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Abstract

This dissertation establishes general decoupling and restriction inequalities for smooth
compact surfaces in R3. First, we prove decoupling inequalities in R? for the graphs of
all bivariate polynomials of degree at most k£ with bounded coefficients over a compact
set, with the decoupling constant uniform in the coefficients of those polynomials. As a
consequence, we prove a decoupling inequality for smooth compact surfaces in R3. This
extends the decoupling theorem of Bourgain and Demeter to all smooth surfaces. Second,
we prove sharp L? Fourier restriction inequalities for smooth compact surfaces in R?
equipped with the affine surface measure or a power thereof. The estimates are uniform
for all surfaces defined by the graph of polynomials of degrees at most k£ with bounded
coefficients. The primary tool is a variant of the aforementioned decoupling inequalities

for these surfaces.
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Lay summary

Harmonic analysis is a quantitative study of functions and their oscillations. The Fourier
transform, which decomposes a general function, such as the one that describes a musical
signal, into a superposition of waves with varying intensities and frequencies, is a funda-
mental component of the study. In practice, errors occur when sampling, transforming,
and reconstructing the signals. Quantitatively studying these operators controls the errors
and thus establishes stability results.

Over the past sixty years, harmonic analysts have spent significant efforts studying
functions formed by the superposition of waves with frequencies concentrated on hyper-
surfaces. One motivation is to study dispersive partial differential equations. Examples
include the Schrédinger, wave, and Helmholtz equations, the solutions to which have fre-
quencies confined on the paraboloids, cones, and spheres, respectively. While the above
three surfaces are better understood in the literature, this dissertation attempts to extend
the study to all smooth surfaces.

Consider a wave with frequencies on a small neighborhood of a smooth surface centered
at a point &. Let 77 be the normal direction of the surface at £. Then, the wave travels
along 7 in the physical space. Now, we describe a dichotomy. If all waves have frequencies
on a flat plane, they travel along the same direction in physical space. In this scenario,
no interference occurs as the solution evolves. In an opposite scenario, if all waves have
frequencies on a curved surface, for example, a sphere, they travel along different directions
in physical space. In this case, interference among waves occurs as time evolves. A way

to describe interference is to measure how “big” the resulting function can be. In the case
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when frequencies lie in a plane, the best we can say is that energy is conserved. In the
latter case of curved surfaces, a famous theorem proved by Tomas and Stein (also known
as Strichartz’s inequality) provides some excellent quantitative decay estimates.

What happens to surfaces that are not flat while also not as curved as a sphere? Given
how well we understand both extreme cases, we want to decompose the frequency support
of the function into smaller pieces, each of which can be enlarged to one of these two
extreme cases. Decoupling theory describes a technique for controlling the constructive
interference arising from multiple piece of this ensemble. Chapter 2 formulates and proves
decoupling inequalities for general smooth surfaces. Chapter 3 applies these inequalities
to prove the best possible extension of the Tomas-Stein theory to general smooth surfaces

with a measure that compensates flat regions to allow similar decay estimates.
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Chapter 1

Introduction

This dissertation concerns the theory of decoupling and affine restriction for surfaces in R3.
This introductory chapter attempts to survey the recent development of the two theories
and the results based on two recent preprints [44, 46]. The exact formulation and proof are

presented in Chapters 2 and 3 for decoupling and affine restriction theories, respectively.

1.1 Decoupling theory

Decoupling theory originated from Wolff [74] as a powerful tool to study local smoothing
type estimates. We now describe the general setting of the decoupling theory for hyper-
surfaces. Consider a smooth compact hypersurface M in R”. By a partition of unity,
we may assume without loss of generality that M is given by the graph of a smooth
function ¢ : [~1,1]""! — R. Let dux be a measure defined on M and du be the push-
forward measure of duaq under the projection map (£, ¢(£)) — £ We assume that the
measure dy is absolutely continuous with respect to the Lebesgue measure d§. For any
g € LY([-1,1]""1,du), define the extension operator E4 = Efz’“ on A C [-1,1]"! with

measure du:

Eag(2', z,) = / g(&)e2mET T g (e, x = (2!, 2,) € R" X R. (1.1)
A



We define the extension operator £ := E|_j jjn—1.

In decoupling theory, the Radon—-Nikodym derivative of the measure du can be ab-
sorbed into g. In this subsection, we will consider the Lebesgue measure d¢ for simplicity.
The pullback of d§ under the projection map agrees with the surface measure up to a
constant depending only on the supremum of |Vé| over [—1,1]"~!

1]"~!. We want to understand how

Let P be a finitely overlapping covering of [—
different pieces F,g, for w € P, interact with each other. These can be measured by the
LP norm of Eg over a large ball. More precisely, for p,g > 2 and R > 1, our goal is to
determine the smallest constant Decy, (¢, R, P) such that the following ¢9LP decoupling

inequality holds for all B C R"™ of radius at least R and g € L'([-1,1]"71):

1/q
1EgllLr By < Decpq(9, R, P) <Z 1Ewgl1Tp (1) ) ; (1.2)

weP

where wp is a weight with exponentially decaying tails outside B. See equation (1.25)
below for the exact formulation. To avoid technicalities, we here present a morally correct
version that treats wg as the characteristic function on B.

The uncertainty principle tells us that localizing the physical observation of Fg on a
ball of radius R blurs its Fourier transform at scale R~!. We therefore shall consider the
R~! neighborhood of the graph of ¢ over [—1,1]"~!. This principle is made precise in
Section 3.2.

With no extra assumption on ¢ and some mild assumptions® on P, we have the fol-

lowing general upper bound by interpolating Plancherel’s identity and the trivial L

estimate:

Decy (6, R, P) S |#P|' /Pt (1.3)
for 2 < ¢ < p < co. Here and throughout this dissertation, we say A <o, B if there
exists a constant C' depending on parameters «, 3, ..., dimension n, Lebesgue exponents

p,q and degree k, that will be introduced later, such that A < C'B. This implicit constant

'For instance, there are O(1) sub-collections of P such that each sub-collection contains balls having
pairwise disjoint doubles.



C may change from line to line.

Let M be a flat hypersurface that lies in R~! neighborhood of a hyperplane. Let P
be a partition of [—1,1]"~! into disjoint congruent rectangular slabs having n — 2 sides of
length 1. Then, the general decoupling inequality (1.2) turns out to be the best we can
say for M and P. See for instance Proposition 9.5 and Exercise 12.13 of [18] for cases
when ¢ = 2 and p = ¢ respectively. Other cases follow similarly.

The opposite scenario is when the compact hypersurface M is far from being a hy-
perplane. This is measured by the lower bound of the Hessian determinant of ¢, which is
roughly the Gaussian curvature of M up to a constant depending on the upper bound of

V¢. Bourgain and Demeter proved the following sharp decoupling inequalities.

Theorem 1.1.1 (Bourgain-Demeter’s decoupling inequalities, [10, 11]). Let 2 < p <

2(::1) and ¢ > 0. Let ¢ be a smooth function on [—1,1]%. Suppose that |det D?¢| > 1 and
P is a collection of finitely overlapping squares of side length R~/2 that covers [—1,1]2.
Then, there exist C1,Co that depend only on e, n, ||@||cs and the infimum of | det D?@|
such that

Ch|#P[Y27VP < Dec, (6,6, P) < CoRE|#P|V/21/P, (1.4)

Moreover, if D¢ is positive definite, then we have
1< D€Cp72(¢, 5,77) < CQR‘E. (1.5)

It is worth noting that the lifting of each w € P onto the surface M lies in a CR™!
neighborhood of the tangent plane of the surface at the center of w, denoted by ¢(w). More

precisely, w satisfies

sup [$(€) — ¢(e(w)) — Vo(e(w)) - (€ —c(w))| S R (1.6)

fcw

We call parallelograms w satisfying (1.6) (¢, R~!)-flat. As mentioned earlier, no non-

trivial decoupling other than (1.3) can happen on w. Therefore, this is a canonical covering



for hypersurfaces M with non-vanishing Gaussian curvature.

Decoupling inequalities of the form (1.2) can also be formulated for curves and, more
generally, manifolds of higher co-dimensions. Theorem 1.1.1 and its variants have rich
applications in harmonic analysis, PDE, and number theory. See, for example, [12, 23, 24,
25, 30, 36, 49] for curves and [3, 10, 19, 26, 27, 28, 29, 31] for more general manifolds.

For hypersurfaces, while the case when ¢ has a non-vanishing Hessian determinant
is settled in Theorem 1.1.1, the general decoupling theory for smooth hypersurfaces of
vanishing Gaussian curvature is still under-developed. In R?, a smooth hypersurface is
just a smooth curve, and its decoupling theory is relatively well-understood. In Section
12.6 of [18], Demeter proved a slightly more refined decoupling inequality for every compact
analytic curve, with the partition chosen to be adapted to the curve as in (1.6). Later, in
[75], Yang proved a decoupling inequality for the family of all polynomials of degree at most
d and with coefficients bounded by 1, with the decoupling constant depending only on d
but not the individual polynomial. This, together with a brute-force Taylor approximation
described in Section 2.2.2, implies a decoupling inequality for every smooth compact curve,
further generalizing the result in [18]. The first part of this dissertation extends the above
results to smooth surfaces in R3.

In the rest of this subsection, we consider n = 3. The range of p in Theorem 1.1.1 is
now 2 < p < 4. Prior to this dissertation, various partial progress has been made. In [14],
Bourgain, Demeter, and Kemp proved decoupling inequalities for all real-analytic surfaces
of revolution in R3. Later in [42, 43], Kemp respectively proved decoupling inequalities
for surfaces with constantly zero Gaussian curvature but without umbilical points and for
a broad class of C® surfaces in R? lacking planar points. Recently, Yang and the author
proved in [45] a decoupling inequality for surfaces given as graphs of mixed-homogeneous
polynomials in R3. Note that none of the previous partial results implies any of the others.

We now state our main decoupling result.

Theorem 1.1.2 (Yang-L., [46]). Let 2 < p <4, n =3 and R > 1. Let ¢ be a smooth

function on [—1,1]2. There exists a family P of parallelograms w covering [—1,1]? such



that for every e > 0,
1. each w € P is (¢, R™Y)-flat, i.e. it satisfies (1.6);
2. P has O:(R?)-bounded overlap in the sense that ) plr S¢. R°;

3. We have the following ¢P(LP) decoupling inequality:

Decy (¢, R, P) Sgc REIHP|V271P, (1.7)

If, in addition, D¢ is positive semidefinite on [—1,1]%, then (1.7) can be strengthened to
the (2(LP) inequality:

Decpa(9, R, P) Soe R (1.8)

Moreover, the implicit constants in (1.7) and (1.8) can be made uniform over all polyno-

mials ¢ of degree up to k with bounded coefficients.

Note that (1.7) and (1.8) agree, up to R° loss, with the lower bounds in (1.4) and (1.5),
respectively. Thus, up to R® loss, we prove the optimal ¢P(LP) and ¢2(LP) decoupling

inequalities for general smooth compact surfaces in R3 and 2 < p < 4.

