
BUILDING DATALOG SYSTEMS FOR EFFICIENT AND SCALABLE

DATA ANALYTICS

by

Zhiwei Fan

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2022

Date of final oral examination: 18 August, 2022

The dissertation is approved by the following members of the Final Oral Committee:

Paraschos Koutris, Associate Professor, Computer Sciences

Aws Albarghouthi, Associate Professor, Computer Sciences

Jignesh M. Patel, Professor, Computer Sciences

Richard Halverson, Professor, Educational Leadership and Policy Analysis

© Copyright by Zhiwei Fan 2022

All Rights Reserved

i

ACKNOWLEDGMENTS

I am forever grateful to my advisor, Paris Koutris. The dissertation would not have been

possible without his kindness, patience, and endless support in my research, life, and career.

Despite Paris’s own interests in theory, he has unconditionally supported me to do system

research and offered me full freedom to explore my own ideas that were outside of his core

interests. Paris’s incredible wisdom and empathy have helped me countless times in tough

situations that I would not have been able to walk out of and keep my passion for research

if it were not for his wise and kind words, which have become my invaluable life lessons that

I believe will continue to guide my road of future. Mostly attributed to Paris’ kindness and

his open-mindedness, I am very fortunate to be able to feel the joy of research and continue

to be passionate about doing research work. No words can fully express my infinite gratitude

to Paris.

I am deeply grateful to Jignesh Patel and Aws Albarghouthi for their collaborations and

serving on my committee. Jignesh’s remarkable grasp on grounding research of database

management that always connects to practical relevance has inspired and educated me in

many ways, and during the limited interactions with him out of his busy and packed schedule,

I have greatly benefited from his tough, critical, but really insightful questions on my work,

which has helped improve and sharpen my way of problem thinking in research. Jignesh has

also offered numerous valuable comments and suggestions to help improve this dissertation.

Without taking a single class in programming languages, I have almost gained all the relevant

knowledge needed in my research from Aws through many of the educational conversations.

I really thank Aws for opening my eyes to the charm of programming language, including the

very important area, program analysis. I cannot appreciate him more for his kindness and

understanding during those down moments; he has always been open for conversations, the

help to my research and psychological support from which cannot be expressed or measured

in words. I thank Richard for serving on my committee and for his insightful feedback that

helps to connect my work to applications in education research.

I am also deeply grateful to Jeff Naughton, who was a Professor of Computer Sciences at

the University of Wisconsin–Madison when I was an undergraduate there, and Arun Kumar,

who was Jeff’s student at the time and is now a Professor at the University of California, San

Diego. Taking Jeff’s courses on database management and learning to do research under Jeff

and Arun have literally changed my life, leading me to start my Ph.D. journey. Jeff’s fun

teaching style and those research anecdotes being told during his lectures have sparked my

interest in database research. His kindness and wisdom felt during our conversations have

helped clear up many of my confusions during that period of time. Arun has always been

kind, patient and understanding when guiding me on the research work. He has provided

tremendous help during my graduate school application process, including giving valuable

ii

suggestions and helping revise my personal statement. I will forever remember and be grateful

for the help and positive influence that Jeff and Arun have given me.

I thank Jerry Zhu, Jinyi Cai, Anhai Doan, Remzi Arpaci-Dusseau, Shuchi Chawla, Aditya

Akella, and Theo Rekatsinas, the classes of whom I have taken that have benefited my

research and this dissertation in various ways. Over the years, I have taken several internships

in the industry and have had the opportunity to meet and work with many talented and

brilliant people during this journey. I would like to thank Nikolaos Vasiloglou, my mentor of

my first internship, for giving me the opportunity to work on an interesting research problem

related to the interaction between database management and machine learning. I am very

lucky to get to know my colleague Mikhail Yurochkin during the internship and become

friends with him. Mikhail is definitely one of the smartest, most hard-working, nicest people

I know. During many of our interactions and collaborations, I have learned much statistical

machine learning knowledge from Mikhail. His brilliant way of communicating has made

me start to appreciate math more than ever. What we discussed outside of work has also

inspired me many times, reconstructing my perspectives on many things in life. I was very

lucky to work with Wentao Wu and Phil Bernstein during my internship in the DMX Group

at Microsoft Research Redmond. The streaming project on which we have worked has given

me inspiration for the work in this dissertation. During the internship, Wentao and Phil have

offered numerous help during the project idea discussion and have given life advice. I am

very grateful to get to know people who have not only provided help in research and technical

matters, but also taught me life lessons, leaving me with long-term benefits. There are many

other people with whom I have interacted during internships that play important roles in

this journey. The incomplete list includes Nantia Makrynioti, Anshuman Dutt, Yeye He,

Anrd Christian König, Yao Lu, Lukas Mass, Yue Wang, Chi Wang, Qizhen Zhang, Tarique

Siddiqui, Walter Cai, Christina Pavlopoulou and Vasilis Zois. I apologize that I could not

make a complete list here, which would otherwise make this paragraph unbelievably long.

This journey would have been much less enjoyable without my interactions with other

fellow students in the computer sciences department. Throughout the years, I have made

many friends during the journey. An incomplete list includes Hongyi Wang, Yuzhe Ma,

Xuzhou Zhang, Xin Jin, Yunfeng Li, Xiahe Liu, Kan Wu, Han Li, Jianqiao Zhu, Haojun

Zhang, Zuyu Zhang, Xiating Ouyang, Shaleen Deep, Hangdong Zhao, Kevin Gaffney. They

have not only enriched my Ph.D. life, but have also educated me on different research topics

such as machine learning, computational complexity, and deep system understanding.

Finally, I am beyond measure indebted to my parents for their unconditional and endless

love and support in my life. My father Zhongxiang Fan and my mother Cuiyun Zheng have

always tried everything they can to give me the best education and living conditions, and I

would not have become who I am today without their unconditional giving and sacrifice. I

therefore dedicate this dissertation to them. Last but definitely not least, I am grateful to

my wife Xinyu for her love and support during the crucial final stages of my dissertation and

my job arrangement. We have gone through many difficult times since we got married, and

I believe that these experiences have only made us better understand each other and I look

forward to the next chapter of my life and career with her.

iii

TABLE OF CONTENTS

Page

ABSTRACT . v

1 Introduction . 1

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Organization . 5

2 Background . 6

2.1 Datalog . 6

2.2 Existing Datalog Systems . 9

3 RecStep: Datalog Evaluation by RDBMS 11

3.1 QuickStep . 14

3.2 Architecture . 15

3.3 Optimizations . 17

3.4 Experiments . 25

3.5 Summary . 35

4 Recursive Computation Profiling . 36

4.1 Recursive Computation Profiling . 38

4.2 Case Studies . 39

4.3 Summary . 51

5 FlowLog: Asynchronous Datalog Evaluation 53

iv

Page

5.1 Differential Dataflow . 55

5.2 Architecture . 55

5.3 Optimizations . 56

5.4 Experiments . 60

5.5 Summary . 63

6 Consistent Query Answering by Datalog . 64

6.1 Related Work . 67

6.2 Preliminaries . 68

6.3 A Linear-Time Rewriting . 72

6.3.1 Pair-pruning Join Tree . 72

6.3.2 The Rewriting Rules . 74

6.3.3 Extension to Non-Boolean Queries . 79

6.4 Implementation . 81

6.4.1 Improvements upon existing CQA systems 84

6.5 Experiments . 85

6.5.1 Worst-Case Study . 93

6.5.2 A Case Study of LinCQA Execution on Datalog systems 94

6.6 Summary . 95

7 Conclusion and Future Work . 96

LIST OF REFERENCES . 99

v

ABSTRACT

The ability to perform advanced data analytics efficiently is becoming increasingly important

for a wide spectrum of data-driven applications in the big data era. The efficiency of data

analysis is generally considered from two aspects: (i) the ability to quickly prototype and

express the corresponding analysis tasks (here referred to as development efficiency) and (ii)

the ability to process a large volume of data involved in the analysis with high performance

and good scalability (here referred to as computational efficiency). Datalog as a declarative

programming language is seeing a resurgence of interest in recent years and has found new

applications in multiple domains such as data integration, graph analytics, security, program

analysis, networking, and decision-making, largely attributed to its development efficiency.

To seek better support for computational efficiency in using Datalog as the language for a

wide variety of data-driven tasks, especially taking advantage of its superior ability to ex-

press applications involving recursive computations concisely, several research efforts, across

multiple communities, have explored techniques to build efficient Datalog systems. However,

our experience with the corresponding resulting systems indicates that their performance

does not translate across different workloads (i.e., a system that performs well on one Data-

log program and a particular dataset does not show comparable performance on the others).

Furthermore, the lack of understanding of the property of varying Datalog workloads makes

it challenging to analyze the performance difference observed on different systems, further

impedes the progress in improving existing systems and building more efficient new systems.

In this dissertation, we explore techniques for building a general-purpose Datalog system

for scalable and efficient data analytics. The exploration has led to two prototype Datalog

vi

systems, RecStep, and FlowLog, which are implemented on top of a parallel single-node re-

lational system and a modern stream processor, respectively.

We first show that by leveraging multiple years of efforts in the advancement of database

techniques such as query optimization and efficient parallel query execution, RecStep is able

to outperform a few state-of-the-art specialized Datalog engines on complex and large-scale

Datalog evaluation. Next, we present the important profiling components of a general-

purpose recursive computation profiling framework, which provide insights regarding the

performance behavior of different systems on varying workloads, guiding our design and

implementation of FlowLog. Then, we present the prototype system FlowLog in detail,

discussing the philosophy behind its design and its implementation, and showing the high

performance it delivers. Finally, we show how we can leverage the development efficiency

provided by Datalog to concisely express better algorithms for a specific application called

consistent query answering (CQA) and how FlowLog efficiently evaluates the corresponding

Datalog programs, often matching and sometimes surpassing the state-of-the-art performance

numbers while other existing Datalog systems cannot achieve this.

1

Chapter 1

Introduction

To support data analytics over ever-growing volume of data is becoming increasingly im-

portant in today’s data-driven world. As a result, the past years have witnessed numerous

efforts to invent new systems and improve existing systems to fit the needs seen in the big

data era. Examples of such systems include Microsoft SQL Server [Mic19], Hive [TSJ+09],

Spark [ZXW+16], Presto [STS+19], Flink [CKE+15] and Kafka [H+18]. To achieve both

development (i.e., implementation of analysis tasks) and computational (i.e., analyzing and

generating the results) efficiencies, most of these systems provide sql, the standardized

declarative query language for structured data processing, for easy portability while achiev-

ing scalability via parallel computation across multiple CPU cores/computation nodes.

However, expressing complex data analysis tasks that typically involve recursion with

sql has been historically proven difficult and discussed in [KKN03, SYI+16, Yan17]. Ex-

ample attempts to extend sql to support advanced analytics tasks include user-defined

functions (UDF) [Mic22a] and recursive common table expressions [Mic22b], which present

limited flexibility and come at the cost of poorer performance and readability. Datalog as

a declarative language that is arguably more expressive than SQL, has experienced a recent

resurgence, as a result of finding its role in many modern application domains, and can be

seen as a promising alternative for advanced data analytics that can possibly provide both

succinct expressibility and high performance.

The motivating question of this thesis is the following: How can we design and build a

general-purpose Datalog system for efficient and scalable advanced data analytics? In this

dissertation, we first show that it is possible to effectively use a modern parallel relational

database management system (rdbms) as a backend for Datalog evaluation by carefully

considering the underlying issues of the system. We then point out the limitations of this

approach and discuss how such limitations are understood more fully by looking at the recur-

sive computation profiling components, which characterize the recursive Datalog workloads,

the runtime performance, and the usage of computation resources in Datalog systems. Based

on our observations and insights gained from the recursive computation profiling, we show

2

how we can build a general-purpose asynchronous high-performance Datalog system, named

FlowLog. Examing the non-recursive Datalog rules that express the first-order rewriting of

consistent query answering (CQA) for a given self-join-free first-order rewritable conjunctive

query, we observe that the evaluation of non-recursive Datalog program with negation can

largely benefit from asynchronous execution, which has been surprisingly dismissed in recent

works focusing on Datalog evaluation techniques.

1.1 Motivation

To motivate the use of Datalog, we start with one of the simplest yet most common and

important computation task that involves recursion transitive closure (TC).

Example 1. To compute the transitive closure (TC) of a directed graph, we represent the di-

rected graph using a binary relation edge(X, Y): this means that there is a directed edge from

vertex X to vertex Y. TC can be expressed through the following Datalog program consisting

of two rules:

Rule 1 : reachable(X, Y) :- edge(X, Y).

Rule 2 : reachable(X, Y) :- reachable(X, Z), edge(Z, Y).

In the above program, edge is an edb relation (input), and reachable is an idb relation

(output). The program can be interpreted as follows. Rule 1 (called the base rule) initializes

the transitive closure by adding to the initially empty relation all the edges of the graph.

Rule 2 is a recursive rule, and produces new facts iteratively: a new fact reachable(a,b)

is added whenever there exists some constant c such that reachable(a,c) is already in the

relation (from the previous iterations), and edge(c,b) is an edge in the graph.

Compared to the two simple and succinct Datalog rules expressing TC in Example 1, the

C++ code snippet that implements TC as shown in Figure 1.1a looks much more compli-

cated even after omitting the detailed logic of reading the input data (i.e., readEdge()).

The C++ implementation requires making choices about the proper data structures to use

and handling the actual computation logic, which could be both time-consuming and error-

prone. In addition, it is also much harder to understand the C++ implementation since

the higher complexity leads to poorer readability. Expressing TC as a sql statement with

recursion support makes it relatively easier compared to the C++ implementation, since

sql is declarative. However, as shown in Figure 1.1b, the logic of the SQL statement is

still less straightforward to understand compared to the Datalog rules, and the sql query

will soon become harder to write and less readable when considering more complex tasks.

Furthermore, sql with recursion provides only simple linear-recursion support, suggesting

3

(a) C++ code snippet (b) SQL statement with recursion

Figure 1.1: Transitive Closure Implementations in C++ and SQL

that applications involving more complex recursion logic cannot be expressed by sql. In

contrast, the declarative abstraction Datalog provides lets users focus on a wide variety of

tasks (what) instead of the low-level details (how).

Despite the superior ability of Datalog and its language extension to express applica-

tions that involve recursive computations succinctly, a general purpose, high-performance

and scalable Datalog system is lacking. The recent revival of recursive query processing has

motivated a line of work to build efficient Datalog systems. Our experience with these sys-

tems indicates that their performance does not translate across different application domains

(Chapter 3) or even different Datalog workloads in the same domain (Chapter 4) - e.g., a

system designed for large-scale graph analytics does not exhibit the same performance on

program analysis tasks and vice versa. Most current existing Datalog systems rely heavily

on synchronous batch processing that introduces synchronization overhead between different

computation steps (e.g., different rules and iterations) in recursive computation, and such

overhead could translate into poor performance for the Datalog workload consisting of many

computation stages, each of which involves only a small amount of work.

1.2 Contribution

In this dissertation, we present a series of explorations and studies, covering novel Datalog

evaluation techniques, applications, system design and implementations. In summary, we

make the following contributions.

4

RecStep In this project, we perform an extensive comparison of four state-of-the-art Dat-

alog and Datalog-like systems on a multi-core machine. We consider benchmarks from two

application domains: graph analytics and program analysis using both synthetic and real-

world datasets. Based on our observations, we study the challenges of building a recursive

query processing engine on top of a rdbms and consider a spectrum of techniques that

resolve them, systematically measuring the effect of each technique on performance improve-

ment. The project has led to a Datalog system prototype implementation, namely RecStep,

which is built on top of Quickstep [PDZ+18], a single-node in-memory parallel rdbms. Our

experimental results show that RecStep can efficiently perform large-scale tasks in different

application domains using a single-node multi-core machine with large memory, demon-

strating that it is feasible to build a fast general-purpose Datalog engine using rdbms as the

backend, which interestingly contradicts empirical and anecdotal evidence [SVKW15,JSS16].

Profiling To further understand the performance difference observed in different systems

and the limitations presented in RecStep when performing experiments on varying Datalog

workloads, we propose general recursive computation profiling. We show that by leveraging

the visualizations generated from the profiling, we are able to further analyze the causes

behind the inefficient executions observed on varying systems, including costly index con-

struction on certain input datasets, accumulative overhead caused by repeated work without

maintained index reuse, and ineffective CPU utilization caused by synchronous computation

steps when each computation step involves only a small amount of work. The insights gained

provide guidance on how to design more efficient systems.

FlowLog Based on our experience building RecStep, evaluating different systems on vary-

ing Datalog workloads, and our observations on the corresponding recursive computation

profiles, we rethink the evaluation of Datalog program, designing and implementing a high-

performance asynchronous Datalog system FlowLog on top of a modern stream processor

Differential Dataflow [MMII13, AMP15, Mcs22a]. Combining with techniques such as in-

dex sharing and incremental computation, we show that FlowLog significantly outperforms

existing Datalog systems on varying workloads.

LinCQA Most data analytical pipelines often face the problem of querying inconsistent

data that violate predetermined integrity constraints. Data cleaning is an extensively stud-

ied paradigm that singles out a consistent repair of the inconsistent data. Consistent query

answering (CQA) is an alternative approach to data cleaning that asks for all tuples guar-

anteed to be returned by a given query on all (in most cases, exponentially many) repairs

of the inconsistent data. In this project, we identify a class of acyclic select-project-join

(SPJ) queries for which CQA can be solved via algorithms with a linear-time guarantee.

5

Our approach can be seen as a generalization of Yannakakis’s algorithm for acyclic joins to

the inconsistent setting. We present LinCQA, a system that can output rewritings in both

sql and non-recursive Datalog rules for every query in this class. We show that LinCQA

often outperforms existing CQA systems on both synthetic and real-world workloads, and in

some cases by orders of magnitude. We further show that by executing the Datalog rewrit-

ing that consists of non-recursive rules with negation in an efficient asynchronous Datalog

system, we are able to surpass the state-of-the-art performance numbers that other existing

Datalog engines are unable to. The evaluation of non-recursive Datalog program has been

often dismissed in recent works targeting efficient Datalog computation, due to their heavy

focus on the recursive query processing.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we first provide

the background for the Datalog language, its extensions, and the algorithms used for its

evaluation, along with the related notations and terminology; we then briefly introduce the

systems studied and the frameworks used to build the two prototype Datalog systems.

Next, we present the design, implementation and evaluation of RecStep in Chapter 3. In

Chapter 4, we show how simple visualizations can be used to better characterize recursive

computation tasks and help understand the performance difference observed in different

systems. In Chapter 5, we introduce FlowLog, a high-performance asynchronous Datalog

prototype system that aims to be easy to install and use, maintainable, and extensible on

different platforms.

We look at an important problem called consistent query answering (CQA) that queries

inconsistent data in Chapter 6 and show how we use Datalog to help analyze the problem

and come up with an efficient solution. Finally, we conclude this dissertation in Chapter 7.

6

Chapter 2

Background

In this chapter, we present the necessary background and notation for the reader to

follow this dissertation. We provide background on the syntax and evaluation strategies

of the Datalog language and its extensions that we consider in this dissertation. We then

discuss the existing Datalog systems, some of which are studied in this dissertation.

2.1 Datalog

Datalog Basics

A Datalog program P is a finite set of rules. A rule is an expression of the form:

h :- p1, p2, . . . , pk.

The expressions h, p1, . . . , pk are atoms, i.e., formulas of the form R(t1, . . . , tℓ), where R is

a table/relation name (predicate) and each ti is a term that can be a constant or a variable.

An atom is a fact (or tuple) when all ti are constants. The atom h is called the head of the

rule, and the atoms p1, . . . , pk are called the body of the rule. A rule can be interpreted as a

logical implication: if the predicates p1, . . . , pk are true, then so is the head h. We assume

that rules are always safe: this means that all variables in the head occur in at least one

atom in the body. We will use the upper case X,Y, Z, . . . to denote variables and lower case

a, b, c, . . . for constants.

The relations in a Datalog program are of two types: idb and edb relations. A relation

that represents a base table (input) is called edb (extensional database); edb relations can

occur only in the body of a rule. A relation that represents a derived relation is called

idb (intentional database) and must appear in the head of at least one rule. The transitive

closure presented in Example 1 illustrates these concepts concretely.

Stratification. Given a Datalog program P , we construct its dependency graph GP as

follows: every rule is a vertex and a directional edge r → r′ exists in GP whenever the head

of the rule r appears in the body of rule r′, meaning r′ depends on r. A rule is recursive

7

if it belongs in a directed cycle, otherwise it is called non-recursive. A Datalog program is

recursive if it contains at least one recursive rule. For instance, the dependency graph of the

program in Example 1 contains two vertices r1 (Rule 1) and r2 (Rule 2), and two directed

edges: r1 → r2 and r2 → r2. Since the graph has a self-loop, the program is recursive. A

stratification of P is a partition of rules into strata, where each stratum contains the rules

that are in the same strongly connected component of GP . The topological ordering of the

strongly connected components also defines an ordering in the strata. In example 1, there

exist two strata, {r1}, {r2}.

Datalog Evaluation

Datalog is a declarative query language, and hence there are different algorithms that can

be applied to evaluate a Datalog program. Most implementations of Datalog use bottom-up

evaluation techniques, which start from the input (edb) tables, and then iteratively apply

the rules until no more new tuples (i.e., facts) can be added to the idb relations, reach-

ing a fixpoint. At each iteration of the naive evaluation strategy, the rules are applied

using all the facts produced so far. For our running example, we would initialize the idb

relation reachable with reachable0 ← edge. To calculate the (i + 1) iteration, we com-

pute reachablei+1 ← πX,Y (reachable
i 1 edge) ∪ reachablei. The evaluation ends when

reachablei+1 = reachablei. The naive evaluation strategy has the drawback that the same

facts might be produced multiple times throughout the evaluation, which could lead to re-

dundant computation.

In the semi-naiv̈e evaluation strategy, at every iteration the algorithm uses only the new

facts from the previous iteration to generate tuples in the current iteration. For instance,

in the motivating example, at every iteration i, we maintain together with reachablei the

facts that are generated only in the ith iteration (and not in previous iterations), denoted by

∆reachablei = reachablei − reachablei−1. Then, we compute reachable of the (i+ 1)th

iteration as reachablei+1 ← πX,Y (∆reachablei 1 arc)∪reachablei. The running example

is an instance of linear recursion, where each recursive rule contains at most one atom with

an idb. However, many Datalog programs, especially in the context of program analysis,

contain non-linear recursion, where the body of a rule contains multiple idb atoms. In this

case, the ∆ relations are computed by taking the union of multiple subqueries (for more

details see [AHV95]).

Semi-naiv̈e evaluation can be further sped up by exploiting the stratification of a Datalog

program: the strata are ordered from lower to higher according to the topological order of

the rule dependency graph GP , and then each stratum is evaluated sequentially, considering

the idb relations of the prior strata as edb relations (input tables) in the current stratum.

8

In our implementation of Datalog, we use the semi-naiv̈e evaluation strategy in combination

with stratification.

Negation and Aggregation

In order to enhance the expressiveness of Datalog for use in modern applications, we

consider two syntactic extensions: negation and aggregation.

Negation. Datalog is a monotone language, which means that it cannot express tasks

where the output can become smaller as the input increases. However, many tasks are

inherently non-monotone. To express these tasks, we extend Datalog with a simple form of

negation, called stratified negation. In this extension, negation is expressed by adding the

symbol ¬ in front of an atom. However, the use of ¬ is restricted syntactically, such that

an atom R(t1, . . . , tℓ) can be negated in a rule if (i) R is an edb, or (ii) any rule where R

occurs in the head is in a strictly lower stratum.

Example 2. Suppose we want to compute the complement of transitive closure, in other

words, the vertex pairs that do not belong in the closure. This task can be expressed by the

following Datalog program with stratified negation:

reachable(X, Y) :- edge(X, Y).

reachable(X, Y) :- reachable(X, Z), edge(Z, Y).

node(X) :- edge(X, Y).

node(Y) :- edge(X, Y).

unreachable(X, Y) :- node(X), node(Y),¬reachable(X, Y).

Aggregation. We further extend Datalog with aggregation operators. To support aggre-

gation, we allow the terms in the head of the rule to be of the form AGG(X,Y, . . .), where

X,Y, . . . are variables in the body of the rule, and AGG is an aggregation operator that can

be MIN, MAX, SUM, COUNT, or AVG. We allow aggregation not only in non-recursive rules, but

inside recursion as well, as studied in [Lef92]. In the latter case, one must be careful that

the semantics of the Datalog program lead to convergence to a fixpoint; in this paper, we

assume that the program given as input always converges ([ZYI+18] studies how to test this

property). As an example of the use of aggregation, suppose that we want to compute for

each vertex the number of vertices that are reachable from this vertex. To achieve this, we

can simply add to the transitive closure Datalog program of Example 1 the following rule:

r3 : count reachable(X, COUNT(Y)) :- reachable(X, Y).

9

We should note here that it is straightforward to incorporate negation and aggregation in the

standard semi-naiv̈e evaluation strategy. Since negation can only be applied when there is no

recursion, it can easily be encoded in a sql query using the difference operator. Aggregation

can be similarly encoded as group-by plus aggregation.

2.2 Existing Datalog Systems

Over the years, many works have been published that focus on efficient evaluation Datalog.

Here, we briefly discuss the systems and related techniques that emerged as the results of

these works. We note here that the list is incomplete, and we mainly focus on the recent

works that have close relevance to this dissertation.

Distributed Datalog Engines. Over the past few years, there have been several efforts to

develop scalable evaluation engines for Datalog. Seo et al. [SPSL13] presented a distributed

engine for a Datalog variant for social network analysis called Socialite. Socialite employs

a number of techniques to enable distribution and scalability, including delta stepping, ap-

proximation of results, and data sharding. The notable limitation is Socialite’s reliance on

user-provided annotations to determine how to decompose data on different machines. Wang

et al. [WBH15] implement a variant of Datalog in the Myria system [HdAC+14], focusing

mainly on asynchronous evaluation and fault tolerance. The BigDatalog system [SYI+16] is

a distributed Datalog engine built on a modified version of Apache Spark. A key enabler

of BigDatalog is a modified version of RDDs in Apache Spark, enabling fast set-semantic

implementation. The BigDatalog work has shown superior results to the previously pro-

posed systems that we discussed above, Myria and Socialite. Therefore, in our study, we

focus on BigDatalog for comparison with distributed implementations. Cog [IGM20] and

Nexus [IGQRM22] are philosophically similar to FlowLog as they exploit the cyclic dataflow

model supported by Flink [CKE+15], which provides the capability of incremental compu-

tation and asynchronous iteration. Nexus is an extension to Cog with the added support

of recursive aggregation and use in streaming scenarios. However, it is not clear whether

Nexus allows index sharing between different Datalog rules as the underlying system Flink

does not support indexed state sharing, and Nexus lacks support for mutual recursion. The

task of parallelizing Datalog has also been studied in the context of the popular MapReduce

framework [ABC+11,AU12,SKHS12]. Motik et al. [MNP+14] provide an implementation of

parallel Datalog in multicore main memory systems.

