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ABSTRACT

Smart systems are systems embedded with various types of sensors and smart compo-

nents (e.g., a robot) for superior systems performance and optimal utilization of resources.

Due to the fast development of sensing and information technology, smart modern systems

grow rapidly in all fields of engineering applications. Along the rapid development, emergent

challenges are posed to systems engineering. As the machines and workstations in modern

engineering systems become smart and connected, advanced sensor techniques make it pos-

sible for information collection in a quick and accurate manner. Data collected from the

smart systems are always high-dimensional and of various formats. Information selection or

feature extraction is necessary to analyze the abundant data and avoid wasting computa-

tion efforts on non-beneficial information. In addition, the involvement of smart components,

such as collaborative robots and automated tools, requires changes in the design of the entire

system. While the utilization of smart components can improve both the ergonomics and

the productivity of the engineering systems, the resources of available smart components

are always limited and the redesign of the existing systems needs the support of optimal

decision-making strategies. To address those issues listed above, three tasks are investigated

in this report. Specific contributions are made to data-driven and physics-based modeling

and optimization for smart engineering systems.

• A Deep Learning Model for Engine Event Logs Monitoring. Event logs contain

abundant information on manufacturing machines, with time information. A Recur-

rent Neural Network model using time-to-event data from event logs was established

not only to predict the time of the occurrence of a target event of interest but also to

interpret, from the trained model, significant events leading to the target event. To

improve the performance of the model, sampling techniques and methods dealing with

censored data are utilized. The real-world case study shows that the model interpre-

tation algorithm proposed in this work can reveal the underlying physical relationship

among events.

• Structural Fault Diagnosis using Bayesian Optimization. A Bayesian Opti-

mization method using a multi-output Gaussian process was introduced to solve the
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structural fault diagnosis problem. This method utilizes a physics-based high-fidelity fi-

nite element model (FE) of the structure and the impedance/admittance measurements

from the structure to identify the location and severity of the damage. Thompson sam-

pling approach was used to guide the search for the structural damage in the Bayesian

optimization. The proposed method outperformed other benchmark methods on both

simulated functions and a real-world structural damage identification problem.

• Task Allocation in Collaborative Production Systems with Cobots/Robots.

Collaboration between humans and robots has great promise in manufacturing sys-

tems. Previous research on cobots/robots allocation focus on the decomposition of

tasks for a single workstation into multiple work elements and split them between hu-

mans and robots, rather than studying multi-machine systems. To bridge the gap,

we handled the allocation problem of limited cobots/robots to manufacturing systems

with multiple workstations, considering the precedence relationship between different

tasks and the ergonomics concerns. The problem was formulated into a constraint in-

teger programming problem, and the optimal allocation of cobots/robots was obtained

in a simulated production system with a reinforcement learning guided evolutionary

algorithm.

While the methodologies have been developed in the context of industrial systems, they

can be generalized and implemented to similar problems in other fields.
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Chapter 1

Introduction

1.1 Background and Motivation

Industrial systems embedded with various types of sensors and smart components are called

smart systems. The objectives of embedding sensors and smart components, such as robots,

are to improve the performance of the system and to optimize the utilization of resources.

Equipping sensors has shown great benefits in a wide range of modern systems, such as

power systems, traffic systems, and manufacturing system[3, 66, 125]. Low-cost advanced

sensor technologies enable rapid and accurate data collection in modern engineering systems,

especially with the development of Industry 4.0 and the Internet of Things (IoT)[89]. In

the meantime, the implementation and involvement of smart components also promote the

development of modern engineering systems. Taking robots as an instance, the application

of robots has led to significant productivity improvement [100] and reduced the ergonomic

strain on human workers substantially [47].

Given the unprecedented amount of data collected from the sensors, cutting-edge data-

driven models or machine learning models can be implemented to solve a wide variety of tasks,

including systems monitoring, diagnosis, prognosis, and optimization [28]. With prompt and

accurate monitoring and diagnosis strategies, anomalies in the engineering systems can be

detected in the early stage and further consequences can be prevented, which improves the

reliability of the systems. Systems prognosis also contributes to a vitally important role in

the new era of industrial systems [29]. Not only does it make predictions on the engineering
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tasks, but prognosis methods also provide useful insights and interpretations of the system

structures. Furthermore, the development of smart systems also gives rise to the demand

for innovative optimization models of the systems design or decision-making tasks, which

should be adaptive to the newly involved smart components in the systems. Moreover,

physical information and domain knowledge can be applied or combined into data-driven

models to improve the explanation of the models and reveal the underlying mechanisms of

the systems.

Despite the profound potential of data-driven and physics-based modeling on smart in-

dustrial systems, challenges are also posed to the researchers due to the large amount of

information from data collection and the restrictions of applying smart components in the

existing systems:

• Data collected from real world systems are not always well-organized or even complete.

Data are always in diverse formats and types (e.g. discrete vs. continuous), which may

also be incomplete or noisy, requiring appropriate data preprocessing techniques before

analysis and modeling or adaptive data handling methods in the model structure.

• Information selection or feature extraction is necessary to analyze the abundant data.

High dimensionality and long observation range are common properties of real-world

data and we should avoid wasting computation efforts on nonbeneficial data to the

target problem.

• The incorporation of domain knowledge and physical information with the data ana-

lytics methods is not always trivial. Domain knowledge and physical information are

derived from the mechanism of the industrial systems and require further understand-

ing of the systems, which can be difficult to utilize in data-driven models.

• While smart components can contribute a number of benefits to industrial systems, the

implementation of smart components always involves various restrictions. The feasibil-

ity of the application of smart components always needs to be taken into consideration

and should be included in the modeling.

• The trade-off between the impacts of newly involved smart components should be
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handled. Usually, multiple objectives of one industrial system can not be improved

simultaneously. When the smart components are implemented in the system, the

design of the system should be capable of balancing the trade-offs between different

system performances.

To handle these challenges, innovative data-driven and physics-based modeling techniques

are supposed to be developed and tailored to the settings and properties of smart industrial

systems.

1.2 Research Objectives

There are a considerable number of potential topics and promising directions arisen from

the rapidly developing smart industrial systems and the evolving data-driven modeling tech-

niques. Specifically, with the motivation introduced and the challenges illustrated in Section

1.1, the research objectives of this thesis are determined and focused on the following aspects:

• Monitoring and prognosis techniques with time-to-event data. Time-to-event data char-

acterizes the information of industrial machines and systems by associating the occur-

rence time of different types of events and the type of events. It is a unique type of data

structure and is commonly collected along the lifetime of a manufacturing machine or

the entire timeline of a production process. Unlike longitudinal data which is always

collected on continuous time points and is numerical by nature, Time-to-event data

requires appropriate data transformation before the modeling procedure. One common

property of time-to-event data collected in industrial systems is the large number of

event types included in the dataset since various kinds of events could occur during

the operation. Another property of time-to-event data is the long observation time.

Instead of many short observed time-to-event data sequences, it is more ubiquitous to

have a few long observed data series in a given time-to-event dataset. Though there

are only two attributes in a time-to-event dataset, it is widely acknowledged that the

time-to-event data contains abundant information and can contribute to a wide variety

of analytics tasks. More specifically, in this dissertation, we expect to develop novel
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monitoring and prognosis techniques that can be adapted to the properties of time-

to-event data and can take great advantage of the abundant information embedded in

time-to-event data.

• Diagnosis methods in complex structures. Fault diagnosis plays a vital role in ensur-

ing the durability and reliability of engineering systems, especially for systems with

complex structures. Structural damage in the systems can cause performance degra-

dation and even lead to catastrophic consequences. One of the challenges of the fault

identification of complex structures is the lack of direct measurements. While the mea-

surements of systems with simple structures are always trivial and can be derived with

low expense, it is usually hard and almost impossible for direct measurements of com-

plex structures during the operation. Conventionally, complicated physical models are

applied to characterize the relationship between indirect measurements and structural

damages. Nevertheless, when the structures become more complex, the physical mod-

els also become more complicated and take much more time to run. With the incredible

capability of data-driven modeling techniques, we expect to establish a data-driven and

physical-based model to overcome the lack of direct measurement issues and accurately

identify structural damage with reduced time expense.

• Design optimization of production systems with smart components. Implementation

of newly added smart components in industrial production systems requires the ap-

propriate design of the systems to fully realize the capability of smart components

and avoid wasting limited resources. Design optimization problems depend extensively

on the specific properties of the smart components. Given collaborative robots as

the smart components, corresponding concerns include the feasibility and cost of the

implementation of collaborative robots on different tasks, the precedence relationship

between different tasks, and the ergonomics strain reduction of human workers. Also,

the change in processing time and ergonomics strain under different operation alter-

natives is supposed to be characterized explicitly. With the physical knowledge of

the ergonomic strain of human workers, we can formulate a framework for the design

optimization problem in a production system when the resources are limited. Further-
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more, the optimization problem should be solved with a scalable method and easily

generalized to other similar production systems.

In the following chapters of the thesis, each of the research tasks will be investigated

thoroughly and the outcomes of the research tasks will be clearly illustrated and analyzed.

1.3 Outline of the Dissertation

With respect to the research objectives listed in Section 1.2, four specific research works

are conducted, and future works are presented in this dissertation. The remainder of the

dissertation is organized as follows.

• Chapter 2: A Deep Learning Model for Event Logs Monitoring and Prognosis. In this

task, a data-driven model using a Recurrent Neural Network model with time-to-event

data is developed. The data is collected from event logs and this work not only predicts

the time of the occurrence of a target failure event but also interprets significant events

leading to the target event. Sampling techniques are applied and the censored data

problem is dealt with. Both simulations and real-world case studies are carried out

and the proposed model is compared to the traditional survival analysis model.

• Chapter 3: Structural Fault Diagnosis using Bayesian Optimization. In this task,

a data-driven and physics-based fault prognostic model is developed for damage in a

complex structure. A Bayesian Optimization method using a multi-output Gaussian

process is incorporated with a high-fidelity finite element model (FE) to solve the

structural damages prognosis problem. This model takes the indirect measurements of

impedance/admittance from the structure to identify the location and severity of the

damage. Thompson sampling approach is used to guide the search for the structural

damage in the proposed model. Simulated functions and a real-world structural damage

identification problem are carried out and comparisons are made with the existing

benchmark method.

• Chapter 4: Resource Allocation in Collaborative Production Systems with Robots/Cobots.

In this task, a physic-based task allocation optimization method for a production sys-
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tem with smart collaborative robots is formulated and solved with a scalable algorithm.

Unlike previous works on robot allocation works, a production system with multiple

workstations is investigated. In this work, we try to select the workstations to which

the robot/cobots are allocated. An integrated performance measure, considering both

productivity and ergonomics is proposed and optimized in the proposed model. For-

mulated into a constrained integer programming problem, multiple simulated studies

based on real-world scenarios are conducted and useful insights are concluded.

• Chapter 5: Collaborative Production System Design with Ergonomics Concerns and

Precedence Constraints. In Chapter 4 , we allocate robots/cobots to selected worksta-

tions with a given set of tasks. Extending the research, we focus on the complex task al-

location and production line balancing problem in this chapter: a series of unsplittable

tasks are allocated to different workstations with constraints on precedence relation-

ship and the constraints of processing cycle time. In addition, the ergonomic strains on

the human workers and the implementation cost of robots/cobots are considered in the

objective function. We propose to utilize a reinforcement learning guided evolution-

ary algorithm to solve the problem which improves the scalability of the optimization

framework. A case study based on an assembly production system is conducted to

demonstrate the effectiveness of our proposed method.

Lastly, in Chapter 6, the current works and contributions are summarized and discussed.

Also, the future directions of the thesis are overviewed.
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Chapter 2

A Deep Learning Approach for

Predicting Critical Events using Event

Logs

Abstract

Event logs, comprising data on the occurrence of different types of events and associated

times, are commonly collected during the operation of modern industrial machines and sys-

tems. It is widely believed that the rich information embedded in event logs can be used

to predict the occurrence of critical events. In this paper, we propose a Recurrent Neural

Network model using time-to-event data from event logs not only to predict the time of the

occurrence of a target event of interest, but also to interpret, from the trained model, signifi-

cant events leading to the target event. To improve the performance of our model, sampling

techniques and methods dealing with censored data are utilized. The proposed model is

tested on both simulated data and real-world datasets. Through these comparison studies,

we show that the Deep Learning approach can often achieve better prediction performance

than the traditional statistical model, such as, the Cox Proportional Hazard (PH) model.

This chapter is based on the paper: Huang, C., Deep, A., Veeramani, D., & Zhou, S. (2021). A Deep
Learning Approach for Predicting Critical Events using Event Logs. Quality and Reliability Engineering
International, 37(5), pp.2214-2234.
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The real-world case study also shows that the model interpretation algorithm proposed in

this work can reveal the underlying physical relationship among events.

2.1 Introduction

With the rapid advances in information and communication technology, event logs, which are

temporal records of the occurrence of various types of events, are commonly available at both

the machine level and the system level in industrial enterprises. For example, the service de-

partment of most manufacturers keeps a record of their after-sales service provided for prod-

ucts during the warranty period. Such records contain the occurrence of malfunction/failure

events and corresponding repair actions taken for the products over time. Many modern

machines are numerically controlled by embedded computers, and various events such as

machine activities, critical failures, operator/user actions and task status, are recorded in

real time during the machine operation. For example, for material handling equipment, we

can obtain an event log containing various event types such as battery status, occurrences

of accidents, internal communication error across subsystems, etc. A typical event log is

shown in Figure 2.1. The horizontal line in the figure is the time line; the vertical bars with

arrowheads represent the occurrence of events, and the letters indicate event types.

Figure 2.1: Time-to-Event Sequence Data

The event logs often contain rich information regarding system operation and can be

used for condition monitoring, event prediction, and maintenance decision making. For

example, although some machine failures could occur unexpectedly, it is common for some

precursor events to happen before a critical failure event. By modeling the relationship
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between the precursor events and the critical event, we could predict the occurrence of the

critical event when we observe the precursor events. Another example is that by analyzing

the service records of a particular product, we can find the occurrence frequency of certain

failure modes and the potential relationship between different failure modes. For instance,

two different failure types may be related due to an underlying physical linkage between

the two types of failure or due to the fact that these two failure modes are caused by a

common root cause. Information regarding the relationship between events, when combined

with the ability to accurately predict critical events, is very helpful for identifying the root

causes of failures and for designing optimal preventive maintenance policies that can reduce

unexpected machine downtime and maintenance cost. Thus, establishing a event log based

modeling and event prediction method can be highly valuable in industrial practice.

A popular approach for event prediction is the data-driven rule-based method. This

method uses temporal mining to identify the event combinations that occur frequently to-

gether. Then, these combinations are viewed as event patterns and these patterns are used

to predict future events. [49, 51, 52, 73, 78, 142] Most of these works focus on how to find

the frequent event patterns in a computationally efficient way. The prediction rule obtained

by such methods is often in the following form:

If events A and B occur in the system, then event K will occur with confidence (c%)

Although such rules are easy to use, it is difficult for the rule-based method to incorporate

the information of time interval between events because such intervals are continuous vari-

ables and potentially have infinite number of combinations. It is also not straightforward to

combine rules when multiple rules are simultaneously applicable. For example, if both event

patterns (A, B), and (C, D) occur and we have two rules linking (A, B) and (C, D) with

event K, it is not clear how to adjust the prediction using these two rules simultaneously.

In the realm of statistics, reliability models with covariates provide a mathematical frame-

work for event prediction. [44, 87] Essentially, we can view the occurrence of the critical event

as the ’death’ of the system, and encode the precursor events as covariates in the system that

impact the survival probability of the system. Using such a model, we can link the precursor

events with the critical event and predict the occurrence probability of the critical event. Li

et al adapted this idea and proposed a method for modeling event log data using the Cox
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proportional hazard (PH) model, a popular reliability model with covariates.[79] The output

of the model is the hazard of the critical event, and the covariates of the model include the

selected precursor events. One interesting contribution of their work is that they utilize the

temporal mining approach to identify frequent event patterns as in the rule-based method,

and then encode these identified patterns as covariates in the Cox PH model. However,

how to accurately predict the event occurrence based on the model is not discussed. This

problem is addressed by Yuan et al. [144] They established a formal event prediction scheme

based on the fitted Cox PH model and developed a method for systematically evaluating

the prediction performance. The methods using reliability models with covariates for event

prediction are statistically rigorous. However, to employ these statistical models, certain

conditions need to be satisfied. For example, proportional hazard is one condition required

by the Cox PH model. However, in practice, these conditions may not be met. Further-

more, the scalability of some statistical models is limited. For example, the most commonly

used method in estimating Cox-PH model parameters is the maximum likelihood estimation

method. The likelihood function of the Cox-PH model is a complex nonlinear function. If

there are a large number of covariates, we may face convergence issue in maximizing the

likelihood function.

Significant progress has been made recently in machine learning and artificial intelligence.

[5, 88] Many new generic data-driven modeling approaches have been developed, among

which deep learning methods has shown to be quite flexible and powerful. Deep learning

is a generic nonlinear function approximation method using a neural network framework,

which can learn, from the data, relationship between high dimensional inputs and an output.

The effectiveness of deep learning comes from its flexible structure. Recent advances in

stochastic gradient descent optimization and in GPU-based parallel computing make very

large scale deep learning models possible, thereby enhancing the flexibility and effectiveness

of deep learning models. Indeed, deep learning methods have been applied to a variety

of fields, including computer vision, natural language processing, bioinformatics, medical

image analysis, where they have produced results superior to existing methods in many

cases. There also exist some works using deep learningfor survival analysis and event log

modeling. Katzman et al proposed to use the flexibility of deep learning network to extend
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the conventional Cox PH model.[65] The "Deep Survival" model that uses the basic idea

to replace the exponential function of the linear combination of the predictors with the

exponential function of a generic nonlinear function of the predictors, where the nonlinear

function is represented by a deep neural network. This model relaxed certain restrictions on

the Cox PH model, but it does not deal with event log data. In the biomedical field, Choi

et al proposed a Recurrent Neural Network (RNN) to model the event sequence recorded

in Electronic Health Records(EHR). [22] They used the RNN model to predict heart failure

onset within a fixed prediction interval based on EHR records in a fixed length preceding

window. The method showed promising results but has some limitations in the approach.

The method can predict the occurrence of the event within a window, but not the exact

occurrence time. The censoring in the data (i.e., the interested event is not observed in the

sampled event sequence) is not considered. Furthermore, the interpretation of the learned

network is not discussed in their work.

Considering the great potential of deep learning and the limitations in existing literature,

we propose a comprehensive event log modeling and critical event prediction approach using

deep neural networks. Both the probability of event occurrence in a fixed time window and

the exact occurrence time are predicted. Several neuron structures, such as Stacked GRU

and Bi-directional GRU, will be used and compared. Data censoring is considered in the deep

learning by using Inverse Probability of Censoring Weights (IPCW). An interesting network

interpretation algorithm is also developed to identify the significant precursor events using

the learned neural network. The deep learning results are compared with the Cox PH model

based statistical method in a comprehensive numerical study. The deep learning method has

very good scalability due to the gradient descent optimization method used. A case study

based on real-world event logs is conducted as well. The study shows superior performance

of the deep learning approach in most cases.

The rest of the paper is organized as follows. In Section 2.2, we introduce the proposed

deep learning prediction model and illustrate the interpretation algorithm for the trained

model. In Section 2.3, simulation results using different model structures are compared on

simulated datasets. In Section 2.4, we implement our model on a real-world dataset and

show its effectiveness.
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2.2 Deep Learning Method for Event Prediction

In this section, we first show the data preparation step that transforms the raw data from the

event into a training dataset for the deep learning neural network. After the data preparation,

we introduce the deep learning network architecture. Finally, both the prediction and the

trained model interpretation are explained.

2.2.1 Data Preparation from Event Logs

As shown in Figure 2.2, we consider multiple event logs, each collected during the operation

of one specific unit (e.g., a car, a machine, etc.) in the field. We assume that these units

are of the same type, and thus the event sequences contain some common information.

However, since the units are operated independently, these event sequences are assumed to

be independent of each other.

Figure 2.2: Example of Time-to-event Sequence Data

In practice, an event log for a specific unit could be very long covering the events from

years of operations. However, in most cases, we only need to consider a certain number of

recent events (or events within a certain time window prior to the current time instance) for

the purpose of prediction. To prepare the event logs for training the deep learning network,

we apply a windowed sampling approach to the raw data. As shown in Figure 2.3, the

windowed sampling method selects windows from a long event sequence with certain rules.

For example, the ‘n-gram’ method, which is often used in Natural Language Processing, uses
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a window containing a fixed number of events and shifts the window from the beginning to

the end of the event sequence. In this way, multiple sub-event sequences can be obtained

from an original long event sequence. Other rules of window selection can also be used, such

as fixed time duration for the window, random selection of window locations, etc. In this

work, we follow the ‘n-gram’ method, and use different window lengths, m, and compare the

results.

Figure 2.3: Illustration of Window Technique

We use the symbol X ≡ {Y,H} to denote a single event, which consists of the event

type Y and the time from prior event H (H is zero for the first event in the sequence). We

use X to denote a event sequence consisting of multiple events. For example, we can denote

the event sequence from the lth unit as {Xl}ul=1, where u is the total number of units. By

applying the windowed sampling approach, we can obtain multiple event sequences from Xl

as {Xl
i = (X l

i,1, X
l
i,2, . . . , X

l
i,m)}N

l

i=1, where m is the size of the window and N l is the number

of windowed samples in Xl. In the ‘n-gram’ method, let s be the step in which we slide the

window (i.e., the number of events that separate two adjacent windows) and rl be the total

number of events in Xl, then N l = [ r
l−m
s

], which is the floor round number of rl−m
s

. It is easy

to note that X l
i,j is the ((i−1)∗s+ j)-th event in Xl. After the windowed sampling, we have

a set of event sequences with fixed length of m. To simplify the notation, we will omit the

unit index l in remainder of this paper and simply denote the available event sequence data

as {Xi = {Xi,j}mj=1}Ni=1, where N is the total number of available event sequences, which



16

are obtained using windowed sampling based on the original event sequences from multiple

units.

Knowing an event sequence Xi, we want to predict the occurrence of a critical event

of interest, such as a failure event. In other words, we want to predict the time Ti to the

next critical event from the last event in Xi or a boolean value Fi whether the critical event

will occur in a preset interval I. If the failure happens in interval I, Fi = 1, otherwise,

Fi = 0. Combining the observed sequence Xi with the two kinds of responses, we can have

the dataset for training deep neural network as {Xi, Ti}Ni=1 and {Xi, Fi}Ni=1.

To train a neural network, we need to transform the event sequences Xi into a numerical

tensor form. Here we adopt the one-hot encoding method as shown in Figure 2.5, where

ti,j denotes the time instance of the occurrence of the jth event in Xi. The original event

sequence is shown in Table 2.1. For a time-to-event sequence Xi = {Yi, Hi}, where the

event type sequence Yi = (A,B,A,C,C, . . . , B), and the event time interval sequence Hi =

(0, ti,2 − ti,1, ti,3 − ti,2, . . . , ti,m − ti,m−1). Also, event-wise, Xi = (Xi,1, Xi,2, . . . , Xi,m), where

Xi,j = {Yi,j, Hi,j}. Specifically, Xi,2 = {Yi,2, Hi,2} = {(0, 1, 0, . . . , 0), ti,2 − ti,1}. In the first

nt row of Xi,2, the only nonzero term 1 is corresponding to the row of event type B. The

meaning of Xi,2 is that the second event of the ith time-to-event sequence is of event type B

and occurs after a time interval of ti,2 − ti,1, after the previous event occurs.
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Event No. 1 2 3 4 5 . . . m− 1 m
Event Type A B A C C . . . D B
Event Time ti,1 ti,2 ti,3 ti,4 ti,4 . . . ti,m−1 ti,m

Table 2.1: Original Data Sequence Xi

Figure 2.5: Illustration of Columns of Xi

A similar encoding method is also used by Choi et al [22] in Electronic Healthcare Record

datasets. This method encodes an event sequence with time-to event and event type infor-

mation to a matrix, where the time-to-event is in the last row and 0, 1 in the other rows

indicate the event type. The total number of rows is the total number of event types plus 1.

2.2.2 Deep Neural Network Structure and Its Training

The basic structure of the proposed deep neural network for event prediction is shown in

Figure 2.6. For the ith event sequence Xi, we input it to the RNN layer first, and then

the output of the RNN layers would go through a series of dense layers. RNN has been

widely used in sequential data analysis in recent years. Different from other networks, RNN

has a hidden state for each timestep which contains the information of all the data from

before the timestep. In this way, RNN outperforms other networks dealing with sequential

data. [55] Event logs data is naturally sequenced data and the temporal relationship of the
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events is what we are interested in. The parameters of RNN could study the underlying

relationships between events and the structure of RNN can fit the event logs better than

other deep learning networks. In this way, we could expect a more accurate prediction on

the failure event time from a given Event Log data sequence. Thus, utilizing the RNN model

on Event logs data is reasonable. As the RNN model attracts more attentions in recent

years, various RNN structures have been invented, each with specific advantages. Gated

Recurrent Unit (GRU) introduced by Cho et al [21], is known for its ability to deal with

the vanishing gradient problem and has a good long term memory. Besides GRU, which

improves the model performance by modify the internal structures of neurons, external

structures for neurons have been developed. Bi-directional RNN (BRNN) [115] can include

the information from both the previous and the next timsetep to the network output. This

is appropriate in the event logs setting, where an event is correlated with both the previous

events and the following events. With the property that a Recurrent Neural layer can return

the whole sequence of hidden states, stacking Recurrent layers[46] can also improve the model

performance with a more complicated network with the additional depth of network. These

network structures are helpful for temporal event prediction and fit the characteristics of the

data. In our work, we used different structures of RNNs and compared their performances

in event-log based prediction.

