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Arithmetic statistics of Selmer groups of twist families of
elliptic curves over global fields

A proposal for an interplay between arithmetic, geometry, and probability theory

Sun Woo Park

Abstract

Let ℓ be an odd prime number at least 5, and let K = Fq(t) be the global function
field of characteristic coprime to 2 and 3 which contains the primitive ℓ-th roots of unity.
This thesis focuses on investigating the statistics of rank growths of a non-isotrivial elliptic
curve E over K with respect to a randomly chosen cyclic order-ℓ extension L/K, obtained
from adjoining the ℓ-th root of an ℓ-th power free polynomial over Fq of degree n.

To address the problem outlined above, this thesis presents a probabilistic and a
geometric approach to understand such rank growths by utilizing prime Selmer groups of
some families of abelian varieties over K. The abelian varieties of our interest, as suggested
from the works of Mazur and Rubin, are ℓ − 1 dimensional abelian varieties obtained
from the kernel of the norm map from the Weil restriction of E obtained from the cyclic
extension L/K to E. The upper bound on rank growths of E can be understood from
computing the dimensions of 1 − σL,K Selmer groups of such ℓ − 1 dimensional abelian
varieties, where σL,K is a cyclic generator of the Galois group Gal(L/K).

The probabilistic approach generalizes the work by Klagsbrun, Mazur, and Rubin, who
propose a Markov model over a countable state space which governs the variations of
Selmer groups of non-canonically ordered (l− 1) dimensional abelian varieties over number
fields, assuming some mild conditions on the elliptic curve E. Over global function fields,
we can further utilize the applications of the Riemann hypothesis - which are the effective
versions of the Chebotarev density theorem and Erdös-Kac theorem - to reorder these
abelian varieties under a canonical order and obtain explicit rate of convergence to the
probability distribution proposed by Bhargava, Kane, Lenstra, Poonen, and Rains. The
error terms, unlike the geometric approach, depends only on the degree n of the polynomial
that defines the cyclic order-ℓ extension over K, and is independent of the size of q.

The geometric approach revolves around constructing a space whose Fq-rational points
parametrize the prime Selmer groups of aforementioned families of ℓ − 1 dimensional
abelian varieties. This space is obtained from using the middle convolution functor to
construct a representable étale Fℓ-lisse sheaf τn,σℓ,E over the colored configuration space of
n points with ℓ− 1 colors defined over Fq, a generalization of previous work of Katz and
Hall. By using the Grothendieck-Lefschetz trace formula and big monodromy results, we
demonstrate that assuming some mild conditions on the elliptic curve E, the probability
distribution of such Selmer groups conform to the heuristics suggested by Bhargava, Kane,
Lenstra, Poonen, and Rains, up to error terms which depend on both n and q.

As an application, we demonstrate how these two approaches can lead us to obtain new
properties of étale cohomology groups of the geometric space parametrizing the Selmer
groups of families of abelian varieties of our interest. To elaborate, we show that the
homological stability, subexponential Betti numbers, and explicitly determined absolute



ii

values of eigenvalues of the Frobenii actions of these étale cohomology groups imply that
the trace of the Frobenii acting on higher étale cohomology groups have to vanish to 0.
This result hints a possibility that the étale cohomology groups themselves are trivial, a
conjectural statement which requires further research.

We also propose new families of abelian varieties over global fields where both geometric
and probabilistic approaches can be possibly utilized to analyze the probability distribution
of their Selmer groups. These abelian varieties are obtained from Weil restriction of
elliptic curves E with respect to non-abelian Galois extensions L/K with Gal(L/K) ∼=
Z/mZ⋊Z/ℓZ for any m | (ℓ− 1), whose dimensions of Selmer groups give an upper bound
on rank growths of E with respect to the extension L/K.
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Chapter 1

Introduction

1.1 Motivation

The overarching theme this manuscript focuses on revolves around the following question:

Question 1.1.1. Understand the interplay between the following two approaches of

obtaining asymptotic statistical behaviors of some countable families of mathematical

objects M := {An}n∈A, whose arithmetic properties depend on distinct prime factors of

their indices n ∈ A.

• A geometric approach utilizing topological invariants of geometric spaces parametriz-

ing the desired family M.

• A probabilistic approach utilizing stochastic processes which govern the dynamics of

the desired family M.

To understand the coupling between geometric and probabilistic approaches, it is crucial

to find potential candidates of mathematical objects whose statistical behaviors can be

obtained from both approaches. One potential candidate we may consider is the problem

of understanding the arithmetic properties of families of elliptic curves E over a global

field K. There is a wealth of previous research which suggest that there is potential for

observing this interplay of two techniques. To name a few, the theory of interpreting
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families of elliptic curves as geometric spaces, for example the theory of moduli spaces

of elliptic curves, is a classical area of research in arithmetic geometry that has garnered

deep insights on uncovering their arithmetic properties N. M. Katz and Mazur 1985; N.

Katz 1998. Recent progress in applying techniques from data science to families of elliptic

curves indicate potential advantages in regarding families of elliptic curves as murmuration

structures.

What are some families of elliptic curves whose ordering indices indicate their arithmetic

properties? One family we can consider is the family of quadratic twists of a fixed elliptic

curve E over a global field K. Assuming that the characteristic of K is coprime to 2 and 3,

we may write the Weierstrass model for the quadratic twist of E twisted by a square-free

element f ∈ K as

Ef := fy2 = x3 +Ax+B

for some A,B ∈ K such that 4A3 + 27B2 ̸= 0. The Mordell-Weil theorem states that the

set of K-rational points of an elliptic curve E, denoted as E(K), is a finitely generated

abelian group. There is a decomposition E(K) ∼= Zr ⊕ T for some non-negative integer

r ≥ 0, known as the rank of E over K, and a finite group T , known as the K-rational

torsion subgroup of E. One of the classical questions focuses on understanding arithmetic

properties of these families of elliptic curves, in particular the distribution of their ranks as

carefully researched from a number of remarkable previous studies.

The rest of the subsequent paragraphs of this introduction closely follows Chapter 1

of Park 2022. Let A be a principally polarized abelian variety over K. Without loss of

generality, we will assume that A/K is non-isotrivial. Let m ∈ End(A/K) be an isogeny

of the abelian variety whose degree is coprime to the characteristic of K. The short exact

sequence of group schemes

0→ A[m]→ A→m A→ 0

induces the following commutative diagram,
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0 A(K)/mA(K) H1
ét(K,A[m]) H1

ét(K,A)[m] 0

0 ∏
v A(Kv)/mA(Kv)

∏
vH

1
ét(Kv, A[m]) ∏

vH
1
ét(Kv, A)[m] 0,

where v varies over all places of K. The m-Selmer group of the abelian variety A is given

by

Selm(A) := Ker
(
H1

ét(K,A[m])→
∏
v

H1
ét(Kv, A)[m]

)
. (1.1)

Given a universal family of elliptic curves over a global field K, Bhargava, Kane, Lenstra,

Poonen, and Rains made a conjecture on the distribution of ℓ-selmer groups of principally

polarized abelian varieties for some prime number ℓ.

Conjecture (Poonen and Rains 2012 Bhargava, D. M. Kane, et al. 2015). Let K be a

fixed global field of characteristic coprime to 2 and 3. Let p be a prime number coprime to

the characteristic of K. Then as A varies over all principally polarized abelian varieties

over K, ordered by a choice of a height satisfying Northcott property,

P [dimFℓ
Selℓ(A/K) = d] =

∏
j≥0

(1 + ℓ−j)−1

 d∏
j=1

ℓ

ℓj − 1

 .
In particular, the average size of SelℓA over all principally polarized abelian varieties A/K

is ℓ+ 1.

For example, for universal families of elliptic curves E over K, the probability is

computed over finitely many elliptic curves y2 = x3 + Ax + B, where A,B ∈ K have

bounded height B, and calculating the limit of the probability as B grows arbitrarily large.

1.2 Main results

Fix a prime number ℓ. Given a polynomial f ∈ Fq[t], we denote by Af the (ℓ − 1)

dimensional abelian variety over K = Fq(t) constructed as

Af/K := Ker
(
N : ResK( ℓ

√
f)

K E → E

)
(1.2)
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where N is the norm map with respect to the Galois extension Gal(K( ℓ
√
f)/K). We note

that Af is not principally polarized, as every polarization of Af is divisible by ℓ2, as shown

in Howe 2001. Nevertheless, the main contributions of this thesis, concurrent to the ideas

presented in Klagsbrun, Mazur, and Rubin 2013; Klagsbrun, Mazur, and Rubin 2014, state

that one can still formulate and verify an analogous statement to Bhargava-Kane-Lenstra-

Poonen-Rains heuristics for such families of abelian varieties. Moreover, in lieu of Question

1.1.1, the confirmation and formulation of these statements suggest a possible interplay

between arithmetic (algebraic ranks of elliptic curves), geometry (cohomology groups of

local systems over configuration spaces), and probability theory (Markov operators over

countable state spaces).

• Chapter 2. 3: Confirmation of Bhargava-Kane-Lenstra-Poonen-Rains heuristics for

families of abelian varieties {Af}f∈Fq [t] with explicit rate of convergence computed

from probabilistic and geometric approaches.

Theorem (Theorem 2.1.2, Theorem 3.1.2). Assume Condition 3.1.1. We let

Pn,ℓ :=
#{f ∈ Fq[t] | dimFℓ

Sel1−σℓ,f
(Af/K) = r, deg f = n}

#{f ∈ Fq[t] | deg f = n}

Then there exist integers M1,M2 > 0 and a fixed constant C(ℓ, E) > 0 independent

of n and q such that for every n > M1 and q > M2,

∣∣∣∣Pn,ℓ − ∞∏
i=0

1
1 + ℓ−i

r∏
i=1

ℓ

ℓi − 1

∣∣∣∣ < C(ℓ, E) ·min
(

1
(n log q)α(ℓ) ,

1
√
q

)
(1.3)

where α(ℓ) = max0<ρ<1
(
min

(
ρ ln ρ+ 1− ρ,−ρ ln

(
1− ℓ

ℓ2−1

)
,−ρ ln

(
ℓ

ℓ2−1

)))
.

• Chapter 3: Identification of geometric conditions which ensure cohomological trivi-

ality of a representable étale sheaf τn,σℓ,f ,E over the unordered configuration space

parametrizing prime Selmer groups of families of abelian varieties {Af}f∈Fq [t].

Theorem (Thoerem 3.3.1). Suppose that the conditions provided in Theorem 3.3.1

regarding homological stability, subexponential Betti numbers, and Frobenius eigenval-
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ues of cohomology groups of τn,σℓ,f ,E are satisfied. Then for any fixed i > 0, there

exists a large number M(i) > 0 such that for every n > M(i),

H i
ét((τn,σℓ,f ,E)Fq

,Qv) = 0. (1.4)

• Chapter 4: The construction of abelian varieties BL/K governing rank growths of

elliptic curves over families of Z/mZ ⋊ Z/ℓZ Galois extensions L/K with m | (ℓ− 1)

and a fixed Galois subextension M/K with Galois group Z/mZ (the family of which

is denoted as LM ), the generalization of Poonen-Rains heuristics under certain

conditions, and their relation to the problem of an integer expressible as a sum of

two rational cubes.

Theorem (Proposition 4.2.4, Theorem 4.3.12, Theorem 4.4.1). Denote by BL/K the

m(ℓ−1) dimensional abelian variety over K defined as BL/K := Ker
(
ResLKE → ResMKE

)
.

– Choose an order ℓ element σL/K ∈ Gal(L/K). Then there exists a Gal(K/K)-

equivariant isomorphism BL/K [1− σL/K ] ∼= (ResMKE)[l].

– Assume Condition 4.3.9. Denote by m := [M/K]. Denote by PLM (X)(d) the

following probability:

PLM (X)(d) :=
#{L ∈ LM (X) | dimFℓ

Sel1−σL/K
(BL/K/K) = d}

#LM (X)

Then assuming Condition 4.3.9, we obtain

lim
X→∞

PLM (X)(d) =
∑

k0,k1,··· ,kn−1∈Z≥0
k1+2k2+···+(n−1)kn−1=d

k0+k1+···+kn−1=m

(
k

k0, k1, · · · , kn−1

)
n−1∏
i=0

∏
j≥0

1
1 + ℓ−j

i∏
j=1

ℓ

ℓj − 1

ki

.

– Given an integer n, denote by w2(n) the number of distinct odd prime factors

of n equivalent to 2 modulo 3. Fix an elliptic curve E : y2 = x3 − 432. Let

L = Q(ζ3, 3
√
n), M = Q(ζ3), and K = Q. Then dimF3 Sel1−σL/K

(BL/K/K) =

2w2(n) + ∆(n) for some integer −1 ≤ ∆(n) ≤ 3.
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1.3 Previous studies

This section closely follows Section 1, 4 of Park 2022 and Section 2 of Park 2024a.

Recall that given a polynomial f ∈ Fq[t], we denoted by Af the (ℓ − 1) dimensional

abelian variety over K = Fq(t) constructed from the Kernel of the Norm map from the

Weil restriction of scalars ResK( ℓ
√
f)

K E to E. We adhere to Mazur and Rubin’s treatment

of the cyclic prime twists of abelian varieties with respect to cyclic prime field extensions

Mazur and Rubin 2007, Chapter 3.

1.3.1 Prime twists

This subsection closely follows Section 2 of Park 2024a.

Let ℓ be a prime. Suppose K includes all the primitive ℓ-th roots of unity µℓ. Given

an element f ∈ OK , we denote by ResK( ℓ
√
f)

K E the Weil restriction of scalars of the elliptic

curve EK associated to the cyclic order-ℓ Galois extension K( ℓ
√
f)/K. As a group scheme

over K( ℓ
√
f), the Weil restriction of scalars of E can be written as a product of E with

indices given by elements of the Galois group Gal(K( ℓ
√
f)/K):

ResK( ℓ
√
f)

K E ∼=
∏

τ∈Gal(K( ℓ
√
f)/K)

E (over K( ℓ
√
f)). (1.5)

The Galois group Gal(K( ℓ
√
f)/K) acts on the group scheme by cyclically permuting the

summands indexed by the elements τ of the Galois group. This implies that the Weil

restriction of scalars of E has a canonical norm map to the elliptic curve E defined over K:

N : ResK( ℓ
√
f)

K E → E (1.6)

Using the norm map, we may decompose the semisimple group ring Q[Gal(K( ℓ
√
f)/K)] as

Q[Gal(K( ℓ
√
f)/K)] ∼= Q⊕Q

[(
Gal(K( ℓ

√
f)/K)

)×
]

(1.7)
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Denote by If,ℓ the set

If,ℓ = Q
[(

Gal(K( ℓ
√
f)/K)

)×
]
∩ Z[Gal(K( ℓ

√
f)/K)] (1.8)

so that If,ℓ is an ideal of Z[Gal(K( ℓ
√
f)/K)] as well as a Gal(K/K)-module.

Definition 1.3.1. Suppose K contains all the primitive ℓ-th roots of unity µℓ. Let

f ∈ O×
K/(O

×
K)ℓ be an ℓ-th power free integral element over K. The cyclic ℓ-twist of an

elliptic curve E associated to a cyclic extension K( ℓ
√
f)/K is the following ℓ−1 dimensional

abelian variety over K:

If,ℓ ⊗ E ∼= Ker
(
N : ResK( ℓ

√
f)

K E → E

)
. (1.9)

Throughout this manuscript, we may use the abbreviation Af to denote the ℓ − 1

dimensional abelian variety If,ℓ ⊗ E over K.

Example 1.3.2. Note that if ℓ = 2, then the 1-dimensional abelian variety If,2 ⊗ E

associated to a squarefree element f ∈ O×
K/(O

×
K)2 is isomorphic to the quadratic twist Ef of

E over K. Suppose one has the Weierstrass model for the elliptic curve E : y2 = x3+Ax+B.

The Weil restriction of scalars with respect to the field extension K(
√
f)/K corresponds

to the 2-dimensional abelian variety inside A4 := Spec (K[x0, x1, y0, y1]) defined by the

equation

(y0 + y1
√
f)2 = (x0 + x1

√
f)3 +A(x0 + x1

√
f) +B. (1.10)

Note that the K-rational coefficient terms for
√
f and the K-rational terms cut out the

2-dimensional abelian variety inside A4:

y2
0 + y2

1f = x3
0 + 3fx0x

2
1 +Ax0 +B

2y0y1 = 3x2
0x1 + fx3

1 +Ax1

(1.11)
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If y0 = 0, then one recovers the quadratic twist of the elliptic curve (assuming x1 = 0)

y2
1f = x3

0 +Ax0 +B. (1.12)

On the other hand, if y1 = 0, then one recovers the elliptic curve (assuming x1 = 0)

y2
0 = x3

0 +Ax0 +B. (1.13)

Because the action of Gal(K(
√
f)/K) on ResK(

√
f)

K E is given by cyclic permutations of

summands, it follows that as group schemes over K(
√
f),

E ⊕ Ef ∼= ResK(
√
f)

K E ∼= E ⊕ (If,2 ⊗ E) (1.14)

which implies the desired isomorphism over K

Ef ∼= (If,2 ⊗ E) (1.15)

because both group schemes are fixed by the action of Gal(K(
√
f)/K). Throughout this

manuscript, we will primarily use the notation Ef to denote the quadratic twist of the

elliptic curve E.

Remark 1.3.3. For any prime ℓ, the short exact sequence of group schemes

0→ If,ℓ ⊗ E → ResK( ℓ
√
f)

K E → E → 0 (1.16)

implies that

rankZ(If,ℓ ⊗ E)(K) = rankZE(K( ℓ
√
f))− rankZE(K) (1.17)

Remark 1.3.4. Recall that the Galois group Gal(K( ℓ
√
f)/K) acts on ResK( ℓ

√
f)

K E by

cyclically permuting the summands indexed by the elements of the Galois group. This
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implies that the endomorphism ring of If,ℓ ⊗ E contains the group ring

End(If,ℓ ⊗ E) ⊃
Z
[(

Gal(K( ℓ
√
f)/K)

)×]
(1 + σℓ,f + · · ·+ σℓ−1

ℓ,f )
. (1.18)

where σℓ,f is the generator of the Galois group Gal(K( ℓ
√
f)/K). With abuse of notation, we

denote by σℓ,f a fixed choice of a generator of the multiplicative group
(
Gal(K( ℓ

√
f)/K)

)×.

We warn the readers that the generator σℓ,f is not identical to the generator of the Galois

group Gal(K(µℓ)/K) for the case when µℓ ̸⊂ K.

We note that the construction of the abelian variety Af (or If,ℓ⊗E) appears in different

notation in previous literature. For example, Klagsbrun, Mazur, and Rubin 2014 utilizes

the notation Eχ for a choice of an order ℓ character χ ∈ Hom(Gal(K/K),Z/ℓZ) to denote

the ℓ− 1 dimensional abelian variety Af obtained with respect to the cyclic ℓ extension

L/K. We provide below a list of notations introduced in Klagsbrun, Mazur, and Rubin

2013; Klagsbrun, Mazur, and Rubin 2014, which in particular will be used interchangeably

with the notations Af throughout the rest of the manuscript.

Definition 1.3.5. We introduce the following notations, as stated in Klagsbrun, Mazur,

and Rubin 2014, Sections 5, 7, and 9.

• Σ: a set of places of K that includes places of bad reduction of E.

• ΣE : a subset of Σ consisting only of places of bad reduction of E.

• σ: a square-free product of places v of K such that v ̸∈ Σ.

• deg σ: the sum of degrees of places v | σ, i.e. deg σ = ∑
v|σ deg v.

• Σ(σ): a set of places of K that includes a set of places in Σ and a set of places

dividing σ.

• dΣ(σ): the sum of degrees of elements in Σ(σ), i.e. dΣ(σ) = ∑
v∈Σ(σ) deg v.

• Ωσ: the set of finite cartesian products of local characters
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χ := (χv)v ∈
∏

v∈Σ or
v|σ

Hom(Gal(Kv/Kv), µℓ)

such that the component χv is ramified if v | σ. For the sake of convenience, we will

denote by Homunr(Gal(Kv/Kv), µℓ) the set of unramified local characters at place

v, and by Homram(Gal(Kv/Kv), µℓ) the set of ramified local characters at place v.

Assuming that µℓ ⊂ Kv, there are ℓ distinct unramified local characters at v, and

ℓ(ℓ− 1) distinct ramified local characters at v.

• ΩE : the set of finite Cartesian products of local characters

χ := (χv)v ∈
∏
v∈ΣE

Hom(Gal(Kv/Kv), µp)

• Given a global character χ ∈ Hom(Gal(K/K), µℓ), the twist Eχ is defined as follows

(see Mazur, Rubin, and Silverberg 2007, Definition 5.1 for further details):

Let F/K be the cyclic Galois extension of degree ℓ corresponding to the character χ.

Denote by L/K the Galois closure of F with G := Gal(L/K). Denote by K[G] the

group ring of G with coefficients in K. Then K[G] admits a decomposition into a

direct sum of minimal two-sided ideals

K[G] = ⊕ρK[G]ρ

where ρ spans the set of irreducible K-representations of G, and K[G]ρ is the sum of

all left ideals of K[G] isomorphic to ρ.

Let IF be the sum of integral left ideals of K[G] isomorphic to χ, i.e.

IF := K[G]χ ∩ OK [G]
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Then the twist of E by χ is given by

Eχ := IF ⊗ E.

Note that if χ is a quadratic character, then Eχ is the quadratic twist of E over K.

If χ is a cyclic order-ℓ character, one can take Eχ to be the kernel of the norm map

Eχ := Ker
(
ResLχ

K E → E
)

(1.19)

from the Weil restriction of scalars of E/K associated to the cyclic ℓ-extension Lχ/K

associated to the character χ. The K-rational points of ResLχ

K E are the Lχ-rational

points of E, and the twist Eχ/K (identical to Af or If,ℓ⊗E if one takes Lχ = K( ℓ
√
f))

is a ℓ− 1 dimensional abelian variety over K.

1.3.2 Selmer groups

This subsection closely follows Chapter 2 of Park 2024a.

One of the well-studied strategies to bound the rank of an abelian variety A is to

construct its Selmer group associated to a choice of an element m ∈ End(A). We recall

the construction of Selmer groups from the following definition.

Definition 1.3.6. Let AK be an abelian variety defined over a global field K. Suppose

that m ∈ End(AK) has degree coprime to the characteristic of K. The m-Selmer group of

the abelian variety AK is defined as a finite subspace of the first étale cohomology groups

Selm(AK) := Ker
(
H1

ét(K,AK [m])→
∏
v

H1
ét(Kv, AK)[m]

)
, (1.20)

where the product over local cohomology groups spans over all finite places of OK . We

note that the m-Selmer groups are constructed from comparing the long exact sequence of

global and local étale cohomology groups with respect to the following short exact sequence
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of group schemes:

0→ AK [m]→ AK →m AK → 0. (1.21)

We achieve the following short exact sequence

0→ AK(K)/mAK(K)→ Selm(AK)→X(AK)[m]→ 0 (1.22)

where X(AK)[m] is the m-torsion subgroup of the Tate Shafarevich group X(AK). As-

suming that AK [m](K) is a finite R-module for some commutative finite ring R, we can

obtain the upper bound of the rank of AK as

rankZAK(K) + rankRAK [m](K) ≤ rankRSelm(AK) (1.23)

where the notation rankRM for a finitely generated R-module M denotes

rankRM := max
p⊂R prime

[
dimR/p(M ⊗R R/p)

]
. (1.24)

Using the structure of the endomorphism ring of cyclic twists of elliptic curves, we can

now define the following Selmer groups of cyclic prime twists of elliptic curves.

Definition 1.3.7. Let E be any elliptic curve over K which contains a primitive ℓ-th root

of unity µℓ. Fix an ℓ-th power free element f ∈ O×
K/(O

×
K)ℓ. Using Definition 1.3.6, we can

define the following two types of prime Selmer groups of abelian varieties If,ℓ ⊗ E.

1. The p-Selmer group of If,ℓ ⊗ E is a finite dimensional Fp-vector space

Selp(If,ℓ ⊗ E) ⊂ H1
ét(K, (If,ℓ ⊗ E)[p]). (1.25)

2. Recall that σℓ,f is a generator of the multiplicative group Gal(K( l
√
f)/K)×. The

1− σℓ,f Selmer group of If,ℓ ⊗ E is a finite dimensional Fl-vector space

Sel1−σl,f
(If,l ⊗ E) ⊂ H1

ét(K, (If,l ⊗ E)[1− σl,f ]) ∼= H1
ét(K,E[l]) (1.26)
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where the last isomorphism follows from the canonical Gal(K/K)-module isomor-

phism

(If,l ⊗ E)[1− σl,f ] ∼= E[l]. (1.27)

(See Mazur and Rubin 2007[Proposition 4.1] for a complete proof of this fact).

Using the notations introduced in Definition 1.3.5, Klagsbrun, Mazur, and Rubin

Klagsbrun, Mazur, and Rubin 2014 carefully analyzes the variations of Selmer groups of

Af over number fields using Galois cohomology groups and Poitou-Tate duality theorem.

Analogous results on the variation of prime Selmer ranks of Af under local quadratic twists

of E over Fq(t) can also be proven using the identical argument, see for instance Chapter 1

of Milne 2006 for a rigorous treatment of Poitou-Tate duality theorems for global function

fields.

Suppose that ℓ is any prime number that is coprime to the characteristic of the global

function field K = Fq(t) of characteristic coprime to 2 and 3. Throughout this section, we

assume that the following properties hold, where F (x) ∈ K[x] is a cubic polynomial.

• E : y2 = F (x) is a non-isotrivial elliptic curve over K.

• E contains a place ∞ of split multiplicative reduction.

• The constant field Fq, of characteristic coprime to 2, 3, ℓ, and contains µp.

• The image of Gal(K/K)→ Aut(E[ℓ]) contains SL2(Fℓ).

(1.28)

By Igusa’s theorem, for any non-isotrivial elliptic curve E, there exists a prime ℓ and a

finite separable extension of K = Fq(t) such that E satisfies all the four conditions Igusa

1959; Bandini, Longhi, and Vigni 2009.

Definition 1.3.8. We introduce the following notations continuing from Definition 1.3.5,

as stated in Klagsbrun, Mazur, and Rubin 2014, Sections 5, 7, and 9.

• Given a cyclic order-ℓ character χ, the endomorphism ring of Eχ, denoted as End(Eχ),

contains the group ring Z[Gal(Fχ/K)] ∼= Z[ζℓ]. We denote by π the unique prime
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ideal of Z[ζℓ] lying above the ideal (ℓ) ⊂ Z. Note that π defines an isogeny over the

twist Eχ.

• Given a local character χ ∈ Ωσ, the π-Selmer group (or 1− σℓ Selmer group) of the

twist Eχ is given by

Selπ(Eχ) := Ker
(
H1

ét(K,E[ℓ])→ ⊕vH1
ét(Kv, E[ℓ])/imδχv

)
, (1.29)

where δχv : Eχv (Kv)/πEχv (Kv) → H1
ét(Kv, E[ℓ]) is the local Kummer map at v.

Under all but the third assumption stated in (1.28), we use the isomorphism

H1
ét(K,E[ℓ]) ∼= H1

ét(K,Eχ[π]),

H1
ét(Kv, E[ℓ]) ∼= H1

ét(Kv, E
χ
v [π])

to define the Selmer group Selπ(Eχ), see in particular Mazur and Rubin 2007,

Proposition 4.1, Definition 4.3. Even though the reference particularly states about

elliptic curves over number fields, the ideas of the proofs of relevant results are

extendable to global function fields. Note that if ℓ = 2, the π-Selmer groups of Eχ

correspond to 2-Selmer groups of E twisted by a quadratic character χ.

• For 1 ≤ i ≤ 2, define the set

Pi := {v | v ̸∈ Σ, µℓ ⊂ Kv, and dimFℓ
E(Kv)[ℓ] = i}

We also define the set

P0 := {v | v ̸∈ Σ ∪ P1 ∪ P2}.

The set P is the set

P := {v | v ̸∈ Σ} = P0 ∪ P1 ∪ P2.
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• Given a positive number d ∈ N, the set Pi(d) is defined as

Pi(d) := {v ∈ Pi | deg v = d}.

Likewise, the set P(d) is defined as

P(d) := {v ∈ P | deg v = d}.

• Given a local character χ ∈ Ωσ, we denote by rk(χ) the dimension of Selπ(Eχ) as an

Fℓ-vector space.

Using the assumption (1.28), we recall the following statement from Klagsbrun, Mazur,

and Rubin 2013, Lemma 4.3 that the Frobenius elements of certain primes lying above

a place v over K determines which classes of Pi the place v lives in. Again, the original

statement of the lemma is shown for arbitrary number fields, which can be extended to the

case for global function fields.

Lemma 1.3.9. Klagsbrun, Mazur, and Rubin 2013, Lemma 4.3 Fix an elliptic curve E/K

satisfying the conditions stated in (1.28). Let v be a place over K such that v ̸∈ Σ. Denote

by Frobv ∈ Gal(K(E[ℓ])/K) the Frobenius element associated to v. Then

1. v ∈ P2 ⇐⇒ Frobv = 1

2. v ∈ P1 ⇐⇒ Frobv has order exactly ℓ

3. v ∈ P0 ⇐⇒ Frobℓv ̸= 1

Remark 1.3.10. Igusa’s theorem implies that any non-isotrivial elliptic curve satisfying

conditions (1.28) satisfies the condition that Gal(K(E[ℓ])/K) ∼= SL2(Fℓ) ⋊ T , where T is a

cyclic subgroup of order prime to ℓ corresponding to the Galois group of the constant field

extension of K(E[ℓ])/K. With the condition that µℓ ⊂ K, one may assume without loss of

generality that |T | = 1. Nevertheless, the proofs of the results outlined in the manuscript

are shown for any such finite cyclic group T .
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Computing the conjugacy classes of SL2(Fℓ) and Theorem 2.2.1 show that there exists

a constant C > 0 such that for sufficiently large d,

max
{∣∣∣∣#P0(d)

#P(d) −
(

1− ℓ

|T |(ℓ2 − 1)

)∣∣∣∣ , ∣∣∣∣#P1(d)
#P(d) −

1
|T |ℓ

∣∣∣∣ , ∣∣∣∣#P2(d)
#P(d) −

1
|T |(ℓ3 − ℓ)

∣∣∣∣} < Cq− d
2 .

(1.30)

Suppose in particular that ℓ = 2. Given a Weierstrass equation of an elliptic curve

E : y2 = F (x) satisfying the conditions from Theorem 2.1.2, denote by L the cubic field

extension L = K[x]/(F (x)). Note that the constant field of L is equal to Fq. The sets

P0,P1, and P2 correspond to set of unramified places over K not in Σ which are inert,

split into two places, or totally split in L. Theorem 2.2.1 shows that there exists a constant

C > 0 such that for sufficiently large d,

max
{∣∣∣∣#P0(d)

#P(d) −
1
3

∣∣∣∣ , ∣∣∣∣#P1(d)
#P(d) −

1
2

∣∣∣∣ , ∣∣∣∣#P2(d)
#P(d) −

1
6

∣∣∣∣} < Cq− d
2 (1.31)

Note that (1.31) immediately follows from (1.30) by setting ℓ = 2 and |T | = 1.

Definition 1.3.11. Fix a square-free product of places σ coprime to elements in Σ.

Fix a local character χ ∈ Ωσ. Given a single place v over K such that v ∤ σ and v ̸∈ Σ,

let χ′ ∈ Ωσv be a local character such that

• For any v | σ or v ∈ Σ, χ′
v = χv.

• At v, χ′
v is ramified.

Denote by Ωχ,v the set of local characters χ′ satisfying the two conditions above. Note that

Ωσv =
⊔
χ∈Ωσ

Ωχ,v.

1.3.3 Relevant works

This subsection closely follows Section 2 of Park 2022.

The validity of the Bhargava-Kane-Lenstra-Poonen-Rains conjecture is known for

certain large families of elliptic curves, such as the universal family of elliptic curves ordered
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by height, or quadratic twist families of elliptic curves ordered by the norm of the twist.

Suppose K = Q. We list some previous studies which focused on computing the

probability distribution of Selmer groups over certain families of elliptic curves.

• Bhargava and Shankar compute the first moments of 2,3,4 and 5-Selmer groups over

the universal family of elliptic curves, see for example Bhargava and Shankar 2015.

• Heath-Brown, Swinnerton-Dyer, and Kane compute the probability distribution of

2-Selmer groups over the quadratic twist families of elliptic curves with full 2-torsions

and no cyclic subgroup of order 4 over Q Heath-Brown 1994; Swinnerton-Dyer 2008;

D. Kane 2013.

• Klagsbrun, Mazur, and Rubin generalized the construction of Markov chains sug-

gested by Swinnerton-Dyer Swinnerton-Dyer 2008 to compute the probability distri-

bution of 2-Selmer groups over the quadratic twist families of elliptic curves with

Gal(K(E[2])/K) = S3. Note that the elliptic curves are ordered in a non-canonical

manner using Fan structures. They obtain the probability distribution of prime

Selmer groups over non-canonically ordered cyclic order-ℓ twist families of elliptic

curves with Gal(K(E[ℓ])/K) = SL2(Fℓ) as well Klagsbrun, Mazur, and Rubin 2014.

• Smith successfully calculates the probability distribution of 2-Selmer groups over

quadratic twist families of elliptic curves of bounded height H except for some cases

where E[2](Q) = Z/2Z. As the upper bound on the height H grows to infinity, the

error bounds of the probability distribution is given by an order of O(e−c(log log logH)
1
4 )

for some constant c > 0. Smith utilizes Markov chains which govern the variations

of kernel ranks of alternating square matrices comprised induced from Cassels-

Tate pairings. Note that the Markov chains Smith utilzied are different from those

constructed by Swinnterton-Dyer and Klagsbrun, Mazur, and Rubin Alexander Smith

2017; Alexander Smith 2020; Alexander Smith 2022a; Alexander Smith 2022b.

• The Markov chains suggested by Smith can be utilized to prove the Cohen-Lenstra

heuristics on l∞-torsion subgroups of class groups of cyclic l-extensions of Q (assuming



18

the generalized Riemann hypothesis) Koymans and Pagano 2021, and Stevenhagen’s

conjecture on the asymptotic behavior of the solubility of negative Pell equations

Koymans and Pagano 2022.

