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Arithmetic statistics of Selmer groups of twist families of
elliptic curves over global fields

A proposal for an interplay between arithmetic, geometry, and probability theory

Sun Woo Park

Abstract

Let ¢ be an odd prime number at least 5, and let K = F,(¢) be the global function
field of characteristic coprime to 2 and 3 which contains the primitive ¢-th roots of unity.
This thesis focuses on investigating the statistics of rank growths of a non-isotrivial elliptic
curve E over K with respect to a randomly chosen cyclic order-¢ extension L/K, obtained
from adjoining the /-th root of an ¢-th power free polynomial over F, of degree n.

To address the problem outlined above, this thesis presents a probabilistic and a
geometric approach to understand such rank growths by utilizing prime Selmer groups of
some families of abelian varieties over K. The abelian varieties of our interest, as suggested
from the works of Mazur and Rubin, are £ — 1 dimensional abelian varieties obtained
from the kernel of the norm map from the Weil restriction of E obtained from the cyclic
extension L/K to E. The upper bound on rank growths of F can be understood from
computing the dimensions of 1 — o7, g Selmer groups of such ¢ — 1 dimensional abelian
varieties, where o,  is a cyclic generator of the Galois group Gal(L/K).

The probabilistic approach generalizes the work by Klagsbrun, Mazur, and Rubin, who
propose a Markov model over a countable state space which governs the variations of
Selmer groups of non-canonically ordered (I — 1) dimensional abelian varieties over number
fields, assuming some mild conditions on the elliptic curve E. Over global function fields,
we can further utilize the applications of the Riemann hypothesis - which are the effective
versions of the Chebotarev density theorem and Erdos-Kac theorem - to reorder these
abelian varieties under a canonical order and obtain explicit rate of convergence to the
probability distribution proposed by Bhargava, Kane, Lenstra, Poonen, and Rains. The
error terms, unlike the geometric approach, depends only on the degree n of the polynomial
that defines the cyclic order-£ extension over K, and is independent of the size of q.

The geometric approach revolves around constructing a space whose F,-rational points
parametrize the prime Selmer groups of aforementioned families of £ — 1 dimensional
abelian varieties. This space is obtained from using the middle convolution functor to
construct a representable étale IFy-lisse sheaf 7, 5, g over the colored configuration space of
n points with £ — 1 colors defined over F,, a generalization of previous work of Katz and
Hall. By using the Grothendieck-Lefschetz trace formula and big monodromy results, we
demonstrate that assuming some mild conditions on the elliptic curve E, the probability
distribution of such Selmer groups conform to the heuristics suggested by Bhargava, Kane,
Lenstra, Poonen, and Rains, up to error terms which depend on both n and gq.

As an application, we demonstrate how these two approaches can lead us to obtain new
properties of étale cohomology groups of the geometric space parametrizing the Selmer
groups of families of abelian varieties of our interest. To elaborate, we show that the
homological stability, subexponential Betti numbers, and explicitly determined absolute
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values of eigenvalues of the Frobenii actions of these étale cohomology groups imply that
the trace of the Frobenii acting on higher étale cohomology groups have to vanish to 0.
This result hints a possibility that the étale cohomology groups themselves are trivial, a
conjectural statement which requires further research.

We also propose new families of abelian varieties over global fields where both geometric
and probabilistic approaches can be possibly utilized to analyze the probability distribution
of their Selmer groups. These abelian varieties are obtained from Weil restriction of
elliptic curves E with respect to non-abelian Galois extensions L/K with Gal(L/K) =
Z]mZ x ZJVZ for any m | (¢ — 1), whose dimensions of Selmer groups give an upper bound
on rank growths of E with respect to the extension L/K.



iii

Acknowledgements

The three works presented in this thesis encompasses some of the research I focused on
during my leave of absence due to compulsory military service in Korea (during which all
the work presented here was done during evenings after usual working hours), and the last
two years of my graduate studies Park 2022} Park [2024a; Park [2024bl

I would like to sincerely thank my PhD advisor, professor Jordan Ellenberg, for all the
guidance and enlightenment - both mathematically and personally - followed with immense
patience he has kindly shown throughout my graduate studies. In fact, no simple words
can possibly express my sincerest gratefulness to Jordan. Jordan, thank you so much for
kindly suggesting all the great mathematical insights and giving constructive and heartfelt
encouragements in times when I was struggling mathematically. I would not have enjoyed
the beauty of mathematics without your unwavering and heartwarming support.

I would like to thank professor Brian Lawrence, professor Hanbaek Lyu, and professor
Tonghai Yang for becoming committee members for my PhD thesis defense and giving
constructive feedback and comments for improving the thesis. I would like to thank
professor Nigel Boston and professor Daniel Erman, who were previously at University
of Wisconsin-Madison, for becoming committee members for my specialty exam, and for
giving encouragements and mathematical suggestions.

I would like to thank Dr. Melissa Lindsey, Dr. Travis Olson, Dr. Kaitlyn Phillipson,
and Dr. Cassie Williams for giving constructive feedback and encouragements to enhance
my teaching experiences during my graduate studies. I would like to thank both the
University of Wisconsin-Madison and the National Institute for Mathematical Sciences
for providing wonderful environments and opportunities to conduct various interesting
research in mathematics.

I would like to sincerely thank all the mathematical interactions I have had which
have been incredibly crucial for developing the ideas presented in this thesis and other
mathematical works conducted during my graduate studies, which were not included due
to the scope of the paper. I would like to thank Levent Alpége, Santiago Arango-Pinéros,
U Jin Choi, Changho Han, Dosang Joe, Daniel Keliher, Zev Klagsbrun, Peter Koymans,
Aaron Landesman, Jungin Lee, Robert Lemke-Oliver, Wanlin Li, Melanie Matchett-Wood,
Oana Padurariu, Ross Paterson, Alex Smith, Ari Shnidman, Jiuya Wang, Youngho Woo,
John Voight, David Zureick-Brown, and many others for sharing profound mathematical
insights and helpful feedback, followed along with incredible amount of patience and
encouragements.

I would like to thank all my friends, both during my graduate studies (Ivan Aidun,
Michel Alexis, Tejasi Bhatnagar, Asvin G, Kaiyi Huang, Qiao He, Logan Heath, Alex Hof),
Jiwoong Jang, Ruofan Jiang, Hyun Jong Kim, Jiho Kim, Yu Luo, Haran Mouli, Gautam



iv

Memana Neelakantan, Patrick Nicodemus, Eiki Norizuki, Soumya Sankar, John Spoerl,
Karan Srivastava, Jin Woo Sung, Taylor Tan, Niudun Wang, Yifan Wei, Liding Yao, John
Yin, Yeonggyu Yun, and many others that I may not have stated here) and during my
military service (Junhong Cho, Yun Young Choi, Woo Hyuk Huh, Mee-Yeon Joo, Junhwa
Jung, Byeongchun Kim, Namyoung Kim, Hyunju Lee, Yongsul Won, and many others).
My apologies that I may not have listed all the names here, but I thank everyone for
making such an enjoyable experience both at my graduate school and my military service.
I would like to sincerely thank my parents, Ki Won Park and Sung Bong Cho, for their
wholehearted continuous support throughout my graduate studies, military service, and
in the midst of the Covid19 pandemic. Their unconditional love and support made the
journey of pursuing research in arithmetic geometry more enjoyable. Especially, during
occasional times when I was not confident and in serious doubt with my mathematical
capabilities of contributing to mathematical research, their kind words and encouragements
helped me regain my focus and overcome some emotional hardships I faced at the time.
And above all, thank you my Lord and Savior.



Contents

1

L1 Motivation| . . . . . . . . . 1
1.2 Mainresultsl. . . . . . . . L 3
[L3 Previous studied . . . . . . . . . . 6
[1.3.1 Primetwists . .. ... ... ... .. ... 6
[1.3.2  Selmer groups|. . . . . . . ... 11
1.3.3 Relevant worksl . . . . . ... ... ... .. ... 16

2 A probabilistic approach| 20
2.1 Main resultl . . . . ..o 20
2.1.1 Key Ingredients|. . . . . . . . .. . ... L o 23
[2.1.2  Outline of the prooff . . . . . . . . ... .. ... ... .. 24

[2.2  Effective theorems from the Riemann hypothesis| . . . . ... ... ... .. 26
[2.2.1  Eftective Chebotarev density theorem| . . . . . . ... ... ... .. 26
222 Frdos-Kac Theoreml . . . . . . .. ... ... . L. 28

[2.3  Splitting partitions of polynomials| . . . . . . ... ... ... L. 30
[2.3.1  Splitting partition of polynomials over finite fields| . . . . .. . . .. 31
[2.3.2  Equidistribution of local characters|. . . . . . .. ... ... ... .. 37

2.4 Local Selmer groups| . . . . . . . . . . . 40
241 Tocaltwists . . .. ... ... . . ... 41
[2.4.2  Auxiliary places|. . . . . .. ..o 47

2.5 Global Selmer groups|. . . . . . . . ... . Lo o 57
[2.5.1  Governing Markov operator| . . . . . . . ... ... 0L L. Y
[2.5.2  Relating global and local Selmer groups| . . . . . ... .. ... ... 63

13 A geometric approach| 71
B.1 Mainvresult] . . . . . ... 71
8.2 Geometricmodell . . .. ... oo 73
[3.2.1  Geometric spacel . . . . . ..o 74
3.2.2 Big monodromy| . . . ... .. ... 80

13.3  Trivial cohomology groups| . . . . . . . . . ... oL 86
|4 Non-abelian twist families of elliptic curves| 93
I Mainresultl . . . . . . . . e 93
4.2 Abelian varieties governing rank growths|. . . . . . ... ... oL 97

4.3  Random matrix model and Markov operators| . . . . . . ... ... ... .. 102




vi



Chapter 1

Introduction

1.1 Motivation

The overarching theme this manuscript focuses on revolves around the following question:

Question 1.1.1. Understand the interplay between the following two approaches of
obtaining asymptotic statistical behaviors of some countable families of mathematical
objects M := {A,, }nca, whose arithmetic properties depend on distinct prime factors of

their indices n € A.

e A geometric approach utilizing topological invariants of geometric spaces parametriz-

ing the desired family M.

e A probabilistic approach utilizing stochastic processes which govern the dynamics of

the desired family M.

To understand the coupling between geometric and probabilistic approaches, it is crucial
to find potential candidates of mathematical objects whose statistical behaviors can be
obtained from both approaches. One potential candidate we may consider is the problem
of understanding the arithmetic properties of families of elliptic curves E over a global
field K. There is a wealth of previous research which suggest that there is potential for

observing this interplay of two techniques. To name a few, the theory of interpreting



families of elliptic curves as geometric spaces, for example the theory of moduli spaces
of elliptic curves, is a classical area of research in arithmetic geometry that has garnered
deep insights on uncovering their arithmetic properties N. M. Katz and Mazur [1985; N.
Katz [1998. Recent progress in applying techniques from data science to families of elliptic
curves indicate potential advantages in regarding families of elliptic curves as murmuration
structures.

What are some families of elliptic curves whose ordering indices indicate their arithmetic
properties? One family we can consider is the family of quadratic twists of a fixed elliptic
curve F over a global field K. Assuming that the characteristic of K is coprime to 2 and 3,
we may write the Weierstrass model for the quadratic twist of F twisted by a square-free
element f € K as

Ef:=fy’ =2+ Az +B

for some A, B € K such that 443 4+ 27B% # 0. The Mordell-Weil theorem states that the
set of K-rational points of an elliptic curve E, denoted as F(K), is a finitely generated
abelian group. There is a decomposition E(K) = Z" & T for some non-negative integer
r > 0, known as the rank of F over K, and a finite group 7', known as the K-rational
torsion subgroup of E. One of the classical questions focuses on understanding arithmetic
properties of these families of elliptic curves, in particular the distribution of their ranks as
carefully researched from a number of remarkable previous studies.

The rest of the subsequent paragraphs of this introduction closely follows Chapter 1
of Park 2022, Let A be a principally polarized abelian variety over K. Without loss of
generality, we will assume that A/K is non-isotrivial. Let m € End(A/K) be an isogeny
of the abelian variety whose degree is coprime to the characteristic of K. The short exact
sequence of group schemes

0—Aml - A->"A—0

induces the following commutative diagram,



0 — A(K)/mA(K) —— H} (K, A[m]) ——— HL(K,A)[m] ——— 0

| | !

0 —— 1, A(Ky)/mA(Ky) —— T, Hg (Ky, A[m]) —— T1, Hg (Ko, A)[m] —— 0,
where v varies over all places of K. The m-Selmer group of the abelian variety A is given
by

Sel,,(A) := Ker <Hé1t(K, Alm]) = [ Ha (Ko, A) [m]) : (1.1)

v
Given a universal family of elliptic curves over a global field K, Bhargava, Kane, Lenstra,
Poonen, and Rains made a conjecture on the distribution of ¢-selmer groups of principally

polarized abelian varieties for some prime number /.

Conjecture (Poonen and Rains 2012 Bhargava, D. M. Kane, et al. 2015). Let K be a
fized global field of characteristic coprime to 2 and 3. Let p be a prime number coprime to
the characteristic of K. Then as A varies over all principally polarized abelian varieties

over K, ordered by a choice of a height satisfying Northcott property,

d
P [dimp, Sely(A/K) = d] = (H(1+€_j)_1) (H éj“g_l) :
j=1

Jj=0

In particular, the average size of SelyA over all principally polarized abelian varieties A/ K

s+ 1.

For example, for universal families of elliptic curves F over K, the probability is
computed over finitely many elliptic curves y?> = z® + Az + B, where A, B € K have

bounded height B, and calculating the limit of the probability as B grows arbitrarily large.

1.2 Main results

Fix a prime number ¢. Given a polynomial f € F,[t], we denote by Ay the (£ — 1)

dimensional abelian variety over K = Fy(t) constructed as

4
A/K = Ker (N Resk Vg E) (1.2)



where N is the norm map with respect to the Galois extension Gal(K (v/f)/K). We note
that A is not principally polarized, as every polarization of A is divisible by £?, as shown
in Howe 2001 Nevertheless, the main contributions of this thesis, concurrent to the ideas
presented in Klagsbrun, Mazur, and Rubin 2013} Klagsbrun, Mazur, and Rubin 2014} state
that one can still formulate and verify an analogous statement to Bhargava-Kane-Lenstra-
Poonen-Rains heuristics for such families of abelian varieties. Moreover, in lieu of Question
[[.1-] the confirmation and formulation of these statements suggest a possible interplay
between arithmetic (algebraic ranks of elliptic curves), geometry (cohomology groups of
local systems over configuration spaces), and probability theory (Markov operators over

countable state spaces).

o Chapter 2] B} Confirmation of Bhargava-Kane-Lenstra-Poonen-Rains heuristics for
families of abelian varieties {Ay} rep, [ With explicit rate of convergence computed

from probabilistic and geometric approaches.

Theorem (Theorem Theorem [3.1.2)). Assume Condition|3.1.1. We let

p ::#UGFﬁHdmmﬁdk%AAﬂK):nd%f:n}
" E{f € R[] | deg f = n}

Then there exist integers My, Ms > 0 and a fized constant C(¢, E) > 0 independent

of n and q such that for every n > My and q > Mo,

S 1 - L 1 1
Poy — —1I- ‘<cmEymm<,> (1.3)
" g1+€ izl_[lﬁ -1 (nlogq)*®’ /g

where a(f) = mazy<,<1 (mm (plnp +1—-p,—pln (1 - %) »—pln (ﬂg—l)))'

o Chapter [3} Identification of geometric conditions which ensure cohomological trivi-
ality of a representable étale sheaf Tn,oq, g, OVET the unordered configuration space

parametrizing prime Selmer groups of families of abelian varieties {Ay} FERt]-

Theorem (Thoerem [3.3.1)). Suppose that the conditions provided in Theorem|[3.3.]]

regarding homological stability, subexponential Betti numbers, and Frobenius eigenval-



ues of cohomology groups of Tn o, , £ are satisfied. Then for any fized i > 0, there

exists a large number M (i) > 0 such that for every n > M(1),
Hé’t((Tn,Uz,f,E)Ev Q) =0. (1.4)

Chapter EF The construction of abelian varieties By, governing rank growths of
elliptic curves over families of Z/mZ x Z/¢Z Galois extensions L/K with m | (¢ — 1)
and a fixed Galois subextension M /K with Galois group Z/mZ (the family of which
is denoted as Ly), the generalization of Poonen-Rains heuristics under certain
conditions, and their relation to the problem of an integer expressible as a sum of

two rational cubes.

Theorem (Proposition Theorem [4.3.12) Theorem {.4.1)). Denote by By the

m({—1) dimensional abelian variety over K defined as By, /i := Ker (ResﬂE — Res%E) .

— Choose an order £ element o) € Gal(L/K). Then there exists a Gal(K /K)-
equivariant isomorphism B[l — o k] = (Res)Y E)[1].
— Assume Condition . Denote by m := [M/K]. Denote by P, (x)(d) the

following probability:

o #{L € EM(X) ‘ dim]F[ Sell—O'L/K(BL/K/K) - d}
a #L (X)

Pr o) :

Then assuming Condition [{.5.9, we obtain

k n 1 & !
X—00 M ko k1, kn—1€Z>¢ kO, klv e 7kn71 i=0 \j>0 1+ (= j=1 -1

k1+2ko+--+(n—1)kn—1=d
ko+ki4+kn_1=m

— Given an integer n, denote by we(n) the number of distinct odd prime factors
of n equivalent to 2 modulo 3. Fix an elliptic curve E : y?> = x3 — 432. Let
L =Q(¢,vn), M =Q((3), and K = Q. Then dimp, Seli—y, . (Br/x/K) =
2wa(n) + A(n) for some integer —1 < A(n) < 3.



1.3 Previous studies

This section closely follows Section 1, 4 of Park 2022 and Section 2 of Park 2024a,
Recall that given a polynomial f € [F4[t], we denoted by A the (¢ — 1) dimensional
abelian variety over K = F,(t) constructed from the Kernel of the Norm map from the
Weil restriction of scalars Resg(w)E to E. We adhere to Mazur and Rubin’s treatment
of the cyclic prime twists of abelian varieties with respect to cyclic prime field extensions

Mazur and Rubin 2007, Chapter 3.

1.3.1 Prime twists

This subsection closely follows Section 2 of Park [2024a..

Let ¢ be a prime. Suppose K includes all the primitive ¢-th roots of unity py. Given
an element f € O, we denote by Resﬁ(w)E the Weil restriction of scalars of the elliptic
curve E associated to the cyclic order-¢ Galois extension K (v/f)/K. As a group scheme
over K (\/f), the Weil restriction of scalars of E can be written as a product of E with

indices given by elements of the Galois group Gal(K(v/f)/K):

4
Rest (VI g o I1 E  (over K(YF)). (1.5)
reGal(K ({/f)/K)

The Galois group Gal(K (v/f)/K) acts on the group scheme by cyclically permuting the
summands indexed by the elements 7 of the Galois group. This implies that the Weil

restriction of scalars of £ has a canonical norm map to the elliptic curve E defined over K:
J4

N:RessVp L g (1.6)

Using the norm map, we may decompose the semisimple group ring Q[Gal(K (v/f)/K)] as

QlGal(K (Y7)/5) = @ @ [(Galx (7)) ] (1.7)



Denote by Z;, the set

27, =@ |(GalK(VP)/K)) " | N ZIGal(K(Y/F) /K (18)

so that Zr, is an ideal of Z[Gal(K (v/f)/K)] as well as a Gal(K /K )-module.

Definition 1.3.1. Suppose K contains all the primitive ¢-th roots of unity uy. Let
f € 0% /(0F)" be an (-th power free integral element over K. The cyclic ¢-twist of an
elliptic curve F associated to a cyclic extension K (v/f)/K is the following £ — 1 dimensional

abelian variety over K:
J4
Tr0® E = Ker (N Resk VI E> . (1.9)

Throughout this manuscript, we may use the abbreviation Ay to denote the ¢ — 1

dimensional abelian variety 7y, ® E over K.

Example 1.3.2. Note that if / = 2, then the 1-dimensional abelian variety Z7o ® E
associated to a squarefree element f € O} /(O})? is isomorphic to the quadratic twist Ey of
E over K. Suppose one has the Weierstrass model for the elliptic curve E : y? = 23+ Az +B.
The Weil restriction of scalars with respect to the field extension K (v/f)/K corresponds
to the 2-dimensional abelian variety inside A* := Spec (K[xg, 21,0, y1]) defined by the
equation

(yo +y1V'F)? = (o + 21V F)® + A(mo + 21V f) + B. (1.10)
Note that the K-rational coefficient terms for /f and the K-rational terms cut out the
2-dimensional abelian variety inside A*:

y%%—y%f:x%—l—?)fxox%—i-Awo—i-B ( )
1.11

2y0y1 = 31‘(2)131 + fl‘zl)’ + ASL’l



If yo = 0, then one recovers the quadratic twist of the elliptic curve (assuming z; = 0)
yif =y + Azo + B. (1.12)
On the other hand, if y; = 0, then one recovers the elliptic curve (assuming z; = 0)
Yo = xj + Azo + B. (1.13)

Because the action of Gal(K(y/f)/K) on Resg(\/})E is given by cyclic permutations of

summands, it follows that as group schemes over K (1/f),
EoE ~Resi VE~Eg (1,50 E) (1.14)
which implies the desired isomorphism over K
Ep=(Zr2© E) (1.15)

because both group schemes are fixed by the action of Gal(K(y/f)/K). Throughout this
manuscript, we will primarily use the notation E; to denote the quadratic twist of the

elliptic curve F.

Remark 1.3.3. For any prime /¢, the short exact sequence of group schemes

J4
0—>If7£®E—>ReS§(\/?)E—>E—>O (1.16)
implies that
rankz(Z;, ® E)(K) = rankz E(K (V/f)) — rankz E(K) (1.17)

)4
Remark 1.3.4. Recall that the Galois group Gal(K({/f)/K) acts on Resg(\ﬁ)E by

cyclically permuting the summands indexed by the elements of the Galois group. This



implies that the endomorphism ring of Zy, ® E contains the group ring

Z[(Gal(K(VF)/K))]

End(Z;, ® E) D .
Tre® E) (I+opp+-+0o7)

(1.18)

where oy s is the generator of the Galois group Gal(K (v/f)/K). With abuse of notation, we
denote by oy s a fixed choice of a generator of the multiplicative group (Gal(K (¥/f)/K))™.
We warn the readers that the generator oy ; is not identical to the generator of the Galois

group Gal(K (ug)/K) for the case when uy ¢ K.

We note that the construction of the abelian variety Ay (or Z7,® E) appears in different
notation in previous literature. For example, Klagsbrun, Mazur, and Rubin |2014| utilizes
the notation EX for a choice of an order ¢ character y € Hom(Gal(K /K),Z/{Z) to denote
the £ — 1 dimensional abelian variety A; obtained with respect to the cyclic £ extension
L/K. We provide below a list of notations introduced in Klagsbrun, Mazur, and Rubin
2013}, Klagsbrun, Mazur, and Rubin [2014], which in particular will be used interchangeably

with the notations Ay throughout the rest of the manuscript.

Definition 1.3.5. We introduce the following notations, as stated in Klagsbrun, Mazur,

and Rubin 2014], Sections 5, 7, and 9.

>: a set of places of K that includes places of bad reduction of F.
e X p: asubset of 3 consisting only of places of bad reduction of E.
e o: a square-free product of places v of K such that v & 3.

o dego: the sum of degrees of places v | 0, i.e. dego =", degv.

vlo

o X(0): a set of places of K that includes a set of places in ¥ and a set of places

dividing o.
e dy(y): the sum of degrees of elements in ¥(0), i.e. dy(y) = X yex(or) degv.

e ,: the set of finite cartesian products of local characters



10

X = (Xv)v € H Hom(Gal(K,/Ky), pue)

vEY or
vlo

such that the component Y, is ramified if v | o. For the sake of convenience, we will
denote by Homy,,, (Gal(K,/K,), ius) the set of unramified local characters at place
v, and by Hom,q,,(Gal(K,/K,), u¢) the set of ramified local characters at place v.
Assuming that uy C K, there are £ distinct unramified local characters at v, and

£(¢ — 1) distinct ramified local characters at v.

Qp: the set of finite Cartesian products of local characters

X = (xv)o € [] Hom(Gal(K,/K,), )

VEX R

Given a global character x € Hom(Gal(K /K), i), the twist EX is defined as follows
(see Mazur, Rubin, and Silverberg [2007), Definition 5.1 for further details):

Let F/K be the cyclic Galois extension of degree ¢ corresponding to the character .
Denote by L/K the Galois closure of F' with G := Gal(L/K). Denote by K|[G] the
group ring of G with coefficients in K. Then K[G] admits a decomposition into a

direct sum of minimal two-sided ideals
K[G] = @pK[G]p

where p spans the set of irreducible K-representations of G, and K[G], is the sum of

all left ideals of K[G] isomorphic to p.

Let Ir be the sum of integral left ideals of K[G] isomorphic to y, i.e.

Ir = K[G], N Ox[G]
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Then the twist of E by y is given by
EX =Ir®FE.

Note that if y is a quadratic character, then EX is the quadratic twist of F over K.

If x is a cyclic order-¢ character, one can take EX to be the kernel of the norm map
EX := Ker (Res B — E) (1.19)

from the Weil restriction of scalars of E/K associated to the cyclic f-extension LX/K
associated to the character x. The K-rational points of Resf(XE are the LX-rational
points of E, and the twist EX/K (identical to Ay or Z; ,® E if one takes LX = K (v/f))

is a £ — 1 dimensional abelian variety over K.

1.3.2 Selmer groups

This subsection closely follows Chapter 2 of Park 2024a.
One of the well-studied strategies to bound the rank of an abelian variety A is to
construct its Selmer group associated to a choice of an element m € End(A). We recall

the construction of Selmer groups from the following definition.

Definition 1.3.6. Let Ax be an abelian variety defined over a global field K. Suppose
that m € End(Ag) has degree coprime to the characteristic of K. The m-Selmer group of

the abelian variety Ag is defined as a finite subspace of the first étale cohomology groups
Sel, (Ag) := Ker <Hélt(K, Ag[m]) = [ Hé (Ko, AK)[m]> : (1.20)
v

where the product over local cohomology groups spans over all finite places of Og. We
note that the m-Selmer groups are constructed from comparing the long exact sequence of

global and local étale cohomology groups with respect to the following short exact sequence
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of group schemes:

0— Aglm] - Ag =™ Ag — 0. (1.21)

We achieve the following short exact sequence
0 — Ag(K)/mAg(K) — Sel,(Ax) — UI(Ag)[m] — 0 (1.22)

where III(Ag)[m] is the m-torsion subgroup of the Tate Shafarevich group II(Ag). As-
suming that Ax[m](K) is a finite R-module for some commutative finite ring R, we can

obtain the upper bound of the rank of Ax as
ranky A (K) + rankp Ax[m](K) < rankpgSel,,(Ax) (1.23)
where the notation rankrp M for a finitely generated R-module M denotes

rankp M := oo pax [dimR/p(M ®Rr R/p)} . (1.24)

Using the structure of the endomorphism ring of cyclic twists of elliptic curves, we can

now define the following Selmer groups of cyclic prime twists of elliptic curves.

Definition 1.3.7. Let E be any elliptic curve over K which contains a primitive /-th root
of unity s Fix an (-th power free element f € Oy /(O ). Using Definition we can

define the following two types of prime Selmer groups of abelian varieties 7y, ® E.

1. The p-Selmer group of Zy, ® E is a finite dimensional IF,-vector space

Sel,(Zse @ E) C H (K, (Zse @ E)[p)). (1.25)

2. Recall that o/ s is a generator of the multiplicative group Gal(K (v/f)/K)*. The

1 — o4 ¢ Selmer group of Zy, ® E' is a finite dimensional [F;-vector space

Seli—g, ;(Zf1 ® E) C Hi(K, (Zs; ® E)[1L — 015]) = He (K, E[l]) (1.26)
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where the last isomorphism follows from the canonical Gal(K /K )-module isomor-
phism
(Zyi® E)[1 - a14] = El]. (1.27)

(See Mazur and Rubin 2007[Proposition 4.1] for a complete proof of this fact).

Using the notations introduced in Definition Klagsbrun, Mazur, and Rubin
Klagsbrun, Mazur, and Rubin [2014] carefully analyzes the variations of Selmer groups of
Ay over number fields using Galois cohomology groups and Poitou-Tate duality theorem.
Analogous results on the variation of prime Selmer ranks of A; under local quadratic twists
of E over F,(t) can also be proven using the identical argument, see for instance Chapter 1
of Milne [2006| for a rigorous treatment of Poitou-Tate duality theorems for global function
fields.

Suppose that ¢ is any prime number that is coprime to the characteristic of the global
function field K = F,(t) of characteristic coprime to 2 and 3. Throughout this section, we

assume that the following properties hold, where F(z) € K|[z] is a cubic polynomial.

e E:9? = F(z) is a non-isotrivial elliptic curve over K.

e I contains a place oo of split multiplicative reduction.
(1.28)

e The constant field F,, of characteristic coprime to 2,3, ¢, and contains f,.

e The image of Gal(K/K) — Aut(E[{]) contains SLa(Fy).

By Igusa’s theorem, for any non-isotrivial elliptic curve E, there exists a prime £ and a
finite separable extension of K = [F,(¢) such that E satisfies all the four conditions Igusa

1959; Bandini, Longhi, and Vigni 2009.

Definition 1.3.8. We introduce the following notations continuing from Definition [1.3.5

as stated in Klagsbrun, Mazur, and Rubin [2014], Sections 5, 7, and 9.