Figure 2.6: Basic Structure of the Proposed Deep Neural Network



19

In the RNN layer, hidden states are calculated iteratively and passed down to the next

states. Equation (2.1) and Figure 2.7 show the formulations in a GRU layer [21]. Xi,j is the

input vector of the jth timestep which represents the jth event’s information of Xi and hi,j

is the output state of the jth timestep. zi,j and ri,j are the update gate vector and the reset

gate state respectively. ĥi,j is the candidate activation vector. In this encoding formulation,

the hidden state is forced to ignore the previous hidden state and reset with current input

only when the reset state zi,j is close to 0. On the other hand, the update gate controls

how much information from the previous hidden state will contribute to the current hidden

state.
zi,j = σg(Wz[hi,j−1, Xi,j])

ri,j = σg(Wr[hi,j−1, Xi,j])

ĥi,j = σh(W[ri,j ∗ hi,j−1, Xi,j])

hi,j = (1− zi,j)hi,j−1 + zi,jĥi,j, 1 < j ≤ m

(2.1)

In the setting of event logs, when the event sequence is very long, an event occurs long time

before the failure event probably has little effect on the time to the failure event. To avoid

the accumulation of the information from event far from the failure event, we utilize this

structure to make sure the network keep the information of new input event that is near to

the failure event. The update gate and reset gate can control how much information we gain

from the previous event in each timestep. If in one timestep, the reset gate is close to 0,

then the previous event can barely influence the output of the current state. The controlled

information gain in each timestep can contribute to a better fit of the training model. In

this way, the gated structure add flexibility to drop unnecessary information to make a more

accurate prediction.
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Figure 2.7: Internal Structure of GRU

The output of the GRU layer Ri is the last timestep’s output hi,m. Wz, Wr, W and b are

the parameter matrices and vector, which will be determined through the training process.

σg and σh are the activation functions, which can be set as different nonlinear functions. By

default, σg is set as the Sigmoid function and σh is set as the hyperbolic tangent function:

σg(x) =
ex

ex + 1
, σh(x) =

e2x − 1

e2x + 1
(2.2)

Besides the inside neuron structure we consider, Bi-directional RNNs can add relationship

between neurons in the network. Taking Bi-directional GRU as an example, there are both

forward iterated hidden states
→
h i,j, j = 1, . . . ,m and backward states

←
h i,j, j = 1, . . . ,m. The

architecture of iteration in one layer is shown in Figure 2.8.
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We have:
→
h i,j = (1− →z i,j)

→
h i,j−1 +

→
z i,j

→̂
h i,j, 1 < j ≤ m

←
h i,j = (1− ←z i,j)

←
h i,j−1 +

←
z i,j

←̂
hi,j, 1 < j ≤ m

(2.3)

, where
→
z i,j,

←
z i,j and

→̂
h i,j,

←̂
h i,j are calculated in the similar process as Equation (2.1). Then,

hidden states
→̂
h i,j and

←̂
hi,m−j+1 are concatenated as Hj, j = 1, . . . ,m. Next the output of

the BGRU layer Ri is the output of the last hidden state Om = WBHm+bB, where WB and

bB are the parameters to be estimated in training. Another architecture we utilize is the

stacked GRU, where we can add layer to the GRU layer. As shown in Figure 2.9, the input

of the stacked GRU layer is the corresponding hidden states of the previous GRU layer.
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Figure 2.9: Architecture of Stacked GRU

The calculation of the first layer is the same as Equation (2.1). For the second layer, we

calculate the states by Equation (2.4). Similar as the mechanism of single layer GRU, z2i,j
and r2i,j are the update gate vector and reset gate vector that can control the information

gains of the neurons. The output of the stacked GRU Ri is the output of the last hidden

state in the second layer Om = WSHm + bS, where WS and bS are the parameters to be
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estimated in training.
z2i,j = σg(W

2
z [h

2
i,j−1, h

1
i,j])

r2i,j = σg(W
2
r [h

2
i,j−1, h

1
i,j])

ĥ2
i,j = σh(W

2[r2i,j ∗ h2
i,j−1, h

1
i,j])

h2
i,j = (1− z2i,j)h

2
i,j−1 + z2i,jĥ

2
i,j,

(2.4)

After the RNN layers, we include dense layers, and similar to the formulations in RNN layers,

we have activation function σD and parameters WD and bD.

fD(Ri) = σD(WDRi + bD) (2.5)

The activation function σo in the output layer depends on the output of the model. We use a

Sigmoid function (2.6) to transform the output into a value in [0, 1], when we are predicting

Fi.

Pi =
1

1 + exp{−(WofD(Ri) + bo)}
, (2.6)

When the prediction goal is Ti, σo becomes an identity function, i.e., T p
i = fD(Ri).

To illustrate the number of parameters that need to be trained in a model, an example

of a model with 20 event types is shown in Table 2.2:

Table 2.2: An Example of Parameters

Layer Name # of nodes # of parameters
GRU 32 5088

Dense_Relu 32 1056
Dense_Tanh 16 528

Output 1 17

To train the network to get estimates of the unknown model parameters, we need to

define a loss function according to the model output. Then we can employ the stochastic

gradient method to obtain the parameters values through minimizing the loss functions.

Specifically, if we want to predict the occurrence of the critical event, Fi, given Xi, we can
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use the ‘binary cross-entropy’ (2.7) as the loss function.

Loss1 = −
1

Ntrain

Ntrain∑
i=1

(Filog(Pi) + (1− Fi)log(1− Pi)))wi (2.7)

where Pi is the network output given by (2.6) and Ntrain is the number of training samples.

wi is the sample weight of all the ith data sequence. If we want to predict the time to the

critical event, we can use the mean square error (MSE) (2.8) as the loss function,

Loss2 = −
1

Ntrain

Ntrain∑
i=1

(Ti − T p
i )

2wi (2.8)

After the model is trained, we need to test and evaluate its prediction performance on a

test dataset that has not been used in the training process. If the prediction target is the

occurrence of the critical event, then we can use the prediction accuracy defined in (2.9) as

the performance measure,

ACC =
# of Fi = F p

i

Ntest

(2.9)

where Ntest is the testing sample size and F p
i = 1, if Pi > 0.5 or F p

i = 1, otherwise.

If the prediction target is the time to the critical event, we can use the Mean Absolute

Error (2.10) as the performance measure

MAE =
1

Ntest

Ntest∑
i=1

|Ti − T p
i | (2.10)

The training procedure of the proposed model on a given data set is shown in Algorithm 1.

We apply the "Adam" optimizer for the parameter training.[71]
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Algorithm 1 Training Procedure of The Proposed Model
1: Split training, validation and test data

Training
2: for Models with different network structures and hyper-parameters do
3: Initialize model parameters: θ = {WD,Wo, bD, bo} ← θ0
4: while validation loss is keep reducing do
5: Update the parameters by Adam optimizer: θ = Adam(θ)
6: Calculate the validation loss Lossvγ = Lossγ(θ,Xvalidation), γ = 1, 2
7: end while
8: Save the optimized model parameters θ and the validation loss Lossvγ
9: end for

10: Compare the validation loss of different models
Testing

11: Apply the best fit model on the testing data

2.2.3 Adjustment for Censored Data

In event data, we often have censored observations. Censoring is a condition in which the

value of the observation is only partially known. For example, when we observe the occur-

rence of a failure event but the failure does not occur until the present time, we will know the

failure occurs later but will not know the exact occurrence time. This is a censored obser-

vation and is often called ‘right’ censored. In some data collection schemes, the percentage

of censored data might be high, for example, due to the limited period of observations.

Since we do not have the exact observation of event occurrence time, the censored data

cannot be directly used for training or testing the deep learning network. However, if the

percentage of censored data is high, the information embedded in the censored data will be

lost if they are simply discarded. Most of the existing methods in machine learning replace

or modify the censored data based on the uncensored data. However, those generated data

are synthetic data which could again lead to inaccurate predictions. Inverse Probability of

Censoring Weight (IPCW) is recently proposed to deal with right-censored time-to-event

data for machine learning tasks.[135] A promising data pre-processing method is introduced,

which gives the weights to uncensored data based on the inverse probability of censoring

weights. Here we adopt this algorithm for our deep learning model as follows.

For a given set of units and let i be the unit index. Let Ti represent the time that the
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event occurs, Ci denote the censoring time. Let d∗i be the number of units that are censored

at time Vi, where Vi = min{Ti, Ci}, and ni be the number of units that has not been censored

or failed at time Vi. Then, we can define a function G(t) = P (Ci > t) from the Kaplan-Meier

estimator of the survival distribution of the censoring time as

Ĝ(t) =
∏
i:Vi<t

ni − d∗i
ni

. (2.11)

For each individual i′ in the set, an inverse probability of censoring weight is defined as

wi′ =
1

Ĝ(Vi′)
, Ti′ < Ci′ (2.12)

For uncensored event sequences, we can apply the corresponding weight obtained in (2.12)

into the loss function in (2.7) and (2.8) during the network training process. In this way, the

information in the censored observations are utilized indirectly in the model training process.

The intuition behind the IPCW method is easy to understand: It gives a higher weight to

the uncensored unit with a large time-to-event value, since there is a higher probability

for a unit similar to this unit to be censored. In other words, the uncensored unit with a

long life should have more similar censored units, and thus it needs to represent more units

and be given a higher weight. The rigorous proof of IPCW can be found. [130] We would

like to point out that in some cases, Ĝ(Vi′) could be very small due to limited number of

observations, which will lead to a very large weight. For computational stability, we often

need to put an upper limit (e.g., a value below 10) on the weight in the model training.

We want to mention that there are some assumptions of applying IPCW [130, 131].

Essentially, to satisfy the IPCW condition, the censoring should be independent with failure

event occurrence and the subject. Compared to the time-to-event data in clinical studies,

the conditions of IPCW methods are easier to be satisfied in industrial systems, where

censoring are often caused by outside random factors that are not related to the features

of the machines or the failure event. For example, the censoring of an event log from a

machine in industrial setting is often caused by the communication error (e.g., the internet

is down), which is not related with the machine itself. There can also be instances where the
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censoring is informative, for example, we stopped the machine because it is near the failure.

In such situations, censoring is dependent, hence the assumptions of IPCW may not remain

valid. To handle such situations, we can use methods like Copula based approaches[31] and

Tree-based methods[96], and we leave that as future work.

2.2.4 Model Interpretation

In practice, in addition to making predictions on the critical event, people often want to find

out which event is a good preceding indicator for the critical event. This requires us to be able

to interpret the trained deep learning neural network. Unfortunately, RNNs typically lack

good interpretability. [45] Here we propose an easy-to-implement event deleting method to

identify the important indicator event for the critical event through the trained deep neural

network.

For an one-hot encoded event sequence Xi, we can replace the ′1′s that represents event

type y by ′0′ to generate a new event sequence that does not include event type y. By

comparing the difference of predicted probability that the critical event would happen, we

can quantify the influence of event type y on the occurrence of the critical event. This idea

is illustrated in Figure 2.10.

Figure 2.10: Deleting Event y Information
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The detailed algorithm is as follows. Assume we have N data sequences. For the jth

event occurrence in the ith data sample, we input the data after replacing the ′1′ in the jth

column with ′0′ and get a new predicted probability P̂ j
i . We denote the origin probability of

the ith sample as Pi and calculate the difference:

Dj
i = P̂ j

i − Pi (2.13)

Suppose event y happens Ny times in the N sample event sequence we picked. The average

difference of event y is

Dy =

∑
Yi,j=y D

j
i

Ny

(2.14)

By ranking Dy, which is called influence index of all the event types, we can find the most

influential events. The strength of this algorithm is that we do not need to generate simulated

data. Instead, we can directly utilize the existing data and retain the real-time information

from the original data.

Here is the pseudocode for influence index Dy calculation:

Algorithm 2 Calculate Dy for Each Event Type y

1: sum(Dy)← 0, Ny ← 0
2: for 1 ≤ i ≤ N do
3: for 1 ≤ j ≤ m do
4: Let Pi be the prediction result of the trained model with input Xi

5: X̂j
i ← Xi,

6: Flip the ’1’ in the jth column of X̂j
i into ’0’

7: Let P̂ j
i be the prediction result of the trained model with input X̂j

i ,
8: Dj

i ← abs(P̂ j
i − Pi)

9: if the jth event of the ith individual is event type y then
10: sum(Dy)← sum(Dy) +Dj

i , Ny ← Ny + 1
11: end if
12: end for
13: end for
14: Dy ← sum(Dy)

Ny
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2.3 Numerical Study

This section we describe the numerical experiments we conducted, and compare the pre-

diction performance of several aforementioned models. First, we show two settings of data

generation. Then, we describe several variants of models considered for prediction. Finally,

we report and compare the results obtained from this numerical study.

2.3.1 Data generation

As per our motivation that some events have strong association with the occurrence of the

event of interest, denoted as the Kth event, also called target event, we generate event

sequences consisting of several events. Some of these events have no bearing on the target

event’s occurrence, while some have strong influence on the occurrence of the target event.

We can those events as the key events. In the two settings, we generate the target event

through simple pattern rules. In total, we use 20 different types of events in the experiments.

For setting I, we first generate independent K − 1 event variables following a specified

distribution. Thereafter, we specify certain rules for the Kth event generation. This setting

can be interpreted as if certain past pattern have triggered the onset of the target event, and

the target event’s time occurs after a specified duration. Four sub-cases are considered for

this setting which is tabulated in Table 2.3.

Algorithm 3 Data Generation for Setting (I)
Event time generation:

1: Initialize number of units N = 5000, number of event-types except the target event, i.e.
K − 1 = 19.

2: Specify baseline parameters of each event-type, and generate N set of observations.
3: Generate target event times using the rule specified in Table 2.3.

Censoring:
4: For each i ∈ N , generate censoring/follow-up times (τi) of each unit. Let τi ∼ Weib(·).

We use different values of censoring times for different cases.
5: For each i ∈ N, δki = 0 if Tki > τi, else δki = 1,∀k ∈ K.
6: Update Tki = min(τi, Tki).
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Table 2.3: Setting I Rules Considered

Sub-case Pattern/Rule
1 TK = T10 + 1.5

2 if T1 < T2, then, TK = T2 + 1,
else, TK = T1 + 5

3 TK = Max(T1, T2, T3) + 10

4 TK = Max(T1, T2, T3, T4) + 10

Table 2.4: Setting II Rules Considered

Sub-case Pattern/Rule
1 TK = T1 +N (5, 0.5)

2 if T1 < T2, then, TK = T2 +N (1, 0.5),
else, TK = T1 +N (5, 0.5)

3 TK = Max(T1, T2, T3) +N (5, 0.5)

4 TK = Max(T1, T2, T3, T4) +N (5, 0.5)

In setting II, we use similar rules for the Kth event generation. However, the Kth event

in itself follows a random distribution. Under this setting, the target event can occur before

the complete pattern is observed. The sub-cases are tabulated in Appendix 2.6.1. The

algorithm to generate data under this setting is the same as Algorithm 3, except the rules

are now generated as per Table 2.4.

2.3.2 Cases Considered

We present three cases for comparing the prediction performance. These cases are briefly

discussed below:

• Case A: IPCW vs Without IPCW : The first comparison we implement is to

show the effectiveness of the IPCW method for censored data. Different censored rates

are taken into consideration and the parameter used to generate datasets is shown in

Appendix 2.6.2.

• Case B: RNN vs Flatten vs BGRU : In this case, we compare the performance

of different network structures. We considered stacked GRU, GRU and Bidirectional

GRU, which provides us with a higher accuracy and lower mean absolute error in most
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of the cases. Also, to illustrate the improvement of RNNs, we performed the results

with a network with flattern layers which has only dense layers.

• Case C: Cox PH vs RNN : In this case, the traditional statistical approach Cox [25],

called Cox PH regression, is compared against the best fit RNN based deep learning

method we decide in Case B. a brief review of the Cox PH method is provided in the

Appendix 2.6.3.

For model evaluation and validation, we generate 5000 sample event sequences for each

model and use a training ratio of 0.8. For deep learning models, we also separate 20% of

training data as validation data. In other words, we treat 80% of available data as the

historical dataset, and use it to obtain offline-stage parameter estimates. Thereafter, we use

the remaining data for testing the performance.

We use two criteria to compare the prediction results: Accuracy (2.9) and Mean Absolute

Error (2.10) .

2.3.3 Results and Discussion

2.3.3.1 Effectiveness of IPCW for Censored Data

As shown in Figure 2.11, the IPCW method improved the Accuracy and the Mean Absolute

Error. Though we generated the dataset by setting the parameters of the distribution of

trigger events, we considered datasets with censored rates varying from 10% to 50%. As

shown in Figure 2.11, the IPCW method improved the Accuracy and the Mean Absolute

Error in all the different censored rate situations.
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Figure 2.11: Effectiveness of IPCW for Censored Data

Moreover, in the results of IPCW, we can see that the MAE of different censored data

from the original data set were very close. This further show that IPCW can compensate

for the influence of censoring.

2.3.3.2 Deep Learning Results with Different Model Structures

In this section, we compare the performances of different neuron structures. We present

simulations on simple GRU, stacked GRU, Bidirectional GRU and simple flatten layer (DNN

model) respectively with the same data input in Appendix 2.6.1. From Figure 2.12, the RNN

structure improves the prediction results significantly. Furthermore, the Bidirectional GRU

increases the accuracy and decreases the Mean Absolute Error from the traditional GRU

layer in most of the cases. This result is not surprising, since the Bidirectional GRU should

fit the data better as it includes a hidden state from the information of future events.
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Figure 2.12: Comparison of Different Network Structures

2.3.3.3 RNN vs Cox PH

After finding the best neuron structure, we compare the selected network structure and the

CoxPH model on the eight datasets in Appendix 2.6.1. As shown in Figure 2.13a, the model

we proposed has a lower MAE than the CoxPH model. For the accuracy evaluation results,

considering in the actual prediction, we consider different normalized relatively prediction

interval length. As shown in Figure 2.13, our proposed model obtain higher accuracy than

the Cox PH model in almost all cases.
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(b) Accuracy under Different Relative Prediction Interval

Figure 2.13: Comparison between Cox PH model based method and deep learning based
method

2.3.3.4 Results for Identifying Influential Events

As shown in the generation of simulation data in Tables 2.3 and 2.4, there are close relation-

ships between the target event and several of other events. Using the method we proposed to

predict the most influential events, we obtain the influence index on the generated datasets.

We can conclude from Figure 2.14 that the key events that are closely associated with the

target event are well distinguished from other unrelated events.
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Figure 2.14: Simulation Results of Model Interpretation

2.4 Case Study Using Real World Data

In this section, we present a comparison of the proposed deep learning event prediction

method against the traditional Cox PH model based method on a real-world dataset collected

from industrial equipment. Data is available from different units of this industrial equipment.

These units are equipped with multiple sensors which transmit signals pertaining to warning
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or failure of the system or any of its sub-systems. A summary of data is presented in Table

2.5. Please note that the actual calendar times are adjusted for each unit, i.e., the starting

time is made zero for all the units. To protect confidentiality, descriptions of event-types is

not provided, and a small random noise has been added to the event-times. The noise does

not affect the results or interpretations of our analysis.

Table 2.5: Summary of The Real World Dataset

Event Duration 2 years
Total # of Units 669
Total Event Types 198

Total Events 4,976,512
Maximum Total Events in A Sequence 99,312

For the real-world data analysis, we perform 13 cases using a total of 87 important

event-types selected from the whole dataset. We augment the data with a sliding window

of size 10. Sampling using sliding window may lead to correlation among samples, which

may affect the training results. However, knowing deep neural networks always need large

volumes of data to train the model, the windowed sampling method, in a way, ensures that

the model training could have sufficient data samples when there is no sufficient independent

training samples. This strategy has been commonly used in deep neural network training.

For example, artificial images from the transformation of a real image has been used as a data

augment method in the training of a CNN (Convolution Neural Network) [105]. Similar

to the simulation in Section 2.3, 20% of the data is kept aside to be test data, and 20%

of the rest data is set to be the validation data in deep learning model. These event-types

represent error or warning information arising from different components in the equipment.

The sensors onboard collect and transmit information when an event occurs. We employ the

Cox PH method and Bidirectional-GRU on the dataset for different units of the equipment.

Figure 2.15 presents the comparison of accuracy and MAE for the two approaches. For the

accuracy prediction, different lengths of prediction interval are presented.
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Figure 2.15: Prediction results for real world data

The results obtained indicate that the deep learning based approach outperforms the

classical Cox PH method in most cases, particularly when the prediction interval is relatively

short (e.g., 1, 2 and 3 week). To apply in practice, several variants of the deep learning

approach should be tested and applied.
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Figure 2.16: An Example of The Influential Event Results for Real World Dataset

We conduct the influential event identification to the selected event sequences, and a

typical case of the results are presented in Figure 2.16. We can actually interpret the rela-

tionship between the target event and the identified key trigger events based on engineering

knowledge of the system. For example, we identify that for the target event-type [Y62: The

BSM power supply error ], as shown in Figure 2.16, [Y51: Incorrect Lift Power Amplifier

Installed ] and [Y49: Incorrect TPA Module Installed ] are detected as the most influential

trigger events. Apparently, the missing power event may have been caused by an incor-

rect power supply module installation. With the interpretation of our trained model, we

could easily detect similar relationships and set up potential corrective action. This further

confirms the usefulness of our proposed model interpretation method.

2.5 Conclusion

In this paper, we introduce a model for predicting critical events and interpreting the most

influential trigger events using event logs. One-hot encoding, window techniques are utilized

to transform and augment the original datasets. Moreover, inverse probability of censored

data weights are used to preprocess the data, which allocate weights to uncensored data

samples based on the censored information. When training the model, different neuron

structures including bidirectional layer and stacked layer are considered to find the best
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fit model. After the model is well-trained, an event interpretation algorithm is proposed

and the Influence Index is defined to find the most influential trigger events. From both

simulated datasets and real-world data, our model outperforms the traditional Cox PH

model in mean absolute prediction error and also the prediction accuracy in most of the

cases. The interpretation results in the real world data further shows the potential for future

development of an automatic root cause identification model.

The main contributions of the work are in three folds: (1) We established a detailed

procedure of applying deep learning to critical event prediction using event logs, including

processing and encoding event logs to the form that fits deep learning tasks, comparing

various deep learning structures to identify the most effective one for event prediction, and

comparing with conventional statistical methods to provide insights to the event prediction

problem. (2) We adapted IPCW method to deep learning so that we can handle the cen-

sored observations for event prediction purposes. Censoring is common in event data and the

adapted IPCW method can make the censored data fully utilized in the deep learning frame-

work. (3) We proposed an interpretation technique to overcome the weak interpretability of

deep learning method. We can identify the important events that are associated with the

critical event to be predicted. Deep learning, as a powerful machining learning technique,

will find a broad application in event log modeling and analysis. Future works include tun-

ing algorithm to rigorously decide the best hyper-parameters for a proposed deep learning

model. Also, the proposed interpretation algorithm in this work can identify the association

between a single event with the critical event. This work can be extended to identify a com-

bination of multiple events that are associated with the critical event. We will investigate

these problems and report our findings in the future.



39

2.6 Appendix

2.6.1 Baseline and Censoring Parameters Used
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Table 2.6: Baseline and Censoring Parameters

2.6.2 Different Parameters of Censored Dataset

Event Original Data 1 Original Data 2 Original Data 3 Original Data 4
shape scale shape scale shape scale shape scale

1 2.5 3 2.5 4 2.5 1 2 2
2 2 3 2 4 2 1 2 2
3 2.1 1 2.1 1 2.1 1 2 2
4 2.3 1 2.3 1 2.3 1 2 2
5 2.2 1 2.2 1 2.2 1 2.2 1
6 2.1 1 2.1 1 2.1 1 2.1 1
7 2.5 1 2.5 1 2.5 1 2.5 1
8 2.5 1 2.5 1 2.5 1 2.5 1
9 2.5 1 2.5 1 2.5 1 2.5 1
10 2.1 1 2.1 1 2.1 1 2.1 1
11 2.2 1 2.2 1 2.2 1 2.2 1
12 2.3 1 2.3 1 2.3 1 2.3 1
13 2.4 1 2.4 1 2.4 1 2.4 1
14 2.6 1 2.6 1 2.6 1 2.6 1
15 2.9 1 2.9 1 2.9 1 2.9 1
16 2.1 1 2.1 1 2.1 1 2.1 1
17 2.1 1 2.1 1 2.1 1 2.1 1
18 2.3 1 2.3 1 2.3 1 2.3 1
19 2.2 1 2.2 1 2.2 1 2.2 1

Censored Rate 0.33 0.22 0.55 0.45 0.4 0.33 0.21 0.12
Case No. 1 2 3 4 5 6 7 8

2.6.3 Review of Cox PH Model Based Event Prediction

If we treat the critical event we want to predict as the failure event and other events as

time-varying covariates, we can apply Cox PH model to predict the occurrence of the critical

event. A Cox PH model is a semi-parametric model which assumes that the hazard function

is comprised of two components – (i) a non-parametric baseline, h0(t), and (ii) external

covariates (or features), X which are linked through a link function g. In common practice,

the exponential function is used as the link function. The Cox PH model is as follows:

h(t|X) = h0(t) exp(βX) (2.15)
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where, β is the vector of coefficients associated with the covariates. For the event prediction

at hand, we can incorporate preceding events as time-varying covariates in the Cox PH model

as
h(t|Z(t)) = h0(t) exp(βZ(t))

(2.16)

where Z(t) is the vector of time-varying predictors corresponding to all the event-types. A

predictor event-type, say A, is encoded as follows

ZA(t) =

0, 0 < t < TA

1, t > TA

(2.17)

where TA is occurrence time instance of event A.

