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ABSTRACT

The Price of Anarchy (PoA), which is the largest ratio between the cost of pure Nash
equilibria and the cost of the social optimum, is a classic measure of inefficiency in game
theory. In this thesis, we study the PoA of congestion games over special combinatorial
structures, specifically series-parallel networks and matroids. Our results show that the
inefficiency of equilibria can significantly decrease when players’ strategy sets are restricted
to the above structures.

We first study the inefficiency of pure Nash equilibria in symmetric network congestion
games defined over series-parallel networks with affine edge delays. For arbitrary networks,
Correa (2019) proved a tight upper bound of 5/2 on the PoA. On the other hand, for
extension-parallel networks, a subclass of series-parallel networks, Fotakis (2010) proved
that the PoA is 4/3. He also showed that this bound is not valid for series-parallel networks
by providing a simple construction with PoA 15/11. Our main result is that for series-
parallel networks the PoA cannot be larger than 2, which improves on the bound of 5/2
valid for arbitrary networks. We also construct a class of instances with a lower bound
on the PoA that asymptotically approaches 27/19, which improves on the lower bound of
15/11.

Next, we study the PoA of congestion games in series-parallel networks with an arbitrary
cost function class D. We introduce a quantity y(D) to upper bound the PoA for delay
functions in class D. When D is the class of polynomial functions with highest degree p,
our upper bound is 2°*! — 1, which is significantly smaller than the worst-case PoA for
general networks. Thus, restricting to series-parallel networks can limit the inefficiency
of pure Nash equilibria. We also construct a family of instances with polynomial delay
functions that have a PoA in (27 /p) when the number of players goes to infinity. Compared
with the subclass of extension-parallel networks, whose worst-case PoA is in © (p/In p), our
results show that the worst-case PoA quickly degrades from sub-linear to exponential when

relaxing the network topology. We finally consider an alternative measure of the social cost
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of a strategy profile as the maximum players’ cost. We introduce a parameter z(D) and we
show that the PoA is at most y(D)z(D), which for polynomial delays of maximum degree
p is at most 227. Compared to the PoA in general networks, which is in p®®, our results
shows a significant improvement in efficiency. We also prove that our previous lower
bound in Q(27/p) is still valid for this measure of social cost. This is in stark contrast with
the PoA in the subclass of extension-parallel networks, where each pure Nash equilibrium
is a social optimum.

Finally, we study the PoA of congestion games in matroids. We derive new upper
bounds on the PoA of symmetric congestion games defined over k-uniform matroids and
paving matroids with delay functions in arbitrary class D. Specifically, when D is the
class of polynomial functions with highest degree p, we showed that the upper bounds on
the PoA of k-uniform matroids and paving matroids congestion games are in O(2Pp/In p)
and O(4”p/In p), respectively. Moreover, we also show that for symmetric paving matroid

congestion games with affine delay functions, the PoA is at most 17/7.



1 INTRODUCTION

With the rapid development of the Internet, traditional markets have undergone dra-
matic transformations and accelerated growth. The digital era has brought a paradigm
shift, redefining how markets operate on a global scale. When analyzing these expansive
and dynamic markets, scientists face the challenge of not only optimizing the strategic
decision-making of individual entities but also understanding and predicting the strategic
interactions among multiple agents. This complexity arises because market participants
are numerous and diverse, ranging from individuals and small businesses to large corpo-
rations and governmental bodies, all of whom interact in ways that significantly impact
one another and the overall market dynamics.

The foundation for understanding such interactions can be traced back to the pioneering
work of John von Neumann and Oskar Morgenstern. In their seminal 1944 book, Theory
of Games and Economic Behavior, they laid down the initial ideas of what we now know as
modern game theory. Game theory provides a robust framework to articulate, analyze,
and eventually comprehend the intricate interplay between agents and their decisions.
Essentially, a game is characterized by a set of players who interact according to specific
rules. These players engage in strategic decision-making processes that are interdependent,
meaning the actions of one player can significantly influence the outcomes for others.

In the context of large-scale networks, such as the Internet and road transportation
systems, the enormity and complexity of these networks mean that players often cannot
cooperate directly. Instead, they act in their own self-interest, aiming to maximize their
utility. Thus, the lack of a central regulation becomes a realistic assumption [31, 46]. This
assumption aligns with the principles of non-cooperative games. In non-cooperative games,
players” actions are influenced by the actions of others, and the overall quality of each
player’s strategy is contingent upon the strategies adopted by their counterparts. Moreover,

players are assumed to be self-interested and rational, seeking to achieve the best possible



outcome given their preferences and the strategies of others.

The concept of Nash equilibrium, named after mathematician John Nash, is a corner-
stone in predicting the outcomes of non-cooperative games. At Nash equilibrium, no player
can unilaterally change their strategy to achieve a better payoff, given the strategies of all
other players. This equilibrium represents a state of stability where players’ strategies are
in mutual best responses.

In the field of algorithmic game theory, one of the most crucial questions revolves
around the existence and computation of Nash equilibria. John Nash’s classic theorem
[45], established in 1950, assures us that any game with a finite number of players and
strategies has at least one mixed Nash equilibrium, where each player chooses a probability
distribution over their set of strategies. However, the existence of pure Nash equilibria,
where each player selects a single strategy, is not always guaranteed.

In 1973, Robert Rosenthal showed that the pure Nash equilibrium always exist in a
class of games, which includes congestion games [50]. This result was later generalized by
Monderer and Shapley to the Potential Games [44], a significant class of games in which pure
Nash equilibria are always present. In these games, players’ incentives can be captured by
a potential function, ensuring that any improvement by an individual player corresponds
to a corresponding improvement in the potential function. This characteristic simplifies the
analysis and computation of equilibria, providing a robust framework for understanding
strategic interactions in a variety of settings.

Once the existence of equilibrium is assured and their computability is understood, it
would be nature for us to think: How good are these equilibria? Unfortunately, the pursuit
of individual self-interest in a non-cooperative context often leads to outcomes that are
suboptimal from a societal perspective. The inefficiency of these equilibria can be stark, as
they may not align with the minimization of overall social costs.

To quantify this inefficiency, the concept of the Price of Anarchy (PoA) was introduced

by Koutsoupias and Papadimitriou in 1999 [34]. The Price of Anarchy measures the worst-



case ratio between the cost of a Nash equilibrium and the minimum possible social cost
that could be achieved if players cooperated to optimize the overall outcome. This metric
highlights the potential disparity between individually rational behavior and collective
optimality, providing insights into the potential inefficiencies that arise in decentralized,
self-interested environments.

In this thesis, we study congestion games, a subclass of potential games, and focus on
the inefficiency of pure Nash equilibria (PNE). We study two combinatorial structures,
series-parallel networks and paving matroids, and show that the PoA decreases significantly

if the resource sets of congestion games are restricted to them.

1.1 Congestion games

Congestion games are a special sub-class of non-cooperative games, where each player
aims at selecting a subset of resources from a set of available resources, but the cost of
each resource is non-decreasing with respect to the total number of players using it. These
games are commonly used to model problems in large-scale networks such as routing in
communication networks and traffic planning in road networks [31, 46] and represent a

simple, yet powerful paradigm for selfish resource sharing.

Definition 1.1. A (atomic and unweighted) congestion game consists of a finite set of re-
sources R and N players. For each player i € [N], there is a strategy set X* C 2 and every
strategy z' € X" is a subset of R. For each resource ¢ € R there is a non-decreasing delay

function d.(z) : [N] = Rxo.

A congestion game is called symmetricif X' = X? = ... = X", otherwise it is asymmetric.
A state of the game is a strategy profile s = (s',...,s") where s’ € X' is the strategy chosen
by player i, for i € [N]. The set of states of the game is denoted by X = X* x .-+ x X",

Given a state s and a resource e, we denote by s, the number of players choosing e in s.



There are also several variants of congestion games. The first distinction is between
atomic and non-atomic congestion games. In non-atomic congestion games, there are
infinitely many players and each player controls an infinitesimal amount of flow. In contrast,
in atomic congestion games each player controls a non-negligible amount of flow. The second
distinction is between weighted and unweighted games. In weighted congestion games,
the effect of each player on congestion is proportional to the player’s weight, while in
unweighted congestion games all players have the same effect on congestion.

To measure the congestion level in a given state, we define the costs as follows:

Definition 1.2. Given a state s and a set of resources P C R, the cost of P is defined as

cost,(P) = Z cost,(e) = Z de(se),

eeP ecP
and the cost of the state s is defined as
cost(s) = Z cost,(s') = Z Sede(5e).
1€[N] ecR

We usually measure the cost of a state in two ways, the total cost of a state s, denoted by

tot(s), is the sum of all players’ costs. Clearly tot(s) coincides with the cost of the state s:
tot(s) = Z cost,(s') = cost(s).

We also define the maximum cost of s, denoted by max(s) as the maximum cost of a player
in s:

= cost,(s).
max(s) frel[%( (s")



1.1.1 Nash equilibria, social optima and the Price of Anarchy

One of the most important concepts in game theory is that of pure Nash equilibrium (PNE),
which represents a stable outcome of the game, since no player ¢ € [N] can improve their

cost if they unilaterally changes strategy by selecting a different strategy.
Definition 1.3. A pure Nash equilibrium (PNE) is a state s = (s!,...,s’,...,s") such that,
for each i € [N] we have

costy(s') < costs(3')  V(s',...,&,...,s") € X.

A PNE is optimal solution for each single player. A centeral decision maker (e.g.
government or centeral authority) would instead persue a strategy profile maximizing the

social welfare, which is defined as follows

Definition 1.4. A social optimum with respect to the total cost is a state o such that
cost(o) < cost(s) Vs e X.

A social optimum with respect to the maximum cost is a state o such that
max(0) < max(s) Vs e X.

Recall that although pure Nash equilibria are best for each single player, the social
costs of pure Nash equilibria could be much higher compared with the cost of the social
optimum. Thus, we consider pure Nash equilibria as inefficient outcomes. To measure the

inefficiency of pure Nash equilibria, we use the definition of (pure) Price of Anarchy [34].

Definition 1.5. The Price of Anarchy (PoA) is the maximum ratio between the cost of a PNE



and the cost of a social optimum.

cost
PoA = max (£)
f isaPNE,seX cost(s)

r7

In other words, to compute the PoA we consider the social optimal state and the “worst
PNE, i.e., a PNE whose cost is as large as possible.

We remark that for general game theory models, pure Nash equilibria are not guaranteed
to exist. However, every game must have a mixed Nash equilibrium, in which each player
selects strategies at random and acts to minimize their expected payoff. To define such
randomized strategies formally, let us enhance the choices of players so each one can pick
a probability distribution over their set of possible strategies; such a choice is called a
mixed strategy. We assume that players independently select strategies using the probability
distribution. The independent random choices of players lead to a probability distribution
of strategy vectors s. Nash (1951) proved that under this extension, every game with a

finite number of players, each having a finite set of strategies, has a Nash equilibrium [45].

Theorem 1.6 ([45]). Any game with a finite set of players and finite set of strategies has a Nash

equilibrium of mixed strategies.

1.1.2 Potential function

Although pure Nash equilibria may not exist in general games, they are guaranteed to
exist in every congestion game. In the classical paper [50] Rosenthal proved the following

theorem:
Theorem 1.7. Every congestion game has at least one pure Nash equilibrium.

In the proof Rosenthal introduced the following potential function ®(x) : X — Rx:

o) =) Z de(i).

ecR =1



Given a state x and a player ¢, let 2~ denotes the strategies of the other players in z. Also

let 7 = (7, 27%) € X, then we have that

®(z) — ®(7) = cost, (") — costz(7").

Thus, given a pure Nash equilibrium z, for each player i and strategy 7 € X*, we have

O(2', 27" < Bz, 27,

Let the neighbourhood of a state 7 be N'(z) = {(2*,27") : foralli € [N],2' € X'}. Tisa
local minimum of ®(x) if &(z) < ®(z) for all z € N (z). Then every local minimum of ®(z)

is a PNE of the congestion game.

Congestion games have been widely investigated in the literature [55, 57, 51, 20, 54, 9].
These games belong to the class of potential games, for which a PNE is guaranteed to
exists. Potential games are characterized by the existence of a potential function, and each
local optimum of such function corresponds to a PNE [50, 44]. The inefficiency of pure
Nash equilibria in congestion games has also been widely studied. For atomic congestion
games with affine delays and NV > 3 players, Awerbuch et al. [5, 6] and Christodoulou and
Koutsoupias [13] independently provided an upper bound of 5/2 on the PoA. If the game
is symmetric the bound can be improved to (5N — 2)/(2N + 1) [13]. Correa et. al. later
proved this bound is tight for symmetric network congestion games with linear delays,
by exhibiting a family of instances (parametrized by N) that achieves this bound. Each
instance is composed by N disjoint (s, t)-paths, plus some connecting edges that link these
paths. For asymmetric atomic congestion games having polynomial delay functions with
nonnegative coefficients and highest degree p, Christodoulou and Koutsoupias [13] showed
that the PoA is in p®® (see also [5, 6]). Aland et al. [3] later obtained exact values for the

worst-case PoA. These exact values admit a lower bound of | ¢, |”*! and an upper bound of



Table 1.1: Summary of related work and of our main results for the worst-case PoA with re-
spect to the total players’ costs. In the column “structure”, we write

on the structure of strategy sets is made.

‘o 7

when no assumption

Table 1.1
Atomic | Symmetric| Delays | Structure | PoA

N N Affine | - =p(D) =4/3 [52]

N N Poly-p | - = p(D) € ©(p/Inp) [52]

Y N Affine | - =5/2 [13]

Y Y | Affine |- SN2 [13, 14]

Y Y Affine | ext-para =4/3 [25, 26]

Y Y Affine | ser-para € [27/19,2] [Chapter 2]

Y Y Affine | graphic = = [23]
matroid

Y Y Affine | k-uniform | <1.41 [18]
matroid

Y Y Affine | pavingma-| <17/7 [Chapter 4]
troid

Y N Poly-p | - € [[@,)P, oot [3,4]

Y Y Poly-p | - > @, € O(p/Inp)P™"  [Chapter 3]

Y Y Poly-p | ext-para = p(D) € O(p/Inp) [25, 26]

Y Y Poly-p | ser-para <y(D) =2t -1 [Chapter 3]

Y Y Poly-p | ser-para SR E [Chapter 3]

Y Y Poly-p | k-uniform | € O(2P(P+D) [36]
matroid

Y Y Poly-p | k-uniform | € 2?O(p/Inp) [Chapter 4]
matroid

Y Y Poly-p | paving ma- | € 4?O(p/Inp) [Chapter 4]
troid

¢v*!, where ¢, € ©(p/Inp) is the unique nonnegative real solution to (z + 1)? = z7*'.

1.2 Congestion games on networks

1.2.1 Preliminaries on networks

In this section we review the definition of networks and two sub-classes, extension-parallel

networks and series-parallel networks. Most of the definitions are from [2].

Definition 1.8. A directed graph G = (V, E) consists of a set V' of nodes and a set £ of arcs



whose elements are ordered pairs of distinct nodes. A directed network is a directed graph
whose nodes and/or arcs have associated numerical values (typically, costs, capacities,

and/or supplies and demands).

In this thesis we often make no distinction between "graph" and "network", so we use
them synonymously. We also write "directed network" as "network" for convenience. If a

network has a single pair of source and sink (s, ¢), then we call it an (s, ¢)-network.

Definition 1.9. A graph G’ = (V', E') is asubgraphof G = (V,E)if V' C Vand E' C E. We
say that G’ = (V’, E’) is the subgraph of G induced by V' if E' contains each arc of E with

both endpoints in V.

Definition 1.10. A walk in a directed graph G = (V, E) is a subgraph of G consisting of a
sequence of nodes and arcs vy, €1, v, €2, ..., Un_1, €1, Uy, Satisfying the property that for
all1 <k <n—1,either e, = (vg,vp11) € Eor e = (vp11,v) € E. A directed walk is an
"oriented" version of a walk in the sense that for any two consecutive nodes vy, vi41 on the

walk, e, = (vg, vp11) € E.
Definition 1.11. A directed path is a directed walk without any repetition of nodes.

For convenience, we write "directed path" as "path". Next we introduce two sub-classes

of networks.

Definition 1.12. The parallel composition of two networks G; and G, is an (s, t)-network
obtained from the union of GG; and G, by identifying the source of GG; and the source of G,
into s, and by identifying the sink of GG; and the sink of G, into ¢. The series composition of
G4 and G, denoted by G o Gy, is an (s, t)-network obtained from the union of G; and G,
by letting s be the source of GG, t be the sink of G5, and by identifying the sink of G; with

the source of Gs.

Definition 1.13 ([25]). An (s,t)-network is series-parallel if it consists of either a single

edge (s,t) or of two series-parallel networks composed either in series or in parallel. An
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(s,t)-network is extension-parallel if it consists of either: (i) a single edge (s, ?), (ii) a single
edge and an extension-parallel network composed in series, or (iii) two extension-parallel

networks composed in parallel.

We remark that series-parallel networks are a superclass of parallel link networks and

extension-parallel networks.

Definition 1.14. Given a directed graph G = (V, E) and s,t € V, a vector z € RY is called

n (s,t)—flow if it satisfies:

Z Ty — Z Ty =0, YveV\{s,t}

(u,v)eE (vyw)eE

1.2.2 Network congestion games
With the above definitions, we define the network congestion games as follows:

Definition 1.15. Let G = (V, £)) be a network, we consider a network congestion game on
G with N players. For each player i, there is a pair of source and sink nodes denoted by
(s4,t;). The strategy set X" of player 7 is the set P’ of (s;, t;)-paths in G. When all the players
have the same origin and destination (s, ¢), their strategy sets all coincide with P and the
game is called symmetric.

A state of the game is a strategy profile P = (p',...,p") where p’ € P’ is the (s;, t;)-path
chosen by player i, for i € [N]. The set of states of the game is denoted by X = X! x---x XV,
When the game is symmetric, each state P = (p',...,p") € X induces an (s, t)-flow
f=f(P)=x"+ -+ x" of value N, where \* is the incidence vector of p’ for all i € [N].
On the other hand, each (s, t)-flow f of value N can correspond to several states, since

there might be multiple decompositions of f into N (s, t)-paths.

The complexity of PNE in network congestion games has been well studied. Fabrikant
et al. [22] gave a strongly polynomial algorithm to find a PNE in symmetric network

congestion games, and proved that in the asymmetric case network congestion games are
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PLS-complete, even for linear delays [22, 1]. Then Del Pia et al. [20] later introduced the
class of totally unimodular (TU) congestion games, where the players’ strategies are binary
vectors inside polyhedra defined by totally unimodular constraint matrices. Network
congestion games belong to this class. In the symmetric case, they gave a strong polynomial
algorithm to find a PNE.

There is a rich literature concerning the PoA in network congestion games where the
social cost is the players’ total cost. Many variants of network congestion games arise from
considering different parameters and their combinations. As we shall see, the impact that
the network structure has on the inefficiency of pure Nash equilibria varies significantly
based on the combination of these parameters.

The first distinction is between atomic and non-atomic congestion games. In non-atomic
congestion games, the number of players is infinite and each player controls an infinitesimal
amount of flow. For these games, Roughgarden [52] proved that the PoA is independent of
the network structure and equal to p(D), where p depends on the class of delay functions
D [55].

For atomic games, where each player controls a non-negligible amount of flow, network
structure affects the PoA differently, depending on whether all the players have the same
effect on congestion. In weighted congestion games, where the effect of each player on
congestion is proportional to the player’s weight, the worst-case PoA is already achieved by
very simple networks consisting of only parallel links [8] when D is the class of polynomial
functions with nonnegative coefficients and highest degree p. In contrast, in unweighted con-
gestion games the effect of network structure seems significant. For asymmetric congestion
games defined over general networks and in the case where D is the class of polynomial
functions with nonnegative coefficients, Christodoulou and Koutsoupias [13] showed that
the PoA is in p®® (see also [5,6]). Aland et al. [3, 4] later obtained exact values for the

p+

worst-case PoA. These exact values admit a lower bound of | ®,, |7 " and an upper bound of

®p+!, where ®, € ©(p/Inp) is the unique nonnegative real solution to (z 4 1)? = 2#*'. For
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symmetric congestion games the PoA is again p®® [13, 5, 6]. The worst case PoA drops
significantly in the presence of special structure. Liicking et al. 38, 39] studied symmetric
congestion games on parallel links and proved that the PoA is 4/3 for linear functions. Later
Fotakis [25, 26] extended this result by proving an upper bound of p(D) for the larger class
of extension parallel networks with delays in class D. Moreover, this upper bound is tight
[24, 27]. It is known that, for the class of polynomial delays with nonnegative coefficients
and highest degree p, p(D) € © (p/Inp). This indicates that there is a huge gap between
the worst-case PoA in general networks and in extension-parallel networks.

The PoA in symmetric series-parallel network congestion games has been recently
investigated only for the specific case of affine delay functions [30], and it has been shown
that the worst-case PoA is between 27/19 and 2 [30], which is strictly worse than the PoA
of 4/3 in extension-parallel networks [25, 26], and strictly better than the PoA of 5/2 in
general networks [14]. One key step to prove the upper bound in [30] consists in using the

following inequality introduced in [25, 26]

cost(f)
p(D)

< cost(o) + A(f,0), (1.1)

where cost( f) and cost(o) denote the total cost of a PNE flow f and of a social optimum flow
o, respectively, and A(f,0), is a quantity that depends on the difference o — f. For series-
parallel networks with affine delays, Hao and Michini [30] prove that A(f,0) < 1/4cost(f).
This approach cannot be further extended to polynomial delays of maximum degree
p, because we would obtain A(f,0) < a(p)cost(f), where a(p) is a function of p that
exceeds 1/p(D) for large p. Thus, an extension of the approach in [30] would provide an
inconsequential bound.

Although our focus in the thesis is only on pure Nash equilibria, previous works have also
investigated the PoA of mixed Nash equilibria. For both atomic and non-atomic congestion

games in arbitrary networks, the upper bounds on the PoA of pure Nash equilibria also
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hold for mixed Nash equilibria [3, 4, 52, 54]. In the symmetric case, previous results have
showed that the network structure can limit the inefficiency of mixed Nash equilibria.
Specifically, Gairing et al. [29] showed that the (mixed) PoA for symmetric unweighted
network congestion games on parallel links with polynomial delay functions of highest
degree p is at most B,,;, where B; denotes the Bell number of order i. They further
established that this bound is asymptotically tight as the number of players and resources
goes to infinity. While the (mixed) PoA bound for congestion games on parallel links is
lower than that for arbitrary networks, it exceeds the upper bound presented in Theorem
3.3 for pure Nash equilibria. This implies that the our upper bound on the (pure) PoA of
symmetric congestion games over series-parallel networks does not hold for mixed Nash
equilibria.

The PoA with respect to the maximum players’ cost has received less attention. In the
non-atomic setting, Roughgarden [53] showed that the worst-case PoA is n — 1, where n is
the number of nodes in the network.

In the atomic setting, Koutsoupias and Papadimitriou [35] first studied weighted con-

gestion games with linear delay functions on m-parallel links. For the case where the delay

functions on the parallel links are all identical, they provided a lower bound in {2 (1 i )
oglogm

and an upper bound in O(y/mlogm) on the worst-case PoA for both pure and mixed Nash

equilibria. Later Czumaj and Vocking [17] extended this framework to parallel links with

different linear delay functions, and they established an asymptotically tight bound on the

worst-case POA in © (&%) for mixed Nash equilibria and in © (log)i ;”m> for pure Nash
equilibria. The m-parallel links model has also been studied in [16, 40, 28]. Christodoulou
and Koutsoupias [13] investigated the PoA of pure Nash equilibria in general unweighted
congestion games. In the symmetric case, they showed that the worst-case PoA is 5/2 for
affine delays and p®® for polynomial delays of maximum degree p. In the asymmetric

case, for games with N players, they proved that the worst-case PoA is in ©(v/N) for affine

delays and in Q(N ﬁ) and O(N) for polynomial delays of maximum degree p.
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Epstein et al. [21] characterized efficient network topologies, i.e., network topologies
such that, for any class of non-decreasing delay functions, every PNE is also a social
optimum. For unweighted symmetric network congestion games they established that
extension-parallel networks are efficient, implying that on these networks the PoA is 1.
They also proved that this result is tight, i.e., it does not hold when further relaxing the

network topology.

1.3 Congestion games on matroids

1.3.1 Preliminaries on matroids

In this section we reivew some basic definitions and properties of matriods. The definitions

are from [56].