1.2 Affine restriction theory

Originated from a discovery of Stein in 1967, the restriction problem [61] asks the following:
for which hypersurfaces M C R™ and which 1 < p’ < 2, can the Fourier transform of an
o (R™) function can be meaningfully restricted? More precisely, given a hypersurface
M C R" equipped with a measure i, what are the pairs of exponents (p,q’) € [1, oc]?

such that the following inequality holds:

Hf|MHLq’(M,d“M) gM,uM,p’,q’ HfHLp’(Rn)v (1.9)

for all f € LP (R™) N LY (R™).



In this dissertation, we consider only compact hypersurfaces. As in the decoupling
theory, we assume that M is given by the graph of a smooth function ¢ : [-1,1]*"! — R
and dp is the pushforward measure of duaq under the projection map (€, ¢(&)) — &.

Recall from (1.1) that the extension operator E4 = E$" on A C [~1,1]""!, with

measure du, is defined by

Eag(2',2,) = / g(e)e2mET @) g (€),  x = (2!, 2,) € R"I xR, (1.10)
A

for g € L'([-1,1]"7",dp). Recall as well that E = Ej_ yjn-1.
The extension operator F is dual to the restriction operator f — f |- In the literature,
the restriction problem is usually reduced to studying the equivalent extension estimates

of the form:

HEQHLP(]R") §¢,u,p,q ||9||LQ(du)7 (1.11)

+ 1 = 1. Here and throughout this dissertation, we adopt the notation

Harmonic analysts have spent enormous efforts solving for the best range of exponents
(p, q) for which (1.11) holds. The problem has only been solved for various low-dimensional
cases. These include circles S! by Fefferman [22] (who credits Stein) and Zygmund [76],
three, four and five-dimensional cones by Taberner [66], Wolff [73] and Ou-Wang [50]
respectively. For higher dimensions, the problem is still largely open. Various methods
have been developed. They include bilinear methods [4, 67, 68, 69, 70, 73], multilinear
methods [5, 6, 7, 8, 9, 13, 33, 35|, and polynomial methods [32, 34, 37, 41, 50].

Using tools only applicable to Hilbert spaces, the case where ¢ = 2 is significantly
simpler. Nevertheless, the following theorem is significant to the study of Schrodinger

equations.

Theorem 1.2.1 (Tomas-Stein, [60, 71]). Let p > % Let ¢ be a smooth function on
[-1,1]"! and E = E_1qpn-1 be as in (1.10). Suppose that | det D%¢| > 1 and d€ is the

n — 1 dimensional Lebesque measure. There exists C' that depends only on p, n, ||¢||cs



and the infimum of | det D?¢| such that

129l Lrmny < Cllgllr2(ae)s (1.12)

fO’F any g € LQ([_L ”n_l)df) a Ll([_l’ 1]n_17d€)‘

Theorem 1.2.1 is a special case of the Strichartz estimates [65], in which mixed norm
Lebesgue spaces are considered in place of LP(R™) in (1.12).

The range of p is optimal. This can be shown by Knapp example, which we now
describe. Note that rotation and translation of the surface M correspond to rotation
and modulation in physical space. Since these operations do not change the norm we
are considering, we may assume without loss of generality that ¢(0) = 0 and V¢(0) = 0.
Let 6 < 1 be a small number. Let g be the characteristic function on the square w :=
[—61/2,51/2]7=1 This means the convex hull of the lifting of w onto the surface M is
essentially an axis-parallel box of dimensions roughly 6'/2 x ... x §'/2 x §. For 2/ € R*~!
with |2/| < 6~Y2/(10n) and z,, € [-6~'/(10n), 6~ /(10n)], we have |2’ +¢(&)x,| < 1/10.

Thus, for z = (2, z,)

|Eg(x)] = |Erg(z)| =

/cos(l/l())du(g)’ ~ () =6 1/2,

T

and

|Eg|| o gny Zn 6@ D/25= 0D/ ),

On the other hand,

lgllz2(=1,12,a0) = /,L(T)I/Q ~ §(n=1)/4
By sending § — 0, we see that (1.12) can hold only if 251 — ”2—;1 > 2L which is equivalent

top > =———.

n—

2(n+1)
I

It is worth noting that w satisfies 1.6 and is (¢, d)-flat. Moreover, one can repeat the

above calculation for squares w of side length ~ 6172 at any point on w, since all these w



are (¢, 0)-flat.

We now turn to general smooth hypersurfaces M. Without the Gaussian curvature
assumption | det D2¢| > 1, the size of w is different at different points of the surface M.
Thus, the necessary condition on the Lebesgue exponent p > p, differs for different M if
we insist on using the Lebesgue measure. The goal is then to determine the smallest p
so that (1.12) holds for p > py4 for some C' depending on ¢. When n = 2, this problem
is completely settled. It follows from the methods of Stein and Tomas. When n = 3,
this becomes significantly harder because the set where the Hessian determinant det D?¢
vanishes is much more complicated. Nevertheless, for a large class of smooth functions ¢,
including those that are analytic, pg is fully determined in [39], see also [40, 47, 51, 53,
72] for related results and developments.

In this dissertation, we take up a different question. We introduce the affine surface

measure p? defined by

dp(€) = | det D2(€)| 7 de, (1.13)

such that the extension estimate

1891 20 < Oz, (1.14)

is invariant under affine transformation that sends the surface M to M’.

Heuristically, u° puts small weight on the parts of M with small Gaussian curvature
and hence mitigates the obstruction to (1.12) due to the lack of curvature conditions.

In the literature, the restriction estimates with affine arclength measure for curves in
R™ are well understood. See [1, 2, 20, 21, 64]. For uniform results for polynomial curves
up to degree k, see [17, 55, 56, 59, 64]. On the other hand, the affine surface measure
has also been considered in [15, 57, 58] for convex surfaces of revolutions in R?, in [16] for
surfaces in R? given by the graphs of homogeneous polynomials, and in [52] for surfaces in
R3 given by the graphs of mixed homogeneous polynomials. Other notable results include

38, 48, 63].



We successfully solve the L? affine restriction problem in R? for smooth surfaces. For
polynomial surfaces, the result is uniform for polynomials of bounded degree. The primary
tool comes from the decoupling theory. It is worth noting that decoupling inequalities are
also invariant under affine transformation.

To state our result, we introduce a slightly smaller u* defined by
dyf (€) = | det D2¢(€)|7+175de,  for any & > 0. (1.15)

The measure p° overdamps the variance of the Gaussian curvature of M

Theorem 1.2.2 (L., [44]). Let n =3, ¢ > 0 and R > 1. Let ¢ be a smooth function on

[1,1]"Y, and E*H = E[‘é’f -1 be as in (1.10). Let du, du® be defined in (1.13) and

(1.15), respectively. For any g € S, we have

|]E¢’”Og||L4(B) Seo B9l L2(qu0),  for any ball B of radius R, (1.16)
1B gll 1+ Seo 19l 22 (aue)s (1.17)
and
0
IE® gllr Seo 19l 2(dp0y,  for any p > 4. (1.18)

Moreover, the implicit constants in (1.16), (1.17), and (1.18) are uniform over all poly-

nomials ¢ of degree at most k with bounded coefficients.

By abuse of notation, we define the measure du~/4 on S to be the pullback of the

two-dimensional Lebesgue measure d¢. Then by trivial estimates, we have for any g € S,

1

—1/4
IE®H gl Lo a0y S 190 p2ap170) (1.19)

and

IE g|| oo a0y S 11911 L1 (09 - (1.20)

By complex interpolation, see for instance [62], among (1.17), (1.19) and (1.20), we
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get the following affine restriction estimates off the scaling line for affine surface measure
78

Corollary 1.2.3. Let 1 < ¢ <2 and % <1-— %. Let E®* and p° be as in Theorem 1.2.2.
For any g € S, we have

IE®* gl Lo(ap0) So 19l La(auo)- (1.21)

Moreover, the implicit constant in (1.21) can be made uniform over all polynomials ¢ of

degree up to k with bounded coefficients.

We remark that the ¢ losses in (1.16) and (1.17), and the off-scaling line conditions
p>4in (1.18) and 2/p < 1 — 1/q in (1.21) are necessary for the case of general smooth

surfaces. This may be seen by considering the highly oscillatory function

e V-l sin(|¢|7%) if € #0;
P(§) = (1.22)
0 if&=0,

modified from Sj6lin’s two-dimensional example in [59]. See Section 3.5.

1.3 Proof Strategies

In this section, we briefly describe the strategies to prove Theorem 1.1.2 and 1.2.2.

1.3.1 Passing to polynomials

Let n = 3. In all of our results, we can afford to lose R°. We shall see later that such a
loss can be transferred to the measure p in (1.17) and the non-endpoint exponent p > 4
in (1.18). In what follows, we write A < B to mean A <. R°B for any ¢ > 0.

The first reduction is to approximate a smooth function ¢ by its Taylor polynomial of
degree 2/¢ on each square of side length R~¢/2. We trivially decompose, via the trivial
decoupling inequality (1.2), our domain [—1,1]? into a finitely overlapping cover of these

squares of side length R~¢/2. Tt suffices to prove Theorem 1.1.2 for all polynomials ¢ of
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degrees up to k with bounded coefficients, with implicit constants depending on k but not
the specific polynomial ¢. The details are in Section 2.2.2. In the rest of this subsection,

we assume that ¢ is a polynomial of degree at most k with bounded coefficients.

1.3.2 Iterative decoupling

Note that decoupling inequalities of the form (1.2) can be iterated. More precisely, suppose

that wy can be decoupled into w; € Py at a cost of Dy, i.e.

1/q

HEwogHLp(wB) <D Z ||Ewlg”Lp (wg) )

w1€P1

where wp is defined in (1.25), and each wy € P; can be decoupled into wy € Pa(wy) at an

uniform cost of Do, i.e.

1/q

HEwlgHLP(wB) < Ds Z HEw2gHLp (wg)
w2 EP2(w1)

Then, wp can be decoupled into wy € Py := U, P2(w1) at a cost of Dy Dy, i.e.

1/q

HEwogHLP(wB) < D1Dq Z HEwgquLp(wB)
w2 EP2

See Proposition 9.17 of [18] for the proof.

For this reason, we use the phrase “w can be decoupled into w’ € P at the cost of D”
to mean inequalities of the form above. We usually keep track of all the constant losses
after describing the iteration.

Moreover, if the number of elements in P is bounded by insignificant constants, in-
cluding those of order O.(67¢) for any € > 0, we use triangle and Hélder inequalities to
get:

Decy (¢, R, P) < |[#P|1a. (1.23)

The loss from the above trivial estimate is also of order O.(67¢) for any £ > 0, which
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is tolerable. An important situation in which we can apply this procedure is the dyadic

decomposition by Gaussian curvature which we describe below.

1.3.3 Dyadic decomposition

Since Bourgain-Demeter’s decoupling theorem (Theorem 1.1.1) and Tomas-Stein theorem
(Theorem 1.2.1) already cover the case where |det D?¢| > 1, our enemy is the set where
det D2?¢ is small. Therefore, the first step is to dyadically decompose our domain [—1,1]"~1
into sets of the form {|det D?¢| ~ ¢} for some dyadic number R~ < o < 1 and absolute
constant C, depending on degree k, to be determined.

