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abstract

Time-of-flight imaging with single-photon cameras has recently gained
popularity in 3D vision. In this dissertation, I study an emerging paradigm
of single-photon imaging for 3D scene reconstruction, where a spatially
distributed set of transient histograms is captured by SPAD sensors with
diffuse lighting and a wide-field-of-view detector. It is indicative of real-
world sensor characteristics and novel imaging applications, yet presents
major algorithmic challenges to 3D reconstruction due to the sophisticated
transient formation model and unstructured sensor positioning. To over-
come these challenges, I develop a new class of reconstruction algorithms
based on the analysis-by-synthesis principle. My dissertation work com-
bines expressive neural scene representations with differentiable transient
volume rendering for the reconstruction of complex scene geometry with
flexible sensor placement. It further incorporates careful sensor modeling
and physics priors to account for non-idealities of real-world imaging
hardware. I demonstrate the effectiveness of this reconstruction approach
with two single-photon 3D vision systems, one for direct line-of-sight
reconstruction using low-cost SPAD sensors, the other for high-speed
non-line-of-sight imaging. My work provides strong evidence that 3D
reconstruction of real-world objects can be achieved using spatially dis-
tributed single-photon cameras, and thus represents a solid step toward
general and practical single-photon 3D vision.
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1 introduction

Reconstructing the 3D shape of real-world objects remains a central prob-
lem in computer vision. Solutions to this 3D reconstruction problem
have evolved into two parallel branches. Image-based modeling leverages a
plethora of visual cues from multiple photographs (e.g., correspondence,
shading, focus/defocus), leading to well-known approaches including
multi-view stereo (Seitz et al., 2006), photometric stereo (Ackermann et al.,
2015), shape-from-X (Grossmann, 1987; Subbarao and Surya, 1994; Zhang
et al., 1999), and the more recent neural radiance fields (NeRF) (Milden-
hall et al., 2021). Conversely, active range scanning combines an active
light source with an imaging sensor, giving rise to widely-adopted com-
putational imaging techniques such as structured light (Geng, 2011) and
time-of-flight (Hansard et al., 2012). Conventional wisdom suggests that
range scanning yields more precise 3D geometry as compared to image-
based modeling at the cost of using specialized, expensive hardware.

An increasingly popular approach for range scanning is time-of-flight
imaging with active single-photon cameras, a form of time-resolved sensors
based on the single-photon avalanche diode (SPAD) technology. This
approach couples a pico-to-nanosecond detector with a fast coherent light
source, illuminates the scene with a very short pulse of light, and mea-
sures the intensity of the light over time as it reflects back from the scene.
The resulting incident wavefront is quantized and recorded, forming a
transient histogram. A typical use case of this approach is single-photon
LiDAR, in which the light source (laser) is highly focused, the detector
with a narrow field of view (FoV) finds the peak in the histogram, and the
sensor reports a single distance value per detector pixel. Accurate recon-
struction with LiDAR requires capturing a dense set of pixels. This can
be achieved by either using raster scanning, which prolongs the imaging
time, or employing a high-resolution 2D detector array, which increases
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Figure 1.1: Comparison of single-photon imaging paradigms. Traditional
single-photon LiDAR for depth ranging (left) consists of highly focused
laser and a detector. The detector records histograms with a dominant peak
from which the depth of a single point can be extracted. By contrast, our
imaging paradigm (right) employs diffuse laser and a wide-FoV detector.
The measured histograms encode richer information about the imaged
scene patch.

the hardware cost.

In my dissertation, I investigate a less known yet emerging paradigm
of single-photon 3D imaging, where a sensor consists of a diffuse light
source and a SPAD detector with wide FoV. These sensors scatter light
towards a potentially large scene patch, and record distributions of times-
of-flight from a continuous range of incident angles. In doing so, rich
information about scene geometry and reflectance is encoded in the en-
tirety of their transient histograms, as opposed to the per-point distance
extracted from a single dominant peak in LiDAR. Figure 1.1 illustrates
the difference between the two imaging paradigms. We hypothesize that
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this new paradigm will likely support sparser and less structured scan
patterns, and reduce the cost of imaging hardware, thereby unlocking new
capabilities of single-photon 3D imaging.

This imaging paradigm has been previously explored in applications
such as non-line-of-sight imaging (Velten et al., 2012), fluorescence lifetime
imaging (Lagarto et al., 2020), and most recently for direct line-of-sight
depth estimation (Jungerman et al., 2022; Sifferman et al., 2023). However,
a key bottleneck that prevents its wide adoption is the lack of an effective
reconstruction framework. This difficulty stems from the sophisticated
imaging model under diffuse lighting as compared to single-photon Li-
DAR. Direct inversion of the imaging model is only possible under highly
restrictive sensor placements, whereas alternative approaches have thus far
only been able to recover simple parametric shapes (i.e., planes) and coarse
depth maps using a single pixel or a small 2D pixel array. Further, the
imaging systems built around this paradigm have been proof-of-concept
in nature, and thus lag far behind image-based 3D vision systems in terms
of generality and practicality.

Towards general and practical 3D vision with single-photon cameras,
my dissertation is structured around the following statement:

Dissertation Statement

Transient histograms captured by a distributed set of single-photon cam-
eras under diffuse lighting can be harnessed to reconstruct complex 3D
scene geometry, thereby supporting new applications with practical imag-
ing systems.

Overview

Towards a general algorithmic framework, I draw insights from the lat-
est development in image-based modeling, and approach 3D reconstruc-
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tion through the lens of analysis by synthesis. In particular, I propose
to use neural implicit functions (i.e., NeRF (Mildenhall et al., 2021) and
NeuS (Wang et al., 2021)) as scene representation, and develop volume
renderers tailored for our imaging paradigm to simulate the transient
histogram formation process. Importantly, the neural representations sup-
port the modeling of arbitrary object shapes, whereas volume rendering
enables flexible positioning of sensors. The resulting algorithms thus
provide a general approach to 3D vision using single-photon cameras.

Towards practical single-photon imaging systems, I showcase the suc-
cess of the reconstruction approach with two hardware prototypes. The
first one is built using commodity SPAD sensors available at low cost and
with low power consumption (Chapter 3). The second one operates at a
real-time rate for high-speed imaging through clever approximation of
optics (Chapter 4). In both cases, the algorithmic framework is customized
to accommodate the non-idealities of the imaging system, either by careful
calibration and modeling of sensors, or by incorporating physics priors as
strong optimization constraints. These prototype systems shed light on
the design of practical 3D vision systems with single-photon cameras.

Organization of the Dissertation

The rest of my dissertation is organized as follows:

Chapter 2 provides the essential background for the development of
imaging and reconstruction approach in subsequent chapters. It starts with
a brief introduction of single-photon cameras, followed by an overview
of the imaging framework of interest and its associated transient forma-
tion model. It then reviews the basics of neural implicit functions as
scene representation, with a focus on NeRF (Mildenhall et al., 2021) and
NeuS (Wang et al., 2021), which I later adapt for 3D reconstruction from
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transients. These preliminaries prepare us for the two practical use cases
of our imaging framework.

Chapter 3 describes an imaging system with low-cost SPAD sensors,
and a learning-based algorithm for the direct line-of-sight reconstruction
of complex scenes. These sensors naturally exhibit diffuse lighting and
wide FoV due to their imprecise optics. I introduce an imaging approach
that leverages this property and reconstructs neural implicit surfaces using
transient volume rendering given sparsely distributed transients. This
approach demonstrates strong qualitative and quantitative results on both
simulated and real-world data, and showcases the potential of low-cost
SPAD sensors for practical 3D vision and imaging.

Chapter 4 presents a physics-inspired deep model for non-line-of-sight
(NLOS) reconstruction with a high-speed imaging system. I first show
that NLOS imaging can be formulated as a special case of the imaging
framework, with the sensors placed on sparse scanlines of a relay wall. I
then highlight the challenges of NLOS reconstruction using a high-speed
imaging system, which motivates a robust learning-based reconstruction
approach that combines a physical model with a volume renderer. The
model learns entirely from simulated data, while generalizing well on
both out-of-distribution simulations and real-world captures.

Chapter 5 concludes the dissertation and discusses several promising
directions for future research.

Key Contributions

The key contributions of my dissertation are summarized as follows:

• I propose a general approach for 3D reconstruction using a dis-
tributed set of single-photon cameras with diffuse lighting and wide-
FoV detectors. It is capable of reconstructing complex scenes with
flexible positioning of sensors under various imaging conditions.
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• I demonstrate encouraging reconstruction results with two real-
world imaging systems designed for line-of-sight and non-line-of-
sight imaging. My work thus represents a solid step towards practical
single-photon 3D vision.
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2 background: single-photon 3d vision

2.1 Single-Photon Cameras
A single-photon camera consists of an active light source (e.g., continuous-
wave or pulsed laser) and a time-resolved detector based on the single-
photon avalanche diode (SPAD) technology. These cameras operate under
the time-of-flight principle, and have recently gained popularity in 3D
vision and imaging due to their single-photon sensitivity, extreme time
resolution, and low power consumption.

In this dissertation, we study single-photon cameras with pulsed laser
and single-pixel SPAD detector. They are often found in SPAD-based LiDAR
systems for depth ranging, with broad applications in autonomous driving,
robotics, wearable sensing, and virtual reality. In this regime, the laser
source emits periodic pulses of light towards the scene. The SPAD in
synchronization with the laser detects at most one returning photon within
each pulse cycle, and records the time of arrival. Following a photon
detection event, the SPAD enters a short dead time to reset itself, during
which it will not be able to detect any photons. Photon timestamps over
many pulse cycles are aggregated and binned into a temporal histogram
(i.e., transient histogram). This histogram counts the number of photons
over discretized time intervals in the range of picoseconds, and can be
thought of as a one-dimensional “image” of the scene.

In the following, we introduce a general form of our imaging framework
with single-photon cameras. Two different instantiations of this conceptual
framework for scene reconstruction are described in subsequent chapters.
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2.2 Imaging Framework
Our single-photon imaging framework is uniquely characterized by diffuse
laser and wide-FoV SPAD detector, and captures a spatially distributed set
of transient histograms for scene reconstruction.

Diffuse Lighting

Our imaging system flash illuminates the scene with a periodic train of
laser pulses. Importantly, the laser power is spread over an illumina-
tion field of view (FoV), allowing the outgoing light to interact with an
extended surface area of the scene. This diffuse lighting condition differ-
entiates our imaging setup from conventional SPAD-based depth ranging,
where the laser is directed to a single scene point. Diffuse laser is often seen
in low-cost proximity sensors as a consequence of imprecise optics, or can
be generated by diverging collimated laser using a diffuser. It also arises
in emerging applications such as fluorescence lifetime imaging (Lagarto
et al., 2020) and non-line-of-sight imaging (Velten et al., 2012).

Wide-FoV Detector

In our framework, the diffuse laser is synchronized with a single-pixel,
wide-FoV SPAD detector, possibly placed at a different location. A wide
FoV can be easily achieved with a lensless or poorly focused detector. The
detector accumulates returning photons from a range of incident angles
within its FoV. The resulting histogram thus reflects the complex interplay
between the diffuse lighting and the geometry and reflectance of a local
scene patch visible from the detector. This is again different from conven-
tional depth ranging, where a detector co-located with the laser source
is focused at the illuminated scene point, and the depth can be directly
read off the histogram via peak finding. In our case, it is not immediately
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clear how to make sense of the histogram for scene reconstruction as it
represents a superposition of signal from numerous scene points.

Distributed Sensing

We capture a scene with our imaging setup by placing the laser and detec-
tor at many different locations and collecting a distributed set of transient
histograms. The laser-detector pairs have known poses, and are activated
one at a time to avoid mutual interference. While each histogram has a
limited FoV, we hypothesize that the full set of measurements will provide
sufficient coverage of the scene needed for detailed reconstruction.

In the following, we describe the transient formation model for our
imaging framework, which lays the foundation for the reconstruction
algorithms we present in subsequent chapters.

2.3 Transient Formation Model
We model the formation of a transient histogram in two steps. We first
derive the transient waveform of a scene by modeling the interaction of
light with scene geometry and reflectance. This waveform is an idealized
version of what we can expect to measure using real hardware. In the next
step, we derive a sensor model that accounts for non-linearities that occur
when capturing transient histograms with real hardware.