Datalog Solvers in Program Analysis. Static program analysis traditionally is the

problem of overapproximating runtime program behaviors. Since the problem is generally

undecidable, program analyses resort to overapproximations of runtime facts of a program. A

10

large and powerful class of program analyses, formulated as context-free language reachabil-

ity, has been shown to be equivalent to Datalog evaluation. Thus, multiple Datalog engines

have been built and optimized specifically for program analysis tasks. The bddbddb Data-

log solver [WACL05] pioneered the use of Datalog in program analysis by employing binary

decision diagrams (bdd) to compactly represent the results of program analysis. The idea is

that there is a lot of redundancy in the results of a program analysis, due to overapproxima-

tion, which bdds help to obtain exponential savings. However, bddbddb does not support

parallel computation and operations, such as aggregation. Furthermore, bdd is very sensitive

to the ordering of variables used in binary encoding, and figuring the optimal order of is NP-

complete. Several Datalog solvers have recently been used for program analysis that employ

tabular representations of data. These include the Souffle solver [SJSW16] and the LogicBlox

solver [GAK12]. Souffle (which has been shown to outperform LogicBlox [ATS17]) compiles

Datalog programs into native parallel C++ code, which is then compiled and optimized for

a specific platform. Datalog solver mainly built for static program analysis, exploiting tech-

niques such as automatic index selection and indexing structures that allow efficient parallel

operations. Differential Datalog [RB19] is an in-memory Datalog engine that is built for

incremental computation, under the hood of which is differential dataflow [MMII13]. All of

these solvers do not employ a deep form of parallelism, which our work exhibits by utilizing a

parallel in-memory database and a computation framework. The Graspan engine [WHZ+17]

takes a context-free grammar representation and is thus restricted to binary relations—

graphs. Graspan employs a worklist-based algorithm to parallelize the computation of the

fix point on a multicore machine. However, as we show experimentally, our systems RecStep

and FlowLog as well as other studied Datalog systems, can significantly outperform Graspan

on its own benchmark set.

Other Graph Engines and Graph Query Languages. By now, there are numerous

distributed graph processing systems, such as Pregel [MAB+10] and Giraph [HD15]. These

systems espouse the think-like-a-vertex programming model, where one writes operations

per graph vertex. These are restricted to binary relations (graphs); Datalog, by definition, is

more general in that it captures computation over hypergraphs. The native graph database

such as Neo4j [Mil13], using Cypher [FGG+18] as its declarative query language for property

graphs, in which each vertex and edge of the graph consists of a list of properties such as a

unique identifier, a collection of key-value pairs. For graph queries, different thinking ways

are required when using Datalog compared to other graph-native query languages such as

Cypher, mainly due to differences in the underlying data models.

11

Chapter 3

RecStep: Datalog Evaluation by RDBMS

In this chapter, we introduce our own designed and implemented general-purpose Datalog

engine RecStep, which is built on top of a parallel single-node relational system. We discuss

in detail the techniques applied to RecStep, as well as the contribution of each technique

to the overall performance. Using RecStep as a baseline, we demonstrate that it generally

outperforms state-of-the-art parallel Datalog engines on complex and large-scale Datalog

evaluation, by a 4-6X margin. Our work on building and evaluating RecStep additionally

suggests that it is possible to build a high-performance Datalog system on top of a relational

engine, an idea that has been dismissed in previous work.

Datalog language and its syntactic extensions have experienced a recent resurgence, as

a result of the needs for recursive query processing found in many modern application

domains, including but not limited to data integration [FKMP03, Len02], graph analyt-

ics [SGL13, SPSL13], program analysis [WL04] [SJSW16] [RB19], networking [LCG+06].

Due to the large volumes of data being processed, several research efforts across multiple

communities have explored how to scale up recursive queries in Datalog or Datalog-like lan-

guage. The development of Datalog solvers (or engines) has been a subject of study in both

the database community and the programming language community. The database commu-

nity independently developed its own tools to evaluate general Datalog programs, both in

centralized and distributed settings. These include the LogicBlox solver [GAK12], as well as

distributed and cloud-based engines such as BigDatalog [SYI+16], Myria [WBH15], and So-

cialite [SPSL13]. In the programming language (PL) community, it has been observed that a

rich class of fundamental static program analyses can be written equivalently as Datalog pro-

grams [Rep97,WL04]. The PL community has extensively implemented solvers that target

all (or a subset) of Datalog. This line of research has resulted in several Datalog-based tools

for program analysis, including bddbddb [WACL05], Souffle [SJSW16], and more recently

Graspan [WHZ+17].

Our experience with the corresponding tools produced indicates that their performance

does not translate across domains—e.g., a system designed for large-scale graph analytics

12

does not exhibit the same performance on program-analysis tasks, and vice versa. Starting

from the above observation, we tested a number of state-of-the-art Datalog systems developed

for a wide spectrum of graph analytics and program-analysis tasks, summarizing the pros

and cons of existing techniques. Tools such as LogicBlox and bddbddb were unable to scale

well with large input datasets prevalent in other domains. Even Souffle, the best-performing

tool for program analysis tasks, is not well-suited for tasks outside program analysis, such

as graph analytics (which also require the language support for aggregation). BigDatalog,

Myria, and Socialite, on the other hand, can only handle simple Datalog programs with lim-

ited recursion capabilities (linear and non-mutual recursion) and does not support or only

partially support more complex computation structures such as non-linear recursion, mu-

tual recursion, and recursive aggregation, which present in the majority of program analyses

expressed in Datalog programs.

To address this divide, we ask two questions: (i) what are the performance characteristics

of existing parallel Datalog engines on tasks from different application domains? (ii) can we

design and implement an efficient parallel general-purpose engine that can support a wide

spectrum of Datalog programs? To answer these questions, we perform a detailed experimen-

tal evaluation of different Datalog engines across tasks from graph analytics and program

analysis, and compare their performance with our own in-memory parallel Datalog engine,

which uses a relational data management system as a backend. We systematically examine

the techniques and optimizations necessary to transform a naive Datalog solver into a highly

optimized one. As a consequence of this work, we also show that – contrary to anecdotal and

empirical evidence [SVKW15,JSS16]—it is possible to effectively use a rdbms as a backend

for Datalog evaluation through careful consideration of the underlying system issues.

Our Contribution. In summary, the project makes the following contributions:

1. Benchmarking. We perform an extensive comparison of four state-of-the-art Datalog

engines on a multi-core machine. We consider benchmarks from the domains of graph

analytics (e.g., transitive closure, reachability, connected components) and program

analysis (e.g., points-to and dataflow analyses) using both synthetic and real-world

datasets. We compare these systems across both runtime and memory usage. Our

findings are summarized in Table 3.1.

2. Techniques and Guidelines. We study the challenges of building a recursive query

processing engine on top of a parallel rdbms, and consider a spectrum of techniques

that solve them. Key techniques include (i) a lightweight way to enable query re-

optimization at every recursive step, (ii) careful scheduling of the queries issued to the

rdbms in order to maximize resource utilization, and (iii) the design of specialized

high-performance algorithms that target the bottleneck operators of recursive query

13

Graspan Bddbddb BigDatalog Souffle RecStep

Scale-Up yes no yes yes yes

Scale-Out no no yes no no

Memory Usage low low high medium low

CPU Utilization medium poor high medium high

CPU Efficiency low - medium high high

Parameters Tuning light complex moderate no no

Mutual Recursion yes yes no yes yes

Non-Recursive AGG no no yes yes yes

Recursive AGG no no yes no yes

Table 3.1: Summary of Comparison Between Selected Systems. For a given workload

(i.e., a Datalog program and an input dataset), CPU efficiency is defined as the reciprocal

of the product of the overall performance (runtime) of the system supporting multi-core

computation and the number of CPU cores given for computation - the greater number

suggests higher CPU efficiency. Table 3.2 shows the CPU efficiency of different systems on

the selected Datalog workloads. AGG stands for Aggregation.

Graspan BigDatalog Souffle RecStep

TC (G20K) - 2.75e-04 2.92e-04 1.12e-03

SG (G10K)) - 7.18e-05 5.41e-04 2.45e-03

REACH (orkut) - 1.92e-04 3.52e-04 1.32e-03

CC (orkut) - 2.17e-04 - 5.81e-04

SSSP (orkut) - 1.81e-04 - 1.00e-03

AA (dataset 7) - 2.20e-04 5.65e-05 7.65e-04

CSDA (linux) 2.22e-06 1.29e-04 2.05e-04 5.81e-05

CSPA (linux) 4.56e-05 - 2.03e-04 4.10e-04

Table 3.2: CPU Efficiency of Different Systems on Selected Datalog Programs and Datasets

processing (set difference, deduplication). We also propose a specialized technique for

graph analytics that can compress the intermediate data through the use of a bit matrix

to reduce memory usage. We systematically measure the effect of each technique on

performance.

3. Implementation. We implement our techniques as part of RecStep, a Datalog engine

built on top of QuickStep [PDZ+18], which is a single-node in-memory parallel rdbms.

RecStep supports a language extension of pure Datalog with both stratified negation

14

and aggregation, a language fragment that can express a wide variety of data processing

tasks.

4. Evaluation. We experimentally show that RecStep can efficiently solve large-scale prob-

lems in different domains using a single-node multi-core machine with large memory,

and also can scale well when given more cores. RecStep outperforms the other systems

in almost all cases , sometimes even by a factor of 8. In addition, the single-node imple-

mentation of RecStep compares favorably to cluster-based engines, such as BigDatalog,

which use far more resources (more processing power and memory). Our results show

that (i) it is feasible to build a fast general-purpose Datalog engine using an rdbms

as a backend, and (ii) with the trend towards powerful (multi-core and large main

memory) servers, single-node systems may be sufficient for a large class of Datalog

workloads.

Organization. In Section 3.1, we give a brief introduction of Quickstep, the in-memory

rdbms used as the backend of RecStep. We then give a summary of the architecture design

of RecStep in Section 3.2. We discuss in detail the techniques and optimizations that lead to

RecStep’s high performance for Datalog evaluation in Section 3.3 followed by a comprehensive

experimental evaluation in Section 3.4.

3.1 QuickStep

Quickstep [PDZ+18] is a single-node parallel rdbms that focuses on in-memory query

processing. To fully exploit the large amount of parallelism that is packed inside the multi-

core servers today, Quickstep builds on a wide spectrum of mechanisms and carefully designed

components such as block-layout storage manager, which is further leveraged by the query

execution paradigm that allows for high intra-operator parallelism, in which multiple work

orders are produced and processed independently at the block level. Besides, Quickstep also

comes up with a scheduler that allows for elastic resource allocation, the mechanisms to

quickly drop irrelevant data as early as possible during the query processing, and many

other techniques focusing on efficient in-memory processing.

For one of the central computation tasks when processing relational data join processing,

QuickStep implements a hash join algorithm consists of join phase and build phase. The

latch-free concurrent hash table is used to operate on multiple blocks by multiple work

orders in parallel and the joined tuples are materialized into in-memory blocks.

15

Datalog to	SQL	
mapping	&	runtime	

management

SQL	query	
execution

Quickstep
(Relational	Data	Platform)

SQL	API

Rule	Analyzer

Query	Generator

Interpreter

Datalog Parser

ResultsIterate	till	doneSQL

Figure 3.1: Architectural overview of RecStep

3.2 Architecture

In this section, we present the architecture of RecStep. The core design choice of RecStep

is that, in contrast to other existing Datalog engines, it is built on top of an existing parallel

in-memory rdbms (QuickStep). This design enables the use of existing techniques (e.g.,

indexing, memory management, optimized operator implementations) that provide high-

performance query execution in a multi-core environment. Further, it allows us to improve

performance by focusing on characteristics specific to Datalog evaluation.

Overview. The architecture of our system is summarized in Figure 3.1. The Datalog

program is read from a .Datalog file, which, along with the rules of the Datalog program,

specifies the schemas of idb and edb relations. The parsed program is first given as input

to the rule analyzer. The job of the rule analyzer is to preprocess the program: identify

the idb and edb relations, verify the syntactic correctness of the program, construct the

dependency graph and stratification, and build the necessary mapping information (e.g.,

for joins). Next, the query generator takes the output of the rule analyzer and produces

the necessary SQL code to evaluate each stratum of the Datalog program using semi-näıve

evaluation. Finally, the interpreter is responsible for the evaluation of the program. It starts

the rdbms server, creates the idb and edb tables in the database, and takes care of the loop

control for the semi-näıve evaluation in each stratum. It also controls the communication

and flow of information between the rdbms server.

Execution. We now describe how the interpreter executes a Datalog program, as outlined

in Algorithm 1.

16

Function Description

idb(s) returns relations that are heads in stratum s

rules(R, s) returns rules of stratum s with R as head

uieval(r) evaluates all the rules in the set r

analyze(R) call to the rdbms to collect statistics for R

dedup(R) deduplicates R

Table 3.3: Notation used in Algorithm 1

Algorithm 1: Execution Strategy for Datalog program P

1: for each idb R

2: R← ∅
3: // S is a stratification of P

4: for each stratum s ∈ S
5: repeat

6: for each R ∈ idb(s)

7: Rt ← uieval(rules(R, s))

8: analyze(Rt)

9: Rδ ← dedup(Rt)

10: analyze(Rδ, R)

11: ∆R← Rδ −R

12: R← R ⊎∆R

13: if s is non-recursive

14: break

15: until ∀R ∈ idb(s), ∆R = 0

The Datalog rules are evaluated in groups and in the order given by the stratification. The

idb relations are initialized so that they are empty (line 2). For each stratum, the interpreter

enters the control loop for semi-näıve evaluation. Note that in the case where the stratum

is non-recursive (i.e., all the rules are non-recursive), the loop exits after a single iteration

(line 13). In each iteration of the loop, two temporary tables are created for each idb R in

the stratum: ∆R, which stores only the new facts produced in the current iteration, and a

table that stores the result at the end of the previous iteration. These tables are deleted

immediately after the evaluation of the next iteration is complete.

The function uieval executes the sql query that is generated from the query generator

based on the rules in the stratum where the relation appears in the head (more details on the

next section). We should note here that deduplication does not occur within uieval, but in

17

CSPA on httpd0
20
40
60
80

100
Ti

m
e

Pe
rc

en
ta

ge
 (%

)

 2
4 2
9 3
2 4

1 5
1 6

2

 6
3

 1
00

RecStep
UIE
DSD
OOF-FA
EOST
FAST-DEDUP
OOF-NA
RecStep-NO-OP

Figure 3.2: The effect of different optimizations techniques on the CSPA analysis

on httpd dataset: the figure shows the effect of turning off each optimization on runtime,

depicted as a percentage over the runtime of RecStep with all optimizations turned off

(RecStep-NO-OP).

a separate call (dedup). This is achieved in practice by using UNION ALL (simply appending

data) instead of UNION.

Finally, we should remark that the interpreter calls the function analyze() during execu-

tion, which tells the backend explicitly to collect statistics on the specified table. As we will

see in the next section, analyze() is a necessary feature to achieve a lightweight and dynamic

query optimization.

3.3 Optimizations

This section presents the key optimizations that we have implemented in RecStep to speed

up performance and efficiently utilize system resources (memory and cores). We consider

optimizations at two levels: Datalog-to-sql level and system level.

For Datalog-to-sql-level optimizations, we study the translation of Datalog rules to a set

of sql queries. An effective translation minimizes the overhead of catalog updates, selects

the optimal algorithms and query plans, avoids redundant computations, and fully utilizes

the available parallelism. In terms of system-level optimizations, we focus on bottlenecks

that cannot be resolved by the translation-level optimizations, and modify the back-end

system by introducing new specialized data structures, implementing efficient algorithms,

and revising the rules in the query optimizer. We summarize our optimizations as follows:

1. Unified idb Evaluation (uie): different rules and different subqueries inside each re-

cursive rule evaluating the same idb relation are issued as a single query.

2. Optimization On the Fly (oof): the same set of sql queries are re-optimized at each

iteration considering the change of idb tables and intermediate results.

18

0 200 400 600 800
Time (s)

3
4
5
6
7

M
em

or
y

Us
ag

e
(%

)
RecStep
RecStep-NO-OP

(a) RecStep

0 100 200 300 400 500
Time (s)

4
6
8

10
12

M
em

or
y

Us
ag

e
(%

) UIE
DSD
OOF-FA
EOST
FAST-DEDUP
OOF-NA

(b) Optimizations

Figure 3.3: The effect of turning off each optimization of CSPA analysis on httpd on memory

usage. The memory consumption with all optimization turned on/off is shown separately in

Figure 3.3a for comparison purposes.

3. Dynamic Set Difference (dsd): for each idb table, the algorithm to perform the set

difference to compute ∆ is dynamically chosen at each iteration, by considering the

size of idb tables and intermediate results.

4. Evaluation as A Single Transaction (eost): the evaluation of a whole Datalog program

is regarded as a single transaction and nothing is committed until the end.

5. Fast Deduplication (fast-dedup): a memory-efficient implementation for high-performance

deduplication.

Apart from the above list of optimizations, we also provide a specialized technique that can

speed up performance on Datalog programs that operate on dense graphs called pbme. This

technique represents the relation as a bit-matrix, with the goal of minimizing the memory

footprint of the algorithm. Next, we detail each optimization; their effect on runtime and

memory is visualized in Figure 3.2 and Figure 3.3.

Datalog-to-SQL-level optimizations

Unified IDB Evaluation (UIE). For each idb relation R, there can be several rules

where R appears in the head of the rule. In addition, for a nonlinear recursive rule, in which

the rule body contains more than one idb relation, the idb relation is evaluated by multiple

subqueries. In this case, instead of producing a separate sql query for each rule and then

computing the union of the intermediate results, the query generator produces a single sql

query using the UNION ALL construct. We call this method unified idb evaluation (uie).

Figure 3.4 provides an example of the two different choices for the case of Andersen analysis.

The idea underlying uie is to fully utilize all the available resources, i.e., all the cores in a

multi-core machine. QuickStep does not allow the concurrent execution of sql queries, and

19

Individual IDB Evaluation:
// Evaluate and write results separately
INSERT INTO pointsTo_tmp_mDelta0
 SELECT a0.y AS y, p1.x AS x FROM …
INSERT INTO pointsTo_tmp_mDelta1
 SELECT l0.y AS y, p2.x AS x FROM …;
 …
INSERT INTO pointsTo_tmp_mDelta6
 SELECT p1.x AS y, p2.x AS x FROM …;
// Merge results from seperate queries
INSERT INTO pointsTo_mDelta
 SELECT * FROM pointsTo_tmp_mDelta0
 UNION ALL
 SELECT * FROM pointsTo_tmp_mDelta1
 UNION ALL
 …
 SELECT * FROM pointsTo_tmp_mDelta6;

Unified IDB Evaluation:
// Evaluate and write results as a whole
INSERT INTO pointsTo_mDelta
 SELECT a0.y AS y, p1.x AS x FROM …
 UNION ALL
 SELECT l0.y AS y, p2.x AS x FROM …
 UNION ALL
 …
 SELECT p1.x AS y, p2.x AS x FROM …;

Figure 3.4: Example uie in Andersen analysis.

hence by grouping the subqueries into a single query, we maximize the number of tasks that

can be executed in parallel without explicitly considering concurrent multi-task coordination.

In addition, uiemitigates the overhead incurred by each individual query call, and enables

the query optimizer to jointly optimize the subqueries (e.g., enable cache sharing, pipelining

instead of materializing intermediate results). The latter point is not specific to QuickStep,

but generally applicable to any rdbms backend (even ones that support concurrent query

processing).

Optimization On the Fly (OOF). In Datalog evaluation, even though the set of queries

is fixed across iterations, the input data to the queries changes, since the idb relations and

the corresponding ∆-relations change at every iteration. This means that the optimal query

plan for each query may be different across different iterations. For example, in some Datalog

programs, the size of ∆R (Algorithm 1) produced in the first few iterations might be much

larger than the joining edb table, and thus the hash table should be preferably built on

the edb when performing a join. However, as the ∆R produced in later iterations tends to

become smaller, the build side of the hash table should be switched later.

In order to achieve optimal performance, it is necessary to re-optimize each query at every

iteration (lines 8, 10 in Algorithm 1) by using the latest table statistics from the previous

iteration. However, collecting the statistical data (e.g., size, avg, min, max) of the whole

database at every iteration can cause a large overhead, since it may be necessary to perform

a full scan of all tables. To mitigate this issue, our solution is to control precisely at which

point which statistical data we collect for the query optimizer, depending on the type of the

query. For instance, before joining two tables, only the size of the two tables is necessary

20

for the optimizer to choose the right side to build the hash table on (the smaller table), as

illustrated in the previous example.

In particular, we collect the following statistics:

• For deduplication, the size of the hash table needs to be estimated in order to pre-

allocate memory. we use a conservative approximation that takes the size of the table.

• For join processing, we collect only the number of tuples and the tuple size of the

joining tables, if any of the tables is updated or newly created.

• For aggregation, we collect statistics regarding the min, max, sum and avg of the tables.

The effect of oof can be seen in Figure 3.4. Without updating the statistics across the

iterations, the running time percentage jumps from 24% to 63% (oof-na). On the other

hand, if we update the full set of statistics, the running time percentage increases to 41%

(oof-fa).

Dynamic Set-Difference (DSD). In semi-näıve evaluation, the execution engine must

compute the set difference between the newly evaluated results (Rδ) and the entire recursive

relation (R) at the end of every iteration, to generate the new ∆R ← Rδ − R (line 12 in

Algorithm 1). Since set difference is executed at every iteration for every idb in the stratum,

it is a computational bottleneck that must be highly optimized. There exist two different

ways we can translate set difference as a sql query.

The first approach One-Phase Set Difference (OPSD) simply runs the set difference as a

single sql query. The default strategy that QuickStep uses for set difference is to first build

a hash table on R, and then Rδ probes the hash table to output the tuples of Rδ that do not

match with any tuple in the hash table. Since the size of R grows at each iteration (recall

that Datalog is monotone), this suggests that the cost of building the hash table on R will

constantly increase for the set difference computation under OPSD.

An alternative approach is to use a translation that we call Two-Phase Set Difference

(TPSD). This approach involves two queries: the first query computes the intersection of the

two relations, r ← R ∩ Rδ. The second query performs set difference, but now between R

and r (instead of Rδ). Although this approach requires more relational operators, it avoids

building a hash table on R.

We observe that none of the two approaches always dominates the other, since the size

of R and Rδ changes at different iterations. Hence, we need to dynamically choose the best

translation at every iteration. We guide this choice using a simple cost model, presented in

full detail in [FZZ+18].

21

System-level Optimizations

Evaluation as One Single Transaction (EOST). By default, QuickStep (as well as

other rdbmss) view each query that changes the state of database as a separate transaction.

Keeping the default transaction semantics in QuickStep during evaluation incurs I/O over-

head in each iteration due to the frequent insertion happening to idb tables, and the creation

of tables storing intermediate results. Such frequent I/O actions are unnecessary, since we

only need to commit the final results at the end of the evaluation. To avoid this overhead, we

use the evaluation as one single transaction (eost) semantics. Under these semantics, the

data is kept in memory until the fixpoint is reached (when there is enough main memory),

and only the final results are written to persistent storage at the end of evaluation.

To achieve eost, we slightly modify the kernel code in QuickStep to pend the I/O actions

until the fixpoint is reached (by default, if some pages of the table are found dirty after a

query execution, the pages are written back to the disk). At the end of the evaluation, a

signal is sent to QuickStep and the data is written to disk.

For other popular rdbmss (e.g., PostgreSQL, MySQL, SQL Server), the start and the

end of a transaction can be explicitly specified, but this approach is only feasible for a set of

queries that are pre-determined.1

However, in recursive query processing the issued queries are dynamically generated, and

the number of iterations is not known until the fixpoint is reached, which means that similar

changes need to be made in these systems to apply eost.

Fast Deduplication. In Datalog evaluation, deduplication of the evaluated facts is not only

necessary for conforming to the set semantics, but also helps to avoid redundant computation.

Deduplication is also a computational bottleneck, since it occurs at every iteration for every

idb in the stratum (line 10 in Algorithm 1); hence, it is necessary to optimize its parallel

execution.

To achieve this, we use a specialized Global Separate Chaining Hash Table implementation

that uses a Compact Concatenated Key (ck), which we call cck-gscht. cck-gscht is a

global latch-free hash table built using a compact representation of ⟨key, value⟩ pairs, in
which tuples from each data partition/block can be inserted in parallel. Figure 3.5 illustrates

the deduplication algorithm using an example in which cck-gscht is applied on a table with

two integer attributes (src int, dest int).

Based on the approximated number of distinct elements from the query optimizer, RecStep

pre-allocates a list of buckets, where each bucket contains only a pointer. An important point

here is that the number of pre-allocated buckets will be as large as possible when there is

1To fully achieve eost, transactional databases also need to turn off features such as checkpoint,
logging for recovery, etc.

22

x&y x int y int
4byte 4byte8byte

CK

CK

CK

CK

CK

insert directly when there is no
conflict

x&y x int y int
4byte 4byte8byte

Concatenated Key
(CK)

x&y x int y int
4byte 4byte8byte

x&y x int y int
4byte 4byte8byte

conflict without
memory contention

conflict with memory
contention

wait until the other one
finishes insertion

insert first

Buckets
(pre-allocated)

Original Tuple

(1)

(2)

(3)

Figure 3.5: Example of applying fast deduplication algorithm on table with two integer

attributes in RecStep

enough memory, for the purpose of minimizing conflicts in the same bucket, and preventing

memory contention. Tuples are assigned to each thread in a round-robin fashion and are

inserted in parallel. Knowing the length of each attribute in the table, a compact ck of fixed

size 2 is constructed for each tuple (8 bytes for two integer attributes as shown in Figure 3.5).

The compact ck itself contains all information of the original tuple, eliminating the need

for explicit ⟨key, value⟩ pair representation. Additionally, the key itself is used as the hash

value, which saves computational cost and memory space.

Parallel Bit-Matrix Evaluation

In our experimental evaluation, we observed that the usage of memory increased drasti-

cally during evaluation over dense relations. By default, QuickStep uses hash tables for joins

between tables, aggregation and deduplication. When the intermediate result becomes very

large, the use of hash tables for join processing becomes memory-costly. In the extreme,

the intermediate results are too big to fit in main memory, and are forced to disk, incurring

additional I/O overhead, or even out-of-memory errors. This phenomenon was observed in

both graph analytics and program analysis. In both cases, a Datalog program starts with

sparse input relations with a relatively small active domain, but end up with large and dense

output relations. A typical example of this behavior is transitive closure on graphs.

Inspired by this observation, we exploit a specialized data structure, called bit-matrix, that

2The inputs of Datalog programs are usually integers transformed by mapping the active domain
of the original data (if not integers). Thus the technique can also applied to data where the original
type has varied length.

23

Algorithm 2: Parallel Bit-Matrix Evaluation of TC

1: Input: edge(x, y) - edb relation, number of threads k

2: Output: reachable(x, y) - idb relation

3: // Medge: virtual bit-matrix of edge(x, y)

4: Construct bit-matrix Mreachable of reachable(x, y)

5: Mreachable ←Medge

6: Partition the rows of Mreachable into k partitions

7: // the k threads evaluate k partitions in parallel

8: for each row i in partition p

9: δ ← {u |Medge[i, u] = 1}
10: while δ ̸= ∅
11: δn ← ∅
12: for each t ∈ δ

13: for each j s.t. Medge[t, j] = 1

14: if Mreachable[i, j] = 0

15: δn ← δn ∪ {j}
16: Mreachable[i, j]← 1

17: δ ← δn

replaces a hash map during join and deduplication in the case when the graph representing

the data is dense and has relatively small number of vertices. This data structure represents

the join results in a much more compact way under certain conditions, greatly reducing the

memory cost compared to a hash table. In this paper, we only describe the bit matrix for

binary relations, but the technique can be extended to relations of higher arity. At the same

time, we implement new operators directly operating on the bit-matrix, naturally merging

the join and deduplication into one single operation and thus avoid the materialization cost

of the intermediate results. We call this technique Parallel Bit-Matrix Evaluation (pbme).

Our experiments (Figure 3.6) show that pbme improved performance for transitive closure

(TC) and same generation (SG). The latter is expressed through the following program:

sg(x, y) :- arc(p, x), arc(p, y), x ̸= y.

sg(x, y) :- arc(a, x), sg(a, b), arc(b, y).

We next describe the bit-matrix technique and show how to apply it for TC (Algorithm

2). We discuss the algorithm for SG in [FZZ+18]. Note that we construct a matrix only for

each idb, but for convenience of illustration, we use matrix notation for the edbs as well

(line 3 in Algorithm 2).