Through the Cox PH model, we can obtain the hazard function h(t) and then we can

obtain the survival function as S(t) = exp
(
−
∫ t

0
h(s)ds

)
. The prediction of failure time at

time t∗ can be computed using the survival function. [72] Knowing that the unit has not

failed until t∗, we can compute and integrate the conditional survival function as follows to

get the expected time to failure

E(t|t > t∗) =

∫ ∞
t∗

S(s|t∗)ds =
∫∞
t∗

S(s)ds

S(t∗)
(2.18)

Please check the regarding detailed parameter estimation for Cox PH model. [72] Also, more

details on Cox PH model based event prediction can be found.[79]
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Chapter 3

Mixed-input Bayesian Optimization

Method for Structural Damage Diagnosis

Abstract

Structural Health Monitoring (SHM) is of significant importance in the operation of en-

gineering systems to ensure the durability and reliability. In this paper, we introduce a

Bayesian Optimization method using a multi-output Gaussian process to solve the struc-

tural fault diagnosis problem. This method utilizes a high fidelity finite element model (FE)

of the structure and the impedance/admittance measurements from the structure to identify

the location and severity of the damage. The method improves the accuracy of the damage

diagnosis by adopting a multi-output Gaussian process as the surrogate model for the full

FE model and Thompson sampling approach is used to guide the search for the structural

damage in the Bayesian optimization. The detailed algorithms are presented, and conver-

gence analysis of the method is conducted. We apply our proposed method on simulated

synthetic functions and it achieves better performance and higher convergence speed than

traditional mixed input optimization methods. We then apply our method on a real world

structural damage identification problem using measured piezoelectric admittance data and

This chapter is based on the paper: Huang, C., Lee, J., Zhang, Y., Zhou, S. & Tang, J. (2022). Mixed-
input Bayesian Optimization Method for Structural Damage Diagnosis. IEEE Transactions on Reliability,
vol. 72, no. 2, pp. 678-691.
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illustrate the effectiveness of the proposed method.

3.1 Introduction

Structural health monitoring (SHM) is of vital importance in ensuring the durability and

reliability of engineering systems. Structural damage in the systems can cause performance

degradation and even lead to catastrophic consequences [48, 50, 53, 84]. Early detection and

identification of the location and severity of structural damage is the key for mitigation such

risk. To enhance the reliability of the systems, a number of structural damage diagnosis

techniques have been developed in recent years. Structural health monitoring is mostly

facilitated through measuring and comparing the dynamic responses of structures [17, 67,

75]. Methods of SHM utilize vibration measurements from which the natural frequencies

and mode shapes are extracted to infer damage occurrence. These methods are easy to

implement, as they employ off-the-shelf sensors and the vibration responses can be modeled

in a straightforward manner. However, typically only the lower order natural frequencies

and mode shapes can be extracted experimentally [18, 68], because it is generally hard

and even impossible to excite and measure high-frequency vibration responses using simple

experimental setup. As such, the wave lengths involved is large, leading to relatively low

sensitivity in damage detection and identification.

Alternatively, a different class of methods utilize the wave propagation information. As

waves pass through damage sites, their propagation pattern may exhibit changes [91]. Us-

ing transducers such as piezoelectric actuators/sensors with high bandwidth, high frequency

waves can be excited and senses, leading to high detection sensitivity. Nevertheless, the

interaction between transient wave and local damage which may have arbitrary profile could

be extremely complicated. The identification of damage severity using transient wave prop-

agation becomes difficult [128].

In recent years, a new class of structural damage detection methods, called piezoelectric

impedance or admittance based methods [93, 118], has been suggested. The approach works

in such a way that a piezoelectric transducer is bonded locally to the host structure to be

monitored. The transducer has a two-way electro-mechanical coupling effect and can be
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used as both the actuator and sensor simultaneously. When a harmonic voltage excitation

is applied, the piezoelectric transducer can excite the structure and measure the electro-

mechanical signatures. When there is damage in the structure, it will result in impedance

change around the structural resonances. These impedance changes can be used to monitor

structural conditions. These methods preserve the high-bandwidth nature of piezoelectric

transducers and thus lead to high detection sensitivity. When a high-fidelity finite element

(FE) model in healthy state is available, the damage identification can be carried out to locate

and quantify the damage inversely with the electro-mechanical impedance changes as input.

For example, Shuai et al.[118] applied the FE modeling, and formulated a linearization of the

impedance response through sensitivity matrix computation to represent the relationship of

the impedance changes and possible damage. In practice, however, the number of unknowns

to be identified, i.e., the location and severity of damage, is large while the data points of

impedance response measurements are limited. In another words, the sensitivity matrix is

rank-deficient [68]. If the conventional least squares method is adopted to solve the under-

determined problem, it may yield untrue solutions.

To address this limitation, the under-determined identification problem can be formulated

as a global optimization problem [104, 116], aiming at minimizing the difference of admittance

change between experimental measurements and model prediction. Since the sensitivity

matrix is rank-deficient, the under-determined problem has many or infinite solutions that

may not be the true damage location and severity. To address this issue, some sparsity

constraints are added to the model to remove the undesired solutions [59, 138]. In [18],

a multi-objective DIRECT [62] algorithm to find the damage location and severity that is

closest to the observed admittance under the assumption of sparsity is proposed.

Nevertheless, there still exists a research gap. The model remains the linear formulation,

which is accurate only when the damage severity is small enough. In addition, even with

sparsity constraint, these methods still provides multiple solutions and requires manually

select the most plausible solution from them. A better algorithm is expected to be developed

to find a more accurate solution of the problem and provide deterministic solution.

In this work, we propose a mixed-input global optimization approach for structure damage

diagnosis. In this approach, we treat the structure FE model as a black-box function and
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then we search the input to the function (i.e., damage location and severity) that fits the

obtained observations the best. Using the full FE model, we can avoid the accuracy loss

in the linearization step. Black-box optimization has been studied extensively. Bayesian

optimization (BO) is a popular black-box function optimization approach [94, 117, 120, 121],

particularly for functions that are expensive to evaluate. It has been applied to a number

of scientific domains in recent years [16, 76]. BO uses statistical surrogate model fitted to

the data and utilizes the surrogate model to find the next point to evaluate, so that the

optimization process can efficiently converge to the optimal solution. Benefiting from the

properties inherited from the normal distribution, Gaussian process (GP) has been widely

applied in data modeling, simulation optimization, and prediction problems [61, 69, 137].

The majority of applications of BO also utilizes GP as a surrogate model to be fitted to the

data. It has been shown that BO that uses GP as the surrogate model will converge to the

global optimal under some non-restrictive constraints [15].

Most of the existing BO methods and applications focus on the cases where there are only

continuous variables in the input domain of the function [11, 117, 120, 121]. However, for

the structure damage diagnosis problem at hand, the input variables are of mixed types: the

location of the damage is a discrete variable while the severity of the damage is a continuous

variable. Optimization with both discrete and continuous inputs are interesting topics in

the optimization field. Unlike the continuous input variables, discrete variables contain the

information that is not easy to be explored. Recently, Nguyen et al. used multi-armed bandit

model to frame the BO problems (MAB-BO) with discrete and continuous input variables

[99].

Although MAB-BO is able to handle both discrete and continuous variables, it does not

consider the correlation of the responses corresponding to different discrete inputs in each

optimization iteration. In other words, the responses corresponding to different discrete in-

puts are modeled independently by separate GP models in MAB-BO method [99]. However,

in many real world cases, the responses corresponding to different discrete inputs often show

similar patterns. Take the structure damage diagnosis problem as an example. Intuitively,

damages occurring on close locations may show very similar patterns in the structure dy-

namic response and the information from adjacent locations may contribute to the prediction
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for each other. Thus, if we have a model to simultaneously describe multiple responses corre-

sponding to multiple potential damage locations, then we will have more accurate model to

describe the underlying function, which will lead to better performance of the BO algorithm.

In this work, we adopt a recently developed multi-output Gaussian process (MGP) model

with non-separable covariance functions as the surrogate model in the BO algorithm. Sim-

ilar to MAB-BO in [99], a Thompson sampling approach is used to guide the sequential

sample of the underlying function, which can provide a good trade-off between exploitation

and exploration of the search. A rigorous convergence analysis is conducted to show the

converging property of the proposed method. Numerical studies based on both simulated

data and real world structure damage diagnostics problem compare the proposed method

and several other methods and demonstrate the effectiveness of our method.

The main contributions of this work can be summarized into three folds: (i) Apply BO, a

black-box function optimization method, to the structure damage diagnosis problem, which

can directly work on the full FE model without linearization. (ii) Extend the existing BO

method by adopting a flexible non-separable MGP model as the statistical surrogate model

in the BO framework. And (iii) Rigorous convergence results are obtained for the proposed

BO method.

The rest of the paper is organized as follows. In Section 3.2, we introduce the related

background of Bayesian Optimization (BO), including a brief introduction of BO and the

Gaussian process used in BO. In Section 3.3, the Multi-armed bandit Multi-output Gaussian

process Bayesian Optimization (MAB-MGP-BO) is presented and the convergence of the

method is analyzed. In Section 3.4, numerical simulation on two synthetic functions is

conducted. The results show that our method can achieve a higher optimal value and a

faster convergence than several other methods including MAB-BO method in [99]. In Section

3.5, case study of structural damage identification based on both simulated data and real

world data are conducted. It shows that our method can successfully detect the location

and severity of the damage. Finally, we conclude our work and have a discussion on future

work in Section 3.6.
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3.2 Review of Bayesian Optimization

In this section, we give a brief introduction of related background knowledge on the Bayesian

optimization (BO) we will utilize in the proposed method. Generally, BO methods consist

of two parts. First, a machine learning method is utilized to build a surrogate model of the

input and the objective function. Then, an acquisition function is designed to decide where

to take the next observation (also called “evaluation”) from the objective function. Repeating

the two steps sequentially, we can build a surrogate model close to the underlying black-box

function and find a solution near the global optimal point. Figure 3.1 is an illustration of BO

method using GP as the surrogate model and upper confidence bound [122] of prediction as

the acquisition function under noiseless condition, where t is the number of iterations, i.e.

the number of evaluations we made on the underlying black-box function f . The x-axis is the

input of the function and the y-axis is the value of function f . The values of the acquisition

function, the upper confidence bounds with one standard deviation, are shown in dash-dotted

line on the bottom of the box at each t. The true underlying functions are presented in solid

lines above them. The observations we already have are presented in by round points and the

square point is the new observation point we made in the current iteration, which is chosen

based on the acquisition function of the former iteration. The dotted and short dotted line

are the posterior predictions and the confidence intervals. As we can see from the figure,

the prediction is closer to the underlying function and the uncertainty is lower through the

iterations.

Formally, let f(x) be the black-box function with global optimizer x∗ = argmaxx∈Xf(x),

where x is the vector of variables and X is the domain of x. Assume that till the t-th

iteration, the set of observation points Dt = {(xi, yi)|i = 1, . . . , t}, where yi = f(xi) +

ϵi, ϵi ∼ N (0, σ2
ϵ ) If we fit the surrogate model to the data in each iteration and we obtain

the prediction of f(x) with mean µt(x) and variance σ2
t (x). Taking the upper confidence

bound Ut(x) = µt(x) + βσt(x), (In Figure 3.1, β = 1) as the acquisition function, we take

xt+1 = argmaxx∈XUt(x) as the next evaluation point. Then, we evaluate xt+1 with the

underlying model and get the response yt+1. Finally, the tth iteration is finished and the

dataset of the (t+ 1)th iteration is Dt+1 = Dt ∪ {(xt+1, yt+1)}. After a large enough number
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Figure 3.1: An example of Bayesian optimization method

of iterations, we can achieve the global extreme point x∗.

As we mentioned above, the most frequently used surrogate model in BO is the GP model.

A GP is a generalization of the Gaussian probability distribution and can be considered as a

Gaussian distribution prior over functional data. It has been well established that GP model

is a very flexible and expressive model that can be used to describe a wide range of functions

[141, 143]. It is a stochastic process, which is a collection of random variables and any finite

subcollection of which follows a multivariate normal distribution. Thus, the distribution of

a GP is the joint distribution of all those (infinitely many) random variables.

A GP f(x) is specified by its mean function µ(x), µ : X → R and its covariance function

c(x,x′), c : X × X → R, where c(xi,xj) is the covariance between f(xi) and f(xj). Please

note that without causing confusion, we use the same symbol f to represent the underlying

function and a GP. We denote the GP as f(x) ∼ GP(µ(x), c(x,x′)). Specifically, for a set

of inputs Xn = [x1,x2, . . . ,xn]
T , the vector of output f(Xn) is Gaussian distributed with



49

mean µ(Xn) = [µ(x1), µ(x2), . . . , µ(xn)]
T and n× n covariance matrix C(Xn,Xn) :

C(Xn,Xn) =


c(x1,x1) c(x1,x2) · · · c(x1,xn)

c(x2,x1) c(x2,x2) · · · c(x2,xn)
...

... . . . ...

c(xn,x1) c(xn,x2) · · · c(xn,xn)

 (3.1)

A common covariance function is the squared exponential kernel, defined as c(xi,xj) =

σ2exp(−||xi − xj||22)/(2l)2, where l is a length scale parameter and σ2 is the parameter

dictating the uncertainty in f(x).

When we utilize a GP in BO as used in Figure 3.1, the posterior GP with a newly

observed y at iteration t can be expressed as

f(x)|Dt ∼ N (µt(x), σ
2
t (x))

µt(x) = C(x,Xt)[C(Xt,Xt) + σ2
ϵ I]
−1y

σ2
t (x) = C(x,x)− C(x,Xt)[C(Xt,Xt) + σ2

ϵ I]
−1C(Xt,x).

(3.2)

Another essential part of BO is the acquisition function, which determines how the search

space are explored during the iterations. Acquisition functions are based on the posterior

distributions of the GP fitted in each iteration. There is a trade-off between two directions of

search: exploitation and exploration. Exploitation improves the region near the current best

result, while exploration develops more unfamiliar regions that have higher uncertainties.

Both directions are necessary to get to the optimal point in the long run of the algorithm.

Otherwise the algorithm may stick in a local optimum or jump around with no sense. Most

common acquisition functions includes upper confidence bound, expected improvement and

Thompson sampling[36, 136]. We will provide more detailed discussion on these acquisition

functions in the next section.
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3.3 Multi-armed Bandit Bayesian Optimization with Multi-

output Gaussian Process

In this section, we first introduce the detailed way to construct covariance function of Multi-

output Gaussian process (MGP) in Section 3.3.1. Then, we introduce the proposed method

MAB-MGP-BO (Multi-armed bandit Multi-output Gaussian Process Bayesian Optimiza-

tion) in Section 3.3.2. Finally, the convergence analysis of the proposed method is conducted

in Section 3.3.3.

3.3.1 Convolved Process and Multi-output Gaussian Process

As we mentioned before, in many cases, not only the observations under the same categorical

input value but also the observations from different categorical input values contribute infor-

mation to the fitting of the model. A model that can consider both the information within

the same category and the information across different categories is preferred. In Figure 3.2,

we show three functions that correspond to the objective function under three different cat-

egorical input values. In the Multi-armed Bandit formulation, the objective function under

a categorical input value is also regarded as an arm.

For an MGP model, we should not only specify the covariance function for a single out-

put (as that in the conventional univariate output GP model), but also the cross covariance

among different outputs. Thus, the covariance function of MGP is in the form of c(i, j,x,x′),

where c(i, j,x,x′) = cov(fi(x), fj(x′)) and i, j are output indices. The parameterization of

the covariance function c(i, j,x,x′) plays a critical role in MGP model because it character-

izes the relationship between any two outputs. A popular approach is to use a separable

covariance structure, i.e., letting c(i, j,x,x′) = τ(i, j)× cov(x,x′) [24, 107, 147]. Other for-

mats combining separable covariance functions are also designed in recent research [101, 111],

but they still calculate the covariance of continuous and categorical variables seperately. In

the current state-of-the-art open source implementation of GP model such as GPyTorch

[38], the separable covariance function is used. The separable structure is appealing due to

the simplified covariance structure, however it restricts all outputs to share the same set
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Figure 3.2: Illustration of MGP. Three functions are shown, which correspond to three
different categorical input values.

of covariance parameters, i.e., the part cov(x,x′) is the same for all the outputs. However,

different outputs may have different characteristics and thus it is too restrictive to use the

same covariance function for the continuous variables across different outputs.

To overcome the limitation of separable covariance function, we adopt a nonseparable

covariance structure that are based on convolution processes (CP) [37, 86, 90]. The CP-based

nonseparable covariance function is based on that a GP can be constructed by convolving a

latent Gaussian white noise process with a smoothing kernel [133]. In more details, we can

construct a GP f(x) by convolving a Gaussian white noise process W (x) with a smoothing

kernel k(x) = exp(−x2/(2l2)), where cov(W (x),W (x′)) = δ(x − x′), l is the length scale

parameter. δ is the Dirac delta function, defined in [7] as :

∫ ∞
−∞

δ(x)dx = 1 , δ(x) =

0, x ̸= 0

∞, x = 0
(3.3)

such that

f(x) =

∫ ∞
−∞

k(x− u)W (u)du. (3.4)
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Then, the corresponding covariance function can be expressed as:

cov(f(x), f(x′)) =
∫ ∞
−∞

k(x− u)k(x′ − u)du. (3.5)

Thus, the GP is parameterized by the parameters in the smoothing kernel k, which is required

to be square or absolutely integrable, i.e.
∫∞
−∞ |k(x)|

2dx <∞.

For a MGP setting, if each output is constructed in this way, and if we share these latent

Gaussian white noise process across multiple outputs, then multiple outputs can be expressed

as a jointly distributed GP [6, 13]. For example, a nonseparable MGP construction is shown

in Figure 3.3. This construction is first proposed by [74] and is adopted in this work. In

Figure 3.3, we try to construct a surrogate MGP model for the function corresponding to

the rth arm, denoted as fr, while fi, i ∈ {1, ...,m}\r correspond to the functions from other

arms. Then, according to this construction, fr(x) can be written as:

fr(x) = kr,r(x) ⋆ Wr(x) +
m∑
i=1

ki,r(x) ⋆ Wi(x), (3.6)

where ki,j(x)⋆Wi(x) =
∫∞
−∞ ki,j(x−u)Wi(u)du and ki,j is the kernel used in the convolution

of the ith latent function and the jth output, i, j ∈ {1, 2, . . . ,m}. For the functions from

other arms, it is constructed as fi(x) = ki,i(x) ⋆ Wi(x). Clearly, Wi is shared across fi and

fr in the construction and thus, the cross correlation between fi and fr can be modeled.

With this construction, we can obtain the covariance matrix of the MGP model for fr as

[74]

CN×N =



C1,1
n1×n1

0n1×n2 . . . 0n1×nm C1,r
n1×n1

0n2×n1 C2,2
n2×n2

. . . 0n2×nm C2,r
n2×nr

...
... . . . ...

...

0nm×n1 0nm×n2 . . . Cm,m
nm×nm

Cm,r
nm×nr

Cr,1
nr×n1

Cr,2
nr×n2

. . . Cr,m
nr×nm

Cr,r
nr×nr


, (3.7)

where ni is the number of observed data points from function fi, N =
∑m

i=1 ni, Ci,i
ni×ni

is the

covariance within function fi, Cr,i
nr×ni

is the cross covariance between fr and fi, and 0ni×nj

is the zero matrix with dimension ni × nj. Please note the covariance matrix in (3.7) is a
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Figure 3.3: Illustration of the construction of MGP with shared white noise Gaussian Pro-
cesses

function of all the parameters of kernel functions used in the construction, including ki,i,

ki,r, and kr,r, i = 1, ...,m. Once the covariance matrix is constructed, we can actually view

the MGP as a conventional GP model and use the maximum likelihood estimation method

to estimate the kernel function parameters based on the observed data from the functions

of all the arms. With the fitted MGP model, we can also make probabilistic predictions of

fr at other input locations using the formula in (3.2). More technical details of the model

construction and estimation can be found in [74].

One point we want to emphasize here is that the MGP model in Figure 3.3 is to model

the function fr only. If we want to model the function from a different arm, then we need

to put that function in the place of fr in Figure 3.3 and build a different MGP model. In

other words, in our proposed MAB-MGP-BO method (details are shown in Section 3.3.2),

for each arm, we have a different MGP surrogate model. It is possible to establish a complex

CP based MGP model to model all the function simultaneously. However, such a model may

involve a very large number of parameters and difficult to estimate and use. The arrangement

in Figure 3.3 allows us to use multiple simpler models to describe the functions and each

MGP is relatively easy to estimate.
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3.3.2 MAB-MGP-BO Algorithm

Suppose we have a collection of black-box function {fa(xa)}ma=1 with both categorical variable

a ∈ {1, 2, . . . ,m} and continuous variable xa ∈ X ⊂ Rd. The goal of the algorithm is to

find the optimum point [a∗,x∗a∗ ] = argmax[a,x]∈{1,2,...,m}×Xa
fa(x), which can also be written

as a∗ = argmaxa∈{1,2,...,m}f(x
∗
a) and x∗a = argmaxx∈Xa

f(xa).

To solve the problem, we can formulate it into a Multi-armed bandit(MAB) problem [14].

For each arm a, we use BO to find the optimal point x∗a = argmaxx∈Xa
f(xa). Then, to find

the optimal arm a∗ = argmaxa∈{1,2,...,m}f(x
∗
a). In the proposed MAB-MGP-BO, we use MGP

model in each arm as the surrogate model for the black-box function corresponding to the

arm. The MGP model can borrow information from the black-box functions of other arms,

which could lead to more accurate surrogate model and in turn lead to better optimization

performance. The detailed algorithm is presented in Algorithm 4.

Algorithm 4 MAB-MGP-BO
Input: m: number of arms/outputs, t: number of iterations
Output: x∗: the optimal solution of f and f ∗ = f(x∗)
1: for t = 1, 2, . . . do
2: for a = 1, 2, . . . ,m do
3: Fit the Multi-output Gaussian process model to Dt = {(ai,xi, yi)|i = 1, . . . , t}
4: Draw a sample f̃a(x) from the fitted model f̂a(x): f̃a(x) ∼ p(f̂a(x)|Dt)
5: Find x̃∗a = argmaxx∈Xa

f̃a(x)

6: Let f̃ ∗a = f̃a(x̃
∗
a)

7: end for
8: at+1 = argmax1≤a≤mf̃

∗
a

9: xt+1 = x̃∗at+1

10: Evaluate yt+1 = f(xt+1) + ϵt+1

11: if yt+1 > f ∗ then
12: f ∗ = yt+1,x

∗ = xt+1

13: end if
14: Dt+1 = {(at+1,xt+1, yt+1)}

⋃
Dt

15: end for

Take m as the number of arms (also called number of outputs) and t as the number of

iterations or evaluations.In each iteration t, we fit the MGP to Dt, the total data set at

iteration t. The fitted model is denoted by f̂a(x). Then, we draw a sample function f̃a(x)

from the posterior Gaussian distribution of the MGP: f̃a(x) ∼ p(f̂a(x)|Dt). We locate x̃∗a,
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the optimal point at arm a, by maximizing the sampled function f̃ . The value of f̃ at x̃∗a is

denoted by f̃ ∗a . After finding the optimal solution for the every arm, find the best arm and

data point at+1 and xt+1 for evaluation at the next iteration. Then, evaluate the underlying

true function f and get the new observation value yt+1 = f(xt+1) + ϵt+1. Finally, the data

set is updated as Dt+1 by adding the new observed data point (at+1,xt+1, yt+1).

We would like to mention a couple of points regarding the above algorithm:

• Line 5 to Line 13 of Algorithm 1 is the Thompson sampling (TS) approach to determine

the next input point to evaluate. As mentioned in the introduction section, there are

many different method to sequentially select the next point to evaluate, including the

popular methods such as the expected improvement (EI), the upper confidence bound

(UCB), and TS. EI is a greedy improvement-based strategy that suggests the point that

could improve the expectation of the function the most over the current evaluated point.