Transient Waveform

Given a diffuse laser source at location l, a wide-FoV SPAD detector at
location s, and a scene with surface S, the transient waveform τl,s(t) can
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be written in path integral form as

τl,s(t) =

∫
S

R(x, l, s)G(x, l)G(x, s)δ (∥x − l∥2 + ∥x − s∥2 − ct)dA(x),

R(x, l, s) = ρ(x)fr(x, nx,ωx→l,ωx→s),

G(x, l) = ⟨nx,ωx→l⟩
∥x − l∥2

2
V(x, l),

G(x, s) = ⟨nx,ωx→s⟩
∥x − s∥2

2
V(x, s).

(2.1)

In Equation 2.1, x is a scene point on S, and dA(x) an infinitesimal area
around x. The time Dirac delta function δ compares the light traveling
distance ct to the length of light path l → x → s, with c the speed of
light. The reflectance term R models the refletance property of S, with ρ

the albedo, fr the bidirectional reflectance distribution function (BRDF),
nx the surface normal at x, and ωx→· a unit directional vector originating
from x. The geometry term G, governed by scene geometry, illumination
and detector FoV, captures the quadratic intensity fall-off, foreshortening
effect, and visibility V . V(·, ·) is an indicator function that evaluates to 1
when the two points are visible to each other.

Equation 2.1 may be interpreted as the impulse response of the imaging
system with respect to a scene S. Note that we ignore high-order light
paths and only model direct reflection from the scene surface. Previous
works (Jungerman et al., 2022; Sifferman et al., 2023) have demonstrated
that indirect reflection makes insignificant contribution to the transients.

Sensor Model

The sensor model accounts for laser and detector characteristics when
converting a transient waveform into a transient histogram (Hernandez
et al., 2017). Our sensor model considers the laser pulse, laser power,
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detector quantum efficiency, ambient photon flux, internal detector noise,
pile-up effect, and time jitter.

In practice, the laser pulse is not a perfect impulse and, despite band-
pass filters, the measured transient also captures some constant ambient
light. To model this, we convolve τ(t)1 with the laser’s impulse response
g(t), scaled by ϕscale which absorbs laser power and quantum efficiency
of the detector, and then offset its intensity by ϕbkgd which encapsulates
ambient photon flux and internal detector noise:

τ̃(t) = ϕscale(τ ∗ g)(t) + ϕbkgd. (2.2)

τ̃(t) is subsequently discretized into a histogram of Poisson rates r =

[r1, ..., rB] with B bins. The probability qi of at least one photon falling
inside the ith bin is given by (Coates, 1968)

qi = 1 − exp(−ri). (2.3)

SPADs aggregate photon counts over C laser cycles, with only the
first incident photon being detected in each cycle. This results in pile-up,
or nonlinear distortion of transients, leaving photons arriving at a later
timestamp less likely to be detected (Pediredla et al., 2018). Specifically,
the probability pi of detecting a photon in the ith bin in a cycle is given
by (Pediredla et al., 2018)

pi = qi

i−1∏
k=1

(1 − qk). (2.4)

The photon counts [h1, ...,hB] in a transient histogram h̃ follow a multino-
1We drop the subscript l, s hereafter for clarity.
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mial distribution (Gupta et al., 2019b):

[h1, ...,hB+1] ∼ Multinomial(C, (p1, ...,pB+1)), (2.5)

where pB+1 = 1 −
∑B

i=1 pi, and hB+1 counts the number of cycles without
detected photons. h̃ is subsequently convolved with a discretized time
jitter kernel s to account for the temporal uncertainty of photon detection
events, yielding the final histogram h measured by a SPAD detector:

h[b] =
∑
k

h[k]s[b− k]. (2.6)

Practical Considerations

Our goal in scene reconstruction is to invert the transient formation pro-
cess and recover an appropriate representation of the scene from the
measurements. In particular, this representation is expected to repro-
duce the measured transients when rendered with the transient formation
model. Solving this challenging inverse problem often requires knowing
intermediate quantities in the forward model including the albedo and
BRDF, which in practice are often not available alongside scene geometry.
Likewise, hardware vendors may not disclose certain laser and detector
characteristics needed for accurate sensor modeling. Finally, building an
imaging system in the real world inevitably introduces approximations
and errors to the optics due to practical constraints. In Chapter 3 and 4,
we discuss how we overcome these challenges in the context of direct
line-of-sight and non-line-of-sight scene reconstruction.

2.4 Neural Implicit Representation
Neural representations, as popularized by NeRF (Mildenhall et al., 2021),
enable novel view synthesis and 3D reconstruction by representing the
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scene using a neural network. While the original NeRF representation
encoded view-dependent volumetric effects, alternative encodings have
been proposed to better model geometry and reconstruct surfaces. In
particular, NeuS (Wang et al., 2021) represents the scene as a level set,
allowing for better modeling of surfaces at the expense of not being able
to represent volumetric effects.

Many works extend these ideas to work with different sensing modali-
ties and external supervision, such as depth queues from structure-from-
motion (Deng et al., 2022), RGB images plus continuous-wave time-of-
flight sensors (Attal et al., 2021), only depth information (Ortiz et al., 2022;
Liu et al., 2023), or more recently using only transients of depth-ranging
LiDAR systems (Huang et al., 2023; Malik et al., 2023).

In this work, we adapt NeRF (Mildenhall et al., 2021) and NeuS (Wang
et al., 2021) for scene reconstruction using transients of our imaging frame-
work. In the following, we provide a concise review of their basics.

Neural Radiance Fields

A neural radiance field or NeRF (Mildenhall et al., 2021) represents a scene
as a continuous volume of color and density values. Specifically, a function
fθ : R6 → R4 maps a point x ∈ R3 in space and a viewing direction d ∈ R3

to RGB color c ∈ R3 and volume density σ ∈ R:

(σ, c) = fθ(x, d). (2.7)

fθ is often realized as a multi-layer perceptron (MLP) with learnable
weights θ, and can be rendered into pixel value Ĉ ∈ R3 in an RGB image Î
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using the volume rendering equation (Max, 1995):

Ĉ(r) =
∫∞

0
T(r,u)σ(r(u))c(r(u))du,

T(r,u) = exp

(
−

∫u

0
σ(r(s))ds

)
,

r(u) = o + ud.

(2.8)

In Equation 2.8, the transmittance T models occlusion along a ray r originat-
ing from the camera center o ∈ R3 and in the direction d. In practice, the
integrals are numerically estimated using quadrature, with N importance-
sampled points within pre-defined depth bounds along r:

Ĉ(r) ≈
N∑
i=1

Ti(1 − exp(−σiδi))ci,

Ti = exp
(
−

i=1∑
j=1

σjδj

)
.

(2.9)

In Equation 2.9, Ti is the piecewise transmittance over a ray segment δi
between adjacent samples, and σi and ci are evaluated at the mid-point of
each segment.

The rendered image Î can then be compared with the ground-truth
image I, and θ is learned by minimizing the reconstruction loss

L = ∥Î − I∥2
2. (2.10)

In Chapter 4, we adapt NeRF for non-line-of-sight reconstruction with
a focus on view synthesis. In particular, we propose a transient volume
rendering framework in place of Equation 2.8 to approximate the transient
waveform formation process of our imaging system (Equation 2.1).
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Neural Implicit Surfaces

A neural implicit surface or NeuS (Wang et al., 2021) is a variant of NeRF
tailored for surface reconstruction. It learns an MLP fθ : R6 → R4 that
jointly encodes the signed distance field and radiance field of a scene in
its weights θ:

(ds, c) = fθ(x, d). (2.11)

While locating the precise boundary of an object can be difficult with the
density-based geometry representation of NeRF, the surface S of a scene
is explicitly defined in NeuS as the zero-level set of the learned SDF 2:

S = {x ∈ R3|ds(x) = 0}. (2.12)

Similar to NeRF, fθ can be volume-rendered into RGB images using
Equation 2.8 and 2.9, yet the key difference lies in the estimation of volume
density σ. Unlike in NeRF where σ is directly output from fθ, NeuS models
σ as a function of the signed distance ds at each point x. We provide a
quick derivation below for completeness.

Derivation of σ

From Equation 2.8, we observe that the weights w(u) := T(u)σ(r(u))
characterize the contribution of each point along r to the rendered color
value Ĉ. For unbiased surface estimation, it is natural to enforce that w
peaks at the point r(u∗) where r and S first intersects. We thus set

dw(u∗)

du =
d(T(u∗)σ(r(u∗)))

du = 0. (2.13)
2We slightly abuse the notation and denote the learned SDF as ds.
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In the meantime, note that

dT(u)
du = −T(u)σ(r(u)) ⇒ σ(r(u)) = −

T ′(u)

T(u)
. (2.14)

By plugging Equation 2.14 into Equation 2.13, we arrive at

T ′′(u∗) = 0. (2.15)

Since ds(r(u∗)) = 0, a simple choice of T that satisfies Equation 2.15 is

T(u) = ϕ(ds(r(u))), (2.16)

where ϕ is the sigmoid function3 with

ϕ ′(u) = ϕ(u)(1 − ϕ(u)). (2.17)

Plugging Equation 2.16 and 2.17 into Equation 2.14, we obtain

σ(r(u)) = (ϕ(ds(r(u))) − 1)︸ ︷︷ ︸
<0

d ′
s(r(u))︸ ︷︷ ︸

nr(u)

r ′(u)︸ ︷︷ ︸
d

, (2.18)

To ensure that σ is always non-negative, we modify Equation 2.18 by
clamping σ above zero:

σ(r(u)) = max((ϕ(ds(r(u))) − 1)r ′(u)d, 0). (2.19)

In Chapter 3, we adapt NeuS for direct line-of-sight reconstruction with
a focus on shape recovery. Our method renders transients as opposed to
RGB images, and our rendering equation models surface reflectance as
opposed to radiance.

3Without loss of generality, we omit the temperature α for clarity.
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3 direct line-of-sight reconstruction with
low-cost spads

In this chapter, we describe the first use case of our imaging framework
for direct line-of-sight scene reconstruction using low-cost SPAD sensors1.

3.1 Introduction
Low-cost single-photon cameras have recently become available as com-
mercial products. They include one or more SPADs paired with an eye-safe
diffuse light source (e.g., an infrared VCSEL laser), are very small (<20
mm3), inexpensive (<$5 USD), and power efficient (<10 milliwatts per
measurement). Notable examples include the TMF8820 from AMS2, and
the VL53L8CH from ST Microelectronics3. They are sold as commod-
ity proximity sensors, and some can be configured to report transient
histograms. These sensors have proven successful for material classifica-
tion (Becker and Koerner, 2023), human pose recognition (Ruget et al.,
2022), and simple shape recovery (i.e., a planar surface) (Jungerman et al.,
2022; Sifferman et al., 2023).

Compared to laboratory-grade single-photon cameras, however, these
low-cost SPADs lack precise optics, calibration, and timing characteristics
and have an order of magnitude lower temporal resolution. In particular,
they exhibit large illumination and detector FoVs with the low-quality

1This is joint work with Carter Sifferman and Sacha Jungerman, under the supervision
of Michael Gleicher, Mohit Gupta and Yin Li. Fangzhou led the project, developed the
algorithm, performed data simulation, conducted most experiments, and prepared the
results. Carter co-led the project, built the hardware prototype, captured real-world data,
analyzed the baselines, and prepared the figures. Sacha captured real-world data and
prepared the figures. All participants designed the study, interpreted the results, and
drafted the paper that is in submission at the time of writing.

2https://ams.com/documents/20143/6015057/TMF882X_DS000693_8-00.pdf
3https://www.st.com/resource/en/datasheet/vl53l8ch.pdf

https://ams.com/documents/20143/6015057/TMF882X_DS000693_8-00.pdf
https://www.st.com/resource/en/datasheet/vl53l8ch.pdf
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Low-Cost Proximity Sensor Captured Scene Neural SDF Scene Reconstruction

Captured Transients

Rendered Transients

Minimize

5mm Breakout Board

Sensor

(TMF8820)

Figure 3.1: Low-cost single-photon imaging. We demonstrate that mea-
surements from spatially distributed low-cost single-photon proximity
sensors (left) can be used to reconstruct 3D shape of real world objects
(right). Our method combines a differentiable image formation model
and neural rendering to recover 3D geometry based on measurements
(transient histograms) from sensors with known poses. This is done by
minimizing the difference between the observed and rendered sensor
measurements. For clarity, a subset of sensor poses and measurements
are shown.

laser and lens, and the sensor model and post-processing on-board are
near black-box. These non-idealities break the conventional depth rang-
ing model and have hindered the wide adoption of these sensors for 3D
imaging in the wild.