Definition 1.16. A pair (5,Z) is called a matroid if S is a finite set and 7 is a nonempty
collection of subsets of S satisfying:

(i)ifl€eZand J C I, then J €Z,

(ii)ifI,J € Zand |I| < |J|, thenI + z € Z for some z € J \ I.

Given a matroid M = (5,7), a subset I of S is called independent if I belongs to Z, and
dependent otherwise. A subset B of S is called a base of S if B is an inclusionwise maximal
independent subset of S. Thatis, B € 7 and thereisno Z € Zwith B C Z C S. A setis
called simply a base if it is a base of S. The common size of all bases is called the rank of the
matroid. A circuit of a matroid M = (S, Z) is an inclusionwise minimal dependent set.

Next we introduce three important theorems that characterize the matroid structure
from the aspects of bases, circuits and rank functions. The first one is known as the bases

exchange property.

Theorem 1.17 ([56]). Let S be a set and let 3 be a nonempty collection of subsets of S. Then the

following are equivalent:
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1. B is the collection of bases of a matroid;
2. ifB,B'€e Bandx € B'\ B, then B'\ {z} U{y} € Bforsomey € B\ B/,
3. ifB,B'€e Bandx € B'\ B, then B\ {y} U {x} € Bforsomey € B\ B’

In the next theorem, we give the conditions characterizing a collection of circuits of a

matroid.

Theorem 1.18 ([56]). Let S be a set and let C be a collection of nonempty subsets of S, such that

no two sets in C are contained in each other. Then the following are equivalent:
1. C is the collection of circuits of a matroid;
2.ifC,C"e CwithC # C"and x € C N C’, then (CUC") \ {z} contains a set in C;

3. ifC,C"eC,eeCNC' andy € C\ ', then (CUC")\ {z} contains a set in C containing

Y.
Finally we give conditions characterizing a rank function of a matroid.

Definition 1.19. The rank function of a matroid M = (S, Z) is the function r,; : P(S) — Z
given by:
ry(U)=max{|Z|: Z€ZI,ZCU}

forU C S.

a matroid is determined by its rank function, as a set U is independent if and only if

r(U) = |U].

Theorem 1.20 ([56]). Let S be a set and let r : P(S) — Z.. Then r is the rank function of a
matroid if and only if for all T, U C S:

1. n(T) <r(U) <|U|#T CU,

2.r(TNU)+r(TUU) <r(T)+rU).
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Next we introduce some classic matroids as examples.

Uniform matroids The easist class of matroids is given by the uniform matroids. They
are determined by a set S and a number k: the independent sets are the subsets I of S
with |I| < k. This trivially gives a matroid, called a k-uniform matroid and denoted by U,
where n := |S|. In a k-uniform matroid, any subset of S having size greater than or equal
to k + 1 is a circuit.

Graphic matroids Let G = (V, E) be a graph and let Z be the collection of all subsets of F
that form a forest. Then M = (£, Z) is a matroid. Any spanning forest of G is a base of ),
and any circuit in G is a circuit of M as well.

Paving matroids Let M = (S, 7) be a matroid has rank ¢, if all the circuits in M/ have size at

least ¢, then M is a paving matroid.

1.3.2 Matroid congestion games

Given the defition of matroids, then we define the matroid congestion games as follows:

Definition 1.21. A matroid congestion game consists of N players and a resource set R, such
that for each player i the strategy set X ! is the set of bases of a matroid M; = (R, Z;). The

game is called symmetric if M; = --- = My.

For the class of matroid congestion games, a PNE equilibrium can be efficiently com-
puted, both in the symmetric and in the asymmetric case [1,20]. Concerning the inefficiency
of equilibria, Kleer and Schéfer [33] showed that the PoS in general matroids is upper
bounded by p(D) when the delay functions belong to class D. However, the PoA of matroid
congestion games is not well understood. For affine delays, the worst-case PoA of general
congestion games, that is equal to 5/2, can be asymptotically achieved in asymmetric in-
stances of singleton congestion games —that coincide with 1-uniform matroid congestion

games— when the number of players goes to infinity [12].
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In the symmetric case, the PoA of general matroid congestion games is still not com-
pletely understood. For graphic matroids and N = 2, 3, 4 or infinity the PoA can be as large

as the worst-case PoA of symmetric congestion games, which is equal to g%ﬁ [23]. How-

ever, for arbitrary IV or different delay functions we don’t know whether the the worst-case
PoA of symmetric congestion games can be achieved by symmetric matroid congestion
games. Interestingly, the worst-case PoA of k-uniform matroid congestion games with
affine delays cannot exceed 1.4131 and it is equal 1.35188 when the number of players
goes to infinity [18]. Moreover, for symmetric k-uniform matroid congestion games with
polynomial delays of highest degree p the worst-case PoA is in O(2°?*1)) and in Q(27) [36].
This indicates that the combinatorial structure of k-uniform matroids significantly limits

the inefficiency of equilibria.

1.4 Structure of the thesis

In Chapter 2, we study the Price of Anarchy of congestion games on the series-parallel
networks with linear cost functions. We find that the PoA of series-parallel network
congestion games is between 27/19 and 2. The upper bound of this PoA is smaller than
the PoA of general network congestion games, which is 5/2 [14]. And it is higher than the
PoA of extension-parallel network congestion games, which is a subclass of series-parallel
congestion games and having PoA at most 4/3 [25]. Motivated by Fotakis [25], for a PNE
(s,t)-flow f and a (s, t)-flow o that minimizing the total cost, we look at the function A(f, o)
which measures "how different” these two flows are. Fotakis proved that A(f,0) < 0 if
and only if f minimizes the potential function, and showed how this implies that the ratio
between the cost of f and the cost of o is at most 4/3. However, series-parallel networks
might admit a PNE that is only a local optimum of the potential function. The crucial block
of our proof consists in establishing that for any PNE f we have A(f,0) is at most 1/4 the

cost of f, which will imply that the PoA is at most 2. Then we also construct an instance
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with linear delay functions that have a Price of Anarchy 27/19 as the number of players
goes to infinity.

In Chapter 3, we study the Price of Anarchy of congestion games on the series-parallel
networks with an arbitrary cost function class D. When D is the class of polynomial
functions with highest degree p, our upper bound is 2#** — 1, which is significantly smaller
than the worst-case Price of Anarchy in ©(p/ In p)? for general networks. The main technical
ingredient consists in introducing the new parameter y(D) defined in equation (3.1), which
intuitively can be used to upper bound by what percentage the cost of an edge increases
when one more player uses the edge. First, we assume that the difference o — f contains
one cycle including the source s and the sink ¢. In the crucial step of our proof (Lemma
3.9), we contemplate adding one unit of flow on an arbitrary (s, t)-path p contained in o,
and we establish that the corresponding increase of the total cost is at least equal to the
average players’ cost in f. Next, in Lemma 3.10, we use the definition of y(D) to prove that
each (s, t)-path contained in o has cost at least y(D) times the average players’ cost in f.
Then, if we consider all the (s, t)-paths of an arbitrary decomposition of o, we obtain that
cost(f) < y(D)cost(o) (Lemma 3.11). We remark that this result holds regardless of the
network structure. Finally, we relax the assumption on the cycles defined by o — f, and we
prove a laminarity property of series-parallel networks to prove Theorem 3.2, see Lemmas
3.12 and 3.13.

We also construct a family of instances with polynomial delay functions that have a Price
of Anarchy in (27 /p) when the number of players goes to infinity. Compared with the
subclass of extension-parallel networks, whose worst-case Price of Anarchy is in © (p/Inp),
our results show that the worst-case Price of Anarchy quickly degrades from sub-linear to
exponential when relaxing the network topology.

We finally consider an alternative measure of the social cost of a strategy profile as
the maximum players’ cost. We introduce a parameter z(D) and we show that the Price

of Anarchy is at most y(D)z(D), which for polynomial delays of maximum degree p is at
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most 2%7. Compared to the PoA in general networks, which is in pe(p), our results shows
a significant improvement in efficiency. We also prove that our previous lower bound
in Q(27/p) is still valid for this measure of social cost. This is in stark contrast with the
PoA in the subclass of extension-parallel networks, where each pure Nash equilibrium is
a social optimum. The approach that we use for bounding the PoA with respect to the
maximum players’ cost are based on relating the cost of a social optimum with respect to
the maximum players’ cost to the cost of a social optimum with respect to the total players’
cost. For the upper bound stated in Theorem 3.4, the key step consists in introducing the
parameter z(D) defined in equation (3.3) and in establishing that, given a PNE, the most
expensive path in the PNE has cost no greater than z(D) times the average players’ cost in
the PNE. To prove the lower bound stated in Theorem 3.5, given an instance I with PoA o
with respect to the total cost, we construct an instance I’ with PoA a with respect to the
maximum players’ cost. This new instance is obtained by composing in series N copies of
the original network and by permuting the players’ strategies so that all the players face
the same cost in IT'.

At the end of Chapter 3 we also provide a construction of symmetric congestion games
on general networks having polynomial delays function with highest degree p that has
Price of Anarchy at least |®,]”, which is very close to the tight PoA of asymmetric network
congestion games. This result implies that the low PoA of series-parallel network congestion
games is caused not by symmetry but series-parallel structure.

In Chapter 4, we study the PoA of symmetric congestion games on paving matroids
and k-uniform matroids. For symmetric k-uniform congestion games with delay functions
in an arbitrary class D, we prove that the PoA is upper bounded by z(D)p(D). Then we
generalized this method from k-uniform matroids to its superclass, paving matroids, and
show that for symmetric paving matroid congestion games with delay functions in an
arbitrary class D, the PoA is at most z(D)?p(D). We also construct an instance of symmetric

paving matroid congestion game that achieves a PoA of 13/9 with affine delay functions,
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which is worse than the upper bound of the PoA in k-uniform congestion games. Finally,
we show that for symmetric paving matroid congestion games with affine delay functions,
the PoA is at most 17/7.

Our approach is based on representing the “difference” between a PNE [ and a social
optimum o of a matroid congestion game as a flow on a complete directed graph, whose
nodes correspond to the resources. Each unit of flow on arc (r,7’) corresponds to a player
replacing r with ' in their strategy. The overloaded resources (those with more players in f
than in the o) act as supply nodes and the underloaded resources (those with more players
in the o than in the f) act as demand nodes. If every path from supply u to demand v is
such that the costs of © and v in the PNE are related through a constant «, then we can
establish that the PoA is at most ap(D) (Theorem 4.7). When the delay functions are in
class D, we can determine values of « for the case where the matroid is k-uniform (Lemma
4.8) or paving (Lemma 4.10). These results allow us to establish Theorems 4.2 and 4.4.
Note that our definition of flows generalizes the idea of the “augmenting paths” used by
de Jong et al. [18], extending it from k-uniform matroids with affine delay functions to
general matroids with delay functions in class D.

For a paving matroid congestion game with affine delays we require a different approach
in order to prove Theorem 4.3. Given f, o and the associated flow, we construct another
congestion game with two states s and ¢ such that % < % We show that s and ¢

and their associated flow satisfy some special properties, which are used to establish that

cost(s)/cost(q) < 17/7 (Theorem 4.12).
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2 PRICE OF ANARCHY IN SERIES-PARALLEL NETWORK CONGESTION

GAMES WITH LINEAR DELAYS

2.1 Introduction

2.1.1 Overview and main results

Network congestion games are commonly used to model problems in large-scale networks
such as routing in communication networks and traffic planning in road networks [31, 46].
In a network congestion game there is a finite number of selfish players, and each of them
has to select a path from an origin to a destination. The edges of the network are regarded
as resources that can get congested, because each player using an edge experiences a delay
that is non-decreasing with respect to the total number of players using it. Each player
aims at minimizing the cost of the path she selects, which is the sum of the delays of all the
edges in the path.

In this chapter, we consider the atomic setting, and we assume that each player controls
one unit of flow that has to be routed on a single path. Moreover, we consider symmetric
games, where all the players have the same origin-destination pair. We focus on the special
case where the network is a two-terminal series-parallel graph and the edge delays are
affine functions, see Fig. 2.1 for an example.

First, two-terminal series-parallel networks can be recognized in linear-time [59] and
are relevant in many applications, such as for problems on electric networks, scheduling
and compiler optimization. Moreover, the special structure of these graphs and their
decomposition properties can be exploited to define efficient algorithms for combinatorial
problems that are NP-hard in general [7, 32, 58]. Finally, series-parallel graphs are graphs
with treewidth 2, thus understanding how their structure impacts the PoA in network
congestion games could be the first step towards relating the PoA to the treewidth parameter.

Indeed, exploiting the structure of series-parallel networks is crucial to prove our main
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result.

Theorem 2.1. Suppose that G is a series-parallel (s, t)-graph and that the delay functions are affine.
Then the PoA is at most 2.

The best upper bound on the PoA in series-parallel network congestion games with affine
delays that was previously known was equal to 5/2, however this bound actually holds for
network congestion games on arbitrary graphs [14]. In contrast, for network congestion
games with affine delays in extension-parallel graphs, Fotakis [25] proved a bound of
4/3 on the PoA. We recall that extension-parallel networks, similarly to series-parallel
networks, can also be obtained by parallel and series compositions of extension-parallel
components, but in every series composition at least one component must be a single
edge. Thus extension-parallel networks are a subclass of series-parallel networks, and
indeed they display much stronger properties than series-parallel networks. Notably, paths
in extension-parallel networks are linearly independent [43], in the sense that every path
contains an edge not included in any other path. This property is crucially exploited by
Fotakis to prove the bound of 4/3 on the PoA. However, neither this property, nor the
bound of 4/3 on the PoA are valid for the larger class of series-parallel networks.

In fact, Fotakis provided a counterexample of a series-parallel network where the PoA
is equal to 15/11 > 4/3 [25]. This was the best lower bound on the PoA known so far for
symmetric network congestion games on series-parallel networks and affine delays. We
improve such lower bound by constructing a class of instances with a lower bound on the

PoA that asymptotically approaches 27/19 as the number of players goes to infinity.

Theorem 2.2. The PoA of series-parallel congestion games with affine delays is at least 27/19 — ¢,

where e — 0as N — oo.
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2.1.2 Preliminaries

Notation. For a network G we denote by V(G) and E(G) the node set and the edge set
of G, respectively. An edge e € E(G) can be explicitly written as the ordered pair (u, v),
where w is the tail of e and v is the head of e. Directed paths will be simply referred to as
paths. Unless otherwise specified, we will only consider simple paths, i.e., paths that do not
traverse any node multiple times.

A path from node u to node v is called a (u, v)-path. We say that two (u, v)-paths in G
are internally disjoint if they only intersect at u and v.

Paths and cycles of G are regarded as sequences of edges, thus we may for example
write e € p rather than e € E(p) for a path p.

Let G = (V, E) be an (s, t)-network, i.e., a network with source s and sink ¢, and let
¢ € RE@. An (s,t)-flow is an assignment of values to the edges of G such that, at each
node u other than s and ¢, the sum of the values of the edges entering u equals the sum
of the values of the edges leaving u. The value of the (s, t)-flow is the sum of the values
of the edges entering t. We might simply use the term flow, if the source and sink of the
flow are clear from the context or not relevant for the discussion. For a path p in G we
define c(p) = >_ ¢, ¢., and for a flow f in G we define c(f) = >_. () Cefe. Finally, for a
vector f € RE(@ we define E(f) = {(u,v) : (e = (u,v) € E(G)and f, > 0) or (e = (v,u) €
E(G) and f. < 0)}. Correspondingly, we denote by G/( f) the network (V(G), E(f)). Note
that if f > 0, then G(f) is a subgraph of G. Given two subsets A and B of E(G), we denote
by AA B = (A\ B) U (B\ A) the symmetric difference of A and B. For n € N, we denote by

[n] the set {1,...,n}.

Example 1. Consider the 3-player series-parallel congestion game with affine delays de-
picted in Fig. 2.1. The underlying network G and affine delay functions are showed in
Fig. 2.1(a). A PNE flow f is represented in Fig. 2.1(b). The players’ strategies are the

s,t)-paths p! = (e, eq,¢5), p*> = (e1, €5, e3), and p> = (e, 2, e3). Moreover, the flow o that
p
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(a) A series-parallel network G (b) A PNE flow f on G

Figure 2.1: The series-parallel network congestion game of Example 1. The PoA is 15/11.

minimizes the social cost can be reached from f by deviating one unit of flow from the
path (ey, e2, e3) to the path (e7). As a result, we have cost(f) = 15 and cost(o) = 11, and this
implies that the PoA is 15/11. This example was originally introduced by Fotakis to show
that the PoA of series-parallel congestion games with affine delays can be greater that 4/3

[25].

2.2 Upper bound on price of anarchy

2.2.1 Overview of the approach

To prove that in series-parallel network congestion games with affine delays the PoA is at
most 2, we need to overcome some of the limitations in Fotakis” approach [25], which is
tailored to extension-parallel networks.

The first crucial property exploited in [25] is that there is a one-to-one correspondence
between strategy profiles and network flows. Specifically, for a game with N players having
origin s and destination ¢, each (s, t)-flow of value N corresponds to a unique strategy
profile (up to players’ permutation), because there is a unique decomposition of the (s, t)-
flow into NV (s, t)-paths. The second crucial property exploited in [25] is that all pure Nash
equilibria are global optima of the potential function. This can be used to show that the PoS
and the PoA coincide.

Both properties do not extend to series-parallel networks. In particular, each (s, t)-flow

f of value N can be decomposed into different strategy profiles, and while some of them
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might be a PNE, some of them might not.

We define a greedy decomposition of f into the single players’ strategies. A similar
definition was introduced to compute to generalized maximum flows in series—parallel
graphs [37, 49]. We prove several properties of greedy decompositions and we crucially
exploit these properties to derive a bound on the PoA.

For a PNE (s, t)-flow f and a (s, t)-flow o minimizing the total cost, we use the function
A(f, 0) defined in [25] to measure “how different” these two (s, t)-flows are. Fotakis proved
that A(f,0) < 0if and only if f minimizes the potential function, and showed how this
implies that the ratio between the cost of f and the cost of o is at most 4/3. However,
series-parallel networks might admit a PNE that is only a local optimum of the potential
function. The crucial block of our proof consists in establishing that for any PNE f we have
A(f,0) is at most 1/4 the cost of f, which will imply that the PoA is at most 2. A similar
approach was proposed by [19], who study the PoA in k-uniform matroid congestion
games. In particular, the authors show that an analogue of A(f,0), which measures the
“difference” between a PNE f and a strategy profile o that minimizes the social cost in
the k-uniform matroid congestion game, cannot exceed a constant fraction of the cost of
f. We point out that k-uniform matroids and flows in series-parallel networks are very
different combinatorial objects, thus the techniques used in [19] cannot be extended to

bound A(f, o) in our setting.

2.2.2 Proof of theorem 2.1

To prove Theorem 2.1, we will use the function (D) := sup,cp 5(d) introduced in [15],
where D is a non-empty class of non-negative and non-decreasing functions and, for a
non-negative and non-decreasing function d(z), 3(d) := sup,>,>g %&f(y)). We remark

that when D is the class of affine functions, we have 3(D) = 1/4. Given an arbitrary PNE
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flow f of G' and a social optimal flow o define

A(f,0) = > (fe—0)de(fe) = Y (0 — fo)de(fe+1).

e:fe>0e e:fe<oe

By exploiting the definition of 5(D) the following inequality can be easily derived (see

proof of Lemma 3 in [25]):
cost(f) < cost(o) + B(D)cost(f) + A(f,0). (2.1)

If f is a global minimum of the potential function, then A(f,0) < 0[25]. However, series-
parallel networks might admit PNE that do not minimize the potential function. To prove
Theorem 2.1, we will exploit the special structure of series-parallel networks and affine
delays, in order to show that A(f,0) < Zcost(f), see Theorem 2.3 and Corollary 2.4. This
immediately implies that cost(f) < 2cost(0), establishing that the PoA is at most 2 for the
case under consideration. The main ideas of the proof are described as follows.

To prove Theorem 2.1 we use the following key result.

Theorem 2.3. Suppose that G is a series-parallel (s, t)-network and that the delay functions are
affine. Let f be a PNE and let C = {(C;,C}') : i € [k]} be a collection of k (not necessarily
distinct) pairs of internally disjoint (u;, v;)-paths in G, such that | {C; e € C; }| < f. for all

e € E(G). Then
k

AC, ) =3 (costy(C) — costH(C)) < icost( f.

=1
We will consider the network G(o— f), which is a collection of simple cycles {C1, ..., Cy}
such that each C; carries s; units of flow. For each i € [h] define C;" = {e¢ = (u,v) € E :
(u,v) € Cj,0. > fotand C; = {e = (u,v) € E : (v,u) € Cy,0. < f.}. Since G is series-
parallel, it is known that C;" and C; are two internally disjoint (u;, v;)-paths in G [25]. By

defining C as the set containing s; copies of (C;", C;”) for each i € [h], we can apply Theorem
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2.3. Since A(f, 0) can be rewritten as

h

A(f,0) = si(cost;(C;) — cost (C)),

i=1
we have A(f,0) = A(C, f), and we obtain the following result.

Corollary 2.4. Suppose that G is a series-parallel (s,t)-network and that the delay functions are
affine. Let f be an arbitrary PNE and let o be a social optimum. Then A(f,0) < scost(f).

We remark that, to prove Theorem 2.1, it is sufficient to use inequality (2.1) in conjunc-

tion with Corollary 2.4.

2.2.3 Proof of theorem 2.3

In this section, we formally prove Theorem 2.3. To this purpose, we need to first prove a
number of intermediate results.

An acyclic (s,t)-flow f of value N can be decomposed into N simple (s,t)-paths in
multiple ways. Given edge costs c,, e € E, we compute a c-greedy decomposition P =
{p',...,p"} of f asfollows. Set f; = f, Ey = E(f1). At each step, compute the (s, ?)-path
p' in (V, E;) with highest cost with respect to ¢, and decrease the (s, t)-flow f; by 1 on all

the edges that belong to p' to define f;,; and F; ;.

Example 1 (continued). Consider again the network congestion game in Fig. 2.1 and its
PNE flow f. We define the edge costs as ¢. = d.(f.), e € E(G). The c-greedy decomposition
P of f consists of the (s, t)-paths p* = p? = (e1, €9, €3) and p* = (e, €5, e5). The costs of the

paths p', p?, p* are 6, 6, 3 respectively.
In the next lemma, we prove a first basic property of greedy decompositions.

Lemma 2.5. Let ¢ € R” and suppose that G is a series-parallel (s, t)-network. For an (s, t)-flow

f of G of value N, let P be an arbitrary decomposition of f into N (s,t)-paths {p',...,p" } with
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c(p’) > c(p'*), i € [N — 1], and let P = {p",...,p" } be a c-greedy decomposition of f. Then

e(p') < c(p") and c(p™) > c(pV).

Proof. By construction, we have that c(p') < ¢(p').

We now prove ¢(p") > c¢(p") by proving that p" is the cheapest path in G(f) with
respect to c. We proceed by induction on the number of edges |F'| in the network G(f).
If |F| = 1, then G(f) is an edge. Thus we have p' = --- = p". This implies that p" is the
cheapest path.

Now we assume that when |F'| < k, p¥ is the cheapest path in f. When |F| = k + 1, we
have that f is composed by two flows f; and f; either in series or in parallel. Note that the
number of edges |F| in G(f1) and the number of edges |F,| in G(f2) are both at most k.

If f is composed in series by f1, f,, we can define from P two c-greedy decompositions
Pr={pl,....pN}, Po={ps,...,p3} of fi and f,, respectively, such that p’ = pi o pi for all
i € [N]. By our inductive hypothesis, we have that p and pj) are the cheapest paths with
respect to c in G(f) and G(f,) respectively, thus p"¥ = pY¥ o pY is the cheapest path with
respect to ¢ in G(f).

If f is composed in parallel by f,, f,, we define P, and P as the paths of P that belong
to G(f1) and G(f2), respectively. Then P, and P, are c-greedy decompositions of f; and
f2, respectively. By our inductive hypothesis, the last path in P is the cheapest path with
respect to ¢ in G(f;), and the last path in P is the cheapest path with respect to ¢ in G(f,).
The cheapest among these two paths is the last path in P, and it must be the cheapest path

with respect to ¢ in G(f). O

For a collection of N paths P = {p',...,p"}, c € R¥ and = > 0 we define R(P,c,z) =
ZZN: ,max {0, c(p’) — z}. In the next two lemmas we state crucial properties for greedy

decompositions of arbitrary (s, t)-flows.

