge-Kutta methods are generally reliable, care should be taken when implementing these methods to
ensure that appropriate step sizes are used in the calculation. In order to do so, the integration should be
repeated with at least two step sizes (such as Az and A%/2) and the results compared to ensure consistent
behavior. Alternatively, controlling the algorithm with a program that monitors the results and adapts the
step size as appropriate can achieve the same result: guaranteeing that the numerical integration predicts
the proper result, rather than a result influenced by the step size. Introducing a routine that facilitates
adaptive stepping should allow the integration to be performed slightly more efficiently, as larger steps can
be taken when the functional behavior is characterized by slow changes and smaller steps when faster changes
occur.|218]

In we derived the wave equation describing the propagation of a field, leaving the result in the
frequency domain. The reason is clear in the context of the Runge-Kutta method: while the algorithm
can be directly implemented to solve the wave equation in the frequency domain to any desired order of
dispersion,|118} |200, 201] the standard Runge-Kutta algorithm accommodates only derivates with respect
to one dimension, preventing direct consideration of dispersive effects in the time domain. However, Bakker
et al[199] demonstrated a modified Runge-Kutta algorithm that directly incorporates first-order dispersive
effects in the time domain. While we will consider the above discussion regarding the Runge-Kutta algorithm
sufficient to discuss solution of the wave equation in the frequency-domain, we will outline the method
presented by Bakker et al.

The modified Runge-Kutta algorithm described by Bakker et al treats the differential equation of each
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field to be of the form:

0

S = Cugl £ )+ (" ) (36.7)

where 7 is a time coordinate in a moving frame of reference traveling at the group velocity of one of the fields;
C, corresponds to the GVM between the field described by f™(z,7n) and the field to which 7 is referenced; and
F{f™(z,m)} describes the functional dependence of the propagation of the field corresponding to f"(z,n)
on the set of fields {f"(z,n)}. In this form, Bakker et al claim that the fourth-order Runge-Kutta method

can be reproduced using the scheme described in Eq.

Ky'(z,m) = F*{f™(z,n)}

A A
Ky Z+§,n =F"qfm z7n+cm ‘ +§K{n z,n+cm :
2 2 2 2
Ky <z+ A;,n> = F" {f’" (z,n+ C";AZ> + %K? <z+ %,wr C’"QAZ>}

A AN
Ky (z+ Az,n)=F" {fm(z,nJrCmAz)qLAng" <z+2z,n+ C Z>} (3.6.8)
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h
+ gKZ(z + Az, n)

While it is valuable to recognize this algorithm for treating the effects of dispersion on the propagation of
electric fields in the time-domain, it is also important to note the limitations that arise in the method. First,
examination of the scheme in Eq. demonstrates that evaluation of K7 is required for six different time
scales:' 1; 1+ (8%/2) (ug) —ugy ) 4 (8%/2) (ugiugs); m+ Az(ug)! —ugy); n+ (8%/2) (2uy) —ugy —ugy); and,
n+ Az(u;ll — u;?,l). This necessitates nine different evaluations of the derivatives of each field, as opposed
to the four required for frequency-domain evaluation. The second main limitation is that evaluating the
functions at each of these positions requires the temporal grid to have sufficient resolution that §4z/2 can be
evaluated for the different pairs of fields. This resolution can require several thousand points to adequately
define the temporal grid. The burden of computing so many points limits the effects that can be considered in
the calculations, such as the radial distribution of intensity in the TEMgo beam and the explicit consideration

of the amplification bandwidth limit imposed by the crystal, which would require Fourier transformation of

all fields during each integration step.

iIt should be noted that the particular points noted here are predicated on following the model of Bakker et al in which
the field noted by the subscript 1 is the field to which 7 is referenced. In their example, this corresponds to either the signal or
idler field in parametric amplification.
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CHAPTER 4

Simulation of Sum-Frequency Idler Generation
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4.1 Background

When doped in sapphire (AlyO3), the electronic structure of Ti** is interpreted as a consequence of a cubic
environment with distortions that result in splitting of the 2Ty and 2E degeneracies. The otherwise triply
degenerate 2Ty ground state is split by a combination of a trigonal field and spin-orbit coupling, while the
two 2E excited states are split by the Jahn-Teller effect.|219] The resulting system exhibits both absorption
and emission characterized by broad absorption and emission bands: both are approximately 150 nm full
width at half maximum, with the absorption centered near 500 nm and emission peaking near 750 nm. Under
lasing conditions, the gain is slightly red-shifted to 800 nm, and the gain profile exhibits an approximately
200 nm full width at half maximum.[219]

The broad gain bandwidth of Ti:sapphire easily provides the breadth necessary to achieve ultrafast pulses,
with sub-10 fs pulses having been reported.[220-224] These ultrashort pulses are described as “soliton-like”,
exhibiting propagation very similar to solitons within optical fibers: the pulse is maintained by balancing
the accumulation of linear phase and nonlinear phase from self-phase modulation with appropriate negative
dispersion compensation.[222} [225-227] It is possible to optimize dispersion such that the pulse is limited
by third- or fourth-order dispersion,[226| [228] but optimum performance is often observed with a slightly
negative total group delay dispersion.[223, 226, [229] While other methods have been described,[224] the
introduction of a prism pair is a common strategy for introducing negative dispersion.|159} |207] |220, 222,
226, 228, |230H232] However, as the integrated group delay dispersion is the quantity that matters,[222] some
degree of flexibility exists in the functional dependence of the dispersion upon wavelength. However, pushing
the limits of this tolerance is attributed as one source for the copropagation of multiple pulses within the
cavity: this complication arises when different frequencies within the bandwidth experience dramatically
different dispersion, incorrect applied dispersion,|226) 228] or a sufficiently low dispersion that third-order
effects become dominant.|233] Copropagation of multiple pulses may also be observed in systems that sustain
mode locking through Kerr lensing when over-pumping results in saturation of the Kerr effect.[229) [234]

Soliton-like propagation within an oscillator is both initiated and maintained through mode locking.
Various methods of active and passive mode locking have been reported,[231}, 232} 235] though regenerative
methods|236] and external feedback|237] have also achieved the desired behavior. Active and passive mode
locking introduce periodic modulations to the gains or losses of the cavity, inducing pulsed behavior.|238]
Active mode locking yields temporal pulse envelopes that are Gaussian, but the use of active methods will
generally limit the achievable pulse duration.|238] In contrast, passive mode locking schemes are capable of

yielding shorter pulses[238] and exhibit very stable pulse trains with minimal timing jitter.[239] However,
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the pulse envelope resulting from passive mode locking is a hyperbolic secant,|238] [240| [241] which exhibits
broader wings than the Gaussian envelope of actively mode locked pulses.[242] Some authors have reasonably
described passively mode locked systems within a Gaussian approximation, though.|243] While saturable
absorbers can be used for passive mode locking, the broad bandwidth required for ultrashort pulses can
make this a poor choice to achieve the shortest pulse durations.[221] The Kerr lens provides a much more
convenient method for sustaining an ultrashort mode locked pulse:[220} [243] since it is based upon the
intensity-dependent Kerr lens to reduce the losses or increase the gain of a pulse over cw operation during
the pulse duration,[224, 238] it achieves the periodic gains and losses necessary for mode locking without
the bandwidth limitations inherent to saturable absorbers.|221] Kerr lens mode locking can be achieved
through either a hard or soft aperture.|224] Despite the advantages, one drawback to Kerr lens mode locking
is initiation of mode locking: while the Kerr lens is an effective method for sustaining pulse propagation, it
is less effective for self-starting.[221], |243] However, there are reports of self-starting oscillators based upon
Kerr lens mode locking;[222] [231} 244] the key to such systems is that they must be designed such that the
pulse experiences sufficiently greater gain than cw lasing.[244] As mentioned previously, systems based on
Kerr lensing can also be subject to saturation of the Kerr effect, which allows copropagation of longer pulses
or cw modes in addition to the desired ultrashort pulse.[229), [234]

The soliton-like propagation of Ti:sapphire oscillators provides a convenient avenue for the stable, reliable
generation of ultrashort pulses. However, the oscillation of these lasers tend to be at high repetition rates,
around 100 MHz.[221] |243] Such a high repetition rate results in a very low pulse energy, with values as low
as 1-10 wJ.[245] Additionally, while the Ti:sapphire gain medium does exhibit a very broad gain bandwidth,
allowing some tunability, the bandwidth still restricts oscillation and amplification to wavelengths around
800 nm. Fortunately, both of these limits can be addressed.

To overcome the pulse energy limits, regenerative amplification has been adapted to Ti:sapphire systems.
Through a separate pump and cavity, regenerative amplification selects individual pulses from the oscillator’s
pulse train and amplifies these pulses by several orders of magnitude.[246] Such high pulse energies would
result in catastrophic self-focusing in the cavity,|247] so these systems are generally based upon chirped pulse
amplification.[245] This strategy is predicated upon introducing linear frequency modulation (chirp) to the
pulses from the oscillator in order to generate longer pulses; the degree of stretching can vary based upon
application: whereas it may be sufficient to stretch the pulses to a few picoseconds for low gain systems,|248]
systems yielding higher energy may require significantly greater chirp.[249| [250] While a variety of strategies
for pulse stretching and recompression exist,[248-251] care must be taken to minimize the introduction of

effects such as pulse front tilt.[179] Regenerative amplification will often result in some degree of broad-
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ening and residual chirp regardless of the stretching/recompression strategy.[245| |252, 253] Gain narrowing
contributes part of the limit by introducing spectral narrowing and temporal broadening. [246) 248 |253] Addi-
tionally, the number of round trips required for optimum amplification allow the accumulation of both linear
and nonlinear phase. Compressors generally cannot reduce any third-order dispersion accumulated.[245] [252]
Meanwhile, the nonlinear phase accumulation described by the B-integral will exhibit a radial dependence
due to the radial distribution of the mode’s intensity, making compensation challenging.[247] 254]
Increasing the tuning range of Ti:sapphire based solid state systems is generally accomplished through
a variety of parametric processes. If we consider the fundamental frequency of these Ti:sapphire systems
to be wp, harmonic generation makes the second, 2wp, and third, 3wp, harmonics accessible. However, the
discretization of these available frequencies can be overcome through optical parametric generation (OPG)
and optical parametric amplification (OPA).|126] In these nonlinear processes, a strong pump field at wp
interacts with a weak field at the signal frequency, wg, or the idler frequency, w;. The convention is for
wsg > wr. In a nonlinear medium, the pulse envelopes of these fields can be shown to evolve along the
direction of propagation, z, according to a system of equations;[102} 103, |118} (126} [199H201}, [210} 211}, 215

216] when incorporating effects of pulse propagation, the equations of this system adopt the form of Eq.
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where we have taken the pump to be the reference pulse and retained the definitions of all quantities as
in We also mask the importance of symmetry in the nonlinear susceptibility through the use of
the effective nonlinear susceptibility, X((j_f) (see .[1067 119] For compactness, we have omitted the
contributions of phase matching and do not explicitly note the frequency, space, or time dependence of the
envelope functions.

The system of equations in Eq. [f.1.Tal[d.1.1d illustrates a few key characteristics of OPA and OPG. First,
in order for the polarizations corresponding to the product of pulse envelopes on the right hand side to feed
the corresponding fields, the frequencies must satisfy the equality, wp = wsg 4+ wy. Additionally, it illustrates
the need for the initial weak field at either wg or wy: if both fields have no initial amplitude, the only changes

predicted by the system of equations are the effects of dispersion on the pump. It is adequate to provide
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a white light continuum as a broadband source for this initial interaction. However, with a sufficiently
strong pump, the vacuum field can be sufficient to initiate OPG; this superfluorescence requires much higher
pump energies for stability and may be limited by the presence of on- and off-axis components. It
is generally inadvisable to simultaneously seed the process with both signal and idler ﬁelds,
as group velocity differences can result in the formation of multiple pulses and differences in phase can
cause interference. In the absence of pump depletion and dispersion, the system of equations predicts
exponential growth of the amplitude of the signal and idler ﬁelds. At high conversion rates, though,
reconversion of the signal and idler according to Eq. can become meaningful; to avoid

these effects, a conversion limit of ~ 20% has been cited.[258] Group velocity mismatch also has important

consequences on the behavior of different processes.

Frequency conversion by parametric generation can be achieved through many different strategies. A
weaker pump can be used by enhancing the conversion through oscillation in a cavity. This strategy, optical
parametric oscillation, can be achieved with different pump sources, including Ti:sapphire lasers;
however, while this achieves the goal of tuning the field, it still results in low pulse
energy at high repetition rates, and the oscillator may require some considerations for stability.
Alternatively, optical parametric amplification requires higher pump energy in order to achieve appreciable
conversion; however, since the optical parametric amplifiers (OPAs) do not require a cavity, they can be more
straightforward to operate. When OPAs are taken to the limit of high gain, amplification can be achieved
in only a few passes through the nonlinear medium; such systems are described as traveling-wave optical
parametric generators (TOPG).[170}

While reported conversion efficiencies of TOPGs suggest reconversion can be relevant, there are many
potential advantages. At high gain, the TOPG operates in saturation: at this limit, the performance is
relatively insensitive to fluctuations in the seed, improving operating stability. While OPA
ideally yields tunable pulses at approximately the duration of the pump pulse, this should
be more feasible by minimizing the number of passes: each pass through the nonlinear crystal reduces the
amplification bandwidth, limiting the achievable pulse duration. However, there will be a limit as to
how few passes are feasible. Decreasing the number of passes requires higher gain to achieve saturation,
but this increased gain also increases the chance of superfluorescence, which can negatively impact the
performance of the arnpliﬁer. Besides the effects of amplification bandwidth, the generated signal and
idler are rarely at the transform lirnit7 especially for femtosecond pulses. The chirp accumulated

by the signal and idler is attributed to group velocity dispersion and group velocity mismatch between the
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pump and signal; it is not uncommon for the signal and idler to exhibit similar bandwidths, but to
exhibit opposite chirp.

In contrast to lasers, in which the bandwidth is restricted by the resonances of the gain medium, OPA is
usually achieved in a nonresonant medium. However, while resonances are generally not considered
relevant in determining the bandwidth of the OPA, absorption associated with resonances can limit tuning
ranges; for example, in BBO, the tuning range is limited in the infrared by absorption
by phonon modes and in the UV by two-photon absorption. Rather, the bandwidth of the
OPA is generally a consequence of the need to satisfy momentum conservation by phase matching.
With broadband pulses, it may prove impossible to simultaneously satisfy phase matching for
all relevant frequencies, introducing the limits described above upon the number of passes.
The importance of the number of passes can be understood by considering the phase matching bandwidth.
By expanding the phase mismatch in a Taylor series in a manner similar to Eq. [3.4:23] it is possible to
show that the phase matching bandwidth will be restricted by both increasing crystal length and

by increasing group velocity mismatch between the signal and the idler fields.[125) 138]
269

The effect of increasing group velocity mismatch proves a limit when trying to generate visible pulses:
in a collinear geometry, the group velocity mismatch becomes restrictive, [263, especially with
decreasing pulse duration. In addition to the limits imposed by the phase-matching
bandwidth, collinear geometries also exhibit a lower range of acceptance angles into the crystal.[125] While
the range of acceptance angles does not prove limiting if beam divergence is minimized7 noncollinear
geometries have been found to exhibit broader ranges of acceptance angles7 improving effi-
ciency. Noncollinear geometries can also demonstrate improved phase matching bandwidth through
group velocity compensation. When the phase matching angle 6 # 0°, 90°, the birefringence
causes a mismatch between the Poynting vector (the direction of energy) and the wave vector, k; in
a noncollinear geometry, this walk-off angle yields an effective change in group Velocity. This walk-off
can have consequences. particularly with respect to mode structure and interaction
length7 though some authors have reported strategies that achieve some compensation. How-
ever, walk-off is utilized in a noncollinear geometry as the change in effective group velocity it causes can
help match group velocities in the crystal. Phase matching in such non-
collinear geometries is facilitated by the formation of an angularly dispersed idler; additionally,
it has been demonstrated that there exists a noncollinear angle such that the proper phase matching angle

of BBO is nearly independent of wavelength.[152, [277] However, with a noncollinear geometry, changing
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the desired signal frequency can also change the output direction. Some authors have achieved similar
group velocity mismatch compensation with tilted pulse—fronts or chirped pulses. An
appropriate amount of negative chirp has also been reported to improve eﬁiciency. Meanwhile, while
tilted pulse-fronts can compensate for changes in output direction, it can result in other distortions that
also manifest in a noncollinear geometry.

An alternative approach for achieving a broad tuning range is to couple OPA in the near infrared with
appropriate upconversion prooesses, the strategy employed in the TOPAS-C. While absorption of
the idler is attributed as the limit for this tuning range, near infrared
conversion can be pumped by the fundamental of Ti:sapphire lasers directly. Avoiding harmonic generation
makes higher pump energies available; when coupled with the lower group velocities in the near infrared,
significantly higher energies can be achieved. Upconversion is accomplished by a variety of processes
between the pump, signal, and idler from the initial near infrared OPA: the combination of harmonics
and sum-frequency generation with the pump provides tuning throughout the visible and near infrared. It
has been reported that upconversion can restrict the available bandwidth; group velocity mismatch
can also prove limiting. However, a wide variety of reports have demonstrated that upconversion
processes can have pronounced consequences on the spectral or temporal character7
particularly under conditions of significant conversion or depletion[154)

170] and pronounced effects of group velocity. 156} [163] The behavior can also change according to
the initial delay between the involved fields.[264]

We believe that such behaviors are to account for unusual behavior observed when generating the sum-
frequency between the idler and residual pump (SFI), as shown in Fig. i Exploring the effects of changing
the delay between the pump and the signal seed in the OPA showed that the spectral characteristics observed
can be changed with this adjustment, and that optimized signal and idler conversion did not necessarily
contribute to optimum sum-frequency generation. Despite the unusual spectral character observed in the
SFI process, the signal process appeared consistent with normal operation (see Fig. ; it is difficult to
reliably characterize the idler, but the literature suggests the bandwidth of the signal and idler processes
should be similar. The unexpected behavior of SFI is consistent with the observations of Danielius et
al. When using a very similar system, but with longer pulses (~ 100 fs rather than ~ 30 fs) and slightly
longer (4 mm and 0.6 mm rather than 2 mm and 0.3 mm BBO for OPA and SFI, respectively), Danielius

et al report very low conversion for the sum-frequency generation process between the idler and the pump

iExperimental data collected with Eric Hagee, Daniel Kohler, and Blaise Thompson.
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except near 600 nm, where they observe ~ 50% higher efficiency.|272] They do not observe similar behavior
for sum-frequency generation between the pump and signal.[272] Their explanation for these observations is
that the group velocity mismatch between signal and pump is nearly independent of signal wavelength and
non-zero in the Type IT phase matching of the OPA;[126]|172] when sum-frequency generation is performed,
however, this reverses the group velocity mismatch, limiting the effects of the accumulated group delay
between the pump and the signal on sum-frequency generation. In contrast, as Type II phase matching
results in parallel polarizations for the pump and idler, the accumulated group delay between the pump and
the idler is not reversed during sum-frequency generation; rather the group delay is increased by continued
co-propagation through additional crystals. Unlike signal, though, the pump-idler group velocity mismatch
exhibits significant dependence on idler wavelength, crossing zero near 2400 nm (signal wavelength, 1200
nm).[126} [172] The sum frequency of 2400 nm and the fundamental occurs at 600 nm, where Danielius et al
observe the unusually high efficiency.[272] This is also near the wavelength at in which we observe the unusual
spectral characteristics of Fig. [I.1] Unfortunately, Danielius et al do not provide spectral characterization
of their system. The simulations reported here seek to confirm that the features in Fig. [I.1] are expected

behavior for our system and improve our understanding of the underlying mechanisms.

4.2 Methodology

A wide variety of authors have attempted to explore the simulation of parametric processes.[118) |{199-201,
212217 Bakker et al appear to have described one of the earlier methods towards simulating ultrafast pulse
propagation, introducing a modified Runge-Kutta algorithm that allowed solving a system exhibiting both
spatial and time dependence (see.|199] However, there are multiple drawbacks to their approach. First,
the algorithm can only handle behaviors associated with the first derivative with respect to time.[199} 201]
Second, while this algorithm can be coded and implemented, the number of evaluations and the density of
data points necessary to incorporate the temporal dependence make the calculation prohibitively expensive.
Gale et al have documented an alternative approach for evaluating the system of differential equations
describing OPA, which permits evaluation to an arbitrary order of dispersion.|200, |201] This is possible
through operating in both the time and frequency domains. At each step of the numerical integration, the
polarization at each frequency is calculated, the results are Fourier transformed to the frequency domain, and
the evolution of the fields projected. Evaluation of the field changes in the frequency domain permits direct
application of the Runge-Kutta algorithm:|218| as shown in Fourier transformation of the relevant

system of equations masks the differential behavior associated with dispersion. While Fourier transformation
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Figure 4.1: Results of sum-frequency idler process tuning. (A) shows the two dimensional representation
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permits consideration of dispersion to an arbitrary order, we follow the assumption in[§ 3.4.1]and only consider
effects up to the second order in time/frequency. While this method follows the example of Gale et al[200l
201] and later authors employing the same approach,[118] we note that the system of equations we employ
based upon the derivation in deviates slightly from the equations used by these authors.

The Python code developed for these calculations - with some modifications for presentation - is presented
in It consists of a series of scripts containing discrete parts of the calculation. It should be
noted that during development of the code, the architecture necessary for several features - such as support
for isotropic media and adaptive stepping - were incorporated; however, as these features were not needed,
they have not been developed. In earlier versions, the code necessary for evaluating second-order differential
equations was maintained; however, testing has indicated it is reasonable to operate within the slowly varying
amplitude approximation. Maintenance of this portion of the code has since been discontinued, and much
of these portions of the code have been omitted in the appendix.

Before discussing the strategy we employed for simulating the SFI process, we will first outline the
approximations implicit within the code. First, we adopt the plane wave limit for each field and neglect
effects such as walk-off, phase effects of a TEMyy mode, refraction, and imaging. The effects of spatial
walk-off are neglected for convenience: due to the short crystal lengths in the crystals in the TOPAS-C, the
effects of walk-off that would be expected are comparable to the resolution we adopt in radial sampling. As it
is common to put the crystal just after the focus of the pump,|126] the propagation of the TEMgy mode has
the potential to be an important effect, especially when considering the imaging of the pump and the idler
modes on the sum-frequency crystal. However, as we do not know the exact engineering of the TOPAS-C
units, we neglect the phase terms associated with the TEMgy mode and simply consider the amplification
and sum-frequency crystals to be in direct sequence. While we neglect the phase terms of the TEM mode,
we do consider a radial intensity distribution consistent with a Gaussian profile; the handling of this is
functionally equivalent to appropriately weighting the contributions of plane waves with different fluence.
The beam sizes employed in the calculations are reported with the other characteristic parameters below;
these have been adjusted within seemingly reasonable bounds so as yield conversion efficiencies comparable
to those observed in the TOPAS-C.

In contrast with Gale et al and Wang and Wang,[118] {200} 201] we do not incorporate the effects of
third-order nonlinear polarizations. While some authors suggest that the effects of third-order nonlinear
polarizations during OPA may be important,[131} 281] others question the magnitude of their effects.|259]
We also point out that some authors indicate TOPGs may be operated at lower gain levels in the later

amplification stages;|170] the correspondingly lower pump intensities would be expected to reduce the sig-
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nificance of any third-order effects. There also appear to be questions whether perceived third order effects
are the result of third-order polarizations or cascaded effects;[118] see for instance that cascaded side bands
can exhibit phase matching consistent with “self-diffraction” without clearly requiring a third-order polariza-
tion.[282284] In addition to third-order polarizations, we also do not account for the possibility of parasitic
processes,[172} 275 [285] 286] though it is clear that these can have consequences on the behavior of a system,
either through spectral distortions or inefficiencies.|275]

While the Selmeier coefficients provided by Kato and Eimerl et al appear to be the standard description
for the dispersion of BBO[106, 287, |288] and other authors have indicated they are reasonably accurate in the
near infrared,|289] we have opted to employ the modified dispersion formulae reported by Zhang et al.[208]
We note here that the group velocity mismatch curves projected by all three sources (Fig. exhibit
similarities, including a crossing point at which the pump-idler group velocity mismatch Au;il =0 fs/mm;
however, as Fig. [£.3] shows, this crossing point is projected at signal wavelengths as short as Ay = 1108 nm
(\; = 2878 nm)|[288] or as long as Ay = 1330 nm (\; = 2008 nm). [287] Consequently, while we hope to observe
similar behavior as seen in Fig. [£.1]in our simulations, we do not anticipate an exact match for the wavelength
at which the features might occur. Absorption data has been simulated to reproduce available information.
Data describing the absorbance of BBO has been published by Eimerl et al,[287] but a clearer set of data
are available online.! While no crystal length was reported for the online reference, comparison with the
reported absorbance by Eimerl et al allowed approximate scaling. We estimated absorption coefficients at
various colors and interpolated as necessary. The results of these interpolations yield a higher coefficient
at 532 nm (~ 0.05 cm™! instead of 0.01 cm™) and a lower coefficient near 2.55 ym (~ 0.3 cm™ instead of
0.5 cm™) than those reported by Dmitriev et al.[106] As the interpolated values are of the correct order
of magnitude, our interpolated absorbance should provide a reasonable approximation, especially given the
short crystal lengths employed in the TOPAS-C.

Because the generation of the seed in the TOPAS-C is accomplished in a noncollinear geometry, we
could not accurately model this. Some testing was done approximating the noncollinear interaction using
an effective group velocity as calculated according to the formula reported by Dubietis et al.[274] In this
treatment, we used the model for white light described by Reisner and Gutmann.|217] The calculation of
the white light field proved computationally expensive, but in these tests we found that the resulting seed
was comparable to an envelope with a phase of ~ 40°. We therefore have assumed the seed envelope to

be described by a Gaussian profile of 35 fs duration with an initial phase of 40°. This neglects residual

iLocated at u-oplaz.com.
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Figure 4.3: A comparison of the group velocity mismatch curves projected by the BBO dispersion curves
from different authors, from top to bottom: Eimerl et al; Kato; and Zhang et al. Magenta
curves are pump-idler group velocity mismatch, Au;il = 1/u, — 1/u,, and black curves are pump-signal group
velocity mismatch, Au;sl = 1/u, — 1/u,. Dashed lines represent the group velocity mismatch curves for Type
I (e + 00) phase matching, and solid lines are the curves resulting for Type II (e « oe) phase matching.
The phase matching angle was determined within the CW limit. The green lines identify the point at which
each source for BBO dispersion data predicts Au;il =0 fs/mm.
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chirp, which is also neglected in the pump. It has been reported that a slight negative chirp can compensate
for dispersion in the crystal and improve performance accordingly;|131] as we optimize recompression in
the regenerative amplifier to TOPAS-C performance, this is undoubtedly meaningful, but we have no good
estimate for the effects.

In attempting to reproduce the behavior of Fig. we have sought to emulate the tuning procedure
employed on the femtosecond system as closely as possible. According to our approximation regarding the
seed, we have assumed that the first amplification stage has already been well-tuned and that a signal seed at
any desired frequency can be generated. We proceed to simulate the acquisition of multidimensional tuning
data at a distribution of signal colors: two of these dimensions arise from changing the phase matching
angle and the temporal delay between the seed and the pump, while the third represents the distribution
of frequencies within the fields. This is directly analogous to the acquisitions of D2 versus C2 versus A,
collected during tuning of the TOPAS-C. The resulting data set is reduced to two two-dimensional data sets
that track the functional dependence upon phase matching angle and delay of the zeroth (integrated energy)
and the first (mean, or central color) moments of the signal field. These metrics were selected as the data in
Fig. [£1] question the validity of the parameters of Gaussian fits as reliable characterization metrics. Tuning
curves were generated by picking the optimum point in the two dimensional space of phase matching angle
and delay; the corresponding tuning curve point was obtained by assigning these values to the central color
as determined by the first moment. The first metric for determining the optimum point was to require the
first moment to be within ~ 1.5 nm of the central color of the seed; of points satisfying this first metric, the
appropriate tuning position was then assigned on the basis of maximum integrated energy.

The resulting tuning curves (phase matching angle versus signal color and delay versus signal color) were
interpolated using the UnivariateSpline function from scipy.interpolate. The knots/smoothing factor
were set to 5/10000 for the phase matching angle and 3/1000 for the delay. These interpolation functions
were used to tune the sum-frequency process. For a distribution of SFT colors, the appropriate signal color
was calculated on the basis of energy conservation; the generation of this signal color and its corresponding
idler were calculated using the phase matching angle and delay interpolated by the splined tuning curves.
The pump and idler fields from this simulation were retained and assigned as the pump and idler fields for
sum-frequency generation. The sum-frequency generation of these fields was simulated for a distribution of
phase matching angles. For each SFI color, the optimum phase matching angle was chosen by maximizing
the SFI energy, and the first moment of the corresponding sum-frequency spectrum was calculated. The
functional dependence of phase matching angle and energy-conserving SFI color upon these first moments

provided the SFI tuning curves: for a desired SFI color, the latter curve permitted identification of the
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appropriate signal color for simulating pump and idler generation, while the former indicated the proper
phase matching angle for sum-frequency generation. Both tuning curves were interpolated using the same
UnivariateSpline function (5/10000 knots/smoothing factor).

With these tuning curves, both the base OPA and the SFT upconversion processes were simulated with an
even distribution of assigned colors. These simulations are reported in the following section. The parameters
used for these simulations are reported in Table The field parameters for the SFI simulation were

inherited from the appropriate OPA simulation.

4.3 Results and Discussion

In order to test the performance of the script, we simulated the second-harmonic generation of 2 ps, 800
nm pulses. Within the framework of this process would occur according to the system of equations

relating the fundamental (F) and second harmonic (SH):

0 - 1 1 . C wi .

5o Ar = {ZQAM%ZF — olwr)| Ar — iz kFOFXg?f{AFASH} (4.3.1a)
9 figy = —iAw(kysu — k )—ﬁmﬂk —la(w )| A —iﬁ @) F{ApAp}  (4.3.1b)
02 SH 1,SH 1,F B 2,SH 2 SH SH 262k_07SHXeff FAF 9.

However, with such long pulse durations, dispersive effects should be negligible for reasonable crystal lengths.!
Additionally, we can approximate the pulse envelope as the amplitude at the central frequencies, Agr and
Ap su; this allows us to also treat the frequencies of each field wg and wsy as the central frequencies, wo r and
wo,sH- Within this limit of narrowband pulses, we should also be able to assume phase matching is reasonably

well satisfied across the spectrum. Finally, as we are dealing with visible frequencies, the absorbance of BBO

should be minimal. This reduces the system of Eq. 4.3.1aj and [4.3.1b| to:

2A = —q Wi @) g p A (4.3.2a)
9z OF 2¢%ko p Xett £0.F %0, sH o
0 WosH  (2)
—A = —j—" Ao A 4.3.2b
92 0,SH ZQCQkO - Xeff £10,FA0,F ( )

Note that as we are operating within the narrowband limit, we are no longer retaining a distinction between
the frequency-domain amplitude (fl) and the time-domain amplitude (A). In the regime of low conversion,

the effects of Eq. will be perturbative to the fundamental field, allowing us to adopt the assumption

iFor the dispersion curves given by Zhang et al,|208] the predicted group velocity mismatch for the second harmonic gener-
ation of 800 nm is 232 fs/mm. For 2 ps pulses, then, neglecting group velocity mismatch should be a reasonable approximation
up to 8-9 mm.



Parametric Amplification Parameters

Parametric Amplification

Process
Phase Matching Type 11
Crystal Length 0.2 cm
Azimuthal Angle 0°
250

Steps

Sum-Frequency Generation Parameters

Sum-Frequency Generation

Process
Phase Matching Type I
Crystal Length 0.03 cm
Azimuthal Angle 90°

150

Steps

Shared Parameters

Dispersion Curve

Zhang et al[208]

Time Samples

128

Radial Samples

32

(a) Simulation Parameters

Parameter Pump Signal Idler
Wavelength 800 nm | (variable) | (variable)
Center 0 fs (variable) 0 fs
Gaussian Width 35 fs 35 fs 35 fs
Energy 1500 wJ 1ud 0wJ
1/e? Size 1.0 cm 0.5 cm 0.5 cm
Envelope Phase 0° 40° 0°

(b) Field Parameters

Table 4.1: Parameters used for sum-frequency idler simulations.
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that 9/0zApr = 0. This leaves only Eq. [4.3.2b| with a constant source, Ag . The solution to this equation

is straightforward to evaluate, yielding:

2
w
Agsi = _iﬁxgmgﬂ (4.3.3)

under the assumption that no second harmonic is present at z = 0. In terms of energy, this result is equivalent

to:
4
Esqg  Wosu | (22 FEp

2 2
f(wo) 4c4k375H|Xeff| Flwe)2” (4.3.4)

where Esy and Er are the energy of the second harmonic and fundamental pulses, respectively; f(wp) is a
beam size dependent distribution of that energy, and other variables are defined as before. From Eq.
we therefore anticipate that in the low conversion limit, the energy of the second harmonic should scale with
a quadratic dependence upon length (z) and fundamental energy (Er) and a reciprocal dependence upon
the energy distribution function.! The parameters employed for these calculations are summarized in Table
and the results are summarized in Fig. [£.4}

In these simulations, we found the behavior of Eq. to be observed until approximately 10% conver-
sion; at this point, deviations from the expected dependence began to become significant. This is comparable
to reported bounds at which reconversion begins to be expected in OPA (~ 20%).|258] As indicated by the
result of Eq. the energy of the second harmonic is expected to exhibit quadratic dependence upon the
fundamental energy and the crystal length, in very good agreement with the results in (A) and (C) of Fig.
where we observe high correlation with models that scale according to EL9717 and L9183, Meanwhile,
the energy distribution we employ in the calculations is [(7/2)w3] ! exp[—2(7/wo)?], where wq is half the
provided !/e? beam size. Within this model, we should expect the functional dependence upon beam size
to scale as the non-exponential term, [(7/2)w3]~!. In (D), we see that the low conversion regime of second
harmonic generation exhibits a very strong match to this model, scaling as wg’ 19682 The one limitation that
is apparent in the script comes in (B): ideally, we should observe energy conservation in the process. It is
clear that at low energies this is not the case. We attribute this limitation at small second-harmonic energies
to the limited resolution of our sampling grid (32 spatial points, 128 temporal points). It is clear that the
script converges to the correct behavior with respect to energy conservation at higher energies; from this,

we take the sensitivity of the script to be at the level of 1072-107! pJ. As we will be simulating TOPG, we

"'We note, too, that Eq. [4.3.4]exhibits a dependence upon central frequency, and that we have previously noted the omission
of a phase matching dependence. Neither of these prove straightforward to incorporate cleanly, however. As the frequency

influences ng) through the phase matching angle 8 and ko through both wp and the phase velocity, the dependence upon wy
ends up more complicated than the quadratic dependence that first appears to be evident. Meanwhile, exploring the influence
of Ak is computationally challenging as the phase modulation changes the characteristic step size between runs.
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Dispersion Curve Zhang et al.|208]
Process Second-Harmonic Generation
Phase Matching Type 1
Crystal Length 0.5 cm
Azimuthal Angle 90°
Step Size 10 ym
Time Samples 128
Radial Samples 32

(a) Simulation Parameters

Parameter Fundamental | Second Harmonic
Wavelength 800 nm 400 nm
Center 0 fs 0 fs
Gaussian Width 2 ps 2 ps
Energy 5w 0pd
1/e? Size 1.0 cm 0.5 cm
Envelope Phase 0° 0°

(b) Field Parameters

Table 4.2: Parameters used for second-harmonic test simulations.
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Figure 4.4: Results of simulations of second-harmonic generation as a function of fundamental energy (A),
crystal length (C), and beam size (D). Simulations performed according to the parameters in Table (B)
shows the change in energy predicted for the fundamental and second harmonic at each initial fundamental
energy tested in (A).
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should generally be operating safely beyond this regime.

Having demonstrated that the behavior of the script is consistent with expectations and recognizing the
sensitivity limits, we will present the results of the simulations of the sum-frequency idler process; after
presenting the results, we will attempt to explain them in the context of published treatments of OPA and
sum-frequency generation.

As noted in our outline of the methodology, the first step in these simulations was to emulate the tuning
procedure employed on the femtosecond system. With the assumption that the preamplification stage has
already been “well-tuned” and that nearly Gaussian seed profiles can be generated at any desired signal
color, we explored the space corresponding to the pump-seed delay and the amplification crystal angle for
a distribution of signal colors. As the resulting data forms a four-dimensional data set (amplitude/intensity
versus frequency versus crystal angle versus delay), it is not convenient to analyze in its original state.
However, in Fig. [£.5 and [£.6] we have reduced this four-dimensional data set to two three-dimensional data
sets, characterizing the amplitude/intensity versus frequency dimensions according to their zeroth and first
moments.

For seed colors with wavelengths longer than 1180 nm, we observe behavior in these results consistent
with expectations. When examining the first moment (central color) as a function of angle versus delay
in Fig. we observe a dependence upon angle only. In the model example of these simulations, this
is completely reasonable, as neither the seed nor pump have any time dependence; if we introduced chirp
into the seed, which is likely more consistent with the character of the seed in the TOPAS-C, we would
expect to observe some curvature or tilt to the contours appropriate to the functional form of the frequency
modulation. The relationship between color and crystal angle is made clear by examining the phase matching
angles predicted for BBO (as calculated from the dispersion curves described by Zhang et al[208]) within
the cw approximation in Fig. [£.7} in the phase matching curve predicted for Type II phase matching, there
is a monotonic trend of increasing phase matching angle with increasing signal color for all wavelengths
longer than 1150 nm. This matches the behavior observed in Fig. where a blue (red) shift is observed
for decreasing (increasing) crystal angle. Meanwhile, at first glance, the results of the zeroth moment
(integrated energy) in Fig. for wavelengths longer than 1180 nm seem unusual. While it is not clear
from Fig. (the tuning curves shown in Fig. illustrate this more clearly), there is a clear trend that
the optimum delay is slightly negative; it seems reasonable that a slight delay would be optimum in order to
compensate for the group velocity mismatch between the pump and the seed. However, the unusual trend
is that optimum amplification appears to occur at smaller crystal angles than the angle assigned as the

optimum tuning point. However, recall from [§ 3.2.2| that, in Type II phase matching, d.g scales with respect
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to dap according to dag cos?() cos(3¢). Consequently, we would anticipate deg to actually increase as we
decrease the phase matching angle; this would be expected to increase the gain at these smaller angles. We
attribute the optimum amplification at smaller phase matching angles to this effect.

In contrast to wavelengths longer than 1180 nm, the results for 1140-1180 nm appear less straightforward;
each of these wavelengths exhibits less straightforward behavior as a function of crystal angle and delay, both
in terms of the trends observed and in the rate of these changes. However, recalling Fig. we note that
this region is where the dispersion curves of Zhang et al predict the pump-idler group velocity to reach
zero.[208] As a consequence, this is where we anticipate deviations from ideal behavior to begin manifesting;
under the high gain of the TOPG, reconversion between the pump and the signal and idler is expected, likely
exacerbating any deviations already occurring.

The tuning curves projected by these optimum points are shown in Fig. |4.8] (A). As these tuning curves
show, the optimum delay appears quite dynamic at lower wavelengths, likely due to the pump-idler group
velocity mismatch crossing zero; otherwise, the behavior of the delay tuning curve appears to mostly be
limited by the resolution of our sampling in the simulations. The combination of these two does appear to
limit the accuracy of the tuning curve in predicting the optimum delay: this is apparent in Fig. [L.5] and
[4:6] where the tuning point assigned by the tuning curve is predominantly shifted from the optimum point
horizontally - along the delay axis. In contrast to delay, the tuning curve as a function of crystal angle
is much more monotonic. At wavelengths longer than 1250 nm, the curve exhibits a trend very similar
to the theoretical curves (Fig. predicted using the dispersion curves of Zhang et al.[208] At shorter
wavelengths, deviation from the theoretical curve is observed; in contrast to the behavior of delay, though,
this deviation is relatively smooth and can be interpolated quite well.