 Given a cyclic order-£ character y, the endomorphism ring of EX, denoted as End(EX),

contains the group ring Z[Gal(FX/K)] = Z[(;]. We denote by 7 the unique prime
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ideal of Z[(/] lying above the ideal (¢) C Z. Note that 7 defines an isogeny over the

twist EX.
Given a local character x € €, the m-Selmer group (or 1 — oy Selmer group) of the
twist EX is given by

Seln(EX) := Ker (HY (K, B[(]) — ©,HY (K,, E[]) /iméY), (1.29)

where §Y : EX(K,)/mEX*(K,) — H}(K,, E[f]) is the local Kummer map at v.
Under all but the third assumption stated in ([1.28)), we use the isomorphism

Hg, (K, Elf]) = He (K, EX[x]),

Hé}t(Kva E[f)) = Hé}t(vaE%([Tr])

to define the Selmer group Sel;(EX), see in particular Mazur and Rubin 2007,
Proposition 4.1, Definition 4.3. Even though the reference particularly states about
elliptic curves over number fields, the ideas of the proofs of relevant results are
extendable to global function fields. Note that if £ = 2, the w-Selmer groups of EX

correspond to 2-Selmer groups of E twisted by a quadratic character Y.

For 1 <i < 2, define the set
Pi={v|v¢&X u C Ky,anddimp, E(K,)[{] =i}

We also define the set
Po:={v|vegIXUPLUPs}.

The set P is the set

P={v|vgX}=PyUP;UPs.
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» Given a positive number d € N, the set P;(d) is defined as

Pi(d) :={veP; | degv=d}.

Likewise, the set P(d) is defined as

P(d) :={veP | degv=d}.

o Given a local character x € €2, we denote by rk() the dimension of Sel,(EX) as an

Fy-vector space.

Using the assumption , we recall the following statement from Klagsbrun, Mazur,
and Rubin 2013 Lemma 4.3 that the Frobenius elements of certain primes lying above
a place v over K determines which classes of P; the place v lives in. Again, the original
statement of the lemma is shown for arbitrary number fields, which can be extended to the

case for global function fields.

Lemma 1.3.9. Klagsbrun, Mazur, and Rubin|2015, Lemma 4.3 Fiz an elliptic curve E/K
satisfying the conditions stated in . Let v be a place over K such that v € 3. Denote
by Frob, € Gal(K(E[{])/K) the Frobenius element associated to v. Then

1. ve Py <= Frob, =1
2. v € Py <= Frob, has order exactly ¢
3. vE€Py <= Frob) #1

Remark 1.3.10. Igusa’s theorem implies that any non-isotrivial elliptic curve satisfying
conditions satisfies the condition that Gal(K(E[(])/K) = SLa(F;) x T, where T is a
cyclic subgroup of order prime to £ corresponding to the Galois group of the constant field
extension of K (E[(])/K. With the condition that p;, C K, one may assume without loss of
generality that |T'| = 1. Nevertheless, the proofs of the results outlined in the manuscript

are shown for any such finite cyclic group 7.
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Computing the conjugacy classes of SLa(FFy) and Theorem show that there exists

a constant C' > 0 such that for sufficiently large d,

] Z%Z)) (- |T|<ef— 1))

Suppose in particular that £ = 2. Given a Weierstrass equation of an elliptic curve

#Pi(d) 1
| #P(@) T

#P2(d) 1
#P(d) |T|( 1)

‘} < C’q_g.
(1.30)

)

E : y? = F(x) satisfying the conditions from Theorem denote by L the cubic field
extension L = K[z]/(F(z)). Note that the constant field of L is equal to F,. The sets
Po, P1, and Py correspond to set of unramified places over K not in 3 which are inert,
split into two places, or totally split in L. Theorem [2.2.1| shows that there exists a constant

C > 0 such that for sufficiently large d,

d

#Pl (d) } < quQ

#P(d) 2

P s (1.31)

)

w04

#Pa(d) 1‘}

Note that ([1.31]) immediately follows from ([1.30)) by setting ¢ =2 and |T'| = 1.

Definition 1.3.11. Fix a square-free product of places ¢ coprime to elements in .
Fix a local character y € Q,. Given a single place v over K such that b{o and v & 3,

let X’ € Q4p be a local character such that
e Forany v |oorveX x, = xo.
o At v, xy is ramified.

Denote by €, the set of local characters x’ satisfying the two conditions above. Note that
QO’D - |_| Qx,u.
XEQs
1.3.3 Relevant works

This subsection closely follows Section 2 of Park [2022]
The validity of the Bhargava-Kane-Lenstra-Poonen-Rains conjecture is known for

certain large families of elliptic curves, such as the universal family of elliptic curves ordered
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by height, or quadratic twist families of elliptic curves ordered by the norm of the twist.
Suppose K = Q. We list some previous studies which focused on computing the

probability distribution of Selmer groups over certain families of elliptic curves.

e Bhargava and Shankar compute the first moments of 2,3,4 and 5-Selmer groups over

the universal family of elliptic curves, see for example Bhargava and Shankar 2015/

e Heath-Brown, Swinnerton-Dyer, and Kane compute the probability distribution of
2-Selmer groups over the quadratic twist families of elliptic curves with full 2-torsions
and no cyclic subgroup of order 4 over Q Heath-Brown |1994; Swinnerton-Dyer 2008}
D. Kane [2013.

o Klagsbrun, Mazur, and Rubin generalized the construction of Markov chains sug-
gested by Swinnerton-Dyer Swinnerton-Dyer [2008| to compute the probability distri-
bution of 2-Selmer groups over the quadratic twist families of elliptic curves with
Gal(K(E[2])/K) = S3. Note that the elliptic curves are ordered in a non-canonical
manner using Fan structures. They obtain the probability distribution of prime
Selmer groups over non-canonically ordered cyclic order-£ twist families of elliptic

curves with Gal(K (E[(])/K) = SLs(Fy) as well Klagsbrun, Mazur, and Rubin 2014,

e Smith successfully calculates the probability distribution of 2-Selmer groups over
quadratic twist families of elliptic curves of bounded height H except for some cases
where F[2](Q) = Z/2Z. As the upper bound on the height H grows to infinity, the
error bounds of the probability distribution is given by an order of O(e~¢(logloglog )%{)

for some constant ¢ > 0. Smith utilizes Markov chains which govern the variations

of kernel ranks of alternating square matrices comprised induced from Cassels-

Tate pairings. Note that the Markov chains Smith utilzied are different from those

constructed by Swinnterton-Dyer and Klagsbrun, Mazur, and Rubin Alexander Smith

2017; Alexander Smith 2020} Alexander Smith [2022a); Alexander Smith [2022bl

e The Markov chains suggested by Smith can be utilized to prove the Cohen-Lenstra

heuristics on [*°-torsion subgroups of class groups of cyclic [-extensions of Q (assuming
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the generalized Riemann hypothesis) Koymans and Pagano 2021, and Stevenhagen’s
conjecture on the asymptotic behavior of the solubility of negative Pell equations

Koymans and Pagano 2022,

Consider the case where K = [F,(t) of characteristic coprime to 2 and 3. Previous
studies computed the probability distribution of ¢-Selmer groups of families of elliptic
curves over global function fields Fy(¢) under different conditions. Denote by M, (F,) a
finite subfamily of elliptic curves E over [Fy(t) of a fixed height n. The height of an elliptic
curve is determined by the degrees of coefficient terms of E. (Of course, the choice of
the height depends on over which families of elliptic curves the probability distribution of
2-Selmer groups is computed.)

Given a non-negative integer j, denote by P [dimp, Sely(E) =j | E € M, (F,)] the
probability that the dimensions of 2-Selmer groups of finitely many elliptic curves of fixed
height n are equal to j. Below we list three probability distributions of 2-Selmer groups of

elliptic curves that can be computed over global function fields:

Jim P [dimp, Sely(E) = j | E € My(F,)] (1.32)
lim lim P[dimp, Sely(E) = j | E € My (Fy)] (1.33)

q—00 N—00

lim lim P [dimp, Sely(E) =j | E € M, (F,)] (1.34)

n—00 g—00

As before, we list some previous studies which focused on computing the desired probability

distribution over [Fy(t).

o For the second limit (large-height, then large-¢ limit), Ho, Le Hung, and Ngo Q.P. Ho
2014| compute the average size of 2-Selmer groups over the universal family of elliptic
curves, whereas de Jong Jong 2002| computes that of 3-Selmer groups over the same

family.

o For the third limit (large-¢ limit, then large-height), Feng, Landesman, and Rains
Tony Feng, Landesman, and Rains 2023 prove that for any composite number m, the

third limit (large-q, then large-height limit) is equal to the Poonen-rains distribution
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for any m-Selmer groups over universal families of elliptic curves, under the condition
that ¢ is coprime to 2m. They proposes a Markov chain constructed from random
kernel models, which governs the variation of n-Selmer groups over global function
fields F4(t). Using this Markov chain, they successfully prove the Poonen-Rains
conjecture for n-Selmer groups of universal families of elliptic curves under the large

g-limit.

e For any composite number m, the average size of m-Selmer groups of universal
families of elliptic curves under the third limit were computed by Landesman [2021

over universal families of elliptic curves.

o The average size of /-Selmer groups of quadratic twist families of non-isotrivial elliptic
curves under the third limit were computed by the author of this paper and Wang

Park and N. Wang [2023.

e The key ingredient behind computing these distributions is a careful and rigorous
determination of images of monodromy over algebraic spaces whose geometric fibers
parametrize ¢-Selmer groups over a prescribed family of elliptic curves, see for instance

Jong and Friedman 2011; Hall 2006; Ellenberg, Venkatesh, and Westerland 2016/

We finally note that it is not always the case that the probability distribution of
2-Selmer groups over quadratic twist families of elliptic curves over a global field K can be
formulated. For example, Klagsbrun and Lemke Oliver showed that more than half the
quadratic twists of elliptic curves over number fields K with partial K-rational 2-torsion
points (i.e. E[2|(K) = Z/27) and without any cyclic 4-isogeny over K have arbitrarily
large 2-Selmer ranks Klagsbrun and Lemke Oliver 2015l Wang extends their results to
global function fields K = Fy(t) in his Ph.D. thesis for arbitrary number of elements of the

constant field F;, N. Wang 2021] .
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Chapter 2

A probabilistic approach

This section is based on Park 2022, which develops upon the mathematical insights for
coputing probablity distribution of Selmer groups of twist families of elliptic curves with
respect to fan structures, as presented in Swinnerton-Dyer 2008 and Klagsbrun, Mazur,

and Rubin (2014l

2.1 Main result

Let £ be a fixed prime number. Let g be the set of primitive ¢-th roots of unity. We fix
an element ¢, which generates . Let K be the global function field Fy(t) of characteristic
coprime to 2 and 3 which contains yy, i.e. ¢ =1 mod /. Let F,(F,;) be the set of monic
polynomials of degree n over IFy.

Given a polynomial f € F,(F,), there is a cyclic order-¢ Galois extension L/ := K (/)
over K. Let oy € Gal(K(v/f)/K) be a generator of the cyclic Galois group. We may
associate the field Ly with a cyclic order-¢ character x; € Hom(Gal(K/K), ) defined via
the quotient map

xs: Gal(K/K) — Gal(L /K) — g

that maps oy to ¢ € puy.

Fix a non-isotrivial elliptic curve E over K. The goal of this manuscript focuses on
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understanding the following question.
Question 2.1.1. Compute ranky E(Lf) — ranky E(K) for any f € F,(F,).

We study the question above by understanding the K-rational points of the ¢ — 1

dimensional abelian variety EX/ over K defined as
EXS .= Ker (Nmf{f : Resf(fE — E) (2.1)

where Nmf(f is the field norm map, and Resf(f FE is the Weil restriction of scalars of E with

respect to the Galois extension Ly/K. It follows that
ranky EX/ (K) = rankz E(L') — rank; E(K). (2.2)

For the rest of the manuscript we use the abbreviation 7 := 1 — o, as stated in Klagsbrun,
Mazur, and Rubin 2014, Chapter 6. In particular, if £ = 2, then 7 = 2, and EXf is the
quadratic twist of E' by the quadratic character ;.

In this section, we focus on computing the dimension of the following family of 7w-Selmer

groups of EX/ | defined as
Sel, (EX7) := Ker (Hgt(K, E[]) — [ Hé (Ko, EXf)[Tr]> : (2.3)

where we use the Gal(K /K )-equivariant isomorphism EXf[r] 2 E[(]. The main theorem
of this paper confirms the Poonen-Rains heuristics for these families of w-Selmer groups of
EXs. We use the following abbreviation to denote the probability distribution of dimensions

of Sel,(EX/) ranging over f € F,(F,).

_ #{f € Fu(Fy) | dimg, Sel(BY) = j}
#E (Fy)

P [dimp, Sl (EX) = j | f € Fu(F,)] : (2.4)

Theorem 2.1.2 (Main Theorem). Fiz a prime number {. Let K = F,(t) be a global
function field whose characteristic is coprime to 2,3, and ¢ =1 mod (. Let E : y*> = F(x) =

x® + Az + B be an elliptic curve over K which satisfies the following conditions.
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1. E is non-isotrivial.
2. E contains a place of split multiplicative reduction.
3. The Galois group Gal(K(E[(]/K)) is isomorphic to SLa(Fy).

Let a(€) be a constant defined as

14 L
0) = i 1 +1—p, —plog(l———),—pl —
a(l) Oiggl <m1n <p ogp Py —p og< 7 1), plog (EQ 1)))

Then for any small € > 0, there exist sufficiently large n and a fized constant Ag 4 that

depends only on E, £, and q such that

1 J 14 Apy
P [dimg, Sel, (EX!) = j | f € F,(F,)] — — <t
¢ e ngo 146—m ng m—1 (nlog q)x(O)—¢

The distribution of 2-Selmer ranks of quadratic twist families of some non-isotrivial
elliptic curves E over any global function field K = FF,(¢) under certain mild conditions.

The values of a for some values of ¢ = 2,3,5,7 are computed as below.

o (2) ~ 0.185242 where p ~ 0.456864. (Note that 1 — 52— = 1 2

_ _2
3 whereas 5*5 = 3)

22-1 7 3 221

e «(3) ~ 0.203893 where p ~ 0.433811
o a(5) ~ 0.126457 where p ~ 0.541305
o «(7) ~ 0.0943249 where p ~ 0.598398.

Remark 2.1.3. The condition that E is non-isotrivial further implies that conditions
(ii) and (iii) in the statement of Theorem are obtainable after taking finite separa-
ble extension of any global function field K = FF,(¢) Bandini, Longhi, and Vigni 2009,

Proposition 3.4.

As a corollary, we are able to obtain a partial answer to Question [2.1.1
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Corollary 2.1.4. Assume the conditions and notations as in Theorem[2.1.9. We denote

by

P [’I“a’ﬂk’zE(Lf) _ mnkZE(K) — ] | f c Fn(Fq)} — #{f S Fn(Fq) ‘ mnkZE(Lf) — Taﬂ]{zE(K) = ]}

#Fn(Fg)
Then we have
J 1 Lo
lim P [ranky (L) = rankg B(K) < j | f € Fa(Fy)| <> | ] e (H o 1)
e J=0 \m>0 1 T m=1"

In particular, for sufficiently large ¢, the rank of E(L) increases by at most 1 from the
rank of E(K) for almost all f € Fg[t].

Remark 2.1.5. We warn the readers, however, that the given upper bound is not binding
for any values of ¢ > 3 unlike the case for quadratic twist families of elliptic curves, as the
{-torsion subgroup of the Tate-Shafarevich group of the abelian variety EXf is not of an
even dimensional Fy-vector space, as explicitly constructed by William Stein Stein [2002
and discussed in detail by Howe Howe [2001. Specific conditions which can guarantee the
Tate-shafarevich groups to be of even dimension are provided in Mazur and Rubin 2007,
Chapter 6. Indeed, there are conjectural statements by David, Fearnley, and Kisilevsky
David, Fearnley, and Kisilevsky 2007 and Mazur and Rubin Mazur and Rubin 2019 who
suggested that it is very unlikely that the ranks of the elliptic curves will increase by at least
1 with respect to cyclic order-£ extensions over Q. The function field analogue was carefully
studied in a recent work by Comeau-Lapointe, David, Lalin, and Li Comeau-Lapointe et al.
2022], where they show that the conjecture fails for isotrivial cyclic twist families of elliptic
curves, whereas numerical data suggests that the conjecture may hold for non-isotrivial

cyclic twist families of elliptic curves.

2.1.1 Key Ingredients

The three key ingredients utilized in proving the main theorem are as follows, all three of

which contribute to the three terms for a(p) which determines the rate of convergence of
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the desired probability distribution to the Poonen-Rains distribution.

1. Effective Chebotarev Density Theorem

¢ Relevant results: Theorem Corollary Proposition Corollary

e Error term: —plog (1 — %), arising from the density that the Frobenius ele-

ment of an irreducible polynomial has order prime to ¢ inside Gal(K (E[(])/K)
SLy(Fy).

2. Effective Erdos-Kac Theorem

¢ Relevant results: Theorem Proposition [2.3.9] Proposition [2.3.10

e Error term: plogp + 1 — p, arising from the probability that a degree n
polynomial has at least p(logn + loglog q) and at most 2(logn + log log ¢) many

distinct irreducible factors.
3. Geometric Convergence of Markov Chains

¢ Relevant results: Corollary

e Error term: —p (ﬁ), arising from geometric rate of convergence of the

constructed Markov chain to the stationary distribution.

2.1.2 Outline of the proof

We provide the outline of the proof of the main theorem along with the organization of this
manuscript. We let p to be a parameter whose value is between 0 and 1. The motivation for
the proof originates from the previous work by Swinnerton-Dyer Swinnerton-Dyer [2008| and
Klagsbrun, Mazur and Rubin Klagsbrun, Mazur, and Rubin 2014| who studied Lagrangian
Markov operators over Zx>q which govern the distribution of dimensions of 7-Selmer groups

over number fields.

1. Effective theorems: In Section we discuss the effective versions of Chebotarev

density theorem and Erdés-Kac theorem used in the rest of the manuscript.
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2. Finding a nice subset of polynomials: Let f € F),(IF;). Suppose that f admits a

factorization f = f,f*, where f* is a product of irreducible factors of f (including

multiplicities) of degree greater than %. In Section [2.3.1} we define the notion

of splitting partitions and show using Merten’s theorem and the effective Erdos-Kac

theorem that for almost all f € F,(F,) the following three conditions are satisfied:

o The number of distinct irreducible factors of f is between p(logn + loglog q)

and 2(logn + loglog q).

o The number of distinct irreducible factors of f* is at least (1—e¢)p(log n+loglog q)

for small enough € > 0.

o There is an irreducible factor of f* whose Frobenius element in Gal(K (E[(])/K) =

SLo(Fy) has order prime to £.

3. Equidistribution: In Section we prove equidistribution of I-th power residue

symbols associated to a fixed number of irreducible polynomials over IF,,.

4. Local Selmer groups: In Section we recall the definition of local Selmer
groups of E associated to cyclic order ¢ local characters as shown in Klagsbrun,
Mazur, and Rubin [2014. We use the ideas from Klagsbrun, Mazur, and Rubin
2014, Proposition 9.4 and the effective Chebotarev theorem to identify Chebotarev
conditions that govern the image of the global cohomology group Hg (K, E[(]) with

respect to the localization map at a place v of K.

5. Auxiliary Place: In Section [2.4.2] we define the notion of the auxiliary place of
f satisfying the aforementioned three conditions, which is an irreducible factor of
highest degree whose Frobenius element in Gal(K(E[(])/K) = SLs(F,) has order
prime to £. Using the equidistribution results from Section and the Chebotarev
conditions from Section we construct a Markov operator defined over Z>n which
governs the distribution of the dimensions of local Selmer groups of E associated

to cyclic order ¢ characters. This proves the effective version of the construction
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of governing Markov operators, as stated in Klagsbrun, Mazur, and Rubin 2014

Theorem 4.3, Theorem 9.5 and Swinnerton-Dyer |2008, Theorem 1.

6. Lagrangian Markov operators: In Section we analyze the stochastic
properties of the governing Markov operator, such as its stationary distribution and

effective rates of convergence.

7. Combining all ingredients: In Section we prove the main theorem by
approximating the desired probability distribution with the distribution of dimensions
of local Selmer groups over the set of polynomials satisfying the three aforementioned
conditions from Section Combined with the rate of convergence of the governing
Markov oeprator from Section we prove that the three key ingredients each
give rise to the rate of convergence of the desired probability distribution to the

Poonen-Rains distribution.

2.2 Effective theorems from the Riemann hypothesis

We review some of the preliminary results on global function fields K which will be utilized
in computing the probability distribution of prime Selmer groups associated to cyclic prime
twists of elliptic curves. Given a place v over K, we denote by Frob, the Frobenius element

at v. Denote by g1, the genus of a finite separable field extension L/K.

2.2.1 Effective Chebotarev density theorem

The effective version of Chebotarev density theorem over global function fields can be

formulated as follows:

Theorem 2.2.1 (Effective Chebotarev density theorem). Fried and Jarden 2008, Proposi-
tion 6.4.8

Let L/K be a Galois extension of global function fields over Fy(t). Pick a conjugacy
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class C C G = Gal(L/K). If the constant fields of L and K are both equal to Fy, then

{v a place over K | Frob, € C, diqu((’)K/v) =n}— ;g:q
n
2lC , .
< el {(\G’ +91)q2 +|G|(29K + 1)q* + (|G| + QL)]

The constraint that the constant fields of L and K are identical allows one to reconstruct
the counterpart of the Chebotarev density theorem with explicit error bounds for function
fields. Suppose the constant field of L, say I, is a non-trivial extension of the constant
field F, of K. Then to compute the equation stated in Theorem one is required to
compare whether the restriction of the conjugacy class C' to Gal(F/IF;) agrees with the
n-th power of the arithmetic Frobenius 7 : z + x? as a cyclic generator of Gal(F,/F,). If
not, then there are no places of degree n whose Frobenius element lives inside the conjugacy
class C'. Note that the secondary error term is of O(q%), which is obtained from the
validity of the generalized Riemann hypothesis over K = [F,(t). For the analogous effective
statements over number fields, see for example Lagarias and Odlyzko [1975. We note that
Galois extensions of global function fields with non-trivial constant field extensions also

satisfy the following equation:

Zvaplace over K |{0K/U}|_S |C|
lim Frob,eC _ =l (25)

s—1F ZU a place over K |{0K/U}|78 B |G|

where s — 17 implies that s approaches 1 from above over the real values.
Using the explicit bounds obtained above, the density theorem can be obtained for any

two conjugacy classes of the Galois group of the extension L/K of function fields.

Corollary 2.2.2. Let L/K be a Galois extension of global function fields over Fy(t). Pick
two non-empty subsets S, 8" C G = Gal(L/K) stable under conjugation. Suppose the

following two conditions hold.

1. The constant fields of L and K are both equal to IF,.
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2. The size of the constant field q satisfies

g2 —q1 > 2(|G| + g1 + 29x)

Then the following inequality holds.

{v, a place over K | Frob, € S, dimp, (O /v) =n}  |S|

{v, a place over K | Frob, € §', dimp, (Ok/v) =n} |9

S| 1
<4 (|Gl + gL +29K) | ==
|51 q2 —q1 = 2(|G| + gz + 29K)
In particular, if n > 210g8+log(l‘oG|+gL+29K), then
gq

{v, a place over K | Frob, € S, dimg (K/v) =n} |S]

{v, a place over K | Frob, € §', dimp, (K/v) =n} |9

S
< 16|’S,'<|G| g+ 20K)g

n
2

Remark 2.2.3. We note that Deligne’s proof of the Weil conjectures determine the error
bounds of the effective Chebotarev density theorem. We refer to Rosen 2002, Theorem
9.13B for further discussions.

2.2.2 Erdos-Kac Theorem

Let m be an integer. We denote by w(m) the number of distinct irreducible factors of m.

The Erdos-Kac Theorem states that the normal order of w(m) is loglog m.
Definition 2.2.4. From this section and onwards, given two positive integers n and g > 5,
we denote by m,, 4 the quantity

My q = logn + loglog ¢ (2.6)

The Erdos-Kac Theorem over global function fields K can be formulated as follows.

Theorem 2.2.5 (Erdés-Kac Theorem for Function Fields). Liu|2004, Theorem 1

Denote by w(f) the number of distinct irreducible factors dividing a polynomial f €
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F,.(Fq) of degree n. Then for any a € R,

lim : = e 2dt

#{f e P(F,) | “Wtza < of L
n=00 #F,(F, V21 J o

Fix positive integers «, 5. We denote by

Plao <w(f) <B | f € Fu(Fy)]

the probability that the number of irreducible factors of a square-free polynomial f of

degree n over F, is greater than o and less than 3. In other words,

_ e R(F) | a < w(f) < B}

Pla<w(f)<B | f€FuF,)): #{f € Fu(Fy)}

(2.7)

Let p be a positive number such that 0 < p < 1. For sufficiently large n, the number of

distinct prime divisors w(f) for almost every polynomial f € F,(F,) satisfies
pPMip.q < w(f) < 2mn,q~

The effective upper bound on the number of polynomials in F;,(IF,) which does not satisfy

the condition above can be obtained as follows.

Theorem 2.2.6 (Effective Erdos-Kac). For sufficiently large n, there ezists a fized constant

0 < Cgr < 4 such that
Pw(f) < pmng or w(f) > 2mu, | f € Fu(Fy)] < Crr(nlogq)Plosrti=r. (2.8)

Proof. From Tingting Feng, S. Wang, and Yang 2020, Theorem 1, we obtain that there

exists a constant 0 < C7 < 2 such that

Plw(f) > 2myq | f € Fp(Fy)] < Ci(nlog q)_Qk’g2_1 (2.9)
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From Tingting Feng, S. Wang, and Yang 2020, Theorem 1 and Liu 2004, Theorem 1, we

also obtain that there exists a constant 0 < Cy < 2 such that
Plw(f) < pimng | [ € Fu(Fy)] < Ca(nlogq) Plosrtet (2.10)
Combine two inequalities and the fact that for any 0 < p < 1,
plogp+1—p<1<2log2+1,
we obtain that there exists 0 < Cgx < 4 such that
Plw(f) < pmy,q or w(f) > 2mpq | f € Fu(Fq)] < CEK(nlogq)_plogp+p_1. (2.11)

O]

Remark 2.2.7. We note that Theorem [2.2.6| can be also obtained from using the results
by Cohen, see for instance S. D. Cohen [1969, Theorem 6 and Cheong et al. [2022] Theorem

1.1.

2.3 Splitting partitions of polynomials

The objective of this section is to find a suitable subset of polynomials in F;,(IF,) over which
the behavior of Sel,(EXf) can be well understood. For this purpose, we introduce the
notion of splitting partitions of polynomials. Our goal is to show that almost all f € F,(F,)

satisfies:
o The number of distinct irreducible factors of f is between pm,, , and 2m,, 4.

o The number of distinct irreducible factors of f* is at least (1 — €)pmy, 4 for some

small enough € > 0.

o There is an irreducible factor of f* whose Frobenius element in Gal(K (E[{])/K) =

SL2(F,) has order prime to /.
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2.3.1 Splitting partition of polynomials over finite fields

In this subsection, we define the splitting partition with respect to a tuple of integers
(n,w), which will help us organize conditions that we wish to impose on irreducible factors

of f e F,(F,).

Definition 2.3.1. Let m < n be two positive integers. We denote by

)‘[m,n} = {(Ai,j,k7i7j7 k)}mgigmlgjgmogkgz (2'12)

to denote a set of 3n(m — n + 1) many 4-tuples. We also use the abbreviation A, 1= A[ -

Definition 2.3.2. Throughout the rest of the manuscript, we denote by n the positive

integer
_4(logn + loglog q)?

———]=1 o ¢ . (2.13)

Definition 2.3.3. Fix two positive integers n and w. We say that A, is a splitting partition

with respect to (n,w) if it satisfies the following two conditions.
) .
Lo 201 Xm0 Aiik s 10 J =1
2
2. >0, 27:1 Dk=0 Aijk = W.

For example, if the irreducible factorization of a degree 6 polynomial f over [F, is given
by f = g3gags such that g; € P1(1) and go, g3 € P2(2), then f admits a splitting partition
X6 := {(Nijk, 1,7, k)} that satisfies

2 ifi=2j=1k=2
Aige =191 ifi=1,j=2k=1 (2.14)

0 otherwise

We introduce four properties of splitting partitions with respect to (n,w) which will be

of use in subsequent sections.
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Definition 2.3.4. Let A, be a splitting partition with respect to (n,w).

1. We say that A\, is ¢-th power free if
Aijk = 0 whenever j > /¢ (2.15)
In other words, any polynomial f € F,(F,) admitting the splitting partition A, is a

{-th power free polynomial over [F,.

2. We say that A\, is admissible if it satisfies
Aijk = 0 whenever ¢ <n (2.16)
In other words, any polynomial f € F,(F,) admitting an admissible partition \,, is

not divisible by irreducible polynomials of degree at most n.

3. We say that A, is forgettable if
Aijk = 0 whenever ¢ > n (2.17)
In other words, any polynomial f € F,(F,) admitting a forgettable partition X, is

not divisible by irreducible polynomials of degree greater than n.

4. We say that an admissible partition A, is locally arrangeable if
Aijo # 0 for some ¢ > N and j # 0 mod ¢ (2.18)
Any polynomial f € F,(F,) admitting a locally arrangeable partition has an irre-

ducible factor in Py of degree greater than n and of multiplicity coprime to £.