Contributions

In this work, we address the problem of reconstructing 3D shape of arbi-
trary Lambertian objects from a collection of spatially distributed, low-cost
single-photon cameras with known poses. In particular, this capture setup
represents a special case our proposed imaging framework with co-located
laser and detector for each transient, and is reminiscent of multi-view
stereo and NeRF-like systems for conventional RGB cameras. A key dis-
tinction between our system and multi-view image or scanning LiDAR
based systems, however, is that our measurements consist merely of a
few hundred pixels sparsely distributed in space, as opposed to capturing



19

dozens of RGB or transient images, each with millions of pixels. This is a
major overhaul of imaging paradigms for 3D reconstruction and opens up
new opportunities for single-photon 3D vision.

To support our novel 3D imaging system, we present an effective re-
construction algorithm that combines a neural signed-distance-field scene
representation, a differentiable transient formation model for practical
single-photon cameras, and an optimization scheme following the analysis-
by-synthesis principle. Figure 3.1 illustrates our sensor, imaging setup,
and reconstruction approach. We show that our approach can successfully
recover complex 3D shapes with simulated data. We further demonstrate
3D object reconstruction from real-world captures, utilizing measurements
from a low-cost, off-the-shelf proximity sensor.

Our setup extends recent low-cost SPAD imaging systems (Jungerman
et al., 2022; Sifferman et al., 2023) in two directions. First, our system
consists of multiple posed sensors as opposed to a single sensor. Second,
it is capable of capturing and reconstructing complex, non-parametric
scenes as opposed to the parametric geometry of a single plane. With
these upgrades, our system marks a substantial step towards practical 3D
vision using commodity proximity sensors.

3.2 Related Work

SPAD-based LiDAR Systems

SPAD-based LiDAR systems capture a spatiotemporal volume of the scene
using a single pixel with a galvo for raster scanning, or using a 2D pixel
array. These systems have found wide applications, ranging from au-
tonomous driving 4 to depth sensing on smartphones 5. Recent work has

4https://www.sony-semicon.com/en/products/is/automotive/tof.html
5https://developer.apple.com/documentation/avfoundation/additional_

data_capture/capturing_depth_using_the_lidar_camera

https://www.sony-semicon.com/en/products/is/automotive/tof.html
https://developer.apple.com/documentation/avfoundation/additional_data_capture/capturing_depth_using_the_lidar_camera
https://developer.apple.com/documentation/avfoundation/additional_data_capture/capturing_depth_using_the_lidar_camera
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focused on the robust reconstruction of depth and albedo (O’Toole et al.,
2017; Heide et al., 2018), the analysis of optimal incident flux (Gupta et al.,
2019b) and mitigation of non-linear distortion due to pile-up (Pediredla
et al., 2018; Gupta et al., 2019a), denoising and super-resolution of depth
reconstructions (Lindell et al., 2018; Peng et al., 2020; Mora-Martín et al.,
2023), and the compression of transients for efficient in-sensor processing
and data transmission off sensor (Gutierrez-Barragan et al., 2022, 2023).
Our imaging model generalizes the conventional depth-ranging model
(focused light and detector) and investigates a new imaging framework
(diffuse light and wide-FoV detector), and further demonstrates the feasi-
bility of 3D reconstruction with low-cost SPAD sensors.

3D Imaging with Low-Cost SPADs

With cheap SPAD sensors becoming commonplace, recent works have in-
vestigated their use for 3D imaging. Callenberg et al. (2021) demonstrate
that high-resolution depth imaging using low-cost SPADs is possible with
some additional hardware. A low-cost SPAD has also been used to aug-
ment an RGB SLAM system (Liu et al., 2023). Other works learn to recover
geometric information from low-cost SPAD measurements, such as 3D
human pose (Ruget et al., 2022).

Most relevant to our work, Jungerman et al. (2022) use differentiable
rendering to recover two degrees of freedom of a planar surface from a
single low-cost SPAD transient histogram. Sifferman et al. (2023) extend
this method to fully recover a planar surface and its albedo, from a single
measurement comprised of 9 histograms from a multi-zone low-cost SPAD.
Our method extends this line of work by learning neural representations
to represent arbitrary scene geometry.
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3.3 Method
The reconstruction problem we attempt to solve is extremely challenging.
Unlike in conventional LiDAR where the depth of a scene point can be
directly read off the histogram via peak finding, a transient from our
system represents the superposition of light reflected from numerous
scene points, as illuminated by a diffuse laser, and is further contaminated
by non-idealities of the detector (e.g., pile-up). The direct inversion of
the signal is thus a highly ill-posed problem. Further, we cannot adapt
methods from the non-line-of-sight imaging literature (O’Toole et al., 2018;
Lindell et al., 2019; Liu et al., 2019b) as they only support dense 2D scans,
whereas out system uses a distributed, sparse and unstructured set of
measurements.

To overcome these challenges, we resort to an analysis-by-synthesis
approach based on differentiable rendering. Our approach allows flexible
positioning of sensors and accurate modeling of histogram formation,
thereby enabling high-quality reconstruction of scene geometry. We now
describe our reconstruction algorithm in detail.

Neural Scene Representation

Following NeuS (Wang et al., 2021), we represent the scene geometry as a
signed distance function (SDF), parameterized as a multi-layer perceptron
(MLP) fθ : R3 → R, with θ as its weights. fθ maps the position-encoded
(PE) xyz-coordinates of a point x to its signed distance ds:

ds = fθ(PE(x)). (3.1)

Compared to Jungerman et al. (2022) and Sifferman et al. (2023), this
neural SDF allows our method to represent scene geometry beyond simple
parametric shapes as the level set S = {x ∈ R3|fθ(x) = 0}.
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Transient Volume Rendering

The key idea behind our analysis-by-synthesis approach is to render fθ
into transients and compare them with those captured by our system. To
adapt Equation 2.1 for the rendering of fθ, we first rewrite it in angular
integral form as

τ(t) =

∫
Ω

ρ

π

V(x)⟨−ω, nx⟩
∥x∥2 δ

(
∥x∥2 −

ct

2

)
dω, (3.2)

where ω are ray directions in the sensor FoV Ω, and x the point where ω

intersects with the object surface S (∞ if no intersection). For simplicity,
we assume a learned spatially uniform albedo ρ and Lambertian BRDF
fr = 1/π 6.

Inspired by NeRF (Mildenhall et al., 2021) and NeuS (Wang et al., 2021),
we approximate Equation 3.2 via volume rendering to resolve surface
discontinuities, enabling the optimization of θ via gradient descent:

τ̂(t) =

∫
Ω

ρ

π

T 2(t)σ(p(ω, t))⟨−ω, np⟩
∥p(ω, t)∥2 dω. (3.3)

Here, p(ω, t) = ct
2 ω are points along ω, the volume density σ is a func-

tion of fθ as in Wang et al. (2021), and the transmittance T is given by

T(t) = exp
(
−

∫ t

0
σ(p(u))du

)
. (3.4)

In practice, we discretize τ̂(t) over the transient bin intervals {[ti, ti+1)}
B
i=1

and work with the histogram τ̂ = [τ̂1, ...τ̂B], where

τ̂i =

∫
Ω

ρ

π

∫ ti+1

ti

T 2(t)σ(p(ω, t))⟨−ω, np⟩
∥p(ω, t)∥2 dtdω. (3.5)

6This assumption may be relaxed to allow more expressive BRDF models such as the
Phong reflection model (Phong, 1975).
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We estimate the intractable Equation 3.5 via Monte Carlo sampling of
ω and subsequently of p(ω, t).

Similar to Mildenhall et al. (2021) and Wang et al. (2021), the sampling
of p(ω, t) is weighted by a probability density function (PDF) over the
equally sized bin intervals. This PDF is proportional to the per-bin weights
wi(ω) given by

wi(ω) = exp
(
−

i−1∑
j=1

σj(ω)∆

)
αi(ω), (3.6)

where σi(ω) is evaluated at the mid-point of the ith bin along ω, ∆ is the
bin size in distance, and

αi(ω) = (1 − exp (−σi(ω)∆)) (3.7)

is the opacity along ω for the ith bin.
We extend this idea to the importance sampling of ω. Specifically, the

sampling PDF over a uniform partitioning of FoV Ω is proportional to the
cumulative weights w(k)(ω) over rays ω(k) drawn from each partition k:

w(k)(ω) =

B∑
i=1

w
(k)
i (ω). (3.8)

Intuitively, this allows us to point more rays at high-density regions occu-
pied by the object surface.

Differentiable Sensor Modeling

Modeling sensor behavior is particularly important for our analysis-by-
synthesis approach. This is because the synthesis targets τ are not deter-
mined by the scene geometry alone but reflect the complex interplay of
geometry with sensor non-idealities including pulse shape, pile-up and
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time jitter. To this end, we cascade τ̂ to a differentiable sensor model Γ to
simulate the transformation applied by the sensor to raw waveforms.

Specifically, Γ closely follows the sensor model in Section 2.3; Equa-
tions 2.2-2.4 are differentiable and applied sequentially on τ̂, yielding
per-bin photon detection probabilities p̂ = [p̂1, ..., p̂B]. Instead of sampling
photon counts using Equation 2.5, we directly convolve p̂ with the jitter
kernel as in Equation 2.6. This allows us to sidestep the non-differentiable
sampling step while producing an unbiased estimate of the transient ĥ for
loss evaluation:

ĥ = Γ(τ̂). (3.9)

Optimization Objectives

The optimization of θ is driven by three loss terms. First, the histogram
reconstruction loss Lhist minimizes the L1 distance between ĥ and h:

Lhist =

B∑
i=1

|ĥi − hi|. (3.10)

Second, the Eikonal loss (Gropp et al., 2020) LEikonal encourages fθ to
approximate an SDF:

LEikonal = Ex(∥∇x(fθ(x))∥− 1)2. (3.11)

Finally, the total variation regularizer (Mu et al., 2022) LTV penalizes
floaters in empty space:

LTV = Eω

B−1∑
i=1

| logαi+1(ω) − logαi(ω)|. (3.12)
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The combined loss function L is thus given by

L = Lhist + λEikonalLEikonal + λTVLTV , (3.13)

where λEikonal and λTV are the respective loss weights.

3.4 Experiments
We demonstrate the effectiveness of our method for 3D geometric recon-
struction of various objects in simulation, and in the real world with a
low-cost SPAD on scenes of varying geometry and texture. We provide
qualitative and quantitative results for both settings.

The rest of this section is organized a follows. We first describe the
implementation details of our method and discuss the baselines and eval-
uation metrics. We then present our simulated experiments, followed
by a sensitivity analysis to understand the impact of imaging conditions.
Finally, we discuss our hardware prototype and provide results on real-
world experiments.

Implementation Details

We use an 8-layer MLP with 256 hidden units as our SDF, fθ, and initialize
it as a sphere, centered at the origin with radius 0.3m, using geometric
initialization (Atzmon and Lipman, 2020). For each transient, we sample
256 rays ω over Ω and sample 256 points per ray. We set λEikonal to
0.1 across all experiments and set λTV to 0 and 0.01 respectively for the
simulated and real-world experiments. We train fθ for 300, 000 steps using
Adam (Kingma and Ba, 2014) with a mini-batch size 2, a learning rate
0.0005, and cosine decay. The learned SDFs are converted to meshes using
Marching Cubes (Lorensen and Cline, 1987).
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Baselines

We compare our method to two baselines: reprojection (Heide et al., 2018;
Gupta et al., 2019b) and space carving (Kutulakos and Seitz, 2000; Tsai
et al., 2017). We briefly describe these baselines.

Reprojection, also known as back-projection, reconstructs a scene as a
point cloud and is the de facto standard for depth ranging. We compare
to two forms of reprojection. The peak method finds the distance d cor-
responding to the histogram bin with the highest intensity. For a sensor
at position s with an outwards pointing optical axis u, a point is placed
in the scene at position s + du. The threshold method works in the same
way but finds d by locating the lowest-index bin with intensity above a
threshold tp. If no bin passes the threshold, no point is projected.