Lemma 2.6. Let c € R¥ and suppose that G is a series-parallel (s, t)-network. For an (s, t)-flow

f of G of value N, let P be an arbitrary decomposition of f into N (s, t)-paths {p',...,p" } with
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c(p’) > c(pth), i € [N — 1], and let P = {p*,...,p" } be a c-greedy decomposition of . Then for
all x > 0 we have that R(P,c,z) < R(P,c,z).

Proof. The proof is by induction on the value N of the flow f. The base caseis N = 1. In

this case f is a single path, thus P = P and

R(P,c,z) < R(P,c,x). (2.2)

trivially holds.
Assume that (2.2) holds for N < k. When N = k + 1 we first prove that (2.2) holds in

C

the case where © = z, with 7 =

%). We need the following claim.

Claim 1. There is a decomposition P = {p', 7, ..., p" } of f such that p* = p" and R(P, ¢, 7) <
R(P,c, ).

Proof of claim. For a decomposition P’ of f into N (s, t)-paths let

((P)=min{|gAp'|: g€ P c(q) > z}.

Note that ¢(P") = 0 if and only if p* € P’. We want to prove that
min{/(P") : R(P,c,z) < R(P',¢,z), P" decomposition of f} (2.3)

is zero. Let P = {p',...,p"} be a decomposition of f that achieves the minimum in (2.3)
and assume by contradiction that ¢(P) > 1. Let 7 be an (s, t)-path of P such that ¢(r) > &
and ((P) = |r A p'|. Since ((P) > 1, there exist two internally disjoint (u,v)-paths in
7 A p'. We first restrict our attention to the set of paths P,, of P that traverse nodes u
and v, and to the corresponding (s, t)-flow h = f(P,,). Note that = € P,,. Next, we will
show how to construct a decomposition P,, of h such that R(f"m,, C,T) > R(Pm,, ¢, T) and

((P,,) < {(P,,). To this purpose, we will use an intermediate decomposition Q U 7 of &,
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where Q = {q¢',...,q'} is a c-greedy decomposition of i \ f(7). Our target decomposition

P,, will be obtained by slightly modifying this decomposition @ U 7. We first prove that

R(QUm,c,z) > R(Pyy, ¢, ).

In fact, since ¢t < k, by our inductive hypothesis we have R(P,, \ 7, ¢, z) < R(Q, ¢, z), and
by adding ¢(7) — Z on both sides we obtain the above inequality.

We now specify how to construct P,,. Let 7,, and ¢, be the (u,v)-subpaths of 7 and ¢!,
respectively. By construction, we have that ¢, is the (u, v)-subpath of p'. We define the
decomposition P,, from Q U 7 by replacing 7 with # = 7 \ m,, U ¢}, and by replacing ¢'

with ¢ \ ¢}, U 7. This immediately implies
UPy) < |7 AR < |m AR = U(P).

We prove that

v

R(P,,,c,z) > R(Q U, ¢, ). (2.4)

Let 0 = ¢(q,,) — c(muw). First, & > 0, because ¢, is a subpath of p'. Recalling that

¢(m) > &, we obtain
R(P,c,%) = R(QUm, ¢, ) + 6 —max{0, c(q") — z)} + max{0, ¢(¢') — 6 — @)}
If ¢(¢*) < 7, since 6 > 0, we immediately have (2.4). If ¢(q') > 7 and ¢(¢") — 0 > z, we get

R(Py,c,®) = RQUT, ¢, 7) + 6 — (c(¢') — &) + (¢(¢*) — 0 — )

=R(QUm,c, )
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Finally, if ¢(¢') > z and ¢(¢') — § < z, we get

R(Py,,¢,%) = R(QUm, ¢, %)+ 0 — (¢(q') — &)
= R(Q um,ec, j) - (C(ql) —0— j)

> R(QUm,c, ).

Thus, in any case (2.4) holds. We have obtained

9 ~

R(Pu,c,7) > R(QUm,c,z) > R(Py, ¢, 7).
We finally add to P,, the paths in P\ P,,. From the previous inequality we get
R(P,c,z) > R(P,c,7),

where P = P,,U P \ P,,. Thus R(l5 ,¢,T) > R(P,c, z). This is a contradiction on the choice
of P, since

U(P) < U(P,) < {(P,,) = ((P).

With Claim 1 at hand we can prove that (2.2) holds for N = k£ + 1 and = = z. In fact, we
only need to show that R(p, c,7) < R(P,c, ). We consider the (s, t)-flow f \ p' of value ,
and its decompositions P \ ' and P \ p'. Note that P \ p' is a c-greedy decomposition of
£\ 7. By induction we have that R(P \ p',¢,7) < R(P \ p', ¢, ). By adding ¢(7') — Z on
both sides we obtain R(p, c,7) < R(P,c, ), as desired.

We now prove that (2.2) holds for N = k£ + 1 and = > 0. First, we remark that for each

decomposition P’ of f and = > 0 we have

R(P' c,x) =Y max{0,c(p) — 2} > max{0,c(f) — (k + 1)z}, (2.5)

pEP’
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Recall that the paths in P are listed in non-increasing order of cost. If z > c(p'), then
c(p') < e(p') < z fori € [N] implies R(P,c,z) = 0, and by (2.5) R(P,c,z) > 0, thus (2.2)
holds. If z < ¢(p*™), then ¢(p’) > c(p**!) > x fori € [N]implies R(P, ¢, x) = c(f)— (k+1)z,
and by (2.5) R(P,c,z) > ¢(f) — (k + 1)z, thus (2.2) holds.

Thus we now assume c(p**!) < z < ¢(p'). Consider the network H obtained from G by
adding k + 1 parallel edges ey, . . ., €41 from ¢ to a new node . Define ¢ € REVU{erer+1}

by setting ¢, = ¢, for e € E, and

max{0, a} i=1
Ce, = 4 min{0,a} i=k+1 (2.6)

where a = (k + 1)z — ¢(f). Define the (s,t')-flow h of value k + 1 obtained from f by
assigning flow value 1 to all the new parallel edges e, . . ., e;+1. Finally, consider the decom-
positions Q = {¢',...,¢**'} and Q = {7, ..., "'} obtained from P and P, respectively,
by appending edge ¢; to the i-th paths of the decompositions. More precisely, ¢' = p‘ o ¢;
and ¢’ = p' o ¢, for i € [k + 1]. First, we remark that x = Ck/(—fl) Secondly, by construction Q) is
a ¢-greedy decomposition of h. Since we have proven that (2.2) holds for N = k + 1 and

¢(h)

r = =, we have
R(Q,d,z) < R(Q,c,x).
Ifz > Z(—ﬁ we have a > 0, thus e; has nonnegative cost and es, . . ., e;+1 have costs 0. Thus

d(q") = c(p) i=2,. . k+1

(") = c(p") i=2,...,k+1
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Since, by Lemma 2.5, z < ¢(p') < ¢(p*) we have

R(Q,d,z) = R(P,c,7) + «

thus (2.2) holds.

If max{0, c(p**1)} <z < z(ﬁ we have o < 0, thus e;;; has nonpositive costand e, . . . , e,

have costs 0. Thus

d(q') = c(p') i € [K]

d(q') = c(p') i € [K]

Since, by Lemma 2.5, z > ¢(p"*1) > ¢(p**!) we have

R(Q,d,x) = R(P,c,x)

R(Q,d,z) = R(P,c, ),

thus (2.2) holds.
U

Lemma 2.7. Suppose that G is a series-parallel (s, t)-network and that the delay functions are affine.

Let c. = d.(f.) foralle € E. Let f bea PNE and P = P(f) = {p*,p?,...,p" } be a c-greedy

decomposition of f. Then c(p'™) > %Z;.:l <) for i e [N —1].

)

Proof. We prove the lemma by induction on the number of edges |E| in G. In the base
case, we have |E| = 1, i.e,, G is a single edge, thus for every p° € P we have ¢(p') =

c(p?) = --- = ¢(p") and we are done. Next we assume that when |E| < k, any c-greedy
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decomposition P of the PNE flow f on G satisfies Lemma 2.7. We need to prove that when
|E| = k + 1, Lemma 2.7 still holds. Because G is a series-parallel network and |E| > 1, G
must be composed in series or in parallel by two series-parallel subgraphs G, = (V1, E4)
and Gy = (Va, Ey). We have |E}| < |E| and |Es| < |E|. We also denote the subflow of f in
G1 by fi, the subflow of f in G, by fs.

We denote by P* = {p',p?,...,p" } a decomposition of f defining the single players’
strategies of a PNE. We first outline the proof structure. The main idea is to break down
P*and P according to the decomposition of G into G, G3. We will first prove that f; and
f2 are PNE in GGy and G, respectively. Then we will argue that the decompositions P
and P; of f, and f, obtained by breaking down P are c-greedy decompositions in G, Gy,
respectively. Finally, we will apply induction. We consider separately the cases in which
is composed in series and in parallel.

Case 1 : G is composed by G, G5 in series at node a. Then also G( f) is obtained by composing
in series G(f1), G(f2) at node a.

We first show that f; is a PNE flow in G; and f; is a PNE flow in Gs. For every (s, )-
path p' € P* we have p' = p! o p}, where p is an (s, a)-path in G; and p} is an (a, t)-path
in Go. Thus P; = {p},p?,...,p)'} is a decomposition of fi, P5 = {ps,p3,...,p} } is a
decomposition of f,. If f; is not a PNE flow in G, there exists a p} € Py such that ¢(p})
will decrease if we switch p} to some (s, a)-path ¢ on G;. Now consider the (s, t)-path
p' € P*, and note that c¢(p*) will also decrease if we switch to the (s, t)-path g o p} on G. This
contradicts the fact that P* is a PNE in G. The proof for f; is similar.

Moreover, for each p' € P, we have that p' = pi o p, where p is an (s, a)-path and p}
is an (a, t)-path. We can conclude that P, = {p{,p3},...,p) } and P, = {p},p3,...,pY } are
c-greedy decompositions of f; and f, respectively, otherwise P would not be a c-greedy
decomposition.

Then by our inductive hypothesis, we know that P, and P, satisfy Lemma 2.7 because
|E\| < |E| = k+1and |Ey| < |E| = k + L Thus c(pi*") > 37| ﬂ and c(py) >
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D C(ZZ%) for i € [N — 1]. Note that because p"*! = pi*! o pi™!, we have that c(p'*!) =

c(Py™) + c(pst). Thus

() = elpi™) + ()
' ~ci) _ 1y

1 () "~ efp)
252 - i Z i

4 -
Jj=1 Jj=1 Jj=1

DN | —
DO | —

Case 2 : G is composed by G, G5 in parallel. Then also G(f) is obtained by composing in
parallel G(f1), G(f2).

We first show that f; is a PNE flow in G; and f; is a PNE flow in G,. Define P} =
{p* € P*:p'isapathin G,} and Py = {p' € P*: p' is a path in G, }. Note that P* = P} U
P}, Pf is a decomposition of f;, and P; is a decomposition of f,. If f; is not a PNE flow in
G, there exists a p € Py such that ¢(p}) will decrease if we switch p! to some (s, t)-path
¢ in G;. Since p} € P* and ¢ is an (s, t)-path in G, this contradicts the fact that f is a PNE
flow in G. The proof for f; is similar.

Moreover, from the c-greedy decomposition P of f we define

P, ={pe P(f):pisapathin G}

P, = {p e P(f) : pis a path in G»},

that are c-greedy decompositions of f; and f5, respectively. For i € [N — 1] define

Pr={p e P(f):j<i}
Pl ={p’ € P':pisapathin G}

P} ={p’ € P': pisapathin G,}.
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Note that P* = P} U Pj. Our goal is to prove

c(ﬁi—i-l) > 1 C(ﬁ])

T 24 1
Jj=1

1 > pepi €(0) + 2 pepi c(p)
2 |Pil + [P '

(2.7)

Assume without loss of generality that p'™! € P,. Since f; is a PNE flow in Gy, P, is a

c-greedy decomposition of f;, and |F;| < |E| = k + 1, by our inductive hypothesis we have
greeday P y yp

A 12 pepi ¢(p)
(5t > S (28)
2 |P
If Pi =, (2.7) trivially holds. Thus we now assume P; # (). In this setting, there are some
paths of P? that belong to G». Thus f; and f; are nonzero flows, we must have f, < N — 1

for all e € E. In the rest of the proof we show

. 12 pepi c(p)
() = =B (29)
2 |B
Note that (2.8) and (2.9) imply (2.7).
If | Pi| = | P»], all the paths of P(f) that belong to Gi; appear before p**!. So it is sufficient

to show that c(p™*!) > %Z_p_eu%'cﬂ. We have:

C(ﬁ“—l) = Z de(fe)

eeﬁi+1
1
> 5 Z de(f. +1) (2.10)
eepitl
1
> 5 max {c(p):p € Py} (2.11)
> EM. (2.12)
2R

Inequality (2.10) holds since for each edge e € E we have an affine delay function d.(z) =
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a.z+b. witha, > 0,b. > 0. More precisely, when a, = b, = Owehaved.(f.) = d.(f.+1) =0,

de(fe) _ aefe+be
de(fe+1) - ae(fe+l)+be

and when at least one among a. and b, is positive we have > 1 for any
fe € [N — 1]. Inequality (2.11) holds since P* is a PNE and because p'™! is an (s, t)-path.
Finally, inequality (2.12) holds since the cost of the most expensive path in P; is higher
that the average cost of the paths in P, which is equal to the average cost of the paths in 2.

If | Pi| < ||, some of the paths of P that belong to G appear before p**! and some
appear after p'"'. We denoteby ¢ = min {¢ : p' € P»,t > i + 1}. Thenwehave c(p"™") > ¢(p")

because ¢ > i + 1. Since |E| < |E| = k + 1, by our inductive hypothesis, we have

. 12 pept—1 €)1 2 peps ¢(p)
—~+1 > —( > pE 72 > Z p 72A
which proves (2.9). This completes the proof. O

Example 1 (continued). We illustrate the properties stated in Lemmas 2.6 and 2.7 on
the example in Fig. 2.1. First, the average cost z = ¢(f)/N = 5. We have R(P,c,z) =
(5-5)+(B-5+ (-5 =0and R(P,c,z) = (6 —5) + (6 — 5) + 0 = 2. First, Lemma
2.6 holds since R(P,¢,7) = 0 < 2 = R(P, ¢, z). For Lemma 2.7, we observe that the paths
in the c-greedy decomposition P = {p', p?, p*} have costs 6,6 and 3, respectively, thus

c(p?) = 6 > 3 = Le(pt) and ¢(p?) = 3 > 3 = LBt

Based on Lemma 2.7, from P(f) = {p',p? ...,p"}, we get a sequence of positive

numbers {cost;(p'), cost;(p?),. .., cost;(p")} such that cost,(p'*!) > 1370 | ot @) ¢

)

[N — 1]. We now turn our attention to general sequences of positive numbers that satisfy

N—1 2j
j=m 2j+1°

this property. For m € [N — 1] we define pu(m, N) =[]
Lemma 2.8. Let z € RY such that SNz =1,and let m € [N — 1]. We have:
L Ifain > &> @ fori € [N — 1], then 37" ; < p(m, N).

2. Ifxip = o 22:1 z;fori € [N —1], then Y ", x; = p(m, N).
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Proof.
We first prove statement 1. We proceed by backward induction on m. The base case is

m = N — 1. Since x > Q(N 1 Z] . z;, we have:

N-1 1 N-1
2. rj=1—aony<1-— SN =1 2. ;. (2.13)
By equation (2.13), we have 2 ( )? > 25! @; < 1. This implies that 37! z; < % —
w(N — 1, N). Thus statement 1 holds for the base case.
Next we assume that statement 1 holds for m € {k,..., N — 1}, and we prove that it

also holds for m = k — 1. Based on our inductive hypothesis, Zle x; < p(k, N). Moreover,

. 1 k—1 .
since x> 53 >_;—; ¥j, We have:

ij ij —x < p(k,N) — ﬁ ;. (2.14)

j=1 j=1

According to (2.14), we have 2 k 1) Z tz; < p(k,N). This implies that Zf;ll z; <

(kfkll}rlu(k N) = p(k — 1, N). Thus, statement 1 holds.
The proof of statement 2 is analogous, and it is obtained by replacing the inequalities in

(2.13) and (2.14) with equalities. O

The next lemma provides a lower and an upper bound for ;i(m, N).

Lemma 2.9. For m € [N — 1] we have
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We lower bound the argument of the square root as follows.

i 2 J2m—1 2m 2m+l 2m+2 2N-3 2N -2
2]—1—1 om  2m+1 2m+2 2m+3 2N —-2 2N —1

_2m—1

2N —1°

Jj=m

Similarly, we upper bound the argument of the square root as follows.

Nt 2 2m  2m+1 2m+2 2m+3 2N-2 2N-1
2g+1 2m+1 2m+2 2m+3 2m+4 2N—-1 2N

j=m
B 2m
2N’

O

From the previous results we can establish the following property of a PNE f, which

will be used to prove Theorem 2.3.

Lemma 2.10. Suppose that G is a series-parallel (s, t)-network and that the delay functions are
affine. Let c, = d.(f.) forall e € E. Moreover, let f be a PNE and let P = {p*,...,p"} bea

c-greedy decomposition of f. We have

R (P, c, W) < icost(f).

Proof.

Let m be the number of paths in P whose cost is greater than cost(f)/N and note that

We equivalently prove

Z c(p') < (i + %) cost(f). (2.15)
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Define z; = ¢(p')/cost(f) for i € [N]. Clearly z; > 0 fori € [N]and Y.~ | ; = 1. By Lemma

2.7 we know that ¢(p'™!) > 523:1 C(fj) fori € [N —1],thus z;,; > %ijl “fori e [N —1].

By Lemmas 2.8 and 2.9 we have

> e(p') = cost(f) D a; < p(m, N)cost(f) < \/%cost( 7).

i=1 =1

To show (2.15), we finally observe that /% —

m
N

x € [0,1].

Finally, we state the following elementary property of a PNE flow in a series-parallel

congestion game.

Lemma 2.11. Suppose that G is a series-parallel (s, t)-network. Let f be a PNE flow of value N

and let p be an (s, t)-path in G. Then cost}r (p) > Cosjt\gf),

Proof. Denote by P* the set of N (s, t)-paths in the PNE associated to f. Clearly

max {cost(m) : m € P*} >

cost(f)
N

. By contradiction, suppose that cost; (p) < % We would obtain that
max {cost(7) : 7 € P*} > costy (p)

, thus one player would find profitable to change her strategy into p. This contradicts the
fact that f is a PNE. O

We are finally ready to prove the central result of our paper.
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Proof of Theorem 2.3. If C = (J, the claim trivially holds since A(C, f) = 0. Thus, we now
assume C # (). Let C~ = {C, ..., C, }. The proof is by induction on

k
7(C7,G) = min {Z Ipi \ C; | : pi is an (s, t)-path containing C; ,i € [k]} . (2.16)

i=1

The base case is 7(C~, G) = 0, in which case for all i € [k] we have p; = C;, i.e.,, C; is an
(s,t)-path. Let P be a decomposition of f containing all the paths in C~, and let P be a

c-greedy decomposition of f, where ¢, = d.(f.) for all e € E. We obtain:

k

A(C,f) =) (cost(C;) — costf(C}1))

=1

<> (costf(q.—) - COS;[(f )) (2.17)
_ cost(f)

<R <c o — > (2.18)

<R <P, c, Co‘?tv(f )> (2.19)

<R <P, c, Cosjtv(f )) (2.20)

< icost(f). (2.21)

Inequality (2.17) holds since for all ¢ € [k] C;" is an (s, ¢)-path whose only nodes in
common with C;” are s and t. Thus, by Lemma 2.11, we have cost; (C;") > COS;,J for all
i € [k]. Inequality (2.18) follows from the definition of ¢ and the fact that R <C -,c, &N(f»
only contains the nonnegative terms of the summation in (2.17). Inequality (2.19) holds

since C~ C P. Inequality (2.20) holds because of Lemma 2.6. Inequality (2.21) is implied
by Lemma 2.10.

Now we assume that our claim holds if v(C~, G) < 4. Our goal is to show that the claim



42
still holds if v(C~,G) = 4 + 1. To prove that

A, f)
cost(f)

1
<
— 4

we construct another instance of a N-player network congestion game where
(i) G is a series-parallel (s, t)-network with affine delays,
(ii) fisan (s,t)-flow of value N in G and P is a decomposition of f that is a PNE,

(iii) C

> = {(C7,CF) + i e [h]} is a collection of h pairs of internally disjoint paths in G with
‘{C’; ‘e € C’Z_}‘ < fe foralle € E(é),

(iv) v(C~,G) <7, where C~ = {C;,...,C;},
AC, f)

AC.S) _ AC.f)

™) cost(f) ~ cost(f)

Intuitively, by decreasing v(C~, GG) at each step we reduce, in a finite number of steps,
to a network G where the number of non-(s, t)-paths in C~ has strictly decreased. First, we
describe how to construct G, f, PandC.

Let G'be composed in parallel by G, ..., Gy, £ > 1, and assume wlog that each GG; cannot
be further decomposed in parallel. Since v(C~, G) > 1, there is at least a (w, v)-path C} in
C~ that is not from s to . We assume wlog that (" is contained in (i1, and we define f
to be the subflow of f in (G;. Since C; isnot from s to t, G; can be decomposed in series.
Moreover, since C; and C}" are internally disjoint, there must be a component of the series
decomposition of G; which contains C} . Thus there exists a node u € V(G1) such that Gy
is obtained by composing in series at u two subgraphs G§* and G*, and C; is contained
either in G5 or in G%*. Correspondingly, we can also split the flow f; into an (s, u)-flow

suand a (u, t)-flow ft.

Let C~(G4) consist of the paths in C~ that are contained in G;. Analogously, let C~ (G§*)

and C~(G") be the paths of C~(G) that are contained in G§* and G}*, respectively. Note
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de(f.) Ve € E(Gy)

d.(f.) Ye € E(G\Gy)

(a)
B(1+a)d.(f.) Ve € E(Gy) B+ Lyde(f.) Ve € E(G1)
do(f.) Ve € E(G\Gh) do(f.) Ve € E(G\G)
(b) (c)

Figure 2.2: This is an example for the operations in Theorem 2.3, where the dotted lines are
paths C;” in the set C~. (a) A series-parallel network G. (b) The network G by applying
Operation 1 to G and (c) the network G by applying Operation 2 to G.

that each path C; that is contained in C~(G1) \ (C™(G5*) UC™(GY")) must be an (s, t)-path,
since otherwise the path C}" would also belong to G, and thus traverse u, contradicting the
assumption that C; and C} are internally disjoint.

Let P* = {p',...,p"} be the (s, t)-paths chosen by the players in the PNE f. Let o > 0,

S > 0. We define two operations, whose pictorial representations are given in Fig. 2.2.

Operation 1.

1. Define network G obtained from G by shrinking G5* (G is replaced by G, and

nodes s and u are identified).
2. For each edge e of (i that is in G, redefine the delay to be 3(1 + a)d,(f.).

3. Construct an (s, t)-flow f of value N in G from f, by replacing f; with f{. Set
P = {p',...,p"} to be the (s,t)-paths chosen by the players in f, where p' is the

(u, t)-subpath of p’ if p’ is in Gy and p' = p' if p’ is not in G;.



44

4. Define set C containing:

a) all (C—,C*) € Csuch that C~ ¢ C(Gy).
b) all (C~,C*) € Csuch that C~ € C~(G").

c) all (C,C"), such that (C~,C") € C, C~ is an (s, t)-path in G, and C,, is the

ut»

subpath of C~ from u to t.

Operation 2.

1. Define network G obtained from G by shrinking G* (G is replaced by G3*, and

nodes u and t are identified).
2. For each edge e of G that is in G5*, redefine the delay to be 3(1 + LYd.(f.).

3. Construct an (s, t)-flow f of value N in G from f, by replacing f, with f{*. Set
P = {p',...,p"} to be the (s,t)-paths chosen by the players in f, where p' is the

(s,u)-subpath of p’ if p' is in G; and p* = p' if p’ is not in G;.
4. Define set C containing:

a) all (C—,C*) € Csuch that C~ ¢ C(Gy).
b) all (C~,C™") € C such that C~ € C~(G5").
c) all (C,,,C™"), such that (C~,C*) € C, C~ is an (s, t)-path in G;, and C, is the

subpath of C~ from s to .

The network G obtained with Operation 1 (resp. Operation 2) is a series-parallel (s, t)-
network with affine delays, thus (i) is satisfied. For ¢ € [k], denote by cost;(C;) the difference

costy(C; ) — costy (C;"). Let

D = Z costy(C;) + Z cost;(C;) + Z cost(C;).