Definition 2.3.5. We define the following set of splitting partitions with respect to a

tuple of positive integers (n,w).

o Ap oy i={A\n | A\ is a splitting partition with respect to (n,w)}
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o A% :={\y € Apw | A is a p-th power free admissible partition}
. A{L% = {A\n € Apw | A\ is a forgettable partition}
. Aiﬁw ={\, € A?lflw | An, is a locally arrangeable partition}

Using these splitting partitions, we further decompose the set F},(F;) of monic polyno-

mials of degree n as follows.

Definition 2.3.6. Given a polynomial f € F,,(FF,) and an irreducible polynomial g over

F,, denote by vg(f) the multiplicity of g as an irreducible factor of f. We define

f* = H gvg(f)7 f* = H gvg(f)
glf glf (2.19)
gEU?:N+17D(d) gEUf\[:lP(d)

We note that f = f* f,, where the irreducible factors of f* are all of degree greater than IV
(and likewise for f).

Definition 2.3.7. Let n,w be two positive integers. Given a polynomial f € F,(F,),

denote by w(f) the number of distinct irreducible factors of f.

1. Given a positive integer w’ < w, we denote by
Fn,(w,w’)(Fq) = {f € Fn(Fq) | w(f) = w and U)(f*) = wl) (220)

2. Given a positive integer N < n, we denote by

F(n,N),(w,w/)(Fq) ={fe Fm(w,w/)(Fq) | deg f* = N and f* is ¢-th power free}
(2.21)

3. Given a locally arrangeable partition A € A%‘Lﬂw, and a forgettable partition n €
Afor

- Nw—w'» We denote by

FO oy (Fa) = {f € Flon) wur) (Fg) | £* admits A € A, f. admits n € AJ

n—N,w—w’

(2.22)

1.
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4. We denote by F(n7N)7(w7w/)(IFq) the following subset of Fi;, vy, (w,w) (Fq):

i o | | | | (Am)
F(n,N),(lU’w/)(Fq) = F(n7]7\7[)7(w7w,) (Fq) (223)
)\GA%M, neAfor

n—N,w—w’

Remark 2.3.8. The construction of F; ((1;\7’77]\,))7(1”@,)(15'61) is closely related to the construction
of fan structure from Klagsbrun, Mazur, and Rubin 2014, Chapter 2, 3, 4. Given two sets
B and C, denote by

B+« C:={{0}U{q}|d e B,qge C\{q}}, (2.24)

as stated in Klagsbrun, Mazur, and Rubin 2014, Chapter 4, Page 1085. Note that if

BNC =0, then BxC = B x C. For any positive integer m > 0, inductively define

Pr(i)* = Pr(i)
(2.25)

Pi(i)™ = Pu(i) "V Py(i)

Then one has

() _
F o 80, ) (Fa) =

11 Pk(i)w’j’k] X

i7j7k

11 Pk(i)*”w,k] (2.26)
%757’%

To understand how the sizes of four types of subsets of F,,(F,) are related to each other,
we prove the following proposition, which shows that for sufficiently large n, any monic

polynomial of degree d cannot have too many factors whose degree is at most n.

Proposition 2.3.9. Suppose m,, 4 := log n+loglog q satisfies the condition that m,, 4 > e,
Let e = ————. Then

loglog mn

-Ve

#{f € FulBy) | w(f) > emng} < q" - 4- (nlogq) (5™’ (2.27)

where f, is the product of all irreducible factors (with multiplicities) of f of degree at most

n.
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Proof. We thank the reviewer for suggesting the following strategy of the proof. Let Q
be a set of irreducible monic polynomials of degree at most n. By Merten’s theorem for
global function fields, the number of monic polynomials of degree n with at least r distinct

irreducible factors from Q is at most

(Z g dee g)) (2.28)

geQ

For our purposes, we let

Q= U, P(i) (2.29)

2
where we recall that my,  := logn + loglog ¢ and n := | 21°8 ”I}lgg log q)gj L4logq |. Then
Y qdes = Z #P(i) g <2 Z < 2log(n) + 2 < 4log My q +4log2 + 2. (2.30)

ge

Suppose that m, , > e, We let

! (2.31)
ri=em €i=—— .
e log log my, 4
Sterling’s approximation theorem shows that for such n satisfying m,, ; > e,
11
rl /2 ry”
7”1" (2) (2.32)

—elogmp,q—elog e+te

= e (mlogd)
n’q

We note that because 0 < € < 1, it follows that 0 < € — eloge < 1. Hence, the above

equation can be simplified as

1 1
- < ——=——"(nlog q)~closmngtl (2.33)
r! TMn.q
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Combining with equation (2.28]), we obtain

4logmy, g +4log2 + 2

TTMn, q

#{f € Fn(Fq) ’ w(f*) > emmq} < qn . —elogmp,q+1

- (nlogq)

< qn 4. (n log q)—elogmn,q—kl

(2.34)

The statement of the proposition follows from the inequality that whenever m,, 4 > e, we

have elogmy, , — 1 > (logmy, 4)'~Ve. O

We now show that the set F,(IF,) can be approximated by disjoint union of subsets of
form F, ((r/z\,mN)),(w,w') where ) is a locally arrangeable splitting partition, and 7 is a forgettable

splitting partition.

Proposition 2.3.10. Let p € (0,1) be a positive number. Suppose n is a positive integer

such that m, q > e, Let e = ————. Then

loglog mn ¢

2Mp g w

#EF) — Y D Y Fawwen(F)
wW=pMn,q w'=(1—e)w N=w'n (2.35)
n —plogp+l—p 2 ¢ e
<4.¢"-max|n 2y My g 21

In other words, the above proposition shows that given p € (0, 1), almost every monic

polynomial f of degree n satisfies:
1. The number of distinct irreducible factors of f is between pm,, ; and my, 4.

2. The number of distinct irreducible factors of f of degree at most n is at most

(1 —€)pmy, 4 for some small enough € > 0

3. The polynomial f* is ¢-th power free, and has at least 1 irreducible factor inside Py

of degree at least n.
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Proof. By Theorem and Proposition for any small enough € > 0,

2Mn, q

HEF) — S N #E () <4 g" - nPloert=r (2.36)

W=pMn,q w'=(1—€)w

Using the definition of f*, it follows that if f* is not /-th power free, then the degree of

the £-th power free part of f* is at most n — #n. Therefore, one obtains that

n

#F () (Fo) = D #F v (Fy) < ¢ - 17 D008 (2.37)

N=w'n

Using the definition of A, ,, it follows that for any four integers n > N and w > v/,

_ (Am)
Founywany = | L o (2.38)
AEA(JIVd,w’ neAfOT

n—N,w—w'

Applying Theorem with respect to the field K(E[¢])/K, we obtain that

S ) wo (L)
> [#Fomwon® - ¥ X #F ) | <a (5

N=w'n AeAL | menlor

n—N,w—w’

(2.39)

/

where the quantity (ﬁ)w is the leading term of the probability that none of the
irreducible factors of f* are in Py. Combining equations (2.36)), (2.37)), and (2.39)), we

obtain the statement of the proposition. O

2.3.2 Equidistribution of local characters

In this subsection, we prove that for sufficiently large n, the probability distribution that
the set of global cyclic order-¢ characters induced from the set of irreducible polynomials
of degree n forms a uniform distribution when restricted to the set of finite Cartesian
products of local unramified cyclic order-¢ characters at finitely many places of degree
strictly less than n. The probabilistic behavior of the restrictions of global characters over

global function fields are well-studied, for instance as seen from the following Theorem
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from Hsu [1998

Theorem 2.3.11 (Theorem 2.1, Hsu [1998). Let h be any square-free polynomial over F,.

Let xp, be a non-trivial character x : (Fq[t]/h)* — C*. Then

S

> x(v) < (degh+ 1)q7. (2.40)
veEP()

An immediate corollary of the theorem above is that the effective error bounds of the
density of whether the restriction of a global cyclic order-£ character associated to an
irreducible polynomial forms a uniform distribution over the set of finite cartesian products

of local unramified cyclic characters is given by the order of q_%.

Corollary 2.3.12. Let K = Fy(t) be a global function field such that py C Fq. Let
hi,ha, -, hy be irreducible polynomials over Fy. Given a place v of degree i, denote by

(:7)5 € ¢ the -th power residue symbol. Then for any a € g™,

v i D) =ae v S
#OPO | )y =01 < (Sanrr) i
k=1

Proof. We thank the reviewer for suggesting the strategy of the proof outlined as follows.
For any abelian group H and €2 := {x : H — C} the set of characters of H, the

orthogonality of characters imply that

) X(g1; _ [H| ifg1=go (2.42)

0 otherwise .

We let H to be the abelian group isomorphic to ujew generated by the Legendre symbols

@6 @) e
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Suppose go = a € ,uzew. Using the orthogonality of characters, we obtain

5 Zx((mé,(@(ﬁ...xm): 4 {UGW)‘ (Q)) :a}.ew (2.44)

vEP(1) XEN X a) k=1

The left hand side of the above equation can be rewritten as

=#P(@H)+ Y D X((fﬁe’(fz)(g)--- L),)
XEQ veP(3)
x#id

(2.45)

Using Theorem [2.3.11] the summands of the second terms have absolute values bounded

above by (X%, deg(hx) + 1) - ¢"/?/i. Hence, we obtain that

#oeP@)| ((),) _ =acpy 1| @ 2
= - — deg(h;) +1) - -

7

(2.46)

O]

We also prove that given a choice of an elliptic curve E/K, the equidistribution of

characters still holds for subsets of places v inside Py(i), P1(2), and Pa(i).

Corollary 2.3.13. Let E be an elliptic curve over K satisfying conditions in . Sup-
pose that hy,ha, -+, hy are irreducible polynomials over Fy such that K(v/hi) N K(E[(]) =
K for all 1 < k < w. Let n be an integer such that Y ;_;deghy < n and w < 2my, 4.
Then for sufficiently large n, for any element a € u?w, and v > n, there exists a constant
CEgq > 0 depending only on E, £, q such that

#wePi| (2),),

k=1

#P(i)

=a €& ,Lt?w} 1
— —| < (nlogq)?mmatl, (2.47)

Proof. Given an irreducible polynomial h over F,, consider the cyclic order-¢ abelian

extension K (v/h)/K. Then if v is coprime to h, then the /-th power residue symbol (%) ’
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defines the action of the Frobenius element Frob,, on v/h via

which in fact originates from the definition of the Artin reciprocity map, see Rosen [2002,
Chapter 3, Chapter 10 for a detailed description.
With the irreducible polynomials h1, ho, - - - , hy, as stated, consider the field extension

L := K(E[(],v/h1, - ,vVhy). Because K(+/h;) N K(E[{]) = K for all k, it follows that
Gal(L/K) =2 SLa(Fy) x pu* (2.48)

and its conjugacy classes are of form C' x {a}, where C' C SLy(Fy) is a conjugacy class and

ac u?k is an element. Recall that
#Gal(L/K) =" - (63 - 0). (2.49)
By Riemann-Hurwitz theorem,
gL < 0”29k (mig) — 2+ £°). (2.50)

Applying Corollary [2.2.2] and Corollary [2.3.12) proves the statement of the theorem. O

2.4 Local Selmer groups

The objective of this section focuses on defining what is called the local Selmer groups
of E associated to a cyclic order ¢ local character, and understanding their dimensions
over the subset of polynomials F'(n, N), (w, w’)()"") (F,). These results will be of relevant
use in Section where we will understand the dimensions of Sel;(EXf) as f ranges over

F ().
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2.4.1 Local twists

The constructions and properties of the local Selmer groups, as explored in Mazur and
Rubin 2007; Klagsbrun, Mazur, and Rubin 2013; Klagsbrun, Mazur, and Rubin (2014
rests upon utilizing results regarding Galois cohomology groups and Poitou-Tate duality
theorems over number fields, the theories of which also hold valid over global function fields
F,(t), see for example Chapter 1 of Milne 2006 for a rigorous treatment of Poitou-Tate
duality theorems for global function fields. We further enrich these results by using the
properties that hold over [F,(¢) explored from Section which are not necessarily proven

for number fields.

Definition 2.4.1. We introduce the following notations regarding local Selmer groups of
E associated to cyclic order ¢ characters x € Hom(Gal(K,/K,, i1¢), some of which are as

stated in Klagsbrun, Mazur, and Rubin 2014} Sections 5, 7, 9.

o Given a local character x € €, the local Selmer group of E associated to the cyclic

order-¢ character y is denoted as
Sel(E[{], x) = Ker (HL (K, Elf]) — @uH (K., B[()/HY) , (2.51)

where

iméY if v € 3(0)
HY = (2.52)
HY(Ok,, E[]) if v ¢ X(0)

Under all but the third assumption stated in ([1.28]), we use the isomorphism

Hé1t<K? E[e]) = Hé}t(Kv EX[”])?

Hy (Ko, BI0) = H (K, EX[n])

to define the local Selmer group Sel(E[¢], x), see in particular Mazur and Rubin 2007,
Proposition 4.1, Definition 4.3. Even though the reference particularly constructs

these groups over number fields, the relevant results extend to global function fields
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as well.

o If v € Py, then HY is trivial. If v € P; N X(0), then there is a unique 1-dimensional
ramified subspace HYX. If v € Py N (o), then there are ¢ distinct 2-dimensional

ramified subspaces HY, each corresponding to a tamely totally ramified cyclic ¢

extension over K.

o Given a local character x € Q,, we denote by rk(x) the dimension of Sel(E[(], x) as

an Fy-vector space.

o Denote by t,(v) the dimension of the image of the local Selmer group Sel(E[¢], x)

with respect to the localization map at v, i.e.
ty(0) := dimg,im (locy : Sel(E[(], x) — H'(Ox,, B[(])) (2.53)

We note that if v € P;, then 0 < ¢, (v) <.

The relation between t, (v) and the differences between ranks of local Selmer groups
associated to characters y € Q, and x’' € Q,, is stated in Klagsbrun, Mazur, and Rubin

2014, Proposition 7.2.

Proposition 2.4.2. Let E be a non-isotrivial elliptic curve over K satisfying the conditions
from equation . Fiz a square-free product of places o coprime to elements in %, and

let v be a place of K such that v & X(0). Fiz a character x € Q,. Then for any x' € Qyo,

2 if o € Py and ty(v) = 0 for exactly ¢ — 1 many X' € Qy

1 ifo € Pr and t,(v) =0

th(X') = Th(x) ={ =1 ifv € Py and t,(v) =1 (2.54)
-2 ifv e Py andty(v) =2

0 otherwise

Proof. The proof follows from adapting the proof of Klagsbrun, Mazur, and Rubin [2014],



43

Proposition 7.2. The two conditions required in the statement of Klagsbrun, Mazur, and

Rubin [2014), Proposition 7.2, which are
1. Pic(Ogyx) =0
2. The map OIX(?E/(O[XQE)E — pes K/ (KX) is injective
hold regardless of the choice of ¥ because Ok = F,[t] is a Euclidean domain. O

The probability that ¢, (v) achieves a certain value can be obtained from a Chebotarev
condition over K obtained from Sel(E[¢], x), as shown in Klagsbrun, Mazur, and Rubin

2014, Proposition 9.4.

Proposition 2.4.3 (Local twists of m-Selmer groups). Let E be a non-isotrivial elliptic
curve over K satisfying the conditions from equation . Fiz a square-free product of
places o coprime to elements in X. Fix a local character x € Q.

Let d; ; be given by the following table:

d; |i=0] i=1 i=2
Jj=-2 X X 1— (€+ 1)6~H00 4 g1=2rk(x)
Jj=-1 X | 1— ¢k %

J=0 1 X (4 1)(£=H00 — g=2rk00)
j=1 X ) %
j=2 X X £—27k(X)

Here, the term "X " denotes the case where such a difference of ranks cannot occur. Let

Dpgoq >0 be a constant defined as
Dgyq = gmarxeag (THX)) (2.55)

Then there exists a fized constant Cg g4 > 0 which depends only on the elliptic curve E, ¢,

12log ¢+2log DE ¢, 4+(6log €)-#% (o)
logq ’

and q such that for every d >

#{v € Pi(d) | v € X(0) and ty(v) = j}
#{oePi(d)|v¢gX(0)}

d
2

— d@j < CEyqu . 53#2(0) -q 2. (2.56)
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Proof. The theorem can be proved in an analogous way to how Klagsbrun, Mazur, and
Rubin 2014} Proposition 9.4 was proved over number fields. Nevertheless, it is necessary to

apply the effective Chebotarev density theorem to calculate the explicit error bounds.
Governing field extension for t,(v)

We first review the ideas presented in Klagsbrun, Mazur, and Rubin 2014, Proposition

9.4. Denote by Res the restriction morphism of cohomology groups:
H (K, Ef]) — H (K (E[(]), B[) S K EDE) = Hom (Gal(K (E[A])/ K (E[4])), B[() 5 * D),
Let F,, be the fixed field of the following subgroup of Gal(K(E[(])/K(E[{])):

N Ker (Res(c) : Gal(K(B[])/K (B[f])) — E[f])
c€Sel(E[¢),x)

The field F,, , satisfies the following properties, as shown in Klagsbrun, Mazur, and Rubin

2014}, Proposition 9.3:
1. Fy is Galois over K.
2. There is a Gal(K (E[¢])/K )-module isomorphism Gal(F,.,/K(E[(])) = (E[¢])™X).
3. F,, /K is unramified outside of places in ¥(o)

The aforementioned condition holds for p = 2 whenever E is a non-isotrivial elliptic curve

such that Gal(K(E[2])/K) = Ss.
Constant field of F,

Suppose that E has a place v of split multiplicative reduction. Then the constant field
of F,, is equal to IF,. It suffices to show that any basis element ¢ € Sel(E[/(], x) maps the

arithmetic Frobenius 7 € Gal(F,/F,) to the identity element of E[¢]. Consider the local

Kummer map imd¥ at the place v.Then E is a Tate curve at v. There exists an element



45

q € K with positive valuation such that the K,-rational points of E is given by

E(K,)

I
2

“J{a),

which implies for any positive number n,

E](Ky) = (g7, mn)/(a),

see for example [Section 3.3]Bandini, Longhi, and Vigni 2009 for a detailed discussion on
these results. To analyze the condition that the basis element ¢ € Sel(E[¢], x) maps the

arithmetic Frobenius 7 € Gal(F,/F,) to the identity element of E[¢], it suffices to verify

that Q™ — Q = O for Q € E[{](K,), which follows from the assumption that the constant

field of K, contains the primitive /th-root of unity.
Frobenius conjugacy class

Using the techniques of the proof from Klagsbrun, Mazur, and Rubin [2014, Proposition
9.4, one can show that the non-zero values of d;; from the table of the statement of

the proposition are ratios of two non-empty subsets S; ;, S; C Gal(Fy,, /K) stable under

conjugation, i.e. d; ; = % These subsets satisfy the condition that
v € Pi(d) <= Frob, € 5]

(2.57)
dimp, imdy = j and v € P;(d) <= Frob, € S;;

We refer to Klagsbrun, Mazur, and Rubin [2014, Proposition 9.4 for a detailed description
of what these subsets are in Gal(Fy,,/K).

Effective error bounds

Because the constant field of F, , is F,, we can use Theorem to bound the error

terms of the following equation:

#{v € Pi(d) | v € X(0) and t,(v) = j}
#{oePi(d) | v¢&X(0)}

dij|. (2.58)
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To apply Theorem [2.2.1] one needs to understand how the groups G as well as the

genus gr,  grow in terms of dego. Proposition [2.4.2 shows that
#Gal(F,,/K) = [Fyy : K(E[(])] < Dgy, - (2#5() (2.59)

is a constant that only depends on the choice of the elliptic curve E, ¢, and £. Recall that
F, /K is unramified away from v € (o). Hence, the Riemann-Hurwitz theorem implies
that

95y < Dpag - P70 (03— 0) - #5(0).
Then one obtains that

#Gal(F, /K) + gr, . < Dpgg- 2720 (14 (62 = 0) - #3(0))

a,X —

< Dpyq - 1RO 45 (o) (2.60)

< Dpyg- CH#EO+
Corollary [2.2.2] implies that for any d satisfying

S 12logl + 2log DE ¢4 + (6log?) - #3(0)

d 2.61
log q ( )
the following inequality holds:
#{v € Pi(d) | v & X(o) and ¢, (v) = j} 345 _d
—d;i|<16-D P3HE(O)3 |~
#oePi(d) [ v ¢ 2(0)} g Bt !
Letting Cpgq =16 - Dpyq - 03 proves the statement of the theorem. ]

Remark 2.4.4. The technical condition on the degree of the place v will be used in the
upcoming sections when we compute the probability distribution of local Selmer ranks of
elliptic curves twisted by cyclic order-¢ characters associated to ¢-th power free polynomials
f of large enough degree n. We will show that for almost all f € F;,(F,), the cardinality

of the associated set 3(o) is bounded above by 2m,, , := 2(log n + loglog ¢) by Theorem
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This in turn will allow us to compute the probability distribution of m-Selmer rank

of the cyclic order-¢ twists of E from local Selmer ranks Sel(E[/], x).

Remark 2.4.5. Proposition states that if Gal(K(E[(])/K) D SLa(F,), then the
Chebotarev density theorem completely determines the variations of m-Selmer groups of
elliptic curves twisted by local cyclic order-¢ characters. This is not the case if the Galois
group Gal(K(E[(])/K) does not contain SLa(IFy), as carefully studied in Friedlander et al.
2013|and Alexander Smith 2022a. For example, suppose that p = 2 and Gal(K (E[(])/K) =
Z/3Z. Friedlander, Iwaniec, Mazur, and Rubin showed that the variation of 2-Selmer
groups of certain subfamilies of quadratic twists of elliptic curves are governed by the spin
of odd principal prime ideals defined over totally real cyclic Galois extensions Friedlander
et al. 2013, Chapter 3, Chapter 10. Smith uses a generalized notion of spin of prime ideals
called “symbols of prime ideals" Alexander Smith [2022al Definition 3.11, Proposition 3.14
to classify which classes of prime ideals equivalently varies the Selmer groups of twistable
modules, a generalized notion of quadratic twist families of abelian varieties Alexander
Smith 2022a), Chapter 4. Thankfully, Proposition [2.4.3] demonstrates that one does not
require to use the spin of prime ideals to determine the variations of the dimensions of

Sel(E[¢], x) as x varies over the set of Cartesian product of local characters.

2.4.2 Auxiliary places

Given a polynomial f € F,(F,;), recall from the introduction that we can identify a cyclic

order-¢ character x5 € Hom(Gal(K/K), j1¢) via the quotient map
X7 Gal(K/K) — Gal(LY /| K) — p

that maps the generator oy € Gal(L//K) to (;. Given a place v of K, denote by

Xt0 € Hom(Gal(K,/K,), j1e) the restriction of the global character x s to K.
The goal of this subsection is to understand the distribution of rk((xy.)») as f ranges
over the set F, ((’f;«\,}v)),(w,w’)(Fq) for some \ € Alﬂ,,w, and n € AiiTva_w,. To do so, we introduce

the notion of an auxiliary place of a polynomial f € F, ((2’;\],)) (w w,)(Fq).
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Definition 2.4.6. Let f € F,,(F,). Denote by f, f,, and 7" the square-free polynomial

over [F, defined as

f=11 o fo=" 1 o F= 11 4 (2.62)

glf glf« glf*
geEP1UP2 gEP1UP2 geEP1UP2

i.e. they are products of irreducible factors of f (and f, and f*, respectively) of degree

greater than n which lies in P; or Ps.

Definition 2.4.7 (Auxiliary place). Given positive integers n > N and w > w', let

A€ A%W and n € AL be splitting partitions.

n—N,w—w’

A

e Given a degree n polynomial f € F, (n,N), (w,w!

)(Fq), an auxiliary place of f is an
irreducible polynomial g € Py of maximal degree dividing f, i.e. it is an irreducible

polynomial which satisfies the condition that \; jo = 0 whenever i > deg(fs).

¢ We denote by d, the degree of an auxiliary place f, of any f € F *, 77)) (w w,)(Fq). By

definition, the degree is invariant with respect to choices of f.

e We denote by f, the auxiliary factor of f defined as

fa="JI ¢"V. (2.63)

glf
9€Po(da)

e We denote by du+ the degree of the auxiliary factor of f, which can be written as

o = dg (Z Ada j. 0) (2.64)

« Fix a polynomial h € F,,_q,. (F;). We define the following subset of F; ((7;\71737)) (w w,)(IF‘q):
Am),h A /
F((n,]T\Yf)),(w w/)( ) {f € F( 77 N),(w,w’) (Fq) ﬁ = h} (265)

The above subset is empty if A does not divide any polynomial in F| ((2’;\7[) (Fy).
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By definition, the following relation holds:

(Am) _ (Am),h
F(nj\][),(w’w,)(ﬂ?q) o I—I F(n,]7\7/),(w7w’) (Fq) (266)
h€F,_q . (Fq)

Definition 2.4.8. Let f € F,(IF;). We denote by ¥ the set of places

Yp:=YpU{veP|vdivides f.} (2.67)
We note that if f € F((;’X,)Mw’w,), then #Xf = #Xp + w'.
Definition 2.4.9. Given a polynomial f € F ((27’17\’[))7(1”@,)(15‘(]), we use the abbreviation Q?*

to denote the set of finite Cartesian products of local characters

0 = H Hom(Gal(K,/Ky,), i)

’UEZf
_ _ (2.68)
Qp = 1;[ Hom(Gal(K,/Ky,), pe) % 1|;[ Hom, g (Gal( K/ Ky), te)
vEX v|f*

vtfa

such that the component x, is ramified if v | f*, and we ignore the local characters at any
places v dividing the auxiliary factor f, of f. In particular, we enlarge the set 3 from
Definition to include places v | fi and set ¥ = ¥y, even though xy, is ramified at

such places.

In order to make this reformulation more concrete, we present an alternative way

to define the subset F(Si\,’]?zf)),(w,w’)(Fq) given partitions A := {(\;jr,%,7,k)} € A%w, and

n:={( ;57,;,2,5, l%)} € Aich,w—w" Given a set X, we denote by
PConf,(X) := {(x1, -+ ,xn) € X¥" | z; # x; forall 1 <i < j <n} (2.69)

the set-theoretic ordered configuration set of n elements in X. There is a transitive action
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of the symmetric group S,, on PConf,,(X), which prompts us to define

Conf, (X) := PConf,(X)/S, (2.70)

the set-theoretic unordered configuration set of n elements in X. Using these notations,

we can define the subset F| ((2’]7\7,)) (w w,)(Fq) as
A .
F((m]@)’(w,w,)(lﬁ'q) = [H Conf), ;, (Pr(i)) [H Conf,. . . (P;(i)) (2.71)
i7j7k %’:7\"2/‘
where we regard Confo(X) = {0}. In particular, if a polynomial f € F((T;\mN)) (w.w)(Fq)
admits an irreducible factorization via
z .0,k
f* = H H gz,jkm
1,5,k m=1
(2.72)
U4 7 k R
f* = H H 27, km
i3,k m=1
where {g; j k.m} and {hgj i.m) are sets of irreducible factors of f, then under this identifi-
cation a polynomial f € F ((2’;\7,)) (w w,)(]Fq) can be represented as an element

(H{gzjkm} ”’“) (H{ Fihmtm "”’“) (2.73)

1,5,k i,k

Using this identification, we can reformulate Definition [2.4.7) as follows. There is a

natural projection map

[H COnf)\l ik Pk;

J5k

{H Conf ))

7]’;.

— H Confy, ;. ( [H Contf,, ))
ivj,k Gk
(i,k)#(da,0)




o1

which forgets all the irreducible factors of f € F| ((7;\”]7\7,))7(10@,)(19‘,1) lying in Hg;i Confy,, ., (Po(da))-
Then
An),h —
FO o () i= 67 (h). (2.74)
where h € F,,_4 . (IFq) such that h | f for some f € F(A n)) (w,w’)(FQ)‘

Using the notations introduced in this subsection, an immediate result of Corollary

2313 can be stated as follows.

Corollary 2.4.10. Fiz a locally arrangeable partition A € Alﬁw, and a forgettable partition
Afor

n—N,w—w’"

Recall that d, is the auxiliary degree, and du+ is the degree of the auxiliary

. A,
factor of any polynomial f € F((n ;Z,)) (! )(IFQ).
Fiz a polynomial h € F,,_q, . (F,). If the set F((;"X,))’Izw w) is non-empty and w < 2my, 4,

then for any character x € Q?*,

#{f € FOmh o ) | () ves) = X} 1
T I = e | < (nlogg)
#E N)(ww)(]Fq) e
Equivalently, we have
#1f €65 () | (Xf)vesp) = X 1
{ da( ) [ (xs0) ex(f) — } _ _| < (nlogg)~2mma+l
#¢>da( ) (#5Ee(f)
Proof. We note that there exists a bijection between the following sets:
Cunih /-1
F(n”]z)”(w’w,)(lﬁ‘q) — H Confy, . ,(Po(da))
j=1 (2.75)
f=hfa— fa
There is an Hg;i Sha, jo-€duivariant covering map
-1 -1
F: [[ PConfy, ,,(Po(da)) = [ Conty,, ,,(Po(da)) (2.76)
Jj=1 j=1

where for any fixed f,, every element in F~!(f,) restricts to an identical character in QT«.