The signal tuning curves permitted simulated tuning of the sum-frequency idler; the results of these
simulations are much less insightful as they are interpreted solely on the basis of maximizing the zeroth
moment (integrated energy). The resulting tuning curves from these simulations are shown in Fig.
(B). In the same manner as (A), there are two axes of relevance when trying to simulate a desired sum-
frequency idler color: a phase matching angle and a color corresponding to the energy conservation condition
of an appropriate signal point. The latter of these curves is quite monotonic and can be well described
by an interpolated curve. On the other hand, the results for the phase matching angle are reasonably
well interpolated as the sum-frequency idler wavelength increases until ~ 605 nm, where a deviation from
monotonic behavior is observed. This deviation occurs at frequencies corresponding to signal wavelengths of
1180 nm; from the group velocity mismatch curves in Fig. it seems reasonable to attribute this lack of

monotonicity to the pump-idler group velocity mismatch crossing from positive to negative values.
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Figure 4.5: Results of simulations of signal tuning, presenting detuning of the first moment as a function of
angle detuning and delay detuning. Angle (delay) detuning reflects the detuning of the phase matching angle
(initial pump-signal delay) relative to the angle (delay) position assigned as optimum. Detuning of the first
moment is measured relative to the first moment of the optimum point; contours reflect 5 nm increments
to the blue (dashed) or the red (solid). The unfilled marker at (0,0) corresponds to the assigned optimum
point; the filled marker indicates the delay and angle assigned by interpolation of the tuning curve. The
label identifies the center wavelength of the seed used for the simulations.
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Figure 4.6: Results of simulations of signal tuning, presenting the zeroth moment (integrated signal pulse
energy) as a function of angle detuning and delay detuning. Angle (delay) detuning reflects the detuning
of the phase matching angle (initial pump-signal delay) relative to the value assigned as optimum. The
contours represent steps corresponding to 10% of the maximum energy observed in the range of simulations
for that seed wavelength. The unfilled marker at (0,0) corresponds to the assigned optimum point; the filled
marker indicates the delay and angle assigned by interpolation of the tuning curve. The label identifies the
center wavelength of the seed used for the simulations.
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Figure 4.7: Theoretical tuning curves predicted for Type I and Type II phase matching in a BBO OPA
according to the dispersion curves reported by Zhang et al|208] within the cw approximation.
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idler (B) processes.
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The results of simulating signal and idler amplification are shown in Fig. (A) shows the spectrum
predicted for the signal process; the results is reasonably symmetric and is consistent with some of the cleaner
data sets collected of a well-tuned signal process. The idler, meanwhile, is also quite symmetric at shorter
wavelengths. As the idler wavelength increases, though, the spectrum clearly becomes broader. However,
due to the scaling of frequency and wavelength, it is difficult from visual examination to directly attribute
the breadth to spectral broadening or to the scaling of a constant bandwidth at longer wavelengths. We will
leave a more detailed analysis for later in this discussion of the simulation results. Unfortunately, we are
not aware of a good data set exhibiting experimental analysis of the idler process: past efforts to do so have
proven challenging due to a variety of software and hardware limitations.

The final set of results is the simulated sum-frequency idler spectrum. However, before discussing the
results in detail, two details bear mentioning. First, we recall our conclusion from Fig. [£:3] that all models
of BBO dispersion predict a different wavelength where pump-idler group velocity mismatch crosses from
positive to negative; consequently, we will avoid making direct comparison of the wavelengths at which
features are observed. We will instead focus on the qualitative observations and the relative ordering of
these features. Second, we will note that we have assigned wavelengths according to the first moment,
whereas COLORS frequently employs Gaussian fits for the assignment of center; this will cause different
definitions of zero detuning for slices in the simulated data relative to slices in the experimental data.

Qualitatively, the two-dimensional data, given in (A) in both Fig. [{.1]and [4.10] exhibit many similarities.
At short sum-frequency idler wavelengths, both appear to exhibit relatively symmetric line shapes, with
a broadened feature extending to longer wavelengths (positive detunings) beginning to occur at longer
wavelengths. After this broadening, the spectrum narrows again, and also reaches its most intense spectral
features as the tuning curve reaches the longest wavelengths.

The progression of spectral distortion is shown more clearly by the slices in (B)-(E) of Fig. and
(B)-(G) in Fig. Initially, the spectrum is relatively symmetric (Fig. [4.10] B), until a shoulder begins
to develop at longer wavelengths (Fig. B and Fig. C). This shoulder grows in amplitude until it
nearly matches the higher energy peak (Fig. C and Fig. D). As the sum-frequency idler color is
tuned further to the red, though, what had been the higher wavelength shoulder becomes the main peak of
the feature (Fig. D and Fig. E), and the shorter wavelength feature becomes a gradually weakening
shoulder (Fig. F). After this shoulder becomes sufficiently weak, all that remains is a skewed spectrum
(Fig. E and Fig. G).

Before getting into the analysis, we will briefly discuss the metrics we will use throughout the following

discussion. These metrics are based upon quantities analogous to the moments about the origin of a prob-
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Figure 4.9: The results of simulations of optical parametric amplification of signal (A) and idler (B) processes
under traveling-wave operation. Both provide the spectral content at each central frequency of the signal,
presented as intensity versus detuning (A, — A\g) versus central wavelength, Ao, of signal (based upon chosen

wavelength) or idler (as calculated by energy conservation). The spectrum in (A) is provided in comparison
to the signal tuning results in Fig.
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Figure 4.10: The results of simulations of sum-frequency idler produced by upconversion of the simulated
idler in Fig. (B) with the depleted pump. (A) presents a two-dimensional representation of the spectral
content at each sum-frequency idler central wavelength. This is analogous to (A) in Fig. presenting
intensity as a function of detuning (A, — Ag) versus sum-frequency idler central wavelength (Ag). (B)-(G)
present color- and style-coded slices from (A), presented as normalized intensity versus detuning (A, — o),

in analogy to (B)-(E) of Fig.
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ability distribution; however, since the simulated spectra are not normalized, we will add a normalization
factor in the manner of Eq. [3.1.21] This normalization results in a calculation of the n'" moment about the

origin, u',:[290]
' _ I Aw™|A(Aw)|2dAw
" I |A(Aw)|2dAw

(4.3.5)

We will focus particularly upon the second and third moments, p5 and p4. From the second moment,
we will calculate the standard deviation describing the spectral width according to the first and second

moments:[290| [291]

o=/ ph— u? (4.3.6)

In Eq. 1 is the mean and is calculated as pj according to Eq. [4.3.5/[290] For the purpose of this
discussion, we will consider the standard deviation as calculated according to Eq. to be an adequate
representation of the spectral bandwidth. This bandwidth will be reported in units of energy (cm~!) to
allow direct comparison within and across the different tuning regions. The third moment will be used to
calculate the skew of the distribution, reported by as. This quantity is calculated from the third moment
about the mean, p3:[290]

as = 12 (4.3.7)

o3
where o is the standard deviation calculated according to Eq. and ps is calculated from pf, ph, and
1:[290]

p3 = piy — 3o + 24 (4.3.8)

The value a3 describes the skew of the distribution, the degree of asymmetry.|290] We generally will not
be concerned with the actual value or sign of g, but rather whether it is zero or nonzero (symmetric or
asymmetric) and its relative magnitude.

Danielius et al[272] attribute the increased efficiency of idler upconversion in their OPG system near 600
nm to the minimization of the pump-idler group velocity mismatch. This is consistent with the understanding
that the pump-idler and pump-signal group velocity mismatch can limit the gain of an OPA,[126] and that
pre-existing group delay can impede sum-frequency generation.|[103] This initially led us to suspect that
the pump-idler group velocity mismatch may be responsible for the distortions observed in Fig. [£1] and
reproduced in Fig. [£:10]

In Fig. [A11] we reproduce the two-dimensional representation of our SFI simulations from Fig. [£.10] in
(A); we have also overlaid the simulated pulse energies. We have applied the statistical metrics in Eq.
and [4.3.7] to provide measurements of the bandwidth (o, shown in (B) of Fig. and skew (|as], shown in
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(C) of Fig. . These metrics are compared to the pump-idler and pump-signal group velocity mismatch
as calculated according to the dispersion curves of Zhang et al.[208§]

A comparison of the pump-idler group velocity mismatch and the simulated pulse energy does show that
the conversion is optimized when the group delay from the optical parametric amplification is minimized by
the pump and idler exhibiting identical group velocities. This is consistent with the conclusions of Danielius
et al.[272] In contrast, the group velocity mismatch is not minimized when we observe distortion to the
spectral content: rather, as measured by the bandwidth (o) and skew (]asl|), the distortion to the spectral
character is maximized when mismatch still exists between the pump and idler group velocities.

The disagreement we observe in Fig. between the frequencies at which we observe distortions to
the sum-frequency idler spectral character and minimization of the pump-idler group velocity mismatch
required us to consider other explanations for the behavior. We first considered the traditional approach in
the literature for describing the bandwidth of phase matched processes. Within this approach, the phase
matching bandwidth is defined according to the Taylor series expansion of the phase mismatch.|125] 129,
134} (170} (179} 2651 277, 292] Such an expansion is typically considered to predict that the phase matching
bandwidth depends solely upon the signal-idler group velocity mismatch,[125] (129, (134} 170, {179, 265} 277,
292] though it has been noted that this approximation is only valid within the confines of a monochromatic
or nearly monochromatic pump.[170} |172] Despite concerns that the accuracy of such approaches is limited
in the regime of broad bandwidth pulses,[175] within our treatment, we find that the bandwidth predicted
by a similar method yields reasonable results for some regions in the sum-frequency idler process (Fig. [4.12)).

As noted above, the traditional view of the phase matching bandwidth is to perform the Taylor series
expansion of the phase mismatch, Ak = kp — k; — kg, with respect to the signal and idler frequencies:

Ak:Akﬁ(%’f—?j)Aw;(fﬁ—i’?)m%--- (4.3.9)
where the difference in the group velocities or group velocity dispersions arises because an increase (decrease)
in the frequency of the signal must be accompanied by a decrease (increase) in the idler frequency. With
the decrease in signal according to sian(AkL/2), the phase matching bandwidth is typically defined as the
bandwidth, Aw, for which |Ak| = =/L, where L is the crystal length.[125] Traditionally, this is only con-
sidered to the first order (only considering group velocities), with the group velocity dispersion taken into
consideration when the group velocity mismatch is zero.[126}, [170] As a first approximation, we extended this
approach to consider all possible permutations of the fields in both processes (pump and signal, pump and

idler, and signal and idler in optical parametric amplification and sum-frequency and pump, sum-frequency
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Figure 4.11: The results of simulations of sum-frequency idler generation and comparison to the group
velocity mismatch curves calculated by the dispersion curves from Zhang et al.[208] (A) reproduces the two
dimensional presentation of the simulated sum-frequency idler (see (A) in Fig. [4.10). (A) also contains an
overlay (white markers) indicating the sum-frequency idler pulse energy predicted by the simulations. (B)
and (C) show standard deviation (o) and skew (]as|) calculated from the simulation in (A); these values are
calculated according to Eq. and respectively. (D) displays the calculated group velocity mismatch
between the pump and either signal or idler based upon the dispersion formulae of Zhang et al.[208] The
faded red line in (C) emphasizes zero, identifying the point at which symmetric spectra should be observed.
The faded green lines in (B), (C), and (D) mark where the pump-idler group velocity mismatch is zero.
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and idler, and pump and idler in sum-frequency generation), generalized in Eq. [4.3.10|to any ,j pair:

B Ok: Ok, 1 (8% 0%k . ,

Explicitly considering the expansion to the second order, we defined the phase matching bandwidth according
to the maximum bandwidth allowed in any given process (optical parametric amplification or sum frequency
generation) based upon the limit of |Ak| = 7/L.

From an analysis of the predicted phase matching bandwidth, we found that the predicted bandwidth was
limited by the optical parametric amplification process; based on similar situations described in the literature,
we would therefore expect the bandwidth of the paired processes to be limited by the bandwidth predicted for
optical parametric amplification.[170} [176] |285] In this first process, we found that the bandwidth permitted
based upon the group velocity mismatch between the pump and either the signal or the idler was actually
significantly greater than the limit imposed by the signal-idler group velocity mismatch. At shorter sum-
frequency idler wavelengths, the maximum bandwidth was permitted by the pump-signal group velocity
mismatch; this eventually gave way to the bandwidth allowed by the expansion of the phase mismatch with
respect to the pump and idler. In Fig. 4.12| (B), we compare the maximum allowed bandwidth within this
approximation to the bandwidth predicted by the second moment of the simulated spectra. We find that
this approximation actually describes the bandwidth at shorter sum-frequency idler wavelengths quite well;
however, while the maximum bandwidth predicted by this analysis is comparable to the maximum bandwidth
observed in our simulations, we still observe that the distortion to the sum-frequency idler spectra occurs at
different wavelengths than would be expected.

The theoretical treatment of Akhmanov et al for optical parametric amplification and sum-frequency
generation appears to provide the best qualitative match to the behavior we observe in our simulations.|103]
Unfortunately, we are restricted to a qualitative comparison. In their analysis of optical parametric amplifi-
cation, Akhmanov et al assume equal pump-idler and pump-signal group velocity mismatch, while it is not
clear whether their treatment is robust in the traveling-wave regime of high conversion.[103] On the other
hand, their treatment of sum frequency generation is explicitly in the context of low conversion and does
not incorporate the effects of pre-existing group delay.[103] Nevertheles, their models have been previously
used as qualitative descriptions for the behavior of femtosecond parametric processes,|175| |176] as we shall
do here.

Akhmanov et al describe optical parametric amplification within the typical regime of Type II phase
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Figure 4.12: A comparison of the sum-frequency idler simulation to the estimated phase matching bandwidth.
(A) reproduces the two-dimensional presentation of the simulation shown in Fig. (A). (B) compares the
bandwidth as calculated according to the second moment (see Eq. 4.3.6) to the maximum phase matching
bandwidth as estimated by considering all permutations of Eq.
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matching - in which Au,_ ; Augl

» < 0,[126, [171] where Au;; is the group velocity mismatch between j and k&,

u;l — u,;l - compatible with permitting the “mode amplification” regime.[103] They consider amplification
under such conditions to be a steady state mode of operation, though the behavior of the process changes
based upon the characteristic lengths. The lengths of relevance are the pulse-splitting (or walk-off) length,
L,,, and the amplification length, L,. The pulse-splitting length can be defined in terms of the pulse duration
of the pump: L,, = 77/|au~"|, where 7p is the pump pulse duration and Au~! is its group velocity mismatch

with respect to another pulse. However, they indicate that it is more robust to consider the pulse-splitting

length with respect to the bandwidth (Aw) of the interacting pulses:
Ly = (JAu™Aw) ™ (4.3.11)

Meanwhile, the amplification length is related to the exponential gain observed in the amplification process:
for exponential gain of the signal on the amplitude level according to exp(I'z), the amplification length is
L, =T71]103]

From the ratio of L,, and L,, Akhmanov et al define a quantity, m = Lw/L,. When m < 1/2, exponential
gain of the signal and idler is observed in the amplification process; they also predict that this steady state
operation contributes to generating pulses with durations 7 = 7¢/VTL, where 7p is the pump pulse duration
and I' is the gain.[103] Such behavior is consistent with the slight pulse shortening that has been reported
for Type II phase matching.|[168] On the other hand, when m > 1/2 and the crystal is longer than the
pulse-splitting width, exponential gain is still observed; however, the amplified pulses exhibit a decrease in
duration, 7 = 7P/m. In both steady state regimes, the group delay accumulated is 77/2m.[103]

Meanwhile, for sum-frequency generation, Akhmanov et al provide two different regimes in which sum-
frequency generation can occur, with different results for the spectrum of the upconverted field. The difference
between the regimes stems from the pulse-splitting length of the fields being summed; Akhmanov et al label
these fields 1 and 2, with u; > us. The pulse-splitting length is defined according to the bandwidth of field
1, Ly, = (|Au§7}|Aw1)_1. When the crystal length is less than the pulse splitting length, the separation of
fields 1 and 2 is considered inconsequential, and the spectrum depends upon the group velocity of the sum
frequency with respect to these fields, Au;é:

s(Aw) = sinc? (AUSO;AWL> s (Aw) (4.3.12)
where Aw is the detuning and s7°°(Aw) is the steady-state spectrum. We take that this spectrum should

correspond to the ideal spectrum of the sum frequency, namely the convolution of the spectra of fields 1 and
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2. Meanwhile, when the crystal length is longer than the pulse splitting length, a noticeably different result

is predicted:
AwAu;%

97 —1
Aw) = |1 _ ass( A 4.3.13
“(8) +< o Auﬁ> 7 (A (4313

where all terms in Eq. [4.3.13| are defined as before.[103]

From Eq. 4.3.12) and [4.3.13] it is trivial to show that the sum frequency process narrows the steady-state

spectrum according to a bandwidth! of Awsgy = 7/Lau;} when z < Ly, or Awygy = 1-58w1Au31/AuT) when
z > L. Alternatively, for z > L,,, this result is identical to Awygy = 1-5/L,Au]}.

In Fig. we consider the sum-frequency idler simulations in the context of the theoretical treatment
by Akhmanov et al. In (A), we see that the bandwidth of the sum-frequency idler process (ogry), is poorly
described by the convolution of the idler and pump bandwidths:! the convolution exhibits a broader width at
short sum-frequency idler wavelengths (A <~ 575 nm), a narrower bandwidth at intermediate wavelengths
(~ 575 nm < A <~ 595 nm), and reaches a peak at longer wavelengths than is observed for the sum-
frequency idler. However, in (B), we see that the bandwidth that is expected to be imposed according to
Eq. (magenta markers) and Eq. (cyan markers) exhibit very similar behavior to the sum-
frequency idler bandwidth at shorter sum-frequency idler wavelengths. At longer wavelengths, though, their
behaviors diverge: whereas the bandwidth predicted by Eq. [£:3:12] continues to increase with increasing sum-
frequency idler wavelength, the bandwidth predicted by Eq. [£:3:13] exhibits a peak at approximately the
same sum-frequency idler color as the peak observed in the bandwidth of the sum-frequency idler simulation
in (A).

This change in the behavior predicted by Eq. is readily apparent from the calculated pulse-splitting
lengths in (E): at the same sum-frequency idler wavelength that we observe the peaks in the bandwidth of
the simulated sum-frequency idler and the bandwidth predicted by Eq. the pulse-splitting length is
beginning to increase dramatically. This increase in the pulse-splitting length occurs despite the increased
pump and idler bandwidths due to the rapid change in pump-idler group velocity mismatch near these
frequencies (see (D) in Fig. [4.11)). The increase in L,, also causes a sharp rise in m, as shown in (C); in
calculating m, we have estimated L, using a value of 1.8 mm~" for I. A value of 1.8 mm~"! for I corresponds

roughly to amplifying a 1 uJ seed to 400 wJ; the value of I' changes relatively slowly, though, for different

iHere, we are defining bandwidth as the detuning that results in a decrease in intensity to 40%, the losses induced by the
sinc? function when the argument in brackets is equal to 7/2.[125|

lifere, we are restricted to considering the bandwidth of the convolved spectra within the limit that the spectra are Gaussian,
namely that the variance of the convolution is the sum of the variances of the initial spectra. However, we note that both the
pump and idler exhibit some degree of skew at longer sum-frequency idler wavelengths (not shown), so the bandwidth predicted
in this manner is not expected to be exact.
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final signal pulse energies.! Finally, we see in (D) that the lower values and gradual changes associated
with m at shorter sum-frequency idler wavelengths result in the largest values and only slight changes in
the group delay, 74, between the pump and idler. When the pulse-splitting length increases dramatically at
longer sum-frequency idler wavelengths, we see a correspondingly fast decrease in 7.

Combining these results, we interpret the distortions observed in the sum-frequency idler spectra in the
following manner. At short sum-frequency idler colors, we do not observe any unexpected behavior during
parametric amplification, yielding reasonably symmetric signal and idler pulses (see Fig. . However, by
operating at lower values for m at these wavelengths, the pump and idler accumulate the greatest initial
group delay. This large initial group delay reduces the efficiency of the conversion, yielding lower output
energy for the sum-frequency idler process. As we tune to longer sum-frequency idler colors, the decreasing
group velocity mismatch between the sum frequency and the idler /pump (see the behavior for z < L, in (B)
of Fig. increases the bandwidth of the sum-frequency idler according to Eq. However, while
we interpret the trends in Fig. [4.13[ (B) as arising predominantly from the changes in the group velocity
mismatch between the sum frequency and the pump/idler, there are also more gradual changes in the pump-
idler group velocity mismatch. This gradually increases L,,: while not enough to overcome the changes in
the sum frequency-pump/idler group velocity mismatch, it does result in a decrease in the group delay by
increasing m, improving the conversion efficiency. Eventually, the pump-idler group velocity mismatch does
change sufficiently quickly to overcome the decreasing sum frequency-pump/idler group velocity mismatch.
At this point, we simultaneously observe: a sudden decrease in the initial group delay, improving the efficiency
of the sum frequency process; and, a sudden decrease in the bandwidth predicted by Eq. due to the
increase in L,,. Eventually, the increase in L,, is sufficient to transition from the z > L,, regime to the
z < Ly, regime: this results in the sum-frequency idler bandwidth being limited by the convolution of the
idler and pump bandwidths, which appears to be the trend at the longest sum-frequency idler wavelengths
in Fig. [4.13| (A).

The proposal from Light Conversion to address the observed issues with sum-frequency idler genera-
tion is an upgrade that replaces the “depleted pump” upconversion strategy with one based upon a “fresh
pump.”[194] Within the “fresh pump” strategy, the existing pump is split prior to parametric amplification:
one fraction is used for amplification of the signal and the idler, while the other is routed through an ex-
ternal delay and recombined with the signal and idler for upconversion. Based upon the results of these

simulations and previous reports in the literature, it seems reasonable to conclude that this would improve

iFor example, a final pulse energy of only 180 wJ corresponds to I' & 1.4 mm™!.
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Figure 4.13: Interpretation of the sum-frequency idler simulation results in the context of the theory presented
by Akhmanov et al.[103] (A) Comparison of the bandwidth observed for the simulated sum-frequency idler,
the simulated pump, the simulated idler, and the square root of the sum of the variances of the simulated
pump and idler. (B) Calculated bandwidth (at the 40% intensity level) of sum frequency idler generation for
z < L,, (magenta markers) and for z > L,, (cyan markers) according to the theory of Akhmanov et al. See

Eq. [4.3.12)and 4.3.13] (C) Estimation of m = Lw/L, according to the bandwidths observed from the sum-

frequency idler simulations. L, is the pulse-splitting length and L, is the amplification length for I' = 1.8
mm~!. (D) Estimated group delay between the pump and idler accumulated during simulated parametric
amplification, as calculated 7, = 35/2m fs. (E) Estimated pulse-splitting length in the sum frequency crystal
according to the bandwidths calculated in sum-frequency idler simulations.
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the performance of the sum-frequency idler process with respect to conversion efficiency.[103] [126] However,
from the conclusions described above, it is not clear that compensating for the group delay would improve
the spectral quality of the sum-frequency idler: while it seems reasonable to attribute the inconsistent con-
version efficiency to the accumulated group delay, it appears more likely that the spectral character of the
sum-frequency idler is controlled by the interplay of the group velocities of the sum-frequency, the pump,
and the idler. It is not clear that the delay compensation incorporated in this “fresh pump” strategy would
improve the spectral quality. While simulations could be performed to explore this behavior, it would also
warrant communication with Light Conversion to determine what behavior they observe and anticipate from
the proposed upgrade.

Additionally, while the sum-frequency signal process generally does not exhibit the asymmetric line shapes
that are observed from the sum-frequency idler process, our experimental work with the sum-frequency signal
process has led us to suspect that similar effects impact its time-bandwidth product. At this time, there has
not been the opportunity to experimentally explore these suspicions, but it should be straightforward and

more convenient to take the time to explore this possibility in silico.
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CHAPTER 5
Manganese Tetraphenylporphine
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5.1 Background

In various efforts to characterize photosystem II, a variety of authors have reported evidence of activity
from the protein under near infrared (NIR) excitation.[15 (17121, (34} [39] |44} |45 61] Early detection of
this signature was reported by Dismukes and Mathis,[39] but this signature has since been characterized
further. Boussac et al published a sampling of reports in which they observe a change in the electron
paramagnetic resonance (EPR) signal associated with the oxygen evolving center upon NIR exposure.|15]
17H21] By determining the yield of signal conversion, they have been able to trace out an activity spectrum
exhibiting a peak near 820 nm. Baxter et al extended this to directly detect the absorbance of photosystem
I, tracking the NIR transient absorbance upon the So — S; dark-adaptation of a flash-excited sample.[34]
The spectral profile they determine is very consistent with the activity spectrum reported by Boussac et al.
Though their data set is limited, they find their data to be consistent with a Gaussian fit with center of
12300 cm™ (813 nm) and half-width of approximately 1000 cm™. From estimating the chlorophyll content
of their sample, Baxter et al estimate a transient absorptivity of 50 cm™ M. Cua et al provide additional
evidence for NIR activity through the observation of enhancement to low-frequency Raman modes with
excitation near 820 nm; this enhancement is reduced when the excitation color is changed and is absent
upon illumination or manganese depletion.|61] Most recently, Morton et al have published the results of NIR
absorption and magnetic circular dichroism of photosystem II.[44] The combination of absorbance and MCD
data allow Morton et al to make the strongest case for the origin of this feature, attributing the weak, with
absorptivity < 30 cm™ M-!, absorbance found near 770 nm to d-to-d transitions localized on a manganese
of the oxygen evolving center.[44]

The literature on the spectroscopy of manganese (III) provides support for this assignment. Many
high-spin, monovalent coordination complexes of manganese (I11) exhibit transitions in the NIR region, with
different coordinating ligands resulting in NIR transitions at transition energies as low as 5500 cm™ (1800 nm)
and as high as 14000 cm™ (714 nm).[293} [294] These transitions are characterized by very low absorptivities
(<100 cm™ M), with the absorptivity generally decreasing with increasing transition energy.[294] The origin
of these transitions is traced to the Jahn-Teller effect: due to its d* electron configuration, six-coordinate
manganese (IIT) centers are inclined to exhibit a distortion from octahedral symmetry in order to reduce
the overall energy of the ground state.[293H299] The high resolution crystal structure of photosystem II has
been interpreted to support the presence of Jahn-Teller distortions in the oxygen-evolving complex.|[64]

As a representative system, manganese (III) trisacetylacetonate, Mn(acac)s, was selected as an initial test

sample due to the convenient position of its NIR transition at the shorter wavelengths of the signal process
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in the TOPAS-C optical parametric amplifiers and its availability from commercial sources. Unfortunately,
experiments with this sample proved unsuccessful, with no signal clearly distinguishable in either transient
absorption or transient grating experiments. Coming across the work of McCusker and co-workers, it became
clear that a priori knowledge of the photophysics, or the ability to ascertain such information through
methods such as white-light transient absorption, would be key in guiding future experiments.|300H302]
These publications also traced the photophysics of a species, Cr(acac)s, with an absorptivity of very similar
magnitude to the Jahn-Teller-allowed transition of manganese (III) coordination complexes. However, even
in efforts to reproduce the reported results, we proved unable to replicate them: while very weak signal may
have been present in transient absorption geometries, transient grating experiments yielded no signal.

At this point, it seemed probable that the low transition dipoles indicated by the low absorptivity of
Mn(acac)s and Cr(acac)s may be proving limiting. Porphyrins and phthalocyanines seemed a convenient
starting point for samples with stronger transitions. While manganese phthalocyanines seemed promising
due to the presence of a NIR transition and evidence that the macrocycle and transition metal states exhib-
ited significant interaction,[303H306] it became clear that manganese phthalocyanines also did not exhibit
satisfactory stability in solution.[307] However, manganese (III) porphyrins also exhibit strong interaction
between the transition metal and macrocycle states: the manganese d-orbitals are believed to be close in
energy to the m and 7* states usually responsible for the Soret and Q-band in normal porphyrins.[306
308, |309] The coupling between the metal and macrocycle states yields several transitions throughout the
visible;[308] while it is not clear a definitive assignment of these transitions exist, it seems to be accepted
that the states of the manganese (III) are involved in the spectroscopy.[308H311] While manganese (III) por-
phyrins generally exhibit little to no luminescence,[312] a variety of reports have explored the photophysics
of manganese (III) tetraphenylporphine (MnTPP) following excitation with both pico- and femtosecond
pulses.[3131316] The behavior observed in these experiments has been attributed to excitation of the °Sg
ground state to one of various °S, excited states, followed by an intersystem crossing to a “tripmultiplet”
manifold including 3Ty, ®Ty, and "T;.[313} 315, 316] The features observed in transient absorption upon
excitation consistently include bleaching signals associated with the ground state features near 480 nm, 560
nm, and 600 nm, and excited state absorption near 500 nm.[314H316] While some reports suggest MnTPP
can undergo photoreduction in tetrahydrofuran or be coordinated by solvents such as pyridine,[308] [317]
there did not appear to be other concerns regarding stability; repeated measurements of solutions prepared
from commercially-obtained MnTPP exhibited no spectral evidence of changes over time when dissolved in
dichloromethane.

Given the exhibited stability and documented spectral signatures, we proceeded to adopt MnTPP as a
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test sample. We hoped to be able to reproduce the transient absorbance results - with white light if feasible
- and to extend the study of this molecule to transient grating geometries. We successfully reproduced the
white light transient absorption for MnTPP. While we were able to observe transient grating signal, we found
the nonresonant response to provide a competitively strong background. We also were unable to extend the
use of white light to transient grating: though we could detect some signal in a nonresonant medium, signal
levels were insufficient to detect with the existing system configuration. A sampling of results are presented

in this chapter.

5.2 White Light Generation

White light generation provides a convenient method for obtaining broadband radiation from an ultrafast
laser pulse; here we will provide a brief overview of the background on white light generation and describe
the procedure used to generate white light for the reported experiments.

When generated from the fundamental of a Ti:Al,Og laser (near 800 nm), the white light will include
new frequencies in both the near infrared and the visible, potentially spanning the entire visible region.[318|,
319] The introduction of these new frequencies is attributed to self-phase-modulation and other nonlinear
processes that arise due to the high intensities within filaments;[318| 320] these processes maintain coherence
between the white light and the original field.[132, 321-326] Filamentation of the beam appears necessary
to achieve the sustained intensity needed for white light generation. The formation of a stable filament is
attributed to the interplay of focusing and defocusing mechanisms. The initial focusing of the laser arises
through the Kerr effect, in which the intensity distribution of the laser modulates the refractive index,
thereby causing the beam to be lensed: the significance of this contribution is clear by the threshold of
white-light generation matching the threshold for Kerr lensing.[318| [320} |327-335] However, the effects of
self-focusing eventually result in an intensity sufficiently high so as to induce defocusing; from this point, the
filament is maintained by a sustained balance between the Kerr lensing and this defocusing. The traditional
view for the mechanism appears to attribute defocusing to plasma generation; more recently, other authors
have suggested that defocusing through plasma generation is specific to longer pulses, while the focusing of
shorter pulses is arrested by higher order contributions to the Kerr effect.[234} 320} 326, [327] (3301 [334H336]
While condensed media provide a convenient route to reliably generate white light,[318-320, 325} 328, [337]
some authors have reported filamentation and white light generation in air.[330+332} [338-341]

Broadening of the pulse during white light generation results in new frequencies at both low (Stokes

broadening) and high (anti-Stokes broadening) frequencies; the breadth of the broadening can be described
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by the derivative of the accumulated nonlinear phase due to self-phase-modulation with time (see .[320]
Due to the relationship between phase- and frequency-modulation, the Stokes and anti-Stokes components are
attributed to the accumulated nonlinear phase at the leading and trailing edges of the pulse, respectively. [320,
342] The accumulation of nonlinear phase can be described by a quantity called the B-integral. 172,247, [254]
320] Since they experience different contributions from the temporal envelope of the laser, the Stokes and
anti-Stokes components are generally not symmetric. The anti-Stokes component is generally more enhanced
and exhibits a characteristic plateau - an even energy distribution across the observed frequencies.[320), [32§]
Within the approximation that the driving field can be described by a sech field envelope, a closed form
solution for the breadth of the anti-Stokes and Stokes components has been published.[320] While even
energy distributions of the Stokes component have been reported, this behavior appears to be specific to
particular media and is only observed at higher energies.[328] Such high energies can also induce modulations
in the spectra.[328]

In addition to the differences between the Stokes and anti-Stokes components, the medium and experi-
mental approach can also impact the breadth of the white light. In condensed media, correlation has been
reported between the breadth of the anti-Stokes broadening and the band gap of the material: larger band
gaps tend to support additional broadening. This behavior also translates to the wavelength of the initial
beam, as higher frequency lasers exhibit enhanced broadening.[319] This band gap dependence results in
halide crystals, such as LiF and CaFs, yielding far broader white light spectra than other condensed me-
dia.[319, [320] However, this advantage comes at a limitation, as these materials have been reported to be
susceptible to damage when used for white light generation.|138],|178] [337] While the fluoride materials can
be particularly susceptible to damage at the intensities in filaments, care should be taken regardless of the
medium: at high numerical aperture (or short focal lengths), the threshold for optical breakdown can be
lower than the threshold for filamentation.[333] 343]

In order to apply white light in experiments on the femtosecond system, the system described by Niko-
laitchik et al was used as a model.|344] Like the Wright group’s femtosecond system, the system described
is seeded by a Millenia-pumped Tsunami, seeding a Spitfire that yields 100 fs (FWHM) pulses. They report
using a fraction, approximately 0.2-0.3 mJ, of the fundamental to generate white light in a 3 mm sapphire
plate or a 1 cm flow cell of ethylene glycol.[344] Tt is noted here that this number seems suspiciously high, as
most sources cite threshold energies for white light generation in condensed media at hundreds of nJ to single
wJ.[322] [323] 1328 1333, |343] More consistent with the literature, they report generating the white light by
focusing the mode of the fundamental into the white light medium with a 100 mm focal length lens.[344] The

documentation on the Spitfire Pro XP employed on the femtosecond system reports an expected 1/e? beam
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diameter of 7-9 mm. If this is a reasonable estimate for the Spitfire employed by Nikolaitchik et al, their 100
mm focal length lens should result in a half-width waist within their white light medium of approximately
3 pm,[105] and a numerical aperture of approximately 0.03.[209] This value is consistent with the regime
reported by Ashcom et al for which the threshold for continuum generation is lower than the threshold for
damage to the medium.|343]

At the time of these experiments, the mirrors and beamsplitters dividing the fundamental from the
Spitfire Pro XP also isolate a small fraction of the fundamental. The spot size of this beam was reduced
by a Galilean telescope consisting of a f = —50 mm and f = 100 mm lens pair. The resulting beam was
routed down the table by a series of mirrors; it could be configured to pass through one of the delay lines
for use in three color experiments. After the telescope, the beam diameter is approximately 6 mm, and
the telescope and other optics introduce losses that reduce the energy to approximately 20 wJ. Starting
from the values reported by Nikolaitchik et al, we expected a 50-75 mm lens to yield the correct imaging
properties, but we unfortunately found ourselves limited by the lenses available. While the 35 mm lens
employed yields a numerical aperture of approximately 0.15, exceeding the numerical aperture for which
the damage threshold is below the threshold for continuum generation in silica,[343] we found we could
consistently generate and maintain a white light continuum in sapphire. In order to attain stable white
light, we found we needed to attenuate the fundamental with an optical density of approximately 3.1 We also
attempted to generate the continuum in CaF5: consistent with the literature, CaFy yielded a much broader
continuum than sapphire.[178], [319] 328] Unfortunately, the continuum could only be sustained for a short
period, which we attribute to damage; at this point, we suspect that the stability of sapphire over the CaFq
may be consistent with the behavior of halide crystals as reported by Huber et al, Kohl-Landgraf et al, and
Tzankov et al.[138) (178 337] White light generation was performed just before the appropriate beam line;
the sapphire plate was followed by a 25 mm lens, which was adjusted to yield the proper spot size at the

sample.

5.3 Experimental Deviations

Experiments with MnTPP were performed by dissolving the sample in dichloromethane to achieve an ap-
propriate absorbance, A = 1, in the spectral region of interest; this was often the frequency of the pump

(in transient absorption) or ws/wes (in transient grating). Samples were contained in a 1 mm glass cuvet

iIt should be noted that this optical density is based upon the calibration reported by the manufacturer. Calibration has
shown that the optical density of the filters exhibits some wavelength dependence, so the actual optical density is likely slightly
different.
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(Precision Cells).

For experiments not involving white light, standard operating procedures were employed for the experi-
ments described in this section. Experiments were conducted using the second-harmonic and sum-frequency
signal processes of the TOPAS-C. The supplied wavelength selector was used for the sum-frequency signal
process. For second-harmonic signal, the wavelength selector was not used, but a heat filter was introduced
to block the near infrared (wavelengths longer than ~ 700-740 nm).

For experiments involving white light, white light was generated as described before, and the table was
aligned as described for two color experiments: the fundamental and white light served as wi, and one of
the OPAs was used to provide ws and wy/. For transient absorption experiments, signal could be detected
when using the standard f = 1 m mirror; however, the beamsplitter for the OPA had to be removed in order
to provide sufficient pump energy. The silicon photodiode was used for detection, and the monochromator
was scanned across the wavelength range of the white light (the probe). Zero delay compensation was
implemented to reduce the effects of the chirp in the white light. Due to the exploratory nature of these scans,
the chirp in the white light was not determined with sufficient resolution to characterize the nonlinearities
in the chirp rate; however, the compensation was sufficient to ensure zero delay for all colors in the probe
occurred within ~ 100 fs of the assigned zero delay. For transient grating with the white light, no signal
could be detected with the f = 1 m mirror; however, by decreasing the focal length to f = 500 mm, some
signal was detected. This signal was strongest when w; ~ ws; the decrease in signal at longer wavelengths is
believed to be a consequence of phase mismatch and changes in output direction. With the current detector
(silicon photodiode), signal could only be detected in solvent. It is suspected that a more sensitive detector
and modifications to the table layout to provide more a more intense white light and retain more energy

from the OPA would be needed to make this method routine.

5.4 Results and Discussion

A summary of experimental data exploring the nonlinear electronic spectroscopy of MnTPP is provided in
Fig. (A)-(C) provide insights into the behavior of MnTPP in transient absorption along two different
slices of the three-dimensional space: (A) and (B) present the change in optical density as the pump is tuned
and the monochromator is scanned across the wavelengths of the white light probe; and, (C) explores the
dynamics along delay at different probe wavelengths. (A) and (B) provide two alternative views of the same
data set, while the data of (C) is shown only with the more dynamic color scale of (B). (D)-(H) explore the

response of MnTPP in frequency-frequency and delay-delay space for transient grating/TriEE, the frequency-
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domain analogue of 2D-ES,[345| corresponding to the phase-matched output k4 = k; — ko + kor. In the
frequency-frequency domain of (D), the detected intensity at w,, = w; is presented as a function of wy = way
and wi = wy,. The time-time domain of (E)-(H) show the detected intensity at w,, = w; as a function of the
relative delays o1 = 791 and 79/9; in this domain, signal along 757 = 791 < 0 tracks the population dynamics
of the system, while signal along other directions track the dynamics of coherences under the conditions of
these experiments (w; # we and wo = way/).