Consider the case where K = Fq(t) of characteristic coprime to 2 and 3. Previous

studies computed the probability distribution of ℓ-Selmer groups of families of elliptic

curves over global function fields Fq(t) under different conditions. Denote by Mn(Fq) a

finite subfamily of elliptic curves E over Fq(t) of a fixed height n. The height of an elliptic

curve is determined by the degrees of coefficient terms of E. (Of course, the choice of

the height depends on over which families of elliptic curves the probability distribution of

2-Selmer groups is computed.)

Given a non-negative integer j, denote by P [dimF2 Selℓ(E) = j | E ∈Mn(Fq)] the

probability that the dimensions of 2-Selmer groups of finitely many elliptic curves of fixed

height n are equal to j. Below we list three probability distributions of 2-Selmer groups of

elliptic curves that can be computed over global function fields:

lim
n→∞

P [dimF2 Selℓ(E) = j | E ∈Mn(Fq)] (1.32)

lim
q→∞

lim
n→∞

P [dimF2 Selℓ(E) = j | E ∈Mn(Fq)] (1.33)

lim
n→∞

lim
q→∞

P [dimF2 Selℓ(E) = j | E ∈Mn(Fq)] (1.34)

As before, we list some previous studies which focused on computing the desired probability

distribution over Fq(t).

• For the second limit (large-height, then large-q limit), Ho, Le Hung, and Ngo Q.P. Ho

2014 compute the average size of 2-Selmer groups over the universal family of elliptic

curves, whereas de Jong Jong 2002 computes that of 3-Selmer groups over the same

family.

• For the third limit (large-q limit, then large-height), Feng, Landesman, and Rains

Tony Feng, Landesman, and Rains 2023 prove that for any composite number m, the

third limit (large-q, then large-height limit) is equal to the Poonen-rains distribution
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for any m-Selmer groups over universal families of elliptic curves, under the condition

that q is coprime to 2m. They proposes a Markov chain constructed from random

kernel models, which governs the variation of n-Selmer groups over global function

fields Fq(t). Using this Markov chain, they successfully prove the Poonen-Rains

conjecture for n-Selmer groups of universal families of elliptic curves under the large

q-limit.

• For any composite number m, the average size of m-Selmer groups of universal

families of elliptic curves under the third limit were computed by Landesman 2021

over universal families of elliptic curves.

• The average size of ℓ-Selmer groups of quadratic twist families of non-isotrivial elliptic

curves under the third limit were computed by the author of this paper and Wang

Park and N. Wang 2023.

• The key ingredient behind computing these distributions is a careful and rigorous

determination of images of monodromy over algebraic spaces whose geometric fibers

parametrize ℓ-Selmer groups over a prescribed family of elliptic curves, see for instance

Jong and Friedman 2011; Hall 2006; Ellenberg, Venkatesh, and Westerland 2016.

We finally note that it is not always the case that the probability distribution of

2-Selmer groups over quadratic twist families of elliptic curves over a global field K can be

formulated. For example, Klagsbrun and Lemke Oliver showed that more than half the

quadratic twists of elliptic curves over number fields K with partial K-rational 2-torsion

points (i.e. E[2](K) = Z/2Z) and without any cyclic 4-isogeny over K have arbitrarily

large 2-Selmer ranks Klagsbrun and Lemke Oliver 2015. Wang extends their results to

global function fields K = Fq(t) in his Ph.D. thesis for arbitrary number of elements of the

constant field Fq N. Wang 2021 .
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Chapter 2

A probabilistic approach

This section is based on Park 2022, which develops upon the mathematical insights for

coputing probablity distribution of Selmer groups of twist families of elliptic curves with

respect to fan structures, as presented in Swinnerton-Dyer 2008 and Klagsbrun, Mazur,

and Rubin 2014.

2.1 Main result

Let ℓ be a fixed prime number. Let µℓ be the set of primitive ℓ-th roots of unity. We fix

an element ζℓ which generates µℓ. Let K be the global function field Fq(t) of characteristic

coprime to 2 and 3 which contains µℓ, i.e. q ≡ 1 mod ℓ. Let Fn(Fq) be the set of monic

polynomials of degree n over Fq.

Given a polynomial f ∈ Fn(Fq), there is a cyclic order-ℓ Galois extension Lf := K( ℓ
√
f)

over K. Let σf ∈ Gal(K( ℓ
√
f)/K) be a generator of the cyclic Galois group. We may

associate the field Lf with a cyclic order-ℓ character χf ∈ Hom(Gal(K/K), µℓ) defined via

the quotient map

χf : Gal(K/K) ↠ Gal(Lf/K)→ µℓ

that maps σf to ζℓ ∈ µℓ.

Fix a non-isotrivial elliptic curve E over K. The goal of this manuscript focuses on
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understanding the following question.

Question 2.1.1. Compute rankZE(Lf )− rankZE(K) for any f ∈ Fn(Fq).

We study the question above by understanding the K-rational points of the ℓ − 1

dimensional abelian variety Eχf over K defined as

Eχf := Ker
(
NmLf

K : ResLf

K E → E
)

(2.1)

where NmLf

K is the field norm map, and ResLf

K E is the Weil restriction of scalars of E with

respect to the Galois extension Lf/K. It follows that

rankZE
χf (K) = rankZE(Lf )− rankZE(K). (2.2)

For the rest of the manuscript we use the abbreviation π := 1− σf , as stated in Klagsbrun,

Mazur, and Rubin 2014, Chapter 6. In particular, if ℓ = 2, then π = 2, and Eχf is the

quadratic twist of E by the quadratic character χf .

In this section, we focus on computing the dimension of the following family of π-Selmer

groups of Eχf , defined as

Selπ(Eχf ) := Ker
(
H1

ét(K,E[ℓ])→
∏
v

H1
ét(Kv, E

χf )[π]
)
, (2.3)

where we use the Gal(K/K)-equivariant isomorphism Eχf [π] ∼= E[ℓ]. The main theorem

of this paper confirms the Poonen-Rains heuristics for these families of π-Selmer groups of

Eχf . We use the following abbreviation to denote the probability distribution of dimensions

of Selπ(Eχf ) ranging over f ∈ Fn(Fq).

P [dimFℓ
Selπ(Eχf ) = j | f ∈ Fn(Fq)] := #{f ∈ Fn(Fq) | dimFℓ

Selπ(Eχf ) = j}
#Fn(Fq)

(2.4)

Theorem 2.1.2 (Main Theorem). Fix a prime number ℓ. Let K = Fq(t) be a global

function field whose characteristic is coprime to 2,3, and q ≡ 1 mod ℓ. Let E : y2 = F (x) =

x3 +Ax+B be an elliptic curve over K which satisfies the following conditions.
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1. E is non-isotrivial.

2. E contains a place of split multiplicative reduction.

3. The Galois group Gal(K(E[ℓ]/K)) is isomorphic to SL2(Fℓ).

Let α(ℓ) be a constant defined as

α(ℓ) := sup
0<ρ<1

(
min

(
ρ log ρ+ 1− ρ, −ρ log

(
1− ℓ

ℓ2 − 1

)
,−ρ log

(
ℓ

ℓ2 − 1

)))

Then for any small ϵ > 0, there exist sufficiently large n and a fixed constant AE,ℓ,q that

depends only on E, ℓ, and q such that

∣∣∣∣∣∣P [dimFℓ
Selπ(Eχf ) = j | f ∈ Fn(Fq)]−

∏
m≥0

1
1 + ℓ−m

 j∏
m=1

ℓ

ℓm − 1

∣∣∣∣∣∣ < AE,ℓ,q
(n log q)α(ℓ)−ϵ

The distribution of 2-Selmer ranks of quadratic twist families of some non-isotrivial

elliptic curves E over any global function field K = Fq(t) under certain mild conditions.

The values of α for some values of ℓ = 2, 3, 5, 7 are computed as below.

• α(2) ∼ 0.185242 where ρ ∼ 0.456864. (Note that 1− 2
22−1 = 1

3 whereas 2
22−1 = 2

3)

• α(3) ∼ 0.203893 where ρ ∼ 0.433811

• α(5) ∼ 0.126457 where ρ ∼ 0.541305

• α(7) ∼ 0.0943249 where ρ ∼ 0.598398.

Remark 2.1.3. The condition that E is non-isotrivial further implies that conditions

(ii) and (iii) in the statement of Theorem 2.1.2 are obtainable after taking finite separa-

ble extension of any global function field K = Fq(t) Bandini, Longhi, and Vigni 2009,

Proposition 3.4.

As a corollary, we are able to obtain a partial answer to Question 2.1.1.



23

Corollary 2.1.4. Assume the conditions and notations as in Theorem 2.1.2. We denote

by

P
[
rankZE(Lf )− rankZE(K) = j | f ∈ Fn(Fq)

]
:= #{f ∈ Fn(Fq) | rankZE(Lf )− rankZE(K) = j}

#Fn(Fq)

Then we have

lim
n→∞

P
[
rankZE(Lf )− rankZE(K) ≤ j | f ∈ Fn(Fq)

]
≤

j∑
J=0

∏
m≥0

1
1 + ℓ−m

( J∏
m=1

ℓ

ℓm − 1

)

In particular, for sufficiently large ℓ, the rank of E(Lf ) increases by at most 1 from the

rank of E(K) for almost all f ∈ Fq[t].

Remark 2.1.5. We warn the readers, however, that the given upper bound is not binding

for any values of ℓ ≥ 3 unlike the case for quadratic twist families of elliptic curves, as the

ℓ-torsion subgroup of the Tate-Shafarevich group of the abelian variety Eχf is not of an

even dimensional Fℓ-vector space, as explicitly constructed by William Stein Stein 2002

and discussed in detail by Howe Howe 2001. Specific conditions which can guarantee the

Tate-shafarevich groups to be of even dimension are provided in Mazur and Rubin 2007,

Chapter 6. Indeed, there are conjectural statements by David, Fearnley, and Kisilevsky

David, Fearnley, and Kisilevsky 2007 and Mazur and Rubin Mazur and Rubin 2019 who

suggested that it is very unlikely that the ranks of the elliptic curves will increase by at least

1 with respect to cyclic order-ℓ extensions over Q. The function field analogue was carefully

studied in a recent work by Comeau-Lapointe, David, Lalin, and Li Comeau-Lapointe et al.

2022, where they show that the conjecture fails for isotrivial cyclic twist families of elliptic

curves, whereas numerical data suggests that the conjecture may hold for non-isotrivial

cyclic twist families of elliptic curves.

2.1.1 Key Ingredients

The three key ingredients utilized in proving the main theorem are as follows, all three of

which contribute to the three terms for α(ρ) which determines the rate of convergence of
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the desired probability distribution to the Poonen-Rains distribution.

1. Effective Chebotarev Density Theorem

• Relevant results: Theorem 2.2.1, Corollary 2.2.2, Proposition 2.4.3, Corollary

2.3.12

• Error term: −ρ log
(
1− ℓ

ℓ2−1

)
, arising from the density that the Frobenius ele-

ment of an irreducible polynomial has order prime to ℓ inside Gal(K(E[ℓ])/K) ∼=

SL2(Fℓ).

2. Effective Erdös-Kac Theorem

• Relevant results: Theorem 2.2.6, Proposition 2.3.9, Proposition 2.3.10

• Error term: ρ log ρ + 1 − ρ, arising from the probability that a degree n

polynomial has at least ρ(logn+ log log q) and at most 2(logn+ log log q) many

distinct irreducible factors.

3. Geometric Convergence of Markov Chains

• Relevant results: Corollary 2.5.7

• Error term: −ρ
(

ℓ
ℓ2−1

)
, arising from geometric rate of convergence of the

constructed Markov chain to the stationary distribution.

2.1.2 Outline of the proof

We provide the outline of the proof of the main theorem along with the organization of this

manuscript. We let ρ to be a parameter whose value is between 0 and 1. The motivation for

the proof originates from the previous work by Swinnerton-Dyer Swinnerton-Dyer 2008 and

Klagsbrun, Mazur and Rubin Klagsbrun, Mazur, and Rubin 2014 who studied Lagrangian

Markov operators over Z≥0 which govern the distribution of dimensions of π-Selmer groups

over number fields.

1. Effective theorems: In Section 2.2, we discuss the effective versions of Chebotarev

density theorem and Erdös-Kac theorem used in the rest of the manuscript.
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2. Finding a nice subset of polynomials: Let f ∈ Fn(Fq). Suppose that f admits a

factorization f = f∗f
∗, where f∗ is a product of irreducible factors of f (including

multiplicities) of degree greater than 4(logn)2

log q . In Section 2.3.1, we define the notion

of splitting partitions and show using Merten’s theorem and the effective Erdös-Kac

theorem that for almost all f ∈ Fn(Fq) the following three conditions are satisfied:

• The number of distinct irreducible factors of f is between ρ(logn + log log q)

and 2(logn+ log log q).

• The number of distinct irreducible factors of f∗ is at least (1−ϵ)ρ(logn+log log q)

for small enough ϵ > 0.

• There is an irreducible factor of f∗ whose Frobenius element in Gal(K(E[ℓ])/K) ∼=

SL2(Fℓ) has order prime to ℓ.

3. Equidistribution: In Section 2.3.2, we prove equidistribution of l-th power residue

symbols associated to a fixed number of irreducible polynomials over Fq.

4. Local Selmer groups: In Section 2.4.1, we recall the definition of local Selmer

groups of E associated to cyclic order ℓ local characters as shown in Klagsbrun,

Mazur, and Rubin 2014. We use the ideas from Klagsbrun, Mazur, and Rubin

2014, Proposition 9.4 and the effective Chebotarev theorem to identify Chebotarev

conditions that govern the image of the global cohomology group H1
ét(K,E[ℓ]) with

respect to the localization map at a place v of K.

5. Auxiliary Place: In Section 2.4.2, we define the notion of the auxiliary place of

f satisfying the aforementioned three conditions, which is an irreducible factor of

highest degree whose Frobenius element in Gal(K(E[ℓ])/K) ∼= SL2(Fℓ) has order

prime to ℓ. Using the equidistribution results from Section 2.3.2 and the Chebotarev

conditions from Section 2.4.1, we construct a Markov operator defined over Z≥0 which

governs the distribution of the dimensions of local Selmer groups of E associated

to cyclic order ℓ characters. This proves the effective version of the construction
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of governing Markov operators, as stated in Klagsbrun, Mazur, and Rubin 2014,

Theorem 4.3, Theorem 9.5 and Swinnerton-Dyer 2008, Theorem 1.

6. Lagrangian Markov operators: In Section 2.5.1, we analyze the stochastic

properties of the governing Markov operator, such as its stationary distribution and

effective rates of convergence.

7. Combining all ingredients: In Section 2.5.2, we prove the main theorem by

approximating the desired probability distribution with the distribution of dimensions

of local Selmer groups over the set of polynomials satisfying the three aforementioned

conditions from Section 2.3. Combined with the rate of convergence of the governing

Markov oeprator from Section 2.5.1, we prove that the three key ingredients each

give rise to the rate of convergence of the desired probability distribution to the

Poonen-Rains distribution.

2.2 Effective theorems from the Riemann hypothesis

We review some of the preliminary results on global function fields K which will be utilized

in computing the probability distribution of prime Selmer groups associated to cyclic prime

twists of elliptic curves. Given a place v over K, we denote by Frobv the Frobenius element

at v. Denote by gL the genus of a finite separable field extension L/K.

2.2.1 Effective Chebotarev density theorem

The effective version of Chebotarev density theorem over global function fields can be

formulated as follows:

Theorem 2.2.1 (Effective Chebotarev density theorem). Fried and Jarden 2008, Proposi-

tion 6.4.8

Let L/K be a Galois extension of global function fields over Fq(t). Pick a conjugacy
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class C ⊂ G = Gal(L/K). If the constant fields of L and K are both equal to Fq, then

∣∣∣∣{v a place over K | Frobv ∈ C, dimFq (OK/v) = n} − |C|
|G|

qn

n

∣∣∣∣
<

2|C|
n|G|

[
(|G|+ gL)q

n
2 + |G|(2gK + 1)q

n
4 + (|G|+ gL)

]

The constraint that the constant fields of L and K are identical allows one to reconstruct

the counterpart of the Chebotarev density theorem with explicit error bounds for function

fields. Suppose the constant field of L, say Fql , is a non-trivial extension of the constant

field Fq of K. Then to compute the equation stated in Theorem 2.2.1, one is required to

compare whether the restriction of the conjugacy class C to Gal(Fql/Fq) agrees with the

n-th power of the arithmetic Frobenius τ : x 7→ xq as a cyclic generator of Gal(Fql/Fq). If

not, then there are no places of degree n whose Frobenius element lives inside the conjugacy

class C. Note that the secondary error term is of O(q n
2 ), which is obtained from the

validity of the generalized Riemann hypothesis over K = Fq(t). For the analogous effective

statements over number fields, see for example Lagarias and Odlyzko 1975. We note that

Galois extensions of global function fields with non-trivial constant field extensions also

satisfy the following equation:

lim
s→1+

∑
v a place over K

Frobv∈C
|{OK/v}|−s∑

v a place over K |{OK/v}|−s
= |C|
|G|

(2.5)

where s→ 1+ implies that s approaches 1 from above over the real values.

Using the explicit bounds obtained above, the density theorem can be obtained for any

two conjugacy classes of the Galois group of the extension L/K of function fields.

Corollary 2.2.2. Let L/K be a Galois extension of global function fields over Fq(t). Pick

two non-empty subsets S, S′ ⊂ G = Gal(L/K) stable under conjugation. Suppose the

following two conditions hold.

1. The constant fields of L and K are both equal to Fq.
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2. The size of the constant field q satisfies

q
n
2 − q

n
4 > 2(|G|+ gL + 2gK)

Then the following inequality holds.

∣∣∣∣∣ {v, a place over K | Frobv ∈ S, dimFq (OK/v) = n}
{v, a place over K | Frobv ∈ S′, dimFq (OK/v) = n}

− |S|
|S′|

∣∣∣∣∣
< 4 |S|
|S′|

(|G|+ gL + 2gK)
[

1
q

n
2 − q

n
4 − 2(|G|+ gL + 2gK)

]

In particular, if n ≥ 2 log 8+log(|G|+gL+2gK)
log q , then

∣∣∣∣∣ {v, a place over K | Frobv ∈ S, dimFq (K/v) = n}
{v, a place over K | Frobv ∈ S′, dimFq (K/v) = n}

− |S|
|S′|

∣∣∣∣∣ < 16 |S|
|S′|

(|G|+ gL + 2gK)q− n
2

Remark 2.2.3. We note that Deligne’s proof of the Weil conjectures determine the error

bounds of the effective Chebotarev density theorem. We refer to Rosen 2002, Theorem

9.13B for further discussions.

2.2.2 Erdös-Kac Theorem

Let m be an integer. We denote by w(m) the number of distinct irreducible factors of m.

The Erdös-Kac Theorem states that the normal order of w(m) is log logm.

Definition 2.2.4. From this section and onwards, given two positive integers n and q ≥ 5,

we denote by mn,q the quantity

mn,q := logn+ log log q (2.6)

The Erdös-Kac Theorem over global function fields K can be formulated as follows.

Theorem 2.2.5 (Erdös-Kac Theorem for Function Fields). Liu 2004, Theorem 1

Denote by w(f) the number of distinct irreducible factors dividing a polynomial f ∈
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Fn(Fq) of degree n. Then for any a ∈ R,

lim
n→∞

#
{
f ∈ Fn(Fq) | w(f)−mn,q√

mn,q
≤ a

}
#Fn(Fq)

= 1√
2π

∫ a

−∞
e− t2

2 dt

Fix positive integers α, β. We denote by

P [α < w(f) < β | f ∈ Fn(Fq)]

the probability that the number of irreducible factors of a square-free polynomial f of

degree n over Fq is greater than α and less than β. In other words,

P [α ≤ w(f) ≤ β | f ∈ Fn(Fq)] := #{f ∈ Fn(Fq) | α ≤ w(f) ≤ β}
#{f ∈ Fn(Fq)}

(2.7)

Let ρ be a positive number such that 0 < ρ < 1. For sufficiently large n, the number of

distinct prime divisors w(f) for almost every polynomial f ∈ Fn(Fq) satisfies

ρmn,q ≤ w(f) ≤ 2mn,q.

The effective upper bound on the number of polynomials in Fn(Fq) which does not satisfy

the condition above can be obtained as follows.

Theorem 2.2.6 (Effective Erdös-Kac). For sufficiently large n, there exists a fixed constant

0 < CEK < 4 such that

P [w(f) < ρmn,q or w(f) > 2mn,q | f ∈ Fn(Fq)] < CEK(n log q)ρ log ρ+1−ρ. (2.8)

Proof. From Tingting Feng, S. Wang, and Yang 2020, Theorem 1, we obtain that there

exists a constant 0 < C1 < 2 such that

P[w(f) > 2mn,q | f ∈ Fn(Fq)] < C1(n log q)−2 log 2−1 (2.9)
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From Tingting Feng, S. Wang, and Yang 2020, Theorem 1 and Liu 2004, Theorem 1, we

also obtain that there exists a constant 0 < C2 < 2 such that

P[w(f) < ρmn,q | f ∈ Fn(Fq)] < C2(n log q)−ρ log ρ+ρ−1 (2.10)

Combine two inequalities and the fact that for any 0 < ρ < 1,

ρ log ρ+ 1− ρ < 1 < 2 log 2 + 1,

we obtain that there exists 0 < CEK < 4 such that

P[w(f) < ρmn,q or w(f) > 2mn,q | f ∈ Fn(Fq)] < CEK(n log q)−ρ log ρ+ρ−1. (2.11)

Remark 2.2.7. We note that Theorem 2.2.6 can be also obtained from using the results

by Cohen, see for instance S. D. Cohen 1969, Theorem 6 and Cheong et al. 2022, Theorem

1.1.

2.3 Splitting partitions of polynomials

The objective of this section is to find a suitable subset of polynomials in Fn(Fq) over which

the behavior of Selπ(Eχf ) can be well understood. For this purpose, we introduce the

notion of splitting partitions of polynomials. Our goal is to show that almost all f ∈ Fn(Fq)

satisfies:

• The number of distinct irreducible factors of f is between ρmn,q and 2mn,q.

• The number of distinct irreducible factors of f∗ is at least (1 − ϵ)ρmn,q for some

small enough ϵ > 0.

• There is an irreducible factor of f∗ whose Frobenius element in Gal(K(E[ℓ])/K) ∼=

SL2(Fℓ) has order prime to ℓ.
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2.3.1 Splitting partition of polynomials over finite fields

In this subsection, we define the splitting partition with respect to a tuple of integers

(n,w), which will help us organize conditions that we wish to impose on irreducible factors

of f ∈ Fn(Fq).

Definition 2.3.1. Let m < n be two positive integers. We denote by

λ[m,n] := {(λi,j,k, i, j, k)}m≤i≤n,1≤j≤n,0≤k≤2 (2.12)

to denote a set of 3n(m− n+ 1) many 4-tuples. We also use the abbreviation λn := λ[1,n].

Definition 2.3.2. Throughout the rest of the manuscript, we denote by n the positive

integer

n := ⌊4(mn,q)2

log q ⌋ = ⌊4(logn+ log log q)2

log q ⌋. (2.13)

Definition 2.3.3. Fix two positive integers n and w. We say that λn is a splitting partition

with respect to (n,w) if it satisfies the following two conditions.

1. ∑n
i=1

∑n
j=1

∑2
k=0 λi,j,k · i · j = n.

2. ∑n
i=1

∑n
j=1

∑2
k=0 λi,j,k = w.

For example, if the irreducible factorization of a degree 6 polynomial f over Fq is given

by f = g2
1g2g3 such that g1 ∈ P1(1) and g2, g3 ∈ P2(2), then f admits a splitting partition

λ6 := {(λi,j,k, i, j, k)} that satisfies

λi,j,k =



2 if i = 2, j = 1, k = 2

1 if i = 1, j = 2, k = 1

0 otherwise

(2.14)

We introduce four properties of splitting partitions with respect to (n,w) which will be

of use in subsequent sections.
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Definition 2.3.4. Let λn be a splitting partition with respect to (n,w).

1. We say that λn is ℓ-th power free if

λi,j,k = 0 whenever j ≥ ℓ (2.15)

In other words, any polynomial f ∈ Fn(Fq) admitting the splitting partition λn is a

ℓ-th power free polynomial over Fq.

2. We say that λn is admissible if it satisfies

λi,j,k = 0 whenever i ≤ n (2.16)

In other words, any polynomial f ∈ Fn(Fq) admitting an admissible partition λn is

not divisible by irreducible polynomials of degree at most n.

3. We say that λn is forgettable if

λi,j,k = 0 whenever i > n (2.17)

In other words, any polynomial f ∈ Fn(Fq) admitting a forgettable partition λn is

not divisible by irreducible polynomials of degree greater than n.

4. We say that an admissible partition λn is locally arrangeable if

λi,j,0 ̸= 0 for some i > N and j ̸≡ 0 mod ℓ (2.18)

Any polynomial f ∈ Fn(Fq) admitting a locally arrangeable partition has an irre-

ducible factor in P0 of degree greater than n and of multiplicity coprime to ℓ.

Definition 2.3.5. We define the following set of splitting partitions with respect to a

tuple of positive integers (n,w).

• Λn,w := {λn | λn is a splitting partition with respect to (n,w)}
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• Λadn,w := {λn ∈ Λn,w | λn is a p-th power free admissible partition}

• Λforn,w := {λn ∈ Λn,w | λn is a forgettable partition}

• Λlan,w := {λn ∈ Λadn,w | λn is a locally arrangeable partition}

Using these splitting partitions, we further decompose the set Fn(Fq) of monic polyno-

mials of degree n as follows.

Definition 2.3.6. Given a polynomial f ∈ Fn(Fq) and an irreducible polynomial g over

Fq, denote by vg(f) the multiplicity of g as an irreducible factor of f . We define

f∗ :=
∏
g|f

g∈∪n
i=N+1P(d)

gvg(f), f∗ :=
∏
g|f

g∈∪N
i=1P(d)

gvg(f)
(2.19)

We note that f = f∗f∗, where the irreducible factors of f∗ are all of degree greater than N

(and likewise for f∗).

Definition 2.3.7. Let n,w be two positive integers. Given a polynomial f ∈ Fn(Fq),

denote by w(f) the number of distinct irreducible factors of f .

1. Given a positive integer w′ < w, we denote by

Fn,(w,w′)(Fq) := {f ∈ Fn(Fq) | w(f) = w and w(f∗) = w′) (2.20)

2. Given a positive integer N < n, we denote by

F(n,N),(w,w′)(Fq) := {f ∈ Fn,(w,w′)(Fq) | deg f∗ = N and f∗ is ℓ-th power free}

(2.21)

3. Given a locally arrangeable partition λ ∈ Λla
N,w′ and a forgettable partition η ∈

Λforn−N,w−w′ , we denote by

F
(λ,η)
(n,N),(w,w′)(Fq) := {f ∈ F(n,N),(w,w′)(Fq) | f∗ admits λ ∈ ΛlaN,w′ , f∗ admits η ∈ Λforn−N,w−w′}.

(2.22)
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4. We denote by F̂(n,N),(w,w′)(Fq) the following subset of F(n,N),(w,w′)(Fq):

F̂(n,N),(w,w′)(Fq) :=
⊔

λ∈Λla
N,w′

⊔
η∈Λfor

n−N,w−w′

F
(λ,η)
(n,N),(w,w′)(Fq). (2.23)

Remark 2.3.8. The construction of F (λ,η)
(n,N),(w,w′)(Fq) is closely related to the construction

of fan structure from Klagsbrun, Mazur, and Rubin 2014, Chapter 2, 3, 4. Given two sets

B and C, denote by

B ∗ C := {{δ} ∪ {q} | δ ∈ B, q ∈ C \ {q}}, (2.24)

as stated in Klagsbrun, Mazur, and Rubin 2014, Chapter 4, Page 1085. Note that if

B ∩ C = ∅, then B ∗ C = B × C. For any positive integer m > 0, inductively define

Pk(i)∗1 = Pk(i)

Pk(i)∗m = Pk(i)∗(m−1) ∗ Pk(i)
(2.25)

Then one has

F
(λ,η)
(n,N),(w,w′)(Fq) =

∏
i,j,k

Pk(i)∗λi,j,k

×
∏
î,ĵ,k̂

Pk(i)∗ηî,ĵ,k̂

 (2.26)

To understand how the sizes of four types of subsets of Fn(Fq) are related to each other,

we prove the following proposition, which shows that for sufficiently large n, any monic

polynomial of degree d cannot have too many factors whose degree is at most n.

Proposition 2.3.9. Suppose mn,q := logn+log log q satisfies the condition that mn,q > ee
e .

Let ϵ = 1
log logmn,q

. Then

#{f ∈ Fn(Fq) | w(f∗) > ϵmn,q} < qn · 4 · (n log q)−(logmn,q)1−
√

ϵ (2.27)

where f∗ is the product of all irreducible factors (with multiplicities) of f of degree at most

n.
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Proof. We thank the reviewer for suggesting the following strategy of the proof. Let Q

be a set of irreducible monic polynomials of degree at most n. By Merten’s theorem for

global function fields, the number of monic polynomials of degree n with at least r distinct

irreducible factors from Q is at most

qn · 1
r! ·

∑
g∈Q

q− deg(g)

 (2.28)

For our purposes, we let

Q := ∪ni=1P(i) (2.29)

where we recall that mn,q := logn+ log log q and n := ⌊4(logn+log log q)2

log q ⌋ = ⌊4m2
n,q

log q ⌋. Then

∑
g∈Q

q− deg g =
n∑

k=1
#P(i) · q−i ≤ 2 ·

n∑
k=1

1
i
≤ 2 log(n) + 2 ≤ 4 logmn,q + 4 log 2 + 2. (2.30)

Suppose that mn,q > ee
e . We let

r := ϵmn,q, ϵ := 1
log logmn,q

(2.31)

Sterling’s approximation theorem shows that for such n satisfying mn,q > ee
e ,

1
r! <

1√
2πr

(
r
e

)r
= 1√

2πϵmn,q
· (n log q)−ϵ logmn,q−ϵ log ϵ+ϵ

(2.32)

We note that because 0 < ϵ < 1, it follows that 0 < ϵ − ϵ log ϵ < 1. Hence, the above

equation can be simplified as

1
r! <

1
√
πmn,q

· (n log q)−ϵ logmn,q+1 (2.33)
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Combining with equation (2.28), we obtain

#{f ∈ Fn(Fq) | w(f∗) > ϵmn,q} < qn · 4 logmn,q + 4 log 2 + 2
√
πmn,q

· (n log q)−ϵ logmn,q+1

< qn · 4 · (n log q)−ϵ logmn,q+1

(2.34)

The statement of the proposition follows from the inequality that whenever mn,q > ee
e , we

have ϵ logmn,q − 1 > (logmn,q)1−
√
ϵ.

We now show that the set Fn(Fq) can be approximated by disjoint union of subsets of

form F
(λ,η)
(n,N),(w,w′) where λ is a locally arrangeable splitting partition, and η is a forgettable

splitting partition.

Proposition 2.3.10. Let ρ ∈ (0, 1) be a positive number. Suppose n is a positive integer

such that mn,q > ee
e. Let ϵ = 1

log logmn,q
. Then

#Fn(Fq)−
2mn,q∑

w=ρmn,q

w∑
w′=(1−ϵ)w

n∑
N=w′n

F̂(n,N),(w,w′)(Fq)

≤ 4 · qn ·max
(
n−ρ log ρ+1−ρ,m2

n,q ·
(

ℓ

ℓ2 − 1

)(1−ϵ)ρmn,q
) (2.35)

In other words, the above proposition shows that given ρ ∈ (0, 1), almost every monic

polynomial f of degree n satisfies:

1. The number of distinct irreducible factors of f is between ρmn,q and mn,q.

2. The number of distinct irreducible factors of f of degree at most n is at most

(1− ϵ)ρmn,q for some small enough ϵ > 0

3. The polynomial f∗ is ℓ-th power free, and has at least 1 irreducible factor inside P0

of degree at least n.
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Proof. By Theorem 2.2.6 and Proposition 2.3.9, for any small enough ϵ > 0,

#Fn(Fq)−
2mn,q∑

w=ρmn,q

w∑
w′=(1−ϵ)w

#Fn,(w,w′)(Fq) ≤ 4 · qn · n−ρ log ρ+1−ρ (2.36)

Using the definition of f∗, it follows that if f∗ is not ℓ-th power free, then the degree of

the ℓ-th power free part of f∗ is at most n− ℓn. Therefore, one obtains that

#Fn,(w,w′)(Fq)−
n∑

N=w′n

#F(n,N),(w,w′)(Fq) ≤ qn · n−4(ℓ−1)(logn)2 (2.37)

Using the definition of Λn,w it follows that for any four integers n > N and w > w′,

F(n,N),(w,w′) =
⊔

λ∈Λad
N,w′

⊔
η∈Λfor

n−N,w−w′

F
(λ,η)
(n,N),(w,w′) (2.38)

Applying Theorem 2.2.1 with respect to the field K(E[ℓ])/K, we obtain that

n∑
N=w′n

#F(n,N),(w,w′)(Fq)−
∑

λ∈Λla
N,w

∑
η∈Λfor

n−N,w−w′

#F (λ,η)
(n,N),(w,w′)(Fq)

 ≤ qn · ( ℓ

ℓ2 − 1

)w′

(2.39)

where the quantity
(

ℓ
ℓ2−1

)w′

is the leading term of the probability that none of the

irreducible factors of f∗ are in P0. Combining equations (2.36), (2.37), and (2.39), we

obtain the statement of the proposition.

2.3.2 Equidistribution of local characters

In this subsection, we prove that for sufficiently large n, the probability distribution that

the set of global cyclic order-ℓ characters induced from the set of irreducible polynomials

of degree n forms a uniform distribution when restricted to the set of finite Cartesian

products of local unramified cyclic order-ℓ characters at finitely many places of degree

strictly less than n. The probabilistic behavior of the restrictions of global characters over

global function fields are well-studied, for instance as seen from the following Theorem



38

from Hsu 1998.