We take a detour to look at the case when n = 2. In this case, the sets {|det D%¢| ~
o} = {|¢"| ~ o} are significantly simpler: they are unions of at most 2k intervals. By
the trivial decoupling inequality, it suffices to consider one of these at a tolerable loss
depending only on k£ and the exponents p, g. The part of the curve M over these intervals
can be directly rescaled to part of a parabola. Since our problems are affine invariant and

they are solved in parabolic cases, this closes the proof.

1.3.4 Projection and 2D general decoupling

Our strategy for n = 3 is more complex than the n = 2 case. The first major obstacle
is that the sub-level sets {| det D?¢| ~ o} are in generally curved regions that cannot be
rescaled to the unit square, as opposed to the rescaling of intervals to the unit interval
when n = 2. We follow similar ideas in [42, 45] to project the part of M lying over
{|det D?¢| ~ o} down to a curved region in R?. Although a projection forgets certain
geometry of the surface, the decoupling of the projected sets, as a subset of R?, is easier
to study.

Write P = det D?¢. Note that P is a polynomial of degree at most 2k and with
bounded coefficients. We will decouple the projected set {|P| < §} C [~1,1]? into par-
allelograms. We call this generalized 2D uniform decoupling. The special case where

|Py| ~ 1 is more manageable because it is essentially a d-neighborhood of an algebraic
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curve. We apply the Pramanik-Seeger iteration [54] to approximate the curve by graphs
of some carefully chosen polynomial-like functions in different scales. We then prove this
special case by applying the uniform decoupling on polynomial-like functions in R? [75].
For the general case, we use induction on the degree of the polynomial. Morally, the set
{|[VP| ~ o}, for some dyadic number o, can be treated as sub-level sets of polynomials of
one degree less and thus can be decoupled into parallelograms by the induction hypoth-
esis. Correct applications of rescaling arguments led us to the known case where |V P)|
is bounded below. The rigorous argument requires an in-depth analysis of the geometric

properties of the sets between consecutive steps.

1.3.5 Surfaces with small Gaussian curvature on the entire domain

By 2D uniform decoupling, we are able to localize ¢ to parallelograms with small Hessian
determinants. After rescaling these parallelograms to the unit square, the problem is
reduced to studying the polynomial surfaces with essentially constant Gaussian curvatures.
By the iterative structure of the decoupling inequality (1.2), it suffices to decouple each
of these rescaled pieces further. We denote the rescaled function (;3

For n = 2, one can always divide ¢, which corresponds to rescaling the last variable
in the frequency space so that the new function has Hessian determinant bounded below.
This does not work for n = 3. The best we can say when the Gaussian curvature is
small on the entire unit square is that there exists a direction along which the surface
can be projected into a tiny neighborhood of the graph of a polynomial in one variable.

uantitatively, if 5 has Hessian determinant ~ v < 1 on —1,1)?, it admits the form
Y

pop=A&)+v"B(, &) (1.24)

for some rotation p, a = a(k) € (0,1) and polynomials A, B with bounded coefficients.
It is remarked that (1.24) is no longer true for non-polynomial ¢. For example, the
cone has zero Gaussian curvature and hence function ¢ representing the truncated cone

{(&1€]) = €] € [1,2]} has zero Hessian determinant. Nevertheless, ¢ does not admit the
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form (1.24).

1.3.6 Induction on scale

Now, we may approximate ¢ o p by the graph of a cylinder (&, A(&;)). This allows us to
apply a cylindrical decoupling to ¢o p at the scale v®. Fach decoupled piece can be enlarged
to a polynomial surface living in the unit ball and having Gaussian curvature ~ v1=%/2,
Note that we start with a surface having Gaussian curvature ~ v < v'=%/2_ Tteratively,
we arrive at the situation that all the resulting surfaces have Gaussian curvature bounded

away from 0. We then conclude Theorem 1.1.2 by applying Bourgain-Demeter’s decoupling

result (Theorem 1.1.1) to each resulting surface.

1.3.7 Affine restriction estimates

To prove affine restriction results for all smooth surfaces, including those having principle
curvatures of opposite signs, we should not apply Bourgain-Demeter’s decoupling result
(Theorem 1.1.1) to surfaces having Gaussian curvature bounded away from 0. The loss
|#P||'/2~ /4 in (1.4) cannot be tolerated in the sharp restriction result. We instead apply
the Tomas-Stein inequality (Theorem 1.2.1) directly to these surfaces. It is worth noting
that except for the last step where we applied decoupling to surfaces having Gaussian
curvature bounded away from 0, all decouplings we used are cylindrical and is £2(L*). By
affine invariance, we rescale back all these pieces and add them up in 2 norms to obtain
the desired estimate (1.16).

For the over-damped situation, the measure compensates an extra factor of o€ for the
region {|det D?¢| ~ o}. Thus, we shall keep track of all the cylindrical decouplings in the
iteration, ensuring the loss is at most 05(0_5/ 2). This allows us to sum all dyadic pieces
and obtain the L? — L* endpoint estimate (1.17).

The non-endpoint result p > 4 for the affine surface measure p in (1.18) is a consequence

of interpolating the over-damped estimate (1.17) and the trivial L' — L> estimate.
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1.4 Notations
In this section, we summarize the notations used throughout the dissertation.

1. For integer n > 2, M is a smooth compact hypersurface in R"™ defined by the graph

of a smooth function ¢ : [-1,1]""t — R.

2. x = (2/,2,) € R"! x R denotes variables in physical space and (£,7) € R*™! x R

denotes variables in frequency space.

3. Dyadic numbers are numbers of the form (1 + ¢)%,k € Z>yp, for some positive

constant ¢ that will not change throughout the dissertation.

4. d¢ is the n — 1 dimensional Lebesgue measure. du?w and duf,, for € > 0, are
respectively affine surface and over-damped affine surface measures on M defined
by

dpiha (€, 9(8)) = | det D2(€)| 7 d,

and

dps (&, $(€)) = | det D¢ (&)|w1 < dg,

5. Measures du, respectively du® and duf, defined on [—1,1]"~! are the pushforward

measure of djupq, respectively duf, and dus , under the projection map (&, ¢(£)) —

¢.

6. For any L' function g, define the extension operator E4 = Eﬁ’“ on A C [-1,1]*!

with measure du:

Baglel,a) = [ gl HOmdu(e), o= () R XR
A

7. We use the standard notation A = O, g(B), or A So,8 B to mean there is a constant

C depending on «, 3, dimension n, Lebesgue exponents p, g and degree k that may
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change from line to line such that A < C'B. We also use a ~4 b to mean a <4 b and

b < a.

For parallelograms w C [—1,1]""}, we denote c(w) to be the center of w. w is said

to be (¢, R~1)-flat if

sup [$(€) — ¢(c(w)) — Vo(e(w)) - (€ — c(w))| < R

fcw

Given a ball B C R™ of radius R centered at ¢, define the weight wp to be

wg(z) == (1+ "E};C’)—mn. (1.25)

For any set A C [~1,1]""! and any 6 > 0, denote the (vertical) 6-neighbourhood of

the graph of ¢ above A by
NP(A) = {(&m) : €€ A In—6(€)] < o}, (1.26)

For F : R® — C and A C [-1,1]""!, we denote by F4 the Fourier restriction of F'

to the strip A x R, namely, F'4 is defined by the relation
Fa&,m) = F(€,m)1a(€). (1.27)

For any smooth function ¢, we define the norm of ¢ to be

]l := Sugz |9]. (1.28)

For any polynomial P : R? — R defined by P = 3 ca€® of degree at most k, the

norm || P|| defined above can defined equivalently as below:

IP|| := sup |P| ~ max|ca| ~k D Ical- (1.29)
[_171]2 «

67
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We say a polynomial P is bounded if || P|| <p 1.

For parallelogram w C [—1,1]?, define T,, be the invertible affine map that maps

[—1,1]2 to w. T, sends the smooth function ¢ to ¢r, as follows:

o1, (§) = ¢ o T(§) — V(¢ 0 T,)(0,0) - £ — ¢ 0 T5,(0, 0). (1.30)

We normalise T, by
¢,
o7,

Note that w is (¢, d)-flat if and only if ||¢7, || < R

b1, = (1.31)

For parallelogram w C [—1,1]?, the width of w is the diameter of the largest ball

contained in w.

We use the phrase “w can be £?(LP) decoupled into w’ € P at a cost of D” to mean:

for each g € L'([-1,1]""!, we have
1/q
HEngLP(wB) <D <Z HEw’gH%P(wB)) :
w'eP

(%(LP) is often omitted if it is clear in the context what p is. If D < 1 and there is

finitely many iterations, we sometimes also omit D.
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Chapter 2

Decoupling theory

In this chapter, we prove the decoupling inequalities for compact smooth surfaces in R?,

stated in Theorem 1.1.2.

2.1 Overview

In (1.2), we formulated the decoupling problem in terms of the extension operator. The
extension formulation involves more technical details to work with, mainly due to the
necessity of weight wg. We will instead use an alternative formulation in which functions
have frequency support on a neighborhood of the surface. Let Dy, 4(¢,d,P) be the small-
est constant such that the following ¢9(LP) decoupling inequality holds for all F' Fourier

supported on Nf(UP):

1/q
|Flloan) < Dpa(6,6.P) (Z \er%p(m) . (2.1)

w€eP

By Proposition 9.15 of [18], Theorem 1.1.2 is implied by the following equivalent version

under an extra assumption on the size of w:

Proposition 2.1.1 (Yang-L., [44, 46]). Let 2 < p <4, n =3, and 0 < § < 1. Let
¢ :[~1,1]2 = R be a smooth function. There exists a family P = P (6, $) of parallelograms

w covering [—1,1]% such that, for any e > 0
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1. each w € P is (¢, 9)-flat;
2. P has O-(0°)-bounded overlap in the sense that ), p Ly Spe 0755
3. The width of each w € P is at least §;

4. We have the following ¢P(LP) decoupling inequality:

Dpp(0,0,P) Sp.c 0 F|3£P|V/271P, (2.2)

If, in addition, D*¢ is positive semidefinite on [—1,1]%, then (2.2) can be strengthened to
the (2(LP) inequality:

Dyp2(¢,6,P) Spe 6 (2.3)

Moreover, the implicit constants in (2.2) and (2.3) can be made uniform over all polyno-

mials ¢ of degree up to k with bounded coefficients.

Conditions 1 and 3 above ensure that the following assumption in Proposition 9.15 of

[18] is met: for each w € P, there is a rectangular box R,, such that
R, Cw and w+ B(0,0) C R, +T, (2.4)

for O(1) many points 7" independent of w and §. We briefly explain why this assumption
is important. In a standard localization argument, we multiply a smooth cutoff function
Y, whose Fourier support is in B(0,6), to Eg in (1.2), where R = §~. Let F = Egiyp.
Then F = E/Z] * Q;B in distributional sense. Thus, to relate F,, and Fg,, w needs to satisfy
(2.4).