Space carving reconstructs a scene as a voxel grid. Like thresholded
reprojection, it finds the distance d corresponding to the lowest-index bin
with intensity above a threshold ts. All voxels in the sensor’s FoV and
nearer than d are marked empty, along with voxels outside the FoV. Voxels
in the FoV and further than d are marked as occupied. The carved scene
is the union of the occupied set for all sensors.

In our simulated experiments, tp and ts are scaled alongside relevant
sensor parameters (bin count, FoV, power, and number of cycles) to remain
consistent. To ensure strong baselines for real-world experiments, we per-
form a brute-force search over tp and ts and choose values that minimize
Chamfer distance over the entire real-world dataset. Space carving voxel
size was set to 1.0cm.
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Evaluation Protocol

Following NeuS (Wang et al., 2021), we evaluate all methods using Cham-
fer distance dChamfer between two point clouds X and Y:

dChamfer(X, Y) =
∑
x∈X

min
y∈Y

∥x− y∥2︸ ︷︷ ︸
X→Y

+
∑
y∈Y

min
x∈X

∥x− y∥2︸ ︷︷ ︸
Y→X

. (3.14)

We report standard (two-way) Chamfer on simulated data. For real-
world captures, we report Chamfer in both directions to evaluate the
quality of reconstruction. Prior to Chamfer calculation, we convert ground-
truth meshes and reconstructions from our method to point clouds by
drawing 5 million points uniformly at random on the mesh surface. For
space carving, occupied voxels are converted to points if they touch unoc-
cupied space, excluding the edge of the grid.

Simulated Experiments

Experiment Setup

We simulate transients for eight scenes of varying complexity using the
image formation model in Section 2.3. The objects are centered on the
ground plane (z = 0) with the largest dimension ≈ 0.3m. Sensors with a
conical FoV are uniformly distributed on a hemisphere at the origin with a
radius of 0.5m, and are all pointed at the origin. In our simulation, N = 256,
B = 256, ∆ = 5mm, FoV = 30◦, ϕscale = 1, ϕbkgd = 0.001, C = 5000 and
ρ = 0.8. The laser pulse, g, has a full-width-at-half-maximum (FWHM)
of 50ps, and s is a tabulated PDF obtained from experiments Hernandez
et al. (2017). The sensor parameters are deliberately chosen to reflect the
characteristics of low-cost sensors.
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Chamfer Distance (mm) ↓
Method Armadillo Bear Bunny Digit Einstein Skull Soap Sphere

Reprojection (Peak) 54.29 40.36 34.95 55.85 43.25 48.90 51.71 51.07
Reprojection (Threshold) 65.43 60.72 54.05 60.64 61.31 65.14 68.74 63.16
Space Carving 34.78 24.53 22.29 45.44 26.60 25.49 21.44 25.47
Ours 3.93 5.95 3.84 3.27 3.51 3.22 3.23 3.77

Table 3.1: Quantitative results on simulated data. Our method more
accurately recovers 3D shapes than baselines across 8 objects.

Reconstruction Results

Table 3.1 summarizes the quantitative results of all methods. Our method
achieves an average Chamfer distance of < 5mm, an order of magnitude
lower than all baselines. A key reason is that the baselines only use depth
information from a single histogram bin, whereas our method makes
effective use of the entire waveform, which contains rich geometry cues
about a large scene patch.

We provide visualizations of our results in Figure 3.2. Our method
recovers global scene structure as well as local geometry details. In con-
trast, reprojection yields sparse point clouds without sufficient coverage
of the scene. While space carving produces dense reconstructions, the
occupancy grid only represents an envelope of the scene, leaving it difficult
to recognize the precise shape of an object.

Surface Normal Estimation

Moving beyond the 3D shapes, we further examine the surface normal
of our reconstructed 3D objects. The surface normal of a point x on the
reconstructed mesh is estimated as

ñx =
∇x(fθ(PE(x)))

∥∇x(fθ(PE(x)))∥ , (3.15)
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Figure 3.2: Qualitative results on simulated data. Our method recon-
structs dense and detailed 3D shapes. Space carving provides only hulls
of a target shape, and is prone to carving away extra space when thin
structures are present. Reprojection yields sparse points.
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Figure 3.3: Visualizations of surface normals for simulated data. Our
method correctly estimates surface normals in flat regions. Error mainly
occurs at edges and depth discontinuities. We hypothesize that sensors
with higher temporal and spatial resolution are needed to detect rapid
changes in surface normals.

where fθ is the learned SDF and PE denotes the positional encoding func-
tion. The error ex w.r.t. the ground-truth normal nx is given by

ex = |⟨nx, ñx⟩|. (3.16)

We provide visualizations of surface normals for simulated data in
Figure 3.3. Our method can successfully recover smoothly varying nor-
mals. Error typically occurs at edges and depth discontinuities with fast-
changing normals. We hypothesize that sensors with higher temporal and
spatial resolution are needed for more accurate surface normal estimation.
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Figure 3.4: Sensitivity analysis of our method compared to baselines
across a range of imaging parameters. In almost every case, our method
outperforms baseline methods on Chamfer distance. Missing datapoint in
(d) indicates that our method failed to converge. Illumination power (e)
is unit-less as it also absorbs factors like quantum efficiency and does not
map directly to any real world parameter.

Sensitivity Analysis

We perform extensive experiments to understand the robustness of our
method in comparison to baselines under varying sensor parameters in
simulation. All experiments are based on the Bunny scene and the pa-
rameters are varied one at a time while other parameters remain fixed at
the base condition as described in Section 3.4. To ensure strong baselines
for every sensor configuration, we calibrate the thresholds tp and ts for
the projection (threshold) and space carving baselines respectively per
reconstruction. We perform a brute force search over possible thresholds
and report the best Chamfer achieved. As this amounts to calibrating on
the test set, the numbers reported represent the best possible performance
of the baseline methods on the given data. The results of this sensitivity
analysis are presented in Figure 3.4. In what follows we discuss some of
the main findings.
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Sensor Placement

We study two key parameters that control sensor placement: the number
of views and the minimum elevation angle at which the sensors are placed.
Our method consistently outperforms all baselines in Chamfer distance
by an order of magnitude across a broad range of parameter choices.
In particular, our method readily supports as few as 128 views above a
considerably large elevation angle of 30◦ without harming reconstruction
quality. This robust gain in performance confirms that our method takes
advantage of broad-band signal in transients not exploited by the baseline
methods.

Temporal Resolution

Our system takes advantage of the temporal information in transient
histograms, and therefore benefits when that information is present at
a high resolution. Because of this, our method outperforms baselines
by a very wide margin at a small bin size, but the margin vanishes as
bins become wider than 2cm (equivalently 66ps), because decomposing
the temporal signal becomes impractical beyond this limit. Fortunately,
today’s commodity SPADs operate at a smaller bin size (∼ 40ps). Baseline
methods show no performance gain at small bin sizes, as they do not take
advantage of the temporal resolution.

Angular Resolution

Our system resolves spatial resolution from wide-FoV sensors by taking
advantage of the time dimension. In this regime, the optimal sensor field-
of-view size is not obvious: a smaller FoV means more highly constrained
geometry, as each histogram images a smaller region, but too small of a
field-of-view means a lack of coverage and under-constrained geometry.
We find that an angular resolution in the 30◦ to 60◦ range is optimal for
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reconstructing 3D geometry with our method on the bunny scene. Repro-
jection based methods benefit more from a smaller field-of-view, while
space carving performs best with a wider field-of-view so that space is
sufficiently carved away. In every case, our method outperforms baselines
by a wide margin.

Signal-to-noise ratio (SNR)

We consider three parameters that jointly impact SNR: illumination power,
ambient flux, and number of illumination cycles. Our method again out-
performs all baselines by a significant margin across all test conditions.
Notably, the baselines fail or perform considerably worse under high am-
bient flux, as signal photons are blocked by background photons due to
pile-up. By contrast, our method is robust against a broad range of ambient
flux levels, as we model the effects of ambient flux directly.

Hardware Prototype

We use the SPAD-based AMS TMF8820 proximity sensor (AG), which
retails for $10 USD. We connect the sensor to a microcontroller via I2C and
use the AMS-provided driver to extract transient histograms.

The sensor contains a total of 216 SPADs, which are pooled onboard
the sensor into 3 × 3 zones, each of which images a different FoV. The
sensor captures one transient histogram for each zone. We pool histograms
from all zones, which is equivalent to capturing one wide-FoV histogram
per-measurement as SPADs do not suffer from readout noise (Zappa et al.,
2007). In doing so, we avoid inter-histogram interference previously ob-
served by Sifferman et al. (2023) and avoid the need to model individual
fields-of-view of the sensor, which we empirically observed to have soft
and poorly specified boundaries. We slightly modify our method to ac-
commodate the AMS TMF8820 sensor used in real-world experiments.
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Laser Impulse

The laser impulse response of the TMF8820 is not Gaussian and varies
slightly between measurements. Fortunately, the sensor captures the shape
of its laser impulse for each measurement in a “reference histogram”. We
record this histogram for each measurement and incorporate it into our
forward model by cross-correlating the idealized scene response with this
recorded reference histogram. We observe that the bin size ∆r of the refer-
ence histogram is smaller than the bin size ∆ of the transient histograms
captured by the sensor. To account for this, we scale the reference his-
togram in the temporal dimension by a factor∆r/∆ before cross-correlation.
Further, we find that it is necessary to temporally shift the reference his-
togram by a fixed amount ϕdelay before correlation.

To calibrate the parameters ∆, ∆r, and ϕdelay, we perform the one-off
intrinsic calibration procedure separately introduced by Sifferman et al.
(2023). The TMF8820 sensor is pointed at a planar surface from a range
of known distances and angles-of-incidence. A differentiable render-and-
compare method is used to optimize for the unknown sensor intrinsic
parameters given known planar geometry.

Pile-up Correction

While our forward model assumes that the target transients exhibit non-
linear distortion due to pile-up, the TMF8820 sensor performs pile-up
correction on-sensor, and it cannot be disabled. To accommodate this, we
incorporate the differentiable Coates’ correction (Coates, 1968) as a final
step in the forward model.
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Microcontroller TMF8820 Sensor

3D Printed
Mount

Target Object

Sensor
(see below)

Robot Arm

Figure 3.5: Hardware prototype. To capture real-world data from a wide
set of viewpoints, we mount the TMF8820 proximity sensor to a robot arm.
Forward kinematics of the robot are used to gather sensor pose.

Real-World Experiments

Experiment Setup

We capture a real-world tabletop dataset of eight objects of varying geom-
etry and texture. To capture many posed views of the target object, we
attach the sensor to a Universal Robots UR5 robot arm (Figure 3.5). We
program the arm to automatically move to a set of poses and record sensor
measurements at each pose. To obtain sensor poses, we use the forward
kinematics of the robot, which are accurate to ±0.5mm (Pollák et al., 2020).
Each object is captured from between 128 and 240 viewpoints. Five of the
objects are simple geometric primitives, for which we manually generate
ground-truth meshes based on the dimensions of the target object and
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Chamfer Distance (mm) ↓ Rec → GT / GT → Rec
Method Big Box∗ Block∗ Pyramid∗ Toy Container† Cereal Box†

Reproj. (Peak) 77.4 24.9/52.5 51.8 12.8/39.0 94.7 17.5/77.1 71.0 24.9/46.0 49.3 17.3/31.9
Reproj. (Thresh.) 67.5 14.8/52.7 52.3 8.5/43.8 75.4 5.9/69.5 52.4 8.9/43.5 51.6 19.2/32.4
Space Carving 67.9 35.1/32.8 69.2 33.4/35.8 80.1 39.5/40.6 98.9 52.8/46.0 44.1 24.4/19.6
Ours 12.5 6.1/ 6.4 9.8 5.6/ 4.2 18.4 9.0/ 9.3 11.5 5.8/ 5.6 16.3 8.3/ 8.0

Table 3.2: Quantitative results on real-world captures. Our method more
accurately reconstructs real-world objects with homogeneous (*) and rich
(†) texture. Reprojection yields sparse and unevenly distributed points,
harming one-way Chamfer from GT to reconstruction.

measurements of its position from the robot’s forward kinematics. Meshes
are trimmed to an axis-aligned bounding box 16cm larger than the target
object in each dimension before the Chamfer distance calculation.