Theorem 2.3.11 (Theorem 2.1, Hsu 1998). Let h be any square-free polynomial over Fq.

Let χh be a non-trivial character χ : (Fq[t]/h)× → C×. Then

∑
v∈P(i)

χ(v) ≤ (deg h+ 1)q
i
2

i
. (2.40)

An immediate corollary of the theorem above is that the effective error bounds of the

density of whether the restriction of a global cyclic order-ℓ character associated to an

irreducible polynomial forms a uniform distribution over the set of finite cartesian products

of local unramified cyclic characters is given by the order of q− n
2 .

Corollary 2.3.12. Let K = Fq(t) be a global function field such that µℓ ⊂ Fq. Let

h1, h2, · · · , hw be irreducible polynomials over Fq. Given a place v of degree i, denote by(
v
hk

)
ℓ
∈ µℓ the ℓ-th power residue symbol. Then for any a ∈ µ⊕w

ℓ ,

∣∣∣∣∣∣∣
#{v ∈ P(i) |

((
v
hk

)
ℓ

)w
k=1

= a ∈ µ⊕w
ℓ }

#P(i) − 1
pw

∣∣∣∣∣∣∣ <
(

w∑
k=1

deg hk + 1
)
· q−i/2/i. (2.41)

Proof. We thank the reviewer for suggesting the strategy of the proof outlined as follows.

For any abelian group H and Ω := {χ : H → C} the set of characters of H, the

orthogonality of characters imply that

∑
χ∈Ω

χ(g1)
χ(g2) =


|H| if g1 = g2

0 otherwise .
(2.42)

We let H to be the abelian group isomorphic to µ⊕w
ℓ generated by the Legendre symbols

{(
·
h1

)
ℓ

,

(
·
h2

)
ℓ

, · · · ,
(
·
hw

)
ℓ

}
(2.43)
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Suppose g2 = a ∈ µ⊕w
ℓ . Using the orthogonality of characters, we obtain

∑
v∈P(i)

∑
χ∈Ω

χ
((

v
h1

)
ℓ
,
(
v
h2

)
ℓ
, · · · ,

(
v
hw

)
ℓ

)
χ(a) = #

{
v ∈ P(i) |

((
v

hk

)
ℓ

)w
k=1

= a

}
· ℓw (2.44)

The left hand side of the above equation can be rewritten as

= #P(i) +
∑
χ∈Ω
χ ̸=id

∑
v∈P(i)

χ
((

v
h1

)
ℓ
,
(
v
h2

)
ℓ
, · · · ,

(
v
hw

)
ℓ

)
χ(a) (2.45)

Using Theorem 2.3.11, the summands of the second terms have absolute values bounded

above by (∑w
k=1 deg(hk) + 1) · qi/2/i. Hence, we obtain that

∣∣∣∣∣∣∣
#{v ∈ P(i) |

((
v
hk

)
ℓ

)w
k=1

= a ∈ µ⊕w
ℓ }

#P(i) − 1
pw

∣∣∣∣∣∣∣ < (
w∑
k=1

deg(hi) + 1) · q
−i/2

i
. (2.46)

We also prove that given a choice of an elliptic curve E/K, the equidistribution of

characters still holds for subsets of places v inside P0(i), P1(i), and P2(i).

Corollary 2.3.13. Let E be an elliptic curve over K satisfying conditions in (1.28). Sup-

pose that h1, h2, · · · , hw are irreducible polynomials over Fq such that K( ℓ
√
hk)∩K(E[ℓ]) =

K for all 1 ≤ k ≤ w. Let n be an integer such that
∑w
k=1 deg hk ≤ n and w ≤ 2mn,q.

Then for sufficiently large n, for any element a ∈ µ⊕w
ℓ , and i > n, there exists a constant

CE,ℓ,q > 0 depending only on E, ℓ, q such that

∣∣∣∣∣∣∣
#{v ∈ Pk(i) |

((
v
hk

)
ℓ

)w
k=1

= a ∈ µ⊕w
ℓ }

#Pk(i)
− 1
pw

∣∣∣∣∣∣∣ < (n log q)−2mn,q+1. (2.47)

Proof. Given an irreducible polynomial h over Fq, consider the cyclic order-ℓ abelian

extension K( ℓ
√
h)/K. Then if v is coprime to h, then the ℓ-th power residue symbol

(
v
h

)
ℓ
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defines the action of the Frobenius element Frobv on ℓ
√
h via

Frobv( ℓ
√
h) =

(
v

h

)
ℓ

ℓ
√
h

which in fact originates from the definition of the Artin reciprocity map, see Rosen 2002,

Chapter 3, Chapter 10 for a detailed description.

With the irreducible polynomials h1, h2, · · · , hw as stated, consider the field extension

L := K(E[ℓ], ℓ
√
h1, · · · , ℓ

√
hw). Because K( ℓ

√
hk) ∩K(E[ℓ]) = K for all k, it follows that

Gal(L/K) ∼= SL2(Fℓ)× µ⊕k
ℓ (2.48)

and its conjugacy classes are of form C × {a}, where C ⊂ SL2(Fℓ) is a conjugacy class and

a ∈ µ⊕k
ℓ is an element. Recall that

#Gal(L/K) = ℓw · (ℓ3 − ℓ). (2.49)

By Riemann-Hurwitz theorem,

gL ≤ ℓw · (2gK(E[ℓ]) − 2 + ℓ3). (2.50)

Applying Corollary 2.2.2 and Corollary 2.3.12 proves the statement of the theorem.

2.4 Local Selmer groups

The objective of this section focuses on defining what is called the local Selmer groups

of E associated to a cyclic order ℓ local character, and understanding their dimensions

over the subset of polynomials F (n,N), (w,w′)(λ,η)(Fq). These results will be of relevant

use in Section 2.5, where we will understand the dimensions of Selπ(Eχf ) as f ranges over

Fn(Fq).
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2.4.1 Local twists

The constructions and properties of the local Selmer groups, as explored in Mazur and

Rubin 2007; Klagsbrun, Mazur, and Rubin 2013; Klagsbrun, Mazur, and Rubin 2014,

rests upon utilizing results regarding Galois cohomology groups and Poitou-Tate duality

theorems over number fields, the theories of which also hold valid over global function fields

Fq(t), see for example Chapter 1 of Milne 2006 for a rigorous treatment of Poitou-Tate

duality theorems for global function fields. We further enrich these results by using the

properties that hold over Fq(t) explored from Section 2.2 which are not necessarily proven

for number fields.

Definition 2.4.1. We introduce the following notations regarding local Selmer groups of

E associated to cyclic order ℓ characters χ ∈ Hom(Gal(Kv/Kv, µℓ), some of which are as

stated in Klagsbrun, Mazur, and Rubin 2014, Sections 5, 7, 9.

• Given a local character χ ∈ Ωσ, the local Selmer group of E associated to the cyclic

order-ℓ character χ is denoted as

Sel(E[ℓ], χ) := Ker
(
H1

ét(K,E[ℓ])→ ⊕vH1
ét(Kv, E[ℓ])/Hχv

)
, (2.51)

where

Hχv :=


imδχv if v ∈ Σ(σ)

H1(OKv , E[ℓ]) if v ̸∈ Σ(σ)
(2.52)

Under all but the third assumption stated in (1.28), we use the isomorphism

H1
ét(K,E[ℓ]) ∼= H1

ét(K,Eχ[π]),

H1
ét(Kv, E[ℓ]) ∼= H1

ét(Kv, E
χ
v [π])

to define the local Selmer group Sel(E[ℓ], χ), see in particular Mazur and Rubin 2007,

Proposition 4.1, Definition 4.3. Even though the reference particularly constructs

these groups over number fields, the relevant results extend to global function fields
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as well.

• If v ∈ P0, then Hχv is trivial. If v ∈ P1 ∩ Σ(σ), then there is a unique 1-dimensional

ramified subspace Hχv . If v ∈ P2 ∩ Σ(σ), then there are ℓ distinct 2-dimensional

ramified subspaces Hχv , each corresponding to a tamely totally ramified cyclic ℓ

extension over Kv.

• Given a local character χ ∈ Ωσ, we denote by rk(χ) the dimension of Sel(E[ℓ], χ) as

an Fℓ-vector space.

• Denote by tχ(v) the dimension of the image of the local Selmer group Sel(E[ℓ], χ)

with respect to the localization map at v, i.e.

tχ(v) := dimFℓ
im
(
locv : Sel(E[ℓ], χ)→ H1(OKv , E[ℓ])

)
(2.53)

We note that if v ∈ Pi, then 0 ≤ tχ(v) ≤ i.

The relation between tχ(v) and the differences between ranks of local Selmer groups

associated to characters χ ∈ Ωσ and χ′ ∈ Ωχ,v is stated in Klagsbrun, Mazur, and Rubin

2014, Proposition 7.2.

Proposition 2.4.2. Let E be a non-isotrivial elliptic curve over K satisfying the conditions

from equation (1.28). Fix a square-free product of places σ coprime to elements in Σ, and

let v be a place of K such that v ̸∈ Σ(σ). Fix a character χ ∈ Ωσ. Then for any χ′ ∈ Ωχ,v,

rk(χ′)− rk(χ) =



2 if v ∈ P2 and tχ(v) = 0 for exactly ℓ− 1 many χ′ ∈ Ωχ,v

1 if v ∈ P1 and tχ(v) = 0

−1 if v ∈ P1 and tχ(v) = 1

−2 if v ∈ P2 and tχ(v) = 2

0 otherwise

(2.54)

Proof. The proof follows from adapting the proof of Klagsbrun, Mazur, and Rubin 2014,
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Proposition 7.2. The two conditions required in the statement of Klagsbrun, Mazur, and

Rubin 2014, Proposition 7.2, which are

1. Pic(OK,Σ) = 0

2. The map O×
K,Σ/(O

×
K,Σ)ℓ → ∏

v∈ΣK
×
v /(K×

v )ℓ is injective

hold regardless of the choice of Σ because OK = Fq[t] is a Euclidean domain.

The probability that tχ(v) achieves a certain value can be obtained from a Chebotarev

condition over K obtained from Sel(E[ℓ], χ), as shown in Klagsbrun, Mazur, and Rubin

2014, Proposition 9.4.

Proposition 2.4.3 (Local twists of π-Selmer groups). Let E be a non-isotrivial elliptic

curve over K satisfying the conditions from equation (1.28). Fix a square-free product of

places σ coprime to elements in Σ. Fix a local character χ ∈ Ωσ.

Let di,j be given by the following table:

di,j i = 0 i = 1 i = 2

j = −2 × × 1− (ℓ+ 1)ℓ−rk(χ) + ℓ1−2rk(χ)

j = −1 × 1− ℓ−rk(χ) ×

j = 0 1 × (ℓ+ 1)(ℓ−rk(χ) − ℓ−2rk(χ))

j = 1 × ℓ−rk(χ) ×

j = 2 × × ℓ−2rk(χ)

Here, the term "×" denotes the case where such a difference of ranks cannot occur. Let

DE,ℓ,q > 0 be a constant defined as

DE,ℓ,q := ℓmaxχ∈ΩE
(rk(χ)) (2.55)

Then there exists a fixed constant CE,ℓ,q > 0 which depends only on the elliptic curve E, ℓ,

and q such that for every d > 12 log ℓ+2 logDE,ℓ,q+(6 log ℓ)·#Σ(σ)
log q ,

∣∣∣∣#{v ∈ Pi(d) | v ̸∈ Σ(σ) and tχ(v) = j}
#{v ∈ Pi(d) | v ̸∈ Σ(σ)} − di,j

∣∣∣∣ < CE,ℓ,q · ℓ3#Σ(σ) · q− d
2 . (2.56)
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Proof. The theorem can be proved in an analogous way to how Klagsbrun, Mazur, and

Rubin 2014, Proposition 9.4 was proved over number fields. Nevertheless, it is necessary to

apply the effective Chebotarev density theorem to calculate the explicit error bounds.

Governing field extension for tχ(v)

We first review the ideas presented in Klagsbrun, Mazur, and Rubin 2014, Proposition

9.4. Denote by Res the restriction morphism of cohomology groups:

H1
ét(K,E[ℓ])→ H1

ét(K(E[ℓ]), E[ℓ])Gal(K(E[ℓ])/K) = Hom(Gal(K(E[ℓ])/K(E[ℓ])), E[ℓ])Gal(K(E[ℓ])/K).

Let Fσ,χ be the fixed field of the following subgroup of Gal(K(E[ℓ])/K(E[ℓ])):

⋂
c∈Sel(E[ℓ],χ)

Ker
(
Res(c) : Gal(K(E[ℓ])/K(E[ℓ]))→ E[ℓ]

)

The field Fσ,χ satisfies the following properties, as shown in Klagsbrun, Mazur, and Rubin

2014, Proposition 9.3:

1. Fσ,χ is Galois over K.

2. There is a Gal(K(E[ℓ])/K)-module isomorphism Gal(Fσ,χ/K(E[ℓ])) ∼= (E[ℓ])rk(χ).

3. Fσ,χ/K is unramified outside of places in Σ(σ)

The aforementioned condition holds for p = 2 whenever E is a non-isotrivial elliptic curve

such that Gal(K(E[2])/K) ∼= S3.

Constant field of Fσ,χ

Suppose that E has a place v of split multiplicative reduction. Then the constant field

of Fσ,χ is equal to Fq. It suffices to show that any basis element c ∈ Sel(E[ℓ], χ) maps the

arithmetic Frobenius τ ∈ Gal(Fq/Fq) to the identity element of E[ℓ]. Consider the local

Kummer map imδχv at the place v.Then E is a Tate curve at v. There exists an element
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q ∈ K×
v with positive valuation such that the Kv-rational points of E is given by

E(Kv) ∼= Kv
×
/⟨q⟩,

which implies for any positive number n,

E[n](Kv) ∼= ⟨q
1
n , µn⟩/⟨q⟩,

see for example [Section 3.3]Bandini, Longhi, and Vigni 2009 for a detailed discussion on

these results. To analyze the condition that the basis element c ∈ Sel(E[ℓ], χ) maps the

arithmetic Frobenius τ ∈ Gal(Fq/Fq) to the identity element of E[ℓ], it suffices to verify

that Qτ −Q = O for Q ∈ E[ℓ](Kv), which follows from the assumption that the constant

field of Kv contains the primitive ℓth-root of unity.

Frobenius conjugacy class

Using the techniques of the proof from Klagsbrun, Mazur, and Rubin 2014, Proposition

9.4, one can show that the non-zero values of di,j from the table of the statement of

the proposition are ratios of two non-empty subsets Si,j , S′
i ⊂ Gal(Fσ,χ/K) stable under

conjugation, i.e. di,j = #Si,j

#S′
i

. These subsets satisfy the condition that


v ∈ Pi(d) ⇐⇒ Frobv ∈ S′

i

dimFℓ
imδχv = j and v ∈ Pi(d) ⇐⇒ Frobv ∈ Si,j

(2.57)

We refer to Klagsbrun, Mazur, and Rubin 2014, Proposition 9.4 for a detailed description

of what these subsets are in Gal(Fσ,χ/K).

Effective error bounds

Because the constant field of Fσ,χ is Fq, we can use Theorem 2.2.1 to bound the error

terms of the following equation:

∣∣∣∣#{v ∈ Pi(d) | v ̸∈ Σ(σ) and tχ(v) = j}
#{v ∈ Pi(d) | v ̸∈ Σ(σ)} − di,j

∣∣∣∣ . (2.58)
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To apply Theorem 2.2.1, one needs to understand how the groups G as well as the

genus gFσ,χ grow in terms of deg σ. Proposition 2.4.2 shows that

#Gal(Fσ,χ/K) = [Fσ,χ : K(E[ℓ])] ≤ DE,ℓ,q · ℓ2#Σ(σ) (2.59)

is a constant that only depends on the choice of the elliptic curve E, q, and ℓ. Recall that

Fσ,χ/K is unramified away from v ∈ Σ(σ). Hence, the Riemann-Hurwitz theorem implies

that

gFσ,χ ≤ DE,ℓ,q · ℓ2#Σ(σ) · (ℓ3 − ℓ) ·#Σ(σ).

Then one obtains that

#Gal(Fσ,χ/K) + gFσ,χ ≤ DE,ℓ,q · ℓ2#Σ(σ) · (1 + (ℓ3 − ℓ) ·#Σ(σ))

≤ DE,ℓ,q · ℓ2#Σ(σ)+3 ·#Σ(σ)

≤ DE,ℓ,q · ℓ3#Σ(σ)+3

(2.60)

Corollary 2.2.2 implies that for any d satisfying

d >
12 log ℓ+ 2 logDE,ℓ,q + (6 log ℓ) ·#Σ(σ)

log q (2.61)

the following inequality holds:

∣∣∣∣#{v ∈ Pi(d) | v ̸∈ Σ(σ) and tχ(v) = j}
#{v ∈ Pi(d) | v ̸∈ Σ(σ)} − di,j

∣∣∣∣ < 16 ·DE,ℓ,q · ℓ3#Σ(σ)+3 · q− d
2 .

Letting CE,ℓ,q = 16 ·DE,ℓ,q · ℓ3 proves the statement of the theorem.

Remark 2.4.4. The technical condition on the degree of the place v will be used in the

upcoming sections when we compute the probability distribution of local Selmer ranks of

elliptic curves twisted by cyclic order-ℓ characters associated to ℓ-th power free polynomials

f of large enough degree n. We will show that for almost all f ∈ Fn(Fq), the cardinality

of the associated set Σ(σ) is bounded above by 2mn,q := 2(logn+ log log q) by Theorem
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2.2.5. This in turn will allow us to compute the probability distribution of π-Selmer rank

of the cyclic order-ℓ twists of E from local Selmer ranks Sel(E[ℓ], χ).

Remark 2.4.5. Proposition 2.4.3 states that if Gal(K(E[ℓ])/K) ⊃ SL2(Fℓ), then the

Chebotarev density theorem completely determines the variations of π-Selmer groups of

elliptic curves twisted by local cyclic order-ℓ characters. This is not the case if the Galois

group Gal(K(E[ℓ])/K) does not contain SL2(Fℓ), as carefully studied in Friedlander et al.

2013 and Alexander Smith 2022a. For example, suppose that p = 2 and Gal(K(E[ℓ])/K) =

Z/3Z. Friedlander, Iwaniec, Mazur, and Rubin showed that the variation of 2-Selmer

groups of certain subfamilies of quadratic twists of elliptic curves are governed by the spin

of odd principal prime ideals defined over totally real cyclic Galois extensions Friedlander

et al. 2013, Chapter 3, Chapter 10. Smith uses a generalized notion of spin of prime ideals

called “symbols of prime ideals" Alexander Smith 2022a, Definition 3.11, Proposition 3.14

to classify which classes of prime ideals equivalently varies the Selmer groups of twistable

modules, a generalized notion of quadratic twist families of abelian varieties Alexander

Smith 2022a, Chapter 4. Thankfully, Proposition 2.4.3 demonstrates that one does not

require to use the spin of prime ideals to determine the variations of the dimensions of

Sel(E[ℓ], χ) as χ varies over the set of Cartesian product of local characters.

2.4.2 Auxiliary places

Given a polynomial f ∈ Fn(Fq), recall from the introduction that we can identify a cyclic

order-ℓ character χf ∈ Hom(Gal(K/K), µℓ) via the quotient map

χf : Gal(K/K) ↠ Gal(Lf/K)→ µℓ

that maps the generator σf ∈ Gal(Lf/K) to ζℓ. Given a place v of K, denote by

χf,v ∈ Hom(Gal(Kv/Kv), µℓ) the restriction of the global character χf to Kv.

The goal of this subsection is to understand the distribution of rk((χf,v)v) as f ranges

over the set F (λ,η)
(n,N),(w,w′)(Fq) for some λ ∈ ΛlaN,w′ and η ∈ Λforn−N,w−w′ . To do so, we introduce

the notion of an auxiliary place of a polynomial f ∈ F (λ,η)
(n,N),(w,w′)(Fq).
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Definition 2.4.6. Let f ∈ Fn(Fq). Denote by f , f∗, and f
∗ the square-free polynomial

over Fq defined as

f :=
∏
g|f

g∈P1∪P2

g, f∗ :=
∏
g|f∗

g∈P1∪P2

g, f
∗ :=

∏
g|f∗

g∈P1∪P2

g (2.62)

i.e. they are products of irreducible factors of f (and f∗ and f∗, respectively) of degree

greater than n which lies in P1 or P2.

Definition 2.4.7 (Auxiliary place). Given positive integers n > N and w > w′, let

λ ∈ ΛlaN,w′ and η ∈ Λforn−N,w−w′ be splitting partitions.

• Given a degree n polynomial f ∈ F
(λ,η)
(n,N),(w,w′)(Fq), an auxiliary place of f is an

irreducible polynomial g ∈ P0 of maximal degree dividing f , i.e. it is an irreducible

polynomial which satisfies the condition that λi,j,0 = 0 whenever i > deg(fa).

• We denote by da the degree of an auxiliary place fa of any f ∈ F (λ,η)
(n,N),(w,w′)(Fq). By

definition, the degree is invariant with respect to choices of f .

• We denote by fa the auxiliary factor of f defined as

fa :=
∏
g|f

g∈P0(da)

gvg(f). (2.63)

• We denote by da∗ the degree of the auxiliary factor of f , which can be written as

da∗ := da ·

ℓ−1∑
j=1

λda,j,0

 . (2.64)

• Fix a polynomial h ∈ Fn−da∗ (Fq). We define the following subset of F (λ,η)
(n,N),(w,w′)(Fq):

F
(λ,η),h
(n,N),(w,w′)(Fq) :=

{
f ∈ F (λ,η)

(n,N),(w,w′)(Fq) |
f

fa
= h

}
(2.65)

The above subset is empty if h does not divide any polynomial in F
(λ,η)
(n,N),(w,w′)(Fq).
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By definition, the following relation holds:

F
(λ,η)
(n,N),(w,w′)(Fq) =

⊔
h∈Fn−da∗ (Fq)

F
(λ,η),h
(n,N),(w,w′)(Fq) (2.66)

Definition 2.4.8. Let f ∈ Fn(Fq). We denote by Σf the set of places

Σf := ΣE ∪ {v ∈ P | v divides f∗} (2.67)

We note that if f ∈ F (λ,η)
(n,N),(w,w′), then #Σf = #ΣE + w′.

Definition 2.4.9. Given a polynomial f ∈ F (λ,η)
(n,N),(w,w′)(Fq), we use the abbreviation Ω

f
∗

to denote the set of finite Cartesian products of local characters

Ω1 =
∏
v∈Σf

Hom(Gal(Kv/Kv), µℓ)

Ω
f

∗ =
∏
v∈Σf

Hom(Gal(Kv/Kv), µℓ)×
∏
v|f∗

v∤fa

Homram(Gal(Kv/Kv), µℓ)
(2.68)

such that the component χv is ramified if v | f∗, and we ignore the local characters at any

places v dividing the auxiliary factor fa of f . In particular, we enlarge the set Σ from

Definition 1.3.8 to include places v | f∗ and set Σ = Σf , even though χf,v is ramified at

such places.

In order to make this reformulation more concrete, we present an alternative way

to define the subset F (λ,η)
(n,N),(w,w′)(Fq) given partitions λ := {(λi,j,k, i, j, k)} ∈ Λad

N,w′ and

η := {(ηî,ĵ,k̂, î, ĵ, k̂)} ∈ Λforn−N,w−w′ . Given a set X, we denote by

PConfn(X) := {(x1, · · · , xn) ∈ X⊕n | xi ̸= xj for all 1 ≤ i < j ≤ n} (2.69)

the set-theoretic ordered configuration set of n elements in X. There is a transitive action



50

of the symmetric group Sn on PConfn(X), which prompts us to define

Confn(X) := PConfn(X)/Sn (2.70)

the set-theoretic unordered configuration set of n elements in X. Using these notations,

we can define the subset F (λ,η)
(n,N),(w,w′)(Fq) as

F
(λ,η)
(n,N),(w,w′)(Fq) :=

∏
i,j,k

Confλi,j,k
(Pk(i))

×
∏
î,ĵ,k̂

Confηî,ĵ,k̂
(Pk̂ (̂i))

 (2.71)

where we regard Conf0(X) = {0}. In particular, if a polynomial f ∈ F
(λ,η)
(n,N),(w,w′)(Fq)

admits an irreducible factorization via

f∗ :=
∏
i,j,k

λi,j,k∏
m=1

gji,j,k,m

f∗ :=
∏
î,ĵ,k̂

ηî,ĵ,k̂∏
m=1

hĵ
î,ĵ,k̂,m

(2.72)

where {gi,j,k,m} and {hî,ĵ,k̂,m} are sets of irreducible factors of f , then under this identifi-

cation a polynomial f ∈ F (λ,η)
(n,N),(w,w′)(Fq) can be represented as an element

∏
i,j,k

{gi,j,k,m}
λi,j,k

m=1

×
∏
î,ĵ,k̂

{hî,ĵ,k̂,m}
ηi,j,k

m=1

 (2.73)

Using this identification, we can reformulate Definition 2.4.7 as follows. There is a

natural projection map

ϕda :

∏
i,j,k

Confλi,j,k
(Pk(i))

×
∏
î,ĵ,k̂

Confηî,ĵ,k̂
(Pk̂ (̂i))



→

 ∏
i,j,k

(i,k) ̸=(da,0)

Confλi,j,k
(Pk(i))

×
∏
î,ĵ,k̂

Confηî,ĵ,k̂
(Pk̂ (̂i))


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which forgets all the irreducible factors of f ∈ F (λ,η)
(n,N),(w,w′)(Fq) lying in∏ℓ−1

j=1 Confλda,j,0(P0(da)).

Then

F
(λ,η),h
(n,N),(w,w′)(Fq) := ϕ−1

da
(h). (2.74)

where h ∈ Fn−da∗ (Fq) such that h | f for some f ∈ F (λ,η)
(n,N),(w,w′)(Fq).

Using the notations introduced in this subsection, an immediate result of Corollary

2.3.13 can be stated as follows.

Corollary 2.4.10. Fix a locally arrangeable partition λ ∈ ΛlaN,w′ and a forgettable partition

η ∈ Λforn−N,w−w′ . Recall that da is the auxiliary degree, and da∗ is the degree of the auxiliary

factor of any polynomial f ∈ F (λ,η)
(n,N),(w,w′)(Fq).

Fix a polynomial h ∈ Fn−da∗ (Fq). If the set F (λ,η),h
(n,N),(w,w′) is non-empty and w ≤ 2mn,q,

then for any character χ ∈ Ω
f

∗,

∣∣∣∣∣∣
#{f ∈ F (λ,η),h

(n,N),(w,w′)(Fq) | (χf,v)v∈Σ(f) = χ}

#F (λ,η),h
(n,N),(w,w′)(Fq)

− 1
ℓ#ΣE(f)

∣∣∣∣∣∣ < (n log q)−2mn,q+1

Equivalently, we have

∣∣∣∣∣∣
#{f ∈ ϕ−1

da
(h) | (χf,v)v∈Σ(f) = χ}
#ϕ−1

da
(h)

− 1
ℓ#ΣE(f)

∣∣∣∣∣∣ < (n log q)−2mn,q+1

Proof. We note that there exists a bijection between the following sets:

F
(λ,η),h
(n,N),(w,w′)(Fq)→

ℓ−1∏
j=1

Confλda,j,0(P0(da))

f = hfa 7→ fa

(2.75)

There is an ∏ℓ−1
j=1 Sλda,j,0-equivariant covering map

F :
ℓ−1∏
j=1

PConfλda,j,0(P0(da))→
ℓ−1∏
j=1

Confλda,j,0(P0(da)) (2.76)

where for any fixed fa, every element in F−1(fa) restricts to an identical character in Ω
f

∗ .
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It hence suffices to compute the desired probability over the ordered configuration set

PConfλda,j,0(P0(da)). Iteratively applying Corollary 2.3.13 by at most w − 1 many times

gives the result.

Definition 2.4.11. Given a locally arrangeable partition λ ∈ Λla
N,w′ and a forgettable

partition η ∈ Λforn−N,w−w′ , consider the set of polynomials F (λ,η)
(n,N),(w,w′)(Fq).

Fix 1 ≤ j∗ ≤ ℓ − 1 and 0 ≤ k∗ ≤ 2. Let d be an integer such that d ̸= da and

λd,j∗,k∗ ̸= 0.

1. We denote by ϕd,j∗,k∗ the canonical projection map

ϕd,j∗,k∗ : F (λ,η)
(n,N),(w,w′)(Fq)→


∏
i,j,k

(i,k) ̸=(da,0)
(i,j,k) ̸=(d,j∗,k∗)

Confλi,j,k
(Pk(i))

×
∏
î,ĵ,k̂

Confηî,ĵ,k̂
(Pk̂ (̂i))



which forgets the irreducible factors of f ∈ F (λ,η)
(n,N),(w,w′)(Fq) lying in the set

Confλd,j∗,k∗ (Pk∗(d))×
ℓ−1∏
j=1

Confλda,j,0(P0(da)).

2. Denote by D := n− da∗ − d · j∗ · λd,j∗,k∗ . Let h ∈ FD(Fq) be a polynomial such that

h | f for some f ∈ F (λ,η)
(n,N),(w,w′)(Fq). Denote by ϕ−1

d,j∗,k∗(h) ⊂ F (λ,η)
(n,N),(w,w′)(Fq) the set

of fibers of ϕd,j∗,k∗ at h. This set admits the following bijection:

ϕ−1
d,j∗,k∗(h) ∼= Confλd,j∗,k∗ (Pk∗(d))×

ℓ−1∏
j=1

Confλda,j,0(P0(da))

We can now combine the equidistribution of characters from Corollary 2.4.10 and the

Chebotarev conditions from Proposition 2.4.2 and Proposition 2.4.3. This allows us to

obtain the distribution of changes in dimensions of local Selmer groups of E associated to

consecutive twists of local characters.



53

Proposition 2.4.12. Assume the notations and conditions as stated in Definition 2.4.11.

Let E/K be an elliptic curve satisfying conditions in (1.28).

Given f ∈ ϕ−1
d,j∗,k∗(h), let ωf and ω′

f be defined as

ωf := (χf,v)v∈Σf (h) ∈ Ω
h

∗ , ω′
f := (χf,v)v∈Σf (f) ∈ Ω

f
∗ (2.77)

Denote by δh : Z≥0 → [0, 1] the probability distribution

δh(J) :=
#{ω ∈ Ω

h
∗ | rk(ω) = J}

#Ω
h

∗
. (2.78)

Let k̃ := λd,j∗,k∗ · k∗. Then for any n such that mn,q > deg ∆E, there exists a fixed constant

C ′
E,ℓ,q dependent only on E, p, q such that

∣∣∣∣∣#{f ∈ ϕ
−1
d,j∗,k∗(h) | rk(ω′

f ) = J}
#ϕ−1

d,j∗,k∗(h)
− (M k̃

Lδ)(J)
∣∣∣∣∣ < λd,j∗,k∗C ′

E,ℓ,q · ((n log q)−2mn,q+6 log ℓ+1).

(2.79)

where ML := [ℓr,s] is the Markov operator over Z≥0 given by

ℓr,s =



1− ℓ−r if s = r − 1 ≥ 0

ℓ−r if s = r + 1

0 else

Proof. We prove by induction on the values of λd,j∗,k∗ . The induction step becomes

straightforward once one shows the base cases, where λd,j∗,k∗ = 1. Definition 2.4.11 implies

that

ϕ−1
d,j∗,k∗(h) = Pk∗(d)×

ℓ−1∏
j=1

Confλda,j,0(P0(da))

By Corollary 2.4.10, and the condition that w < 2mn,q, for any fixed g ∈ Pk∗(d) and
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ω′ ∈ Ω
f

∗ ,

∣∣∣∣∣∣
#{f ∈ ϕ−1

d,j∗,k∗(h) | f
fa·h = g, ω′

f = ω′}
#ϕ−1

da
(h)

− 1
ℓ#Σf (f)

∣∣∣∣∣∣ < (n log q)−2mn,q+1. (2.80)

Fix a non-negative integer J0. Let ω ∈ Ω
h

∗ be any character such that rk(ω) = J0.

Equation (2.80) implies that for any J0,

∣∣∣∣∣∣
#{f ∈ ϕ−1

d,j∗,k∗(h) | f
fa·h = g, ωf = ω}

#ϕ−1
da

(h)
− 1
ℓ#Σf (h)

∣∣∣∣∣∣ < (n log q)−2mn,q+1. (2.81)

Here we are using the equidistribution of global characters over Ω
h

∗ using the equidistri-

bution of global characters over Ω
f

∗ . Take summation over all characters ω ∈ Ω
h

∗ with

rk(ω) = J0 to obain

∣∣∣∣∣∣
#{f ∈ ϕ−1

d,j∗,k∗(h) | f
fa·h = g, rk(ωf ) = J0}

#ϕ−1
da

(h)
− δh(J0)

∣∣∣∣∣∣ < (n log q)−2mn,q+1. (2.82)

We note that

#{f ∈ ϕ−1
d,j∗,k∗(h) | rk(ω′

f ) = J1, rk(ωf ) = J0}

=
∑

g∈Pk∗ (d)
#{f ∈ ϕ−1

d,j∗,k∗(h) | f

fa · h
= g, rk(ω′

f ) = J1, rk(ωf ) = J0}
(2.83)

By equation (2.81), we have that the set

#{f ∈ ϕ−1
d,j∗,k∗(h) | f

fa · h
= g, rk(ω′

f ) = J1, rk(ωf ) = J0}

can be evaluated as

=


#ϕ−1

da
(h) ·

(
δh(J0) +O((n log q)−2mn,q+1))

)
if rk(ω′

f )− rk(ωf ) = J1 − J0

0 otherwise
(2.84)

where the secondary error term has explicit constant term of absolute value at most 1.
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Summing over all g ∈ Pk∗(d) and using equation (2.80), we obtain

∣∣∣∣∣∣(2.83)−

 ∑
g∈Pk∗ (d)

#{ω′ ∈ Ωω,g | rk(ω′) = J1 − J0}
#Ωω,g

 ·#ϕ−1
da

(h) · δh(J0)

∣∣∣∣∣∣
< #ϕ−1

da
(h) ·#Pk∗(d) · 2 · (n log q)−2mn,q+1

(2.85)

where the notations Ωω,g were introduced in Definition 2.4.1.