Crec—(GyY) Crec—(Gy) C€C(G1) (s, t)-path
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The next claim shows that (v) is also satisfied by appropriately performing either Operation

1 or Operation 2.

Claim 2. If
A f) D
cost(f) — cost(f )’ (2:22)
then for each 3 > 1 and o > 0 either Operation 1 or Operation 2 yields
AC.T) _ AEF) 223)

cost(f) — cost(,f)'

Otherwise, if inequality (2.22) does not hold, for each f < 1 and « > 0 either Operation 1 or
Operation 2 yields (2.23).

Proof of claim. 1f inequality (2.22) holds and we choose > 1, then we have:

AlG,f) . ACH+(BE-1D
cost(f) — cost(f) + (8 — 1)cost(f1)

If inequality (2.22) does not hold and we choose 5 < 1, then (2.24) still holds. Define

(2.24)

B(€) = Ecost(fi") — cost(fi")
A& = — Z costs(C;) +¢& Z cost¢(C;)

C;ec(Gsv) C;ec(Gut)

- Z (COStf((Oi_)su) - £COStf((OZ-_)ut)) :

C; €C~(G1)(s, t)-path
It can be checked that if we apply Operation 1 with parameters («, 3) we get:

~

AC,f)=AC, f)+ABL+a)—1) = AC, f) + (B—1)D + BA(a)

cost(f) = cost(f) + B(B(1 + a) — 1) = cost(f) + (8 — 1)cost(f1) + SB(«).
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Moreover, if we apply Operation 2 with parameters («, 3) we get:

A(C,fy=A(C, f)+ A (5 1+ g) = A(C, )+ (B—1)D — gA(a)

cost(f) = cost(f) + B (5 -1+ g) = cost(f) + (8 — 1)cost(f1) — gB(a).
Thus, if

Al0) . ACH+(B-1)D
B(a) = cost(f) + (8 — 1)cost(f1)

by applying Operation 1 with parameters («, §) we get:

ACH+(B-DD  _  ACH+(B-DD+PA) _ AL
cost(f) + (8 — 1)cost(f1) ~ cost(f) + (B — 1)cost(f1) + BB(a)  cost(f)

Otherwise, by applying Operation 2 with parameters («, 5) we get:

ACH+(B-DD  _  ACH+B-1D-5A) AL f)
cost(f) + (B — 1)cost(f1) = cost(f) + (8 — 1)cost(f1) — 2B(a)  cost(f)

By choosing 3 appropriately, by (2.24) we have the desired result. o

In the next two claims we show that if we apply Operation 1 (resp. 2) with appropriate
parameters « and 3, then also (ii) is satisfied. Let H be a subgraph of G that is a two-
terminal series-parallel network with terminals u and v, and let P be a set of (u, v)-paths in

H. We define

¢(H) = min{cost; (p) : pis an (u, v)-path in H},

C(P) = max{costs(p) : p € P}.

Let P; and P, be the paths in P* and P that are contained in G; and G, respectively.
We denote by Py, and P}, the set of (s, u)-subpaths of the paths in P} and the set of
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(u,t)-subpaths of the paths in Py, respectively. We define

_ G

_ (@) C(P ) C(P*)
c(GY)’ '

min max max
/B = — (0% = 5 =

c(Gr)’ C(Plu)

min
(0

Claim 3. The decomposition of f into {p', ..., p"'} obtained by applying Operation 1 (resp. Opera-

tion 2) with (a, B) = (o™, 3™") is a PNE in the network congestion game on G.

Proof of claim. Suppose we apply Operation 1 (resp. Operation 2) with («, 8) = (a™™, ™).
Note that each path p that is not in G, can be mapped to an identical path j in G such that
cost;(p) = costy(p) and cost} (p) = cost; (p). Moreover, each path p that is in G, can be
mapped to a path  in G coinciding with the (u, t)-subpath (resp. the (s, u)-subpath) p’ of
p. It can be checked that cost(p) and cos’c}r (p) in G are obtained by multiplying cost(p')

n . c(G) (G)
and cost; (p') in G by the constant G (resp. (D) ).

Our goal is to prove that in {p', ..., p" } no player has an incentive to deviate. First, we
consider the case where 7 is in G;. Consider the corresponding path p’ chosen by player
iin G;. Since {p',...,p"} is a PNE in G, player i cannot improve her cost by deviating
to another (u, t)-path in G}* (resp. to another (s, u)-path in G5*). Consequently, player i
cannot improve her cost by deviating from ' to another (s, t)-path in G;. This implies that
in G/

cost;(p') < ¢(Gh).

Now we show that player i cannot improve her cost by deviating from p* to another (s, t)-

path outside ;. Note that, if we applied Operation 1, we have

c(Gh) = AL+ a™M)e(GY) =
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Similarly, if we applied Operation 2, we have

L\ @) ()
amm> A = @y da)

o(Gr) = g (1 ; (G1) = (@),

Clearly, we have ¢(G;) = ¢(G) < ¢(G\ G1) = ¢(G'\ Gy). Thus, we obtain
cost(p') < ¢(G1) < (G \ Gy).

We remark that for each path p € G\ G the cost that player i would incur by deviating to
pis cost}f (p). Since cos’c}r (p) > ¢(G'\ Gy), we conclude that player i cannot improve her cost
by deviating from § to another (s, t)-path outside G.

Now we consider the case where j' is not in G;. Since in G player i cannot improve
her cost by deviating from p' to another (s, t)-path outside G; and G'\ G; = G\ Gy, we
have that in G player i cannot improve her cost by deviating from j’ to another (s, )-path
outside G;. This also implies that in G cost(p') < ¢(G \ Gy).

Now we show that player ¢ cannot improve her cost by deviating from §’ to another
(s, t)-path inside G. Since in G player i cannot improve her cost by deviating from p’ to

another (s, t)-path inside G4, we also have that in G cost;(p’) < ¢(G;). Thus

~

costr(p') < ¢(G) = c(Gy).

First, recall that cost(j)') in G is equal to costf(p’) in G. Secondly, note that for each path
p € G the cost that player i would incur by deviating to pis Cost;f (p). Since ¢(G4) < cost;gr (p),
we conclude that player ¢ cannot improve her cost by deviating from p’ to another (s, t)-path

inside G. o

Claim 4. The decomposition of f into {p', ..., p"'} obtained by applying Operation 1 (resp. Opera-

tion 2) with (o, B) = (/™ 3") is a PNE in the network congestion game on G.
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Proof of claim. Suppose we apply Operation 1 (resp. Operation 2) with («, ) = (o™, 5™%).
The proof is similar to the previous case, and we will only highlight the main differences.

In this case, applying either Operation 1 or Operation 2 yields

~

C(P) = C(P). (2.25)

If ' is in G, player i cannot improve her cost by deviating from § to another (s, ¢)-path in

(1. Moreover, we have

cost;(p') < C(Py) (2.26)
= CO(P") (2.27)
< ¢(G) (2.28)
<G\ G) (2.29)
=c¢(G\ Gy), (2.30)

where (2.26) follows from the definition of C'(P;), (2.27) follows from (2.25), (2.28) follows
from the fact that {p',...,p"} is a PNE in G, and (2.30) follows from the definition of
c(G). Since player i would pay c:os’t}r (p) to deviate to a path p € G\ Gy, and because
o(G\Gy) < cos’c}r (p), we conclude that player i cannot improve her cost by deviating from
' to another (s, t)-path outside G;.

Now we consider the case where ' is not in G, . First, player i cannot improve her cost

by deviating from P to another (s, t)-path outside G 1. Moreover, we have

COStf(ﬁi) < C(P7) (2.31)
= C(P) (2.32)

< e(Gy), (2.33)
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where (2.31) follows from the fact that p' = p' and the definition of C'(P*), while (2.32)
follows from (2.25). Finally, if (2.33) does not hold, there is a path p in G, such that
cos’c}r (p) < cost;(pn), where pj, is the most expensive path in {p',...,p"} thatis in Gy. This
would directly imply that player % in G could improve her cost by deviating from p;, by
selecting the cheapest path between « and ¢ (resp. s and u), contradicting the fact that
{p',...,pN}isaPNEinG. o

Finally, we prove that also (iii) and (iv) are satisfied if we apply Operation 1 (resp. Opera-

tion 2) with appropriate parameters.

Claim 5. The set C = {(C;,C;") : i € [h]} obtained by applying Operation 1 (resp. Operation
2) with (o, B) = (™", g"1) or (v, ) = (™, 3™%) is a collection of pairs of internally disjoint

paths in G with |{C; : e € C7Y| < f. forall e € E(G) and such that v(C~,G) < 7.

Proof of claim. By construction, the set C obtained with Operation 1 (resp. Operation 2) is a
collection of pairs of internally disjoint paths in G. By construction for each ¢ € E(G) we
have

Héi_3666’1‘_}’:”0;:660;“Sfe:f:e

We now prove that 7(C~, &) < 7. To this purpose, we need to decide how to “cover” each
C~ € C~ in the expression defining v(C~, G).

Suppose we performed Operation 1 (resp. Operation 2).

(a) if C~ = C~ for some C~ € C~ \ C~(G}), we use the path that covered C~ in (2.16).

(b) if C~ = O~ for some C~ € C~(G*) (resp. C~ € C~(G5*)), we use the subpath from u

to ¢ (resp. from s to u) of the path that covered C'~ in (2.16).

(c) if C~ = O, (resp. C~ = C3,), for some (s, t)-path C~ € C(G;) whose subpath from u
to t is C; (resp. whose subpath from s to u is C';, ), we conclude that C'~ is an (s, t)-path

in G’ and we use a copy of '~ in (2.16).
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Consider the cycle C; € C~ that we used to decompose G' and suppose that C; € G{".
If we performed Operation 1, (b) implies v(C~, &) < 4(C~,G) = 7 + 1. If we performed
Operation 2, C;” does not belong to C, since it was shrunk during Operation 2. Also in this
case 7(C~,G) < ¥(C™,G) =5+ 1. If C; € G5*, we reach the same conclusion by applying

similar arguments. o

By Claims 3 and 4, and since 7(C~, G) < 7, we can apply our inductive hypothesis to
conclude that A(C, f) < cost( /). Finally, claims 5 and 2 immediately imply A(C, f) <
scost(f). O

2.3 Lower bound on price of anarchy

In this section, we provide a lower bound on the PoA of series-parallel network congestion
games with affine delays that approaches 27/19 as N — oc.

Let {qi,...,qn} be an ordered sequence of positive numbers such that ZZN: 1 ¢ =1and
Giy1 = %2321 L fori € [N —1]. Let m € [N — 1] and define r = 2. By statement 2 in

Lemma 2.8 and Lemma 2.9 we have

where € = /1 — /2=

2N—-1 "
We define a new sequence {si, ..., sy} by averaging {¢i, ..., ¢n}. Precisely, s; = --- =
Sm = Z”Lqu and s; = g; for j > m + 1. This implies that

m

Zsi_%:ZQi_%2<\/F_T)_E' (2.34)

i=1

Note that s;11 > %Z;Zl % forie [N —1].

We construct a series-parallel (s,¢)-network G with affine delays and an (s, ¢)-flow f of
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value N recursively. Let G, be a single (s, t)-edge with flow f,, of value m and delay equal
to *L%, For every i € [m, N — 1], we construct G and fi;; using G; and f; as follows: we
compose in parallel G; and a new (s, t)-edge with flow value 1 and delay function s,
and call the new network G; and the new (s, t)-flow f;. Next, we compose in series i + 1
copies of G, with flow ﬁ to get G4, and fi1. We also divide the delay functions by ¢ + 1.
Then we set f = fn. Finally we compose Gy in parallel with m new (s, t)-edges ey, ..., en
with delay function +x to get G. By construction, G is a series-parallel network. Fig. 2.3

illustrates our construction.

Figure 2.3: Consider the input sequence {8, 4,3} and m=2. For convenience we work with
integer numbers, but we can easily scale the numbers of the sequence so that they sum up
to 1. We first average the first m numbers and get {6, 6,3}. (d) is the output network G
and its corresponding PNE flow f. (a), (b), (c) are the intermediate networks and flows
according to our construction. (e) is the flow h defined in the proof of Theorem 2.2 where
k=1

Lemma 2.12. The (s, t)-flow f has an (s, t)-path p with flow value m and cost ¢(p) = s;.

Proof. We prove this by induction on ¢ € {m, ..., N}. The base case is i = m. In this case
fi = fm is a flow of value m on a single (s, t)-edge with delay function **. The path p™

defined by this edge has cost costy, (p™) = s1.
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Suppose that for each m < i < N it holds that f; has an (s, t)-path p' with flow value m
and cost,(7) = s,. We first construct f; by composing in parallel f; and a new (s, t)-edge.
Clearly, p° has still flow value m and costj (') = s1. Then we compose in series i +- 1 copies
of flow f; to get f;;, and we divide the delay functions by i + 1. The new (s, t)-path pi*!
is obtained by composing in series i + 1 copies of p'. By construction, this path has flow

value m and costy, , (p'™) = s1. O

Lemma 2.13. The (s, t)-flow f has cost 1, and it can be decomposed into N (s, t)-paths {p*,...,p"}
that define a PNE in G. Moreover cost;(p') = 1/N for all i € [N], i.e., each player incurs the same

cost.

Proof. First, we show that fx has cost Zf\i 1 8 = 1 and it can be decomposed into a PNE
in Gy where each player incurs the same cost. We show this by induction on i. When
i =m, G,, is a single (s, t)-edge, and f,, is an (s, t)-flow of value m routed through this
edge. Moreover, cost(f,) = “™m = ", s;. Note that we cannot define any alternative
flow in G,,,. Moreover, f,, admits a unique decomposition into N (s, t)-paths, thus f,, is a
PNE flow where each player uses the same edge and incurs the same cost.

Now we assume that when ¢ = k, f; has cost Zle s;, and it can be decomposed into
a PNE in G, where each player incurs the same cost. Our goal is to prove that the same
holds for i = k + 1. Note that in our construction first we define G and fk by composing
in parallel f; and a new (s, t)-edge with delay s;,2 and flow value 1. Thus, we first show
that f, is a PNE flow in G}.. By the inductive hypothesis, flow f; can be decomposed into
a PNE in G}, where each player’s cost is %Zle s;. To define a decomposition of f;, we
augment the decomposition of f;, by appending the extra (s, t)-edge used to construct G/.
Clearly, cost(fy) = cost(fi) + spp1 = d.i') s;. Moreover, (i) no player paying 13°% s
has an incentive to deviate, since 2s;,1 > %Zle si, and (ii) the player paying s;;1 does
not deviate since s, is the minimum cost (s, t)-path in f. This shows that f; is a PNE

flow in G Recall that in our construction we define G} and f 1 by composing in series
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k + 1 copies of G}, with flow f;, and we divide all the delay functions by & + 1. Clearly,
cost( fry1) = cost(fr) = ¥ s;. We define a decomposition of fy; into k + 1 (s, t)-paths
as follows. Since there are k + 1 players and k + 1 identical copies of G, composed in series,
we let each player choose their original strategy in f, in k components, and choose the extra
edge used to define G, in one component. Thus, in this decomposition of f;,; each player
incurs the same cost and no player has an incentive to deviate from their strategy.
Finally, we show that f = fx is a PNE flow on G. Recall that we construct G by
composing in parallel Gy and m new (s, t)-edges ey, ..., e,, with delay function . Since
in f every player incurs a cost equal to 5, no player has an incentive to deviate to an edge
ei, 1 € [m]. Thus, f is a PNE flow on G.
O

Proof of Theorem 2.2. Consider the network congestion game on the network G defined
above. By Lemma 2.12, f has an (s, t)-path p with flow value m and cost(p) = s;. For each
edge e in p, let a.x be the delay function of e. Note that cost;(p) = >_ ., acm = s, implies

that > = 2 Letk € [m] and define | = £. Define h as the flow obtained from f by

ecp Qe
moving a subflow of value (m — k) from p to the (s,t)-edges ey, ..., e,_x, which have all

delay function +x. Then by construction we have:

cost(f) — cost(h) = mcost(p) — (k:costh(p) + (m — k)i)

N
1

— sym — (%kz + (m— k)ﬁ> (2.35)

— (%mQ — %kQ — mT; kmsl) + mT—k <m31 - %)

(St Sy Lk (S, m

_ (mmk 2 ) + <;s N) , (2.36)

where equality (2.35) holds since ) _ . a. = 7*. Equality (2.36) holds since the first m of s;
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are equal. Now observe that

%mQstlz%—k(Zsi—m)ZT—k[(\/;—r)—e]:(\/F—e), (2.37)

where the inequality follows from (2.34). This implies

S1 81,9 251 9 2
21 AR Y22 > (= 2.38
mmk‘ - (-1 )mm > (1 —1°)(Vr—e), ( )

where the inequality follows from (2.37).
From (2.36) and (2.38)we obtain

cost(f) — cost(h) > (I — I*)(v/r —€) + (1 — l)(z 5 — %)
> (1= P)(Vi—+ 1 =D [(Vr—r) =, (2.39)

where inequality (2.39) follows from (2.34). By Lemma 2.13 we know that cost(f) =

SV s; = 1, thus we obtain:

cost(h) <1—(1=P)(Vr—e) —(1=1)[(vr—7)—¢
=1+0PVr—rl—r+r+(1—1Pe (2.40)

To obtain an upper bound on cost(%) we minimize the right-hand-side of (2.40) with respect

to r and [. Observe that ¢ — 0 when N — oo, thus we solve

min PVr—rl—r+r
s.t. 7 € [0,1),1 € [0, 1],
cost(f) cost(f)

which is achieved at r = % and [ = % Since ostlo) > cost(n) We obtain a lower bound for the

PoA that asymptotically approaches 27.
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We point out that the instance with PoA 15/11 provided by Fotakis in [25] can be
obtained with our approach with N = 3, m = 2 and k = 1, see Figures 2.1 and 2.3. The
crucial insight for obtaining our improved lower bound is that m and k are not fixed a
priori, but they are used as parameters. By optimizing over these parameters in the final

steps of the proof of Theorem 2.2, we can achieve our improved lower bound on the PoA.

2.4 Conclusion

We considered series-parallel network congestion games with affine delays. We have
exploited the assumptions on the network topology and delay functions to improve the best
known bounds on the PoA. Specifically, we have reduced the upper bound of 5/2, valid for
general networks [14], to 2, and we have increased the lower bound of 15/11 provided by
Fotakis [25] to 27/19. It remains open whether this gap can be closed or further reduced.
We conjecture that our upper bound is not tight. In fact, to prove that the PoA is at most
2, we used inequality (2.1) together with Corollary 2.4. In particular, (2.1) is derived by

using the upper bound
> fede(fe) < cost(f),

e:fe>0e

while Corollary 2.4 establishes the upper bound:
1
A(f,0) = ;cost(f).

However, we could find no example where both these upper bounds are simultaneously
tight.

Finally, to extend our upper bound on the PoA of series-parallel network congestion
games with affine delays to the case where the edge delays belong to the family P, of

polynomials of degree at most d, one would need to extend the result in Corollary 2.4 and
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prove

A(f;0) < 7(Pa)cost(f),

where v(P;) is a function of d. A straightforward extension of our approach implies
1 — B(Pa) — v(P4) < 0, which, according to (2.1) leads to an inconsequential upper bound.

Thus, a different approach is needed when dealing with polynomial delays.
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3 PRICE OF ANARCHY IN SERIES-PARALLEL NETWORK CONGESTION

GAMES WITH POLYNOMIAL DELAYS

In this chapter, we still focus on the class of two-terminal series-parallel networks, and
we provide upper and lower bounds on the worst-case PoA for (atomic, unweighted,
symmetric) network congestion games. Unlike Chapter 2, we consider more general classes
of delay functions instead of affine delay functions. Furthermore, except the PoA with
respect to the total cost, we also study the PoA with respect to the maximum cost. Recall that
the total cost of a state P, denoted by tot(P), is the sum of all players’ costs. Clearly tot(P)

coincides with the cost of the flow f(P):

tot(P) = Z costy(py(p') = cost(f(P)).
1€[N]
We also define the maximum cost of P, denoted by max(P) as the maximum cost of a player
in P:

P) = cost 4.
max(P) {2% f(P)(p)

3.1 Main results

First, we consider the total players’ cost. For asymmetric network congestion games with
polynomial delay functions of highest degree p, Aland et al. provided a tight bound for the
worst-case PoA which is in [| @, ", ®p+1], where @, € ©(p/Inp) [3, 4]. Our first goal is to
determine whether in symmetric network congestion games the same worst-case PoA can

be achieved. In Section 3.2, we answer this question in the affirmative.

Theorem 3.1. The PoA of symmetric network congestion games with polynomial delay functions

of highest degree p is at least |®, """
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Theorem 3.1 indicates that symmetry has little impact on the worst-case PoA of network
congestion games.

In Section 3.3.1 we focus on symmetric congestion games defined over series-parallel
networks. Let D be a class of nonnegative and non-decreasing functions. We introduce a

new parameter y(D) defined as

)= oy S

(3.1)

which intuitively can be used to upper bound by what percentage the cost of an arc increases
when one more player uses the arc. Note that y(D) > 1because d(x) = (z+1)d(z) —zd(z) <
(x +1)d(x + 1) — zd(z). Our main result shows that the worst-case PoA in series-parallel

networks is at most y(D).

Theorem 3.2. In a symmetric (unweighted) network congestion game on a series-parallel (s,t)-

network with delays functions in class D, the PoA w.r.t. the total players’ cost is at most y(D).

The above result has interesting implications when D is the class of polynomial functions
with nonnegative coefficients and highest degree p. We show that in this case y(D) is at
most 2P — 1. Our result indicates a significant drop of the worst-case PoA, which decreases
from O(p/ Inp)P** in symmetric games over arbitrary networks (by Theorem 3.1) to O(2¢*1)
in symmetric games over series-parallel networks.

In Section 3.3.2 we also provide a lower bound on the worst-case PoA in symmetric

congestion games defined over series-parallel networks. This bound is independent of
y(D).

Theorem 3.3. The worst-case PoA w.r.t. the total players’ cost of a symmetric (unweighted) network
congestion game on a series-parallel (s,t)-network, where the delay functions are polynomials with

non-negative coefficients and highest degree p, is at least

1
1+82%r—rl— Xr+r’

(3.2)
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Table 3.1: Numerical comparison of our bounds on the (pure) PoA of symmetric series-
parallel network congestion games with polynomial delays of highest degree p with: (i) the
lower bound on the worst-case PoA of symmetric congestion games on arbitrary networks
established in Theorem 3.1 (first column); and (ii) the worst-case PoA of symmetric
extension-parallel congestion games [25, 26, 27] (last column). The upper bound of 2 for
series-parallel networks and affine delays is from [30].

LB arbitrary UB series- | LB series- | PoA ext-
parallel parallel parallel
P (Theorem 3.1) (Theorem 3.2) (Theorem 3.3) | [25,26]
1 1 2 [30] 1.421 1.333
2 8 7 1.938 1.626
3 16 15 2.884 1.896
4 243 31 4548 2.151
5 729 63 7.491 2.394
6 2187 127 12.747 2.630
7 65536 255 22.228 2.858
8 262144 511 39.48 3.081
(@, )7 2rtt —1 Q(27/p) p(D) €
O(p/Inp)P*! O(p/Inp)
2 et 1,1—5
where r = (55— ) ¥ " and | = Sri~or,

We finally prove that our lower bound is in €2 ( %) , thus also in 2(2) for each ¢ € (0, 1),
which almost asymptotically matches the upper bound of 2°*! — 1. Since the worst-case
PoA in extension-parallel networks (a subclass of series-parallel networks) is in ©(p/ In p)
[25, 26, 27], our result shows that the POA dramatically increases when relaxing the network
topology from extension-parallel to series-parallel.

In Table 3.1 we provide a numerical comparison of the bounds established in Theorems
3.1, 3.2, 3.3, and the worst-case PoA in extension-parallel networks.

In Section 3.4 we consider measuring the social cost of a strategy profile as the maximum
players’ cost. This variant of the social cost expresses the goal that a central authority might
have to maximize fairness by minimizing the cost of the most disadvantaged player. We

tirst consider arbitrary delay functions. To bound the PoA in this setting, introduce a new
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parameter z(D) defined as

dz+1)
z(D)= su _
( ) deD, zpeN+ d(x)

(3.3)

We then prove that the worst-case PoA in series-parallel networks is at most y(D)z(D).

Theorem 3.4. In a symmetric (unweighted) network congestion game on a series-parallel (s,t)-
network with delays functions in class D, the PoA w.r.t. the maximum players’ cost is at most

2(D)y(D).