Reconstruction Results

As seen in Table 3.2, our method outperforms all baselines by a wide
margin as measured by two-way Chamfer distance. While reprojection is
at times competitive in one-way distance from reconstruction to ground
truth, it performs substantially worse in the opposite direction owing to
the sparse and unevenly distributed point cloud generated, as visualized
in Figure 3.6. While space carving outperforms reprojection on simulated
data under a highly structured sensor pose distribution (i.e., all sensors are
facing the center of the object), it yields poor results on real-world scenes,
in which we vary sensor orientation by ±10◦ to emulate real-world capture
conditions and increase coverage. By contrast, our method benefits from
the more varied sensor poses as is shown in Figure 3.7.

Further, our method is surprisingly robust to violation of assump-
tions made about surface reflectance; it successfully reconstructs non-
Lambertian objects with rich texture despite assuming Lambertian BRDF
with a spatially uniform albedo. These include both simple shapes (Toy
Container in Figure 3.6 and Cereal Box) and challenging objects with
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Figure 3.6: Qualitative results on real-world captures. Our method again
attains the highest reconstruction quality. Poses in column two are sub-
sampled by a factor of two for clarity.

complex geometry (Spray Bottle in Figure 3.6). We hypothesize that the
overlapping FoVs of distributed sensors help constrain the optimization
of our model and encourage a plausible reconstruction that best explains
all transients.

Our method falls short on highly specular scenes, such as the glossy
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Sensors Face Center
Space Carving Space CarvingOurs Ours

±10° Variation in Sensor Angle

Chamfer: 26.5 Chamfer: 18.4Chamfer: 80.1Chamfer: 40.6

Figure 3.7: Variation in sensor pose facilitates accurate reconstruction.
Space carving performs more poorly when sensor poses include some
variation in target point, while our system takes advantage of the increased
view diversity and coverage.

Bust
Reference Ours Space Carving Reference Ours Space Carving

Kettle

Figure 3.8: Failure cases. Because our reconstruction method assumes a
Lambertian surface, it fails to reconstruct highly specular scenes, such as
a glossy white bust (left) or mirror-finish kettle (right).

white bust and mirror-finish kettle in Figure 3.8. Nevertheless, it compares
favorably to baseline methods and often yield meaningful shapes that may
serve as an initial guess. We conjecture that proper lighting models and
carefully distributed sensor poses are essential to the reconstruction of
these challenging scenes.

Overall, our strong results on both simulated and real-world datasets
validate our modeling approach and demonstrate a promising single-
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photon 3D vision system for real-world scene reconstruction.

3.5 Conclusion and Discussion
We presented a method for recovering 3D geometry based on measure-
ments from distributed single-photon cameras realized using low-cost
proximity sensors, unlocking a new avenue of granular sensing on existing
commodity hardware. Despite assuming spatial uniform reflectance and
albedo, our method is robust to rich textures (Fig. 3.6) and compares favor-
ably to baseline methods for reconstructing challenging scenes with high
specularities (Fig. 3.8). Future work will investigate recovering spatially
varying reflectance or incremental learning of geometry as new measure-
ments become available (Sucar et al., 2021; Ortiz et al., 2022), enabling
applications like real-time mapping and SLAM. Our method may be par-
ticularly relevant in applications such as robotics and wearable computing,
where the small size, low power requirements, and robust hardware of
proximity sensors are very valuable.

Beyond Lambertian Assumption

Our method assumes a spatially uniform Lambertian BRDF, but in prac-
tice can effectively reconstruct objects with spatially varying albedo and
slightly glossy appearance (e.g., the spray bottle). In theory, our method
can easily be adapted to incorporate a parametric lighting model. Recovery
of the parameters of such a model are likely possible because, by sharing
information among many observations, the BRDF is effectively sampled at
many incident and exitant angles. An intriguing direction for future work
is investigating which BRDF parameterizations can be recovered with our
imaging setup, and the effect of the reflectance model on reconstruction
quality. We suspect that a non-parametric NeRF-like BRDF would not be
suitable as it does not sufficiently constrain the optimization. A parametric



40

lighting model, e.g., Phong (Phong, 1975) or Oren-Nayar (Oren and Nayar,
1994) may appropriately constrain the optimization while allowing the
model to learn a more accurate scene representation.

Runtime Efficiency

Our method takes on the order of hours to reconstruct a scene, making
it unsuitable for real-time applications in its current state. Future work
should investigate ways to speed up forward rendering and model training,
such as using plenoxels (Fridovich-Keil et al., 2022), multi-resolution hash
encodings and custom CUDA kernels (Wang et al., 2023). Improved
importance sampling and better initialization schemes would likely yield
modest improvements in convergence time. Another option is to render
only summary statistics of the histogram (e.g., mean, peak locations or
widths) rather than the entire histogram, which would likely be faster to
render at the expense of yielding a lower-quality reconstruction.

Calibration of Sensor Pose

In this work, we used an industrial robot arm to gather posed sensor
measurements. We chose this modality as it is guaranteed to provide
highly accurate sensor poses, and allows control over precise sensor place-
ment. For applications like wearable computing, camera poses might be
pre-calibrated. Alternatively, the low-cost single-photon camera could be
combined with a sensor-based localization system (e.g., an IMU based (Yi
et al., 2007) or a camera based (Mur-Artal et al., 2015) system) to recover
camera pose, a setup which is standard in related works (Mildenhall et al.,
2021; Ortiz et al., 2022). Such a capture setup would allow capture of more
organic and large scale scenes, which more closely mimic the potential
use cases of the sensor (e.g., on mobile robots and drones).
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Comparison to Other 3D Imaging Modalities

Our work provides a low-cost 3D imaging system using single-photon
cameras. We provide detailed comparisons between our method and base-
line methods, but do not compare our reconstructions to those gathered
from other 3D modalities, such as continuous wave time-of-flight (Attal
et al., 2021), LiDAR (Huang et al., 2023) or visual SLAM (Macario Barros
et al., 2022) and multi-view stereo (Seitz et al., 2006) with conventional
RGB images. Future work should provide a comparison to these other
modalities to provide insights into the niche (in terms of accuracy, size,
power, etc.) filled by each.

Commodity Sensors

One challenge for future work is a lack of hardware support for mea-
surement and use of transient histograms. Very few low-cost sensors
allow access to transient histograms, and those that do often perform pre-
processing that is proprietary or undocumented. Our work has demon-
strated the significance of sensor modeling for accurate 3D reconstruction.
We hope that manufacturers will see value in users having access to tran-
sient histogram data and support the use of this data with documentation
and low-level access in the future.
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4 non-line-of-sight reconstruction for
high-speed imaging

In this chapter, we present a second use case of our imaging framework for
non-line-of-sight (NLOS) scene reconstruction with a high-speed imaging
system1.

4.1 Introduction
Time-resolved NLOS imaging recovers information about hidden scenes
based on indirect reflectance scattered by the surrounding environment
(e.g., a relay wall) (Velten et al., 2012). It has the potential to revolutionize
many critical applications such as medicine, robotics, military and law
enforcement operations, and scientific imaging.

Imaging Setup

A typical three-bounce model for NLOS imaging is illustrated in Figure 4.1.
To image a hidden scene S behind an occluder, the observer sends a pe-
riodic train of collimated laser pulses from l0 to illuminate a point l on a
diffuse relay wall, which scatters the light towards the hidden scene (1st

bounce). The portion of light reaching the scene is further reflected (2nd

bounce), and a fraction of it hits the wall again and heads back to the
1This is joint work with Sicheng Mo, Jiayong Peng, Xiaochun Liu, Ji Hyun Nam

and Sid Raghavan, under the supervision of Andreas Velten and Yin Li. Fangzhou led
the project, designed the study, developed the algorithm, performed data simulation,
conducted most experiments, interpreted the results, and prepared the figures. Sicheng
conducted experiments and prepared the figures. Jiayong analyzed the baselines. Xi-
aochun contributed to algorithm design. Ji Hyun built the hardware prototype and
helped collect real-world data. Sid helped collect real-world data. All participants are
involved in paper writing(Mu et al., 2022).
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Figure 4.1: NLOS imaging setup. A pulsed laser at l0 illuminates a relay
wall. The light bounces off the wall, interacts with the occluded scene,
scatters to the wall again, and is finally captured by a time-resolved detector
at s0. Figure adapted from Mu et al. (2022).

observer (3rd bounce). A SPAD detector at s0 records photons returning
from a point s on the wall.

One way to simplify this three-bounce model is to convert it into an
equivalent, direct line-of-sight model with a single bounce. This is possible
because l can be thought of as a virtual diffuse light source, and s can be
similarly considered as a virtual wide-FoV detector. With this simplifica-
tion, NLOS imaging becomes a special case of our imaging framework,
with the laser and detector both virtually placed on a 2D plane (i.e., the
relay wall).
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(a) Pixel Remapping (b) Remapping Error Map

Figure 4.2: Pixel remapping. (a) A sparse scan pattern with pixel remap-
ping. Significant speedup is achieved by skipping scanlines and fill in the
gaps later with pixels from slightly misaligned positions in a 1D detector
array. (b) Pixel remapping results in non-uniform geometry error, visual-
ized as a heap map. Figure adapted from Nam et al. (2021).

In practice, a full NLOS measurement contains a 2D array of transient
histograms H = {h(lij,sij)}i=1...H,j=1...W sampled at a dense H ×W grid of
virtual detector locations sij on the wall. The placement of virtual light
sources lij differentiates confocal and non-confocal NLOS imaging.

Confocal vs. Non-confocal NLOS

In the traditional confocal setting, the virtual detector is co-located with
the virtual light source, that is, ∀i, j, lij = sij. By contrast, non-confocal
NLOS assumes a fixed virtual laser located at the center of the wall l,
that is, ∀i, j, lij = l. Most research to date (O’Toole et al., 2018; Lindell
et al., 2019; Chen et al., 2020) studies confocal reconstruction due to its
simpler physics, leaving the more challenging non-confocal reconstruction
problem less explored.
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High-Speed NLOS Imaging

One key advantage of the non-confocal setup is its rapid data acquisition
speed. A confocal measurement is acquired by a dense raster-scan of the
wall, which takes tens of seconds with the existing hardware (Lindell et al.,
2019). By contrast, the state-of-the-art non-confocal imaging system runs
at 5 FPS (Nam et al., 2021), enabling numerous applications that require
high-speed imaging.

The fast acquisition speed of Nam et al. (2021) is made possible with
two key ideas: (1) the Helmholtz reciprocity of light transport; (2) a sparse
scan pattern with local pixel remapping. In particular, pixel remapping,
as illustrated in Figure 4.2, enables the collection of dense measurements
with a sparse raster scan that skips > 90% of the scanlines for a significant
speedup. This is achieved by capturing multiple transients simultane-
ously using a one-dimensional SPAD array and mapping pixels to skipped
scanlines at the expense of some approximation errors in geometry.

In this work, we study this non-confocal imaging approach (Nam et al.,
2021), which we believe represents a more promising direction for future
development of NLOS imaging systems.

Challenges

Despite favorable date acquisition rate, non-confocal NLOS imaging brings
approximation errors to the lighting model, most notably through pixel
remapping, thereby posing new challenges for hidden scene reconstruc-
tion. Previous methods that rely on the precise modeling of light paths (Tsai
et al., 2019; Shen et al., 2021) will inevitably fall short due to the inaccurate
physics in this setup. Recent development has thus turned to the modeling
of wave propagation (Liu et al., 2019b, 2020; Jiang et al., 2021), resulting
in methods that can tolerate modest errors in the lighting model. Despite
their robustness, these methods oftentimes yield reconstructions that lack
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fine details (e.g., textures and edges), and do not incorporate any prior
about the hidden scenes.

Contributions

To bridge this gap, we propose to embed physical models, consisting of
an wave propagation module and a volume renderer, into a deep neural
network for non-confocal NLOS reconstruction. Specifically, the wave
propagation module adapts the Rayleigh-Sommerfeld diffraction (RSD)
operator for feature propagation, and the volume renderer is inspired by
neural transient field (Shen et al., 2021). Our key intuition is that using
wave propagation helps regularize the solution space of the volume ren-
derer, alleviating dependency on the accurate modeling of light transport,
and thus leading to robust generalization beyond an idealized transient
formation model.

Further, we devise a unified learning framework that enables flexible
training of our model using diverse supervision signals, including intensity
images and transient histograms. Once trained, our model renders both
intensity and depth images at inference time in a single forward pass at
an interactive rate.