It is remarked that Proposition 2.1.1 is first proven by Yang and the author in [46],
without condition 3. In this dissertation, we describe the approach taken by the author
in [44]. As a side product of the approach, we prove some variants, Propositions 2.6.1 and
2.6.2, to Proposition 2.1.1, which will be used to prove the affine restriction results in the

next chapter.
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In Proposition 2.1.1, P is not allowed to depend on e. It turns out that it suffices to
prove the superficially weaker version in which P is allowed to depend on €.
Furthermore, the general smooth case is a corollary of the uniform polynomial case.

The following summarizes what we need to prove.

Proposition 2.1.2. Let 2 < p <4, n=3,e>0and 0 <) < 1. Let ¢ be a bivariate
polynomial of degree at most k with bounded coefficients. There exists a family P =

P(8,¢,¢€) of parallelograms w covering [—1,1]? such that the following hold:
1. each w € P is (¢, 0)-flat;
2. P has Oy, c(07°)-bounded overlap in the sense that ) p 1y Ske 67°;
3. The width of each w € P is at least §;

4. We have the following ¢P(LP) decoupling inequality:

Dpp(,6,P) Spe 55| #P[/27 1, (2.5)

If, in addition, D*¢ is positive semidefinite on [—1,1]%, then (2.5) can be strengthened to
the £2(LP) inequality:

DP72(¢7 67 P) Sk,s 0 ¢, (26)

The proof of Proposition 2.1.1 from Proposition 2.1.2 is contained in Section 2.2.

The following two propositions are the key ingredients of Proposition 2.1.2.

Proposition 2.1.3 (Generalised 2D uniform decoupling inequality with size estimates).
Lete >0,2<p<6,0<dX<1 be dyadic numbers and P : R> — R be a bounded
polynomial of degree at most k. For each dyadic number o € [\, 1], there exists a family

7707>\ = PSA((S, P) of parallelograms such that the following statements hold:

g

1. for each X, Pg = UUPSA, where the union is over dyadic numbers o € [\, 1], covers
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[—1,1]? in the sense that

Y 1@ =1 forée[-1,1]%

wEPH

2. 772 has bounded overlap in the sense that Zwepg 1100w Sk 15
3. for each w € 732/\, at least one of the following holds:

(a) A <o <1, |P|~ o over 10w, and the width of w is 2 max{o,d};
(b) A< o <94, |P| <o over 10w, and the width of w is ~ 0.

(c) o =X\, |P| <X over 10w, and the width of w is 2 max{c,d}.
4. For N\ <X <0, Psx="Pyx.

5. the following 2D (%(LP) decoupling inequality holds: for any f : R?> — C whose

Fourier transform is supported on |J,cpo w, we have
o,

1/2

HfHLp(R?) Sek 0 ° Z wa||%p(R2) ) (2.7)

wePE’A

where f,, is the frequency projection of f onto w, defined by fw = fl,.

Before proceeding, we make several remarks regarding Proposition 2.1.3. First, the
introduction of the parameter A\ is primarily for induction purposes. When applying
Proposition 2.1.3, we will take A\ ~ 6¢ for some C depending on k. Second, the width
estimates on w in statement 3 are crucial in proving Proposition 2.1.1, which requires a
lower bound on the width of w. Nevertheless, the other lower bound, o, in items (3a)
and (3c), as well as the decoupling constant ¢~¢, instead of the usual §7° in (2.7), are
for the purpose of the next chapter. (Compare Propositions 2.6.1 and 2.6.2 at the end of
the chapter with Propositions 2.1.1 and 2.1.2 above.) Heuristically, we shall not “over”
decouple sets in R? by stopping at steps where the sub-level set {|P| < o} already has

width . On the other hand, since P has bounded derivatives, the set {|P| ~ o} contains
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the o neighborhood of the algebraic varieties {|P| = ¢}. Thus, it is expected that the
decoupled set has a width of at least o.

Proposition 2.1.3 will be proved in Section 2.3.

Proposition 2.1.4. For each 2 < k € N, there is a constant « = a(k) € (0,1] such that
the following holds. Let ¢ : R> — R be a bounded polynomial of degree at most k, without
linear terms. If ||det D?¢|| < v € (0,1), then there exist a rotation p : R? — R?, and

bounded polynomials A, B such that

¢(§) = Ao p(§) +v*Bop(§),

and A is one-dimensional, i.e. for any & € R?, A(&, &) = A(&1,0).

Proposition 2.1.4 will be proved in Section 2.4.

In Section 2.5, we prove Proposition 2.1.2 using Propositions 2.1.3 and 2.1.4. This will
finish the proof of Proposition 2.1.1 and hence Theorem 1.1.2.

Finally, in section 2.6, we present variants of Propositions 2.1.1 and 2.1.2 for the

application of the next chapter.

2.2 Two reductions

In this section, we prove that Proposition 2.1.2 implies Proposition 2.1.1.

2.2.1 Removal of e-dependence of the covering P

In this subsection, we remove e-dependence of the covering P in Proposition 2.1.2. The
proof presented here was suggested by Joshua Zahl.

Let ¢ = ¢(J) be a function such that ¢ N\, 0 as 6 N\, 0, with the rate of decay to be
determined.

Now with each 0 > 0, there exists a family Ps = P (9, ¢,2(9)) of parallelograms w
satisfying the prescribed properties. Note that by definition, P(J) depends on ¢ only.

Let € > 0 be arbitrary.
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If ¢ < 2¢(6), then using the monotonicity of the fixed function £(¢d), ¢ is bounded
below by a positive number depending on ¢ only. In this case, we have a trivial decoupling
inequality, with the constant depending on ¢, €.

If e > 2¢(0), then it suffices to find a suitable C}, _ such that
Cye(s)0 =W <€) 67%, foralle >0, >0,

where Cy . is the implicit constant in the € depend version of decoupling. Since £/2 > £(6),

we have <00 < (5*5/2, and thus it suffices to show that
Cye(5)0/* < Cls, foralle >0, 6 > 0. (2.8)

We may assume Cy . " 00 as € N\, 0. If we choose £(0) to decrease slowly enough as § \, 0,

then we may have Cy .(5) < log 51 for all § small enough. Then for all € > 0, we have

lim Cy (5072 < Elim 5% logs !t = 0.

6—0t —0t

Thus, by choosing a suitable constant C?, _, we have (2.8). The e-bounded overlap follows

from the same proof. Thus we have removed the € dependence of the family P.

2.2.2 Taylor approximation

In this subsection, we prove the decoupling of general smooth functions by using the
uniform decoupling inequalities for polynomials of degree k with bounded coefficients.
The idea is a standard Taylor polynomial approximation.

Fix ¢ € C*®([-1,1]?). We will first prove the general case without assuming that D2¢
is positive semidefinite.

Given € > 0 and § > 0, we first partition [—1,1]? into squares @ of side length &°.
Since we allow a loss of §7¢ in the decoupling inequality, by the triangle and Holder’s
inequalities, it suffices to decouple each @ into (¢, d)-flat rectangles.

1

Let k be the smallest integer greater than or equal to e™*. For each @, we may
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approximate ¢ by its k-th degree Taylor polynomial Fg, which depends on €, . The error
is at most

Cr sup |D"o(z,y)[(6%)FH < C) sup |DFM(z,y)|6" e
[7171]2 [7171}2

For ¢ small enough (depending on ¢), the above error will be less than §/2. Hence, to
find a cover of @ by (¢, 6)-flat rectangles, it suffices to find a cover of Q by (Pg,d/2)-flat
rectangles.

Since all coefficients of Py are bounded by a large constant depending on ¢, ¢ only,
we may normalize Py to ]5Q with maximum coefficient having magnitude 1, and apply
Proposition 2.1.2 to ]5Q find a cover Pg = Pg(é, PQ) of () that satisfies the prescribed
properties. The final collection Py is simply defined to be the union of the collections
UgPg. The overlap between rectangles covering different @’s is trivially bounded since
each covering rectangle of @) is a subset of 2Q), and 2(Q)’s have bounded overlap.

Although Py depends on §, our main uniform decoupling Proposition 2.1.2 ensures a
uniform bound of all decoupling constants as () varies, and this uniform bound is indepen-
dent of 0. Thus, the final decoupling inequality (2.2) follows immediately by the triangle
and Holder’s inequalities.

Lastly, in the special case when D?¢ is positive semidefinite, by choosing the degree of
Py to be greater than £73 if necessary, we may approximate ¢ by FPg such that det DQPQ >
—4&%. By normalising Py to ]5Q with maximum coefficient having magnitude 1 and choosing
0 small enough, we also have 1 =>. det D2]5Q > —62. In this case, we get uniform ¢

decoupling inequalities from Proposition 2.1.2. This finishes the proof.

2.3 General 2D decoupling

In this section, we prove Proposition 2.1.3. The proof of the proposition involves three
steps. First, we show Proposition 2.1.3 under the assumptions that P = A(&;) — &B(&1)
and that A/B is polynomial-like, the decoupling inequalities of which have been solved

by Yang in [75]. Second, we prove the case when |VP| ~ k. In this case, |P| ~ o is



25

roughly the o/k neighborhood of the zero set of P. This can be solved by a Pramanik-
Seeger iteration by approximating P at each scale by polynomials obeying the condition
of the first case. Third, we fully prove Proposition 2.1.3 by induction on the degrees of
polynomials P. Note that high enough derivatives of P are constant. Applying the second

step to derivatives of P iteratively, we conclude the proof of Proposition 2.1.3.

2.3.1 Uniform decoupling of polynomial-like rational functions
We first introduce the following definition of polynomial-like functions:

Definition 2.3.1. 9 is said to be a polynomial-like function of degree k over Iy if, for

each 0 < 0 < 1 and each interval J C Iy, the set
B(,0,J) = {& € J: [W"(&)] < o(sup [¢"(&)] + || sup [¢"(&1)])}
&ed &1eJ
is a disjoint union of at most Ok (1) subintervals of J, and satisfies
[B(,0,T)| S 5],

Note that polynomials of degree at most k& with bounded coefficients are polynomial-
like functions of degree k; see Lemma 1.7 of [75].
We need the following rescaled version of the uniform decoupling for polynomial-like

functions from [75].

Proposition 2.3.2 (Uniform decoupling for polynomial-like functions). Let k > 1, € > 0,
0 <0 <1, and let ¢ be a polynomial-like function of degree k over Iy C [—1,1]. There

exists a partition Is of Iy such that
1. each I € Is is (v, 0)-flat.
2. each I € Iy has length at least 6/2.

3. for any C > 1, there ezists at most Oc (1) many neighboring intervals whose union

is (1, C(0))-flat.
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4. the following 2D (?(LP) decoupling inequality holds: for any f : R?> — C Fourier

supported in Ng(é)(lo), we have

[l r(r2)y Sew 67° Z £ 0 2y
1€l

We remark that the above theorem will also be used repeatedly in the bootstrapping
argument, Section 2.5.2 below, for the special case when 9 is a polynomial.
Combined with the following lemma, we prove the uniform decoupling inequalities for

rational functions.

Lemma 2.3.3. Let 0 < k < 1. Suppose that A, B are univariate polynomials of degree at
most k such that |A| < k and |B| ~ k over an interval Iy C [—1,1]. Then 1) := A/B is a

polynomial-like function of degree 3k.