24

0 50 100 150 200
Time (s)

0
20
40
60
80

100
M

em
or

y
Us

ag
e

(%
) NON-PBME-G10K

NON-PBME-G20K (failed)
PBME-G10K
PBME-G20K
PBME-G40K

(a) Transitive Closure

0 50 100 150 200
Time (s)

0
20
40
60
80

100

M
em

or
y

Us
ag

e
(%

) NON-PBME-G5K
NON-PBME-G10K (failed)
PBME-G5K
PBME-G10K
PBME-G20K

(b) Same Generation

Figure 3.6: Memory Saving of PBME on TC and SG

The Bit-Matrix Data Structure. Let R(x, y) be a binary idb relation, with active

domain {1, 2, . . . , n} for both attributes. Instead of representing R as a set of tuples, we

represent it as an n × n bit matrix denoted MR. If R(a, b) is a tuple in R, the bit at the

a-th row and b-th column, denoted MR[a, b] is set to 1, otherwise it is 0. The relation is

updated during recursion by setting bits from 0 to 1. We decide to build the bit-matrix data

structure only if the memory available can fit both the bit matrix, as well as any additional

index data structures used during evaluation.

One of the key features of pbme is zero-coordination: each thread is only responsible

for the partition of the data assigned to it and there is almost no coordination between

different threads. Algorithm 2 outlines pbme for transitive closure. For the evaluation of TC

(Algorithm 2), the rows of the idb bit-matrix Mreachable are firstly partitioned in a round-

robin fashion (line 6). For each row i assigned to each thread, the set δ stores the new bits

(paths starting from i) produced at every iteration (line 12-16). For each new bit t produced,

the thread searches for all the bits at row t of Medge, and computes the new δ (line 13-16).

The Effect of Skew. While unnoticeable in TC, data skew across different threads was

observed in SG. To analyze the effect of data skew, we implement a variant of pbme with

coordination (PBME-COORD) and compare it with pbme without coordination. PBME-

COORD mitigates the data skew by rebalancing the workloads between threads. In the case

where there is no skew, coordination only incurs unnecessary overhead. We refer readers

to [FZZ+18] for more detail.

The comparison of the two algorithms is shown in Figure 3.7. The CPU utilization of

pbme with coordination is almost 100% throughout the entire SG evaluation, and it takes

less time to finish compared to pbme without coordination. This demonstrates that skew

can indeed affect performance.

25

0 50 100 150 200
Time (s)

0
20
40
60
80

100
CP

U
Ut

iliz
at

io
n

(%
)

PBME-NO-COORD PBME-COORD

(a) CPU Utilization

0 50 100 150 200
Time (s)

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

M
em

or
y

Us
ag

e
(%

)

(b) Memory Usage

Figure 3.7: PBME with Coordination v.s Non-Coordination on SG on the G20K dataset.

3.4 Experiments

In this section, we evaluate the performance of RecStep. Our experimental evaluation

focuses on answering the following two questions:

1. How does our proposed system scale with increased computation power (cores) and

data size?

2. How does our proposed system perform compared to other parallel Datalog evaluation

engines?

To answer these two questions, we performed experiments using several benchmark Datalog

programs from the literature: both from traditional graph analytics tasks (e.g., reachability,

shortest path, connected components), as well as program analysis tasks (e.g., pointer static

analysis). We compare RecStep against a variety of state-of-the-art Datalog engines, as well

as a recent single-machine, multi-core engine (Graspan), which can express only a subset of

Datalog.

Experimental Setup

We briefly describe here the setup for our experiments.

System Configuration. Our experiments are conducted on a bare-metal server in Cloud-

lab [Clo18], a large cloud infrastructure. The server runs Ubuntu 14.04 LTS and has two

Intel Xeon E5-2660 v3 2.60 GHz (Haswell EP) processors. Each processor has 10 cores, and

20 hyper-threading hardware threads. The server has 160GB memory, and each NUMA node

is directly attached to 80GB of memory.

26

Table 3.4: Summary of Datalog Programs and Datasets in Performance Evaluation

Graph Analytics Datasets Reference

Transitive Closure (TC) [Gn-p] [SYI+16]

Same Generation (SG) [Gn-p] [SYI+16]

Reachability (REACH) social-network graphs, [RMAT] [SYI+16]

Connected Components (CC) social-network graphs, [RMAT] [SYI+16]

Single Source Shortest Path (SSSP) social-network graphs, [RMAT] [SYI+16]

Program Analysis Datasets Reference

Andersen’s Analysis (AA) 7 synthetic datasets -

Context-sensitive Dataflow Analysis (CSDA) [linux, postgresql, httpd] [WHZ+17]

Context-sensitive Points-to Analysis (CSPA) [linux, postgresql, httpd] [WHZ+17]

Other Datalog Engines. We compare the performance of RecStep with several state-of-

the-art systems that perform either general Datalog evaluation, or evaluate only a fragment

of Datalog for domain-specific tasks.

1. BigDatalog [SYI+16] is a general-purpose distributed Datalog system implemented on

top of Apache Spark.3

2. Souffle [SJSW16] is a parallel Datalog evaluation tool that compiles Datalog to a native

C++ program. It focuses on evaluating Datalog programs for the domain of static

program analysis.4

3. bddbddb [WACL05] is a single-thread Datalog solver designed for static program anal-

ysis. Its key feature is the representation of relations using binary decision diagrams

(bdds).

4. Graspan [WHZ+17] is a single-machine disk-based parallel graph system, used mainly

for interprocedural static analysis of large-scale system code.

Benchmark Programs and Datasets

We conduct our experiments using Datalog programs that arise from two different do-

mains: graph analytics and static program analysis. The graph analytics benchmarks are

3BigDatalog exhibits significant performance improvements over Myria and Socialite, and therefore
we do not compare against them.

4Recent work has shown that Souffle outperforms LogicBlox [ATS17]. Indeed, our early attempts
using LogicBlox confirm that its performance is not comparable to other parallel Datalog systems.
Thus, we exclude LogixBlox from our experimental evaluation.

27

those used for evaluating BigDatalog [SYI+16]. Below, we present them in detail (with the

exception of TC and SG, which are described earlier in the paper).

Reachability (REACH)

reach(y) :- id(y).

reach(y) :- reach(x), arc(x, y).

Connected Components (CC)

cc3(x, MIN(x)) :- arc(x,).

cc3(y, MIN(z)) :- cc3(x, z), arc(x, y).

cc2(x, MIN(y)) :- cc3(x, y).

cc(x) :- cc2(, x).

Single Source Shortest Path (SSSP)

sssp2(y, MIN(0)) :- id(y).

sssp2(y, MIN(d1+ d2)) :- sssp2(x, d1), arc(x, y, d2).

sssp(x, MIN(d)) :- sssp2(x, d).

The static analysis benchmarks include analyses on which Graspan was evaluated [WHZ+17],

as well as a classic static analysis called Andersen’s analysis [And94].

Andersen’s Analysis (AA)

pointsTo(y, x) :- addressOf(y, x).

pointsTo(y, x) :- assign(y, z), pointsTo(z, x).

pointsTo(y, w) :- load(y, x), pointsTo(x, z), pointsTo(z, w).

pointsTo(z, w) :- store(y, x), pointsTo(y, z), pointsTo(x, w).

28

Context-sensitive Points-to Analysis (CSPA)5

valueFlow(y, x) :- assign(y, x).

valueFlow(x, x) :- assign(x, y).

valueFlow(x, x) :- assign(y, x).

memoryAlias(x, x) :- assign(y, x).

memoryAlias(x, x) :- assign(x, y).

valueFlow(x, y) :- assign(x, z), memoryAlias(z, y).

valueFlow(x, y) :- valueFlow(x, z), valueFlow(z, y).

memoryAlias(x, w) :- dereference(y, x), valueAlias(y, z),

dereference(z, w).

valueAlias(x, y) :- valueFlow(z, x), valueFlow(z, y).

valueAlias(x, y) :- valueFlow(z, x), memoryAlias(z, w),

valueFlow(w, y).

Context-sensitive Dataflow Analysis (CSDA)

null(x, y) :- nullEdge(x, y).

null(x, y) :- null(x, w), arc(w, y).

To evaluate the benchmark programs, we use a combination of synthetic and real-world

datasets, which are summarized in Table 3.4. To give a better view of the performance

evaluation, we briefly summarize some of the datasets and corresponding Datalog programs

here. For more details, readers can go to the reference in Table 3.4.

Gn-p graphs are graphs generated by the GTgraph synthetic graph generator [GTg],

where n represents the number of total vertices of the graph in which each pair of ver-

tices is connected by probability p. Each pair of vertices in Gn omitting p is connected

with probability 0.001. All Gn-p graphs are very dense considering their relatively small

number of vertices. SG and TC generate very large results when evaluation is performed

on Gn-p, (a few orders of magnitude larger than the number of vertices). RMAT graphs

are graphs generated by the RMAT graph generator [GTg], with the same specification

in [SYI+16], RMAT-n represents the graph that has n vertices and 10n directed edges (n ∈
{1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M} in our evaluation experiments). livejournal, orkut,

arabic, twitter are all large-scale real-world social-network graphs that have tens of mil-

lions of vertices and edges. For the Andersen’s analysis, seven datasets are generated ranging

5Graspan’s analysis is context-sensitive via method cloning [WL04]—therefore, calling context
does not appear in the rules, but in the data.

29

1 2 4 8 16 20 32 40
of Threads

1
2
3
4
5
6
7
8
9

Sp
ee

du
p

(a) CSPA on httpd

1 2 4 8 16 20 32 40
of Threads

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

(b) CC on livejournal

Figure 3.8: Scaling-up on Cores

from small size to large size based on the characteristics of a tiny real dataset available at

hand, numbered from 1 to 7. The graph representations of the datasets are small and pro-

duce moderate number of tuples. linux, postgresql, httpd are all real system programs

used for CSDA and CSPA experiments in [WHZ+17].

Experimental Results

We first evaluate the scalability of RecStep, and then move to a comparison with other

systems.

Scalability

Scaling-up Cores. To evaluate the speedup of RecStep, we run the CC benchmark on

livejournal graph, and the CSPA benchmark on the httpd dataset. We vary the number

of threads from 2 to 40. Figure 3.8 demonstrates that for both cases, RecStep scales really

well using up to 16 threads, and after that point achieves a much smaller speedup. This drop

on speedup occurs because of the synchronization/scheduling primitive around the common

shared hash table that is accessed from all the threads. Recall that 20 is the total number

of physical cores.

Scaling-up Data. We perform experiments on both a graph analytics program (CC on

RMAT) and a program analysis task (AA on the synthetic datasets) using all 20 physical cores

(40 hyperthreads) to observe how our system scales over datasets of increasing sizes. From

Figure 3.9a, we observe that the time increases nearly proportionally to the increasing size

of the datasets. In Figure 3.9b, we observe that for datasets numbered from 1 to 3, the

30

20 21 22 23 24 25 26 27 28

of Million Vertices

23

24

25

26

27

28

29

Ti
m

e
(s

)

(a) CC on RMAT

1 2 3 4 5 6 7
Dataset #

5

10

15

20

25

30

35

40

Ti
m

e
(s

)

Actual time
Theoretical-linear

(b) AA on synthetic dataset

Figure 3.9: Scaling-up on Datasets: the x-axis of 3.9a represents the number of vertices of

the corresponding RMAT graph datasets (RMAT-1M to RMAT-128M); the synthetic datasets are

numbered from 1 to 7 and the x-axis of 3.9b suggests the corresponding dataset number.

evaluation times on these three datasets are roughly the same. The corresponding graphs

representing the input for these three datasets are relatively sparse and the total size of

the data (input and intermediate results) during evaluation is small, and the cores/threads

are underutilized; thus, when the data increases, the stale threads will take over the extra

processing, and runtime will not increase. With the increasing size of datasets (4 to 7),

we observe a similar trend as seen in Figure 3.9a since the size of the input data and the

intermediate results produced increases. All cores are fully utilized, so more data will cause

increase in runtime.

Comparison With Other Systems

In this section, we report experimental results on our benchmarks for several other Datalog

systems and Graspan.

For each Datalog program and dataset shown in the comparison results, we run the

evaluation four times (with the exception of bddbddb, since its runtime is substantially

longer than all other systems across the workloads), we discard the first run and report the

average time of the last three runs. For each system, we report the total execution time,

including the time to load data from the disk and write data back to the disk. For BigDatalog,

since its evaluation is parameter workload dependent based on the available resources provided

(e.g., memory), and its performance depends on both of the supplied parameters, datasets

and the programs, we tried different combinations of parameters (e.g., different join types)

and report the best runtime numbers. For comparison purposes, we also display the results

31

G5K G10K G10K-0.01 G10K-0.1 G20K G40K G80K10 1
100
101
102
103
104
105

Ti
m

e
(s

)

RecStep Distributed-BigDatalog Souffle BigDatalog Bddbddb

(a) Transitive Closure

G5K G10K G10K-0.01 G10K-0.1 G20K G40K G80K10 1
100
101
102
103
104
105

Ti
m

e
(s

)

(b) Same Generation

Figure 3.10: Performance Comparison of TC and SG

of BigDatalog that runs on the full cluster from [SYI+16] (Distributed-BigDatalog in Figure

3.10, 3.12, 3.13, which has 15 worker nodes with 120 CPU cores and 450GB memory in

total.) As we will see next, the experiments show that our system can efficiently evaluate

Datalog programs for both large-scale graph analytics and program analyses, by being able

to efficiently utilize the available resources on a single node equipped with powerful modern

hardware (multi-core processors and large memory). Specific runtime numbers are not shown

in Figure 3.10, 3.15a due to the space limit.

TC and SG Experiments. For TC and SG, our system uses pbme as discussed in

Section 5. Since the Gn-p graphs are very dense, in each iteration intermediate results of

large sizes are produced. Hence, the original QuickStep operators run out of memory due to

the high materialization cost and demand for memory. By using a bit-matrix data structure,

the evaluation naturally fuses the join and deduplication into a single operation, avoiding the

materialization cost and heavy memory usage. Our system is the only one that completes

the evaluation for TC and SG on all Gn-p graphs (the runtime bar is not shown if the system

fails to finish the evaluation due to OOM or timeout (> 10h) is observed). The evaluation

time of all four systems is shown in Figure 3.10. Figure 3.11 shows the memory consumption

of each system as percentage over the total memory given.

For TC, except for Distributed-BigDatalog, our system outperforms all other systems on

all Gn-k graphs (Distributed-BigDatalog is only slightly faster than RecStep on G20K, G40K

and G80K). For G5K, G10K, G10K-0.01, and G10K-0.1, RecStep even outperforms Distributed-

BigDatalog, which uses 120 cores and 450GB memory. For graphs that have more vertices,

32

0 10 20 30 40 50
Time (s)

2
4
6
8

10
12
14
16

M
em

or
y

Us
ag

e
(%

)

(a) Transitive Closure

0 100 200 300 400 500
Time (s)

0
20
40
60
80

M
em

or
y

Us
ag

e
(%

)

RecStep
Souffle
BigDatalog

(b) Same Generation

Figure 3.11: Memory Usage of TC and SG (G10k)

Distributed-BigDatalog slightly outperforms RecStep due to the additional CPU cores and

memory it uses for evaluation. Due to the use of bdds, bddbddb can only efficiently evaluate

graph analytics expressed in Datalog when the graph has a relatively small number of vertices

and when the proper variable ordering is given.6 When the evaluation violates either of these

two conditions, bddbddb is a few orders of magnitude slower than other systems as shown

in graphs G5K, G10K, G10K-0.01, G10K-0.1. For graphs G20K, G40K, G80K, bddbddb runs

out of time (> 10h). Souffle runs out of memory when evaluating TC on G80K.

Compared to TC, the evaluation of SG is more memory demanding and computationally

expensive as observed in Figure 3.10b and 3.11. Except for our system, all other systems

either use up the memory before the completion of the evaluation of SG or run into timeout

(> 15h) on some of the Gn-k graphs. Unlike TC, we observe that RecStep on SG evaluation

is much more sensitive to the graph density (e.g., G10K, G10K-0.01, G10K-0.1).

Experiments of Other Graph Analytics Besides TC and SG, we also perform experi-

ments running REACH, CC and SSSP on both the RMAT graphs and the real world graphs

(Table 3.4), comparing the execution time and memory consumption (on livejournal) of

our system with Souffle and BigDatalog (Figure 3.13, 3.14). Since Soufflle does not support

recursive aggregation (which shows in CC and SSSP), we only show the execution time re-

sults of our system and BigDatalog for CC and SSSP. bddbddb is excluded, since all graphs

have a very large number of vertices that bddbddb is not able to handle efficiently.

As mentioned in [SYI+16], the size of the intermediate results produced during the evalu-

ation of REACH, CC, SSSP is O(m), O(dm) and O(nm), where n is the number of vertices,

m is the number of edges and d is the diameter of the graph. For convenience of comparison,

we follow the way in which [SYI+16] presents the experimental results: for REACH and

SSSP, we report the average run time over ten randomly selected vertices. We only consider

an evaluation complete if the system is able to finish the evaluation on all ten vertices for

6The size of BDD is highly sensitive to the variable ordering used in the binary encoding; finding
the best ordering is NP-complete. We let bddbddb pick the ordering.

33

20 21 22 23 24 25 26 27

of Million Vertices

23

25

27

29

211
Ti

m
e

(s
)

(a) REACH

20 21 22 23 24 25 26 27

of Million Vertices

23

24

25

26

27

28

29

Ti
m

e
(s

)
(b) CC

20 21 22 23 24 25 26 27

of Million Vertices

25

27

29

211

213

Ti
m

e
(s

)

RecStep
Distributed-BigDatalog
Souffle
BigDatalog

(c) SSSP

Figure 3.12: Performance Comparison on RMAT Graphs: The x-axis represents RMAT-1M to

RMAT-128M.

REACH and SSSP, otherwise the evaluation is seen as failed (due to OOM). The correspond-

ing point of failed evaluation is not reported in Figure 3.12 (on RMAT) and is shown as Out

of Memory in Figure 3.13 (on real world graphs).

Besides Distributed-BigDatalog, RecStep is the only system that completes the evalua-

tion for REACH, CC, SSSP on all RMAT graphs and real-world graphs, and is 3-6X faster

than other systems using scale-up approach on all the workloads that other systems manage

to finish (as shown in Figures 3.12 and 3.13); compared to Distributed-BigDatalog, RecStep

shows comparable performance using far less computational resources. Both BigDatalog and

Souffle fail to finish evaluating some of the workloads due to OOM. As shown in Figure 3.12,

the execution time of our system increases nearly proportionally to the increasing size of the

dataset on all three graph analytics tasks. In contrast, Souffle’s parallel behavior is work-

load dependent though it efficiently evaluates dataflow and points-to analysis (Fig 3.15b,

3.15c), it does not fully utilize all the CPU cores when evaluating REACH (Fig3.13a, 3.12a)

and Andersen’s analysis (Fig 3.15a) . The CPU utilization of different systems evaluating

Andersen’s analysis, CSPA is visualized in Figure 3.16.

Program Analysis. We perform experiments on Andersen’s analysis using the synthetic

datasets (generated based on a real-world dataset). Besides, we also conduct experiments

comparing the execution time of CSPA and CSDA on the real system programs in [WHZ+17].

Nonlinear recursive rules are commonly observed in Datalog programs for program analysis,

and the results help us understand the behavior of our system and other systems when eval-

uating Datalog programs with(out) involving complex recursive rules.

For Andersen’s analysis, the number of variables (the size of active domains of each edb

relation) increases from dataset 1 to dataset 7. Our system outperforms all other systems

on every dataset. The performance of bddbddb is comparable to other systems when the

number of variables being considered is small (dataset 1 and dataset 2), but the runtime

34

livejournal orkut arabic twitter100
101
102
103
104

Ti
m

e
(s

)

 1
4 1
9 9

8 1
74

 1
7 2
0 7

1 1
25

 4
9 7
1 2

60

Ou
t O

f M
em

or
y

 8
2 1
30

Ou
t O

f M
em

or
y

Ou
t o

f M
em

or
y

RecStep Distributed-BigDatalog Souffle BigDatalog

(a) REACH

livejournal orkut arabic twitter100
101
102
103
104

Ti
m

e
(s

)

 3
9

 4
3

 4
21 5
01

 2
7 3
3 2

13 3
07

 1
11

 1
15

Ou
t O

f M
em

or
y

Ou
t O

f M
em

or
y

(b) CC

livejournal orkut arabic twitter100
101
102
103
104

Ti
m

e
(s

)

 1
9 2
5 1

41 2
43

 5
3

 3
9 2

76

 2
60

 8
2 1
38

Ou
t O

f M
em

or
y

Ou
t O

f M
em

or
y

(c) SSSP

Figure 3.13: Performance Comparison on Real-World Graphs.

0 20 40 60 80 100
Time (s)

0
5

10
15
20
25
30
35
40

M
em

or
y

Us
ag

e
(%

)

RecStep Souffle BigDatalog

(a) REACH

0 50 100 150 200
Time (s)

0
10
20
30
40
50

M
em

or
y

Us
ag

e
(%

)

(b) CC

0 20 40 60 80 100
Time (s)

0
5

10
15
20
25
30
35
40

M
em

or
y

Us
ag

e
(%

)

(c) SSSP

Figure 3.14: Memory Consumption on livejournal.

1 2 3 4 5 6 7100
101
102
103
104

Ti
m

e
(s

)

RecStep Souffle BigDatalog Bddbddb Graspan

(a) Evaltion of AA

linux postgresql httpd100
101
102
103
104
105
106
107

Ti
m

e
(s

)

 4
30

 3
59

 7
4 1
22

 6
3

 2
6 1

94

 1
71

 4
7

 1
12

81

 6
91

7

 3
35

(b) Evaluation of CSDA

linux postgresql httpd100
101
102
103
104
105

Ti
m

e
(s

)

 6
1 1

62

 1
62

 1
23 1
95

 1
11 5

48 6
67

0

 8
46

8

(c) evaluation of CSPA

Figure 3.15: Performance Comparison on Program Analyses

0 20 40 60 80 100
Time (s)

0
20
40
60
80

CP
U

Ut
iliz

at
io

n
(%

)

RecStep Souffle BigDatalog

(a) AA on dataset 5

0 50 100 150 200
Time (s)

0
20
40
60
80

CP
U

Ut
iliz

at
io

n
(%

)

(b) CSPA on linux

0 50 100 150 200
Time (s)

0
20
40
60
80

100

CP
U

Ut
iliz

at
io

n
(%

)

(c) CSPA on httpd

Figure 3.16: CPU Utilization on Program Analyses

increases a lot when the number of variables grows, due to its large overhead of building the

bdd. BigDatalog outperforms Souffle on large datasets, since Souffle does not parallelize the

computation as effectively.

All three systems significantly outperform Graspan on both CSPA and CSDA, as shown

in Figure 3.15b and Figure 3.15c. Since BigDatalog does not support mutual recursion, it is

not present in Figure 3.15c). The inefficiency of Graspan is mainly due to its frequent use of

35

sorting, coordination during the computation and relatively poor utilization of multi-cores

for parallel computation.

CSDA is the only Datalog program on which RecStep is outperformed by Souffle and

BigDatalog. The reasons are two-fold. First, the evaluation of CSDA on all three datasets

requires many iterations (∼ 1000), and thus the overhead of triggering each query accumu-

lates. There is also an additional overhead from the analyze calls and the materialization cost

of the intermediate results. Compared to this overhead, the cost of the actual computation

is much lower. The second reason is that the rules in CSDA are simple and linear. Since

the input data and the intermediate results produced in each iteration are small in size,

the RDBMS cannot fully utilize the available cores. In contrast, CSPA has more rules and

involves nonlinear recursion, producing large ∆ and intermediate results at each iteration.

This enables RecStep to exploit both data-level and multiquery-level parallelism. Figure

3.15c shows the evaluation time for CSPA: while Souffle slightly outperforms our system on

the httpd dataset, RecStep outperforms Souffle and Graspan on the other two datasets.

3.5 Summary

In this chapter, we presented the design and implementation of RecStep, a general-

purpose, parallel, in-memory Datalog solver, along with the experimental comparison results

of existing techniques. Specifically, we demonstrated how to implement an efficient, parallel

Datalog solver atop a relational database. To achieve high efficiency, we presented a series

of algorithms, data structures, and optimizations, at the level of Datalog compilation to sql

and at the level of the underlying rdbms. Our results demonstrate the scalability of our

approach, its applicability to a range of application domains, and its competitiveness with

highly optimized and specialized Datalog solvers.

Most of the content of this chapter is from our paper titled Scale-Up In-Memory Datalog

Processing: Observations and Techniques [FZZ+18] that appeared in VLDB 2019 conference.

The code of RecStep is open source and is available at https://github.com/Hacker0912/

RecStep.

In next chapter, we are going to present and discuss the tools that can help us gain a better

understanding of the performance difference observed in different systems, as well as the

limitations found in RecStep and how such limitations should be addressed.

https://github.com/Hacker0912/RecStep
https://github.com/Hacker0912/RecStep

36

Chapter 4

Recursive Computation Profiling

In this chapter, we discuss the general profiling of Datalog program evaluation and present

the corresponding visualizations. We further discuss the insights gained from the produced

visualizations and how these insights shed light on the pros and cons of a few existing Datalog

systems, which further provides guidance on making improvements over the existing system

and designing/building more efficient new systems.

Datalog is seeing a resurgence of interest in recent years and has found new applications

in multiple application domains such as graph analytics, program analysis, data integra-

tion, security, etc. The regained popularity of Datalog is largely attributed to its superior

ability to express applications involving recursive computations concisely. To support high-

performance and scalable computation, multiple research efforts [FZZ+18, RB19, SJSW16,

SYI+16, ZAC+19] have explored ways to develop Datalog systems that are capable of effi-

ciently handling recursive computation, some of which have been discussed in the last chapter.

The resulting systems from these works often focus on a particular application domain. For

example, Souffle [SJSW16] is designed and built primarily for static program analysis, and

DDlog [RB19] is a Datalog implementation built on top of Differential Dataflow [MMII13]

that focuses on efficient incremental computation.

However, in most of these works, besides the better performance numbers shown for the

systems being presented compared to existing competitors on the chosen workloads (i.e.,

program and data), little or no description has been provided for the profile of the recursive

computation. Here by profile we mean information such as the number of iterations, how

many facts are produced in every iteration, etc. As shown in the previous chapter, the rel-

ative performance of different Datalog systems may not translate across different workloads

(i.e., a system that performs well on one Datalog program and a particular dataset does

not show comparable performance on the others). The lack of a closer look at the recursive

computation profiles makes it difficult to analyze and explain the performance difference

between different systems and workloads. In turn, this makes choosing the best system for

applications of interest (for users) and improving existing systems (for system developers)

37

challenging. For example, when trying to build a new Datalog system, we need to answer

questions such as what techniques can we leverage in existing systems? what are the limita-

tions of existing systems? are there Datalog workloads of different characteristics that need

to be handled differently? what could be done to improve existing techniques?

To address the above issues, we argue that a general-purpose recursive computation pro-

filing framework that can provide insight across systems and workloads is needed. In this

chapter, we present and discuss four important profiling components as the first step towards

building such a profiling framework: recursion profile, runtime, CPU utilization and mem-

ory utilization. We first describe these four components and briefly discuss their importance.

We then present case studies based on profiling visualizations of Datalog workloads from two

application domains: graph analytics and program analysis. As shown in Section 4.2, there

is no single system that is always the winner across all Datalog workloads, even within the

same application domain. With the help of profiling visualizations, we analyze the causes

behind the inefficient executions, extracting insights regarding the proper use cases and lim-

itations of the studied systems. By analyzing high-level causes (revealed by the profiling

components) of the inefficiency exposed by a system, one is able to connect these high-level

observations to the specific technical components in the system (e.g., data structures, algo-

rithms), understanding so the system limitations.