52

It hence suffices to compute the desired probability over the ordered configuration set
PConf), ;,(Po(da)). Iteratively applying Corollary [2.3.13| by at most w — 1 many times

gives the result. 0

Definition 2.4.11. Given a locally arrangeable partition A € A%w, and a forgettable
for

n—N,w—w’’

Fix 1 < j* < /—1and 0 < k* < 2. Let d be an integer such that d # d, and

)\d’j*’k* # 0

partition n € A consider the set of polynomials F, m) (w,w’)(Fq)'

(n,N),

1. We denote by ¢g4 ;+ x+ the canonical projection map

A, . 4
Pd,j Je : F((n,;zf)),(w,w’)(]Fq) = 11 Confy, ; , (Pu(2)) | [H Confy, . (Pr(1))
gk ik
(i,k)#(da 0) sk

(4,3,k) #(d3* k")

which forgets the irreducible factors of f € F; ((7;\71@) (w w,)(Fq) lying in the set

-1
Confy, ;. . (Pr=(d)) x [] Confy,, o (Po(da)).

j=1
2. Denote by D :=n —dg« —d - j* - Mg j« k. Let h € Fp(IF4) be a polynomial such that
h| f for some f € F((T’L\7’]7\7,))7(w7w/)(Fq). Denote by gzﬁgy}*’k*(h) C F((27’]@)7(w7w,)(Fq) the set

of fibers of ¢g j« 1+ at h. This set admits the following bijection:

/-1
Gg e e (h) = Confy, . . (Pe=(d)) x [] Confy, ., (Po(da))

j=1
We can now combine the equidistribution of characters from Corollary [2.4.10] and the
Chebotarev conditions from Proposition [2.4.2] and Proposition [2.4.3] This allows us to
obtain the distribution of changes in dimensions of local Selmer groups of E associated to

consecutive twists of local characters.
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Proposition 2.4.12. Assume the notations and conditions as stated in Definition |2.4.11].
Let E/K be an elliptic curve satisfying conditions in .

Given f € ¢;}*7k*(h), let wy and w} be defined as

wr = (Xfw)ves, ) € e wh = (Xsw)ves, () € S (2.77)

Denote by 6y, : Z>o — [0, 1] the probability distribution

5u(]) = #{w € Q}%Qrfz(m) = J}.
h

(2.78)

Let k := Ad,j* k- k*. Then for any n such that my 4 > deg Ag, there exists a fived constant

/E%q dependent only on E,p,q such that

H#{f € bgiope(h) | Th(w]) = J}
#g e e ()

- (ME(S)(J) < Adyj*,k/‘*CIE‘7£7q . ((n log q)_2mnyq+610gé+1)
(2.79)

where My, := [€y 4] is the Markov operator over Z>q given by

1—677 dfs=r—1>0
brs = Q07 ifs=r+1

0 else

Proof. We prove by induction on the values of Ag;+x«. The induction step becomes
straightforward once one shows the base cases, where Ay ;j« x« = 1. Definition implies

that
-1

e o (h) = Pp=(d) x T Conti,, ,,(Polda))
j=1

By Corollary [2.4.10, and the condition that w < 2m,, 4, for any fixed g € Py+(d) and
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W' S Q?*,

# e_l-**h L.:aw,:w/ 1
‘ Y €burpe® | 75 =9 =} < (nlogq) ™t (2.80)

#7(h) N

Fix a non-negative integer Jy. Let w € (;+ be any character such that rk(w) = Jo.

Equation ([2.80]) implies that for any Jp,

#{fe ot ()| 45 =g wp=w 1
‘ { du] 7k ( ) | fa h f } — < (n logq)_an,q""l (281)

#o ' (h) (#55(R)

Here we are using the equidistribution of global characters over (2 using the equidistri-
bution of global characters over Q?*. Take summation over all characters w € (- with

rk(w) = Jy to obain

< (nlog q)~2mnatl, (2.82)

‘#Ue¢£%4m‘ﬁh:%ﬁ“”:*”—%uw

#¢7" (h)

We note that

#{f € b je g (B) | Tk(w]) = Ji,1k(wy) = Jo}

2.83
= > #{fe gzbgj*’k*(h) | 7 f = g, tk(w}) = Ji, vk(wy) = Jo} (2.83)
gEPy=(d) “

By equation ([2.81]), we have that the set

#{f € by (h) | = g,tk(w}) = J1,tk(wy) = Jo}

S
f a’ h
can be evaluated as

) #dg, (1) - (6n(Jo) + O((nlog g)~>mmath))) if rk(w}) — rk(wy) = J1 = Jo (2.84)

0 otherwise

where the secondary error term has explicit constant term of absolute value at most 1.
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Summing over all g € Py« (d) and using equation (2.80)), we obtain

‘ 2.83) — ( Z #{w/ € Qahg ;:éia;l) =J; — JO}

) ~#dy, (h) - 6n(Jo)

9EP (d) (2.85)

< #y (h) - #Pp (d) - 2+ (nlog g) "> mat!

where the notations ), ; were introduced in Definition

4m?2 .
Because we assume that d > n = 1? o and w < 2my,, 4, it follows that as long as

My,q > deg Ag, the conditions for applying Proposition hold. Proposition and

Proposition show that there exists a fixed constant Cg ¢, > 0 depending only on the

elliptic curve F, g, and ¢ such that

w e Qo | k(W) = J1 — J
> HERe PN Z D0 o ) #P ()
9P (d) w.g (2.86)

< Cpuq - #Pr(d) - (nlogq)2mmatClogtely

The constants ¢y« j, — j, are probabilities obtained from this table, see for example Klagsbrun,
Mazur, and Rubin [2014, Proposition 9.5 on how the table from Proposition [2.4.3]is related

to the table provided below.

Ch Ty T k=01 k*=1 k* =2
Jy—Jo =2 X X 1— (64 1) 4 g1=2h
Ji—Jo=-1 X 1—¢% X

Ji—Jo=0 1 X (L4 1)~ — (£ + L)e=2
Ji—Jo=1 X Il X
Ji—Jp=2 X X ¢—1-2J0o

It is straightforward to show that the above entries are represented by probabilities obtained



from the Markov operator My, and M?. To elaborate,

Cl1,—1 = PJp,Jo—1
C1,1 = PJo,Jo+1
€2,—2 = PJy,Jo—1 " PJo—1,J0—2
€20 = PJy,Jo—1 " PJo—1,Jdo T PJo,Jo+1 * PJo+1,Jo

€22 = PJo,Jo+1 * PJo+1,J0+2-
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(2.87)

Combine equations 1} and 1) and the fact that #qﬁi}*’k*(h) = #qbgal(h) - # P+ (d)

to obtain

Therefore, we obtain that

— (M 6,)(J1)

2.83
| ‘ ' < Cjze,q - ((nlog q)_2mn,q+6 log£+1)

#dg i e (1)

where C’E,&q = 6CE 4. This proves the base case of the induction step.

To prove the cases where Ag ;+ x« > 1, we note that

{—1

Gy o g (h) = Confy, . . (P(d)) x [ Confy,, ,(Po(da))
j=1

There is a natural S - -equivariant projection map

-1
F:PConfy, . .(P(d)) x [[ Conty, ,,(Po(da)) = ¢ e s (h)
j=1

] 2.83) — (MF 6,)(J1) - #dgj*’k*(h)‘ < 2Cg4q - #Og e g (h) - ((nlog q) 2mmatOlostity

(2.88)

(2.89)

(2.90)

Note that for any fixed f € qﬁ;’;*’k* (h), every element in F~!(f) restricts to an identical
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character in Q?*. Therefore, it suffices to compute the desired probability over the set

/—1
PConfy, . ..(P(d)) x [] Confy, ,,(Po(da)).
j=1
By definition, we have the equation
Ad,j*’k*
#PConfy, . .(P(d) = [[ (Pe-(d)—m+1) (2.91)
m=1

Hence, by iterating the base case Ag ;« i+ many times, we obtain that

#{S € by je g () | Th(w)) = J1,xk(wp) = o} 5
S —(MES(T
#0635+ g (D) (Lo C2) (2.92)

< )‘dvjﬁk*cjz,g,q - ((nlog q)_an,qﬂ‘ﬁlng—H)_

O]

Remark 2.4.13. One may regard Proposition as an effective version of Klagsbrun,
Mazur, and Rubin 2014, Theorem 4.3, Theorem 9.5. Instead of using fan structures, we
consider a subset of polynomials over gb;}*, w+(h) to show that the Markov chain M|, governs
the probability distribution of ranks of local Selmer groups with explicitly computable rate

of convergence.

2.5 Global Selmer groups

The goal of this section is to use the probability distribution of rk((xfv)v) ranging over

F(Am)

(N, (w w,)(Fq) (Proposition [2.4.12)) to prove the statement of the main theorem.

2.5.1 Governing Markov operator

We will use the Markov operator constructed from Klagsbrun, Mazur, and Rubin 2014,
known as the mod ¢ Lagrangian operator, to analyze variations of m-Selmer ranks of a

subfamily of global quadratic twists of elliptic curves over K satisfying the conditions from
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Theorem 2.1.21

Definition 2.5.1. Let M}, = [{, ;] be the operator over the state space of non-negative
integers Z>o given by

1—/07 ifs=r—1>0
brs =90 ifs=r+1

0 else

Remark 2.5.2. The construction of the mod ¢ Lagrangian Markov operator dates back
to previous works by Swinnerton-Dyer 2008 and Klagsbrun, Mazur, and Rubin 2014l
Other references such as Alexander Smith 2017, Alexander Smith 2020, and Tony Feng,
Landesman, and Rains [2023| also use Markov chains to obtain the probability distribution

of [-Selmer groups of certain families of elliptic curves.

We list some crucial properties the operator My, satisfies, the proof of which can be

found in Klagsbrun, Mazur, and Rubin [2014], Section 2.

Definition 2.5.3. Let p : Z>¢ — [0, 1] be a probability distribution over the state space of
non-negative integers Z>o. The parity of i is the sum of probabilities at odd state spaces,
i.e.

p(p) ==Y u(n)

n odd

Proposition 2.5.4. Klagsbrun, Mazur, and Rubin |201/4, Proposition 2.4

Let EY,E~ : Z>o — [0,1] be probability distributions such that

Et(n) [ (1 + =) [ eje_l if n even
n)=

0 if n odd

(n) 0 if n even
Ei n)=

A+ I 75 if noodd
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Let p: Z>o — [0, 1] be a probability distribution. Then

lim M*(u) = (1= p(u)) ET + p(n) B~

k—o00
Jim MM () = p(W) ET + (1= p(p)) B~
In particular, if p(u) = %, then
. k — —j\—1
Jim Mt = T+ o0 [ 5 (2.99)

Remark 2.5.5. Note that M,% is an aperiodic, irreducible, and positive-recurrent Markov
chain over the state space of positive odd integers Z,qq >0 and non-negative even integers
Zeven,>0- The unique stationary distributions of the Markov chain are E~(n) and E*(n),

respectively.

Given that Mg is aperiodic, irreducible, and positive-recurrent, it is natural to ask what
the rate of convergence of My, is. Assuming certain conditions on the initial probability
distribution over the state space and the stationary distribution of M, the geometric rate

of convergence of M can be verified using the following theorem.

Theorem 2.5.6 (Geometric ergodic theorem for Markov chains). Meyn and Tweedie 1995,
Theorem 15.0.1

Let M be an irreducible, aperiodic, and positive-recurrent Markov chain over a countable
state space X = (xp)nez. Let X1, Xo,--+ , Xp, -+ X — [0,1] be a sequence of random
variables which satisfies

Xns1 = M(X,) (2.94)

for all n. Let m be an invariant probability distribution of M (not necessarily unique).
Suppose V. : X — [1,00) is a function such that lim,_,o V(z,) = oco. If there exists

0<p<1andk >0 such that for all but finitely many x,, € X,

E[V(M(Xn)) | Xn = ax] = V() < —pV(2p) + & (2.95)
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then there exists a constant 0 < vy < 1 and a constant ¢ > 0 such that for any probability

distribution u over X and every n € N,

sup |M™(p)(2) — 7| < ey (uV +1)
ze

where the term pV is the expected value of V' under the probability distribution u, i.e.

pV :=E[V(x) |z € p]. In fact, one can choose vy =1 — p.

Given a cyclic finite group T, Proposition [2.4.3] implies that the Markov chain

¢ 1 1,

over the state space Z>o governs the variation of m-Selmer ranks of families of elliptic
curves twisted by local cyclic order-¢ characters. To elaborate, the sequence of random
variables X, corresponds to the empirical probability distribution of dimensions of m-Selmer
groups of a non-isotrivial elliptic curve E consecutively twisted by n local characters at
places v satisfying the conditions from Proposition 2:4.3] The markov chain My, provides a
mechanism on how the empirical probability distribution of dimensions of 7-Selmer groups
of F consecutively twisted by n + 1 local characters can be obtained from that computed
over families of E consecutively twisted by n local characters.

Proposition also shows that regardless of the parity of the initial probability
distribution over the state space Zxg, the stationary distribution of the Markov chain from
is given by the Poonen-Rains distribution as stated in (2.93)). One can also show that
given a fixed prime number ¢, the Markov chain of our interest is an irreducible aperiodic
Markov chain over the countably infinite state space Z>g. In fact, it is geometrically

ergodic over Z>( (without requiring the restriction that ¢ = 2).

Corollary 2.5.7. Let pu: Z>o — [0,1] be a probability distribution over the state space

Z>o. Denote by m the stationary probability distribution of the Markov operator given by

/ 1 1
M:=(1-—-—"— My + —— M?. 2.97
( 52—1>+£ Lt @M (2.97)
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for some fized prime number £ and a finite cyclic group T. Fiz any positive number 3 > 1.

Then for every n € N, there exists a constant 0 < v < 1 and a constant ¢ > 0 such that

sup
zeX

<ey"(B"+1) (2.98)

((1-557) + pMe+ g2) () =

where the term H is the expected value of the function V(x) = * under the probability

distribution p, i.e. p* = E[B* | x € p]. Explicitly, the rate of convergence v satisfies

¢
1— —— 1 2.
62—1<7< (2.99)

Proof. Fix any positive number § > 1. Set V(z) = 5*. Computational results then show

that there exists a fixed constant x > 0 such that for every x € Z>,

l 1 1
E|5 | X, 1=2|-08=—(-————— |- [%+k.
[ 1 X0 =a] =5 =~ (a1~ g5~ o) O
Setting vy =1 — @%1 + % + W, the corollary follows from Theorem [2.5.6 0

In particular, the above corollary implies that the rate of convergence of the Markov
chain M from is given by 1 — £2 7 + € for some positive number € > 0.

It now remains to show that the stationary distribution of the desired Markov chain
is the probability distribution conjectured by Poonen-Rains Bhargava, D. M. Kane,

et al. 2015l

Lemma 2.5.8. Let ¢ be any fized value of prime, and let T be a finite cyclic group. Then

the probability distribution

[e.9] n

PR(j) = [J(1+¢77)
§>0 j=1

(2.100)

is the unique stationary distribution of the Markov chain

¢ | 1,
M= (1 _ 52—1> T+ Myt MR, (2.101)
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where I denotes the identity operator over the countable state space Z>.

Proof. Note that the operators Id and Mz are parity preserving Markov operators, whereas
M7, is a parity reversing Markov operator. Because the Markov chain of our interest
is aperiodic and irreducible, it follows that the Markov chain has a unique stationary
distribution w. The following relation holds for the parity of 7, which is obtainable by

comparing the parity between m and M ().

p(m) = (17 ) o)+ 5 (1= o) = (1-7 ) pl) + . (2.102)

Therefore, we obtain that p(r) = 3. Using Proposition and the fact that the
Markov chain M is aperiodic and irreducible, we immediately obtain the statement of the

lemma. O

Remark 2.5.9. One crucial result from using Corollary and Lemma [2.5.8is that the
stationary distribution of applying the Markov chain from is equal to the Poonen-
Rains distribution regardless of the initial probability distribution. Furthermore, as long
as the initial probability distribution is finitely supported, we can also ensure that the

Markov chain converges to the stationary distribution at a geometric convergence rate.

Remark 2.5.10. We note that the Markov chain constructed from Smith’s work is different
from the Markov chain presented in this manuscript Alexander Smith [2022a; Alexander
Smith 2022bl. The sequence of random variables X,, Smith considers correspond to the

empirical probability distribution of the subspace
dimg, 7 Seln (EX) C Sel,(E) (2.103)

where x ranges over grids of twists Alexander Smith 2022al Chapter 6. Here, the grids of
twists are defined as a finite Cartesian product of collections of prime ideals, where each
collection contains prime ideals whose symbols are equal to each other Alexander Smith

2022al, Definition 4.13.
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To elaborate, this manuscript regards the variable n from a sequence of random variables
{Xn}nez as the number of distinct irreducible places, whereas Smith’s work regards the
variable n from a sequence of random variables {X, },cz as a quantifier for detecting

elements inside higher 7"-Selmer groups which also lie inside the m-Selmer group of E.

2.5.2 Relating global and local Selmer groups

We now obtain the desired probability distribution of dimensions of Sel,(EXf) over f €
F,(F,) by approximating it with distribution of dimensions of local Selmer groups of E

associated to restrictions of x, as stated in Proposition [2.4.12]

Proposition 2.5.11. Let n > N and w < 2my,, 4 be positive integers. Let w' be a positive
integer such that w' = (1 — €)w for some small enough 0 < € < 1.

Suppose that n satisfies the following inequality

My g > MaT (eee,deg Ap,\/3logl + 1) (2.104)

Then for any B > 1, there exists a fixed constant C’E,qu,g depending only on E, £, q, 3 such

that

#{f € Finn),wur)(Fg) | dimp, Selr(EX/) = J}
0N, (w,0) (Fq)

~ 4elog B -m V4 1 1 w'—1
< Cpuqp - (nlogq) N (nlogg) ™™ + (1 - ——— F — +

- PR(J)|

21" BT B-0p

(2.105)
where F(n,N)’(ww/)(Fq) is a subset of F,,(F,) as stated in Definition .
Proof. There exists a Gal(K /K)-equivariant isomorphism
EXIr] = E[/] (2.106)

see Mazur and Rubin 2007), Proposition 4.1 for the proof. This implies that the m-Selmer
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group of KX/ satisfies

Sel.(EX') ¢ H (K, E[(]) (2.107)

and the image of the local Kummer maps imd} are Lagrangian subspaces of H}, (K,, E[/])
for each place v of K. The mw-Selmer group of EXf is hence the local Selmer group of FE
associated to the Cartesian product (x ), arising from restrictions of the global character

Xy to cyclic order-/ local characters over some local fields K. We concretely have
Sel, (EX/) = Sel(E[/], (Xfﬂ))vezf(?*)) € Qf*' (2.108)

The relation between m-Selmer groups and local Selmer groups also holds over number
fields as well, see for example Klagsbrun, Mazur, and Rubin 2014, Chapter 10.

For each positive integer 1 < z < ', let

-1 2

d
o :=min{d>n| > Y > Njp<z} (2.109)

i=n+1j=1k=0

In other words, it is the z-th lowest degree of distinct irreducible factors of f*. We define

polynomials f;, as follows:

fo. = 1T gvot) (2.110)
glf=
gEUZ 1 P1(i)UPa (i)

i.e. it is the product of irreducible factors of f € F, ((2”]7\7,))’ (mw,)(Fq) (including multiplicities)

up to z-th lowest degree exceeding n that do not lie in Py. We now define the following

abbreviation of local characters for each 1 < z < w':

Xf,0 = (Xf,v)UEEfa Xfz = (Xfﬂ})vEZfU(E) (2.111)

In other words, xy,. is the Cartesian product of restriction of the global character x; over

places in Yy and places of degree at most the z-th lowest degree of distinct irreducible
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factors of f*. Using these notations, we have

Selr (EX) = Sel(E[4], X f,u)- (2.112)
Let X € A N and n € Aﬁ(fN,w_w,. There is a projection map which forgets all

irreducible factors of degree greater than n:

H Conf

A,
P - F(( 77)) (ww)( {H Confy, ;, (Pr(i
irj.k

J:k

[H Conf

.k

Suppose that h, € F,,_n(F,) such that h, admits the forgetful partition 7. Given such a

choice of h., we will pay particular focus to the set of fibers ®~!(h,). We then have:

#{f € @ (h,) | dimg, Sel,(EXf) = J}

=#{f € 27! (h) | rk(xfwr) = J} (2.113)

Jo=0 z=1

= i # {f € @ () | tk(xs0) = Jo, wzrk(Xf,z) —rk(xf.-1) = J}

Denote by €2;— the following set of Cartesian product of local characters

— = |[ Hom(Gal(K,/K,),u¢) x [] Hom(Gal(K,/K,), pe) C (2.114)

vEXE v|hx

Let 05, : Z>0 — [0, 1] be the probability distribution defined as

#{w € O | tk(w) = J}

o(J) = 2.115

() T (2.115)
Let d) be an integer associated to a choice of a splitting partition A defined as

dy = (Nij1+2-Nija2) (2.116)

0]
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Note that there exists a bijection
& 1(h) = H Confy,  (Pk(i))
i7j7k
Inductively applying Proposition [2.4.12{to each term Conf), ;  (Pk(i)), we obtain that there
exists an explicit constant Cg g, > 0 such that

#{f € d ' (h,) | dims, Sel,(EXS) = J}
#P1(h)

)72mn,q+610gé+1) (2117)

— (M{P61,,)(])

<Cgyuq-n-((nlogg

< CE,z,q : ((n log q)_2mn,q+610gé+2)'

Denote by F(};*’ N, (wo') and Fg1 N (w) the disjoint union of subsets

h o -1
Fornywany o) = ] @7 (hy)
AeAla !
, (2.118)
Fomwan®) = L Fow ) (o)
h*an—N(Fq)
hs admits n
Recall that we defined the Markov operator M over Zx>q as
L 1 1
M:=(1-——) - I+-M,+— M} 2.11
( e2—1> Tttt (2:119)

where I denotes the identity operator over the countable state space Z>g. Using Theorem
with respect to the field extension K(E[(])/K and d = n, we obtain that there exists

a fixed constant Bg s, > 0 such that

HF € F" vy twawy(Fa) | dimp, Sel (EX5) = J ,
‘ { (n,N),(w, )( q)’ Ty ( ) }—(M“’_léh*)(J)

HEL 0 ) (Fa)

)72mn,q+610g€+2 (2120)

< BE’g’q . (n logq

—Mn,q

< Bgq - (nlogq)
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where I denotes the identity operator over the countable state space Z>. Note that we
iterate the Markov chain M by w’ — 1 times, rather than w’ times, because we are using
one of the auxiliary places of f to obtain an equidistribution of characters {x -} inside

Q, Ty hence allowing us to apply Proposition [2.4.12

Recall the Poonen-Rains distribution

- SRS
R(‘])_H1+£—jj1;[1£j—1

Jj=0

Because we set w — w’ = ew for small enough 0 < € < 1, it follows that
J | o (J) #0} < k 2ew. 2.121
Jrgg?o{ [ 0n.(J) # 0} < max rk(x) + 2ew (2.121)

By Corollary we obtain that there exists a fixed constant ¢ > 0 such that

: l 1 1 w'=1

MY 15, )(J) — PR(J Nl =t = s -E[B” 5
o [0 a0~ PRO) <o (1= gyt gt ) B2
(2.122)

for any positive 3 > 1. Because w < 2m,, 4, it follows that
E[5” | & € 6] < fraxens () . (n log g) 1oz (2.123)

By letting cg := ¢ - "< k(X) | we obtain:

w'—1

2.122) < cg - (1 S 1) - (nlog q)*lo8# (2.124)
2—-1 I (B-0)p2

Using triangle inequality with equation (2.117]), we obtain for all J > 0 and for any small
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enough 0 < € < 1, there exists an explicit constant C‘Eﬁqﬁ := Bpy,q + cg such that

# f € F}Z w,w’ F dlm[{? Sel,r EXr)y=J
{ (n,N),(w, )h(* q) | . (EX1) } PR
#F(n7N)7(w,w’) (Fq)
< Cpuqp- (nlogq)*8P - ( (nlogq) ™" + (1 N 1>“”1
44, 2—1 IB (03 —1)B2

(2.125)

By ranging over all h, € F,,_n(F,) such that h, admits the forgettable splitting partition

7, we obtain that

#{f € F, Ny wuryFq) | dimp, Selz(EX7) = J}
H#E (N () Fa)

- PR(J)’

N ‘ 1 1 w'=l
- (nl delog B 1 —Mn, (1 - 4+ = )
< Crqs- (nlogq) ((n gd) " \l-m St T moop

(2.126)
Recall that F(n, N),(w,w) (Fq) is the following disjoint union of sets:
7 — (Am) _
Fon,ny, w0y (Fg) = |_| |_| F(n,]r\]/),(w,w’)(Fq) - |_| F(ZL,N),(w,w’)(F‘Z)
AEAZI&U’/ 77eAfzo—TN,w—w/ nEA{lO—TN,w—w’
(2.127)

for

— Naw—w We obtain the

By ranging over all possible forgettable splitting partitions n € A

desired proposition. O
We now prove the main theorem of this manuscript.

Proof of Theorem[2.1.3. From Proposition [2.3.10} we obtain that

2Mp ¢ w

#FH(F(]) - Z Z Z F(n,N),(w,w’) (]Fq)

W=pMn,q w'=(1—e)w N=w'n

n —plogp+l—p 2 ¢ (e (2 128)
<4-¢" max (nlogq) y My q° @7_1 '

1—€)pl .
<4.q¢"-max ((n logq)_plogpﬂ_p,mi’q (n logq)( e Og(‘21)>
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1
loglogmn. g

obtain from Proposition 2.5.1] that

where € = . Letting w to satisfy pmy 4 < w < 2my, 4, and (1 — e)w < w' < w, we

#{f € Flov) waw) (Fq) | dimg, Selr(BX/) = J}
#F(n,N),(w,w’) (Fq)

5 1—e)plog(1—- 5+ L+t
< Crugp- (nlogg)* sl ((nlogq)‘m"’w?)-(nlogq)( wos(1-75+ 3 (eSew?))

- PR(J)‘

4 1 1
<6-Cpryqp- (nlog q)(l_e)plog(l_ﬂfl+@+<83%>B2)+451°gﬁ
b 7q7

(2.129)
Combine two equations to obtain
|#{f € Fy(F,) | dimp, Sel,(EX7) = J} PR(J)|
#En(Fy) (2.130)
< 6 . m?]qq . éE,@,q,ﬁ . (n log q)a(pvﬁve)
where
—plogp+1—p
-— E
a(p, B, €) := max (1—€)plog (1227—1> (2.131)
(1—-¢€)plog (1 - % + % + W) + 4elog B
We now choose 8 = % = loglog my 4 > e. Then we have
Cr4p < (Bpeg+ c) - (logloglogm, o)™ ™), (2.132)
—plogp+1—p
= ¢ 1
a(p, B,€) =max{  plog (p—_l) + Ol i) (2.133)
)4
plog (1 o 52—1) + O(loglogllogmn’q)
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We let

—plogp+1—p

a(p) := max plog (ﬁ) (2.134)
plog (1 - ﬁ%)

Then for small enough § > 0, there exists sufficiently large n and an explicit constant

AEq=6" (BE,K,q + ¢) such that

#{f € Fo(F,) | dimp, Sel,(EXf) = J}
#Fn(Fy)

— PR(J)| < Agyq - (nlog @)*PTe (2.135)
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Chapter 3

A geometric approach

This section is based on the following work in progress Park 2024a) the intellectual origins
of which come from using middle convolution sheaves to understand vanishing of twisted L
functions of elliptic curves over global function fields, as presented in N. Katz [1998| and

Hall 2008!

3.1 Main result

Let K = IF4(t) be the global function field over the finite field I, of characteristic coprime
to 2 and 3. Fix a prime number ¢ > 0 that is coprime to 2,3, and Char(K). Let E be
an elliptic curve over K. Throughout this manuscript, we will assume the following five

conditions.
Condition 3.1.1. Assume the following conditions on K, ¢, and E.
1. The primitive ¢-th roots of unity is contained in K, i.e. puy C K.
2. The elliptic curve E//K is non-isotrivial.
3. The elliptic curve E/K admits a place of split multiplicative reduction.

4. The prime ¢ is coprime to any local Tamagawa factors of E/K.
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5. The Galois group Gal(K (E[(])/K) obtained from adjoining ¢-torsion points of E/K

contains the special linear group SLo(Fy).

In this chapter, we improve the convergence rate of the probability distribution of
{Seli—q, ;(Af/K)} twisted by the set of degree n polynomials f over Fy Park [2022. This
theorem verifies that the probability distribution of Sel; 5, ,(Ay/K) twisted by the set of
degree n polynomials f over I, converges to the Bhargava-Kane-Lenstra-Poonen-Rains
distribution Bhargava, D. M. Kane, et al. 2015 Poonen and Rains 2012| for sufficiently

large n and sufficiently large q.
Theorem 3.1.2 (A geometric approach). Assume Condition |3.1.1. Then there exist

integers My, My > 0 and a fized constant C (¢, E) > 0 independent of n and q such that for

every n > My and ¢ > Mo,

#{f S Fq[t] | dim[E‘Z Sell_w, (Af/K) =, degf _ ’I’L} %) 1 ’ .
#{feIFq[t“fdegf:n} —H ngz_1‘<C(€aE)'

Other than obtaining the improved error bounds, the significance of Theorem lies
in the idea of the proof that the statistics of these Selmer groups can be obtained from
counting [, rational points of a scheme over F, which parametrize the Selmer groups of
these abelian varieties. Unlike the stochastic approach taken from Park 2022], we obtain
the statistics of the desired Selmer groups by applying the Grothendieck-Lefschetz trace
formula to the space Tn,o0, .5 OVET Fq (which will be constructed in Section whose
[Fg-rational points parametrize the elements of the Selmer groups Sel;_, ,(Ay/K) for
degree n polynomials f over FF,.