Proof. By rescaling, it suffices to check these conditions for J = Iy = [—1,1]. Then, the
coefficients of A and B are bounded by x. By dividing A and B by k, we may assume
without loss of generality that x = 1. By direct computation, ¢ = A;/B? for some

polynomial A; of degree at most 3k such that |A;| < k3 over [~1,1]. Thus, by the

fundamental theorem of algebra, B(v, o,[—1,1]) is a union of Ok(1) many subintervals of
[—1,1].

On the other hand,

AL 3A,B%B’
- 1,1] 11| B® Bo

< sup A} 4 [A1] S sup |A4],
-1,1] (-1,1]

where the last inequality follows from (1.29) because A; is a polynomial.
Thus, B(¢),0,J) is contained in {|A1| < o supj_y 3 |41|}. Since degree of A; is bounded

by 3k, the size of this set is < o3 as desired. O
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2.3.2 The case of constant gradient

In this subsection, we consider the case when |V P| ~ & for some k < 1 over a parallelogram
wo of width at least k= 'o. Our goal is to decouple {|P| < o} Nwy into bounded overlap
parallelograms of width ~ min{x~!o,1}.

We first need the following structure lemma for the set {|P| < o} Nwp.

Lemma 2.3.4. Let 0 < 0,k < 1. Let wg C [~1,1]? be an awis-parallel rectangle. Suppose
that P is a polynomial of degree at most k such that |VP| ~ r and |0z, P| ~ K over wy.
There exist O (1) many disjoint intervals I and smooth functions v¥r on I, depending on

o and Kk, such that

{IP| <o} nwy S| NGl 10y (D), (2.9)
I

and, for each I,

Ntea1y(I) Mo C{|P| < o} (2.10)
where B(0,7) is the ball of radius r centered at 0.
See Figure 2.1 below for an illustration of this lemma.

Proof. By the fundamental theorem of algebra, there are O (1) many & on [—1,1] such
that P(&1,&) = +o0 and (&1,&2) € Owp for some €. These & form intervals I on which
there exist £ such that |P(&1,&2)| < 0. Define ¢; implicitly by P(&1,%7(£1)) = o using
implicit function theorem, where the sign is chosen as follows. We use —o (resp. o) if the
graph of 1; intersects the top (resp. bottom) of wy. If it intersects both the top and the
bottom, we cut the interval into halves and choose the sign separated as described above.
The function v is smooth with bounded derivatives because all derivatives of d¢, P are of
magnitude < k.

To see (2.9), let (£1,&2) € {|P| < 0} Nwy. By construction, there exists I as above
such that & € I. By the mean value theorem, there exists &, between & and (&) such

that

20 > |P(&1,€2) — P(§1,%1(61))] = 102, P(83)[162 — v1(&1)]-
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O<~—1J>IJ

{|P| <o}:

Figure 2.1: Illustration of the structure lemma

The way we construct ¢ ensures that (£1,£5) € wo, and hence |0¢, P(&5)| ~ k. Therefore,
|62 — ¥r(&1)| S K710
It remains to show (2.10). Let (&1,&2) € wo be such that |& —¢7(&1)| < k1o, Then,

by mean value theorem again, there exists &, between &2,17(€1) such that

|P(&1,&)| = |P(&1, &) — P(&1,¥1(6))| = |05, P(&)|162 — vr(&)| S (ko) =0

as desired. ]

The above lemma reduces the decoupling of {|P| < ¢} Nwp to the decoupling of the
neighborhood of level sets of polynomials P. Since there are Ox(1) many intervals, it

suffices to consider each interval separately.

Proposition 2.3.5. Let 0 < 0 < 1 and Iy C [-1,1]. Suppose that ¢ : In — R is a
smooth function and P(&1,v(&1)) = 0 for some polynomial P of degree at most k with
bounded coefficients. Moreover, |VP| < |0¢, P| ~ k on wy for some axis parallel rectangle

wo containing the graph of ¢ above Iy. Then, there exists a collection of (1, o)-flat disjoint
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intervals I such that

1. the following 2D (?(LP) decoupling inequality holds: for any f : R?> — C Fourier

supported in fo([o), we have

=

2
[ fllr(®2) Sek o ° (Z HfIH%P(R2)> ;

Iel

2. each I has length at least o/?;

3. for any absolute constant C' > 1, any & € R stays in O(1) many I € T.

Proof. Let Zy contain the singleton Iy. Let og < 1 be the smallest number such that I is
(1, o)-flat. Also, the side of wy that is parallel to the to £ axis has a length of at least oy.

Therefore, for any (£1,&2) € wo,

P&, &) = [P(&1,&2) = P&, ¥(&)) S o0sup 0, P| S ook (2.11)

We now describe the Pramanik-Seeger iteration. At each step, we approximate
locally by rational functions. For each i = 1, ..., our goal is to decouple each I € Z;, which
is (¢, 0;)-flat, for some o; < oy.

We consider the following one-dimensional variant of the rescaling (1.30). Let 77 be

the translation and rescaling that maps [—1, 1] to I. Consider

U1, (€1) == o Tr(&1) — V(¢ 0 T1)(0)€1 — ¢ o T1(0),

and

Pry(&1,&2) = P(T1(&1), &2 + V(¢ o T7)(0)&1 + ¢ 0 T7(0))

so that PTI (51, le (51)) =0.

To decouple 1 over I, it suffices to decouple 97, over [—1,1].
Write
Pry(&1,6) = A(&) — &B(&) + &E(6, &)
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for some polynomials A, B, E of degree at most k£ with bounded coefficients.
Note that 17, (0) = 0 and P(0,0) = 0. Recall from (1.29) that the norm of a polynomial

|| -] is equivalent to the supremum of the polynomial over the unit interval. We may bound

A and B by:
|All = sup |Pr,(&,0)] Ssup|P| S ook
516[_171] wo
and
|Bll = sup [0g,Pr,(&,0)] ~ k.
§1E[—1,1]

Thus, A/B satisfies the assumptions in Lemma 2.3.3 and is polynomial-like of degree 3k.
We now approximate 9, by A/B.

Since I is (¢, 0;)-flat, we have |1, (£1)] S 0i. Moreover, for any |£2 —r(&1)| < 00, we
have

3B (&1, &2)| < sup [P()] + | A]l + ool BI| < oo,

§€wo

and hence for any fixed & € [—1,1],

(00&2)*E(&1,00&2) S ook

This means that all coefficients of (£1,&) — E(&1,00&2) are bounded by x/0g, and there-
fore E(&1,&2) S k/og for any [€] < oy.

On the other hand, we have
0= Pr,(&1, 97, (61)) = Al&1) — Y1, (§)B(&1) + 97, () E (&1, ¥, (1))
Using |¢7, (€1)| S 03, we have
¢, (&1) — A/B(&1)| < Coa /oo,

This allows us to approximate N;pTI ([-1,1]) by a 0i11 := max{o, Coo?/oo} neighbor-

hood of the graph of A/B, a polynomial-like function of degree 3k. By Proposition 2.3.2,
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[—1,1] can be decoupled into (A/B,o;+1)-flat disjoint intervals I’. Let Z;11(I) denote
the collection of all T7(I’). Rescaling back, we successfully decouple I into the partition
Ziy1(I), each interval of which is (v, 0;11)-flat, at a cost of O:(0;5).

Let Z;11 be the union of Z;11(I) for all I € Z;. Since intervals I may be decoupled
into incomplete sub-intervals near both ends. In this case, we concatenate the incomplete
sub-intervals with its neighbor to ensure that the size of each interval in Z;,1 is at least

o; 11 This is possible at O(1) cost.

We are ready to conclude Proposition 2.3.5 using the above induction steps.

We start with o1 = 0¢/(10Cy). The initial collection {lp} = Zy can be decoupled
into O(1) many (¢, 01)-flat intervals by the trivial decoupling inequality (1.3), at O(1)
cost. We then iteratively decouple each I € Z;, for ¢ = 1,...,N until oy = 0. We
then take Z = Zy. Note that o;1/09 = Co(0;/00)? for all 1 < i < N —1 . Thus,
0/og ~ (Coo1/o0) /D™ = (1/2)2" " Therefore, N ~ loglog(c/og)~ . The total cost
is bounded above by

CNHO' < (log(c/o0)™ l)logCEO.—E(1+2/3+(2/3)2+... < 5700

Since € > 0 is arbitrary, we have proved the decoupling inequality. Also, the size estimate
is evident in the construction. It remains to show the bounded overlapping condition.
Fix £ € R and assume there is a collection Z’ of intervals I € Z such that £ € C1I.

Suppose there are N intervals {I;}2¥, C T to the right of & that lie in Z’. Then
o(l;) — & < C|Ii|/2,

where ¢(I) denotes the center of the interval .

On the other hand, by disjointness of the intervals I;, we have

i—1
&2 Z |Z;1.
=1



32

Thus we have for every 1 <i < N,

i—1
1] > 20737,

j=1
Therefore
N-1 N—-2
Iyl =207 Y (LI = C7 ' A+ 0> L > =207 1+ )N P,
j=1 j=1

Since Iy is (¢, 0)-flat, we have CIy N[—1,1] is (¢, O(0))-flat, i.e.

sup Y (ED|IN]* S o
gl GC]NH[_LI]

Combining the above two display equations, we have

sup [ (§)[|11]* So(1+ 0N
& eCly

But since CIxy N[—1,1] contains I, we have

sup |¢" ()| So(1+C7H)~N.
el

Since 7' satisfies (3), we have N = O¢(1). The argument for intervals lying to the left of

& is the same. This concludes the proof of Proposition 2.3.5. ]

Note that Lemmas 2.3.4 and 2.3.5 require wp to be an axis-parallel rectangle. This
condition can be removed under some slightly stronger assumptions on P. The following
proposition concludes this subsection by establishing the decoupling inequality in the case

of a constant gradient.

Proposition 2.3.6. Let 0 < k' <k < 1,0< 0 <1 and 2 <p <6. Let wy C [~1,1]% be

a convex set and P be a polynomial of degree at most k with bounded coefficients. Suppose
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that O¢, P ~ K and O¢, P ~ K over 3wy, defined by

Bwo == {€ € R? : 3, &1 € wp s.t. [ — &l <3¢ — &}

There exists a family P of disjoint parallelograms such that the following hold:
1. P covers {|P| < o} Nwo;

2. for any absolute constant C' > 1, C'P has bounded overlapping in the sense that

ZwG'P Low SJ 1;
3. for each w € P, |P| S o over 10w;
4. the width of each w € P is comparable to the minimum of the width of wy and k™ 'o;

5. the following 2D (%(LP) decoupling inequality holds: for any f : R?> — C whose

Fourier transform is supported on |J,,cpw, we have

1/2
1oy Sew o (Z wallip(Rz)> , (2.12)

weP
where f,, is defined by f., = (flw).

Proof. First, we reduce wy to a rectangle by the following. By John’s ellipsoid theorem,
there exists an ellipse containing wg that is contained in 2wg. This ellipse is contained in
a rectangle, and that rectangle is contained in v/2 enlargement of the ellipse. Therefore,
there exists a rectangle containing wy that is contained in 2v2wy C 3wp. Thus, it suffices
to consider rectangles wo on which VP < 0g, P ~ K over wy.