In this chapter, we focus mainly on three recently published well-documented Datalog sys-

tems that are publicly available, RecStep [FZZ+18], Souffle [SJSW16], and DDlog [RB19].

Souffle is a recent high-performance Datalog system that is primarily designed for program

analysis and uses optimization techniques such as efficient program synthesis, specialized par-

allel data structures for indexing and compression, and automatic index selection. RecStep,

as introduced in the last chapter, is a Datalog engine built on top of an efficient single-

node in-memory database called Quickstep [PDZ+18], leveraging multiple years of efforts

in the advancement of database techniques such as query optimization and efficient parallel

query execution. DDlog translates a set of Datalog rules to the corresponding Differential

Dataflow [MMII13] program that allows incremental computation. For other systems men-

tioned in the last chapter, bddbddb [WACL05] does not support multicore computation;

BigDatalog [SYI+16] suffers from noticeable memory inefficiency and scheduling overhead

inherited from its backbone system Spark [ZXW+16], leading to observed less competitive

performance on a single-node multi-core machine, and does not support mutual recursion;

Graspan [WHZ+17] is a disk-based system that is much slower than other systems; thus we

exclude these two systems in our case studies.

We use the profiling functionalities embedded in RecStep [FZZ+18], which are able to

provide general profiling information of different systems on the Datalog workload evalua-

tion that is not tied to a specific system. Although the profile components presented are

38

fairly simple, they already give meaningful insights that can aid further system analysis and

improvement, which is not possible by looking solely at the performance numbers.

4.1 Recursive Computation Profiling

Most existing systems evaluate Datalog programs using a type of bottom-up evaluation

called semi-näıve evaluation (SN) [?] either explicitly (e.g., RecStep, Souffle) or implicitly

(e.g., DDlog).

At each iteration of the recursive computation, there are three types of facts that are

important to consider. Facts of the first type are generated from the evaluation of each

recursive rule (generated facts, GF). The generated facts can contain duplicates, so we also

need to consider the facts after deduplication, called unique generated facts, UGF. Finally,

the set-difference is performed between the unique generated facts and the existing facts

to produce the new facts, NF. Some Datalog systems perform the deduplication and set-

difference separately (e.g., RecStep), and other systems (e.g., Souffle, DDlog) fuse these two

steps into one, often through the maintained indexes built on the IDB relations throughout

the whole computation procedure.

As we will see in Section 4.2, the sizes of these three different types of facts in differ-

ent iterations serve as the primary fingerprint of the Datalog workload and help to better

understand the behavior of various systems along with other profiling information such as

runtime and resource usage. Next, we briefly discuss a few major components for recursive

computation profiling. We note that these components are not the only ones to look at when

analyzing the system performance on varying Datalog workloads. When available, additional

information such as the size of input data, and hot code paths could be useful and provide

additional insights.

1 2 3 4 5 6 7
Iteration #

0
1
2
3
4
5

of

 F
ac

ts

1e8

La
st

 It
er

at
io

n
(7

)Generated Facts
Unique Generated Facts
New Facts

Figure 4.1: Recursion Profile of TC-G10k

Recursion Profile The sizes of facts of three

different types in each iteration of the recur-

sive computation characterize the Datalog work-

load, which consists of a specific Datalog pro-

gram (i.e., a set of Datalog rules) and a spe-

cific dataset (i.e., ground facts of the EDB/in-

put relations). At each iteration, let GFsize,

UGFsize, and NFsize denote the sizes of GF,

UGF, and NF respectively. Note that we always

have GFsize ≥ UGFsize ≥ NFsize. Intuitively, a

large gap between GFsize and UGFsize indicates

39

that many facts were produced multiple times in the same iteration, while a large gap be-

tween UGFsize and NFsize indicates that many facts have already been produced in previous

iterations. Note that NFsize also indicates the amount of work to be done during the next

iteration in SN. As an example, Figure 4.1 is the recursive profile showing the sizes of facts of

three types across seven iterations during SN of transitive closure evaluated on G10k dataset,

which will be analyzed in detail in Section 4.2.

Runtime Runtime is probably the most straightforward performance measure of different

systems on a given workload. The runtime of many existing Datalog systems can be divided

into compilation time and evaluation time. Systems such as Souffle and DDlog first generate

the code given the input program, followed by compilation-level optimizations and executable

binary generation. The overhead induced by code generation and compilation can be safely

ignored, assuming that the generated executable files will be used repetitively later with

different inputs. However, such an assumption might not always hold and may not be

acceptable in circumstances where the overhead far exceeds the evaluation time. Thus, it

is crucial to have access to a clear view of runtime breakdown when considering a specific

application.

CPU Utilization Like other data-parallel compute engines, recent Datalog systems [FZZ+18,

RB19,SJSW16,YSZ17] exploit the parallelism packed inside modern servers to achieve high

performance and scalability. However, achieving consistent high CPU efficiency and utiliza-

tion across different workloads is challenging. Low performance could occur due to either

low CPU efficiency (suggesting that the system might handle more work than necessary) or

low CPU utilization (meaning that the system does not utilize multiple CPU cores well).

Memory Usage Many recent works focus on building in-memory Datalog systems [?,RB19,

SJSW16, SYI+16]. However, most of them either ignore the evaluation of memory utiliza-

tion [SYI+16] or miss the comparison with other existing Datalog systems [SJSW16,RB19].

Since most of the evaluations presented in these works are standalone (i.e., a system only

evaluates one workload at a time on a server without interference), the lack of understanding

of the memory footprint makes it hard to choose the appropriate hardware (e.g., a server with

small or large memory), estimate the scalability of a Datalog program (e.g., the maximum

dataset the system can handle) and the applicability (e.g., whether concurrent evaluation is

feasible or not).

4.2 Case Studies

We next present the Datalog programs that arise from graph analytics (TC, SG, REACH)

and program analysis (AA, CSPA, CSDA) followed by the case studies of the corresponding

40

Datalog workloads. These Datalog programs are supported by all three systems of interest

in this paper. We first look at the linear recursive Datalog programs (TC, SG, REACH,

CSDA), in which each program consists of one non-recursive rule and one linear recursive

rule (i.e., the rule body contains only one recursive IDB predicate). Then, we study the

Datalog workloads of non-linear recursive programs (AA, CSPA) each of which contains at

least one recursive rule that has more than one recursive IDB predicate in the rule body.

As we will see from the recursive computation profiles of these workloads, even when two

Datalog programs look very similar, the relative performance of different systems can be very

different. This happens when two programs are from the same domain (e.g., TC, REACH)

or different application domains (e.g., REACH, CSDA).

All experiments are conducted on a bare-metal server in Cloudlab [Clo18], a large cloud

infrastructure. The server runs Ubuntu 18.04 LTS and has two Intel Xeon E5-2660 v3 2.60

GHz (Haswell EP) processors. Each processor has 10 cores, and 20 hyper-threading hardware

threads. The server has 160GB memory and each NUMA node is directly attached to 80GB

of memory. We only consider the CPU and memory utilization of the systems during their

actual execution period and thus the time period used for code generation and compilation

is excluded for CPU and memory profiling. The information of the input and output is

summarized in Table 4.1.

Simple Linear Recursion

Transitive Closure (TC):

tc(X, Y) :- arc(X, Y).

tc(X, Y) :- tc(X, Z), arc(Z, Y).

Same Generation (SG):

sg(X, Y) :- arc(P, X), arc(P, Y), X ̸= Y.

sg(X, Y) :- arc(W, X), sg(W, U), arc(U, Y).

Figure 4.2 and Figure 4.3 show the recursive computation profiles of TC and SG of three

systems on G10k and G5k respectively. The G10k and G5k datasets are random graphs of

10k (∼ 100k edges) and 5k (∼ 25k edges) vertices generated based on the Erdős-Rényi

model [BM06], in which each edge is included with probability 0.001. Although the sizes

of the input datasets are fairly small (< 1MB), large intermediate results (i.e., three types

of facts) as shown in Figure 4.2a and Figure 4.3a are generated. We observe the following

features across all recursion profiles for the above tasks: (i) the number of iterations is rel-

atively small, (ii) there is a large gap between GFsize and UGFsize, which suggests efficient

41

Program Dataset EDB Tuple # IDB Tuple # Reference

SG G5k arc: 9.98e4 tc: 1.00e8 [FZZ+18]

TC G10k arc: 2.50e4 sg: 2.47e7 [FZZ+18]

REACH

livejournal
arc: 6.90e7

id: 100
reach: 4.40e6 [FZZ+18]

orkut
arc: 1.17e8

id: 100
reach: 2.90e6 [FZZ+18]

arabic
arc: 6.40e8

id: 100
reach: 2.62e6 [FZZ+18]

twitter
arc: 1.47e9

id: 100
reach: 2.24e7 [FZZ+18]

AA D7

assign: 1.00e7

load: 3.30e7

store: 2.10e7

addressOf: 4.00e6

pointsTo: 5.30e6 [FZZ+18]

CSPA

linux
assign: 1.98e6

dereference: 7.50e6

valueFlow: 5.50e6

valueAlias: 3.09e7

memoryAlias: 1.37e7

[FZZ+18]

postgresql
assign: 1.20e6

dereference: 3.46e6

valueFlow: 3.71e6

valueAlias: 2.23e8

memoryAlias: 8.94e7

[FZZ+18]

httpd
assign: 3.62e5

dereference: 1.14e6

valueFlow: 1.36e6

valueAlias: 2.34e8

memoryAlias: 8.89e7

[FZZ+18]

CSDA

linux
arc: 4.34e7

nullEdge: 5.89e5
null: 5.57e7 [FZZ+18]

postgresql
arc: 3.45e7

nullEdge: 2.17e5
null: 2.15e7 [FZZ+18]

httpd
arc: 9.90e6

nullEdge: 1.38e5
null: 9.39e6 [FZZ+18]

Table 4.1: Summary of EDB/Input and IDB/Output in Different Workloads

deduplication is critical to the overall good performance, and (iii) the gap between UGFsize

and NFsize is small or non-existent in most cases.

For TC and SG, while all three systems have relatively high CPU utilization throughout

the evaluation (Figures 4.2c, 4.3c), the runtime varies. Besides the relatively long compi-

lation time of DDlog (∼ 200s), DDlog’s evaluation time is about 2 − 3X longer than that

42

1 2 3 4 5 6 7
Iteration #

0
1
2
3
4
5

of

 F
ac

ts

1e8

La
st

 It
er

at
io

n
(7

)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
50

100
150
200
250
300
350

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 20 40 60 80 100 120 140 160
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(c) CPU Utilization

0 20 40 60 80 100 120 140 160
Time (s)

0
5

10
15
20
25
30

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(d) Memory Usage

Figure 4.2: Transitive Closure on G10k

of the other two competitors (i.e., Souffle and RecStep), using a large amount of memory

(Figures 4.2c, 4.3c). The performance number of DDlog is significantly worse than that of

its runtime primitive Differential Dataflow [MMII13] as reported in [MLSR18]. The ineffi-

ciency of DDlog could be attributed to the fact that its design heavily focuses on incremental

computation (e.g., maintaining intermediate states of large sizes, separate management of

existing computation and monitoring new input, etc), trading off the performance for batch

processing.

RecStep uses significantly more memory (Figures 4.2d, 4.3d) on the small input datasets

(i.e., G10k and G5k) compared to other workloads (Figures 4.5d-4.14d), the sizes of input

datasets of which vary from 22MB to 1.7GB. This is because RecStep performs dedu-

plication as a separate step, relying on its backend in-memory relational database Quick-

Step [PDZ+18], which pre-allocates the memory to the hash table for deduplication based

on the size of the generated facts. Due to the memory inefficiency observed in such cases

where large duplicated results are observed, RecStep quickly runs out of memory when eval-

uating TC and SG on graphs with a large number of vertices. At the same time, the edge

inclusion probability remains the same. We run RecStep using its default interpretation mode

without the specialized parallel bit-matrix evaluation (PBME) designed for dense graphs with

small vertices. Although PBME [FZZ+18] is an efficient technique to address this issue, it is

specifically designed for graphs with a relatively small number of vertices, and its generality

43

1 2 3 4 5 6
Iteration #

0

1

2

3

4

of

 F
ac

ts

1e8

La
st

 It
er

at
io

n
(6

)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0

50

100

150

200

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 10 20 30 40 50
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(c) CPU Utilization

0 10 20 30 40 50
Time (s)

2

4

6

8

10

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(d) Memory Usage

Figure 4.3: Same Generation on G5k

is limited.

In contrast, Souffle has acceptable overhead from code generation and compilation (∼
10s), showing the overall best performance on TC-G10k and SG-G5k with a small memory

footprint mainly due to its specialized parallel data structure Brie [JSZS19] for relation stor-

age and indexing, which provides good compression capability for high-density relations with

a large data volume and efficient parallel operations (e.g., insertion, lookup).

Reachability (REACH):

reach(Y) :- id(Y).

reach(Y) :- reach(X), arc(X, Y).

Context-Sensitive Dataflow Analysis (CSDA):

null(X, Y) :- nullEdge(X, Y).

null(X, Y) :- null(X, W), arc(W, Y).

We run REACH on livejournal, orkut, arabic and twitter, four relatively large real-

world social network datasets in which the friendship of users is represented as edges. REACH

finds friends of a given set of user ids. Figure 4.5 is the recursive computation profile of

44

2 4 6 8 10 12 14
Iteration #

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

of

 F
ac

ts

1e7

La
st

 It
er

at
io

n
(1

4)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
50

100
150
200
250
300

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 20 40 60 80 100 120 140
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 20 40 60 80 100 120 140
Time (s)

2
4
6
8

10

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Usage

Figure 4.4: Reach on livejournal

2 4 6 8 10 12 14 16 18
Iteration #

0

1

2

3

4

of

 F
ac

ts

1e7

La
st

 It
er

at
io

n
(1

9)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0

100

200

300

400

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 50 100 150 200 250
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(c) CPU Utilization

0 50 100 150 200 250
Time (s)

2
4
6
8

10
12
14

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Usage

Figure 4.5: Reach on orkut

REACH-orkut and we observe that the relative performance of the system looks quite dif-

ferent from what is observed on TC-G10k and SG-G5k. RecStep significantly outperforms

45

6 12 18 24 30 36 42 48
Iteration #

0
1
2
3
4
5
6
7
8

of

 F
ac

ts

1e7

La
st

 It
er

at
io

n
(5

1)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
200
400
600
800

1000
1200
1400
1600

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 200 400 600 800 1000 1200 1400
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(c) CPU Utilization

0 200 400 600 800 1000 1200 1400
Time (s)

0
10
20
30
40
50
60
70
80

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Usage

Figure 4.6: Reach on arabic

2 4 6 8 10 12 14
Iteration #

0

2

4

6

8

of

 F
ac

ts

1e8

La
st

 It
er

at
io

n
(1

4)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
200
400
600
800

1000
1200
1400

Ti
m

e
(s

)

Ou
t o

f M
em

or
y

Evaluation
Compilation

(b) Runtime

0 500 1000 1500 2000 2500
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 500 1000 1500 2000 2500
Time (s)

0
20
40
60
80

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Usage

Figure 4.7: Reach on twitter

Souffle and DDlog and the reasons are two-fold: (i) GFsize is relatively small across a rel-

atively small number of total iterations, resulting in the negligible overhead of the separate

46

deduplication step and overall efficiency of RecStep (ii) RecStep utilizes CPU much more

efficiently compared to Souffle and DDlog, which suffer from the long warm-up phase (e.g.,

index building) due to the much larger EDB/input sizes. The recursive profiles of REACH-

livejournal, REACH-arabic and REACH-twitter and the relative performance of the

system are similar to that of REACH-orkut. It should be noted that the warm-up time of

Souffle and DDlog increases as the size of the input increases. DDlog runs out of memory

on livejournal before starting the evaluation.

100 200 300 400 500 600 700 800
Iteration #

0

2

4

6

8

of

 F
ac

ts

1e5

La
st

 It
er

at
io

n
(7

78
)

Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
100
200
300
400
500

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 100 200 300 400 500
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 100 200 300 400 500
Time (s)

2
4
6
8

10
12

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Usage

Figure 4.8: Context-Sensitive Dataflow Analysis Linux

CSDA can be seen as a variant of transitive closure: first a set of null edges is given to

initialize the non-recursive rule, and then the linear-recursive rule looks the same as that of

TC. However, the recursive computation profiles of the CSDA and TC workloads are very

different. We observe that RecStep performs significantly worse compared to Souffle and

DDlog (Figures 4.8b, 4.9b, 4.10b) while its CPU utilization over time is lower compared to

Souffle and DDlog (Figures 4.8c, 4.9c, 4.10c). Comparing with TC-G5k and REACH-orkut,

the CSDA workloads on linux, postgresql and httpd have a very long tail in their recursion

profiles (Figures 4.8a, 4.9a, 4.10a): it takes a large number of iterations for the evaluation to

reach the fixpoint, and most of the work is performed during the first few iterations. After

further digging, we have confirmed that RecStep’s poor performance is mainly due to the lack

of continuously maintained indexes throughout the program evaluation that its competitors

Souffle and DDlog have. This forces RecStep to reconstruct the hash tables and repeatedly

47

80 160 240 320 400 480 560 640 720
Iteration #

0
1
2
3
4
5
6
7

of

 F
ac

ts

1e5

La
st

 It
er

at
io

n
(7

21
)

Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0

100

200

300

400

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 100 200 300 400
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 100 200 300 400
Time (s)

1
2
3
4
5
6
7
8

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Usage

Figure 4.9: Context-Sensitive Dataflow Analysis Postgresql

20 40 60 80 100 120 140 160 180
Iteration #

0
1
2
3
4
5
6

of

 F
ac

ts

1e5

La
st

 It
er

at
io

n
(1

81
)

Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
25
50
75

100
125
150
175
200

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 20 40 60 80 100
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 20 40 60 80 100
Time (s)

1.5

2.0

2.5

3.0

3.5

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Usage

Figure 4.10: Context-Sensitive Dataflow Analysis Httpd

scan the base table (for probing) for the processing of the joins in every iteration regardless

48

of the size of the joining table. The resulting overhead accumulates across iterations, lead-

ing to poor CPU utilization and efficiency when the Datalog workloads have very long-tail

recursion profiles. This observation shows the necessity of continuously maintained indexes

for consistent efficient execution of the recursive Datalog program in these cases.

Non-linear Recursion

Andersen’s Analysis (AA):

pointsTo(Y, X) :- addressOf(Y, X).

pointsTo(Y, X) :- assign(Y, Z), pointsTo(Z, X).

pointsTo(Y, W) :- load(Y, X), pointsTo(X, Z), pointsTo(Z, W).

pointsTo(Z, W) :- store(Y, X), pointsTo(Y, Z), pointsTo(X, W).

Context-Sensitive Points-To Analysis (CSPA):

valueFlow(Y, X) :- assign(Y, X).

valueFlow(X, X) :- assign(X, Y).

valueFlow(X, X) :- assign(Y, X).

valueFlow(X, Y) :- assign(X, Z), memoryAlias(Z, Y).

valueFlow(X, Y) :- valueFlow(X, Z), valueFlow(Z, Y).

valueAlias(X, Y) :- valueFlow(Z, X), valueFlow(Z, Y).

valueAlias(X, Y) :- valueFlow(Z, X), memoryAlias(Z, W), valueFlow(W, Y).

memoryAlias(X, X) :- assign(Y, X).

memoryAlias(X, X) :- assign(X, Y).

memoryAlias(X, W) :- dereference(Y, X), valueAlias(Y, Z), dereference(Z, W).

Switching from linear recursion to non-linear recursion, we observe that RecStep signifi-

cantly outperforms Souffle and DDlog (Figure 4.11b) for Andersen’s Analysis evaluated on

the largest input dataset (∼ 1.2G) used in [FZZ+18]. Figure 4.11c shows that both Souffle

and DDlog have a long warm-up time in which the CPU utilization is very low. One possible

reason could be that there are four EDB/input relations in AA, which distinguishes AA from

other Datalog programs studied here and could possibly result in more preprocessing work

for Souffle and DDlog (e.g., index construction) - similar to what is observed on REACH

workloads.

49

3 6 9 12 15 18 21 24
Iteration #

0
1
2
3
4
5
6
7
8

of

 F
ac

ts

1e5

La
st

 It
er

at
io

n
(2

4)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
50

100
150
200
250
300

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 20 40 60 80 100 120 140
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(c) CPU Utilization

0 20 40 60 80 100 120 140
Time (s)

2

4

6

8

10

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(d) Memory Usage

Figure 4.11: Andersen’s Analysis

Since the GFsize is relatively small across different iterations, RecStep evaluates AA ef-

ficiently while using only a small amount of memory (Figure 4.11d). Additionally, AA has

nonlinear-recursive rules, all of which derive the facts for the same relation (i.e., pointsTo),

in which case RecStep is able to fully utilize CPU and evaluate all rules in parallel.

The Datalog program itself alone is insufficient to characterize the recursive computation.

For CSPA, the recursive computation profiles of three systems on linux dataset look very

different from the ones on postgresql and httpd datasets. Interestingly, we can see that

similar recursive profiles (Figure 4.13a and Figure 4.14a) come along with similar profiling in-

formation on runtime (Figure 4.13b and Figure 4.14b), CPU (Figure 4.13c and Figure 4.14c)

and memory (Figure 4.13d and Figure 4.14d). DDlog’s performance seems to be very sen-

sitive to the sizes of the intermediate results: when there are a large number of facts being

generated in several iterations, DDlog turns out to require a great amount of memory to

maintain the intermediate states (Figure 4.13d and Figure 4.14d) and the corresponding

overhead also affects the overall performance greatly (i.e., DDlog is outperformed by Rec-

Step and Souffle as shown in Figure 4.13b and Figure 4.14b). Such inference can be further

strengthened by looking at Figure 4.12, in which Figure 4.12a shows that fewer facts are gen-

erated during the iterative evaluation and DDlog shows a better relative performance over

RecStep in Figure 4.12b while using considerably less memory as shown in Figure 4.12d.

50

3 6 9 12 15 18 21 24 27
Iteration #

0

2

4

6

8

of
 F

ac
ts

1e7

La
st

 It
er

at
io

n
(2

8)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
50

100
150
200
250

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 10 20 30 40 50 60 70
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 10 20 30 40 50 60 70
Time (s)

2
4
6
8

10

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(d) Memory Usage

Figure 4.12: Context-Sensitive Points-to Analysis Linux

4 8 12 16 20 24 28 32
Iteration #

0

2

4

6

8

of

 F
ac

ts

1e7

La
st

 It
er

at
io

n
(3

4)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
100
200
300
400
500

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 50 100 150 200 250 300
Time (s)

0

10

20

30

40

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(d) Memory Usage

Figure 4.13: Context-Sensitive Points-to Analysis Postgresql

51

4 8 12 16 20 24 28 32
Iteration #

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

of

 F
ac

ts

1e8

La
st

 It
er

at
io

n
(3

1)Generated Facts
Unique Generated Facts
New Facts

(a) Recursion Profile

recstep souffle ddlog
Datalog Systems

0
100
200
300
400
500

Ti
m

e
(s

)

Evaluation
Compilation

(b) Runtime

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) recstep
souffle
ddlog

(c) CPU Utilization

0 50 100 150 200 250 300
Time (s)

0

10

20

30

40

Pe
rc

en
ta

ge
 (%

)

recstep
souffle
ddlog

(d) Memory Usage

Figure 4.14: Context-Sensitive Points-to Analysis Httpd

4.3 Summary

Recently, we have observed renewed interest in Datalog Ẇhile recent work has significantly

advanced the state-of-the-art of Datalog evaluation techniques, we believe that a systematic

way to help gain a better understanding of these techniques is of great importance. The re-

cursive computation profiling components we present in this paper are the first step toward

this goal. Also, a standard benchmark is needed that covers different aspects of Datalog

workloads. This benchmark should be in analogy to the online analytical processing bench-

marks [BBF15] that have been used for more than two decades for the performance validation

of decision support systems. Without a benchmark suite that covers Datalog workloads with

different profiles, one can only gain a partial view of the system performance, which could

lead to the lack of essential factors needed during application deployment (for users) and

miss of system design decisions (for system builders).

Most of the contents in this chapter is from our paper titled Towards Better Understanding

of the Performance and Design of Datalog Systems appeared in Datalog 2.0 2022 [FMK22].

Next In Chapter 5, we introduce the new high-performance Datalog system that we are

building based on recursive computation profiling. We will discuss how we design and im-

plement the new system based on the lessons learned in Chapter 3 and this chapter. Before

that, in the next chapter, we show how we can leverage the succinct syntax of Datalog and its

expressive power to concisely design, analyze and express new, better algorithms of a specific

52

application consistent query answering (CQA), the corresponding Datalog program of which

can be efficiently evaluated by our high-performance Datalog system to largely surpass the

state-of-the-art performance numbers.

53

Chapter 5

FlowLog: Asynchronous Datalog Evaluation

In this chapter, we introduce FlowLog, an asynchronous dataflow-based Datalog system

we are building that aims to address the inefficiency observed in RecStep. Furthermore,

FlowLog is designed and built to be easily maintained and expandable by using differential

datalfow [MMII13], a computational framework designed to perform computations efficiently

on large amounts of data and maintain computations as the data change (i.e., incremental

computation). Differential dataflow is built on top of timely dataflow that is introduced

in [MMI+13], a system for implementing distributed streaming computation that allows one

to organize computation in general. Compared to the best performers discussed in Chap-

ter 3, namely RecStep [FZZ+18] and Souffle [SJSW16], FlowLog is generally faster than both

systems by 2-10X, proving its superior efficiency in evaluating the workload in which each

computation stage performs a small amount of work and there are opportunities for index

sharing, two characteristics that are commonly observed in real-world applications.

State-of-the-art Datalog systems such as RecStep and Souffle have shown superior per-

formance in evaluating Datalog workloads for application domains such as program analysis

and graph analytics. However, both RecStep and Souffle are batch processing systems, in

which synchronization between different computation stages is required, as illustrated in

Figure 5.1a. Such synchronization could happen at both macro-level (e.g., different Datalog

rules) and micro-level (e.g., different operators). For recursive computation, iterations make

use of synchronization in batch processing systems at the cost of latency. This latency could

significantly affect the efficiency of the Datalog evaluation of the program for some work-

loads, as discussed in Chapter 4.

To address the performance issue observed in batch processing Datalog systems, we re-

think the way how Datalog program is evaluated and explore asynchronous dataflow-based

Datalog evaluation, implementing a system prototype named FlowLog. FlowLog exploits

the asynchronous dataflow model, as well as the incremental computational capability in

different iterations of recursive computation. Furthermore, FlowLog allows for sharing the

indexed operator state within the same Datalog rule and among different Datalog rules at

54

input inactive active inactive
(state1) (state2) (state3)

(a) Batch Processing

input active active active
(state1) (state2) (state3)

(b) Asynchronous Dataflow Processing

Figure 5.1: Figure 5.1a depicts how batch processing works: only one state (i.e., state2) is

active at a time while other states are inactive either due to the task completion (i.e., state1)

or waiting for the active state to finish the current task (i.e., state3). In contrast, every

state is active in asynchronous dataflow processing (Figure 5.1b). Considering the context

of Datalog program evaluation, each state here could map to a Datalog rule, an iteration in

recursive rule evaluation or an single operation (e.g., join, deduplication, set-difference).

very low cost, which leads to approximately additional 2X speedup in some of the workloads

we have evaluated.

Our Contribution. In summary, we make the following contributions:

1. We point out the inefficiency observed in batch processing Datalog systems such as

Souffle and RecStep, analyzing the root causes behind, and rethinking the evaluation

of Datalog programs.

2. We present FlowLog, an asynchronous dataflow-based Datalog system for batch pro-

cessing implemented on top of differential dataflow [MMII13]. FlowLog supports both

linear and nonlinear recursion (including mutual recursion). Negation and recursive

aggregation are allowed and performed in an efficient incremental manner.