When D is the class of polynomial functions with nonnegative coefficients and maximum
degree p we obtain that z(D) is upper bounded by 27, thus the PoA is at most 2?11 — 27.
Since the worst-case PoA for general symmetric congestion games and polynomial delays
is in p°® [13], our result shows a significant drop of the PoA in series-parallel networks.

Finally, we show that the lower bound on the PoA w.r.t. the total players’ cost also yields
a valid lower bound when considering the maximum players” cost. We say that a class of

networks N is closed under series compositions if the series composition of two networks G*

and G? in \ still belongs to N.

Theorem 3.5. Let N be a class of networks closed under series compositions and let G be a network
in N. Then the worst-case PoA with respect to the maximum social cost of a symmetric (unweighted)
network congestion game defined over G is at least the worst-case PoA with respect to the total social

cost.

For series-parallel networks and polynomial delays with nonnegative coefficients and
maximum degree p, Theorem 3.5 implies that the worst-case PoA is in ©2(2?/p). This is
in stark contrast with the result of [21], establishing that the PoA in extension-parallel
networks is 1, i.e., any PNE is also a social optimum w.r.t. the maximum players’ cost.
Thus, relaxing the network topology from extension-parallel to series-parallel dramatically
increases the inefficiency of pure Nash equilibria. The reason for this is that the key
network operations that we need to allow are the series compositions, which are forbidden

for extension-parallel networks.
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3.2 Lower bound on symmetric congestion games in
general networks

Let gp(z) = (z 4+ 1)? — zP*!. We recall that ¢, is the unique nonnegative real solution to
gp(z) = 0 [3]. Clearly, ¢,(0) = 1 > 0. Moreover, by Lemma 5.2 in [3], we know that g, ()
has exactly one local maximum ¢ in R, is strictly increasing in [0, £) and strictly decreasing
in (£, 00). As aresult, for 0 < z < ¢, we have g,(x) > 0 and for z > ¢, we have g,(z) < 0.

Next, we prove two additional properties of ¢,,.

Lemma 3.6. For every positive integer pand forall k = 0,1,. .., p—1, we have (®,_1+1)* < @lgﬂ.

Proof. We proceed by backward induction. The base case is £ = p — 1. In this case, by the
definition of ®, we know that (®,_; 4+ 1)’~" = &7 . We now assume that the claim holds

forall k € {2,...,p — 1}, and we prove that the claim also holds for £ — 1. We have
(q)p—l + 1)k < (I)l;j}

By dividing both terms by ®,_; > 0 we obtain:

((I)p—l + 1)k < ((I)p—l + 1)k < q)l;t% — PF
o, ,+1 — &, ~ &, PV

(cbp—l + 1)k_1 =

Lemma 3.7. For every positive integer p we have ®,_; < &, < @, _; + 1.

Proof. We first prove that ®,_; < ®, by showing that g,(®,—1) = (®,—1 + 1)? — @Zﬂ > 0.
Since ®,_; > 0 for every positive integer p, we equivalently show
(@t O (@t B

p—1 -1 P
= (D, +1)PL—d"_ | =0.
d, 1 D, +1 D, (®p1+1) p-1
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Next, we prove that &, < &, ; + 1. To this purpose, we show that g,(®,_1 +1) < 0

which implies ®,_; + 1 > ®,,. Precisely, our goal is to prove
(Pp1 +2) < (Ppq + )P (3.4)
We rewrite the left-hand-side of (3.4) as follows.

(Pp1+1+1)P= i <Z) (®p_1 + 1)"

k=0

—_

p—

= (D, 1+ 1)’ + (i) (®p1 + 1)*

b k+1
(i)
k=0

= (01 +1)" + (i) oyt — bty
=0

i
—= o

< (Pp1 +1)P+

ﬁ\\Fﬁ

ol

= (Pt + 1)P + By (B + 1)P — OV
- (q)p—l + 1)p+1 - ‘I’ﬁﬂ

< ((I)p—l + 1)p+1

where the first inequality holds by Lemma 3.6. 0

Proof of [. Theorem 3.1] We provide an example of an unweighted symmetric congestion
game with delays in Poly- p that is defined over a network that is not series-parallel, and
whose PoA asymptotically goes to |®,]”"" when the number of players is large. In this
construction there are N > max{|®,| + 1,2 |[®,] — 2} players. Let p be a positive integer.
The graph G has N(|®,] + N) + 2 nodes: the source s, the sink ¢, and N rows of |®,| + N
nodes. The nodes in row i are denoted by v; o, v;1, ..., s, +n-1. In the following, for
two integers h and k we denote by h + k their sum modulo N. The graph G has N arcs
a; = (s,v;0) and N arcs b; = (vj,|s,)+n-1,t) for all i € [N], having delay 0. Note that for all

h € [N] the only edge going to vy is a;, and the only edge going out from vy, x4 |3,)-1 is by
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Foralli € [N]and j € [|®,| + N — 1] there is an arc ¢;; from v; ;_; to v; ;. The delay
function associated to the arc is 2® for [®,] < j < N and ¢;2” for1 < j < |®,| — 1 and
N+1<j<|®,]+N —1. For each j such that 1 < j < |®,] — 1, the coefficient ¢, is
computed as the solution of

[®p]—1
G+ = D i +j- [P,
i=j

and foreach N +1 < j < [®,] + N — 1 we set ¢; = ¢|g,]+n—;. Finally, for all i € [N],
J € [[®p],[Pp] + N — 2] there is an arc g;; from v; j to v;11,j—|s,|+1 Of constant delay 0.

We define the state P = {P', ..., PV} where the (s, t)-path P’ chosen by player i is

Ais €15, €425 - - €| D, |5 Ji, | Dp) 5
€i11,25 €i41,35 -+ + 5 Cid1,|®p [ +15 it 1, Dp | +15
ey
Cif N—1,N) Cit N=LN+1s - - - s Cit N—1,N+|®p|—1, Diy N—1

which selects | ®, | consecutive edges in each row. Since each edge with delay function z?
is used by | ®, | players, and each edge with delay function ¢;z? for j € [|®,|] — 1 is used
by j players, we conclude that the total players’ cost in P is equal to N((N — [®,] + 1) -
(@) - (@, )7 +2- 52 ¢y 7).

We also define a state P* = {P*!, ..., P*N} where player i selects the path P*' that only

traverses row i:

iy €15, €425 -+ -, €GN+ | Dy |15 b;.

Since each edge e;; is used by only one player, the total players’ cost in P* is equal to
N((N - [, +1)+2- Z}i’f—l ¢;). We remark that the cost of P* is an upper bound on
the cost of a social optimal state.

We will next prove that P is a PNE. This will imply that for N — oo the PoA is at least
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|®,]"*". Specifically,

cost(P) S cost(P)

cost(SO) ~ cost(P) (3.5)
o O D0 2 S
N—+o0 (N—|®,] +1)+2- ZJL‘I:’ziJ—l & .
T L R VR A R (37)
N=too (N — @, +1)+2- Z;Li’ij e
- Lq)pjpﬂ 68)

To show that P is a PNE, we prove that every player is not able to decrease her cost by
deviating to another (s, t)-path. Because the players’ strategies are symmetric, without loss

of generality, we consider player 1, whose strategy is

Pl = alaP117917L<I>pjap21792,|_¢>pj+17 s 7Pilagi,L‘I>pJ+ifly .- 'aP]{[abN'

where for i € [N]

1
PZ- = Ciiy Ciitly -+ o5 Ciit|Dp]—1

Let f denote the flow induced by strategy profile P. To show that P is a PNE, we need

the following claim:

Claim 6. Fori € [N],j € [N—1], wehaved,, ,(fe,,+1) > cost(P})and d

Ci,|@p|+N—j (fei, |®p | +N—j
1) > cost(Py_; 1)

Proof of claim. Leti € [N]and j € [N — 1]. We prove d., ,(fe,, + 1) > cost(P}). To show
dez-,ppjw_j(fei,ppwv_j + 1) > cost(Py_;,,) the proof is analogous.

Case(i): i € [N]and j € [[D,] — 1]
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We have d., ,(z) = ¢; - #* and f,, ; = j. Thus we obtain

dei,j(fei,j + 1) =G5 (] + 1)p
[®p]—1

=D a i)
i=j

= cost(P}),

where the second equality follows the definition of c;.
Case(ii): i € [N]and j € [|®,] , N — |D,] + 1]
In this case, all the [®,] edges in P} have cost z” and are used by |®,] players. As a
consequence, cost(P}') = |®, ]! and de; ;(fe,; +1) = (|®p] +1)P. Since 0 < [@,] < D, we
have ¢,(|®,]) > 0 and we conclude that the claim holds.
Case(iii): i € [N]and j € [N — |®,| +2, N — 1]

Since N > max{|®,| + 1,2 |[®,]| — 2}, we have |®,] < j < N, thus ¢, ; has delay 2” and

is used by | ®, | players. We obtain
e, (feoy +1) = ([Pp] + 1) > |27,

where the inequality follows from the fact that 0 < |®,| < &, and ¢,(|®,|) > 0. Next, we
prove |®,]""" > cost(P}). We recall that P} consists of |®,] edges. In this case, the first
k = N — j+ 1 have delay z” and are used by | ®, | players, while the last | ®, | — k edges are
such that, for / € [[®,| — k] and j = N + ¢, edge (i, j) has delay cy¢2” = c|s,j—¢2? and is
used by |®, | — ¢ players. Thus

[®p)—k

ost(P)) = Y cla, e ([Pp] = OF + k- [D,)7
/=1
[@p]—1
= > k()

{=k
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We next show that for ¢ € [k, |®,] — 1] we have ¢, - ¢* < |®,|”, which directly implies our
claim. We proceed by backward induction. First we show the base case, where ¢ = |®, | — 1.

By the definition of ¢,, we have

Clop|-1- I_(I)pJp = Clop)-1- (I_(I)pJ — 1P+ (L(pr —1)- Lq)pjp'

Thus we obtain

c _ (LCDPJ — 1) ) L(I)pJp
T e, - (2] - 1

To prove our claim our goal is to show that

([@,] — 1 0,7
(0,7~ (@, — 1) = ®)

or equivalently
(2] > ([Dp] = VP + ([ 2] — P = [Dp] - (|2,) — 1)".
We rewrite the above condition as
(1p) —1)P < [@,)77". (3.9)

To prove that (3.9) is satisfied, we first observe that |®, ;|” < (|®, ;] + 1)?"! because
0< [®)_1| < D, implies g,—1(|P,-1]) > 0. Moreover, ¢, — &, ; < 1 by Lemma 3.7,
which implies |®,| — [®,-1] < 1forall p € Z*. Note that &; = %5 > 1 thus, by
Lemma 3.7, ¢, > 1 for every positive integer p. Thus0 < |¢,| —1 < |[®,_;| < ®,_; and
Gp—1(|®,] — 1) > 0 implies (3.9).

Next, we assume our claim holds for ¢ € [k + 1, |®,| — 1] and we prove the claim still
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holds for ¢ — 1. By definition we have

[®p]—1
GU+1P= D - 4j- (9,7,
i=j
[®p] -1
Co_q - P = Z Ch'hp‘l'(e_l)' L(I)pJp
h=¢-—1
[®p] -1
= ((=1P+ Y P (C—1) [ D)
h=¢(

<cpg- (=124 ([Pp) =0 |Pp)" + (£ —1) - [D,]"

= ¢ (C= 1P+ ([Pp] = 1) [D)7

Thus

o= P 1) (D)
T (S T

To prove our claim our goal is to show that

(L(DPJ - 1) ) L(I)pJp ) (6 - 1)p

< p
ép—(é—l)P — Lq)pj )
that is equivalent to
(D, - (£ —1)P <7,
and in turn also to
¢ —1\" 14 P
@, P < <—) o, |+ 1)P. 3.10
(o) to < (o) Qo+ (3.10)

We conclude that (3.10) is satisfied since (i) 0 < |®,] < ®,, thus g,(|®,|) > 0 implies

|®,]7"" < (|®,] +1)?and (ii) ﬁ < ﬁ and since / < |®, | + 1. Thus Claim 1 is proved.

<
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Now we show that player 1 is not able to strictly decrease their cost by deviating to
another (s, t)-path. We provide an algorithm whose input is an arbitrary (s, t)-path P! and
output is another (s, t)-path with lower cost. We will show that by applying this algorithm
repeatedly, the output will finally become P'. First, we introduce some notations. We
define the edge costs w : F — Ry as w, = d.(f.) ife € P' and w, = d.(f. + 1) ife ¢ P.
For any path ¢, let w(q) = > . , We. Given a path g, let q,,, where u,v € ¢, denotes the
subpath of ¢ between nodes u, v.

The algorithm receives in input an simple (s, t)-path P! and returns in output another
simple (s, t)-path P! such that w(P') < w(P"'). Let v; denote the last node in P' such
that P}, coincides with P/, . Note that we could have v; = s. If v; = t, then P' and P*
coincide. In this case the algorithm stops and returns P'. If v; # ¢, then the algorithm
determines the first node v, occurring after v; in Pvll o such that v, also belongs to P
Finally, the algorithm identifies the last node vs in P}, , such that P, = coincides with P,

v2,V3

and outputs pl—pl pl

s,v37 © v3,t°

If P! is not simple, then we make it simple by eliminating the
cycles. If the algorithm returns a path P' different from P?, then the algorithm is applied
again by setting as input P! = P,

We first argue that by repeatedly applying this algorithm we will finally obtain P in
output. In fact, either v; = ¢, or P}, , is strictly contained in P} ,, since v3 occurs after v; in
P'. Thus, at the next iteration, when we set as input P! = P!, the number of edges in the

new ]51}17,5 strictly decreases, since node v; of the current iteration coincides with node v; of

the previous iteration. Next we show that w(P') < w(P").

Case(i): v; = s. In this case,

pt=p! P P, and P'=pP! P. P!

$,v27 T V2,37 T v3,t S,27 ~ V2,37 T v3,t”

Thus, we need to show that w(P},,) > w(P!,,). Since v, is the first node occurring after s

$,V2

in P! that also belongs to P!, by the definition of the weights w, we have w, = d.(f. + 1)
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for each e € P!, and w, = d.(f.) for each e € P!

S,U2 s,v2°

Suppose that v, = v; ;. Then every
path from s to v; ; must traverse an edge e, , with k € [N] for each ¢ € [j]. Thus we have

w(P!, V>3, de, ,(fe,, +1), where we arbitrarily picked & = 1 for each / € [j]. By Claim

8,04,
6
min{N,j} j
Z COSt PE Z €1,¢ f€1e +1 <w(Pslv”) (311)
/=1 /=1

Note that since v; ; belongs to P}, itmustbei—1 < j <i+ [®,] — 1. If j =i—1 < N, then
v is the first node in P;'. Note that ¢ cannot be 1 because the only edge goes into node v ¢

is a1, which belongs to P'. If vy = v o then a; € P' contradicts to the definition of v5. Then

we have '
J
P,.) Z cost(P}) Z cost(P}). (3.12)
=1
Ifi <j<i+|[®,] —1, wehave
mm{N jt
Sv” Zcost P}) Z cost(P;}). (3.13)

By combining equations (3.11), (3.12) and (3.13) we obtain that

min{N,j}
(Pslvzj) S Z COSt(PE ) < w(PslvU)
/=1
Case(ii): vo = t. In this case,
pt=p! P'. and P'=P! P', =P

8,017 7 v1,t 8,017~ v1,t T

Thus, we need to show that w(P}, ,) > w(P,

v1,t

). Since vy = t is the first node occurring after
vy in P! that also belongs to P!, by the definition of the weights w, we have w, = d.(f. + 1)
foreache € P} , and w, = d.(f.) for each e € P, ,. Suppose that v; = v; ;. Then every path
from s to v; ; must traverse an edge e, o with k € [N] foreach ¢ € [j +1, N + [®,] — 1]. Thus

we have w(PUl ) = Z??f}“ “d,, o(fer, +1), where we arbitrarily picked £ = 1 for each
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¢ € [j]. By the second inequality of Claim 6

N N+|®p] -1
> cost(P}) < Y dey,(fer, +1) Sw(P, ). (3.14)
{=max{j—|Pp|+2,1} l=j+1

Note that since v; ; belongs to P!, itmustbei —1 < j <i+ [®,] — 1. Ifj =i+ |P,] — 1,
then v, is the last node of P;. Note that i cannot be N because the only edge goes into node
UN,N+|®,]—1 is by, which belongs to P'. If v; = vy x4 (s,)—1 then by € P! contradicts to the

definition of v;. Then we have

N N
w(P,, )= Z cost(P}) < Z cost(P}). (3.15)
{=i+1 {=max{j—|Pp|+2,1}
Ifi —1<j<i+|®,] —2, wehave
N N
w(P,, ) < Zcost(PL}) < Z cost(P}). (3.16)
=i {=max{j—|Pp|+2,1}

By combining equations (3.14), (3.15) and (3.16) we obtain that

N
w(Pvlimt) < Z cost(P}) < w(ijt).

{=max{j—|Pp|+2,1}

Case(iii): vi # s and vy, # t. Without loss of generality, let v; = v; ; and v, = vj, ;. Note
that v; belongs to P!, thusi — 1 < j < i+ |®,] — 1, and v, belongs to P}, thus h — 1 <

k < h+ |®,| — 1. Finally, note that k > j if i = h. Thus P' = (P! ,P} . Pl  Pl,) and

8,017 T V1,27 T v2,v3) T V3t

Pl — (Pl Pl Pl pL

8,017 7 v1,v27 T v2,v37 T v3,t

). So we only need to show that

Since v, is the first node occurring after s is P! that also belongs to P!, by the definition of

the weights w, we have w, = d.(f.+1) foreache € P! , and w. = d.(f.) foreach e € P}

v1,v2 v1,V2°
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Subcase(iii).1: j =i+ |®,] — 1, i.e., v, is thelastnodein P}, and h < k < h+[®,| — 1. Thus

h > iand h # k—1, otherwise ]57}1 », Will intersect with P} before v,. Since g; ; € P,

V1, vz’

conclude that the first edge in P, . is €;;4|s,|- And since e, € P! we conclude that the

v1 v v1,v27/

last edge in P}, iS gh—1k+|®,|—1- Note thatbecause k + [®,] =1 > h+ [®,] =1 > i+ [D,],

V1,02

then every path begin with ¢; ;;|¢,) and end with g,_; 4 |¢,)—1 must traverse an edge ¢, ¢
withm € [N]foreach ¢ € [i + [®,],k + |®,| — 1]. We arbitrarily picked m = 1 for each ¢,

then we can conclude that

et |y |- It @] -1
(P1111 v2 Z Z dele f€1£+1 Z dele f€1£+1) (317)
{=i+|Dp] {=i+|Dp ]

Then according to the second inequality of Claim 6, we have

h+|®p]—1 h
Z del N f61 N + 1) Z w<P£1)' (318)
{=i+|Dp ] {=i+1

Recall that v; = v;; is the last node in P!, which implies that P, , contains subpath

Pl,,...,P;_, and part of subpath P;. So we can conclude that
h
Z cost(P}) > w(P, ,,) (3.19)
=it1

By combining inequalities (3.17), (3.18) and (3.19) we have w(P. ) > w(PL ).

V1,02 V1,02

Subcase(iii).2: i —1 < j <i+ |P,| —2and k = h — 1, i.e., vy is the first node in P;. Thus

we have h > i. Since ¢; ;1 € P, ,,, we conclude that the first edge in P}  is g; ;. And since

v1,v27

we conclude that the last edge in P}

V1,02

9h—1+|,|—1, who ends with vy, , belongs to P, ,
is ej, 1. Note that because g, ; ends with node v; 1 ;_|¢,j1and h — 1 > j — [, ]| + 2, then
every path begin with ¢, ; and end with e;, ,_; must traverse an edge e,,, , with m € [N] for

each ¢ € [j — | ®,] + 2, h — 1]. We arbitrarily picked m = 1 for each ¢, then we can conclude
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that
h—1 -1

w(pvll,vz> Z Z del,Z (fel,e + 1) Z del,é(fel,é + 1) (320)

t=j5— Lq)pJ +2

>

~
Il

i

Then according to the first inequality of Claim 6, we have

>

-1

>

-1
ey (fer, +1) = ) w(P). (3.21)

%

~
Il
~
Il

)

Recall that v; = vy is the first node in P, which implies that P} , contains subpath

Pl,,...,P;_, and part of subpath P}. So we can conclude that
h—1
> cost(P)) > w(P,, ,,) (3.22)

By combining inequalities (3.20), (3.21) and (3.22) we have w(P) ) > w(P} ).

V1,02 V1,02
Subcase(iii).3: i —1 < j < i+ [P, —2and h < k < h+ |®,] — 1. Thus we have h > i

we conclude that the first edge in P! is g; ;.

V1,02

and k£ > jlf h = 4. Since €ij+1 € P!

V1,027

we conclude that the last edge in P! is Gh—1,k+|®,|—1- Note that

v1,V9

And since e, € P} 2
because g; ; ends with node vi;1,;_|¢,j41 and k + [®,| —1 > j — |®,] + 2, then every path
begin with g; ; and end with g;,_1 ;4 |¢,)—1 must traverse an edge e,, , with m € [N] for each

telj—|P,]+2,k+|P,] —1]. We arbitrarily picked m = 1 for each ¢, then we can conclude

that
B k+ \_CI’IJJ_ h
w(Pl )= Y dey(fer, +1) =) dey (fer, + (3.23)
l=j—|®p]+2 =i

Then according to the first inequality of Claim 6, we have

h h
D ey (fer, 1) 2> w(P)). (3.24)
=1 {=1i

Because v; € P} and v, € Py, so P, , contains subpath P!, ,..., P}_, and part of subpaths
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P! and P}. So we can conclude that

h

> cost(P)) > w(P,, ,,) (3.25)
0=
By combining inequalities (3.23), (3.24) and (3.25) we have w(P,, ,,) > w(P}, ,.). O

3.3 Series-parallel network congestion games with respect

to total cost

3.3.1 Upper bound on price of anarchy

In this section, we prove the upper bound on the PoA stated in Theorem 3.2. First, we
need to introduce some necessary notation and properties of series-parallel networks. In
the following, we denote by f and o a PNE and a social optimum, respectively, of the
series-parallel network congestion game. We consider the graph G(o — f) introduced in
[25]. Precisely, the node set of G(o — f) is V, and the edge set is E(o — f) = {(u,v) : (e =
(u,v) € Fand o, — f. > 0) or (e = (v,u) € Eand o, — f. < 0)}. G(o — f) is a collection of
simple cycles {C}, ..., C)} such that each C; carries s; units of flow. For each i € [h], define
C ={e=(u,v) € E: (u,v) € Cio. > f.}and C; = {e = (u,v) € E : (v,u) € Cj,0, <
fe}-

Recall the parameter y(D) we have defined in Section 3.1. In the next four lemmas, we
will assume that there exists an index i € [h] such that C' is an (s, t)-path, and we will
prove that the PoA is at most y(D). Later, we will relax this assumption. Observe that,
by definition, C;" is contained in o. In the next lemma, we prove that the cost of C;" with

respect to o is at least the average players’ cost in the PNE f, that is, cost(f)/N.

Lemma 3.8. If C;", i € [h], is an (s, t)-path, then cost,(C;") > cost(f)/N.
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Proof. The cost of C;" with respect to flow o satisfies:

cost,(C;") = Z de(0e) Z de(fo+1) > COSt(f).

N
eeCt eeCt

The first inequality holds since for every e € C;", we have o, > f. + 1. Next we show that
the second inequality holds. Denote by P* the set of N (s,t)-paths in the PNE inducing f.
Clearly max {cost¢(m) : m € P*} > =L COSt By contradiction, suppose that Zee(ﬁ de(fe+1) <
cost

%. We would obtain that max {cost(7) : 7 € P*} > cost(C;"), thus one player would

prefer to change her strategy into C;". This contradicts the fact that f is a PNE. O

In the next lemma, we contemplate adding one unit of flow on an arbitrary (s, ¢)-path p
contained in o, and we lower bound the corresponding increase of the total cost. This will

be crucial to derive a lower bound on cost,(p) that will be used to relate cost(f) and cost(o).
Lemma 3.9. Suppose that there exists an index i € [h], such that C;" is an (s, t)-path. Then every

(s,t)-path p contained in o satisfies

3" (00 + 1)de(0r + 1) — 0cde(02)) =

eep

Proof. We will prove this by contradiction. Assume that there is an (s, t)-path p contained

in o such that

3 (00 + Dee(or +1) = 0ude(00) < Cosjtv(f ), (3.26)

ecp ecp

We define a new state o’ obtained from o by deviating one unit of flow from C;' to p.