Because we assume that d > n = 4m2
n,q

log q and w < 2mn,q, it follows that as long as

mn,q > deg ∆E , the conditions for applying Proposition 2.4.3 hold. Proposition 2.4.2 and

Proposition 2.4.3 show that there exists a fixed constant CE,ℓ,q > 0 depending only on the

elliptic curve E, q, and ℓ such that

∣∣∣∣∣∣
∑

g∈Pk∗ (d)

#{ω′ ∈ Ωω,g | rk(ω′) = J1 − J0}
#Ωω,g

− ck∗,J1−J0 · δh(J0) ·#Pk∗(d)

∣∣∣∣∣∣
< CE,ℓ,q ·#Pk∗(d) · ((n log q)−2mn,q+6 log ℓ+1).

(2.86)

The constants ck∗,J1−J0 are probabilities obtained from this table, see for example Klagsbrun,

Mazur, and Rubin 2014, Proposition 9.5 on how the table from Proposition 2.4.3 is related

to the table provided below.

ck∗,J1−J0 k∗ = 0 k∗ = 1 k∗ = 2

J1 − J0 = −2 × × 1− (ℓ+ 1)ℓ−J0 + ℓ1−2J0

J1 − J0 = −1 × 1− ℓ−J0 ×

J1 − J0 = 0 1 × (ℓ+ 1)ℓ−J0 − (ℓ+ 1
ℓ )ℓ−2J0

J1 − J0 = 1 × ℓ−J0 ×

J1 − J0 = 2 × × ℓ−1−2J0

It is straightforward to show that the above entries are represented by probabilities obtained
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from the Markov operator ML and M2
L. To elaborate,

c1,−1 = pJ0,J0−1

c1,1 = pJ0,J0+1

c2,−2 = pJ0,J0−1 · pJ0−1,J0−2

c2,0 = pJ0,J0−1 · pJ0−1,J0 + pJ0,J0+1 · pJ0+1,J0

c2,2 = pJ0,J0+1 · pJ0+1,J0+2.

(2.87)

Combine equations (2.85) and (2.86), and the fact that #ϕ−1
d,j∗,k∗(h) = #ϕ−1

da
(h) ·#Pk∗(d)

to obtain

∣∣∣(2.83)− (Mk∗
L δh)(J1) ·#ϕ−1

d,j∗,k∗(h)
∣∣∣ < 2CE,ℓ,q ·#ϕ−1

d,j∗,k∗(h) · ((n log q)−2mn,q+6 log ℓ+1).

Therefore, we obtain that

∣∣∣∣∣ (2.83)
#ϕ−1

d,j∗,k∗(h)
− (Mk∗

L δh)(J1)
∣∣∣∣∣ < C ′

E,ℓ,q · ((n log q)−2mn,q+6 log ℓ+1) (2.88)

where C ′
E,ℓ,q = 6CE,ℓ,q. This proves the base case of the induction step.

To prove the cases where λd,j∗,k∗ > 1, we note that

ϕ−1
d,j∗,k∗(h) = Confλd,j∗,k∗ (P(d))×

ℓ−1∏
j=1

Confλda,j,0(P0(da)) (2.89)

There is a natural Sλd,j∗,k∗ -equivariant projection map

F : PConfλd,j∗,k∗ (P(d))×
ℓ−1∏
j=1

Confλda,j,0(P0(da))→ φ−1
d,j∗,k∗(h) (2.90)

Note that for any fixed f ∈ ϕ−1
d,j∗,k∗(h), every element in F−1(f) restricts to an identical
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character in Ω
f

∗ . Therefore, it suffices to compute the desired probability over the set

PConfλd,j∗,k∗ (P(d))×
ℓ−1∏
j=1

Confλda,j,0(P0(da)).

By definition, we have the equation

#PConfλd,j∗,k∗ (P(d)) =
λd,j∗,k∗∏
m=1

(Pk∗(d)−m+ 1) (2.91)

Hence, by iterating the base case λd,j∗,k∗ many times, we obtain that

∣∣∣∣∣#{f ∈ ϕ
−1
d,j∗,k∗(h) | rk(ω′

f ) = J1, rk(ωf ) = J0}
#ϕ−1

d,j∗,k∗(h)
− (M k̃

Lδh)(J1)
∣∣∣∣∣

< λd,j∗,k∗C ′
E,ℓ,q · ((n log q)−2mn,q+6 log ℓ+1).

(2.92)

Remark 2.4.13. One may regard Proposition 2.4.12 as an effective version of Klagsbrun,

Mazur, and Rubin 2014, Theorem 4.3, Theorem 9.5. Instead of using fan structures, we

consider a subset of polynomials over ϕ−1
d,j∗,k∗(h) to show that the Markov chain ML governs

the probability distribution of ranks of local Selmer groups with explicitly computable rate

of convergence.

2.5 Global Selmer groups

The goal of this section is to use the probability distribution of rk((χf,v)v) ranging over

F
(λ,η)
(n,N),(w,w′)(Fq) (Proposition 2.4.12) to prove the statement of the main theorem.

2.5.1 Governing Markov operator

We will use the Markov operator constructed from Klagsbrun, Mazur, and Rubin 2014,

known as the mod ℓ Lagrangian operator, to analyze variations of π-Selmer ranks of a

subfamily of global quadratic twists of elliptic curves over K satisfying the conditions from
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Theorem 2.1.2.

Definition 2.5.1. Let ML = [ℓr,s] be the operator over the state space of non-negative

integers Z≥0 given by

ℓr,s =



1− ℓ−r if s = r − 1 ≥ 0

ℓ−r if s = r + 1

0 else

Remark 2.5.2. The construction of the mod ℓ Lagrangian Markov operator dates back

to previous works by Swinnerton-Dyer 2008 and Klagsbrun, Mazur, and Rubin 2014.

Other references such as Alexander Smith 2017, Alexander Smith 2020, and Tony Feng,

Landesman, and Rains 2023 also use Markov chains to obtain the probability distribution

of l-Selmer groups of certain families of elliptic curves.

We list some crucial properties the operator ML satisfies, the proof of which can be

found in Klagsbrun, Mazur, and Rubin 2014, Section 2.

Definition 2.5.3. Let µ : Z≥0 → [0, 1] be a probability distribution over the state space of

non-negative integers Z≥0. The parity of µ is the sum of probabilities at odd state spaces,

i.e.

ρ(µ) :=
∑
n odd

µ(n)

Proposition 2.5.4. Klagsbrun, Mazur, and Rubin 2014, Proposition 2.4

Let E+, E− : Z≥0 → [0, 1] be probability distributions such that

E+(n) =


∏∞
j=1(1 + ℓ−j)−1∏n

j=1
ℓ

ℓj−1 if n even

0 if n odd

E−(n) =


0 if n even
∏∞
j=1(1 + ℓ−j)−1∏n

j=1
ℓ

ℓj−1 if n odd
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Let µ : Z≥0 → [0, 1] be a probability distribution. Then

lim
k→∞

M2k
L (µ) = (1− ρ(µ))E+ + ρ(µ)E−

lim
k→∞

M2k+1
L (µ) = ρ(µ)E+ + (1− ρ(µ))E−.

In particular, if ρ(µ) = 1
2 , then

lim
k→∞

Mk
L(µ)(n) =

∞∏
j≥0

(1 + ℓ−j)−1
n∏
j=1

ℓ

ℓj − 1 (2.93)

Remark 2.5.5. Note that M2
L is an aperiodic, irreducible, and positive-recurrent Markov

chain over the state space of positive odd integers Zodd,≥0 and non-negative even integers

Zeven,≥0. The unique stationary distributions of the Markov chain are E−(n) and E+(n),

respectively.

Given that M2
L is aperiodic, irreducible, and positive-recurrent, it is natural to ask what

the rate of convergence of ML is. Assuming certain conditions on the initial probability

distribution over the state space and the stationary distribution of M , the geometric rate

of convergence of M can be verified using the following theorem.

Theorem 2.5.6 (Geometric ergodic theorem for Markov chains). Meyn and Tweedie 1993,

Theorem 15.0.1

Let M be an irreducible, aperiodic, and positive-recurrent Markov chain over a countable

state space X := (xn)n∈Z. Let X1, X2, · · · , Xn, · · · : X → [0, 1] be a sequence of random

variables which satisfies

Xn+1 = M(Xn) (2.94)

for all n. Let π be an invariant probability distribution of M (not necessarily unique).

Suppose V : X → [1,∞) is a function such that limn→∞ V (xn) = ∞. If there exists

0 < ρ < 1 and κ > 0 such that for all but finitely many xn ∈ X ,

E[V (M(Xn)) | Xn = xk]− V (xk) ≤ −ρV (xk) + κ (2.95)
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then there exists a constant 0 ≤ γ < 1 and a constant c > 0 such that for any probability

distribution µ over X and every n ∈ N,

sup
z∈X
|Mn(µ)(z)− π| < cγn(µV + 1)

where the term µV is the expected value of V under the probability distribution µ, i.e.

µV := E[V (x) | x ∈ µ]. In fact, one can choose γ = 1− ρ.

Given a cyclic finite group T , Proposition 2.4.3 implies that the Markov chain

(
1− ℓ

ℓ2 − 1

)
+ 1
ℓ
ML + 1

ℓ3 − ℓ
M2
L (2.96)

over the state space Z≥0 governs the variation of π-Selmer ranks of families of elliptic

curves twisted by local cyclic order-ℓ characters. To elaborate, the sequence of random

variables Xn corresponds to the empirical probability distribution of dimensions of π-Selmer

groups of a non-isotrivial elliptic curve E consecutively twisted by n local characters at

places v satisfying the conditions from Proposition 2.4.3. The markov chain ML provides a

mechanism on how the empirical probability distribution of dimensions of π-Selmer groups

of E consecutively twisted by n+ 1 local characters can be obtained from that computed

over families of E consecutively twisted by n local characters.

Proposition 2.5.4 also shows that regardless of the parity of the initial probability

distribution over the state space Z≥0, the stationary distribution of the Markov chain from

(2.96) is given by the Poonen-Rains distribution as stated in (2.93). One can also show that

given a fixed prime number ℓ, the Markov chain of our interest is an irreducible aperiodic

Markov chain over the countably infinite state space Z≥0. In fact, it is geometrically

ergodic over Z≥0 (without requiring the restriction that ℓ = 2).

Corollary 2.5.7. Let µ : Z≥0 → [0, 1] be a probability distribution over the state space

Z≥0. Denote by π the stationary probability distribution of the Markov operator given by

M :=
(

1− ℓ

ℓ2 − 1

)
+ 1
ℓ
ML + 1

ℓ3 − ℓ
M2
L. (2.97)
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for some fixed prime number ℓ and a finite cyclic group T . Fix any positive number β > 1.

Then for every n ∈ N, there exists a constant 0 ≤ γ < 1 and a constant c > 0 such that

sup
z∈X

∣∣∣∣((1− ℓ

ℓ2 − 1

)
+ 1
ℓ
ML + 1

ℓ3 − ℓ
M2
L

)n
(µ)− π

∣∣∣∣ < cγn(βµ + 1) (2.98)

where the term βµ is the expected value of the function V (x) = βx under the probability

distribution µ, i.e. βµ := E[βx | x ∈ µ]. Explicitly, the rate of convergence γ satisfies

1− ℓ

ℓ2 − 1 < γ < 1 (2.99)

Proof. Fix any positive number β > 1. Set V (x) = βx. Computational results then show

that there exists a fixed constant κ > 0 such that for every x ∈ Z≥0,

E
[
βXn | Xn−1 = x

]
− βx = −

(
ℓ

ℓ2 − 1 −
1
ℓβ
− 1

(ℓ3 − ℓ)β2

)
· βx + κ.

Setting γ = 1− ℓ
ℓ2−1 + 1

ℓβ + 1
(ℓ3−ℓ)β2 , the corollary follows from Theorem 2.5.6.

In particular, the above corollary implies that the rate of convergence of the Markov

chain M from (2.96) is given by 1− ℓ
ℓ2−1 + ϵ for some positive number ϵ > 0.

It now remains to show that the stationary distribution of the desired Markov chain

(2.96) is the probability distribution conjectured by Poonen-Rains Bhargava, D. M. Kane,

et al. 2015.

Lemma 2.5.8. Let ℓ be any fixed value of prime, and let T be a finite cyclic group. Then

the probability distribution

PR(j) :=
∞∏
j≥0

(1 + ℓ−j)−1
n∏
j=1

ℓ

ℓj − 1 (2.100)

is the unique stationary distribution of the Markov chain

M :=
(

1− ℓ

ℓ2 − 1

)
· I + 1

ℓ
ML + 1

ℓ3 − ℓ
M2
L. (2.101)
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where I denotes the identity operator over the countable state space Z≥0.

Proof. Note that the operators Id and M2
L are parity preserving Markov operators, whereas

ML is a parity reversing Markov operator. Because the Markov chain of our interest

is aperiodic and irreducible, it follows that the Markov chain has a unique stationary

distribution π. The following relation holds for the parity of π, which is obtainable by

comparing the parity between π and M(π).

ρ(π) =
(

1− 1
ℓ

)
ρ(π) + 1

ℓ
(1− ρ(π)) =

(
1− 2

ℓ

)
ρ(π) + 1

ℓ
. (2.102)

Therefore, we obtain that ρ(π) = 1
2 . Using Proposition 2.5.4 and the fact that the

Markov chain M is aperiodic and irreducible, we immediately obtain the statement of the

lemma.

Remark 2.5.9. One crucial result from using Corollary 2.5.7 and Lemma 2.5.8 is that the

stationary distribution of applying the Markov chain from (2.96) is equal to the Poonen-

Rains distribution regardless of the initial probability distribution. Furthermore, as long

as the initial probability distribution is finitely supported, we can also ensure that the

Markov chain converges to the stationary distribution at a geometric convergence rate.

Remark 2.5.10. We note that the Markov chain constructed from Smith’s work is different

from the Markov chain presented in this manuscript Alexander Smith 2022a; Alexander

Smith 2022b. The sequence of random variables Xn Smith considers correspond to the

empirical probability distribution of the subspace

dimFℓ
πn−1Selπn(Eχ) ⊂ Selπ(E) (2.103)

where χ ranges over grids of twists Alexander Smith 2022a, Chapter 6. Here, the grids of

twists are defined as a finite Cartesian product of collections of prime ideals, where each

collection contains prime ideals whose symbols are equal to each other Alexander Smith

2022a, Definition 4.13.
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To elaborate, this manuscript regards the variable n from a sequence of random variables

{Xn}n∈Z as the number of distinct irreducible places, whereas Smith’s work regards the

variable n from a sequence of random variables {Xn}n∈Z as a quantifier for detecting

elements inside higher πn-Selmer groups which also lie inside the π-Selmer group of E.

2.5.2 Relating global and local Selmer groups

We now obtain the desired probability distribution of dimensions of Selπ(Eχf ) over f ∈

Fn(Fq) by approximating it with distribution of dimensions of local Selmer groups of E

associated to restrictions of χf , as stated in Proposition 2.4.12.

Proposition 2.5.11. Let n > N and w < 2mn,q be positive integers. Let w′ be a positive

integer such that w′ = (1− ϵ)w for some small enough 0 < ϵ < 1.

Suppose that n satisfies the following inequality

mn,q > max
(
ee

e
, deg ∆E ,

√
3 log ℓ+ 1

)
(2.104)

Then for any β > 1, there exists a fixed constant C̃E,ℓ,q,β depending only on E, ℓ, q, β such

that

∣∣∣∣∣#{f ∈ F̂(n,N),(w,w′)(Fq) | dimFℓ
Selπ(Eχf ) = J}

#F̂(n,N),(w,w′)(Fq)
− PR(J)

∣∣∣∣∣
< C̃E,ℓ,q,β · (n log q)4ϵ log β ·

(
(n log q)−mn,q +

(
1− ℓ

ℓ2 − 1 + 1
ℓβ

+ 1
(ℓ3 − ℓ)β2

)w′−1)
(2.105)

where F̂(n,N),(w,w′)(Fq) is a subset of Fn(Fq) as stated in Definition 2.3.7.

Proof. There exists a Gal(K/K)-equivariant isomorphism

Eχf [π] ∼= E[ℓ] (2.106)

see Mazur and Rubin 2007, Proposition 4.1 for the proof. This implies that the π-Selmer
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group of Eχf satisfies

Selπ(Eχf ) ⊂ H1
ét(K,E[ℓ]) (2.107)

and the image of the local Kummer maps imδχv are Lagrangian subspaces of H1
ét(Kv, E[ℓ])

for each place v of K. The π-Selmer group of Eχf is hence the local Selmer group of E

associated to the Cartesian product (χf,v)v arising from restrictions of the global character

χf to cyclic order-ℓ local characters over some local fields Kv. We concretely have

Selπ(Eχf ) = Sel(E[ℓ], (χf,v)v∈Σf (f∗)) ∈ Ω
f

∗ . (2.108)

The relation between π-Selmer groups and local Selmer groups also holds over number

fields as well, see for example Klagsbrun, Mazur, and Rubin 2014, Chapter 10.

For each positive integer 1 ≤ z ≤ w′, let

dz := min{d > n |
d∑

i=n+1

ℓ−1∑
j=1

2∑
k=0

λi,j,k < z} (2.109)

In other words, it is the z-th lowest degree of distinct irreducible factors of f∗. We define

polynomials fdz as follows:

fdz :=
∏
g|f∗

g∈∪dz
i=n+1P1(i)∪P2(i)

gvg(f) (2.110)

i.e. it is the product of irreducible factors of f ∈ F (λ,η)
(n,N),(w,w′)(Fq) (including multiplicities)

up to z-th lowest degree exceeding n that do not lie in P0. We now define the following

abbreviation of local characters for each 1 ≤ z ≤ w′:

χf,0 := (χf,v)v∈Σf
, χf,z := (χf,v)v∈Σf ∪(fdz ) (2.111)

In other words, χf,z is the Cartesian product of restriction of the global character χf over

places in Σf and places of degree at most the z-th lowest degree of distinct irreducible
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factors of f∗. Using these notations, we have

Selπ(Eχf ) = Sel(E[ℓ], χf,w′). (2.112)

Let λ ∈ Λla
N,w′ and η ∈ Λfor

n−N,w−w′ . There is a projection map which forgets all

irreducible factors of degree greater than n:

Φ : F (λ,η)
(n,N),(w,w′)(Fq) =

∏
i,j,k

Confλi,j,k
(Pk(i))

×
∏
î,ĵ,k̂

Confηî,ĵ,k̂
(Pk̂ (̂i))

→
∏
î,ĵ,k̂

Confηî,ĵ,k̂
(Pk̂ (̂i))


Suppose that h∗ ∈ Fn−N (Fq) such that h∗ admits the forgetful partition η. Given such a

choice of h∗, we will pay particular focus to the set of fibers Φ−1(h∗). We then have:

#{f ∈ Φ−1(h∗) | dimFℓ
Selπ(Eχf ) = J}

= #{f ∈ Φ−1(h∗) | rk(χf,w′) = J}

=
∞∑

J0=0
#

f ∈ Φ−1(h∗) | rk(χf,0) = J0,
w′∑
z=1

rk(χf,z)− rk(χf,z−1) = J


(2.113)

Denote by Ωh∗
the following set of Cartesian product of local characters

Ωh∗
:=

∏
v∈ΣE

Hom(Gal(Kv/Kv), µℓ)×
∏
v|h∗

Hom(Gal(Kv/Kv), µℓ) ⊂ Ω1 (2.114)

Let δh∗ : Z≥0 → [0, 1] be the probability distribution defined as

δ(J) :=
#{ω ∈ Ωh∗

| rk(ω) = J}
#Ωh∗

(2.115)

Let dλ be an integer associated to a choice of a splitting partition λ defined as

dλ :=
∑
i,j

(λi,j,1 + 2 · λi,j,2). (2.116)
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Note that there exists a bijection

Φ−1(h) ∼=
∏
i,j,k

Confλi,j,k
(Pk(i))

Inductively applying Proposition 2.4.12 to each term Confλi,j,k
(Pk(i)), we obtain that there

exists an explicit constant CE,ℓ,q > 0 such that

∣∣∣∣∣#{f ∈ Φ−1(h∗) | dimFℓ
Selπ(Eχf ) = J}

#Φ−1(h∗) − (Mdλ
L δh∗)(J)

∣∣∣∣∣
< CE,ℓ,q · n · ((n log q)−2mn,q+6 log ℓ+1)

< CE,ℓ,q · ((n log q)−2mn,q+6 log ℓ+2).

(2.117)

Denote by F h∗
(n,N),(w,w′) and F η(n,N),(w,w′) the disjoint union of subsets

F h∗
(n,N),(w,w′)(Fq) :=

⊔
λ∈Λla

N,w′

Φ−1(h∗)

F η(n,N),(w,w′)(Fq) :=
⊔

h∗∈Fn−N (Fq)
h∗ admits η

F h∗
(n,N),(w,w′)(Fq)

(2.118)

Recall that we defined the Markov operator M over Z≥0 as

M :=
(

1− ℓ

ℓ2 − 1

)
· I + 1

ℓ
ML + 1

ℓ3 − ℓ
M2
L (2.119)

where I denotes the identity operator over the countable state space Z≥0. Using Theorem

2.2.1 with respect to the field extension K(E[ℓ])/K and d = n, we obtain that there exists

a fixed constant BE,ℓ,q > 0 such that

∣∣∣∣∣∣
#{f ∈ F h∗

(n,N),(w,w′)(Fq) | dimFℓ
Selπ(Eχf ) = J}

#F h∗
(n,N),(w,w′)(Fq)

− (Mw′−1δh∗)(J)

∣∣∣∣∣∣
< BE,ℓ,q · (n log q)−2mn,q+6 log ℓ+2

< BE,ℓ,q · (n log q)−mn,q

(2.120)
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where I denotes the identity operator over the countable state space Z≥0. Note that we

iterate the Markov chain M by w′ − 1 times, rather than w′ times, because we are using

one of the auxiliary places of f to obtain an equidistribution of characters {χf,w′} inside

ΩΣf (f∗), hence allowing us to apply Proposition 2.4.12.

Recall the Poonen-Rains distribution

PR(J) =
∞∏
j≥0

1
1 + ℓ−j

J∏
j=1

ℓ

ℓj − 1

Because we set w − w′ = ϵw for small enough 0 < ϵ < 1, it follows that

max
J∈Z≥0

{J | δh∗(J) ̸= 0} ≤ max
χ∈ΩE

rk(χ) + 2ϵw. (2.121)

By Corollary 2.5.7, we obtain that there exists a fixed constant c > 0 such that

sup
J∈Z≥0

∣∣∣(Mw′−1δh∗)(J)− PR(J)
∣∣∣ < c ·

(
1− ℓ

ℓ2 − 1 + 1
ℓβ

+ 1
(ℓ3 − ℓ)β2

)w′−1
· E[βx | x ∈ δ]

(2.122)

for any positive β > 1. Because w ≤ 2mn,q, it follows that

E[βx | x ∈ δ] ≤ βmaxχ∈ΩE
rk(χ) · (n log q)4ϵ log β (2.123)

By letting cβ := c · βmaxχ∈ΩE
rk(χ), we obtain:

(2.122) < cβ ·
(

1− ℓ

ℓ2 − 1 + 1
ℓβ

+ 1
(ℓ3 − ℓ)β2

)w′−1
· (n log q)4ϵ log β (2.124)

Using triangle inequality with equation (2.117), we obtain for all J ≥ 0 and for any small
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enough 0 < ϵ < 1, there exists an explicit constant C̃E,ℓ,q,β := BE,ℓ,q + cβ such that

∣∣∣∣∣∣
#{f ∈ F h∗

(n,N),(w,w′)(Fq) | dimFℓ
Selπ(Eχf ) = J}

#F h∗
(n,N),(w,w′)(Fq)

− PR(J)

∣∣∣∣∣∣
< C̃E,ℓ,q,β · (n log q)4ϵ log β ·

(
(n log q)−mn,q +

(
1− ℓ

ℓ2 − 1 + 1
ℓβ

+ 1
(ℓ3 − ℓ)β2

)w′−1)
(2.125)

By ranging over all h∗ ∈ Fn−N (Fq) such that h∗ admits the forgettable splitting partition

η, we obtain that

∣∣∣∣∣#{f ∈ F
η
(n,N),(w,w′)(Fq) | dimFℓ

Selπ(Eχf ) = J}
#F η(n,N),(w,w′)(Fq)

− PR(J)
∣∣∣∣∣

< C̃E,ℓ,q,β · (n log q)4ϵ log β ·
(

(n log q)−mn,q +
(

1− ℓ

ℓ2 − 1 + 1
ℓβ

+ 1
(ℓ3 − ℓ)β2

)w′−1)
(2.126)

Recall that F̂(n,N),(w,w′)(Fq) is the following disjoint union of sets:

F̂(n,N),(w,w′)(Fq) :=
⊔

λ∈Λla
N,w′

⊔
η∈Λfor

n−N,w−w′

F
(λ,η)
(n,N),(w,w′)(Fq) =

⊔
η∈Λfor

n−N,w−w′

F η(n,N),(w,w′)(Fq)

(2.127)

By ranging over all possible forgettable splitting partitions η ∈ Λforn−N,w−w′ , we obtain the

desired proposition.

We now prove the main theorem of this manuscript.

Proof of Theorem 2.1.2. From Proposition 2.3.10, we obtain that

#Fn(Fq)−
2mn,q∑

w=ρmn,q

w∑
w′=(1−ϵ)w

n∑
N=w′n

F̂(n,N),(w,w′)(Fq)

≤ 4 · qn ·max
(

(n log q)−ρ log ρ+1−ρ,m2
n,q ·

(
ℓ

ℓ2 − 1

)(1−ϵ)ρmn,q
)

≤ 4 · qn ·max
(

(n log q)−ρ log ρ+1−ρ,m2
n,q · (n log q)

(1−ϵ)ρ log
(

ℓ
ℓ2−1

))
(2.128)
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where ϵ = 1
log logmn,q

. Letting w to satisfy ρmn,q ≤ w < 2mn,q, and (1− ϵ)w ≤ w′ ≤ w, we

obtain from Proposition 2.5.11 that

∣∣∣∣∣#{f ∈ F̂(n,N),(w,w′)(Fq) | dimFℓ
Selπ(Eχf ) = J}

#F̂(n,N),(w,w′)(Fq)
− PR(J)

∣∣∣∣∣
< C̃E,ℓ,q,β · (n log q)4ϵ log β ·

(
(n log q)−mn,q + 3 · (n log q)

(1−ϵ)ρ log
(

1− ℓ
ℓ2−1

+ 1
ℓβ

+ 1
(ℓ3−ℓ)β2

))

< 6 · C̃E,ℓ,q,β · (n log q)
(1−ϵ)ρ log

(
1− ℓ

ℓ2−1
+ 1

ℓβ
+ 1

(ℓ3−ℓ)β2

)
+4ϵ log β

(2.129)

Combine two equations to obtain

∣∣∣∣∣#{f ∈ Fn(Fq) | dimFℓ
Selπ(Eχf ) = J}

#Fn(Fq)
− PR(J)

∣∣∣∣∣
< 6 ·m2

n,q · C̃E,ℓ,q,β · (n log q)α(ρ,β,ϵ)

(2.130)

where

α(ρ, β, ϵ) := max



−ρ log ρ+ 1− ρ

(1− ϵ)ρ log
(

ℓ
ℓ2−1

)
(1− ϵ)ρ log

(
1− ℓ

ℓ2−1 + 1
ℓβ + 1

(ℓ3−ℓ)β2

)
+ 4ϵ log β

(2.131)

We now choose β = 1
ϵ = log logmn,q > e. Then we have

C̃E,ℓ,q,β ≤ (BE,ℓ,q + c) · (log log logmn,q)maxχ∈ΩE
rk(χ), (2.132)

α(ρ, β, ϵ) = max



−ρ log ρ+ 1− ρ

ρ log
(

ℓ
ℓ2−1

)
+O( 1

log logmn,q
)

ρ log
(
1− ℓ

ℓ2−1

)
+O( 1

log log logmn,q
)

(2.133)
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We let

α(ρ) := max



−ρ log ρ+ 1− ρ

ρ log
(

ℓ
ℓ2−1

)
ρ log

(
1− ℓ

ℓ2−1

) (2.134)

Then for small enough δ > 0, there exists sufficiently large n and an explicit constant

AE,ℓ,q = 6 · (BE,ℓ,q + c) such that

∣∣∣∣∣#{f ∈ Fn(Fq) | dimFℓ
Selπ(Eχf ) = J}

#Fn(Fq)
− PR(J)

∣∣∣∣∣ < AE,ℓ,q · (n log q)α(ρ)+ϵ. (2.135)
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Chapter 3

A geometric approach

This section is based on the following work in progress Park 2024a, the intellectual origins

of which come from using middle convolution sheaves to understand vanishing of twisted L

functions of elliptic curves over global function fields, as presented in N. Katz 1998 and

Hall 2008.

3.1 Main result

Let K = Fq(t) be the global function field over the finite field Fq of characteristic coprime

to 2 and 3. Fix a prime number ℓ > 0 that is coprime to 2, 3, and Char(K). Let E be

an elliptic curve over K. Throughout this manuscript, we will assume the following five

conditions.

Condition 3.1.1. Assume the following conditions on K, ℓ, and E.

1. The primitive ℓ-th roots of unity is contained in K, i.e. µℓ ⊂ K.

2. The elliptic curve E/K is non-isotrivial.

3. The elliptic curve E/K admits a place of split multiplicative reduction.

4. The prime ℓ is coprime to any local Tamagawa factors of E/K.
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5. The Galois group Gal(K(E[ℓ])/K) obtained from adjoining ℓ-torsion points of E/K

contains the special linear group SL2(Fℓ).

In this chapter, we improve the convergence rate of the probability distribution of

{Sel1−σℓ,f
(Af/K)} twisted by the set of degree n polynomials f over Fq Park 2022. This

theorem verifies that the probability distribution of Sel1−σℓ,f
(Af/K) twisted by the set of

degree n polynomials f over Fq converges to the Bhargava-Kane-Lenstra-Poonen-Rains

distribution Bhargava, D. M. Kane, et al. 2015; Poonen and Rains 2012 for sufficiently

large n and sufficiently large q.

Theorem 3.1.2 (A geometric approach). Assume Condition 3.1.1. Then there exist

integers M1,M2 > 0 and a fixed constant C(ℓ, E) > 0 independent of n and q such that for

every n > M1 and q > M2,

∣∣∣∣#{f ∈ Fq[t] | dimFℓ
Sel1−σℓ,f

(Af/K) = r, deg f = n}
#{f ∈ Fq[t] | deg f = n}

−
∞∏

i=0

1
1 + ℓ−i

r∏
i=1

ℓ

ℓi − 1

∣∣∣∣ < C(ℓ, E) · 1
√
q
.

(3.1)

Other than obtaining the improved error bounds, the significance of Theorem 3.1.2 lies

in the idea of the proof that the statistics of these Selmer groups can be obtained from

counting Fq rational points of a scheme over Fq which parametrize the Selmer groups of

these abelian varieties. Unlike the stochastic approach taken from Park 2022, we obtain

the statistics of the desired Selmer groups by applying the Grothendieck-Lefschetz trace

formula to the space τn,σℓ,f ,E over Fq (which will be constructed in Section 3.2) whose

Fq-rational points parametrize the elements of the Selmer groups Sel1−σℓ,f
(Af/K) for

degree n polynomials f over Fq.

The significance of Theorem 3.1.2 hence lies in obtaining a correspondence between

the sequences of étale cohomology groups of {τn,σℓ,f ,E}n≥1 and stochastic properties of

Markov chains over Z≥0 defined as ML :=
(
1− ℓ

ℓ2−1

)
+ 1

ℓM + 1
ℓ3−ℓM

2 Klagsbrun, Mazur,
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and Rubin 2014; Park 2022, where M is the Markov chain over Z≥0 defined as

M(r, s) :=



1− 1
ℓr if s = r − 1

1
ℓr if s = r + 1

0 otherwise.

(3.2)

As an application of Theorem 3.1.2, we demonstrate that a polynomial upper bound

on the dimensions, homological stability, and bounds on absolute values of Frobenius

eigenvalues of these étale cohomology groups H i
ét((τn,σℓ,f ,E)Fq

,Qv) imply the triviality of

any fixed i-th étale cohomology groups {τn,σℓ,f ,E}n≥1 for sufficiently large n > N(i). We

refer to Theorem 3.3.1 for the complete rigorous statement of the theorem.

We present the main result of the chapter as follows. Section 3.2 proves Theorem 3.1.2

by utilizing Grothendieck-Lefschetz trace formula applied to a generalization of Katz’s and

Hall’s constructions of representable étale lisse Fℓ sheaves N. Katz 1998; Hall 2008 and

incorporating probabilistic results obtained from the previous chapter Park 2022. Section

3.3 proves Theorem 3.3.1, along with a discussion on how one may incorporate probabilistic

models, arithmetic results, and homological stability Ellenberg, Venkatesh, and Westerland

2016; Ellenberg, TriThang Tran, and Westerland 2023; Ellenberg and Landesman 2023

to obtain new results on the vanishing of twisted cohomology groups of the configuration

space of unordered n points over a complex plane with k punctures.

3.2 Geometric model

In this section, we verify the Bhargava-Kane-Lenstra-Poonen-Rains heuristics for cyclic

twist families of elliptic curves over Fq(t) by using the Grothendieck-Lefschetz trace formula

to a geometric space over Fq whose Fq-rational points parametrize 1− σℓ,f Selmer groups

of cyclic twists of elliptic curves.



74

3.2.1 Geometric space

There are a number of recent research which utilizes the notion of colored configuration

spaces, see for example Kupers, Miller, and Trithang Tran 2016; Palmer 2018. For the sake

of making the paper self-contained, we introduce the notations used in this paper denoting

colored configuration spaces as provided below.