3. We consider the indexing-sharing technique adopted from the advancements of rela-

tional database management systems and streaming processing.

4. By evaluating FlowLog against RecStep and Souffle on varying Datalog workloads

in Chapter 3 and Chapter 4, we demonstrate the efficiency of our rethinking of the

evaluation of Datalog.

55

Organization. In Section 5.1, we briefly introduce differential dataflow, the backbone

system used to build FlowLog. We then give a summary of the architecture design of FlowLog

in Section 5.2, after which we discuss the optimizations imposed on FlowLog that lead to its

high performance for Datalog evaluation in Section 5.3. Section 5.4 presents the results of

the experimental evaluation and we summarize this Chapter in Section 5.5.

5.1 Differential Dataflow

Differential dataflow [MMII13] is a computational framework built on top of timely dataflow,

a model designed for the execution of data-parallel data flows that is used and introduced

by Naiad [MMI+13]. Timely dataflow allows for intra-operator parallelism by sharding each

operator across all workers (i.e. threads in a single node or different machines in a distributed

setting). Data exchange happens between different workers when needed, and each data car-

ries a logical timestamp that is used to reason correctness and progress tracking. In addition

to the efficiency provided by the timely dataflow, the differential dataflow operators provide

the ability for incremental computation when the input changes.

One main characteristic that distinguishes differential dataflow (DD) from other frame-

works that support traditional incremental computation is that DD allows arbitrarily nested

iteration. DD varies the state of computation based on a partially ordered set of versions

and retains and indexes the updates required to reconstruct the states of different versions.

5.2 Architecture

Figure 5.2: Architecture overview of FlowLog

In this section, we present and briefly discuss the architecture of FlowLog. FlowLog is

built on top of the differential dataflow [Mcs22a] API and the timely dataflow [Mcs22b] run-

time. Timely dataflow is an asynchronous dataflow model that allows for cyclic dataflow

in the dataflow graph, providing natural support for asynchronous iterative computation.

56

Differential dataflow is a computational framework that is built on top of timely dataflow, in

which operators (e.g., map, join, filter, etc) are able to incrementally maintain the compu-

tations as the data change. Low-level details, such as moving data around and parallelizing

the computation, are fully handled by the timely dataflow runtime so that we can focus on

the Datalog evaluation strategy itself. Compared to RecStep that lets rdbms figure out

the query plan for generated sql statements from the rules Datalog, in FlowLog we have

full flexibility to plan the execution of the rule, such as making the decision of the order

of operators being placed in the dataflow graph (e.g., query plan) and deciding the data

arrangement (e.g., indexing).

Overview. The overall architecture of FlowLog is shown in Figure 5.2. Starting from

the parser, the input Datalog program is validated, parsed, and the rules and relations are

stored in the proper data structures. The program analyzer then analyzes the Datalog rules,

constructs the rule evaluation dependency graph (for stratification), groups rules belonging

in the same connected component of the dependency graph, checks the correctness of syntax,

and processes and stores the attribute mapping information (e.g., joining attributes, constant

constraints, negation, etc) in the program catalog.

The query optimizer then takes the program catalog to construct the query plan for

each rule. FlowLog exploits the rule-based approach for query optimization, which has

been adopted in rdbms such as QuickStep [PDZ+18]. Predicate pushdown is performed

to eliminate redundant data as early as possible during dataflow processing. The joining

order is searched so that the potential Cartesian product is avoided, and indexes of minimal

number needed to be built and could be shared by different operations. Negation is also

considered for predicate pushdown and is performed as early as possible. The output query

plan is an ordered list of transformation mappings. Each transformation mapping consists of

the input and output logic collections (as shown in Figure 5.3a) along with the corresponding

transformation indexes (as shown in Figure 5.3b).

Taken the transformation mappings from the query optimizer, the query execution engine

renders each mapping into the corresponding operator and logic, constructing the dataflow

graph that can be executed by the timely dataflow runtime, which then reads the input data

and drives the computation.

5.3 Optimizations

Thinking of Datalog evaluation as asynchronous dataflow execution itself brings great

performance benefits by avoiding the expensive synchronization cost between different com-

putational stages and better utilizing the multicore computation resource. Furthermore,

leveraging the incremental computation capability of differential dataflow, FlowLog gets

57

(a) Transformation (b) Transformation Index

Figure 5.3: FlowLog’s code snippet for transformation mapping

semi-näıve evaluation for free without performing different steps explicitly (e.g., dedupli-

cation and set-difference calculation) during the iterative computation, since the new facts

generated in each iteration are automatically maintained (i.e., as differences) and used for

incremental computation during the next iteration. For recursive aggregation, properly abus-

ing the monotone property, redundant computation can be avoided. Optimizations such as

predicate pushdown and join ordering mentioned in Section 5.2 are commonly exploited in

rdbms, we next discuss the index-sharing and related optimizations we imposed on FlowLog

in detail.

58

Andersen’s Analysis:

R1 : pointsTo(Y, X) :- addressOf(Y, X).

R2 : pointsTo(Y, X) :- assign(Y, Z), pointsTo(Z, X).

R3 : pointsTo(Y, W) :- load(Y, X), pointsTo(X, Z), pointsTo(Z, W).

R4 : pointsTo(Z, W) :- store(Y, X), pointsTo(Y, Z), pointsTo(X, W).

Index Planning & Sharing When performing operations such as joining two relations in

differential dataflow, arrangements needed to be built firstly for both relations, in which the

data of each relation are arranged by the joining attributes (i.e., key). Then efficient access

to different data groups indexed by different keys (e.g., point lookup) can be achieved. Such

arrangements or indexes are continuously maintained throughout the dataflow execution.

(a) No Index Sharing

(b) Index Sharing

Figure 5.4: Dataflow - No Index Sharing v.s Index Sharing on Andersen’s Analysis

However, redundant computation can occur in cases where multiple operators (e.g., joins)

in the dataflow graph build the same arrangements without actually sharing. Such a non-

wareness of sharing opportunities could lead to repeated work (i.e., waste of CPU) and extra

59

space (i.e., waste of memory). Shared arrangement has been recently introduced and de-

scribed in [MLSR18], mainly advocating its efficiency in the streaming processing scenario

where new queries may come and are able to reuse the indexed states of existing running

queries. We exploit shared arrangement in FlowLog, in which the indexed state could be

shared by subgraphs corresponding to different Datalog rules where there are sharing oppor-

tunities. The arrangement can even be shared within the same rule, where the same relation

appears multiple times and joins with other relations on the same attributes. Thus, when

considering the joining ordering of a Datalog rule, a joining order is selected such that the

maximal sharing is able to be achieved.

FlowLog-si FlowLog RecStep Souffle DDlog0

100

101

102

Ti
m

e
(s

)

2.5
5

28

97

317
Evaluation
Compilation

Figure 5.5: Performance of different systems evaluating Andersen’s analysis

The comparison between the simplified dataflow graphs with and without arrangement

sharing of pointsTo is presented in Figure 5.4. Without arrangement sharing, five arrage-

ments on pointsTo are built and maintained separately (Figure 5.4a while only one arrange-

ment is needed and shared between different rules (i.e., R2, R3, R4) and inside the same rule

(i.e., R3 and R4), as depicted in Figure 5.4b. Figure 5.5 shows the performance comparison

between different systems on Andersen’s analysis, a program analysis task that is discussed

in both Chapter 3 and Chapter 4. We observe that FlowLog without index sharing between

different operators already significantly outperforms other systems by 6-50X, including Rec-

Step, the best performer of Andersen’s analysis in the performance evaluation presented in

Chapter 3 and Chapter 4. By sharing the indexes, FlowLog is able to gain another 2X

speedup, as shown in Figure 5.5 (FlowLog-si).

Plan Optimization for Aggregation When considering a Datalog program that involves

recursive aggregation, a more efficient data flow graph can be constructed for aggregation

operators such as MIN and MAX. Since for MIN and MAX, each group key should have only one

value at a time, it is guaranteed that there will be no duplicates in the output in differential

dataflow, thus a separate deduplication step can be completely removed. Compared with

60

using the general strategy to evaluate Datalog programs without aggregation, this strategy

saves both memory (i.e. reduce the number of states that need to be maintained) and

evaluation time (i.e. less work to do).

5.4 Experiments

In this section, we evaluate the performance of FlowLog, experimentally proving that by

thinking of Datalog evaluation as asynchronous dataflow execution addresses the inefficiency

observed in RecStep. Additionally, we aim to understand the existing limitation of FlowLog

for iterative batch processing tasks, which can be addressed later. The Datalog workloads

used for the evaluation are the same as those presented in Chapter 3 and Chapter 4.

System Configuration. We use the same system configuration as used in Chapter 4 (4.2).

In summary, the experiments are conducted on a single-node server with 20 physical cores

and 40 hyper-threading hardware threads. The total size of available memory is 160GB.

Other Datalog Systems. We compare the performance of FlowLog with the best-

performing systems studied in Chapter 3 and Chapter 4, namely RecStep and Souffle. We

note that the Souffle used for evaluation in Chapter 4 and this section is an improved version

over the one studied in Chapter 3. Differential Datalog (DDlog), is included for comparison

purposes since it is built on top of the same computational framework that is used by

FlowLog, differential dataflow.

Benchmark Programs and Datasets. Since we are using the same benchmark programs

and datasets as used in Chapter 4 and Chapter 3, here we omit the details and refer the

readers who are interested to Section 3.4 and Section 4.2 of the previous chapters.

System livejournal orkut arabic twitter

FlowLog 5s (0s) 8s (0s) 50s (0s) 139s (0s)

RecStep 17s (0s) 21 (0s) 112 (0s) 133 (0s)

Souffle 22 (10s) 60 (10s) 208 (10s) 1503 (10s)

ddlog 148 (181s) 256 (181s) 1522 (182s) 2760 (181s)

Table 5.1: Runtime (compile time) of different systems evaluating REACH

Scalability Figure 5.6 shows how FlowLog scales up in the cores (5.6a) on CSPA and how

FlowLog scales up in the sizes of the data sets on AA (5.6). The trends of both are similar

to those for RecStep presented in Chapter 3, however, with better performance numbers.

61

System livejournal orkut arabic twitter

FlowLog 17s (0s) 25s (0s) 197s (0s) OOM

RecStep 39s (0s) 43s (0s) 421s (0s) 501s (0s)

DDlog 184s (210s) 273s (210s) OOM OOM

Table 5.2: Runtime (compile time) of different systems evaluating CC

System livejournal orkut arabic twitter

FlowLog 3s (0s) 6s (0s) 29s (0s) 73s (0s)

RecStep 14s (0s) 30s (0s) 113s (0s) 120s (0s)

DDlog 205 (193s) 244s (193s) 3088s (193s) OOM

Table 5.3: Runtime (compile time) of different systems evaluating SSSP

1 2 4 8 16 20
of Threads

0
1
2
3
4
5
6
7
8

Sp
ee

du
p

(a) Scaling-up on Cores (CSPA)

1 2 3 4 5 6 7
Dataset #

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e
(s

)

Actual time
Theoretical-linear

(b) Scaling-up on Datasets (AA)

Figure 5.6: Scaling-up on Cores and Datasets

Iterative graph batch processing. We evaluate FlowLog on standard batch iterative

graph analytics on four real-world social network graphs: livejournal, orkut, arabic and twit-

ter. For reachability (REACH) and single-source-shortest-path (SSSP), instead of choosing

one single vertex as the starting ID, we randomly sampled 100 vertices from each graph and

then fed them as the starting points. Thus, now the task REACH is interpreted as find all

vertices that are reachable from the given 100 vertices and SSSP is interpreted as find the

lengths of the shortest paths from the given 100 vertices to other vertices of the graph that

are reachable.

We observe that FlowLog outperforms other systems on REACH most of the time in

Table 5.1. The only exception is twitter, on which RecStep slightly outperforms FlowLog.

Looking at Figure 4.7a, we observe that the total number of iterations is small and there is

a relatively large amount of work to be done (i.e., represented by the size of the generated

facts). Thus, the overhead RecStep suffers from synchronization is negligible and is capable

62

of fully using the CPU cores for efficient computation in such a case. Interestingly, when

the size of the dataset increases , the relative performance difference between FlowLog and

RecStep also becomes smaller, as a batch-processing system works well in processing large

amounts of data in a small number of iterations when multicores can be exploited effectively.

Being able to perform the computation incrementally in each iteration of the recursive

computation not only leads to automatic semi-naiv̈e evaluation in the normal monotone

Datalog program, but also helps avoid unnecessary work to be performed during recursive

aggregation such as MIN and MAX. Taking the program Datalog that calculates connected

components (CC) as an example, to evaluate the rule

cc3(y, MIN(z)) :- cc3(x, z), arc(x, y).

RecStep has to compare the newly propagated labels for each node y with all existing labels

(i.e., other nodes belonging to the same connected components stored in cc3) that the node

has seen so far, adding those strictly smaller than in {x|cc3(y, x)}. In contrast, for each node

y, FlowLog retains only one value in each iteration, which is only updated if a smaller label

has been propagated to the node y. Thus, at each iteration, only one value for each y must

be considered when comparing with the newly propagated labels. Since there is only one

value for each node y (e.g., key at a time), a separate deduplication is not necessary. For

CC FlowLog outperforms RecStep and DDlog on livejournal, orkut, and arabic. However,

FlowLog fails at the twitter dataset due to an out-of-memory error. The cause behind the

failure is that FlowLog maintains the arrangements of both the IDB relation arc and the

output relation cc3 including timestamps and count for each different data point, and the

total size required surpassing the available memory. For SSSP, FlowLog does not encounter

the issue since the IDB relation sssp2 only needs to maintain a relatively small number of

subgraph vertices that are reachable from the given vertices (that is, id).

System linux postgresql httpd

FlowLog-si 6s (0s) 31s (0s) 35s (0s)

FlowLog 11s (0s) 52s (0s) 59s (0s)

RecStep 74s (0s) 173s (0s) 169s (0s)

Souffle 19s (10s) 105s (10s) 99s (10s)

DDlog 67s (179s) 332s (179s) 325s (179s)

Table 5.4: Runtime (compile time) of different systems evaluating CSPA

Program analysis. In Table 5.4 and Table 5.5, we report the performance numbers

of different systems on two program analysis tasks, CSPA and CSDA, in which Souffle

outperforms RecStep as observed in Chapter 4. For CSPA, FlowLog significantly outper-

forms Souffle on all datasets and shows further improvement by enabling index/arrangement

63

System linux postgresql httpd

FlowLog 25s (0s) 10s (0s) 2s (0s)

RecStep 525 (0s) 472s (0s) 98s (0s)

Souffle 45s (10s) 25s (10s) 8s (10s)

DDlog 143s (180s) 91s (180s) 28s (180s)

Table 5.5: Runtime (compile time) of different systems evaluating CSDA

sharing (FlowLog-si). Using asynchronous data flow execution, FlowLog shows its superior

performance on CSDA (Table 5.5) without feeling the pain of synchronization between a

large number of iterations of its predecessor RecStep suffers.

5.5 Summary

In this chapter, we present our exploration of rethinking the Datalog evaluation in an

asynchronous incremental dataflow framework differential dataflow. By building our pro-

totype system FlowLog and performing extensive experiments comparing against existing

systems, including RecStep introduced in Chapter 3, we show that this new way of thinking

of Datalog evaluation could efficiently utilize computational resources by leveraging asyn-

chronous execution of different computation stages and techniques such as maintained index

sharing. The performance benefits of FlowLog over a batch processing system such as Rec-

Step are significant when the amount of work done by each computation stage is small and

when there are opportunities to share the index.

64

Chapter 6

Consistent Query Answering by Datalog

The semantic succinctness of Datalog allows easier analysis of complicated applications

and design of effective techniques to solve the corresponding problems. In this Chapter,

we present an efficient algorithm designed for managing inconsistent data, called consistent

query answering, by leveraging the development efficiency of Datalog.

A database is inconsistent if it violates one or more integrity constraints that are supposed

to be satisfied. Database inconsistency can naturally occur when the dataset results from

an integration of heterogeneous sources, or because of noise during data collection.

Data cleaning [RD00] is the most widely used approach to manage inconsistent data in

practice. It first repairs the inconsistent database by removing or modifying the inconsis-

tent records so as to obey the integrity constraints. Then, users can run queries on a clean

database. There has been a long line of research on data cleaning. Several frameworks

have been proposed [GGM+21, ROA+21, GMPS13, AK09, GGZ03], using techniques such

as knowledge bases and machine learning [RCIR17, CIKW16, BKL13b, HCG+18, EEI+13,

LRB+21,BMNT15,CIP13,TCZ+14,KWW+16]. Data cleaning has also been studied in dif-

ferent contexts [KL21,CCX08,BKL13a,KIJ+15,BFG+07,PSC+15]. However, the process of

data cleaning is often ad-hoc, and arbitrary choices are frequently made regarding which data

to keep in order to restore database consistency. This comes at the price of losing important

information since the number of cleaned versions of the database can be exponential in the

size of the database. Moreover, data cleaning is commonly seen as a laborious and time-

intensive process in data analysis. There have been efforts to accelerate the data cleaning

process [RCIR17,CIP13,CMI+15,ROA+21], but in most cases, users need to wait until the

data is clean before being able to query the database. Consistent query answering (CQA)

is an alternative approach to data cleaning for managing inconsistent data [ABC99] that has

recently received more attention [Wij19,Ber19]. Instead of singling out the best repair, CQA

considers all possible repairs of the inconsistent database, returning the intersection of the

query answers over all repairs, called the consistent answers. CQA serves as a viable com-

plementary procedure to data cleaning for multiple reasons. First, it deals with inconsistent

65

System Target Query Class Intermediate Output Backend

EQUIP [KPT13a] SPJ Big Integer Program DBMS, BIP solver

CAvSAT [DK21,DK19] SPJ SAT formula DBMS, SAT solver

Conquer [FFM05] Cforest SQL DBMS

Conquesto [KJL+20] SJF SPJ in FO Datalog Datalog engine

LinCQA (our system) PPJT SQL/Datalog DBMS/Datalog engine

Table 6.1: A summary of systems for consistent query answering

data at query time without the need for an expensive offline cleaning process during which

the users cannot query the database. Thus, users can quickly perform preliminary data anal-

ysis to obtain the consistent answers while waiting for the cleaned version of the database.

Second, consistent answers can also be returned alongside the answers obtained after data

cleaning by marking which answers are certainly/reliably correct and which are not. This

information may provide additional guidance on critical decision-making data analysis tasks.

Third, CQA can be used to design more efficient data cleaning algorithms [KLW+20].

In this chapter, we will focus on CQA for the most common kind of integrity constraint:

primary keys. A primary-key constraint enforces that no two distinct tuples in the same

table agree on all primary-key attributes. CQA under primary-key constraints has been

extensively studied over the last two decades.

From a theoretical perspective, CQA for select-project-join (SPJ) queries is computation-

ally hard, as it potentially requires inspecting an exponential number of repairs. However, for

some SPJ queries, the consistent answers can be computed in polynomial time, and for some

other SPJ queries, CQA is first-order rewritable (FO-rewritable): we can construct another

query such that executing it directly on the inconsistent database will return the consistent

answers of the original query. After a long line of research [KP12,KS14,KW15,KW19,KW21],

it was proven that given any self-join-free SPJ query, the problem is either FO-rewritable,

polynomial-time solvable but not FO-rewritable or coNP-complete [KW17].

From a system point of view, most CQA systems fall into two categories (summarized

in Table 6.1): (1) systems that can compute the consistent answers of join queries with

arbitrary denial constraints but require solvers for computationally hard problems (e.g.,

EQUIP [KPT13a] relies on Integer Programming solvers, and CAvSAT [DK21, DK19] re-

quires SAT solvers), and (2) systems that output the FO-rewriting of the input query,

but only target a specific class of queries that occurs frequently in practice. Fuxman and

Miller [FFM05] identified a class of FO-rewritable queries called Cforest and implemented

their rewriting in ConQuer, which outputs a single SQL query. Conquesto [KJL+20] is the

most recent system that targets FO-rewritable join queries by producing the rewriting in

Datalog.

66

We identify several drawbacks with all the above systems. Both EQUIP and CAvSAT

rely on solvers for NP-complete problems, which does not guarantee efficient termination,

even if the input query is FO-rewritable. Although Cforest captures many join queries seen in

practice, it excludes queries that involve (i) joining with only part of a composite primary

key, often appearing in snowflake schemas, and (ii) joining two tables on both primary-key

and non-primary-key attributes, which commonly occur in settings such as entity matching

and cross-comparison scenarios. Conquesto, on the other hand, implements the generic FO-

rewriting algorithm without strong performance guarantees. Moreover, neither ConQuer nor

Conquesto has theoretical guarantees on the running time of their produced rewritings.

Contributions. To address the above observed issues, we make the following contributions:

1. Theory & Algorithms. We identify a subclass of acyclic Boolean join queries that

captures a wide range of queries commonly seen in practice for which we can pro-

duce FO-rewritings with a linear running time guarantee (Section 6.3). This class

subsumes all acyclic Boolean queries in Cforest. For consistent databases, Yannakakis’s
algorithm [BFMY83] evaluates acyclic Boolean join queries in linear time in the size of

the database. Our algorithm shows that even when inconsistency is introduced w.r.t.

primary key constraints, the consistent answers of many acyclic Boolean join queries

can still be computed in linear time, exhibiting no overhead to Yannakakis’s algorithm.

Our technical treatment follows Yannakakis’ algorithm by considering a rooted join tree

with an additional annotation of the FO-rewritability property, called a pair-pruning

join tree (PPJT). Our algorithm follows the pair-pruning join tree to compute the

consistent answers and degenerates to Yannakakis’s algorithm if the database has no

inconsistencies.

2. Implementation. We implement our algorithm in LinCQA (Linear Consistent Query

Answering), a system prototype that produces an efficient and optimized rewriting in

both SQL and non-recursive Datalog rules with negation (Section 6.4).

3. Evaluation. We perform an extensive experimental evaluation comparing LinCQA to

the other state-of-the-art CQA systems. Our findings show that (i) a properly imple-

mented rewriting can significantly outperform a generic CQA system (e.g., CAvSAT);

(ii) LinCQA achieves the best overall performance throughout all our experiments

under different inconsistency scenarios; and (iii) the strong theoretical guarantees of

LinCQA translate to a significant performance gap for worst-case database instances.

LinCQA often outperforms other CQA systems, in several cases by orders of magnitude

on both synthetic and real-world workloads. We also demonstrate that CQA can be an

effective approach even for real-world datasets of very large scale (∼ 400GB), which,

67

to the best of our knowledge, have not been tested before. We further present a show-

case that by executing the Datalog rewriting that consists of non-recursive rules with

negation in an efficient asynchronous Datalog system, we are able to surpass the state-

of-the-art performance numbers. The evaluation of non-recursive Datalog program has

been often dismissed in recent works targeting efficient Datalog program evaluation,

due to their heavy focus on the recursive query processing.

6.1 Related Work

Inconsistency in databases has been studied in different contexts [CM05,KKD+20,KDPV10,

BF17,BF15,LB07,RBM13,CCP21]. The notion of Consistent Query Answering (CQA) was

introduced in the seminal work by Arenas, Bertossi, and Chomicki [ABC99]. After twenty

years, their contribution was recognized in a Gems of PODS session [Ber19]. An overview

of complexity classification results in CQA appeared recently in the Database Principles col-

umn of SIGMOD Record [Wij19].

The term CERTAINTY(q) was coined in [Wij10] to refer to CQA for Boolean queries q on

databases that violate primary keys, one per relation, which are fixed by q’s schema. The

complexity classification of CERTAINTY(q) for the class of self-join-free Boolean conjunc-

tive queries started with the work by Fuxman and Miller [FM07], and was further pursued

in [KP12,KS14,KW15,KW17,KW19,KW21], which eventually revealed that the complexity

of CERTAINTY(q) for self-join-free (SJF) conjunctive queries displays a trichotomy between

FO, L-complete, and coNP-complete. A recent result also extends the complexity classifica-

tion of CERTAINTY(q) to path queries that may contain self-joins [KOW21]. The complexity

of CERTAINTY(q) for self-join-free Boolean conjunctive queries with negated atoms was stud-

ied in [KW18]. For self-join-free Boolean conjunctive queries w.r.t. multiple keys, it remains

decidable whether or not CERTAINTY(q) is in FO [KW20].

Several systems for CQA that are used for comparison in our study have already been in-

troduced: ConQuer [FFM05], Conquesto [KJL+20], CAvSAT [DK21,DK19], and EQUIP [KPT13a].

Most early systems for CQA rely on efficient solvers for Disjunctive Logic Programming and

Answer Set Programming (ASP) [CMS04,GGZ03,MRT15,ABC03,MB05,LB07].

Similar notions to CQA are also emerging in machine learning with the aim of comput-

ing the consistent classification result of certain machine learning models over inconsistent

training data [KLW+20].

68

6.2 Preliminaries

In this section, we provide additional background and examples to help the reader better

follow this chapter. We use the exampleCompany database shown in Figure 6.1 to illustrate

our constructs, where the primary-key attribute of each table is highlighted in bold.

Employee

eid office city wfh city

0011 Boston Boston

0011 Chicago New York

0011 Chicago Chicago

0022 New York New York

0022 Chicago Chicago

0034 Boston New York

Manager

office city mid start year

Boston 0011 2020

Boston 0011 2021

Chicago 0022 2020

LA 0034 2020

LA 0037 2020

New York 0022 2020

Contact

office city cid

Boston 0011

Boston 0022

Chicago 0022

LA 0034

LA 0037

New York 0022

Figure 6.1: An inconsistent database (Company). eid is the primary key of Employee; mid

and cid are the corresponding foreign keys in Manager and Contact. A repair of this database

is highlighted in gray.

Inconsistent databases and integrity constraints. A database is inconsistent if it

violates one or more integrity constraints that are supposed to be satisfied. Database incon-

sistency can naturally occur when the dataset results from an integration of heterogeneous

sources, or because of noise during data collection. For this dissertation, we will focus on the

most common kind of integrity constraint: primary keys. A primary-key constraint enforces

that no two distinct tuples in the same table agree on all primary-key attributes.

Database instances, blocks, and repairs. A database schema is a finite set of table

names. Each table name is associated with a finite sequence of attributes, and the length

of that sequence is called the arity of that table. Some of these attributes are declared as

primary-key attributes, forming together the primary key. A database instance db associates

with each table name a finite set of tuples that agree on the arity of the table, called a

relation. A relation is consistent if it does not contain two distinct tuples that agree on all

primary-key attributes. A block of a relation is a maximal set of tuples that agree on all

primary-key attributes. Thus, a relation is consistent if and only if it has no block with two

or more tuples. A repair of a (possibly inconsistent) relation is obtained by selecting exactly

one tuple from each block. Clearly, a relation with n blocks of size 2 each has 2n repairs, an

exponential number. A database instance db is consistent if all relations in it are consistent.

A repair of a (possibly inconsistent) database instance is obtained by selecting one repair for

each relation. For technical treatment, it will be convenient to view a database instance db

69

as a set of facts: if the relation associated with the table name R contains a tuple t⃗, then we

say that R(⃗t) is a fact of db.

Example 3. The Company database in Figure 6.1 is inconsistent with respect to the

primary-key constraints. For example, in the Employee table there are 3 distinct tuples shar-

ing the same primary key eid 0011. The blocks in the Company database are represented as

rectangles. An example repair of the Company database can be obtained by choosing exactly

one tuple from each block, and there are in total 96 = 3× 25 distinct repairs.

Atoms and key-equal facts. Let x⃗ be a sequence of variables and constants. We write

vars(x⃗) for the set of variables that appear in x⃗. An atom F with relation name R takes the

form R(x⃗, y⃗), where the primary key is underlined; we denote key(F) = vars(x⃗). Whenever a

database instance db is understood, we write R(c⃗, ∗) for the block containing all tuples with

primary-key value c⃗ in relation R.