The spectroscopy of MnTPP observed in Fig. is consistent with previously described transient
absorption of this compound.[314-316] In solution,' all authorsi! report a strong excited state absorption
(ESA) feature peaking near 490-500 nm and a weak ESA feature near 550 nm.[314-316] The broader probe
of Kim et al allow them to also report an ESA feature between 400 and 450 nm;[315] they also show
agreement with Yan et al in reporting a broad ESA feature starting near 650 nm and falling off into the
near infrared.|315] 316] The ground state absorption of MnTPP is bleached, with a strong feature near 480
nm[314} 315] and weaker features near 580 nm and 620 nm.[315, |316]

Within the sensitivity of the white light transient absorption measurements, we observe each of these
features. The bleach near 480 nm is the most pronounced feature of the transient absorption spectrum,
consistent with Kim et al.[315] The contours in (A) hint at features corresponding to the ESA features
reported between 400 and 470 nm and 495 and 530 nm and the bleaches of the ground state transitions near
580 nm and 620 nm. The alternative color bar in (B) accentuates these features. The scale also provides
sufficient contrast to observe features consistent with the ESA near 550 nm and from 650 nm into the near
infrared. The consistency of these features in (A), (B), and the cited works indicate that the transient
absorption of MnTPP is relatively insensitive to excitation wavelength: Yan et al tune the pump to 355 nm
or 532 nm to observe features between 500 and 650 nm or 650 and 900 nm, respectively;[316] Kim et al use a
frequency-doubled Ti:sapphire amplifier at 390 nm;|315] Irvine et al appear to use a 597 nm dye laser;|314]
and (A) and (B) illustrate the changes in transient absorption while scanning across the sum-frequency signal
process (470-515 nm). This is consistent with previous assignments in the literature: excitation of the singlet
states is followed by rapid relaxation to the lowest excited singlet state, which undergoes rapid intersystem

crossing to yield states in the “tripmultiplet” manifold.|313, [315] |316] Consequently, despite the different

i1t should be noted that Kim et al also study the transient absorption of MnTPP in molecular sieves; encapsulation in the
molecular sieves results in changes to the ground state absorbance, attributed to interactions between the electronic states of
MnTPP and the hydroxyl groups of the sieves.|315] When encapsulated, MnTPP also exhibits different spectral features in
transient absorption.

iiTt is noted that the wavelength scale for the data reported by Irvine et al is nearly illegible.|314] Their reported transient
absorption spectra exhibit qualitative consistency with the results of Yan et al and Kim et al,[314-316] and from those numbers
that can be made out, the features they observe appear to occur at the same wavelengths.
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Figure 5.1: (A) and (B): White light transient absorption, Apump versus Apyobe at 7 &~ —500 fs. B is the same
data as A, but with a repeating color scheme to emphasize the weaker features. (C): White light transient
absorption, 7 versus Aprobe at Apump = 475 nm. This is the same repeating color scheme as (B). Optical
density of the samples for (A), (B), and (C) are A ~ 1 near 480 nm and A ~ 0.1 — 0.2 near 610 nm. (D):
Transient grating, ws = wyr Versus wy = w,, 721 = 72r1 = —500 fs. Data in the side bars is absorbance (red)
and integrated signal (blue). Optical density of the sample for (D) is A ~ 0.3 near 16100 cm™ and A ~ 2.5
near 20900 cm™!. (E), (F), (G), and (H): Transient grating, 7o versus 7o/1, Aa = Ao & 605 nm and \; ~ 495
nm. (E) and (F) provide a comparison of signal from dichloromethane (E) and MnTPP in dichloromethane
(F), A~ 0.7 at both frequencies, near zero delay. (G) and (H) provide a comparison of signal from MnTPP
in dichloromethane at two concentrations: A ~ 0.7 (G) and A ~ 0.15 (H). Signal in (E), (F), (G), and (H)
are each normalized according to the maximum amplitude in each spectrum.
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excitation frequencies, each of these reported experiments probe similar dynamics.

Panel (C) in Fig. shows the reported configuration for white light transient absorption is also amenable
to collecting the dynamics associated with the features in (A) and (B). Consistent with the literature,|314-
316] the transients of MnTPP are very long lived, exhibiting very little change within the bounds of (C).
Unfortunately, it is not possible to compare the dynamics at early times with the literature: the resolution
of these experiments is much higher than the > 1 ps time resolution of Irvine et al and Yan et al,[314,
316] and still appreciably higher than the 170 fs resolution reported by Kim et al.[315] The profile of the
signal near zero delay illustrates that routine usage of white light transient absorption may be complicated
by the challenge in correctly compensating for the chirp in the continuum. Based upon the behavior of
MnTPP observed in transient grating, however, some of the complicated dynamics near zero delay in (C)
may be attributable to the coherent artifact, which is observed in transient absorption for many different
systems.[346H351]

The spectroscopy of MnTPP has been extended to transient grating, in which the signal consistent with
the phase matching condition (k4 = k; — ko 4 ko/) is homodyne detected. As shown in (D), the response
observed in transient grating is consistent with the behavior in transient absorption and absorption. In
the side-plot on the right of (D), the integrated signal as a function of pump frequency (ws = w}) closely
matches the absorbance of the sample: this can be seen by comparing the blue and red traces, corresponding
to the integrated transient grating signal and the absorption spectrum, respectively. This behavior is to be
expected.[185] Meanwhile, along the pump, we are observing signal corresponding to the ESA feature in (A)
and (B); the peak of this signal is near 490 nm, consistent with the peak of the ESA in transient absorption.
The sharp drop off in signal is likely the consequence of M-factors,[352] as achieving an appreciable absorbance
at wy required A ~ 2.5 near 480 nm: the decrease in signal from the peak near 20300 cm™' matches the
increase in absorption from A ~ 0.3 to 4 ~ 1-1.2.

Unfortunately, we were limited in the transient grating experiments of MnTPP to only longer delays; for
example, the scan in (D) was collected at 791 = 79,1 = —500 fs. This limit was imposed by the nonresonant
background, as shown in (E)-(H). Between (E) and (F), we compare the dynamics observed at early times
for a purely nonresonant system, dichloromethane (E), and a concentrated solution of MnTPP, A ~ 0.7 at
w1 and we (F). As this comparison shows, MnTPP exhibits a delay in the evolution of signal relative to the
purely nonresonant response; we attribute this to the time required for singlet relaxation and intersystem
crossing. [313} 315, |316] In contrast, when the concentration of MnTPP is reduced, the transient characteristic
of MnTPP, (G), is nearly completely overwhelmed by the nonresonant background (H).

The nonresonant background manifests in transient grating due to the use of homodyne detection. Un-
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der such conditions, the signal is proportional to \X(?’) 12,]190] rather than x®). As a consequence, the signal
depends upon the real and imaginary components of x(®, rather than just the imaginary component as in
transient absorption;[190} [349] since the nonresonant response of the medium is predominantly real,[353]
it is suppressed in transient absorption. Competition with resonant signals arise from scaling: since x*)
is proportional to the number density, N,[190] homodyne-detected signals scale with N2 [148] which can
limit the detection limit for such methods.|122} 190, [354} 355] While it has been reported that nonresonant
background may be enhanced under conditions of femtosecond excitation,|139) |140} 146, [356} 357] the mag-
nitude of the problem was surprising: previous experiments on the Wright group’s femtosecond system with
near infrared excitation have been robust at much lower sample absorbance.[358] However, it has also been
reported that nonresonant signal can be influenced by excitation wavelength,[140} 148, [359] as well as pulse
duration;[359] specifically, nonresonant background has been reported to be much worse under conditions of
visible excitation,[140 [148] particularly when two-photon resonances are available.[139] |140]

In order to understand the limit imposed by the nonresonant background, we made measurements aimed
at estimating and comparing the nonresonant response at near infrared and visible wavelengths. Beam
energies were measured with a thermopile, and nonresonant signal was generated in a variety of transparent
solvents. The response of the detector to the nonresonant signal and to one of the excitation beams were
compared to provide an estimate of the energy emitted by the nonresonant process; we assumed the sampling
efficiency was comparable for both color combinations. These measurements were consistent with a hundred-
fold increase in x®) from near infrared excitation (A; = Ay = Ao = 1300 nm) to visible excitation (\; = 495
nm and Ay = Ay = 615 nm). However, all solvents tested' exhibited nonlinear susceptibilities on the same
order of magnitude. Very low correlation was observed between the measured susceptibilities (R? = 0.46
to a linear trendline). Higher correlation (R? = 0.75) was observed when the aromatic molecules (benzene
and pyridine) were excluded: this may be consistent with the observation that the nonresonant nonlinear
susceptibility is enhanced when two-photon resonances are available,|139] [140] as the aromatic compounds
would be expected to exhibit the lowest transition energies.

Beyond this limit from higher nonresonant susceptibilities, the previous electronic experiments were able
to achieve similar absorbance over the same pathlength at much lower concentrations than our MnTPP
samples: these experiments would be performed at concentrations of tens of nM[358] rather than hundreds
of uM. It can be shown that this 10* reduction in concentration would be expected to increase the nonlinear

susceptibility by the same factor. If we generalize this factor as ¢, this relationship can be shown by

iThe solvents tested were acetone, acetonitrile, benzene, carbon tetrachloride, dichloromethane, methanol, octane, and
pyridine.
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recognizing that the same absorbance over the same pathlength implies « to be the same for both samples.
However, « can be related to both the optical cross-section, o = @/N, and to the optical properties of a
hypothetical ba transition, o oc Nuia/r2,, 1 where pp, and 'y, are the transition dipole and dephasing rate
of the transition, respectively.[99] From the former relationship, we can see that a reduction in N by a
factor of ¢ must be accompanied by an increase in o by a factor of ¢ to maintain constant a. Second, by
combining the two relationships, o o #a/r2,, and the factor of ¢ increase in ¢ implies #ba/T,, must increase
by a factor of v/é. However, x(®) is proportional to Nusa/ri, ;1|99] the factor of ¢ decrease in N and factor
of /¢ increase in #va/T,, then suggests x®) should be increased by a factor of ¢. Thus, since the homodyne-
detected signal scales with |x®)|2,[99, [190] these visible experiments with MnTPP not only require resolving
against a background that is 10* times stronger, but seek to detect signals that are weaker by a factor of ¢,
corresponding to a factor of 108 when comparing MnTPP to these prior systems.

In Fig. 5.1} we have demonstrated one of the strategies that is employed for suppression of nonresonant
background: introducing a delay between the pulses to time resolve the resonant signal.[121] |165| |360] How-
ever, this limits access to the initial dynamics, such as those visible in panels (F) and (G). Another strategy
for suppressing nonresonant background is to rotate the polarization of the excitation fields in order to in-
terfere different symmetry components of the nonresonant response.|146} |361] Experiments performed with
different polarization combinations (not shown) indicate that there could be promise to this strategy, though
care would need to be taken to ensure that the consequences of the rotated polarizations are understood
with respect to the analyte’s symmetry. Heterodyne detection is another strategy that has been employed in
electronic spectroscopy,[362-371] permitting discrimination between the nonresonant and resonant response
on the basis of resolving the phase of )((3).|1227 123} 1353-355] However, such a strategy is poorly suited to

frequency-domain methods: it is more effective in collinear geometries, [355] and the change in pointing while

scanning light sources can introduce further experimental complications.[372]

1We note that this is the case for resonance, i.e. w = wp,; otherwise, the detuning factor |Apg|? = |wpe — w — il |?
should be used in lieu of Fib' The other contributions to a are (47wFTvq)/(hen).|99] Since the experiments being compared are
electronic, w and I'p, should be of the same magnitude, and F/n should be similar for most organic solvents. Otherwise, 47/nc

are constants.

i0nce again, we assume resonance (|Apq|? & I'Z, ) and the other contributing terms (¥/(40#?)) should be similar or constant.
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CHAPTER 6

Broadband Coherent Raman Spectroscopy
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6.1 Background

Interaction between a medium and light can result in the scattering of photons by the constituent molecules.
The majority of these photons will be scattered without any loss of energy through Rayleigh scattering.
However, some of the photons will exchange energy with the medium through Raman scattering. The
change in the energy of the photon represents the energy associated with a vibrational quantum of one of
the molecule’s Raman-active vibrational modes. For the energy of the vibrational mode, €2, the exchange of
energy will yield a photons of frequencies, wout = win = 2. The two cases reflect the two available directions
for energy exchange: the frequency of the output photon corresponds to the sum in anti-Stokes Raman
scattering, extracting energy from a vibrationally-excited molecule; the frequency will decrease in Stokes
Raman scattering, in which the scattering results in vibrational excitation of the molecule. Identifying
the frequency shifts can provide insight into the Raman-active vibrations of the molecules constituting the
medium.[373]

Raman scattering can be considered to be a four-wave mixing process in which the interaction between the
incident photons and the medium is described according to the third-order nonlinear susceptibility, X(3).|99|
This third-order nonlinear susceptibility allows the molecules of the medium to mediate interactions between
the incident photons and the vacuum field corresponding to the zero-point energy.[99, [374] The third-order
susceptibility will exhibit a broad nonresonant background in addition to resonances associated with the
vibrational modes; scattering will be enhanced when the energy difference between the incident photons
and the vacuum field match these resonant frequencies.[120H122} [135 |139, (143}, (147} 148l 186} (354, |360,
375, 1376] The susceptibility is considered to be a complex quantity; according to the standard treatment,
the nonresonant contributions are assumed to be only real, while the resonant parts will add to both the
real and the imaginary components of x(3).[122, [123, 353, 355] Spontaneous Raman scattering is adequately
described according to only the imaginary part of the susceptibility.[353] In addition to being linear with the
scattering cross-section, 137, 190] the third order susceptibility is proportional to the number density of the
molecules.|190]

Since spontaneous Raman scattering involves an interaction with the vacuum field, the scattered photons
lack coherence,[139] [148] [186] yielding very low signal levels due to the low sampling efficiency.[186] The low
efficiency limits the utility of spontaneous Raman scattering, preventing its application to media with high
levels of background signal that may overwhelm the Raman scatter, or in which the acquisition times required
may limit the ability to track the dynamics of short-lived species.[136] 377] Signal may be enhanced through

electronic resonance, but electronic resonance may also enhance the background through fluorescence.|[139}
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378] It is also possible to increase the excitation power, but there are often limits to the extent that this is
feasible.[148], [376]

Many of the disadvantages of spontaneous Raman scattering can be overcome through coherent Raman
scattering, a broad category of different Raman-based nonlinear optical methods. These coherent methods
yield significantly higher signal-to-noise ratios,[190, [377] allowing significantly faster acquisition.|136 [360]
While coherent Raman scattering is generally less sensitive to fluorescence,[136, 375, [379] the higher signal-to-
noise levels often allow the usage of weaker fields, reducing fluorescence and risk of damage to the sample.[148]
Coherent Raman scattering methods still access the third-order nonlinear susceptibility, but are generally
implemented with synchronized fields at different frequencies;[186, |190] the frequency difference between
the fields determines the vibrational modes accessed during the experiment, as well as whether the process
corresponds to anti-Stokes or Stokes Raman scattering.|186] While some authors suggest the improvement
in signal arises from a higher cross-section, [375] most appear to attribute the improved signal-to-noise ratio
in coherent Raman spectroscopies to the cooperative buildup and emission of signal:|139} |148, [186] the
coherence of the scattered photons allows significant improvement is the sampling efficiency.|186]

Development of the various coherent Raman spectroscopies has been motivated by the potential benefits
offered by Raman scattering. It is traditionally more straightforward to obtain broadband vibrational infor-
mation by Raman scattering,|375} 378, [380] while still allowing the use of narrowband methods employing
more sensitive detection.[380] Additionally, Raman-based methods also offer promise in microscopy applica-
tions:[381}, 1382] while the frequencies necessary for infrared absorbance measurements cannot be focused as
effectively, Raman scattering can be achieved with visible or near infrared frequencies that can be focused
more tightly.[139, |148] Finally, while femtosecond spectroscopy can be performed in the infrared,[383H387]
there are additional challenges in effectively generating the required ultrashort infrared pulses.[137] [166]
Coherent Raman spectroscopies have been realized in a number of ways, with methods having been applied
to a variety of relevant systems, including transition-metal complexes,|388| chlorophyll a,|136] and proteins
such as bacteriorhodopsin.|389)

A straightforward approach to coherent Raman spectroscopy is stimulated Raman spectroscopy. The
general strategy for this method is to introduce two fields of different frequencies and overlap them in the
sample.[190] The sample mediates the four-wave mixing process between these fields; when the frequency
difference matches the frequency of a Raman-active vibration, the interaction will be enhanced. In stimulated
Raman spectroscopies, the interaction is gauged by measuring the intensity of one of the fields: four-wave
mixing will result in attenuation of the pump or gain of the probe.[136, (190, 378] Since the technique is self-

heterodyned,[190,390] it exhibits a linear dependence on the imaginary part of x®). This has the advantage of
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yielding information only associated with the vibrational resonances rather than the nonresonant background;
it also makes the signal proportional to the number density of the Raman-active species.|190] However, the
signal can be difficult to detect, as it requires resolving very small changes on a large background.|136} |137,
190l |391] It should be noted that in this context, we are only considering stimulated Raman spectroscopy
to involve methods of the manner described above: this name has also been used for techniques in which a
laser is focused into a sample, and Raman processes result in enhancement of new frequencies at the onset
of self-focusing and filamentation or plasma generation. While these methods have been described to gain
insight into condensed systems, the mechanism generally results in extreme or abnormal conditions.[392396]

Of particular interest is femtosecond stimulated Raman spectroscopy (FSRS), a multiplexed version of
stimulated Raman spectroscopy.[397] FSRS is generally accomplished by combining narrow- and broadband
pulses in a single experiment.|137} 398] These experiments may employ either two or three beams.|137} 391,
399] The two beams incorporated in most FSRS implementations are the Stokes probe and Raman pump;
typically the probe is a broadband, femtosecond pulse and the pump is a narrowband, picosecond pulse.[137,
391, 1397, 400] Like the more general method of stimulated Raman spectroscopy, when the difference in
frequency between the pump and probe match a vibrational resonance, gain is observed in the probe;[136,
190l |378] however, by implementing a broadband probe, FSRS allows the simultaneous measurement of
many Raman shifts rather than requiring continuous tuning of the fields;[378}|400] this facilitates faster data
acquisition, enabling more averaging and a correspondingly higher signal-to-noise ratio.[400] While the probe
pulse is broadband, the spectral resolution of the method is limited by the convolution of the pump bandwidth
and the line width of the vibrational mode.[136, 137} [378|, [391} [399] Some authors also have incorporated
a third beam into the FSRS experiment: the actinic pump which is an additional femtosecond pulse.[137]
391}, 399} |400] The presence of this third beam allows the preparation of a particular excited state that is
probed at some delay by the Raman pump and Stokes probe.[137, 391} [399] Despite the picosecond duration
of the Raman pump in these experiments, the temporal resolution with respect to probing the excited state
is determined solely by the cross-correlation of the actinic pump and Stokes probe,[137} 378} 1391}, 399, |401]
allowing FSRS to simultaneously have spectral resolution on the scale of the vibrational modes and temporal
resolution of tens of femtoseconds.[137} 390, [399] Due to the nature of the method, FSRS does not require
any phase matching considerations,[136] permitting implementation in either a collinear or noncollinear
geometry.[137} 398]

However, despite the advantages, there are also some drawbacks to FSRS. Just like the more general
stimulated Raman spectroscopy, FSRS requires the ability to reliably measure small changes associated with

the Raman gain on a large background.[136, 190, [391] Thus, while data can be acquired rapidly due to
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the broadband nature of the technique7 achieving high signal-to-noise ratios does require averaging to
overcome the otherwise inherent low signal-to-noise ratio. There are also artifacts that can manifest in
the data. While contamination from fluorescence is not considered to be a problem, transient ab-
sorption and stimulated emission can occur, manifesting as broad features in the Raman gain spectrum.
However, the application of shifted excitation Raman difference Spectroscopy has been
demonstrated to allow these artifacts to be corrected. Trying to extend the method to resonant exci-
tation or anti-Stokes configurations results in negative signals and complicated line shapes.
Finally, the use of a sufficiently strong pump has been shown to introduce cross-phase modulation in the
probe; however, ensuring a smooth probe spectrum and shallower change in the pump’s temporal
envelope can minimize the consequences of phase modulation, as can fibrillation of the pump in a
manner similar to correcting for scatter interference in other spectroscopies.

An alternative approach, Raman induced Kerr effect spectroscopy (RIKES), to broadband Raman has
been proposed in the literature to overcome the large background inherent to FSRS. This method is
based on the optical Kerr effect: propagation of an intense, polarized pump results in an intensity-dependent
change in the refractive index, inducing a temporary birefringence within the medium. The birefringence
is a result of the response of the medium, and the change may involve electronic, vibrational, rotational, or
intermolecular contributions.[406//408] The induced birefringence will also affect other fields co-propagating
through the medium by cross-phase-modulation. Specifically, if a linearly-polarized probe is introduced,
the anisotropic change in refractive index will induce a change in the field’s polarization state.
Monitoring the change in the transmission of this probe through a crossed polarizer then informs on the
resonant and non-resonant response of the medium through the third-order nonlinear susceptibility.
While this method has been applied to electronic resonances, in RIKES,
the goal is to specifically probe the resonance enhancement in the Kerr effect when the pump and probe
frequencies differ by the frequency of one of the medium’s Raman-active vibrational modes.[190,

Much like FSRS, RIKES does not require phase matching considerations, allowing it to be per-
formed in either a collinear or a noncollinear geometry. Broadband implementations of
RIKES have also been reported. In contrast to FSRS, RIKES is dependent upon both the imagi-
nary and real parts of the nonlinear susceptibility; thus nonresonant background is a concern,
and the variety of mechanisms capable of contributing to the optical Kerr effect can yield
background signals exhibiting dynamics. However, circular polarization of the pump results in
suppression of the nonresonant background when Kleinmann symmetry is valid. An alterna-
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tive approach to resolving challenges with nonresonant background is the introduction of a local oscillator
for heterodyne—detection. This also has the added benefit of enhancing the sensitivity
of the technique, though it has been shown that RIKES can achieve similar signal-to-noise ratios to
FSRS without optimization. The sensitivity of RIKES can also be improved with enhancement through
electronic resonance.[379)

While FSRS and RIKES have trivial phase matching, it is also possible to perform coherent Raman
spectroscopy through a phase matched process: coherent (anti-)Stokes Raman spectroscopy. While the
Stokes Raman based spectroscopy (CSRS) has been demonstrated, the anti-Stokes process, CARS, is
more common. While some authors
have implemented pulse-shaping methods that allow CARS to be implemented with a single source,
the general approach for CARS is based upon spatial and temporal overlap of two or three fields in a
medium. In the three pulse sequence, the pulses provide
the Raman pump, wp, the Stokes field, wg, and the probe pulse, wpz; when reduced to two
fields, the interaction with the probe field is replaced by a second interaction with the pump, wp: = wp.

The three interactions mediated by the medium will occur

through the third-order susceptibility, yielding an output at the frequency was = wp — wg + wp-.[120H122
360, 376] This illustrates the main advantage of CARS: since we
require wp > wg for the anti-Stokes process, wag will always be a unique frequency and blue-shifted relative

to the excitation fields. This makes CARS detection robust to scatter and fluorescence.|139) |190]

It is most common to implement CARS with homodyne detection.|120) 123
1861 360) 413] However, homodyne detection of wag will yield a

signal proportional to |X(3)|2. This introduces two main limitations to the method. First, because x )
is proportional to the number density (N), homodyne detection results in signal scaling as N 2.
While this is valuable when the molecule of interest is a majority species in the sample, it makes
detection challenging for dilute species7 imposes a limit on the sensitivity of the technique,
and makes quantification more difﬁcult. Additionally, the scaling of the homodyne-detected
signal with \X(3)|2 results in the signal containing contributions from both the imaginary and real parts

of the nonlinear susceptibility. Contributions from the nonresonant response results in a background over

which it is ideally possible to observe resonance enhancement when wp — wg matches the frequency of a

Raman-active vibrational mode.|[120) 354, This can still
introduce significant limitations.|121} {123 The interference between the

real components from the resonant and nonresonant responses of the medium distorts the vibrational line
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shape.|136, 353] Excitation at visible frequencies,|140, [148| especially when a two-photon resonance is
available,[139,|140] can introduce significant levels of nonresonant background. While near infrared excitation

can reduce this background, the scaling of the signal with N2 can still allow the nonresonant
response to overwhelm the resonant signal through a larger number density in many applications.
Though femtosecond excitation allows more efficient delivery of higher peak powers without concern for
damage or heating, it is also important to match the excitation bandwidth of at least one interaction
to the line width of the vibrational modes: besides the spectral resolution made available by picosecond
pulses, the increasing bandwidth of increasingly shorter pulses will eventually saturate the spectral
width of the resonant process; beyond this point, the resonant process will be enhanced no further, while
the nonresonant signal strength will continue to increase. Many techniques have
been shown to help suppress nonresonant background, though each has limitations and drawbacks. Phasing
of the excitation fields by pulse shaping has been shown to help improve the resolution of the signal.
Polarization control can also be used by choosing polarizations for the excitation fields such that Kleinmann
symmetry predicts the cancellation of nonresonant signal. Time resolving the signal by delaying
the final interaction (the probe field) also allows reduction of nonresonant background: by introducing
an appropriate delay, the probe ideally only samples the free-induction decay of the induced vibrational
coherence. However, in highly scattering samples, efforts to control phase and polarization can
be disrupted. Meanwhile, changing the polarization of the excitation fields or delaying the arrival of the
probe reduces the signal available.[355] Additionally, there are advantages to using high numerical aperture
objectives in CARS; however, under such conditions, the paraxial approximation breaks down and it is
difficult to ensure polarization purity.[139}

An alternative strategy to overcome the challenges of nonresonant background is the implementation
of heterodyne detection due to its advantages. By interfering the CARS signal with a local
oscillator, the heterodyned signal is proportional to the electric field of the CARS signal, rather than the in-
tensity of the ﬁeld; the signal is therefore proportional to x(®), rather than | @ |2. This leaves
the signal proportional to the number density7 making quantification more straightforward
and simplifying the detection of weaker species. The interference with the local oscillator
can amplify the signal, improving sensitivity. Heterodyne detection also allows the real and imaginary
components of the nonlinear susceptibility to be resolved: as the nonresonant background is predom-
inantly associated with the real component of the nonlinear susceptibility, this allows the resonant response
to be isolated. Despite these advantages, heterodyne detection is rarely implemented:
while some authors have employed a pulse shaper to achieve heterodyne detection, it generally
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requires an additional source to supply the local oscillator. Additionally, due to the phase-matching of
the process, it is really only practical to implement heterodyne detection in a collinear geometry.

The phase matching requirements of CARS also provides the other challenge in implementing the tech-
nique. While RIKES and FSRS are satisfied by a trivial phase matching in the same manner as transient
absorption, phase matching is important to consider in the CARS experiment. Like other nonlinear
techniques, CARS must be performed such that we simultaneously satisfy the energy conservation condition,
WAS = Wp —Ws —|—wp/, and momentum conservation,
kas = kp — ks + k‘p/. Different approaches have been used to satisfy the phase-matching of CARS,
but a common one is the BOXCARS geometry, in which the three input fields and the output occupy four
corners of a rectangle. However, this alignment can require relatively significant
angles. Additionally, it can be difficult to simultaneously phase match the CARS processes correspond-
ing to different vibrational frequencies over a broad range of Raman shifts, as changing the
frequencies of the fields necessitates the use of different input angles. The effects of phase matching can
also complicate the interpretation of observed line shapes; care must be taken in alignment and
focusing, as the presence of higher-order transverse modes[205] and the Guoy phase shift[139) can both
complicate the interpretation of phase matching. However, there are some situations where phase matching
can be neglected. If the interaction region is short, phase matching can be ignored: in the limit of
minimal depletion of the excitation fields, signal intensity is proportional to sinc?(LAk/2), where L is the
interaction length and Ak is the phase mismatch; short pathlengths then make the experiment less sensitive
to phase matching. Alternatively, if dispersion is sufficiently weak, such as in a gas, the phase matching
condition reduces to the energy conservation condition. Broadband phase matching has also been pro-
posed by introducing a wide-angle probe to simultaneously satisfy the phase-matching of different processes;
such an alignment necessitates moving the detector to measure the intensity of CARS signal associated with
different Raman shifts, however.[135]

The concept of reducing the constraints of phase matching with sufficiently wide-angle excitation has
lead to the implementation of CARS in microscopy. In
this application, CARS provides a sensitive, label-free method of imaging; additionally,
the dependence of the signal upon the overlap of multiple beams improves the spatial resolution. In
microscopy, the limit of phase matching the CARS process can be overcome by the use of high numerical
aperture objectives: this provides sufficiently wide-angle excitation so as to relax the phase matching condi-

tion,[139 148] as well as reducing the interaction length.|139] High numerical aperture objectives
even allow collinear geometries, [146] facilitating the application of heterodyne detection.[355] The tighter fo-
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cus also increases spatial selectively and improves the image quality. However, high numerical
aperture objectives cannot be implemented for all systems, and the filtering schemes necessary to isolate the
CARS signal can result in a loss of sensitivity.

While a few reported implementations of CARS employ only picosecond or femtosec-

ond excitation, many other implementations of CARS
- as well as various implementations of FSRS

415] and RIKES|379, [397] - have sought to achieve multiplexing while retaining spectral resolution on the
order of the line width of vibrational modes.[390 While this could be achieved by synchronization of
femtosecond and picosecond lasers,|390] it is difficult to reliably achieve synchronization without timing jit-

ter.[376} |415] While continuum generation is possible with picosecond pulses,[318 the higher

peak intensity of femtosecond pulses generally yields higher eﬂiciencies since the nonlinear processes
associated with light generation are generally nonresonant. As a consequence, rather
than start with picosecond pulses and achieve multiplexing through continuum generation, most reports
describe starting with femtosecond pulses and the application of a variety of strategies to improve spectral
resolution. (136} In addition to
reporting strategies for narrowing their excitation pulses, some authors also give consideration to increasing
the breadth of their pulses in order to maximize the range of Raman shifts accessible.

Many of the efforts to extend the accessible range of Raman shifts are based upon white light genera-
tion.[136] A brief overview on the generation of white light has been
provided in However, an alternative strategy that has been employed for generating broadband pulses
is cascaded frequency mixing processes. By crossing two beams with wave vectors k1 and ko, various
mixing processes are cascaded to form spatially resolved orders satisfying various phase matching conditions
generalized (n+ 1)k; — nk,.[282-284] These cascaded side bands are broad and tunable, [283]
providing an alternative to white light generation. However, unlike white light generation, these side-bands
are reasonably well-compressed pulses with durations on the order of the driving ﬁelds.

Strategies for developing narrowband pulses from broadband sources are diverse, but can be considered
to fall into three categories: filtering, in which only a small bandwidth from the original broadband source is
retained; methods based on appropriate chirp of the broadband source; and, narrowing through parametric
processes in a nonlinear crystal. Some of these methods also introduce picosecond optical parametric am-
plifiers that are pumped by the narrowed source, providing the capability to tune the narrowed pulse.

Three main strategies for filtering broadband sources have been reported in the literature. All three are
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inherently inefficient, with reported efficiencies less than 0.3%, since they are predicated on passing only a
small bandwidth from the original source.[399, 417, 419] The simplest filtering scheme that has been reported
is the use of a pair of commercial filters that together reduced the bandwidth to 17 ecm™.[136, [137] This
corresponds to a pulse duration slightly shorter than one picosecond ( 800 fs), but this strategy restricts the
tuning of the pump according to the availability of appropriate filters. A limited ability to tune the Raman
pump was introduced through grating-based filters; the design is based upon a 4f pulse shaper: two gratings
separated by a distance of 4f and by two lenses (focal lengths of f), with the lenses positioned to have a
shared image plane at which a slit is positioned.|121}|186} [378] Some authors have simplified the configuration
by using a flat mirror at the image plane, allowing the use of a single grating.[380, |415] These grating-based
filters allow significantly longer pulse durations, up to 8-9 picoseconds, and the ability to tune within the
bandwidth of the broadband source.[378] However, in order to achieve such short pulses, it is necessary to
use very small slits; this can introduce perturbations to the mode.[390] The symmetry of the resulting pulses
have also been reported to introduce ringing,[390] though some authors have suggested it can be reduced for
some temporal profiles.[400] Besides the inherent inefficiency due to the restricted bandwidth, grating-based
filters suffer from further inefficiencies from diffraction off the grating.[390] The final filtering strategy that
has been described is the use of Fabry-Pérot etalons.|390] The motivation for filtering using Fabry-Pérot
etalons is their earlier application in other spectroscopies, such as sum-frequency generation.[422] Fabry-
Pérot etalons offer high efficiency at the central color and are capable of very narrow bandwidths (as low as
3 cm™ reported).[390] The narrowed pulses exhibit an exponential profile in the time domain: such a profile
helps enhance the vibrationally resonant signal relative to the nonresonant background by matching the
dephasing of the coherence.[390] While it can be difficult to simultaneously achieve a sufficient free spectral
range and a narrow bandwidth affordably, etalons can be combined with other filters to compensate for the
free spectral range.[423] The main additional limitation associated with Fabry-Pérot etalons is that the cost
can be significant.[390]

The inefficiency associated with spectral filtering led a variety of attempts to improve efficiency through
chirped pulses. The first of these methods has been termed “spectral focusing.”[412] This method was
motivated by an earlier observation that the presence of chirp in the excitation fields can actually improve
the resolution of the CARS process.|146] An early implementation of applying chirp followed this observation
by overlapping a broadly chirped pulse and a compressed pulse: as the interaction necessary for the CARS
process is only possible during temporal overlap, the resolution is controlled by the “temporal slit” resulting
from the chirp rate and the femtosecond pulse duration.[376] However, by applying an equal degree of chirp

to both the pump and Stokes pulses, other authors have shown the potential to apply the entire bandwidth of
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broadband pulses to drive processes corresponding to a target Raman shift: with appropriate adjustment of
chirp and delay, the instantaneous frequencies temporally overlapped correspond to excitation of a particular
vibrational mode throughout the entire duration of the pulse.|356 [357, |401} |412] An alternative method for
improving resolution through chirp involves spectral compression by the sum-frequency generation of counter-
chirped pulses. In this scheme, a pulse is split to yield two pulses; each pulse is passed through a stretcher
to apply chirp: however, one pulse has a positive chirp applied, while the other pulse is negatively chirped.
These pulses are then mixed to yield a narrow band pulse.|391} 400, |424]

However, this method involving counter-chirped beams requires careful alignment of a pair of stretchers
so as to add equal chirp to both beams;[419] a handful of authors have reported an alternative that bypasses
this complication. Rather than apply chirp, these authors use the large group velocity mismatch between a
fundamental and its second harmonic to impose a very narrow phase matching bandwidth on the second-
harmonic generation process.[165| 399, 417H419|] This allows tuning of the pulse-duration by changing crystal
material - and therefore the group velocity mismatch - or by changing the crystal length.[399] However,
the narrow phase-matching bandwidth does not significantly reduce the efficiency. Rather, the spectral
compression can be considered to arise from a series of mixing processes between frequencies of wg + Aw and
wo —Aw: for any value of Aw, the sum-frequency will be 2wg.[417] Even without the ability to simultaneously
phase-match the sum-frequency generation for every value of Aw, the cooperation of the sum-frequency and
second-harmonic generation processes towards spectral narrowing make this method very efficient,[399)} |417]
with efficiencies reportedly approaching 40%.[417] The main limitation to this method is in the resulting line
shape: as the mixing process is most efficient at the beginning of the crystal - when the pulses are most intense
- the pulses exhibit a temporal profile with a sharp edge and an approximately quadratic tail.[399, 417} 418§]
However, unlike Fabry-Pérot etalons, the tails of these spectrally-compressed pulses decay in the reverse
direction relative to the vibrational dephasing: the edge of the pulse artificially attenuates the free-induction
decay of the coherence, introducing ringing in the spectrum.[399] While a filtering scheme to improve the line
shape and reduce this ringing has been proposed, it calls for a grating-based spectral filter.[399] Additionally,
it has been reported that introducing some phase-mismatch to the second-harmonic generation can influence
the line shape.[417] An alternative solution has been the introduction of periodically-poled crystals, such
as periodically poled lithium niobate or stoichiometric lithium tantalate.[165] [417-419] These engineered
materials exhibit attractive properties for spectral compression: high group velocity mismatch, high second-
order susceptibility, and periodic poling to avoid spatial walk-off.[417] However, by tuning the periodicity
of the materials, it has been demonstrated that it is possible to engineer desired temporal profiles for the

spectrally compressed pulse.|165, 418] |419]
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A variety of methods have been employed to study the vibrational structure of the photosystem II and
various co-factors of the protein, [57] including infrared absorption[60} 62| [84] and (resonance) Raman.[58, |59,
61,|79] However, the number of transitions available in photosystem II results in very complicated absorption
spectra;|62] the resonance-enhancement yields simpler spectra, but the use of spontaneous Raman results
in relatively weak signals[58) 59, 61] and fluorescence can be a concern.|61] Coherent Raman spectroscopies
offer the potential to improve the sensitivity of these latter experiments and provide intrinsic resistance to
fluorescence. For testing the application of broadband coherent Raman spectroscopy, benzene was used as an
initial test sample due to the strong Raman-active mode at 992 cm™!.[406] Manganese tetraphenylporphine
was selected as a model system for exploring resonance enhancement: previous reports indicate that at least
one of the electronic transitions (Band V, near 480 nm) is believed to exhibit strong contributions from the
manganese, and that excitation of this band results in resonance-enhancement of the Raman mode associated

with the low frequency vibration between the manganese and the axial ligand.[309]

6.2 Experimental Deviations

The broadband CARS experiments reported in this section were performed as four color experiments. The
two femtosecond TOPAS-C provided two femtosecond pulses as the Raman pump (1) and Stokes (72) pulses
and were tuned so the frequency difference between the TOPAS-C was close to the frequency of the target
vibrational mode. The Raman probe pulse was derived from the residual fundamental from the Spitfire
Pro XP regenerative amplifier. In contrast to the standard alignment of the fundamental, the beam was
not turned directly into the appropriate delay line. Rather, a set of three mirrors was introduced to allow
the introduction of a volume Bragg grating for spectral narrowing with an appropriate angle between the
incident and diffracted beams.

While the enhancement of vibrational dephasing attributed to the temporal profile of pulses narrowed
with Fabry-Pérot etalons[390] was attractive, calculations suggested that it would be difficult for a reasonably
affordable etalon to simultaneously provide wide tuning capability, high throughput, narrow spectral profiles,
and a wide free spectral range. However, it has been reported that etalons with a narrow free spectral range
may be combined with volume Bragg gratings to simultaneously achieve narrow spectral profiles and broad
free spectral ranges.[423] These gratings are prepared by imaging a sinusoidal refractive index grating in a

material; based on the period of these modulations (A), the index of the material (n), and the incident angle
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(9), a very narrow bandwidth centered around a wavelength, Ao:

Ao = cos <arcsin (Sin(e)» A (6.2.1)

n 2n

is diffracted with high efficiency.[423]

The grating (Optigrate; Oviedo, FL) employed in these experiments was 2.1 mm x 5 mm x 5 mm and
designed to operate around a central wavelength of 805.3 nm, yield a spectral width of ~ 0.25 nm (FWHM),
and achieve > 97% diffraction efficiency. Testing indicated a ~ 35° angle between the incident beam and
the diffracted beam optimized the overlap of the diffracted color (~ 785 nm at 30° and ~ 795 nm at 40°)
with the center of the regenerative amplifier output; it should be noted, though, that these measurements
were collected with an OceanOptics USB-2000 that exhibits a sharp decrease in response near 800 nm
and consequently reports distorted spectra for ~ 35 fs pulses centered near 800 nm. The central color
observed in these experiments was ~ 794 nm; however, we are not confident that the Jobin Yvon MicroHR
monochromator provided sufficient resolution to reliably characterize the spectrum. Consequently, Raman
shifts reported in all CARS spectra have been determined by matching the observed vibrational features
to the reported frequencies for the sample; sources for the frequencies are for benzene (993 cm™1),[425]
benzonitrile (1601 cm~1),[426] and pyridine (992 and 1031 cm~1).[186] The temporal profile of the diffracted
pulse, shown in Fig. was determined through a nonresonant CARS process in carbon tetrachloride with
the TOPAS-C tuned to 7; = 8000 cm™! and 7, = 7000 cm™'. It should be noted that this spectrum does
represent convolution of the temporal profile of the diffracted pulse with the TOPAS-C output; however,
as the durations of the latter two pulses are ~ 40 fs, the convolution should be a minor effect. With the
conventions of delay on the table, the tail of the diffracted pulse should match the dephasing of the vibrational
mode in a manner similar to an etalon.

Phase matching angles for these experiments were calculated within the cw approximation for the center
of each pulse. These calculations indicated two key details. First, it proved necessary to use a faster
focusing mirror for all experiments: the angles calculated for near infrared excitation required a f = 50 cm
mirror, while for the experiments with visible excitation this had to be reduced further to f = 20 cm. The
other key detail indicated by these calculations was the narrow phase matching bandwidths: within this cw
approximation, it was anticipated that the phase matching bandwidth would be significantly narrowed in
the visible.

The CARS experiments were performed as one- or two-dimensional acquisitions involving only the

monochromator frequency and the relative delays. The TOPAS-C were set to generate particular colors
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Figure 6.1: Temporal profile of the narrowed ~ 794 nm probe as determined by nonresonant CARS (7; =
8000 cm~! and #5 = 7000 cm~1!) in carbon tetrachloride.