The significance of Theorem hence lies in obtaining a correspondence between
the sequences of étale cohomology groups of {7, s, ; £}n>1 and stochastic properties of

Markov chains over Z>( defined as My, := (1 — ZQL_I) + %M + ﬁM 2 Klagsbrun, Mazur,
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and Rubin 2014; Park [2022, where M is the Markov chain over Zx>( defined as

1-— Zir ifs=r—1
M(rs) =31 ifs—ri1 (3.2)
0 otherwise.

As an application of Theorem we demonstrate that a polynomial upper bound
on the dimensions, homological stability, and bounds on absolute values of Frobenius
eigenvalues of these étale cohomology groups H, ét((rn,% / E)E’ Qy) imply the triviality of
any fixed i-th étale cohomology groups {nge, / Etn>1 for sufficiently large n > N (i). We
refer to Theorem for the complete rigorous statement of the theorem.

We present the main result of the chapter as follows. Section [3.2] proves Theorem [3.1.2]
by utilizing Grothendieck-Lefschetz trace formula applied to a generalization of Katz’s and
Hall’s constructions of representable étale lisse Fy sheaves N. Katz [1998; Hall 2008 and
incorporating probabilistic results obtained from the previous chapter Park 2022, Section
3.3 proves Theorem [3.3.1] along with a discussion on how one may incorporate probabilistic
models, arithmetic results, and homological stability Ellenberg, Venkatesh, and Westerland
2016} Ellenberg, TriThang Tran, and Westerland 2023 Ellenberg and Landesman [2023
to obtain new results on the vanishing of twisted cohomology groups of the configuration

space of unordered n points over a complex plane with k& punctures.

3.2 Geometric model

In this section, we verify the Bhargava-Kane-Lenstra-Poonen-Rains heuristics for cyclic
twist families of elliptic curves over [Fy(t) by using the Grothendieck-Lefschetz trace formula
to a geometric space over F, whose F-rational points parametrize 1 — op,r Selmer groups

of cyclic twists of elliptic curves.



74

3.2.1 Geometric space

There are a number of recent research which utilizes the notion of colored configuration
spaces, see for example Kupers, Miller, and Trithang Tran [2016; Palmer 2018 For the sake
of making the paper self-contained, we introduce the notations used in this paper denoting

colored configuration spaces as provided below.

Definition 3.2.1. Let F,; be the set of {-th power free polynomials f over F, of degree n

which is coprime to the discriminant Ag of the elliptic curve E:

Foo:= {f e F,[t] | deg f =n,vp(f) <€ —1 for all irreducible p € F[t], (f,Ag) = 1} :
(3.3)

We note that F}, ; can be identified with the open subscheme of the unordered configu-
ration space of n points of Al over F, with ¢ — 1 colors X = {1,2,--- ,¢ — 1}, denoted as
Conf, (A, X), whose elements are coprime to Ag. Each color corresponds to determining
the valuation of the polynomial f € F,[t] with respect to a choice of a linear polynomial
p =1t—c € F,[t]. The elements of F, ; can be written as the set of n-many unordered

tuples in A%F—q x X, i.e. as {(c1,x1), (c2,22), -+, (Cn, Tpn)} Where ¢; € AH{‘TI and z; € X.

Definition 3.2.2. A weighted partition of n into £ — 1 components is an array of £ — 1

integers 0™ := [n1,ma, - -+, my—_1] which satisfies n; + 2mg + - + (£ — 1)ny_y = n.

Definition 3.2.3. Let nl™% := [, 72, --- ,m_1] be a weighted partition of n into £ — 1
components. Given such a partition ™, we denote by F g the subset of {-th power

free polynomials over F,, of degree n defined as

Fyna = {f €Fglt] | f = 91939/}, deggs = i, g; square-free over Ty, (f, Ap) = 1}
(3.4)

Likewise, Fn[n,g] is an open connected subscheme of the unordered configuration space
of n points of Al over F, with £ — 1 colors X = {1,2,---,¢ — 1}, where each color i

has 7; many distinct points, denoted as Confn[n,g] (A', X). In particular, if we denote by
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Conf, (A!) the unordered configuration space of n points in A! without labels, then we
have the inclusion

Conf, . (A", X) — Conf,, (A') x Confy,(A") x -+ x Confy,_, (A") -

glg% o 95:% = (917927 T 79571)-

Note that if ®,, , denotes the set of all partitions of n into £ — 1 components, then one
obtains that

Fop = Upintica, JFyma- (3.6)

Lastly, we denote by F,, ¢(F,) and Fn. (Fq) the set of Fy-rational points of F,, ; and

Fin.a- Concretely, these sets can be written as

Foo(Fy) :={f € F,[t] | deg f =n,v,(f) <€ —1 for all irreducible p € F,[t], (f,Ar) =1},
(3.7)

Fom.g (Fy) == {f eF,tl| f= g1g5 - -gf:%, deg gi = 1ni, gi square-free over Fy, (f, Ag) = 1} .
(3.8)

Likewise, we obtain that

Fn,K(Fq) = I—ln[m@]e@n’an[n,é] (Fq)~ (3.9)

Because the order of the isogeny 1 — o/ ¢ and the order of the cyclic character x
associated to the cyclic twist Zr y ® E are identical, we cannot directly use the construction
of the étale lisse-sheaves provided by Katz N. Katz [1998, Chapter 6 or Hall Hall [2008|,
Chapter 5. Nevertheless, the above constructions can be extended to obtain the geometric
space of our interest, as we provide below. The construction of the representable sheaf is

outlined analogously to Park and N. Wang 2023, Section 3.2.

Definition 3.2.4. We construct the representable étale Fy-lisse sheaf 7, 5, , & — Fy, ¢ over

F, as provided below. It is suffice to specify the construction of the étale IFy-lisse sheaf
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Tn,oo B — Fn[n,g] given a choice of a partition n[”ﬁe] € ®,, ¢ (Here we abuse the notation
and abbreviate Tnygzyf7E|Fn[n7Z] = Foing a8 g, 5 — Fyma).

Let € be the Neron model of the elliptic curve E defined over KF,. The multiplication
by £ map x{ : E — FE induces the multiplication by ¢ map over the Néron models
xl: & — E. We denote by E[{] the kernel with respect to x¢ map.

Given any f € F, .0, denote by Ay the Néron model of the (£ —1) dimensional abelian
variety Ay over KF,. The degree ¢ isogeny 1—oy s : Ay — Ay extends to the endomorphism
1—opp: Ap — Ay.

Given any f € F im0, we can write the factorization of f as f = g1g3--- gfj, where
each polynomial g;’s are square-free polynomials over F, and deg gy = ny for 1 <k < ¢—1.

Consider the 2¢ — 2 open subsets of IP’IIF— defined foreach 1 <k < /¢ —1:
q

Uy, == PL\ (g(0) U {0, 00})

Ug, . E = ]P’%—q\ (971 (0) U{0,00} U {v € IP’]IF—q cv | Ag}).

(3.10)

We also consider the corresponding inclusion maps iy : Uy, — P%—q, i Uy, — IP’IIF—q\ {0, 0},
and ji : Uy, g — P%Tq‘

We denote by L, — IP’Ilp—q\ {0, 00} the Kummer sheaf obtained from the order ¢ character
X: ﬂame(P];—q\ {0,00}) — Fy of the tame fundamental group of IP)IIF—q\ {0,00}. (Note that
this is where we use the condition that ¢ = 1 mod ).

For each factor g of f, we inductively construct étale [Fy-lisse sheaves over ]P’IlF—. For
q

k =1, we denote by FELZ [ E the étale Fy-lisse sheaf over IP’IlF— defined as
y N q
1 . ok k. T
F = 0 (J7€10 @ 5 (0)s3Ly ) > Pk (3.11)

For 2 < k < /£ — 1, we iteratively define the étale [Fy-lisse sheaf over IF’IlF— as
q

Forp = (s (3Tt 5 ® (k)i Ly ) = Ph- (3.12)
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Let 7l : IP’I%I X, Fpinag — PIIFT; and 72 ]P’%qu Xg; Fyma = Fyma be the projection

maps. Then the étale Fy-lisse sheaf 7, 4, f,E\p g Fn[n,g] is defined to be the image of
’ n

n,¢)

the higher direct images which forgets support:

R (W) Fl p) = B ()Rl L) (3.13)

Remark 3.2.5. Given any f € F, ¢(IF,), the geometric fiber of f is the étale cohomology

group H élt(IP’%q, A¢[l =0y ¢]). Furthermore, there is an inclusion of étale cohomology groups
Hélt(P%quf[l —ou]) C Hélt(Kan Ap[l —ouy]) = Hélt(Kﬁqa E[l]). (3.14)

The Weil pairing E[(] x E[¢] — u, induces a symmetric pairing over H}, (KF,, £[(]) via

cup product and Poincaré duality. In particular, the symmetric pairing on Helt(K Fq, gl

descends to the symmetric pairing on H} (]P’% , Af[l — 0y ¢]), regardless of the choice of the
q

polynomial f € F,, ¢(IFy).

The dimensions of the étale cohomology groups HY, (IP’%F—, A¢[l — oy ¢]) can be computed
q

as follows.

Lemma 3.2.6. Given a weighted partition n™t e Dy, let f € Fyma (Fy). The étale

cohomology groups of IP% with coefficients in Af[l — oy ¢] satisfy
q

deg(Mp) +2deg(Ap) =2+ 2% ifi=1, £1deg(f)

dimp, Hyy(Pg , Af[1=00s]) = { deg(Mg) + 2deg(Ap) —4+ 255 mp  ifi =1, | deg(f)

0 otherwise

(3.15)
where Mg and Ag are divisors of multiplicative and additive reductions of the elliptic curve

E/K.

Proof. The proof follows from adapting the arguments of N. Katz [1998 Section 5.1 and

Hall 2008, Lemma 6.2. It suffices to compute the dimensions of cohomology groups
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when ¢ = 0,1,2. Because the function field K is of characteristic coprime to 6/, and the
Galois group Gal(K (E[(])/K) contains SLy(IF¢), the group scheme A¢[1 — oy f] is lisse and

irreducible of rank 2 over the open subscheme Uy g of IE”%F—, where
q
Ure ::IF’IlF—q\(f_l(O)U{O,oo}U{vGIF’IlF—q:v | Ag}) (3.16)

Because H? and H? are n$'(Uy g)- invariants and 75 (U, )-coinvariants of Af[1 — oy ¢], we
obtain that both cohomology groups are equal to 0. Note that the same line of reasoning
shows that Hgt(IP)IlF—q, E[¢]) and Hgt(IP’%F—q, A¢[f]) are also trivial. Note that (1—oy )1 = fop
for some ¢ € End(Af/K). Hence, the short exact sequence induced from multiplication by
1—oy

0— .Af[l —UgJ] — .Af[f] — .Af[g] —0

induces a short exact sequence of étale cohomology groups
0— Hélt@%?q? Afll —ouy]) = Hélt(]%*qa Agll]) = Hélt(PIqua Aglt]) — 0.
. Hence, we obtain the isomorphism
HY(PL, AfL = 00 g]) = HL (P A1~ o0 ]
On the other hand, the short exact sequence of group schemes
0= Af[f] » Resk VD) = €[] = 0 (3.17)

implies that one obtains using Shapiro’s lemma,

dimg, B (P, Aslf]) = dimg, HY (Cy, £[0]) — dimg, HL(PL£[),  (318)

where C/ is a smooth projective curve over F, with KF,(Cy) = KF,(/f). We then use

the Ogg-Shafarevich formula to the /-primary part of the abelian variety Ay Ogg 1962,
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Theorem 2 to obtain
dimg, Hélt(ngfq, Asl]) = (£ — 1) deg(Mpg) + 2(¢ — 1) deg(Ag) + 4genus(Cy)

Using the Riemann-Hurwitz formula, depending on the difference of ramification behavior

at the place oo when ¢ | deg(f), we obtain that

dimg, HL (PL, A;[0]) (¢ —1)(deg(Mg) + 2deg(Ag) — 2+ 254 mp)  if €4 deg(f)
Fo e\ Af =

(£ —1)(deg(Mp) + 2deg(Ap) — 4+ 24" nx)  if £ | deg(f)

The lemma hence can be obtained from taking the (1 — oy f)-torsion submodule of

H} (IP’IlF—q, Ay¢[0]) with respect to coordinate-wise cyclic permutation action of oy ;. O

Using the Leray spectral sequence as in Park and N. Wang [2023], Lemma 3.9, we obtain
that
Hét(]P%q,Af[l — o g]) ST = HL(PE  Af[L— 00 f]). (3.19)

Because the (¢ — 1) dimensional abelian variety A; is a subscheme of the Weil restriction

of scalars of E, under Condition Cesnavicius 2016, Proposition 5.4 implies
Hélt(PlquvAf[l - Uﬁ,f]) = Sell—az,f (Af/K)' (3.20)

Hence, the first moment of the size of Sel;_, ,(As/K) over f € Fp,(F,) is equiva-
lent to counting Fy-rational points of 7, 5, , g, which can be obtained from utilizing the

Grothendieck-Lefschetz trace formula:

> F, ¢(F, #Sely_o (Af/K) 2n . '
FEF, ( 3l)%F T )e,f :Z(_l)lqz nTrFrObq‘Hét,C(Tn,Ug’f7E7@’U)- (3.21)
e i=0

Remark 3.2.7. The k-th moment of the size of Sel; 4, ,(Ay/K) over f € F,, ((F,;) can be

computed from counting F,-rational points of the étale IFy-lisse sheaf ngé nE T Fon where

the geometric fiber at f € F, .4 (Fg) is given by the direct sum Hé}t(IP’%—q, Al — oq4]) k.
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The action of the étale fundamental group m; (Fn[n,q , f) is given by the coordinate-wise

diagonal action of 1 (F,n.q, f) acting on each of the component H} (]P’IIF—(I, Al — o0 ¢]).

3.2.2 Big monodromy

We now demonstrate that the representable étale Fy-lisse sheaf 7,4, , 5 — Fj, ¢ satisfies

the big monodromy result that the geometric and the arithmetic étale fundamental group

contains index 2 subgroup of the orthogonal group of H}, (IP’% ,Af[l — o4 ¢]) with respect
q

to the symmetric pairing induced from the Weil pairing E[¢] x E[f] — p,.

Theorem 3.2.8. Given a weighted partition 77[”’@ € Dy, let Tnyoo. B — Fn[n,l] be the étale

Fy-lisse sheaf constructed from Definition |3.2./)

1. Both the geometric monodromy group and the arithmetic monodromy group of
Tnyoe p,B > Fyin,a s isomorphic to a subgroup of the orthogonal group O(Helt(IP% JAf[1—
’ q

oe,f]) of index at most 2, but not isomorphic to SO(Hét(}P’% JAF[L — o0 g]).
q
2. The trace of the Frobenius acting on Hggc(Tn,gé’f,E,Qv) s equal to £ + 1.

3. The trace of the Frobenius acting on HZ (%% . Q,) is equal to TIF,_, (¢™ +1).

ét,c n,0¢,f,
Proof. Setup

The first part of the theorem follows from adapting the big monodromy group results
outlined in Hall [2008], Section 6 and N. Katz[1998, Theorem 4.1.10. Fix an integer m and
a tuple of integers (mq,ma,--- ,my_1) such that m = Zf;ll im;. Denote by nl"=4 the
partition obtained from 7™ which satisfies

[n—m, 0 _ [

n 771_m17772_m27"'ank_mka"'ﬂn—l_mﬁ—l]'

We may choose an ¢-th power free polynomial g € Fin-m., and denote by U, an open
subscheme of ]P’%q excluding ¢~1(0) and {0,00}. Let ¢’ be an /-th power free polynomial
g' € Fy such that gg' € F).n. For shorthand notation, we denote by Ay the £ — 1
dimensional abelian variety over KF, defined as A, := Ker (Resgil( @)E — E)

q



81

Given ¢ € Uy, fix a topological generator o, of the inertia subgroup I(c) of the tame
fundamental group W’{((Fn[n,g] )E, f). Then any choice of two topological generators o,
and o, associated to ci,co € Uy such that & — U, has multiplicative reduction at c;
and A, — U, has additive reduction at cp that is not a place of bad reduction of &
with dimp, Ay[1 — 04 4]/ Ag[1 — 04,)/(%) = 2 are generators of the index 2 subgroup of the
orthogonal group O(H, (]P’%q, A¢[l — 04 ¢])) which does not contain the special orthogonal
group SO(Hgt(IP’%q,Af[l — 0¢,¢])). The choice of a place c¢; originates from one of the
weaker requirements from Condition [3.1.1] Using the Chebotarev density theorem over K
with respect to the Galois extension K (E[¢])/K, such a choice of ¢z can always be made.

We first note that both the geometric and the arithmetic monodromy groups of 7, 5, ; &
is contained in the orthogonal group O(H, ét(IF’It,—q, Ag[l—oy]). In particular, the cup product
and Poincare duality show the existence of the symmetric pairing over H, é}t(IP’IlF—q, A¢[l—0yf])
and H (Pg , Af[1 — oy,7]):

Hy (P, Ag[1 = 00,5]) x Hgy (P, Ag[1 = 00 4]) = HE (PR, ) = Ty

Fe (3.22)

Hy (P, Ag[l = o0,5]) x i (Pr,, Af[1 = 0¢.¢]) — HE (P, pe) = Fy

We note that the Galois-equivariance of the Weil pairing E[¢] x E[¢] — p, implies that the
symmetric pairing is equivariant under the Frobenius action.

Consider an involution 7. : PllFT, — IP’%F—q defined as ¢ — ¢ —t. Given a choice of an order-¢
character x : I(c) — Fy of the inertia group I(c), let £, — ]P’]I{,—q\ {0,000} be the Kummer
sheaf associated to x. Let i : U, — P%—q be the inclusion map. Then the restriction of
the étale sheaf 7, 5, , p — Fn[n,z] to Uy is an étale [Fy-lisse sheaf whose geometric fiber at
c e ]P’é,—q is given by Hélt(PIITq’ 0% (Ag[l — opg] ® 72 Lym)). In particular, there exists an
isomorphism of Fy-lisse sheaves 7, 5, , & & MCym(Ag) over Uy, where M Cym is the middle
convolution functor with the choice of a character xy. We refer to Hall 2008, Section 4 and
N. Katz [1998, Section 4 for further detailed description of the middle convolution functor.

From here and onwards, for each ¢ € Uy, we use the abbreviation V, := H}, (]P)Iqu’ i51* (Ag[1—

04,9) @ TF Lym)) to denote the desired vector space.
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Monodromy at a place of multiplicative reduction

Let ¢ be a place of multiplicative reduction of & — U,. Then Ay[1—ay 4]/ Ag[1—0y 4],
as I(c)-representation, is isomorphic to the trivial representation Fy. To see this, we note

that one obtains the following commutative diagram of group schemes,

0 —— Ayl — ap4)'© —— A [0)1) M. 0

l l J (3.23)

0 —— Ag[l —opy] ———— AGll] ——— AG[(1 —00y)" % —— 0

where M_ is kernel of the connecting morphism Ay[(1—07,4) " 2)/(©) — H(I(c), Ag[1—00)).

By Snake lemma, we have the identification that
A1 = 1) [ AglL = 00O = Ker (1= 00) s Agll/ 407 — Ag[(1 = 07,0)~2)/ M)

Using the identification that as Gal(K/KTF,)-representations,

Resg%(w)E[é] ~ Indgzgj ﬁ:ﬁ ey E10, (3.24)
it follows that the monodromy of A,[¢] at t = ¢ is an element of direct sums of (£ — 1)
trivial representations @f;lllﬁ‘g, with each of the summands indexed by elements 02 g for
1 <4 <¥¢—1. Without loss of generality, we can choose a multiplicative map sending
Opg O'l%g which induces the action of o7, on @f;llIFg as a cyclic permutation of the
coordinates. This implies that the representation Ay[1 — oy 4]/ Ag[1 — 04 4] is isomorphic
to IFy.
We now verify that VC/VCI(C) =~ Fy ® (—1). The identification that Tnop B — Ugis a
middle convolution allows us to utilize N. Katz 1998, Theorem 4.1.10 to understand the

)

action of I(c) on the co-invariants V./ VC[(C . Because 7,5, , g — Uy is tamely ramified, we

obtain as I(c)-representations,

Ve/ VIO = Ker (1= 0p5 + A/ A[07) @ X™ = Ag[(1 = 07,4) ") /M 0 x™)
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for any 1 < m < £ — 1. The action of x™ is given by multiplying each i-th component of
the £ — 1 dimensional representation by the character O’ZZ for each 1 <1¢ < /—1. Hence, we
obtain that Ay[f]/A,[0)'@ @ x™ = &l (F, @ a . With respect to equivalent choice of the
(c)

multiplicative map oy 4 — Ul% g it follows that the representation V./ VC is isomorphic to

Fe® (of, + U? +- 4+ Uéf;I)m) = F, ® (—1). This proves that the topological generator

o. of I(c) acts as a reflection over V..
Monodromy at a place of additive reduction

Suppose that c is a place of additive reduction of A, — U, such that ¢ is not a place of
bad reduction of & — U, and dimp, A,[1 — 04,4/ Ay[1 — 04,4]©) = 2. Then the monodromy
of Ay[f] at t = ¢ is an element of 2(¢ — 1) dimensional representation &{_} (F, ® (72 9

Because c is a place of good reduction of E, one obtains the following commutative diagram:

0 —— Agll = 05l —— 4,07 —— A (1~ 00g) O —— 0

l l l (3.25)

0 —— Al —opy] ——— AGll] ———— A1 —04y)" 2 —— 0

By Snake lemma, we have the identification that
Ag[1=016]/ Ag[1=00,4]1) = Ker (1= 01,9) : Agl0)/ Ao — A[(1 = 00,0) 2] [ Ag[(1 = 00,4) 7))

The monodromy of A4[¢] at t = c is an element of a 2(¢ — 1) dimensional representation
@f;% (FedFy) ®U§, - The identification that 7, 5, ; & — Uy is a middle convolution allows us
to utilize N. Katz 1998, Theorem 4.1.10 to understand the action of I(c) on the co-invariants

Ve/ VCI(C). Because Ty, 5, ; & — Uy, is tamely ramified, we obtain as I(c)-representations,
‘/C/‘/CI(C)gKer(l_Ué,g g0/ Ay [01©) @™ — A [(1—049)6 %1/ Ay [(1—049)6 2)1(0) @ ™ )

for any 1 <m < £ — 1. The action of x™ is given by multiplying each i-th component of
the £ — 1 dimensional representation by the character O‘ for each 1 <i</¢—1.

Let o be the topoolgical generator of I(c) C m}(Uy,). To understand the representation
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Vc/VcI(C), we divide into 2 cases depending on whether m = ¢ —1orm # ¢ —1. In
the first case, we obtain that Ay[f]/A,[f)'© @ x*~' = @2} (F, ® Fy). Hence, we obtain
V./ VC](C) = F, & Fy, implying that o, acts as an isotropic shear over V.. In the second case,
we obtain that Ay[(]/A,[0)'© @ x" =2 &} (F, 0 F) ® 0'2(;1—1_1). Because m # { — 1, we

obtain VC/VCI(C) = (FrdF)® (UZLg +-- '+UZM?1)

s )= (FedF)®(—1). Assuming Condition

because the topological generator oo of I(¢’) where & — U, has multiplicative
reduction acts as a reflection over V., we obtain that the element o.0c € 7} (U,) acts as

an isotropic shear over V..
Big monodromy

By Hall 2008, Theorem 3.1, it follows that the geometric monodromy group of U,
contain an index 2 subgroup of the orthogonal group O(H, élt(IF’%—q, A¢[l — oy f]) which is not
the special orthogonal group SO(Hgt(PI%—q, Al — o4 ¢]).

Because the Weil pairing is Gal(Fq /Fg)-equivariant, the symmetric pairing is Frob,

-equivariant. Hence, the short exact sequence of étale fundamental groups

1— Wl((Fn,g)E,f) = T1((Fne)r,, f) = Gal(Fy/Fy) — 1 (3.26)

imply that both the geometric and the arithmetic fundamental groups of F), ; contain an
index 2 subgroup of the orthogonal group O(H, é}t(]}”% ,Af[1—o0y¢])) which is not the special
q
orthogonal group SO(Hélt(IP’% JAfL— o4 4])).
q

Orbits

The second and the third part of the theorem reduces to counting the number of
orbits of the geometric (or arithmetic) fundamental group of the space F}, ; acting on the
geometric fibers of f € F,, o(IF,) that is fixed by the action of the Frobenius Frob,. Using

Tony Feng, Landesman, and Rains [2023, Theorem 4.10 gives the desired results. O

We can now prove Theorem [3.1.2
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Theorem [3.1.2. The Grothendieck-Lefschetz trace formula implies for any ¢ > 0 and d > 1,

d
Zfan (Fq) #Sellfae,f(Af/K) n . )
e ;FM(Fq) ) :;}(—1)ZTrFrobq\Hgtvc(Tr?igZ‘f’E,Qv) (3.27)

We recall the identification

Foo(Fq) = un[n,ﬁ]e(I)n’ZFn[n,e] (Fq)- (3.28)

and Theorem that there exists a number N; > 0 and a fixed constant By(n, ¢, E,d)

independent of ¢ such that for every ¢ > Ny and d > 1,

d
S rer, ok, (#5ehi-, , (47/K))
#Fn,Z (Fq)

d
— [T (" +1)| < Bi(n, ¢, E,d) - \}6' (3.29)

m=1

Using induction on the degree of ¢-th power free polynomials, there exists a number Ny > 0

and a fixed constant B; (n,¢, E,d) independent of ¢ such that for every ¢ > Ny and d > 1,

> fER[t] (#Seh,U” (Af/K))d d 1

i - " B, (n C—. .
#g{fequ[t] | deg f =n} [I " +1)| <Bi(n, 0, E,d) NG (3.30)

m=1

We note that the Poonen-Rains distribution given by

| ool
BKLPR((,r) =[] 7 ]Hl -l (3.31)

is the unique probability distribution whose k-th moments is equal to H?Zl(éj + 1), with
the condition that the parity conjecture holds, in particular that the probability that the
dimension of the 1 — o, ¢y Selmer group of Ay is odd is equal to the probability that the
dimension of the 1 — oy s Selmer group of A; is even. By Billingsley 1995, Chapter 30
and Sawin and Matchett Wood [2022], Theorem 1.6, 1.7, 1.8, there exists a fixed constant
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C (¢, E) > 0 independent of n and ¢ such that for sufficiently large n and ¢,

#1if € F‘J[t] | dimg, Sell—Uz,f(Af/K) =r, deg f = n} B s 1 r ¢ ‘ i
#{f € Fy[t] | deg f=n} g1+£*i£[1£i 1| <CEE) NG

(3.32)

O

3.3 Trivial cohomology groups

Recall that we consider the étale IFy-lisse sheaf Tn,o0 1B Fn[n,g] whose F,-rational points
parametrize Seli_q, ,(Af/K) for each f € F,n.q(Fg). We also recall that the open sub-

scheme F) g of Conf, (A, X) has a canonical inclusion map

Conf, g (A', X) — Conf,, (A') x Conf,,(A') x --- x Conf,, ,(A') (333)

glg% o gf:% = (917927 e 79571)-

For each i such that 1 < < £—1, there exists a natural stabilization map ¢; : Conf,, (A!) —
Conf,,+1(A!). The stablization map induces the stabilization maps ¢; : Conf, n.g (Al, X) —
Confninﬂ',g] (A!, X) where nLnH’Z] is a weighted partition of n+1¢ into £ — 1 many components
such that

y
nLnH I = [01,m2, - s Mie1, M+ L migr, - M-

It is a nontrivial fact that the stablization maps ¢; : Conf,,(A') — Conf,,;1(A!) and
@i : Conf, .0 (AL X) — Confninﬂ-’g] (A, X) induces an isomorphism of étale cohomology
groups of (colored) configuration spaces, see Palmer 2018 for the full proof of this result.

Using Theorem we now prove Theorem which demonstrates that certain

geometric conditions on 7, 5, , g ensures the triviality of their étale cohomology groups.

Theorem 3.3.1. Let v be a prime which is coprime to 2,3,¢, and Char(K). Given a
choice of a number k such that 1 < k < £ — 1, fix two weighted partitions n[”’g],nﬂ[kmrk’q and
a stabilization map @y, : Foinag — Fn[n+k,g]. Suppose the following conditions hold for the

étale cohomology groups of {Tn’gg’f.7E}n21.'
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1. (Subexponential Betti Numbers) For every n and i, there exists a fized constant

K > 0 independent of n and ¢ such that

dim@u Hze;t((Tn,Uzyf,E)Ea Qv) < KH_Q- (334)

for some fized number o € R.