Although EI is effective and provides reasonable performance in the practice, it is often

too greedily focusing on the existing optimum point and collecting little information

about the unfamiliar regions in the domain [113]. UCB, as we mentioned earlier,

chooses the point that maximum the upper confidence bound Ut(x) = µt(x) + βσt(x)

of the posterior prediction of the underlying function for the next iteration. This

algorithm can balance the exploration and exploitation of the optimization. However,

the performance of the optimization may depend on the confidence parameter β and

it holds a lower regret bounds than the TS method as an acquisition function of BO

[112]. TS proposed by [127] is a sequential sampling heuristic that can handle the

exploration-exploitation dilemma. Instead of setting a closed form expression, this

method samples a function from the fitted Gaussian process and suggests the next

iteration point by the maximum the value of the sampled function. TS has desirable

theoretical properties [112] with a pretty tight regret bound and provides basis to the

convergence analysis for MAB-MGP-BO as discussed in Section 3.3.3.

• On Line 8 of Algorithm 1, we need to find the maximum value from a sample (i.e.,

a realization) of GP from the fitted MGP model. A straightforward grid search is

often used to solve the optimization problem on Line 8: we just treat the MGP as
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a multivariate Gaussian distribution and sample it at a large number of regularly

distributed input points (also called grid points) and then find the largest value among

the sampled values. This method is effective and viable only when the dimension of

input is low. If the dimension of input is high, the number of grids points to fill the input

space will be overwhelming. For example, for a problem with 10 dimensional input

and 1000 grid points for each dimension, we will have 1030 grid points. It is infeasible

to sample such a large number of points simultaneously. Instead, we need to adopt a

sequential sampling strategy when we solve the problem in Line 8: We just sample one

or a small batch of points from the MGP at an iteration and let a searching algorithm

(such as a gradient descent searching method) to determine what next points to sample

for the next iteration One critical point for the sequential sampling method is that the

samples from different iterations should not be independent samples from the MGP.

Rather, the later samples depend on the previous samples so that the samples obtained

from the sequential procedure should be the same as if they are sampled simultaneously.

We have established a sequential sampling method as shown in Algorithm 2.

The sequential sampling algorithm from MGP is shown in Algorithm 5.

Algorithm 5 Sequential Sampling from MGP

Initialize: Global Ds
t = ∅: the set of sampled points from the fitted MGP, denoted by f̂a(x).

1: function Samp(x)
2: Calculate the posterior Gaussian distribution of given both the evaluated and sampled

data f̂a
t |Dt,Ds

t .
3: Sample a new point from the posterior distribution f̃ ∼ p(f̂a(x)|Dt,Ds

t)
4: Save the new sampled point: Ds

t = Ds
t

⋃
{(x, f̃)}

5: return f̃
6: end function
7: Optimize the sampling function: x̃∗a = argmaxx∈Xa

Samp(x)

At each iteration t and for each arm a of the Bayesian optimization model, we wrap the

sampling process as a function of the new sample point x given the set of previously sampled

points Ds
t . The sampled points Ds

t are regarded as evaluated points and the new sample

value f̃ is based on the posterior distribution of not only the evaluated points Dt, but also

the previously sampled points. Given the fitted MGP f̂a(x)|Dt and a sampled data set Ds
t ,
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we can use the following lemma to obtain the posterior MGP sample f̃ ∼ f̂a(x)|Dt,Ds
t . This

result is used in Line 4 of Algorithm 2.

Lemma 1. Dt = {(xi, yi)}nt
i=1 is set of the observed data points, where yi ∼ f(x) + ϵ,

ϵ ∼ N (0, σ2
ϵ ). Suppose Ds

t = {(xs
j , f̃j)}ns

j=1 is the set of sampled functions from the posterior

distribution of the fitted MGP f̂(x) in the tth iteration. Let Xt = [x1, . . . ,xnt ]
T , Xs =

[xs
1, . . . ,x

s
ns
]T , y = [y1, . . . , ynt , f̃1, . . . , f̃ns ]

T . Then, we have fa(x)|Dt, D
s
t ∼ N (µs,Σs),

where

µs =

C(x,Xt)

C(x,Xs)

C(Xt,Xt) + σ2
ϵ I C(Xt,Xs)

C(Xs,Xt) C(Xs,Xs)

−1 y
Σs = c(x,x)−

C(x,Xt)

C(x,Xs)


C(Xt,Xt) + σ2

ϵ I C(Xt,Xs)

C(Xs,Xt) C(Xs,Xs)

−1 [C(x,Xt), C(x,Xs)].

(3.8)

Following Algorithm 2, we can sequentially sample a MGP while guarantee the sequen-

tially sampled data points have the same property as if they are sampled simultaneously

from the MGP. The proof of this property utilizes the basic properties of conditional mul-

tivariate normal distribution and is omitted here. With the sequential sample approach,

gradient based optimization algorithms can be used in Line 8 of Algorithm 1 to find the

optimal point of the sampled GP from the fitted posterior MGP directly.

3.3.3 Convergence Analysis

In this section, we present the convergence analysis of the proposed MAB-MGP-BO method.

Bayesian regret has been used for a performance measure for the Bayesian optimization

with Thompson sampling due to its sampling scheme [112]. The Bayesian regret is de-

fined as follows. Assume the underlying function is f and x∗ is the optimal solution of

f , x∗ = argmaxf(x). In iteration t, the algorithm suggests xt as the optimal solution,

then rt = f(x∗) − f(xt) is the instantaneous regret of the algorithm. The Bayesian re-

gret is the expectation of the summation of the instantaneous regret by the T th iteration:

BayesRegret(T ) = E[
∑T

t=1 rt]. With the Bayesian regret, we can assess the convergence
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rate of the algorithm by finding the bound of the marginal increment of the Bayesian regret

BayesRegret(T )/T .

For the observed data in the tth iteration of the algorithm, suppose we choose the atth

arm and the optimal point is xt, then we have:

yt = fat(xt) + ϵt, t = 1, . . . , T (3.9)

We define fa(x) is the MGP for the ath arm with mean zero and covariance function

σ2c(x,x′), and x,x′ ∈ Xa ⊂ Rd. We denote the observed data of the ath output as

Da
t = {(at, xt, yt)|at = a}Tt=1 and the whole dataset by Dt = ∪ma=1Da

t , where m is the number

of arms.

According to our formulation, Bayesian regret of the MAB-MGP-BO model by the T

iteration is defined as the expected difference between the underlying optimal value and the

optimal value we find by the Bayesian optimization:

BayesRegret(T ) = E

[
T∑
t=1

{fa∗(x∗)− fat(xt)}

]
(3.10)

To find the Bayesian regret of the MAB-MGP-BO method, we need two following assump-

tions. These assumptions are not restrictive and have been used in other convergence analysis

works [122] and [99].

Assumption 1. For all a and for any sample f from GP, there exist constants r, s > 0 such

that its partial derivatives satisfy the following condition

P (|∂f/∂xi| < L) ≥ 1− dr exp(−L2/s2),

∀L > 0,∀i ∈ {1, . . . , d} , (3.11)

where d is the dimension of the model input x.

With this assumption, the partial derivatives of f is bounded in probability. Another

assumption is on the maximum information gain of the model. The information gain is the

mutual information shared by f and the observations yo = f(xo)+ ϵo on xo ∈ O ⊂ X , where
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ϵo ∼ N (0, σ2). Then the information gain is defined as:

I(yo; f) = H(yo)−H(yo|f) (3.12)

H(yo) is the marginal entropy of the observation yo and H(yo|f) is the conditional entropy

of the observation yo given the corresponding function value f(xo). For a GP f ∼ N (µ,Σ),

H(N (µ,Σ)) = log|2πeΣ|/2. The information gain is a measure of the reduction in uncer-

tainty of function f after knowing the observations yo. The maximum information gain after

T iterations is then defined as :

γT = maxO⊂D:|O|=T I(yo; f) (3.13)

With the following Assumption 2, we can guarantee the maximum information gain of the

model within a sub-linear bound.

Assumption 2. The maximum information gain γTa about fa in Bayesian Optimization

with Gaussian process is sub-linear in Ta which is the number of observations in the ath

arm; there exists an α such that γTa ∼ O(Tα
a ) where 0 ≤ α < 1.

Both assumptions 1 and 2 hold for our Multi-output Gaussian process. The kernel used

for the GP in this work reduced to the form of Gaussian kernel with paired scale parameters

corresponding to each category. Assumption 1 holds for any four-times differentiable covari-

ance functions as stated in [122]; thus, it holds for the Gaussian kernel function. Assumption

2 holds for the Gaussian kernel function [99]. In other words, our Multi-output Gaussian

process satisfies both the Assumptions 1 and 2.

Under the assumptions, the Bayesian regret of the MAB-MGP-BO method in Algorithm

4 can be bounded as follows. This result stated in Theorem 1 shows that the Bayesian regret

bound of the algorithm is growing sub-linearly in T with factor
√
m. A sub-linear Bayesian

regret implies the solution of MAB-MGP-BO will converge to the global optimal point.
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Theorem 1.

BayesRegret(T ) = E

[
T∑
t=1

{fa∗(x∗)− fat(xt)}

]
≤ O

(√
mTα+1 log T

)
,

(3.14)

where 0 ≤ α < 1.

We provide an outline of the proofs of the theorem. We use fa(x)|Dt for the posterior

distribution of the MGP instead of the posterior distribution of fa(x)|Da
t , which is a conven-

tional univariate output GP as they used. In other words, instead of using the dataset for

specific a, we used whole dataset Dt leveraging all the information across a by using MGP.

Theorem 1 can be proved after the following decomposition of the Bayesian regret.

BayesRegret(T) = E

[
T∑
t=1

{fa∗(x∗)− fat(xt)}

]

= E

[
T∑
t=1

{
fa∗(x

∗)− fat(x
∗
at)
}]

+ E

[
T∑
t=1

{
fat(x

∗
at)− fat(xt)

}]
(3.15)

= RMAB
T +RBO

T . (3.16)

The boundary of Bayesian regret will be obtained by having the boundaries of RMAB
T

and RBO
T in Lemma 2 and 3. For the proofs of Lemma 2 and 3, we state them in Appendix

3.7. In the MAB-MGP-BO model, the Bayesian regret consists of two parts. One is the

Bayesian regret of the Multi-armed bandit model RMAB
T = E[

∑T
t=1

{
fa∗(x

∗)− fat(x
∗
at)
}
],

which is the expected cumulative difference between the underlying optimal value of all the

arms and the optimal value of the selected optimal arm at from the MAB model. We define

the Gaussian process model used for the function at the arm a as GPa. The boundary of

RMAB
T is presented in Lemma 2. Given the observations by the T th iteration, the Bayesian

regret generated from Multi-armed bandit model can be bounded by an sub-linear upper

bound.

Lemma 2. The Bayesian regret from Multi-armed bandit RMAB
T in the MAB-MGP-BO
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model has an upper bound of O(
√
mTα+1 log T ).

RMAB
T = E

[
T∑
t=1

{
fa∗(x

∗)− fat(x
∗
at)
}∣∣∣∣∣DT ,GP1, . . . ,GPm

]
≤ O(

√
mTα+1 log T ), (3.17)

where 0 ≤ α < 1.

Another part of the Bayesian regret (3.16) is the regret of the Bayesian optimization

RBO
T = E[

∑T
t=1{fat(x∗at) − fat(xt)}], which is the expected cumulative difference between

the underlying optimal value within arm at and the optimal value obtained by the Bayesian

optimization algorithm with arm at. Similarly, the boundary of RBO
T is presented in Lemma

3. Given the observations by the T th iteration, the Bayesian regret generated from Bayesian

optimization can be bounded by an sub-linear upper bound.

Lemma 3. The regret from Bayesian optimization RBO
T in the MAB-MGP-BO model has

an upper bound of b
√
mTα+1 log T .

RBO
T = E

[
T∑
t=1

{
fat(x

∗
at)− fat(xt)

}∣∣∣∣∣Dt,GP1, . . . ,GPm

]

=
m∑
a=1

Ta∑
ta=1

E [fa(x
∗
a)− fa(xta)|Dt,GPa] (3.18)

≤ b
√

mTα+1 log T , (3.19)

where b is an arbitrary constant, 0 ≤ α < 1.

Combining Lemma 2 and 3, we have the Bayesian regret bound in Theorem 1. Then we

have, limT→∞BayesRegret(T )/T = 0. The expected cumulative regret is sub-linear and the

average expected regret of the proposed model is convergent.

3.4 Illustration through Benchmark Example
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In this section, we present two benchmark examples to compare the performance of the

proposed MAB-MGP-BO method with other three Bayesian Optimization methods.

3.4.1 Methods Considered

To show the advantage of our methods, we compared the following 4 methods on the simu-

lated functions:

• Onehot-BO[43]: BO method using one-hot encoding method to transform the cate-

gorical variable into additional continuous variables.

• MAB-BO[99]: Multi-armed bandit Bayesian Optimization method using traditional

univariate output Gaussian process in each arm.

• MAB-SMGP-BO: This method is the same as our proposed MAB-MGP-BO method

except that we use a separable covariance functions for the MGP. We adopt the sep-

arable covariance functions developed in [147]. In this approach, one positive definite

matrix with unit diagonal elements (PDUDE) is constructed to measure the correla-

tion among the functions from different arms. A spherical coordinate parameterization

method is used to simplify the fitting algorithm for the hyperparameters of the PDUDE

matrix.

• MAB-MGP-BO(Our proposed model in Section 3.3.2).

3.4.2 Simulated Function

In this simulation, we take the same synthetic functions used in [99]. One of the function

we try to maximize is a two-dimensional function containing one continuous variable x and

a categorical variable a. The expression of the function is shown in (3.20) and Figure 3.4.

f([a, x]) = exp(−(z1 − 2)2) + exp
(
(−z1 − 6)2

10

)
+

1

z22 + 1
+

a

2
,

(3.20)

where zi = x+ 0.05a(−1)i, x ∈ [−2, 10], a = 0, 1, . . . , 5.
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Figure 3.4: 2d Synthetic function used in simulation

We can see the set of functions follow a similar pattern and the maximum value are

obtained with similar value of x. There are positive correlations between different functions

and the proposed algorithms can take advantage of information from other functions to

predict each function value. There are also fluctuations in the functions which are common

properties of real world functions.

The second simulated function contains four continuous variables x and one categorical

variable a. The expression of the function is shown in (3.21).

f([a,x]) =
4∏

i=1

√
zisin(zi) + 2a, (3.21)

where zi = xi + 2a,x ∈ [1, 10]4, a = 0, 1, . . . , 5.

Though there are 5 dimensions of continuous variables and we can not present a figure

to show the similarities of the functions, we can see from the expression they share similar

patterns and have positive correlations. The simulations are both validated 10 times and

the mean of the best function values are shown in Figure 3.5.

We can see from both function optimizations that our proposed method can not only

achieve a higher maximum value but also converge faster than the other three methods.

Among the other three methods, MAB-BO model produces a higher optimal value, while
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Figure 3.5: The comparison of our proposed method and other methods

the MAB-SMGP-BO model has a faster convergence speed in the earlier iterations. This

result may be because the MAB-SMGP-BO model has more data information than the MAB-

BO model in the earlier iterations and the fitting and prediction of the Gaussian process

is faster at the beginning. However, as the model accumulates enough information in the

later iterations, the separable structure of the MAB-SMGP-BO method restricts the fitting

and can not achieve a higher optimal value than the MAB-BO method does. The proposed

MAB-MGP-BO method, on the other hand, is not restricted by the separable covariance

structure and can fit a better Gaussian process of the underlying function and obtain the

best optimum in a faster rate.
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3.5 Application to Structural Damage Diagnosis

In this section, we apply the proposed MAB-MGP-BO method for a real world structural

damage identification using piezoelectric admittance measurement [18]. We will first give

the problem description in Section 3.5.1. Then, a simulation study is conducted in Section

3.5.2. Lastly, the structural damage identification using real experimental data is shown in

Section 3.5.3.

3.5.1 Problem Description

As shown in Figure 3.6, a piezoelectric transducer is attached to the host structure and the

dynamic response of the structure in terms of structural admittance at different frequencies

can be measured and observed. To build a finite element analysis (FE) model, the host

structure is divided into 11250 elements. It is then divided into 25 segments, which are

regarded as 25 locations for damage identification. With the FE model, we can link the

structural damage, which is often modeled as a property change such as the stiffness loss

at a specific element, with the observed dynamic response. Now the structural damage

identification problem can also be considered as a black-box function optimization problem

with categorical and continuous inputs, where the FE model is the black-box function, the

location (i.e., segment) of the damage is the categorical input, and the severity of the damage

is the continuous input. In structural damage identification, we try to find the location and

severity of the damage by minimizing the difference between the FE model prediction and

the experimental measurements. As presented in Figure 3.6, the PZT segments are located

consecutively in a line and it is intuitive to assume there are correlations between adjacent

segments. If the damage locations are near to each other, the admittance change should

follow similar patterns.

We can consider the difference of the observed and the computed admittance change

||∆Iexp−∆IFE|| as the objective function we need to optimize. The location and severity of

the damage [l, s] is the input of the model, where l ∈ {1, . . . ,m} is the categorical variable
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Figure 3.6: (a) Dimensions of the structure and PZT patch; (b)Diagram of division of
segments

and s ∈ S ⊂ R is the continuous variable. To identify the damage, we need to find:

[L∗, s∗] = argmin[l,s]||∆Iexp −∆IFE(l, s)||. (3.22)

In this case study, the FE model of the host structure contains m = 25 segments. To make

comparison, we consider the same cases of damages as that considered in [18]. In admittance-

based damage detection, the damage occurrence causes admittance changes around resonant

peaks. Without loss of generality, we pick two frequencies, 14th (1893.58 Hz) and 21st

(3704.05 Hz) natural frequencies, to conduct frequency sweeping. Two frequency ranges

around the two natural frequencies (from 1891.69 to 1895.47 Hz and from 3700.35 to 3707.75

Hz) are used in the inverse analysis. The experimental setup is shown in Figure 3.7. The data

points for the experimental measurements contained in each frequency range are detailed in

Table I. The voltage drop is measured across a small resistor R = 100Ω which is connected

in serial to the transducer. And the current in the circuit can be obtained which then yields

the admittance information. A Dynamic signal analyzer (Agilent 35670 A) with a source

channel and the sweep sine capability is utilized. The source channel is used to generate the

sinusoidal voltage Vin sent to the piezoelectric transducer, and the output voltage Vout across

the resistor is recorded.

A small mass block is introduced to emulate the damage, as shown in the Figure 3.7.

The damage is introduced under assumption that the mass of the whole system now is

unchanged,thus resulting in equivalent stiffness reduction. In Case I, the damage locates on
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Figure 3.7: Experimental setup

Table 3.1: Experimental cases considered

Experiment Case Segment Severity Frequency Range (Hz) # of Frequency Points
Case I 12 0.0016 [1891.69,1895.47] 100
Case II 14 0.0028 [3700.35,3707.75] 85

the 12th segment and the severity is equivalent to a stiffness loss of 0.16%. In Case II, the

real damage locates on the 14th segment and the severity is equivalent to a stiffness loss of

0.28%.

3.5.2 Structural Damage Identification Using Simulated Observa-

tions

First, we take the simulated admittance as shown in Figure 3.8 from the FE model as if they

were the true observed admittance. The figures of each case are the absolute value, the real

part and the imaginary part of the complex admittance respectively. We can see there is an

overlay of admittance with and without damage in the figures. We attempt to locate the

damage location and severity of the structure based on the admittance change.

Since there is no noise and other uncertainties in the simulated observations, we expect the

proposed MAB-MGP-BO method can identify the damage quickly and accurately. Indeed, as

shown in Figure 3.9, MAB-MGP-BO method identifies the correct damage location and has

a very close damage severity estimation to the underlying damage severity. The comparison
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Figure 3.8: The admittance change of the health and damaged structure

with the Multi-DIRECT method proposed in [18] is shown in Table 3.2. Our method can

achieve more accurate estimation of the damage severity, which confirms the significance of

non-linearity in the model.

Other three models are also applied on this simulation study, but there are some limi-

tations. Because all the three other methods presented in the numerical study showed too

bad performance, we did not include the results. For the MAB-SMGP-BO model, when

the number of arms becomes large (25 in this case), the number of hyperparameters in the

correlation matrix becomes 252 = 625 in each iteration of Gaussian process fitting. This

model takes too long time to complete, and it is not feasible on the simulation case. For the

MAB-BO model, the convergence is relatively slow because the Bayesian optimization only

considers the information of the current arm. For the Onehot-BO method, similar problem

happens to the model convergence. The transformed data is too sparse for the Gaussian

process to fit. Neither of the 2 methods can locate the correct damaged location within 200
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Figure 3.9: The performance on the simulated structural damage identification

Table 3.2: Results comparison of two models

True damage [location, severity] Model Prediction Estimation error

[12, 0.0016] MAB-MGP-BO [12, 0.00159] 0.625%
Multi-DIRECT [12, 0.0017] 6.25%

[14, 0.0028] MAB-MGP-BO [14, 0.00277] 1.074%
Multi-DIRECT [14, 0.003] 7.14%

of iterations.

3.5.3 Structural Damage Identification based on Real Observations

In this section, we conduct the structural damage identification based on real observations as

shown in Figure 3.10. Structural damage identification based on real observed responses is

more challenging. First, there are always noises in the real observations. The measurement

noise will not only make the damage severity estimation less accurate, but also possibly cause

alias in the damage location. In other words, it is possible that other damage locations have

closer simulated admittance change to the real observations. These noises may lead to the

incorrect damage identification results. Second, the FE model itself is not perfect. There

will always be modeling errors which will lead to bias in the damage identification. As a

result, we generally cannot guarantee that the model based structural damage identification

using Bayesian Optimization can always find the unique optimal solution. To avoid these

difficulties in structural damage identification using real observations, we provide an extended

algorithm that can give a set of possible solutions instead of a single solution. The algorithm

we used to generate the group of optimal results are shown in Algorithm 6. The basic idea
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Figure 3.10: The experimental observations of Admittance change for Case I and Case II

is simple: once we identify the current best solution, we remove it from the solution space

and then find the best solution in the rest solution space. The result shows that the correct

damage locations are included in the first several solutions.

The first several best results we found using MAB-MGP-BO for the two cases are shown

in Table 3.3 and Table 3.4, respectively.

Table 3.3: Optimal results: experimental case I

Optimal results Residuals Damage [location,severity]
1 5.99337× 10−8 [23, 0.00109]
2 6.30363× 10−8 [12, 0.00181]
3 6.17052× 10−8 [9, 0.00140]
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Algorithm 6 Optimal results generation
1: t: number of iterations, tol: largest number of iterations of one optimal result.
2: α∗t : optimal arm in iteration t. s∗t : optimal severity in iteration t.
3: G: Group of optimal results.
4: for t = 1, 2, . . . do
5: if r == tol then
6: Save the optimal result. G = G

⋃
{[α∗t , s∗t ]}

7: Remove all the points from the temporal optimal arm α∗t−1.
8: r = 1. Restart the count of number of iterations with the same optimal result.
9: end if

10: Run the MAB-MGP-BO model and find the optimal arm α∗t .
11: if α∗t == α∗t−1 then
12: r = r + 1.
13: end if
14: end for

Table 3.4: Optimal results: experimental case II

Optimal results Residuals Damage [location,severity]
1 6.57408× 10−8 [23, 0.00209]
2 6.593299× 10−8 [24, 0.00209]
3 6.96688× 10−8 [25, 0.00217]
4 6.593457× 10−8 [9, 0.00299]
5 6.595832× 10−8 [14, 0.00298]

For both cases, the underlying true damage location are successfully detected in the first

several solutions. Considering the noise of measurement and the bias of the FE model, this

result is satisfactory and we can expect to utilize the proposed model in practical applications.

3.6 Conclusion

In this article, we propose a Multi-armed bandit method using Bayesian Optimization with

Multi-output Gaussian process to solve Structural Health Monitoring problems, especially

in complex systems. This method can be also applied to other fields of engineering applica-

tions, such as design optimization with complicated structures and hyperparameter tuning

of surrogate models.
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The proposed method utilizes the information of the data collected under all the cate-

gorical input values to make prediction of the black-box function under a specific categorical

input value. We also presented the convergence analysis of the proposed method and provide

a Bayesian regret bound of the algorithm. Numerical benchmark examples are conducted

to show the proposed model has a better performance than several other existing Bayesian

Optimization methods. We also apply our model to a real world case study on structural

damage identification. The results show the proposed method can identify the location and

the severity of the damage with a better performance than the existing fault diagnostics

Multi-DIRECT algorithm.

In addition to the diagnosis problem, the mixed input Bayesian optimization strategy

proposed in this article can also be applied to many design problems, where both categori-

cal inputs (e.g., material selection, geometry configuration selection) and continuous inputs

influence the design performance. The proposed strategy can utilize the information under

different categorical inputs and achieve the optimal design within the design space spanned

by both categorical and continuous variables.

A limitation of MAB-MGP-BO method is that the computation load is heavy when the

number of categories is very large. A MGP is fitted in each category of the data and it is hard

to find a way to simplify the computation because of the complexity of the mathematical

formulation. Though the data we fit the MGP to for different categories are the same,

the assumption and the category of interest and the calculated covariance matrix of fitted

categories can not be reused. Other kinds of constructions of MGP can be explored to make

the algorithm more scalable. We will extend the algorithm in this direction and report the

findings in the near future.

3.7 Appendix: Proof of Convergence

3.7.1 Lemmas used

Following Lemma 4 and 5 will be used to prove Lemma 2 and Lemma 3.

Lemma 4. The Bayesian regret of the Tath iterations of the ath arm has an upper bound of
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O
(√

Tα+1
a log Ta

)
.