150

for 7; and py. The convolution of the spectral content of these pulses determined the accessible vibrational
frequencies;|120H124] by scanning the monochromator, we determined the frequencies of the vibrational co-
herences created by this convolution based upon the intensity of the upconverted Raman probe at each
frequency. As before, the preamplifier limited reliable application of available photomultiplier tubes; a sil-
icon photodiode was used for detection instead. Reported usage of “spectral focusing” (356} 1357, 401}, |412]
indicated the importance of considering any chirp or other frequency modulation present in the pump and
Stokes pulses. Due to suspicions of the upconversion processes in the TOPAS-C, this was expected to be
a particular concern in experiments using sum-frequency signal. Two-dimensional acquisitions monitoring
the CARS spectrum as a function of relative delay between the pump and Stokes pulses suggested this was
not a large concern in the near infrared (data not shown); similar scans collected with the pump and Stokes

pulses derived from the sum-frequency signal process will be shown in the Results and Discussion.

6.3 Results and Discussion

Consistent with previous reports,[399} 417,419 the use of filtering to achieve spectrally narrow pulses resulted
in a dramatic reduction in beam energy. Prior to introducing the Bragg grating, we measured a per pulse
energy of 40 uJ in the residual fundamental; with the grating in place, this energy was reduced to 370 nJ
per pulse. Even with the reported > 97% diffraction efficiency, these losses correspond to 0.9% efficiency;
based upon the reported efficiencies of other filtering strategies,[399) 417, 419] this observed efficiency is
consistent with the reduction in bandwidth. However, besides the limits to spectral resolution arising from
a femtosecond probe, Fig. shows that the picosecond probe also provides a high degree of discrimination
against the nonresonant background. A theoretical foundation for this has been previously reported:|140]
as the pulse duration decreases, both nonresonant and resonant signal increase; however, while nonresonant
signal continues to increase, the resonant response only scales so long as the excitation bandwidth is less
than or comparable to the vibrational line width. Consequently, under purely femtosecond excitation, the
ratio of resonant to nonresonant signal is predicted to be quite small.[139} [140, |146} [356, 357] In Fig. 6.2
we show that even a single picosecond interaction is sufficient to improve this ratio.

All scans in Fig. were collected under conditions of near infrared excitation: 7; = 8000 cm™!
and 5 = 7000 ecm~!. Under the conditions of the initial table alignment (femtosecond probe pulse), we
measured the dynamics associated with both carbon tetrachloride (CCly) and benzene (CgHg). Most of the
signal for both samples was consistent with the nonresonant response arising from cross-correlation of the

three excitation pulses. However, in benzene, we do observe weak signal above the baseline at long delays,
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consistent with the longer dynamics expected for a vibrational coherence. Nevertheless, the ratio of this
signal to the nonresonant response at zero delay is very low: as the scale in (A) shows, it is approximately
one to one hundred, which is reasonable in the context of previous calculations.[140] This contrasts with the
behavior observed when the narrowed, picosecond probe is used, (B). The signal from carbon tetrachloride
suggests that the weaker excitation from the picosecond probe yields a lower sensitivity, as the nonresonant
signal is only two orders of magnitude over the baseline, rather than the three orders of magnitude in (A);
this is consistent with the higher contrast expected due to the peak intensity available from femtosecond
excitation.[140] In exchange for the lower sensitivity, though, (B) shows that we can achieve much greater
specificity for the vibrational dynamics: where the femtosecond probe yielded a resonant to nonresonant
ratio of about one to one hundred, the picosecond probe achieves ratios of about seven to ten, a seventy-fold
improvement.

With the spectrally-narrowed probe, we explored the reliability, sensitivity, and resolution of broadband
CARS with near infrared excitation (7, = 8000 cm™! and 75 = 7000 cm™1). A sampling of these results
is reported in Fig. and All three figures present a two-dimensional acquisition (A) reporting
signal on a logarithmic (base-10) scale as a function of delay versus Raman shift; the delay corresponds to
the relative delay of the probe relative to the temporally overlapped pump and Stokes pulses. Zero delay
is defined according to the sharp falling edge in the nonresonant signal due to the rising edge of the probe
pulse. (B) and (C) present one-dimensional views of the data: (B) presenting vertical (delay) slices, and
(C) showing horizontal (frequency) slices. All slices shown in (B) and (C) are color- and style-coded to
correspond to the vertical and horizontal, respectively, slices shown in (A).

Consistent with the Raman properties of carbon tetrachloride,! Fig. shows no evidence of vibrational
resonances for Raman shifts between 850 and 1200 cm ™. This is evidenced by the sharp edge at a delay of
0 ps, and the broad, featureless spectral character across the frequency range. The dip near a Raman shift
of 850 cm~! is attributed to noise. The slices in (B) and (C) show that the nonresonant response in carbon
tetrachloride gives us sensitivity of approximately one and a half orders of magnitude (signal levels above
baseline) in these experiments.

In contrast to Fig. the presence of a vibrational resonance yields a very clear signature in the
two-dimensional spectrum, as shown for neat benzene in Fig. In the two-dimensional spectrum, the

1

vibrational resonance at 993 cm™" is seen clearly above the baseline. Contrasting the vertical slices at 975

em~! and 993 cm~!, the dashed and solid vertical slices respectively, we see in (B) that an exponential

i Available at webbook.nist.gov.
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Figure 6.2: Comparison of CARS signal with ps and fs probe pulses. All scans report normalized signal
versus the delay between the probe pulse and the overlapped Raman pump (7 = 8000 cm~!) and Stokes
(7 = 7000 cm~1!) pulses; the monochromator was set to the wavelength at which the CARS signal associated
with benzene’s 993 cm ™! vibrational mode was expected. (A) and (B) are the results for carbon tetrachloride
and benzene with a femtosecond, 800 nm probe and the spectrally narrowed picosecond probe, respectively.
The data presented for benzene represent all data accumulated over two scans.
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decay is clearly visible when the monochromator is set to detect resonant signal (Raman shift of 993 cm™1),
whereas signal is only present during pulse overlap when off resonance. In (C), the solid trace shows a
horizontal slice of the signal during pulse overlap. In this slice, we see clear evidence of interference between
the nonresonant background and the vibrational resonance in the dip in signal near 1025 cm™! - this is
quite close to the Raman shift at which Levenson and Bloembergen observe a minimum resulting from
this interference (1020 cm~!).[110] However, we observe nearly an order of magnitude of contrast between
the resonant and nonresonant response; the improvement over the signal in Fig. is attributed to more
accurate setting of the monochromator: in the data acquired for Fig. the monochromator was set based
upon the expected wavelength for the CARS signal rather than the wavelength of maximum signal. Recall,
the dispersion of the MicroHR monochromator limits our ability to know the frequency of the probe with
high precision. In contrast to pulse overlap, time resolution of the signal - given by the dashed line in (C)
- allows isolation of the vibrational resonance; consistent with concerns over the use of time resolution for
nonresonant background suppression,[355] we do observe some loss of signal (~ 12% on the logarithmic
scale). While the strong response of benzene does leave us with high sensitivity after these losses - signal
approximately one and a half orders of magnitude over baseline - this loss of signal could prove a limitation
with dilute species or those with weaker response.[355]

As expected, the narrowed probe pulse provides significant improvements in resolution. Not only is the
vibrational lineshape in Fig. [6.4] distinguishable, but we see in Fig. that we can clearly resolve two close
vibrational modes. In Fig. we show the CARS spectrum of a mixture of benzene and pyridine under
near infrared excitation. These compounds exhibit vibrational frequencies very close to each other: benzene
exhibits a Raman-active vibration at 993 cm™—!,[425] while pyridine exhibits a pair of resonances, one at 992
em~! and the other at 1031 cm~1.[186] Signals consistent with the vibrational frequencies are present in
the two-dimensional acquisition of (A). The time-resolved slice in (C), given by the spectrum in the dashed
line, show that we achieve baseline resolution between the vibrations at 992/993 cm~! and the vibration at
1031 cm™*'; this is comparable with the resolution in the time-resolved CSRS results reported by Pestov et
al, and both data sets appear to exhibit better resolution than the spontaneous Raman spectrum reported
by the same authors.[186] We will also point out the dip in nonresonant signal near a Raman shift of 1150
cm~'; we will address this feature later in this chapter.

In order to increase the applicability of these broadband Raman processes towards resonance enhance-
ment, we sought to extend the methods towards visible excitation. The same methods were employed as
were used to acquire the previously described near infrared excited CARS spectra, only substituting visible

Raman pump and Stokes pulses generated through the TOPAS-C second-harmonic signal (SHS) or sum-
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Figure 6.4: Broadband CARS of benzene (C¢Hg) with Raman pump pulse 7; = 8000 cm™!, Stokes pulse
5 = 7000 cm ™!, and narrowband probe (~ 794 nm). (A) Signal (base-10 logarithmic scale) as a function of
delay and Raman shift. Delay is relative delay between the probe pulse and the overlapped Raman pump and
Stokes pulses. Raman shifts are assigned on the basis of matching the time-resolved vibrational resonance
of benzene to its known value. The solid and dashed vertical lines identify the slices plotted in (B), and
the solid and dashed horizontal lines represent the points from which the slices in (C) are derived. (B) and

(C) are signal (base-10 logarithmic scale) versus relative probe delay (B) or Raman shift (C). The faded red
line in (C) marks the vibrational frequency of benzene, 993 cm~1.
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Figure 6.5: Broadband CARS of a mixture of benzene and pyridine (CsHsN) with Raman pump pulse
71 = 8000 em~!, Stokes pulse 7, = 7000 cm~!, and narrowband probe (~ 794 nm). (A) Signal (base-10
logarithmic scale) as a function of delay and Raman shift. Delay is relative delay between the probe pulse
and the overlapped Raman pump and Stokes pulses. Raman shifts are assigned on the basis of matching
the time-resolved vibrational resonances of benzene and pyridine to known values.[186, The vertical
lines are color- and style-coded to match the slices plotted in (B), and the solid and dashed horizontal lines
represent the points from which the slices in (C) are derived. (B) and (C) are signal (base-10 logarithmic
scale) versus relative probe delay (B) or Raman shift (C). The faded red lines in (C) mark the vibrational
frequencies of benzene and pyridine, 993 cm~! and 1031 cm™~'.
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frequency signal (SFS) processes. Fig. shows the broadband CARS spectrum acquired for benzonitrile
using SHS-derived pump and Stokes pulses. In this spectrum, we observe a feature consistent with the 1601
cm~! vibrational mode of benzonitrile. The dynamics exhibited are short but can be clearly resolved. The
sensitivity of this signal is also weaker, which is consistent with the excitation pulses being derived from a
second harmonic process. More energy is available from the SFS process, which was used to acquire the
CARS data in Fig. [6.7]

We have previously discussed the problems that manifest upon upconversion of the idler in the TOPAS-C
(see , and we have consequently speculated that the accumulated group delay and pump-signal group
velocity mismatch may also manifest in the SF'S process. For example, in experimental applications of the
SFS process, it is not uncommon to see temporal profiles significantly broader than would be anticipated
(see for instance the vertical line width in (E) of Fig. . Consequently, rather than collect CARS spectra
studying the dynamics of the vibrational coherence, the two-dimensional acquisition of Fig. [6.7] seemed
for more important. The results of this two-dimensional acquisition are signal (presented on a logarithmic
scale) as a function of relative delay between the pump and Stokes pulses and the Raman shift (A). After
background subtraction, the first moment of the signal was calculated, with the result overlaid in (A) as
the black line; it should be noted that the noise at Raman shifts less than 950 cm™! yielded a handful of
meaningless data points - such points have been ignored. As the remaining points show, there does appear
to be some degree of frequency-modulation, with the first moment exhibiting a change of ~ 50 fs between
Raman shifts of 950 and 1220 cm™!. The interpretation of the broadband CARS signal as the convolution
of the pump and Stokes pulses[120-124] complicates the assignment of this result to a particular frequency-
modulation profile, but it warrants consideration in other experiments involving light generation through
this nonlinear process.

The other pane (B) in Fig. is the signal (on a base-10 logarithmic scale) of (A) integrated along
vertical slices. Within this treatment, a feature that may be attributed to the 993 cm~! vibrational mode of
benzene is still apparent. However, the contrast in this scan is significantly lower than in Fig. whereas we
observed approximately one order of magnitude contrast between the resonant and nonresonant signal under
near infrared excitation, with the pump and Stokes pulses generated by the SF'S process, our contrast is only
approximately half of one order of magnitude. This is consistent with previous reports that nonresonant
background becomes increasingly important at higher frequencies, [140, [148] as well as our measurements of
nonresonant susceptibilities in We also note that the width of the nonresonant background appears
reduced. Under near infrared excitation, the nonresonant background is above baseline across much of the

~ 350 cm~! window of Raman shifts in Fig. and and is visible over a much broader range than
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is shown in these figures. On the other hand, the nonresonant background appears to be above baseline over
a range of only ~ 200-300 cm™!; this is consistent with the steeper phase matching conditions observed for
visible excitation under the cw approximation and in agreement with concerns over operational bandwidth
in these phase matched experiments.[120} [136, [137]

With pump and Stokes pulses derived from SF'S, we also tried to find signal associated with resonance-
enhanced CARS in MnTPP consistent with the reported resonance Raman of the complex.[309] However,
while realignment to a different mask allowed detection of signal at the appropriate Raman shifts (~ 400
em™ 1), we could not detect any signal consistent with MnTPP. Referring back to our concerns in
regarding the sensitivity of experiments involving these metal species, it is not too surprising that we had
difficulty finding signal as we have replaced two electronic resonances with a nonresonant interaction (the
Raman probe). It may be worth returning to these efforts if the capability to tune the Raman probe over
a broader frequency range is developed or acquired. Under such a situation, these CARS processes could
be performed with four resonant interactions: just as we managed to detect signal under some conditions
with MnTPP, the four resonant interactions may be sufficient to enable electronically enhanced CARS
experiments.

Recall we mentioned when discussing Fig. the decrease in nonresonant signal near 1150 cm™'. The
behavior yielding this feature is shown more fully in Fig. [6.8] in which it is clear that we observe a sequence
of modulations as a function of Raman shift. However, these features are only observed during pulse overlap.
Characterization of these modulations along different available axes is shown in Fig. (C) makes it very
clear that these modulations are not an interference effect associated with the monochromator slits: for
increasing slit size, the only change in the signal is broadening and an increase in amplitude, each consistent
with increasing slit width. Meanwhile, changing the sample from carbon tetrachloride to pyridine or benzene
has a pronounced effect (D), but there is no obvious trend associated with changing the sample composition
with respect to benzene and pyridine. From panes (A) and (B), it is clear that changing the TOPAS-C set
points has pronounced effects. When these effects were first observed, modulations were observed when the
spectral output of the OPAs was checked; however, retuning removed the modulations in the OPA spectral
output, but not in the CARS spectra. Realignment of the table following retuning also changed the position
and spacing of the fringes with respect to the benzene resonance.

We were unable to find any descriptions or reports of similar modulations in the nonresonant background
of CARS spectra in the literature. The only other mention of modulations of any sort is from Pontecorvo et
al,|399] who report the observation of ringing in FSRS spectra when employing a narrowband pump with a

sharp cutoff rather than a sharp rise as we observe. The authors attribute this ringing to the sudden cutoff
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Figure 6.6: Broadband CARS of benzonitrile (C7H5N) with Raman pump pulse 7; = 16400 cm ™!, Stokes
pulse 72 = 15100 cm™!, and narrowband probe (~ 794 nm). (A) Signal (base-10 logarithmic scale) as a
function of delay and Raman shift. Delay is relative delay between the probe pulse and the overlapped
Raman pump and Stokes pulses. Raman shifts are assigned on the basis of matching the time-resolved
vibrational resonance of benzonitrile to its known Value. The dashed and solid vertical lines match the
dashed and solid slices plotted in (B), and the solid and dashed horizontal lines represent the points from
which the slices in (C) are derived. (B) and (C) are signal (base-10 logarithmic scale) versus relative probe
delay (B) or Raman shift (C). The faded red line in (C) marks the vibrational frequency of benzonitrile,
1601 cm~".
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Figure 6.7: Broadband CARS of benzene (CgHg) with Raman pump pulse 7; = 20800 cm ™, Stokes pulse
75 = 19800 cm ™!, and narrowband probe (~ 794 nm). (A) Signal (base-10 logarithmic scale) as a function
of delay and Raman shift. Delay is the relative delay between the pump and Stokes pulses; overlap of both
pulses with the probe is expected for all relative delays. Raman shifts are assigned on the basis of matching
the vibrational resonance of benzene to its known value. The black trace is the first moment of the
signal, excluding the values calculated for several Raman shifts < 950 cm~!. (B) Is the base-10 logarithm
of the results of (A) integrated over all delay values at each Raman shift. The faded red line marks the
vibrational frequency of benzene, 993 cm™—!.
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Figure 6.8: A spectrally broader broadband CARS of benzene (CgHg) with Raman pump pulse 7; = 8000
em™!, Stokes pulse s = 7000 cm™!, and narrowband probe (~ 794 nm). (A) Signal (base-10 logarithmic
scale) as a function of delay and Raman shift. Delay is relative delay between the probe pulse and the
overlapped Raman pump and Stokes pulses. Raman shifts are assigned on the basis of matching the time-
resolved vibrational resonance of benzene to known value. The horizontal lines are color- and style-coded
to the slices in (B). (B) shows signal (base-10 logarithmic scale) versus Raman shift for different horizontal
slices of (A). The faded red line in (B) marks the vibrational frequency of benzene, 993 cm™!.
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Figure 6.9: Broadband CARS with near infrared Raman pump and Stokes pulses. (A) Monochromator
slices of CARS signal from benzene versus Raman shift for different pairs of Raman pump/Stokes pulse
frequencies with a constant detuning (1000 cm~1). (B) Monochromator slices of CARS signal from benzene
versus Raman shift for constant Raman pump pulse frequency and variable Stokes pulse frequency. (C)
Monochromator slices of CARS signal from benzene versus Raman shift for different monochromator slit
widths for Raman pump 7; = 8000 cm™! and Stokes pulse 7, = 7000 cm~!. (D) Monochromator slices
of CARS signal from different solvent systems versus Raman shift for Raman pump 7; = 8000 cm™! and
Stokes pulse 7, = 7000 cm~!. Ratios of benzene:pyridine are volumetric. Data in (A) and (B) collected
before OPA retuning; data in (C) and (D) collected after OPA retuning.
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of the pump during the vibrational dephasing; the artificial attenuation of the natural free induction decay
manifests as ringing with a modulation frequency and amplitude related to how early the cutoff occurs during
the free induction decay.[399] A similar cause would be consistent with the observation of modulations in
pyridine and benzene, but their absence in carbon tetrachloride (see (D) in Fig. : as the latter is purely
nonresonant, there are no free induction decays to artificially attenuate. It would also be expected to occur
regardless of the state of the system.

However, there are many reasons to dismiss the application of this theory to explain these modulations.
First, the exponential tail of the temporal profile of the Raman probe used here is believed to follow the decay
of the vibrational free induction decay. The sharp leading edge of the pulse gives the sharp edge observed
in the CARS spectra when the probe is delayed relative to the pump and Stokes pulses. This temporal
profile is the reverse of the envelope described by Pontecorvo et al.[399] Additionally, the mechanism for the
ringing observed by Pontecorvo et al is inconsistent with our observation of the modulations only during
pulse overlap, as well as the lack of change in the modulations throughout the pulse overlap region (see
(B) in Fig. [6.8). Thirdly, while ringing would be consistent with the recurrence of the modulations after
retuning and realignment, the ringing should be a function of the vibrational mode’s dephasing and the
attenuation of this decay: this should have little dependence upon the frequencies used to prepare the
coherence, raising questions as to why we would observe such significant changes in the modulations as we
changed the excitation frequencies.

In order to understand these modulations, we attempted to simulate nonresonant processes capturing as
many of the relevant factors, including the phase of the Gaussian field and dispersion across the spectral
profiles of the pump and Stokes pulses; the resulting script is included in[Appendix D} However, in capturing
these different effects, the script yielded a parameter space far broader than could be reasonably explored.
Surveys were conducted exploring a few of these parameter spaces, illustrating the complexity of the system;
however, a few key insights were gained.

First, the effects of dispersion on these experiments is very pronounced. When the propagation of the fields
is described only by the central color, the nonresonant contribution to the signal is a very smooth envelope.
This is consistent with the description of the signal inheriting character according to the convolution of
the pump and Stokes pulse envelopes.|120H124] The resulting signal will match this envelope if the sample
exhibits low dispersion,|135] such as a gas,[120] or arises from a thin sample,[139] as when scattering from
a powder.|121] However, the simulations illustrate that when dealing with a bulk sample as in the present
experiments, the dispersion across the spectrum adds a further degree of complexity to interpreting the

anticipated spectral character of the signal. Rather than attempt to explore the several parameters that
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control the phase matching angles in the simulations, it may be more straightforward to perform future
experiments within the previously described limit of thin samples.

The other effect that proved pronounced was the effect of mismatch between the focal planes of the
excitation beams. Various authors have previously discussed the importance of the Guoy phase term in
nonlinear experiments,|139, 203, [427] and this manifested in the simulations: depending upon the relative
focal point of the pump and Stokes pulses, the spectrum of the output could exhibit both pronounced
oscillations and significant changes in amplitude. Unfortunately, this is a very difficult axis to gauge proper
values with any degree of accuracy due to the imaging conditions on the table at the time of these experiments.
When performing these experiments, we performed knife edge measurements to gauge the beam sizes: the
results were consistent with beam waists of 20 ym for the Stokes and probe pulses, but 40 um for the
pump. This suggests that the pump pulse was smaller than the other beams at the focusing mirror, which is
consistent with estimates of the beam sizes at the mirror based upon the measurement of aperture diameters
that passed half the beam energy. According to the optics of Gaussian beams, this smaller beam waist
for the pump will not only cause the focal spot size to be larger, but will also shift the focus;[105] with
our measurements, this could correspond to shifts in focus of hundreds of micrometers - well within the
range the simulations suggest modulations could be introduced. It is clear that when progressing to three-
and four-color experiments, it is crucial to not only consider our usual quality metrics - spectral content,
energies, alignment, sample - but also consider whether the alignment achieves the correct imaging in order

to minimize artifacts and unexpected behavior induced by phase effects such as the Guoy phase.
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In this section, we will present the evaluation of the derivatives 9n(X\)/ax and 9°n())/ax? for a variety of systems
employed in the calculations presented in different chapters. These systems include benzene, a representative

glass (BKT), air, and B-barium borate, BBO (at § = 0°,90° and 6 # 0°,90°).

B.1 Dispersion of Benzene

The dispersion curve for benzene follows the model reported by Moutzouris et al:[428]

0.02303464  0.000499485 n 0.000178796

= - 5 (B.1.1)

n(\) = \/2.170184597 + 0.00059399\2 +

The wavelengths from which this dispersion has been determined range from 450 nm to 1550nm. From Eq.

the first derivative with respect to A necessary to calculate the group velocity can be found:

0

5”0\)

11
2n())

(B.1.2)

0.04606928  0.00199794  0.001072776
<0.00118798)\— o T )

where n(}) is as calculated from Eq. The derivative of Eq. yields the second-order derivative

necessary for calculating the group velocity dispersion:

62

1
"

1
~—(0.0011
TTe (000 8798 +

0.13820784  0.0099897 0007509432\ 1 [ @ 2
- _ 2.0) @B
M X T s ) ey (aA”( )> (B.1.3)

where n(\) is again calculated according to Eq. and 9/oan(\) is calculated using Eq.

B.2 Dispersion of BK7 Glass

When the dispersion information of glass is required, BK7 is used as a representative glass. The dispersion

is determined according to the dispersion reported by Schott.! The index of refraction can be calculated:

n(\) = \/ ) 1.03961212)2 N 0.231792344)\2 N 1.01046945)\2 (B2.1)
- A2 — 0.00600069867 ' A2 — 0.0200179144 ' A2 — 103.560653 -
The first derivative of n(\) is then:
a n(\) = 11 207922424\ 2.07922424\3 N 0.463584688)\
) ~ 2n()\) \ A2 —0.00600069867 (A2 — 0.00600069867)2 ' A2 — 0.0200179144 (B.2.2)
_0.463584688\° N 2.0209389A  2.0209389\ -
(A2 —0.0200179144)2 " A2 — 103.560653 (A2 — 103.560653)2

iThe documentation and formula are available at refractiveindex.info.
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where n(\) is calculated according to Eq. The second derivative can be evaluated from Eq.

0? o) 1|1 2.07922424 10.3961212)\? N 8.31689696\*
= n(\) = - _
ON? n(A) |2 \ A2 —0.00600069867 (A2 — 0.00600069867)% = (A2 — 0.00600069867)3
0.463584688 2.31792344)\2 1.854338752\%
- + (B.2.3)
A2 —0.0200179144 (A2 —0.0200179144)2 ~ (A2 —0.0200179144)3
2.0209389 _ 10.1046945)\2 n 8.0837556 A _ é”@) 2
A2 —103.560653 (A% —103.560653)2 (A2 — 103.560653)3 O
where n(\) is again determined by Eq. and 9/aan(A) is calculated with Eq.
B.3 Dispersion of Air
The dispersion for air is derived from Ciddor.[429] The index of refraction is calculated:
0.05792105 0.00167917
n(A) =1+ + (B.3.1)

238.0185 — A72  57.362 — A2

While in calculations we will generally neglect the dispersion from air, the group velocity and group velocity

dispersion are usually still made available, using the first and second derivatives of the index:

) 0.1158421 0.00335834
) =— _ B.3.2
"N =~ 33538.0185 — AT~ 3(57.362 — A7) (B-32)

> ) = 0.3475263 . 0.4633684 001007502 0.01343336
X2 T NA(238.0185 — A=2)2 | A6(238.0185 — A—2)3 | AL(57.362 — A~2)2 | A6(57.362 — A—2)3

(B.3.3)

B.4 Dispersion of B-Barium Borate

The final material system that will be discussed is BBO. This is also the most difficult, as it is necessary
to consider the dispersion of the ordinary index of refraction, the extraordinary index of refraction, and
the effective index of refraction when the phase-matching angle is neither 0° nor 90°. Further, there are
multiple sources for dispersion formulae with subtle differences. The first two sources - Eimerl et al[287] and

Kato[288] - appear to be the most established; both use the same general formula for the dispersion of BBO:

B
= 2
n(A) \/A + X iC + DX (B.4.1)

The coefficients for an ordinary beam are A = 2.7405, B = 0.0184 pm?, C = -0.0179 pm?, and D = -0.0155
um? according to Eimerl et al and A = 2.7359, B = 0.01878 um?, C = - 0.01822 pm?, D = -0.01354 ym™
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according to Kato, while those for an extraordinary beam are A = 2.3730, B = 0.0128 ym?, C = -0.0156 pm?,
and D = -0.0044 pm™ according to Eimerl et al and A = 2.3753, B = 0.01224 ym?, C = -0.01667 pm?, and D
= -0.01516 pm™ according to Kato.[287, 288] Unfortunately, these coefficients were only determined based
upon characterization of BBO out to 1lym. However, Eimerl et al are among those that report absorption
by BBO beginning around 2 ym;[106} [208] 287] Zhang et al[208| indicate that this absorption arises from
phonon modes and causes corresponding changes to the index of refraction at these longer wavelengths.
While Lu and Liu indicate the formulae of Eimerl et al and Kato are reasonably consistent with sum-
frequency generation involving wavelengths in this region,[289] Zhang et al modeled the behavior of NIR
optical parametric processes in order to expand the model for the refractive index to incorporate higher-order

terms accounting for the phonon modes.[208] The result is a model of the form:

n= \/A + % + DX2 + EX + F)S (B.4.2)
In modeling the parametric performance of an optical parametric generator/optical parametric amplifier
system, Zhang et al found the following coefficients to be appropriate: for the ordinary refractive index, A =
2.7359, B = 0.01878 ym?, C = - 0.01822 um?, D = - 0.01471 um™2, E = 0.0006081 ym™, and F = -0.00006740
um™; and, for the extraordinary refractive index, A = 2.3753, B = 0.01224 pm?, C = -0.01667 pm?, D =
-0.01627 um™, E = 0.0005716 pm™, and F = -0.00006305 pum™.[208]

The derivation of the form in Eq. from the original dispersion formula, Eq. fortunately
causes the derivatives of Eq. and Eq. to be very similar. The first derivative of Eq. is:

) A B
N =0 {D o +0)2} (B.4.3)

while the first derivative of Eq. [B.4.2]is:

) A
"N =0 [_ (A2 +0)

5 +D+2EXN + 3F)\4} (B.4.4)

Extending these to the second derivatives yields:

0 L[ 4B (0 2
(A +C)* oA

"N =

+ —=-—n(A) (B.4.5)
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for the model employed by Kato and Eimerl et al (Eq. , Or:

for the extended model of Zhang et al (Eq. [B.4.2).
However, the derivatives 9/axn()) and 9°/ox2n(\) in Eq. and Eq. [B.4.5or Eq. [B.4.4/and Eq.

only hold for ordinary or extraordinary polarizations within the crystal, namely when the phase-matching
angle, 0, is either 0° or 90°. When the phase-matching angle is at neither 0° nor 90°, the effective index of
refraction, ng()), is determined based upon the phase-matching angle and the ordinary and extraordinary
dispersion curves, n,(A) and n.(\), respectively. The functional dependence of ng(\) upon these quantities

is:|106]

1+ tan®(6)
ng(A) = no(A)\/ T 20 o0] tan® (0) (B.4.7)

Therefore, when we evaluate the derivative, we end up with a much more complicated expression. While

the proper value of 8 will be dependent upon the wavelengths, it will be constant for a given experimental
condition; therefore, we can treat it as a constant and only consider the evaluation of the derivatives based
upon the dispersion curves of n,(A\) and n.(\). Evaluating the first derivative yields:

0 ng(\) 0 ng(\) tan?(0) ne(N) 0 0

—ne(A) — ﬁno

no(A\)n2(N)[1 + tanZ(0)] | ne(X) ON (A) (B.4.8)

where 9/aan,(\) and 9/aan.(\) are derivatives evaluated according to Eq. or Eq. with the
appropriate coefficients for the ordinary index (9/aan,(\)) or for the extraordinary index (9/aan.(A)). We

can continue with the result of Eq. to also determine the second derivative of ng(A) with respect to A:

86—;719()\) - {nob) 1ia?ar(1§za) ?()Z)gvgzm} (;A”OW) (;Aﬂe(h)>
2
et ) ()
)

+[n9<x>_ tan2(6)  nd(\) }
(20

no(A) 1+ tan?(0) n,(A)n2(A)

tan?(0) 2n3(N) En
2(5) [no<A>nz<A> ( *

(B.4.9)
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In Eq. the partial derivatives 9/aan,(\) and 9/axn. () are calculated as in Eq. The partial
derivative of ng(\), 9/axng()\), can be calculated using the result of Eq. Finally, 9*/ax2n,()\) and
9?/ox?n.()\) are the second derivatives of the ordinary and extraordinary indices, respectively, with respect
to A; these may be calculated by Eq. or [B:4.6

We will note that the results of Eq. and [B4.9)are general for any material for which the index at the
phase-matching angle, 6, is determined as in Eq. As this relationship holds for any uniaxial crystal,
the results of Eq. and Eq. can be applied to any such material. However, the appropriate forms
of the necessary derivatives - 9"/ax"nq(\), n € {1,2} and « € {o0,e} - would need to be determined. While
there are other crystals - such as lithium niobate - for which dispersion relations of the same form as
Eq. or are used, many other common crystals adopt other models for calculating the refractive

index.
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In this appendix, we present the code developed for the calculations in [Ch. 4} This code has been developed
in Python for operation on MacOS and other UNIX-based systems. There are some aspects of operation,
such as the implementation of multiprocessing, that would likely make this code unsuitable for operation
directly on Windows-based systems. The code consists of ten individual scripts, each containing a subset
of the functions and classes. These scripts have been reproduced in the sections that follow, with some
modifications for presentation.

Basic operation of this script requires several packages to be loaded, then a sequence of functions from
the other scripts to be executed. This sequence is outlined in the function basic_operation() below
which would generate a list fields that may be manipulated further. The list of “developed packages” in
the preamble are the ten scripts mentioned above. These are presented in the subsequent sections of this

appendix.

# Native python packages

import numpy as np

import matplotlib.pyplot as plt

import scipy.interpolate as inter

import multiprocessing, threading, os, itertools
# Developed python packages

import parameters, efield, algorithm, controls
import user_settings as user

import material_params as mat

import gain_formulae as gain

import plotting_routines as pltr

import phasematching as pm

import nl_crystal as nl

def basic_operation():

# Initialize user specifications and parameters

e
Il

user.user_specs()

parameters.parameters (u)

el
I
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# Modify the parameters appropriately
controls.modify_params(p)
# Initialize the fields
fields = controls.initialize(p)
# Save and plot the fields as appropriate
if p.u.save:

controls.save_output(p, fields, ’initial’)
elif p.u.show:

pltr.plot2d(fields, p, ’initial_fields’)
# Perform the numerical integration
fields = controls.drive_algorithm(p, fields)
# Save and plot the resulting fields as appropriate
if p.u.save:

controls.save_output(p, fields, ’final’)
elif p.u.show:

pltr.plot2d(fields, p, ’final_fields’)

C.1 user_settings.py

The script user_settings.py contains the definitions of two classes that provide parameters for the opera-
tion of different parts of the script. The class gain_selections defines the options available to the user for
enabling and disabling the different contributions to the gain functions. The class user_specs outlines the

various settings that define the details of the simulation to be performed.

# Native python packages
import numpy as np

import socket

import os

# Developed python packages

# (none)
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class gain_selections:

def __init__(self):

# Options for calculations within the

# slowly varying amplitude approximation:

self.sva_group_velocity = True
self.sva_GVD = True
self.sva_absorption = True

self.sva_amplification = True

self.sva_in_lab_frame = True

# Options for second order calculations

# (no longer maintained)

self.so_space_time_coupling = True

self.so_gvm = True

self.so_gvd = True
self.so_gvm_sq = True
self.so_absorption = True

self.so_amplification = True

class user_specs:

def __init__(self):

# The following adjust the material properties:

self.L. = 0.2 # material length, in cm

self .material = ’BBO (Zhang)’

# Currently supported materials:
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# Birefringent Materials:
# ’BBO (Kato)’, °’BBO (Eimerl)’, ’LiNb03’
# Isotropic Materials:
# <none>
self.phi = 0. # for a birefringent material

# the azimuthal angle in deg

# The following define the process that should be simulated:
self .parametric_process = ’parametric amplification’

# valid options are:

# ’self-phase modulation’: wuses field 1

# ’second-harmonic generation’: uses fields 1 and 2
# ’parametric amplification’: fields 1, 2, and 3

# ’sum-frequency generation’: fields 1, 2, and 3

self.process = ’Type II’
# For parametric amplification, specify the process.
# Currently only negative uniaxial crystals are

# supported, so options are:

# ’Type I’
# ’Type II’
# ’Type III’

# This is over-ridden for SHG.

# The following define the properties of the fields

# Vacuum wavelengths:

self.wavelengths = { ’1° ¢ 0.,

# field wavelengths (nm)



self.energy_conservation = 20.

# tolerance in testing energy conservation

# 10 tolerates

# 80 tolerates

# 10 tolerates

# Initial field conditions:

70.05nm for SHG

“0.05nm in error from MIR idler

70.05nm in error from a 800nm pump

self.energy = { ’1° : 0.,
’2? 0.,
’3’ 0.}
# field energies (in uJ)
self.e2_size = { ’1? 0.,
’2? 0.,
’3” : 0.}
# 1/e2 beam size (cm)
self.field_envelopes = { 1 ’Gaussian’,
127 ’Gaussian’,
3’ ’Gaussian’}

# Identifies field source

# Options are:

# ’zero’: Defines a field that evaluates to
# 0 V/m at all points in time
# ’Gaussian’: Defines a field described
# by a Gaussian intensity
# envelope
# 'file’: Uses the contents of a file to
# define the field. load_params
# must be populated.
self.Gauss_widths = { ’1° ¢ 0.,
227 : 0.,
3’ 0.}

# width of Gaussians (fs)
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self.Gauss_centers = { ’1° ¢ 0.,

’3’ 0.}
# centers of Gaussians (fs)

self.load_params = {

’1° : [’file’, [’re_column’, ’im_column’]],
’27 ¢ [’file’, [’re_column’, ’im_column’]],
’37 ¢ [’file’, [’re_column’, ’im_column’]]}

# identifies file (including subdirectories) to be

# used as the source for the field. (Untested)

self.field_phase = { ’17 2 0.,
27 . 0.,
’3” : 0.}

# pulse envelope phase (deg)
self.loaded_time_scale = 35.
# When loading fields from file, use this to

# estimate the characteristic time of the field.

The following provide optional modifications or settings to the

calculations and/or operation of the script.

The standard "main" function will only save if .save is set to True.

.save_dir identifies the desired directory.
self.save = True

self.save_dir = ’ ’

The standard "main" function will only show the results if
.show is set to True.

self.show = False

.silent limits the output to terminal during operation.

self.silent = False

225
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# .timer controls whether time stamps are printed.

self.timer = True

# .threading controls whether multiprocessing is used. .cores allows
# user-defined number of processes. If .cores is ’Default’, N-1
# processes will be initiated, where N is the cores available.
# If .limit_override = False and .cores is greater than N, ’Default’
# behavior will be used.

self.threading = True

self.cores = 0

self.limit_override = True

I
o

self.radial_samples

# .adaptive_steps controls whether the simulation is iterated over a

# fixed number of spatial steps or whether an adaptive algorithm is

# employed to use the fewest steps while ensuring accuracy.
self.adaptive_steps = False # NOT YET IMPLEMENTED

self.steps = 1000

self.modify_T_window = False

self.alt_T_window = 800. #fs

# The following allow optional modification of derived parameters:

self.slowly_varying_amp = True

# apply_contrast allows suppression of the wings of the field
# any points with magnitude less than .contrast will be set to O.
self.apply_contrast = False

self.contrast = 1.e-13

# Modify the phase matching angle
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self .modify_theta = False

self.alt_theta = 22.2

# Modify the effective nonlinearity

self .modify_chi2eff = False

self .modify_chi3eff = False

self.alt_chi2eff = 0.

self.alt_chi3eff 0.

# Modify the group velocities

self .modify_ug = False
self.alt_ug = {°1°> : 0., ’2” : 0., 3> : 0.}

# These are group velocities and cannot be set to O.

# Modify the time sampling. Default is 512 samples.
# More than “5k-7.5k is not advised; numpy broadcasting is
# used throughout the calculations, and this becomes less

# efficient around grids of “10k points.

self .modify_sampling = True

self.alt_time_samples = 128

# Simulate noncollinearity by changes in the effective

# group velocity according to .gamma.

self.noncollinear = False

self.gamma = 0.5
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C.2 parameters.py

The code in parameters.py defines a class parameters. This class takes the settings defined by the user
in an instance of user_settings.user_specs (see|§ C.1)) and manipulates them: these values are used to

define other necessary parameters and modify existing settings.