Let S = C;" N p. First, the cost difference between o’ and o is

cost(0') — cost(0) = > ((0e — 1)de(0c — 1) — 0cde(0c))

e€C\S

+ Z 0c + 1)dc(0c + 1) — 0cdc(0c)).

eep\S
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Observe that, since the delay functions are non-decreasing, we have d.(o. — 1) < d.(o.) for

all e € C;", thus

cost(o') — cost(0) < Y (00 — 1)de(0c) — 0cde(0¢))

ecC\S
+ ) (0 + Dde(0g + 1) = 0cde(0¢))
eep\S
> deoe) + Y (00 + 1)de(00 + 1) = 0cde(0.)).
e€C;\S eep\S

Moreover, we have d.(o. + 1) > d.(0.) for all e € S, thus

0< > (00 +1)(de(00 + 1) = de(0c))

eeS

:_Zd Oe +Z 0c + 1)d.(0e + 1) — 0.dc(0.)).

ecS ecS

By summing up these two inequalities we get

cost(o’) — cost(o) < — Z de(0c +Z 0c + 1)dc(0c + 1) — 0cde(0c)).
eeCt eep
By Lemma 3.8, since C;' is an (s, t)-path, we have cost,(C;") = Dcect de(0e) 2 =F+ COSt ) Thus,
by (3.26) we obtain cost(o’) — cost(o) < 0, which contradicts the fact that o is a social

optimum. O

By using Lemma 3.9, we can derive a lower bound on cost,(p) similar to the lower

bound on cost,(C;") stated in Lemma 3.8, but with an extra factor of y(D).

Lemma 3.10. Suppose there exists an index i € [h] such that C;" is an (s, t)-path, and let P be any

decomposition of o. Then for every p € P,
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Proof. Since P is a decomposition of o, for each p € P we have o, > 0 for all e € p. Then we

have

cost(f)
t e > e 1 e 1 de e > )
y(D)cos Zy (o Z 0 + (0e+1) — (0e)) N

ecp ecp

where the first inequality follows the definition of y(D) stated in Equation (3.1) and the

second inequality follows from Lemma 3.9. 0

Finally, under the assumption that there exists a path C;" from s to t, we are ready to

prove that the PoA is at most y(D).

Lemma 3.11. If there exists an index i € [h] such that C;" is an (s,t)-path, then cost(f) <

y(D)cost (o).

Proof. By Lemma 3.10 we know that given an arbitrary decomposition P of the social

optimal flow o, for all p € P, we have y(D)cost,(p) > &Aﬁf) Then we can conclude that:

t
D)cost(o Zy )cost,(p) > |P|COS (/)

peEP

- COSt(f)a

where the last equality follows from the fact that |P| = N. This implies that cost(f) <
y(D)cost(0). O

We now relax the assumption that there exists a path C;" from s to ¢. In order to do this,
we will exploit the structure of series-parallel graphs. If G is series-parallel, it is known
that for each i € [h] C;" and C; are two internally disjoint paths in G from a node u; to a

node v; [25]. For each i € [h], we identify the pair of nodes u;, v; and we define

V; ={w € V : there is a (u;, v;)-path containing w},

E; = {e € E : thereis a (u;, v;)-path containing e},
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and welet L = {Ey,..., Ep}.

Lemma 3.12. If G is series-parallel, then L = {E, ..., Ey} is a laminar family.

Proof. We prove this lemma by showing that if £; N E; # ) for some i and j in [h], then
E; C E;or E; C E;. We proceed by induction on |E|.

The base case as |E| = 2. If the two edges of GG are composed in series, then there are
no cycles. If they are composed in parallel, then there is only one cycle, i.e., i = j, and
E; = FE; = E. This implies that the lemma holds for the base case. Now we assume that
when |E| < t, the lemma holds. When |E| = t + 1, since G is series-parallel, it can be
decomposed either in series or in parallel.

Suppose that G can be decomposed in series into GG; and G5. We first show that E; and
E; are both contained either in the edge set of GG; or in the edge set G. In fact, E; cannot
have edges both in ; and in G5, otherwise C;r and C; would not be internally disjoint
paths. Thus F; is contained either in the edge set of Gi; or in the edge set 5. Similarly, £
is contained either in the edge set of GG; or in the edge set G». Moreover, E; and E; cannot
belong to different components, otherwise we would have E; N E; = (. Thus, E; and E;
both belong to the same component. Assume without loss of generality that this is G;.
Since the number of edges of (7 is at most ¢, by the inductive hypothesis we obtain that
E; C Ejor E; C E;, thus the claim is proven in this case.

Now suppose that G can be decomposed in parallel into G; and G,. If E; and E; are
both contained either in the edge set of GG, or in the edge set of GG, then by induction the
claim holds. If E; is contained in the edge set of one component, say GG;, and E); is contained
in the edge set of the other component G5, then E; N E; = (), a contradiction. Thus at least
one among E; and £ has edges both in (G; and in G5. Without loss of generality, suppose
E; does. We prove that C;" and C; are (internally disjoint) (s, t)-paths. By contradiction,
suppose that C;" and C; are (s;, t;)-paths such that s; # s or t; # t. Note that s; and ¢; are

either both in G or both in (5. Suppose w.l.o.g. they are both in 1. Then each (s;, t;)-path
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cannot contain any edge in G. Because C;' and C; are (s, ¢)-paths, by the definition of E;,

we have E; = E. Thus we conclude that £; C E;, which proves the claim in this case. [

By Proposition 1 in [25], if w and v’ are two nodes in V; such that there exist two internally
disjoint (w, w’)-paths p; and ps, then every (s, t)-path having an edge in common with p,
contains both w and w'" and intersects p, only at w and w'. This implies that each (s, t)-path
going through w; also goes through v;. As a consequence, for each i € [h] the sub-vectors of
f and o that are indexed by the edges of E;, denoted by f(E;) and o(E;), respectively, both
define (u;, v;)-flows in the subgraph G; = (V;, E;). Define a network congestion game on
G, where each edge e € E; has the same delay d, as in (G, and the number of players NV; is

equal to the value of flow f(E;).

Lemma 3.13. If G is series-parallel and E; is a maximal set in L, then in the network congestion

game defined on G;, f(E;) and o(E;) are a PNE flow and a social optimum flow, respectively.

Proof. Let N; be the flow value of f(E;). First we show that o( E;) also has value N;. Recall
that G(o — f) is a collection of cycles {C}, ..., C}} and each C; carries s; units of flow. By
the definition of G(o — f) we can change f into o as follows: for j € [h], decrease the flow
on C} by s; and increase the flow on C}" by s;. By Lemma 3.12 £ is a laminar family, thus
for each j € [h], the paths C; and C’f are either both in G; or neither of them in G;, i.e.,
either E; C E;, or E; N E; = (). Thus, each step does not change the flow value on G;. We
can conclude that when the procedure ends, the flow value o( E;) equals the flow value of
f(E;) = Ni.

Next, we show that f(E;) is a PNE flow on G;. By contradiction, suppose that f(E;) is
not a PNE flow on G;. This implies that in each decomposition of f(£;) into N; (u;, v;)-paths
there is always one player who can decrease her cost by deviating her strategy to another
(u;, v;)—path in G;. This implies that in each decomposition of f into N (s, t)-paths there is
always one player that can unilaterally deviate and decrease her cost. This contradicts to

that f is a PNE flow.
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Finally, we show that o(E;) is a social optimum on G;. By contradiction, suppose that
there is another flow o'(E;) in G; of value N, such that cost(o'(E;)) < cost(o(E;)). Then we
can construct a flow o” such that o = o, foralle € E'\ E; and o = o, forall e € E;. Then

cost(0”) < cost(o), contradicting the fact that o is the social optimum. O

We now consider the graphs G}, i € [h], having node set V; and edge set E;.

Lemma 3.14. If G is series-parallel and E; is a maximal set in L, then
cost(f(E;)) < y(D)cost(o(E;)).

Proof. According to Lemma 3.13, the congestion game with V; players on the two terminal-
series parallel graph G, is such that f(E;) is a PNE and o(E;) is a social optimum. Note
that u; and v; are, respectively, the source and the sink of ;. Since C;' is a (u;, v;)-path, by

Lemma 3.11 we conclude that the lemma holds. O

We are finally ready to prove Theorem 3.2, i.e., in a symmetric network congestion game

defined over a series-parallel network with delay functions in class D, the PoA is at most

y(D).

Proof of Theorem 3.2. Consider the PNE flow f, the social optimum flow o and the
laminar family £ defined previously in this section. We will prove that, since G is series-
parallel, then cost(f) < y(D)cost(0). Let E¢,, ..., E¢, be the maximal sets in £ and denote

by E(L) their union. We rewrite cost( f) as follows.

COSt(f): Z fede(fe)+ Z fede(fe)'
)

e¢E(L e€E(L)

Note that for each edge e ¢ E(L) we have f. = o.. Moreover, E¢,, ..., E¢, are a partition of

E(L), since they are maximal members of £ that are pairwise disjoint. Thus we can rewrite
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the above expression as

!
cost(f) = Z Oede(06)+z Z fede(fe)

e¢ E(L) i=1 ecEq,

<y(D) Y 0di(o) +y(D) Y Y 0.dilo.) = y(D)cost(o),

e¢E(L) i=1 e€Eg,

where the inequality follows from the fact that y(D) > 1 and from Lemma 3.14. O

Let Poly- p be the class of polynomial delay functions with maximum degree p, which

are of the form )7 a2/, with a; > 0 forj = 0,...,p.

Lemma 3.15. For the class of polynomial delay functions Poly- p it holds that y(Poly-p) < 2PT!1—1,

Proof. By using the definition of y(Poly- p) in (3.1) we have that for any z € N*

(e + 130 pa(x+ 1) — 2377 aja?

y(Poly-p) = sup :
AQy.eey apeRzo, reNT ‘I]'):O a.j'rj
W o 0 (o + 11 =) 6527
ag,...,ap€ER>g, €Nt j=0 (IjQT]
We now exploit the fact that given two collections of nonnegative real numbers by, . .., b,
and co, . .., c,, we have
b b.
; < max 2
§=0 Cj J=0,....p Cj
As a consequence, we can upper bound (3.27) by
max , : (3.28)
j€{0,...,p},zeN* Xt

We now upper bound the numerator of the above expression as follows:

Jj+1

1, ,
(z+ 1)/ — o7 :JZ: gt IR it < Z J+l @)
k =2 )"

k=0
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where the inequality follows from the fact that j + 1 > 1 and = € N*. From (3.28) we then

obtain

By Theorem 3.2 and Lemma 3.15 we obtain that the PoA of series-parallel network

congestion games with polynomial delay functions with highest degree is p is at most

2r 1,

3.3.2 Lower bound on price of anarchy

In this section, we illustrate how to construct a family of instances that asymptotically
achieve the lower bound on the PoA stated in Theorem 3.3. This construction is an extension
to polynomial delays of the construction proposed in [30] for affine delays. Let {¢,...,qn}

be an ordered sequence of positive numbers such that 3%, ¢; = 1 and ¢;;; = = S

j=17
fori € [N —1]. Let m € [N — 1]. We define a new sequence {sy, ..., sy} by averaging
{@1,...,qmn}. Precisely, s = --- = s, = Z}Zqi and s; = ¢; for j > m + 1. We construct

a series-parallel (s,t)-network G with delays in Poly-p, and an (s, t)-flow f of value N
recursively. Let GG, be a single (s,t)-edge with flow f,,, of value m and delay equal to “L%.
For every i € [m, N — 1], we construct G;;; and f;;; using G; and f; as follows: we compose
in parallel G; and a new (s, t)-edge with flow value 1 and delay function s; ;27 and call the
new network G; and the new (s, )-flow f;. Next, we compose in series i + 1 copies of G;
with flow f; to get Gi11 and f;,. We also divide the delay functions by i + 1. Then we set
f = fn. Finally we compose G in parallel with m new (s, t)-edges e, ..., e, with delay
function 527 to get G. By construction, G is a series-parallel network with polynomial

delay functions having non-negative coefficients and maximum degree p.
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(c) Gs o
(e) h

Figure 3.1: Given an input sequence {q1, g2, ¢3}, p € N* and m = 2, we first average the first
m numbers and get {s1, 52, 53}, where s; = sp = 432 53 = gy and 5 = 2+2+3_(3.1(d)) is
the output network G and its corresponding PNE flow f. (3.1(a)), (3.1(b)), (3.1(c)) are
the intermediate networks and flows according to our construction. (3.1(e)) is the flow A

defined in the proof of Theorem 3.3 where k = 1.

To prove Theorem 3.3, we first show that f is a PNE. Then we define a new (s, t)-flow h
that is obtained from f by deviating k£ € [m] units of flows from the most expensive (s, )-

paths in f to the k parallel (s, t)-edges in G with delay function 2?. The parameters r and

lin (3.2) are defined as r = 2, I = £. Consider the construction described above, which
is represented in Fig.3.1. We will first show that this construction satisfies the properties

stated in the next two lemmas.

Lemma 3.16. The (s, t)-flow f has an (s, t)-path p with flow value m and cost ¢(p) = s;.

Proof. We prove the lemma by inductionon i € {m,..., N}. The base case is i = m. In this
case f; = fy, is a flow of value m on a single (s, t)-edge with delay function **. The path
p™ defined by this edge has cost costy, (p™) = s1.

Suppose that for each m < i < N it holds that f; has an (s, t)-path p' with flow value m

and costy, (5°) = s,. We first construct f; by composing in parallel f; and a new (s, t)-edge.
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Clearly, p' has still flow value m and cost; (7') = s1. Then we compose in series i + 1 copies
of flow f; to get fi11 and we divide the delay functions by i + 1. The new (s, t)-path p**!
is obtained by composing in series i + 1 copies of p'. By construction, this path has flow

value m and costy, , (p'T) = s1. O

Lemma 3.17. The (s, t)-flow f has cost 1, and it can be decomposed into N (s, t)-paths {p*, ..., p"}
that define a PNE in G. Moreover cost;(p') = 1/N for all i € [N], i.e., each player incurs the same

cost.

Proof. First, we show that fy has cost 3.~  s; = 1 and it can be decomposed into a PNE
in G where each player incurs the same cost. We show this by induction on i. When
i = m, Gy, is a single (s, t)-edge, and f,, is an (s, t)-flow of value m routed through this
edge. Moreover, cost(f,,) = 2™m = " s;. Note that we cannot define any alternative
flow in G,,,. Moreover, f,, admits a unique decomposition into N (s, t)-paths, thus f,, is a
PNE flow where each player uses the same edge and incurs the same cost.

Now we assume that when i = k, f; has cost Zle s;, and it can be decomposed into
a PNE in G, where each player incurs the same cost. Our goal is to prove that the same
holds for i = k + 1. Note that in our construction first we define G and f; by composing
in parallel f;, and a new (s, t)-edge with delay s;12 and flow value 1. Thus, we first show
that f; is a PNE flow in G. By the inductive hypothesis, flow f; can be decomposed into
a PNE in G, where each player’s cost is %Zle s;. To define a decomposition of fk, we
augment the decomposition of f;, by appending the extra (s, t)-edge used to construct G/.
Clearly, cost(f,) = cost(fi) + sks1 = .07, s;. Moreover, (i) no player paying %Zle Si
has an incentive to deviate, since 2Ps; | > %Zle si, and (ii) the player paying s+ does
not deviate since sy is the minimum cost (s, t)-path in fk This shows that fk is a PNE
flow in G},. Recall that in our construction we define Gi+1 and fi1 by composing in series
k + 1 copies of G}, with flow f, and we divide all the delay functions by & + 1. Clearly,

cost( fry1) = cost(fr) = ¥ s;. We define a decomposition of fy,; into k + 1 (s, t)-paths
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as follows. Since there are k + 1 players and k + 1 identical copies of G4, composed in series,
we let each player choose their original strategy in f, in k components, and choose the extra
edge used to define G, in one component. Thus, in this decomposition of f;,, each player
incurs the same cost and no player has an incentive to deviate from their strategy.

Finally, we show that f = fy is a PNE flow on G and cost(f) = cost(fy) = 3.V s; = 1.
Recall that we construct G by composing in parallel Gy and m new (s,t)-edges ey, ..., e,
with delay function +”. Since in f every player incurs a cost equal to 3, no player has an
incentive to deviate to an edge e;, i € [m]. Thus, f is a PNE flow on G.

O

Define pi(m, N) =[]} 524, We will need the results stated in the next two lemmas.

J=m 2Pj+1
Lemma 3.18. Let {qi, ..., qn} be an ordered sequence of positive numbers such that Zfi 1Gi =1
and g1 = 5 ; X fori € [N — 1]. Then for every m € [N| we have >_" | ¢; = p(m, N).

Proof. ~ We proceed by induction on m. The base case is m = N — 1. Since qy =

1 N-1 )
2P(N—1) Zj:l q;, We have:

N-1 1 N-1

2 ¢G=l—-qgv=1- PN=T1) 2. q;- (3.29)

By equation (3.29), we have 271+ 2p(N 1) Z "' ¢; < 1. This implies thatz g < % =
u(N — 1, N). Thus the statement holds for the base case.

Next we assume that the statement holds for m € {k,..., N — 1}, and we prove that it

also holds for m = k — 1. Based on our inductive hypothesis, Z?Zl ¢; < p(k, N'). Moreover,

. o 1 k—1 .
since gk = 5,13 2_j-1 4j, We have:

k-1 k

k—1
> 4= 6 —a=pkN) - §W£j5;;%' (3.30)

j=1 j=1
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According to (3.30), we have Z(k—1)+1 Z] 1¢; = p(k,N). This implies that ZJ 14 =

20 (k—1)

%u(lﬂ N) = p(k — 1, N). Thus, the statement holds. O

Lemma 3.19. For m € [N — 1] we have %/ % < p(m, N).

Proof. First we can equivalently write:

N—-1 . N—1 2r
B 225 2py
) = ] 522 - <JHn2pj+1> |

j=m

We lower bound the argument of the square root as follows.

H\owit1) — Lok

Jj=m j=m
_ 2Pm — (28 —1)
2PN — (2¢ — 1)’

We will now use the results stated in the above lemmas to prove Theorem 3.3.

Proof of Theorem 3.3. Consider the network congestion game on the network G defined
above. By Lemma 3.16, f has an (s, t)-path p with flow value m and cost(p) = s;. For each
edge e in p, let a.a? be the delay function of e. Note that cost;(p) = > .., acm = s; implies

that > = 2L Recall that 7 = 2 and | = £. Define h as the flow obtained from f by

eEp

moving a subflow of value (m — k) from p to the (s,t)-edges ey, ..., e,_x, which have all
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delay function +2”. Then by construction we have:

1
cost(f) — cost(h) = mcost(p) — (k:costh(p) + (m — k)N)
S 1
= sym — (Elkrz + (m — k>ﬁ> (3.31)
_ (B2 Sy Mz Mok s T
B <m mk msl)—l— m (msl N)
(S S) R (g, ™
_ (mmk mk)+ — <i:1 si N), (3.32)

where equality (3.31) holds since > = 2L Equality (3.32) holds since the first m of s;

ecp e

are equal.

By Lemma 3.18 and Lemma 3.19 we have

" m m »
D=y = nlm N) =5 2 [(¥fr =) —d. (3.33)
i=1
Now observe that
51 m - m 2P 2P
Emzzmslzﬁ_,_(zsi_ﬁ)zr—i—[( r—r)—e]:( r—€), (3.34)

where the inequality follows from (3.33) and the fact that > " s; = > " ¢

This implies
51 51,2 2\51 2 2\ ( 2P
—mk — —=k*=(1-1)—m"> (1 —-1°)(r— .
—mk = k= (=) —mt = (L= ) (W =), (3.35)
where the inequality follows from (3.34).
From (3.32) and (3.35)we obtain
cost(f) — cost(h) > (I — (/7 —e) + (1 = 1)(Y_ s — %)

1

Z(l—l2)(2%—6)+(1—l)[(2107”—?”)—6], (3.36)
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where inequality (3.36) follows from (3.33). By Lemma 3.17 we know that cost(f) =

ZJIV s; = 1, thus we obtain:

cost(h) <1— (I =) (N/r—e) —(1—1)[(¥r—r)—¢
=14+Pr—rl— Xr+r+ (1 -1 (3.37)

To obtain an upper bound on cost(%) we minimize the right-hand-side of (3.37) with respect

to r and [. Observe that ¢ — 0 when N — oo, thus we solve

min PA/r—rl— Nr+r

st.re0,1),l€]0,1],

which is achieved at r = (5:2=)" 1,1 = 1!~ 3. Since 4 > <) e obtain a lower

bound for the PoA. O

We now argue that the worst case PoA is in (27 /p). By substituting the expression of

in the denominator of (3.2), we obtain
P D 1 5 1 L
1+l22\/F—7’l—2\/F+r:1—Zr2 ¥ o — o, (3.38)

Since r,1 € [0, 1], we can upper bound the above expression with

2P 1
1 2 2P -1 2 2P -1
1”‘“““(@) —(m)

2 \Fx 1\ . L\
(mma) ) 03 E)

Finally, we have that lim,,_, 1_(1_7?)(2”1*1) - 0, proving that (3.38) is in O (p/2?),

b
2P

which implies that when NV goes to infinity the PoA is at least in €2 (27 /p).
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3.4 Series-parallel network congestion games with respect
to maximum cost

In this section, we measure the social cost of a state P as the maximum players’ cost in P,
and we derive an upper bound and a lower bound on the PoA with respect to this notion of
cost. Recall that given any state P, tot(P) is the total cost of P and max(P) is the maximum

cost of a player in P.

3.4.1 Upper bound on price of anarchy

We first prove the upper bound on the PoA stated in Theorem 3.4.

Proof of Theorem 3.4. Let P, be the social optimum with respect to the total cost, and let
P; be the social optimum with respect to the maximum cost. Let P; = {p},...,p} } be an
arbitrary PNE. We will show that max(Pf) < z(D)y(D) max(P;).

Because Py is a PNE and max(P) is the cost of a player, we have max(P;) < cos’c}L (p%)
for any i € [N]. Moreover, by (3.3), we have cost} (p) < z(D)cost;(p}). In other words, the
most expensive path in Py has cost no greater than z(D) times the cost of any other path in

P;. Thus we can conclude that
N N
N -max(Py) <) costf(p}) < 2(D) > costy(p}) = (D) tot(f),
=1 =1

i.e., the most expensive path in Py has cost no greater than z(D) times the average players’

cost in P;. Moreover,

(D) tot(Py) < 2(D)y(D) tot(P,) (3.39)
< (D)y(D) tot(P;) (3.40)

< 2(D)y(D)(N - max(F)). (341)
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Inequality (3.39) directly follows Theorem 3.2. Inequality (3.40) holds since F, is the
social optimum state with respect to the total cost, which implies that tot(F,) < tot(F;).

Inequality (3.41) holds because max(F;) is the maximum player’s cost in P;. O

We now consider the class Poly- p of polynomial delays with nonnegative coefficients

and maximum degree p, and we prove that z(Poly- p) is at most 27.

Lemma 3.20. For the class of polynomial delay functions Poly- p it holds that z(Poly- p) < 2P,

Proof. By the definition of z(Poly- p) in (3.3) we have that for any z € N*

Note that given two collections of nonnegative real numbers by, ..., b, and ¢, . .., c,, we
have

p

=00, < max b

Thus,

3.4.2 Lower bound on price of anarchy

Finally, we prove that, for any class of delay functions, and as long as the network’s structure
is preserved under series compositions, any lower bound on the PoA with respect to the
total social cost is also valid when measuring the social cost in terms of the maximum

players’ cost.

Proof of Theorem 3.5. We start with an instance of an atomic, unweighted, symmetric

network congestion game on a (s, t)-network GG, where Py is a PNE, F, is a social optimum
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with respect to the total players” cost, and the PoA is cost(Py)/cost(P,). Our goal is to
construct a new instance on a network G’, and to define a PNE P; and a social optimum

P, with respect to the maximum players’ cost, such that

max(Py)  cost(Py)

max(P,)  cost(P,)

We construct G’ as follows. First, let Gy, ...,Gx be N duplicates of G and let G’ be the
(s,t)-network obtained by composing in series G, ...,Gy. We remark that any graph
structure possessed by G is still valid for G’, by our assumption. Let Py = {p}, - pjcv }
and P, = {p.,...,p)}. Foreachi € [N]let P;, = {p},...,p}'} and P,, = {p},...,p}}
be the corresponding duplicates of P; and F, in G;, respectively. For each player i € [V]
we define the strategy pj, of player i in Py by having the player choose the path pﬁi)
in G, where j(i) = (i + N —1) mod N. For example, the strategy of player 2 in Py is
obtained by composing in series the paths p7 ,p},,...,p}, | ,p}, . Analogously, we define
the strategy p’, of player i in P, by having the player choose the path pﬂgi) in G;. It can be
checked that Py = {p},, o ,p?{} is a PNE for the new instance defined on G’ (otherwise
we would contradict that f is a PNE in the original instance). Similarly, it can be checked
that P, = {pl,,...,p)} is the social optimum in G’ with respect to the total cost (otherwise
we would contradict that o is a social optimum in the original instance).