BayesRegret(Ta) = E

[
Ta∑

ta=1

{
fa∗(x

∗)− fata (xt)
}∣∣∣∣∣DTa

]
≤ O

(√
γTaTa log Ta

)
(3.23)

≤ O
(√

Tα+1
a log Ta

)
(3.24)

where γTa is the maximum information gain about fa(x) after Ta iterations.

The boundary in (3.23) is proved by [112, 122]. Using the assumption 2 (i.e., γTa ∼

O(Tα
a )), the boundary of (3.24) can be obtained.

Bayesian simple regret is defined for the Bayesian regret of individual function rather than

summation over time. Then, the boundary of the Bayesian simple regret can be obtained as

follows.

Lemma 5. The Bayesian regret of individual function by the Tath iteration has an upper

bound of O
(√

log Ta

T 1−α
a

)

BayesSimpleRegret(Ta) = E
[
fa∗(x

∗)−max
t≤Ta

fat(xt)

∣∣∣∣DTa

]
≤ O

(√
γTa log Ta

Ta

)

≤ O

(√
log Ta

T 1−α
a

)
(3.25)

3.7.2 Proof of Lemma 2

Proof.

RMAB
T = E

[
T∑
t=1

{
fa∗(x

∗)− fat(x
∗
at)
}∣∣∣∣∣DT ,GP1, . . . ,GPm

]

= E

[
T∑
t=1

{fa∗(x∗)− Ut(a
∗)}

∣∣∣∣∣DT ,GP1, . . . ,GPm

]
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+ E

[
T∑
t=1

{
Ut(at)− fat(x

∗
at)
}∣∣∣∣∣DT ,GP1, . . . ,GPm

]
, (3.26)

where Ut(a) is an upper confidence bound that is a determined function of a. at is a

random variable selected from the posterior sampling. Here, our function fa(x) is a random

variable, and we do not know the true function fa(x). Therefore, we select the at based on

the posterior samples of functions from each arm. In particular, we select at by maxa,x f̃a(x),

where f̃a(x) is posterior samples given D. Because posterior sampling f̃a(x)|D,GPa is pre-

cise, we can claim that the distributions p(a∗) and p(at|D,GP1, ...,GPm) are identically

distributed. This argument is fundamental in the Bayesian regret proof of Thompson sam-

pling used in [112]; since the Thompson sampling at each arm precisely uses the posterior

distribution to propose at at iteration t, both at and a∗ are identically distributed conditioned

on DT (Eq. (3.26)).

We select Ut(a) as follows.

Ut(a) = E

[
max
t′≤ta

fa(x
a
t′) + a

√
log ta
t1−αa

∣∣∣∣∣Dt,GPa

]
(3.27)

where ta is the number of times that a is selected during t times of total iterations, and a

is an arbitrary constant. Then, the first term in (3.26) is non-positive by the definition of

(3.27), that is,

E

[
T∑
t=1

{fa∗(x∗)− Ut(a
∗)}

∣∣∣∣∣DT ,GP1, . . . ,GPm

]
≤ 0

.

The second term in (3.26)

E

[
T∑
t=1

{
Ut(at)− fat(x

∗
at)
}∣∣∣∣∣DT ,GP1, ...,GPm

]

≤ E

[
T∑
t=1

{Ut(at)− Lt(at)}

∣∣∣∣∣DT ,GP1, ...,GPm

]

=
m∑
a=1

E

[
Ta∑

ta=1

{Uta(a)− Lta(a)}

∣∣∣∣∣DT ,GPa

]
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= a
m∑
a=1

Ta∑
ta=1

√
log ta
t1−αa

≤ a
√

log T
m∑
a=1

Ta∑
ta=1

1√
t1−αa

≤ 2a
√

mTα+1 log T (3.28)

where Lt(at) is defined as Lt(at) = E [maxt′≤ta fa(x
a
t′)|Dt] because Lt(at) ≤ E [fa∗(x

∗)|Dt].

Here, again, we sum the Bayesian regret bound obtained for each arm. Therefore, the

Bayesian regret bound of RMAB
T is Eq. (3.17)

■

3.7.3 Proof of Lemma 3

Proof.

RBO
T = E

[
T∑
t=1

{
fat(x

∗
at)− fat(xt)

}∣∣∣∣∣Dt

]

= E

[
m∑
a=1

Ta∑
ta=1

{fa(x∗a)− fa(xta)}

∣∣∣∣∣Dt

]

≤ E

[
m∑
a=1

b
√
Tα+1
a log Ta

∣∣∣∣∣Dt

]
≤ b
√
mTα+1 log T (3.29)

where b is an arbitrary constant. ■
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Chapter 4

Allocating Robots/Cobots to Production

Systems for Productivity and

Ergonomics Optimization

Abstract

Collaboration between humans and robots has great promise in manufacturing systems. Uti-

lization of cobots in a manufacturing system can improve both productivity and ergonomics.

In this paper, we study the problem of how to allocate limited cobot/robots to manufacturing

systems with multiple workstations so that an integrated performance measure, considering

both productivity and ergonomics is optimized. Previous work on cobot/robot allocation

in manufacturing systems focus on the decomposition of tasks for a single workstation into

multiple work elements, and then split them between human and robots, rather than study-

ing multi-machine systems. To bridge this gap, we consider the allocation of cobots/robots

to a multi-stage manufacturing system. Specifically, we establish an integrated performance

measure and formulate cobot/robot allocation into a constraint integer programming prob-

lem. With this formulation, we obtain the optimal allocation of one available cobot/robot in

This chapter is based on the paper: Huang, C., Zhou, S., Li, J. & Radwin, R. (2023). Allocating
Robots/Cobots to Production Systems for Productivity and Ergonomics Optimization, IEEE Transactions
on Automation Science and Engineering. DOI:10.1109/TASE.2023.3270207.



77

simulated production systems, based on the integrated performance measure of productiv-

ity and ergonomics. Furthermore, allocation problem of production systems with multiple

cobots/robots are considered and solved with a scalable algorithm.

4.1 Introduction

Robots have been used in manufacturing systems for several decades and have led to signifi-

cant productivity improvement [100]. Traditional robots need to work in an enclosed space,

separate from human workers so that they can accomplish their jobs safely. In recent years,

a new type of robot, collaborative robots (also called cobots), has been emerged and gained

significant growth in manufacturing applications [30]. Cobots are designed to work alongside

human operators, rather than in their own enclosed space, to assist the human workers on

various tasks, including assembly, screwing, material handling, and pick-and-place. By shar-

ing the work space with human operators, not only can floor space be saved, they can work

collaboratively with the worker to finish complex and delicate operations, otherwise difficult

for a traditional robot. Another significant benefit of using cobots is that stress and strain

on human worker can often be substantially reduced [47, 82]. According to the Collaborative

Robots Market Report in 2021 [1], the collaborative robot market share is predicted to grow

substantially in the coming years. With the far-reaching benefit and the rapid development

of robot technology, human-robot collaborative manufacturing will contribute to the future

smart manufacturing and factory automation.

Due to the significant growth of cobot applications, recent attention has been paid to

allocating robots to workstations to optimize system productivity. For example, Maganha et

al.created a model that designs schedules for tasks to minimize the number of robots needed

[85]. In 2020, Weckenborg et al.formulated a mixed-integer programming problem to group

the tasks in different stations with respect to cycle time [140]. The makespan of the system

has been taken as an optimization objective in many cobot scheduling studies to improve

productivity performance. A constraint programming based algorithm was proposed to min-

imize makespan in the print circuited boards industry [95]. Faccio et al.introduced a model

to allocate different work proportions for humans and robots based on the characteristic of
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the task and makespan of the system [32]. Chen et al.applied a logic mathematical method

to calculate the integrated cost of assembly time and worker payment and utilized a genetic

revolutionary model to allocate subtasks regarding the cost-effectiveness requirement [19].

In addition to the productivity performance of the system, ergonomics factors for human

workers in production systems are also an important concern. Ergonomics, which is one of the

motivations for involving robots in manufacturing operations, includes high forces, repetitive

motions, awkward postures, and exposure to vibration from equipment and tools. Numerous

studies have been implemented to assess and improve ergonomics in manual operations

[4, 132, 134].

Only a few existing efforts focus on robot/cobot allocation problems considering both

productivity and ergonomics factors. In [103], an optimization framework is presented to

allocate work between a human operator and a cobot to minimize production makespan and

ergonomics, which provides insights to how to integrate a single cobot into a manufacturing

process at one workstation. In [97], a mixed integer programming model is proposed to

find optimal job rotation schedules in human-based production systems, with the goal to

maximize production rate while simultaneously reducing and balancing human workload

and ergonomics. However, the applications of robot/cobot are not considered in their work.

In [26], a genetic approach for solving assembly line balancing problem both human and

cobots is introduced, where the goal is to minimize the assembly line cost, the number of

skilled workers on the line, and the energy load variance among workers, based on their

energy expenditure. In [123], a similar assembly balancing problem is considered under a

mixed linear integer programming framework. The energy expenditure is used as a measure of

human operator strain. But the impact on processing time for collaborative operations is not

considered in the model and the formulation is restricted to linear optimization. Recently, a

unified measurement, referred to as throughput rate per unit of work effort time, to evaluate

both productivity and ergonomics is proposed [145]. The trade-offs between the two metrics

(productivity vs ergonomics) is characterized. However, only the evaluation of performance

for a single workstation is considered in terms of throughput and ergonomics under a given

configuration of human-cobot collaboration. The allocation strategies for human workers

and robots/cobots are not investigated.
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In this paper, we study the problem of how to allocate a limited number of robots

and cobots in a manufacturing system so that both system throughput and ergonomics for

human workers are optimized. Note that although there exist a number of recent research

addressing on design and programming of robots to make them collaborate with human

workers effectively [35, 41, 70, 106, 119], we focus on the methodology to determine which

workstations in a production system should adopt robots/cobots to improve productivity

and reduce ergonomics, rather than the design of a collaborative task.

Specifically, we propose a mixed nonlinear integer programming framework to solve the

following allocation problem: Given a human-based manufacturing production system with

multiple workstations and a limited number of robots/cobots, what is the best allocation

of these robots/cobots to the selected workstations so that an integrated measure consid-

ering both system throughput and ergonomics is optimized? Such a problem is different

from an assembly line balancing problem dealing with a new production line. Instead, the

proposed method is more useful when introducing robots/cobots to existing systems. The

main contributions of the proposed work are the following:

• The problem of robot/cobot allocation to a manufacturing system is formulated into

a nonlinear optimization problem, which integrates both productivity and ergonomics

considerations.

• Allocation of simulated production systems with one available cobot/robot is conducted

and insights to the features of optimal robot/cobot allocation are obtained.

• Production systems with multiple cobots/robots are considered and to reduce the com-

putation load, the original problem is re-formulated into a mixed integer nonlinear

programming problem and solved through an effective and scalable procedure.

The remaining article is organized as follow. In Section 4.2, the problem of allocating

robots/cobots to a production system is described and the framework of the optimization

problem is introduced. In Section 4.3, we consider the scenarios when there is only one cobot

or robot available in the production systems and obtain the optimal allocation solution with

the proposed formulation. In Section 4.4, more general cases with multiple cobots/robots are



80

simulated and solved by a scalable optimization solver to address the challenge of combina-

torial explosion. The explanations of the allocation strategies are presented in both sections

to verify the optimization results. In Section 4.5, we discuss the results from the generated

cases and provide insights for future allocation problems. In Section 4.6, conclusions are

summarized and future works are discussed.

4.2 Problem formulation

In this section, we first define a generic human-robot collaborative assembly system and

introduce the assumptions in Section 4.2.1. Then, in Section 4.2.2, we present a strain index

model for measurement of ergonomics performance. Finally, we combine the productivity

performance and the strain index model and propose an integrated objective function to be

used in the optimization model and the optimization framework of the robot/cobot allocation

problem formulated in Section 4.2.3.

4.2.1 System description

In this study, we consider a collaborative assembly system with three serial production lines

as shown in Figure 4.1. The Moore and Garg Strain Index (SI) [124] is used to quantify

physical stress exposure. The stochastic model to describe the operations of such sysatems

is defined by the following assumptions.

• Each serial line of the assembly system consists of multiple workstations and the work

pieces flow through the stations from left to right. There are ni workstations, where

the jth station is denoted as W i
j . The set of all workstations is represented by W ,

where W = {Wm
1 , . . . ,Wm

nm
},m = 1, 2, 3}.

• There is infinite buffer capacity between each pair of stations in the system.

• Each workstation can be operated by a human worker (h), a robot (r), or through a

collaborative operation (c). The job processing time at workstation w is assumed to

follow an exponential distribution with parameter λp
w. , p ∈ P , where P= {h, r, c} is
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the set of operation alternatives. If the job at workstation w cannot be carried out by

an alternative p, λp
w is set as ϵ1 → 0.

• We assume all workstations in the production system are operated by human workers

initially. Then qr robots and qc cobots will be allocated to replace qr + qc human

operated workstations in the system. When a robot is allocated to a workstation, the

SI for that station will become zero as no human operator is involved. When a cobot

is allocated to a workstation, the SI will be reduced for the workstation.

• Two serial lines are operated independently and then merged, followed by another serial

line.

𝑊1
1

𝑊1
2 𝑊2

2

𝑊𝑛1
1

𝑊𝑛2
2

𝑊1
3 𝑊2

3

𝑊2
1

𝑊𝑛3
3

Figure 4.1: Collaborative assembly system model

Note that as illustrate in Section 4.2.3, a faster station needs to wait for the slower

station to finish the work, resulting in no blockage in the system. This implies that all

stations work independently and all workers and robots stay in the same workstation. Such

an assumption can simplify system throughput calculation. However, it will not alter the

essential structure of the optimization problem for robot/cobot allocation. The possible ways

to relax this assumption are discussed in Section 4.6.

To formulate the robot/cobot allocation problem, we introduce xp
w∈ {0, 1} as the indica-

tor for operation alternative p assigned to workstation w. When a job at workstation w is

assigned as p, p ∈ {h, r, c}, then xp
w = 1, otherwise xp

w = 0. In addition, xh
w + xc

w + xr
w = 1.

4.2.2 Strain index model

To measure the ergonomic performance of the system, the strain index model in [145] is

used. This strain index was first proposed in [124] and has been verified to be an reliable
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and effective way to evaluate the risk level related to hand workload over time [27, 110].

Based on assumption M4 in [145], the strain index of a manual operation can be evaluated

by six risk factors of the overall process, denoted as set S= {IE,DE,DM,HWP, SW,DD}.

The definition of the six risk factors are following.

• Intensity of exertion (IE): An estimate of the strength required to perform the task

on time.

• Duration of exertion (DE): The physiological and biomechanical stresses related to

how long an exertion maintained.

• Efforts per minute (EM): The number of exertions per minute, which is synonymous

with the frequency.

• Hand/wrist posture (HWP ): An estimate of the position of the hand or wrist relative

to a neutral position.

• Speed of work (SW ): An estimate of how fast the worker is working.

• Duration per day (DD): A measure obtained from plant personnel.

For each task and each hand, all risk factors are evaluated and assigned to one of five

categories, each corresponding to a rating based on a scale of 1 − 5 as well as a multiplier

value. The SI for each workstation is the product of the six ratings of the workstation. Then,

the score is compared to the multiplier to identify the the level of task risk. At workstation w,

with operation alternative p, the standard or data range in each category is characterized by

rpw,j, for factor j ∈ S and the corresponding multiplier value of risk factor j in each category

is denoted as Sp
w,j. The detailed category values are shown in Table 4.1. The ratings of risk

factors IE and HWP have five levels from light to hard, since they cannot be evaluated

numerically. Other risk factors can be measured numerically and are further categorized into

different levels.

The strain index of workstation w using alternative p is defined as SIpw. In mathematical

terms, the SI of a manual operation at workstation w with operation alternative p is the
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Category IE DE EM HWP SW DD
rating rIE SIE rDE(%) SDE rEM SEM rHWP SHWP rSW SSW rDD SDD

1 Light 1 <10 0.5 <4 0.5 Light 1 0− 1 0.25
2 Somewhat hard 3 10− 29 1 4− 8 1 Somewhat hard 1 1− 2 0.5
3 Hard 6 30− 49 1.5 9− 14 1.5 Hard 1.5 <0.5 1 2− 4 0.75
4 Very hard 9 50− 79 2 15− 19 2 Very hard 2 0.5− 1 1.5 4− 8 1
5 Near maximal 13 ≥ 80 3 ≥ 20 3 Near maximal 3 >1 2 >8 1.5

Table 4.1: Category rating of strain index

product of values for six factors, i.e.,

SIpw =
∏
j∈S

Sp
w,j. (4.1)

In previous work, the physical stress exposure of workers in different workstations were

not combined together, while we expect to have an overall ergonomics measure for the entire

system in this work. Consider systems with the same SI in the most stressful workstation, we

definitely prefer the system with smaller SI in the other workstations. Intuitively, the physical

stress exposure for the entire system is defined as the sum of the SI of all workstations, i.e.,

SIall =
∑

w:xh
w=1 or xc

w=1

SIpw =
∑

w:xr
w=0

∏
j∈S

Sp
w,j. (4.2)

There are two advantages applying summation to characterize the stress exposure for the

entire system. First, the derivative of the sum operation can be easily calculated, and the

following optimization problem can be simplified. Second, the definition of the physical stress

exposure for the entire system can capture the change of SI in all the individual workstations.

If SI in any of the workstations varies, the integrated measure will change monotonously.

Besides optimizing the measure of the overall ergonomics in the entire system, we also

expect less SI values in the most stressful workstation particularly. A threshold K is set to

avoid high strain index at each workstation. Thus, the following constraint exists:

SIpw < K, ∀w ∈ W , ∀p ∈ P . (4.3)

The concept of a threshold K has been previously used for evaluating the SI for a given
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job. An SI <= 3 has been considered safe, while an SI > 13.5 has been considered hazardous

[40]. Here, K is a parameter that can be adjusted based on the real world scenario, which

provides some flexibility in the allocation problem. When the variance of SI plays a more

important role in the requirement, a smaller K value can be selected. On the other hand,

when the overall ergonomics is more critical in the allocation, a larger K value can be taken.

Since the work split of human and cobot can influences the strain index and the pro-

cessing time of the workstations with human-cobot collaborative operations, without loss of

generality, we define θw∈ (0.1, 0.9) as a parameter to determine the proportion of work that

a cobot handles in the workstation.

4.2.3 Integrated performance measure and optimization framework

The integrated performance measure takes both productivity and ergonomic performance of

the system into consideration. We use the throughput TP of the system as the productivity

measure and the strain index quantifies the ergonomics behavior. Since the workstations

are operating independently and the assembly system has infinite buffer capacity and is

connected serially and then merged, the throughput of the system is the processing rate of

the slowest workstation. Thus we have

TP = min{λp
w|xp

w = 1, w ∈ W}. (4.4)

Then, the integrated performance measure of the system, denoted as E, is defined in

(4.5).

E = TP − ηSIall

= min{λp
w|xp

w = 1, w ∈ W} − η
∑

w:xr
w=0

∏
j∈S

Sp
w,j

(4.5)

As shown above, there is a tradeoff between the productivity measure and the ergonomics

performance, and η> 0 is the tradeoff coefficient.

To allocate robots/cobots to a production system, the integrated performance measure

E of the system will be maximized. First, a production system with human workers only is

treated as a baseline system, whose parameters are denoted with superscript o. For example,
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the baseline processing rate of workstation w is λo
w and the baseline ergonomic risk factors of

workstation w is So
w,j, j ∈ S. Also, TP o= min{λo

w|w ∈ W} is the throughput of the baseline

human only system. Then, based on the following assumptions, the change of processing

rate and strain index from the baseline system can be defined if a cobot or robot is allocated

to workstation w:

• The processing rate of workstation w is changed by coefficient ρpw.

• Risk factor DD of workstation w remains the same as in the baseline system so that

Sp
w,DD = So

w,DD, p ∈ {h, c}. This is because the human worker in the collaborative

operation still follows the general working schedule and the work durations per day are

the same under manual and collaborative alternative.

• Risk factors IE and HWP of workstation w are not dependent on processing time and

their changes are defined by coefficients βw,IE and βw,HWP , thus Sc
w,j = So

w,j ∗ βw,j, j ∈

{IE,HWP}. Since the original rating of these factors are not numeric, their changes

are made on the strain index directly and the calculated strain indices are continuous.

• The system throughput TP is constrained by the slowest workstation. Thus, faster

workstations will be waiting after finishing their jobs. DE, the duration of the exertion

is changed based on both TP of the whole system and the processing rate of the

workstation. We have rpw,DE = row,DE ∗
λo
w

λp
w
∗ TP

TP o , p ∈ {h, c}.

• Strain indices EM and SW of a workstation are proportional to the station’s processing

time. Since the whole system is at the same pace, the effort per minute and the speed

of work are only related to the throughput of the system. Thus rpw,j = row,j ∗ TP
TP o , p ∈

{h, c}, j ∈ {EM,SW}.

Then, a mathematical formulation to optimize the integrated performance measure of

the system can be expressed as

Maximize
xp
w,θw,w∈W,p∈P

E = TP − η
∑

w:xr
w=0

SIw

s.t.
∑
w∈W

xr
w + xc

w ≤ qr;
∑
w∈W

xh
w ≤ qh; (4.6a)
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∑
w∈W

xr
w + xc

w + xh
w = |W|; (4.6b)

TP = min{λp
w|xp

w = 1, w ∈ W}; (4.6c)

TP o = min{λo
w|w ∈ W}; (4.6d)

SIw =
∏
j∈S

Sp
w,j < K, for xr

w = 0; (4.6e)

λp
w =

λo
w

ρpw
, p ∈ {r, c}; λh

w = λo
w; (4.6f)

Sp
w,DD = So

w,DD, p ∈ {h, c}; (4.6g)

Sc
w,j = So

w,j ∗ βw,j, j ∈ {IE,HWP}; (4.6h)

rpw,DE = row,DE ∗
λo
w

λp
w
∗ TP

TP o
, p ∈ {h, c}; (4.6i)

rpw,j = row,j ∗
TP

TP o
, p ∈ {h, c}, j ∈ {EM,SW}. (4.6j)

In eqs. (4.6a) and (4.6b), the constraints on available numbers of robots and cobots are

included and the summation of all workers and robots used in the system should be the same

as the number of workstations. The formal expression of system throughput is introduced in

eqs. (4.6c) and (4.6d). The threshold constraint of strain index in each non-robot workstation

is shown in (4.6e). In eqs. (4.6h) to (4.6j), calculations of strain indices are included.

In this formulation, the values of parameters βw,IE, βw,HWP , ρ
c
w need to be determined,

which are related to the change in strain index from a manual operation to a human-cobot

collaborative operation. Such parameters are dependent on the design of collaborative op-

eration and split of workload between human and cobot. Without loss of generality, these

parameters can be expressed by a function of cobot proportion parameter θw at workstation

w. In this paper, functions in (4.7) determine the values of βw,IE, βw,HWP , ρ
c
w for a given θw.

βw,IE =
2

3
(1− θw) (4.7a)

βw,HWP =
1

3
(1− θw) (4.7b)

ρcw = ρcw,o + θw − 0.5 (4.7c)

The above three functions are all monotone and are linearly related to a cobot’s work split
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in a collaborative operation. In (4.7c), ρcw,o is the baseline parameter of mean processing

rate under different work split of cobot, and the related change coefficient ρcw is in the range

of [ρcw,o − 0.4, ρcw,o + 0.4]. The smaller the work split of a cobot, the faster the operation

speed. In addition, eqs. (4.7a) and (4.7b) are modified versions of strain index change in

[145], where βw,IE = 2
3

and βw,HWP = 1
3

to used to characterize the difference in strain index

between collaborative and manual operations, respectively. Here, influence of θw is included

in the expression, and the smaller the work split of cobot, the less difference from the baseline

model. Although only three functions are discussed in this work, other customized functions

characterizing collaborative operations can be applied as well, and the optimization model

can be easily adapted to any continuous customized functions.

4.3 Production systems with one available cobot/robot

In this section, we consider production systems with one available cobot/robot resource and

use the formulated model in Section 4.2 to solve the allocation problem. We simulate several

numerical cases designed to mimic real world applications to gain some insights to which

workstation will be first replaced by cobot or robot in a manufacturing system.. In Section

4.3.1, we work on cases where there is only one available cobot and cobots with different

working efficiency are considered. In Section 4.3.2, there is only one available robot in the

systems and we also consider robots with different production rates.