2. (Homological Stability) For each fized i > 0, there exists a number N(i) > 1
such that for every n > N (i), the stabilization map @; : Fng — Fn[n+i,2] induces an

isomorphism of étale cohomology groups
Pit Hét((Tn,Uz,ﬁE)?anv) = H?a’t((Tn+1,Ue,f,E)?qa@v) (3.35)

3. (Frobenius FEigenvalues) There exists a strictly increasing function g : N — R such
that for all i, there exists a fixed constant L > 1 such that all the absolute values of

the eigenvalues {\im}m of the Frobenius acting on Hét((Tnm,f,E)Ea Qy) satisfy
¢ < ¢V < il < D < 75, (3.36)
Then for any fized i > 0, there exists a large number M (i) > 0 such that for everyn > M(i),

Hét((Tn,Ueyf,E)ﬁqa Qv) =0. (337)

Proof. Using the Grothendieck-Lefschetz trace formula and Theorem [2.1.2] from Section [2]

there exists an integer N7 > 0 and a fixed constant C'(¢, E') such that for any n > Ny,

1 2n—1 ) ) 1
[BlSel o, (Ar/)] = (¢4 )] = | Y (<D TeFroby (7 ) @) < O ) -
=0

where v is any prime that is coprime to 2,3,¢. Condition (1) of the statement of the
theorem and Deligne bounds on eigenvalues of the Frobenius acting on étale cohomology

groups with compact support Deligne 1974 imply that the above series converges for any
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g > K. Using Poincaré duality and condition (3) of the statement of the theorem that the
Frobenius eigenvalues associated to the action on i-th étale cohomology groups of 7,4, ; &

form a strictly increasing function, we can construct a sequence of non-negative numbers

{C;}5 ! such that

2n

S (=1 G dimo, Hiy(ru ) Q) < CLE) - o (339
i=1

where we recall that g : N — R is a strictly increasing function governing the absolute values
of eigenvalues of the Frobenius action on i-th étale cohomology groups of 7, 4, , p. Using

the upper and lower bounds on Frobenius eigenvalues from condition (3) of the statement

2a(£)

logq’ we obtain that the absolute values

of the theorem, for every ¢ such that 1 <i <

of the Frobenius eigenvalues acting on H, ét((Tnm, / E), Q)Y is strictly greater than ﬁ

Hence, we obtain that

2a(f) logn
I— L .loqu

S (1) G- 9D dimg, H ((Tae, ), Qu) = 0. (3.39)

i=1

Because g is a strictly increasing function, we obtain that either C; = 0 or dimg, H, ((Tn.0, 4 E)]F ,Qy) =

0 for all such 1 < i < 20‘(8) . 13§Z' Using condition (1) and (2) of the statement of the

theorem, we may permit n to grow arbitrarily large so that for any fixed index i, there

204(5) _logn

exists large enough n such that ¢ < “Togq

We now demonstrate that C; = 0 also implies that there exists a choice of n > N (i) such
that dimg, Hét((rnm’ny)E, Qy) = 0. The fact that C; = 0 implies TrFrob,x ]Hét((an’f,E)E, Qu) =

0 for all but finitely many & > 0. This is because one can always find large enough

log n’

n’ > N(i) (which may be larger than the initial choice of n) such that i < QQT(Z) ATt

and condition (2) of the statement of the theorem implies that the action of Frobenius
on Hgt((Tn,gLf,E)E, Q) is identical to the action of Frobenius on HY, ((Ty/ o, o’ E) ,Qy).

Applying (3.39) to parameters ¢* and n’ yields

TrFrobgx H ((Tno ), Qu) = TrFrobg He (w0, B Qo) = 0. (3.40)
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By Bombieri and N. M. Katz 2010, Theorem 3.3, it must be the case that for every k > 1,
TeFrobgs | Hy ((Tnop f,5)7, Qu) = 0. (3.41)

In particular, it must be the case that the eigenvalues of the Frobenius Frob, acting on

i-th étale cohomology groups, denoted as {\; ,}, are given by
Aiam = ¢"V - (Th (3.42)

for some primitive roots of unity Cﬂ(i) € ppr(iy of order M and some strictly increasing
function i : N — R. But this implies that the action of the Frobenius Frob ) is given by

multiplication by (g™ ®))*(®)  Hence, it follows that

TrFroby) | Heg o((Too, +5)F,» Qo) = "M dimg, HY ((Tae, . )z, Qo) =0 (3.43)

which implies the desired triviality of the i-th étale cohomology groups. O

Remark 3.3.2. The significance of Theorem lies in the observation that one can
obtain non-trivial geometric properties of algebraic spaces by utilizing innate properties of
dynamical systems. It would be of great interest to explore whether the two conditions
from Theorem [3.3.1] are valid. Even if the two conditions do not hold, Theorem [3.1.2]
will construct an example of a sequence of algebraic spaces {Tnm, / En>1 whose étale
cohomology groups do not satisfy homological stability, but whose alternating weighted
sum of the trace of Frobenius acting on their i-th étale cohomology groups with compact
support converges to 0 as n grows arbitrarily large. It is also of interest to understand
whether one should expect the vanishing of étale cohomology groups of moduli spaces of
Selmer groups of different families of abelian varieties to occur, the spaces of which are
constructed in Hall 2008; Tony Feng, Landesman, and Rains 2023; Park and N. Wang

2023

Remark 3.3.3. We note that one can reduce the problem of proving the homological
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stability of étale cohomology groups of 7,5, , g to proving the homological stability of
group cohomology of a braid group with n strands over a punctured plane with twisted
coefficients, the dimensions of which grow exponentially in n.

We first note that the colored configuration space F),, can be regarded as an n-

dimensional manifold over C which satisfies
H'(Fy0(C), Z/vL) = Hiy ((Fn )5, L/ VL) (3.44)

Recall that the symmetric pairing on the geometric fibers of 7,5, , 5 — Fpy is the
restriction of a fixed symmetric pairing over H} (KF,, E[f]) induced from the Weil pairing

E[¢] x E[f] — . The complex manifold 7, 5, , £(C) which satisfies

H'(n,0,,7,5(C), Z/vL) = Hiy ((Tn,0, 1.B)7, L/VE) (3.45)

can be constructed as a finite sheeted covering space over F,, ¢(C) using the following
procedure. Fix an infinite dimensional Fy-vector space Vo, with a choice of a quadratic
form ¢ : Vu X Voo — Fy. For each integer n € Z, pick a deg(Mg) + 2deg(Ag) — 4 + 2n-

dimensional subspace V;, of V with the inclusion maps
icVocVzC---CV,C--- C V. (3.46)

Take the symmetric pairing on V,,’s to be restrictions of the quadratic forms g to each
correpsonding subspace of V.
The complex manifold corresponding to Tn,oo B> denoted as Tn,ou s, £(C) can be con-

structed from a sequence of orthogonal representations

pn = T (Fne(C)) — O(V;) € GL(V,,) (3.47)

whose image contains an index 2 subgroup of O(V},) not isomorphic to the special orthogonal

group SO(V,,).
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Let Conf,,(C — {Py, -+, P;}) be the configuration space of unordered n points over
a complex plane with k& punctures. Denote by T the twisted coefficient system over
Conf,,(C—{P1,- -, P;}) associated to the covering map F,, o(C) — Conf,(C—{Py,---, P})
Palmer 2018, Section 2, Example 4.6. Here, the integer k is the number of distinct irreducible

factors of Ag over F,. Then the Leray-Serre spectral sequence implies that

H*(Tno 4,6(C),Z/vZ) = H*(Fy ¢(C), Z/vZ[Vy])
=~ H*(Conf,(C—{Py, -+, P}), T @z Z/vZ[V,]) (3.48)

~ H*(m(Conf,(C— {Py,--- , P}), T @z Z/vZ[V,))

where the notation Z/vZ[V,] in the middle term indicates that the fundamental group
71(Tn,op ;) acts as elements of the orthogonal group O(V;,), and the notation Z/vZ[V,]
indicates that the fundamental group m;(Conf,,(C — {Pi,---, P;})) acts as elements of the

orthogonal group O(V;,). This allows us to formulate the following naive conjecture.

Conjecture 3.3.4. Fiz notations as stated in Remark|[3.3.3. Then for each i > 1, there

exists an integer N (i) > 0 such that for every n > N (i),

H'(m(Conf,,(C — {Py,--- , P}), T @z Z/vZ[V,]) = 0. (3.49)

Remark 3.3.5. The homological stability of group cohomology of braid groups with n
strands with twisted coefficients whose dimension grows in accordance to a polynomial in n
is carefully explored in a work by Martin Palmer Palmer 2018 As for homological stability
of twisted coefficients whose dimension grows in accordance to an exponential function in
n, the seminal work by Jordan Ellenberg, Akshay Venkatesh, and Craig Westerland studies
the function field analogue of Cohen-Lenstra heuristics by utilizing homological stability
of Hurwitz spaces Ellenberg, Venkatesh, and Westerland 2016l A recent work by Jordan
Ellenberg, TriThang Tran, and Craig Westerland extends the previous work by proving
homological stability of braid groups with twisted coefficients taken from braided vector

spaces Ellenberg, TriThang Tran, and Westerland [2023. Another recent groundbreaking
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work by Jordan Ellenberg and Aaron Landesman further extends homological stability
results to sequences of moduli space of Selmer groups of universal families of hyperelliptic

curves Ellenberg and Landesman [2023, the results of which will be of great interest for

verifying the conditions of Theorem [3.3.1
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Chapter 4

Non-abelian twist families of

elliptic curves

This chapter is based on the following work in progress Park [2024b], the work of which aims
to generalize the random matrix model presented in Poonen and Rains 2012] to classes of
non principally polarized abelian varieties over global fields. Some of the results presented
in this chapter are closely related to the work by Stephanie Chan Chan 2022] the upcoming
work by Peter Koymans and Alex Smith Koymans and Alex Smith [2024] and the work in
progress with Daniel Keliher Keliher and Park 2024.

4.1 Main result

Fix a prime number £. Let K be a global field whose characteristic is coprime to ¢. Let
L/K be a Galois extension with Gal(L/K) = Z/mZ x Z/{Z such that m | (¢ —1). We
denote by M the Galois subextension of L/K such that Gal(M/K) = Z/mZ.

Let E be an elliptic curve over K. The overarching question this chapter aims to

address is:

Question 4.1.1. Compute the rank growths of the elliptic curve E over L/K:

Rankz F(L) — Rankz F(K) (4.1)
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As shown in previous chapters, there is a wealth of research conducted in the case when
L/K is a cyclic Galois extension, i.e. m = 1. The case where ¢ = 2 reduces to understanding
the rank of K-rational points of the quadratic twist of F, the problem of which it has been
verified for both number fields and global function fields that Goldfeld’s conjecture - that
approximately half of the quadratic twist families of elliptic curves have ranks 0 or 1, and is
of density 0 - is valid assuming the BSD conjecture and some mild conditions on the elliptic
curve E Alexander Smith [2022a; Alexander Smith 2022b} Ellenberg and Landesman [2023]
The cases for odd primes ¢ can be understood from computing the "cyclic order-¢ twist" of
an elliptic curve E, an £ — 1 dimensional abelian variety obtained from Weil restriction of
scalars:

Ker (Nm : ResiE — E) (4.2)

The generator o, of the Galois group Gal(L/K) induces an isogeny over the abelian ¢ — 1
fold, using which one can construct its prime Selmer group, a finite dimensional Fy-vector
subspace of the first Galois cohomology group H'(K, E[¢]) Mazur and Rubin 2007. Note
that this first Galois cohomology group is invariant to the choice of the cyclic Galois
extension L/K, which is obtained from proving that 1 — oy torsion subgroup of the abelian
£ — 1 fold is Galois-equivariantly isomorphic to ¢-torsion subgroup of the elliptic curve
Mazur and Rubin [2007), Proposition 4.1. The dimension of the prime Selmer group gives
an upper bound on the differences of ranks of E as stated in Question Mazur and
Rubin 2007, Assuming a number of mild conditions on the elliptic curve F, the probability
distribution of the dimensions of these prime Selmer groups are computed for both number
fields (with respect to non-canonically ordered families of field extensions) Klagsbrun,
Mazur, and Rubin [2013; Klagsbrun, Mazur, and Rubin 2014 and for global function fields
Park 2022, Both of these results rest upon constructing a governing Markov operator over
the state space of non-negative integers which govern the changes in dimensions of such
prime Selmer groups with respect to consecutively changing local conditions at each place
of K.

These probability distributions conform to the probability distribution obtained from a
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random matrix model which governs the intersection of two maximal isotropic subspaces
of an infinite dimensional F, vector space, often known as the Poonen-Rains heuristics
Poonen and Rains [2012l One of the crucial inputs for formulating the heuristics lies on the
existence of the Weil pairing E[¢] x E[¢] — u, for {-torsion subgroups of elliptic curves. As
will be explored in this chapter, however, we may not expect the identical random matrix
model to govern the statistics of prime Selmer groups of a family of abelian varieties, if
the given family of abelian varieties of our interest are not equipped with the well-defined
symplectic pairing on their torsion subgroups.

The overarching approach to understanding Question for the case m = 1, is
to construct a suitable abelian variety over K using Weil restriction of scalars, whose
ranks of K-rational points encapsulates the rank growths of an elliptic curve over a Galois
extension. Once one can verify that certain torsion subgroups of the desired abelian variety
are Galois-equivariantly isomorphic to a fixed Galois module, it remains to construct a
discrete stochastic process - whether it be a Markov operator over a countable state space
or a random matrix model utilizing maximal isotropic subspaces - whose limiting behavior
governs the probability distribution of dimensions of some Selmer groups of the desired
families of abelian varieties.

The aim of this chapter focuses on generalizing this overarching philosophy to non-
abelian Galois extensions L/ K with Gal(L/K) = Z/mZxZ/{Z for any m | ({—1) assuming
that the Galois subextension M /K with Gal(M/K) = Z/mZ is fixed. Denote by L (X)
the set of such Galois extensions L/K with fixed Galois subfield M/K such that the
discriminant of L is bounded above by X. The organization of the paper as well as the

highlights can be summarized as follows.

e Section We construct an m(¢ — 1) dimensional abelian variety By, /x governing
rank growths of elliptic curves with respect to fields L/K specified in Question

Proposition (Proposition 4.2.4). Given an order ¢ element oy € Gal(L/K), there

exists a Gal(K / K)-equivariant isomorphism By, [l — o¢] = (Res)I E)[1).

e Section We construct a random matrix model and a Markov operator governing
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the distribution of 1 — oy Selmer groups of By g, serving as generalizations of
previous works by Poonen-Rains Poonen and Rains [2012] and Klagsbrun-Mazur-
Rubin Klagsbrun, Mazur, and Rubin [2014. Assuming some conditions on the local
B Ky . .
Kummer maps 6, : % — HY(K,, Br k[l — 04]) and localization maps

loc, : HY(K, By jk[1—0¢]) = H' (K, Br/k[1—07]), we are able to prove the following

result on probability distribution of 1 — oy Selmer groups of By k.

Theorem (Theorem 4.3.12)). Denote by P, (x)(d) the probability that the dimensions

of 1 — oy Selmer groups of families { Br i} Ler,, (x) 5 equal to d, i.e.

#{L € Ly(X) | dimg, Seli_, (Bp /i /K) = d}
Feuoold) = #L(X)

Then assuming Condition [{.5.9, we obtain

4 o
k o 1 & ¢
lim IP>£M(X) (d) = Z ( ) H H —j j '
X—00 ko.k1, kn—1€Z>0 k07 klv to 7kn71 i=0 \j>0 1+ 077 =1 -1
k1+2ko+-+(n—1)ky,_1=d
ko+k1++kn_1=m
Section [£.4f We analyze the ranks of Q-rational points of cubic twist families of
elliptic curves E,, : 4> = 23 — 432n2, and understand how the dimensions of 1 — o3

Selmer groups of By i grow arbitrarily large as n grows arbitrarily large, thereby

deviating from the proposed random matrix model from Section [4.3]

Theorem (Statement (1) of Theorem [4.4.1)). Given an integer n, denote by wa(n)
the number of distinct odd prime factors of n equivalent to 2 modulo 3. Then

dimp, Sel1 oy (Br/ i /K) = 2wa(n) + A(n) for some integer —1 < A(n) < 3.

Section [4.5} We compute global root numbers of cubic twist families of elliptic curves
E, :y? = 23 — 432n2. We also formulate some conjectural statements on probability
distribution of coranks of (1—03)* Selmer groups of abelian 4-folds By, /x constructed
from E; with respect to L = Q((3, v/n), and discuss how these statements are related

to the conjecture on the probability that an integer is a sum of two rational cubes
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Alpdge, Bhargava, and Shnidman 2022,

4.2 Abelian varieties governing rank growths

Fix a prime number ¢. Given a global field K of characteristic coprime to ¢, let L be a
Galois extension over K with Gal(L/K) = Z/mZ x Z/¢Z such that m | £ — 1. Let M/K
be the unique subfield of L that is Galois over K and Gal(M/K) = Z/mZ.

Definition 4.2.1. We denote by Ly, the collection of Z/mZ x Z/{Z Galois extensions
L/K with a fixed Z/mZ Galois subextension M/K. Given any X > 0, we denote by
Ly (X) the subcollection of fields L € £, whose absolute value of the discriminant is

bounded above by X.

Definition 4.2.2. Denote by By, the m(¢ — 1) dimensional abelian variety given by
Brk = Ker (ResﬂE — Res%E) (4.3)
We obtain that
Rank E(L) = Ranky, E(M) + Ranky, B 5 (K) (4.4)

If one considers the family of Z/mZ x Z/¢Z Galois extensions {L/K } with a fixed degree

m Galois extension M /K, then one obtains that
Rankz E(L) — Rankz E(M) = Rankz By, /k (K) (4.5)

In other words, assuming that one considers the family of Galois extensions Ly, the rank
growth of the elliptic curve E with respect to the field extension L/K is controlled by the

rank of the abelian variety By, k.

. . . . . . /—1
Remark 4.2.3. The abelian variety By, x is an isotypic component of direct sums of ==

complex irreducible representations of dimension m of Gal(L/K) of the Weil restriction
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Res}%E, each irreducible representation of which originates from inducing direct sums of
¢—1 nontrivial 1-dimensional representations of Gal(L/M). This implies that the algebraic
rank of By is a multiple of m, i.e. RankzBp kx(K) = 0 mod m. In the special case
when m = ¢ — 1, By is an isotypic component corresponding to the (¢ — 1) dimensional
irreducible representation of Gal(L/K), which implies that the algebraic rank of By is a
multiple of £ — 1, i.e. Rankgz By /x(K) =0 mod £ — 1.

Pick a cyclic element oy € Gal(L/K) of order ¢. Because there exists a unique normal
subgroup Gal(L/M) of order ¢ inside Gal(L/K), the element o, is an endomorphism
of Br k. Similar to Proposition 4.1 of Mazur and Rubin 2007, we have the following

description of 1 — o torsion subgroup of By k.

Proposition 4.2.4. Let L/K be a Galois extension such that Gal(L/K) =Z/mZ x Z/{Z
with M /K a unique subfield of L that is Galois over K and Gal(M/K) = Z/mZ. Then

there exists a Gal(K /K )-equivariant isomorphism
By k[l — o0 = (Resi E)[(]

We note that when m = 1, we recover the statement of Proposition 4.1 of Mazur and
Rubin 2007, In order to verify this proposition, we first present some definitions which

could be of use to re-interpret Weil restriction of scalars of abelian varieties.

Definition 4.2.5. Fix a positive number k € N. Let S(k) be the kernel of the map Z* — 7Z

which adds all the components of Z*:

0= Sk)—=7ZF-7Z—0
k (4.6)
(@)izy = > @
=1

Note that S(k) is an integral representation of the cyclic group Z/kZ and the symmetric

group Sy (In fact, S(k) is the irreducible integral standard representation of Sy).
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Definition 4.2.6. Fix an elliptic curve E over a global field K. Let L/K be a Galois
extension with Gal(L/K) = Z/mZ x Z/¢Z with m | m — 1 for some prime number ¢. As
before, denote by M /K the unique Galois subextension of L such that Gal(L/M) = Z/VZ.

Denote by Bg the m(¢ — 1) dimensional abelian variety over K defined as
Bp := Homy(Z[Z/mZ x L/ VZ] ®z(z/0Z] S0), E) (4.7)

We note that Bp is a Z[Z/mZ x Z/¢Z)-module, and Endz(Bg) D Z[Z/mZ x 7/ VZ).

Given a choice of a morphism
Y : Gal(K/K) — Gal(L/K) = Z[Z/mZ x Z/{Z] C Endz(Bg), (4.8)

we denote by B% the twist of Bg by 1. Here, given any 7 € Gal(K/K), the element
(1) acts on Bg by multiplying the elements of Bg to the left. In explicit terms, we may
regard elements of Bg as integral (¢ — 1) x m matrices, and the element ¢ (7), regarded
as a ({ — 1) x (£ — 1) matrix, acts on the set of integral (¢ — 1) x m matrices via matrix

multiplication to the left.

Remark 4.2.7. An equivalent definition of B}é can be formulated as follows. We use
the notations for field extensions L/M/K as in Definition The Weil restriction
of an elliptic curve E/K with respect to M/K and L/K admits the following isotypic
decomposition of irreducible Q-representations of Gal(M/K) = Z/mZ and Gal(L/K) =
Z/mZ x Z/¢Z Mazur and Rubin [2007, Chapter 3:

Resh B = & Q[Gal(L/K)],® E (4.9)

p
Q—irred. rep. of Gal(L/K)

Let p* be the standard representation of S, which restricts to a Z/¢Z representation as a
direct sum of all non-trivial integral irreducible representations of Z/¢Z. Take p to be the
induced representation Ind%%%zxz/ EZp*, which is the m(¢ — 1) dimensional representation

of the group Z/mZ x Z/¢Z. We note that there exists an isomorphism of Q-representations
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of Z/mZ x 7/ VL:

p & Indy)yr 1 = IndZ/mEE/ Ry, (4.10)

The abelian variety B% is the p-isotypic component of Resf(E. In particular, given a choice
of a morphism ¢ : Gal(K/K) — Gal(L/K), we obtain an isomorphism of Abelian varieties
B}é = Bp i over K.

With notations stated as above, we prove Proposition

Proof. Let oy € 7Z/mZ x Z/VZ be a choice of an order ¢ element, and 7, € Z/mZ x Z/{Z
be an order m element. The integral matrix representation of o, and 1 — o, acting on

Z[Z/mZ % LJL] @ziz,07) S(€), as (£ — 1) x (£ — 1) matrices over Z, are given by

1 -1 -1 -+ —1 -1 2 1 1 -~ 1 1
1 0 0 --- 0 0 1 1 0 --- 0 0
oo=10 1 0 --- 0 O},1=04=]10 -1 1 -~ 0 0o, (411)
0 0 0 1 0 0 0 0 1 1

where oy and 1—0y acts on Z[Z/mZ X ZL/VZ]®z,7,¢7) S (£) by matrix multiplication to the left.
Likewise, the integral matrix representation of 7., acting on Z[Z/mZ x Z/lZ] ®z7,/e7) S(£),

as an m X m matrix over Z, is given by the cyclic column permutation matrix

010 0 0
001 0 0

Tm=|: i T (4.12)
000 0 1
100 00

where 7, acts on Z[Z/mZ x L/lZ] ®@zjz/¢7) S(£) by matrix multiplication to the right.
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Let Ny—1)xm(Z/¢Z) be the Z/lZ[(Ty)]-module defined as

ap a2 Am
Ne—1yxm(Z/HL) =S| | € My—1yxm(Z/0Z) (4.13)
0 O 0

Then it follows that

Z[Z]mZ x L/UL] ®z,7,02) S(£)
(1 = 00)Z[Z/mZ % LIVL) @7(7,/e7) S(€)

1

Ng—1yxm(Z/lZ). (4.14)

Fix a morphism v : Gal(K/K) — Gal(L/K) = Z/mZ x Z/{Z. Let oy and T, be choices
of order ¢ and order m elements of Gal(L/K). Using the left exactness of the Homy(-, E)
functor, we obtain

Z[Z)mZ % LIZ] Rziz,/e2) S(£) v
(1= 00)Z[Z/mZ x ZIVL) Qg7 S(L)’ E) (4.15)

where 1) acts on the desired Z[Z/mZ x Z/¢Z] module by the matrix multiplication action

specified for o, and 7,,, as outlined above. This implies that as Gal(K /K )-modules,

m (Tm)
By[1 — 04 = Hom (Nyp_1)um(Z/(Z), E) = Hom{™ (Ni_1).m(Z/(L), E) = (H E[E])
=1

(4.16)

where the element 7, acts on the Galois module ([, E[¢]) by cyclic permutation of
the coordinates of the product. The prescribed Galois action identifies the module as an

induced Gal(K /M )-module E[{] to Gal(K/K). In particular, we achieve

dGal(?/K)

Byl — o] =In Gal(K/M)

E[(] = (Res¥ E)[]. (4.17)
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Remark 4.2.8. If L/K is a cyclic Z/{Z extension, then we recover Mazur and Rubin
2007, Proposition 4.1:
Brk[l — o4 = (Res¥ E)[¢] = E[/] (4.18)

4.3 Random matrix model and Markov operators

We now define the 1 — o, Selmer group of m(¢— 1) dimensional abelian variety By, /x whose
dimension, like nay other Selmer groups of abelian varieties, gives an upper bound on the

rank of K-rational points of By .

Definition 4.3.1. Let L/K be a Z/mZ x Z/{Z Galosi extension. Fix an order ¢ element

op of Gal(L/K). Consider the following short exact sequence of Galois cohomology groups

By k(K
0 (1705)%1(/1()(1() HY(K, B k[l — 04]) ———— H'(K,Bpk)[1 — o) —— 0

l Jnv cesy J

B, (Ko I1, o
0 — T, e s [, H' (K, B[l — od)) —— T1, H'(Ku, Byl — o] —— 0

(4.19)

The 1—0¢ Selmer group of the abelian m(¢—1)-fold By, denoted as Sel1 4, (B, /x/K),
is a subspace of H' (K, By, k[l — 0¢]) defined as

Seli—o,(Br/i/K) := {c € H' (K, Br k[l — 07]) Hresv cim]] o} (4.20)

Proposition implies that for any collections of Z/mZ x 7Z/¢Z Galois extensions
{L/K} whose Z/mZ Galois subextension M /K is fixed,

Sel1 g, (B /K) € H'(K, Byyic[L - o)) = H'(K, (Res} E)[(]) = H' (M, E[f]) (4.21)

where the last statement follows from Shapiro’s lemma. A standard argument using Galois
cohomology groups demonstrate that Sel;_,, (B, /K /K) is a finite dimensional Fy-vector
space.

The Weil pairing E[¢] x E[{] — p¢ and the cup product induces a Gal(K /M )-equivariant
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symmetric pairing on H' (K, (Res¥ E)[(]):

HY(K,(Res) E)[(])x H' (K, (Res) E)[(]) = HY (M, E[{]))x H (M, E[{]) — H?*(M, j1y) = Fy.
(4.22)

However, it is not necessarily true that such a pairing H' (K, (Res} E)[(])x H(K, (Res} E)[{]) —

Fy is Gal(K / K)-equivariant. There also does not exist an alteranting pairing on the torsion

module By k[l — o] whose image is in ji, as every polarization of By is divisible by

£? as shown in Howe 2001. To address this, we introduce the notion of coordinate-wise

Lagrangian subspaces of a direct sum V%™ of a symmetric space (V, q) over any finite field

k=T,

Definition 4.3.2. Let ¢ : V x V — F, be a non-degenerate quadratic form on a finite
dimensional Fy- vector space V. For any n > 1, one obtains a non-degenerate quadratic
form ¢®" : VI x VO — FP". For each 1 < i < n, denote by m; : V¥ — V the projection
morphism to the i-th coordinate. We say that a subspace W C V®" is coordinate-wise

Lagrangian if the following two conditions hold for every 1 <i < n.

1. The subspace m;(W) C V is a maximal isotropic subspace of V' with respect to the

quadratic form gq.
2. The quadratic form g over V is trivial over m;(W).

Using the definition above, we can formulate a generalization of the Poonen-Rains
heuristics Poonen and Rains 2012 to non-principally polarized Abelian varieties, where
prime Selmer groups of abelian varieties can be identified as an intersection of two maximal

isotropic subspaces lying inside an infinite dimensional Fy-vector space.

Proposition 4.3.3. Consider the following diagram

H'(K, (Resy E)[(])
J (4.23)

B Ky
M, s —— T, B (Ko, (Resi E)()
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1. For each place v of K that admits prime factorization over M as
(v) = PIPg - Pis (4.24)
there exists a quadratic form
qo : H (K, (Res) E)[0]) x H'(K,, (Res}! E)[(]) — F* (4.25)

such that the images of the v-components of horizontal and vertical maps

loc, : HY(K, (Res E)[{]) — HY (K, (Res} E)[(])

- Bpk(K,) 1 M (4.26)
T e (Ko, (Resi E)[0])

are coordinate-wise Lagrangian subspaces with respect to q,.

2. The intersection of the images of the horizontal and vertical maps are isomorphic to

the Selmer group Sely_»,(Br/k/K).

Proof. Let v be a place of K that factorizes over M as
(v) = Pipg - - PE- (4.27)
We may identify the localization of M by (v) as
k
M, = [ M,,. (4.28)
i=1

where My, is a Z/ 77 extension of K,. Let M,, , be the unramified Z/7'Z Galois extension
of K,. If e=1, i.e. (v) is unramified with respect to M /K, then for every 1 <1i < k, one
has My, = M, ;. If e # 1, then each M,, is a ramified Z/7Z Galois extension of K,. By
Shapiro’s lemma,

H'(Ky, (Res E)[(]) = H' (M,,, E[(]*") (4.29)
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The Weil pairing E[¢] x E[¢] — p, induces a symmetric pairing gp, for each i
Gp, - H' (My,, E[0)) x H'(My,, E[f]) = (4.30)
which induces a coordinate-wise symmetric pairing on
Qo = O gy, + H (K, (ResY B)[6]) x H' (K, (Resl{E)[f]) — p*. (431)

Then it follows from Mazur and Rubin [2007, Section 4 and Poonen and Rains [2012] Section
4 that both images of the morphisms loc, and ¢, are coordinate-wise Lagrangian subspaces
of HY(K,, (Res} E)[¢]). That is, each coordinate is a maximal isotropic subspace V of
HY(M,, i, E[{]) such that ¢,|V = 0, thus proving statement (1). Statement (2) follows
immediately from the definition of Sel; ,,(Br,/k/K) and Proposition which implies

for any desired Galois extension L/K,
H'(K, By k[l — o4]) = H' (K, (Resy E)[(]). (4.32)

O]

Remark 4.3.4. Let v be a place of K that factorizes over M as (v) = p{p5 - - - p},. Suppose
that the elliptic curve E//K has good reduction over v.
The unramified coordinate-wise Lagrangian subspace of H'(K,, (Res) E)[f]) is the

direct sum of unramified Galois cohomology group of H'(M,,, E[(]), i.e.
H,, (Ko, (Resi B)[(]) = @y Hy, (M, E[0]) (4.33)

If v is a place that is unramified with respect to the field extension L/K, then one
achieves that the image of the local Kummer map 9, is the unramified cohomology group
Hy, (Ko, (Resi{ B)[().