# Native python packages

import numpy as np

import matplotlib.pyplot as plt
import sys

# Non-native python packages
import user_settings as user

import material_params as mat

class parameters:

def __init__(self, user_settings):

# Locally define the user settings, and convert to MKS units
self.u = user_settings
if self.u.silent:
pass
else:
print(’Initializing parameters’)

self.user_settings_conversions()

# Initialize parameters describing the material environment

# and phase-matching process

if self.u.parametric_process == ’second-harmonic generation’ \
or self.u.parametric_process == ’parametric amplification’ \

or self.u.parametric_process == ’sum-frequency generation’:



self.m = mat.birefringent_params(self.u)

self .mat_type_marker = ’birefringent’

elif self.u.parametric_process == ’self-phase modulation’:
self.m = mat.isotropic_params(self.u)

self .mat_type_marker = ’isotropic’

else:
print (’Unsupported process. Ending process.’)

exit()

self.material_conversions()

# Identify the time-scales involved in the interacting pulses

if ’file’ in self.u.field_envelopes:
self.time_scale = min(self.u.loaded_time_scale, np.min(\
np.asarray(self.u.Gauss_widths.values()) [np.nonzero(\
self.u.Gauss_widths.values())]))
else:
self.time_scale = np.min(np.asarray(\
self.u.Gauss_widths.values()) [np.nonzero(\

self.u.CGauss_widths.values())])

# Initialize time and frequency windows. Determining the ranges

# follows the method described by Gale et al (JOSAB 1998 15(2) 702)

if self.u.modify_sampling:

self.time_samples self.u.alt_time_samples

else:

self.time_samples = 512.
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if self.u.modify_T_window:
self.T_window = self.u.alt_T_window*xle-15

else:

self.T_window ((self.time_scale)\
*np.sqrt(self.time_samples/0.44))
self.time = np.linspace(-self.T_window/2, self.T_window/2, \

self.time_samples)

self.freq_samples = self.time_samples

self.freq = np.linspace(-np.pi/abs(self.time[1]-self.time[0]), \

np.pi/abs(self.time[1]-self.time[0]),\

self.freq_samples + 1)[:-1]

self.freq_window = abs(self.freq[-1] - self.freq[0])

# Describe the TEM mode of each field

self.r_max = np.max(np.asarray(self.u.e2_size.values()))

if self.u.radial_samples == ’Default’:

self.r_samples = 15
else:
self.r_samples = self.u.radial_samples
self.r = np.linspace(0., 1.25%self.r_max, self.r_samples)
self.fluence = {}
for j in self.u.e2_size:
if self.u.e2_sizel[j] == 0:
self.fluence[j] = np.zeros(len(self.r))
else:
self.fluence[j] = (self.u.energyl[jl/((np.pi/2)\
*((0.5*self.u.e2_size[j])**2)))\
*np.exp(-2*((self.r/(0.5\

xself.u.e2_size[j]))**2))
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# Define initial position of the fields

self.z = 0.

def n(self, wavelength, field):

if self.mat_type_marker == ’birefringent’:

if self.m.polarization[field] == ’extraordinary’:

return self.m.cry.eff(wavelength, self.m.theta)

elif self.m.polarization[field] == ’ordinary’:

return self.m.cry.ord(wavelength)

elif self.mat_type_marker == ’isotropic’:
exit ()

else:
exit )

def user_settings_conversions(self):

self.c = 3.E8

# speed of light, m/s
self .hbar = 1.054571E-34

# Planck’s constant, J*s

self.u.L *= 0.01

# convert material length from cm to m



for i in self.u.Gauss_widths:
self.u.Gauss_widths[i]*=1.E-15
# convert from fs to s
self.u.Gauss_centers[i]*=1.E-15
# convert from fs to s
self.u.e2_size[i]*=0.01
# convert from cm to m
self.u.energy[i]l*=1.E-6

# convert from uJ to J

self.u.loaded_time_scale*=1.E-15

# convert from fs to s

self.cutoff = 0.

if self.u.material == ’BBO (Eimerl)’:

self.cutoff = (2*np.pi*self.c*1.e9)/13290.

elif self.u.material == ’BB0 (Kato)’:

self.cutoff = (2*np.pi*self.c*1.e9)/12500.

elif self.u.material == ’BBO (Zhang)’:
self.cutoff = (2xnp.pi*self.cx*1.e9)/5830.

elif self.u.material == ’LiNb03’:

self.cutoff = (2*np.pi*self.cx1.e9)/13400.

def material_conversions(self):

for i in self.m.ug:
self .m.ugl[i]*=1.e12
# convert mm/fs to m/s
self .m.gvd[i]l*=1.e-27
# convert fs2/mm to s2/m

self.m.chi2eff*x=1.e-12
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# convert pm/V to m/V
self.m.dk*=100.

# convert from 1/cm to 1/m

def plot_tem(self):
plt.clfQ
for j in self.fluence:
plt.plot(self.r, self.fluencel[j])

plt.show()

C.3 material_params.py

We previously referenced material_params in The classes in this script, birefringent_params
and isotropic_params, are called according to the process being simulated. At this time, it has not
been necessary to develop isotropic_params, but birefringent_params performs the calculations and

manipulations necessary to identify the phase matching angle and effective nonlinearity for the process.

# Native python packages
import math

import numpy as np

import sys

# Non-native python packages
import nl_crystal as nl

import phasematching as pm

class birefringent_params:

def __init__(self, user_sett):

self.cry = nl.NLcrystals()

self.cry.selection = user_sett.material
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# populate the local wavelength and field property dictionaries

self.def_mask(user_sett)

# redefine the keys to match internal notation

for i in [user_sett.wavelengths, user_sett.energy, user_sett.e2_size,\
user_sett.field_envelopes, user_sett.Gauss_widths,\
user_sett.Gauss_centers, user_sett.load_params, \
user_sett.field_phase]:
for j in self.mask:

i[j] = i.pop(self.mask[j])

ini_keys = i.keysQ

for j in ini_keys:
if j in self.mask:
pass
else:

i.pop(j,None)

self.chi3eff = 0.

if user_sett.parametric_process == ’second-harmonic generation’:

self.shg_pm(user_sett)

elif user_sett.parametric_process == ’parametric amplification’ \
or user_sett.parametric_process == ’sum-frequency generation’:
if user_sett.process == ’Type I’:

self.type_one_pm(user_sett)
elif user_sett.process == ’Type II’:

self.type_two_pm(user_sett)
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elif user_sett.process == ’Type III’:
self.type_three_pm(user_sett)
else:
print (’Unsupported process requested. Ending script.’)

exit()

return

def shg_pm(self, u):
if math.isnan(pm.type_one(self.cry, u.wavelengths[’SHG’],\
u.wavelengths[’Fundamental’])):
print (’No phase matching angle is available.\
Setting theta to 90deg.’)

self.theta

90.

else:

self.theta

pm.type_one(self.cry, u.wavelengths[’SHG’], \

u.wavelengths [’Fundamental’])

self.ug = {
’Fundamental’ : self.cry.ord_vg(u.wavelengths[’Fundamental’]),
’SHG’ : self.cry.ex_vg(u.wavelengths[’SHG’], self.theta)}
self.gvd = {
’Fundamental’ : self.cry.ord_gvd(u.wavelengths[’Fundamental’]),
’SHG’ : self.cry.ex_gvd(u.wavelengths[’SHG’], self.theta)}
self.rho = {
’Fundamental’ : O,
’SHG’> : (180/np.pi)*np.arctan((((self.cry.ord(\
u.wavelengths [?SHG’]))*x2)\
/((self.cry.ex(u.wavelengths [?SHG’]))**2))\
*np.tan((np.pi/180) *self.theta)) - self.thetal}
self.dk = pm.type_one_mismatch(self.cry, u.wavelengths[’SHG’], \

u.wavelengths [’Fundamental’], self.theta)

self.chi2eff = 2*self.cry.deff(self.theta, u.phi, ’Type I’)
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return

def type_one_pm(self, u):
if math.isnan(pm.type_one(self.cry, u.wavelengths[’Pump’],\
u.wavelengths[’Signal’])):
print (’No phase matching angle is available.\

Setting theta to 90deg.’)

self.theta = 90.
else:
self.theta = pm.type_one(self.cry, u.wavelengths[’Pump’],\
u.wavelengths[’Signal’])
self.ug = {
’Pump’ : self.cry.ex_vg(u.wavelengths[’Pump’], self.theta),
’Signal’ : self.cry.ord_vg(u.wavelengths[’Signal’]),
’Idler’ : self.cry.ord_vg(u.wavelengths[’Idler’])}
self.gvd = {

’Pump’ : self.cry.ex_gvd(u.wavelengths[’Pump’], self.theta),

’Signal’ : self.cry.ord_gvd(u.wavelengths[’Signal’]),

’Idler’ : self.cry.ord_gvd(u.wavelengths[’Idler’])}

if u.noncollinear:

self.rho = {

’Pump’ : (180/np.pi)#*np.arctan((((self.cry.ord(\
u.wavelengths [’Pump’]))**2)\
/((self.cry.ex(u.wavelengths [’Pump’]))**2))\
*np.tan((np.pi/180)*self.theta)) - self.theta,

’Signal’ : O.,

’Idler’ : 0.}

self.dk = pm.type_one_mismatch(self.cry, u.wavelengths[’Pump’],\
u.wavelengths[’Signal’], self.theta)

self.chi2eff = 2*self.cry.deff(self.theta, u.phi, ’Type I’)
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return

def type_two_pm(self, u):
if math.isnan(pm.type_two(self.cry, u.wavelengths[’Pump’],\
u.wavelengths[’Signal’])):
print (’No phase matching angle is available.\

Setting theta to 90deg.’)

self.theta = 90.
else:
self.theta = pm.type_two(self.cry, u.wavelengths[’Pump’],\
u.wavelengths[’Signal’])
self.ug = {
’Pump’ : self.cry.ex_vg(u.wavelengths[’Pump’], self.theta),
’Signal’ : self.cry.ord_vg(u.wavelengths[’Signal’]),
>Idler’ : self.cry.ex_vg(u.wavelengths[’Idler’], self.theta)}
self.gvd = {

’Pump’ : self.cry.ex_gvd(u.wavelengths[’Pump’], self.theta),

’Signal’ : self.cry.ord_gvd(u.wavelengths[’Signal’]),

’Idler’ : self.cry.ex_gvd(u.wavelengths[’Idler’], self.theta)}

if u.noncollinear:

self.rho = {

’Pump’ : (180/np.pi)#*np.arctan((((self.cry.ord(\
u.wavelengths [’Pump’]))**2) /((self.cry.ex(\
u.wavelengths [’Pump’]))**2))*np.tan((np.pi\
/180) *self.theta)) - self.theta,

’Signal’ : O.,

’Idler’ : (180/np.pi)*np.arctan((((self.cry.ord(\
u.wavelengths[’Idler’]))**2)/((self.cry.ex(\
u.wavelengths[’Idler’]))**2))*np.tan((np.pi\
/180) *self .theta)) - self.thetal}

self.dk = pm.type_two_mismatch(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’], self.theta)
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self.chi2eff = 2*self.cry.deff(self.theta, u.phi, ’Type II’)

return

def type_three_pm(self, u):
if math.isnan(pm.type_three(self.cry, u.wavelengths[’Pump’],\
u.wavelengths[’Signal’])):
print (°’No phase matching angle is available.\

Setting theta to 90deg.’)

self.theta = 90.

else:
self.theta = pm.type_three(self.cry, u.wavelengths[’Pump’],\

u.wavelengths[’Signal’])

self.ug = {
’Pump’ : self.cry.ex_vg(u.wavelengths[’Pump’], self.theta),
’Signal’ : self.cry.ex_vg(u.wavelengths[’Signal’], self.theta),
’Idler’ : self.cry.ord(u.wavelengths[’Idler’])}

self.gvd = {

’Pump’ : self.cry.ex_gvd(u.wavelengths[’Pump’], self.theta),
’Signal’ : self.cry.ex_gvd(u.wavelengths[’Signal’], self.theta),
>Idler’ : self.cry.ord_gvd(u.wavelengths[’Idler’])}

if u.noncollinear:

self.rho = {

’Pump’ : (180/np.pi)#*np.arctan((((self.cry.ord(\
u.wavelengths [’Pump’]))*%*2) /((self.cry.ex(\
u.wavelengths [’Pump’]))**2))*np.tan((np.pi\
/180) *self.theta)) - self.theta,

’Signal’ : (180/np.pi)*np.arctan((((self.cry.ord(\
u.wavelengths[’Signal’]))**2)/((self.cry.ex(\
u.wavelengths[’Signal’]))**2))#*np.tan((np.pi\
/180) *self.theta)) - self.theta,

’Idler’ : 0.}
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self.dk = pm.type_three_mismatch(self.cry, u.wavelengths[’Pump’],\
u.wavelengths[’Signal’], self.theta)

self.chi2eff = 2xself.cry.deff(self.theta, u.phi, ’Type III’)

def def_mask(self, u):

if u.parametric_process == ’second-harmonic generation’:
if abs(u.wavelengths[’1’] - 2xu.wavelengths[’2°])\
*x180. < u.energy_conservation \
or abs(u.wavelengths[’2’] - 2*u.wavelengths[’1°])\

*180. < u.energy_conservation:

pass

else:
print (°’The chosen colors exceed the specified tolerance \
for energy conservation.’)

exit ()

if u.wavelengths[’1’] < u.wavelengths[’2’]:

# Field 2 is the fundamental and Field 1 is the SHG

self .mask = {
’Fundamental’ : ’2°,
’SHG’ : ’1°}
elif u.wavelengths[’2’] < u.wavelengths[’1’]:
# Field 1 is the fundamental and Field 2 is the SHG

self .mask = {

’Fundamental’ : ’1°,
’SHG®> : ’2°}
if u.material == ’BBO (Kato)’ or u.material == ’BB0O (Eimerl)’ \

or u.material == ’LiNb03’ or u.material == ’BB0O (Zhang)’:
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self.polarization = {

’Fundamental’ : ’ordinary’,
’SHG’ : ’extraordinary’}
else:
print (’Will not be able to calculate phase matching for\
the selected material. Ending script.’)
sys.exit ()
elif u.parametric_process == ’parametric amplification’ \
or u.parametric_process == ’sum-frequency generation’:
if u.wavelengths[’1’] == 0 or u.wavelengths[’2’] == 0 \

or u.wavelengths[’3’] ==
print (’Cannot run parametric amplification with a field\
with zero wavelength. Ending script.’)

exit ()

if u.wavelengths[’1’] < u.wavelengths[’2’] and\

u.wavelengths[’1’] < u.wavelengths[’3’]:

# Field 1 is the pump

if abs((1E9/u.wavelengths[’1’])-(1E9/u.wavelengths[’2°])\

-(1E9/u.wavelengths[’3’]))<u.energy_conservation:

pass

else:

print (’The chosen colors exceed the specified\

tolerance for energy conservation.’)
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exit()

if u.wavelengths[’2’] < u.wavelengths[’3’] or\

u.wavelengths[’2’] == u.wavelengths[’3’]:

# Field 2 is the signal and Field 3 is the idler
self .mask = {
’Pump’ : ’1’,
’Signal’ : ’27,
’Idler’ : ’3°}
elif u.wavelengths[’3’] < u.wavelengths[’2’]:
# Field 3 is the signal and Field 2 is the idler
self .mask = {
’Pump’ : ’1°,
’Signal’ : ’37,
’Idler’ : ’2°}
elif u.wavelengths[’2’] < u.wavelengths[’1’] and\

u.wavelengths[’2’] < u.wavelengths[’3’]:

# Field 2 is the pump

if abs((1E9/u.wavelengths[’2°])-(1E9/u.wavelengths[’1°])\
-(1E9/u.wavelengths[’3°]))<u.energy_conservation:
pass
else:
print (’The chosen colors exceed the specified\
tolerance for energy conservation.’)

exit()

if u.wavelengths[’1’] < u.wavelengths[’3’] or \

u.wavelengths[’1’] == u.wavelengths[’3’]:
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# Field 1 is the signal and Field 3 is the idler

self.mask = {
JPump7 : 72),
’Signal’ : ’1°,

’Idler’ : ’3’}

elif u.wavelengths[’3’] < u.wavelengths[’1’]:
# Field 3 is the signal and Field 1 is the idler
self .mask = {
’Pump’ : ’2°,
’Signal’ : ’3°,
’Idler’ : °1°}
elif u.wavelengths[’3’] < u.wavelengths[’1’] and\

u.wavelengths[’3’] < u.wavelengths[’2’]:

# Field 3 is the pump

if abs((1E9/u.wavelengths[’3°])-(1E9/u.wavelengths[’2°])\

-(1E9/u.wavelengths[’1°]))<u.energy_conservation:
pass
else:

print (’The chosen colors exceed the specified\

tolerance for energy conservation.’)

exit()

if u.wavelengths[’1’] < u.wavelengths[’2’] or \

u.wavelengths[’1’] == u.wavelengths[’2’]:

# Field 1 is the signal and Field 2 is the idler
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self.mask = {
’Pump’ : 237,
’Signal’ : ’1°,
’Idler’ : ’2°}

elif u.wavelengths[’2’] < u.wavelengths[’1’]:

# Field 2 is the signal and Field 1 is the idler

self.mask = {
JPump7 : 73)’
’Signal’ : ’2’,

’Idler’ : ’1°}

if u.process == ’Type I’:

self.polarization = {
’Pump’ : ’extraordinary’,
’Signal’ : ’ordinary’,

>Idler’ : ’ordinary’}

elif u.process == ’Type II’:

self.polarization = {

’Pump’ : ’extraordinary’,

’Signal’ : ’ordinary’,

’Idler’ : ’extraordinary’}

elif u.process == ’Type III’:

self.polarization = {

’Pump’ : ’extraordinary’,
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’Signal’ : ’extraordinary’,

’Idler’ : ’ordinary’}

return

class isotropic_params:

def __init__(self, user_sett):

print (’Sorry, this hasn\’t been developed yet. Exiting...’)

exit()

C.4 nl_crystal.py

In the code references two non-native Python scripts: phasematching.py and nl_crystal.py. Here,
we present the latter (nl_crystal.py), as the class this script contains (NLcrystals) is also referenced
by phasematching.py . The class of nl_crystal.py (NL_crystals) contains the optical properties
of a variety of nonlinear crystals and performs the calculations necessary to determine the index, group
velocity, and group velocity dispersion for both ordinary and extraordinary polarizations and the effective

nonlinearity.

# Native python packages
import numpy as np
# Non-native python packages

# (none)

class NLcrystals:
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selection = ’LiNb03’

process = ’Type I’

def available_crystals(self):
print (’\’LiNb03\’, \’BBO (Kato)\’, \’BBO (Eimerl)\’,\

\’BB0 (Zhang)\’, \’AgGasS2\’, \’AgGaSe2\’’)

def available_processes(self):

print (°’\’Type I\’, \’Type II\’, \’Type III\’’)

def Selmeier(self, ex_or_ord):

# LiNbO3 Selmeier coefficients from Lambda Photometrics data
# coefficients from refractiveindex.info did not give correct performance

# format of Selmeier equation for these coefficients consistent with BBO

if self.selection == ’LiNb03’:
if ex_or_ord == ’extraordinary’:
return [4.582, 0.099169, -0.044432, -0.02195]
if ex_or_ord == ’ordinary’:

return [4.9048, 0.11768, -0.0475, -0.027169]

if self.selection == ’BBO (Kato)’:
if ex_or_ord == ’extraordinary’:
return [2.3753, 0.01224, -0.01667, -0.01516]
elif ex_or_ord == ’ordinary’:

return [2.7359, 0.01878, -0.01822, -0.01354]

if self.selection == ’BB0 (Eimerl)’:
if ex_or_ord == ’extraordinary’:
return [2.3730, 0.0128, -0.0156, -0.0044]

elif ex_or_ord == ’ordinary’:
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return [2.7405, 0.0184, -0.0179, -0.0155]

if self.selection == ’BB0 (Zhang)’:
if ex_or_ord == ’extraordinary’:
[2.3753, 0.01224, -0.01667, -0.01627,\

return
0.0005716, -0.00006305]

== ’ordinary’:
[2.7359, 0.01878, -0.01822, -0.01471,\
0.0006081, -0.00006740]

elif ex_or_ord

return

if self.selection == ’AgGaS2’:
== ’extraordinary’:

if ex_or_or
.5873, 1.9533, -0.11066, 2.3391, -1030.7]

return [3

== ’ordinary’:

elif ex_or_ord =
return [3.3970, 2.3982, -0.09311, 2.1640, -950]

if self.selection == ’AgGaSe2’:
if ex_or_ord == ’extraordinary’:

return [3.3132, 3.3616, -(0.38201%0.38201),\

1.7677, -1600]

== ’ordinary’:

elif ex_or_ord ==
return [3.9362, 2.9113, -(0.38821*%0.38821),\

1.7954, -1600]

def ord(self, wavelength):

Sel = self.Selmeier(’ordinary’)

1 = wavelength/1000.

if self.selection == ’LiNb03’ or self.selection == ’BB0 (Kato)’\

or self.selection == ’BBO (Eimerl)’:
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return np.sqrt(Sel[0]+(Sel[1]/(1*1+Sel[2]))+(Sel[3]*1%1))
if self.selection == ’AgGaS2’ or self.selection == ’AgGaSe2’:
return np.sqrt(Sel[0] + ((Sel[1]*1x1)/(1*1+Sell[2])) \
+ ((Sel[3]*1%1)/(1*1+Sel[4]1)))
if self.selection == ’BB0 (Zhang)’:
return np.sqrt(Sel[0] + (Sel[1]/(1*1 + Sel[2])) + (Sel[3]*1x1) \

+ (Sel[4]*1*x1*x1*1) + (Sel[5]*1*1*1*x1*x1*x1))

def ex(self, wavelength):

Sel = self.Selmeier(’extraordinary’)

1 = wavelength/1000.

if self.selection == ’LiNb03’ or self.selection == ’BBO (Kato)’ \
or self.selection == ’BB0O (Eimerl)’:
return np.sqrt(Sel[0]+(Sel[1]/(1*1+Sel[2]))+(Sel[3]*1%1))
if self.selection == ’AgGaS2’ or self.selection == ’AgGaSe2’:
return np.sqrt(Sel[0] + ((Sel[1]*1%1)/(1x1+Sel[2])) \
+ ((Sel[3]*1x1)/(1x1+Sel[4])))
if self.selection == ’BBO (Zhang)’:
return np.sqrt(Sel[0] + (Sel[1]/(1*1 + Sel[2])) + (Sel[3]1*1x1) \

+ (Sel[4]*1x1x1x1) + (Sel[5]*1*1*1x1x1x1))

def eff(self, wavelength, theta):

no = self.ord(wavelength)

ne = self.ex(wavelength)

q = (np.pi/180)*theta

return no*np.sqrt((1+np.tan(q)*np.tan(q))/(1 \

+ ((no*no)/(ne*ne))*np.tan(q)*np.tan(q)))
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def ord_vg(self, wavelength):

if self.selection == ’LiNb03’ or self.selection == ’BBO0 (Kato)’ \
or self.selection == ’BBO (Eimerl)’ \
or self.selection == ’BB0O (Zhang)’:
c = 3E10 #cm/s
n = self.ord(wavelength)

'_l
]

wavelength/1000.

Sel = self.Selmeier(’ordinary’)

if self.selection == ’LiNb03’ or self.selection == ’BB0 (Kato)’ \
or self.selection == ’BB0 (Eimerl)’:
B = Sell1]
C = Sell2]
D = Sell3]

dndl = (1/n)*(D-(B/((1*1+C)*(1*1+C))))

elif self.selection == ’BBO (Zhang)’:
B = Sell[1]
C = Sel[2]
D = Sel[3]
E = Sell[4]
F = Sell[5]

dndl = (1/n)*(D+2*E+x1*1+3*F*1*1+1%1\

- (B/ ((1%1+C)* (1%1+C))))

return c*(1E-14)*(1/(n-1*dndl)) # in mm/fs
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def ex_vg(self, wavelength, theta):

if theta == 90 or theta ==

if theta == 90:

if self.selection == ’LiNb03’ \
or self.selection == ’BBO (Kato)’ \
or self.selection == ’BBO (Eimerl)’ \
or self.selection == ’BBO (Zhang)’:
c = 3E10 #cm/s
n = self.ex(wavelength)
1 = wavelength/1000.

Sel = self.Selmeier(’extraordinary’)

if self.selection == ’LiNb03’ \
or self.selection == ’BBO (Kato)’\
or self.selection == ’BB0O (Eimerl)’:
B = Sel[1]
C = Sel[2]
D = Sell[3]

dndl = (1/n)*(D-(B/((1*1+C)*(1*1+C))))

elif self.selection == ’BBO (Zhang)’:
B = Sel[1]
C = Sell[2]
D = Sel[3]
E = Sel[4]
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F = Sel[5]

dndl = (1/n)*(D + 2*E*1*1 + 3*F*1+1%1x1 \

- (B/((1*1 + C)*(1x1 + C))))

return c*(1E-14)*(1/(n-1*dndl))

# in mm/fs

elif theta ==

return self.ord_vg(wavelength)

else:
if self.selection == ’LiNb03’ or self.selection == ’BBO (Kato)’ \
or self.selection == ’BBO (Eimerl)’ \
or self.selection == ’BBO (Zhang)’:

q = (np.pi/180)*theta

c = 3E10 #cm/s

no = self.ord(wavelength)

ne = self.ex(wavelength)

n = no*np.sqrt(((1+np.power (np.tan(q),2))/(1\
+np.power (((no/ne)*np.tan(q)),2))))

1 = wavelength/1000

Sel_ord = self.Selmeier(’ordinary’)

Sel_ex = self.Selmeier(’extraordinary’)

if self.selection == ’LiNb03’ \
or self.selection == ’BBO (Kato)’\
or self.selection == ’BBO (Eimerl)’:
Bo = Sel_ord[1]
Co = Sel_ord[2]
Do = Sel_ord[3]
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Be = Sel_ex[1]

Ce = Sel_ex[2]

De = Sel_ex[3]

dnedl = (1/ne)*(De-(Be/((1%1+Ce)*(1%1+Ce))))

dnodl = (1/no)*(Do-(Bo/ ((1%1+Co)*(1%1+Co))))
elif self.selection == ’BBO0 (Zhang)’:

Bo = Sel_ord[1]
Co = Sel_ord[2]
Do = Sel_ord[3]
Eo = Sel_ord[4]
Fo = Sel_ord[5]
Be = Sel_ex[1]
Ce = Sel_ex[2]
De = Sel_ex[3]
Ee = Sel_ex[4]

Fe = Sel_ex[5]

dnodl = (1/no)*(Do + 2%Eox1x1 + 3%Fox1x1x1x1 \
- (Bo/((1*1 + Co)*(1*1 + Co))))
dnedl = (1/ne)*(De + 2*xEe*x1*x]1 + 3*Fexl*x1x1x1 \

- (Be/((1*1 + Ce)*(1*x1 + Ce))))

dndl = (n/no)*dnodl \

+ ((n*%3)/(no*ne*ne))*(((np.tan(q))**2)/(1\

+((np.tan(q))**2)))*((dnodl) - ((no*dnedl)/(ne)))

return c*(1E-14)*(1/(n-1*dndl)) # in mm/fs

def ord_gvd(self, wavelength):
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if self.selection == ’LiNb03’ or self.selection == ’BB0O (Kato)’ \
or self.selection == ’BBO (Eimerl)’ \

or self.selection == ’BB0O (Zhang)’:

c = 3E10 #cm/s
n = self.ord(wavelength)
1 = wavelength/1000.

Sel = self.Selmeier(’ordinary’)

if self.selection == ’LiNb03’ or self.selection == ’BB0 (Kato)’\

or self.selection == ’BB0O (Eimerl)’:

B = Sel[1]
C = Sel[2]
D = Sell3]

dndl = (1/n)*(D-(B/((1*1+C)*(1*1+C))))
d2ndl2 = (dndl/1) - (((dndl)**2)/n) \

+ ((4.%1%1%B)/ (n* ((1*1+C)**3)))

elif self.selection == ’BBO (Zhang)’:
B = Sell[1]
C = Sel[2]
D = Sel[3]
E = Sell[4]
F = Sell[5]

dndl = (1/n)*(D + 2*E*x1*1 + 3*F*1*1x1x1 \
- (B/((1*1 + C)*(1x1 + C))))
d2ndl2 = (dndl/1) - ((dndl**2)/n) + ((4.*1*1)/n)\

*(E + 3.*%F*1*x1 + (B/((1*1+C)**3)))
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return ((1*%3)/(2#np.pi*c*c))*d2nd12+*(1.E25) # in fs2/mm

def ex_gvd(self, wavelength, theta):

if theta == 90 or theta ==

if theta ==

return self.ord_gvd(self, wavelength)

if theta == 90:

if self.selection == ’LiNb03’ \
or self.selection == ’BBO (Kato)’ \
or self.selection == ’BBO (Eimerl)’ \
or self.selection == ’BBO (Zhang)’:
c = 3E10 #cm/s
n = self.ex(wavelength)
1 = wavelength/1000.

Sel = self.Selmeier(’extraordinary’)

if self.selection == ’LiNb03’ \

or self.selection == ’BBO (Kato)’ \

or self.selection ’BBO (Eimerl)’:

B = Sel[1]
C = Sel[2]
D = Sel[3]

dndl = (1/n)*(D-(B/((1*1+C)*(1*1+C))))
d2ndl2 = (dndl/1) - (((dndl)**2)/n) \

+ ((4.%1%1*B)/ (n* ((1*1+C)*%*3)))
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elif self.selection == ’BBO (Zhang)’:
B = Sell[1]
C = Sell2]
D = Sell3]
E = Sell4]
F = Sel[5]

dndl = (1/n)*(D + 2*Ex1*1 + 3*F*l*1x1*1 \
- (B/((1*1 + C)*x(1x1 + C))))
d2ndl2 = (dndl/1) - ((dndl**2)/n) \
+ ((4.%x1x1)/n)*(E + 3.*Fx1*1 \

+ (B/((1*1+C)*%*3)))

return ((1**3)/(2%np.pi*c*c))*d2nd12x*(1.E25)

# in fs2/mm
else:
if self.selection == ’LiNb03’ or self.selection == ’BB0 (Kato)’\
or self.selection == ’BB0O (Eimerl)’\

or self.selection ’BBO (Zhang)’:
q = (np.pi/180)*theta

c = 3E10 #cm/s

no = self.ord(wavelength)

ne = self.ex(wavelength)
n = no*np.sqrt(((1+np.power (np.tan(q),2))/(1\

+np . power (((no/ne)*np.tan(q)),2))))
1 = wavelength/1000

Sel_ord = self.Selmeier(’ordinary’)

Sel_ex = self.Selmeier(’extraordinary’)
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if self.selection == ’LiNb03’ \
or self.selection == ’BB0O (Kato)’\
or self.selection == ’BBO (Eimerl)’:

Bo = Sel_ord[1]
Co = Sel_ord[2]
Do = Sel_ord[3]
Be = Sel_ex[1]
Ce = Sel_ex[2]

De = Sel_ex[3]

dnedl = (1/ne)*(De-(Be/((1¥1+Ce)*(1x1+Ce))))
d2nedl2 = (dnedl/1) - (((dnedl)*#2)/ne) \

+ ((4.%1x1%Be)/(ne*((1¥1+Ce)**3)))
dnodl = (1/mno)*(Do-(Bo/ ((1*1+Co)*(1*1+Co))))
d2nod12 = (dnodl/1) - (((dnodl)#*#*2)/no) \

+ ((4.%1%1%Bo)/(no*((1*1+Co)*%*3)))

elif self.selection == ’BBO (Zhang)’:

Bo = Sel_ord[1]
Co = Sel_ord[2]
Do = Sel_ord[3]
Eo = Sel_ord[4]
Fo = Sel_ord[5]
Be = Sel_ex[1]
Ce = Sel_ex[2]
De = Sel_ex[3]
Ee = Sel_ex[4]

Fe = Sel_ex[5]

dnedl = (1/ne)*(De + 2*Eex1x1 + 3*Fex1x1*1*1\
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- (Be/((1%1 + Ce)*(1*1 + Ce))))
d2nedl2 = (dnedl/1) - ((dnedl**2)/ne) \

+ ((4.%1x1)/ne)*(Ee + 3.*Fe*x1x1\

+ (Be/((1%1+Ce)**3)))
dnodl = (1/no)*(Do + 2*Eo*1*1l + 3*Fo*1*1x1*1\

- (Bo/((1*1 + Co)*(1*1 + Co))))
d2nodl2 = (dnodl/1) - ((dnodl**2)/no) \

+ ((4.%1x1)/no)*(Eo + 3.*Fo*1*1\

+ (Bo/((1#1+Co)**3)))

dndl = (n/no)#*dnodl + ((n**3)/(no*ne*ne))\
*(((np.tan(q))**2)/(1.+((np.tan(q))**2)))\
*((dnodl) - ((no*dnedl)/(me)))

# Because of the length of the expression, the

# calculation of d2ndl2 is broken into pieces

A = ((1/no) - (((np.tan(g))**2)/(1.+((np.tan(g))**¥2)))\
* ((3.*n*n)/(no*ne*ne)) ) * (dnodl) * (dndl)

B = ((n/no) - (((np.tan(q))**2)/(1.+((np.tan(q))**2)))\
* ((n*n*n) / (no*ne*ne) ) ) * (d2nod12)

C = -((n/(no*no)) - (((np.tan(q))**2)/(1\

+((np.tan(q))**2)))*((n*n*n)/(no*no*ne*ne)))\
*(dnodl) * (dnodl)
# D, E, F, and G need to be multiplied

# by the factor tan2/1+tan2

D = ((2.#*n*n*n)/(no*ne*ne*ne))*(dnodl)* (dnedl)
E = ((3.#n*n)/(ne*nex*ne))*(dnedl)*(dndl)

F = - ((3.*n*n*n)/(ne**4))*((dnedl)**2)

G = ((n*n#*n)/(ne*ne*ne))*(d2nedl2)

d2ndl2 = A + B + C \
+ ((((np.tan(q))**2)/(1+((np.tan(q))**2)))\

*(D+E+F + G))
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return ((1#%3)/(2*np.pi*c*c))*d2nd12x(1.E25)

# in fs2/mm
def deff(self, theta, phi, process):
if self.selection == ’LiNb03’ or self.selection == ’BB0 (Kato)’\
or self.selection == ’BB0O (Eimerl)’ \

or self.selection == ’BBO (Zhang)’:

if self.selection == ’LiNb03’:

d22 = 2.4
d31 = -4.52

elif self.selection == ’BBO (Kato)’ \
or self.selection == ’BB0O (Eimerl)’\
or self.selection == ’BBO (Zhang)’:
d22 = 2.3
d31 = -0.16

if process == ’Type I’:

return abs(d31*np.sin((np.pi/180)*theta)\
-d22*np.cos((np.pi/180) *theta)\

*np.sin(3*(np.pi/180)*phi))

elif process == ’Type II’ or process == ’Type III’:

return abs(d22*np.cos((np.pi/180)*theta)\

*np.cos((np.pi/180) *theta)\

*np.cos(3*(np.pi/180)*phi))

else:
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return

C.5 phasematching.py

The other non-native script called by material_params.py is presented here. Note that while it is not
listed as a dependency, phasematching.py does require nl_crystal.py, as the functions phasematching.py

contains require an object of class NLcrystals.

# Native python packages
import numpy as np
# Non-native python packages

# (none)

# phase matching calculation for e --> oo

# requires:

# - an object of Class nl_crystal.NLcrystals (crystal)
# - two floats (pump and signal)

def type_one(crystal, pump, signal):

idler = 1/((1/pump) - (1/signal))

wp = 2*np.pi*3E17*(1/pump)
ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

nop = crystal.ord (pump)

nep = crystal.ex(pump)
ns = crystal.ord(signal)

ni = crystal.ord(idler)

return (180/np.pi)\
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*np.arccos (np.sqrt ((1/(nep*nep-nop+*nop))\

* (np . power (((wp*nop*nep) / (ni*wi+ns*ws) ) ,2)-nop*nop)))

# phase matching calculation for e --> oe

# requires:

# - an object of Class nl_crystal.NLcrystals (crystal)
# - two floats (pump and signal)

def type_two(crystal, pump, signal):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2xnp.pi*3E17*(1/signal)

wi = 2xnp.pi*3E17x(1/idler)
nop = crystal.ord (pump)

nep = crystal.ex(pump)

ns = crystal.ord(signal)
noi = crystal.ord(idler)

nei = crystal.ex(idler)

A = np.power (ns*ns*ws*ws* (nei*nei-noi*noi) * (nep*nep-nop*nop) ,2)

B = 2x((np.power (ns*ns*ws*ws*nop,2)\
-np.power (wp*ns*ws*nop#*nep, 2) ) * (nep*nep-nop*nop) \
*(nei*nei-noi*noi)*(nei*nei-noi*noi)+(np.power (ns*ns*ws*xws*noi,2)\
-np.power (ns*ws*wi*noi*nei,2))*(nei*nei-noi*noi)\

* (nep*nep-nop*nop) * (nep*nep-nop*nop))

C = ((np.power (wp*nop*nep,4)+np.power (ns*ws*nop,4)\
-2*np . power (Wp*ns*ws*nop*nop*nep,2) ) * (nei*nei-noi*noi)\

* (nei*nei-noi*noi))+((np.power (wi*nei*noi,4)+np.power (ns*ws*noi,4)\
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-2*np.power (ns*ws*wiknoi*noi*nei,2))*(nep*nep-nop*nop) \
* (nep*nep-nop*nop) ) +((4*np. power (ns*ns*ws*xws*noi*nop,2)\
-2*np.power (wi*wp*nop*nep*noi*nei,2)\

-4*np . power (wp*ns*ws*nop*nep*noi,2)\

-4*np.power (ns*ws*wiknoi*nei*nop,2))\

* (nep*nep-nop*nop) * (nei*nei-noi*noi))

D = ((2*np.power (wp*nop*nep,4)*noi*noi\
+2*np . power (ns*ws*nop,4) *noi*noi\
-2*np . power (Wi*wp*nop*nep*noi*nei*nop,2)\
-4*np . power (Wp*ns*ws*nop*nep*noi*nop,2)\
-2*np.power (ns*ws*wiknoi*nei*nop*nop,2))*(nei*nei-noi*noi))\
+((2*np.power (wi*nei*noi,4)*nop*nop\
+2*np . power (ns*ws*noi,4)*nop*nop\
-2*np . power (Wikwp*nop*nep*noi*nei*noi,2)\
—-2*np . power (Wp*ns*ws*nop*nep*noi*noi,2)\

-4*np.power (ns*ws*wi*noi*nei*nop#*noi,?2))*(nep*nep-nop*nop) )

E = np.power (noi*wp*nop#*nep,4)+np.power (wi*nei*noi*nop,4)\
+np . power (ns*ws*noi*nop,4)\
-2xnp . power (Wi*wp*nop*nep*noi*nei*nop*noi,2)\
-2*np . power (Wp*ns*ws*nop*nep*nop*noi*noi,2)\

—-2#*np. power (ns*ws*wi*noi*nei*noi*nop*nop,2)
roots = np.roots([A,B,C,D,E])
for i in roots:
if i.imag ==
if 0<= i.real <= 1:

return (180/np.pi)*np.arccos(np.sqrt(i.real))

# phase matching calculation for e -—> eo
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# requires:
# - an object of Class nl_crystal.NLcrystals (crystal)
# - two floats (pump and signal)

def type_three(crystal, pump, signal):

idler = 1/((1/pump)-(1/signal))

return type_two(crystal, pump, idler)

# the following return the phase mismatch (in cm-1) for

# the given process at a given crystal angle

# all require:

# - an object of Class nl_crystal.NLcrystals (crystal)

# - three floats (pump, signal, and theta)

# Type I: e --> oo

def type_one_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2#np.pi*3E17*(1/pump)
ws = 2#np.pi*3E17*(1/signal)
wi = 2*np.pi*3E17*(1/idler)
nop = crystal.ord(pump)

nep = crystal.ex(pump)

ns = crystal.ord(signal)

ni = crystal.ord(idler)

npu = np.sqrt(1/((np.power (((np.sin((np.pi/180)*theta))/nep),2))\
+(np.power (((np.cos((np.pi/180)*theta))/nop),2))))

return np.abs((npurwp-ns*ws-ni*wi)*(1/(3E10)))
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# Type II: e ——> oe

def type_two_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

nop = crystal.ord(pump)

nep = crystal.ex(pump)

ns = crystal.ord(signal)

noi = crystal.ord(idler)

nei = crystal.ex(idler)

npu = np.sqrt(1/((np.power (((np.sin((np.pi/180)*theta))/nep),2))\

+(np.power (((np.cos((np.pi/180)*theta))/nop),2))))
ni = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nei),2))\
+(np.power (((np.cos((np.pi/180)*theta))/noi),2))))

return np.abs((npu*wp-ns*ws-ni*xwi)*(1/(3E10)))

# Type III: e ——> eo

def type_three_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)
ws = 2*np.pi*3E17*(1/signal)

wi = 2%np.pi*3E17*(1/idler)
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nop = crystal.ord(pump)

nep = crystal.ex(pump)

ni = crystal.ord(idler)

nos = crystal.ord(signal)

nes = crystal.ex(signal)

npu = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nep),2))\

+(np.power (((np.cos((np.pi/180)*theta)) /nop),2))))
ns = np.sqrt(1/((np.power (((np.sin((np.pi/180)*theta))/nes),2))\
+(np.power (((np.cos((np.pi/180)*theta))/nos),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

# Type IV: e ——> ee

def type_four_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)
ws = 2#np.pi*3E17*(1/signal)
wi = 2#np.pi*3E17*(1/idler)

nop = crystal.ord(pump)
nep = crystal.ex(pump)
noi = crystal.ord(idler)
nei = crystal.ex(idler)
nos = crystal.ord(signal)

nes = crystal.ex(signal)

npu = np.sqrt(1/((np.power (((np.sin((np.pi/180)*theta))/nep),2))\
+(np.power (((np.cos((np.pi/180)*theta)) /nop),2))))

ns = np.sqrt(1/((np.power (((np.sin((np.pi/180)*theta))/nes),2))\
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+(np.power (((np.cos((np.pi/180)*theta))/nos),2))))
ni = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nei),2))\
+(np.power (((np.cos((np.pi/180)*theta))/noi),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

# Type V: o —-—-> oo

def type_five_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)

ws = 2xnp.pi*3E17*(1/signal)

wi = 2xnp.pi*3E17x(1/idler)

npu = crystal.ord(pump)

ni = crystal.ord(idler)

ns = crystal.ord(signal)

return np.abs((npuxwp-ns*ws-ni*wi)*(1/(3E10)))

# Type VI: o --> oe

def type_six_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2%np.pi*3E17+*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)
npu = crystal.ord(pump)
noi = crystal.ord(idler)
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nei = crystal.ex(idler)

ns = crystal.ord(signal)

ni = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nei),2))\

+(np.power (((np.cos((np.pi/180)*theta))/noi),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

# Type VII: o ——> eo

def type_seven_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))

wp = 2*np.pi*3E17*(1/pump)
ws = 2xnp.pi*3E17*(1/signal)
wi = 2xnp.pi*3E17x(1/idler)

npu = crystal.ord(pump)
ni = crystal.ord(idler)
nos = crystal.ord(signal)

nes = crystal.ex(signal)

ns = np.sqrt(1/((np.power(((np.sin((np.pi/180)*theta))/nes),2))\

+(np.power (((np.cos((np.pi/180)*theta))/nos),2))))

return np.abs((npu*wp-ns*ws-ni*wi)*(1/(3E10)))

# Type VIII: o -—-> ee

def type_eight_mismatch(crystal, pump, signal, theta):

idler = 1/((1/pump)-(1/signal))
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wp = 2%np.pi*3E17*(1/pump)

ws = 2*np.pi*3E17*(1/signal)

wi = 2*np.pi*3E17*(1/idler)

npu = crystal.ord(pump)
noi = crystal.ord(idler)
nei = crystal.ex(idler)
nos = crystal.ord(signal)

nes = crystal.ex(signal)

ns = np.sqrt(1/((np.power (((np.sin((np.pi/180)*theta))/nes),2))\
+(np.power (((np.cos((np.pi/180)*theta)) /nos),2))))
ni = np.sqrt(1/((np.power (((np.sin((np.pi/180)*theta))/nei) ,2))\

+(np.power (((np.cos((np.pi/180)*theta))/noi),2))))

return np.abs((npuxwp-ns*ws-ni*wi)*(1/(3E10)))

C.6 efield.py

The script efield.py contains the electric_field class; this class has been defined in order to not only

contain the electric fields, but also to provide functionalities and properties necessary throughout the script.