Finally, we showcase several benefits of our method through extensive
experiments. First, our model, despite being trained on simulated data,
generalizes well on real-world captures. Second, our method, when imple-
mented on a high-end GPU, processes 11.8 frames per second (FPS), thus
paving the ways for fast NLOS imaging. Finally, our method supports key
functionalities beyond NLOS reconstruction; it can synthesize images from
a non-frontal view (i.e., novel view synthesis), and the learned features
can facilitate accurate NLOS object recognition.
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4.2 Related Work
NLOS imaging has recently gained popularity with many applications
including object detection (Scheiner et al., 2020; Chen et al., 2020), track-
ing (Scheiner et al., 2020; Smith et al., 2018), and human pose estima-
tion (Isogawa et al., 2020). Several imaging systems (Velten et al., 2012;
Lindell et al., 2019; Musarra et al., 2019; Nam et al., 2021) have been de-
veloped to capture multi-bounce indirect reflections scattered by the sur-
rounding environment of a hidden scene. These systems have enabled
NLOS reconstruction methods that recover an “image” of the hidden scene.
Most relevant to our work are methods that reconstruct the appearance
and/or geometry of a hidden scene using active illumination and time-
resolved sensors. Faccio et al. (2020) provides a comprehensive review of
NLOS imaging.

Physics-based NLOS Reconstruction

Since the seminal work of Kirmani et al. (2009), physics-based NLOS recon-
struction has seen rapid progress, with methods falling into one of the four
categories, namely back-projection methods (Velten et al., 2012; O’Toole
et al., 2018), wave propagation methods (Lindell et al., 2019; Liu et al.,
2019b, 2020; Nam et al., 2021), iterative optimization methods (La Manna
et al., 2018; Tsai et al., 2019; Iseringhausen and Hullin, 2020) and geometry-
based methods (Tsai et al., 2017; Xin et al., 2019). Our model draws insight
from the wave propagation method of Liu et al. (2019b), and shares learn-
ing objectives with the iterative optimization method of Shen et al. (2021).

Learning-based NLOS Reconstruction

Learning-based methods have recently emerged for NLOS reconstruc-
tion. Grau Chopite et al. (2020) represents the first deep model for NLOS
reconstruction. It trains a U-Net (Ronneberger et al., 2015) on simulated
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depth maps for depth estimation of hidden scenes. More recently, Chen
et al. (2020) proposed to learn feature embeddings from simulated data for
NLOS reconstruction and recognition. Shen et al. (2021) introduced neural
transient field (NeTF) for the implicit modeling of hidden scenes. Zhu
and Cai (2022) developed a deep generative model for NLOS imaging
using inexpensive commercial LiDAR.

Real-Time NLOS Imaging

Efficient hardware (Nam et al., 2021; Liao et al., 2021) and software im-
plementations (Arellano et al., 2017; Liu et al., 2020; Jiang et al., 2021)
have been developed for real-time NLOS imaging and reconstruction. Our
method is tailored for the low-latency hardware prototype of Nam et al.
(2021), and incorporates the fast RSD implementation of Liu et al. (2020).

Theoretical Analysis of NLOS Visibility

Liu et al. (2019a) demonstrates that hidden scenes positioned in certain
poses are inherently not recoverable with a physics-based approach. Our
approach goes beyond this theoretical limit by learning statistical priors
from large datasets.

4.3 Method
Figure 4.3 provides an overview of our method. Our deep model consists
of three key components. An physics-inspired encoder first extracts fea-
tures from the time-domain histograms and transforms the features via
through feature-space wave propagation. A neural radiance field (NeRF)
is subsequently conditioned on the projected features to represent the
shape and appearance of the hidden scene. This neural representation
is subsequently volume-rendered into the desired target (i.e., intensity
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Figure 4.3: Method Overview. Our model consists of an encoder, a condi-
tional radiance field, and a volume renderer. Our volume renderer can
synthesize 2D intensity images using a steady-state forward model for
supervised training, or transient histograms using a transient forward
model for unsupervised training. At inference time, our method renders
2D images in a feed-forward manner for NLOS reconstruction. Modules
in green are physics-based and parameter-free. Modules in gray have
learnable parameters.

images and/or transients) for training and inference. We now describe
each component in detail.

Physics-Inspired Encoder

Feature Extraction

Given a 2D array of histograms H of sizeH×W×T , a strided 3D convolution
with a kernel size of 3 immediately down-samples the input along all
spatiotemporal axes. This yields a feature cube Ct of size H/2 ×W/2 ×
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T/2 × C, where C is the number of feature channels. Ct is processed by
another 3D convolutional layer with a kernel size of 3 before undergoing
RSD wave propagation as detailed next. Compared to the ResNet-like
design of LFE (He et al., 2016; Chen et al., 2020), our feature extraction
module is more parameter-efficient and facilitates stable training.

Feature-Space Wave Propagation

A non-confocal NLOS measurement represents the impulse response of
the hidden scene with the light source at l and detector at s. Liu et al.
(2019b, 2020) previously showed that one may convolve the measurement
with any pulse waveform Pl(t) to simulate a virtual line-of-sight transient
camera from behind the wall. Importantly, this provides a means to use the
Rayleigh-Sommerfeld diffraction (RSD) theory for NLOS reconstruction.
Further, Nam et al. (2021) observed that RSD is resilient to pixel remapping,
a key approximation that enables fast NLOS imaging yet breaks existing
reconstruction methods.

Inspired by this observation, we interpret Ct as the featurized impulse
response and leverage RSD as a robust physical model for the transforma-
tion of Ct

Cs = RSD(Pl(t) ∗ Ct), (4.1)

where ∗ is discrete 1D convolution and RSD(·) is applied independently
on each feature channel. The transformed feature cube Cs has a size of
H/2 ×W/2 ×D× C, where D is the number of depth planes. Note that
the RSD operator is fully differentiable, thus enabling the end-to-end
training of our model. We adopt the efficient RSD implementation of Liu
et al. (2020) and refer readers to Liu et al. (2020) for the derivation and
implementation details.
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Feature Refinement

The output of RSD at a reduced resolution is prone to artifacts due to
aliasing. As the last step, the encoder refines Cs with two 3D convolutional
layers with a kernel size of 3. The refined features are then fed into a
conditional neural radiance field.

Conditional Neural Radiance Field

Central to our deep model is a radiance field fθ : (x, d; Cs) → (c,σ) that is
conditioned on the features Cs. Similar to NeRF (Mildenhall et al., 2021), fθ
is realized as an MLP with learnable weights θ. It maps spatial locations
x and viewing directions d to intensity or color c and volume density σ.
Unlike NeRF and its transient variant NeTF (Shen et al., 2021) that learn
separate θ for each scene through lengthy iterative optimization, our scene
representation shares the same θ across all scenes. The network activations
of fθ are dynamically modulated given the conditioning features Cs as
shown in Figure 4.3.

Our key intuition is in three-folds: (1) learning a shared θ facilitates
the distillation of scene priors from diverse training data; (2) conditioning
on scene-dependent features enables fast feed-forward reconstruction; and
most importantly, (3) fθ seamlessly bridges the physics-inspired encoder
and volume renderer, thereby placing strong constraints on their respective
learning. In doing so, our model, despite being trained exclusively on
simulated data, generalizes well on real-world captures as we demonstrate
in our experiments.

Conditioning Mechanism

Our conditioning mechanism goes as follows. We sample Cs at x via
tri-linear interpolation and feed it into a small MLP to predict the affine
weight γi and bias βi for the activations hi of the ith layer. The activations
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are then transformed as

h ′
i = γi ⊙ hi + βi, (4.2)

where ⊙ stands for element-wise multiplication. Note that Cs injects
scene-dependent information into the activations h ′

i through the affine
parameters. This approach is inspired by π-GAN (Chan et al., 2021),
ECRF (Liu et al., 2021) and pixelNeRF (Yu et al., 2021), which similarly
condition a radiance field on latent vectors for image generation, object
editing, and novel view synthesis.

Volume Rendering

One key strength of our volume rendering framework is its ability to render
the conditional radiance field fθ into measurements of any sensor type
given an appropriate forward model. We explore two such models for
training and inference, namely the steady-state rendering of 2D intensity
images and transient rendering of transient histograms. Importantly, these
models are fully differentiable, thus enabling the end-to-end training of
our deep model.

Steady-State Rendering

We adopt the volume rendering equation of NeRF (Mildenhall et al., 2021)
(Equation 2.8) for the steady-state rendering of fθ. We further calculate a
depth value D̂ in a 2D depth image as follows:

D̂(r) =
∫∞

0
T(u)σ(r(u))udu. (4.3)
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Figure 4.4: Ray and point sampling for transient rendering. Rays origi-
nating from a virtual sensor s are uniformly drawn from within the cone
shaded in blue so that they always intersect the bounding volume (gray
dotted box). Points xi are sampled along a ray such that the length of
path l → xi → s is uniformly distributed. Note that the length of camera
subpath s → xi is not uniformly distributed (blue dotted arcs), and no
point is drawn from light subpath l → xi (green solid lines) as we only
model outgoing radiance.

Transient Rendering

We approximate the surface integral in the transiant formation model
(Equation 2.1) with a volume integral. Concretely, we calculate the flux
τ̂i of the ith bin by summing the radiance of all points x from within a
hemi-ellipsoidal shell with the light travel time along the (reversed) path
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s → x → l falling inside [i∆t, (i+ 1)∆t):

τ̂i =

∫ (i+1)∆t

i∆t

L̂(t)dt,

L̂(t) =

∫
ϕ

∫
γ

T(r,u(t,γ))σ(r(u(t,γ)))c(r(u(t,γ)), d)dγdϕ,

u(t,γ) = c2t2 − ∥s − l∥2
2

2ct− 2 cosγ .

(4.4)

In Equation 4.4, u is the distance from s to x in the ray direction d = (γ,ϕ),
with the path s → x → l having a length of ct, and c the speed of light.

Practical Considerations

In practice, we interchange the order of integrals in Equation 4.4, and apply
the line-to-point sampling strategy of Jarabo et al. (2014) for the unbiased
estimation of τ̂i. Further, we assume an axis-aligned bounding box (AABB)
around the hidden scene, and follow Ureña et al. (2013) to draw ray
directions from within the spherical projection of the AABB’s face facing
the wall. As illustrated in Figure 4.4, this sampling approach encourages
the rays and in turn the sampled points along a ray to concentrate around
the hidden scene.

Comparison to NeTF

Our transient rendering recipe differs from NeTF (Shen et al., 2021) in
three aspects. First, we estimate the outgoing radiance at a scene point
without factoring it into irradiance and BRDF. This simplification, in line
with NeRF (Mildenhall et al., 2021), allows the implicit modeling of oc-
clusion and multi-bounce lighting, and better supports feed-forward ren-
dering. Second, we present a more principled and efficient sampling
framework for flux estimation. Finally, we empirically found that our con-
ditional parametrization bootstraps the learning of fθ, and thus none of
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the advanced training techniques (e.g., two-stage training and hierarchical
sampling) from Shen et al. (2021) is needed. Our experiments show that
our recipe can be trivially adapted for iterative optimization and yields
better reconstruction than NeTF.

Model Training and Inference

In the absence of a large dataset of real measurements, we train our model
on simulated data. Our model naturally supports two training strategies
based on the analysis-by-synthesis principle: (1) supervised learning by
comparing rendered and ground-truth 2D intensity images; (2) unsu-
pervised learning by matching rendered and ground-truth transients. At
inference time, we render 2D intensity and depth images, and interpret
them as reconstructions of the hidden scene.

Supervised Training

When multi-view instensity images are available in the training data,
we minimize the mean squared error (MSE) between the rendered and
ground-truth pixel values

LMSE =
1
|R|

∑
r∈R

|Î(r) − I(r)∥2
2, (4.5)

where R is the number of pixels.
Following Lombardi et al. (2019), we add a Beta distribution prior on

the cumulative transmittance Tr:

LBeta =
1
|R|

∑
r∈R

log(Tr) + log(1 − Tr), (4.6)
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and a total variation (TV) prior on log opacities:

LTV =
1
|R|

∑
r∈R

∑
i

∥∆ logα(r)i∥1,

α(r)i = 1 − exp (σ(r(si))∆si)
(4.7)

where i indexes over the sampled steps along r, and α(r)i is the opacity at
r(si) over the discretized step ∆si.

The full training objective is a weighted combination of the three terms

Lsup = λMSELMSE + λBetaLBeta + λTVLTV , (4.8)

where λMSE, λBeta and λTV are the respective loss weights.