Example 4. In Company, we can have atoms Employee(x, y, y), Manager(u, v, 2020), and

Contact(LA, 2020). The block Manager(Boston, ∗) contains two facts: Manager(Boston, 0011,

2020) and Manager(Boston, 0011, 2021).

Conjunctive Queries. For select-project-join (SPJ) queries, we will also use the term

conjunctive queries (CQ). Each CQ q can be represented as a succinct rule of the following

form:

q(u⃗) :- R1(x⃗1, y⃗1), . . . , Rn(x⃗n, y⃗n) (6.1)

where each Ri(x⃗i, y⃗i) is an atom for 1 ≤ i ≤ n. We denote by vars(q) the set of variables

that occur in q and u⃗ is said to be the free variables of q. The atom q(u⃗) is the head of the

rule, and the remaining atoms are called the body of the rule body(q). A CQ q is Boolean

(BCQ) if it has no free variables, and it is full if all its variables are free. We say that q has a

self-join if some relation name occurs more than once in q. A CQ without self-joins is called

self-join-free (SJF). If a self-join-free query q is understood, an atom R(x⃗, y⃗) in q can be

denoted by R. If the body of a CQ of the form (6.1) can be partitioned into two non-empty

parts that have no variable in common, then we say that the query is disconnected ; otherwise

it is connected. For a CQ q, let x⃗ = ⟨x1, . . . , xℓ⟩ be a sequence of distinct variables that occur

in q and a⃗ = ⟨a1, . . . , aℓ⟩ be a sequence of constants, then q[x⃗→a⃗] denotes the query obtained

from q by replacing all occurrences of xi with ai for all 1 ≤ i ≤ ℓ.

Example 5. Conjunctive Queries 6.2: Consider the query over the Company database

that returns the id’s of all employees who work in some office city with a manager who started

in year 2020. It can be expressed by the following SQL query:

70

SELECT E.eid

FROM Employee E, Manager M

WHERE E.office_city=M.office_city AND M.start_year=2020

and the following CQ:

q(x) :- Employee(x, y, z),Manager(y, w, 2020).

The following CQ q′ is a Boolean conjunctive query (BCQ), since it merely asks whether

0011 is such an eid satisfying the conditions in q:

q′() :- Employee(0011, y, z),Manager(y, w, 2020).

It is easy to see that q′ is equivalent to q[x→0011].

Consistent Query Answering For every CQ q, given an input database instance db, the

problem CERTAINTY(q) asks for the intersection of query outputs over all repairs of db. If q

is Boolean, the problem CERTAINTY(q) then asks whether q is satisfied by every repair of the

input database instance db. The problem CERTAINTY(q) has a first-order rewriting (FO-

rewriting) if there is another first-order query q′ (which, in most cases, uses the difference

operator and, hence, is not an SPJ query) such that evaluating q′ on the input database db

would return the answers of CERTAINTY(q). In other words, executing q′ directly on the

inconsistent database simulates computing the original query q over all possible repairs.

Example 6. Recall that in Example 5, the query q returns {0011, 0022, 0034} on the incon-

sistent database Company. For CERTAINTY(q) however, the only output is 0022: for any

repair that contains the tuples Employee(0011, Boston, Boston) and Manager(Boston, 0011,

2021), neither 0011 nor 0034 would be returned by q; and in any repair, 0022 is returned by

q with the following crucial observation: Regardless of which tuple in Employee(0022, ∗) the
repair contains, both offices are present in the Manager table and both managers in Chicago

and New York offices started in 2020.

Based on the observation, it is sufficient to solve CERTAINTY(q) by running the following

single SQL query, called an FO-rewriting of CERTAINTY(q).

SELECT E.employee_id

FROM Employee E

EXCEPT

SELECT E.employee_id FROM Employee E

WHERE E.office_city NOT IN (

SELECT M.office_city

FROM Manager EXCEPT

71

SELECT M.office_city

FROM Manager

WHERE M.start_year <> 2020)

Acyclic queries and join trees Let q be a CQ. A join tree of q is an undirected tree

whose nodes are the atoms of q such that for every two distinct atoms R and S, their common

variables occur in all atoms on the unique path from R to S in the tree. A CQ q is acyclic1

if it has a join tree. If τ is a subtree of a join tree of a query q, we will denote by qτ the

query whose atoms are the nodes of τ . Whenever R is a node in an undirected tree τ , then

(τ,R) denotes the rooted tree obtained by choosing R as the root of the tree.

Example 7. The join tree of the query q in Example 5 has a single edge between Employee(x, y, z)

and Manager(y, w, 2020).

Attack graphs. Let q be an acyclic, self-join-free BCQ with join tree τ . For every

atom F ∈ q, we define F+,q as the set of all variables in q that are functionally determined

by key(F) with respect to all functional dependencies of the form key(G) → vars(G) with

G ∈ q \ {F}.

Following [Wij12], the attack graph of q is a directed graph whose vertices are the atoms

of q. There is a directed edge, called attack, from F to G (F ̸= G), if on the unique path

between F and G in τ , every two adjacent atoms share a variable not in F+,q. An atom

without incoming edges in the attack graph is called unattacked. The attack graph of q is

used to determine the data complexity of CERTAINTY(q): the attack graph of q is acyclic if

and only if CERTAINTY(q) is in FO [KW17].

Example 8. For the query q in Example 5, Employee+,q = {x} and Manager+,q = {y}. It fol-
lows that Employee attacks Manager because the variable y is shared between atoms Employee

and Manager and y /∈ Employee+,q. However, Manager does not attack Employee since the

only shared variable y is in Manager+,q.

The attack graph of q is acyclic since it only contains one attack from Employee to

Manager. It follows that CERTAINTY(q) is in FO, as witnessed by the FO-rewriting in

Example 6.

1Throughout this chapter, whenever we say that a CQ is acyclic, we mean acyclicity as defined
in [BFMY83], a notion that today is also known as α-acyclicity, to distinguish it from other notions
of acyclicity.

72

6.3 A Linear-Time Rewriting

Before presenting our linear-time rewriting for CERTAINTY(q), we first provide a motivat-

ing example. Consider the following query on the Company database shown in Figure 6.1:

Is there an office whose contact person works for the office and, moreover, man-

ages the office since 2020?

This query can be expressed by the following CQ:

qex() :- Employee(x, y, z),Manager(y, x, 2020),Contact(y, x).

To the best of our knowledge, the most efficient running time for CERTAINTY(qex)

guaranteed by existing systems is quadratic in the input database size, denoted N . The

problem CERTAINTY(qex) admits an FO-rewriting according to the classification theorem

in [KOW21]. However, the non-recursive Datalog rewriting of CERTAINTY(qex) produced by

Conquesto contains cartesian products between two tables, meaning that it runs in Ω(N2)

time in the worst case. Also, since qex is not in Cforest, ConQuer cannot produce an FO-

rewriting. EQUIP and CAvSAT solve the problem through Integer Programming or SAT

solvers, which can take exponential time. One key observation is that qex requires a primary-

key to primary-key join and a non-key to non-key join at the same time. As will become clear

in our technical treatment in Section 6.3.2, this property allows us to solve CERTAINTY(qex)

in O(N) time, while existing CQA systems will run in more than linear time.

The remainder of this section is organized as follows. In Section 6.3.1, we introduce the

pair-pruning join tree (PPJT). In Section 6.3.2, we consider every Boolean query q having

a PPJT and present a novel linear-time non-recursive Datalog program for CERTAINTY(q)

(Theorem 1). Finally, we extend our result to all acyclic self-join-free CQs in Section 6.3.3

(Theorem 2) .

6.3.1 Pair-pruning Join Tree

Here we introduce the notion of a pair-pruning join tree (PPJT). We first assume that

the query q is connected, and then discuss how to handle disconnected queries. Recall that

an atom in a self-join-free query can be uniquely denoted by its relation name. For example,

we may use Employee as a shorthand for the atom Employee(x, y, z) in qex.

Definition 1 (PPJT). Let q be an acyclic self-join-free BCQ. Let τ be a join tree of q and R

a node in τ . The tree (τ,R) is a pair-pruning join tree (PPJT) of q if for any rooted subtree

(τ ′, R′) of (τ,R), the atom R′ is unattacked in qτ ′.

Example 9. For the join tree τ in Figure 6.2, the rooted tree (τ,Employee) is a PPJT for

qex. The atom Employee(x, y, z) is unattacked in q. For the child subtree (τM ,Manager) of

73

Figure 6.2: A pair-pruning join tree (PPJT) of the query qex.

(τ,Employee), the atom Manager(y, x, 2020) is also unattacked in the following subquery

qexτM () :- Manager(y, x, 2020),Contact(y, x).

Finally, for the subtree (τC ,Contact), the atom Contact(y, x) is also unattacked in the corre-

sponding subquery qexτC () :- Contact(y, x). Hence (τ,Employee) is a PPJT of qex.

Which queries admit a PPJT? As we show next, having a PPJT is a sufficient condition

for the existence of an FO-rewriting.

Proposition 1. Let q be an acyclic self-join-free BCQ. If q has a PPJT, then CERTAINTY(q)

admits an FO-rewriting.

Proposition 1 is proved in the appendix of the technical report [FKOW22], in which we

show that if q has a PPJT, then the attack graph of q must be acyclic. We note that not

all acyclic self-join-free BCQs with an acyclic attack graph have a PPJT, as demonstrated

in the next example.

Example 10. Let q() :- R(x,w, y), S(y, w, z), T (w, z). The attack graph of q is acyclic. The

only join tree τ of q is the path R−S−T . However, neither (τ,R) nor (τ, S) is a PPJT for

q since R and S are attacked in q; and (τ, T) is not a PPJT since in its subtree (τ ′, S), S is

attacked in the subquery that contains R and S.

Fuxman and Miller [FM07] identified a large class of self-join-free CQs, called Cforest, that
includes most queries with primary-key-foreign-key joins, path queries, and queries on a star

schema, such as found in SSB and TPC-H [OOCR09,PF00]. This class covers many of the

SPJ queries seen in practical settings. In view of this, the following proposition is of practical

significance.

Proposition 2. Every acyclic BCQ in Cforest has a PPJT.

Furthermore, it is easy to verify that, unlike Cforest, PPJT captures all FO-rewritable

self-join-free SPJ queries on two tables, a.k.a. binary joins. For example, the binary join q5

in Section 6.5 admits a PPJT but is not in Cforest. Proposition 2 is proved in the appendix

of the technical report [FKOW22].

74

How to find a PPJT. For any acyclic self-join-free BCQ q, we can check whether q

admits a PPJT via a brute-force search over all possible join trees and roots. If q involves n

relations, then there are at most nn−1 candidate rooted join trees for PPJT (nn−2 join trees

and for each join tree, n choices for the root). For the data complexity of CERTAINTY(q),

this exhaustive search runs in constant time since we assume n is a constant. In practice,

the search cost is acceptable for most join queries that do not involve too many tables.

Appendix of the technical report [FKOW22] shows that the foregoing brute-force search

for q can be optimized to run in polynomial time when q has an acyclic attack graph and,

when expressed as a rule, does not contain two distinct body atoms R(x⃗, y⃗) and S(u⃗, w⃗) such

that every variable occurring in x⃗ also occurs in u⃗. Most queries we observe and used in our

experiments fall under this category.

Main Result. We previously showed that the existence of a PPJT implies an FO-rewriting

that computes the consistent answers. Our main result shows that it also leads to an efficient

algorithm that runs in linear time.

Theorem 1. Let q be an acyclic self-join-free BCQ that admits a PPJT, and db be a

database instance of size N . Then, there exists an algorithm for CERTAINTY(q) that runs

in time O(N).

It is worth contrasting our result with Yannakakis’ algorithm, which computes the result

of any acyclic BCQ also in linear time O(N) [Yan81]. Hence, the existence of a PPJT implies

that computing CERTAINTY(q) will have the same asymptotic complexity.

Disconnected CQs. Every disconnected BCQ q can be written as q = q1, q2, . . . , qn where

vars(qi)∩vars(qj) = ∅ for 1 ≤ i < j ≤ n and each qi is connected. If each qi has a PPJT, then

CERTAINTY(q) can be solved by checking whether the input database is a “yes”-instance

for each CERTAINTY(qi), by Lemma B.1 of [KOW21].

6.3.2 The Rewriting Rules

We now show how to produce an efficient rewriting in Datalog and prove Theorem 1. In

Section 6.4, we will discuss how to translate the Datalog program to sql. Let q be an acyclic

self-join-free BCQ with a PPJT (τ,R) and db an instance for the problem CERTAINTY(q):

does the query q evaluate to true on every repair of db?

Let us first revisit Yannakakis’ algorithm for evaluating q on a database db in linear time.

Given a rooted join tree (τ,R) of q, Yannakakis’ algorithm visits all nodes in a bottom-up

fashion. For every internal node S of (τ,R), it keeps the tuples in table S that join with

every child of S in (τ,R), where each such child has been visited recursively. In the end,

the algorithm returns whether the root table R is empty or not. Equivalently, Yannakakis’

75

algorithm evaluates q on db by removing tuples from each table that cannot contribute to

an answer in db at each recursive step.

Our algorithm for CQA proceeds like Yannakakis’ algorithm in a bottom-up fashion. At

each step, we remove tuples from each table that cannot contribute to an answer to q in

at least one repair of db. Informally, if a tuple cannot contribute to an answer in at least

one repair of db containing it, then it cannot contribute to a consistent answer to q on db.

Specifically, given a PPJT (τ,R) of q, to compute all tuples of each internal node S of (τ,R)

that may contribute to a consistent answer, we need to prune the blocks of S in which there

is some tuple that violates either the local selection condition on table S, or the joining

condition with some child table of S in (τ,R). The term pair-pruning is motivated by the

latter process, where we consider only one pair of tables at a time. This idea is formalized in

Algorithm 3, where the procedures Self-Pruning and Pair-Pruning prune, respectively,

the blocks that violate the local selection condition and the joining condition.

To ease the exposition of the rewriting, we now present both procedures in Datalog syntax.

We will use two predicates for every atom S in the tree (let T be the unique parent of S in

τ):

• the predicate Sfkey has arity equal to |key(S)| and collects the primary-key values of

the S-table that cannot contribute to a consistent answer for q 2; and

• the predicate Sjoin has arity equal to |vars(S)∩vars(T)| and collects the values for these

variables in the S-table that may contribute to a consistent answer.

Algorithm 3: PPJT-Rewriting(τ,R)

Input: PPJT (τ,R) of q

Output: a Datalog program P deciding CERTAINTY(q)

1 P := ∅
2 P := P ∪ Self-Pruning(R)

3 foreach child node S of R in τ do

4 P := P ∪PPJT-Rewriting(τ, S)

5 P := P ∪Pair-Pruning(R,S)

6 P := P ∪Exit-Rule(R)

7 return P

Figure 6.3 depicts how each step generates the rewriting rules for qex. We now describe

how each step is implemented in detail.

2The f in fkey is for “false key”.

76

Figure 6.3: The non-recursive Datalog program for evaluating CERTAINTY(qex) together

with an example execution on the Company database in Figure 6.1. The faded-out rows

denote blocks that are removed since they do not contribute to any consistent answer. The

arrows denote which rules remove which blocks (some blocks can be removed by multiple

rules).

Self-Pruning(R): Let R(x1, . . . xk, xk+1, . . . , xn), where xi can be a variable or a constant.

The first rule finds the primary-key values of the R-table that can be pruned because some

tuple with that primary-key violates the local selection conditions imposed on R.

Rule 1. If xi = c for some constant c, we add the rule

Rfkey(z1, . . . , zk) :- R(z1, . . . , zn), zi ̸= c.

If for some variable xi there exists j < i with xi = xj, we add the rule

Rfkey(z1, . . . , zk) :- R(z1, . . . , zn), zi ̸= zj .

Here, z1, . . . , zn are fresh distinct variables.

77

The second rule finds the primary-key values of the R-table that can be pruned because

R joins with its parent T in the tree. The underlying intuition is that if some R-block of

the input database contains two tuples that disagree on a non-key position that is used in

an equality-join with T , then for every given T -tuple t, we can pick an R-tuple in that block

that does not join with t. Therefore, that R-block cannot contribute to a consistent answer.

Rule 2. For each variable xi with i > k (so in a non-key position) such that xi ∈ vars(T),

we produce a rule

Rfkey(x1, . . . , xk) :- R(x1, . . . , xk, xk+1, . . . , xn),

R(x1, . . . , xk, zk+1, . . . , zk), zi ̸= xi.

where zk+1, . . . , zn are fresh variables.

Example 11. The self-pruning phase on(τM ,Manager) produces one rule using Rule 1.

When executed on the Company database, the key Boston is added to Managerfkey, since

the tuple (Boston, 0011, 2021) has start year ̸= 2020. Finally, the self-pruning phase on the

PPJT (τC ,Contact) produces one rule using Rule 2 (here x is the non-key join variable).

Hence, the keys Boston and LA will be added to Contactfkey.

Pair-Pruning(R,S): Suppose that q contains the atoms R(x⃗, y⃗) and S(u⃗, v⃗), where the

S-atom is a child of the R-atom in the PPJT. Let w⃗ be a sequence of distinct variables

containing all (and only) variables in vars(R) ∩ vars(S). The third rule prunes all R-blocks

containing some tuple that cannot join with any S-tuple to contribute to a consistent answer.

Rule 3. Add the rule

Rfkey(x⃗) :- R(x⃗, y⃗),¬Sjoin(w⃗),

where the rules for Sjoin will be defined in Rule 4.

The rule is safe because every variable in w⃗ occurs in R(x⃗, y⃗).

Example 12. Figure 6.3 shows the two pair-pruning rules generated (in general, there will be

one pair-pruning rule for each parent-child edge in the PPJT. In both cases, the join variables

are {y, x}. For the table Employee, the rule prunes the two blocks with keys 0011, 0034 and

adds them to Employeefkey.

Exit-Rule(R): Suppose that q contains R(x⃗, y⃗). If R is an internal node, let w⃗ be a sequence

of distinct variables containing all (and only) the join variables of R and its parent node in

78

τ . If R is the root node, let w⃗ be the empty vector. The exit rule removes the pruned blocks

of R and projects on the variables in w⃗. If R is an internal node, the resulting tuples in the

projection could contribute to a consistent answer, and will be later used for pair pruning;

if R is the root, the projection returns the final result.

Rule 4. If Rfkey exists in the head of a rule, we produce the rule

Rjoin(w⃗) :- R(x⃗, y⃗),¬Rfkey(x⃗).

Otherwise, we produce the rule

Rjoin(w⃗) :- R(x⃗, y⃗).

Example 13. Figure 6.3 shows the three exit rules for qex—one rule for each node in the

PPJT. The boolean predicate Employeejoin determines whether True is the consistent answer

to the query.

Runtime Analysis It is easy to see that Rule 1, 3, and 4 can be evaluated in linear time.

We now argue how to evaluate Rule 2 in linear time as well. Indeed, instead of performing

the self-join on the key, it suffices to create a hash table using the primary key as the hash

key (which can be constructed in linear time). Then, for every value of the key, we can easily

check whether all tuples in the block have the same value at the i-th attribute.

Sketch of Correctness Let q be an acyclic self-join-free BCQ with a PPJT (τ,R) and db

an instance for CERTAINTY(q). The easier property to show is the soundness of our rewriting

Rules 1, 2, 3, 4: if the predicate Rjoin is nonempty when our rewriting is executed on db,

then every repair of db must necessarily satisfy q. The argumentation uses a straightforward

bottom-up induction on the PPJT: for every rooted subtree (τ ′, S) of (τ,R), the tuples in

Sjoin are consistent answers to the corresponding subquery qτ ′ projected on the join variables

with the parent of S (i.e., on the variables w⃗ in Rule 4).

The more difficult property to show is the completeness of our rewriting rules: if every

repair of db satisfies q, then the predicate Rjoin must be nonempty after executing the rules

on db. The crux here is a known result (see, for example, Lemma 4.4 in [KW17]) which

states that for every unattacked atom R in a self-join-free BCQ q, the following holds true:

if every repair of db satisfies q, then there is a nonempty block b of R such that

in each repair of db, the query q can be made true by using the (unique) tuple of

b in that repair.

Our recursive construction of a PPJT (τ,R) ensures that for each rooted subtree (τ ′, S)

of (τ,R), S is unattacked in qτ ′ . Therefore, it suffices to compute the blocks in S that

79

could contribute to a consistent answer to qτ ′ at each recursive step in a bottom-up fashion,

eventually returning the consistent answer to q in db.

The soundness and completeness arguments taken together imply that our rewriting rules

return only and all consistent answers. The formal correctness proof is in the appendix of

the technical report [FKOW22].

6.3.3 Extension to Non-Boolean Queries

Let q(u⃗) be an acyclic self-join-free CQ with free variables u⃗, and db be a database

instance. If c⃗ is a sequence of constants of the same length as u⃗, we say that c⃗ is a consistent

answer to q on db if c⃗ ∈ q(I) in every repair I of db. Furthermore, we say that c⃗ is a possible

answer to q on db if c⃗ ∈ q(db). It can be easily seen that for CQs every consistent answer

is a possible answer.

Lemma 1 reduces computing the consistent answers of non-Boolean queries to that of

Boolean queries.

Lemma 1. Let q be a CQ with free variables u⃗, and let c⃗ be a sequence of constants of the

same length as u⃗. Let db be an database instance. Then c⃗ is a consistent answer to q on db

if and only if db is a yes-instance for CERTAINTY(q[u⃗→c⃗]).

If q has free variables u⃗ = (u1, u2, . . . , un), we say that q admits a PPJT if the Boolean

query q[u⃗→c⃗] admits a PPJT, where c⃗ = (c1, c2, . . . , cn) is a sequence of distinct constants.

We can now state our main result for non-Boolean CQs.

Theorem 2. Let q be an acyclic self-join-free Conjunctive Query that admits a PPJT, and

db be a database instance of size N . Let OUTp be the set of possible answers to q on db,

and OUTc the set of consistent answers to q on db. Then:

1. the set of consistent answers can be computed in time O(N · |OUTp|); and

2. moreover, if q is full, the set of consistent answers can be computed in time O(N +

|OUTc|).

To contrast this with Yannakakis result, for acyclic full CQs we have a running time of

O(N + |OUT|), and a running time of O(N · |OUT|) for general CQs.

Proof Sketch. Our algorithm first evaluates q on db to yield a set S of size |OUTp| in time

O(N · |OUTp|). We then return all answers c⃗ ∈ S such that db is a “yes”-instance for

CERTAINTY(q[u⃗→c⃗]), which runs in O(N) by Theorem 1. This approach gives an algorithm

with running time O(N · |OUTp|).
If q is full, we proceed by (i) removing all blocks with at least two tuples from db to yield

80

dbc and (ii) evaluating q on dbc. In our algorithm, step (i) runs in O(N) and since q is

full, step (ii) runs in time O(N + |OUTc|). The correctness proof of the algorithm is in the

appendix of the technical report [FKOW22].

Rewriting for non-Boolean Queries Let c⃗ = (c1, c2, . . . , cn) be a sequence of fresh,

distinct constants. If q[u⃗→c⃗] has a PPJT, the Datalog rewriting for CERTAINTY(q) can be

obtained as follows:

1. Produce the program P for CERTAINTY(q[u⃗→c⃗]) using the rewriting algorithm for

Boolean queries (Subsection 6.3.2).

2. Replace each occurrence of the constant ci in P with the free variable ui.

3. Add the rule: ground(u⃗) :- body(q).

4. For a relation T , let u⃗T be a sequence of all free variables that occur in the subtree

rooted at T . Then, append u⃗T to every occurrence of Tjoin and Tfkey.

5. For any rule of P that has a free variable ui that is unsafe, add the atom ground(u⃗) to

the rule.

Figure 6.4: The non-recursive Datalog program for qnex and CERTAINTY(qnex).

Example 14. Consider the non-Boolean query

qnex(w) :- Employee(x, y, z),Manager(y, x, w),Contact(y, x).

81

Note that the constant 2020 in qex is replaced by the free variable w in qnex. Hence, the

program P for CERTAINTY(qnex[w→c]) is the same as Figure 6.3, with the only difference that

2020 is replaced by the constant c. The ground rule produced is:

ground(w) :- Employee(x, y, z),Manager(y, x, w),Contact(y, x),

and Figure 5.4a shows how Yannakakis’ algorithm evaluates qnex.

To see how the rule of P would change for the non-Boolean case, consider the self-pruning

rule for Contact. This rule would remain as is, because it contains no free variable and the

predicate Contactfkey remains unchanged. In contrast, consider the first self-pruning rule for

Manager, which in P would be:

Managerfkey(y1) :- Manager(y1, y2, y3), y3 ̸= w.

Here, w is unsafe, so we need to add the atom ground(w). Additionally, w is now

a free variable in the subtree rooted at Manager, so the predicate Managerfkey(y1) becomes

Managerfkey(y1, w). The transformed rule will be:

Managerfkey(y1, w) :- Manager(y1, y2, y3), y3 ̸= w, ground(w).

The full rewriting for qnex can be seen in Figure 5.4b.

The above rewriting process may introduce cartesian products in the rules. In the next

section, we will see how we can tweak the rules in order to avoid this inefficiency.

6.4 Implementation

In this section, we first present LinCQA, a system that produces the consistent FO-

rewriting of a query q in both Datalog and sql formats if q has a PPJT. Having a rewriting

in both formats allows us to use both Datalog and sql engines as a backend. We then briefly

discuss how we address the flaws of Conquer and Conquesto that impair their actual runtime

performance.

LinCQA: Rewriting in Datalog/SQL

Our implementation takes as input a self-join-free CQ q written in either Datalog or sql.

LinCQA first checks whether the query q admits a PPJT, and if so, it proceeds to produce

the consistent FO-rewriting of q in either Datalog or sql, or it terminates otherwise.

Datalog rewriting. LinCQA implements all rules introduced in Subsection 6.3.2, with

one modification to the ground rule atom when cartesian products are introduced. Let the

82

input query be

q(u⃗) :- R1(x⃗1, y⃗1), R2(x⃗2, y⃗2), . . . , Rk(x⃗k, y⃗k).

In Subsection 6.3.3, the head of the ground rule is ground(u⃗). In the implementation, we

replace that rule with

ground∗(x⃗1, x⃗2, . . . , x⃗k, u⃗) :- body(q),

keeping the key variables of all atoms. For each unsafe rule with head Ri,label where label ∈
{fkey, join}, let v⃗ be the key in the occurrence of Ri in the body of the rule (if the unsafe

rule is produced by Rule 2, both occurrences of Ri share the same key). Then, we add to

the rule body the atom

ground∗(z⃗1, . . . , z⃗i−1, v⃗, z⃗i+1, . . . , z⃗k, u⃗)

where z⃗i is a sequence of fresh variables of the same length as x⃗i.

The rationale is that appending ground(u⃗) to all unsafe rules could potentially introduce

a Cartesian product between ground(u⃗) and some existing atom R(v⃗, w⃗) in the rule. The

Cartesian product has size O(N · |OUTp|) and would take Ω(N · |OUTp|) time to compute,

often resulting in inefficient evaluations or even out-of-memory errors. On the other hand,

adding ground∗ guarantees a join with an existing atom in the rule. Hence the revised rules

would take O(N + |ground∗|) time to compute. Note that the size of ground∗ can be as large

as Nk · |OUTp| in the worst case; but as we observe in the experiments, the size of ground∗

is small in practice.

SQL rewriting We now describe how to translate the Datalog rules in Subsection 6.3.2 to

sql queries. Given a query q, we first denote the following:

1. KeyAttri(R): the primary key attributes of relation R;

2. JoinAttri(R,T): the attributes of R that join with T;

3. Comp(R): the conjunction of comparison predicates imposed entirely on R, excluding

all join predicates (e.g., R.A = 42 and R.A = R.B); and

4. NegComp(R): the negation of Comp(R) (e.g., R.A ̸= 42 or R.A ̸= R.B).

Translation of Rule 1. We translate Rule 1 of Subsection 6.3.2 into the following sql

query computing the keys of R.