# Native python packages

import numpy as np

import matplotlib.pyplot as plt
import math

import sys

import os

import datetime

from scipy import interpolate
import glob

# Non-native python packages
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import phasematching as pm

import parameters as p

class electric_field:

def __init__(self, field, params):

self.E = (np.empty(len(params.freq)))

self.id = str(field)

self.l = params.u.wavelengths[str(field)]

self.n0 = params.n(self.l, str(field))

self.w0 = 2*np.pi*params.c*(1E9/self.1)

def fill(self, params, fluence):

if params.u.field_envelopes[self.id] == ’Gaussian’:

self.gaussian(params, fluence)

elif params.u.field_envelopes[self.id] == ’zero’:

self.zero()

elif params.u.field_envelopes[self.id] == ’file’:

# Not implemented

exit()

elif params.u.field_envelopes[self.id] == ’rectangular’:

self.rectangular (params, fluence)
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return

def int(self):

return (1.33E-3)*(self.n0)*(np.real(self.E)**2 + np.imag(self.E)**2)

def gaussian(self, params, fluence):

reEt = np.empty(len(params.time))

imEt = np.empty(len(params.time))
sum = ((np.exp((-4.*np.log(2))*(((params.time \
- params.u.Gauss_centers[self.id])\
/params.u.Gauss_widths[self.id])#**2)))\
*(params.time[1] -params.time [0])).sum()
reA = ((np.cos((np.pi/180)*params.u.field_phase[self.id]))**2)\
*(fluence/sum)
imA = ((np.sin((np.pi/180)*params.u.field_phase[self.id]))**2)\
*(fluence/sum)
reEt = np.sqrt((reA/((1.33E-3)*self.n0))*np.exp((-4.*np.log(2))\
*(((params.time - params.u.Gauss_centers[self.id])\
/params.u.Gauss_widths[self.id])**2)))
imEt = np.sqrt((imA/((1.33E-3)*self.n0))*np.exp((-4.*np.log(2))\

*(((params.time - params.u.Gauss_centers[self.id])\

/params.u.Gauss_widths[self.id])**2)))

self.ft(reEt, imEt, params)

if params.u.apply_contrast:

retemp = np.real(self.E)
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imtemp = np.imag(self.E)

gmax = max(max(np.abs(retemp)), max(np.abs(imtemp)))

]
O

retemp [np.where (np. abs (retemp) <gmax*params.u.contrast)]

]
O

imtemp [np.where (np.abs (imtemp) <gmax*params.u.contrast)]

self.E = retemp + 1j*imtemp

return

def zero(self):

self.E = np.zeros(len(self.E)) + 1j*np.zeros(len(self.E))

def rectangular(self, params, fluence):

self .E = (np.empty(len(params.freq),dtype=complex))

for i in range(len(params.freq)):

if i < 5 or i > len(params.freq) - 5:

self .E[i] = complex(0.)

else:

self .E[i] 1.+13%0.

self .E *= np.sqrt(fluence/(self.int()).sum())*self.E

return

def ft(self, reEt, imEt, params):
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reE = np.empty(len(params.freq))

imE = np.empty(len(params.freq))

self .E = (1/np.sqrt(len(params.time)))*np.sum( (reEt+1j*imEt) [None, :]\

*np.exp(-1j*params.freq[:,None] *params.time[None,:]), axis = 1)

return

def ift(self, params):

return (1/np.sqrt(len(params.time)))*np.sum( self.E[None,:]\

*np.exp(1lj*params.freq[None, :]*params.time[:,Nonel]), axis = 1)

def pulse_energy(self, params):

Et = self.ift(params)

return ((1.33e-3)*self.n0*(np.real(Et)*np.real(Et) \
+ np.imag(Et)*np.imag(Et))\

* (params.time[1]-params.time[0])) .sum()

C.7 controls.py

The script controls.py contains many of the central functions of the script: once the parameters are
defined through parameters.py, many of the manipulations and executions are executed through functions

in controls.py.

# Native python packages
import numpy as np
import matplotlib.pyplot as plt

import scipy.interpolate as interp
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import multiprocessing, threading, datetime, os, functools, math
# Non-native python packages

import parameters, efield, algorithm

import user_settings as user

import material_params as mat

import gain_formulae as gain

import plotting_routines as pltr

import phasematching as pm

import nl_crystal as nl

# modify_params modifies constants and values in the parameters object

# appropriate to user specifications

def modify_params(p):

if p.u.modify_theta:
p.m.theta = p.u.alt_theta
if p.u.parametric_process == ’second-harmonic generation’:
p.m.dk = pm.type_one_mismatch(p.m.cry, p.u.wavelengths[’SHG’],\
p.u.wavelengths [’Fundamental’], p.m.theta)
elif p.u.parametric_process == ’parametric amplification’:
if p.u.process == ’Type I’:
p.m.dk = pm.type_one_mismatch(p.m.cry,\
p-u.wavelengths[’Pump’],\
p-u.wavelengths[’Signal’], p.m.theta)
elif p.u.process == ’Type II’:
p.m.dk = pm.type_two_mismatch(p.m.cry,\
p.u.wavelengths [’Pump’],\
p-u.wavelengths[’Signal’], p.m.theta)
elif p.u.process == ’Type III’:
p.m.dk = pm.type_three_mismatch(p.m.cry,\

p.u.wavelengths[’Pump’],\



p-u.wavelengths[’Signal’], p.m.theta)

p.m.dk*=100.

if p.u.modify_chi2eff:
p.m.chi2eff = p.u.alt_chi2eff
if p.u.modify_chi3eff:

p.m.chi3eff

p.u.alt_chi3eff
if p.u.modify_ug:
for i in [p.u.alt_ug]:
for j in p.m.mask:

i[j] = i.pop(p.m.mask[j])

ini_keys = i.keysQ

for j in ini_keys:
if j in p.m.mask:
pass
else:
i.pop(j,None)
for i in p.u.alt_ug:

p.m.ugli] = p.u.alt_uglil*1.e12

def initialize(p):

if p.u.silent:
pass
else:

print(’Initializing fields’)

fields = []

272



273

for i in range(len(p.r)):
fields.append ({})
for j in p.u.wavelengths:
fields[i] [j] = efield.electric_field(j,p)
fields[i] [j]1.£i11(p, p.fluencelj][il)
fields[i] [j].E[np.where((fields[i] [j].wO+p.freq)<=\

p.cutoff)] = complex(0.)

return fields

def drive_algorithm(p, fields):

if p.u.silent:
pass
else:

print (’Starting algorithm’)

if p.u.slowly_varying_amp:

if p.u.adaptive_steps:
# Adaptive stepping has not yet been developed; when this capability is developed,
# this is how it may be implemented
# fields = adaptive_stepping(p,fields)
pass
else:

fields = fixed_stepping(p, fields)

else:

if p.u.adaptive_steps:

# Adaptive stepping has not yet been developed; when this capability is developed,

# this is how it may be implemented
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# fields = second_order_adaptive_stepping(p, fields)
pass
else:

fields = second_order_fixed_stepping(p, fields)

return fields

def fixed_stepping(p, fields):

step_size = p.u.L/p.u.steps

parameter_dict = {
’curr_position’ : p.z,
’step_size’ : step_size,
’c’ : p.c,

’dw’ : p.freq,

wro: {D,
ko {3,
'n0° : {},
w0’ @ {3},

’chi2eff’ : p.m.chi2eff,

’chi3deff’ : p.m.chi3eff,

ug’ {3l

‘gvd’ ¢ {7},

’parametric_process’ : p.u.parametric_process,
’dk’ : p.m.dk,

’cutoff’ : p.cutoff,

’time’ : p.time,

’NaN_flag’ : False}

field_iter = []
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for i in fields[O0]:

parameter_dict[’n0’] [fields[0] [i].id]

fields[0] [i] .nO

parameter_dict[’w0’] [fields[0] [i].id]

fields[0] [i] .wO
parameter_dict[’w’] [fields[0][i].id] = p.freq.copy() + fields[0][i].w0
parameter_dict[’ug’] [fields[0] [i].id] = p.m.ug[fields[0] [i].id]
parameter_dict[’gvd’] [fields[0][i].id] = p.m.gvd[fields[0] [i].id]
parameter_dict[’k’] [fields[0] [i].id] = \

np.empty (len(parameter_dict[’w’] [fields[0] [i].1id]))

for j in range(len(parameter_dict[’w’][fields[0] [i].id])):

if parameter_dict[’w’] [fields[0][i].id][j] >= p.cutoff:
wavelength = ((2*np.pi*p.c)\
/ (parameter_dict[’w’] [fields[0] [i].id] [j1))*1.e9
parameter_dict[’k’] [fields[0][i].id][j] = \
(p.n(wavelength, fields[0][i].id)\

xparameter_dict[’w’] [fields[0] [1].id] [j]1)/p.c

else:

parameter_dict[’w’] [fields[0] [i].id] [j]

]
o

parameter_dict[’k’] [fields[0] [i].id] [j]

]
o

for i in range(len(p.r)):

field_iter.append ({})

for j in fields[O0]:

field_iter[i][j] = fields[i][j].E.copy(Q)

counter = 0
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if p.u.timer:

start_time = str(datetime.datetime.now()).split(’ ’)[-1]

while counter < p.u.steps:

counter += 1

if p.u.silent:

pass

else:

print (°Starting iteration ’+str(counter)+’ of ’+str(p.u.steps)\

+’ at ’+str(datetime.datetime.now()))

if p.u.threading:

if p.u.cores != ’Default’ \

and p.u.cores <= multiprocessing.cpu_count() \

and p.u.cores > O:

pool = multiprocessing.Pool(processes = p.u.cores)

chunk_size = int(math.ceil(len(field_iter)/p.u.cores))

elif p.u.cores !'= ’Default’ and p.u.limit_override == True:

pool = multiprocessing.Pool(processes = p.u.cores)

chunk_size = int(math.ceil(len(field_iter)/p.u.cores))

else:

if p.u.cores == ’Default’:

pass
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elif p.u.cores > multiprocessing.cpu_count() \
or p.u.cores<1:
print(’An invalid number of cores was requested.\
Defaulting to ’\
+str(multiprocessing.cpu_count()-1)\

+’ cores.’)

pool = multiprocessing.Pool(processes = \
(multiprocessing.cpu_count()-1))
chunk_size = int(math.ceil(len(field_iter)\

/(multiprocessing.cpu_count()-1)))

results = pool.map(functools.partial(algorithm.Runge_Kutta, \
parameter_dict), field_iter, \
chunksize = chunk_size)
pool.close()
for i in range(len(results)):
for j in results[il:

field_iter[i] [j] = results[i] [j].copy(O)

del results

else:

for i in range(len(p.r)):

results = algorithm.Runge_Kutta(parameter_dict, \

field_iter[i])

for j in results:

field_iter[i][j] = results[j].copy(O

parameter_dict[’curr_position’] += step_size



if parameter_dict[’NaN_flag’]:

break

for i in range(len(p.r)):
for j in fields[O0]:

fields[i] [j].E = field_iter[i] [j].copy(Q)

p.z = parameter_dict[’curr_position’]

if p.u.timer:
end_time = str(datetime.datetime.now()).split(’ ) [-1]
print ’Run time: ’+str((int(str(end_time).split(’:’)[0]) \
- int(str(start_time).split(’:’) [0]))*60.%60.\
+(int (str(end_time) .split(’:?) [11) \
- int(str(start_time).split(’:’)[1]))*60.\
+(float(str(end_time) .split(’:’)[2]) \

- float(str(start_time).split(’:’)[2])))+’ seconds’

return fields

def second_order_fixed_stepping(p, fields):

step_size = p.u.L/p.u.steps

parameter_dict = {

’curr_position’ : p.z,
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’step_size’ : step_size,
’c’ : p.c,

’dw’ : p.freq,

wror A},
'k’ A},
'm0’ @ {2,
w0’ {D,

’chi2eff’ : p.m.chi2eff,

’chi3eff’ : p.m.chi3eff,

‘ug? {3,

‘gvd’ {3},

’parametric_process’ : p.u.parametric_process,
’dk’ : p.m.dk,

’cutoff’ : p.cutoff,

’NaN_flag’ : False}

field_iter = []

for i in fields[0]:

parameter_dict[’n0’] [fields[0] [i].id] = fields[0] [i].nO

parameter_dict[’w0’] [fields[0] [i].id]

fields[0][i].wO
parameter_dict [’w’] [fields[0] [i].id] = p.freq.copy() + fields[0][i].wO
parameter_dict[’ug’] [fields[0] [1].id] = p.m.ugl[fields[0][i].id]
parameter_dict[’gvd’] [fields[0][i].id] = p.m.gvd[fields[0] [i].id]
parameter_dict[’k’] [fields[0][i].id] = \

np.empty(len(parameter_dict[’w’] [fields[0] [i].id]))

for j in range(len(parameter_dict[’w’] [fields[0][i].id])):

if parameter_dict[’w’] [fields[0][i].id][j] >= p.cutoff:

wavelength = ((2*np.pi*p.c)\

/ (parameter_dict[’w’] [fields[0] [i].id] [j]1))*1.e9
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parameter_dict [’k’] [fields[0] [i].id] [j] = \
(p.n(wavelength, fields[0] [i].id)\

*parameter_dict[’w’] [fields[0] [i].id][j]1)/p.c

else:

]
o

parameter_dict [’w’] [fields[0] [i].id] [j]

parameter_dict[’k’] [fields[0] [i].id] [j]

]
o

for i in range(len(p.r)):

field_iter.append ({})

for j in fields[0]:
field_iter[i] [j] = {}
field_iter[i] [j1[’field’] = fields[i][j].E.copy()
field_iter[i] [j1[’first derivative’] = \
np.zeros(len(fields[i] [j]1.E)) \

+ 1j*np.zeros(len(fields[i] [j].E))

counter = 0

if p.u.timer:

start_time = str(datetime.datetime.now()).split(’ ’)[-1]

while counter < p.u.steps:

counter += 1

if p.u.silent:

pass

else:

print (’Starting iteration ’+str(counter)+’ of ’\
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+str(p.u.steps)+’ at ’+str(datetime.datetime.now()))

if p.u.threading:

if p.u.cores != ’Default’ \
and p.u.cores <= multiprocessing.cpu_count() \

and p.u.cores > O:

pool = multiprocessing.Pool(processes = p.u.cores)

chunk_size = int(math.ceil(len(field_iter)/p.u.cores))

elif p.u.cores != ’Default’ and p.u.limit_override == True:

pool = multiprocessing.Pool(processes = p.u.cores)

chunk_size = int(math.ceil(len(field_iter)/p.u.cores))

else:

if p.u.cores == ’Default’:

pass

elif p.u.cores > multiprocessing.cpu_count() \
or p.u.cores<1:
print(’An invalid number of cores was requested.\
Defaulting to ’\
+str(multiprocessing.cpu_count()-1)\

+’ cores.’)

pool = multiprocessing.Pool(processes \
= (multiprocessing.cpu_count()-1))
chunk_size = int(math.ceil(len(field_iter)\

/(multiprocessing.cpu_count()-1)))
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results = pool.map(functools.partial(\
algorithm.second_order_Runge_Kutta, \
parameter_dict), field_iter, \

chunksize = chunk_size)

pool.close()
for i in range(len(results)):
for j in results[i]:
field_iter[i][j1[’field’] = \
results[i] [j1[’field’].copy()
field_iter[i] [jl1[’first derivative’] = \
results[i] [j]1[’first derivative’].copy()

del results

else:

for i in range(len(p.r)):

results = algorithm.second_order_Runge_Kutta(\

parameter_dict, field_iter[i])

for j in results:
field_iter[i][jl1[’field’] = \
results[jl[’field’].copy()
field_iter[i] [j][’first derivative’] = \

results[jl [’first derivative’].copy()

parameter_dict[’curr_position’] += step_size

if parameter_dict[’NaN_flag’]:

break
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for i in range(len(p.r)):
for j in fields[O0]:

fields[i] [j].E = field_iter[i][jl1[’field’].copy()
p.z = parameter_dict[’curr_position’]
if p.u.timer:
end_time = str(datetime.datetime.now()).split(’ ) [-1]
print ’Run time: ’+str((int(str(end_time).split(’:’)[0]) \
- int(str(start_time).split(’:’) [0]))*60.%60.\
+(int(str(end_time) .split(’:’) [1]) \
- int(str(start_time).split(’:’) [1]))*60.\
+(float (str(end_time) .split(’:’) [2]) \

- float(str(start_time) .split(’:’)[2])))+’ seconds’

return fields

def save_output(p, fields, state):

curr = os.getcwd()

if state == ’initial’:

folder_name = ’°

for i in ((str(datetime.datetime.now()).split(’.?)[0]).split(’:?)):
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folder_name += i+’_’
for i in p.u.wavelengths:
folder_name += str(p.u.wavelengths[i])+’_’

folder_name+=p.u.parametric_process+’_’+p.u.material+’_’+p.u.process

if p.u.save_dir[-1]=="/":

p.u.save_dir += folder_name

else:

p.-u.save_dir += ’/’+folder_name

if os.path.exists(p.u.save_dir):

pass

else:

os.makedirs(p.u.save_dir)

os.chdir(p.u.save_dir)

if state == ’initial’:

write_parameters(p)

write_fields(p, fields, ’initial’)

pltr.plot2d(fields, p, ’initial_fields_freq’)

pltr.plot2dtime(fields, p, ’initial_fields_time’)

pltr.plot2dweighted(fields, p, ’initial_fields_freq_weighted’)

elif state == ’final’:

write_fields(p, fields, ’final’)

pltr.plot2d(fields, p, ’final_fields_freq’)
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pltr.plot2dtime(fields, p, ’final_fields_time’)

pltr.plot2dweighted(fields, p, ’final_fields_freq_weighted’)

os.chdir(curr)

return

def write_parameters(p):

f = open(’simulation_parameters.txt’, ’w+’)

f.write(’Simulation Parameters\n\n’)

f.write(’Wavelengths\n’)

for i in p.u.wavelengths:
f.write(str(i)+’:\t’+str(p.u.wavelengths[i])+’ nm\n’)
f.write(’\n’)

f.write(’Material Parameters\n’)

if p.mat_type_marker == ’birefringent’:
f.write(p.u.material+’: ’+str(p.u.L*100)+’ cm, theta: ’\
+str(p.m.theta)+’ deg, phi: ’+str(p.u.phi)+’ deg\n’)
elif p.mat_type_marker == ’isotropic’:
f.write(p.u.material+’: ’+str(p.u.L*100)+’ cm\n’)

f.write(’Number of steps: {0}\n’.format(p.u.steps))

if p.u.parametric_process == ’parametric amplification’:
f.write(’Process: ’+p.u.parametric_process+’, ’+p.u.process+’\n’)
else:

f.write(’Process: ’+p.u.parametric_process+’\n’)
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f.write(’Beam Parameters\n’)
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for i, j in [(’Initial Delay’, p.u.Gauss_centers), (’Beam Size’, p.u.e2_size), \

(°Pulse Width’, p.u.Gauss_widths), (’Initial Phase’, p.u.field_phase)]:

curr_string = i+’:’

if 1 == ’Initial Delay’ or i == ’Pulse Width’:

modifier = 1.el1b
unit = ’fs’

if i == ’Beam Size’:
modifier = 100.
unit = ’cm’

if i == ’Initial Phase’:
modifier = 1.

unit = ’deg.’

for k in j:

curr_string += ’\t’+k+’: ’+str(j[k]*modifier)+’ ’+unit+’;’

curr_string+= ’\n’

f.write(curr_string)

del curr_string

f.write(’\n’)

if p.u.noncollinear or p.u.modify_ug or p.u.modify_chi2eff or p.u.modify_chi3eff:

f.write(’Modifications\n’)

if p.u.noncollinear:
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f.write(’Noncollinear angle: ’+str(p.u.gamma)+’ deg\n’)

if p.u.modify_chiZeff:

f.write(’Alternate chi2: ’+str(p.m.chi2eff*1E12)+’ pm/V\n’)
if p.u.modify_chi3eff:

f.write(’Alternate chi3: ’+str(p.m.chi3eff)+’\n’)
if p.u.modify_ug:

f.write(’Group velocities:\n’)

for i in p.m.ug:

f.write(str(i)+’:\t’+str(p.m.uglil*1le-12)+’ mm/fs\n’)

f.close()

return
def write_fields(p, fields, state):
if state == ’initial’:
f = open(’initial_fields.txt’, ’w+’)
elif state == ’final’:

f = open(’final_fields.txt’, ’w+’)

for i in range(len(p.r)):

f.write(’Fields at r = ’+str(p.r[i]*1000)+’ mm\n\n’)

f.write(’Detuning (PHz)’)

for j in fields[i]:

f.write(C\tRe C+str(j)+)\tIm(’+str(j)+’)’)

f.write(’\n’)

for j in range(len(p.freq)):
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f.write(str(p.freq[jl*le-15))

for k in fieldsl[i]:

f.write(’\t’+str(np.real(fields[i] [k].E[j1))+’\t’\

+str(np.imag(fields[i] [k].E[j1)))

f.write(’\n’)

f.write(’\n\n’)

f.close()

del f

if state == ’initial’:

f = open(’initial_integrated_spectrum.txt’, ’w+’)

elif state == ’final’:

f = open(’final_integrated_spectrum.txt’, ’w+’)

int_Int = {}

for j in fields[0]:

Int = []

for i in range(len(p.r)):

Int.append (fields[i] [j].int())

int_Int[j] = []

for i in range(len(p.freq)):

sum = 0
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for k in range(len(p.r)):

sum+=2#np.pi*Int[k] [i]*p.r[k]1*(p.r[1]-p.r[0])

int_Int[j].append(sum)

del Int

energy = {}

for j in fields[O0]:

for i in range(len(p.r)):

sum += 2*np.pi*(fields[i] [j].pulse_energy(p))\

*p.r[i]*(p.r[1]1-p.r[0])

energy[j] = sum

f.write(’Final Pulse Energies\n’)

for j in energy:

f.write(j+’:\t’+str(energy[jl*1.e6)+’ uJ\n’)

f.write(’\n\n’)

f.write(’Integrated Spectra\n\n’)

f.write(’Detuning (PHz)’)

for j in int_Int:

f.owrite(C\t’+str(j))
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f.write(’\n’)

for j in range(len(p.freq)):

f.write(str(p.freql[jl*le-15))

for k in int_Int:

f.write(’\t’+str(int_Int[k] [j1))

f.write(’\n’)

f.close()

C.8 algorithm.py

The two functions in algorithm.py execute one step of the Runge-Kutta algorithm when called.

# Native python packages

import numpy as np

import matplotlib.pyplot as plt
# Non-native python packages
import gain_formulae as gain

import efield

def Runge_Kutta(pd, fields):

fm = {}

fm[’z’] = pd[’curr_position’]

for i in fields:



fm[i] = fields[i].copy()

KI = {}

for i in fields:
KI[i] = gain.gain(pd, i, fm)

KI[i] *= pd[’step_size’]

del fm
fm = {3

fm[’z’] = pd[’curr_position’] + 0.5*pd[’step_size’]

for i in fields:

fm[i] = (fields[i] + 0.5*KI[i]).copy()

KII = {}

for i in fields:
KII[i] = gain.gain(pd, i, fm)

KII[i] #= pd[’step_size’]

del fm
fm ={}

fm[’z’] = pd[’curr_position’] + 0.5*pd[’step_size’]

for i in fields:

fm[i] = (fields[i] + 0.5*KII[i]).copy()
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KIII = {}

for i in fields:
KIII[i] = gain.gain(pd, i, fm)

KITII[i] *= pd[’step_size’]

del fm
fm ={}

fm[’z’] = pd[’curr_position’] + pd[’step_size’]

for i in fields:

fm[i] = (fields[i] + KIII[i]).copy(O

KIV = {}

for i in fields:
KIV[i] = gain.gain(pd, i, fm)

KIV[i] *= pd[’step_size’]

output = {}

for i in fields:

output [i] = (fields[i]+(1./6.)*KI[i1+(1./3.)*KIT[i]+(1./3.)*KIII[i]\

+ (1./6.)*KIV[il).copy()

if np.isnan(output[i].sum()):

print(’nan present in ’+i)

del fm, KI, KII, KIII, KIV

return output

def second_order_Runge_Kutta(pd, fields):
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fm = {}

fm[’z’] = pd[’curr_position’]

for i in fields:
fm[i] = {3}
fm[i] [’field’] = fields[i][’field’].copy()

fm[i] [’first derivative’] = fields[i] [’first derivative’].copy()

for i in fields:
KI[i] = gain.second_order_gain(pd, i, fm)
KI[i][’field’] *= pd[’step_size’]

KI[i][’first derivative’] *= pd[’step_size’]

del fm
fm = {}

fm[’z’] = pd[’curr_position’] + 0.5*pd[’step_size’]

for i in fields:
fm[i] = {}
fm[i] [’field’] = (fields[i][’field’] + 0.5%KI[i][’field’]).copy()
fm[i] [’first derivative’] = (fields[i] [’first derivative’] \
+ 0.5%KI[i] [’first derivative’]).copy()

KII {3

for i in fields:
KII[i] = gain.second_order_gain(pd, i, fm)

KII[i] [’field’] *= pd[’step_size’]
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KITI[i] [’first derivative’] *= pd[’step_size’]

del fm
fm ={}

fm[’z’] = pd[’curr_position’] + 0.5*pd[’step_size’]

for i in fields:
fm[i] = {3
fm[i] [’field’] = (fields[i][’field’] + 0.5%KII[i][’field’]).copy()
fm[i] [’first derivative’] = (fields[i] [’first derivative’] \

+ 0.5%KII[i] [’first derivative’]).copy()

KIII = {}

for i in fields:
KIII[i] = gain.second_order_gain(pd, i, fm)
KITI[i][’field’] #*= pd[’step_size’]

KITII[i] [’first derivative’] *= pd[’step_size’]

del fm
fm ={}

fm[’z’] = pd[’curr_position’] + pd[’step_size’]

for i in fields:
fm[i]l = {3
fm[i] [’field’] = (fields[i]l[’field’] + KIII[i][’field’]).copy()
fm[i] [’first derivative’] = (fields[i] [’first derivative’] \

+ KIII[i] [’first derivative’]).copy()

KIV = {}

for i in fields:
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KIV[i] = gain.second_order_gain(pd, i, fm)
KIV[i] [’field’] *= pd[’step_size’]

KIV[i] [’first derivative’] *= pd[’step_size’]

output = {}

for i in fields:
output[i] = {}
output [i] [’field’] = (fields[i][’field’] + (1./6.)*KI[i][’field’] \
+ (1./3.)*KII[i]l[’field’] \
+ (1./3.)*KIII[i][’field’] \
+ (1./6.)*KIV[i] [’field’]) .copy ()
output [i] [’first derivative’] = (fields[i][’first derivative’] \
+ (1./6.)*KI[i] [’first derivative’] \
+ (1./3.)#KII[i] [’first derivative’] \
+ (1./3.)#KITI[i] [’first derivative’] \
+ (1./6.)*KIV[i] [’first derivative’]).copy()
if np.isnan(output[i][’field’].sum()) \
or np.isnan(output[i] [’first derivative’].sum()):
print(’nan present in ’+i)

pd[’NaN_flag’] = True

del fm, KI, KII, KIII, KIV

return output

C.9 gain formulae.py

While the code in performs the sequence of calculations necessary for one iteration of the Runge-Kutta
algorithm, it is programmed such that it invokes an external function to provide the gain formulae represent-

ing the system of differential equations. For the parametric processes being simulated, these formulae are
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provided in gain_formulae.py. It should be noted that - as written - the functions defining the gain formu-
lae look to user_settings.py (the gain_selections class) to determine which terms from the differential

equation should be incorporated.

# Native python packages

import numpy as np

import scipy.interpolate as interp
import matplotlib.pyplot as plt

# Non-native python packages

import user_settings as user

def gain(pd, id, fm):

u = user.gain_selections()

if u.sva_absorption:

# Enables accounting of absorption by BBO

wl_array = [150, 170, 190, 195, 220, 235, 255, 280, 300.78125, 335, 375,\
421.875, 500, 578.125, 644.53125, 700, 1000, 1500, 1600, 1660,\
2000, 2085.9375, 2310, 2355, 2400, 2460, 2500, 2610, 2655,\
2725, 2775, 2785.15625, 2899.15966, 2921.875, 3000, 3020,\
3050, 3060, 3100, 3120, 3150, 3170, 3200, 3300, 40000]
alpha_array = [0.2808, 0.195909, 0.14617, 0.129779, 0.089947, \
0.07212557, 0.05990443, 0.04796, 0.125, 0.102, 0.0788, 0.06827,\
0.05797, 0.04194, 0.03528, 0.02354, 0.02518, 0.02518, 0.02518,\
0.01305, 0.01305, 0.025177, 0.3999, 0.3629, 0.3999, 0.1547,\
0.2043, 0.4533, 0.6349, 0.4533, 0.6297, 0.7851, 0.7851, 0.8935,\
1.0038, 1.3202, 1.2058, 1.5426, 1.5426, 1.2808, 1.2808, 1.5931,\

1.7605, 1.7605, 1.7605]
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freq_array = (2*np.pi*3.e8+%1.e9%(1/np.asarray(wl_array))).copy()

alpha_array = np.asarray(alpha_array)*100.

# It should be noted that interp.interpld may require

# ’np.asarray(freq_array) [::-1]’ and

# ’np.asarray(alpha_array) [::-1]°. The behavior of this seemed

# inconsistent between Mint (Linux distribution) and Mac 0S.

alpha_func = interp.interpld(freq_array, alpha_array, kind = ’slinear’,\

bounds_error = False, fill_value = 1.)

if pd[’parametric_process’] == ’second-harmonic generation’ \

or pd[’parametric_process’] == ’parametric amplification’ \

or pd[’parametric_process’] == ’sum-frequency generation’:

if pd[’parametric_process’] == ’second-harmonic generation’:
ref = ’Fundamental’

elif pd[’parametric_process’] == ’parametric amplification’:
ref = ’Pump’

elif pd[’parametric_process’] == ’sum-frequency generation’:

ref = ’Signal’

gain = np.zeros(len(pd[’w’][id])) + 1j*np.zeros(len(pd[’w’][id]))

k0 = (pd[’n0’][id]*pd[’w0’][id])/pd[’c’]

if u.sva_group_velocity:

if id == ref:

pass

else:

if u.sva_in_lab_frame:
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gain += - (1j)*((1/(pd[’ug’1[id]1))\

(1/(pd[’ug’] [ref])))*(pd[’w’] [id] \

pd[’w0’] [id])*fm[id]

else:

gain += - (17)*((k0)/ (k0 + (1/pd[’ug’][ref])\

*(pd[’w’] [id] - pd[’w0’][id])))\

*((1/(pd[’ug’] [id]))\

-(1/(pd[’ug’] [ref]1) )\

*(pd[’w’] [id] - pd[’w0’] [id])*fm[id]
if u.sva_GVD:

if u.sva_in_lab_frame:

gain += -(1j)*((pd[’w’][id] - pd[’w0’] [id])**2)\

*0.5%pd[’gvd’] [1d] *fm[id]

else:

gain += - 1j*((k0)/(2.%(k0 + (1/pd[’ug’] [ref])\

*(pd[’w’] [id] - pd[’w0’][id]1))))*pd[’gvd’] [id]\

*((pd[’w’][id] - pd[’w0’] [id])**2)*fm[id]

if u.sva_absorption:

if u.sva_in_lab_frame:

gain += - (alpha_func(pd[’w’][id])/2.)*fm[id]
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else:

gain += - ((k0)/(2.*x(k0 + (1/pd[’ug’] [ref])*(pd[’w’] [id]\

- pd[’w0°]1[id]))))*(alpha_func(pd[’w’] [id]))\

*xfm[id]

if u.sva_amplification:

if u.sva_in_lab_frame:

coeff = (1./(2.xk0))
else:
coeff = (1./(2.x(k0 + (1/pd[’ug’] [ref])*(pd[’w’][id] \
- pd[’w0’]1[id1))))
if pd[’parametric_process’] == ’second-harmonic generation’:
if id == ’Fundamental’:

temp_fund = fm[’Fundamental’].copy()

temp_SHG = fm[’SHG’].copy()

temp_fund [np.where(pd[’w’] [’Fundamental’] \
<= pd[’cutoff’])] = complex(0.)

temp_SHG [np.where (pd[’w’] [’SHG’] \

<= pd[’cutoff’])] = complex(0.)

fund_time = (1/np.sqrt(len(pd[’dw’1)))\
*np.sum(np.exp(-1j\
*pd[’k’] [’Fundamental’] [None, : ]\

*fm[’z’])*temp_fund[None, :J*np.exp(1j\
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*pd [’dw’] [None, : 1\
*pd[’time’] [:,None]) ,axis=1)

shg_time = (1/np.sqrt(len(pd[’dw’1)))\
*np.sum(np.exp(-1j\
*pd[’k’] [’SHG’] [None, : ]\
*fm[’z’])*temp_SHG [None, : J*np.exp(1j\
*pd[’dw’] [None, : 1\

*pd[’time’] [:,None]) ,axis=1)

polzn = ((2%pd[’chi2eff’])\
/np.sqrt(len(pd[’dw’])))\
*np.sum(np.conj(fund_time) [None, :]\
*shg_time[None, :]\
*np.exp(-1j*pd[’dw’] [:,Nonel\
*pd[’time’] [None,:]), axis=1)

polzn[np.where(pd[’w’] [’Fundamental’] \

<= pd[’cutoff’])] = complex(0.)

del temp_fund, temp_SHG, fund_time, shg_time

elif id == ’SHG’:

temp_fund = fm[’Fundamental’].copy()
temp_fund [np.where(pd[’w’] [’Fundamental’] \

<= pd[’cutoff’])] = complex(0.)

fund_time = (1/np.sqrt(len(pd[’dw’1)))\
*np.sum(np.exp(-1j\
*pd[’k’] [’Fundamental’] [None, :]1\
*fm[’z’])*temp_fund [None, :J*np.exp(1j\
*pd[’dw’] [None, : 1\

*pd[’time’] [:,Nonel) ,axis=1)
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polzn = (pd[’chi2eff’]/np.sqrt(len(pd[’dw’]1)))\
*np. sum(fund_time [None, : ]\
*fund_time [None, :J*np.exp(-1j\
*pd[’dw’] [:,Nonel\
*pd[’time’] [None,:]), axis=1)
polzn[np.where(pd[’w’] [’SHG’] \

<= pd[’cutoff’])] = complex(0.)

del temp_fund, fund_time

elif pd[’parametric_process’] == ’parametric amplification’ \

or pd[’parametric_process’] ==’sum-frequency generation’:

if id == ’Pump’:

temp_signal = fm[’Signal’].copy()
temp_idler = fm[’Idler’].copy()
temp_signal [np.where(pd[’w’] [’Signal’] \
<= pd[’cutoff’])] = complex(0.)
temp_idler [np.where(pd[’w’] [’Idler’] \

<= pd[’cutoff’])] = complex(0.)

signal_time = (1/np.sqrt(len(pd[’dw’]1)))\
*np.sum(np.exp(-1j\
*pd[’k’] [’Signal’] [None, :1\
xfm[’z’]) *temp_signal [None, :1*np.exp(1j\
*pd [’dw’] [None, : 1\
*pd[’time’] [:,None]) ,axis=1)

idler_time = (1/np.sqrt(len(pd[’dw’]1)))\

*np.sum(np.exp(-1j\
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*pd[’k’] [’Idler’] [None,:]\
xfm[’z’]) *temp_idler [None, :]*np.exp(1j\
*xpd[’dw’] [None, :1\

*pd[’time’] [:,Nonel) ,axis=1)

polzn=((2*pd[’chi2eff’])/np.sqrt(len(pd[’dw’]1)))\
*np.sum(signal_time [None,:]\
xidler_time [None, :]*np.exp(-1j\
xpd[’dw’] [:,None] \
*pd[’time’] [None,:]), axis=1)
polzn[np.where(pd[’w’] [’Pump’] \

<= pd[’cutoff’])] = complex(0.)

del temp_signal, temp_idler,\

signal_time, idler_time

== ’Signal’:

temp_pump = fm[’Pump’].copy()
temp_idler = fm[’Idler’].copy()
temp_pump [np.where(pd[’w’] [’Pump’] \
<= pd[’cutoff’])] = complex(0.)
temp_idler [np.where(pd[’w’] [’Idler’] \

<= pd[’cutoff’])] = complex(0.)

pump_time = (1/np.sqrt(len(pd[’dw’1)))\
*np.sum(np.exp(-1j\
*pd[’k’] [’Pump’] [None, : 1\
*fm[’z’]) *temp_pump [None, : ]\
*np.exp(1j*pd[’dw’] [None, : ]\
*pd[’time’] [:,None]) ,axis=1)

idler_time = (1/np.sqrt(len(pd[’dw’]1)))\
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*np.sum(np.exp(-1j\

*pd[’k’] [’Idler’] [None, :J*fm[’z’])\
*temp_idler [None, :1*np.exp(1j\

*pd [’dw’] [None, : 1\

*pd[’time’] [:,Nonel) ,axis=1)

polzn = ((2xpd[’chi2eff’]1)\
/np.sqrt(len(pd[’dw’]1)))\
*np . sum(pump_time [None, : ]\
*np.conj(idler_time) [None,:]1\
*np.exp(-1j*pd[’dw’] [:,None]\
*pd[’time’] [None,:]), axis=1)
polzn[np.where(pd[’w’] [’Signal’] \

<= pd[’cutoff’])] = complex(0.)

del temp_pump, temp_idler, pump_time, idler_time

elif id == ’Idler’:

temp_pump = fm[’Pump’].copy()
temp_signal = fm[’Signal’].copy()
temp_signal [np.where(pd[’w’] [’Signal’] \
<= pd[’cutoff’])] = complex(0.)
temp_pump [np.where(pd[’w’] [’Pump’] \

<= pd[’cutoff’])] = complex(0.)

pump_time = (1/np.sqrt(len(pd[’dw’1)))\
*np.sum(np.exp(-1j\
*pd [’k’] [’Pump’] [None, : J*fm[’z’])\
*temp_pump [None, : ] *np.exp (1j\
*pd[’dw’] [None, : 1\

*pd[’time’] [:,Nonel) ,axis=1)
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signal_time = (1/np.sqrt(len(pd[’dw’]1)))\
*np.sum(np.exp(-1j\
*pd[’k’] [’Signal’] [None, :]1\
*fm[’z’])*temp_signal [None, : 1\
*np.exp(1j*pd[’dw’] [None, : 1\

*pd[’time’] [:,Nonel) ,axis=1)

polzn = ((2*pd[’chi2eff’])\
/np.sqrt(len(pd[’dw’])))\
*np . sum(pump_time [None, : ]\
*np.conj(signal_time) [None, :]\
*np.exp(-1j*pd[’dw’] [:,None]\
*pd[’time’] [None,:]), axis=1)
polzn[np.where(pd[’w’] [’Idler’] \

<= pd[’cutoff’])] = complex(0.)

del temp_pump, temp_signal, \

pump_time, signal_time

gain += -1j*((coeff)/(pd[’c’I*pd[’c’]))*np.exp(1j\

*pd [’k’] [id]*fm[’z°])*(pd [’w’] [id] *pd [’w’] [1d]) *polzn

del polzn

return gain

else:

exit()

def second_order_gain(pd, id, fm):
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# This has not been maintained...