Unsupervised Training

In the absence of target images, we minimize the Poisson negative log-
likelihood2 of the rendered transients:

LPoisson =
1

|S||B|

∑
S

∑
B

τ̂s,b − ns,b log(τ̂s,b), (4.9)

where τ̂s,b is the rendered flux of the bth bin at virtual sensor location s,
ns,b the photon counts in the same bin of the target histogram, B the set of
rendered bins, and S the set of sampled sensor locations. The full objective
is

Lunsup = λPoissonLPoisson + λBetaLBeta + λTVLTV , (4.10)

where λPoisson is the weight for LPoisson.
2We omit the constant term log(ns,b!) for conciseness.
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Joint Training

One may further combine the supervised and unsupervised learning
objectives for the joint training of our model:

Ljoint = Lsup + Lunsup. (4.11)

Inference

At inference time, we equip the volume renderer with the steady-state
forward model (Equation 2.8 and 4.3) to synthesize intensity and depth
images of the hidden scene in a single forward pass. Our model runs at
11.8 FPS on an NVIDIA V100 GPU. This exceeds the data acquisition rate
(5 FPS) of the imaging system and potentially enables real-time NLOS
reconstruction. RSD (Liu et al., 2020) and LFE (Chen et al., 2020) run at
380 FPS and 30.8 FPS on the same GPU, whereas NeTF (Shen et al., 2021)
requires 6 hours of training on each scene.

4.4 Experiments
We demonstrate the effectiveness of our method for non-confocal NLOS
reconstruction in simulation and on real-world captures with the high-
speed imaging system of Nam et al. (2021). We report qualitative and
quantitative results for both settings. Further, we present object recognition
results with the learned features to showcase the strength of our method
for representation learning.

Implementation Details

For supervised training, We sample 4, 096 rays uniformly at random from
all target views, and use λMSE=1, λBeta=0.0001 and λTV=0.01 in our
experiments. For unsupervised training, we use λPoisson=1, λBeta=0.0001
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and λTV=0.01. We sample one sensor location at a time and draw 4, 096
rays originating from the sensor as discussed in Section 4.3. We combine
the two sets of ray samples in joint training. The models are trained for
50 epochs using the Adam optimizer (Kingma and Ba, 2014) with a mini-
batch size of 2 and a learning rate of 0.0001. Training on measurements
of size 128 × 128 × 512 takes 3 hours on a single NVIDIA V100 GPU and
requires 8 GB of memory.

Baselines

We compare our method to three baselines: RSD (Liu et al., 2020), LFE (Chen
et al., 2020) and NeTF (Shen et al., 2021).

RSD is the state-of-the-art physics-based method for non-confocal
NLOS reconstruction based on phasor-field virtual wave optics. Using
the phasor-field method, NLOS imaging can be interpreted as line-of-
sight diffractive wave propagation, and thus can be solved using the
Rayleigh-Sommerfield diffraction theory for conventional line-of-sight
imaging (Sommerfeld, 1964) . Our encoder subsumes RSD as its feature
propagation module.

LFE is a learning-based method with an encoder-decoder architecture.
It learns scene priors from large-scale datasets for improved reconstruction
quality in comparison to physics-based methods. Similar to our method,
LFE’s encoder comprises a physical operator for feature propagation. Both
models are trained end-to-end in simulation and output hidden view re-
constructions in a single forward pass at real-time rates. Different than our
method, LFE’s convolutional decoder design lacks physical constraints,
and the model only supports synthetic RGB or intensity images as super-
vision target.

NeTF is an iterative optimization method for NLOS reconstruction.
Similar to NeRF (Mildenhall et al., 2021), NeTF represents the hidden
scene as a neural implicit function, and learns a separate model for each
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scene. At each iteration, it renders the scene into transients using volume
rendering and minimizes their difference with respect to the ground-truth
measurements. While our method has a similar volume rendering compo-
nent, it learns a single model to reconstruct arbitrary scenes and solves
reconstruction in a single forward pass. We further introduce NeTF++, a
variant of NeTF with our volume renderer for an apple-to-apple compari-
son of the transient rendering recipes.

In our experiments, we adopt the official code release for the baselines
and use their default hyper-parameters. For completeness, we addition-
ally compare with three physics-based methods originally for confocal
NLOS reconstruction, namely fitlered back-projection (FBP) (Velten et al.,
2012), light-cone transform (LCT) (O’Toole et al., 2018) and f-k migra-
tion (Lindell et al., 2019). These methods can be adapted for non-confocal
reconstruction through interpolation, yet at the expense of geometric dis-
tortion, reduced FoV, and loss in image resolution.

Evaluation Protocol

Following LFE (Chen et al., 2020), we evaluate all methods using root
mean squared error (RMSE), peak signal-to-noise ratio (PSNR) and the
structural similarity index measure (SSIM) in our simulated experiments.

Simulated Experiments

Experiment Setup

We simulate two large datasets with the rasterizer from Chen et al. (2020).
The first alphanumerics dataset contains 2, 775 samples of 111 objects,
including all lower and upper case letters from the English and Greek
alphabets as well as digits 0 to 9. The transient measurements are 128 ×
128 × 512 (height × width × time) in size. The target images have a
resolution of 256 × 256, and include 25 randomly posed views in addition
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Figure 4.5: Reconstruction results on the alphanumerics dataset. Com-
pared to the baselines, our method produces sharper reconstructions with
finer details. Thanks to the learned scene priors, our method can infer
missing scene content (yellow arrows). The rightmost column presents
depth estimation of our supervised model.

to the canonical frontal view as in Chen et al. (2020). They both have a
single brightness channel to match the real captures. We create a training
split and two test splits. The training split has 2, 000 samples of 100 objects,
each with 20 poses. The “Unseen Poses” test split has the remaining 5 poses
for each training object. The “Unseen Objects” test split has the remaining
11 objects and their full set of poses. We report results on both test splits
to evaluate the generalizability of all methods.

The second motorbikes dataset contains 6, 925 samples of 277 motor-
bikes from ShapeNet (Chang et al., 2015). Each object is again rendered
in 25 random poses in addition to the canonical pose. The NLOS measure-
ments are 256 × 256 × 512 × 3 (height × width × time × color) with RGB
color channels for fair comparison to Chen et al. (2020). We generate train-
ing and test splits using the same protocol as before, with 5, 000 samples
of 250 motorbikes in the training split.
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Figure 4.6: Reconstruction results on the motorbikes dataset. Recon-
structions from our method achieve better color balance and contain ge-
ometry details (e.g., wheels) missed by RSD and LFE.

Finally, we simulate two small datasets for testing. The first CMU
dataset contains six objects with complex geometry (Tsai et al., 2019). The
second has two objects from the Z-NLOS dataset Galindo et al. (2019) and
is previously used by NeTF (Shen et al., 2021). We use it in an ablation
study to evaluate our transient rendering recipe.

Reconstruction Results

We report quantitative results on the test splits of alphanumerics and
motorbikes in Table 4.1 and 4.2. Our supervised model consistently out-
performs RSD and LFE by a wide margin. Our unsupervised model, which



62

GT RSD [2] LFE [8] NeTF [6] NeTF++ Ours (sup) Ours (unsup) Ours (joint) Ours (sup)
Ar
m
ad
ill
o

Be
ar

Bu
nn
y

Bu
st

Ei
ns
te
in

So
ap

GT RSD LFE NeTF NeTF++ Ours (sup) Ours (unsup) Ours (joint) Ours (sup)

Figure 4.7: Reconstruction results on the CMU dataset. Our models
generalize well on complex out-of-distribution shapes thanks to the strong
regularization effect of the physics priors. The rightmost column presents
depth estimation of our supervised model.

Methods Unseen Poses Unseen Objects
RMSE PSNR SSIM RMSE PSNR SSIM

RSD 0.095 20.83 0.395 0.094 20.92 0.407
LFE 0.079 22.42 0.652 0.077 22.51 0.656

Ours (sup) 0.062 24.60 0.816 0.060 24.80 0.821
Ours (unsup) 0.093 20.97 0.709 0.092 21.02 0.726
Ours (joint) 0.060 25.05 0.861 0.059 25.02 0.868

Table 4.1: Quantitative results on the full alphanumerics test sets. Our
method outperformsbaselines on both unseen poses and unseen objects.

is solely trained to enforce cycle consistency, compares favorably against
RSD. Importantly, our model achieves the best results with the joint train-
ing objective, highlighting the benefit of our unified modeling approach.
The qualitative results in Figure 4.5 and 4.6 demonstrate that our method
reconstructs sharper contours and finer details, and in particular, is able
to infer content that a physics-based method cannot recover thanks to the
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Method Unseen Poses Unseen Objects
RMSE PSNR SSIM RMSE PSNR SSIM

RSD 0.087 21.87 0.632 0.079 22.65 0.648
LFE 0.092 21.09 0.854 0.088 21.41 0.854

Ours (sup) 0.065 24.05 0.881 0.062 24.59 0.886

Table 4.2: Quantitative results on the full motorbikes test sets. Our
supervised model outperforms baselines on reconstructing RGB images.

Method Alphanumerics CMU
RMSE PSNR SSIM RMSE PSNR SSIM

RSD 0.084 22.02 0.395 0.086 21.54 0.456
LFE 0.064 24.34 0.886 0.082 21.84 0.700

NeTF 0.087 21.99 0.893 0.100 20.31 0.795
NeTF++ 0.083 21.84 0.895 0.071 23.26 0.815

Ours (sup) 0.059 24.94 0.905 0.076 22.46 0.799
Ours (unsup) 0.073 23.12 0.833 0.070 23.18 0.775
Ours (joint) 0.057 25.15 0.896 0.079 22.11 0.798

Table 4.3: Quantitative results on selected alphanumerics and CMU
test samples. Our method generalizes well on both in-distribution
(alphanumerics) and out-of-distribution (CMU) samples in compari-
son to all baselines.

learned scene priors.
Moving forward, we investigate how models trained on alphanumer-

ics generalize on the challenging out-of-distribution scenes from the CMU
dataset. We present quantitative results averaged over the six available
scenes in Table 4.3 and qualitative results in Figure 4.7. Our method out-
performs RSD and LFE despite the increasing scene complexity. Notably,
our unsupervised model performs even better than the supervised LFE
model thanks to the strong regularization effect of the physics priors.

Our method outperforms NeTF and NeTF++ on alphanumerics 3

3It is infeasible to train NeTF and NeTF++ on all test samples. We hence report
results averaged over six random test scenes.
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Figure 4.8: Hardware prototype. Our prototype includes an ultra-fast
pulsed laser, two 1D SPAD arrays and a galvo for laser redirection.

(Table 4.3 and Figure 4.5) while supporting fast feed-forward inference.
We attribute the improved reconstruction quality to the learned scene pri-
ors, which enable our model to reason beyond individual measurements.
However, the scene priors inevitably fall short in the presence of a domain
shift, which likely explains why NeTF++ outperforms our method on the
CMU dataset (Table 4.3 and Figure 4.7). In the meantime, NeTF++ and
our method compare favorably against NeTF, confirming the strength of
our proposed transient rendering recipe.

Hardware Prototype

Our hardware prototype, depicted in Figure 4.8, consists of an ultrafast
pulsed laser (OneFive Katana HP, 700mW average power, 532nm, 35ps
pulse width, 5MHz repetition rate) and two 1D SPAD arrays each with 14
available pixels (75ps FWHM) (Renna et al., 2020). The laser raster-scans
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a 190×24 grid of locations that cover a 1.9m×1.9m square on the wall. The
SPAD arrays approximately co-localize and focus on the same 1cm × 9cm
patch on the wall near the center of the scanned area. Photon counts
from overlapping pixels are summed together, yielding 14 histograms per
scanned location. The histograms have 768 bins with a temporal bin size
of 32ps. We apply the pixel remapping algorithm from Nam et al. (2021)
alongside nearest-neighbor interpolation to convert the raw transients
into a measurement of size 128 × 128 × 768 (height × width × time) for
subsequent reconstruction. Further details about our imaging hardware
are discussed in Nam et al. (2021).

Sensor Modeling

For the real-world experiments, it is challenging to obtain the pulse shape,
power and FoV of the virtual laser, as it not only depends on the character-
istics of the actual light source, but also the distance to the relay wall, the
incident angle of light, and the wall’s geometry and reflectance. Likewise,
calibrating the virtual detector is also extremely difficult, if not infeasible.