4.3.1 Production systems with one available cobot

Assume we have 6 workstations in an assembly production system and each serial line in

the system has nm = 2 workstations, m = 1, 2, 3. Assuming there is no independent robot,

but qc = 1 collaborative robot available. The baseline processing rates λo
w are assigned to be

{λo
W 1

1
, λo

W 1
2
, λo

W 2
1
, λo

W 2
2
, λo

W 3
1
, λo

W 3
2
} = {12, 13.6, 15.2, 16.8, 18.4, 20} respectively. The baseline

collaborative robot processing change rate coefficients are the same for the 6 workstations,

which means ρcw,o = ρcu,o, u, w ∈ W . The baseline strain index ratings are identical for all

the workstations, i.e. row,j = rou,j, u, w ∈ W , j ∈ S, and the detailed values of strain index

ratings are shown in Table 4.2. We would like to study how the optimal allocation of cobot
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Table 4.2: The detailed values of baseline strain ratings, w ∈ W

Parameter Sw,IE Sw,HWP rw,DE rw,SW rw,EM rw,DD

Value 1 2 0.2 0.05 5 5

Table 4.3: The optimal results in Case 4.3.1

ρcw,o Cobot station Bottleneck station Cobot working split
0.5 W 1

1 W 1
1 ,W

1
2 0.88

1.1 W 1
2 W 1

2 0.82
1.5 W 2

2 W 2
2 0.76

changes, when the baseline processing rate change parameter ρcw,o varies. As we discussed

in Section 4.2, when ρcw = ρcw,o − 0.5 + θw getting larger, processing rate of workstation w

will becomes slower after involving collaborative operation. We takes three values of the

baseline processing rate change parameter into consideration: ρcw,o ∈ {0.5, 1.1, 1.5}. The

three cases correspond to three different scenarios, when the collaborative processing rate

is higher, similar, and lower than the manual operation. In the simulations, optimization

parameter η = 1, and SI threshold K = 10. The results obtained from the optimization of

the three cases are shown in Table 4.3 and Figure 4.2.

When ρcw,o = 0.5, we have ρcw = ρcw,o − 0.5 + θw = θw ∈ [0.1, 0.9] and λc
w = λo

w

ρcw
> λo

w.

This means the collaborative operation is always faster than the human manual operation

and involving a cobot will not only improve the productivity of the system but also reduce

the ergonomics of workers. Originally in the baseline system, workstation W 1
1 has the lowest

processing rate parameter and is the bottleneck station. After one cobot is allocated, the

bottleneck station turns out to be station W 1
2 and W 1

1 . The cobot is assigned to station W 1
1

by the optimization algorithm since it has the lowest processing rate. When the cobot taking

different work split, the collaborative processing rate λc
W 1

1
=

λc
W1

1

ρc
W1

1

∈ [ 12
0.9

, 12
0.1

] = [13.33, 120].

When λc
W 1

1
∈ [13.33, 13.6], the strain index of the system has no change, so the model will

choose θw so that the collaborative processing rate is the highest, which is 13.6. When

λc
W 1

1
> 13.6 = λo

W 1
2
, the bottleneck of the system is W 1

2 and the throughput of the system

does not change when the work split of cobot in W 1
1 changes. However, when the work

split of cobot decreases, the strain index of human operator will increase. Thus, the model

set θW 1
1
= 0.88, resulting in the collaborative processing rate is exactly 13.6, which is the
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Figure 4.2: Optimal allocations in Case 4.3.1

optimal solution for the system.

When ρcw,o = 1.1, similarly, we have 0.7 ≤ ρcw ≤ 1.5 and the processing rate may be

improved or reduced after the collaborative operation is implemented. First, we can drop

the allocation that the cobot is assigned to no workstation, since the replacement with

collaborative operation can always achieve the same processing rate as the manual operation

and keep TP the same as TP o, meanwhile the strain index is reduced and the objective

function is improved. Let assume the station cobot assigned to be wc, wc ∈ W . When the

cobot is assigned to station W 2
1 ,W

2
2 ,W

3
1 , or W 3

2 , the bottleneck station will be workstation

W 1
1 or wc, and we have TP = min(λc

wc
, λo

W 1
1
) ≥ λc

wc
=

λo
wc

ρcwc
≥ λo

wc

1.5
≥ 15.2

1.5
= 10.13. Then, we

take a look at one of the strain factor EM . According to (4.8c), rcw,EM = row,EM ∗ TP
TP o =

0.416TP ≥ 0.416∗10.13 = 4.22 ≥ a1w,EM = 4 and Sw,EM ≥ c2w,EM = 1, for w ∈ W . However,

when the cobot is assigned to W 1
1 or W 1

2 , it is possible for rw,EM to be less than 4 and

Sw,EM = c1w,EM = 0.5. This difference in strain rating leads the optimization method to

choose between W 1
1 and W 1

2 as the cobot station. After we inspect the optimal work split

assignment for the two stations, we find out that the model decide the work split so that the

processing rate of the station is 9.6 and rw,EM is exactly a1w,EM = 4. Given the throughput

of the system and all other strain factors are the same, assigning the cobot to W 1
2 has a

lower strain index rating in IE and HWP . Thus, this explains why the model assigns the

cobot to W 1
2 with a work split of cobot 0.82.

When ρcw,o = 1.5, we have 1.1 ≤ ρcw ≤ 1.9 and the collaborative operation always reduce

the speed of the workstation, compared to the baseline model. Though the processing rate
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Figure 4.3: The objective function change on different work split of cobot

is reduced a little, but the strain index is reduced more, so the case that the cobot is

assigned to no station is also dropped. Actually, larger values of ρcw,o are simulated and only

when ρcw,o > 7.6, the cobot is assigned to no station in the optimal solution. Similarly as

when ρcw,o = 1, when the cobot is assigned to station W 3
1 or W 3

2 , rcw,EM = row,EM ∗ TP
TP o =

0.416TP = 0.416min(λc
wc
, λo

W 1
1
) ≥ 0.416λc

wc
=

0.416λo
wc

ρcwc
≥ 0.416λo

wc

1.9
≥ 0.22 ∗ 18.6 = 4.07, and

Sw,EM ≥ c2w,EM = 1, for w ∈ W . Thus, the model choose the cobot station from the other

four stations and the work split of cobot is determined so that the collaborative processing

rate is 9.6 and rw,EM is exactly a1w,EM = 4. It also follows that assigning the cobot to W 2
2

has a lower strain index rating in IE and HWP , given the throughput of the system and

all other strain factors are the same. The work split of cobot in station W 2
2 is 0.76.

We also calculate the objective function under different work split of cobot in the cobot

station and the result is shown in Figure 4.3. The dot points in the figures are the global

optimums of the problem. As illustrated in the figure, there are local (but not global)

maximums in the objective function because the discontinuous strain index functions, but

the model can locate the correct maximum and this further verifies our explanations on the

optimal allocation.

4.3.2 Production systems with one available robot

In this section, we consider a different scenario where only but qr = 1 robot is availble in the

production system. We also have 6 workstations in total and each serial line in the system

has nm = 2 workstations. The baseline processing rate of the stations and the detailed stain

rating parameters as case 4.3.1. The independent robot processing change rate coefficients
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Figure 4.4: Optimal allocations in Case 4.3.2

are the same for the 6 workstations, which means ρrw = ρru, u, w ∈ W .

When the processing rate change parameter ρrw varies, how the proposed method assign

the robot to the system is discussed in this case. As shown in (4.8a), larger the ρrw leads

to slower processing rate of workstation w after implementing robot operation. We takes

three values of ρrw into consideration: ρrw ∈ {0.8, 2, 8}. The three cases correspond to three

different scenarios, when the robot processing rate is higher, lower and much slower than the

manual operation. The results obtained from the optimization of the three cases are shown

in Table 4.4 and Figure 4.4.

Table 4.4: The results in Case 4.3.2

ρrw Robot station Bottleneck station
0.8 W 1

1 W 1
2

2 W 3
1 W 3

1

8 None W 1
1

When ρrw = 0.8, the robot operation is slightly faster than the manual operation. It is

obvious that the robot will be added to the system, since it can both improve the throughput

and release the strain of human. The strain index of the workers do not change a lot, when

the robot is assigned to different stations. Thus, station W 1
1 is chosen because it has the

smallest baseline processing rate and is the bottleneck machine in the baseline system. After

the replacement, the processing rate of station W 1
1 is improved to be λr

W 1
1
=

λo
W1

1

ρr
W1

1

= 15 > λW 1
2
.

In the optimal solution, W 1
2 becomes the new bottleneck workstation.
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When ρrw = 2, the robot operation has lower processing rate than the manual operation.

Though it reduce the productivity of the system, the strain index may be reduced more

and the robot is still assigned to the system. This result is actually surprising, since station

W 3
1 is neither the station with the smallest baseline processing rate, nor the largest. We

take a look at the specific scenario and we realize that the result is reasonable. Let the

station the robot assigned to be wr∈ W and the bottleneck station be wb∈ W . Since

12 ≤ λo
w ≤ 20 and λr

wr
=

λo
wr

ρrwr
=

λo
wr

2
≤ 10 < 12 ≤ λo

w, the robot station is always the new

bottleneck station in the system, wr = wb. The strain index of stations is influenced by

the processing rate of the robot station. For other stations remain the human operation,

λo
w = λh

w. Let the strain index rating and value of workstations given wb is the bottleneck

station be rh,wr

w,j and Sh,wr

w,j , j ∈ S. We take a look at the strain factor DE. Based on

the formulation (4.8b), we have the DE strain factor of other workstations given wb is the

bottleneck station becomes rh,wb

w,DE = row,DE ∗
λo
w

λh
w
∗ TP

TP o = row,DE ∗
λr
wb

TP o , where rw,DE is only

determined by the baseline processing rate of the bottleneck workstation. Since the strain

index rating function is level function, the model tends to choose the highest processing

rate station when the strain index ratings are at the same level. With the parameters

specified in this case, there is a separate point between r
h,W 3

1
w,DE and r

h,W 3
2

w,DE, which means

S
h,W 1

1
w,DE = S

h,W 1
2

w,DE = S
h,W 2

1
w,DE = S

h,W 2
2

w,DE = S
h,W 3

1
w,DE < S

h,W 3
2

w,DE. The other strain index factors are the

same under different selection of robot station. Thus, station W 3
1 is chosen because it has

highest potential processing rate among the stations with the same strain index.

When ρrw = 8, the processing rate of robot operation is much slower than the human

worker operation. The robot is not assigned to any workstation, since the throughput re-

duction is more influential than the strain index reduction under this scenario. More values

of ρrw are taken into consideration in this case and we can determine that when ρrw > 7.95,

the robot will not be added to the system in the optimal solution.

4.4 Allocation with multiple cobots/robots

In this section, we consider a more general scenario where multiple cobots/robots are avail-

able in the system. We present the optimal allocation strategy of with multiple cobots/robots
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available in one production system and address explanations on the results. Since there is

only one cobot/robot available and the number of feasible solution is restricted in 4.3.1 and

Section 4.3.2, we can use straightforward simulations to find the optimal allocation of the

cobot/robot. However, in this section, due to combinatorial explosion, the computational

load of exhaustive search is prohibitively high with multiple cobots/robots available. To deal

with the restriction, we reformulate it as a mixed integer nonlinear programming (MINP)

problem and use a scalable optimization solver to solve the problem in Section 4.4.1. Later,

the simulation results and the explanations are presented in Section 4.4.2

4.4.1 Computational load problem and solutions

In this case, we remain most of the settings in case 4.3.1, but we have both collabora-

tive robot and independent robot. The baseline processing rates λo
w are assigned to be

{λo
W 1

1
, λo

W 1
2
, λo

W 2
1
, λo

W 2
2
, λo

W 3
1
, λo

W 3
2
} = {12, 13.6, 15.2, 16.8, 18.4, 20} respectively. The baseline

collaborative robot processing change rate coefficients are the same for the 6 workstations.

The baseline strain index ratings are identical for all the workstations and the detailed values

of strain index ratings are shown in Table 4.2. In principle, exhaustive search can be used to

find the optimal robot/cobot allocation. Because the number of possible combinations can

be large in this situation and we need to find the optimal work split for cobots in each case,

the exhaustive search method may not be applicable. Due to the combinatorial explosion,

the computational load of exhaustive search is prohibitively high. Given the available num-

ber of cobot qc, the available number of robot qr and the total number of stations N , the

number of feasible combinations can be estimated as
∑

i=1,...,qr

∑
j=N−i,...,qc

N !
i!j!
≈ e2N !, and it will

increase super-exponentially. When N = 10, there will be around 300 millions of possible

combinations. Considering the split of work also need to be determined in each combina-

tion including cobot, the computation is considerably expensive. Thus, we re-formulate the

problem into a traditional MINP problem and apply a scalable optimization solver to solve

it.

Since the strain index rating functions are level functions, we need to recast it as reg-

ular continuous functions with discrete inputs. The reason is that most of the traditional

mixed integer nonlinear programming solver are using gradient descent method to find the
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optimum of the functions. Discontinuous feature can lead to inaccurate optimization and

local optimal solutions. To avoid discontinuity, most of the existing optimization solver pur-

posely do not allow the IF-THEN statement. However, some mathematical reformulation

can be implemented to remove the discontinuity in our problem. The reformulation can be

achieved by creating new binary variables f l
w,j∈ {0, 1}, j ∈ {DE,EM,SW}, l = 1, 2, . . . , nj

indicating the level of strain index, where nj is the number of levels of the strain index

rating. Correspondingly, we have alj, e
l
j, j ∈ {DE,EM,SW}, l = 1, 2, . . . , nj, where alj is the

separating points of the level functions and elj is the separating function value of the level

functions. An illustration of strain index SW is shown in Figure 4.5.

𝑎𝑆𝑊
1 𝑎𝑆𝑊

2 𝑎𝑆𝑊
3 𝑟𝑤,𝑆𝑊
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𝑝

𝑒𝑆𝑊
3

𝑒𝑆𝑊
2

𝑒𝑆𝑊
1

Figure 4.5: An illustration of level function reformulation

With this representation, we have Sp
w,j =

∑nl

l=1 f
l
w,je

l
j, where

∑nl

l=1 fw,j = 1, ∀j ∈

{DE,EM,SW}, w ∈ W . There are new constraints need to be satisfied corresponding to

the new representation. As shown in (4.8d), the latent rcw,j should be in the range set up by

the corresponding f l
w,j’s. For example, when a1SW ≤ rcw,SW ≤ a2SW , this constraint is equiva-

lent to
∑nl−1

l=1 f l+1
w,SWalSW ≤ rcw,SW ≤

∑nl

l=1 f
l
w,SWalSW , where f 2

w,SW = 1 and f l
w,SW = 0, l ̸= 2.

Also, we have Sc
w,SW = e2SW . Then, we have the new formulation for the problem:

Maximize
xp
w,fw,j ,θw,w∈W,p∈P,j∈S

E = TP − η
∑

w:xr
w=0

SIw

s.t.
∑
w∈W

xr
w + xc

w ≤ qr;
∑
w∈W

xh
w ≤ qh;∑

w∈W

xr
w + xc

w + xh
w = |W|;

TP = min{λp
w|xp

w = 1, w ∈ W};

TP o = min{λo
w|w ∈ W};
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Jle = {DE,EM,SW}; Jnl = {IE,HWP,DD};

SIw =
∏
j∈Jle

nl∑
l=1

f l
w,je

l
j

∏
j∈Jnl

Sp
w,j < K, for xr

w = 0;

λp
w =

λo
w

ρpw
, p ∈ {r, c}; λh

w = λo
w; (4.8a)

Sp
w,DD = So

w,DD, p ∈ {h, c};

Sc
w,j = So

w,j ∗ βw,j, j ∈ {IE,HWP};

rpw,DE = row,DE ∗
λo
w

λp
w
∗ TP

TP o
, p ∈ {h, c}; (4.8b)

rpw,j = row,j ∗
TP

TP o
, p ∈ {h, c}, j ∈ {EM,SW}; (4.8c)

nl−1∑
l=1

f l+1
w,j a

l
j ≤ rpw,j ≤

nl∑
l=1

f l
w,ja

l
j, ∀j ∈ Jle; (4.8d)

nl∑
l=1

fw,j = 1, ∀j ∈ Jle.

With the reformulation, the problem is transformed to a traditional MINP (Mixed Integer

Nonlinear Programming) problem. In this work, we adopt APOPT algorithm [54] in Gekko

Python optimization suite [10] to solve the problem. Gekko is a python package for machine

learning and optimization of mixed-integer and differential algebraic equations. APOPT is

an active set solver on large-scale MINP problem and has been applied to various engineering

problems, including system biology with efficient sensitivities [77], solid oxide fuel cell [60]

and production scheduling decisions [9]. The effectiveness and convergence rate of APOPT

is analyzed and compared with other benchmark optimization algorithms in 2012 [54]. The

APOPT solver can reduce the time expense of the MINP problem in our numerical studies,

compared to exhaustive search method, especially when the number of stations becomes

large.

4.4.2 Results and explanations

Based on case 4.3.1 and 4.3.2, we take ρrw = 2 and ρcw,o = 1.5, which means the robot

operation is slower than the cobot operation and both of them are slower than the manual

operation. We select these parameters because such a case is often most difficult to decide the
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Table 4.5: The results in Case 4.4

qc qr Cobot station Robot station Cobot working split Bottleneck station

1 1 W 2
2 W 3

2 0.75 W 2
2

2 W 2
2 W 3

1 , W 3
2 0.83 W 2

2 ,W
3
1

2 1 W 2
2 , W 3

1 W 3
2 0.75, 0.9 W 2

2

2 W 2
1 ,W 2

2 W 3
1 , W 3

2 0.65, 0.83 W 2
1 ,W

2
2 ,W
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Figure 4.6: Optimal allocations in Case 4.4

allocation decision in practice because a trade-off between productivity and ergonomics needs

to be made. When the available number of both kinds of robots change, the workstations

the robots assigned to are shown in Table 4.5 and Figure 4.6.

When qr = qc = 1, the reason that the cobot is assigned to workstation W 2
2 is similar

as when ρcw,o = 1.5 in case 4.3.1. The model tends to set the bottleneck processing rate as

9.6, which is a separate point in the strain index function of factor EM . Also, this explains

why the robot is assigned to station W 3
2 , which has the highest baseline processing rate. If

the robot is assigned to other stations, the throughput of the system would be smaller, but

the strain indices of human involved stations would remain at the same level or have small

difference.

When qr = 2, qc = 1, knowing that there is a stain index separate point at system

processing rate of 9.6, we would like to find the highest possible throughput of the system

and we assign the two robots to the stations with the highest baseline processing rate, which

are W 3
2 and W 3

1 . However, different from when qr = 1, the bottleneck station becomes one
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of the robot station, the robot processing rate of workstation W 3
1 is λr

W 3
1
=

λo
W3

1

ρr
W3

1

= 18.4
2

= 9.2,

which is smaller than 9.6. This fact in turn changes the optimal work split in workstation

W 2
2 . The optimal processing rate of W 2

2 turns out to be 9.2 and the work split of cobot is

0.83 accordingly. There is no need to increase the strain rating of IE and HWP , given that

the throughput of the system is 9.2 and can not be improved.

When qr = 1, qc = 2, the robot is assigned to station W 3
2 , since it has the highest baseline

processing rate and robot operation will slow down the speed by coefficient ρrw = 2. Assigning

the robot to other stations would reduce the throughput of the whole system. Then, the

two cobots are assigned to stations with the highest baseline processing rate among the left

stations. Upon the previous discussion on when qr = qc = 1, we know that processing rate of

9.6 is a separate point for strain factor EM . Thus, the two cobot stations tend to choose a

work split that can make the cobot processing rate as close as possible to 9.6. Then, station

W 2
2 use a cobot work split θW 2

2
= 0.75. In station W 3

1 , the most work split of cobot 0.9 will

be applied, since the cobot processing rate of W 3
1 is λc

W 3
1
=

λo
W3

1

ρc
W3

1

≥ 18.4
1.9

= 9.68 > 9.6 and the

closest processing rate is achieved when θW 3
1
= 0.9.

When qr = qc = 2, the two robots are assigned to the stations with the highest baseline

processing rates, which are W 3
1 and W 3

2 . The bottleneck of the system becomes station W 3
1

with a robot processing rate λr
W 3

1
= 9.2. Intuitively, the cobots are also assigned to the

stations with high baseline processing rate, so that the throughput of the system will not

be reduced. In this case, the strain index separating points do not influence the results

of assignments and the cobots are assigned to station W 2
2 and W 2

1 . The cobot work splits

are determined as 0.83 and 0.65 respectively, so that the processing rates of the two cobots

station are aligned with the bottleneck processing rate of the new system.

The objective function under different work splits of cobot in the cobot stations are shown

in Figure 4.7. Similarly, in the top two plots, there is only one available cobot and the dot

point in the top two the figures are the global optimums of the problem. The one available

case also has a local (but not global) maximum in the objective function, while the case

with two available robots has no local maximum. In the bottom two plots, there are two

available cobots and the x-axis and the y-axis are corresponding to the work split of cobot

in each station. The color of the dots presents the value of the integrated objective function
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Figure 4.7: The objective function value v.s. the work splits of cobot stations

and the darker the dot, the larger the objective function. In the left plot, the case with one

available robot, there is a gap between work split higher and lower than 0.75 in workstation

W 2
2 , which infers that the work split of the first workstation makes a larger difference in the

allocation. However, in the right bottom plot, the case with two available robots, the work

split of both cobot stations influence the allocation similarly.

4.5 Discussion

In this section, we discuss some insights we obtain from the results of the numerical problems

in Section 4.3 and Section 4.4. Though some parameters are fixed in the study, we can still

observe some patterns in the results. We anticipate that these insights can be helpful for

allocating cobots/robots.

First, it is not always better to apply all available cobot/robot resources to the system.

When the cobot or robot operation is much slower than the human operation, the integrated

performance of the whole system will not be improved after the replacement. As mentioned

in Section 4.3.1, when the cobot operation is 7.6 times slower than the human operation,

involving a cobot is not beneficial for the overall performance. Similar situations happen to
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the robot allocation case in Section 4.3.2. In the real world, when the tasks require high

level human intelligence, the cobot/robot may need much longer time while human workers

take barely take any time to finish the task. In these cases, we suggest not to replace the

human workers and remain the original operations.

Second, the optimal allocation of cobots/robots is not always the slowest or the fastest

station in the system. As discussed in Section 4.3.2, the bottleneck station of the system

is always playing an important role in allocating the robot. However, the model does not

allocate the robot station to the bottleneck station of the baseline system all the time. As

shown in Figure 4.4, ρrw = 2, station W 1
1 is the bottleneck station in the baseline system, but

another station is replaced by the robot after allocation. We have shown that the result is

reasonable and the detailed illustrations are in Section 4.3.2. In a word, one strain factor of

the workstations other than the new bottleneck station is determined by the baseline pro-

cessing rate of the new bottleneck workstation after some simplifications of the formulation.

The model tends to choose the highest processing rate station when the strain index ratings

are at the same level, and the robot station is chosen because it has highest potential pro-

cessing rate among the stations with the same strain index. This result suggests us consider

the replacement of all the stations, because we can not determine what kind of allocation of

the cobot/robot could improve the system performance the most.

Third, under the same operation alternative allocation, the optimal work split between

human and cobot in the cobot operation station depends on both the bottleneck station

after the allocation and the separation points of the strain index level functions. As shown

in Figure 4.8, there are always local (but not global) maximums of the integrated objective
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Figure 4.8: Illustration of the influential factors of the objective function
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Figure 4.9: Illustration of correlation between cobot and robot allocation

function against the change of different work split of cobot. These local maximums of

the objective functions are corresponding to the separation points of the strain index level

functions. Once the level of strain index decreases, there is always a sudden jump in the

value of the objective function, since there is a sudden fall in the quantified ergonomics

performance. Besides the sudden changes in the objective function, there are also some

turning points in the objective function. These turning points are caused by the change

of the bottleneck station of the system. When the bottleneck station changes, the overall

throughput or productivity performance is influenced due to the increment of the work split

of cobot. These changes are gradually, so we do not observe sudden changes in the objective

function. These observations inform us that we need to pay attention to not only the extreme

cases in one specific station, but also the overall balance of all the workstations.

Forth, in the optimally allocated systems, not only is the overall ergonomics measure SIall

reduced, the SI in the most stressful workstation also decreases, compared to the baseline

system. Take the one available cobot case in Section 4.3.1 as an example. Keeping most

of the settings, let rW 1
1 ,DE = 0.7, rW 1

2 ,DE − 0.6, rW 1
1 ,SW

= 1, rW 1
2 ,SW

= 1.5, rW 1
1 ,EM = 16,

rW 1
2 ,EM = 15, and ρcw,o = 1.1. The overall ergonomics measure for the entire baseline system

SIall = 36. After the cobot was applied to the system, SIall became 10.83, which was highly

reduced from the baseline system. Also, with the improvement of one collaborative robot,

the SI in the most stressful workstation changed from 16 to 6.75, which is not hazardous

anymore by the definition in [40]. This observation further confirms that the definition of

overall ergonomics measure and the design of threshold parameter K is reasonable in the

formulation.

Last, the priority of allocating cobots and robots depends on the properties of the avail-
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able cobots/robots and the baseline parameters of the production systems. We are not sure

if the cobots or the robots would make larger differences to the system before we run the

model. Also, the allocation of different cobots/robots may influence each other, when there

are multiple cobots/robots available in the system. As shown in Figure 4.9, the optimal

allocation and work split of cobot is related to the allocation of robots in the system. When

there is one robot and one cobot available, the optimal work split of the cobot station 0.75,

and it becomes 0.83 when there is one more robot. Later, when there are two cobots and one

robot, the cobots are assigned to station W 2
2 and W 3

1 , and the cobots stations are changed

to W 2
1 and W 2

2 when there is one more robot. This indicates that the allocation of multiple

cobots/robots are highly correlated with each other, and we need to consider all the possible

scenarios to find the optimal allocation.