C.10 plotting routines.py

The final script, plotting_routines.py, defines the functions previously called for plotting the results of

the simulations.

# Native python packages

import matplotlib.pyplot as plt
import numpy as np

# Non-native python packages

# (none)

def plot2d(fields, p, filename):

Refields = {}
Imfields = {}
Int = {}

int_Int = {}

for j in fields[0]:

Refields[j] = []
Imfields[j] = []
Int[j]1 = [I

for i in range(len(p.r)):
Refields[j].append(np.real(fields[i] [j].E))
Imfields[j].append(np.imag(fields[i] [j].E))

Int[j].append(fields[i] [j]1.int())
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int_Int[j] = []

for i in range(len(p.freq)):
sum = 0
for k in range(len(p.r)):
sum+=2%np . pi*Int [§] [k] [1]#p.r [k]*(p.r [1]-p.x [0])

int_Int[j].append(sum)

plt.clf()

plt.figure(l, figsize=(12,8))

subplots = 1
show_title = True
units_y = False
label_x = False

1

counter

for j in fields[0]:

globalmax = max(np.amax(np.asarray(Refields[j])), \
np.amax(np.asarray(Imfields[j1)), \
abs(np.amin(np.asarray(Refields[j]1))), \

abs(np.amin(np.asarray(Imfields[j]1))))

freqs = (fields[0][j].w0 + p.freq)*(1/(2.*np.pi*3.e10))
for i in range(len(freqgs)):
if freqs[i] < 1.4227e14*(1/(2*np.pi*3.e10)):

fregs[i] = 0.

if globalmax ==

pass
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else:

cmin = min(np.amin(np.asarray(Refields[j]).T/globalmax), \

np.amin(np.asarray(Imfields[j]).T/globalmax))

cmax = max(np.amax(np.asarray(Refields[j]).T/globalmax), \

np.amax(np.asarray(Imfields[j]) .T/globalmax))

globalmin = min(np.amin(np.asarray(Refields[j]1)), \
np.amin(np.asarray(Imfields[j1)), \
abs(np.amax(np.asarray(Refields[j1))), \

abs (np.amax (np.asarray(Imfields[j]))))

plt.subplot(len(fields[0]), 4, subplots)

if globalmax ==
plt.contourf(p.r*1000., freqs, np.asarray(Refields[j]).T,200, \

cmap=’seismic’, levels=np.linspace(-1,1,200))

else:
plt.contourf(p.r*1000., freqs, np.asarray(Refields[j]).T\
/globalmax,200, cmap=’seismic’, \
levels=np.linspace(-1,1,200))
if label_x:
plt.xlabel(’cross section (mm)’)
else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \
labelbottom=’off’)
if units_y:
plt.ylabel(j+’\nangular frequency (x10-15)’)
else:
plt.ylabel(j+’\n’)

if show_title:



308

plt.title("Re(E)’)
plt.clim(-1,1)
plt.ylim(freqs[0], freqs[-11)

subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

if globalmax ==

plt.contourf (p.r*1000., freqs, np.asarray(Imfields[j]).T,200, \

cmap=’seismic’, levels=np.linspace(-1,1,200))

else:
plt.contourf (p.r*1000., freqs, np.asarray(Imfields[j]).T\
/globalmax,200, cmap=’seismic’, \
levels=np.linspace(-1,1,200))
if label_x:
plt.xlabel(’cross section (mm)’)
else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \
labelbottom="o0ff’)
plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \
labelleft=’off’)
if show_title:

plt.title(’Im(E)’)

plt.clim(-1,1)
plt.ylim(freqs[0], freqs[-1]1)

subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

plt.contourf (p.r*1000., freqs, np.asarray(Int[jl).T, 200, cmap=’seismic’)
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if label_x:
plt.xlabel(’cross section (mm)’)
else:
plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \
labelbottom=’off’)
plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \
labelleft=’off’)
if show_title:
plt.title(’Intensity’)
if np.max(Int[j]) == 0:
plt.clim(-1,1)
else:
plt.clim(-np.max(Int[j]), np.max(Int[jl))
plt.ylim(freqs[0], fregs[-1])

subplots+=1

binned_scaling = 3
plt.subplot(len(fields[0]), 4+*binned_scaling, \
binned_scaling*subplots-(binned_scaling-1))

plt.plot(np.asarray(int_Int[j]), fregs)

plt.xticks([])
plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’off’)

if max(int_Int[j])==0:
plt.x1im(-0.2,1)
else:
plt.x1im(-0.1*max (int_Int[j]), max(int_Int[j]1)\
+0. 1*max (int_Int[j1))

plt.ylim(freqs[0], freqs[-1]1)
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subplots+=1

counter += 1

if counter != 1:

show_title = False

if counter == int(len(fields[0])/2):

units_y = True

else:

units_y = False

if counter == len(fields[0]):

label_x = True

if p.u.save:

plt.savefig(filename+’ .png’, format=’png’, transparent=True)

if p.u.show:

plt.show()

plt.close()

return

def plot2dtime(fields, p, filename):

Refields = {}



Imfields = {}
Int = {}

int_Int = {}

for j in fields[O0]:

Refields[j] = []
Imfields[j] = []
Int[j]1 = [I

for i in range(len(p.r)):
Refields[j].append(np.real (fields[i] [j].ift(p)))
Imfields[j].append(np.imag(fields[i] [j].ift(p)))
Int[j].append((1.33E-3)*(fields[i] [j].n0)\

*(Refields[j] [i]#*2 + Imfields[j] [1]*%2))

int_Int[j] = (]

for i in range(len(p.freq)):

sum = 0O

for k in range(len(p.r)):

sum+=2*np.pi*Int [j] [k] [i]*p.r[k]*(p.r[1]-p.r[0])

int_Int[j].append(sum)

plt.clfO

plt.figure(l, figsize=(12,8))

subplots = 1
show_title = True
units_y = False

label_x

False

counter 1
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for j in fields[O0]:

globalmax = max(np.amax(np.asarray(Refields[j]1)), \
np.amax (np.asarray(Imfields[j1)), \
abs(np.amin(np.asarray(Refields[j]1))), \

abs(np.amin(np.asarray(Imfields[j]))))

if globalmax ==
pass
else:
cmin = min(np.amin(np.asarray(Refields[j]).T/globalmax), \
np.amin(np.asarray(Imfields[j]).T/globalmax))
cmax = max(np.amax(np.asarray(Refields[j]).T/globalmax), \

np.amax (np.asarray(Imfields[j]) .T/globalmax))

globalmin = min(np.amin(np.asarray(Refields[jl1)), \
np.amin(np.asarray(Imfields[j1)), \
abs(np.amax(np.asarray(Refields[j1))), \

abs (np.amax (np.asarray(Imfields[j]))))

plt.subplot(len(fields[0]), 4, subplots)

if globalmax ==
plt.contourf(p.r*1000., p.timexlel5, np.asarray(Refields[j]).T,\
200, cmap=’seismic’, levels=np.linspace(-1,1,200))
else:
plt.contourf(p.r*1000., p.timexlel5, np.asarray(Refields[j]).T\
/globalmax,200, cmap=’seismic’, \

levels=np.linspace(-1,1,200))

if label_x:



plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)
if units_y:
plt.ylabel(j+’\ntime (fs)’)
else:
plt.ylabel(j+’\n’)
if show_title:

plt.title("Re(E)’)

plt.clim(-1,1)

plt.ylim(p.time[0]*1el5, p.time[-1]*1elb)

subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

if globalmax ==
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plt.contourf(p.r*1000., p.time*lel5, np.asarray(Imfields([j]).T,\

200, cmap=’seismic’, levels=np.linspace(-1,1,200))

else:
plt.contourf(p.r*1000., p.timexlel5, np.asarray(Imfields[j]).T\
/globalmax,200, cmap=’seismic’,\
levels=np.linspace(-1,1,200))
if label_x:
plt.xlabel(’cross section (mm)’)
else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \
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labelleft=’off’)
if show_title:
plt.title(’Im(E)’)
plt.clim(-1,1)
plt.ylim(p.time[0]*1el5, p.time[-1]*1elb)

subplots+=1

plt.subplot(len(fields[0]), 4, subplots)
plt.contourf (p.r*1000., p.time*lelb, np.asarray(Int[j]).T, 200, \

cmap=’seismic’)

if label_x:
plt.xlabel(’cross section (mm)’)
else:
plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \
labelbottom=’off’)
plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \
labelleft=’off’)
if show_title:
plt.title(’Intensity’)
if np.max(Int[j]) ==
plt.clim(-1,1)
else:
plt.clim(-np.max(Int[jl), np.max(Int[j]))
plt.ylim(p.time[0]*1el5, p.time[-1]*1elb)

subplots+=1

binned_scaling = 3
plt.subplot(len(fields[0]), 4*binned_scaling, \
binned_scaling*subplots-(binned_scaling-1))

plt.plot(np.asarray(int_Int[j]), p.timex*lel5)
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plt.xticks([])
plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \
labelleft=’0ff’)
if max(int_Int[j])==0:
plt.x1im(-0.2,1)
else:
plt.x1im(-0.1*max (int_Int[j]), max(int_Int[j]1)\
+0. 1*max (int_Int [j1))

plt.ylim(p.time[0]*1el5, p.time[-1]*1lelb)

subplots+=1

counter += 1

if counter != 1:
show_title = False

if counter == int(len(fields[0])/2):
units_y = True

else:
units_y = False

if counter == len(fields[0]):

label_x = True

if p.u.save:

plt.savefig(filename+’.png’, format=’png’, transparent=True)

if p.u.show:

plt.show()
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plt.close()

return

def plot2dweighted(fields, p, filename):

Refields = {}
Imfields = {}
Int = {}

int_Int = {}

Int_for_int = {}

for j in fields[0]:

Refields[j] = []
Imfields[j] = []
Int[j]1 = []

Int_for_int[j] = []

for i in range(len(p.r)):
Refields[j].append(np.real(fields[i] [j].E)*2*np.pi*p.r[il)
Imfields[j].append(np.imag(fields[i] [j].E)*2*np.pi*p.r[i])
Int[j].append(fields[i] [j].int O *2*np.pi*p.r[i])

Int_for_int[j].append(fields[i] [j].int())

int_Int[j] = []

for i in range(len(p.freq)):

sum = 0

for k in range(len(p.r)):
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sum+=2#np.pi*Int_for_int[j] [k] [i]*p.r[k]l*(p.r[1]-p.r[0])

int_Int[j].append(sum)

del Int_for_int

plt.clf(O

plt.figure(l, figsize=(12,8))

subplots = 1
show_title = True
units_y = False

label_x

False

1

counter

for j in fields[0]:

globalmax = max(np.amax(np.asarray(Refields[jl)), \
np.amax (np.asarray(Imfields[j1)), \
abs(np.amin(np.asarray(Refields[j]1))), \

abs(np.amin(np.asarray(Imfields[j]))))

freqs = (fields[0] [j].wO0 + p.freq)*(1/(2.*np.pi*3.e10))
for i in range(len(fregs)):
if fregs[i] < 1.4227e14*(1/(2*np.pi*3.e10)):

freqs[i] = 0.

if globalmax ==
pass

else:

cmin = min(np.amin(np.asarray(Refields[j]).T/globalmax), \

np.amin(np.asarray(Imfields[j]).T/globalmax))

cmax = max(np.amax(np.asarray(Refields[j]).T/globalmax), \
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np.amax(np.asarray(Imfields[j]) .T/globalmax))

globalmin = min(np.amin(np.asarray(Refields[j]1)), \
np.amin(np.asarray(Imfields[j1)), \
abs(np.amax (np.asarray(Refields[j]1))), \

abs (np.amax (np.asarray(Imfields[j]))))

plt.subplot(len(fields[0]), 4, subplots)

if globalmax ==
plt.contourf (p.r*1000., freqs, np.asarray(Refields[j]).T,200,\

cmap=’seismic’, levels=np.linspace(-1,1,200))

else:
plt.contourf(p.r*1000., freqs, np.asarray(Refields[j]).T\
/globalmax,200, cmap=’seismic’, \
levels=np.linspace(-1,1,200))
if label_x:
plt.xlabel(’cross section (mm)’)
else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \
labelbottom=’o0ff’)
if units_y:
plt.ylabel(j+’\nangular frequency (x10-15)’)
else:
plt.ylabel(j+’\n’)
if show_title:

plt.title("Re(E)’)

plt.clim(-1,1)

plt.ylim(freqs[0], freqs[-11)
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subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

if globalmax ==
plt.contourf (p.r*1000., freqs, np.asarray(Imfields[j]).T,200, \

cmap=’seismic’, levels=np.linspace(-1,1,200))

else:
plt.contourf (p.r*1000., freqs, np.asarray(Imfields[j]).T\
/globalmax,200, cmap=’seismic’, \
levels=np.linspace(-1,1,200))
if label_x:
plt.xlabel(’cross section (mm)’)
else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \
labelbottom=’off’)
plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \
labelleft=’off’)
if show_title:

plt.title(’Im(E)’)

plt.clim(-1,1)

plt.ylim(freqs[0], fregs[-1])

subplots+=1

plt.subplot(len(fields[0]), 4, subplots)

plt.contourf (p.r*1000., freqs, np.asarray(Int[jl).T, 200, cmap=’seismic’)

if label_x:



plt.xlabel(’cross section (mm)’)

else:

plt.tick_params(axis=’x’, which=’both’, labeltop=’off’, \

labelbottom=’off’)

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’0ff’)
if show_title:
plt.title(’Intensity’)
if np.max(Int[j]) == 0:
plt.clim(-1,1)
else:
plt.clim(-np.max(Int[j]), np.max(Int[j]))

plt.ylim(freqs[0], freqs[-1])

subplots+=1

binned_scaling = 3

plt.subplot(len(fields[0]), 4+*binned_scaling, \
binned_scaling*subplots-(binned_scaling-1))

plt.plot(np.asarray(int_Int[j]), fregs)

plt.xticks([])

plt.tick_params(axis=’y’, which=’both’, labelright=’off’, \

labelleft=’off’)
if max(int_Int[j])==0:
plt.x1im(-0.2,1)
else:
plt.x1im(-0.1*max (int_Int[j]), max(int_Int[j]1)\
+0. 1*max (int_Int [j]1))

plt.ylim(freqs[0], freqs[-11)
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subplots+=1

counter += 1

if counter != 1:
show_title = False

if counter == int(len(fields[0])/2):
units_y = True

else:
units_y = False

if counter == len(fields[0]):

label_x = True

if p.u.save:

plt.savefig(filename+’ .png’, format=’png’, transparent=True)

if p.u.show:

plt.show()

plt.close()

return
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In this appendix, we present code developed to simulate the evolution of signal arising from an arbitrary
polarization. This code has been implemented for operation on MacOS and other UNIX-based systems. We
have sought to incorporate as many considerations in simulating signal generation as could be considered,
including the phase of the driving fields and pulse propagation effects. This code consists of three scripts:
parameters.py, operations.py, and main.py.

Once again, the code has been formatted for this presentation.

D.1 parameters.py

The code in parameters.py defines a class that outlines the parameters for the system to be simulated and
the functions used to calculate and determine the optical properties of the material. It should be noted that

in these functions, it would be trivial to add additional materials and solvents as desired.

import numpy as np

from numpy import power as pow

import os

import matplotlib.pyplot as plt

from scipy.interpolate import interpild

from functools import partial

class parameters:

def __init__(self):

H## Options

# parameters.diagnostic is a Boolean that controls whether diagnostic plots are

# displayed during operation

self.diagnostic = False

# parameters.smoothing is a Boolean the controls whether the loaded signal files
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are baseline subtracted and smoothed (True) or are just modified by having the
baseline subtracted (False). parameters.baseline_percentage is a scalar value,
N, that defines all points within N% of the maximum difference from the initial
point in the loaded arrays as "baseline". parameters.boxcar is a scalar value
that defines the half-width of the smoothing boxcar, and only has an impact
when smoothing is enabled. parameters.cutoffs defines the threshold of
smoothing: all points in the arrays for which y(kx)y+*(kx) is below the cutoff
will be smoothed. parameters.smooth_mode has been added to control whether the
smoothing is performed in the loaded domain or in the Fourier domain; it seems
that smoothing in the Fourier domain is more effective for suppressing baseline
noise, whereas smoothing in the loaded domain appears to be better when the
feature is noisy.

self.smoothing = True

self.smooth_mode = {’wl’ : ’fourier’, ’w2’ : ’fourier’, ’w3’ : ’loaded’}

self.baseline_percentage = 2.

self.boxcar = 8

self.cutoffs = {’wl’ : 2.e-4, ’w2’ : 4.e-4, ’w3’ : 9.e-5}

parameters.characteristic_length is an estimate for the temporal width of the
pulses. This value needs to be a reasonable estimate for the shortest pulses
involved in the experiment, but does not have to be exact; it is just used to
define time/frequency grids with approximately equal sampling of the
polarization in both domains. parameters.time_points defines the number of
points should be used in constructing the grids.

self.characteristic_length = 75.

self.time_points = 128

parameters.z_points defines the number of transverse slices that should be
taken for the integration

self.z_points = 701
parameters.x_points and parameters.y_points defines the desired number of

points along the x and y axes of each transverse slice. The program has some
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flexibility to override this if it is necessary to ensure sufficient bounds of

the transverse slices.

self.x_points 128

self.y_points 128
parameters.absorption, parameters.gvm_in, parameters.gvm_out, parameters.gvd_in
and parameters.gvd_out control what absorptive and dispersive properties of the
system should be considered. The dispersion of the air is neglected, but
the dispersion of windows and material are both considered. The GVM and GVD
can be enabled/disabled on the input and output fields separately.
self.absorption = True
self.gvm_in = True
self.gvm_out = True
self.gvd_in = True
self.gvd_out = True
self .mono_convolution = False
parameters.dispersive_k controls whether the wave vector of the fields
should be treated according to the propagation at the carrier frequency (False)
of that each frequency should exhibit a unique wave vector (True)

self.dispersive_k = False

parameters.save controls whether the polarization slices are saved during
operation. parameters.save_final controls whether the final field is saved.
parameters.folder directs the program to the desired save location.
Note that even 7128x128x128 slices will yield “180MB files, and double the time
required for the polarization_slice function to execute.

self.save = False

self.save_final = True

self.save_folder=’"’

self.save_file = ’final_field’

# Omit format; output will be saved to .txt
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self .multiprocessing = True

8

self .processes

self.chunksize 1
# Modification to the nonresonant electronic nonlinear susceptibility reported by
# Levenson and Bloembergen.

self.elec_modifier = 150000.

### Experimental Configuration

# Beam placement and distance of the focusing optics from the sample
self.mask = {’w1’ : [-0.5, 2.0], w2’ : [0., -2.], ’w3’> : [1, 1.75]}
self.d = 24.%2.54

# Phase-matching coefficients and experimental degeneracy

self .phase_matching = {"w1’> : 1, ’w2’ : -1, ’w3’ : 1}
self.degeneracy = 6.

# Monochromator characteristics

self.N = 300. # grooves/mm

self.f_len = 140. # mm

# Slit width

self.slits = 100. # microns

### Sample and window characteristics
# Sample path length in mm
self.L = 1.
# Window path length in mm
self .win_len = (12.5-1.)/2.
# Materials
self.sample = {’benzene’ : 1.0}

self.windows = ’glass’

### Imaging Parameters
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self.focus_shift = {’w1’ : 0., ’w2’ : 0., w3’ : 0.}
self.focus_offset = {’w1’ : [0., 0.1, w2’ : [0., 0.1, w3’ : [0., 0.1}

self .waist = {’wl’ : 40.5, ’w2’ : 23., w3’ : 23.}

Hit# Field Properties and Parameters

self.colors = {’wl’ : ’8000°, ’w2’ : ’7000’, w3’ : ’delay’}
self.w0 = {’w3’ : ((3.e8)/(794.038e-9))*2xnp.pi}
# Define w0 for w3
self .phase = {’wl’ : 0., ’w2’ : 0., w3’ : 0.}
self.delay = {’t31’ : 0., ’t32° : 0.}
self.rel_lengths = {’wl’ : ’short’, ’w2’ : ’short’, ‘w3’ : ’long’}
self.energy = {
>wil’ : {°8300’ : 0.000000719,
’8000’ : 0.000001103,
>7700° : 0.000001198%},
*w2’ ¢ {’7300° : 0.000001074,
>7000° : 0.000001007,
’6700° : 0.000000671%},

'w3’ : {’delay’ : 0.0000003739}} # in J

Hit# Parameters for file loading and processing

self.folder = 7’
self.files = {
'wi> ¢ {’8300° : 7,
’8000° : 77,
>7700° @ 703,
‘w2« {’°7300° : 7,
’7000° @ 77,

’6700° : 7’3},
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‘delay’ : )}

self.columns = {"w1’ : [8, 211, w2’ : [8, 211, w3’ : [12, 16]}

### Other:

self.c = 3.e8
self.L *= 1000. # Convert from mm to microns

self.win_len *= 1000. # Convert from mm to microns

# Calculate external angles
self.theta_ext = {}
for i in self.mask:
self.theta_ext[i] = [ (np.arctan(self.mask[i] [j]1/self.d)) \

for j in [0,1] ]

# time_freq_grids()
# Uses the provided characterstic_length and time_points parameters to determine
# time and frequency grids that should provide even sampling of the electric
# fields and polarization in both domains.
def time_freq_grids(self):
# Calculate the point spacing required in the time domain
delta = self.characteristic_length*np.sqrt(np.pi/self.time_points)
# Calculate the bounds of the time array (half the full spread of the grid)
half_width = (deltaxself.time_points)/2.
# Calculate the grids.
self.t = np.linspace(-1*half_width, half_width, self.time_points)
self.w = np.linspace(-np.pi/(deltaxle-15) ,np.pi/(delta*l.e-15),\
len(self.t)+1) [:-1]

return

def spatial_grids(self):
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# Calculate the half-width bounds for the x and y axes.
xy_hw = [(0.5 * i * min(self.waist.itervalues()) * np.sqrt(np.pi/i)) \
for i in [self.x_points, self.y_points]]

# Define the x,y grids

self.x = np.linspace(-xy_hw[0], xy_hw[0], self.x_points)

self.y = np.linspace(-xy_hw[1], xy_hw([1], self.y_points)

self .kx = np.linspace(-1/(2*abs(self.x[1] - self.x[0])),\
1/(2*abs(self .x[1] - self.x[0])), self.x_points+1)[:-1]

self.ky = np.linspace(-1/(2*abs(self.y[1] - self.y[0])), \
1/(2*abs(self.y[1] - self.y[0])), self.y_points+1)[:-1]

ds = [self.L*np.tan(self.theta[’w4’]1[0]), \

self .L*np.tan(self.thetal[’w4’] [1]), \
self.L]
ds = np.sqrt(np.dot(up.asarray(ds), np.asarray(ds)))
deltaz = max(np.amax(abs(self.x))*np.tan(self.thetal[’w4’][0]),\
np.amax (abs(self.y))*np.tan(self.thetal[’w4’][1]))
self.z = np.linspace(-(0.5% + deltaz), (0.5*ds + deltaz), self.z_points)

return

# This method calculates the optical properties at the relevant frequencies
# It adds a property to the class for each optical property, with each property

# being a dictionary containing the values of those properties for each field.

def calculate_optical_properties(self, w = ’default’):

if w == ’default’:
del w

w = self.w

self.n0, self.nw, self.nwin, self.nair = {3}, {3}, {3}, {3
# indices of refraction

self.ug = {}
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# group velocity
self.gvd, self.gvdw = {}, {}

# group velocity dispersions
self.a0, self.aw = {}, {3

# absorption coefficients

for i in self.wO:

self.nair[i] = self.calc_index(((2*np.pi*3.e17)/self.w0[i]),\
>air’)
self .nwin[i] = self.calc_index(((2*np.pi*3.e17)/self.w0[i]), \

self.windows)

The index of refraction of the sample will be calculated as the sum of the
products of each component’s refractive index and volume fraction (the
Arago-Biot model. While it seems that this model is not as accurage as the
Lorentz-Lorentz model, it is reasonably accurate and much simpler.
self.n0[i] = sum( ((self.calc_index( ((2 * np.pi * 3.el7)\
/self .w0[i]), j)* self.sample[j]) for j in self.sample) )
nw_temp = []
nw_temp.extend( (sum( ((self.calc_index(((2 * np.pi * 3.el7)\
/(self .wO[i] + self.w[jl)), k) * self.samplel[k]) \
for k in self.sample))) for j in range(len(w)))

self.nw[i] = np.asarray(nw_temp)

The Arago-Biot model, i.e. n = sum ni*fi where ni and fi are the index and
volume fraction of the i’th sample component, can be extended to calculate
the group velocity of a mixture. From the definition of the group velocity
ug = (dk/dw)"1: given k = nw/c, dk/dw = d/dw (nw/c). If we treat n as the
index of a mixture: dk/dw = d/dw ((sum nix*fi) w/c) = sum d/dw ((ni*fi) w/c)
But fi is independent of frequency, so: dk/dw = sum fi * d/dw (ni w/c)

We can recognize d/dw (ni w/c) as dk/dw of the i’th component, so dk/dw of
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# the mixture is the sum of fix(dk/dw)i, or ug™-1 = sum (fi/ugi).
self.ugl[i] = (1.e18)/(sum((((1/self.calc_gv(((2 * np.pi * 3.el7)\

/self .w0[i]), j))*self.sample[j]l) for j in self.sample)))

# Given GVD is d2k/dw2, it is trivial to show (d2k/dw2) = sum fix(d2k/dw2)i.
self.gvd[i] = 1.E-33 * sum( ((self.calc_gvd(((2 * np.pi * 3.el7)\
/self .w0[i]), j) * self.sample[j]) for j in self.sample))

self.gvdw([i] = self.calc_gvd(((2*np.pi*3.el7)/self.wO0[i]),\

self.windows)*1.E-33

self.a0[i] = self.alpha(((2*np.pi*3.e17)/self.w0[i])) * 1l.e-4

aw_temp = []

aw_temp.extend( ((self.alpha(((2*np.pi*3.el17)/(self.wO[i]+j))) \
* 1.e-4) for j in w) )

self.aw[i] = np.asarray(aw_temp)

del aw_temp, nw_temp

# If a key for w4 exists, calculate the nonlinear susceptibility
if ’w4’ in self.wO:

chi_temp = []

chi_temp.extend((sum(((self.calc_chi(self.wO[’w4’] + j, i) \
* 1.e12 * self.sample[i]) for i in self.sample)) \
for j in w))

self.chi = np.asarray(chi_temp)

del chi_temp

return

# This method calculates the internal angles of each field

def calculate_internal_angles(self):

self.theta = {}
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# For each key in the property describing external angles (i.e. ’wl’, ’w2’, ’w3’)

# calculate the internal angles for each of these fields using Snell’s law.
for i in self.theta_ext:
self.thetal[i]l = [(np.arcsin((self.nair[i]*\
np.sin(self.theta_ext[i]1[j1)) \
/self.n0[i])) for j in [0,1] ]
del i
# If a key exists in theta for ’wl’, ’w2’, and ’w3’, calculate the internal
# angles for the output field according to the phase-matching conditions.
if ’wl’ in self.theta and ’w2’ in self.theta and ’w3’ in self.theta:
# Calculate the magnitude of the k-vector for each field in 1/micron
kmag = {}
for i in self.wO:
kmag[i] = (self.wO[il*self.n0[i]/(3.e8))*1.e-6
# in 1/micron

del i

# Find thetax and thetay for the output field that satisfy the relationships:

# kidx cl*klx + c2%k2x + c3xk3x

# kdy = clxkly + c2xk2y + c3*k3y
# This may not necessarily be the exact solution since it neglects kz but
# hopefully should be close for most cases.
sums = [sum( ((self.phase_matching[i]*kmag[i]\
*np.sin(self.thetali] [j1)) \
for i in self.theta)) for j in [0,1]]
self.theta[’w4’] = [ (np.arcsin(sums[i]/kmag[’w4’]1)) \

for i in [0,1]]

# Use the calculated angles to calculate the actual k-vectors
k= {}
for i in self.theta:
k[i] = kmagl[i]#*np.asarray([np.sin(self.thetal[i] [0]),

np.sin(self.thetalil [0]), np.sqrt(1 \
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- (np.sin(self.thetal[i] [0])**2) \
- (np.sin(self.thetal[i] [1])#**2))])

del i

# Sum k1, k2, and k3 according to the phase_matching coefficients to find k4’
kdp = sum( (self.phase_matching[i] * k[i]) \

for i in [’wl’, ’w2’, ’w3’])

# Calculate the phase-mismatch as k4’ - k4
# Ideally, k4’ and k4 should be in roughly the same direction; therefore, the
# relative magnitude of the two vectors should correlate with the sign of
# deltak: if k4’ is longer/shorter than k4, deltak should be positive/negative
if np.dot(kdp, k4p) >= np.dot(k[’w4’], k[’w4’]):
self.deltak = np.sqrt(np.abs(np.dot((kdp - k[’w4’]),\
(k4p - k[’w4°1))))
else:
self.deltak = -np.sqrt(np.abs(np.dot((kdp - k[’wd’]1),\
(k4p - k[’w4’1))))

return

def calc_index(self, wavelength, material):

# while nm is taken as the default for wavelengths, most forms of the Selmeier
# or Cauchy’s equations uses microns
# convert from nm to micron by dividing by 1000

wl = wavelength/1000.

if material == ’benzene’:
a, b, c, d, e = 2.170184597, 0.00059399, 0.02303464, \
-0.000499485, 0.000178796
return np.sqrt(a + (bxpow(wl,2)) + (cxpow(wl, -2)) \

+ (dxpow(wl, -4)) + (e*pow(wl, -6)))



334

elif material == ’glass’:

# Precision Cells does not appear to give the type of glass

# BK7 is used as a representative blend

al, bl = 1.03961212, -0.00600069867

a2, b2 = 0.231792344, -0.0200179144

a3, b3 = 1.01046945, -103.560653

return np.sqrt(l + sum( ((i * pow(wl, 2) * pow((pow(wl, 2) + j),\

-1)) for i,j in [(al,bl), (a2,b2), (a3,b3)1) ))

elif material == ’air’:

al, bl = 0.05792105, 238.0185

a2, b2 = 0.00167917, 57.362

return 1 + sum( ((i * pow((j - pow(wl, -2)), -1)) \

for i,j in [(a1,b1), (a2,b2)1) )

# material_properties.gv(WAVELENGTH, MATERIAL)
# Takes WAVELENGTH (in nm) and the name of a material (as a string)
# Returns the group velocity of MATERIAL at WAVELENGTH in units mm/fs

# Group velocity is dw/dk, or (dk/dw) -1

def calc_gv(self, wavelength, material):

# Defined as (dw/dk) (or (dk/dw)~(-1))

wl = wavelength/1000.

if material == ’benzene’:
a, b, c, d, e = 2.170184597, 0.00059399, 0.02303464, \
-0.000499485, 0.000178796
dndl = 0.5*pow(self.calc_index(wavelength, material), -1) \
* (2xb*wl - 2xc*pow(wl, -3) - 4*d*pow(wl, -5) \

- 6xexpow(wl, -7))
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elif material == ’glass’:
al, bl = 1.03961212, -0.00600069867
a2, b2 = 0.231792344, -0.0200179144
a3, b3 = 1.01046945, -103.560653
dndl = 0.5*pow(self.calc_index(wavelength, material), -1) \
* sum(((2 * i * wl * pow((pow(wl,2) + j), -1) \
- 2 % i % pow(wl,3) * pow((pow(wl,2) + j),-2)) \
for i,j in [(al,b1), (a2,b2), (a3,b3)]))
elif material == ’air’:
al, bl = 0.05792105, 238.0185
a2, b2 = 0.00167917, 57.362
dndl = sum( ((-2 * i * pow(wl,-3) * pow((j - pow(wl,-2)), -2)) \

for i,j in [(al,b1), (a2,b2)]1))

return self.c * pow((self.calc_index(wavelength, material) - wlxdndl), \
-1)*1.e-12

# in mm/fs

# parameters.gvd(WAVELENGTH, MATERIAL)

# Takes WAVELENGTH (in nm) and the name of a material (as a string)
# Returns the group velocity dispersion of MATERIAL at WAVELENGTH
# in units fs~2/mm

# Group velocity dispersion is d"2k/dw"2

def calc_gvd(self, wavelength, material):

wl = wavelength/1000.

if material == ’benzene’:

a, b, ¢, d, e = 2.170184597, 0.00059399, 0.02303464,\

-0.000499485, 0.000178796

dndl = 0.5*pow(self.calc_index(wavelength, material), -1) \
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* (2xbxwl - 2xc*pow(wl, -3) - 4*d*pow(wl, -5) \
- 6xexpow(wl, -7))

d2ndl12 = 0.5*pow(self.calc_index(wavelength, material), -1) \
* (2%b + 6*xcxpow(wl, -4) + 20*d*pow(wl, -6) \
+ 42*xexpow(wl, -8)) + -0.5\
xpow(self.calc_index(wavelength, material), -2) \
* dndl * (2*b*wl - 2*cxpow(wl, -3) \

- 4xd*pow(wl, -5) - 6*expow(wl, -7))

elif material == ’glass’:
al, bl = 1.03961212, -0.00600069867
a2, b2 = 0.231792344, -0.0200179144
a3, b3 = 1.01046945, -103.560653

dndl = 0.5*pow(self.calc_index(wavelength, material), -1) \
* sum(((2 * i * wl * pow((pow(wl,2) + j), -1) \
- 2 % i * pow(wl,3) * pow((pow(wl,2) + j),-2)) \

for i,j in [(al,b1), (a2,b2), (a3,b3)]1))

d2ndl2 = 0.5 * pow(self.calc_index(wavelength, material), -1) \
* sum(((2 * 1 * pow((pow(wl,2) + j),-1) \
- 10 * i * pow(wl,2) * pow((pow(wl,2) + j),-2) \
+ 8 * i *x pow(wl,4) * pow((pow(wl,2) + j),-3)) \
for i,j in [(a1,b1), (a2,b2), (a3,b3)1)) \
- 0.5%pow(self.calc_index(wavelength, material),\
-2) * dndl * sum( ((2 * i * wl * pow((pow(wl,2) \
+ 3),-1) - 2 % i * pow(wl,3) \
* pow((pow(wl,2) + j),-2)) \
for i,j in [(al,b1), (a2,b2), (a3,b3)]1))

elif material == ’air’:

al, bl = 0.05792105, 238.0185

a2, b2 = 0.00167917, 57.362

d2ndl2 = sum(((6 * i * pow(wl,-4) * pow((j - pow(wl,-2)),-2)\

+ 8 * i * pow(wl,-6) * pow((j - pow(wl,-2)),-3))\

for i,j in [(al,b1), (a2,b2)]1))
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return (((wl)#**3)/(2*np.pi*(self.c**2))*d2nd12)*(1e21) #fs2/mm

# parameters.alpha(WAVELENGTH)
# Takes WAVELENGTH (in nm)

# Returns the absorbance coefficient of the sample at WAVELENGTH in units 1/cm

def alpha(self, wavelength):

return O.