Second, we rotate wg to an axis-parallel rectangle wy. Let p be the counterclockwise

rotation by angle 0 € (—m/4,7/4]. Let P = P o p. By direct computation,
O, P = (g, P o p)cos + (g, P o p)sind, e, P = —(0e, P o p)sin + (9, P o p)cosb.

If ¥ < k/2, then VP < 852]5 ~ K over an axis-parallel rectangle. Otherwise, either
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VP < 852]5 ~ kor VP < 851]5 ~ Kk over an axis-parallel rectangle. By re-labeling the
axis if necessary, P and @y meet the requirements of Lemma 2.3.4 and Proposition 2.3.5.
For notational simplicity, we write P and @ as P and wy, respectively, in the rest of the
proof.

By Lemma 2.3.4, decoupling of the set {|P| < o} Nwp reduces to the decoupling of

07
NO

(k7 1o)

(I) for Og(1) many I. By abuse of notation, we proceed by writing P as P + o,
so that P(&1,%1(&1)) = 0. Doing so does not impact VP and the set {|P| < o}, up to a
possible absolute constant loss.

We now apply Proposition 2.3.5 to decouple I into (37, s 'o)-flat disjoint intervals
I € 7. Equivalently, we have decoupled N, gén—la) (I) into a family P of parallelograms w
given by
w={(&,&): & e L& —vr(&) S o} Nwo.

A minor issue concerns the intersection of small parallelograms near the boundary of wy.
In this case, the intersection may be a convex set that is not a parallelogram. We then
find a comparable parallelogram of this set to replace it. The properties still hold in a
slight enlargement of wy.

Items 1, 2, 4 and 5 are immediate from Proposition 2.3.5. Item 3 follows from (2.10)

in Lemma 2.3.4. UJ

2.3.3 Induction on degrees of polynomials

We are now ready to prove Proposition 2.1.3 by induction on the polynomial degree.
Heuristically, we seek to decouple [—1, 1]? into sets having essentially constant |V P|. This
can be achieved by our induction hypothesis. The key observation is that if |[VP| < o over
wo C [~1,1]?, either |P| < o or |P| ~ ¢/, for some ¢’ > o, on wy. Thus, to decouple the
sub-level set {|P| < o}, we need to consider only sets on which |VP| < o or |[VP| ~ ¢’

for some ¢’ > o.

Proof of Proposition 2.1.3. Proposition 2.1.3 is clear when P is a constant function. By

induction on degree of the polynomial, we may assume that there exist families 7351 /\,7752 v
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for functions O, P, ¢, P replacing P in Proposition 2.1.3 respectively.

For each A < o, we now construct the family P, . Note that the parallelograms in
Py are subsets of {|P| S o}.

Since the union of the Pgi,g/c over all dyadic o; € [0, 1] covers [~1,1]2, for i = 1,2, and

some absolute constant C, we may restrict our attentions to wi Nwe, for some w; € 795? 0)C
19

1 = 1,2. Note that
width(w; Nwe) 2 max{min{oy,02},d} = max{o,d}.

Without loss of generality, we may assume that o; < g2. We now consider the following
3 cases corresponding to the items (3a), (3b), and (3c), one of which ws satisfies by our

induction hypothesis.

Case 1: |0z, P| ~ 02 over 10w, for some o3 > 0.

If o € (max{\,02d},09] , the set {|P — o] < ¢/2} Nwi Nwy can be decoupled into
parallelograms w of width 2 o5 Lo > max{o,d} by Proposition 2.3.6. We put these w in
7727 y- They satisfy item (3a).

If 0 = max{\, 02} by Proposition 2.3.6 again, the set {|P| < ¢} Nw; Nwa can be
decoupled into parallelograms w. We put these w in 732’ y- If 0 = 024, w has width ~ 9
and satisfies item (3b). If o = A, w satisfies item (3c).

For o in either of these regime, the w that we just put in 7337 ) already cover {|P| <
o9} Nwi Nwa.

For other values of o, 732 y has no element intersecting wy N ws.

Case 2: |0g, P| S 02 over 10w, for some o < 02 < §, and wy has width 6.

If supygy,nw, [Pl < 40 < 0, we put the set w; Nwe in 7327)\. Recall that w; has width at
least max{o, d}. Therefore, w1 Nws has width ~ § and hence satisfies item (3b).
If SUp1gw,w, [Pl > 402, |P| ~ o' for some dyadic number ¢/ > o9 > o over wy N wo.

This is because |VP| ~ o and wi Nwy C [—1,1]2. Again, we put no element that has an
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intersection with wi N wy inside 772 y- We shall see later that this kind of set has already

been considered in some 733, A
b

Case 3: |0z, P| < 0/10 over 10ws.

This assumption is guaranteed by choosing the absolute constant C' in P, ,/c large
enough.

This case is similar to Case 2. If supjg,, ., [P| < 0/10, w1 Nws is put in 73270 and
satisfies item (3c). If |P| ~ o on 10w; Nwa, w1 Nwe is put in 7327)\ and it satisfies item (3a).
Otherwise, |P| ~ ¢’ > o and we put no element that has intersection with wy Nws inside

0
P

Verification of the statements in Proposition 2.1.3

for each X, 779 = ngg)\, where the union is over dyadic numbers o € [\, 1],
covers [—1,1]2.

Let ¢ € [~1,1]2. Then either |P(£)| ~ o for some dyadic number o > X or |P(£)] < .

If |P(€)| ~ o for some dyadic number o > A, then £ € w; Nwy for some w; € 775270/0,
since 775270/0 covers [—1,1]2, i = 1,2. Note that o; > 0.

Now, suppose that wi Nws is as in case 1. Since the 7327/\ in case 1 cover wy Nwg, £ € w
for some w € 7727)\ C Pf\).

Second, we suppose that w; Nwy is as in case 2 or case 3. Since £ € wy Nwy, |P| ~ o’
for some dyadic number ¢’ > 40 cannot holds. Thus, w; Nws € 7327 \-

If |P(&)| < A, € € wy Nwsy for some w; € 77527)\, i = 1,2. We may argue similarly if
w1 Nws is as in case 1 or case 2. For wi Nwsy as in case 3, w; Nwe € 73/(\),/\.
Pf\) has bounded overlap in the sense that Zwepg 1100w Sk 1.

Since there are only O(k) many times we apply Proposition 2.3.6, the bounded over-

lapping condition follows from that in Proposition 2.3.6.

for each w € 7727/\, at least one of the following holds:

(a) A <o <1,|P|~ o over 10w, and the width of w is 2 max{o,d};
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(b) A< o <94, |P| <o over 10w, and the width of w is ~ 0.
(c) o =X\, |P| <\ over 10w, and the width of w is 2 max{c,d}.

This follows directly from the construction.
For N <A<, Per=Pon.

Suppose that A < A < ¢ and w € P, 5. Note that we apply the induction hypothesis
to get the same families Pﬁi’a ez i =1,2. If w comes from Case 1, it is decoupled from
either the set {|P £ 0| < 0/2} Nwi Nwa, or the set {|P| < o} Nw; Nwa. Thus, we get the
except same families of w from these w; Nwy. Otherwise, w comes from Case 2 or 3, where
w = w1 Nwa. Thus, we see that in any case, w € P, /. The other direction is similar.

the following 2D (?(LP) decoupling inequality holds: for any f : R? — C

whose Fourier transform is supported on |J cpo w, we have
g,

1/2

1l Sex o | S 1lBoge | (2.13)

wG'Pg N

where f,, is the frequency projection of f onto w, defined by fw = flw.

It suffices to consider the decoupling constant. Note that the number of iterations is
O(k). Also, all w put in P, ) are from Pgi,o/()? 1 =1,2, and 0; > 0. The decoupling loss
from the inductive step is therefore <. (o09) Ok (€) < 5=Ox(e), The decoupling loss from
Proposition 2.3.6 is <. 0~=. The total loss is O.(¢~9(¢)). Since ¢ is arbitrary, we have
shown that the decoupling constant is O.(0~¢) as desired.

This finishes the proof of Proposition 2.1.3. O

2.4 Polynomials with small Hessian determinant

In this section, we prove Proposition 2.1.4.
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2.4.1 A reduction

In this subsection, we reduce Proposition 2.1.4 to studying a special type of polynomial.

We need the following lemma about the eigenvalues of the Hessian matrix of a polynomial.

Lemma 2.4.1. Let ¢ : R? = R be a polynomial of degree at most k, without linear terms.
Suppose that ¢ has O(1) coefficients, and at least one of them is ~ 1. Then there exists

¢ € B(0,1) such that one of the eigenvalues of D*¢(¢') is of magnitude ~ 1.

Proof. By a rotation and replacing ¢ by —¢ if necessary, we may assume that 8521 flqﬁ has
at least one coefficient ~ 1. There exists ¢’ € B(0,1) such that 8§1§1¢(§’) ~ 1.

Note that 852151¢ + 852252¢ is the trace, and hence the sum of eigenvalues, of D?¢.

Thus, if |8§1§1¢(§/) + 6§2£2¢(§’)| > 8§1§1¢(§’)/2 ~ 1, we are done. Otherwise, we have

92,e,0(8') < —0F ¢, 0(¢")/2 < 0. However,
det D2¢(£/) < _(a§1£1¢)2(£/)/2 _ (352152¢)2(5/)-
Therefore

| det D*p(€')] > (9z,¢,0)°(€))/2 ~ 1.

This implies that the product of the eigenvalues of D?¢(¢’) is bounded below. Since both

eigenvalues are O(1), they have magnitude ~ 1, as desired. O
Lemma 2.4.1 helps us to reduce Proposition 2.1.4 to the following case.

Proposition 2.4.2. There is a constant o = a(k) € (0, 1] such that any polynomial Q(§)

satisfying
1. deg@Q < k;
2. @ has no linear term;
3. the only second order term of Q(&1) is £2;

4. all coefficients of Q are O(1);
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5. all coefficients of det D%Q are bounded by some v € (0,1);

is of the form

Q&) = A&) + v B(&), (2.14)
where A, B are polynomials with O(1) coefficients.
We will prove Proposition 2.4.2 in the following subsection.

Proof of Proposition 2.1.4 assuming Proposition 2.4.2. Let ¢ be a polynomial satisfying
the assumption of Proposition 2.1.4. By dividing ¢ by its largest coefficient, we may
assume without loss of generality that ¢ has some coeflicient equal to 1.

Now, we apply Lemma 2.4.1 and get £’ € B(0,1) such that one of the eigenvalues A\
of D2¢(¢') is of magnitude ~ 1. By dividing ¢ by A1 and replacing ¢ by —¢ if necessary,
we assume without loss of generality that Ay = 1.

Since supp(o,1) | det D2?¢| < v, the other eigenvalue Ay of D%¢(¢’) is of magnitude
O(v). Let p be a rotation that sends {e1,es} to the unit eigenvectors of D2¢(¢') and T
be a translation that sends the origin to p~!(¢’). By the eigenvalue analysis, the second
order terms of ¢ = ¢ o poT are given by &7 + O(v)&2. Define QQ by removing all the terms
of degree at most two except £ in qg Then we see that all assumptions in Proposition
2.4.2 are satisfied. Hence, @ is of the form (2.14).