We say that a coordinate-wise Lagrangian subspace is ramified if it is not the unramified

coordinate-wise Lagrangian subspace H\ (K., (Res} E)[¢]). Denote by H,am (Ko, E, M, k)
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the set of ramified coordinate-wise Lagrangian subspaces of H'(K,, (Res) E)[(]). The
proof of Proposition [.3.3|and Klagsbrun, Mazur, and Rubin 2014, Lemma 5.5 demonstrate

that the number of coordinate-wise Lagrangian subspaces of H'(K,, (Res) E)[/]) is:
#Hram(Kva E, M, k) = (Ezle(dimw E[z](Mpi)il)-‘ . (434)

If v is a place that is unramified with respect to the field extension M /K, then the above

equation simplifies to
HHam (Ko, B, M, k) = [¢Fdimz, B /) =1)] (4.35)

As before, we pay particular focus to the family of abelian varieties { B, /i } 1, parametrized
by families of Z/mZ x Z/¢Z Galois extensions L/K with a fixed Z/mZ extension M/K.
Because every polarization of such abelian varieties By, /i has degree divisible by ¢? Howe
2001}, it is not possible to directly utilize the Poonen-Rains heuristics Poonen and Rains
2012, where the random matrix model is obtained from identifying the probability distri-
bution of the dimensions of intersection of two random maximal isotropic subspaces of a
symmetric space (V,q) with respect to the symmetric pairing ¢ : V' x V' — Fy. Proposition
nevertheless, shows that the arithmetic statistics of Sel; 4, (By/x/K) can still be
understood from computing the probability distribution of desired dimensions with respect

to coordinate-wise symmetric pairing @, q : V™ x V& — FP™.

Definition 4.3.5. Let V be a vector space over a finite field [Fy equipped with a symmetric
pairing ¢ : V' x V — Fy. We denote by b4, the probability

dimﬂ?l W:dimﬂiz Z=n
W,ZCV®Fcoordinate-wise Lagrangian w.r.t. ¢®k: v/ &k ><V®’“—>IF§9'“]

(4.36)

bd,k,n = ]P)[dim]}‘l (W N Z) =d |

We denote by Y}, the random variable denoting the dimension of intersection of two
coordinate-wise Lagrangian subspaces W,Z C V®F with respect to coordinate-wise

quadratic form ¢®F : VO x VOF erk , where one of the subspaces Z is fixed and
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the other subspace W is chosen uniformly at random.

The probabilities by, can be explicitly computed as shown in the proposition stated

below.

Proposition 4.3.6. 1. The random variable Yy, is a sum of k copies of Bernoulli
random variables By, Bo, - -+ , By, where B; is equal to 1 with probability ﬁ and 0

otherwise.

2. For any n,

by g
> bagnzt =] (1 - ez‘) (4.37)

d>0 i=0

3. Denote by by, := limy, o0 bg k- Then

Ry k

d>0 i=0

4. We have
k n—1 &
bax = Z ( ) H ;" (4.39)
ko,k1,+ kn—1€Z>0 ko, ki, s Bna i=0
k1+2ko+-+(n—1)ky,_1=d
ko+ki+-+kn_1=k
where '
|
m=]] — : (4.40)
ol i1

Proof. Part (1) of the proposition follows from adapting the proof of Poonen and Rains
2012}, Proposition 2.6 to the random variable Y} ,,, where the original proposition verifies
the desired statement for the case when k& = 1. The rest of the parts follows from comparing

the generating function of the sums of Bernoulli random variable with Y}, . O

Combining Proposition and Proposition we can formulate the following
heuristic on the dimensions of 1 — o, Selmer groups of twist families { By x }, assuming

some strong conditions on the distribution of images of local Kummer maps J,.
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Definition 4.3.7. We introduce a number of subfamilies of the families of Galois extensions

L.

1. Pick a place v of K. We denote by Ly, C Ly a subcollection of Galois extensions
L € Ly such that v is ramified in L/K. We denote by Lj,,(X) a subcollection of
Galois extensions L € Ly, whose absolute value of the discriminant is bounded

above by X.

2. Given any integer k which divides m = [M : K], we denote by EE\]}] C Ly the

subcollection of Galois extensions L € Lj; which are unramified away from places
v of K which is unramified over M /K and admits prime decomposition over M as
(v) = [1%_, p;. We denote by [,E\If[] (X) a subcollection of Galois extensions L € EE\]Z]

whose absolute value of the discriminant is bounded above by X.

3. Given any integer [ > 0, we denote by Ly;; C L the subcollection of Galois
extensions L € Ly such that dimp, Sel; 4, (B x/K) = I. (Here, we note that [ is

not necessarily equal to £).

Definition 4.3.8. 1. Given a choice of a place v of K, we define the projection map

Q- Lty = Hyam (Ko, E, M, k) as

q)v : ['M,v — ,Hram(Kv,EaMy k)

Br i (Ky) (441)
Lo ((1 - UZ)BL/K(KU)>

where d, is the local Kummer map of the abelian variety By, /-

2. Given a choice of a place p of M lying above a place v of K, denote by w(p) the
dimension of E[¢](M,) for each prime p lying above v. We define the projection map
Wy : Ly — Hom(Sely o, (B k /K), Hy, (My, E[(]) = My (Fy) as

Wy : Loy — Hom(Seli o, (Br i/ K), Hyp (K, (Resy E)[(]) = My () (Fo) (4.42)
L~ locy.
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Condition 4.3.9. 1. Given a choice of a place v of K, we endow a uniform proba-
bility distribution v, (x) over the finite collection of Galois extensions L, (X).
Then the pushforward measure ®jvz,  (x) converges to a uniform distribution over
Hram(Ky, E, M, k) as X grows arbitrarily large. In other words, given any ramified

coordinate-wise Lagrangian subspace V € H,qm (Ky, E, M, k),

lim P[®,(L) =V | L € Ly(X)] !

X—o00 - #Hram(KvaEa Mv k) (443)

2. Given a choice of a place p lying above v of K, we endow a uniform probabil-
ity distribution v, 1y(X) over the finite collection of Galois extensions Ly ;)(X).
Then the pushforward measure \I];VLM,[Z]( x) converges to a uniform distribution
over My p)(Fe) as X grows arbitrarily large. In other words, given any matrix

M € Myyp (Fo),

1

i P[0y(0) = M | L€ Luygg(O] = s

4.44
X—00 ( )
Theorem 4.3.10. Assume Condition[4.3.9

1. For any k | m, the probability distribution of dimensions of 1 — oy Selmer groups of

families {BL/K}LE[:[}C] is given by
M

. #{L € LX) | dimg, Seli_q, (B /K) = d}

= bk (4.45)
o #L41(X)

2. There exists an irreducible aperiodic Markov chain Mj. over the state space Zgo with

the unique stationary distribution 7y, : Zgo — [0, 1] such that

bax = > Tp(d, da, -+ dy). (4.46)
di1+do+-+dp=d

Proof. Proposition shows that regardless of the choice of Z/mZ x Z/{Z Galois
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extensions L/K with a fixed Z/mZ Galois extension M /K, the image of the morphism
[Tloc, : H'(K, B k[l — of]) = H' (K, (Resi{ E)[(]) — [[ H' (Ko, (Resi)[€])  (4.47)

is a fixed coordinate-wise Lagrangian subspace of [, H'(K,, (Res¥)[¢]). Proposition m
hence demonstrates that the dimension of 1 — oy Selmer group of By /i is determined by
the image of the local Kummer map d, of the abelian variety By . Fix an integer &k | m.
Restricting the families of abelian varieties to Galois extensions L € EE\Z], Condition m
implies that the random variable lim,,_, Y% ,, governs the probability distribution of the
dimension of the intersection of [], im(d,) and [[, im(loc,). This proves statement (1) of
the theorem.

!

To prove statement (2) of the theorem, consider the Markov operator My 1, := [m; ;]

defined over the countable state space Zx>:

1—¢7% ifj=i—-1>0
G e
m; ; l ifj=i+1

0 else

Using My 1., we construct the Markov chain M, defined over the countable state space
ZZO'
l

1 1
Me= (1 = 1) T gMert g Mis (4.48)

The construction of the Markov chain originates from computing the respective probability

that the maximal isotropic subspaces originating from the two images

locy : H' (K, (Resy E)[(]) — H'(M,, E[/])

S5 BL/K(KU)

P Bkl —o H'(K,, Resi{ E)[{]) — H'(M,, E[(])

at each place p of M lying above a place v of K agree with each other, as outlined in

Klagsbrun, Mazur, and Rubin 2014, Section 7, 9. The Markov chain can be constructed by
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considering three cases where dimp, E[¢](M,) = i for 0 < i < 2. When dimy, E[¢|(M,) = 0,
then it follows that H'(M,, E[]) = 0, implying that twisting the abelian m(¢ — 1) fold
by such a place p lying above v does not alter the dimension of 1 — gy Selmer groups.
When dimp, E[¢(](M,) = 0, then one has dimg, H*(M,, E[¢]) = 2, and there exists a unique
unramified Lagrangian subspace and a unique ramified Lagrangian subspace, each of
dimension 1. The second condition of Condition implies that over the subfamilies of
fields L € Lp7;(X), as X grows arbitrarily large, the dimension of the image of loc, is
equal to 1 for all but 1 element of Hom(Sely_q, (B, x/K), Hy,(M,, E[(])). By Klagsbrun,
Mazur, and Rubin [2014, Proposition 7.2, the probability that the dimension of Selmer
groups will decrease by 1 is equal to 1 — ¢!, whereas the probability that the dimension of
Selmer groups will increase by 1 is equal to £~!. This gives rise to the construction of the
Markov chain My, for each ¢ > 0. The case for dimp, E[¢](M,) = 2 follows analogously,
where one can show that the Markov chain ./\/l%, 1, governs the changes in the dimension
of 1 — o4 Selmer groups of By, /i with regards to consecutive twist by a place p of M.
The weighted coefficients determining the Markov chain My originate from the number of
elements of the special linear group SLy(F,) whose order is not equal to ¢, is equal to ¢,
and is trivial (see Klagsbrun, Mazur, and Rubin [2014} Section 5 for example). It is not
difficult to show that the unique stationary distribution of the Markov chain, denoted as

7 = (m;)i>0 is given by the formula

1 LN
m:HHe—J'};[Oej—l' (4.49)

J20

As a remark, when k = 1, i.e. L/K is a cyclic Z/¢7Z Galois extension, it is a result of
Klagsbrun, Mazur, and Rubin Klagsbrun, Mazur, and Rubin [2014) who demonstrated
that assuming py C K and Gal(K(E[/])/K) D SLa(Fy), the stationary distribution of the
Markov chain M governs the probability distribution of dimensions of 1 — o, Selmer groups
Seli—¢,(Br/k/K) as the number of places of K that are ramified with respect to L/K
grows arbitrarily large.

The probability distribution by obtained from Proposition f.3.3] can be interpreted as
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the unique stationary distribution of a Markov chain M, over a k dimensional countable
state space. Because the Markov chain M/ over Z>¢ is an irreducible aperiodic Markov
chain with the unique stationary distribution given by m = (m;);>0, the direct-product
Markov chain &i-“:l./\/lg is an irreducible aperiodic Markov chain over the space Zegg with

the unique stationary distribution & given by
k
ﬁ-(ilaiQ, U 7,“9) = H ﬂ-ij-
Jj=1
Furthermore, the probability distribution by satisfies the condition

bd7k‘ = Z ﬁ-(ilai27"' 7Zk‘)

11,02, ik €L>0
i1+io+-+ipg=d

In other words, the probability distribution b4 obtained from the random matrix model
corresponds to a sum of stationary distribution of a k£ dimensional irreducible aperiodic

Markov chain &lej\/lg along the zero locus of the hyperplane 1 + o + -+ 2 =d. O

We now construct a Markov model suitable for governing the probability distribution of
dimensions of 1 — oy Selmer groups of abelian varieties By, x constructed from a family of
Galois extensions {By,/k }rer,,- One key issue with directly utilizing the random matrix
models constructed for each EE\I}] is that the symmetric pairings giving rise to the random
matrix model have ranges lying in F?k . Using the fact that every number k& we consider
satisfies k | m, we construct a new symmetric pairing whose ranges lie in F?m. Hence, one

obtains the following proposition as a reformulation of Proposition [4.3.3

Proposition 4.3.11. Consider the following diagram

H'(K, (Resy E)[(])
J (4.50)

B Ky
[ [, H' (K., (Res} E)[1)

Then there exists a quadratic form Q : [1, H'(K,, (Resi! E)[{]) — FP™ such that the images
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of the horizontal and vertical maps are maximal isotropic subspaces with respect to @, and

their intersection is isomorphic to the Selmer group Sely_,(Bp/k/K).

Proof. The inflation-restriction sequence of Galois cohomology groups induces an isomor-
phism given by
H(K, (Res)/E)[(]) = H' (M, E[(®m)G1M/K) (4.51)

where Gal(M/K) acts on the cohomology group via cyclic permutation of the coordinates
of E[¢]®™. The Weil pairing E[{] x E[{] = p; induces a symmetric pairing whose image

lies in F?m:
H'(M, E[()®™) x H' (M, E[()"™) — H*(M, pf™) = F™. (4.52)

Let v be a place of K such that v factorizes as v = p{ - - - pf over M. Then the localization
of H'(K, (Res)! E)[f]) at v, with respect to the inflation-restriction sequence, satisfies

H'(K,, (Resi{ B)[€]) = @y H' (M,,, E[(]¥™)G1 (Vi Ko)
(4.53)

Cy (Cpl,CpQ,"‘ 7CPk)

where M,, /K, is a degree 7' Galois extension of K, appearing as a summand of the
localization of M at v, and the Galois group Gal(M,,/K,) acts on the first cohomology
group the via cyclic permutation of the coordinates of E[¢]®™ as an element of order 7. As
before, using the Weil pairing E[¢] x E[{] — pg, the coordinate-wise cup product induces a

pairing for each prime p; lying above v:
p; - H' (Mpﬂ E[f]@m) x Hl(Mpw E[E]@m) - H2(Mpia /‘?m) = erm‘ (4'54)

Note that the cyclic permutation action of Gal(M,,/K,) implies that each pairing, restricted
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to the Gal(M,,/K,)-invariant cohomology group, has image lying inside

@ Hl(Mp“E[E]@m)Gal(Mpi/Kv)XHl(Mp“E[E]@m)Gal(Mpi/Ku) _ HQ(Mp“MEGm)Gal(Mpi/KU) ~ erk
(4.55)
which recovers the coordinate-wise symmetric pairing obtained from —.
We let @ be the quadratic form defined over [, piace of 1w H' (Ko, (Res) E)[]) defined

as

Q: I H'(Ku (ResyE)f]) — (Q/Z)*™ (4.56)

v place of K

(cy)y Z Z qp(cp). (4.57)

v place of K p place of M
plv

The coordinate-wise short exact sequences of Brauer groups
0 — H*(M,E[(]*™) —= @y place of M H*(My, E[]®™) — (Q/Z)®™ — 0 (4.58)
imply that the quadratic form @ is trivial when restricted to the image of the localization
H loc, : HY (K, (Res¥ ) — H HY(K,, (Res¥ E)[1]). (4.59)

The 9-term Poitou-Tate exact sequence Milne 2006, Theorem 1.4.10 shows that the image
of the localization map is a maximal isotropic subspace with respect to the pairing ). The
rest of the proposition, as in Proposition follows from the construction of the local

Kummer maps and 1 — oy Selmer groups of By, /- O

As before, we assume Condition [£.3.9] The proof of Theorem [£.3.10] demonstrates that
the Markov chain governing the dimensions of 1 — o, Selmer group of By i at a place v of
K which factorizes over M as v = p§p§- - - p§ is governed by the Markov chain XF_; M,
over the state space Ze;k . In lieu of the proof of Proposition one may, without loss

of generality, extend the Markov chain ®¥_; M, to the Markov chain defined over Z%g‘
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given by
(W M) @ (=707 (4.60)

where T is the identity Markov chain over Z>g. As in Theorem [.3.10] we are able to
formulate the probability distribution of dimensions of 1 -0, Selmer groups of { B/ }Lery,

as follows.

Theorem 4.3.12. Assume Condition[{.3.9 We recall that m = [M : K]. Suppose that

is an odd prime. Then the probability distribution of dimensions of 1 — oy Selmer groups

of families {Br /i }Lec,, 5 given by

. #{L € L3(X) | dimp, Seli—o, (B /K) = d}
X—o00 #ﬁM(X)

= bam. (4.61)

Proof. Consider the Markov chain defined over the countable state space Zgg’l:

#{a € Z/mZ | ord(a) = %}

m

M=y

klm

(RhMe) B (=7FT)) (4.62)

We observe that given any two ki, ko | m, the Markov chains (&f;l./\/lg) X (Xﬁ‘lkl I ) and
(Xfilj\/l 4) X (&?;11” I ) commute with each other, because any Markov operator commutes
with the identity Markov operator. By construction, the Markov chain M is an irreducible
aperiodic Markov chain over Ze;g‘. Adapting the proof of Park |2022, Lemma 4.15, because
{ is an odd prime, the unique stationary distribution of the Markov chain Zle aiMli I
over Zx>g, assuming it is irreducible and aperiodic, is given by m = (7;);>0 regardless of the
values of a;’s. Using the commutativity of the Markov chains (@le./\/l g) X (@?:1]“[ ) for
any k | m, we may rewrite the Markov chain M’ for any ¢ > 1 as the irreducible aperiodic

Markov chain

20
Mt = b (Z ai,jM§,L> (4.63)

1=0

for some set of coefficients {a; ;}o<i<2r,1<j<m such that Z?io a;j =1forall 1 <j<m.
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Given any initial probability distribution 9 : Zeggn, as £ grows arbitrarily large, we obtain

20
}LTOM 0(i1, 02, yim) = flig)lo X7, (E ai,j/\/l2L> 81,02, yim)

1=0
X - (4.64)
= KL, ()Ego ;0 ai,jM?z,L5(ij)> '

Theorem and the Chebotarev density theorem for cyclic Galois extensions M /K
implies that the stationary distribution of M is the probabiltiy distribution of dimensions
of 1 — oy Selmer groups of families { B,k }rec,,- We note that the commutativity of
the Markov chains (szlj\/lg) X (&?:1]“[ ) addresses the observation that the dimension
of 1 — oy Selmer groups of the abelian variety By x twisted at £ many places over K is
invariant under all possible orders in which one consecutively twists the abelian variety by

such ¢ many places of K. O

As a corollary, we obtain heuristics on the stability of rank growths of elliptic curves
with respect to some non-abelian Galois extensions, and the probability distribution of the

sizes of torsion subgroup of Tate-Shafarevich groups of By, k assuming Condition

Corollary 4.3.13. Assume Condition[f.3.9. Let m be a fived constant. Denote by Py a.x

Ry m.a.K, and Iy, g the probabilities

#{L € Ly(X) | dimy, Sely—,, (B x/K) = d}

Ppopa i =

#L(X)
_ #{L € Ly(X) | Rankz Bk (K) = d}
Rpmdrx = L () (4.65)
#{L € Lu(X) | dimp, I, . [1 — 07 =0 mod m}
My a5 =

#L(X)
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Then the following asymptotic statements hold.

(M) 5= f0<d<m

lim lm Pparx = " (4.66)
=00 X—00 7
0 if d>m
o 1
lim i < — 4.
ﬁi{go Xgnoo = R@,m,d,K — om ( 67)
o 1
A3 X Hema i = s (409

In particular, if m = 2, then as the absolute value of the discriminant X grows arbitrarily
large and £ grows arbitrarily large, approximately 50% of the 1 — oy torsion subgroup of the

Tate-Shafarevich group By i has non-square order.

Proof. The generating function for the probability distribution {bg,,}32, can be rewritten

as

> 1 1 1 1 1 1 m
d_((1 : z - V24 moy
d§:obd’mz —<<2+O(€)>—I—(2~I—O(€))z+0(£)z + o+ Ol )2 + ) .

(4.69)
The first part of the corollary hence follows from the fact that as £ grows arbitrarily large,
the generating function for {bg,}32, converges to the generating function for the binomial
distribution with probability %, with error terms of order O(%). The second and the third

part of the corollary follows from recalling that
Ranky By )k (K) = dimg, Seli o, (Br/x/K) — dimg, g, ,, [1 — o] (4.70)

and that Rankz B, x(K) = 0 mod m, because the abelian variety corresponds to the
isotypic component of £ — 1 direct sums of m dimensional irreducible Q-representations of

Z]mZ x ZLJVZ, see Remark O

Remark 4.3.14. We note that 1 — g, torsion subgroup of the Tate-Shafarevich group of
the abelian variety By, /x does not necessarily have square order. This is due to the fact

that every polarization of By i has degree divisible by ¢? Howe 2001, hence By, /K does
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not admit a principal polarization.

Remark 4.3.15. It is an interesting question to verify whether the conditions outlined in
Condition [4.3.9] are in fact valid conditions that govern the 1 — g, Selmer groups of abelian
m(¢ — 1) folds. An upcoming work by Daniel Keliher and the author of this manuscript
focuses on understanding rank growths of elliptic curves over number fields with respect to
S5 cubic field extensions Keliher and Park [2024] It would be interesting to understand
under which conditions on the families of S3 extensions L/K and the elliptic curve E over

K the constraints in Condition .3.9] remain valid or not.

4.4 Sums of two rational cubes

The statistics of the dimensions of 1 — g, Selmer groups of twist families of abelian varieties
{By, / K }Lec,, depends heavily on Condition where one assumes two conditions on the
manner of probability distribution of the local Kummer maps and the localization maps. It
is hence natural to expect that the probability distribution of 1 — g, Selmer groups of such
twist families of abelian varieties will behave differently if any of Condition [£.3.9]is not
satisfied. More concretely, we expect that changes in Condition will result in giving
rise to a differently constructed Markov chain M, governing the changes in the dimension
of 1 — oy Selmer groups with respect to consecutive twists by places of K. This is precisely
the case one observes from cubic twist families of elliptic curves E,, : 4% = 23 — 432n2, the
rank of the elliptic curves of which are closely related to understanding whether n can be
written as a sum of two rational cubes Alpoge, Bhargava, and Shnidman 2022l
Unfortuantely, this current version of the manuscript does not succeed in computing
the corank of 3°° Selmer groups of elliptic curves E,, or the corank of (1 — 03)> Selmer
groups of abelian 4-folds, the first problem of which will be explored in the upcoming work
by Peter Koymans and Alex Smith Koymans and Alex Smith [2024. Nevertheless, we aim
to demonstrate how the framework of the generalization of Poonen-Rains heuristics is
relevant to the problem of understanding the probability that an integer is a sum of two

rational cubes. Before we proceed, we sincerely thank Peter Koymans and Alex Smith for
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pointing out several errors in the previous version of the manuscript, for giving extremely
helpful and constructive feedbacks, and for kindly sharing their current work in progress
in approaching the problem of computing the probability that an integer is a sum of two
rational cubes.

As stated in Alpoge, Bhargava, and Shnidman 2022, the equation n = 22 + y3 is

equivalent to the Weierstrass equation of the elliptic curve over Q:

E, :y? =23 — 43202, (4.71)

We denote by E,3 the quadratic twist of the elliptic curve E, by —3:

E3y? =23 + 1602 (4.72)

Denote by ¢y, : E, = E,; 3 the Q-rational 3-isogeny defined as

(4.73)

B 23— 1728n% y(x® + 3456n2
on : En = E;3, (x,y)%< y )

92 ’ 273
see H. Cohen and Pazuki [2009| and Chan [2022| for further details on the properties of these
Q-rational 3-isogenies and the associated 3-isogeny Selmer groups of ellitpic curves E,
over Q. The family of curves {E, },ecz forms a cubic twist family of elliptic curves whose
endomorphism ring is isomorphic to Z[(3], where (3 is a primitive 3rd root of unity. We
note that these two isogenies satisfy the condition that

EAQ)

m = u3(Q) =0, En(Q)

B9 ~ 7./37 (4.74)

In lieu of Definition we let our base field K = Q, L = Q((s, ¥/n), and M = Q((3).
We denote by By, k the abelian 4-fold over K = Q defined as

Bpyx := Ker (ResitE — Resy! E)) (4.75)
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Over the field L, one obtains the Gal(K /L)-equivariant isomorphism
Brji © Ey x E,® x Epe x E3, (4.76)

In fact, the fact that E, is a CM elliptic curve with End(E,(Q)) D Z[(3] implies that the
above isomorphism is a Gal(K /K )-equivariant isomorphism. Recall that the multiplication

by 3 map over By factorizes as

Bk € EgXxE*xE 2 xE P — E 3 xEyxE 2 xEpe — Eyx B> x Epa x B2 = By i

(4.77)

where the first morphism corresponds to the isogeny @, X ¢, X @2 X ¢,2, and the second

morphism corresponds to the isogeny ¢,2 X @,2 X ¢, X . Without loss of generality,

we may hence identify the endomorphism 1 — o3 : By — Bk with the endomorphism
Pn X P X ppz X P2 of By x Ex3 x B2 x B3

It follows from Proposition that given an order-3 element o3 € Gal(L/K) = Ss,

there exists a Gal(K /K )-equivariant isomorphism
Br k[l — 03] = (Resy E1)[3] (4.78)

and that regardless of the choice of the Galois extensions L/K, one obtains the natural
inclusion

Seli—oy (B i /K) C H' (K, (Resy E1)[3]). (4.79)

We also note that one obtains the isomorphism of Gal(K /K)-modules
Selg(BL/K/K) = 861(1_0.3)2(BL/K/K). (480)

Recall that there exists a skew-symmetric pairing (also known as the Cassels-Tate
pairing),
QLSS€13(BL/K/K) XSelg(BL/K/K)—)F3 (481)
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whose kernel satisfies the relation
RankZ(BL/K(K)) < dimﬂrg Ker(QL) < dimﬂrs 8811_03 (BL/K/K)v (4.82)

see in particular Cassels|[1959|for the explicit construction of the pairing above using Hilbert
norm residue symbol.

We now demonstrate that the dimensions of Seli 4, (B /x/K) and Ker(Qy), as F3
vector spaces, grow in a similar manner to how the dimensions of p,-Selmer groups of
E,, grows arbitrarily large as the number of prime factors equivalent to 2 mod 3 grows

arbitrarily large. We state the main result as follows.

Theorem 4.4.1. For any L € Ly, we obtain

dimp; Sely oy (B /K) = 2 - #{v place of K | v =2 mod 3, v # 2, v ramified over L} + A,
(4.83)

dimp, Ker(Qr) > 2 - #{v place of K | v=8 mod 9, v ramified over L} — 3
(4.84)

for some integer —1 < A,, < 3.

In particular, as X grows arbitrarily large, the expected value of the dimensions of
1 — o3 Selmer groups of By, /x grows at a rate of loglog X, and the expected value of the
dimensions of the kernel of the Cassels-Tate pairing grows at least at a rate of %log log X.

Before we prove both statements of Theorem [£.4.1] we first introduce the notion of
Selmer groups for local twists of abelian varieties, the theory of which was developed by
Klagsbrun, Mazur, and Rubin Klagsbrun, Mazur, and Rubin 2013} Klagsbrun, Mazur, and
Rubin 2014] for local twists of elliptic curves over number fields.

We first outline the notations to be used throughout this manuscript, which are
analogous to those used in Klagsbrun, Mazur, and Rubin 2014, Sections 5, 7, 9 and Park

2022), Section 4.
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Definition 4.4.2. We introduce the following notations, borrowed from corresponding
sections in Klagsbrun, Mazur, and Rubin 2013; Klagsbrun, Mazur, and Rubin [2014} Park
2022
e K: The base field over which the elliptic curve E; is defined over. Throughout this
manuscript, we will consider the case where K = Q, but for the sake of generalization

to other number fields, we will write the definitions in terms of an arbitrary number

field K.

Y: the set of places of K containing the places of K above primes (2), (3) € Z and
00. (These consist of places of bad reduction of F, places above 2, and archimedean

places). One may enlarge ¥ to contain other places of K if necessary.

o 0: asquare-free product of finite places v of K which are not above the prime (3) € Z.

|o|: the product of norms of places v | o, i.e. || =] Néf(v).

v|o

Q,: the set of finite Cartesian products of local homomorphisms

Hom(Gal(K,/Ky), S3) " H Hom(Gal(K,/K,),Z/3Z)

(Xo)v € 11

oS o Aut(p3) Aut(ps)

v|o s.t. v=1 mod 3
v]o s.t. v=2 mod 3

We assume that the component x,, is ramified if v | 0.