SELECT KeyAttri(R)

FROM R

WHERE NegComp(R)

83

Translation of Rule 2. First we produce the projection on all key attributes and the joining

attributes of R with its parent T (if it exists), and then compute all blocks containing at

least two facts that disagree on the joining attributes. This can be implemented effectively

in sql with GROUP BY and HAVING.

SELECT KeyAttri(R)

FROM

(SELECT DISTINCT KeyAttri(R), JoinAttri(R,T)

FROM R) t

GROUP BY KeyAttri(R)

HAVING COUNT(*) > 1

Translation of Rule 3. For Rule 3 in the pair-pruning phase, we need to compute all

blocks of R containing some fact that does not join with some fact in Sjoin for some child

node S of R. This can be achieved through a left outer join between R and each of its

child node S1join, S
2
join, . . . , S

k
join, which are readily computed in the recursive steps. For each

1 ≤ i ≤ k, let the attributes of Si be Bi
1, B

i
2, . . . , B

i
mi

, joining with attributes Aαi
1
, Aαi

2
, . . . ,

Aαi
mi

in R respectively. We produce the following rule:

SELECT KeyAttri(R)

FROM R

LEFT OUTER JOIN S1join ON

R.Aα1
1
= S1join.B

1
1 AND ... AND R.Aα1

m1
= S1join.B

1
m1

...

LEFT OUTER JOIN Skjoin ON

R.Aαk
1
= Skjoin.B

k
1 AND ... AND R.Aαk

mk
= Skjoin.B

k
mk

WHERE S1join.B
1
1 IS NULL OR ... S1join.B

1
m1

IS NULL OR

S2join.B
2
1 IS NULL OR ... S2join.B

2
m2

IS NULL OR

...

Skjoin.B
k
1 IS NULL OR ... Skjoin.B

k
mk

IS NULL

The inconsistent blocks represented by the keys found by the above three queries are

combined using UNION ALL (e.g., Rfkey in Rule 1, 2, 3).

Translation of Rule 4. Finally, we translate Rule 4 computing the values on join

attributes between good blocks in R and its unique parent T if it exists. Let A1, A2, . . . , Ak

be the key attributes of R.

SELECT JoinAttri(R,T)

FROM R

WHERE NOT EXISTS (

84

SELECT *

FROM Rfkey

WHERE R.A1 = Rfkey.A1 AND ... AND R.Ak = Rfkey.Ak)

If R is the root relation of the PPJT, we replace JoinAttri(R,T) with DISTINCT 1 (i.e.

a Boolean query). Otherwise, the results returned from the above query are stored as Rjoin

and the recursive process continues as described in Algorithm 3.

Extension to non-Boolean queries. Let q be a non-Boolean query. We useProjAttri(q)

to denote a sequence of attributes of q to be projected and let CompPredicate(q) be the

comparison expression in the WHERE clause of q. We first produce the sql query that com-

putes the facts of ground∗.

SELECT KeyAttri(R1), . . ., KeyAttri(Rk), ProjAttri(q)

FROM R1, R2, . . ., Rk

WHERE CompPredicate(q)

We then modify each sql statement as follows. Consider a sql statement whose corre-

sponding Datalog rule is unsafe and let T (v⃗, w⃗) be an atom in the rule body. Let u⃗T be a

sequence of free variables in qτT and let FreeAttri(T) be a sequence of attributes in qτT to be

projected (i.e., corresponding to the variables in u⃗T). Recall that Tjoin(v⃗) and Tfkey(v⃗) would

be replaced with Tjoin(v⃗, u⃗T) and Tfkey(v⃗, u⃗T) respectively, we thus first append FreeAttri(T)

to the SELECT clause and then add a JOIN between table T and ground on all attributes in

KeyAttri(T). Finally, for a rule that has some negated IDB containing a free variable

corresponding to some attribute in ground (i.e., ground.A),

1. if the rule is produced by Rule 3, in each LEFT OUTER JOIN with Si
join we add the

expression ground.A = Sijoin.B connected by the AND operator, where B is an attribute

to be projected in Sijoin. In the WHERE clause we also add an expression ground.A IS

NULL, connected by the OR operator.

2. if the rule is produced by Rule 4, in the WHERE clause of the subquery we add an

expression ground.A = Rfkey.A.

6.4.1 Improvements upon existing CQA systems

ConQuer [FFM05] and Conquesto [KJL+20] are two other CQA systems that target their

own subclasses of FO-rewritable queries, both with noticeable performance issues. For a

fair comparison with LinCQA, we implemented our own optimized version of both systems.

Specifically, we complement Conquer presented in [FFM05] which was only able to handle

85

tree queries (a subclass of Cforest), allowing us to handle all queries in Cforest. Additionally,

we optimized Conquesto [KJL+20] to eliminate unnecessarily repeated computation and

undesired cartesian products produced due to its original formulation. The optimized system

has significant performance gains over the original implementation and is named FastFO.

Readers interested in the details can refer to the appendix of the technical report [FKOW22].

6.5 Experiments

Our experimental evaluation addresses the following questions:

1. How do first-order rewriting techniques perform compared to generic state-of-the-art

CQA systems (e.g., CAvSAT)?

2. How does LinCQA perform compared to other existing CQA techniques?

3. How do different CQA techniques behave on inconsistent databases with different prop-

erties (e.g., varying inconsistent block sizes, inconsistency)?

4. Are there instances where we can observe the worst-case guarantee of LinCQA that

other CQA techniques lack?

5. Can our optimized asynchronous Datalog system outperform state-of-the-art RDBMS

- SQL Server on CQA tasks?

To answer these questions, we performed experiments using synthetic benchmarks used in

previous work and a large real-world dataset of 400GB. We compare LinCQA against several

state-of-the-art CQA systems with improvements. To the best of our knowledge, this is the

most comprehensive performance evaluation of existing CQA techniques, and we are the first

to evaluate different CQA techniques on a real-world dataset of this large scale.

Experimental Setup

Next, we briefly describe the setup of our experiments.

System configuration. All of our experiments are carried out on a bare metal server in

Cloudlab [Clo18], a large cloud infrastructure. The server runs Ubuntu 18.04.1 LTS and has

two Intel Xeon E5-2660 v3 2.60 GHz (Haswell EP) processors. Each processor has 10 cores,

and 20 hyper-threading hardware threads. The server has a SATA SSD with 440GB space

available, 160GB memory, and each NUMA node is directly attached to 80GB of memory.

We run Microsoft SQL Server 2019 Developer Edition (64-bit) on Linux as the relational

backend for all CQA systems for SQL-based rewritings. For CAvSAT, MaxHS v3.2.1 [DB11]

is used as the solver for the output WPMaxSAT instances.

86

Other CQA systems. We compare the performance of LinCQA with several state-of-

the-art CQA methods.

ConQuer: a CQA system that outputs a SQL rewriting for queries that are in Cforest [FFM05].

We implement the complete version of ConQuer as described in Section 6.4.1.

FastFO: our own implementation of the general method that can handle any query for

which CQA is FO-rewritable. It improves upon Conquesto [KJL+20] by addressing a

few of its inefficiencies as described in Section 6.4.1.

CAvSAT: a recent SAT-based system. It reduces the complement of CQA with arbi-

trary denial constraints to a SAT problem, which is solved with an efficient SAT

solver [DK19].

For LinCQA, ConQuer and FastFO, we only report execution time of FO-rewritings, since

the rewritings can be produced within 1ms for all our queries. We report the performance of

each FO-rewriting using the best query plan. The preprocessing time required by CAvSAT

prior to computing the consistent answers is not reported. For each rewriting and database

shown in the experimental results, we run the evaluation five times (unless timed out), discard

the first run and report the average time of the last four runs.

(a) rSize = 500K (b) rSize = 1M (c) rSize = 5M

Figure 6.5: Performance comparison of different CQA systems on a synthetic workload with

varying relation sizes.

Databases and Queries

Synthetic workload. We consider the synthetic workload used in previous work [KPT13b,

DK19,Dix21]. Specifically, we take the seven queries that are consistent first-order rewritable

in [DK19,KPT13b,Dix21]. These queries feature joins between primary-key attributes and

87

(a) SF = 1

(b) SF = 10

Figure 6.6: Performance comparison of different CQA systems on the TPC-H benchmark

with varying scale factor (SF).

foreign-key attributes, as well as projections on non-key attributes:

q1(z) :- R1(x, y, z),R3(y, v, w).

q2(z, w) :- R1(x, y, z),R2(y, v, w).

q3(z) :- R1(x, y, z),R2(y, v, w),R7(v, u, d).

q4(z, d) :- R1(x, y, z),R2(y, v, w),R7(v, u, d).

q5(z) :- R1(x, y, z),R8(y, v, w).

q6(z) :- R1(x, y, z),R6(t, y, w),R9(x, y, d).

q7(z) :- R3(x, y, z),R4(y, x, w),R10(x, y, d).

The synthetic instances are generated in two phases. In the first phase, we generate

the consistent instance, followed by inconsistency injection in the second phase. We use

the following parameters for data generation: (i) rSize: the number of tuples per relation,

(ii) inRatio: the ratio of the number of tuples that violate primary key constraints (i.e.,

number of tuples that are in inconsistent blocks) to the total number of tuples of the database,

and (iii) bSize: the number of inconsistent tuples in each inconsistent block.

Consistent data generation. Each relation in the consistent database has the same

number of tuples, so that injecting inconsistency with the specified bSize and inRatio makes

the total number of tuples in the relation equal to rSize. The data generation is query-specific:

for each of the seven queries, the data is generated in a way to ensure the output size of

the original query on the consistent database is reasonably large. To achieve this purpose,

when generating the database instance for one of the seven queries, we ensure that for any

88

two relations that join on some attributes, the number of matching tuples in each relation is

approximately 25%; for the third attribute in each ternary relation that does not participate

in a join, but is sometimes present in the final projection, the values are chosen uniformly

from the range [1, rSize/10].

Inconsistency injection. In each relation, we first select a number of primary keys (or

number of inconsistent blocks inBlockNum) from the generated consistent instance. Then,

for each selected primary key, the inconsistency is injected by inserting the same number of

additional tuples (bSize−1) into each block. The parameter inBlockNum is calculated by the

given rSize, inRatio and bSize: inBlockNum = (inRatio · rSize)/bSize.

TPC-H benchmark. We also altered the 22 queries from the original TPC-H bench-

mark [PF00] by removing aggregation, nested subqueries and selection predicates other than

constant constraints, yielding 14 simplified conjunctive queries, namely queries q′1, q
′
2, q

′
3, q

′
4,

q′6, q
′
10, q

′
11, q

′
12, q

′
14, q

′
16, q

′
17, q

′
18, q

′
20, q

′
21. All of the 14 queries are in Cforest and hence each

query has a PPJT, meaning that they can be handled by both ConQuer and LinCQA.

We generate the inconsistent instances by injecting inconsistency into the TPC-H databases

of scale factor (SF) 1 and 10 in the same way as described for the synthetic data. The

only difference is that for a given consistent database instance, instead of fixing rSize for the

inconsistent database, we determine the number of inconsistent tuples to be injected based

on the size of the consistent database instance, the specified inRatio and bSize.

Table # of rows (rSize) inRatio max. bSize # of Attributes

Users 14,839,627 0% 1 14

Posts 53,086,328 0% 1 20

PostHistory 141,277,451 0.001% 4 9

Badges 40,338,942 0.58% 941 4

Votes 213,555,899 30.9% 1441 6

Table 6.2: A summary of the Stackoverflow Dataset

Stackoverflow Dataset. We obtained the stackoverflow.com metadata as of 02/2021

from the Stack Exchange Data Dump, with 551,271,294 rows taking up 400GB. 34 The

database tables used are summarized in Table 6.2. We remark that the Id attributes in

PostHistory, Comments, Badges, and Votes are surrogate keys and therefore not imposed

as natural primary keys; instead, we properly choose composite keys as primary keys (or

quasi-keys). Table 6.3 shows the five queries used in our CQA evaluation, where the number

of tables joined together increases from 2 in Q1 to 4 in Q5.

3https://archive.org/details/stackexchange
4https://sedeschema.github.io/

stackoverflow.com
https://archive.org/details/stackexchange

89

Table 6.3: StackOverflow queries

Q1 SELECT DISTINCT P.id, P.title FROM Posts P, Votes V WHERE P.Id =

V.PostId AND P.OwnerUserId = V.UserId AND BountyAmount > 100

Q2 SELECT DISTINCT U.Id, U.DisplayName FROM Users U, Badges B WHERE

U.Id = B.UserId AND B.name = "Illuminator"

Q3 SELECT DISTINCT U.DisplayName FROM Users U, Posts P WHERE U.Id =

P.OwnerUserId AND P.Tags LIKE "<c++>"

Q4 SELECT DISTINCT U.Id, U.DisplayName FROM Users U, Posts P,

Comments C WHERE C.UserId = U.Id AND C.PostId = P.Id AND P.Tags

LIKE "%SQL%" AND C.Score > 5

Q5 SELECT DISTINCT P.Id, P.Title FROM Posts P, PostHistory PH, Votes

V, Comments C WHERE P.id = V.PostId AND P.id = PH.PostId AND P.id

= C.PostId AND P.Tags LIKE "%SQL%" AND V.BountyAmount > 100 AND

PH.PostHistoryTypeId = 2 AND C.score = 0

Figure 6.7: Runtime Comparison on StackOverflow

Experimental Results

In this section, we report the evaluation of LinCQA and the other CQA systems on syn-

thetic workloads and the StackOverflow dataset. Table 4 in the technical report [FKOW22]

summarizes the number of consistent and possible answers for each query in the selected

datasets.

Fixed inconsistency with varying relation sizes. To compare LinCQA with other

CQA systems, we evaluate all systems using both the synthetic workload and the altered

TPC-H benchmark with fixed inconsistency (inRatio = 10%, bSize = 2) as in previous

works [KPT13b,DK19,Dix21]. We vary the size of each relation (rSize ∈ {500K, 1M, 5M})
in the synthetic data (Figure 6.5) and we evaluate on TPC-H database instances of scale

factors 1 and 10 (Figure 6.6). Both figures include the time for running the original query

on the inconsistent database (which returns the possible answers).

In the synthetic dataset, all three systems based on FO-rewriting techniques outperform

90

CAvSAT, often by an order of magnitude. This observation shows that if CERTAINTY(q) is

FO-rewritable, a properly implemented rewriting is more efficient than the generic algorithm

in practice, refuting some observations in [DK19,KPT13b]. Compared to ConQuer, LinCQA

performs better or comparably on q1 through q4. LinCQA is also more efficient than ConQuer

for q1, q2 and q3. As the size of the database increases, the relative performance gap between

LinCQA and ConQuer decreases for q4. ConQuer cannot produce the SQL rewritings for

queries q5, q6 and q7 since they are not in Cforest. In summary, LinCQA is more efficient and

at worst competitive to ConQuer on relatively small databases with less than 5M tuples,

and is applicable to a wider class of acyclic queries.

In the TPC-H benchmark, the CQA systems are much closer in terms of performance.

In this experiment, we observe that LinCQA almost always produces the fastest rewriting,

and even when it is not, its performance is comparable to the other baselines. It is also

worth noting that for most queries in the TPC-H benchmark, the overhead over running

the SQL query directly is much smaller when compared to the synthetic benchmark. Note

that CAvSAT times out after 1 hour for queries q′10 and q′18 for both scale 1 and 10, while

the systems based on FO-rewriting techniques terminate. We also remark that for Boolean

queries, CAvSAT will terminate at an early stage without processing the inconsistent part

of the database using SAT solvers if the consistent part of the database already satisfies

the query (e.g., q′6, q
′
14, q

′
17 in TPC-H). Overall, both LinCQA and ConQuer perform better

than FastFO, since they both are better at exploiting the structure of the join tree. We

also note that ConQuer and LinCQA exhibit comparable performances on most queries in

TPC-H. To compute the consistent answers for a certain query, we note that the actual

runtime performance heavily depends on the query plan chosen by the query optimizer in

addition to the sql rewriting given, thus we focus on the overall performance of different

CQA systems rather than a few cases in which the performance difference between different

systems is relatively small.

Fixed relation size with varying inconsistency. We perform experiments to observe

how different CQA systems react when the inconsistency of the instance changes. Using

synthetic data, we first fix rSize = 1M, bSize = 2 and run all CQA systems on databases

instances of varying inconsistency ratio from inRatio = 10% to inRatio = 100%. The results

are depicted in Figure 6.8. We observe that the running time of CAvSAT increases when

the inconsistency ratio of the database instance becomes larger. This happens because the

SAT formula grows with larger inconsistency, and hence the SAT solver becomes slower. In

contrast, the running time of all FO-rewriting techniques is relatively stable across database

instances of different inconsistency ratios. More interestingly, the running time of LinCQA

decreases when the inconsistency ratio becomes larger. This behavior occurs because of the

early pruning on the relations at lower levels of the PPJT, which shrinks the size of candidate

91

space being considered at higher levels of the PPJT and thus reduces the overall computation

time. The overall performance trends of different systems are similar for all queries and thus

we present only figures of q1, q3, q5, q7 here due to the space limit.

In our next experiment, we fix the database instance size with rSize = 1M and inconsis-

tency ratio with inRatio = 10%, running all CQA systems on databases of varying inconsistent

block size bSize from 2 to 10. The results are shown in Figure 6.8. We observe that the

performance of all CQA systems is not very sensitive to the change of inconsistent block

sizes as shown in Figure 6.9

Original Query LinCQA Conquer FastFO CAvSAT

20 40 60 80 100
inRatio (%)

100

101

Ti
m

e
(s

)

(a) q1

20 40 60 80 100
inRatio (%)

100

101

102

Ti
m

e
(s

)

(b) q2

20 40 60 80 100
inRatio (%)

100

101

Ti
m

e
(s

)

(c) q3

20 40 60 80 100
inRatio (%)

100

101

102

Ti
m

e
(s

)

(d) q4

20 40 60 80 100
inRatio (%)

100

101

Ti
m

e
(s

)

(e) q5

20 40 60 80 100
inRatio (%)

100

101

Ti
m

e
(s

)

(f) q6

20 40 60 80 100
inRatio (%)

100

101

Ti
m

e
(s

)
(g) q7

Figure 6.8: Performance of different systems on inconsistent databases with varying incon-

sistency ratio

2 3 4 5 6 7 8 9 10
bSize

100

Ti
m

e
(s

)

(a) q1

2 3 4 5 6 7 8 9 10
bSize

100

101

Ti
m

e
(s

)

(b) q2

2 3 4 5 6 7 8 9 10
bSize

100

Ti
m

e
(s

)

(c) q3

2 3 4 5 6 7 8 9 10
bSize

100

101

Ti
m

e
(s

)

(d) q4

2 3 4 5 6 7 8 9 10
bSize

100

Ti
m

e
(s

)

(e) q5

2 3 4 5 6 7 8 9 10
bSize

100

Ti
m

e
(s

)

(f) q6

2 3 4 5 6 7 8 9 10
bSize

100

Ti
m

e
(s

)

(g) q7

Figure 6.9: Performance of different systems on inconsistent database of varying block size

StackOverflow Dataset We use a 400GB StackOverflow dataset to evaluate the perfor-

mance of different systems on large-scale real-world datasets. Another motivation to use

such a large dataset is that LinCQA and ConQuer exhibit comparable performance on the

92

medium-sized synthetic and TPC-H datasets. CAvSAT is excluded since it requires extra

storage for preprocessing, which is beyond the limit of the available disk space. Since Q1 and

Q5 are not in Cforest, ConQuer cannot handle them and their execution times are marked as

“N/A”. Query executions that do not finish within an hour are marked as “Time Out”. We

observe that on all five queries, LinCQA significantly outperforms other competitors. In par-

ticular, when the database size is very large, LinCQA is much more scalable than ConQuer

due to its more efficient strategy. We intentionally select queries with small possible answer

sizes for ease of experiments and presentation. Some queries with possible answer size up to

1M would require hours to be executed and it is prohibitive to measure the performances of

our baseline systems. For queries that ConQuer (Q4) and FastFO (Q3, Q5) take a long time

to compute, LinCQA manages to finish execution quickly due to its efficient self-pruning and

pair-pruning steps.

To see the performance change of different systems when executing in small available

memory, we run the experiments on a SQL server with the maximum allowed memory of

120GB, 90GB, 60GB, 30GB, and 10GB respectively. Figure 6.10 shows that, despite the

memory reduction, LinCQA is still the best performer on all five queries given different

amounts of available memory. No obvious performance regression is observed on Q1 and Q2

when reducing memory since both queries access only two tables.

Original Query LinCQA Conquer FastFO CAvSAT

20406080100120
Memory (GB)

0
2
4
6
8

10

Ti
m

e
(s

)

(a) Q1

20406080100120
Memory (GB)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Ti
m

e
(s

)

(b) Q2

20406080100120
Memory (GB)

102

103

Ti
m

e
(s

)

(c) Q3

20406080100120
Memory (GB)

100

101

102

103

Ti
m

e
(s

)

(d) Q4

20406080100120
Memory (GB)

101

102

103

Ti
m

e
(s

)

(e) Q5

Figure 6.10: Performance of StackOverflow queries with varying amount of available memory

Summary Our experiments show that both LinCQA and ConQuer outperform FastFO

and CAvSAT, systems that produce generic FO-rewritings and reduce to SAT respectively.

93

Despite LinCQA and ConQuer showing a similar performance on most queries in our exper-

iments, we observe that LinCQA is (1) applicable to a wider class of acyclic queries than

ConQuer and (2) more scalable than ConQuer when the database size increases significantly.

Original Query LinCQA Conquer FastFO CAvSAT

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Relation Size (in million)

0

10

20

30

40

50

Ti
m

e
(s

)

(a) Q2−path

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Relation Size (in million)

0
25
50
75

100
125
150
175
200

Ti
m

e
(s

)

(b) Q3−path

45 50 55 60 65
inRatio (%)

0
2
4
6
8

10
12
14

Ti
m

e
(s

)

(c) Q2−path

5 10 15 20 25 30
inRatio (%)

0
100
200
300
400
500
600
700
800

Ti
m

e
(s

)

(d) Q3−path

Figure 6.11: Performance comparison between different systems on varying relation sizes/in-

consistency ratios

6.5.1 Worst-Case Study

To demonstrate the robustness and efficiency of LinCQA due to its theoretical guarantees,

we generate synthetic worst-case inconsistent database instances for the 2-path query Q2−path

and the 3-path query Q3−path:

Q2−path(x) :- R(x, y), S(y, z).

Q3−path(x) :- R(x, y), S(y, z),T(z, w).

We compare the performance of LinCQA with ConQuer and FastFO on both queries.

CAvSAT does not finish its execution on any instance within one hour, due to the long time

required to solve the SAT formula. Thus, we do not report the time of CAvSAT. We define

a generic binary relation D(x, y,N) as

D(x, y,N) = ([x]× [y]) ∪ {(u, u) | xy + 1 ≤ u ≤ N, u ∈ Z+},

where x, y,N ∈ Z+, [n] = {1, 2, . . . , n} and [a] × [b] denotes the cartesian product between

[a] and [b]. To generate the input instances for Q2−path, we generate relations R = D(a, b,N)

and S = D(b, c,N) with integer parameters a, b, c and N . For Q3−path, we additionally

94

generate the relation T = D(c, d,N). Intuitively, for R, [a] × [b] is the set of inconsistent

tuples and {(u, u) | ab + 1 ≤ u ≤ N, u ∈ Z+} is the set of consistent tuples. The values of

a and b control both the number of inconsistent tuples (i.e. ab) and the size of inconsistent

blocks (i.e. b). We note that [a]× [b] and {(u, u) | ab+ 1 ≤ u ≤ N, u ∈ Z+} are disjoint.

Fixed database inconsistency with varying size. We perform experiments to see

how robust different CQA systems are when running queries on an instance of increasing

size. For Q2−path, we fix b = c = 800, and for each k = 0, 1, . . . , 8, we construct a database

instance with a = 120 + 460k and N = (1 + k/2) · 106. By construction, each database

instance has inconsistent block size bSize = b = c = 800 in both relations R and S, and

inRatio = (ab + bc)/2N = 36.8%, with varying relation size rSize = N ranging from 1M to

5M. Similarly for Q3−path, we fix b = c = d = 120, and for each k = 0, 1, . . . , 8, we construct

a database instance with a = 120 + 180k and N = (1 + k/2) · 106. Here, the constructed

database instances have inRatio = (ab + bc + cd)/3N = 1.44%. As shown in Figures 6.11a

and 6.11b, the performance of LinCQA is much less sensitive to changes in relation sizes

compared to other CQA systems. We omit reporting the running time of FastFO for Q3−path

on relatively larger database instances in Figure 6.11b for better contrast with ConQuer and

LinCQA.

Fixed database sizes with varying inconsistency. Next, we experiment on instances

of varying inconsistency ratio inRatio in which the joining occurs mainly between inconsistent

blocks of different relations. For Q2−path, we fix b = c = 800 and N = 106 and generate

database instances for each a = 100, 190, 280, . . . , 1000. All generated database instances

have inconsistent block size bSize = b = c = 800 for both relations R and S, and the size of

each relation rSize = N = 106 by construction. The inconsistency ratio inRatio varies from

36% to 72%. For Q3−path, we fix b = c = d = 120 and N = 106 and generate database in-

stances with a = 200, 800, 1400, . . . , 8000. The inconsistency ratio of the generated database

instances varies from 1.76% to 32.96%. Figures 6.11c and 6.11d show that LinCQA is the

only system whose performance is agnostic to the change in inconsistency ratio. The run-

ning time of FastFO and Conquer increases when the inconsistency of the input database

increases. Similarly to the experiments varying relation sizes, the running times of FastFO

for Q3−path are omitted on relatively larger database instances in Figure 6.11d for better

contrast with ConQuer and LinCQA.

6.5.2 A Case Study of LinCQA Execution on Datalog systems

Here we present a case study on the performance comparison of different Datalog systems

executing LinCQA using the synthetic workload with the largest database, as shown in

Figure 6.12. LinCQA-Cold represents the first run of LinCQA on SQL Server. As we can

95

Figure 6.12: Performance comparison of different CQA systems and LinCQA execution on

different Datalog systems on a synthetic workload with rSize = 5M

see, RecStep and Souffle are much less competitive compared to SQL Server, even compared

to the cold run LinCQA-Cold. On the contrary, FlowLog not only matches the performance

of the best performers, but also surpasses the best performance numbers in most cases,

except for q3. This observation demonstrates the efficiency of the design and implementation

of FlowLog, which also shows competitive performance in the evaluation of non-recursive

Datalog programs.

6.6 Summary

We introduce the notion of a pair-pruning join tree (PPJT) in this project, showing that

if a BCQ has a PPJT, then CERTAINTY(q) is in FO and solvable in linear time in the

size of the inconsistent database. We analyze and design efficient algorithms based on this

idea expressed in Datalog rules. We further implement the corresponding system called

LinCQA that is able to produce both rewriting in SQL query and Datalog rules to compute

the consistent answer of q. In our experimental evaluation, we show that LinCQA produces

efficient rewritings, is scalable, and robust on worst-case instances, often outperforming or

matching the performance of state-of-the-art techniques for consistent query answering. By

executing LinCQA in FlowLog, we show that our asynchronous dataflow-based Datalog

system is able to match and even surpass the performance of the state-of-the-art relational

system SQL-Server, while other existing Datalog systems are unable to achieve.