Now, we analyze the coefficients of ¢ o p = o7 L. First, Q o 71 is also of the form
(2.14). Moreover, the linear terms in ¢ have no impact on the higher order terms in go7 !
and O(v)&3 can be absorbed to B. On the other hand, ¢ has no linear term, nor does

¢ o p. In conclusion, we see that

pop(§) = Ai1(&) +v*B(§),

for some polynomials A, B with O(1) coefficients. This implies Proposition 2.1.4 because

¢(&) = Ao p~ (&) +v*BopT(€),
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where A(£) = A1(&1) is one-dimensional. O

2.4.2 The representing line

In this subsection, we prove Proposition 2.4.2. We first introduce the following terminol-

ogy.
Definition 2.4.3. Let ¢ : R? — R be a polynomial. We consider the set of multi-indices
appearing in ¢, namely,
N(¢) = {(m,n) € Z%, : the coefficient of £"¢} in ¢ is nonzero}.
Given a straight line { C R?, we denote by @y the sum of monomials in ¢ with multi-indices
lying on L.
We have the following simple lemma.
Lemma 2.4.4. Let ¢ be such that all points of N(¢) lie on one side of £, inclusive. Then
all points of N(det D?¢) lie on the same side of ' :={ + £ — (2,2). Moreover,
(det D2) | = det D2(6]s).
Proof. Write ¢ = ¢|; + R. Then

det D*¢ = det D*(¢le) + 0Z,¢, (01e) 0,6, R + OF, ¢, (8]0)0F ¢, R — 0,6, (010)0Z, ¢, R + det D*R.

All the terms except det D?(¢|¢) are strictly on one side of £ + £ — (2,2). O

By Lemma 2.4.4, the boundaries of the convex hull of N(¢) are important in the
analysis. Since we are interested in polynomials whose only second-order term is &2, the

boundaries containing the term ¢? are particularly interesting.

Definition 2.4.5. Let QQ be a polynomial that satisfies the five assumptions in Proposition

2.4.2. 0 C R? is called a representing line of Q if
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1. ¢ contains (2,0) and at least one other point in N(Q);
2. £ is not horizontal;
3. all points of N(Q) lie on one side of £, inclusive.

Proposition 2.4.6. Let Q be a polynomial that satisfies the five assumptions in Proposi-

tion 2.4.2 and let £ be a representing line of Q. Then

Qle =& + v B(8),

for some 3 € (0,1] depending only on d and some polynomial B with O(1) coefficients.

Proof. Express ¢ in the (m,n)-plane by the equation m = tn + 2 where t € R. By Lemma
2.4.4, we see that det D?(Q|,) has coefficients bounded by v.
Case t < 0.

Since we are in Z2, we see Q| is either of the form Q|,(¢) = 7 + a&k where k > 3 or

Qle(€) = & + a1&1 &b + axe3”

where k > 2.
In the former case, det D?(Q|¢) = 2ak(k —1)572. Then a = O(v) and we get the form
we want.

In the latter case, a direct computation shows that
det D*(Qly) = 2a1k(k — 1)616572 + [dagk(2k — 1) — aFk?]€ar 2.

Since det D%(Q|;) has coefficients bounded by v, we have a; = O(v), az = O(v) as
desired.
Caset > 0.

In this case, £ is either vertical or has a positive slope. Let cglf 1§§2 be the highest order
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term of Q|y. If ko > 1, then by direct computation,
det DX(Qlg) = —Pkika(ky + kg — 1)E2M72¢2k272 4 Jower order terms.

In particular, we see that ¢ = O(v'/2). Thus we can approximate Q|; by Q = Q|,— cgfl 52
and see that all coefficients of det D2Q are of the order O(v'/2). Note that Q satisfies the
same five assumptions with v replaced by v1/2. Each such approximation reduces the
degree by at least 1. This process can be repeated at most k times until we arrive at 2.
In conclusion, we see that Q| is of the form &7 + /% B(¢) where B has bounded coefficients,
and = 2271

O

We are now ready to prove Proposition 2.4.2, thus completing the proof of Proposition

2.1.4.

Proof of Proposition 2.4.2. Let @ be a polynomial that satisfies the five assumptions. If
there is no representing line of (), we are done because, in this case, ) is a function of
¢1. Otherwise, by Proposition 2.4.6, all coefficients on representing lines ¢ of Q are O(v?).
We can then approximate Q by Q1 = Q — Q¢ + &7 and det D?Q; has O(v?) coefficients.
For j > 1, repeat the process with v replaced v and let Qjy1 = Qj — (Qj)|£j, for
some representing lines ¢; of @);. The process will be terminated in less than (d + 1)
steps when no representing lines are available. In summary, we see that all coefficients of
QQ, except those terms containing &; only, are O(Vﬁ(dH)Q). Thus, we obtain (2.14) with
o= 5(d+1)2- ]

2.5 Proof of Proposition 2.1.2

In this section, we prove Proposition 2.1.2.
We start by applying Proposition 2.1.3 with P = det D?¢ to decouple [—1,1]? into

level sets of det D?¢. By the projection property, also known as cylindrical decoupling
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(See Exercise 9.22 in [18] for details), we can lift these sets in [—1,1]? onto the surfaces
M, given by the graph of ¢ over these sets.

More precisely, let A = 6%/, where o = a(k) in Proposition 2.1.4. Then [—1,1]? can
be decoupled into parallelograms in P9 by Proposition 2.1.3. To decouple N, f ([-1,1]2), it
suffices to decouple N, f (w) for each wy € P = Ung - There exists some dyadic number
o € [\, 1] such that wy € 732’/\.

We recall the following notations in (1.30) and (1.31). Let T, be the invertible affine

map such that T,,([~1,1]?) = w. Let
o1, = ¢ 0 T — V($ 0 T,)(0,0) - € — ¢ 0 T,,(0,0) (2.15)

and its normalisation

- oT
= < 2.16
e = o (2.16)

Note that the graph of ¢r, is a translated, rotated, and enlarged copy of the graph of ¢

over w. Thus, the Hessian determinant of ¢ is also dyadically a constant over [—2,2]2.

2.5.1 Two simple cases

We claim that if wy satisfies either item (3b) or item (3c) of Proposition 2.1.3, then

o1, = Ao p(§) +0(0), (2.17)

for some one dimensional function A(&;,&2) = A(&1,0) for all &.
We first prove the claim. Suppose that wy satisfies item (3b). Let T" be the composition
of rotation and translation that wg to &g so that &g is centered at 0 and has the shorter

side of length ~ § perpendicular to &£;-axis. Therefore,

¢poT (&1,&) = ¢oT '(&,0) + O().

This proves (2.17).
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Suppose that wp satisfies item (3c). Note that det D?¢ < 8/ over wy. Thus,
det D2<]§TWO < 8@ over [—1,1]2. By Proposition 2.1.4, there exists a rotation p such
that (2.17) holds because (6/*)*B(&) = O(5) for some polynomial B with bounded coef-
ficients.

The claim is proven. We approximate N(;bT“’([—l, 1)%) by NZ([-1,1]). Since A is
one-dimensional, by cylindrical decoupling, it suffices to decouple a d-neighborhood of the
curve £ — A(&1,0) in R? into (A(-,0),0)-flat intervals. This can be done by applying
Proposition 2.3.2.

We have ¢2(L%) decoupled wy € 7327 \ into (¢, §)-flat rectangles.

2.5.2 A bootstrapping argument

It remains to consider wy satisfying item (3a) of Proposition 2.1.3. We will deal with this
case by induction on scale argument.

We induct the Hessian determinant of the normalized function:

H(w) = ge[i_ﬂlflp | det D61, (€)] ~ 6, | 72| det Tuf?o = l¢r, || *lwf’o 1. (2.18)

By the size estimate (3a), |w| > o2 and hence H(w) 2 o°.

By Theorem 1.1.1, if H(w) ~ 1, [~1,1]? can be decoupled into (¢r,,d/|T,|)-flat
parallelograms. Rescaling back, w is decoupled into (¢, d)-flat parallelograms as desired.
On the other hand, if ||¢7, || < §, w is (¢, 0)-flat and we are done. So our goal is to decouple
inductively until we achieve either of the conditions for all decoupled pieces.

Now, we are ready to state and prove the key induction step:

Proposition 2.5.1. Let e >0, << 1,2<deN,2<p<6, A:=6<c<1, aasin
Proposition 2.1.4 and ¢ be a bounded polynomial of degree at most k. Let wy C [—1,1]? be
a parallelogram. Let T,,, (;ETWO and H(wo) be as above. Suppose that H(wo) = o°. Then,

there exists a covering P“° = P;;grl_lpft%p of parallelograms w such that the following holds:
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1. 100P“° has O(1)-bounded overlaps in the sense that

Z Lioow, Sk 1 (2.19)

wWEPuy

2. for each w € P , H(w) >j H(wo)'~*/?;

iter?

3. P =0 if o > 63

stop

4. for each w € Py, ,, the width of w is ~ §;

5. each w € P*° is contained inside (1 + CH(w)a/d) w for some absolute constant C;

6. the following ¢*(LP) decoupling inequality holds: for any F Fourier supported on
Nf?(w()):

1/2
1 F[| o (r3) Se ke H(wo)‘5< > IFwI%p(RS)) : (2.20)

wePwo

Proof of Proposition 2.5.1. The smaller « is, the weaker Proposition 2.1.4 is, so we may,
without loss of generality, assume that o < 1/5.
We apply Proposition 2.1.4 to &Two to obtain a rotation p : R? — R? and an one-

dimensional bounded polynomial A and bounded polynomial B such that

01, (§) — Ao p(§) = H(wo)*B o p(§) = O(H(wo)).-

Take 0’ = H(wo)®+0 ~ H(wg)®. We see that support of F lies in N2’ (wg). Hence, by
cylindrical decoupling, along the direction of p~!(ez), the decoupling of the set N; Aop (wo)

is reduced to the decoupling of the two-dimensional set

{(€1,8) € p7 ' ([-1,1]%) € [-2,2 : [&2 — A(&,0) < '}

To decouple this set, we apply Proposition 2.3.2 to obtain a partition of [—2,2] into

intervals I € Z. For each I, we define w; to be a parallelogram such that (T}, o p)~*(wy)
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is the smallest rectangle of the form I x [a, b] that contains ((T}, o p)~*(w)) N (I x R). See

Figure 2.2 below.

~ H(wo)a/k T

2h :
| < H(wo)™*

\\\/ (T 0 p) " Hwo)

I T T

(Tog 0 p)"H(w) 7

Figure 2.2: The cylindrical decoupling

We merge intervals in Z so that the width of wy is at least §. If merges are involved,

wr has width § and we put w; into PP

oiop- 10 this case, we also write I = I'. We do the

following for each remaining (A, §’)-flat intervals I.