4.6 Conclusion

In this paper, we propose a method to optimally allocate cobot/robot to a manufacturing

system with multiple workstations. This work fills the research gap of system level job

allocation between human operators and collaborative or independent robots. We use a

integrated objective function to consider the tradeoff between system throughput of the

ergonomics level of the human workers in the system. Based on the objective function,

we formulate an optimization problem for the cobot/robot allocation problem. With the

problem formulation, we solve the allocation of cobot/robot in production systems with

one available cobot/robot and the insights of the allocation are illustrated. Then, to solve

the allocation of the production systems with multiple cobots/robots available, we revise

the formulation to address the challenge caused by the discontinuous objective function by

introducing new binary variables so that the problem can be put into a conventional mixed

integer nonlinear optimization problem. The APOPT solver in Gekko optimization suite is

utilized to solve the optimization problem in an efficient way. The solutions of the allocations

are explained and confirmed by the domain knowledge. Later, we also conclude some insights

for the allocation of cobot/robot resources.

In the future, more general cases considering buffer and starvation of the production
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systems will be studied, which can extend the application of the proposed optimization

method. The allocation of buffer size in the workstations can also be taken into consideration

and provide the companies with suggestions on setting up a production line. We will pursue

these directions and report the findings in the future.
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Chapter 5

Collaborative Production System Design

with Ergonomics Concerns and

Precedence Constraints

Abstract

Robots/Cobots have shown promise for significant improvement in the well-being of human

workers and increment in productivity for manufacturing production systems. In this pa-

per, we investigate and study the optimal design of a serial production system with fixed

cycle time, considering the ergonomics constraints of human workers. Previous research

on resource allocation in collaborative systems focuses on the task level and omits the op-

timal assignment of tasks. Taking the precedence relationship of tasks into consideration

and the physical exposure of human workers as constraints, we formulate and allocate the

robot/cobot resources to a production system to maximize productivity and minimize the

economic cost of the system. We proposed to solve the combinatorial optimization problem

with a reinforcement learning guided evolutionary algorithm. Simulations and real-world

scenario based case studies are carried out and useful insights are provided for future prac-

This chapter is based on the paper: Huang, C., Konstant, A., Zhou, S., Li, J. & Radwin, R. Collabo-
rative Production System Design with Ergonomics Concerns and Precedence Constraints, to be submitted
to IEEE Transactions on Automation Science and Engineering.
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titioners.

5.1 Introduction

Allocation of the collaborative robot (so-called cobot) and independent robot in manufactur-

ing systems have shown significant improvement in productivity and a notable reduction in

the physical strain of human workers [100]. Compared to independent robots, collaborative

robots have fewer safety requirements and can work together with human workers, rather

than in an enclosed working space. With the cobots working alongside, the human workers

can save effort on a wide range of tasks and reduce physical exposure during work [30].

Stressful tasks such as assembly, screwing, and heavy lifting can be assigned to or shared

with collaborative robots and the strain of human workers can be reduced [47]. In the mean-

time, with the assistance of collaborative robots, the productive performance of the entire

production system can be improved. Based on the Collaborative Robots Market Report

in 2021 [1], the collaborative robot market share is predicted to grow substantially in the

coming years. It can be foreseen that the human-robot collaborative manufacturing module

will continuously contribute to the future advanced manufacturing and factory automation,

considering the profound benefit and the rapid development of robot and cobot technology.

Task allocation in a collaborative production system belongs to line balancing problems

when there are multiple workstations in the production line. Line balancing is a crucial aspect

of production optimization. It ensures that each workstation has a comparable workload,

smooths the streamline operations and improves the system productivity. Effective line

balancing requires a comprehensive analysis of the production processes and appropriate

measurements of factors such as task processing time, physical strain of human workers, and

precedence relationship between tasks. As shown in Table 5.1, in recent years, there have

been an increasing number of research and implementation studies in line balancing and task

allocation problems in production systems [8, 20, 80, 81, 146]. Most of the these take the

production cost and productivity as the overall objective of the optimization problem. Some

handle the case that there are multiple workstations in the production system [20, 81, 146],

and some consider the precedence relationship as a constraint in the allocation [80, 81, 146].
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Table 5.1: State of art task allocation works in production system

References Robot/cobot Production Ergonomics Precedence Multiple
worksta-
tions

Chen [20] ✓ ✓
Liu et al. [81]; Zhang
et al. [146]

✓ ✓ ✓

Liu et al. [80] ✓ ✓
Arkat et al. [8] ✓
Maganha et al. [85];
Sarker et al. [114];
Takata and Hirano
[126]; Fechter et al.
[34]; Tsarouchi et al.
[129]; Ranz et al. [109];
Choi et al. [23]; Jose
and Pratihar [63];
Chen et al. [19]

✓ ✓

Mossa et al. [97] ✓ ✓
Ou et al. [102];
Heydaryan et al. [56];
Liu et al. [83]

✓ ✓ ✓

Mokhtarzadeh et al.
[95]; Huang et al. [58];
Dalle Mura and Dini
[26]

✓ ✓ ✓ ✓

Hu and Chen [57] ✓ ✓ ✓
Müller et al. [98];
Rahman and Wang
[108]; Faccio et al. [33];
Pearce et al. [103]

✓ ✓ ✓ ✓

Gjeldum et al. [42] ✓ ✓ ✓
Michalos et al. [92];
Boschetti et al. [12]

✓ ✓ ✓

Weckenborg et al. [140] ✓ ✓ ✓ ✓
Proposed framework ✓ ✓ ✓ ✓ ✓

Some recent research tried to make the collaboration between human workers and cobot/robot

effective at the task level [35, 41, 70, 106, 119], focusing on the design and programming of

robots. In the meantime, with the rapid development of the applications of cobots and

robots, researchers have put tremendous effort into the allocation of robots in workstations

to optimize the system productivity [19, 23, 34, 63, 85, 109, 114, 126, 129]. When imple-

menting the cobot/robots in production systems, they focus more on improving productivity

and reducing the production cost than reducing the physical strain of human workers. In
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addition to the productivity performance of the system, ergonomics factors are also an im-

portant concern. Ergonomics concerns, which is one of the motivations for involving robots

in manufacturing operations, includes high forces, repetitive motions, awkward postures,

and exposure to vibration from equipment and tools. Numerous studies have been imple-

mented to assess and improve ergonomics in manual operations [4, 132, 134, 145]. Some of

the existing task allocation research in production systems consider the ergonomics factors

and the physical strain of human workers [26], but the influence of processing time from

collaborative operations is not included in the model and some of them did not consider the

applications of cobot/robot. Some implementations of cobots/robots consider the influence

on ergonomics factors of human workers but they omit the precedence relationship between

different tasks [26, 56, 58, 83, 95, 102]. Other studies analyze the precedence relationship

during task allocation, but they are limited to one workstation [33, 57, 98, 103, 108]. On

the other hand, some, including the precedence relationship or multiple workstations, do

not consider the ergonomics impact on the production system [12, 42, 92, 140]. Among all

the research studies, some of them assign resources to a combination of tasks, while some

assign resources to each task that can not be further split up. Due to the limitation of

robots’ capability, deployment of cobot/robot to an unsplittable task is a more realistic task

allocation strategy. In some ergonomics studies, the unsplittable task is also called ’subtask’

and the ’task’ term refers to a sequence of subtasks operated in the same work cycle [39]. To

avoid misunderstanding, the term ’task’ is referred to the unsplittable task in the later part

of this article. In this work, we comprehensively formulate the task allocation problem in

the production systems with cobots/robots by considering the production cost, ergonomics

of human workers, precedence relationship between tasks, and the line balancing between

different workstations.

With the formulation, the allocation task becomes a combinatorial optimization problem

with a complex objective function and a large number of constraints. Using traditional

optimization algorithms to solve the problem from the mathematical formulation is almost

impossible. When the number of tasks is large, the computational time will also dramatically

increase. Instead of traditional optimization methods, we can adopt a heuristic algorithm

to solve the combinatorial optimization problem. There are some advantages and benefits
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of using a heuristic optimization algorithm. First of all, since the solution is generated from

an iterative approach and the number of visited solutions keeps increasing, it is guaranteed

that the global optimal solution can be found after a large enough number of iterations.

Also, the infeasible solutions will not be kept in the possible solution set and this makes

sure the derived solutions are feasible considering all the constraints. Furthermore, if there

is uncertainty in the production system, or when there are real-time data involved, the

data-driven heuristic algorithm can be adapted to the stochastic settings easily.

In this article, we propose an optimization framework to optimally allocate a limited

number of robot/cobot resources to a manufacturing system to reduce the cost caused by

transformation, considering the ergonomics factors of human workers, and the precedence

relationships between tasks. Specifically, we propose a heuristic algorithm to solve the fol-

lowing allocation problem: Given a human-based manufacturing production system with

multiple workstations and a limited number of robots/cobots, what is the best allocation of

these robots/cobots to the selected workstations and tasks so that an integrated measure

considering both system throughput and economic cost is optimized, taking the precedence

relationships between tasks and the ergonomics factors as constraints? The main contribu-

tions of the proposed work are the following:

• Production systems with multiple workstations are considered and the cumulative er-

gonomics factors are estimated based on the tasks assigned to the human worker in

the same workstation.

• The precedence relationships between different tasks are considered and the optimal

allocation can meet the requirement of precedence and ensure the workflow of the entire

production system.

• An optimization framework of the allocation problem is established and a reinforcement

learning guided evolutionary algorithm is proposed to solve the optimization problem

in an effective and scalable manner.

The remaining article is organized as follows. In Section 5.2, the problem of allocating

robots/cobots to a production system is described and the framework of the optimization
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problem is introduced. In Section 5.3, a combinatorial representation of the solution and the

proposed reinforcement learning guided evolutionary algorithm are illustrated. In Section

5.4, real-world senario based cases are implemented and useful insights are provided for future

allocation. In Section 5.5, conclusions are summarized and future works are discussed.

5.2 Problem formulation

In this section, we introduce the problem settings, the ergonomics evaluation and the opti-

mization formulation of the task allocation problem in a collaborative production system.

In Section 5.2.1, the assumptions of the system are provided and the variables used in the

optimization problems are defined. In Section 5.2.2, the ergonomic strain of human workers

is evaluated from task level to work shift level. Then, in Section 5.2.3, the ergonomic change

with different operation alternatives is analyzed, and the overall optimization problem is

established.

5.2.1 System description

In this study, we consider a serial production system. The stochastic model to describe the

operations of such systems is defined as follows:

• In the system, there is a serial line of workstations and the workpieces flow through

the stations from left to right. There are N workstations, where the u th station is

denoted as wu. The set of all workstations is represented by W .

• There is infinite buffer capacity between each pair of stations in the system.

• There are n tasks that need to be finished in the system. Let ti represent the ith task

in the system, and T = {ti|i = 1, . . . , n} represents the set of tasks, where n is the

number of tasks in the system. Let nu be the number of tasks allocated in workstation

wu and Tu = {tlu|l = 1, . . . , nu} ⊂ T be the set of tasks allocated in workstation

wu, wu ∈ W .
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• Each task can be operated by a human worker (h), a robot (r), or through a collabo-

rative operation between human and cobot(c). The job processing time at workstation

w is assumed to follow an exponential distribution with parameter λi
p, p ∈ P , where

P= {h, r, c} is the set of operation alternatives. If task ti cannot be carried out by an

alternative p, λi
p is set as η → 0.

• The cobot and robot will be dedicated to one task. There is at most one human worker

in one workstation.

• We assume all tasks in the production system are operated by human workers initially.

Then qr robots and qc cobots will be assigned to replace qr + qc human-operated tasks

in the system. When a robot is assigned to a task, the ergonomic strain index for that

task will become zero as no human operator is involved. When a cobot is assigned to

a task, the ergonomic strain index will be reduced for the task.

• Let D = {di,j|i, j = 1, . . . , n, i ̸= j} be the set of precedence relationship between tasks,

where di,j is the precedence relation from task tj to task ti. If ti can not be proceeded

without the completment of tj, we have di,j = 1, otherwise di,j = 0 .

• The system has a fixed cycle time CT for all the workstations in the system, which

has been decided by the real practice of the system and can not be changed.

• For a workstation with human or cobot operation in the system, there is one individual

human worker who handles all the human work.

Since the cycle time is fixed in the system, the productivity of the entire system is fixed

and we only need to optimize the ergonomics of the system when there are a given number

of available robots and cobots. The number of workstations can be changed based on the

processing time change of new operation alternatives, but new workstations with human or

collaborative operations will need more human workers and increase the overall ergonomics

of the entire system. The objective of the optimization problem is to minimize the cost of

production operations and the set-up cost of workstations. Cp, p ∈ {h, c, r} is defined as

the implementation and operation cost of alternative p and Cw is the set-up cost of one

workstation.
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To formulate the robot/cobot allocation problem, we introduce X = {xi
u,p ∈ {0, 1}|i =

1, . . . , n, wu ∈ W , p ∈ P} as the set of allocation indicators xi
u,p. If task ti is allocated

to use operation p in workstation wu, xi
u,p = 1, otherwise xi

u,p = 0. Then, we have xi
u =∑

p∈P
xi
u,p ∈ {0, 1} is the indicator if task ti is allocated in workstation wu. In addition,∑

p∈P
xi
u,p = 1, for wu ∈ W , i = 1, . . . , n.

Besides the task allocation for different workstations and operation alternatives, we also

need to consider the time constraints for tasks allocated in the same workstation.

• Let ST i
u,p and FT i

u,p, represent the start time and finish time of task ti under operation

alternative p in workstation wu. Let ET i
p be the estimated time taken of task ti

under operation p. Since one task can only start after all its precedent tasks have

been finished we have ST i
u,p = max

i:di,j=1

∑
p′∈P

xj
u,p′FT j

u,p′ . With no transition time, we

have the finish time of task ti is the sum of start time and the estimated time taken:

FT i
u,p = ST i

u,p + ET i
p = ST i

u,p + 1/λi
p.

• All the tasks should be finished in the cycle time of the system and we have FTu ≤

CT,wu ∈ W , where FTu = max
i:xi

u,p=1
FT i

u,p

• Since there is only one human worker in each workstation, the operation time of human-

involved tasks in the same workstation should not overlap with each other. We have

ST i
u,p ≥ FT j

u,p′ or ST j
u,p′ ≥ FT i

u,p for xi
u,p = 1, xj

u,p′ = 1, p, p′ ∈ {h, c}, wu ∈ W .

5.2.2 Ergonomics Evaluation in the Collaborative System

In this section, we illustrate the ergonomics evaluation in the production system with

cobots/robots. The physical strain factor of the human workers are characterized at task

level in Section 5.2.2.1, the task cycle level in Section 5.2.2.2, and the work shift level in

Section 5.2.2.3.

5.2.2.1 Subtask Level

In 2017, Garg et al.proposed the Revised Strain Index (RSI) [40], which is a Distal Upper

Extremity (DUE) physical exposure assessment model improved from the 1995 Strain Index
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[124]. The 1995 strain index model was first proposed in [124] and has been verified to be

a reliable and effective way to evaluate the risk level related to hand workload over time

[27, 110]. Based on assumption M4 in [145], the strain index of a manual operation can be

evaluated by six risk factors of the overall process. The definitions of the six risk factors are

following.

• Intensity of exertion: An estimate of the strength required to perform the task on time.

• Duration of exertion: The physiological and biomechanical stresses related to how long

an exertion is maintained.

• Efforts per minute: The number of exertions per minute, which is synonymous with

the frequency.

• Hand/wrist posture: An estimate of the position of the hand or wrist relative to a

neutral position.

• Speed of work: An estimate of how fast the worker is working.

• Duration per day: A measure obtained from plant personnel.

For each task and each hand, all risk factors are evaluated and assigned to one of five

categories, each corresponding to a rating based on a scale of 1−5 as well as a multiplier value.

The strain index of each workstation is the product of the six ratings of the workstation.

Then, the score is compared to the multiplier to identify the level of task risk. There are two

drawbacks of the categorical rating in the 1995 strain index model. First, the categorical

rating can not fully characterize the information of the numerical factors. The difference

between tasks with the same strain level but different strain ratings can not be captured.

Second, the level function in the model is hard to adapt to later optimization formulation

and algorithms. Thus, the 1995 strain index model is modified and developed into the

Revised Strain Index (RSI) model. RSI uses continuous rather than categorical multipliers

and replaces the duty cycle with duration per exertion. Based on a simulation of 13,944

tasks, RSI showed good estimations of the risk levels and is useful for DUE task analysis,
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intervention, and design. In this work, we use the RSI model to evaluate the ergonomic

strain of human workers and the exact definition is illustrated as follows.

The RSI score is defined as the product of five components, expressed in (5.1)

RSI = MI(I) ·ME(E) ·MD(D) ·MP (P ) ·MH(H) (5.1)

In the equation,

MI(I) =

30I3 − 15.6I2 + 0.4, 0 < I ≤ 0.4

36I3 − 33.3I2 + 24.77I − 1.86, 0.4 < I ≤ 1
(5.2)

ME(E) =

0.1 + 0.25E,E ≤ 90/m

0.00334E1.96, E > 90/m
(5.3)

MD(D) =

0.45 + 0.31D,D ≤ 60s

19.17lnD − 58.44, D > 60s
(5.4)

MP (P ) =


1.2e−0.009P − 0.2, P < 0

1, 0 ≤ P ≤ 30

1 + 0.00028(P − 30)2, P > 30

(5.5)

MH(H) =

0.2, H ≤ 0.05h

0.042H + 0.09lnH + 0.477, H > 0.05h
(5.6)

ExtensionFlexion

𝑀𝐼(𝐼) 𝑀𝑃(𝑃) 𝑀𝐸(𝐸) 𝑀𝐷(𝐷) 𝑀𝐻(𝐻)

Intensity of exertion  Hand/wrist posture Efforts per minutes Duration of exertion Duration per day

Figure 5.1: Illustration of the multiplier functions

Here, MS is the multiplier function of ergonomics factor S, S ∈ {I, E,D, P,H}. In Figure
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5.1, the pattern of the multiplier functions are illustrated. I corresponds to the intensity of

exertion (force) (% MVC expressed numerically from 0 to 1.0, or Borg CR-10 rating divided

by 10.0). E is corresponding to the exertions per minute (frequency). D corresponds to

the duration per exertion by seconds. P is the hand/wrist posture by degrees from the

anatomically neutral position. A negative degree means flexion and a positive degree means

extension. H is the duration of tasks per day by hours.

The RSI is designed so that a score smaller or equal to 10 is considered ’safe’ and a score

larger than 10 is considered ’hazardous’. Based on some numerical comparison of the 1995

SI and the RSI, the RSI had much greater discrimination between ’safe’ and ’hazardous’

tasks for various combinations of force, repetition, and duty cycle. Thus, it is believed to

substantially improve the strain index model. Also, the RSI has continuous properties and

promotes the convergence of the optimization model for resource allocation.

5.2.2.2 Work Cycle Level

The RSI can be used to define the biomechanical stressors from an unsplittable task. In a

work cycle, there can be a sequence of one or more tasks that are repeated and are performed

for a certain duration in a work shift [64]. A job consists of one or more tasks performed

during a work shift. The Composite Strain Index (COSI) was proposed by Garg et al.[39] to

capture the biomechanical stressors from a task with two or more tasks. For a task consisting

of a single task, COSI is the RSI of the single task.

The COSI is calculated in the following procedure:

• Calculate the RSI for each task and arrange them in a descending order s.t. RSI1 ≥

RSI2 ≥ RSI3 ≥ · · · ≥ RSIn, where n is the number of tasks in the task.

• Derive the COSI score, the COSI score is RSI1 (peak exposure task) plus an incre-

mental increase in physical exposure of the human worker, ∆RSI, as each subsequent

task is added to the peak task: COSI = RSI1 +
∑n

2 ∆RSIi. Here, RSI1 is the peak

exposure task which is the task with the highest RSI, and ∆RSIi is the incremental

increase in physical exposure associated with each of the remaining tasks, in the order

determined by the ranking of RSI.
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• To calculate the incremental increase in physical exposure, we first determine the

Frequency-Independent RSI (FIRSI): FIRSIi = RSIi/ME(Ei), i = 2, . . . , n. Then,

we calculate the incremental efforts per minute multiplier (∆EM) associated with

each task: ∆EMi = ME(
∑i

1Ej)−ME(
∑i−1

1 Ej), where Ej is the exertions per minute

of the jth task. FIRSI omits the frequency of the task and the frequency-independent

strain index is a traditional method to measure the incremental physical exposure [139].

Conceptually, ∆EMi is the differential increase in frequency multiplier when the ith

task’s frequency is added to the cumulative frequency of the prior tasks, which have

higher RSI than the ith task. The ∆RSI of the ith task is the Frequency-Independent

RSI of the ith task FIRSIi multiplied by the incremental efforts per minute multiplier

of the ith task (∆EMi): ∆RSIi = FIRSIi ×∆EMi.

5.2.2.3 Work Shift Level

With the COSI of each task, we can calculate the Cumulative Strain Index (CUSI) of the

work shift. The calculation follows three steps:

• Rank the COSI for each task in descending order, s.t. COSI1 ≥ COSI2 ≥ COSI3 ≥

· · · ≥ COSIm, where m is the number of tasks performed in a work shift.

• Derive the CUSI score, the CUSI score is COSI1, which is the peak exposure task’s

COSI, plus the incremental increase in physical exposure as each subsequent task is

added to the peak task: CUSI = COSI1 +
∑m

2 ∆COSIk. Here, ∆COSIk is the

incremental increase in physical exposure associated with the k th task.

• ∆COSIk is calculated by the Hours-Independent COSI (HICOSI) of the kth task,

defined by: HICOSIk = COSIk/MH(Hk). MH(Hk) is the hours per day multiplier

for the kth task and is calculated by: ∆HMk = MH(
∑k

1 Hj) −MH(
∑k−1

1 Hj), where

Hj is the hours per day for task j. The HICOSI ignores the hours per day that the

task is performed and ∆HMk is the differential increase in the hours per day multiplier

when the kth task’s hours per day is added to the cumulative hours per day of the

prior tasks.
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According to Garg et al.[39], a COSI and CUSI score smaller than or equal to 10.0 is

considered to be safe and a score higher than 10.0 is considered to be hazardous or risky. A

threshold K is set to avoid a high strain index at a specific workstation. Thus, the following

constraint exists:

CUSIu < K, ∀wu ∈ W . (5.7)

5.2.3 Ergonomic Change and Optimization Framework

In the baseline model, the strain index and the processing rate parameter of the tasks under

human operation are known. Then, based on the following assumptions, the change of

processing rate and strain index from the baseline system can be defined if a cobot or robot

is allocated to task ti in workstation w:

• The processing rate of task ti is changed by coefficient ρip , p ∈ {r, c}. Then we have

λi
p =

λi
h

ρip
.

• ergonomics factor H (duration of task per day) of the human worker for task ti remains

the same as in the baseline system so that Hi = Hh
i . This is because the human worker

in the collaborative operation still follows the general working schedule and the work

durations per day are the same under manual and collaborative alternatives.

• Risk factors I (intensity of exertion) and P (hand/wrist posture) of task ti are not

dependent on processing time and their changes are defined by coefficients βi
I ∈ (0, 1)

and βi
P , thus Si

c = Si
hβ

i
S, S ∈ {I, P}.

• Factor D, the duration of the exertion is only changed based on the human operation

time on the task ti. The original D factor for each task is Di
h. We have the duration

of exertion after allocation as Di
c = Di

hρ
i
c.

• Efforts per minute E of a task ti is proportional to the operation rate. Ei
c = Ei

h/ρ
i
c.

Then, a mathematical formulation to optimize the integrated performance measure of
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the system can be expressed as

Minimize
X ,ST

∑
u,i

xi
u,rCr +

∑
u,i

xi
u,cCc+

∑
u,i

xi
u,hCh +NCw

s.t.
∑
ti∈T

∑
wu∈W

xi
u,r ≤ qr;

∑
ti∈T

∑
wu∈W

xi
u,c ≤ qc; (5.8a)

∑
p∈P

xi
u,p = 1, for wu ∈ W , i = 1, . . . , n; (5.8b)

∑
wu∈W

∑
p∈P

xi
u,p = 1, for i = 1, . . . , n; (5.8c)

ST i
u,p = max

i:di,j=1

∑
p′∈P

xj
u,p′FT j

u,p′ ,

for wu ∈ W , i = 1, . . . , n, p ∈ P ; (5.8d)

FT i
u,p = ST i

u,p + 1/λi
p,

for wu ∈ W , i = 1, . . . , n, p ∈ P ; (5.8e)

ST i
u,p ≥ FT j

u,p′ or ST j
u,p′ ≥ FT i

u,p,

for xi
u,p = 1, xj

u,p′ = 1, p, p′ ∈ {h, c}, wu ∈ W (5.8f)

FTu = max
i:xi

u,p=1
FT i

u,p ≤ CT, wu ∈ W (5.8g)

SIu =
∏
s∈S

Sp
u,s < K, wu ∈ W ; (5.8h)

λi
p =

λh
i

ρip
, p ∈ {r, c}, i = 1, . . . , n; (5.8i)

Di
c = Di

hρ
i
c, Hi = Hh

i , i = 1, . . . , n (5.8j)

Ei
c = Ei

h/ρ
i
c, i = 1, . . . , n; (5.8k)

Si
c = Si

hβ
i
S, S ∈ {I, P}, i = 1, . . . , n (5.8l)

CUSIu = CUSI(COSIu) < K,wu ∈ W (5.8m)

COSIu = COSI({MS(S
i
px

i
u,p)|i = 1, . . . , n

S ∈ {I, E,D, P,H}}) (5.8n)
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Now, we have the optimization problem established, where the independent variables are the

indicators of task allocation and the objective function is the sum of the cost of production

operations and the set-up cost of workstations. With the formulation, we can perform our

proposed algorithm to solve the problem and derive the optimal allocation in the production

system.