Definition 3.2.1. Let Fn,ℓ be the set of ℓ-th power free polynomials f over Fq of degree n

which is coprime to the discriminant ∆E of the elliptic curve E:

Fn,ℓ :=
{
f ∈ Fq[t] | deg f = n, vp(f) ≤ ℓ− 1 for all irreducible p ∈ Fq[t], (f,∆E) = 1

}
.

(3.3)

We note that Fn,ℓ can be identified with the open subscheme of the unordered configu-

ration space of n points of A1 over Fq with ℓ− 1 colors X = {1, 2, · · · , ℓ− 1}, denoted as

Confn(A1, X), whose elements are coprime to ∆E . Each color corresponds to determining

the valuation of the polynomial f ∈ Fq[t] with respect to a choice of a linear polynomial

p = t − c ∈ Fq[t]. The elements of Fn,ℓ can be written as the set of n-many unordered

tuples in A1
Fq
×X, i.e. as {(c1, x1), (c2, x2), · · · , (cn, xn)} where ci ∈ A1

Fq
and xi ∈ X.

Definition 3.2.2. A weighted partition of n into ℓ− 1 components is an array of ℓ− 1

integers η[n,ℓ] := [η1, η2, · · · , ηℓ−1] which satisfies η1 + 2η2 + · · ·+ (ℓ− 1)ηℓ−1 = n.

Definition 3.2.3. Let η[n,ℓ] := [η1, η2, · · · , ηℓ−1] be a weighted partition of n into ℓ − 1

components. Given such a partition η[n,ℓ], we denote by Fη[n,ℓ] the subset of ℓ-th power

free polynomials over Fq of degree n defined as

Fη[n,ℓ] :=
{
f ∈ Fq[t] | f = g1g

2
2 · · · gℓ−1

ℓ−1, deg gi = ηi, gi square-free over Fq, (f,∆E) = 1
}

(3.4)

Likewise, Fη[n,ℓ] is an open connected subscheme of the unordered configuration space

of n points of A1 over Fq with ℓ − 1 colors X = {1, 2, · · · , ℓ − 1}, where each color i

has ηi many distinct points, denoted as Confη[n,ℓ](A1, X). In particular, if we denote by
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Confn(A1) the unordered configuration space of n points in A1 without labels, then we

have the inclusion

Confη[n,ℓ](A1, X)→ Confη1(A1)× Confη2(A1)× · · · × Confηℓ−1(A1)

g1g
2
2 · · · gℓ−1

ℓ−1 7→ (g1, g2, · · · , gℓ−1).
(3.5)

Note that if Φn,ℓ denotes the set of all partitions of n into ℓ− 1 components, then one

obtains that

Fn,ℓ = ⊔η[n,ℓ]∈Φn,ℓ
Fη[n,ℓ] . (3.6)

Lastly, we denote by Fn,ℓ(Fq) and Fη[n,ℓ](Fq) the set of Fq-rational points of Fn,ℓ and

Fη[n,ℓ] . Concretely, these sets can be written as

Fn,ℓ(Fq) := {f ∈ Fq[t] | deg f = n, vp(f) ≤ ℓ− 1 for all irreducible p ∈ Fq[t], (f,∆E) = 1} ,

(3.7)

Fη[n,ℓ](Fq) :=
{
f ∈ Fq[t] | f = g1g

2
2 · · · gℓ−1

ℓ−1, deg gi = ηi, gi square-free over Fq, (f,∆E) = 1
}
.

(3.8)

Likewise, we obtain that

Fn,ℓ(Fq) = ⊔η[n,ℓ]∈Φn,ℓ
Fη[n,ℓ](Fq). (3.9)

Because the order of the isogeny 1 − σℓ,f and the order of the cyclic character χf

associated to the cyclic twist If,ℓ⊗E are identical, we cannot directly use the construction

of the étale lisse-sheaves provided by Katz N. Katz 1998, Chapter 6 or Hall Hall 2008,

Chapter 5. Nevertheless, the above constructions can be extended to obtain the geometric

space of our interest, as we provide below. The construction of the representable sheaf is

outlined analogously to Park and N. Wang 2023, Section 3.2.

Definition 3.2.4. We construct the representable étale Fℓ-lisse sheaf τn,σℓ,f ,E → Fn,ℓ over

Fq as provided below. It is suffice to specify the construction of the étale Fℓ-lisse sheaf
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τn,σℓ,f ,E → Fη[n,ℓ] given a choice of a partition η[n,ℓ] ∈ Φn,ℓ (Here we abuse the notation

and abbreviate τn,σℓ,f ,E |Fη[n,ℓ] → Fη[n,ℓ] as τn,σℓ,f ,E → Fη[n,ℓ]).

Let E be the Neron model of the elliptic curve E defined over KFq. The multiplication

by ℓ map ×ℓ : E → E induces the multiplication by ℓ map over the Néron models

×ℓ : E → E . We denote by E [ℓ] the kernel with respect to ×ℓ map.

Given any f ∈ Fη[n,ℓ] , denote by Af the Néron model of the (ℓ− 1) dimensional abelian

variety Af over KFq. The degree ℓ isogeny 1−σℓ,f : Af → Af extends to the endomorphism

1− σℓ,f : Af → Af .

Given any f ∈ Fη[n,ℓ] , we can write the factorization of f as f = g1g
2
2 · · · gℓ−1

ℓ−1, where

each polynomial gi’s are square-free polynomials over Fq and deg gk = ηk for 1 ≤ k ≤ ℓ− 1.

Consider the 2ℓ− 2 open subsets of P1
Fq

defined for each 1 ≤ k ≤ ℓ− 1:

Ugk
:= P1

Fq
\ (g−1

k (0) ∪ {0,∞})

Ugk,E := P1
Fq
\ (g−1

k (0) ∪ {0,∞} ∪ {v ∈ P1
Fq

: v | ∆E}).
(3.10)

We also consider the corresponding inclusion maps ik : Ugk
→ P1

Fq
, ĩk : Ugk

→ P1
Fq
\ {0,∞},

and jk : Ugk,E → P1
Fq

.

We denote by Lχ → P1
Fq
\{0,∞} the Kummer sheaf obtained from the order ℓ character

χ : πtame
1 (P1

Fq
\ {0,∞})→ Fℓ of the tame fundamental group of P1

Fq
\ {0,∞}. (Note that

this is where we use the condition that q ≡ 1 mod l).

For each factor gk of f , we inductively construct étale Fℓ-lisse sheaves over P1
Fq

. For

k = 1, we denote by F [1]
n,σℓ,f ,E

the étale Fℓ-lisse sheaf over P1
Fq

defined as

F [1]
n,σℓ,f ,E

:= (j1)∗
(
j∗

1E [ℓ]⊗ j∗
1(i1)∗ĩ

∗
1Lχ

)
→ P1

Fq
(3.11)

For 2 ≤ k ≤ ℓ− 1, we iteratively define the étale Fℓ-lisse sheaf over P1
Fq

as

F [k]
n,σℓ,f ,E

:= (jk)∗
(
j∗
kF

[k−1]
n,σℓ,f ,E

⊗ j∗
k(ik)∗ĩ

∗
kLχk

)
→ P1

Fq
(3.12)
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Let π[1] : P1
Fq
×Fq

Fη[n,ℓ] → P1
Fq

and π[2] : P1
Fq
×Fq

Fη[n,ℓ] → Fη[n,ℓ] be the projection

maps. Then the étale Fℓ-lisse sheaf τn,σℓ,f ,E |Fη[n,ℓ] → Fη[n,ℓ] is defined to be the image of

the higher direct images which forgets support:

R1π
[2]
!

(
(π[1])∗F [k]

n,σℓ,f ,E

)
→ R1π

[2]
∗
(
(π[1])∗F [k]

n,σℓ,f ,E

)
. (3.13)

Remark 3.2.5. Given any f ∈ Fn,ℓ(Fq), the geometric fiber of f is the étale cohomology

group H1
ét(P1

Fq
,Af [1−σℓ,f ]). Furthermore, there is an inclusion of étale cohomology groups

H1
ét(P1

Fq
,Af [1− σℓ,f ]) ⊂ H1

ét(KFq, Af [1− σℓ,f ]) ∼= H1
ét(KFq, E[ℓ]). (3.14)

The Weil pairing E[ℓ] × E[ℓ] → µℓ induces a symmetric pairing over H1
ét(KFq, E [ℓ]) via

cup product and Poincaré duality. In particular, the symmetric pairing on H1
ét(KFq, E [ℓ])

descends to the symmetric pairing on H1
ét(P1

Fq
,Af [1− σℓ,f ]), regardless of the choice of the

polynomial f ∈ Fn,ℓ(Fq).

The dimensions of the étale cohomology groups H i
ét(P1

Fq
,Af [1−σℓ,f ]) can be computed

as follows.

Lemma 3.2.6. Given a weighted partition η[n,ℓ] ∈ Φn,ℓ, let f ∈ Fη[n,ℓ](Fq). The étale

cohomology groups of P1
Fq

with coefficients in Af [1− σℓ,f ] satisfy

dimFℓ
H i

ét(P1
Fq
,Af [1−σℓ,f ]) =



deg(ME) + 2 deg(AE)− 2 + 2∑k
i=1 ηk if i = 1, ℓ ∤ deg(f)

deg(ME) + 2 deg(AE)− 4 + 2∑k
i=1 ηk if i = 1, ℓ | deg(f)

0 otherwise
(3.15)

where ME and AE are divisors of multiplicative and additive reductions of the elliptic curve

E/K.

Proof. The proof follows from adapting the arguments of N. Katz 1998, Section 5.1 and

Hall 2008, Lemma 6.2. It suffices to compute the dimensions of cohomology groups
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when i = 0, 1, 2. Because the function field K is of characteristic coprime to 6l, and the

Galois group Gal(K(E[ℓ])/K) contains SL2(Fℓ), the group scheme Af [1− σℓ,f ] is lisse and

irreducible of rank 2 over the open subscheme Uf,E of P1
Fq

, where

Uf,E := P1
Fq
\ (f−1(0) ∪ {0,∞} ∪ {v ∈ P1

Fq
: v | ∆E}) (3.16)

Because H0 and H2 are πét
1 (Uf,E)- invariants and πét

1 (Uf,E)-coinvariants of Af [1−σℓ,f ], we

obtain that both cohomology groups are equal to 0. Note that the same line of reasoning

shows that H0
ét(P1

Fq
, E [ℓ]) and H0

ét(P1
Fq
,Af [ℓ]) are also trivial. Note that (1−σℓ,f )ℓ−1 = ℓ◦φ

for some φ ∈ End(Af/K). Hence, the short exact sequence induced from multiplication by

1− σℓ,f

0→ Af [1− σℓ,f ]→ Af [ℓ]→ Af [ℓ]→ 0

induces a short exact sequence of étale cohomology groups

0→ H1
ét(P1

Fq
,Af [1− σℓ,f ])→ H1

ét(P1
Fq
,Af [ℓ])→ H1

ét(P1
Fq
,Af [ℓ])→ 0.

. Hence, we obtain the isomorphism

H1
ét(P1

Fq
,Af [1− σℓ,f ]) ∼= H1

ét(P1
Fq
,Af [ℓ])[1− σℓ,f ].

On the other hand, the short exact sequence of group schemes

0→ Af [ℓ]→ (ResK( ℓ
√
f)

K E)[ℓ]→ E [ℓ]→ 0 (3.17)

implies that one obtains using Shapiro’s lemma,

dimFℓ
H1

ét(P1
Fq
,Af [ℓ]) = dimFℓ

H1
ét(Cf , E [ℓ])− dimFℓ

H1
ét(P1

Fq
, E [ℓ]), (3.18)

where Cf is a smooth projective curve over Fq with KFq(Cf ) = KFq( l
√
f). We then use

the Ogg-Shafarevich formula to the ℓ-primary part of the abelian variety Af Ogg 1962,
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Theorem 2 to obtain

dimFℓ
H1

ét(P1
Fq
,Af [ℓ]) = (ℓ− 1) deg(ME) + 2(ℓ− 1) deg(AE) + 4genus(Cf )

Using the Riemann-Hurwitz formula, depending on the difference of ramification behavior

at the place ∞ when ℓ | deg(f), we obtain that

dimFℓ
H1

ét(P1
Fq
,Af [ℓ]) =


(ℓ− 1)(deg(ME) + 2 deg(AE)− 2 + 2∑ℓ−1

k=1 ηk) if ℓ ∤ deg(f)

(ℓ− 1)(deg(ME) + 2 deg(AE)− 4 + 2∑ℓ−1
k=1 ηk) if ℓ | deg(f)

The lemma hence can be obtained from taking the (1 − σℓ,f )-torsion submodule of

H1
ét(P1

Fq
,Af [ℓ]) with respect to coordinate-wise cyclic permutation action of σℓ,f .

Using the Leray spectral sequence as in Park and N. Wang 2023, Lemma 3.9, we obtain

that

H1
ét(P1

Fq
,Af [1− σℓ,f ])Gal(Fq/Fq) ∼= H1

ét(P1
Fq
,Af [1− σℓ,f ]). (3.19)

Because the (ℓ− 1) dimensional abelian variety Af is a subscheme of the Weil restriction

of scalars of E, under Condition 3.1.1, Cesnavicius 2016, Proposition 5.4 implies

H1
ét(P1

Fq
,Af [1− σℓ,f ]) ∼= Sel1−σℓ,f

(Af/K). (3.20)

Hence, the first moment of the size of Sel1−σℓ,f
(Af/K) over f ∈ Fn,ℓ(Fq) is equiva-

lent to counting Fq-rational points of τn,σℓ,f ,E , which can be obtained from utilizing the

Grothendieck-Lefschetz trace formula:

∑
f∈Fn,ℓ(Fq) #Sel1−σℓ,f

(Af/K)
#Fn,ℓ(Fq)

=
2n∑
i=0

(−1)iq
i
2 −nTrFrobq|H i

ét,c(τn,σℓ,f ,E ,Qv). (3.21)

Remark 3.2.7. The k-th moment of the size of Sel1−σℓ,f
(Af/K) over f ∈ Fn,ℓ(Fq) can be

computed from counting Fq-rational points of the étale Fℓ-lisse sheaf τ⊕k
n,σℓ,f ,E

→ Fη[n,ℓ] where

the geometric fiber at f ∈ Fη[n,ℓ](Fq) is given by the direct sum H1
ét(P1

Fq
,Af [1− σℓ,f ])⊕k.
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The action of the étale fundamental group π1(Fη[n,ℓ] , f) is given by the coordinate-wise

diagonal action of π1(Fη[n,ℓ] , f) acting on each of the component H1
ét(P1

Fq
,Af [1− σℓ,f ]).

3.2.2 Big monodromy

We now demonstrate that the representable étale Fℓ-lisse sheaf τn,σℓ,f ,E → Fn,ℓ satisfies

the big monodromy result that the geometric and the arithmetic étale fundamental group

contains index 2 subgroup of the orthogonal group of H1
ét(P1

Fq
,Af [1− σℓ,f ]) with respect

to the symmetric pairing induced from the Weil pairing E[ℓ]× E[ℓ]→ µℓ.

Theorem 3.2.8. Given a weighted partition η[n,ℓ] ∈ Φn,ℓ, let τn,σℓ,f ,E → Fη[n,ℓ] be the étale

Fℓ-lisse sheaf constructed from Definition 3.2.4.

1. Both the geometric monodromy group and the arithmetic monodromy group of

τn,σℓ,f ,E → Fη[n,ℓ] is isomorphic to a subgroup of the orthogonal group O(H1
ét(P1

Fq
,Af [1−

σℓ,f ]) of index at most 2, but not isomorphic to SO(H1
ét(P1

Fq
,Af [1− σℓ,f ]).

2. The trace of the Frobenius acting on H2n
ét,c(τn,σℓ,f ,E ,Qv) is equal to ℓ+ 1.

3. The trace of the Frobenius acting on H2n
ét,c(τ⊕k

n,σℓ,f ,E
,Qv) is equal to

∏k
m=1(ℓm + 1).

Proof. Setup

The first part of the theorem follows from adapting the big monodromy group results

outlined in Hall 2008, Section 6 and N. Katz 1998, Theorem 4.1.10. Fix an integer m and

a tuple of integers (m1,m2, · · · ,mℓ−1) such that m = ∑ℓ−1
i=1 imi. Denote by η[n−m,ℓ] the

partition obtained from η[n,ℓ] which satisfies

η[n−m,ℓ] = [η1 −m1, η2 −m2, · · · , ηk −mk, · · · , ηℓ−1 −mℓ−1].

We may choose an ℓ-th power free polynomial g ∈ Fη[n−m,ℓ] , and denote by Ug an open

subscheme of P1
Fq

excluding g−1(0) and {0,∞}. Let g′ be an ℓ-th power free polynomial

g′ ∈ Fm,ℓ such that gg′ ∈ Fη[n,ℓ] . For shorthand notation, we denote by Ag the ℓ − 1

dimensional abelian variety over KFq defined as Ag := Ker
(

ResKFq( ℓ
√
gg′)

KFq
E → E

)
.
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Given c ∈ Ug, fix a topological generator σc of the inertia subgroup I(c) of the tame

fundamental group πt1((Fη[n,ℓ])Fq
, f). Then any choice of two topological generators σc1

and σc2 associated to c1, c2 ∈ Ug such that E → Ug has multiplicative reduction at c1

and Ag → Ug has additive reduction at c2 that is not a place of bad reduction of E

with dimFℓ
Ag[1− σℓ,g]/Ag[1− σℓ,g]I(ci) = 2 are generators of the index 2 subgroup of the

orthogonal group O(H1
ét(P1

Fq
,Af [1− σℓ,f ])) which does not contain the special orthogonal

group SO(H1
ét(P1

Fq
,Af [1 − σℓ,f ])). The choice of a place c1 originates from one of the

weaker requirements from Condition 3.1.1. Using the Chebotarev density theorem over K

with respect to the Galois extension K(E[ℓ])/K, such a choice of c2 can always be made.

We first note that both the geometric and the arithmetic monodromy groups of τn,σℓ,f ,E

is contained in the orthogonal group O(H1
ét(P1

Fq
,Af [1−σℓ,f ]). In particular, the cup product

and Poincarè duality show the existence of the symmetric pairing over H1
ét(P1

Fq
,Af [1−σℓ,f ])

and H1
ét(P1

Fq
,Af [1− σℓ,f ]):

H1
ét(P1

Fq
,Af [1− σℓ,f ])×H1

ét(P1
Fq
,Af [1− σℓ,f ])→ H2

ét(P1
Fq
, µℓ) ∼= Fℓ

H1
ét(P1

Fq
,Af [1− σℓ,f ])×H1

ét(P1
Fq
,Af [1− σℓ,f ])→ H3

ét(P1
Fq
, µℓ) ∼= Fℓ

(3.22)

We note that the Galois-equivariance of the Weil pairing E[ℓ]×E[ℓ]→ µℓ implies that the

symmetric pairing is equivariant under the Frobenius action.

Consider an involution τc : P1
Fq
→ P1

Fq
defined as t 7→ c− t. Given a choice of an order-ℓ

character χ : I(c)→ Fℓ of the inertia group I(c), let Lχ → P1
Fq
\ {0,∞} be the Kummer

sheaf associated to χ. Let i : Ug → P1
Fq

be the inclusion map. Then the restriction of

the étale sheaf τn,σℓ,f ,E → Fη[n,ℓ] to Ug is an étale Fℓ-lisse sheaf whose geometric fiber at

c ∈ P1
Fq

is given by H1
ét(P1

Fq
, i∗i

∗(Ag[1 − σℓ,g] ⊗ τ∗
c Lχm)). In particular, there exists an

isomorphism of Fℓ-lisse sheaves τn,σℓ,f ,E
∼= MCχm(Ag) over Ug, where MCχm is the middle

convolution functor with the choice of a character χ. We refer to Hall 2008, Section 4 and

N. Katz 1998, Section 4 for further detailed description of the middle convolution functor.

From here and onwards, for each c ∈ Ug, we use the abbreviation Vc := H1
ét(P1

Fq
, i∗i

∗(Ag[1−

σℓ,g]⊗ τ∗
c Lχm)) to denote the desired vector space.
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Monodromy at a place of multiplicative reduction

Let c be a place of multiplicative reduction of E → Ug. Then Ag[1−σℓ,g]/Ag[1−σℓ,g]I(c),

as I(c)-representation, is isomorphic to the trivial representation Fℓ. To see this, we note

that one obtains the following commutative diagram of group schemes,

0 Ag[1− σℓ,g]I(c) Ag[ℓ]I(c) Mc 0

0 Ag[1− σℓ,g] Ag[ℓ] Ag[(1− σℓ,g)ℓ−2] 0

(3.23)

whereMc is kernel of the connecting morphism Ag[(1−σℓ,g)ℓ−2]I(c) → H1(I(c),Ag[1−σℓ,g]).

By Snake lemma, we have the identification that

Ag[1− σℓ,g]/Ag[1− σℓ,g]I(c) ∼= Ker
(
(1− σℓ,g) : Ag[ℓ]/Ag[ℓ]I(c) → Ag[(1− σℓ,g)ℓ−2]/Mc

)
.

Using the identification that as Gal(K/KFq)-representations,

ResKFq( l
√
gg′)

KFq
E[ℓ] ∼= Ind

Gal(K/KFq)
Gal(K/KFq( l

√
gg′))

E[ℓ], (3.24)

it follows that the monodromy of Ag[ℓ] at t = c is an element of direct sums of (ℓ − 1)

trivial representations ⊕ℓ−1
i=1Fℓ, with each of the summands indexed by elements σiℓ,g for

1 ≤ i ≤ ℓ − 1. Without loss of generality, we can choose a multiplicative map sending

σℓ,g 7→ σ2
ℓ,g which induces the action of σℓ,g on ⊕ℓ−1

i=1Fℓ as a cyclic permutation of the

coordinates. This implies that the representation Ag[1− σℓ,g]/Ag[1− σℓ,g]I(c) is isomorphic

to Fℓ.

We now verify that Vc/V I(c)
c
∼= Fℓ ⊗ (−1). The identification that τn,σℓ,f ,E → Ug is a

middle convolution allows us to utilize N. Katz 1998, Theorem 4.1.10 to understand the

action of I(c) on the co-invariants Vc/V I(c)
c . Because τn,σℓ,f ,E → Ug is tamely ramified, we

obtain as I(c)-representations,

Vc/V
I(c)
c
∼= Ker

(
1− σℓ,g : Ag[ℓ]/Ag[ℓ]I(c) ⊗ χm → Ag[(1− σℓ,g)ℓ−2]/Mc ⊗ χm

)
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for any 1 ≤ m ≤ ℓ− 1. The action of χm is given by multiplying each i-th component of

the ℓ− 1 dimensional representation by the character σimℓ,g for each 1 ≤ i ≤ ℓ− 1. Hence, we

obtain that Ag[ℓ]/Ag[ℓ]I(c)⊗χm ∼= ⊕l−1
i=1(Fℓ⊗σimℓ,g . With respect to equivalent choice of the

multiplicative map σℓ,g 7→ σ2
ℓ,g, it follows that the representation Vc/V I(c)

c is isomorphic to

Fℓ ⊗ (σmℓ,g + σ2m
ℓ,g + · · ·+ σ

(l−1)m
ℓ,g ) ∼= Fℓ ⊗ (−1). This proves that the topological generator

σc of I(c) acts as a reflection over Vc.

Monodromy at a place of additive reduction

Suppose that c is a place of additive reduction of Ag → Ug such that c is not a place of

bad reduction of E → Ug and dimFℓ
Ag[1−σℓ,g]/Ag[1−σℓ,g]I(c) = 2. Then the monodromy

of Ag[ℓ] at t = c is an element of 2(ℓ − 1) dimensional representation ⊕ℓ−1
i=1(Fℓ ⊗ σiℓ,g).

Because c is a place of good reduction of E, one obtains the following commutative diagram:

0 Ag[1− σℓ,g]I(c) Ag[ℓ]I(c) Ag[(1− σℓ,g)ℓ−2]I(c) 0

0 Ag[1− σℓ,g] Ag[ℓ] Ag[(1− σℓ,g)ℓ−2] 0

(3.25)

By Snake lemma, we have the identification that

Ag[1−σℓ,g]/Ag[1−σℓ,g]I(c) ∼= Ker
(
(1− σℓ,g) : Ag[ℓ]/Ag[ℓ]I(c) → Ag[(1− σℓ,g)ℓ−2]/Ag[(1− σℓ,g)ℓ−2]I(c)

)
.

The monodromy of Ag[ℓ] at t = c is an element of a 2(ℓ− 1) dimensional representation

⊕ℓ−1
i=1(Fℓ⊕Fℓ)⊗σiℓ,g. The identification that τn,σℓ,f ,E → Ug is a middle convolution allows us

to utilize N. Katz 1998, Theorem 4.1.10 to understand the action of I(c) on the co-invariants

Vc/V
I(c)
c . Because τn,σℓ,f ,E → Ug is tamely ramified, we obtain as I(c)-representations,

Vc/V
I(c)
c
∼= Ker

(
1− σℓ,g : Ag[ℓ]/Ag[ℓ]I(c) ⊗ χm → Ag[(1− σℓ,g)ℓ−2]/Ag[(1− σℓ,g)ℓ−2]I(c) ⊗ χm

)

for any 1 ≤ m ≤ ℓ− 1. The action of χm is given by multiplying each i-th component of

the ℓ− 1 dimensional representation by the character σimℓ,g for each 1 ≤ i ≤ ℓ− 1.

Let σc be the topoolgical generator of I(c) ⊂ πt1(Ug). To understand the representation
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Vc/V
I(c)
c , we divide into 2 cases depending on whether m = ℓ − 1 or m ̸= ℓ − 1. In

the first case, we obtain that Ag[ℓ]/Ag[ℓ]I(c) ⊗ χℓ−1 ∼= ⊕ℓ−1
i=1(Fℓ ⊕ Fℓ). Hence, we obtain

Vc/V
I(c)
c
∼= Fℓ ⊕ Fℓ, implying that σc acts as an isotropic shear over Vc. In the second case,

we obtain that Ag[ℓ]/Ag[ℓ]I(c) ⊗ χm ∼= ⊕ℓ−1
i=1(Fℓ ⊕ Fℓ) ⊗ σi(m+1)

ℓ,g . Because m ̸= ℓ − 1, we

obtain Vc/V I(c)
c
∼= (Fℓ⊕Fℓ)⊗ (σmℓ,g+ · · ·+σm(ℓ−1)

ℓ,g ) ∼= (Fℓ⊕Fℓ)⊗ (−1). Assuming Condition

3.1.1, because the topological generator σc′ of I(c′) where E → Ug has multiplicative

reduction acts as a reflection over Vc, we obtain that the element σcσc′ ∈ πt1(Ug) acts as

an isotropic shear over Vc.

Big monodromy

By Hall 2008, Theorem 3.1, it follows that the geometric monodromy group of Ug

contain an index 2 subgroup of the orthogonal group O(H1
ét(P1

Fq
,Af [1− σℓ,f ]) which is not

the special orthogonal group SO(H1
ét(P1

Fq
,Af [1− σℓ,f ]).

Because the Weil pairing is Gal(Fq/Fq)-equivariant, the symmetric pairing is Frobq

-equivariant. Hence, the short exact sequence of étale fundamental groups

1→ π1((Fn,ℓ)Fq
, f)→ π1((Fn,ℓ)Fq , f)→ Gal(Fq/Fq)→ 1 (3.26)

imply that both the geometric and the arithmetic fundamental groups of Fn,ℓ contain an

index 2 subgroup of the orthogonal group O(H1
ét(P1

Fq
,Af [1−σℓ,f ])) which is not the special

orthogonal group SO(H1
ét(P1

Fq
,Af [1− σℓ,f ])).

Orbits

The second and the third part of the theorem reduces to counting the number of

orbits of the geometric (or arithmetic) fundamental group of the space Fn,ℓ acting on the

geometric fibers of f ∈ Fn,ℓ(Fq) that is fixed by the action of the Frobenius Frobq. Using

Tony Feng, Landesman, and Rains 2023, Theorem 4.10 gives the desired results.

We can now prove Theorem 3.1.2.
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Theorem 3.1.2. The Grothendieck-Lefschetz trace formula implies for any i ≥ 0 and d ≥ 1,

∑
f∈Fn,ℓ(Fq)

(
#Sel1−σℓ,f

(Af/K)
)d

#Fn,ℓ(Fq)
=

2n∑
i=0

(−1)iTrFrobq|H i
ét,c(τ⊕d

n,σℓ,f ,E
,Qv) (3.27)

We recall the identification

Fn,ℓ(Fq) = ⊔η[n,ℓ]∈Φn,ℓ
Fη[n,ℓ](Fq). (3.28)

and Theorem 3.2.8 that there exists a number N1 > 0 and a fixed constant B1(n, ℓ, E, d)

independent of q such that for every q > Ñ2 and d ≥ 1,

∣∣∣∣∣∣∣
∑
f∈Fn,ℓ(Fq)

(
#Sel1−σℓ,f

(Af/K)
)d

#Fn,ℓ(Fq)
−

d∏
m=1

(ℓm + 1)

∣∣∣∣∣∣∣ < B1(n, ℓ, E, d) · 1
√
q
. (3.29)

Using induction on the degree of ℓ-th power free polynomials, there exists a number N2 > 0

and a fixed constant B̃1(n, ℓ, E, d) independent of q such that for every q > N2 and d ≥ 1,

∣∣∣∣∣∣∣∣
∑

f∈Fq [t]
deg f=n

(#Sel1−σℓ,f
(Af/K))d

#{f ∈ Fq[t] | deg f = n}
−

d∏
m=1

(ℓm + 1)

∣∣∣∣∣∣∣∣ < B̃1(n, ℓ, E, d) · 1
√
q
. (3.30)

We note that the Poonen-Rains distribution given by

BKLPR(ℓ, r) :=
∞∏
j=0

1
1 + ℓ−j

·
r∏
j=1

ℓ

ℓj − 1 (3.31)

is the unique probability distribution whose k-th moments is equal to ∏k
j=1(ℓj + 1), with

the condition that the parity conjecture holds, in particular that the probability that the

dimension of the 1− σℓ,f Selmer group of Af is odd is equal to the probability that the

dimension of the 1 − σℓ,f Selmer group of Af is even. By Billingsley 1995, Chapter 30

and Sawin and Matchett Wood 2022, Theorem 1.6, 1.7, 1.8, there exists a fixed constant
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C(ℓ, E) > 0 independent of n and q such that for sufficiently large n and q,

∣∣∣∣#{f ∈ Fq[t] | dimFℓ
Sel1−σℓ,f

(Af/K) = r, deg f = n}
#{f ∈ Fq[t] | deg f = n}

−
∞∏

i=0

1
1 + ℓ−i

r∏
i=1

ℓ

ℓi − 1

∣∣∣∣ < C(ℓ, E) · 1
√
q
.

(3.32)

3.3 Trivial cohomology groups

Recall that we consider the étale Fℓ-lisse sheaf τn,σℓ,f ,E → Fη[n,ℓ] whose Fq-rational points

parametrize Sel1−σℓ,f
(Af/K) for each f ∈ Fη[n,ℓ](Fq). We also recall that the open sub-

scheme Fη[n,ℓ] of Confη[n,ℓ](A1, X) has a canonical inclusion map

Confη[n,ℓ](A1, X)→ Confη1(A1)× Confη2(A1)× · · · × Confηℓ−1(A1)

g1g
2
2 · · · gℓ−1

ℓ−1 7→ (g1, g2, · · · , gℓ−1).
(3.33)

For each i such that 1 ≤ i ≤ ℓ−1, there exists a natural stabilization map φi : Confηi(A1)→

Confηi+1(A1). The stablization map induces the stabilization maps φi : Confη[n,ℓ](A1, X)→

Conf
η

[n+i,ℓ]
∗

(A1, X) where η[n+i,ℓ]
∗ is a weighted partition of n+i into ℓ−1 many components

such that

η
[n+i,ℓ]
∗ = [η1, η2, · · · , ηi−1, ηi + 1, ηi+1, · · · , ηl−1].

It is a nontrivial fact that the stablization maps φi : Confηi(A1) → Confηi+1(A1) and

φi : Confη[n,ℓ](A1, X) → Conf
η

[n+i,ℓ]
∗

(A1, X) induces an isomorphism of étale cohomology

groups of (colored) configuration spaces, see Palmer 2018 for the full proof of this result.

Using Theorem 3.1.2, we now prove Theorem 3.3.1, which demonstrates that certain

geometric conditions on τn,σℓ,f ,E ensures the triviality of their étale cohomology groups.

Theorem 3.3.1. Let v be a prime which is coprime to 2, 3, ℓ, and Char(K). Given a

choice of a number k such that 1 ≤ k ≤ ℓ− 1, fix two weighted partitions η[n,ℓ], η
[n+k,ℓ]
∗ and

a stabilization map φk : Fη[n,ℓ] → F
η

[n+k,ℓ]
∗

. Suppose the following conditions hold for the

étale cohomology groups of {τn,σℓ,f ,E}n≥1:
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1. (Subexponential Betti Numbers) For every n and i, there exists a fixed constant

K > 0 independent of n and i such that

dimQv H
i
ét((τn,σℓ,f ,E)Fq

,Qv) ≤ Ki+α. (3.34)

for some fixed number α ∈ R.