Fortunately, the high-quality laser of our system has a small FWHM
(∼ 25ps) with respect to the bin size of transients (32ps), and the wall is
chosen to be flat and diffuse. Hence, we simply assume that the laser and
detector both have a hemispherical FoV, and the laser impulse g is a time
Dirac delta function. We infer ϕscale from data through trial and error.

Further, NLOS imaging operates in the low-light regime; a laboratory-
grade detector with minimal internal noise captures indirectly scattered
light with extremely weak incident flux, and data collection is performed
in a dark environment for improved signal-to-noise ratio. It is well-known
that pile-up and time jitter become insignificant in this regime. We thus
assume ϕbkgd ≈ 0, and directly scale the rendered flux by the inferred
ϕscale and the number of cycles C to obtain an estimate of the transient h.
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Figure 4.9: Reconstruction results on real-world captures. (a) An x-t slice
of the measurement volume. Note the rough frontier of returning photons
due to pixel remapping. (b) A reference image of the hidden scene (not
used for inference). (c) Intensity and depth reconstruction. Our method
is robust to approximations in the lighting model and produces strong
reconstructions on real-world captures. The rightmost column presents
depth estimation of our supervised model.

Real-World Experiments

Experiment Setup

We collect NLOS measurements for a few real-world scenes using our imag-
ing hardware. These datasets include digits “2” and “4” for evaluating the
in-class generalizability of models on real-world data, and “chair”,“truck”
and “Teddy bear” that represent more challenging scenes not present in
training. The objects are placed approximately 1m away from the relay
wall in various poses. We capture a reference intensity image for each
scene for the qualitative assessment of reconstruction quality.
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Figure 4.10: Novel view synthesis results. Our method learns accurate
3D scene geometry and can render intensity images beyond the frontal
view. A reference view of the hidden scene is displayed in the inset.

Reconstruction Results

Figure 4.9 presents qualitative results of our method in comparison to
the baselines. Our method reliably reconstructs simple objects and yields
strong results on complex scenes. By contrast, LFE cannot accommodate
the large domain gap between simulated data and real captures, thus
producing distorted and noisy reconstructions that are substantially worse
than RSD. NeTF and NeTF++ are both sensitive to the approximations
in their lighting models. As a result, their reconstructions are prone to
artifacts especially on complex scenes. Finally, FBP, LCT and f-k yield
the worst results, confirming that these methods are not well-suited for
non-confocal NLOS reconstruction.
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RSD LFE Ours Ours Ours
(sup) (unsup) (joint)

Accuracy 82.2% 81.0% 85.4% 85.8% 85.2%

Table 4.4: Object recognition results using learned features. Our model
learns strong feature representations with more discriminative power.

Novel View Synthesis

NLOS reconstruction algorithms are often evaluated on the frontal view of
the scene observed from behind the wall. We hypothesize that accurate 3D
reconstruction of a hidden scene would facilitate view synthesis beyond
the frontal view. We thus task RSD, LFE, NeTF and our method for novel
view synthesis to assess the quality of 3D reconstruction.

We render three random views given real-world datasets of two digits
(“2” and “4”), and compare the results of different methods in Figure 4.10.
Our method produces crispy, artifact-free renderings compared to the
noisy and blurry outputs of the baselines.

Object Recognition

We further compare our method to RSD and LFE by adapting the learned
features for object recognition. This surrogate task helps reveal these mod-
els’ capacity to encode scene priors, which may be useful for downstream
recognition tasks.

Recall that both our method and LFE encode and propagate a transient
measurement to a spatial feature cube. For both models trained on the
alphanumerics dataset, we project the feature cube to a 2D feature map
by taking the per-channel maximum along the depth axis. Similarly, we
project the volumetric reconstruction of RSD and interpret the 2D projec-
tion as a feature map. We then train a ResNet-18 (He et al., 2016) to take
these 2D feature maps for 100-way alphanumeric classification. All classi-
fiers are trained for 50 epochs with a mini-batch size of 32 using stochastic
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Figure 4.11: Object recognition results. (a) An x-t slice of the input
measurement volume. (b) A reference image of the hidden scene (not used
for inference). (c) Predicted class probabilities. Taller lines indicate higher
probability values. Green for correct predictions and red for incorrect
predictions.
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Figure 4.12: Ablation on total variation prior. Our total variation regular-
izer eliminates floaters in empty space.

gradient descent (SGD) with a learning rate of 0.1, a momentum of 0.9 and
a weight decay of 0.0005. We report classification accuracy on the “Unseen
Poses” test split (Table 4.4), along with the softmax confidence scores for
the real-world measurements of digits “2” and “4” (Figure 4.11).

The classifiers taking features from our models achieve 85.4% (su-
pervised) and 85.8% (unsupervised) test accuracy, outperforming those
taking RSD and LFE features by more than 3% and 4%, respectively. More-
over, our classifier predicts the correct labels with high confidence for
the real-world measurements of “2”, whereas the baselines confuse “2”
with the morphologically similar letters “S” and “Z” and digit “3”. All
classifiers fail on the measurement of “4” since it looks quite different from
the simulated digit “4” in the training set, yet the classifiers taking our
features yield the most plausible prediction. These results suggest that
our encoder learns rich scene priors with more discriminative power.

Ablation Study

Total Variation Prior

Our training objectives include a total variation term to encourage sparsity
in scene opacity (Equation 4.7). A model trained without the regularizer
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Figure 4.13: Ablation on transient rendering recipe. Our NeTF++ em-
ploys a principled sampling strategy for estimating transmittance, whereas
NeTF and NeTF+ omit transmittance and yield worse reconstruction.

renders plausible intensity images yet introduces spurious density (i.e.,
floaters) in empty space (Figure 4.12).

Transient Rendering Recipe

NeTF models reflectance at every scene point. Unfortunately, the transmit-
tance term in their rendering equation is omitted for tractable numerical
integration. Our renderer instead models outgoing radiance without
factoring it into illumination and reflectance. Importantly, this enables
transmittance estimation with a tractable sampling strategy (Figure 4.4).
To understand the impact of this design choice, we drop the transmittance
term in NeRF++ and dub this variant NeRF+. One may further recover
NeTF from NeTF+ by learning reflectance as opposed to radiance.

We compare NeTF, NeTF+ and NeTF++ on the two simulated scenes
from the Z-NLOS dataset (Galindo et al., 2019). The results in Figure 4.13
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show that proper evaluation of transmittance is key to high-quality recon-
struction, while the choice of modeling radiance as opposed to reflectance
has minor impact on reconstruction quality.

4.5 Conclusion and Discussion
We presented a novel learning-based method for non-confocal NLOS re-
construction. Our key innovation is a method that embeds strong domain
knowledge in the deep model in the form of an inverse propagation mod-
ule and a volume renderer, both physics based, to navigate the learning of
a conditional neural scene representation. Moreover, our model can be
flexibly trained using diverse supervision signals including multi-view tar-
get images, and more importantly transient measurements themselves. We
demonstrated superior reconstruction quality of our model in comparison
to state-of-the-art physics and learning-based methods. In particular, our
method, despite being trained on synthetic data, generalizes well on real
measurements. We anticipate that our method alongside the fast imaging
system will lay the foundation for exciting applications of NLOS imaging
that require high-speed imaging. We hope our method will provide a
solid step towards the challenging problem of NLOS reconstruction, and
shed light on a broader spectrum of inverse problems in imaging sciences.

Incorporating Shape Prior

Our model learns rich scene priors from data to address the fundamental
missing cone problem of NLOS imaging. Nevertheless, the generalization
of our model depends on the training data distribution, and the recovery
of complex shapes (e.g., human) remains challenging due to a lack of
constraint on the learned shapes. One potential solution is to combine
our analysis-by-synthesis framework with parametric shape models (e.g.,
SMPL (Loper et al., 2015)). These models have orders-of-magnitude
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lower degrees of freedom compared to non-parametric NeRF-like scene
representations, and are thus well-suited for reconstructing certain scene
categories. Similar ideas have been explored for human reconstruction
from posed RGB images (e.g., HumanNeRF (Weng et al., 2022)). These
methods may inform the development of NLOS reconstruction algorithms
with strong shape priors.

Imaging Motion

Moving beyond static scenes, imaging moving objects and human actions
is more indicative of the use case of a high-speed imaging system. Our
current approach operates on one frame at a time, and thus does not lever-
age the strong prior of motion continuity. Intuitively, sharing information
among adjacent frames may compensate for the short exposure time of
individual frames and provide additional cues to the reconstruction al-
gorithm. We envision that both optimization-based and learning-based
methods could leverage this smoothness constraint for improved recon-
struction under low per-frame signal-to-noise ratio. A promising direction
is to adapt NeRF-like approach for video modeling (e.g., HyperNeRF (Park
et al., 2021)) and neural architectures for temporal reasoning (e.g., Trans-
formers (Vaswani et al., 2017)) for NLOS reconstruction of moving scenes.

NLOS Imaging in the Wild

While our method represents a solid step towards practical NLOS imaging,
all of our experiments are run in a highly controlled laboratory environ-
ment with an expensive room-sized hardware prototype. Future endeavor
may focus on building miniature imaging systems with low-cost sensors
(e.g., those from Chapter 3) that supports experimentation under more re-
alistic imaging conditions (e.g., non-planar relay surface, sparse scanning
pattern, and strong ambient light).
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5 conclusion and future work

In this dissertation, I presented an unconventional imaging paradigm
for single-photon 3D vision (Chapter 2). Central to this paradigm is to
capture a spatially distributed set of transient histograms using SPAD
sensors with diffuse lighting and a wide-FoV detector. The reconstruction
of 3D scenes can be then achieved by analyzing these recorded transient
histograms. I described the transient formation model, and developed a
general algorithmic framework for the reconstruction of complex 3D scenes.
The reconstruction approach follows the analysis-by-synthesis principle
and combines expressive neural scene representations with differentiable
transient volume rendering.

The effectiveness of this reconstruction approach is demonstrated
through extensive qualitative and quantitative results for both simulations
and real-world imaging systems. Specifically, my dissertation studied two
key applications, one for direct line-of-sight reconstruction with low-cost
proximity sensors (Chapter 3), the other for high-speed non-line-of-sight
reconstruction (Chapter 4).

Overall, the algorithmic development and empirical results of my work
validates the hypothesis raised in my dissertation statement. Specifically,
my dissertation work had successfully demonstrated that transient his-
tograms from a distributed set of single-photon cameras under diffuse
lighting can be used to accurately reconstruct complex 3D scene geometry
for line-of-sight and non-line-of-sight imaging. I hope my work can shed
light on the design and implementation of practical 3D vision systems
with single-photon cameras.

Future Directions

I envision that my work can be extended in the following directions:
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Illumination and Lens Engineering

Our imaging paradigm assumes a diffuse light source and a wide-FoV
SPAD detector. An active line of research in computational imaging studies
the design of illumination patterns (e.g., in structured-light imaging) and
detector point spread functions (PSF) (e.g., in lensless imaging), with
strong evidence showing that better 3D reconstruction can be achieved
with principled or learned lighting and PSF patterns. Our sensor can
be thought of as combining the simplest illumination (i.e., diffuse) and
PSF (i.e., lensless) patterns. Future work may investigate, e.g., the joint
optimization of scene geometry, lighting, and detector PSF.

Reflectance Modeling and Recovery

Our methods emphasize the reconstruction of scene geometry, and cur-
rently make simplified assumptions about scene reflectance (e.g., Lamber-
tian). In principle, our volume rendering framework can support more
complex reflectance models, and thus may allow BRDF estimation using
transients. In the meantime, faithful modeling of scene reflectance may
facilitate the accurate reconstruction of scene geometry. Hence, one im-
portant direction for future research is to understand the feasibility of
reflectance modeling and recovery using our imaging approach.

Domain-Specific Shape Reconstruction

Single-photon cameras have found major applications in smartphone pho-
tography, wearable sensing and virtual reality, where a central goal is to
model and reconstruct human face, hands and full body. Our method in its
current form relies on non-parametric neural scene representations, thus
may not fit delicate and deformable human body parts at high precision.
It is thus desirable to bring parametic mesh models (e.g., SMPL (Loper
et al., 2015)) into the optimization to constrain the recovered shapes, yet
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this would require changes to the reconstruction procedure to allow dif-
ferentiation through mesh vertices. Future work may thus explore novel
differentiable forward models for human reconstruction from transients.
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