# parameters.chi(p, FREQUENCY, INDICES)

# Takes angular frequency (in 1/s)

# Currently set to return the non-resonant electronic and Raman
# response of benzene’s 992cm-1 mode in a CARS experiment

# in which (wl-w2) prepare the vibrational coherence

# Returns the chi3 value in units of m2/V2

def calc_chi(self, freq, material):

if material == ’benzene’:

# Convert to the frequency shift in wavenumbers from frequency of w3
wn = ((freq - self.wO[’w3’])/(2*np.pi))*(1/3.e10)
# Terms from Levenson and Bloembergen, J Chem Phys 60 1323 with a
# modifier to increase the electronic response under fs excitation. Note
# that we neglect the imaginary contribution described by Levenson and
# Bloembergen. (They do not give a fixed value, and it is >200 times
# weaker than the real, and within the bounds of their reported error.)
chi_elec = 0.64e-36*self.elec_modifier
chi_vib = 1.74e-35 * (992./((992.%%2) - (wn**2) + 1j%2.xwn*1.15))
# Local field enhancement factor
F = reduce(lambda x,y: xxy, (((((self.nO[i]**2) + 2.)/3.)) \

for i in self.n0))
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# Chi3 in cgs units; factor of 0.5 accounts for difference in degeneracy
chi_cgs = 6.75e21*(chi_elec+chi_vib)*F*0.5
# Convert chi3d from cgs units to SI units

return chi_cgs*4*np.pi*(1.e-4)*((299.79)**(-2))

D.2 operations.py

The second script associated with these calculations, operations.py, contains many of the functions neces-

sary for proper execution.

import numpy as np

from numpy import power as pow

import os, itertools, datetime

import matplotlib.pyplot as plt

from scipy.interpolate import interpild
from functools import partial

from itertools import product

# operations.load_field (FOLDER, FILE, COLUMNS)
# Takes two strings (FOLDER and FILE) and a 2-element list (COLUMNS). FOLDER and FILE
# identify the location and name of the file containing the raw tuning data for one
# field. COLUMNS is a two-element list that specifies the indices (with indexing starting
# at 0) of the columns containing the data for the x (COLUMNS[0]) and y (COLUMNS[1]) data.
def load_field(folder, file, columns):
# Initialize the arrays.

x_axis, y_axis = [1, []
# Open the target file.

f = open(folder + ’/’ + file)
# Load each line and append the values in the appropriate columns to x and y arrays.

for line in f:

x_axis.append(float(line.split(’\t’) [columns[0]]))

y_axis.append(float(line.split(’\t’) [columns[1]]))
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f.close()
del f, line
# Return the loaded files as a tuple of arrays (x,y)

return np.asarray(x_axis), np.asarray(y_axis)

# Initialize the matplotlib figure and axes objects necessary to ensure proper operation
# for diagnostics enabled or disabled.
def initialize_diagnostics(modes, diagnostic, smoothing):
# Initialize a matplotlib figure object and a dictionary for storing the axes
figl, fig2 = plt.figure(), plt.figure()
axesl, axes2 = {}, {}
# If diagnostics are not enabled, just populate axesl and axes2 as dummy variables.
if not diagnostic:

for i in [’wl’, ’w2’, ’w3’]:

axes1[i] [None,None]

axes2[i] [None,None]
# Otherwise, populate axes according to whether smoothing is enabled or not.
else:
if smoothing:
# Populate axesl according to the manner of smoothing.
for i,j,k in [(Cw1’,1,1), (°w2’,3,2), ("w3’,5,3)]:
if modes[i] == ’fourier’:
axes1[i] = [figl.add_subplot(3,2,j), \
figl.add_subplot(3,2,j+1)]
elif modes[i] == ’loaded’:
axesl1[i] = [figl.add_subplot(3,1,k),Nonel
del i, j, k
elif not smoothing:
for i,j in [Cw1’, 1), Cw2’, 2), (°w3’,3)]:
axesl[i] = [figl.add_subplot(3,1,j),Nonel
for i,j in [Cw1l’, 1), (Cw2’, 3), (Pw3’, B)]:

axes2[i] = [fig2.add_subplot(3,2,j),fig2.add_subplot(3,2,j+1)]



#

#

return figl, axesl, fig2, axes2

operations.smooth(X,Y,CUTOFF, BOXCAR, BASE_PER, DIAG, AX, MODE)

Takes two numpy arrays (X,Y), three scalar values (CUTOFF, BOXCAR, and BASE_PER), a
boolean (DIAG), and an axis object from matplotlib.pyplot (only necessary if

DIAG is True). Performs baseline subtraction and smoothing on the Y array. CUTOFF
specifies the threshold under which smoothing is performed, and BOXCAR specifies the
limit for the half-width of the smoothing boxcar. BASE_PER specifies the percentage

used to define which points in the Y array constitute "baseline". DIAG indicates
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the routine making the function call is performing diagnostic plotting; if True, smooth

requires an axis object on which it can plot the results of processing.

def smooth(x, y, cutoff, boxcar= 6, base_per= 2., diag= False, ax=None, mode=’fourier’):

#

Baseline subtraction.
y = baseline_subtract(y = y, perc = base_per)
If the smoothing mode is to operate in the Fourier domain:
if mode == ’fourier’:
If necessary, define an array corresponding to the Fourier domain of the x array
kx = np.linspace(-1/(2*abs(x[1]1-x[0])), 1/(2*abs(x[1]1-x[0])),\
len(x)+1) [:-1]
Perform the 1DFT
y_ft = (1/np.sqrt(len(x))) * (y[:,None] \
* np.exp(1j*2*np.pi*x[:,None]*kx[None,:])) .sum(axis=0)
If diagnostics are enabled, plot y(kx)
if diag:
ax.plot(kx, y_ft*np.conj(y_ft), ’k-’)
ax.set_yscale(’log’)
Initialize the smoothed array as a copy of the original array.
y_ft_sm = y_ft.copy(O
Only perform smoothing for points where y(kx)y*(kx) are below the cutoff. It
should be noted that this algorithm assumes a feature in the middle of the data
with continuous background that needs to be smoothed.

for i in np.where(y_ft*np.conj(y_ft) < cutoff) [0]:
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Define initial averaging window as the span of i +/- boxcar.

upper = i1 + boxcar + 1

lower = i - boxcar
If lower < 0, the boxcar reaches the beginning of the array; in this case, only
average over the points up to the upper bound.
if lower < O:
y_ft_sm[i] = np.mean(y_ft[:upper])
If upper extends the range of the boxcar beyond the end of the array, the
average is taken from the lower bound to the end of the array, incorporating
the first point, due to the symmetry of the FT.
elif upper > (len(y_ft) - 1):
y_ft_sm[i] = np.mean(np.concatenate((y_ft[lower:],\
y_ft[:11)))
Otherwise, perform the average between upper and lower. However, so we are
only averaging out noise, we check to make sure that the bounds of the boxcar do
not significantly extend into the main features of the array; if the bounds do
extend into the main features of the array (i.e. those above the cutoff level),
the bounds are gradually decreased as the index approaches the main feature(s).
else:
upper += -2
lower += 2
checkl, check2 = 0,0
while upper not in np.where(y_ft*np.conj(y_ft) \
< cutoff) [0]:
upper += -1
checkl += 1
if checkl > boxcar:
break
while lower not in np.where(y_ft*np.conj(y_£ft) \
< cutoff) [0]:
lower += 1

check2 += 1



342

if check2 > boxcar:
break
upper += 2

lower += -2

y_ft_sm[i] = np.mean(y_ft[lower:upper])
# If diagnostics are enabled, plot the smoothed y(kx) data.
if diag:
ax.plot(kx, y_ft_sm*np.conj(y_ft_sm), ’r-’)
# Perform the 1DFT to convert the smoothed y(kx) to a smoothed y(x)
y_sm = (1/np.sqrt(len(kx))) * (y_ft_sm[:,None] \
* np.exp(-1j*2*np.pi*kx[:,None]*x[None,:])).sum(axis=0)
del y_ft, y_ft_sm
# Ensure the smoothed array is real-valued.
y_sm = np.real(np.sqrt(y_sm*np.conj(y_sm)))
# Otherwise, just perform smoothing on the background subtracted raw data.
elif mode == ’loaded’:
y_sm = np.empty(np.shape(y))
for i in range(len(y)):
if i < boxcar:
y_sm[i] = np.mean(y[:i+boxcar+1])

elif i > (len(y) - boxcar - 1):

y_sm[i] = np.mean(y[i-boxcar:])
else:
y_sm[i] = np.mean(y[i-boxcar:i+boxcar+1])
# Since the Fourier smoothing algorithm will yield all values greater than or equal to

# zero, we will perform one more baseline subtraction, then return the result.

return baseline_subtract(y = y_sm, perc = base_per)

# operations.baseline_subtract(Y, PERC)
# Takes a numpy array Y and a scalar value PERC (corresponding to the desired cutoff

# percentage). Averages all points within PERC/, of the maximum deviation from the



# initial point in Y, subtracts this value from the array, and returns the result.
def baseline_subtract(y, perc, **kwargs):
baseline = np.mean(y[np.where(abs(y-y[0]) < (perc/100.)\
*np.amax (abs(y - y[0])))[0]11)

return y - baseline

# operations.center_freq(GUESS, W, WL, SIG)

# Takes a scalar value (GUESS) and three arrays(W, WL, SIG). WL and SIG define the
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# spectrum of the field in question. Starting from the GUESS of the central frequency,

# center_freq interpolates SIG onto a regular frequency grid, W (centered at 0), and

# calculates the true central frequency and returns the result.
def center_freq(guess, w, wl, sig):
# Calculate an angular frequency grid centered at guess from the wavelength grid
f = 2%np.pi*(3.e17/wl) - guess
# Generate a model for interpolating the signal onto an arbitrary frequency grid.
if £[11 > £[0]:
model = interpld(f, sig, bounds_error = False, fill_value = 0.)

else:

model interpld(f[::-1], sigl[::-1], bounds_error = False, \
fill_value = 0.)
# Calculate the central frequency sum(I*w)/sum(I)

w0 = ((((model(w))*(w + guess)).sum())/((model(w)).sum()))

# Ensure the value is real-valued, and return it

return float(np.real(np.sqrt(wO*np.conj(w0))))

# operations.grid_spectrum(WO, W, WL, SIG)

# Takes a scalar value (WO) and three arrays (W, WL, SIG). WL and SIG define the

# spectrum of a field that may not necessarily be gridded regularly. grid_spectrum

# takes the WL grid and converts it to a frequency grid centered at O (where the
# frequency is WO). A 1D interpolation is then performed to map the SIG array
# onto the provided frequency grid, W.

def grid_spectrum(wO, w, wl, sig):
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# Calculate an angular frequency grid from the loaded wavelength grid
f = (2%np.pi*(3.e17/wl)) - wO
# Generate a model for interpolating the signal onto an arbitrary frequency grid.

if £[1] > £[0]:

model interpld(f, sig, bounds_error = False, fill_value = 0.)

else:

model = interpld(f[::-1], sig[::-1], bounds_error = False, \
f£ill_value = 0.)
# Return the interpolation of the raw data onto the provided frequency grid.

return model (w)

# operations.calculate_field(X_AX, SIG, NO, WAIST, ENERGY, T_OR_W, diagnostic, returnt)
# Takes two arrays (X_AX and SIG), three scalars (NO, WAIST, and ENERGY), a
# string (T_OR_W), and a boolean (diagnostic). SIG is the intensity-level spectrum on
# the X_AX grid, which should either be an angular frequency grid in 1/s or a time grid
# in femtoseconds. T_OR_W informs whether X_AX is a frequency grid (T_OR_W=’frequency’)
# or a time grid (T_OR_W = ’time’). NO, WAIST, and ENERGY are used to determine the
# proper scaling factor for converting SIG to an electric field gridded onto X_AX. If
# diagnostic is True, the function will also print out a line comparing the energy
# calculated with the resulting scaling factor to the provided energy. returnt allows the
# user to request calculate_field to return the intermal t grid.
# The electric field is returned in units of V/micron*s (the per second is essentially
# per unit frequency/per unit time).
def calculate_field(x_ax,sig,n0,waist,energy,t_or_w,perc,diagnostic=False,returnt=False):
if t_or_w == ’frequency’:

# If x_ax is frequency, define a time grid and perform the 1DFT to get I(t)

t = np.linspace(-np.pi/(abs(x_ax[1]-x_ax[0])), np.pi/(abs(x_ax[1]\

-x_ax[0])), len(x_ax)+1) [:-1]
intensity = (1/np.sqrt(len(x_ax))) * (sig[:,None] \
* np.exp(1j*x_ax[:,None]*t[None,:])).sum(axis=0)

# Ensure I(t) is real-valued with a mean baseline of 0.
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intensity = np.real(np.sqrt(intensity#*np.conj(intensity)))

intensity = baseline_subtract(y = intensity, perc = perc)
t x= 1.e15 # convert the resulting time axis to fs
elif t_or_w == ’time’:
# If x_ax is in time, only need to copy the x_ax and sig variables.
t = x_ax
intensity = sig.copy()
# Define temporary x,y grids
xy_hw = 64.*waist*np.sqrt(np.pi/128.)
X,y = np.linspace(-xy_hw, xy_hw, 128), np.linspace(-xy_hw, xy_hw, 128)
# Calculate the amplitude spectrum.
amp = np.where(intensity < O, -np.sqrt(-intensity), np.sqrt(intensity))
# Define the electric field at the waist E(t,x,y)
E = amp[:,None,None] \
* np.exp(-(((x[None, : ,None])**2) + ((y[None,None,:])**2))/(waist**2))
# Calculate the integral of EE* over t,x,y, i.e. total energy for current amp
integral = (1.33e-3) * n0 * ((((np.real(Exnp.conj(E)) * abs(t[1] - t[0]) \
* 1.e-15 * abs(x[1] - x[0]) * 1.e-6 * abs(y[1] - y[0]) \
* 1.e-6).sum(axis = 2)).sum(axis = 1)).sum(axis = 0))
del E
# If diagnostic is true, the provided energy and integrated emnergy will be printed.
if diagnostic:
E = (amp*np.sqrt(energy/integral)) [:,None,None] \
* np.exp(-(((x[None, :,None])**2) \
+ ((y[None,None, :])**2))/(waist**2))
integral2 = (1.33e-3) * n0 * ((((np.real(E*np.conj(E)) \
* abs(t[1] - t[0]) * 1.e-15 * abs(x[1] - x[0]) \
* 1.e-6 * abs(y[1] - y[0]1) \
* 1.e-6).sum(axis = 2)).sum(axis = 1)).sum(axis = 0))
print ’Calculated energy: {0}; Reported energy: {1}’\
.format (integral2, energy)

# Return the normalized amplitude-level signal and - if requested - the time grid
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if returnt:

return amp#*np.sqrt(energy/integral)*1l.e-6, t
else:

return amp#*np.sqrt(energy/integral)*1.e-6

# The factor of 1.e-6 returns the field in unis of V/micron instead of V/m.

# operations.field_slice is a function called by polarization_slice
# xxkwargs is expected to provide values associated with specific keywords, so it is not
# advised to use this function directly without reviewing the behavior.
def field_slice(**kwargs):
# Generate rotation matrices to rotate by thetax around the y axis (A) and by -thetay
# around the x-axis (B) (the negative is required due to sign conventions).
A = np.asarray([[np.cos(kwargs[’theta’] [0]), O, np.sin(kwargs[’theta’][0])],\
[0,1,01,\

[-np.sin(kwargs[’theta’] [0]), O, np.cos(kwargs[’theta’][0])1])

[ss}
]

np.asarray([[1,0,0],\
[0, np.cos(~kwargs[’theta’][1]), -np.sin(-kwargs[’theta’][1])],\
[0, np.sin(-kwargs[’theta’] [1]), np.cos(-kwargs[’theta’][1]1)]1])

# Calculate the field’s local coordinates [x’,y’,z’] as A (dot) B (dot) [x,y,z]

xp = np.empty(np.shape(kwargs[’x’]))

yp = np.empty(np.shape(kwargs[’x’]))

zp = np.empty(np.shape (kwargs[’x’]))
# For whatever reason, it proved necessary to calculate the product elementwise.
for i,j in product(range(np.size(kwargs[’x’],axis=0)),\
range (np.size(kwargs[’x’],axis=1))):

[xpli,jl, ypli,jl, zpli,jl] = np.dot(A, np.dot(B, \
np.asarray([kwargs[’x’] [i,j], kwargs[’y’]1[i,j], \
kwargs[’z’]1[i,311)))

# For linear effects, we need the pathlength from the start of the sample.

[x0,y0,2z0] = np.dot(A,np.dot(B,np.asarray([kwargs[’x’] ,kwargs[’y’],\

~kwargs[’L’1/21)))
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dzp = zp - z0
del x0, y0O, zO0
# Apply the offsets and shift to the sample coordinates.
xp += kwargs[’focus_offset’] [0]
yp += kwargs[’focus_offset’] [1]
zp += kwargs[’focus_shift’]
# Calculate derived properties: sample wavelength, Rayleigh length, w(z), 1/R(z)
wl = (2*np.pi*(3.el4) /kwargs[’w0’])/kwargs[’n0’]
# sample wavelength, in microns

z0

(np.pi*(kwargs [’waist’]*%2))/(wl)
# Rayleigh length
wzp = kwargs[’waist’]*np.sqrt(1 + ((zp/z0)**2))

Rzpinv = np.where(zp != 0., pow((zp*(1 + ((z0/zp)**2))), -1), 0.)

# For ’long’ pulses, we can calculate the field in time, since dispersion is minor.
# We also do not need to be concerned about the separability of A and psi, as
# neglecting dispersion and treating absorption only according to wO removes the
# frequency dependence of psi.
if kwargs[’rel_length’] == ’long’:
# The spatial effects of TEMOO mode propagation are calculated.
E = kwargs[’Et’] [:,None,None] * (1/np.sqrt(l + ((zp[Nome,:,:]1/z0)**2))) \
* np.exp(-(((xp[None,:,:1)**2) + ((yp[None,:,:1)**2))/\
((wzp[None, :,:1)**2)) * np.exp(1j\
*np.arctan(zp[None,:,:1/20)) \
* np.exp(-1j*(((xp[None,:,:])**2) + ((yp[None,:,:])**2))\
*(np.pi/wl) * Rzpinv[None,:,:]1) \
* np.exp(-1j * ((kwargs[’n0’]xkwargs[’w0°])/(3.e14)) \
* zp[None,:,:])
# Absorptive effects are applied according to the absorption at wO.
if kwargs[’absorption’]:

E *= np.exp(-0.5*%kwargs[’a0’]*dzp[None,:,:])
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# For ’short’ pulses, dispersive effects need to be applied in the frequency domain.
elif kwargs[’rel_length’] == ’short’:
# IDFT of E(t) to E(w)
E = (1/np.sqrt(len(kwargs[’t’]))) * (kwargs[’Et’][:,None] \
* np.exp(-1j*kwargs[’t’] [:,None]*1.e-15\
xkwargs[’w’] [None, :])) . sum(axis=0)
# Calculation of the spatial effects of TEMOO mode propagation
Ew = E[:,None,None] * (1/np.sqrt(l + ((zp[Nome,:,:]1/2z0)*x2))) \
* np.exp(-(((xp[None,:,:])**2) + ((yp[None,:,:])**2))\
/ ((wzp[None, :,:]1)**2)) * np.exp(1j\
*np.arctan(zp[None,:,:]1/20)) \
* np.exp(-1j*(((xp[None,:,:1)**2) + ((yp[None,:,:])**2))\
*(np.pi/wl) * Rzpinv[None,:,:])
# Apply the effects of longitudinal phase
if kwargs[’disp’]:
Ew *= np.exp(-1j * ((kwargs[’nw’][:,None,None] * (kwargs[’w0’]\
+ kwargs[’w’] [: ,None,None]))/(3.e14)) * zp[None,:,:])
else:
Ew *= np.exp(-1j * ((kwargs[’n0’]xkwargs[’w0’])/(3.e14)) \

* zp[None,:,:])

del E
# Absorptive effects are applied, accounting for the wavelength-dependence.
if kwargs[’absorption’]:
Ew *= np.exp(-0.5 * kwargs[’aw’] [:,None,None] * dzp[None,:,:])
# GVM effects are applied.
if kwargs[’gvm_in’]:
Ew #= np.exp(-1j * ((1/kwargs[’ug’]l) - (1/kwargs[’ugr’])) \
* kwargs[’w’] [:,None,None] * dzp[None,:,:])
# GVD effects are applied, accounting effects of both the sample and the window.
if kwargs[’gvd_in’]:

if kwargs[’win_len’] > O:
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thetaw = []
for i in [0,1]:
thetaw.append(np.arcsin((kwargs[’n0’] * \
np.sin(kwargs[’theta’] [1]))\
/kwargs[’nwin’]))

del i

Q.
1

[kwargs[’win_len’] * np.tan(thetaw[0]), \
kwargs[’win_len’] * np.tan(thetaw([1]), \

kwargs[’win_len’]]

Q.
I

np.sqrt(np.dot(np.asarray(d), np.asarray(d)))
else:
d =0.
Ew *= np.exp(-1j * 0.5 * kwargs[’gvd’] \
* ((kwargs[’w’] [:,None,None])*x2) \
* dzp[None,:,:]) * np.exp(-1j * 0.5 * kwargs[’gvdw’] \
* ((kwargs[’w’][:,None,Nonel])*x2) * d)
# Perform the 1DFT to get E(t,x,y,z) from E(w,x,y,z).
E = np.empty(np.shape(Ew), dtype=complex)
for i in range(np.size(Ew, 2)):
E[:,:,i] = (1/np.sqrt(len(kwargs[’w’]))) * (Ew[:,None,:,i] \
* np.exp(1j * kwargs[’w’][:,None,None] \
* kwargs[’t’] [None, :,None] * 1.e-15)).sum(axis=0)

return E # Return the 3D E(t,x,y,z)

def polarization_slice(z, *xkwargs):

# Rotation matrices calculate x’,y’,z’ (2’ _|_ the sample) from x,y,z (z||k4); since
# w4’s internal angles are measured relative to sample normal, need their negatives.
# A is the rotation matrix around the y-axis by an angle of -thetax, while B is the

# rotation matrix around the x-axis by an angle of -thetay (actually need --thetay).
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A = np.asarray([[np.cos(-kwargs[’theta’] [’w4’]1[0]), O, \
np.sin(-kwargs[’theta’] [’w4’]1[0]1)],\
[0, 1, 0],\
[-np.sin(-kwargs[’theta’] [’w4’]1[0]), O, \
np.cos(~kwargs[’theta’] [’w4’]1[0]1)]1]1)
B = np.asarray([[1,0,0],\
[0, np.cos(kwargs[’theta’][’w4’]1[1]), \
-np.sin(kwargs[’theta’] [’w4’1[11)],\
[0, np.sin(kwargs[’theta’] [’w4’][1]), \
np.cos(kwargs[’theta’] [*w4’]1[1]1)]1]1)
# Apply the rotation matrices to calculate the sample coordinates x’,y’,z’. These are
# 2D arrays with dimensions inherited from the transverse slice’s x and y coordinates.
[xp, yp, zp] = np.dot(A, \
np.dot (B, np.asarray([kwargs[’x’][:,None],\
kwargs[’y’] [None,:], z])))
# Calculate the TEMOO mode for each field. This employs a temporary function that
# reduces the function call to a single field identifier ’fld’.
lam = lambda fld: field_slice(x = xp, y = yp, z = zp, t = kwargs[’t’], \
w = kwargs[’w’], theta = kwargs[’theta’][f1d], \
focus_offset = kwargs[’focus_offset’] [f1d], \
focus_shift = kwargs[’focus_shift’][f1d], L = kwargs[’L’], \
w0 = kwargs[’w0’] [f1d], waist = kwargs[’waist’][f1d], \

n0

kwargs[’n0’] [f1d], nw = kwargs[’nw’] [£1d], \

rel_length = kwargs[’rel_length’][fld], \

Et kwargs[’Et’] [f1d], a0 = kwargs[’a0’] [f1d], \

aw = kwargs[’aw’] [f1d], ug = kwargs[’ug’] [f1d], \

ugr = kwargs[’ug’][’w3’], gvd = kwargs[’gvd’] [£f1d], \

win_len = kwargs[’win_len’], nwin = kwargs[’nwin’] [f1d], \

gvdw = kwargs[’gvdw’] [f1d], absorption = kwargs[’absorption’], \
gvm_in = kwargs[’gvm_in’], gvd_in = kwargs[’gvd_in’], \

disp = kwargs[’disp’])

El = lam(’wl’)
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E2 = lam(’w2’)
E3 = lam(’w3’)
del lam

# Multiply the time-domain electric fields according to the phase-matching scheme.
prod = 1.
for i,j in [(°wl’, E1), (°w2’, E2), (°w3’,E3)]:
if kwargs[’phase_matching’][i] > O:
prod *= (j*xkwargs[’phase_matching’][i])
elif kwargs[’phase_matching’][i] < O:
prod *= (np.conj(j)**abs(kwargs[’phase_matching’][i]))

del i, j#, E1, E2, E3

# Perform the 1DFT to take the product from the time domain to the frequency domain.
P = np.empty(np.shape(prod), dtype=complex)
for i in range(np.size(prod, axis=2)):
P[:,:,i] = (1/np.sqrt(len(kwargs[’t’]))) * (prod[:,None,:,i] \
* np.exp(1j * kwargs[’t’][:,None,None] * 1.e-15\
* kwargs[’w’] [None, : ,None])) .sum(axis=0)
del prod, i

Pk = np.empty(np.shape(P), dtype=complex)

for i in range(len(kwargs[’w’])):
# Multiply the field product by the nonlinear susceptibility and degeneracy.
P[i,:,:] = kwargs[’degeneracy’] * np.where(zp <= kwargs[’L’]1/2., \
np.where(zp >= -kwargs[’L’]/2., kwargs[’chi’][i],\
complex(0.)), complex(0.)) * P[i,:,:]
# Perform the 1DFT from x --> kx, generating the 2D array temp(y,kx)
temp = (1/np.sqrt(len(kwargs[’x’]1))) * (P[i,:,:,None] \
* np.exp(-1j * 2 * np.pi * kwargs[’x’][:,None,None] \
* kwargs[’kx’] [None,None, :]1)) .sum(axis=0)
# Populate the ith 2D slice of Pk with the result of the 1DFT of the array temp,

# yielding the final slice in (kx,ky)
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Pk[i,:,:] = (1/np.sqrt(len(kwargs[’y’]1))) * (temp[:,:,None] \
* np.exp(-1j * 2 * np.pi * kwargs[’y’][:,None,None]\
xkwargs[’ky’] [None,None, :]1)) .sum(axis=0)

del temp

del i

# If the polarization slices are to be saved, this is accomplished here.
if kwargs[’save’]:
# Save the current directory so that the program can return to it.
curr_dir = os.getcwd()
# If the subdirectories don’t exist, create them.
if not os.path.exists((kwargs[’folder’]+’/slices/’)\
.split(os.path.commonprefix( \
[os.getcwd(), kwargs[’folder’]]1)+’/’)[-11):
os.makedirs ((kwargs[’folder’]+’/slices/’)\
.split(os.path.commonprefix(\
[os.getcwd(), kwargs[’folder’]1]1)+’/’)[-1])
# Change to the save directory
os.chdir(kwargs[’folder’]+’/slices’)
# Create the file and write the array
f = open(’slice_at_z_{0}_2.txt’.format(z), ’w’)
f.write(’Frequency (Hz) \t x-pos (microms) \
\t y-pos (microns) \t Polarization \n’)
f.writelines (’ {OF\t{1}\t{2}\t{3}\n’ . format (kwargs[’w’] [1 [0]]\
+kwargs[’w0’] [’w4’], kwargs[’x’][i[1]1],\
kwargs[’y’][i[2]], P[i[0], il[1], i[2]11) \
for i in itertools.product(range(len(kwargs[’w’])), \
range (len(kwargs[’x’])), range(len(kwargs[’y’]))))
# Close the file and return to the original directory.
f.close()
del £

os.chdir(curr_dir)
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To calculate the contribution of this polarization slice to the output field, it
will be more convenient to have the wave vector magnitude available.

k0 = ((kwargs[’n0’] [’w4’]*kwargs[’w0’] [’w4’])/(3.e14))
Now, multiply the polarization by the various relevant contributions:
Multiply the polarization by the longitudinal phase term, exp(ikz)

if kwargs[’disp’]:

Pk *= np.exp(lj * ((kwargs[’nw’][’w4’][:,None,None] \
* (kwargs[’w0’] [’w4’] + kwargs[’w’][:,None,Nonel))/(3.e14)) * z)
else:

Pk *= np.exp(lj *((kwargs[’n0’] [’wd’]*kwargs[’w0’][’w4’])/(3.el1d)) * =z)

Multiply the polarization by the frequency, speed of light, and wavenumber
Pk *= -1j* ((kwargs[’w0’][’w4’] + kwargs[’w’][:,None,None])**2) \
* (1/(2 * ((3.e14)**2) * kO))
Multiply the polarization by the exponential accounting for transverse evolution of
the plane wave.
Pk *= np.exp(1j * ((2 * (np.pi**2))/k0) * (((kwargs[’kx’] [None,:,None])**2) \
+ ((kwargs[’ky’] [None,None, :])**2)) * (kwargs[’z_end’] - 2))
Now, we will multiply the polarization by the various terms describing the
dispersive character of the medium, if enabled:
if kwargs[’gvm_out’]:
Pk *= np.exp(-1j * ((1/kwargs[’ug’][’w4’]) - (1/kwargs[’ug’][’w3’1)) \
* kwargs[’w’] [:,None,None] * (kwargs[’z_end’] - 2))
if kwargs[’gvd_out’]:
Pk *= np.exp(-1j * 0.5 * kwargs[’gvd’][’w4’] \
* ((kwargs[’w’][:,None,None])**2) * (kwargs[’z_end’] - z))
if kwargs[’absorption’]:
Pk *= np.exp(-0.5 * (kwargs[’aw’][’w4’][:,None,None]l) \

* (kwargs[’z_end’] - 2))

return Pk # Return the modified slice
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def intensity(E, mono_conv, w, t, N, f, slits, nO, w0):
# Intensity of an electric field when the field is in mks units
I =1.33e-3 * n0 * E * np.conj(E)
if mono_conv:
rec_lin_disp = (1./N)*(1./f)*1.e-3
# reciprocal linear dispersion, nm/microns
# Determine the wavelength grid corresponding to the frequency grid.
dwl = ((2*np.pi*3.e17)/((w0)**2))*y
# Define the instrument function of the monochromator as a triangle function.
mono = np.where((1. - (1/(rec_lin_disp*slits))*abs(dwl)) > 0., (1. -\
(1/(rec_lin_disp*slits))*abs(dwl)), 0.)
# Since convolving functions in a domain is equivalent to multiplication of their
# Fourier transforms, 1DFT both the intensity and instrument functions
It = (1/np.sqrt(len(w))) * (I[:,None] * np.exp(lj * w[:,None] \
* t[None,:] * 1.e-15)).sum(axis=0)
monot = (1/np.sqrt(len(w))) * (monol[:,None] * np.exp(1j * w[:,None] \
* t[None,:] * 1.e-15)).sum(axis=0)
# Convert the Fourier transforms to real-valued functions.
It,monot = np.real(np.sqrt(It*np.conj(It))),\
np.real(np.sqrt(monot*np.conj(monot)))
# Multiply the intensity by the instrument function.
It *= np.sqrt(len(w))*monot
# FT the result back to the frequency domain.
I = (1/np.sqrt(len(t))) * (It[:,None] * np.exp(-1j * t[:,None] \
* w[None,:] * 1.e-15)).sum(axis=0)
del It, monot, mono, dwl, rec_lin_disp
# Return the real-valued result.

return np.real(np.sqrt(I*np.conj(I)))

def save_output(E, E_slice, I, folder, file, w, x, y):

# Save the 3D array E(w, x, y) and integrated 1D slice E(w) to a file.
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curr_dir = os.getcwd()
# If the target save directory doesn’t exist, create it and any higher directories
if not os.path.exists(folder.split(os.path.commonprefix( \
[os.getcwd(), folder])+’/’)[-11):
os.makedirs(folder.split(os.path.commonprefix( \
[os.getcwd(), folder]l)+’/’)[-11)
# Navigate to the target directory
os.chdir(folder)
now = datetime.datetime.now()
# Format file names
fileld, file3d = file + ’_1d’, file + ’_3d’
for i in str(now).replace(’-’,’ ’).replace(’:’,’ ’).split(’.’)[0].split(’ ’):
fileld, file3d = fileld + ’_’ + i, file3d + ’_’ + i
fileld, file3d = fileld+’.txt’, file3d+’.txt’
# Write data to files
for i,j in [(fileld, ’1d’), (file3d,’3d’)]:
f = open(i, ’w’)
if j == ’3d’:
f.write(’Frequency (Hz)\tx-pos (microns)\ty-pos (microns)\
\tField (V/m)\n’)
f.writelines C {OX\t{1}\t{2\t{3}\n’ . format (w[i[0]], x[i[11],\
y[i[2]1, E[i[0], i[1], i[2]]1*1.e6) for i in \
itertools.product(range(len(w)), \
range(len(x)), range(len(y))))
if j == ’1d’:
f.write(’Frequency (Hz) \t Field (V/m) \t Power \n’)
f.writelines (’{OF\t{1}\t{2}\n’ .format(w[i], E_slice[i], I[i]) \
for i in range(len(w)))
f.close()
del £
# Return to the original directory, and return to the function call

os.chdir(curr_dir)
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return

D.3 main.py

The final script - main.py - initializes an instance of the class from parameters.py, then calls the various
functions from operations.py as necessary. For different applications, this script may need to be heavily

modified according to the desired fields.

import numpy as np

from numpy import power as pow

import os, datetime, itertools

import matplotlib.pyplot as plt

from scipy.interpolate import interpld
from functools import partial

from multiprocessing import Pool
import parameters, operations

reload(parameters), reload(operations)

def main(p = ’default’, ret_I = False):

# Clear and close existing files; ensure interactive mode is on
plt.clf(), plt.close(), plt.ion()

# Initialize an object of the parameters class.
if p == ’default’:

p = parameters.parameters()

# Define a temporary function for loading files, which calls operations.load_field,
# but reduces the call to a single variable, a string that serves as field identifier.
lam = lambda w: operations.load_field(folder = p.folder, \

file = p.files[w] [p.colors[w]], columns = p.columns[w])

wl_col, wl_sig = lam(’wl’)

w2_col, w2_sig = lam(’w2’)
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w3_del, w3_sig = lam(’w3’)
del lam
# I know that my w3_sig data is a negative signal, so I multiply by a factor of -1.
w3_sig *= -1
# Initialize matplotlib figure and axes objects for diagnostic plots.
figl, axl, fig2, ax2 = operations.initialize_diagnostics(modes = p.smooth_mode,\
diagnostic = p.diagnostic, smoothing = p.smoothing)
# Generate a temporary function for data processing, whether this is just baseline
# subtraction or baseline subtraction and smoothing. The function generalizes the
# calls of operations.smooth and operations.baseline_subtract, filling an unused kwarg
# with extraneous variables in operations.baseline_subtract.
if p.smoothing:
lam = lambda x,y,w,ax: operations.smooth(x = x, y =y, \
cutoff = p.cutoffs[w], boxcar = p.boxcar, \
base_per = p.baseline_percentage, \
diag = p.diagnostic, ax = ax, mode = p.smooth_mode [w])
elif not p.smoothing:
lam = lambda x,y,w,ax: operations.baseline_subtract(y =y, \
perc = p.baseline_percentage, x = X, W = W, ax = ax)

# Processed data is generated by calling the temporary function for each field.

wl_sig_sm = lam(wl_col, wl_sig, ’wl’, ax1[’w1’][1])

w2_sig_sm = lam(w2_col, w2_sig, ’w2’, ax1[’w2’][1])

w3_sig_sm = lam(w3_del, w3_sig, ’w3’, ax1[’w3’][1])
# Plot the processed and unprocessed data if diagnostics are enabled.
if p.diagnostic:
for i,j,k,1 in [(’wl’,wl_col, wl_sig, wil_sig_sm), \
(w2’ ,w2_col, w2_sig, w2_sig_sm),\
(’w3’, w3_del, w3_sig, w3_sig_sm)]:
ax1[i] [0].plot(j, k, ’k-’, j, 1, ’r-’)
else: plt.close(figl), plt.close(fig2)

# Overwrite the signal variables with the smoothed arrays.

wl_sig, w2_sig, w3_sig = wl_sig_sm.copy(), w2_sig_sm.copy(), w3_sig_sm.copy()
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del wl_sig_sm, w2_sig_sm, w3_sig_sm, lam

if p.diagnostic: del i, j, k, 1
# Create time and frequency grids that should yield even sampling of the polarization
# on each grid. These grids are saved in the existing parameters.parameters object.

p-time_freq_grids()

# Calculate the central frequencies for wl and w2 fields based on the loaded tuning
# files and save the results in p.w0O, then calculate the central frequency for w4.
for i, j, k in [(’wl’,wl_col,wl_sig), (’w2’, w2_col, w2_sig)]:

p-wO[i] = operations.center_freq(guess = (float(p.colors[i])*(3.e10)\

*2*np.pi), wl = j, sig =k, w = p.w)
del i, j, k
p-wO[’w4’] = 0.
for i in [’wl’, ’w2’, ’w3’]:
p.wO[’w4’] += p.phase_matching[i]*p.wO[i]
del 1
# Create dictionaries that will contain the optical properties at each wO.
p-calculate_optical_properties()

# Calculate the internal angles for each field

p.calculate_internal_angles()

# Interpolate wl_sig and w2_sig onto the previously calculated w grid.

wl_sig = operations.grid_spectrum(wO = p.wO[’w1’], w = p.w, \
wl = wl_col, sig = wil_sig)
w2_sig = operations.grid_spectrum(wO = p.wO[’w2’], w = p.w, \
wl = w2_col, sig = w2_sig)
del wl_col, w2_col
# Convert the loaded spectra to electric field amplitudes, with units V/micron.
lam = lambda x, y, w, tw, returnt: operations.calculate_field(x_ax = x, sig = y,\
n0 = p.n0[w], waist = p.waist[w], energy = p.energyl[w] [p.colors[w]], \

t_or_w = tw, perc = p.baseline_percentage,\

diagnostic = p.diagnostic, returnt = returnt)
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lam(p.w, wl_sig, ’wl’, ’frequency’, True)

Elt, t1
E2t, t2 = lam(p.w, w2_sig, ’w2’, ’frequency’, True)
E3t = lam(w3_del, w3_sig, ’w3’, ’time’, False)
del lam, wil_sig, w2_sig, w3_sig
# Grid the resulting electric fields, incorporating assumed initial delays and phase.
Et = {}
for i, j, k, 1 in [(’wl’, t1, Elt, p.delay[’t31°]1), \
(’w2’, t2, E2t, p.delay[’t32°]),\
(’w3’, w3_del, E3t, 0.)]:
if j[11 > jro]:
model = interpld(j - 1, k*np.exp(lj*p.phase[i]l*np.pi/180), \
bounds_error = False, fill_value = complex(0.))

else:

model = interpld(j[::-1] - 1, k[::-1]\
*np.exp(1j*p.phase[il*np.pi/180), \
bounds_error = False, fill_value = complex(0.))

Et[i] = model(p.t)
del model
if p.diagnostic:
ax2[1] [0] .plot(p.t, np.real (Et[i]), ’k-’, p.t, \
np.real (Et[i]), ’ko’)
ax2[i] [1] .plot(p.t, np.imag(Et[il), ’k--’, p.t, \
np.imag(Et[i]), ’ko’)
del i, j, k, 1, E1t, E2t, E3t, t1, t2, w3_del

# Determine the bounds and spacing of the z grid and the x, y, kx, and ky grids
p.spatial_grids()
polzn_call = partial(operations.polarization_slice, x = p.x, y = p.y, kx = p.kx,\

ky = p.ky, t = p.t, w = p.w, Et = Et, \
focus_offset = p.focus_offset, \
focus_shift = p.focus_shift,\

rel_length = p.rel_lengths, waist = p.waist, \



360

phase_matching = p.phase_matching, theta = p.theta, \
w0 = p.wO, n0 = p.n0, nw = p.nw, a0 = p.a0, aw = p.aw,

ug = p.ug, gvd = p.gvd, nwin = p.nwin, gvdw = p.gvdw, \

chi = p.chi, L = p.L, win_len = p.win_len,\
deltak = p.deltak, degeneracy = p.degeneracy, \

gvm_in = p.gvm_in, gvm_out = p.gvm_out, \

gvd_in = p.gvd_in, gvd_out = p.gvd_out, \
absorption = p.absorption, save = p.save, \
folder = p.save_folder, z_end = p.z[-1],\

disp = p.dispersive_k)

# Initialize an array to perform the summation.

sum = np.zeros((len(p.w), len(p.kx), len(p.ky)), dtype=complex)

if not p.multiprocessing:
# For each point in the z grid:
for i in p.z:
# Add the result of calculating the polarization slice to the running sum,
# modified by the integration constant dz
sum += polzn_call(z = i) * abs(p.z[1] - p.z[0])
elif p.multiprocessing:
# initialize the multiprocessing pool
pool = Pool(processes = p.processes)
# Perform the calculations asynchronously, adding each result to the running sum
# (modified by the integration factor dz) as that slice is available.
for i in pool.imap_unordered(polzn_call, p.z, chunksize=p.chunksize):
sum+=i * abs(p.z[1] - p.z[0])
pool.close()
pool.join()

del i

# Perform the 2DFT necessary to convert the sum from the (kx,ky) domain to the (x,y)
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# domain.
E = np.empty(np.shape(sum), dtype=complex)
for i in range(len(p.w)):
# Introduce a temporary array temp(ky,x) that is the result of performing the
# IDFT of kx --> x on the resulting sum.
temp = (1/np.sqrt(len(p.kx))) * (sum[i,:,:,None] * np.exp(lj * 2 * np.pi\
* p.kx[:,None,None] * p.x[None,None,:])).sum(axis=0)
# Perform the second 1DFT (ky --> y) on the temporary array temp and save the
# result to the initialized E array.
Eli,:,:] = (1/np.sqrt(len(p.ky))) * (templ[:,:,None]l * np.exp(1lj * 2 \
* np.pi * p.kyl[:,None,None]l * p.y[None,None,:])).sum(axis=0)
del temp

del sum

# The field as a function of frequency is then the integral of E(w,x,y) over the x,y
# dimensions.
E_slice = ((E * 1.e6 * abs(p.x[1] - p.x[0]) * abs(p.y[1] - p.y[0]) \
* 1.e-6 * 1.e-6).sum(axis=2)).sum(axis=1)
# Calculate the intensity, convolving with the monochromator if relevant.
I = operations.intensity(E = E_slice, mono_conv = p.mono_convolution, w = p.w, \
t =p.t, N =p.N, £ =p.f_len, slits = p.slits, \

n0 = p.n0[’w4’], wO

p-wo[’w4’]1)
if p.save_final:
operations.save_output(E = E, E_slice = E_slice, I = I, \
folder = p.save_folder, file = p.save_file, \

w = p.wtp.wO[’w4’], x = p.x, y = p.y)

if ret_I:
return p.wtp.wO[’w4’], I
else:

return p.w+p.wO[’w4’], E_slice
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