Observe that, since in our construction we are permuting the players’ strategies, all the
players have the same cost, both in Py and in P,;. Moreover this cost is equal to tot(FPf) in
Py, and to tot(P,) in P,.. Thus, max(Py) = tot(P;) and max(Py) = tot(P,). Now let f and
o be the worst PNE and the social optimum in the new instance. We conclude that

tot(P;)  max(Pyp) _ max(Pj)

= <
tot(P,)  max(Py) — max(P;)’

which implies the statement of this theorem.
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3.5 Conclusion

Our contributions fill a gap in the literature on the PoA of atomic, unweighted, symmetric
network congestion games. We have investigated the impact of both symmetry and of
network structure on the worst-case PoA in network congestion games. Previous works had
either addressed asymmetric games over general networks, or symmetric games over very
simple network structures, such as parallel-link networks and extension-parallel networks.

First, we considered symmetric network congestion games over arbitrary networks and
showed that when the delay functions are polynomial, the worst-case PoA is very close
to that of asymmetric network congestion games. This implies that symmetry does not
influence the worst-case PoA significantly.

Then, we considered the class of series-parallel networks, corresponding to graphs
with treewidth 2. These networks arise in many applications and understanding how their
structure impacts the PoA in network congestion games could be the first step towards
relating the worst-case PoA to the treewidth parameter. Our results indicates that, when
restricting from symmetric games over arbitrary networks to symmetric games over series-
parallel networks, the worst-case PoA significantly drops. On the other hand, the worst-case
PoA quickly degrades when going from extension-parallel to series-parallel networks.

In this chapter we have focused on symmetric games, but it is not clear if network
structure could affect the PoA in asymmetric games.

An open question is: in asymmetric (unweighted) congestion games over other special
network structures, for example series-parallel networks, is the PoA still significantly

smaller than that over arbitrary networks?
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4  PRICE OF ANARCHY IN k-UNIFORM AND PAVING MATROID

CONGESTION GAMES

41 Introduction

4.1.1 Overview and main results

In this chapter we focus on another combinatorial structure, namely matroids. Matroid
congestion games are congestion games where each player’s strategy set is the set of bases of
a given matroid.

Recall that for symmetric k-uniform matroid congestion games with polynomial delays
of highest degree p the worst-case PoA is in O(2PP*1) and in Q(2?) [36]. This indicates
that the combinatorial structure of k-uniform matroids significantly limits the inefficiency
of equilibria. However, k-uniform matroids are very special matroids, since every subset
of the ground set of size at most £ is independent. Are there weaker matroid structures that
affect the inefficiency of equilibria? In this chapter we focus on paving matroids, i.e., matroids
whose circuits have cardinality greater than or equal to the matroid rank. Unlike k-uniform
matroids, paving matroids exhibit a notable predominance within the enumeration of
matroids. It has been conjectured that, in an asymptotic sense, the majority of matroids are
paving matroids [41]. This conjecture holds if the ground set has size at most 9 [10, 42].
Pendavingh and van der Pol [48] more recently proved that, as the size of the ground
set goes to infinity, the ratio of logarithms between the total number of matroids and the
number of sparse paving matroids, a subclass of paving matroids, converges to 1.

Our contributions. First, we provide a lower bound of 13/9 on the worst-case PoA for
symmetric paving matroid congestion games with affine delays. This ratio is worse than
the previously known best upper bound ~ 1.41 on the PoA of symmetric congestion
games with affine delay functions over k-uniform matroids, which are a subclass of paving

matroids. Thus, relaxing the structure of players’ strategy sets from uniform matroids to
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paving matroids can increase the inefficiency of pure Nash equilibria.

Theorem 4.1. The worst-case PoA of symmetric paving matroid congestion games with affine delay

functions is at least 13 /9.

We next turn to the question of finding upper bounds on the PoA of symmetric paving
matroid congestion games. Given the class of delay functions D, we define the parameter
z(D) as

d 1
(D)= sup M
deD, zent  d()

Since the delay functions d(x) are non-negative and non-decreasing, we have z(D) > 1. Our
tirst main result is an upper bound on the worst-case PoA in symmetric paving matroid

congestion games with delay functions in class D.

Theorem 4.2. The PoA of symmetric paving matroid congestion games with delay functions in

class D is at most z(D)*p(D).

When D is the class of polynomial functions of maximum degree p, we have z(D) = 2P
and p(D) € O(p/Inp). Thus, the worst-case PoA is in O(4”p/Inp). For p > 6 our bound
is smaller than the worst-case PoA that can be achieved in general symmetric congestion
games, thatis in O(p/ Inp)?** [3]. Thus, the worst-case PoA of symmetric congestion games
cannot be achieved in paving matroids.

We also prove —with a substantially different approach— that this is the case for
p = 1,1i.e., when the delay functions are affine. In this case, the worst-case PoA for general

symmetric congestion games is 5/2.

Theorem 4.3. The PoA of symmetric paving matroid congestion games with affine delay functions

is at most 17/7.

Finally, the approach used to prove Theorem 4.2 also provides a new upper bound on
the worst-case PoA in symmetric k-uniform matroid congestion games with delay functions

in class D.
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Theorem 4.4. The PoA of symmetric k-uniform matroid congestion games with delay functions in

class D is at most z(D)p(D).

When D is the class of polynomial functions of maximum degree p, we obtain that
the worst-case PoA is in O(2Pp/In p). This significantly improves on the previously known
upper bound of O(2°**1) [36] and partially closes the gap with the lower bound of 2(27)
[36].

4.1.2 Preliminaries

In this section, we recall some basics of matroid theory and then we introduce some

fundamental notions of congestion games.

Matroids. A matroid is a pair (R,Z) where the ground set R consists of a finite set of
elements and 7 is a nonempty collection of subsets of R such that: (i)if / € Zand J C I,
then J € Z;and (ii) if I,J € Z and |I| < |J|, then I U {z} € Z for some z € J \ . Given a
matroid M = (R,Z), a subset I of R is called independent if I belongs to Z, and dependent
otherwise. A subset B C R is called a basis if B is an inclusion-wise maximal independent
subset. Thatis, B € Z and thereisno Z € Z with B ¢ Z C R. The common size of
all bases is called the rank of the matroid, denoted by r(M). A circuit of a matroid is an
inclusion-wise minimal dependent set. For every basis B and every element in R\ B, there
is a unique circuit contained in B U {z}, that is called a fundamental circuit.

Next, we introduce the bijective basis-exchange property:

Theorem 4.5 ([11]). Let B be the collection of bases of a matroid. For any B, B’ € B, there is a
bijection m : B — B’ from B to B’, such that for every v € B\ B’, B\ {z} U {m(x)} is a basis.

A matroid is called k-uniform matroid if its independent sets are all the subsets of R
of cardinality at most k, i.e. every k + l-element subset of R is a circuit. A matroid is
called paving matroid if every circuit of M has cardinality (M) or r(M) + 1. The following

proposition characterizes paving matroids in terms of their circuits.
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Proposition 4.6 ([47]). Let C be a collection of non-empty subsets of a set R such that each each
member of C has size either t or t + 1. Let C' C C consist only of the t-element members of C. Then

C is the set of circuits of a paving matroid on R of rank t if and only if

1. if two distinct members Cy and Cy of C' have t — 1 common elements, then every t-element

subset of Cy U Cy is in C'; and
2. C\ C' consists of all the (t 4 1)-element subsets of R that contains no member of C'.

Matroid congestion games. A matroid congestion game is a congestion game where the
strategy set of each player i is the set of bases B; of a given matroid M; = (R; C R,Z;). For
an arbitrary state s of the matroid congestion game, we denote by B! the strategy of player i
in s. A paving matroid congestion game is a matroid congestion game where }/; is a paving
matroid for all i € [N]. A k-uniform matroid congestion game is a congestion game where

M, is a k-uniform matroid for all i € [N] and k € [min; | R;].

4.2 Upper bounds on the PoA for delays in class D

In this section, our goal is to prove Theorems 4.2 and 4.4. For a matroid congestion game
over resource set R, we let G = (R, E) be a complete directed graph, where the nodes
correspond to the resources in R. Let s and g be two states of the congestion game. We

define the following two sets:
R (s,q)={r€eR:s >q} RY(s,q)={reR:s. <q},

andwelet! =3 (. (Sr—a) =D cr+(s9 (@ —5r). InG, everynode r € R~ has supply
s» — qr, and every node r € R* has demand ¢, — s,. A (single-commodity) flow F € Z#*#

in GG is a non-negative vector such that for every node r € R

F(5~(r)) = FGH(r) = ¢, — s (4.1)
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where §~(r) contains all the arcs whose head is r and §*(r) contains all the arcs whose
tail is . We call F a (s, q)-difference flow. Note that the above definitions can be applied
to a generic congestion game. For a matroid congestion game, we can construct a special
(s, q)-difference flow F, that we call (s, q)-exchange flow, as follows. According to Theorem
4.5, for each pair (B!, B}), there is a bijection 7*(x) : B, — B}, such that for every r € B.\ B;,
there is an unique 7*(r) € B \ B, and B, \ {r} U{7*(r)} € B. Starting from the zero vector,
for every i € [N], r € B.\ B., we add one unit of flow to the arc (r,7'(r)) to G in order
to obtain £'. We observe that I’ can be decomposed into [ paths, each one starting from a
node in R (s, ¢) and ending at a node in R" (s, ¢), and carrying one unit of flow. Each path
in the exchange flow can be interpreted as a sequence of resource exchanges such that each
arc (r,r’) in the path corresponds to some player replacing resource r with resource 7’ in
their strategy.

In the next theorem, we consider an (f, 0)-exchange flow. For any (u,v)-path from
R=(f,0) to R*(f,0), if costs(u) is equal to at least a fraction a of cost?(v), then we can
upper bound the ratio between the social costs of f and o by ap(D). We recall that the
function p(D), initially introduced by Roughgarden [52], is defined as p(D) := sup,p p(d),
where

- zd(z)
pUd) = Sup i) T @~ pdle)

Theorem 4.7. Let F be an (f, 0)-exchange flow. Let R~ = R~ (f,0) and RT = R*(f,0). For all

(4.2)

paths p contained in F fromu € R~ tov € R*, if acost (v) > cost;(u) for some o > 1 then we

have cost(f) < ap(D)cost (o).

Proof. For every resource r € R, inequality (4.2) and o > 1 imply

freosty(r) = frd,(f) < p(D)(ord(0r) + (fr = 0r)d(f))

< p(D)(a0,d(0,) + (fr — 0,)d(f,) (43)

Let {pi,...,p/} be an arbitrary decomposition of the flow F, where each py, is from r,’
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to r} such thatr;, € R~ and r} € R*. We have

Z (0, — fr)cost,(r) = Z cost,(r) > Zcost;{(r,j)

reR+ k=1 k=1
‘1 1

>N Zcost(rr) = — 0, )cost (1), 4.4

Z 2 eosty (1) =~ e§R_(f 0 )cost () (4.4)

where the equalities hold by the definition of F' and equality (4.1), the first inequality holds
because of the definition of R*, and the second inequality holds because by assumption.

LletR={rcR:f.=0,}=R\ (R URT).

cost(f) = Z freosts(r) + Z freosts(r) + Zchostf(r)

reR- reR* reER

< Z frcost(r) + Z freosty(r) + Z 0,costo()

reR- reRt+ reR

< p(D) Y ao,cost,(r) + p(D) Y _ (f, — o,)costy(r)

reR~ reR~

+ ap(D) Z frcosty(r) + Z 0,cost, (1)

reR+* reR

< p(D) Z ao,cost,(r) + p(D) Z (0, — fr)cost,(r)

reR— reRt

+ ap(D) Z frecosty(r) + Z 0,cost, (1)

reR* reR

= ap(D) Z 0,cost,(r) + Z orcost,(r) < ap(D)cost(o).

réeR-UR+t reR

The first inequality holds because of the definition of Rt and R; the second inequality holds
because of inequality (4.3) and a > 1, p(D) > 1; the third inequality follows by applying

(4.4); the last inequality follows because o > 1, p(D) > 1. O

We emphasize that the bound on the PoA provided by Theorem 4.7 is not restricted to

the class of paving matroids. In fact, the assumption of the theorem involves an exchange
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flow, which is defined for any matroid, and a parameter «. Thus, for any matroid, if we are
able to find such «, we are able to bound the PoA.

The next lemma implies that for k-uniform matroids a = z(D) satisfies the assumption
of Theorem 4.7. This lemma is an extension of Lemma 5 in [18] from affine delay functions
to general delay functions. Moreover, it can be verified that for polynomial delay functions

the bound established in Lemma 4.8 is tight.

Lemma 4.8. Suppose M is a k-uniform matroid. Let q be an arbitrary state of the game. For every

u € R (f,q)and v € R™(f,q) we have z(D)cost;f(v) > cost ¢ (u).

Proof. Let u* be the most expensive resource in R~ (f, q), i.e., costs(r) < costs(u*) for every
resource r € R™(f, q). To prove the lemma, we will show that forevery v € R*(f, ¢) we have
z(D)cost; (v) > costs(u*). By contradiction, suppose there exists a resource v € R*(f,q)
such that

z(D)cost} (v) < costy(u”). (4.5)
Since ¢, > f,, we have f, < N, thus there exists at least one player ¢ who does not use v in
f,ie, v ¢ B We claim that, for all » € B}, we have

cost(r) < costy (v). (4.6)

This follows from the fact that, since M is a k-uniform matroid B} \ {r} U{v} is a basis of M
forallr € Bj. Thus, if (4.6) did not hold, player i could deviate from r € B} to v to decrease
their cost. As a consequence, z(D)cost; (v) < costy(u*) implies that v ¢ B}. Moreover,
recalling that 2(D) > 1, we have cost; (r) < z(D)cost;(r) for all € R. Combining this

with (4.5) and (4.6), we obtain that, for all 7 € B
cost (1) < costy(u”). (4.7)

Note that (4.7) implies u* ¢ Bj. Since u* € R™(f,q), fur > 0w > 0, thus there is at least
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one player j using u* in f,ie., u* € B;. Since M is a k-uniform matroid, Bf; \ {u*}U{r}is
a basis of M for all r € B}. Moreover, since u* ¢ B} and | B:| = | B}| = k, we can conclude
that | B} \ B}| > 1. Le. there exists at least one resource 7* € B} such that r* ¢ B}. Thus, by
(4.7), player j could deviate from u* to r* to decrease their cost. This contradicts the fact

that f is a PNE. d

Applying Theorem 4.7 and Lemma 4.8, we can immediately derive Theorem 4.4.
Next, we show that for paving matroids a = z(D)? satisfies the assumption of Theorem

4.7. To this purpose, we first introduce an auxiliary result.

Lemma 4.9. Consider a symmetric matroid congestion game with delays in class D. Let f be a
PNE, and o a SO. Let v be a resource that is not used by player i in f and let C! be the unique

circuit in By U {v}. Then, for all v € C; we have cost; (r) < z(D)cost;(r) < z(D)cost (v).

Proof. Assume that there exists a resource r € C? such that cost;(r) > cost;f(v). Since C! is
the unique circuit that satisfies C;,\ {v} C B}, we have that B;\{r}U{v} € B, i.e., exchanging
r and v defines a feasible strategy for player i. By performing this exchange player ¢ is able
to lower their cost, thus contradicting the fact that f is a PNE. Thus, we can conclude that
for each r € C} we have cost;(r) < cost; (v). This implies that z(D)cost;(r) < z(D)cost} (v).

Finally, by the definition of z(D), thus we have cost} () < z(D)cost(r). O

For an arbitrary state ¢, consider an ( f, g)-exchange flow F and any path contained in
it starting from a node v € R~ (f, ¢) and ending at a node v € R*(f, ¢). If the matroid is

paving, the next lemma implies that cost; (v) cannot be smaller than a fraction of cost;(u).

Lemma 4.10. Suppose M is a paving matroid with r(M) =t > 1. Let q be an arbitrary state
of the game and let F' be an (f, q)-exchange flow. Let R~ = R~ (f,q) and RT™ = R*(f,q). For
all paths p contained in F from uw € R~ tov € R", and for every resource r in p we have

cost(r) < z(D)*cost} (v).
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Proof. Let r* be the most expensive resource of path p in f, i.e., cost;(r) < costy(r*) for
every resource r in p. Since t > 1 we know that 7* is used by at least one player in f. We

will prove cost(r*) < z(D)%os‘c}r(v). By contradiction, suppose
costy(r*) > z(D)*cost] (v). (4.8)
Define
S ={r e R:costf(r) <costy(r*)}, S={reR:zD)cost](r) < costs(r)}.
Since z(D) > 1, we have S C S. Moreover, we have the following property.

Claim 7. |S| > t.

Proof of claim.  Since v is the last node in p, there exists a player j such that v ¢ B}.
Let CJ be the fundamental circuit in Bﬁ; U {v}. By Lemma 4.9, for all » € C7 we have

cost (1) < z(D)costy (v). Thus:
z(D)cost} (r) < z(D)?costf (v) < costy(r*),

where the last inequality comes from (4.8). This implies that C? C S. Since in a paving

matroid of rank ¢ every circuit has size at least ¢t we obtain |S| > . o

Note that v € S, since z(D) > 1, and r* ¢ S. Since p traverses both r* and v, there is an
arc (a,b) in psuch thata ¢ S and b € S. Since (a, b) is contained in F’ there exists a player ¢
such thata € B}, b ¢ By and B} \ {a} U {b} € B.

First,a € By \ S = B} \ (B; N S). Thus 1 <t — |B; N S|. We have

IS\ Bj| =S| = [SNBj| >t—|SNBj| >t—[SNBj| >t+(1—t) =1,
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where the first inequality follows from Claim 7. Thus S\ B} # 0. Letw € S\ B}. Let C;,

be the fundamental circuit in B} U {w}. By Lemma 4.9 for all € C;, we have
cost () < 2(D)costy (w) < costy(r*),

where the last inequality holds because w € S.

This implies C;, C S. Recall that C},\{w} C Bj. Since the matroid is paving, |C},\ {w}| >
t — 1. Finally, as a € B} \ S we can conclude that B} \ {a} = C},\ {w} C S. Since b € S, we
have Bj \ {a} U {b} C S. We now prove that every t-element subset of S is a circuit. This

immediately contradicts the fact that B} \ {a} U {} is a basis.

Claim 8. Every t-element subset of S is a circuit of the paving matroid M.

Proof of claim. Let h be a player such that r* € B/ and let r be an arbitrary resource in S\ B}.
We show that B} \ {r*} U {r} is a circuit. Consider the fundamental circuit C}" in B} U {r}.
We argue that 7* is not in C}. If that was the case, we would have cost} (r) > cost;(r*)
by Lemma 4.9, which contradicts r € S. Since we have a paving matroid C" > ¢, thus
C = {r} U B} \ {r*}. This proves that B} \ {r*} forms a circuit with every resource
r € S\ B}. By applying the first statement in Proposition 4.6 we can conclude that every
t-element subset of S U B} \ {r*} is a circuit. By the definition of S we have * ¢ S, so

S € SUB}\ {r*} and every t-element subset of S is a circuit. o
U

Lemma 4.10 implies that for paving matroids o = z(D)? satisfies the assumption of Theorem

4.7. Thus, Theorem 4.2 directly follows.

Remark 4.11. It can be verified that the bound of Lemma 4.10 is tight for polynomial delay
functions, however we conjecture that the bound of Theorem 4.2 is not tight for the same

class of delays. In fact, instances where the bound of Lemma 4.10 is tight can have PoA



103

smaller than the upper bound of Theorem 4.2. An intuitive explanation is the following:
when the bound in Lemma 4.10 is tight, in the PNE there is an “expensive” resource used
by many players and a “cheap” resource used by few players. For this state to be a PNE, the
circuits of the matroid must prevent single player deviations where the expensive resource
is replaced by the cheap one. The existence of these circuits requires the existence of other
resources with comparable costs both in the PNE and in the SO (this is implied by Lemma
4.9). As a result, the PoA in these instances will be lower than the upper bound of Theorem

4.2.

4.3 Lower bound on the PoA of paving matroid congestion
games with affine delays

In this section, we consider symmetric paving matroid congestion game with affine delays,
i.e., we assume that the delay function of each resource € R is of the form d,.(z) = a,z + b,
with a, > 0 and b, > 0. Our goal is to prove Theorem 4.1, stating that the worst-case
PoA is at least 13/9. This lower bound is higher than the previously best known lower
bound of ~ 1.35, which is achieved in the symmetric k-uniform matroid congestion games
[18]. Moreover, this lower bound indicates that the upper bound of ~ 1.41 for symmetric

k-uniform matroid congestion games does not hold for paving matroids.

Proof. [Proof of Theorem 4.1] We prove the theorem by constructing an instance of a
symmetric paving matroid congestion game with affine delays that achieves the PoA of

13/9. Let R = {r1} U Ry U R3, where Ry = {ro,73,74,75} and R3 = {r¢,...,713}. Let

Cr = {{r1, 7612, To+2i41} : Vi € {0,1,2,3}},

Cy={SCR:|S|=4and S’ ¢ S,¥S' € C,}.
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Let C' = C} U (. Using Proposition 4.6 with ' = C; and C = C we can easily check that C
is the set of circuits for a paving matroid of rank 3 defined over R.

Next we define a symmetric congestion game over M. Let the delay function of r; be
d () =1,and fori € {2,3,...,13} let d,,(z) = x. Let the number of players be N = 6.
The strategy set of each player is the set of bases of the paving matroid. In a PNE, players 1
and 2 select resources {71, 72,73} and for i € {3, 4,5, 6}, player i selects resources {r4, 76,77},
{ra,rs, 79}, {rs, 110,711}, {75, 712, 713}, respectively. Note that players will not deviate from
r4 OF 75 to 71, since this would form a circuit in C;. The social cost of this PNE state is 26. In
the SO, each player i € [N] selects resources {1, r1+;, 774 }. It can be easily checked that
those strategies contain no circuit and the social cost is 18. Thus, the PoA of this instance is

at least 26/18 = 13/9. O

4.4 Upper bound on the PoA of paving matroid congestion
games with affine delays

In this section, we prove Theorem 4.3. Consider a symmetric matroid congestion game

with N players over resource set 1, and suppose that every delay function is affine. Let s

and ¢ be two arbitrary states of the game such that cost(s) > cost(q), and let R~ = R~ (s, q),

R™ = R*(s, q). We consider the graph G defined in Section 4.2, where eachnode r € R~ has

supply s, — ¢- and each node r € R* has demand ¢, — s,, and we let ® be a (s, ¢)-difference

flow in G. The following theorem identifies some special properties of ® that can be used
(s)

to upper bound %. The proof of the theorem is deferred to the end of the section.

Theorem 4.12. Suppose that ® is an acyclic (s, q)-exchange flow satisfying the following properties:
1. For every arc (u,v) with positive flow in ®, cost(u) < cost?(v).

2. For every path p from uw € R™ tov € RT, cost} (v) > Lcost,(u).
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3. Let (v, w) be an arc with positive flow in ®. If for every path to v starting at a node w € R~

we have cost,(v) > scost(u), then w ¢ R*.
4. Forallr € R*, s, = 0and ®(6"(r)) = 0.
5. Forall r ¢ R*, the delay function of r is linear.
Then cost(s)/cost(q) < 17/7.

Now consider a symmetric paving matroid congestion game with /N players over re-
source set R, and suppose that the delay functions d = (d,),cr are affine. Let f and o be a
PNE and a SO, respectively, that achieve the PoA. We consider an ( f, 0)-exchange flow F.
We then apply five steps, tomap § = (R, d, f,o0, F)toatuple§ = (R',d, s, ¢, ®) that defines
a symmetric 1-uniform matroid congestion game over R’ with affine delays d' = (d,.),cr,
where s and ¢ are two states of the game, and @ is a (s, ¢)-exchange flow satisfying the

assumptions in Theorem 4.12, and such that

cost(f)

cost(0)

cost(s)
cost(q)

<

Then using Theorem 4.12 we can conclude that the worst-case PoA of symmetric paving
matroid congestion games is at most 17/7.