5.3 Reinforcement learning Guided Evolutionary Algo-

rithm

In this section, we illustrate the proposed method of solving the formulated optimization

problem. First, we provide a combinatorial representation for the optimization problem in

Section 5.3.1. Then, the background and application of the evolutionary algorithm are intro-

duced in Section 5.3.2. Later, the intuition and the implementation of using reinforcement

learning to guide the evolutionary algorithm are presented in Section 5.3.3. Lastly, in Section

5.3.4, we discuss the impact of hyperparameters in the proposed algorithm and provide some

insights we derive from some simulations.

5.3.1 Combinatorial Optimization and Representation

With the optimization problem formulated in Section 5.2, the problem becomes a combi-

natorial optimization problem. The problem is an extension and more complicated variant

of the line balancing problem, which is considered as NP-hard. It is hard for the existing

optimization solvers to find the global optimal or even feasible solution when the number

of tasks is large. Instead of traditional optimization methods, we can adopt a heuristic al-

gorithm to solve the combinatorial optimization problem. There are some advantages and

benefits of using a heuristic optimization algorithm.

Before we go through the heuristic algorithm we implement, we want to introduce the

combinatorial representation of the allocation solution. Instead of the binary representation

of the allocation, we will use a combinatorial representation for the allocation result for easy

solvement of the optimization problem. One example of the allocation result is shown in
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Figure 5.2, there are two components or rows in the representation. The first row is the

sequence of the tasks in the entire production system, the i th element represents the task

number that is the i th to be operated in the serial production line. In the example, the 5 th

task will be the first to be operated and the 6 th task to be implemented lastly in the system.

The second row is the operation alternative of the corresponding task. In the example, task

4 is assigned to be operated by a robot, and task 3 is operated by a cobot in the allocation.

Later, with the sequence and the operation alternative decided in the allocation, we can

derive the actual processing time of different task and the workstation can be split by the

fixed cycle time limit of the entire production system. In this example, the first workstation

can hold three tasks and the other three tasks will be assigned to the second workstation. If

the sum of the actual processing times of the last three tasks exceeds the cycle time limit,

then one more workstation will be set up and additional set-up cost will be generated.

5 1 4 3 2 6

ℎ ℎ 𝑐 𝑟 ℎ ℎ

Subtask No.

Operation alternative

5 1 4Workstation 1

Manual

Robot

Cobot

3 2 6Workstation 2

Based on processing rates

Figure 5.2: Example of the representation

5.3.2 Evolutionary Algorithm

One popular heuristic algorithm for the combinatorial optimization problem is an evolu-

tionary algorithm (EA). EA is widely used in optimization, search, and machine learning

tasks, particularly in scenarios where traditional approaches struggle due to the complexity

or nonlinearity of the problem. EA mimics the process of natural selection, where a popu-

lation of candidate solutions evolves over successive generations through the application of

various operators. Along the generation, EA maintains a pool of potential solutions, which

are iteratively refined to approximate optimal or near-optimal solutions to a given problem.

The typical operators applied to generate new or child solution from the parent solution

include selection, reproduction, crossover, and mutation. In our work, we utilize three types

of operators: crossover and mutation for the task sequence and the switch operator for the
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operation alternative change. The detailed operators and how they generate new solutions

are explained as follows:

5.3.2.1 Crossover operators

There are various kinds of crossover operators and they can generate different child solutions

with different focuses. In this work, we decide to apply five types of classical crossover

operators on the parent solutions. The crossover operators considered include (a) two-point

operators; (b) single-point operators; (c) order-based operators; (d) position-based operators;

and (e) cycle-based operators. In the crossover operators, there is one parent solution and one

reference solution. The specific cross operators will be implemented on the parent solution

with the reference solution as a reference or a crossover object. With the illustration examples

shown in Figure 5.3, the detailed implementations of the operators are illustrated as follows:

(a) Two-point operators: First, two random points A and B, as shown in Figure 5.3a,

are selected. The sequence elements before A or after B in the parent solution are kept

in the child solution. The operation alternatives are also kept. The elements between A

and B in the child solution are replaced by the unused elements in the reference solution.

(b) Single-point operators: First, one random point A is selected, as shown in Figure

5.3b. The sequence elements before A in the parent solution are kept in the child

solution. The elements after A in the child solution are replaced by the unused elements

in the reference solution.

(c) Order-based operators: With the random points A and B selected, as shown in

Figure 5.3c, the sequence elements between A and B in the parent solution are kept in

the child solution. The elements before A or after B in the child solution are replaced

by the unused elements in the reference solution.

(d) Position-based operators: A random number of positions are selected randomly, and

the sequence elements in these positions of the parent solution are reserved in the child

solution. The unused sequence elements are filled in the child solution later with the
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same position as the reference solution. The operation alternatives are kept based on

the sequence elements.

(e) Cycle-based operators: First, a random position A is selected in this type of opera-

tors. Then, as shown in Figure 5.3e, the sequence element in the reference solution of

position A is kept in the child solution. The sequence element will refer to a new posi-

tion the corresponding sequence element is kept in the child solution. This becomes an

iterative process until the suggested position is back to A. The unspecified positions in

the child solution will be filled with the corresponding sequence elements in the parent

solution. The operation alternatives will be filled based on the sequence elements.
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(a) Two-point crossover
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(c) Order-based crossover
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(e) Cycle-based crossover

Figure 5.3: Illustration of crossover operators considered

5.3.2.2 Mutation operators

Besides the crossover operators, we also consider three mutation operators, including (a) two-

position mutation; (b) forward insert; and (c) backward insert. Different from the crossover

operators, the mutation operators have no reference solutions. The operators are applied to
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a parent solution and the child solution has different task sequences from the parent solution.

With the illustration examples shown in Figure 5.4, the detailed explanations are as follows:

(a) Two-position mutation: First, two different positions i and j are selected randomly.

The sequence elements and the operation alternatives of the two positions in the parent

solution are exchanged in the child solution. As shown in Figure 5.4a, the elements in

the two positions swapped with each other. The other positions in the child solution

are the same as the parent solution.

(b) Forward insert mutation: First, two different positions i and j are selected randomly.

The sequence element and the operation alternative of position i in the child solution

are the same as those of position j in the parent solution. The sequence elements and

the operation alternatives of positions between i+ 1 and j in the child solution are the

same as those of positions between i and j− 1 in the parent solution. More specifically,

the elements move one position forward in the child solution, as shown in Figure 5.4b.

(c) Backward insert mutation: First, two different positions i and j are selected ran-

domly. Opposite to the forward insert mutation, the elements move one position back-

ward in the child solution, as shown in Figure 5.4c. The other positions in the child

solution are the same as the parent solution.

3
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solution

c) backward insert mutation

(c) Backward insert mutation

Figure 5.4: Illustration of mutation operators considered

5.3.2.3 Switch operator

The crossover operator and the mutation operators perform operations on the sequence

element and the operation alternative together. Specifically for the operation alternative,

we implement the switch operators, which only operate on the operation alternative of the
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tasks. The illustrations of the switch operators are shown in Figure 5.5. There are 6 kinds

of switch operators, including changing the alternative from p to p′, where p, p′ ∈ {h, c, r}.

In each kind of operator, the position of the switch alternative is selected randomly. Taking

switch operator (a) as an example, in the operator, we first select a task randomly in the

parent solution conducted by a robot, and then the selected task in the child solution will

be conducted by a human worker. The sequence elements of the tasks in the child solution

are the same as those in the parent solution.

By performing different types of operators to generate new solutions iteratively, the

evolutionary algorithm can navigate the potential solution set and reach the optimal solution

when the number of iterations is large enough.

𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑠𝑒𝑞4 𝑠𝑒𝑞5 𝑠𝑒𝑞6

𝑎𝑙𝑡1 𝑎𝑙𝑡2 𝑝 𝑎𝑙𝑡3 𝑎𝑙𝑡4 𝑎𝑙𝑡5

Parent solution Child solution

Switch operation alternative from 𝑝 to 𝑝′ 

𝑠𝑒𝑞1 𝑠𝑒𝑞2 𝑠𝑒𝑞3 𝑠𝑒𝑞4 𝑠𝑒𝑞5 𝑠𝑒𝑞6

𝑎𝑙𝑡1 𝑎𝑙𝑡2 𝑝′ 𝑎𝑙𝑡4 𝑎𝑙𝑡5 𝑎𝑙𝑡6

(a)
𝑟

ℎ 𝑐

(b)

(c)

(d)

(e)

(f)

Figure 5.5: Switch operators

5.3.3 Q-learning algorithm

Nevertheless, the advantages and the flexibility of the EA, the solution navigation can be

and the convergence may take time. The reason that causes this scenario is illustrated in

the upper part of Figure 5.6. Since the solution generation is a purely random process, it is

possible to generate visited solutions but not new solutions during the navigation process.

Two solutions can generate each other and the algorithm can be lost in a cycle, wasting

the iterations during the convergence. To resolve this challenge, we propose to provide some

guidance in the solution navigation process with reinforcement learning. The effect of the RL

guidance is shown in the bottom part of Figure 5.6. With the guidance, the EA algorithm can

find the optimal solution faster. Instead of selecting the operators randomly in the solution
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Figure 5.6: Illustration of the contribution of the RL guidance

generation procedure, we apply a Q-learning based strategy in the operator selection. Q-

learning is a fundamental concept in the field of reinforcement learning, making sequential

decisions to optimize the objective. Q-learning is particularly powerful in situations where

an agent interacts with an environment, learning through trials to achieve long-term goals.

Q-learning is a model-free reinforcement learning algorithm, that requires no knowledge of

the environment’s dynamics or transition probabilities. The basic idea of Q-learning is to

learn a function called the Q-function (or Q-value), which estimates the expected cumulative

reward of taking a particular action in a specific state. The Q-value of a state-action pair,

denoted as Q(s, a), represents the long-term utility of taking action a in state s, captured in

the Bellman equation (5.9):

Q(s, a) = (1− α)Q(s, a) + α[R(s, a) + γmaxa′Q(s′, a′)], (5.9)

where Q(s, a) is the Q-value of taking action a in state s and R(s, a) is the immediate

reward obtained after taking action a in state s. γ is the discount factor, which determines

the importance of future rewards and α is the learning rate or step size which determines to
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what extent newly acquired information overrides old information. s′ is the resulting or new

state after taking action a in state s. Following equation (5.9), the Q-learning algorithm

iteratively updates Q-values based on observed experiences. These updates gradually refine

the estimates of Q-values, guiding the agent toward selecting actions that lead to higher

cumulative rewards in a dynamic manner. During the learning process, the agent explores the

environment by selecting actions according to an exploration-exploitation strategy, such as

epsilon-greedy, balancing between trying new actions and exploiting the current knowledge.

As the agent gains more experience, the exploration rate usually decreases, allowing the

agent to exploit the learned knowledge more effectively. In our problem, the actions of Q-

learning are the solution generation operators and we define different Q-value functions for

different types of operators. More specifically, the crossover Q-value function has 5 subtypes

of operators. The mutation Q-value function has 3 subtypes of operators and the switch Q-

value function has 6 subtypes of operators. Embedded the Q-learning strategy, the algorithm

of the solution generation procedure in the t-th iteration is shown in Algorithm 7.
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Algorithm 7 Q-learning embedded solution generation procedure in iteration t

1: The current solution set S with ns solutions and the Q functions for different type of
operators Qt

c, Q
t
m, Q

t
s.

2: Initialize temporary solution set St = ∅
3: for Soli in S do

Solution generation with crossover operators
4: if rand(0, 1) < Rt

c then
5: Take reference solution Solr
6: Determine optimal crossover operator oc from the Q-value Qt

c: oc =
argmaxa′Qt

c(s, a
′)

7: if rand(0, 1) < ϵt then
8: Perform the optimal crossover operator oc on Soli and derive a new solution

Solti,c
9: else

10: Perform random crossover operator oc on Soli and derive a new solution Solti,c
11: end if
12: Update the state of the environment st+1 based on action oc
13: Update temporary solution set St = St ∪ Solti,c
14: Calculate the immediate reward R(st, oc) based on the objective function improve-

ment of the temporary solution set
15: Update Q-value function: Qt+1

c (st, oc) = (1 − α)Qt
c(s

t, oc) + α[R(st, oc) +
γmaxa′Qt

c(s
′, a′)]

16: end if
17: if rand(0, 1) < Rt

m then
18: Perform solution generation with mutation operators similar to the crossover op-

erators.
19: end if
20: if rand(0, 1) < Rt

s then
21: Perform solution generation with switch operators similar to the crossover oper-

ators.
22: end if
23: end for

The solution generation will go through the element in the current solution set, taking

each of them as the parent solution. We will perform the crossover operators, the mutation

operators, and the switch operators at a certain rate in sequence. Rt
c, Rt

m and Rt
s are the

rates of taking crossover, mutation, and switch operators in the t-th iteration. The detailed

discussion will be provided in Section 5.3.4. Taking the crossover operator as an example,

the operator type will be chosen based on the Q-value with the rate 1 − ϵt, where ϵt is the

hyperparameter represents the rate of taking actions randomly in the Q-learning. Once a new
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action oc is taken at the current state st, the immediate reward R(st, oc) can be calculated

and the Q-value can be updated. Then, the suggested action of the next iteration will be

based on the new Q-value function. The overall architecture of the Q-learning guided EA is

shown in Figure 5.7.

Environment 

EA algorithm

State 𝒮

‘No improvement’, 
‘Improved’ 

RL agent

𝑄: 𝒮 × 𝒜 → ℝ

Reward

▪cost of robots/cobots
▪cost of workstations
▪composite strain
▪actual cycle time 

Derive 
new state

Suggest action

5 crossover operators

3 mutations operators

6 switch operators

Action 𝒜
Solution generation operators

Update 𝑄

Figure 5.7: Overview of Q-learning guided Evolutionary algorithm

Here, the state of the reinforcement environment will be the improvement status of the

evolutionary algorithm. The improvement status means whether the potential solution set of

the problem has an improvement in the overall objective after the new solution is generated

from the current operator. There are two states: ’improved from the currently generated

solution’ and ’not improved from the currently generated solution’. Similarly, the algorithm

will learn which mutation operator and which switch operator to take during the solution

generation procedure. In this way, the Q-learning algorithm guides the evolutionary algo-

rithm dynamically during the optimization procedure.

5.3.4 Dynamic Hyperparameters Adjustment

In both evolutionary algorithm and Q-learning, there are some hyperparameters that will

influence algorithms. These parameters play a crucial role in performance and convergence,

governing various aspects of the algorithm’s behavior and can significantly impact its effec-

tiveness in finding optimal solutions. In this section, we will discuss the effect of choosing

different hyperparameters in the proposed algorithm and briefly provide some conclusions

from our simulated studies.
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In the evolutionary algorithm, the hyperparameters we consider include the number of

candidate solutions in each generation, the choice of parent solutions, and the rate of per-

forming different operators. The number of candidate solutions represents the population

size in each iteration and decides the number of potential optimal solutions we keep in each

iteration. A larger population size can enhance the exploration rate but may increase the

computational overhead. In our simulated study, we take 5, 10, 15 into consideration. Pop-

ulation size 10 has a better performance overall. The choice of parent solutions determines

how visited solutions are selected to reproduce the next generation of solutions. Popular

selection methods include proportional selection, tournament selection, and rank-based se-

lection. Since the objective function can be calculated directly with the selected solution, the

rank-based selection method fits more in our problem setting. The parent solution is selected

based on its objective functions. Regarding the rate of different operators, the mutation op-

erator tends to improve the convergence in the later stage of the optimization convergence

and the crossover operator achieves better improvement in the earlier stage of the algorithm

[2, 146]. We assign a dynamic crossover and mutation rate along the running time of the

algorithm. Specifically, Rt
c = 0.7− tϵ0

mr
, Rt

c =
tϵ0
mr

, where mr is the maximum iteration length.

When it comes to the switch rate, we utilize a fixed value Rt
s = 0.3 and maintain a rate of

switching operation alternatives during the entire optimization procedure.

In the Q-learning, the hyperparameters we consider include the discount factor, the

learning rate, and the ϵ−greedy value. The discount factor determines the importance of

cumulative rewards in the Q-value updates. In the simulated study, the influence of different

discount factors is subtle and we will use a discount factor of 0.5. The learning rate decides

the importance of the reward based on the current action. According to the simulations,

a learning rate of 0.5 fits the algorithm well. The value of ϵ changes the rate of using the

suggested action from the Q-learning. A higher ϵ will add more randomness and enhance

the exploration in the algorithm, while a lower value will speed up the update of Q-value

and improve the exploitation in the algorithm. We use a dynamic ϵ value which decreases

along the running time of the algorithm: ϵt = ϵ0 − tϵ0
mr

, where ϵ0 = 0.2.
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5.4 Real World Scenario Based Case study

In this section, we implement the proposed allocation method in a case study based on a real

world scenario. In an assembly production line of a car factory, we focus on a case where

human workers and a robot/cobot can work together and the allocation of the resources can

be optimized. The total number of tasks in this case is 15 and three workstations are set up

to split the work to different workers. The processing times of different tasks are collected

from the plant’s schedule panel and the ergonomics factors related to different actions are

estimated based on recorded videos of multiple trials of tasks conducted by human workers.

The list of tasks is shown in Table 5.2 and the precedence relationship is shown in Figure

5.8. In this case study, based on the budget and development plan of the plant, it is possible

to have two available robots and one available cobot in the future. Also, based on the plant

production schedule, the cycle time of each workstation can not exceed 60s. In the task

descriptions, we need to notice that the half shaft is a relatively heavy part of the car body

and the lift and movement of the half shaft will cause a large body burden to the human

workers. Intuitively, we should allocate the cobot or robot resources to the half shaft related

tasks, including task f, j, h, i. In the precedence relationship diagram, in Figure 5.8, we can

Table 5.2: Tasks descriptions

Task description
a Get two bracket bolts & engine bracket
b Get blue spline protector
c Place spline protector to transmission seal
d Place engine bracket behind high-pressure wire
e Finger start two bolts for engine bracket
f Get half shaft from stock container
g Insert half shaft into transmission
h Seat half shaft
i Place half shaft on white rotor
j Aside protector
k Dispose of blue protector
l Get two stabilizer bolts
m Get scanner
n Scan barcode on half shaft
o Aside scanner
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observe that most of the tasks have precedent tasks and they have close relationships with

each other. With the large number of constraints caused by the precedence relationship, it

is very likely for the traditional optimization solvers to provide us with infeasible solutions.

On the other hand, the proposed data-driven Q-learning based EA will discover the solution

gradually and only the feasible solutions will be kept in the potential solution set. In Figure

𝑎 𝑏

𝑐

𝑙 𝑚

𝑛

𝑑𝑒

ℎ

𝑜

𝑖 𝑗

𝑘

𝑓

𝑔

Precedence relationship

Figure 5.8: Precedence relationship between the tasks

5.9, one of the optimal final allocations derived from the Q-learning based EA is presented.

There are only two workstations needed, given the system-level cycle time of 60s. The first

workstation has an actual cycle time of 57s and the second workstation has an actual cycle

time of 54s, which results in a well-balanced production system. Also, the available robot

and cobot resources are allocated to the tasks with heavy ergonomic strain involving the half

shaft which meets our expectations. The computational time of the algorithm is relatively

short, taking around 10 minutes to finish 10,000 iterations. The algorithm can be sped up

if the initial solution set includes one or more feasible solutions when the constraints in the

algorithm are hard to satisfy. The convergence performance of Q-learning based EA (Q-EA)

is compared with traditional EA. 10 replications are completed using both Q-EA algorithm
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Get half shaft from stock container
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Figure 5.9: Optimal allocation

and EA algorithm. The results are the average objective function along the iterations. As

shown in Figure 5.10, the Q-EA algorithm has a faster convergence speed and achieves a

higher average optimal objective value. This validates the effectiveness of the guidance of

solution generation of the Q-learning strategy.

Figure 5.10: Objective change along the iterations

5.5 Conclusion

In this work, we formulate and solve an optimal allocation problem of resources in a col-

laborative serial line of production system with multiple workstations. This study can be
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used as a prerequisite study for companies that would like to incorporate their production

systems with novel robotics resources. The precedence relationship among different tasks,

the ergonomic strain of human workers, and the fixed cycle time of the entire system are

taken into consideration. The objective is to optimize the overall performance of the pro-

duction system, including the cost, the worker’s well-being, and the actual throughput of the

system. With the problem well formulated as a combinatorial problem, we propose to adopt

a Q-learning guided Evolutionary Algorithm (Q-EA) to solve the problem. Simulated cases

are conducted and the hyperparameter choice is discussed. Finally, the proposed algorithm

is applied to a real-world case study in a car assembly plant. The proposed Q-EA achieves

higher convergence speed and better objective value compared to the traditional EA algo-

rithm. The final solution is validated by our expectation and can be explained by human

knowledge.

In the future, there are several directions we will continue to work on. First, we plan to

extend the settings of the problem to production systems with buffers. The buffer allocation

will be studied to improve the performance of the system. Second, real-time data can be

collected and accommodated into our algorithm to capture uncertainty in the real-world

production system. Lastly, a more interpretable optimization algorithm can be developed to

further provide insights of the solution navigation process. This will also help the existing

manufacturing plant to improve their current resource allocation.
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Chapter 6

Conclusion and Future Work

Smart systems become increasingly ubiquitous in modern industrial systems, with the in-

vention of advanced sensors and intelligent smart components. The development provides

opportunities for further improvement in the system’s performance and the utilization of

resources. On the other hand, it poses challenges to modeling techniques in engineering sys-

tems. In this thesis, novel data-driven and physics-based modeling techniques are developed

for monitoring, diagnosis, prognosis, and design tasks in smart systems. The objectives of

the tasks are of vital importance and worth investigating for the adaption of smart systems

in the current industrial era. Three main research works are completed and the objectives

are achieved in this dissertation.

In Chapter 2 , a data-driven monitoring method using a deep learning model with time-

to-event data is proposed. Recurrent Neural Network is applied to fit the sequential structure

of time-associated data and an encoding technique is utilized to feed time-to-event data to the

deep learning model. Window techniques are also implemented to deal with the properties of

real-world time-to-event datasets. The prediction error of the target event occurrence time

is reduced, compared to the traditional benchmark models. Furthermore, the underlying

relationships between different event types are inferred from an interpretation strategy.

In Chapter 3 , a data-driven and physics-based diagnosis method in complex structures

was developed. This work handles the existing difficulties of fault diagnosis in complex en-

gineering structures. A Bayesian Optimization method is incorporated with a finite element

model (FE) to solve the structural damages prognosis problem. A nonseparable Multi-



133

output Gaussian process is used as the surrogate function in the Bayesian Optimization to

take the correlation between damages located in neighbor segments. This model takes the

indirect measurements of impedance/admittance from the structure to identify the location

and severity of the damage. Thompson sampling approach is used to guide the search for the

structural damage in the proposed model. With the proposed method, fault identification

can be completed with fewer measurements, and the accuracy of fault detection is promoted.

In Chapter 4 , a physics-based design optimization model in production systems with

collaborative robots as the smart components is presented. This model allocates the tasks in

a production system with multiple workstations and different operating machines. It provides

a framework for task allocation with smart components and solves the optimization model

with a scalable algorithm. The specialties of production systems with smart components

are taken into consideration and the constraints involved from the collaborative robots are

included in the optimization model. Also, the influences of smart components on traditional

production systems are analyzed and illustrated.

In Chapter 5 , instead of allocating robots/cobots to workstations with a fixed set of

tasks, we allocate the tasks to different operating alternatives and form the workstations

based on the updated processing time. The precedence relationship between different tasks

is considered and the cost of implementing robots/cobots and setting up new workstations are

included in the optimization objective. Additionally, we propose a reinforcement learning-

guided evolutionary algorithm to effectively address the combinatorial optimization prob-

lem. This approach allows reinforcement learning to successfully learn the optimal solution

generation operations and guide the solution navigation of the evolutionary algorithm, as

demonstrated in our case study.

In the future, we can focus on data-driven models and optimization in industrial engi-

neering systems. Here are some potential directions:

• Techniques for integrating physical knowledge into AI learning model. By integrating

existing physical knowledge of the system into learning models, the model can achieve

much higher accuracy with fewer data.

• Interpretation techniques for industrial AI models. For industrial environments, people
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only trust the output of AI models if they understand it and can interpret it. Thus,

interpreting the output of the AI model is an important aspect of industrial AI.

• Decision-making models that can handle uncertainty and randomness. Integrated with

data-driven AI models and simulation techniques, optimal decisions can be made under

uncertainty, which is essential due to the stochastic nature of real-world industrial

systems.

• Scalable and time-efficient decision-making models. With the connection of smart

systems, the volume of real-world decision-making is increasing and online decisions

become necessary. Advanced industrial AI methods, such as reinforcement learning

models can be developed to make real-time decisions on large-scale industrial systems.
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