For any place v € K which is not above the ideal (3), up to equivalence of the action
of the automorphism group of 3-rd roots of unity Aut(us), there are a total of 4
equivalence classes of cyclic order 3 characters, 1 of which is unramified, and 3 of

which is tamely ramified.

e q: the set of finite Cartesian products of local homomorphisms supported over

v E M.

e () the inverse limit of Cartesian products of local homomorphisms @U Q, induced

from the projection maps ¢4/ 5 : Qgor — 5.
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e RES: The restriction map

RES : Hom(Gal(K /K), u3) — Q
(4.85)

X = (Xo)w

which maps a global character x corresponding to the cyclic cubic extension L/K to
a Cartesian product of local homomorphisms (x,), € €2, such that o is a squarefree

product of places in K ramified over L.

e LXv: the local cubic field extension over the local field K, at a place v associated to

the character y,.

o E,, : the associated local cubic twist of elliptic curve Ej:

Ey, = Ker (Nm : Resf.," By — By (4.86)

e 0,: the local Kummer map at place v defined as

Sy : B(K,)/3E(K,) — H'(K,, E[3]). (4.87)

e 6X: the local Kummer map associated to the character x, at place v defined as
55 By, (K0)/(1 = 00) Ex, (Ky) — H' (K, E1[3)). (4.88)

As a subspace of H'(K,, EX*[1 — a,]) & HY(K,, E1[3]), the images of the local
Kummer maps satisfy

imd, if x, trivial
imoYXw = (4.89)

Hom(Gal(LX*/K,), E1[3])  if x, non-trivial.

We refer to Klagsbrun, Mazur, and Rubin 2013, Lemma 5.7 for the proof of the

equation above.
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e ¢y: the uniquely determined Tate quadratic form ¢, : H*(K,, E[3]) x H'(K,, E[3]) —
13, see for example Klagsbrun, Mazur, and Rubin 2013, Lemma 3.4.

o H(K,): the set of Lagrangian subspaces V of H'(K,, E1[3]) with respect to the Tate
quadratic form g,. These are subspaces which satisfy V' = V' and is a maximal

isotropic subspace with respect to ¢,, i.e. ¢,(v,0) = 0 for any v,t0 € V and

dimp, V = § dimg, H' (K, E1[3)).

o Hram(Ky,): the set of Lagrangian subspaces V of H'(K,, E1[3]) such that
VN H,, (K, Ei[3]) =0 (4.90)

where H. (K,, E1[3]) is the unramified local first cohomology group.

e P;: the set of places of v over Ok that satisfies

v & 3 and v & 3 and
veEP = = (4.91)

dimp, E1[3](K,) = 1. v = 2i mod 3.

Suppose that K = Q. We note that v € P; if and only if ug € K,, which is equivalent

to v = 2 mod 3. Hence, the Chebotarev density theorem implies that

0 ifi=0
. #{v place of Z | h(v) < n, v € P;}
1 =% ifi= 4.92
0o #{v place of Z | h(v) < n} 5 ifi=1 (4.92)
Loifi=2.

We recall the following fact about the relations between P; and the set of Lagrangian

subspaces of H!(K,, F1[3]).
Lemma 4.4.3. The following properties hold for any v € P; for 0 < ¢ < 2.

1. dimp, HY(K,, E1[3]) = 2i.
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2. Every Lagrangian subspace of H'(K,, F1[3]) have dimensions equal to i as F3 vector

spaces.

3. If we further suppose that i # 0, then #Hram(Ky) = 371, In particular, if i = 1,
then there exists a unique ramified Lagrangian subspace in H'(K,, F1[3]). If i = 2,
then there exists a bijection between the set of ramified cyclic 3-extensions of K, and

the elements of Hyam(Ky).

Proof. We refer to Klagsbrun, Mazur, and Rubin 2013, Lemma 3.7 and Klagsbrun, Mazur,
and Rubin 2014), Definition 5.7 - Definition 5.10. O

For the remainder of the manuscript, we fix K = Q. With the notations above, given
a local character (x,), € 4, we define the locally twisted 1 — o3 Selmer groups of the
4-dimensional abelian variety Bg over Q, denoted as Seli—,(B(y,),/Q), as a subspace of

HY(Q, E1[3])®? satisfying

Seli o3 (B(y,),/Q) == {c € HY(Q, E1[3]%?) | c € 6X» (Bixo)o [l — 03](Qy)) V place v € Z}
(4.93)
where the notation By, ), [1—03](Q,) indicates the maximal isotropic subspace of H*(Q,, E1[3]%?) =
HY(Q,, E1[3])®2 for each place v with respect to the direct sum of the Tate quadratic form
qv D Gu-

The family of locally twisted Selmer groups we focus are the Selmer groups of form

Sell*US (Bn/(@) = Sellfog (BRES(xn)/Q) (4'94)

where RES : Hom(Gal(Q, Q((3)), u3) — €2 is the restriction of a global cubic character over
Q(¢3) to Cartesian product of local homomorphisms 2. In lieu of Lemma the local
Kummer maps characterizing the locally twisted Selmer groups Seli o, (Brgs(y,)/Q) can

be characterized as follows.
Lemma 4.4.4. The following properties hold for any v € P; for 0 < i < 2.

1. dimIE‘3 Hl(@m BRES(Xn)[l - 03]) = 4i.
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2. Every Lagrangian subspace of H(K,, BRres(xa)[1 — 03]) with respect to the pairing

Qv D qu have dimensions equal to i as Fg vector spaces.

3. Suppose that v € Py or v =3. Then there are exactly 2 configurations of all possible
images of the local Kummer maps of Brgs(y,)(Qu) parametrized over cubefree integers
n € 7Z, which is in bijection to the set of two equivalence classes of local Galois

characters Hom(Gal(Q,/Q,), S3)/Aut(us) characterizing the field extension Q,((3)
and Qv(<3a \3/17)

4. Suppose that v € Pa. Then there are exactly 4 configurations of all possible images of
the local Kummer maps of BRES(Xn)(Qv) parametrized over cubefree integers n € 7,

which is in bijection to the set of equivalence classes of local homomorphisms in

Hom(Gal(Qu/Qu), ps)/ Aut(s).

Proof. The first two parts of the proposition follow from Proposition that B,[1—o3] =

a
(Res) E1)[3]. Given a twist 1y, := acting on Bp,, the QQ,-rational points of infinite

c d
order of B,,, which is isogenous to E, X E,2, are parametrized by the images of the following

matrices over Z:

1 0 a 0 0 1 a 0 3
U - — = Py € B,(Qy), ¥y - = 3u = Py € B0 (Qy)
0 0 c 0 0 0 c 0
(4.95)
0 0 0 a 0 0 0 a 3
¢n : = — P3 € EnQ(@v)a d)n : =3u = Py e E’VZQ (Qv)
1 0 0 ¢ 0 1 0 ¢
(4.96)

Hence, the image of the local Kummer maps Brgs(y,),) are either simultaneously
unramified Lagrangian subspaces or simultaneously ramified Lagrangian subspaces with
respect to the pairing ¢, at each component of H'(Q,, F1[3]). Lemma implies that
the number of configuration of all possible images of local Kummer maps Brgs(y,,)(@,) for

v € P;is equal to 1 + 371 = 2i.
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One can obtain a bijection between certain types of maximal isotropic subspaces of
H(Qy, E1[3]%2) and certain equivalence classes of local homomorphisms over Q, up to
the action of Aut(us). Let us recall that the family of abelian varieties we focus on this
manuscript ranges over global cubic characters y, € Hom(Gal(Q,Q((3)) for any cube-free
integer n € Z associated to the Galois Ss-extension Q((3, </n) over Q. If v = 1 mod 3, then
the restriction res,(,) at place v corresponds to cyclic Z/3Z Galois extension Q,(/n)/Q,,
1 of which is an unramified character and the other 3 of which are ramified characters.
If v = 2 mod 3, then the restriction res,(x,) at place v corresponds to the unramified
quadratic extension Q,((3)/Q, if v 1 n, and corresponds to the ramified S35 extension
Qu(¢3, V/v)/Qy if v | n. Here we are using the fact that any integer modulo prime v is a
cube, except for the integer v itself. There are exactly two such local homomorphisms.
If v = 3, then the restriction res,(x,) at place v corresponds to the quadratic extension
Q3(¢3)/Qz if 3 1, or the S3 extension Q3(C3, V/3)/Qs if 3 | n. Again, we are using the fact

that any integer modulo 3 is a cube, except for the integer 3 itself. 0
We now present the proof of Theorem [£.4.1]

Proof. Part (1)

Given an integer n € Z, let L = Q({3, v/n) and K = Q. We use the identification
1 —o03: Br/x — Bk as the morphism ¢, X @ X @2 X Pp2 0 By X E;3x B, x E;23 to

obtain the factorization of multiplication by 1 — o3 map as
1—03=_(pn X Pp xIdxId)o(Idx IdxX p,2 X P,2) (4.97)

where Id is the identity map over any elliptic curve E/Q. Note that we also have the

identification

Selwnxgﬁnxldxld(BL/K/K) = Selcanngn (En X E;S/Q)

Seljdxjdx<pn2 X¢n2 (BL/K/K) = Sel%ﬂ X¢;2 (EnQ X E;QS/Q)

(4.98)
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This allows us to obtain the following short exact sequence of Selmer groups

Brx[ld x Id X @p2 X ¢p2](K)

0— -
n X ¢n X Id x Id(Br k[l — o3])(K)

—>fn Sel@nxﬁbn (En X E;?)/K)

— Sely oy (B /K) = Sely yxp ,(Ep2 X B3 /K) = 0

(4.99)
We note that one has the identification

Brk[ld x Id X @p2 X $p2](K)
On X Pp x Id x I1d(Br k[l — a3])(K)

= 7./3Z (4.100)
We hence obtain that

dimp, Sely g, (Br i/ K) = dimg, Sely, x5, (Enx Ey, ® /K )+dimg, Sely, ,xp, (B2 xE7 JK)—1.
(4.101)
We note that because as Gal(Q/Q)-modules, E,, x E,3[p x ¢] = Z/37 x uz = F1[3], it

follows that
Sely, xg, (Bn x E,°/K) C H'(Q, E, x E;*[p x ¢]) = H'(Q, E\[3)). (4.102)

The probabiltiy distribution of dimensions of Sely,, x4, (En X E,3/K) is hence determined
from the local Selmer structure Sel3((E1)(y,),/Q) given a choice of a local character
(Xv)v € Oy, which is defined analogously to the construction of local Selmer structure for

abelian 4-folds stated in equation (4.93) as

Sels((E1) (y,),/Q) = {¢ € H(Q, Ex[3]%% | ¢ € 6% ((E1)(x,),[3](@,)) ¥ place v € Z}
(4.103)
and the notation 0 ((El)(xv)v (3] (Qv)> denotes the maximal isotropic subspace of H(Q,, F1[3])
determined from the local Kummer map for each place v with respect to the Tate quadratic

form ¢,. To elaborate, for every f,, there exists some choice of local character (x,), € Qn
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such that

dimg, Sely, xg, (En x E;,°/K) = dimg, Sel3((E1) (), )- (4.104)

The analogous relation holds for Sely, ,xyr, (Ep2 X ET:Q?’ /K) as well.
Let (xv)v € 2, be a set of local characters. For any place w | n such that w # 2,3, let
(X\)v € Qne the set of local characters such that ¢p, ,(x’) = x. Then the images of the

local Kummer maps at place v satisfies

imd, ((B1)(y,), [3(Qu) = HL(Q, B1[3)])

(4.105)
imdy (1)), [3)(Qw) € Ham(Qu)-

The image of the localization map loc, : Selz((E1)(y,),/Q) = H,,.(Qu, E1[3]) depends
on the whether the place w splits over M = Q((3) or not. By the proof of Klagsbrun, Mazur,
and Rubin 2014, Proposition 7.2, it suffices to compute the dimension of the localization
map

locy, (Selg((El)[&L)) (4.106)

where
Sel((En)() ) = Ker (H'(K, B1[3]) = @y H' (Ko, E1[3]) /imd)) (4.107)

i.e. it is a finite dimensional subspace of H!(K, E1[3]) which contains Sel3((E1)E(;]

'U)’U
obtained by forgetting the local conditions at place w. Using the identification F;[3] =
Z/3Z x ps, it follows that given any place w of K,

{1,w,w?} C Sels((B)( . (4.108)
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This hence implies that

1 ifw=1mod3
locy, (Sels((E1)(2 ) ) N HL, (Ko, Br[3]) = (4.109)

Xv)
0 fw=2mod3

By Klagsbrun, Mazur, and Rubin 2014, Proposition 7.2, it follows that

0 ifw=1mod3
dim]Fg Sel3((E1)(X§J)U) - dimFg 8613((E1)(Xv)u = (4.110)

1 ifw=2mod3

Chebotarev density theorem over the quadratic extension Q((3)/Q indicates that the
Markov chain M over the countable state space Z>q governing the dimensions of Coker f;,
is characterized by two Markov operators over the countable state space Z>o: The identity
Markov chain Id governing twists by primes w = 1 mod 3: And the Markov chain M =

A

(1i5)i,j>0 governing twists by primes w = 2 mod 3 given by

) 1 ifj=i+1
mij = (4.111)

0 otherwise.

For each k € Z>q, we denote by 6 : Z>¢ — [0, 1] the initial probability distribution defined

as

1 ifz=k
ok(x) = (4.112)

0 otherwise .

Given an integer n € Z>o, denote by wi(n) (and wa(n)) the number of distinct prime

factors of n which are equivalent to 1 mod 3 (and 2 mod 3 that is not 2, respectively).
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Then we obtain that there exists some integer k, € Z>q such that

. 1 if x = dimp, Sel ~, (B2 XE;?’/K):kn—i-wg(n)
((Id)w1 (n) (M)W2(n)6kn) (ZE) _ 3 P2 XP,2 2

0 otherwise
(4.113)

We note that the probability distribution dy, is determined by the local Kummer maps at
places w = 2,3. In particular, we obtain that 0 < k,, < 2 because us ¢ Q,, for w = 2, 3.

Referring to equation (4.101)), we hence obtain that for any L = Q((3, ¢/n) and K = Q,

dimp, Seli g, (B, /r/K) = dimp, Sely, g, (En % E, %) + dimp, Sely, ,xp (B x E) —1
= wa(n) + wa(n?) — 1+ ky + ky2
=2wa(n) — 1+ ky, + k2.
(4.114)
Setting A, := k,, + k,2 — 1 yields the first statement of the theorem.
Part (2)

As before, we choose L = Q((3, ¥/n), M = Q((3), and K = Q. Using the identification

Sely, x, (En x E,%/K) 2 Sely, (E,/M)

(4.115)
Sely yxp o (B2 X E 3/ K) = Sel, , (E,2/M)
one can define the Cassels-Tate pairings @), and @Q),,2 as outlined in Cassels [1959.
Qn : Sely, x5, (En/M) x Sel,, g, (En/M) — F3
(4.116)

Qn2 : Sellpnz X2 (Enz /M) X Sel%Q X7 2 (EnQ /M) — [F3.

More concretely, given a pair of elements (mq,ma) € Sely, x5, (En % E; 3/ K)®2, the first

part of the theorem implies that the pairing @, can be characterized by the products of
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Hilbert norm residue symbol Cassels [1959, Chapter 10, Appendix B

Qu(mi,ma) = [ (Clm,, ma)y (4.117)
3n
p;élp‘mod?)

where ¢ € M* is some choice of an auxiliary number (this is not the fixed prime number ¢
which was used until the previous section), and ¢,,,, € M¢ is any element which satisfies

the condition that

O, - = Fy(rii1) (4.118)

with respect to the morphism F3 : M /(M ):”MpX /(M )3 and some element o € L* /(L*)3
such that Norm%, (o) = my, defined as in Cassels 1959, Lemma 4. We summarize the
construction of the map Fs. Any element my € Sel,, x, (En X E;2/K) can be identified

with a triple (mg, my,m.) € Mg’ given by the formulae Cassels 1959, Lemma 0

2
x = <—3X3 + Gm Y3 +nz3
m1

y= X 4 V3 4z (4.119)
my
2= 3XYZ

where (X,Y,7) € Mg is an Mp-rational point of the curve

1
— X3+ m Y3 4+nZ3=0 (4.120)
my

Then we define the map F3 : Mpx/(MpX)?’ — MPX/(MPX)?’ as

Fy((ma, my, ms)) 1= B Ci)f; V) (4.121)

It follows from the construction of 4,,, that if p # (3), then one obtains the identification
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Cassels [1959, Appendix B

by = G ) g (4.122)

for some element 721, which satisfies (1131,, m2), = 1, and t,(ma,p) := v:'zv(sl)) mod 3. This

in particular implies that one can rewrite the pairing @,, as

Quimiyma) =n- J[ (@™, ma)y - (Un,, ma)s (4.123)
plma
p#0,1 mod 3,
for some fixed n € p3 independent of the choice of m; and mq. Here, the notation (—, —), :

M /MPX)3 X Mpx/(MpX)?’ — pg is the Hilbert cubic norm residue symbol over M,. But
because every element my € Q*/(Q*)? becomes a cube in M, where p = 2 mod 3, it follows
that if my # my (note that because @, is a skew-symmetric pairing, Q,(m1,ms) = 1),

then the pairing @, can be further simplified into

Qn(mi,mz) = n- (lly,, ma)s. (4.124)

But notice that if ms = 8 mod 9, then K3(&msy) = K3, whereas my = 2,5 mod 9, then

K3(/m3) # K3. Therefore, we obtain that
Qn(mi,me) =1, for any ms place of M such that mg = 8 mod 9. (4.125)
Denote by wg(n) the number of prime divisors of n which are equivalent to 8 mod 9. Then
Ker(Qn) > wg(n) — 1. (4.126)

Recall that we let Qr : Sel3(By/x/K) x Sel3(By/k/K) — F3 be the Cassels-Tate pairing

over the abelian 4-fold By . Then it follows that

dimp, Ker(Qr) = dimy, Ker(Q,,) + dimp, Ker(Q,2) — 1 (4.127)
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Using (4.126)), we hence obtain that
dimp, Ker(Qr) > (wg(n) — 1) + (ws(n?) — 1) — 1 = 2 - wg(n) — 3. (4.128)

O

Remark 4.4.5. The proof of the first part of Theorem [4.4.1] can also be obtained from the
result by Stephanie Chan Chan [2022, where she shows using large sieves on cubic residue

symbols that for every € > 0,
dimp, Sel, (E,/K) = dimy, Sely, (B, /K) + w}(n) + 6, (4.129)

#{n € Z | |n| < X,n cubefree, dimp, Sely, (E,/K) > 1} < (4.130)

(log X) 75+
where

wo(2n ifd41n
wy(n) = () (4.131)

wQ(%) if 4 | n

and

1 if n=+3 mod9

on=19—-1 ifn=+4mod9 (4.132)
0 otherwise
Using the identification
Sely, xp, (En X Ey°[K) 2 Sely, (En/K) @ Sely, (B, /K), (4.133)

one can hence demonstrate an alternate proof Theorem [£.4.1] that the dimension of

Seli o4 (Br Kk /K) grows at an order of O(loglog Dy k).

Remark 4.4.6. Denote by Q := {Qn}, the collection of Cassels-Tate pairing over
Seli—y (B i /K). Note that Theorem and Erdos-Kac theorem indicates that except

for possibly O(ﬁ) many exceptions, all Cassels-Tate pairing @,, with |n| < X can be



135

identified as an element of skew-symmetric matrices Skewy(F3) for some k < |loglog X | +1.

We may subdivide the collection Q as

Q:= | | 9" c | | Skewy(Fs) (4.134)
k=1 k=1
olfl .= {Qn : Seli—gy (Br/x/K) % Seli_o, (Br i/ K) — Fs | dimg, Seli_o, (B, x/K) = k}
(4.135)
QM(X) = {Qn e QM | |n] < X} (4.136)

If one can demonstrate that the pushforward of the uniform distribution over Q¥ (X) with
respect to the morphism Q¥ (X) — Skewy(F3) converges in distribution to the uniform
distribution over Skewy(FF3, then one can also prove the upper bound on Ker(Q),,) using
Bhargava, D. M. Kane, et al. 2015, Lemma 3.7. Namely, for any § > 0, there exists large

enough X such that for almost all |n| < X,
1
dimp, Ker(Qy,) < (3 + 5) -loglog X (4.137)

It seems to be the case that demonstrating the convergence to a uniform distribution over
Skewy(F3) would require equidistribution or sieve results on Hilbert cubic norm residue
symbols over the local field Q3. To the best of author’s knowledge, the results of such
nature has not been studied in great depth yet.

For the rest of the remark, let us assume that obtaining such an equidistribution
of Hilbert cubic norm residue symbols is within reach. While the above upper bound
obtained from the Kernel of Cassels-Tate pairing is also not good enough to determine
Rankz (Br/k(K)), it is still a better upper bound than what can be obtained from the
dimension of 1 — o3 Selmer groups of By k. One may hence hope to see whether using the

collections of Cassels-Tate pairing

QUM+ (1 — 03)™Sel(y_gyym+1(Br i /K) x (1 — 03)™Sel(y_gyym+1 (B i /K) = pa (4.138)
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could be of advantage to give effective upper bounds on Rankz(Br,/k (K)). This very idea
of using sequences of Cassels-Tate pairing was carefully explored for quadratic twist families
of elliptic curves over number fields K in the seminal work by Alex Smith Alexander Smith
2022a); Alexander Smith [2022bl To the best of author’s knowledge, the upcoming work by
Peter Koymans and Alex Smith Koymans and Alex Smith [2024] will aim to generalize the
philosophy presented in the previous works of Smith, identify the Cassels-Tate pairing as
a generalized form of Redei matrices (i.e. entries with a generalized notion of "symbols
of primes" appearing in Alexander Smith 2022a, Chapter 3), and demonstrate that the
3-Selmer groups of cubic twist families of elliptic curves Ej, (not the abelian 4-fold By x
discussed in this manuscript) lying inside certain grid classes of cubic twists can be effectively

controlled with careful choices of symbols of primes.

4.5 Global root numbers of cubic twists

We recall from Alpoge, Bhargava, and Shnidman 2022[Chapter 4], Vérilly-Alvarado 2011,
and Rohrlich [1996|that the root number of E,, : y? = x2—432n2, apart from local conditions
at 2 and 3, is equal to (—1)“’2(”), where ws is the number of prime factors of n equivalent

to 2 mod 3. In fact, one can prove the following fact on the relations between root numbers

of £, and F,.

Proposition 4.5.1. Given an elliptic curve E over Q, denote by W(E/Q) the global root
number of E. Let n be any integer, and denote by wa(n) the number of distinct prime

factors of n equivalent to 2 modulo 3.

1. If v3(n) =0 mod 3, then

W(En/Q) = W(E,2/Q) = (=1)**" - §(n) (4.139)
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where 0 : 7 — {—1,1} is a function such that

1 ifn=1,8 mod9
d(n) = (4.140)

-1 ifn=2,4,57 mod9
2. If v3(n) =1 mod 3, then
W(Ea/Q) = =W (E,2/Q) = (=1)*2. (4.141)
3. If vs(n) = 2 mod 3, then

W(Eo/Q) = ~W(E,2/Q) = (~1)"2(, (4.142)

In particular, Proposition and Erdos-Kac theorem affirm the equidistribution
of root numbers in the family of cubic twists {E,} as shown in Alpoge, Bhargava, and

Shnidman [2022] Section 6.

Proof. The proof follows from the table of root numbers of elliptic curves over Q outlined
in Rohrlich [1996| for local root numbers at places p # 2,3 and Rizzo [2003] for local root
numbers at places p = 2 or 3. The local root number at the place of infinity oo is equal to
—1. The local root numbers at every finite prime p # 2,3 are given by

W (E,/Q.p) = @ (4.143)

Local root number at p = 3.

Fix p = 3. Suppose v3(n) = 0 mod 3. Using entries (> 4,6,9),(4,6,9), and (> 5,6,9)

of Rizzo 2003[Table 3], the local root number at place p = 3 can be shown to be equal to

1if —29-n?2=4,7mod 9
W(E,/Q,3) = (4.144)

—1if =22 n2=1mod 9
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Because n is not divisible by 3, we obtain that

W(E»/Q,p) = =d(n). (4.145)

Suppose v3z(n) = 1 mod 3. Then entry (> 2,2,1) of Rizzo 2003[Table 3] implies that
W (E,/Q,3) = 1 because the very condition holds if and only if —2% - n? = 1 mod 3 is
true. Suppose vz(n) =2 mod 3. Then entry (> 3,4,5) of Rizzo [2003[Table 3] implies that

W(E,/Q,3) = —1 because the very condition holds if and only if —2° - n? = 2 mod 3.
Local root number at p = 2.

Suppose v2(n) = 0 mod 3. Then E,, has good reduction at 2, so the local root number
at p =2 is equal to 1. Suppose va2(n) =1 mod 3. Then the first entry of (4,5,4) of Rizzo
2003[Table 3| implies that W (E,, /Q,2) = —1 because the very condition holds if and only
if 0 =1 mod 4. Suppose v2(n) = 2 mod 3. Then entry (> 7,7,8) of Rizzo 2003[Table 3]

implies that W (E,/Q,2) = —1. In particular, we achieve

W (En/Q,2) = Lifzgn (4.146)

—1if 2| n.

Using the fact that the global root number of F is the product of all local root numbers

at every place £ of QQ, we obtain the desired formulae. O

We note that the properties Markov operator M defined in the proof of Theorem
conforms to the properties of global root numbers. Theorem implies that the Markov
operator corresponding to twisting the abelian variety By, x by a prime p = 2 mod 3 always
increases the dimension of 1 — g3 Selmer groups by 2. On the other hand, the Markov
operator corresponding to twisting the abelian variety Bk by a prime p = 1 mod 3
preserves the dimension of 1 — o3 Selmer groups of By . Assuming the BSD conjecture,
Proposition implies that the Markov operator corresponding to twisting the abelian

variety By, by a prime p = 2 mod 3 must simultaneously increase the ranks Rank(E,(Q))
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and Rank(FE,2(Q)) by 1 or decrease them by —1, and that corresponding to twisting the
abelian variety By i by a prime p = 1 mod 3 must simultaneously decrease the ranks
Rank(E,(Q)) and Rank(E,2(Q)) by 2 or preserve them. These changes, in turn, correspond
to the statement of Proposition that up to local conditions at 2 or 3, the global root
number is determined by the parity of the number of distinct prime factors equivalent to 2
modulo 3.

In light of these observations from global root numbers of E,’s, we may hope formulate

the following conjecture.

Conjecture 4.5.2. Let Bk be the 4-dimensional abelian variety over K = Q obtained

from the Ss extension L = Q((3, ¥/n).

1. The (1 — 03) torsion subgroup of the Tate Shafarevich group of Bp i satisfies

dimz, M, , jo[(1 —03)>°] = 0 mod 4.

2. Suppose that 3 does not divide n. Then Rankz,Sel(1_q,)(Br/k/Q) =0 mod 2. In
particular, one obtains the following probability distribution on the rank of (1 — o3)™

Selmer groups of { Bk} for such L/K.

lim #{TL €L ’ |1’L| <X, RankZ3sel(1—03)°°(BL/K/Q) = 0} _ 1

X—00 #{ne€Z||n| <X} 2

lim #{n € Z | |n| < X, Rankz,Sel(1_q,)~(Br/kx/Q) = 2} _1 (4.147)
X—00 #{ne€Z||n| <X} 2

lim #{n € Z | |n| <X, Rankz,Sel( )~ (Br/x/Q) > 4} _0

X—00 #{ne€Z||n| <X}

3. Suppose that 3 divides n. Then Rankz,Sel(1_,,)(Br/k/Q) =1 mod 2. In particular,

one obtains the following probability distribution on the rank of (1 — 03)*° Selmer

groups of {Brk} for such n.

i T EZ|In| < X, Rankg,Selq o= (Br/x/Q =1} _
Koo #{n€Z||n| < X}

i UL EZ||n| < X, Rankg,Selq o= (Br/k/Q) 2 3} _
Koo #{neZ|n| < X}

1
(4.148)
0
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Recall the following conjecture proposed by Alpége, Bhargava, and Shnidman Alpége,
Bhargava, and Shnidman [2022,

Conjecture 4.5.3. For sufficiently large X, the following equation holds.

i #{neZ||n| <X, Rank(E,(Q)) =0} 1

X o0 #nel||n]< X} ~ 2
. #{neZ||n| <X, Rank(E,(Q)) =1} 1

m #neZ|n| < X} =3 (4.149)
i 7 EZ | In[ < X, Rank(Eq(Q)) =2} _

X o0 #nel||n] < X} -

We end the paper with a note that Conjecture implies Conjecture assuming

the BSD conjecture for elliptic curves over Q.

Proposition 4.5.4. Assumign the BSD conjecture for elliptic curves over Q, the statement

of Conjecture implies that of Conjecture[4.5.5

Proof. Proposition implies that the root number is equidistributed in the family of
cubic twists {Ep, }nez. In fact, the root number is equidistributed in the subfamily of cubic

twists {En}  nez for any fixed i = 0,1,2. The BSD conjecture hence implies that

vz(n)=i mod 3

for any fixed 0 <17 < 2, % of elliptic curves {E,} nez have even ranks, whereas the
v3(n)=i mod 3
other % of elliptic curves {E,} nez have odd ranks.

v3(n)=% mod 3

Part (2) and (3) of Conjecture imply that at least 3 - 1 + % -3 = 1 of elliptic
curves {Ep }nez must have rank 0. These elliptic curves are comprised of 100% of elliptic
curves which satisfy Rank(E,(Q)) + Rank(E,2(Q)) = 0, and 50% of elliptic curves which
satisfy Rank(E,(Q)) + Rank(E,2(Q)) = 2. Therefore, it must be the case that 100% of
ellitpic curves { E,, } ez which satisfy Rank(F,(Q)) 4+ Rank(E,,2(Q)) = 2 must have rank
1. This implies that 50% of elliptic curves have rank 0, whereas the other 50% of elliptic

curves have rank 1. O
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