2. (Homological Stability) For each fixed i > 0, there exists a number N(i) > 1

such that for every n ≥ N(i), the stabilization map φi : Fη[n,ℓ] → F
η

[n+i,ℓ]
∗

induces an

isomorphism of étale cohomology groups

φi : H i
ét((τn,σℓ,f ,E)Fq

,Qv) ∼= H i
ét((τn+1,σℓ,f ,E)Fq

,Qv) (3.35)

3. (Frobenius Eigenvalues) There exists a strictly increasing function g : N→ R such

that for all i, there exists a fixed constant L > 1 such that all the absolute values of

the eigenvalues {λi,m}m of the Frobenius acting on H i
ét((τn,σℓ,f ,E)Fq

,Qv) satisfy

q
i
2 ≤ qg(i) < |λi,m| < qg(i+1) < qL· i

2 . (3.36)

Then for any fixed i > 0, there exists a large number M(i) > 0 such that for every n > M(i),

H i
ét((τn,σℓ,f ,E)Fq

,Qv) = 0. (3.37)

Proof. Using the Grothendieck-Lefschetz trace formula and Theorem 2.1.2 from Section 2,

there exists an integer N1 > 0 and a fixed constant C(ℓ, E) such that for any n ≥ N1,

∣∣∣E[#Sel1−σℓ,f
(Af/K)]− (ℓ+ 1)

∣∣∣ = 1
qn
·
∣∣∣∣∣
2n−1∑
i=0

(−1)iTrFrobq|H i
ét,c((τn,σℓ,f ,E)Fq

,Qv)
∣∣∣∣∣ < C(ℓ, E) · 1

nα

where v is any prime that is coprime to 2, 3, ℓ. Condition (1) of the statement of the

theorem and Deligne bounds on eigenvalues of the Frobenius acting on étale cohomology

groups with compact support Deligne 1974 imply that the above series converges for any
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q > K. Using Poincaré duality and condition (3) of the statement of the theorem that the

Frobenius eigenvalues associated to the action on i-th étale cohomology groups of τn,σℓ,f ,E

form a strictly increasing function, we can construct a sequence of non-negative numbers

{Ci}2n−1
i=0 such that

2n∑
i=1

(−1)i · Ci · q−g(i) · dimQv H
i
ét((τn,σℓ,f ,E),Qv)∨ < C(ℓ, E) · 1

nα(ℓ) . (3.38)

where we recall that g : N→ R is a strictly increasing function governing the absolute values

of eigenvalues of the Frobenius action on i-th étale cohomology groups of τn,σℓ,f ,E . Using

the upper and lower bounds on Frobenius eigenvalues from condition (3) of the statement

of the theorem, for every i such that 1 ≤ i < 2α(ℓ)
L · logn

log q , we obtain that the absolute values

of the Frobenius eigenvalues acting on H i
ét((τn,σℓ,f ,E),Qv)∨ is strictly greater than 1

nα(ℓ) .

Hence, we obtain that

⌊ 2α(ℓ)
L

· log n
log q

⌋∑
i=1

(−1)i · Ci · q−g(i) dimQv H
i
ét((τn,σℓ,f ,E),Qv) = 0. (3.39)

Because g is a strictly increasing function, we obtain that either Ci = 0 or dimQv H
i
ét((τn,σℓ,f ,E)Fq

,Qv) =

0 for all such 1 ≤ i < 2α(ℓ)
L · logn

log q . Using condition (1) and (2) of the statement of the

theorem, we may permit n to grow arbitrarily large so that for any fixed index i, there

exists large enough n such that i < 2α(ℓ)
L · logn

log q .

We now demonstrate that Ci = 0 also implies that there exists a choice of n > N(i) such

that dimQv H
i
ét((τn,σℓ,f ,E)Fq

,Qv) = 0. The fact that Ci = 0 implies TrFrobqk |H i
ét((τn,σℓ,f ,E)Fq

,Qv) =

0 for all but finitely many k ≥ 0. This is because one can always find large enough

n′ > N(i) (which may be larger than the initial choice of n) such that i < 2α(ℓ)
L · logn′

k log q ,

and condition (2) of the statement of the theorem implies that the action of Frobenius

on H i
ét((τn,σℓ,f ,E)Fq

,Qv) is identical to the action of Frobenius on H i
ét((τn′,σℓ,f ,E)Fq

,Qv).

Applying (3.39) to parameters qk and n′ yields

TrFrobqkH i
ét((τn,σℓ,f ,E)Fq

,Qv) = TrFrobqkH i
ét((τn′,σℓ,f ,E)Fq

,Qv) = 0. (3.40)
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By Bombieri and N. M. Katz 2010, Theorem 3.3, it must be the case that for every k ≥ 1,

TrFrobqk | H i
ét,c((τn,σℓ,f ,E)Fq

,Qv) = 0. (3.41)

In particular, it must be the case that the eigenvalues of the Frobenius Frobq acting on

i-th étale cohomology groups, denoted as {λi,m}, are given by

λi,m = qh(i) · ζmM(i) (3.42)

for some primitive roots of unity ζmM(i) ∈ µM(i) of order M and some strictly increasing

function h : N→ R. But this implies that the action of the Frobenius FrobqM(i) is given by

multiplication by (q(M(i)))h(i). Hence, it follows that

TrFrobqM(i) | H i
ét,c((τn,σℓ,f ,E)Fq

,Qv) = qh(i)·M(i) · dimQv H
i
ét,c((τn,σℓ,f ,E)Fq

,Qv) = 0 (3.43)

which implies the desired triviality of the i-th étale cohomology groups.

Remark 3.3.2. The significance of Theorem 3.3.1 lies in the observation that one can

obtain non-trivial geometric properties of algebraic spaces by utilizing innate properties of

dynamical systems. It would be of great interest to explore whether the two conditions

from Theorem 3.3.1 are valid. Even if the two conditions do not hold, Theorem 3.1.2

will construct an example of a sequence of algebraic spaces {τn,σℓ,f ,E}n≥1 whose étale

cohomology groups do not satisfy homological stability, but whose alternating weighted

sum of the trace of Frobenius acting on their i-th étale cohomology groups with compact

support converges to 0 as n grows arbitrarily large. It is also of interest to understand

whether one should expect the vanishing of étale cohomology groups of moduli spaces of

Selmer groups of different families of abelian varieties to occur, the spaces of which are

constructed in Hall 2008; Tony Feng, Landesman, and Rains 2023; Park and N. Wang

2023.

Remark 3.3.3. We note that one can reduce the problem of proving the homological
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stability of étale cohomology groups of τn,σℓ,f ,E to proving the homological stability of

group cohomology of a braid group with n strands over a punctured plane with twisted

coefficients, the dimensions of which grow exponentially in n.

We first note that the colored configuration space Fn,ℓ can be regarded as an n-

dimensional manifold over C which satisfies

H i(Fn,ℓ(C),Z/vZ) ∼= H i
ét,c((Fn,ℓ)Fq

,Z/vZ) (3.44)

Recall that the symmetric pairing on the geometric fibers of τn,σℓ,f ,E → Fn,ℓ is the

restriction of a fixed symmetric pairing over H1
ét(KFq, E[ℓ]) induced from the Weil pairing

E[ℓ]× E[ℓ]→ µℓ. The complex manifold τn,σℓ,f ,E(C) which satisfies

H i(τn,σℓ,f ,E(C),Z/vZ) ∼= H i
ét,c((τn,σℓ,f ,E)Fq

,Z/vZ) (3.45)

can be constructed as a finite sheeted covering space over Fn,ℓ(C) using the following

procedure. Fix an infinite dimensional Fℓ-vector space V∞ with a choice of a quadratic

form q : V∞ × V∞ → Fℓ. For each integer n ∈ Z, pick a deg(ME) + 2 deg(AE) − 4 + 2n-

dimensional subspace Vn of V∞ with the inclusion maps

V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂ Vn ⊂ · · · ⊂ V∞. (3.46)

Take the symmetric pairing on Vn’s to be restrictions of the quadratic forms q to each

correpsonding subspace of V∞.

The complex manifold corresponding to τn,σℓ,f ,E , denoted as τn,σℓ,f ,E(C) can be con-

structed from a sequence of orthogonal representations

ρn : π1(Fn,ℓ(C))→ O(Vn) ⊂ GL(Vn) (3.47)

whose image contains an index 2 subgroup of O(Vn) not isomorphic to the special orthogonal

group SO(Vn).
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Let Confn(C − {P1, · · · , Pk}) be the configuration space of unordered n points over

a complex plane with k punctures. Denote by T the twisted coefficient system over

Confn(C−{P1, · · · , Pk}) associated to the covering map Fn,ℓ(C)→ Confn(C−{P1, · · · , Pk})

Palmer 2018, Section 2, Example 4.6. Here, the integer k is the number of distinct irreducible

factors of ∆E over Fq. Then the Leray-Serre spectral sequence implies that

H∗(τn,σℓ,f ,E(C),Z/vZ) ∼= H∗(Fn,ℓ(C),Z/vZ[Vn])

∼= H∗(Confn(C− {P1, · · · , Pk}), T ⊗Z Z/vZ[Vn])

∼= H∗(π1(Confn(C− {P1, · · · , Pk})), T ⊗Z Z/vZ[Vn])

(3.48)

where the notation Z/vZ[Vn] in the middle term indicates that the fundamental group

π1(τn,σℓ,f ,E) acts as elements of the orthogonal group O(Vn), and the notation Z/vZ[Vn]

indicates that the fundamental group π1(Confn(C− {P1, · · · , Pk})) acts as elements of the

orthogonal group O(Vn). This allows us to formulate the following naïve conjecture.

Conjecture 3.3.4. Fix notations as stated in Remark 3.3.3. Then for each i ≥ 1, there

exists an integer N(i) > 0 such that for every n ≥ N(i),

H i(π1(Confn(C− {P1, · · · , Pk})), T ⊗Z Z/vZ[Vn]) = 0. (3.49)

Remark 3.3.5. The homological stability of group cohomology of braid groups with n

strands with twisted coefficients whose dimension grows in accordance to a polynomial in n

is carefully explored in a work by Martin Palmer Palmer 2018. As for homological stability

of twisted coefficients whose dimension grows in accordance to an exponential function in

n, the seminal work by Jordan Ellenberg, Akshay Venkatesh, and Craig Westerland studies

the function field analogue of Cohen-Lenstra heuristics by utilizing homological stability

of Hurwitz spaces Ellenberg, Venkatesh, and Westerland 2016. A recent work by Jordan

Ellenberg, TriThang Tran, and Craig Westerland extends the previous work by proving

homological stability of braid groups with twisted coefficients taken from braided vector

spaces Ellenberg, TriThang Tran, and Westerland 2023. Another recent groundbreaking
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work by Jordan Ellenberg and Aaron Landesman further extends homological stability

results to sequences of moduli space of Selmer groups of universal families of hyperelliptic

curves Ellenberg and Landesman 2023, the results of which will be of great interest for

verifying the conditions of Theorem 3.3.1.
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Chapter 4

Non-abelian twist families of

elliptic curves

This chapter is based on the following work in progress Park 2024b, the work of which aims

to generalize the random matrix model presented in Poonen and Rains 2012 to classes of

non principally polarized abelian varieties over global fields. Some of the results presented

in this chapter are closely related to the work by Stephanie Chan Chan 2022, the upcoming

work by Peter Koymans and Alex Smith Koymans and Alex Smith 2024 and the work in

progress with Daniel Keliher Keliher and Park 2024.

4.1 Main result

Fix a prime number ℓ. Let K be a global field whose characteristic is coprime to ℓ. Let

L/K be a Galois extension with Gal(L/K) ∼= Z/mZ ⋊ Z/ℓZ such that m | (ℓ − 1). We

denote by M the Galois subextension of L/K such that Gal(M/K) ∼= Z/mZ.

Let E be an elliptic curve over K. The overarching question this chapter aims to

address is:

Question 4.1.1. Compute the rank growths of the elliptic curve E over L/K:

RankZE(L)− RankZE(K) (4.1)
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As shown in previous chapters, there is a wealth of research conducted in the case when

L/K is a cyclic Galois extension, i.e. m = 1. The case where ℓ = 2 reduces to understanding

the rank of K-rational points of the quadratic twist of E, the problem of which it has been

verified for both number fields and global function fields that Goldfeld’s conjecture - that

approximately half of the quadratic twist families of elliptic curves have ranks 0 or 1, and is

of density 0 - is valid assuming the BSD conjecture and some mild conditions on the elliptic

curve E Alexander Smith 2022a; Alexander Smith 2022b; Ellenberg and Landesman 2023.

The cases for odd primes ℓ can be understood from computing the "cyclic order-ℓ twist" of

an elliptic curve E, an ℓ− 1 dimensional abelian variety obtained from Weil restriction of

scalars:

Ker
(
Nm : ResLKE → E

)
(4.2)

The generator σℓ of the Galois group Gal(L/K) induces an isogeny over the abelian ℓ− 1

fold, using which one can construct its prime Selmer group, a finite dimensional Fℓ-vector

subspace of the first Galois cohomology group H1(K,E[ℓ]) Mazur and Rubin 2007. Note

that this first Galois cohomology group is invariant to the choice of the cyclic Galois

extension L/K, which is obtained from proving that 1− σℓ torsion subgroup of the abelian

ℓ − 1 fold is Galois-equivariantly isomorphic to ℓ-torsion subgroup of the elliptic curve

Mazur and Rubin 2007, Proposition 4.1. The dimension of the prime Selmer group gives

an upper bound on the differences of ranks of E as stated in Question 4.1.1 Mazur and

Rubin 2007. Assuming a number of mild conditions on the elliptic curve E, the probability

distribution of the dimensions of these prime Selmer groups are computed for both number

fields (with respect to non-canonically ordered families of field extensions) Klagsbrun,

Mazur, and Rubin 2013; Klagsbrun, Mazur, and Rubin 2014 and for global function fields

Park 2022. Both of these results rest upon constructing a governing Markov operator over

the state space of non-negative integers which govern the changes in dimensions of such

prime Selmer groups with respect to consecutively changing local conditions at each place

of K.

These probability distributions conform to the probability distribution obtained from a



95

random matrix model which governs the intersection of two maximal isotropic subspaces

of an infinite dimensional Fℓ vector space, often known as the Poonen-Rains heuristics

Poonen and Rains 2012. One of the crucial inputs for formulating the heuristics lies on the

existence of the Weil pairing E[ℓ]×E[ℓ]→ µℓ for ℓ-torsion subgroups of elliptic curves. As

will be explored in this chapter, however, we may not expect the identical random matrix

model to govern the statistics of prime Selmer groups of a family of abelian varieties, if

the given family of abelian varieties of our interest are not equipped with the well-defined

symplectic pairing on their torsion subgroups.

The overarching approach to understanding Question 4.1.1, for the case m = 1, is

to construct a suitable abelian variety over K using Weil restriction of scalars, whose

ranks of K-rational points encapsulates the rank growths of an elliptic curve over a Galois

extension. Once one can verify that certain torsion subgroups of the desired abelian variety

are Galois-equivariantly isomorphic to a fixed Galois module, it remains to construct a

discrete stochastic process - whether it be a Markov operator over a countable state space

or a random matrix model utilizing maximal isotropic subspaces - whose limiting behavior

governs the probability distribution of dimensions of some Selmer groups of the desired

families of abelian varieties.

The aim of this chapter focuses on generalizing this overarching philosophy to non-

abelian Galois extensions L/K with Gal(L/K) ∼= Z/mZ⋊Z/ℓZ for any m | (ℓ−1) assuming

that the Galois subextension M/K with Gal(M/K) ∼= Z/mZ is fixed. Denote by LM (X)

the set of such Galois extensions L/K with fixed Galois subfield M/K such that the

discriminant of L is bounded above by X. The organization of the paper as well as the

highlights can be summarized as follows.

• Section 4.2: We construct an m(ℓ− 1) dimensional abelian variety BL/K governing

rank growths of elliptic curves with respect to fields L/K specified in Question 4.1.1.

Proposition (Proposition 4.2.4). Given an order ℓ element σℓ ∈ Gal(L/K), there

exists a Gal(K/K)-equivariant isomorphism BL/K [1− σℓ] ∼= (ResMKE)[ℓ].

• Section 4.3: We construct a random matrix model and a Markov operator governing



96

the distribution of 1 − σℓ Selmer groups of BL/K , serving as generalizations of

previous works by Poonen-Rains Poonen and Rains 2012 and Klagsbrun-Mazur-

Rubin Klagsbrun, Mazur, and Rubin 2014. Assuming some conditions on the local

Kummer maps δv : BL/K(Kv)
(1−σℓ)BL/K(Kv) → H1(Kv, BL/K [1 − σℓ]) and localization maps

locv : H1(K,BL/K [1−σℓ])→ H1(Kv, BL/K [1−σℓ]), we are able to prove the following

result on probability distribution of 1− σℓ Selmer groups of BL/K .

Theorem (Theorem 4.3.12). Denote by PLM (X)(d) the probability that the dimensions

of 1− σℓ Selmer groups of families {BL/K}L∈LM (X) is equal to d, i.e.

PLM (X)(d) :=
#{L ∈ LM (X) | dimFℓ

Sel1−σℓ
(BL/K/K) = d}

#LM (X)

Then assuming Condition 4.3.9, we obtain

lim
X→∞

PLM (X)(d) =
∑

k0,k1,··· ,kn−1∈Z≥0
k1+2k2+···+(n−1)kn−1=d

k0+k1+···+kn−1=m

(
k

k0, k1, · · · , kn−1

)
n−1∏
i=0

∏
j≥0

1
1 + ℓ−j

i∏
j=1

ℓ

ℓj − 1

ki

.

• Section 4.4: We analyze the ranks of Q-rational points of cubic twist families of

elliptic curves En : y2 = x3 − 432n2, and understand how the dimensions of 1− σ3

Selmer groups of BL/K grow arbitrarily large as n grows arbitrarily large, thereby

deviating from the proposed random matrix model from Section 4.3.

Theorem (Statement (1) of Theorem 4.4.1). Given an integer n, denote by w2(n)

the number of distinct odd prime factors of n equivalent to 2 modulo 3. Then

dimF3 Sel1−σ3(BL/K/K) = 2w2(n) + ∆(n) for some integer −1 ≤ ∆(n) ≤ 3.

• Section 4.5: We compute global root numbers of cubic twist families of elliptic curves

En : y2 = x3 − 432n2. We also formulate some conjectural statements on probability

distribution of coranks of (1−σ3)∞ Selmer groups of abelian 4-folds BL/K constructed

from E1 with respect to L = Q(ζ3, 3
√
n), and discuss how these statements are related

to the conjecture on the probability that an integer is a sum of two rational cubes
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Alpöge, Bhargava, and Shnidman 2022.

4.2 Abelian varieties governing rank growths

Fix a prime number ℓ. Given a global field K of characteristic coprime to ℓ, let L be a

Galois extension over K with Gal(L/K) = Z/mZ ⋊ Z/ℓZ such that m | ℓ− 1. Let M/K

be the unique subfield of L that is Galois over K and Gal(M/K) ∼= Z/mZ.

Definition 4.2.1. We denote by LM the collection of Z/mZ ⋊ Z/ℓZ Galois extensions

L/K with a fixed Z/mZ Galois subextension M/K. Given any X > 0, we denote by

LM (X) the subcollection of fields L ∈ LM whose absolute value of the discriminant is

bounded above by X.

Definition 4.2.2. Denote by BL/K the m(ℓ− 1) dimensional abelian variety given by

BL/K := Ker
(
ResLKE → ResMKE

)
(4.3)

We obtain that

RankZE(L) = RankZE(M) + RankZBL/K(K) (4.4)

If one considers the family of Z/mZ ⋊ Z/ℓZ Galois extensions {L/K} with a fixed degree

m Galois extension M/K, then one obtains that

RankZE(L)− RankZE(M) = RankZBL/K(K) (4.5)

In other words, assuming that one considers the family of Galois extensions LM , the rank

growth of the elliptic curve E with respect to the field extension L/K is controlled by the

rank of the abelian variety BL/K .

Remark 4.2.3. The abelian variety BL/K is an isotypic component of direct sums of ℓ−1
m

complex irreducible representations of dimension m of Gal(L/K) of the Weil restriction
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ResLKE, each irreducible representation of which originates from inducing direct sums of

ℓ−1 nontrivial 1-dimensional representations of Gal(L/M). This implies that the algebraic

rank of BL/K is a multiple of m, i.e. RankZBL/K(K) ≡ 0 mod m. In the special case

when m = ℓ− 1, BL/K is an isotypic component corresponding to the (ℓ− 1) dimensional

irreducible representation of Gal(L/K), which implies that the algebraic rank of BL/K is a

multiple of ℓ− 1, i.e. RankZBL/K(K) ≡ 0 mod ℓ− 1.

Pick a cyclic element σℓ ∈ Gal(L/K) of order ℓ. Because there exists a unique normal

subgroup Gal(L/M) of order ℓ inside Gal(L/K), the element σℓ is an endomorphism

of BL/K . Similar to Proposition 4.1 of Mazur and Rubin 2007, we have the following

description of 1− σℓ torsion subgroup of BL/K .

Proposition 4.2.4. Let L/K be a Galois extension such that Gal(L/K) = Z/mZ ⋊ Z/ℓZ

with M/K a unique subfield of L that is Galois over K and Gal(M/K) ∼= Z/mZ. Then

there exists a Gal(K/K)-equivariant isomorphism

BL/K [1− σℓ] ∼= (ResMKE)[ℓ]

We note that when m = 1, we recover the statement of Proposition 4.1 of Mazur and

Rubin 2007. In order to verify this proposition, we first present some definitions which

could be of use to re-interpret Weil restriction of scalars of abelian varieties.

Definition 4.2.5. Fix a positive number k ∈ N. Let S(k) be the kernel of the map Zk → Z

which adds all the components of Zk:

0→ S(k)→ Zk → Z→ 0

(xi)ki=1 7→
k∑
i=1

xi

(4.6)

Note that S(k) is an integral representation of the cyclic group Z/kZ and the symmetric

group Sk (In fact, S(k) is the irreducible integral standard representation of Sk).
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Definition 4.2.6. Fix an elliptic curve E over a global field K. Let L/K be a Galois

extension with Gal(L/K) ∼= Z/mZ ⋊ Z/ℓZ with m | m− 1 for some prime number ℓ. As

before, denote by M/K the unique Galois subextension of L such that Gal(L/M) ∼= Z/ℓZ.

Denote by BE the m(ℓ− 1) dimensional abelian variety over K defined as

BE := HomZ(Z[Z/mZ ⋊ Z/ℓZ]⊗Z[Z/ℓZ] S(ℓ), E) (4.7)

We note that BE is a Z[Z/mZ ⋊ Z/ℓZ]-module, and EndZ(BE) ⊃ Z[Z/mZ ⋊ Z/ℓZ].

Given a choice of a morphism

ψ : Gal(K/K)→ Gal(L/K) ∼= Z[Z/mZ ⋊ Z/ℓZ] ⊂ EndZ(BE), (4.8)

we denote by Bψ
E the twist of BE by ψ. Here, given any τ ∈ Gal(K/K), the element

ψ(τ) acts on BE by multiplying the elements of BE to the left. In explicit terms, we may

regard elements of BE as integral (ℓ− 1)×m matrices, and the element ψ(τ), regarded

as a (ℓ− 1)× (ℓ− 1) matrix, acts on the set of integral (ℓ− 1)×m matrices via matrix

multiplication to the left.

Remark 4.2.7. An equivalent definition of Bψ
E can be formulated as follows. We use

the notations for field extensions L/M/K as in Definition 4.2.6. The Weil restriction

of an elliptic curve E/K with respect to M/K and L/K admits the following isotypic

decomposition of irreducible Q-representations of Gal(M/K) ∼= Z/mZ and Gal(L/K) ∼=

Z/mZ ⋊ Z/ℓZ Mazur and Rubin 2007, Chapter 3:

ResLKE ∼=
⊕
ρ

Q−irred. rep. of Gal(L/K)

Q[Gal(L/K)]ρ ⊗ E (4.9)

Let ρ∗ be the standard representation of Sp, which restricts to a Z/ℓZ representation as a

direct sum of all non-trivial integral irreducible representations of Z/ℓZ. Take ρ to be the

induced representation IndZ/mZ⋊Z/ℓZ
Z/ℓZ ρ∗, which is the m(ℓ− 1) dimensional representation

of the group Z/mZ⋊Z/ℓZ. We note that there exists an isomorphism of Q-representations



100

of Z/mZ ⋊ Z/ℓZ:

ρ⊕ IndZ/mZ⋊Z/ℓZ
Z/ℓZ 1 ∼= IndZ/mZ⋊Z/ℓZ

e 1. (4.10)

The abelian variety Bψ
E is the ρ-isotypic component of ResLKE. In particular, given a choice

of a morphism ψ : Gal(K/K)→ Gal(L/K), we obtain an isomorphism of Abelian varieties

Bψ
E
∼= BL/K over K.

With notations stated as above, we prove Proposition 4.2.4.

Proof. Let σℓ ∈ Z/mZ ⋊ Z/ℓZ be a choice of an order ℓ element, and τm ∈ Z/mZ ⋊ Z/ℓZ

be an order m element. The integral matrix representation of σℓ and 1 − σℓ acting on

Z[Z/mZ ⋊ Z/ℓZ]⊗Z[Z/ℓZ] S(ℓ), as (ℓ− 1)× (ℓ− 1) matrices over Z, are given by

σℓ =



−1 −1 −1 · · · −1 −1

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 1 0


, 1− σℓ =



2 1 1 · · · 1 1

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · −1 1


, (4.11)

where σℓ and 1−σℓ acts on Z[Z/mZ⋊Z/ℓZ]⊗Z[Z/ℓZ]S(ℓ) by matrix multiplication to the left.

Likewise, the integral matrix representation of τm acting on Z[Z/mZ⋊Z/ℓZ]⊗Z[Z/ℓZ] S(ℓ),

as an m×m matrix over Z, is given by the cyclic column permutation matrix

τm =



0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 0 1

1 0 0 · · · 0 0


(4.12)

where τm acts on Z[Z/mZ ⋊ Z/ℓZ]⊗Z[Z/ℓZ] S(ℓ) by matrix multiplication to the right.
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Let N(ℓ−1)×m(Z/ℓZ) be the Z/ℓZ[⟨τm⟩]-module defined as

N(ℓ−1)×m(Z/ℓZ) :=





a1 a2 · · · am

0 0 · · · 0
...

... . . . ...

0 0 · · · 0


∈M(ℓ−1)×m(Z/ℓZ)


(4.13)

Then it follows that

Z[Z/mZ ⋊ Z/ℓZ]⊗Z[Z/ℓZ] S(ℓ)
(1− σℓ)Z[Z/mZ ⋊ Z/ℓZ]⊗Z[Z/ℓZ] S(ℓ)

∼= N(ℓ−1)×m(Z/ℓZ). (4.14)

Fix a morphism ψ : Gal(K/K)→ Gal(L/K) ∼= Z/mZ ⋊ Z/ℓZ. Let σℓ and τm be choices

of order ℓ and order m elements of Gal(L/K). Using the left exactness of the HomZ(·, E)

functor, we obtain

Bψ
E [1− σℓ] ∼= HomZ

(
Z[Z/mZ ⋊ Z/ℓZ]⊗Z[Z/ℓZ] S(ℓ)

(1− σℓ)Z[Z/mZ ⋊ Z/ℓZ]⊗Z[Z/ℓZ] S(ℓ) , E
)ψ

(4.15)

where ψ acts on the desired Z[Z/mZ ⋊ Z/ℓZ] module by the matrix multiplication action

specified for σℓ and τm as outlined above. This implies that as Gal(K/K)-modules,

Bψ
E [1− σℓ] ∼= Homψ

Z

(
N(ℓ−1)×m(Z/ℓZ), E

)
∼= Hom⟨τm⟩

Z

(
N(ℓ−1)×m(Z/ℓZ), E

)
∼=
(
m∏
i=1

E[ℓ]
)⟨τm⟩

(4.16)

where the element τm acts on the Galois module (∏m
i=1E[ℓ]) by cyclic permutation of

the coordinates of the product. The prescribed Galois action identifies the module as an

induced Gal(K/M)-module E[ℓ] to Gal(K/K). In particular, we achieve

Bψ
E [1− σℓ] ∼= IndGal(K/K)

Gal(K/M)E[ℓ] ∼= (ResMKE)[ℓ]. (4.17)
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Remark 4.2.8. If L/K is a cyclic Z/ℓZ extension, then we recover Mazur and Rubin

2007, Proposition 4.1:

BL/K [1− σℓ] ∼= (ResMKE)[ℓ] = E[ℓ] (4.18)

4.3 Random matrix model and Markov operators

We now define the 1−σℓ Selmer group of m(ℓ−1) dimensional abelian variety BL/K whose

dimension, like nay other Selmer groups of abelian varieties, gives an upper bound on the

rank of K-rational points of BL/K .

Definition 4.3.1. Let L/K be a Z/mZ ⋊ Z/ℓZ Galosi extension. Fix an order ℓ element

σℓ of Gal(L/K). Consider the following short exact sequence of Galois cohomology groups

0 BL/K(K)
(1−σℓ)BL/K(K) H1(K,BL/K [1− σℓ]) H1(K,BL/K)[1− σℓ] 0

0 ∏
v

BL/K(Kv)
(1−σℓ)BL/K(Kv)

∏
vH

1(Kv, BL/K [1− σℓ])
∏
vH

1(Kv, BL/K)[1− σℓ] 0

∏
v

resv∏
v
δv

(4.19)

The 1−σℓ Selmer group of the abelian m(ℓ−1)-fold BL/K , denoted as Sel1−σℓ
(BL/K/K),

is a subspace of H1(K,BL/K [1− σℓ]) defined as

Sel1−σℓ
(BL/K/K) := {c ∈ H1(K,BL/K [1− σℓ]), :

∏
v

resv(c) ∈ im
∏
v

δv} (4.20)

Proposition 4.2.4 implies that for any collections of Z/mZ ⋊ Z/ℓZ Galois extensions

{L/K} whose Z/mZ Galois subextension M/K is fixed,

Sel1−σℓ
(BL/K/K) ⊂ H1(K,BL/K [1− σℓ]) ∼= H1(K, (ResMKE)[ℓ]) ∼= H1(M,E[ℓ]) (4.21)

where the last statement follows from Shapiro’s lemma. A standard argument using Galois

cohomology groups demonstrate that Sel1−σℓ
(BL/K/K) is a finite dimensional Fℓ-vector

space.

The Weil pairing E[ℓ]×E[ℓ]→ µℓ and the cup product induces a Gal(K/M)-equivariant
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symmetric pairing on H1(K, (ResMKE)[ℓ]):

H1(K, (ResMKE)[ℓ])×H1(K, (ResMKE)[ℓ]) ∼= H1(M,E[ℓ])×H1(M,E[ℓ])→ H2(M,µℓ) ∼= Fℓ.

(4.22)

However, it is not necessarily true that such a pairingH1(K, (ResMKE)[ℓ])×H1(K, (ResMKE)[ℓ])→

Fℓ is Gal(K/K)-equivariant. There also does not exist an alteranting pairing on the torsion

module BL/K [1− σℓ] whose image is in µℓ, as every polarization of BL/K is divisible by

ℓ2 as shown in Howe 2001. To address this, we introduce the notion of coordinate-wise

Lagrangian subspaces of a direct sum V ⊕m of a symmetric space (V, q) over any finite field

k = Fℓ.

Definition 4.3.2. Let q : V × V → Fℓ be a non-degenerate quadratic form on a finite

dimensional Fℓ- vector space V . For any n ≥ 1, one obtains a non-degenerate quadratic

form q⊕n : V ⊕n×V ⊕n → F⊕n
ℓ . For each 1 ≤ i ≤ n, denote by πi : V ⊕n → V the projection

morphism to the i-th coordinate. We say that a subspace W ⊂ V ⊕n is coordinate-wise

Lagrangian if the following two conditions hold for every 1 ≤ i ≤ n.

1. The subspace πi(W ) ⊂ V is a maximal isotropic subspace of V with respect to the

quadratic form q.

2. The quadratic form q over V is trivial over πi(W ).

Using the definition above, we can formulate a generalization of the Poonen-Rains

heuristics Poonen and Rains 2012 to non-principally polarized Abelian varieties, where

prime Selmer groups of abelian varieties can be identified as an intersection of two maximal

isotropic subspaces lying inside an infinite dimensional Fℓ-vector space.

Proposition 4.3.3. Consider the following diagram

H1(K, (ResMKE)[ℓ])

∏
v

BL/K(Kv)
(1−σℓ)BL/K(Kv)

∏
vH

1(Kv, (ResMKE)[ℓ])

(4.23)
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1. For each place v of K that admits prime factorization over M as

(v) = pe1p
e
2 · · · pek, (4.24)

there exists a quadratic form

qv : H1(Kv, (ResMKE)[ℓ])×H1(Kv, (ResMKE)[ℓ])→ F⊕k
ℓ (4.25)

such that the images of the v-components of horizontal and vertical maps

locv : H1(K, (ResMKE)[ℓ])→ H1(Kv, (ResMKE)[ℓ])

δv :
BL/K(Kv)

(1− σℓ)BL/K(Kv)
→ H1(Kv, (ResMKE)[ℓ])

(4.26)

are coordinate-wise Lagrangian subspaces with respect to qv.

2. The intersection of the images of the horizontal and vertical maps are isomorphic to

the Selmer group Sel1−σℓ
(BL/K/K).

Proof. Let v be a place of K that factorizes over M as

(v) = pe1p
e
2 · · · pek. (4.27)

We may identify the localization of M by (v) as

Mv
∼=

k∏
i=1

Mpi . (4.28)

where Mpi is a Z/mk Z extension of Kv. Let Mm/k be the unramified Z/mk Z Galois extension

of Kv. If e = 1, i.e. (v) is unramified with respect to M/K, then for every 1 ≤ i ≤ k, one

has Mpi = Mm/k. If e ̸= 1, then each Mpi is a ramified Z/mk Z Galois extension of Kv. By

Shapiro’s lemma,

H1(Kv, (ResMKE)[ℓ]) ∼= H1(Mpi , E[ℓ]⊕k) (4.29)
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The Weil pairing E[ℓ]× E[ℓ]→ µℓ induces a symmetric pairing qpi for each i

qpi : H1(Mpi , E[ℓ])×H1(Mpi , E[ℓ])→ µℓ (4.30)

which induces a coordinate-wise symmetric pairing on

qv := ⊕ki=1qpi : H1(Kv, (ResMKE)[ℓ])×H1(Kv, (ResMKE)[ℓ])→ µ⊕k
ℓ . (4.31)

Then it follows from Mazur and Rubin 2007, Section 4 and Poonen and Rains 2012, Section

4 that both images of the morphisms locv and δv are coordinate-wise Lagrangian subspaces

of H1(Kv, (ResMKE)[ℓ]). That is, each coordinate is a maximal isotropic subspace V of

H1(Mm/k, E[ℓ]) such that qv|V = 0, thus proving statement (1). Statement (2) follows

immediately from the definition of Sel1−σℓ
(BL/K/K) and Proposition 4.2.4, which implies

for any desired Galois extension L/K,

H1(K,BL/K [1− σℓ]) ∼= H1(K, (ResMKE)[ℓ]). (4.32)

Remark 4.3.4. Let v be a place of K that factorizes over M as (v) = pe1p
e
2 · · · pek. Suppose

that the elliptic curve E/K has good reduction over v.