Let §° = (R,d, f,0,F). F is an (f,0)-exchange flow of a matroid congestion game,
thus for every arc (u, v) with positive flow in F' there exists a player ¢ who could replace
resource u with resource v in their strategy. Since f is a PNE, player 7 is not able to decrease
their cost by exchanging u and v, implying that F’ satisfies property 1. Moreover, since
for affine delays z(D) = 2, Lemma 4.10 implies that also property 2 is satisfied. We
apply the following four steps, that preserve properties 1 and 2. Moreover, the construction
guarantees ) , . S, = > . ¢ inevery step. This implies that in every step we can construct
an instance of a symmetric 1-uniform matroid congestion game on resource set R where s

and ¢ are two states that are obtained by assigning players to resources so that for each
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r € R we have s, players using r in s and ¢, players using r in ¢q. The corresponding
(s, q)-exchange flow is redefined accordingly. Note that s and ¢ are not necessarily a PNE
and a SO of the game.

Step 1. First, welets = f, ¢ = oand ® = F. We redefine (R, d, s, q, ®) as follows. For
every resource v € RT(f,0) such that f, > 0, we add a new resource v’ with constant delay
equal to cost,(v). We set s, = ¢, = fu, s = 0 and ¢,» = 0, — f, > 0. Note that ¢, > s, i.e.,
v € R*(s,q), while g, = s,,i.e., v ¢ R"(s,q). Moreover we define the flow ® on arc (v, v’)

to be o, — f,. Atthe end, ® is a (s, ¢)-exchange flow that satisfies property 4.

cost(f) < cost(s) cost(s)
cost(o) — cost(q)

Finally we show that after Step 1. Denote the set of nodes we added in

this step by V’. According to the construction in Step 1, we have

cost(s Z spcosts(r) + Z spcosts( Z freosts(r) + 0 = cost(f),

reR reVv’ reER

and

cost(q) = Z grcost,(r) + Z qrcosty(r) + Z qrcosty(r)

reR\V reV reV’

= Z orcost,(r) + Z frcost,(r Z — fr)cost,(r)
reR\V reVv reVv

< Z orcost,(r) + Z frcost,(r Z — fr)cost,(r) = cost(o),
reR\V reV reV

where the inequality holds because cost,(r) = d,(f.) < d.(0,) = cost,(r). By combining

cost(f) < cost(s)

the above inequalities we obtain ost(0) = cost(q)"

Step 2. For each resource v € R*(s,q) receiving ty,...,t, units of flow from h > 2
resources uj, . . . , u;, through arcs (u1,v), ..., (uy, v) in ®, we redefine (R, d) by replacing v
with h new nodes vy, ..., v, each having delay function d,. We redefine (s, ¢) by setting
sy, = 0and ¢, = t; for all 7 € [h]. Next, we redefine ® by replacing arc (u;, v) with (u;, v;)

having flow value ¢;, for all i € [h]. After this step, for each v € R* (s, ¢) there is only one
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resource sending flow to v.

Let (s,q), (s, ¢') denote the input and output states of Step 2, respectively. We show

that Ssts) < cost(s ) holds after Step 2. For each v € R* (s, q) that we selected in Step 2, we

cost(q) — cost(q’

replaced it with vy, ..., v),. By the construction we have:

h

SUCOSts(U) = Z SLZ_COStS/(UZ) = 0,

i=1
and

h h

gucost,(v) = Z _cost,( Z @, do(q0) > Z @y, dv(q,) Z ¢, COSty (v;).

i=1 =1

Thus, the social cost of s stays the same and the social cost of ¢ decreases after Step 2, so we

cost(s) cost(s’)

have cost(q) — cost(q’) "

Step 3. For each resource v € R*(s,q), let * be the most expensive resource in R~ (s, q)
that is connected to v along a path carrying at least one unit of flow in ®. Let u be the
only resource sending flow to v in ®, and let / be the flow of ® on arc (u, v). If cost} (v) >
1cost,(r*), we redefine (R,d) by replacing v with » new nodes v;, ..., v, having delay
function fcost} (v)z for i € [h]. Moreover, we add h new resource wy, . . ., w, with constant
delay function jcost/ (v) for i € [h]. We redefine (s, q) by setting s,, = 1, s, = 0 and
qv; = Qu, = 1 for i € [h]. Thus, property 4 is preserved. Finally, we redefine ¢ by setting to
one the flow of arcs (u, v;) and (v;, w) for i € [h]. We repeat this step until forallv € R* (s, q)
we have cost] (v) < fcost,(r*), thus achieving property 3.

As in Step 2, let (s, ), (s, ¢') denote the input and output states of each iteration in Step
3, respectively. We show that S8 < cost(s) holds after each iteration of Step 3. Note that

cost(q) — cost(¢’)

for each v € R*(s, ¢) that we selected in an iteration of Step 3, v is replaced by vy, ..., v,
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and wy, ..., wy. By our construction we have:
h oy
spcosts(v) =0 < v;costy (v;) + w;costy (w;)) = —cost! (v),
(v) ;( (vi) (ws)) 2 5 (v)
and
hoy by
qvcost,(v) = hecost,(v) > hcost! (v ; EcostJr + ; §Costj(v)

h h
= Z q,, costy (v;) + Z (o, COSty (W;).
=1 =1

The above inequalities imply that after each iteration of Step 3 the social cost of s increases

cost(s) cost(s’)

and the social cost of ¢ decreases, so we have < =,
cost(q) cost(q’)

Step 4. For every resource r ¢ R*(s,q), suppose d,(z) = ax+bwhere a,b > 0. We redefine

costs (1) asy+b

the delay function of r as ===z = * 2.
Next we show that EEZ:EZ; < Egzﬁ;g , where (s, q), (¢, ¢') are the input and output states

of Step 4, respectively. According to the definition of the new delay functions, it is easy
to conclude that cost(s) = cost(s’). For every resource r € R\ R*(s,¢’), since we have
s, = S, > ¢q. = q,, then cost,(r) < cost,(r). For every resource r € R*(s',¢), since we

did not change the associated delay function, we have cost, (r) = cost,(r). Thus, we can

cost(s) cost(s’)
cost(q) — Cost(q)

conclude that cost(q’) < cost(gq), implying
Step 5. We delete all the cycles in ® to make the flow acyclic. At the end, we set § =
{R,d,s,q,®} and § = §°. Thus, we achieve property 5.

Based on our discussion we obtain the following lemma.

cost( f cost(s)
cost( ) < cost(q)*

Lemma 4.13. § satisfies the six assumptions in Theorem 4.12 and

Remark 4.14. The construction that we use in the proof of Theorem 4.3 relies on Lemma
4.10 to satisfy property 2 in Theorem 4.12. As discussed in Remark 4.11, although there

exist instances where the bound in Lemma 4.10 is tight, these instances might still have
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PoA smaller than the upper bound of Theorem 4.3. Thus, we conjecture that the upper

bound of Theorem 4.3 is not tight.
We are now left with proving Theorem 4.12.

Proof. [Proof of Theorem 4.12]|By property 5, every node r ¢ R* has a linear delay function.
Thus, for all » ¢ R we have

S
to(r) = — th 49
cost,(r) - 1cos I(r), (4.9)
cost,(r) = - q:L 1costj(r). (4.10)

Then we can write

cost(s)  Dremn+ SrCOSts(r)

= cost(q)  D,cp qrcosty(r) (4.11)
_ X empe 5i7e0st (1) | w12)

drerat sorcosty () + >0 cpr ardi(qr)
S S remne rCost (1) w13)

- .
D oreR\RH sigcost!(r) + 3, c g+ grcost! (1)

Note that equality (4.11) holds because we have s, = 0 for all € R* according to property
4, while equality (4.12) is implied by (4.9) and (4.10) and inequality (4.13) follows from
the fact that d,.(¢g.) > cost!(r) forallr € R™.

Let r € R. We define \(r) = cost,(r) — icostf(r). Let p = ro,..., 7 be a path in ®
carrying one unit of flow, where ry € R~ and r, € R*. Foreach h € [k — 1] and i € [h — 1]

we define:

Wi = (3) costoo. Wi = (5) A
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Moreover, we set Q(p,k — 1) = 0, ¥(p,0) = 0, and for h € [k — 1] we let ¥(p,h) =
Zh " Wi(p, h). It can be checked that

k—1

T
L

U(p,j) =) Qp,j)- (4.14)

J=0

.
Il
o

Claim 9. We have that ¥ (p, h) < scost] (rp,).

Proof of claim. We prove the claim by induction on h. Let h = 1. Since (r¢, 1) is an arc in

the path p, by property 1 we have
1 1
U(p,1) = icosts(ro) < §costj(r1).

Now assume that for r;, with h < k — 1, the claim holds. Then for r;, 1, we have

SCOSE] (1) > costu(r1) (4.15)
= SA(r) + jeost; (1) (4.16)
> 2A) + 50 ) (417)
:%Mrh>+g((;) costr +z( ) 200

where (4.15) follows from applying property 1 to the arc (75, 7,+1) in the path p, equality
(4.16) follows from the definition of A(ry,), and inequality (4.17) holds because of our

inductive hypothesis. o

Now let P = {py, ..., p;} be an arbitrary decomposition of the flow ® where each path
starts at a node in R~ and ends at a node in R and carries one unit of flow. By property
4, &(67(r)) = 0 for each r € R*, thus in every path p € P the only node in R™ is the sink

of the path, denoted by ¢(p). Moreover, for each resource r € R we denote by P(r) the
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paths in P that contain r and by P°(r) the paths in P starting at r. Finally, for each resource
r € Rand path p € P(r) we use the notation p(r) to identify the position of r in p, precisely
p(r) = 0 if r is the start node of p, and p(r) = i if r is the i-th node appearing after the start

node of p. After summing up inequalities (4.14) for every path p € P we have

> Z M= > > Qppr). (4.18)

reR\R+ peP(r reR\R* peP(r)

For each resource r € R, we define a,. := ®(6(r)), b, := ®(61(r)) — ®(6~(r)). Note that we
have a, = |P(r) \ P°(r)| and b, = |P"(r)| because @ is acyclic and thus each path p € P is
simple. For each r € R\ R" and each pathin P(r) \ P°(r) we apply Claim 9. Summing up

we obtain

0, = %costj(r)— S Upp(r) > 0.

pEP(r)\PO(r)
Since the fraction in (4.13) is at least 1, by subtracting the non-negative constant > _ _ p\ p+ ©;
to both the numerator and the denominator we obtain an upper bound. By using (4.18)

and the fact that ¥(p, 0) = 0 for every p € P we obtain

Ay
cost(s) < D _reR\R* < max é (4.19)
cost(q) =~ >,cpp+ Br T reR\RY B,
where
2
A= ot + 37 Qppr) - Lot (1), (420)
St peP(r)
2
B — (¢r) 1costj(7“) + Z Q(p, p(r)) + Z cost! (t(p)) — %cost:(r). (4.21)
S+ peP(r) pePO(r)

In the remaining part of the proof we will show that

CU|D>

= < Y forallr € R\ RT.
Let z, := s, — a, — b, = ¢, — a,. Thus we have s, = z, + a, + b, and ¢, = z, + a,. First,

we remark that z, > 0 for all » € R. This is because @ is a (s, ¢)-exchange flow, thus for
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every node r € R we have that ®(6*(r)) is exactly the number of players using r in s and
not in ¢. This number is clearly upper bounded by s,, the number of players using r in s,
thus s, > ®(67(r)) = a, + b,, implying z. > 0. For r € R\ R" we have s, > ¢,. If ¢, = s,
then we have B, — A, = > po(, cost] (t(p)) > 0, which implies that %: < 1. Thus, to
upper bound g—: we now assume that s, > ¢, + 1,i.e., r € R~. Since s, = 2, + a, + b,
and ¢, = z, + a,, this implies that we have b, > 1. Moreover, since s, > 1 we have that

A(r) = costy(r) — jcostf (r) = (325 — 5)cost{ (r) > 0. This implies:

Q(p,p(r)) >

Q(p,p(r)) >

0 vpe P(r)\P'(r)  (4.22)
% A(r) ¥pe P(r)\ Pr) t(p) > p(r) + 1. (4.23)

Let

P(r) :=={p € P°(r) : cost! (t(p)) > cost,(r)}
P)(r) :={p € P(r): %costs(r) < cost] (t(p)) < costy(r)}

PO(r) = {p € PO(r) - icosts(r) < cost! ((p)) < %costs(r)}.

Note that we have P° = P? U P U P?. In fact, Lemma 4.10 and z(D) = 2 for the class of
affine delay functions imply cost! (1) < 4cost (¢(p)) for every path p € P°.
First, recalling the definition of Q(p, 0) and the fact that delay functions are nonnegative,

we obtain that for every path p € P%(r)
Q(p,0) > 0. (4.24)
Secondly, we prove that for every path p € P)(r) we have

Q(p, 0) — %Costs(r) > 0. (4.25)
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In fact, for every path p € Pj(r), there must exists at least one resource between r and
t(p). Otherwise (r,t(p)) would be an arc in p and cost; (t(p)) < costs(r), which contradicts
property 1. Thus, from the definition of Q(p, 0) and the fact that p has at least three nodes,
we have Q(p, 0) > 1cost,(r), which implies (4.25).

Finally, for every path p € PJ(r) there must exists at least two resources between r and
t(p). Otherwise, if there is no resource between them, then (r,¢(p)) would be an arc in p
and cost] (t(p)) < costs(r), which contradicts property 1. If there is one resource 1’ between
r and t(p), then we have two edges (r,r’) and (1, t(p)). By property 1 and the definition
of z(D) we have cost,(r) < cost] (') < z(D)cost,(r’). Since for affine delays z(D) = 2, so
scost,(r) < cost,(r'). Because p € P (r), we also have cost (¢(p)) < jcost,(r) < cost,(r”),
which contradicts property 1 on the edge (r’, t(p)). Thus, we have Q(p,0) > (3 + 1)cost,(r)
which implies

Q(p, 0) — Zcosts(r) > 0. (4.26)

From now on we denote by 7* the most expensive resource with respect to state s among
all the resources u € R~ such that there exists a path from u to r in the directed graph
induced by ®. We denote by p* a path from 7* to r in this graph. Next we need to analyze
the following two cases.

Case(i): cost,(r) < 1cost,(r*)

In this case, we show that if g—: > 1, then g—: < %. We first argue that for every path

p € PY(r), we have

cost* (t(p)) > %costs(r). (4.27)

By contradiction, suppose there exists a path p € P°(r) such that cost] (¢(p)) < icost,(r).
Then, since we are assuming cost,(r) < fcost,(r*), we have that cost! (t(p)) < jcost,(r*).
Then we can combine the path p* from * to r and the path p from r to ¢(p) to obtain a path
from r* € R~ tot(p) € R* that carries at least one unit of flow in ®. This contradicts to the

property 2.
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By (4.22) we have ) p(,\ po(r) 2(p, p(r)) = 0. Since A, /B, > 1 we can subtract from
both the numerator and the denominator this nonnegative constant and obtain an upper

bound. Thus, by using (4.20) and (4.21) we get

Lt =1 costt (1) + > e oy Up, 0) — %cost! (r)

£(r) + X pepogry (Up, 0) + costi (t(p))) — 4 costy (r)

IN

(4.28)

=E

Because of inequality (4.27), we have P°(r) = P)(r) U PJ(r). Thus, from (4.28) we

obtain

2 Qr
< i lecostJr( )+ 2 i Zpepio('r) €2(p, 0) — Grcost{ (r)
a %COSt:(T) +>0 ZpEPiO('r) (2(p, 0) + gtrcost,(r)) — G cost! (r)

(4.29)

S

To upper bound the right-hand-side of (4.29) we do the following. First, for every p €
P (r), we subtract Q(p, 0) — ;cost,(r) from the numerator and subtract Q(p, 0) from the
denominator. Because Q(p,0) > 0 for all p € PY(r) and g—: > 1, this will increase the right-
hand-side of inequality (4.29). Secondly, for every p € P} (r), we subtract Q(p, 0) — 1cost,(r)
from both the numerator and the denominator. This will also increase the right-hand-side

of (4.29) because (p, 0) — Fcost,(r) > 0 and %: > 1. We obtain

A, i cost! (1) + 37, po(yy 3€08ts (1) — Grcost! (r)

r)?
< (+)1 - (4.30)
B, = 4 +1cost+( )+ 3 pepo(r COSts(r) — Gcost! (1)
i jzlcostJr( )+ D epoi) 334 (o) cost! (1) — % cost (r) (431)
i lecostJ“( )+ 2 pepo( S( +)lcostj( ) — %cost!(r) ’ '

where equation (4.31) follows from (4.9) and r ¢ R". Finally, we rewrite the right-hand-
side of (4.31) by factoring out cost/ (r) and exploiting |P°(r)| = b,, s, = a, + b, + 2,,

¢ = a, + z. Next, we derive an upper bound by considering the maximum over all
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possible values of a,, b, and z,. We obtain

A, (adberm)t g ) (Gdbds) o (afbt2)® | 1p (atbtz) o o

Ir < ar+br+z+1 T2 ar+br+z-+1 2 < max a+b+z+1 27 a+b+2+1 2 < L

B, = _(artz)? g (artbete) e T ogzz0p>1 _(e42)? g (atbts) e T 3T
ar+br+zr+1 T ar+br+zr+1 2 a+b+z+1 a+b+z+1 2

Case(ii): cost,(r) > scost,(r*) In this case, we show that if AT > 1, then 4= < . Letp
be a path in P(r) \ P°(r). We first argue that there exists at least one resource between r
and ¢(p) in p. By assumption we have cost,(r) > 1cost,(r*), where by definition r* is such
that cost,(r*) > cost,(u) for every resource u € R~ such that there is a path from u to r in
the directed graph induced by V. Thus, property 3 implies that each arc of the form (r, w)
with positive flow in ® has w ¢ R". We can the conclude that w # ¢(p) € R*. This implies
p(t(p)) > p(r) + 1. By (4.23) we then have Q(p, p(r)) > 3A(r) forall p € P(r) \ P°(r). We

have

A § ﬁlcosﬁ( )+ 2 pep@) SUp: p(1)) — Gcosty ()
B, 2‘1’"—)2cost+< )+ 2 pep) 2P p(r)) + 2 e poy oSt (t(p)) — Geost!(r)
< gsiglcosﬁ( )+ 3A(r) + 3 e pogry QUp, 0) — Lcost? (r)
— 2
i%cosﬁ( )+ 3A(r >+Zpepo (Q(p, 0) + cost (t(p))) — Gcost!(r)
. +1costW) INr) + 300 1 2pepo(r) $Up, 0) — Seost (r)

( o)? Lcost? (1) + SA(r) + ZZ 1 2pePO(r) (Q(p, 0) + 5rcost,(r)) — Lcostf (r)

(4.32)

< (4.33)
Inequality (4.32) holds because Q(p, p(r)) > sA(r) for all p € P(r) \ P°(r) and %: > 1.
Inequality (4.33) holds because we have P = P} U Py U P.

To derive an upper bound on the right-hand-side of (4.33), we do the following. First,
for every p € P (r), we subtract Q(p, 0) — 3cost,(r) from the numerator and subtract Q(p, 0)
from the denominator. Because Q(p,0) > 0 forall p € P}(r) by inequality (4.24) and g—: > 1,
this yields an upper bound. Secondly, for every p € PJ(r), we subtract Q(p, 0) — 3cost,(r)
from the numerator and we subtract Q(p, 0) — 1cost,(r) from the denominator. This will
also produce an upper bound, because (p, 0) — 3cost,(r) > 0 by inequality (4.25) and

g—: > 1. Finally, for every p € P{(r), we subtract Q(p, 0) — 3cost,(r) from both the numerator
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and the denominator. This will yield an upper bound because Q(p, 0) — 3cost,(r) > 0 by

inequality (4.26) and g—: > 1. Then from (4.33) we have

A S"‘—ﬁcostj(r) + IA(r) + > pePo(r) feost,(r) — %cost (r)

B S @ (4.34)
By ™ drhcost! (r) + 3A(r) + X e pogr COSts(r) — %eost! (r)
Sr 2 Ay Spr Sr ar
_ anCOs () + (5857 = 5)OSt(r) + Doy $unCOSK(r) — eosti(r) -
i’f—ﬁcostj(r) + 5 (3 — $)cost} (r) + Zpepo(r) s(j:—)l cost} (r) — %costf (r) ’

where the equation (4.35) follows from (4.9) and A(r) = cost,(r) — scost} (r). Finally, we
rewrite the right-hand-side of (4.35) by factoring out cost/ (r) and exploiting |P°(r)| = b,,
sy = ar + b, + 2z, and ¢, = a, + 2,. Next, we derive an upper bound by considering the

maximum over all possible values of a,, b, and z,. We obtain

(a'r+b'r+zr)2 ar ar+br+2z, _ l) + b § (a'r+br+z'r) ar
2

T S ar+br+2r+1 2 (ar+br+zr+1 T4 ar+br+zr+1 T 7 (4.36)
T

|

Br (ar+2zr)2 %( ar+brtzr l) +b (artbrtzr)  ar
ar+br+zr+1 2 \ar+brtzr+1 2 Tar+br+zr+1 2
(a+b+2)® | a( atbtz 1 37 (atbtz) @
< max a+b+z+1 _'_ 2<a+b+z+l 2) + 4ba+b+2’+1 2 < 1_7 (4 37)
Tasobxl ABIL g adbie 1y g plaibid g T 7 ’
a+b+2z+1 2 \a+b+z+1 2 a+b+2+1 2
This completes the proof of the theorem. O

4,5 Conclusion

We have investigated the impact of matroid structures on the PoA of symmetric congestion
games. In the symmetric case, the PoA of general matroid congestion games is still not
completely understood. For graphic matroids and N = 2, 3,4 or infinity with affine

delay functions, the PoA can be as large as the worst-case PoA of symmetric congestion

SN—-2
2N+1

games, which is equal to [23]. However, for arbitrary N or different delay functions
we don’t know whether the the worst-case PoA of symmetric congestion games can be
achieved by symmetric matroid congestion games. Our results indicate that if we restrict

to paving matroid, the worst-case PoA is significantly smaller than that of symmetric
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congestion games. A similar result had been previously established by De Jong et al. [18]
for k-uniform matroids and affine delays. However, k-uniform matroids are only a mild
generalization of singleton congestion games. Paving matroid, on the other hand, are a
substantial generalization of k-uniform matroids, since they are conjectured to represent
the vast majority of matroids. Since paving matroid are quite more complex that k-uniform
matroids, it is not as easy to characterize the worst-case PoA. There is still a gap between
our upper and lower bounds, and we conjecture that the our upper bounds are not tight
(see Remarks 4.11 and 4.14) .

Our approach to bound the PoA relies on a constant « that we have quantified for both
k-uniform matroids and paving matroids (Theorem 4.7). In particular, we can set a = z(D)
for k-uniform matroids and a = z(D)? for paving matroids. Since paving matroids of rank
k contain circuits whose size is smaller than the circuit size of k-uniform matroids, this
suggests that the difference between the sizes of bases and circuits might impact the PoA.
Let § be a parameter that is equal to the rank of the matroid minus the size of the smallest
circuit in the matroid. We conjecture that for § > 0 we can satisfy the assumptions of
Theorem 4.7 with a = 2(D)?%+1Y. Thus, we would get an upper bound on the PoA which
is equal to p(D)z(D)**V. For polynomial delays of highest degree p, this bound is in
O((CP?)(p/Inp)), where C' = 49+, For fixed ¢ and large p this bound is still better than the
PoA of general congestion games, that is in O((p/Inp)?*!). To summarize, it is possible that
our approach could be extended to upper bound the PoA in arbitrary matroid congestion
games where we have an upper bound on . On the other hand, our approach might fail to
provide meaningful upper bounds for small values of p or when the circuits can be much
smaller than the rank. Besides the size of the circuits, we suspect that the way in which
the circuits overlap can affect the PoA. For example, circuits of k-uniform matroids are
highly symmetric. When dealing with paving matroids, we observed that instances with
highly symmetric circuits displayed a lower PoA. On the other hand, the paving matroid

congestion game example in Section 4.3, whose PoA is larger than the worst-case PoA
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of uniform matroid congestion games, has circuits that more often overlap on a single
resource. In conclusion, it is open to find lower and upper bounds of symmetric matroid
congestion games that depend on the size of the matroid circuits and/or on their degree of

symmetry.
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