96

Chapter 7

Conclusion and Future Work

In this dissertation, we examine existing techniques that evaluate the Datalog programs

by looking at a wide spectrum of tasks that appear in different application domains. Lever-

aging the expressiveness and succinct syntax of Datalog, we devise efficient algorithms for

consistent query answering that outperforms the existing state-of-the-art techniques named

LinCQA. To further improve the efficiency of Datalog evaluation, we present two different

ways of evaluating Datalog programs: Datalog evaluation by rdbms, in which a parallel

single-node relational system is used combining with a spectrum of techniques for perfor-

mance improvement, and Datalog evaluation as an asynchronous dataflow execution, in which

we show that by rendering the Datalog program as the corresponding dataflow graph and ex-

ecuting the dataflow graph asynchronously, the unpleasant cost of synchronization observed

in batch-processing systems.

Learning from our experience in building RecStep, we propose simple yet intuitive profil-

ing components that help to better understand the behaviors of different systems in varying

workloads Datalog. This better understanding guides the design and implementation of

FlowLog, an asynchronous high-performance data flow-based Datalog system, which signif-

icantly outperforms existing systems in most cases. Our work motivates one to rethink the

way the Datalog could be used and the way the Datalog program is evaluated and opens up

new related research questions.

Future Work Related to Consistent Query Answering

An open question that is raised in our implementation and evaluation of LinCQA is

whether Datalog evaluation techniques can help to perform consistent query answering

(CQA) more efficiently. Complex first-order CQA rewritings give very complicated translated

SQL statements consisting of a large number of nested sub-queries, which lead to difficulty

of finding the optimal query plan by for backend rdbms and result in unstable performance

as observed in our study. Analyzing the performance bottleneck and performing potential

optimizations could be much easier in Datalog rules since the syntax is much more succinct.

97

Future Work Related to FlowLog

Memory Management. While FlowLog shows better performance in most of the Datalog

workloads compared to other existing Datalog engines, it fails to evaluate CC on Twitter

due to the large memory used by the maintained intermediate states. It remains to answer

whether such a limitation can be addressed by compressing the intermediate states or drop-

ping partial states or devising a new economical way of representing the intermediate states

for such cases. More generally, it is worth considering whether memory usage can be further

reduced when applying FlowLog for batch processing tasks, either by constructing a more

memory efficient dataflow graph or writing specialized operators.

Data Partitioning. FlowLog has not yet considered the data partition strategy seriously,

the good one of which could potentially help reduce the communication overhead between

dataflows residing in different workers.

Hybrid Computation. Since the underlying framework of FlowLog differential dataflow

was originally designed for efficient incremental computation, it is interesting to explore the

way to extend FlowLog to accommodate both batch processing and incremental computation

effectively.

Distributed Computation The study of FlowLog presented in this dissertation focuses

on a single-node evaluation, and different challenges could be found when considering the

distributed setting - exploring efficient distributed computation of FlowLog will allow us-

ing the resource of the computation cluster consisting of a large number of nodes, which

could allow the computation that FlowLog cannot currently perform in a single node due to

resource restriction, such as CC evaluation on twitter.

Future Work Related to Profiling

Collecting and organizing a set of Datalog workloads that covers comprehensively recursive

computation profiles is critical to perform a holistic evaluation of the performance of a

Datalog system. One can only gain a partial view by looking at the performance numbers

on a few workloads or workloads of very similar behaviors. Such a partial view could be

misleading and sometimes even leads to wrong insights.

On the other hand, we see that there is still no all-winner Datalog system today. That

is, a system (e.g. FlowLog) that outperforms other existing competitors most of the time

might still fail on some other workloads. Then choices need to be made between different

systems depending on the recursive computation profiles of the workloads of interest, which

98

there is no existing way to know or estimate before actually evaluating the Datalog program.

Devising a way to perform such an estimate accurately, if possible, could be very useful.

More General Future Work

The language extensions of Datalog seen recently, such as recursive aggregation, have

greatly empowered Datalog to perform advanced data analytics. It would be meaningful

to consider a wide spectrum of real-world data analysis tasks across different application

domains and attempt to extend the semantics of Datalog to support these applications.

Along with the new semantics, the corresponding techniques will be in need to perform the

new operations correctly and efficiently.

99

LIST OF REFERENCES

[ABC99] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query

answers in inconsistent databases. In PODS, pages 68–79. ACM Press, 1999.

[ABC03] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Answer sets for con-

sistent query answering in inconsistent databases. Theory Pract. Log. Program.,

3(4-5):393–424, 2003.

[ABC+11] Foto N. Afrati, Vinayak R. Borkar, Michael J. Carey, Neoklis Polyzotis, and

Jeffrey D. Ullman. Map-reduce extensions and recursive queries. In EDBT ’11,

pages 1–8, 2011.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations of

Databases: The Logical Level. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1st edition, 1995.

[AK09] Arvind Arasu and Raghav Kaushik. A grammar-based entity representation

framework for data cleaning. In SIGMOD Conference, pages 233–244. ACM,

2009.

[AMP15] Mart́ın Abadi, Frank McSherry, and Gordon D Plotkin. Foundations of differen-

tial dataflow. In International Conference on Foundations of Software Science

and Computation Structures, pages 71–83. Springer, 2015.

[And94] Lars Ole Andersen. Program analysis and specialization for the C programming

language. PhD thesis, University of Cophenhagen, 1994.

[ATS17] Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. Porting

doop to soufflé: a tale of inter-engine portability for datalog-based analyses. In

Proceedings of the 6th ACM SIGPLAN International Workshop on State Of the

Art in Program Analysis, pages 25–30. ACM, 2017.

[AU12] Foto N. Afrati and Jeffrey D. Ullman. Transitive closure and recursive datalog

implemented on clusters. In EDBT ’12, pages 132–143, 2012.

[BBF15] Melyssa Barata, Jorge Bernardino, and Pedro Furtado. An overview of decision

support benchmarks: Tpc-ds, tpc-h and ssb. New Contributions in Information

Systems and Technologies, pages 619–628, 2015.

100

[Ber19] Leopoldo E. Bertossi. Database repairs and consistent query answering: Origins

and further developments. In PODS, pages 48–58. ACM, 2019.

[BF15] Pablo Barceló and Gaëlle Fontaine. On the data complexity of consistent query

answering over graph databases. In ICDT, volume 31 of LIPIcs, pages 380–397.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[BF17] Pablo Barceló and Gaëlle Fontaine. On the data complexity of consistent query

answering over graph databases. J. Comput. Syst. Sci., 88:164–194, 2017.

[BFG+07] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Ke-

mentsietsidis. Conditional functional dependencies for data cleaning. In ICDE,

pages 746–755. IEEE Computer Society, 2007.

[BFMY83] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the

desirability of acyclic database schemes. J. ACM, 30(3):479–513, 1983.

[BKL13a] Leopoldo Bertossi, Solmaz Kolahi, and Laks VS Lakshmanan. Data cleaning

and query answering with matching dependencies and matching functions. The-

ory of Computing Systems, 52(3):441–482, 2013.

[BKL13b] Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. Data clean-

ing and query answering with matching dependencies and matching functions.

Theory Comput. Syst., 52(3):441–482, 2013.

[BM06] David A Bader and Kamesh Madduri. Gtgraph: A synthetic graph generator

suite. Atlanta, GA, February, 38, 2006.

[BMNT15] Moria Bergman, Tova Milo, Slava Novgorodov, and Wang Chiew Tan. Query-

oriented data cleaning with oracles. In SIGMOD Conference, pages 1199–1214.

ACM, 2015.

[CCP21] Marco Calautti, Marco Console, and Andreas Pieris. Benchmarking approxi-

mate consistent query answering. In PODS, pages 233–246. ACM, 2021.

[CCX08] Reynold Cheng, Jinchuan Chen, and Xike Xie. Cleaning uncertain data with

quality guarantees. Proc. VLDB Endow., 1(1):722–735, 2008.

[CIKW16] Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. Data cleaning:

Overview and emerging challenges. In SIGMOD Conference, pages 2201–2206.

ACM, 2016.

[CIP13] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Holistic data cleaning: Putting

violations into context. In ICDE, pages 458–469. IEEE Computer Society, 2013.

101

[CKE+15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. Apache flink: Stream and batch processing in a single

engine. Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, 36(4), 2015.

[Clo18] https://www.cloudlab.us/, 2018.

[CM05] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance

using tuple deletions. Inf. Comput., 197(1-2):90–121, 2005.

[CMI+15] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan

Tang, and Yin Ye. KATARA: A data cleaning system powered by knowledge

bases and crowdsourcing. In SIGMOD Conference, pages 1247–1261. ACM,

2015.

[CMS04] Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. Hippo: A system

for computing consistent answers to a class of SQL queries. In EDBT, volume

2992 of Lecture Notes in Computer Science, pages 841–844. Springer, 2004.

[DB11] Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence

of simpler SAT instances. In CP, volume 6876 of Lecture Notes in Computer

Science, pages 225–239. Springer, 2011.

[Dix21] Akhil Anand Dixit. Answering Queries Over Inconsistent Databases Using SAT

Solvers. PhD thesis, UC Santa Cruz, 2021.

[DK19] Akhil A. Dixit and Phokion G. Kolaitis. A sat-based system for consistent query

answering. In SAT, volume 11628 of Lecture Notes in Computer Science, pages

117–135. Springer, 2019.

[DK21] Akhil A. Dixit and Phokion G. Kolaitis. Consistent answers of aggregation

queries using SAT solvers. CoRR, abs/2103.03314, 2021.

[EEI+13] Amr Ebaid, Ahmed K. Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani, Jorge-

Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. NADEEF: A generalized data

cleaning system. Proc. VLDB Endow., 6(12):1218–1221, 2013.

[FFM05] Ariel Fuxman, Elham Fazli, and Renée J Miller. Conquer: Efficient manage-

ment of inconsistent databases. In Proceedings of the 2005 ACM SIGMOD

international conference on Management of data, pages 155–166, 2005.

[FGG+18] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. Cypher: An evolving query language for property graphs. In

Proceedings of the 2018 International Conference on Management of Data, pages

1433–1445, 2018.

https://www.cloudlab.us/

102

[FKMP03] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data

exchange: Semantics and query answering. In Database Theory - ICDT 2003,

9th International Conference, Siena, Italy, January 8-10, 2003, Proceedings,

pages 207–224, 2003.

[FKOW22] Zhiwei Fan, Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. Lincqa:

Faster consistent query answering with linear time guarantees. arXiv preprint

arXiv:2208.12339, 2022.

[FM07] Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent

databases. J. Comput. Syst. Sci., 73(4):610–635, 2007.

[FMK22] Zhiwei Fan, Sunil Mallireddy, and Paraschos Koutris. Towards better under-

standing of the performance and design of datalog systems. 2022.

[FZZ+18] Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, Aws Albarghouthi, Paraschos Koutris,

and Jignesh Patel. Scaling-Up In-Memory Datalog Processing: Observations

and Techniques. arXiv e-prints, page arXiv:1812.03975, December 2018.

[GAK12] Todd J Green, Molham Aref, and Grigoris Karvounarakis. Logicblox, platform

and language: A tutorial. In Datalog in Academia and Industry, pages 1–8.

Springer, 2012.

[GGM+21] Congcong Ge, Yunjun Gao, Xiaoye Miao, Bin Yao, and Haobo Wang. A hybrid

data cleaning framework using markov logic networks (extended abstract). In

ICDE, pages 2344–2345. IEEE, 2021.

[GGZ03] Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logical framework for

querying and repairing inconsistent databases. IEEE Trans. Knowl. Data Eng.,

15(6):1389–1408, 2003.

[GMPS13] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. The

LLUNATIC data-cleaning framework. Proc. VLDB Endow., 6(9):625–636, 2013.

[GTg] http://www.cse.psu.edu/~kxm85/software/GTgraph.

[H+18] Bhole Rahul Hiraman et al. A study of apache kafka in big data stream pro-

cessing. In 2018 International Conference on Information, Communication,

Engineering and Technology (ICICET), pages 1–3. IEEE, 2018.

[HCG+18] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek R. Narasayya, and Surajit

Chaudhuri. Transform-data-by-example (TDE): an extensible search engine for

data transformations. Proc. VLDB Endow., 11(10):1165–1177, 2018.

[HD15] Minyang Han and Khuzaima Daudjee. Giraph unchained: barrierless asyn-

chronous parallel execution in pregel-like graph processing systems. PVLDB,

8(9):950–961, 2015.

http://www.cse.psu.edu/~kxm85/software/GTgraph

103

[HdAC+14] Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu,

Paraschos Koutris, Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk,

Jingjing Wang, Andrew Whitaker, Shengliang Xu, Magdalena Balazinska, Bill

Howe, and Dan Suciu. Demonstration of the myria big data management ser-

vice. In SIGMOD ’14, pages 881–884, 2014.

[IGM20] Muhammad Imran, Gábor E Gévay, and Volker Markl. Distributed graph ana-

lytics with datalog queries in flink. In Software Foundations for Data Interop-

erability and Large Scale Graph Data Analytics, pages 70–83. Springer, 2020.

[IGQRM22] Muhammad Imran, Gábor E Gévay, Jorge-Arnulfo Quiané-Ruiz, and Volker

Markl. Fast datalog evaluation for batch and stream graph processing. World

Wide Web, 25(2):971–1003, 2022.

[JSS16] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On synthesis of

program analyzers. In International Conference on Computer Aided Verifica-

tion, pages 422–430. Springer, 2016.

[JSZS19] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. Brie: A

specialized trie for concurrent datalog. In Proceedings of the 10th International

Workshop on Programming Models and Applications for Multicores and Many-

cores, PMAM’19, page 31–40, New York, NY, USA, 2019. Association for Com-

puting Machinery.

[KDPV10] Yannis Katsis, Alin Deutsch, Yannis Papakonstantinou, and Vasilis Vassalos.

Inconsistency resolution in online databases. In ICDE, pages 1205–1208. IEEE

Computer Society, 2010.

[KIJ+15] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani,

Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. Bigdansing:

A system for big data cleansing. In SIGMOD Conference, pages 1215–1230.

ACM, 2015.

[KJL+20] Aziz Amezian El Khalfioui, Jonathan Joertz, Dorian Labeeuw, Gaëtan Staquet,

and Jef Wijsen. Optimization of answer set programs for consistent query an-

swering by means of first-order rewriting. In CIKM, pages 25–34. ACM, 2020.

[KKD+20] Lara A Kahale, Assem M Khamis, Batoul Diab, Yaping Chang, Luciane Cruz

Lopes, Arnav Agarwal, Ling Li, Reem A Mustafa, Serge Koujanian, Reem

Waziry, et al. Meta-analyses proved inconsistent in how missing data were

handled across their included primary trials: A methodological survey. Clinical

Epidemiology, 12:527–535, 2020.

[KKN03] Rajasekar Krishnamurthy, Raghav Kaushik, and Jeffrey F Naughton. Xml-to-

sql query translation literature: The state of the art and open problems. In

International XML Database Symposium, pages 1–18. Springer, 2003.

104

[KL21] Henning Kohler and Sebastian Link. Possibilistic data cleaning. IEEE Trans-

actions on Knowledge and Data Engineering, 2021.

[KLW+20] Bojan Karlas, Peng Li, Renzhi Wu, Nezihe Merve Gürel, Xu Chu, Wentao Wu,

and Ce Zhang. Nearest neighbor classifiers over incomplete information: From

certain answers to certain predictions. Proc. VLDB Endow., 14(3):255–267,

2020.

[KOW21] Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. Consistent query answer-

ing for primary keys on path queries. In PODS, pages 215–232. ACM, 2021.

[KP12] Phokion G. Kolaitis and Enela Pema. A dichotomy in the complexity of consis-

tent query answering for queries with two atoms. Inf. Process. Lett., 112(3):77–

85, 2012.

[KPT13a] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient querying of

inconsistent databases with binary integer programming. Proc. VLDB Endow.,

6(6):397–408, 2013.

[KPT13b] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient querying of

inconsistent databases with binary integer programming. Proc. VLDB Endow.,

6(6):397–408, 2013.

[KS14] Paraschos Koutris and Dan Suciu. A dichotomy on the complexity of consis-

tent query answering for atoms with simple keys. In ICDT, pages 165–176.

OpenProceedings.org, 2014.

[KW15] Paraschos Koutris and Jef Wijsen. The data complexity of consistent query

answering for self-join-free conjunctive queries under primary key constraints.

In PODS, pages 17–29. ACM, 2015.

[KW17] Paraschos Koutris and Jef Wijsen. Consistent query answering for self-join-free

conjunctive queries under primary key constraints. ACM Trans. Database Syst.,

42(2):9:1–9:45, 2017.

[KW18] Paraschos Koutris and Jef Wijsen. Consistent query answering for primary keys

and conjunctive queries with negated atoms. In PODS, pages 209–224. ACM,

2018.

[KW19] Paraschos Koutris and Jef Wijsen. Consistent query answering for primary keys

in logspace. In ICDT, volume 127 of LIPIcs, pages 23:1–23:19. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2019.

[KW20] Paraschos Koutris and Jef Wijsen. First-order rewritability in consistent query

answering with respect to multiple keys. In PODS, pages 113–129. ACM, 2020.

[KW21] Paraschos Koutris and Jef Wijsen. Consistent query answering for primary keys

in datalog. Theory Comput. Syst., 65(1):122–178, 2021.

105

[KWW+16] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken

Goldberg. Activeclean: Interactive data cleaning for statistical modeling. Proc.

VLDB Endow., 9(12):948–959, 2016.

[LB07] Andrei Lopatenko and Leopoldo E. Bertossi. Complexity of consistent query an-

swering in databases under cardinality-based and incremental repair semantics.

In ICDT, volume 4353 of Lecture Notes in Computer Science, pages 179–193.

Springer, 2007.

[LCG+06] Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

Stoica. Declarative networking: language, execution and optimization. In Pro-

ceedings of the ACM SIGMOD International Conference on Management of

Data, Chicago, Illinois, USA, June 27-29, 2006, pages 97–108, 2006.

[Lef92] Alexandre Lefebvre. Towards an efficient evaluation of recursive aggregates in

deductive databases. In FGCS, pages 915–925, 1992.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings

of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, June 3-5, Madison, Wisconsin, USA, pages 233–246, 2002.

[LRB+21] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. Cleanml:

A study for evaluating the impact of data cleaning on ML classification tasks.

In ICDE, pages 13–24. IEEE, 2021.

[MAB+10] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale

graph processing. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, pages 135–146. ACM, 2010.

[MB05] Mónica Caniupán Marileo and Leopoldo E. Bertossi. Optimizing repair pro-

grams for consistent query answering. In SCCC, pages 3–12. IEEE Computer

Society, 2005.

[Mcs22a] Frank Mcsherry. Differential dataflow. https://github.com/

TimelyDataflow/differential-dataflow, 2022.

[Mcs22b] Frank Mcsherry. Timely dataflow. https://github.com/TimelyDataflow/

timely-dataflow, 2022.

[Mic19] Microsoft. SQL Server 2019. https://www.microsoft.com/en-us/sql-

server/sql-server-2019, 2019.

[Mic22a] Microsoft. User-defined functions. https://docs.microsoft.com/en-

us/sql/relational-databases/user-defined-functions/user-defined-

functions?view=sql-server-ver16, 2022.

https://github.com/TimelyDataflow/differential-dataflow
https://github.com/TimelyDataflow/differential-dataflow
https://github.com/TimelyDataflow/timely-dataflow
https://github.com/TimelyDataflow/timely-dataflow
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions?view=sql-server-ver16

106

[Mic22b] Microsoft. With common table expression (transact-sql) - sql server.

https://docs.microsoft.com/en-us/sql/t-sql/queries/with-common-

table-expression-transact-sql?view=sql-server-ver16, 2022.

[Mil13] Justin J Miller. Graph database applications and concepts with neo4j. In Pro-

ceedings of the southern association for information systems conference, Atlanta,

GA, USA, volume 2324, 2013.

[MLSR18] Frank McSherry, Andrea Lattuada, Malte Schwarzkopf, and Timothy Roscoe.

Shared arrangements: practical inter-query sharing for streaming dataflows.

arXiv preprint arXiv:1812.02639, 2018.

[MMI+13] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Mart́ın Abadi. Naiad: a timely dataflow system. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 439–

455, 2013.

[MMII13] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard.

Differential dataflow. In CIDR, 2013.

[MNP+14] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. Par-

allel materialisation of datalog programs in centralised, main-memory RDF sys-

tems. In AAAI ’14, pages 129–137, 2014.

[MRT15] Marco Manna, Francesco Ricca, and Giorgio Terracina. Taming primary key vi-

olations to query large inconsistent data via ASP. Theory Pract. Log. Program.,

15(4-5):696–710, 2015.

[OOCR09] Patrick E. O’Neil, Elizabeth J. O’Neil, Xuedong Chen, and Stephen Revilak.

The star schema benchmark and augmented fact table indexing. In Raghu-

nath Othayoth Nambiar and Meikel Poess, editors, Performance Evaluation

and Benchmarking, First TPC Technology Conference, TPCTC 2009, Lyon,

France, August 24-28, 2009, Revised Selected Papers, volume 5895 of Lecture

Notes in Computer Science, pages 237–252. Springer, 2009.

[PDZ+18] Jignesh M Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,

Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. Quickstep: A data

platform based on the scaling-up approach. Proceedings of the VLDB Endow-

ment, 11(6):663–676, 2018.

[PF00] Meikel Poess and Chris Floyd. New tpc benchmarks for decision support and

web commerce. ACM Sigmod Record, 29(4):64–71, 2000.

[PSC+15] Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J. Miller, and Divesh

Srivastava. Combining quantitative and logical data cleaning. Proc. VLDB

Endow., 9(4):300–311, 2015.

[RB19] Leonid Ryzhyk and Mihai Budiu. Differential datalog. Datalog, 2:4–5, 2019.

https://docs.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-sql?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/t-sql/queries/with-common-table-expression-transact-sql?view=sql-server-ver16

107

[RBM13] M. Andrea Rodŕıguez, Leopoldo E. Bertossi, and Mónica Caniupán Marileo.

Consistent query answering under spatial semantic constraints. Inf. Syst.,

38(2):244–263, 2013.

[RCIR17] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holo-

clean: Holistic data repairs with probabilistic inference. Proc. VLDB Endow.,

10(11):1190–1201, 2017.

[RD00] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current ap-

proaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[Rep97] Thomas W. Reps. Program analysis via graph reachability. In Jan Maluszynski,

editor, ILPS, pages 5–19. MIT Press, 1997.

[ROA+21] El Kindi Rezig, Mourad Ouzzani, Walid G. Aref, Ahmed K. Elmagarmid,

Ahmed R. Mahmood, and Michael Stonebraker. Horizon: Scalable dependency-

driven data cleaning. Proc. VLDB Endow., 14(11):2546–2554, 2021.

[SGL13] Jiwon Seo, Stephen Guo, and Monica S. Lam. Socialite: Datalog extensions

for efficient social network analysis. In 29th IEEE International Conference

on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages

278–289, 2013.

[SJSW16] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. On fast

large-scale program analysis in datalog. In Proceedings of the 25th International

Conference on Compiler Construction, CC 2016, page 196–206, New York, NY,

USA, 2016. Association for Computing Machinery.

[SKHS12] Marianne Shaw, Paraschos Koutris, Bill Howe, and Dan Suciu. Optimizing

large-scale semi-näıve datalog evaluation in hadoop. In Datalog 2.0, pages 165–

176, 2012.

[SPSL13] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. Distributed socialite:

A datalog-based language for large-scale graph analysis. PVLDB, 6(14):1906–

1917, 2013.

[STS+19] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,

Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al.

Presto: Sql on everything. In 2019 IEEE 35th International Conference on

Data Engineering (ICDE), pages 1802–1813. IEEE, 2019.

[SVKW15] Bernhard Scholz, Kostyantyn Vorobyov, Padmanabhan Krishnan, and Till

Westmann. A datalog source-to-source translator for static program analysis:

An experience report. In 2015 24th Australasian Software Engineering Confer-

ence, pages 28–37. IEEE, 2015.

108

[SYI+16] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson

Condie, and Carlo Zaniolo. Big data analytics with datalog queries on spark.

In Proceedings of the 2016 International Conference on Management of Data,

pages 1135–1149, 2016.

[TCZ+14] Yongxin Tong, Caleb Chen Cao, Chen Jason Zhang, Yatao Li, and Lei Chen.

Crowdcleaner: Data cleaning for multi-version data on the web via crowdsourc-

ing. In ICDE, pages 1182–1185. IEEE Computer Society, 2014.

[TSJ+09] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a

warehousing solution over a map-reduce framework. Proceedings of the VLDB

Endowment, 2(2):1626–1629, 2009.

[WACL05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using dat-

alog with binary decision diagrams for program analysis. In Proceedings of the

Third Asian Conference on Programming Languages and Systems, APLAS’05,

pages 97–118, Berlin, Heidelberg, 2005. Springer-Verlag.

[WBH15] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous and

fault-tolerant recursive datalog evaluation in shared-nothing engines. PVLDB,

8(12):1542–1553, 2015.

[WHZ+17] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani.

Graspan: A single-machine disk-based graph system for interprocedural static

analyses of large-scale systems code. In Proceedings of the Twenty-Second Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’17, pages 389–404, New York, NY, USA, 2017.

ACM.

[Wij10] Jef Wijsen. On the first-order expressibility of computing certain answers to

conjunctive queries over uncertain databases. In PODS, pages 179–190. ACM,

2010.

[Wij12] Jef Wijsen. Certain conjunctive query answering in first-order logic. ACM

Trans. Database Syst., 37(2):9:1–9:35, 2012.

[Wij19] Jef Wijsen. Foundations of query answering on inconsistent databases. SIG-

MOD Rec., 48(3):6–16, 2019.

[WL04] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams. In William Pugh and Craig Chambers,

editors, PLDI, pages 131–144. ACM, 2004.

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large

Data Bases, 7th International Conference, September 9-11, 1981, Cannes,

France, Proceedings, pages 82–94. IEEE Computer Society, 1981.

109

[Yan17] Mohan Yang. Declarative languages and scalable systems for graph analytics

and knowledge discovery. University of California, Los Angeles, 2017.

[YSZ17] Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. Scaling up the perfor-

mance of more powerful datalog systems on multicore machines. The VLDB

Journal, 26(2):229–248, 2017.

[ZAC+19] Qizhen Zhang, Akash Acharya, Hongzhi Chen, Simran Arora, Ang Chen, Vin-

cent Liu, and Boon Thau Loo. Optimizing declarative graph queries at large

scale. In Proceedings of the 2019 International Conference on Management of

Data, pages 1411–1428, 2019.

[ZXW+16] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Arm-

brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J Franklin, et al. Apache spark: a unified engine for big data pro-

cessing. Communications of the ACM, 59(11):56–65, 2016.

[ZYI+18] Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkap-

sky, and Tyson Condie. Declarative bigdata algorithms via aggregates and

relational database dependencies. In Proceedings of the 12th Alberto Mendelzon

International Workshop on Foundations of Data Management, Cali, Colombia,

May 21-25, 2018., 2018.

	ABSTRACT
	 Introduction
	Motivation
	Contribution
	Organization

	 Background
	Datalog
	Existing Datalog Systems

	 RecStep: Datalog Evaluation by RDBMS
	QuickStep
	Architecture
	Optimizations
	Experiments
	Summary

	 Recursive Computation Profiling
	Recursive Computation Profiling
	Case Studies
	Summary

	 FlowLog: Asynchronous Datalog Evaluation
	Differential Dataflow
	Architecture
	Optimizations
	Experiments
	Summary

	 Consistent Query Answering by Datalog
	Related Work
	Preliminaries
	A Linear-Time Rewriting
	Pair-pruning Join Tree
	The Rewriting Rules
	Extension to Non-Boolean Queries

	Implementation
	Improvements upon existing CQA systems

	Experiments
	Worst-Case Study
	A Case Study of LinCQA Execution on Datalog systems

	Summary

	 Conclusion and Future Work
	LIST OF REFERENCES