The unramified coordinate-wise Lagrangian subspace of H1(Kv, (ResMKE)[ℓ]) is the

direct sum of unramified Galois cohomology group of H1(Mpi , E[ℓ]), i.e.

H1
ur(Kv, (ResMKE)[ℓ]) = ⊕ki=1H

1
ur(Mpi , E[ℓ]) (4.33)

If v is a place that is unramified with respect to the field extension L/K, then one

achieves that the image of the local Kummer map δv is the unramified cohomology group

H1
ur(Kv, (ResMKE)[ℓ]).

We say that a coordinate-wise Lagrangian subspace is ramified if it is not the unramified

coordinate-wise Lagrangian subspace H1
ur(Kv, (ResMKE)[ℓ]). Denote by Hram(Kv, E,M, k)
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the set of ramified coordinate-wise Lagrangian subspaces of H1(Kv, (ResMKE)[ℓ]). The

proof of Proposition 4.3.3 and Klagsbrun, Mazur, and Rubin 2014, Lemma 5.5 demonstrate

that the number of coordinate-wise Lagrangian subspaces of H1(Kv, (ResMKE)[ℓ]) is:

#Hram(Kv, E,M, k) = ⌈ℓ
∑k

i=1(dimFℓ
E[ℓ](Mpi )−1)⌉. (4.34)

If v is a place that is unramified with respect to the field extension M/K, then the above

equation simplifies to

#Hram(Kv, E,M, k) = ⌈ℓk(dimFℓ
E[ℓ](Mm/k)−1)⌉ (4.35)

As before, we pay particular focus to the family of abelian varieties {BL/K}L parametrized

by families of Z/mZ ⋊ Z/ℓZ Galois extensions L/K with a fixed Z/mZ extension M/K.

Because every polarization of such abelian varieties BL/K has degree divisible by ℓ2 Howe

2001, it is not possible to directly utilize the Poonen-Rains heuristics Poonen and Rains

2012, where the random matrix model is obtained from identifying the probability distri-

bution of the dimensions of intersection of two random maximal isotropic subspaces of a

symmetric space (V, q) with respect to the symmetric pairing q : V × V → Fℓ. Proposition

4.3.3, nevertheless, shows that the arithmetic statistics of Sel1−σℓ
(BL/K/K) can still be

understood from computing the probability distribution of desired dimensions with respect

to coordinate-wise symmetric pairing ⊕mi=1q : V ⊕m × V ⊕m → F⊕m
ℓ .

Definition 4.3.5. Let V be a vector space over a finite field Fℓ equipped with a symmetric

pairing q : V × V → Fℓ. We denote by bd,k,n the probability

bd,k,n := P[dimFℓ
(W ∩ Z) = d |

dimFℓ
W=dimFℓ

Z=n
W,Z⊂V ⊕kcoordinate-wise Lagrangian w.r.t. q⊕k:V ⊕k×V ⊕k→F⊕k

ℓ

]

(4.36)

We denote by Yk,n the random variable denoting the dimension of intersection of two

coordinate-wise Lagrangian subspaces W,Z ⊂ V ⊕k with respect to coordinate-wise

quadratic form q⊕k : V ⊕k × V ⊕k → F⊕k
ℓ , where one of the subspaces Z is fixed and
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the other subspace W is chosen uniformly at random.

The probabilities bd,k,n can be explicitly computed as shown in the proposition stated

below.

Proposition 4.3.6. 1. The random variable Yk,n is a sum of k copies of Bernoulli

random variables B1, B2, · · · , Bn where Bi is equal to 1 with probability 1
ℓi−1+1 and 0

otherwise.

2. For any n, ∑
d≥0

bd,k,nz
d =

n−1∏
i=0

(
z + ℓi

1 + ℓi

)k
(4.37)

3. Denote by bd,k := limn→∞ bd,k,n. Then

∑
d≥0

bd,kz
d =

∞∏
i=0

(
1 + ℓ−iz

1 + ℓ−i

)k
(4.38)

4. We have

bd,k =
∑

k0,k1,··· ,kn−1∈Z≥0
k1+2k2+···+(n−1)kn−1=d

k0+k1+···+kn−1=k

(
k

k0, k1, · · · , kn−1

)
n−1∏
i=0

πki
i (4.39)

where

πi :=
∏
j≥0

1
1 + ℓ−j

i∏
j=1

ℓ

ℓj − 1 (4.40)

Proof. Part (1) of the proposition follows from adapting the proof of Poonen and Rains

2012, Proposition 2.6 to the random variable Yk,n, where the original proposition verifies

the desired statement for the case when k = 1. The rest of the parts follows from comparing

the generating function of the sums of Bernoulli random variable with Yk,n.

Combining Proposition 4.2.4 and Proposition 4.3.6, we can formulate the following

heuristic on the dimensions of 1− σℓ Selmer groups of twist families {BL/K}L assuming

some strong conditions on the distribution of images of local Kummer maps δv.
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Definition 4.3.7. We introduce a number of subfamilies of the families of Galois extensions

LM .

1. Pick a place v of K. We denote by LM,v ⊂ LM a subcollection of Galois extensions

L ∈ LM such that v is ramified in L/K. We denote by LM,v(X) a subcollection of

Galois extensions L ∈ LM,v whose absolute value of the discriminant is bounded

above by X.

2. Given any integer k which divides m = [M : K], we denote by L[k]
M ⊂ LM the

subcollection of Galois extensions L ∈ LM which are unramified away from places

v of K which is unramified over M/K and admits prime decomposition over M as

(v) = ∏k
i=1 pi. We denote by L[k]

M (X) a subcollection of Galois extensions L ∈ L[k]
M

whose absolute value of the discriminant is bounded above by X.

3. Given any integer l > 0, we denote by LM,[l] ⊂ LM the subcollection of Galois

extensions L ∈ LM such that dimFℓ
Sel1−σℓ

(BL/K/K) = l. (Here, we note that l is

not necessarily equal to ℓ).

Definition 4.3.8. 1. Given a choice of a place v of K, we define the projection map

Φv : LM,v → Hram(Kv, E,M, k) as

Φv : LM,v → Hram(Kv, E,M, k)

L 7→ δv

(
BL/K(Kv)

(1− σℓ)BL/K(Kv)

) (4.41)

where δv is the local Kummer map of the abelian variety BL/K .

2. Given a choice of a place p of M lying above a place v of K, denote by w(p) the

dimension of E[ℓ](Mp) for each prime p lying above v. We define the projection map

Ψp : LM,[l] → Hom(Sel1−σℓ
(BL/K/K), H1

ur(Mp, E[ℓ]) ∼= Mℓ×v(Fℓ) as

Ψp : LM,[l] → Hom(Sel1−σℓ
(BL/K/K), H1

ur(K, (ResMKE)[ℓ]) ∼= Mℓ×w(p)(Fℓ)

L 7→ locp.
(4.42)
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Condition 4.3.9. 1. Given a choice of a place v of K, we endow a uniform proba-

bility distribution νLM,v(X) over the finite collection of Galois extensions LM,v(X).

Then the pushforward measure Φ∗
vνLM,v(X) converges to a uniform distribution over

Hram(Kv, E,M, k) as X grows arbitrarily large. In other words, given any ramified

coordinate-wise Lagrangian subspace V ∈ Hram(Kv, E,M, k),

lim
X→∞

P [Φv(L) = V | L ∈ LM,v(X)] = 1
#Hram(Kv, E,M, k) . (4.43)

2. Given a choice of a place p lying above v of K, we endow a uniform probabil-

ity distribution νLM,[l](X) over the finite collection of Galois extensions LM,[l](X).

Then the pushforward measure Ψ∗
pνLM,[l](X) converges to a uniform distribution

over Mℓ×w(p)(Fℓ) as X grows arbitrarily large. In other words, given any matrix

M ∈Mℓ×w(p)(Fℓ),

lim
X→∞

P
[
Ψp(L) = M | L ∈ LM,[l](X)

]
= 1

#Mℓ×w(p)(Fℓ)
. (4.44)

Theorem 4.3.10. Assume Condition 4.3.9.

1. For any k | m, the probability distribution of dimensions of 1− σℓ Selmer groups of

families {BL/K}L∈L[k]
M

is given by

lim
X→∞

#{L ∈ L[k]
M (X) | dimFℓ

Sel1−σℓ
(BL/K/K) = d}

#L[k]
M (X)

= bd,k. (4.45)

2. There exists an irreducible aperiodic Markov chain Mk over the state space Zk≥0 with

the unique stationary distribution π̂k : Zk≥0 → [0, 1] such that

bd,k =
∑

d1+d2+···+dk=d
π̂k(d1, d2, · · · , dk). (4.46)

Proof. Proposition 4.2.4 shows that regardless of the choice of Z/mZ ⋊ Z/ℓZ Galois
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extensions L/K with a fixed Z/mZ Galois extension M/K, the image of the morphism

∏
v

locv : H1(K,BL/K [1− σℓ]) ∼= H1(K, (ResMKE)[ℓ])→
∏
v

H1(Kv, (ResMK )[ℓ]) (4.47)

is a fixed coordinate-wise Lagrangian subspace of ∏vH
1(Kv, (ResMK )[ℓ]). Proposition 4.3.3

hence demonstrates that the dimension of 1− σℓ Selmer group of BL/K is determined by

the image of the local Kummer map δv of the abelian variety BL/K . Fix an integer k | m.

Restricting the families of abelian varieties to Galois extensions L ∈ L[k]
M , Condition 4.3.9

implies that the random variable limn→∞ Yk,n governs the probability distribution of the

dimension of the intersection of ∏v im(δv) and ∏v im(locv). This proves statement (1) of

the theorem.

To prove statement (2) of the theorem, consider the Markov operator Mℓ,L := [m[ℓ]
i,j ]

defined over the countable state space Z≥0:

m
[ℓ]
i,j =



1− ℓ−i if j = i− 1 ≥ 0

ℓ−i if j = i+ 1

0 else

Using Mℓ,L, we construct the Markov chain Mℓ defined over the countable state space

Z≥0.

Mℓ :=
(

1− ℓ

ℓ2 − 1

)
+ 1
ℓ
Mℓ,L + 1

ℓ3 − ℓ
M2

ℓ,L. (4.48)

The construction of the Markov chain originates from computing the respective probability

that the maximal isotropic subspaces originating from the two images

locp : H1(K, (ResMKE)[ℓ])→ H1(Mp, E[ℓ])

δp :
BL/K(Kv)
BL/K [1− σℓ]

→ H1(Kv, (ResMKE)[ℓ])→ H1(Mp, E[ℓ])

at each place p of M lying above a place v of K agree with each other, as outlined in

Klagsbrun, Mazur, and Rubin 2014, Section 7, 9. The Markov chain can be constructed by
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considering three cases where dimFℓ
E[ℓ](Mp) = i for 0 ≤ i ≤ 2. When dimFℓ

E[ℓ](Mp) = 0,

then it follows that H1(Mp, E[ℓ]) = 0, implying that twisting the abelian m(ℓ − 1) fold

by such a place p lying above v does not alter the dimension of 1 − σℓ Selmer groups.

When dimFℓ
E[ℓ](Mp) = 0, then one has dimFℓ

H1(Mp, E[ℓ]) = 2, and there exists a unique

unramified Lagrangian subspace and a unique ramified Lagrangian subspace, each of

dimension 1. The second condition of Condition 4.3.9 implies that over the subfamilies of

fields L ∈ LM,[l](X), as X grows arbitrarily large, the dimension of the image of locq is

equal to 1 for all but 1 element of Hom(Sel1−σℓ
(BL/K/K), H1

ur(Mp, E[ℓ])). By Klagsbrun,

Mazur, and Rubin 2014, Proposition 7.2, the probability that the dimension of Selmer

groups will decrease by 1 is equal to 1− ℓ−l, whereas the probability that the dimension of

Selmer groups will increase by 1 is equal to ℓ−l. This gives rise to the construction of the

Markov chain Mℓ,L for each ℓ ≥ 0. The case for dimFℓ
E[ℓ](Mp) = 2 follows analogously,

where one can show that the Markov chain M2
ℓ,L governs the changes in the dimension

of 1 − σℓ Selmer groups of BL/K with regards to consecutive twist by a place p of M .

The weighted coefficients determining the Markov chain Mℓ originate from the number of

elements of the special linear group SL2(Fℓ) whose order is not equal to ℓ, is equal to ℓ,

and is trivial (see Klagsbrun, Mazur, and Rubin 2014, Section 5 for example). It is not

difficult to show that the unique stationary distribution of the Markov chain, denoted as

π = (πi)i≥0 is given by the formula

πi =
∏
j≥0

1
1 + ℓ−j

·
i∏

j=0

ℓ

ℓj − 1 . (4.49)

As a remark, when k = 1, i.e. L/K is a cyclic Z/ℓZ Galois extension, it is a result of

Klagsbrun, Mazur, and Rubin Klagsbrun, Mazur, and Rubin 2014 who demonstrated

that assuming µℓ ⊂ K and Gal(K(E[ℓ])/K) ⊃ SL2(Fℓ), the stationary distribution of the

Markov chain M governs the probability distribution of dimensions of 1−σℓ Selmer groups

Sel1−σℓ
(BL/K/K) as the number of places of K that are ramified with respect to L/K

grows arbitrarily large.

The probability distribution bd,k obtained from Proposition 4.3.3 can be interpreted as
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the unique stationary distribution of a Markov chain Mℓ over a k dimensional countable

state space. Because the Markov chain Mℓ over Z≥0 is an irreducible aperiodic Markov

chain with the unique stationary distribution given by π = (πi)i≥0, the direct-product

Markov chain ⊠k
i=1Mℓ is an irreducible aperiodic Markov chain over the space Z⊕k

≥0 with

the unique stationary distribution π̂ given by

π̂(i1, i2, · · · , ik) :=
k∏
j=1

πij .

Furthermore, the probability distribution bd,k satisfies the condition

bd,k =
∑

i1,i2,··· ,ik∈Z≥0
i1+i2+···+ik=d

π̂(i1, i2, · · · , ik).

In other words, the probability distribution bd,k obtained from the random matrix model

corresponds to a sum of stationary distribution of a k dimensional irreducible aperiodic

Markov chain ⊠k
i=1Mℓ along the zero locus of the hyperplane x1 + x2 + · · ·+ xk = d.

We now construct a Markov model suitable for governing the probability distribution of

dimensions of 1− σℓ Selmer groups of abelian varieties BL/K constructed from a family of

Galois extensions {BL/K}L∈LM
. One key issue with directly utilizing the random matrix

models constructed for each L[k]
M is that the symmetric pairings giving rise to the random

matrix model have ranges lying in F⊕k
ℓ . Using the fact that every number k we consider

satisfies k | m, we construct a new symmetric pairing whose ranges lie in F⊕m
ℓ . Hence, one

obtains the following proposition as a reformulation of Proposition 4.3.3

Proposition 4.3.11. Consider the following diagram

H1(K, (ResMKE)[ℓ])

∏
v

BL/K(Kv)
(1−σℓ)BL/K(Kv)

∏
vH

1(Kv, (ResMKE)[ℓ])

(4.50)

Then there exists a quadratic form Q : ∏vH
1(Kv, (ResMKE)[ℓ])→ F⊕m

ℓ such that the images
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of the horizontal and vertical maps are maximal isotropic subspaces with respect to Q, and

their intersection is isomorphic to the Selmer group Sel1−σℓ
(BL/K/K).

Proof. The inflation-restriction sequence of Galois cohomology groups induces an isomor-

phism given by

H1(K, (ResMKE)[ℓ]) ∼= H1(M,E[ℓ]⊕m)Gal(M/K) (4.51)

where Gal(M/K) acts on the cohomology group via cyclic permutation of the coordinates

of E[ℓ]⊕m. The Weil pairing E[ℓ]× E[ℓ]→ µℓ induces a symmetric pairing whose image

lies in F⊕m
ℓ :

H1(M,E[ℓ]⊕m)×H1(M,E[ℓ]⊕m)→ H2(M,µ⊕m
ℓ ) ∼= F⊕m

ℓ . (4.52)

Let v be a place of K such that v factorizes as v = pe1 · · · pek over M . Then the localization

of H1(K, (ResMKE)[ℓ]) at v, with respect to the inflation-restriction sequence, satisfies

H1(Kv, (ResMKE)[ℓ]) ∼= ⊕ki=1H
1(Mpi , E[ℓ]⊕m)Gal(Mpi/Kv)

cv 7→ (cp1 , cp2 , · · · , cpk
)

(4.53)

where Mpi/Kv is a degree m
k Galois extension of Kv appearing as a summand of the

localization of M at v, and the Galois group Gal(Mpi/Kv) acts on the first cohomology

group the via cyclic permutation of the coordinates of E[ℓ]⊕m as an element of order m
k . As

before, using the Weil pairing E[ℓ]×E[ℓ]→ µℓ, the coordinate-wise cup product induces a

pairing for each prime pi lying above v:

qpi : H1(Mpi , E[ℓ]⊕m)×H1(Mpi , E[ℓ]⊕m)→ H2(Mpi , µ
⊕m
ℓ ) ∼= F⊕m

ℓ . (4.54)

Note that the cyclic permutation action of Gal(Mpi/Kv) implies that each pairing, restricted
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to the Gal(Mpi/Kv)-invariant cohomology group, has image lying inside

qpi : H1(Mpi , E[ℓ]⊕m)Gal(Mpi/Kv)×H1(Mpi , E[ℓ]⊕m)Gal(Mpi/Kv) → H2(Mpi , µ
⊕m
ℓ )Gal(Mpi/Kv) ∼= F⊕k

ℓ

(4.55)

which recovers the coordinate-wise symmetric pairing obtained from (4.29)-(4.31).

We let Q be the quadratic form defined over ∏v place of K H
1(Kv, (ResMKE)[ℓ]) defined

as

Q :
∏

v place of K
H1(Kv, (ResMKE)[ℓ])→ (Q/Z)⊕m (4.56)

(cv)v 7→
∑

v place of K

∑
p place of M

p|v

qp(cp). (4.57)

The coordinate-wise short exact sequences of Brauer groups

0→ H2(M,E[ℓ]⊕m)→ ⊕w place of MH
2(Mv, E[ℓ]⊕m)→ (Q/Z)⊕m → 0 (4.58)

imply that the quadratic form Q is trivial when restricted to the image of the localization

∏
v

locv : H1(K, (ResMKE)[ℓ])→
∏
v

H1(Kv, (ResMKE)[ℓ]). (4.59)

The 9-term Poitou-Tate exact sequence Milne 2006, Theorem 1.4.10 shows that the image

of the localization map is a maximal isotropic subspace with respect to the pairing Q. The

rest of the proposition, as in Proposition 4.3.3, follows from the construction of the local

Kummer maps and 1− σℓ Selmer groups of BL/K .

As before, we assume Condition 4.3.9. The proof of Theorem 4.3.10 demonstrates that

the Markov chain governing the dimensions of 1− σℓ Selmer group of BL/K at a place v of

K which factorizes over M as v = pe1p
e
2 · · · pek is governed by the Markov chain ⊠k

i=1Mℓ

over the state space Z⊕k
≥0. In lieu of the proof of Proposition 4.3.11, one may, without loss

of generality, extend the Markov chain ⊠k
i=1Mℓ to the Markov chain defined over Z⊕m

≥0
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given by (
⊠k
i=1Mℓ

)
⊠
(
⊠m−k
i=1 I

)
(4.60)

where I is the identity Markov chain over Z≥0. As in Theorem 4.3.10, we are able to

formulate the probability distribution of dimensions of 1−σp Selmer groups of {BL/K}L∈LM

as follows.

Theorem 4.3.12. Assume Condition 4.3.9. We recall that m = [M : K]. Suppose that ℓ

is an odd prime. Then the probability distribution of dimensions of 1− σℓ Selmer groups

of families {BL/K}L∈LM
is given by

lim
X→∞

#{L ∈ LM (X) | dimFℓ
Sel1−σℓ

(BL/K/K) = d}
#LM (X) = bd,m. (4.61)

Proof. Consider the Markov chain defined over the countable state space Z⊕m
≥0 :

M :=
∑
k|m

#{a ∈ Z/mZ | ord(a) = m
k }

m

((
⊠k
i=1Mℓ

)
⊠
(
⊠m−k
i=1 I

))
. (4.62)

We observe that given any two k1, k2 | m, the Markov chains
(
⊠k1
i=1Mℓ

)
⊠
(
⊠m−k1
i=1 I

)
and(

⊠k2
i=1Mℓ

)
⊠
(
⊠m−k2
i=1 I

)
commute with each other, because any Markov operator commutes

with the identity Markov operator. By construction, the Markov chainM is an irreducible

aperiodic Markov chain over Z⊕m
≥0 . Adapting the proof of Park 2022, Lemma 4.15, because

ℓ is an odd prime, the unique stationary distribution of the Markov chain ∑ℓ
i=1 aiM

i
p,L

over Z≥0, assuming it is irreducible and aperiodic, is given by π = (πi)i≥0 regardless of the

values of ai’s. Using the commutativity of the Markov chains
(
⊠k
i=1Mℓ

)
⊠
(
⊠m−k
i=1 I

)
for

any k | m, we may rewrite the Markov chain Mℓ for any ℓ ≥ 1 as the irreducible aperiodic

Markov chain

Mℓ = ⊠m
j=1

( 2ℓ∑
i=0

ai,jMi
ℓ,L

)
(4.63)

for some set of coefficients {ai,j}0≤i≤2ℓ,1≤j≤m such that ∑2ℓ
i=0 ai,j = 1 for all 1 ≤ j ≤ m.
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Given any initial probability distribution δ : Z⊕m
≥0 , as ℓ grows arbitrarily large, we obtain

lim
ℓ→∞

Mℓδ(i1, i2, · · · , im) = lim
ℓ→∞

⊠m
j=1

( 2ℓ∑
i=0

ai,jMi
ℓ,L

)
δ(i1, i2, · · · , im)

= ⊠m
j=1

(
lim
ℓ→∞

2ℓ∑
i=0

ai,jMi
ℓ,Lδ(ij)

)

= ⊠m
j=1πij .

(4.64)

Theorem 4.3.10 and the Chebotarev density theorem for cyclic Galois extensions M/K

implies that the stationary distribution of M is the probabiltiy distribution of dimensions

of 1 − σℓ Selmer groups of families {BL/K}L∈LM
. We note that the commutativity of

the Markov chains
(
⊠k
i=1Mℓ

)
⊠
(
⊠m−k
i=1 I

)
addresses the observation that the dimension

of 1− σℓ Selmer groups of the abelian variety BL/K twisted at ℓ many places over K is

invariant under all possible orders in which one consecutively twists the abelian variety by

such ℓ many places of K.

As a corollary, we obtain heuristics on the stability of rank growths of elliptic curves

with respect to some non-abelian Galois extensions, and the probability distribution of the

sizes of torsion subgroup of Tate-Shafarevich groups of BL/K assuming Condition 4.3.9.

Corollary 4.3.13. Assume Condition 4.3.9. Let m be a fixed constant. Denote by Pℓ,m,d,K ,

Rℓ,m,d,K , and Xℓ,m,d,K the probabilities

Pℓ,m,d,K :=
#{L ∈ LM (X) | dimFℓ

Sel1−σℓ
(BL/K/K) = d}

#LM (X)

Rℓ,m,d,K :=
#{L ∈ LM (X) | RankZBL/K(K) = d}

#LM (X)

Xℓ,m,d,K :=
#{L ∈ LM (X) | dimFℓ

XBL/K
[1− σℓ] ≡ 0 mod m}

#LM (X)

(4.65)
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Then the following asymptotic statements hold.

lim
ℓ→∞

lim
X→∞

Pℓ,m,d,K =


(m
d

)
· 1

2m if 0 ≤ d ≤ m

0 if d > m

(4.66)

lim
ℓ→∞

lim
X→∞

∞∑
d=1

Rℓ,m,d,K ≤
1

2m (4.67)

lim
ℓ→∞

lim
X→∞

Xℓ,m,d,K = 1
2m−1 (4.68)

In particular, if m = 2, then as the absolute value of the discriminant X grows arbitrarily

large and ℓ grows arbitrarily large, approximately 50% of the 1− σℓ torsion subgroup of the

Tate-Shafarevich group BL/K has non-square order.

Proof. The generating function for the probability distribution {bd,m}∞d=0 can be rewritten

as

∞∑
d=0

bd,mz
d =

((1
2 +O(1

ℓ
)
)

+
(1

2 +O(1
ℓ

)
)
z +O(1

ℓ
)z2 + · · ·+O( 1

ℓm(m−1)/2 )zm + · · ·
)m

.

(4.69)

The first part of the corollary hence follows from the fact that as ℓ grows arbitrarily large,

the generating function for {bd,m}∞d=0 converges to the generating function for the binomial

distribution with probability 1
2 , with error terms of order O(1

ℓ ). The second and the third

part of the corollary follows from recalling that

RankZBL/K(K) = dimFℓ
Sel1−σℓ

(BL/K/K)− dimFℓ
XBL/K

[1− σℓ] (4.70)

and that RankZBL/K(K) ≡ 0 mod m, because the abelian variety corresponds to the

isotypic component of ℓ− 1 direct sums of m dimensional irreducible Q-representations of

Z/mZ ⋊ Z/ℓZ, see Remark 4.2.3.

Remark 4.3.14. We note that 1− σℓ torsion subgroup of the Tate-Shafarevich group of

the abelian variety BL/K does not necessarily have square order. This is due to the fact

that every polarization of BL/K has degree divisible by ℓ2 Howe 2001, hence BL/K does
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not admit a principal polarization.

Remark 4.3.15. It is an interesting question to verify whether the conditions outlined in

Condition 4.3.9 are in fact valid conditions that govern the 1− σℓ Selmer groups of abelian

m(ℓ− 1) folds. An upcoming work by Daniel Keliher and the author of this manuscript

focuses on understanding rank growths of elliptic curves over number fields with respect to

S3 cubic field extensions Keliher and Park 2024. It would be interesting to understand

under which conditions on the families of S3 extensions L/K and the elliptic curve E over

K the constraints in Condition 4.3.9 remain valid or not.

4.4 Sums of two rational cubes

The statistics of the dimensions of 1−σℓ Selmer groups of twist families of abelian varieties

{BL/K}L∈LM
depends heavily on Condition 4.3.9, where one assumes two conditions on the

manner of probability distribution of the local Kummer maps and the localization maps. It

is hence natural to expect that the probability distribution of 1− σℓ Selmer groups of such

twist families of abelian varieties will behave differently if any of Condition 4.3.9 is not

satisfied. More concretely, we expect that changes in Condition 4.3.9 will result in giving

rise to a differently constructed Markov chain Mℓ governing the changes in the dimension

of 1− σℓ Selmer groups with respect to consecutive twists by places of K. This is precisely

the case one observes from cubic twist families of elliptic curves En : y2 = x3 − 432n2, the

rank of the elliptic curves of which are closely related to understanding whether n can be

written as a sum of two rational cubes Alpöge, Bhargava, and Shnidman 2022.

Unfortuantely, this current version of the manuscript does not succeed in computing

the corank of 3∞ Selmer groups of elliptic curves En or the corank of (1− σ3)∞ Selmer

groups of abelian 4-folds, the first problem of which will be explored in the upcoming work

by Peter Koymans and Alex Smith Koymans and Alex Smith 2024. Nevertheless, we aim

to demonstrate how the framework of the generalization of Poonen-Rains heuristics is

relevant to the problem of understanding the probability that an integer is a sum of two

rational cubes. Before we proceed, we sincerely thank Peter Koymans and Alex Smith for
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pointing out several errors in the previous version of the manuscript, for giving extremely

helpful and constructive feedbacks, and for kindly sharing their current work in progress

in approaching the problem of computing the probability that an integer is a sum of two

rational cubes.

As stated in Alpöge, Bhargava, and Shnidman 2022, the equation n = x3 + y3 is

equivalent to the Weierstrass equation of the elliptic curve over Q:

En : y2 = x3 − 432n2. (4.71)

We denote by E−3
n the quadratic twist of the elliptic curve En by −3:

E−3
n : y2 = x3 + 16n2. (4.72)

Denote by φn : En → E−3
n the Q-rational 3-isogeny defined as

φn : En → E−3
n , (x, y) 7→

(
x3 − 1728n2

9x2 ,
y(x3 + 3456n2)

27x3

)
(4.73)

see H. Cohen and Pazuki 2009 and Chan 2022 for further details on the properties of these

Q-rational 3-isogenies and the associated 3-isogeny Selmer groups of ellitpic curves En

over Q. The family of curves {En}n∈Z forms a cubic twist family of elliptic curves whose

endomorphism ring is isomorphic to Z[ζ3], where ζ3 is a primitive 3rd root of unity. We

note that these two isogenies satisfy the condition that

E−3
n (Q)

φnEn(Q)
∼= µ3(Q) ∼= 0, En(Q)

φ̂nE
−3
n (Q)

∼= Z/3Z (4.74)

In lieu of Definition 4.2.2, we let our base field K = Q, L = Q(ζ3, 3
√
n), and M = Q(ζ3).

We denote by BL/K the abelian 4-fold over K = Q defined as

BL/K := Ker
(
ResLKE → ResMKE

)
(4.75)
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Over the field L, one obtains the Gal(K/L)-equivariant isomorphism

BL/K ∼= En × E−3
n × En2 × E−3

n2 , (4.76)

In fact, the fact that En is a CM elliptic curve with End(En(Q)) ⊃ Z[ζ3] implies that the

above isomorphism is a Gal(K/K)-equivariant isomorphism. Recall that the multiplication

by 3 map over BL/K factorizes as

BL/K ∼= En×E−3
n ×En2×E−3

n2 → E−3
n ×En×E−3

n2 ×En2 → En×E−3
n ×En2×E−3

n2
∼= BL/K

(4.77)

where the first morphism corresponds to the isogeny φn × φ̂n × φn2 × φ̂n2 , and the second

morphism corresponds to the isogeny φn2 × φ̂n2 × φn × φ̂n. Without loss of generality,

we may hence identify the endomorphism 1− σ3 : BL/K → BL/K with the endomorphism

φn × φ̂n × φn2 × φ̂n2 of En × E−3
n × En2 × E−3

n2 .

It follows from Proposition 4.2.4 that given an order-3 element σ3 ∈ Gal(L/K) ∼= S3,

there exists a Gal(K/K)-equivariant isomorphism

BL/K [1− σ3] ∼= (ResMKE1)[3] (4.78)

and that regardless of the choice of the Galois extensions L/K, one obtains the natural

inclusion

Sel1−σ3(BL/K/K) ⊂ H1(K, (ResMKE1)[3]). (4.79)

We also note that one obtains the isomorphism of Gal(K/K)-modules

Sel3(BL/K/K) ∼= Sel(1−σ3)2(BL/K/K). (4.80)

Recall that there exists a skew-symmetric pairing (also known as the Cassels-Tate

pairing),

QL : Sel3(BL/K/K)× Sel3(BL/K/K)→ F3 (4.81)
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whose kernel satisfies the relation

RankZ(BL/K(K)) ≤ dimF3 Ker(QL) ≤ dimF3 Sel1−σ3(BL/K/K), (4.82)

see in particular Cassels 1959 for the explicit construction of the pairing above using Hilbert

norm residue symbol.

We now demonstrate that the dimensions of Sel1−σ3(BL/K/K) and Ker(QL), as F3

vector spaces, grow in a similar manner to how the dimensions of φn-Selmer groups of

En grows arbitrarily large as the number of prime factors equivalent to 2 mod 3 grows

arbitrarily large. We state the main result as follows.

Theorem 4.4.1. For any L ∈ LM , we obtain

dimF3 Sel1−σ3(BL/K/K) = 2 ·#{v place of K | v ≡ 2 mod 3, v ̸= 2, v ramified over L}+ ∆n

(4.83)

dimF3 Ker(QL) ≥ 2 ·#{v place of K | v ≡ 8 mod 9, v ramified over L} − 3

(4.84)

for some integer −1 ≤ ∆n ≤ 3.

In particular, as X grows arbitrarily large, the expected value of the dimensions of

1− σ3 Selmer groups of BL/K grows at a rate of log logX, and the expected value of the

dimensions of the kernel of the Cassels-Tate pairing grows at least at a rate of 1
3 log logX.

Before we prove both statements of Theorem 4.4.1, we first introduce the notion of

Selmer groups for local twists of abelian varieties, the theory of which was developed by

Klagsbrun, Mazur, and Rubin Klagsbrun, Mazur, and Rubin 2013; Klagsbrun, Mazur, and

Rubin 2014 for local twists of elliptic curves over number fields.

We first outline the notations to be used throughout this manuscript, which are

analogous to those used in Klagsbrun, Mazur, and Rubin 2014, Sections 5, 7, 9 and Park

2022, Section 4.
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Definition 4.4.2. We introduce the following notations, borrowed from corresponding

sections in Klagsbrun, Mazur, and Rubin 2013; Klagsbrun, Mazur, and Rubin 2014; Park

2022.

• K: The base field over which the elliptic curve E1 is defined over. Throughout this

manuscript, we will consider the case where K = Q, but for the sake of generalization

to other number fields, we will write the definitions in terms of an arbitrary number

field K.

• Σ: the set of places of K containing the places of K above primes (2), (3) ∈ Z and

∞. (These consist of places of bad reduction of E, places above 2, and archimedean

places). One may enlarge Σ to contain other places of K if necessary.

• σ: a square-free product of finite places v of K which are not above the prime (3) ∈ Z.

• |σ|: the product of norms of places v | σ, i.e. |σ| = ∏
v|σN

K
Q (v).

• Ωσ: the set of finite Cartesian products of local homomorphisms

(χv)v ∈
∏

v∈Σ or
v|σ s.t. v=2 mod 3

Hom(Gal(Kv/Kv), S3)
Aut(µ3) ×

∏
v|σ s.t. v=1 mod 3

Hom(Gal(Kv/Kv),Z/3Z)
Aut(µ3)

We assume that the component χv is ramified if v | σ.

For any place v ∈ K which is not above the ideal (3), up to equivalence of the action

of the automorphism group of 3-rd roots of unity Aut(µ3), there are a total of 4

equivalence classes of cyclic order 3 characters, 1 of which is unramified, and 3 of

which is tamely ramified.

• Ω1: the set of finite Cartesian products of local homomorphisms supported over

v ∈ Σ.

• Ω: the inverse limit of Cartesian products of local homomorphisms lim←−σ Ωσ induced

from the projection maps ϕσσ′,σ : Ωσσ′ → Ωσ.
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• RES: The restriction map

RES : Hom(Gal(K/K), µ3)→ Ω

χ 7→ (χv)v
(4.85)

which maps a global character χ corresponding to the cyclic cubic extension L/K to

a Cartesian product of local homomorphisms (χv)v ∈ Ωσ such that σ is a squarefree

product of places in K ramified over L.

• Lχv : the local cubic field extension over the local field Kv at a place v associated to

the character χv.

• Eχv : the associated local cubic twist of elliptic curve E1:

Eχv := Ker
(
Nm : ResLχv

Kv
E1 → E1

)
(4.86)

• δv: the local Kummer map at place v defined as

δv : E(Kv)/3E(Kv)→ H1(Kv, E[3]). (4.87)

• δχv
v : the local Kummer map associated to the character χv at place v defined as

δχv
v : Eχv (Kv)/(1− σn)Eχv (Kv)→ H1(Kv, E1[3]). (4.88)

As a subspace of H1(Kv, E
χv [1 − σn]) ∼= H1(Kv, E1[3]), the images of the local

Kummer maps satisfy

imδχv
v =


imδv if χv trivial

Hom(Gal(Lχv/Kv), E1[3]) if χv non-trivial.
(4.89)

We refer to Klagsbrun, Mazur, and Rubin 2013, Lemma 5.7 for the proof of the

equation above.
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• qv: the uniquely determined Tate quadratic form qv : H1(Kv, E[3])×H1(Kv, E[3])→

µ3, see for example Klagsbrun, Mazur, and Rubin 2013, Lemma 3.4.

• H(Kv): the set of Lagrangian subspaces V of H1(Kv, E1[3]) with respect to the Tate

quadratic form qv. These are subspaces which satisfy V = V ⊥ and is a maximal

isotropic subspace with respect to qv, i.e. qv(v,w) = 0 for any v,w ∈ V and

dimF3 V = 1
2 dimF3 H

1(Kv, E1[3]).

• Hram(Kv): the set of Lagrangian subspaces V of H1(Kv, E1[3]) such that

V ∩H1
ur(Kv, E1[3]) = 0 (4.90)

where H1
ur(Kv, E1[3]) is the unramified local first cohomology group.

• Pi: the set of places of v over OK that satisfies

v ∈ Pi ⇐⇒


v ̸∈ Σ and

dimF3 E1[3](Kv) = i.

⇐⇒


v ̸∈ Σ and

v = 2i mod 3.
(4.91)

Suppose that K = Q. We note that v ∈ P1 if and only if µ3 ̸∈ Kv, which is equivalent

to v ≡ 2 mod 3. Hence, the Chebotarev density theorem implies that

lim
n→∞

#{v place of Z | h(v) < n, v ∈ Pi}
#{v place of Z | h(v) < n}

=



0 if i = 0

1
2 if i = 1

1
2 if i = 2.

(4.92)

We recall the following fact about the relations between Pi and the set of Lagrangian

subspaces of H1(Kv, E1[3]).

Lemma 4.4.3. The following properties hold for any v ∈ Pi for 0 ≤ i ≤ 2.

1. dimF3 H
1(Kv, E1[3]) = 2i.
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2. Every Lagrangian subspace of H1(Kv, E1[3]) have dimensions equal to i as F3 vector

spaces.

3. If we further suppose that i ̸= 0, then #Hram(Kv) = 3i−1. In particular, if i = 1,

then there exists a unique ramified Lagrangian subspace in H1(Kv, E1[3]). If i = 2,

then there exists a bijection between the set of ramified cyclic 3-extensions of Kv and

the elements of Hram(Kv).

Proof. We refer to Klagsbrun, Mazur, and Rubin 2013, Lemma 3.7 and Klagsbrun, Mazur,

and Rubin 2014, Definition 5.7 - Definition 5.10.

For the remainder of the manuscript, we fix K = Q. With the notations above, given

a local character (χv)v ∈ Ωσ, we define the locally twisted 1 − σ3 Selmer groups of the

4-dimensional abelian variety BE over Q, denoted as Sel1−σ3(B(χv)v
/Q), as a subspace of

H1(Q, E1[3])⊕2 satisfying

Sel1−σ3(B(χv)v
/Q) :=

{
c ∈ H1(Q, E1[3]⊕2) | c ∈ δχv

v (B(χv)v
[1− σ3](Qv)) ∀ place v ∈ Z

}
(4.93)

where the notationB(χv)v
[1−σ3](Qv) indicates the maximal isotropic subspace ofH1(Qv, E1[3]⊕2) =

H1(Qv, E1[3])⊕2 for each place v with respect to the direct sum of the Tate quadratic form

qv ⊕ qv.

The family of locally twisted Selmer groups we focus are the Selmer groups of form

Sel1−σ3(Bn/Q) = Sel1−σ3(BRES(χn)/Q) (4.94)

where RES : Hom(Gal(Q,Q(ζ3)), µ3)→ Ω is the restriction of a global cubic character over

Q(ζ3) to Cartesian product of local homomorphisms Ω. In lieu of Lemma 4.4.3, the local

Kummer maps characterizing the locally twisted Selmer groups Sel1−σ3(BRES(χn)/Q) can

be characterized as follows.

Lemma 4.4.4. The following properties hold for any v ∈ Pi for 0 ≤ i ≤ 2.

1. dimF3 H
1(Qv, BRES(χn)[1− σ3]) = 4i.
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2. Every Lagrangian subspace of H1(Kv, BRES(χn)[1− σ3]) with respect to the pairing

qv ⊕ qv have dimensions equal to i as F3 vector spaces.

3. Suppose that v ∈ P1 or v = 3. Then there are exactly 2 configurations of all possible

images of the local Kummer maps of BRES(χn)(Qv) parametrized over cubefree integers

n ∈ Z, which is in bijection to the set of two equivalence classes of local Galois

characters Hom(Gal(Qv/Qv), S3)/Aut(µ3) characterizing the field extension Qv(ζ3)

and Qv(ζ3, 3
√
v).

4. Suppose that v ∈ P2. Then there are exactly 4 configurations of all possible images of

the local Kummer maps of BRES(χn)(Qv) parametrized over cubefree integers n ∈ Z,

which is in bijection to the set of equivalence classes of local homomorphisms in

Hom(Gal(Qv/Qv), µ3)/Aut(µ3).

Proof. The first two parts of the proposition follow from Proposition 4.2.4 that Bn[1−σ3] ∼=

(ResMKE1)[3]. Given a twist ψn :=

a b

c d

 acting on BE1 , the Qv-rational points of infinite

order of Bn, which is isogenous to En×En2 , are parametrized by the images of the following

matrices over Z:

ψn ·

1 0

0 0

 =

a 0

c 0

 7→ P1 ∈ En(Qv), ψn ·

0 1

0 0

 = 3u

a 0

c 0

 7→ P2 ∈ E−3
n (Qv)

(4.95)

ψn ·

0 0

1 0

 =

0 a

0 c

 7→ P3 ∈ En2(Qv), ψn ·

0 0

0 1

 = 3u

0 a

0 c

 7→ P4 ∈ E−3
n2 (Qv)

(4.96)

Hence, the image of the local Kummer maps BRES(χn)(Qv) are either simultaneously

unramified Lagrangian subspaces or simultaneously ramified Lagrangian subspaces with

respect to the pairing qv at each component of H1(Qv, E1[3]). Lemma 4.4.3 implies that

the number of configuration of all possible images of local Kummer maps BRES(χn)(Qv) for

v ∈ Pi is equal to 1 + 3i−1 = 2i.
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One can obtain a bijection between certain types of maximal isotropic subspaces of

H1(Qv, E1[3]⊕2) and certain equivalence classes of local homomorphisms over Qv up to

the action of Aut(µ3). Let us recall that the family of abelian varieties we focus on this

manuscript ranges over global cubic characters χn ∈ Hom(Gal(Q,Q(ζ3)) for any cube-free

integer n ∈ Z associated to the Galois S3-extension Q(ζ3, 3
√
n) over Q. If v = 1 mod 3, then

the restriction resv(χn) at place v corresponds to cyclic Z/3Z Galois extension Qv( 3
√
n)/Qv,

1 of which is an unramified character and the other 3 of which are ramified characters.

If v = 2 mod 3, then the restriction resv(χn) at place v corresponds to the unramified

quadratic extension Qv(ζ3)/Qv if v ∤ n, and corresponds to the ramified S3 extension

Qv(ζ3, 3
√
v)/Qv if v | n. Here we are using the fact that any integer modulo prime v is a

cube, except for the integer v itself. There are exactly two such local homomorphisms.

If v = 3, then the restriction resv(χn) at place v corresponds to the quadratic extension

Q3(ζ3)/Q3 if 3 ∤ n, or the S3 extension Q3(ζ3,
3√3)/Q3 if 3 | n. Again, we are using the fact

that any integer modulo 3 is a cube, except for the integer 3 itself.

We now present the proof of Theorem 4.4.1.

Proof. Part (1)

Given an integer n ∈ Z, let L = Q(ζ3, 3
√
n) and K = Q. We use the identification

1− σ3 : BL/K → BL/K as the morphism φn × φ̂n × φn2 × φ̂n2 : En ×E−3
n ×En2 ×E−3

n2 to

obtain the factorization of multiplication by 1− σ3 map as

1− σ3 = (φn × φ̂n × Id× Id) ◦ (Id× Id× φn2 × φ̂n2) (4.97)

where Id is the identity map over any elliptic curve E/Q. Note that we also have the

identification

Selφn×φ̂n×Id×Id(BL/K/K) ∼= Selφn×φ̂n(En × E−3
n /Q)

SelId×Id×φn2 ×φ̂n2 (BL/K/K) ∼= Selφn2 × ˆφn2 (En2 × E−3
n2 /Q)

(4.98)
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This allows us to obtain the following short exact sequence of Selmer groups

0→
BL/K [Id× Id× φn2 × φ̂n2 ](K)

φn × φ̂n × Id× Id(BL/K [1− σ3])(K) →fn Selφn×φ̂n(En × E−3
n /K)

→ Sel1−σ3(BL/K/K)→ Selφn2 ×φ̂n2 (En2 × E−3
n2 /K)→ 0

(4.99)

We note that one has the identification

BL/K [Id× Id× φn2 × φ̂n2 ](K)
φn × φ̂n × Id× Id(BL/K [1− σ3])(K)

∼= Z/3Z (4.100)

We hence obtain that

dimF3 Sel1−σ3(BL/K/K) = dimF3 Selφn×φ̂n(En×E−3
n /K)+dimF3 Selφn2 × ˆφn2 (En2×E−3

n2 /K)−1.

(4.101)

We note that because as Gal(Q/Q)-modules, En × E−3
n [φ × φ̂] ∼= Z/3Z × µ3 ∼= E1[3], it

follows that

Selφn×φ̂n(En × E−3
n /K) ⊂ H1(Q, En × E−3

n [φ× φ̂]) ∼= H1(Q, E1[3]). (4.102)

The probabiltiy distribution of dimensions of Selφn×φ̂n(En × E−3
n /K) is hence determined

from the local Selmer structure Sel3((E1)(χv)v
/Q) given a choice of a local character

(χv)v ∈ Ωn, which is defined analogously to the construction of local Selmer structure for

abelian 4-folds stated in equation (4.93) as

Sel3((E1)(χv)v
/Q) :=

{
c ∈ H1(Q, E1[3]⊕2 | c ∈ δχv

v

(
(E1)(χv)v

[3](Qv)
)
∀ place v ∈ Z

}
(4.103)

and the notation δχv
v

(
(E1)(χv)v

[3](Qv)
)

denotes the maximal isotropic subspace ofH1(Qv, E1[3])

determined from the local Kummer map for each place v with respect to the Tate quadratic

form qv. To elaborate, for every fn there exists some choice of local character (χv)v ∈ Ωn
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such that

dimF3 Selφn×φ̂n(En × E−3
n /K) = dimF3 Sel3((E1)(χv)v

). (4.104)

The analogous relation holds for Selφn2 × ˆφn2 (En2 × E−3
n2 /K) as well.

Let (χv)v ∈ Ωn be a set of local characters. For any place ω | n such that ω ̸= 2, 3, let

(χ′
v)v ∈ Ωnω the set of local characters such that ϕnω,n(χ′) = χ. Then the images of the

local Kummer maps at place v satisfies

imδv
(
(E1)(χv)v

[3](Qω

)
∼= H1

ur(Q, E1[3])

imδv
(
(E1)(χ′

v)v
[3](Qω

)
∈ Hram(Qω).

(4.105)

The image of the localization map locω : Sel3((E1)(χv)v
/Q)→ H1

ur(Qω, E1[3]) depends

on the whether the place ω splits over M = Q(ζ3) or not. By the proof of Klagsbrun, Mazur,

and Rubin 2014, Proposition 7.2, it suffices to compute the dimension of the localization

map

locω
(
Sel3((E1)[ω]

(χv)v

)
(4.106)

where

Sel3((E1)[ω]
(χv)v

:= Ker
(
H1(K,E1[3])→ ⊕v ̸=ωH

1(Kv, E1[3])/imδχv
)

(4.107)

i.e. it is a finite dimensional subspace of H1(K,E1[3]) which contains Sel3((E1)[ω]
(χv)v

obtained by forgetting the local conditions at place ω. Using the identification E1[3] ∼=

Z/3Z× µ3, it follows that given any place ω of K,

{1, ω, ω2} ⊂ Sel3((E1)[ω]
(χv)v

(4.108)
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This hence implies that

locω
(
Sel3((E1)[ω]

(χv)v

)
∩H1

ur(Kv, E1[3]) =


1 if ω ≡ 1 mod 3

0 if ω ≡ 2 mod 3
(4.109)

By Klagsbrun, Mazur, and Rubin 2014, Proposition 7.2, it follows that

dimF3 Sel3((E1)(χ′
v)v

)− dimF3 Sel3((E1)(χv)v
=


0 if ω ≡ 1 mod 3

1 if ω ≡ 2 mod 3
(4.110)

Chebotarev density theorem over the quadratic extension Q(ζ3)/Q indicates that the

Markov chain M over the countable state space Z≥0 governing the dimensions of Cokerfn

is characterized by two Markov operators over the countable state space Z≥0: The identity

Markov chain Id governing twists by primes ω ≡ 1 mod 3: And the Markov chain M̂ :=

(m̂i,j)i,j≥0 governing twists by primes ω ≡ 2 mod 3 given by

m̂i,j =


1 if j = i+ 1

0 otherwise.
(4.111)

For each k ∈ Z≥0, we denote by δk : Z≥0 → [0, 1] the initial probability distribution defined

as

δk(x) =


1 if x = k

0 otherwise .
(4.112)

Given an integer n ∈ Z≥0, denote by w1(n) (and w2(n)) the number of distinct prime

factors of n which are equivalent to 1 mod 3 (and 2 mod 3 that is not 2, respectively).
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Then we obtain that there exists some integer kn ∈ Z≥0 such that

(
(Id)w1(n)(M̂)w2(n)δkn

)
(x) =


1 if x = dimF3 Selφn2 × ˆφn2 (En2 × E−3

n2 /K) = kn + w2(n)

0 otherwise
(4.113)

We note that the probability distribution δkn is determined by the local Kummer maps at

places ω = 2, 3. In particular, we obtain that 0 ≤ kn ≤ 2 because µ3 ̸⊂ Qω for ω = 2, 3.

Referring to equation (4.101), we hence obtain that for any L = Q(ζ3, 3
√
n) and K = Q,

dimF3 Sel1−σ3(BL/K/K) = dimF3 Selφn×φ̂n(En × E−3
n ) + dimF3 Selφn2 ×φ̂n2 (En2 × E−3

n2 )− 1

= w2(n) + w2(n2)− 1 + kn + kn2

= 2w2(n)− 1 + kn + kn2 .

(4.114)

Setting ∆n := kn + kn2 − 1 yields the first statement of the theorem.

Part (2)

As before, we choose L = Q(ζ3, 3
√
n), M = Q(ζ3), and K = Q. Using the identification

Selφn×φ̂n(En × E−3
n /K) ∼= Selφn(En/M)

Selφn2 ×φ̂n2 (En2 × E−3
n2 /K) ∼= Selφn2 (En2/M)

(4.115)

one can define the Cassels-Tate pairings Qn and Qn2 as outlined in Cassels 1959.

Qn : Selφn×φ̂n(En/M)× Selφn×φ̂n(En/M)→ F3

Qn2 : Selφn2 × ˆφn2 (En2/M)× Selφn2 × ˆφn2 (En2/M)→ F3.

(4.116)

More concretely, given a pair of elements (m1,m2) ∈ Selφn×φ̂n(En ×E−3
n /K)⊕2, the first

part of the theorem implies that the pairing Qn can be characterized by the products of
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Hilbert norm residue symbol Cassels 1959, Chapter 10, Appendix B

Qn(m1,m2) :=
∏
p|3n

p̸≡1 mod 3

(ℓ̃ℓm1 , m2)p (4.117)

where ℓ̃ ∈M× is some choice of an auxiliary number (this is not the fixed prime number ℓ

which was used until the previous section), and ℓm1 ∈M×
v is any element which satisfies

the condition that

ℓm1 ·
σ3(α)
σ2

3(α) = F3(m̃1) (4.118)

with respect to the morphism F3 : M×
p /(M×

p )3M×
p /(M×

p )3 and some element α ∈ L×/(L×)3

such that NormL
M (α) = m1, defined as in Cassels 1959, Lemma 4. We summarize the

construction of the map F3. Any element m1 ∈ Selφn×φ̂n(En × E−3
n /K) can be identified

with a triple (mx,my,mz) ∈M3
p given by the formulae Cassels 1959, Lemma 0

x = ζ2
3
m1

X3 + ζ3m1Y
3 + nZ3

y = ζ3
m1

X3 + ζ2
3m1Y

3 + nZ3

z = −3XY Z

(4.119)

where (X,Y, Z) ∈M3
p is an Mp-rational point of the curve

1
m1

X3 +m1Y
3 + nZ3 = 0 (4.120)

Then we define the map F3 : M×
p /(M×

p )3 →M×
p /(M×

p )3 as

F3((mx,my,mz)) := (ζ3 − ζ2
3 )(y + z 3

√
n)

x+ y
(4.121)

It follows from the construction of ℓm1 that if p ̸= (3), then one obtains the identification
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Cassels 1959, Appendix B

ℓm1 = ζ
−tn(m1,p)
3 · m̃1p (4.122)

for some element m̃1p which satisfies (m̃1p, m2)p = 1, and tn(m1, p) := vp(n)
vp(m1) mod 3. This

in particular implies that one can rewrite the pairing Qn as

Qn(m1,m2) = n ·
∏
p|m1

p̸≡0,1 mod 3,

(ζtn(m1,p)
3 , m2)p · (ℓ̃ℓm1 , m2)3 (4.123)

for some fixed n ∈ µ3 independent of the choice of m1 and m2. Here, the notation (−,−)p :

M×
p /M

×
p )3 ×M×

p /(M×
p )3 → µ3 is the Hilbert cubic norm residue symbol over Mp. But

because every element m2 ∈ Q×/(Q×)3 becomes a cube in Mp where p ≡ 2 mod 3, it follows

that if m1 ̸= m2 (note that because Qn is a skew-symmetric pairing, Qn(m1,m2) = 1),

then the pairing Qn can be further simplified into

Qn(m1,m2) = n · (ℓ̃ℓm1 , m2)3. (4.124)

But notice that if m2 ≡ 8 mod 9, then K3( 3
√
m2) = K3, whereas m2 ≡ 2, 5 mod 9, then

K3( 3
√
m2) ̸= K3. Therefore, we obtain that

Qn(m1,m2) = 1, for any m2 place of M such that m2 ≡ 8 mod 9. (4.125)

Denote by w8(n) the number of prime divisors of n which are equivalent to 8 mod 9. Then

Ker(Qn) ≥ w8(n)− 1. (4.126)

Recall that we let QL : Sel3(BL/K/K)× Sel3(BL/K/K)→ F3 be the Cassels-Tate pairing

over the abelian 4-fold BL/K . Then it follows that

dimF3 Ker(QL) = dimF3 Ker(Qn) + dimF3 Ker(Qn2)− 1 (4.127)
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Using (4.126), we hence obtain that

dimF3 Ker(QL) ≥ (w8(n)− 1) + (w8(n2)− 1)− 1 = 2 · w8(n)− 3. (4.128)

Remark 4.4.5. The proof of the first part of Theorem 4.4.1 can also be obtained from the

result by Stephanie Chan Chan 2022, where she shows using large sieves on cubic residue

symbols that for every ϵ > 0,

dimF3 Selφn(En/K) = dimF3 Selφ̂n(E−3
n /K) + w∗

2(n) + δn (4.129)

# {n ∈ Z | |n| ≤ X,n cubefree,dimF3 Selφ̂n(En/K) ≥ 1} ≪ X

(logX)− 1
3 +ϵ

(4.130)

where

w∗
2(n) =


w2(2n) if 4 ∤ n

w2(n4 ) if 4 | n
(4.131)

and

δn =



1 if n ≡ ±3 mod 9

−1 if n ≡ ±4 mod 9

0 otherwise

(4.132)

Using the identification

Selφn×φ̂n(En × E−3
n /K) ∼= Selφn(En/K)⊕ Selφn(E−3

n /K), (4.133)

one can hence demonstrate an alternate proof Theorem 4.4.1 that the dimension of

Sel1−σ3(BL/K/K) grows at an order of O(log logDL/K).

Remark 4.4.6. Denote by Q := {Qn}n the collection of Cassels-Tate pairing over

Sel1−σ3(BL/K/K). Note that Theorem 4.4.1 and Erdös-Kac theorem indicates that except

for possibly O( X√
log logX ) many exceptions, all Cassels-Tate pairing Qn with |n| ≤ X can be
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identified as an element of skew-symmetric matrices Skewk(F3) for some k ≤ ⌊log logX⌋+1.

We may subdivide the collection Q as

Q :=
∞⊔
k=1
Q[k] ⊂

∞⊔
k=1

Skewk(F3) (4.134)

Q[k] :=
{
Qn : Sel1−σ3(BL/K/K)× Sel1−σ3(BL/K/K)→ F3 | dimF3 Sel1−σ3(BL/K/K) = k

}
(4.135)

Q[k](X) :=
{
Qn ∈ Q[k] | |n| ≤ X

}
(4.136)

If one can demonstrate that the pushforward of the uniform distribution over Q[k](X) with

respect to the morphism Q[k](X)→ Skewk(F3) converges in distribution to the uniform

distribution over Skewk(F3, then one can also prove the upper bound on Ker(Qn) using

Bhargava, D. M. Kane, et al. 2015, Lemma 3.7. Namely, for any δ > 0, there exists large

enough X such that for almost all |n| ≤ X,

dimF3 Ker(Qn) ≤
(1

3 + δ

)
· log logX (4.137)

It seems to be the case that demonstrating the convergence to a uniform distribution over

Skewk(F3) would require equidistribution or sieve results on Hilbert cubic norm residue

symbols over the local field Q3. To the best of author’s knowledge, the results of such

nature has not been studied in great depth yet.

For the rest of the remark, let us assume that obtaining such an equidistribution

of Hilbert cubic norm residue symbols is within reach. While the above upper bound

obtained from the Kernel of Cassels-Tate pairing is also not good enough to determine

RankZ(BL/K(K)), it is still a better upper bound than what can be obtained from the

dimension of 1− σ3 Selmer groups of BL/K . One may hence hope to see whether using the

collections of Cassels-Tate pairing

Q[m]
n : (1− σ3)mSel(1−σ3)m+1(BL/K/K)× (1− σ3)mSel(1−σ3)m+1(BL/K/K)→ µ3 (4.138)
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could be of advantage to give effective upper bounds on RankZ(BL/K(K)). This very idea

of using sequences of Cassels-Tate pairing was carefully explored for quadratic twist families

of elliptic curves over number fields K in the seminal work by Alex Smith Alexander Smith

2022a; Alexander Smith 2022b. To the best of author’s knowledge, the upcoming work by

Peter Koymans and Alex Smith Koymans and Alex Smith 2024 will aim to generalize the

philosophy presented in the previous works of Smith, identify the Cassels-Tate pairing as

a generalized form of Redei matrices (i.e. entries with a generalized notion of "symbols

of primes" appearing in Alexander Smith 2022a, Chapter 3), and demonstrate that the

3-Selmer groups of cubic twist families of elliptic curves En (not the abelian 4-fold BL/K

discussed in this manuscript) lying inside certain grid classes of cubic twists can be effectively

controlled with careful choices of symbols of primes.

4.5 Global root numbers of cubic twists

We recall from Alpöge, Bhargava, and Shnidman 2022[Chapter 4], Várilly-Alvarado 2011,

and Rohrlich 1996 that the root number of En : y2 = x3−432n2, apart from local conditions

at 2 and 3, is equal to (−1)w2(n), where w2 is the number of prime factors of n equivalent

to 2 mod 3. In fact, one can prove the following fact on the relations between root numbers

of En and En2 .

Proposition 4.5.1. Given an elliptic curve E over Q, denote by W (E/Q) the global root

number of E. Let n be any integer, and denote by w2(n) the number of distinct prime

factors of n equivalent to 2 modulo 3.

1. If v3(n) ≡ 0 mod 3, then

W (En/Q) = W (En2/Q) = (−1)w2(n) · δ(n) (4.139)
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where δ : Z→ {−1, 1} is a function such that

δ(n) =


1 if n ≡ 1, 8 mod 9

−1 if n ≡ 2, 4, 5, 7 mod 9
(4.140)

2. If v3(n) ≡ 1 mod 3, then

W (En/Q) = −W (En2/Q) = (−1)w2(n). (4.141)

3. If v3(n) ≡ 2 mod 3, then

W (En/Q) = −W (En2/Q) = (−1)w2(n)+1. (4.142)

In particular, Proposition 4.5.1 and Erdös-Kac theorem affirm the equidistribution

of root numbers in the family of cubic twists {En} as shown in Alpöge, Bhargava, and

Shnidman 2022, Section 6.

Proof. The proof follows from the table of root numbers of elliptic curves over Q outlined

in Rohrlich 1996 for local root numbers at places p ̸= 2, 3 and Rizzo 2003 for local root

numbers at places p = 2 or 3. The local root number at the place of infinity ∞ is equal to

−1. The local root numbers at every finite prime p ̸= 2, 3 are given by

W (En/Q, p) =
(
p

3

)
. (4.143)

Local root number at p = 3.

Fix p = 3. Suppose v3(n) ≡ 0 mod 3. Using entries (≥ 4, 6, 9), (4, 6, 9), and (≥ 5, 6, 9)

of Rizzo 2003[Table 3], the local root number at place p = 3 can be shown to be equal to

W (En/Q, 3) =


1 if − 29 · n2 ≡ 4, 7 mod 9

−1 if − 29 · n2 ≡ 1 mod 9
(4.144)
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Because n is not divisible by 3, we obtain that

W (En/Q, p) = −δ(n). (4.145)

Suppose v3(n) ≡ 1 mod 3. Then entry (≥ 2, 2, 1) of Rizzo 2003[Table 3] implies that

W (En/Q, 3) = 1 because the very condition holds if and only if −29 · n2 ≡ 1 mod 3 is

true. Suppose v3(n) ≡ 2 mod 3. Then entry (≥ 3, 4, 5) of Rizzo 2003[Table 3] implies that

W (En/Q, 3) = −1 because the very condition holds if and only if −29 · n2 ≡ 2 mod 3.

Local root number at p = 2.

Suppose v2(n) ≡ 0 mod 3. Then En has good reduction at 2, so the local root number

at p = 2 is equal to 1. Suppose v2(n) ≡ 1 mod 3. Then the first entry of (4, 5, 4) of Rizzo

2003[Table 3] implies that W (En/Q, 2) = −1 because the very condition holds if and only

if 0 ≡ 1 mod 4. Suppose v2(n) ≡ 2 mod 3. Then entry (≥ 7, 7, 8) of Rizzo 2003[Table 3]

implies that W (En/Q, 2) = −1. In particular, we achieve

W (En/Q, 2) =


1 if 2 ∤ n

−1 if 2 | n.
(4.146)

Using the fact that the global root number of E is the product of all local root numbers

at every place ℓ of Q, we obtain the desired formulae.

We note that the properties Markov operator M defined in the proof of Theorem 4.4.1

conforms to the properties of global root numbers. Theorem 4.4.1 implies that the Markov

operator corresponding to twisting the abelian variety BL/K by a prime p ≡ 2 mod 3 always

increases the dimension of 1 − σ3 Selmer groups by 2. On the other hand, the Markov

operator corresponding to twisting the abelian variety BL/K by a prime p ≡ 1 mod 3

preserves the dimension of 1− σ3 Selmer groups of BL/K . Assuming the BSD conjecture,

Proposition 4.5.1 implies that the Markov operator corresponding to twisting the abelian

variety BL/K by a prime p ≡ 2 mod 3 must simultaneously increase the ranks Rank(En(Q))
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and Rank(En2(Q)) by 1 or decrease them by −1, and that corresponding to twisting the

abelian variety BL/K by a prime p ≡ 1 mod 3 must simultaneously decrease the ranks

Rank(En(Q)) and Rank(En2(Q)) by 2 or preserve them. These changes, in turn, correspond

to the statement of Proposition 4.5.1 that up to local conditions at 2 or 3, the global root

number is determined by the parity of the number of distinct prime factors equivalent to 2

modulo 3.

In light of these observations from global root numbers of En’s, we may hope formulate

the following conjecture.

Conjecture 4.5.2. Let BL/K be the 4-dimensional abelian variety over K = Q obtained

from the S3 extension L = Q(ζ3, 3
√
n).

1. The (1 − σ3)∞ torsion subgroup of the Tate Shafarevich group of BL/K satisfies

dimZ3 XBL/K/Q[(1− σ3)∞] ≡ 0 mod 4.

2. Suppose that 3 does not divide n. Then RankZ3Sel(1−σ3)∞(BL/K/Q) ≡ 0 mod 2. In

particular, one obtains the following probability distribution on the rank of (1− σ3)∞

Selmer groups of {BL/K} for such L/K.

lim
X→∞

#{n ∈ Z | |n| ≤ X, RankZ3Sel(1−σ3)∞(BL/K/Q) = 0}
#{n ∈ Z | |n| ≤ X}

= 1
2

lim
X→∞

#{n ∈ Z | |n| ≤ X, RankZ3Sel(1−σ3)∞(BL/K/Q) = 2}
#{n ∈ Z | |n| ≤ X}

= 1
2

lim
X→∞

#{n ∈ Z | |n| ≤ X, RankZ3Sel(1−σ3)∞(BL/K/Q) ≥ 4}
#{n ∈ Z | |n| ≤ X}

= 0

(4.147)

3. Suppose that 3 divides n. Then RankZ3Sel(1−σ3)∞(BL/K/Q) ≡ 1 mod 2. In particular,

one obtains the following probability distribution on the rank of (1 − σ3)∞ Selmer

groups of {BL/K} for such n.

lim
X→∞

#{n ∈ Z | |n| ≤ X, RankZ3Sel(1−σ3)∞(BL/K/Q) = 1}
#{n ∈ Z | |n| ≤ X}

= 1

lim
X→∞

#{n ∈ Z | |n| ≤ X, RankZ3Sel(1−σ3)∞(BL/K/Q) ≥ 3}
#{n ∈ Z | |n| ≤ X}

= 0
(4.148)
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Recall the following conjecture proposed by Alpöge, Bhargava, and Shnidman Alpöge,

Bhargava, and Shnidman 2022.

Conjecture 4.5.3. For sufficiently large X, the following equation holds.

lim
X→∞

#{n ∈ Z | |n| ≤ X, Rank(En(Q)) = 0}
#{n ∈ Z | |n| ≤ X}

= 1
2

lim
X→∞

#{n ∈ Z | |n| ≤ X, Rank(En(Q)) = 1}
#{n ∈ Z | |n| ≤ X}

= 1
2

lim
X→∞

#{n ∈ Z | |n| ≤ X, Rank(En(Q)) ≥ 2}
#{n ∈ Z | |n| ≤ X}

= 0

(4.149)

We end the paper with a note that Conjecture 4.5.2 implies Conjecture 4.5.3 assuming

the BSD conjecture for elliptic curves over Q.

Proposition 4.5.4. Assumign the BSD conjecture for elliptic curves over Q, the statement

of Conjecture 4.5.2 implies that of Conjecture 4.5.3.

Proof. Proposition 4.5.1 implies that the root number is equidistributed in the family of

cubic twists {En}n∈Z. In fact, the root number is equidistributed in the subfamily of cubic

twists {En} n∈Z
v3(n)≡i mod 3

for any fixed i = 0, 1, 2. The BSD conjecture hence implies that

for any fixed 0 ≤ i ≤ 2, 1
2 of elliptic curves {En} n∈Z

v3(n)≡i mod 3
have even ranks, whereas the

other 1
2 of elliptic curves {En} n∈Z

v3(n)≡i mod 3
have odd ranks.

Part (2) and (3) of Conjecture 4.5.2 imply that at least 5
9 ·

1
2 + 4

9 ·
1
2 = 1

2 of elliptic

curves {En}n∈Z must have rank 0. These elliptic curves are comprised of 100% of elliptic

curves which satisfy Rank(En(Q)) + Rank(En2(Q)) = 0, and 50% of elliptic curves which

satisfy Rank(En(Q)) + Rank(En2(Q)) = 2. Therefore, it must be the case that 100% of

ellitpic curves {En}n∈Z which satisfy Rank(En(Q)) + Rank(En2(Q)) = 2 must have rank

1. This implies that 50% of elliptic curves have rank 0, whereas the other 50% of elliptic

curves have rank 1.
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