Recall that (T,,,0p) ! (w;) = Ix[a, b]. Since we allow finite overlapping, we may assume
without loss of generality that for & in half of I, {{1} x R has a nonempty intersection
with (T,,, © p) " (wo). Therefore, we have 2h := b — a > |I|/2. Let T be the translation
that maps I x [—h,h] to I x [a,b]. By putting all terms involving &; only to A o Tj if

necessary, we may assume that
¢, 0p 0Ty — Ao Ty = H(w)* B,
for some bounded polynomial B. Since & < h and & ~ H(wp)®, we have

éTwo optoTy—AoTy= O(d'h).
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Thus, we may apply Proposition 2.3.2 again to decouple I into (AoTp, §'h)-flat intervals
I' € I;. We define wy to be a parallelogram such that (T, o p) H(wy) = (I’ x R) N
((Tiy 0 p)~*(wr)). Similarly, we merge the intervals I’ if necessary so that the width of wy

is at least § and put these wp into P=°

stop- WVe put all remaining parallelograms w = wy

into PO

ter:

We now check Properties (1), (5) and (6) for this family P«° = P30 Py

itor op- Property
(1) is inherited from that of P and P;. Note that (T, 0 p)~!(w;) is contained in the dotted
rectangle, (1 + CH (wo)®/*)(T,, 0 p)~'(w). Thus, rescaling back, we obtain property (5)
for w C wy. The decoupling inequality (2.20) in the property (6) follows from Proposi-
tion 2.3.2, invariance of decoupling inequalities under affine transformations, cylindrical
decoupling, and the fact that 6’ 2 H(wp).

Now, we check property (2). For dh-flat intervals I, ||¢7, || < dh||¢r,||. On the other

hand, in the size estimate in Proposition 2.3.2, we have
jw| = [T'|(2h) wo| Z B¥?6™|wol,

and h > |I| = 6Y/2.

Therefore,

o7 7 [wlo 2 (h6)=2(h*26Y2)2||ox, ||~ |wol o

~ H(wo)hd 2 82 H (wo) ~ H (wo)' /2,

as desired.

Property (4) is immediate by the definition of the collection P2 . For intervals I’

stop
such that wp has width §, we have, |I'|lc < 0 because w has width at least o. By the
size estimate, |I'| > hY/26'V/2 > §3/4 ~ H(w)3e/* > g152/4 Thus, ¢'%/4t1 < §. Since
0 <a<1/5 wehave o < 5m < 62, Thus, if o > 62, such wys cannot exist. This
proves property (3).

We have obtained all properties for the family P“°, and hence Proposition 2.5.1 is
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proved. ]

2.5.3 Induction on scale

In this section, we continue the proof of Proposition 2.1.2. Recall that we want to decouple
wy € 732)\ satisfying item (3a) of Proposition 2.1.3 for some o € [A\,1], A\ = §/* and
a = a(k) in Proposition 2.1.4.

Let K = K(g) > 1 to be determined. Note that H(wy) > |wo|?0 = o°. We apply

Proposition 2.5.1 to decouple each wy into w; € P“°. We apply Proposition 2.5.1 again

wo

to decouple each w; € P;0. into wp € P“!, and so on. The process stops if we_1 €

Paep’> o H(we—1) > 1/K. If we_y € Pyey?, then w1 has width § and o < §1/2. We
repeat subsection 2.5.1 to get a decoupling of we_1 into (¢, d)-flat parallelograms w,, with
decoupling constant §—¢ = g9,

The tree diagram (Figure 2.3) below describes the process where every branch leads
to some set w, satisfying either we is (¢, d)-flat or H(we) > 1/K. The value next to each
edge in the tree diagram represents an upper bound of the decoupling constant in that
step.

Let {w;}Y, be a sequence of sets that forms a branch of the tree diagram. Since
H(wit1) Zp H(w;)' ™, we have H(wir1) > H(w;)'~*/? by picking K large enough. We
see that the maximum number of steps N we need is < ¢, log(c™1)/log(K).

Moreover, the cost to decouple in each iteration in this sequence is C. H (w;) ¢, except
possibly the last one, and so the total cost is at most

<, g 9ale)

~

N
CSUfO(E)CENHH(wi)fE < CEN+2070(5) <03 Cg3—a/2) 03(17a/2)N>—6
i=0

if we pick

colog o™t

log K

log C-

log K ~ cq ~elogo™t = Cé\[“ <o °.

= logC; -

Now, we apply Bourgain-Demeter’s decoupling inequalities, Theorem 1.1.1, on gETwN.
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wo
H(wy) ¢ (wo)~®
w1 € Pe, W1 € Fstop
H(w)™¢ H(wy)® 5 = g0
wy € PHL. wy € Pib, We
5 — g—0)
H(we—1)"¢
o € Pt H(we) > 1/K We—1 € Py’
5—¢ — 5—0()
We

Figure 2.3: Tree diagram for the induction

Since H(wyn) ~ 1, [-1,1]? can be ¢*(L*) (or ¢2(L*) if det D?>¢7, > 0) decoupled into
(é1,,,6/||T||)-flat parallelograms. Rescaling back, w is decoupled into (¢, d)-flat parallel-
ograms as desired. On the other hand, if ||¢7, || < 9, wis (¢, §)-flat and we are done. This
proves items 1 and 4 in Proposition 2.1.2. Item 3 is evident from our construction. See
the corresponding size estimate for Propositions 2.1.3 and 2.5.1.

1—a/2

We now prove the overlap bound among P, item 2. We recall that H (w;) < H(wi1)
and hence H(w;) < H(wy )1~/ « g=01=a/2"" Therefore,

Zlog 1—|—CH a/k < ZH a/k < 4K (1—-a/2)? a/k+K (1-a/2)a/k +K~ a/k <log?2,

by choosing K large enough. The last inequality in the above display equation follows

from estimating the sum by a geometric series with common ratio K~(1=2/2). Thus, we



50

have

[[@+ CHw)*™*) <2 (2.21)

and hence 50wy C 100wp. Since 100Py has O(1)-bounded overlaps and in each iteration,
the overlaps are also O(1), 50P has O.(0~¢) overlaps.

We have finished the proof of Proposition 2.1.2.

2.6 Variants of decoupling inequalities

We end the chapter by recording two versions of decoupling inequalities. The theorem
below can be seen directly by not applying Bourgain-Demeter’s decoupling inequalities
on wy, but instead stopping when we arrive at w, in Figure 2.3. These inequalities are

essential tools in Chapter 3.

Proposition 2.6.1. Let2<p<6,n=3,e>0,0<0 <1 and A = 5" for a = a(k)
as in Proposition 2.1.4. Let ¢ be a bivariate polynomial of degree at most k with bounded
coefficients. For each dyadic number o € [\, 1], there exist families Py x = Py (0, ¢, €) of

parallelograms such that the following statements hold:
1. Py :=UyP, (the union is over dyadic numbers o € [\, 1]) covers [—1,1]?;
2. each w € Py satisfies either of the followings

(a) w is (¢,9)-flat;

(b) o1, defined as in (1.31), has Hessian determinant ~ 1;
3. Py has Oy, -(67°)-bounded overlap in the sense that Zweﬂ Lo Ske 675
4. the width of each w € Py is at least §;
5. for any A < 0, P>o ) = Us<o<1 Py covers {|det D%¢| ~ o};

6. the following ¢*(LP) decoupling inequality holds: for any F : R® — C whose Fourier
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transform is supported on Nf(uwepzmw),

1/2

1Flle Sewo= (D IFlE ] - (2.22)

WEP>4 A

We tile [—1, 1] by squares Q of side length o¢, followed by an approximation of each
square @ of side length ¢¢ by polynomials of degree ~ % as in Subsection 2.2.2. We arrive

at the following theorem.

Proposition 2.6.2. Let 2 < p<6,n=3,e>0,0<6 <1 and A = 6% for some
a = ale) € (0,1/4). Let ¢ : [-1,1]> — R be a smooth function. Let Q be a tiling
of [-1,1]% by squares of side length 0°. For each dyadic number o € [\, 1], there exist

families PgA = PgA(é, ¢,¢€) of parallelograms such that the following statements hold:
1. 73/? = UUP(S?A (the union is over dyadic numbers o € [A,1]) covers Q;

2. each w € 73)6\2 satisfies one of the following

(a) w is (¢p,9)-flat;

(b) ¢r,, defined as in (1.31), has Hessian determinant ~¢ 1;
3. 73/? has Og -(67%)-bounded overlap in the sense that Ewepf Ly See 0%
4. the width of each w € 73)6\2 is at least &;
5. for any A\ < o, Pga,/\ = UUSJ/QPS,M\ covers {|det D?¢| ~ 0} N Q;

6. the following (*(LP) decoupling inequality holds: for any F : R3 — C whose Fourier

transform is supported on Nf(uw@@ w),
>0,

1/2
IFl|zr Sep 0 ° (Z HFw\%p> : (2.23)

wEPo

where the implicit constant is independent of the choice of Q.
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Note that we restrict the range of a(e) € (0,1/4) for purely technical reasons in the
next chapter. This can be achieved by picking o« = a(k) in Proposition 2.1.4 smaller than

1/4.
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Chapter 3

Affine restriction theory

In this chapter, we prove Theorem 1.2.2, the L? affine restriction theorem for compact
smooth surfaces in R3. We also demonstrate the optimality of Theorem 1.2.2 by establish-
ing counterexamples in Section 3.5. We works in the ambient dimension n = 3 throughout

the chapter.

3.1 Overview

The neighborhood formulation for the decoupling theorem serves as an essential ingredient
in the proof of our restriction theorem. As in our proof of the decoupling result, we will

prove Theorem 1.2.2 by proving the following equivalent version.

Proposition 3.1.1. Let ¢ > 0 and R < 1. Let ¢ : [-1,1]> — R be a smooth function.
Define measures M, M. on (£,m) € [-1,1]*> x R by

dM(&,m) = dM®(&,n) = |det D*¢(&)| "/ *dedn (3.1)

and

dM.(&,m) = dMZ(&,m) = | det D*¢(&)| /4~ dedn. (3.2)

Then for any ball, Br of radius R and any function F such that F s supported on the
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R~ wertical neighborhood of the graph of ¢ above [—1,1]%, we have
1 E | s8Ry Se.o RE?l/zHFHLQ(dM)a if F e L*(dM), (3.3)

and

IF| ) Seo BY2E | 2anry,  if F € L*(dMe). (3.4)

Moreover, the implicit constants in (3.3) and (3.4) can be made uniform over all

polynomials ¢ of degree up to k with bounded coefficients.

The deduction of Theorem 1.2.2 from Proposition 3.1.1 is given in Section 3.2.
We recall the following notation from (1.30) and (1.31). For parallelogram w C [—1,1]2,
T,, is an invertible affine map that maps [—1,1]? to w, and T}, sends the smooth function

¢ to ¢, as follows:

¢Tw(§) = ¢0Tw(§) - V(¢0Tw)<0,0) §— ¢0Tw(070)'

We normalise ¢1, by

- o,
T

where [[¢, || := sup_y qj2 [¢7,| is as defined in (1.28).
From the definition of (¢, 0)-flatness in (1.6), we see that w is (¢, d)-flat if and only if
ozl < 6.

We need the following definition of admissible sets

Definition 3.1.2. Fore >0,0< 0 <1, R> 1, and ¢ a smooth function over [—1,1]?,
a parallelogram w C [~1,1)2 is said to be (¢, 0, R, €)-admissible if either of the following
holds:

1. |det D?¢| < o over 2w and ||¢7,|| < R7L;
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2. | det D%2¢| ~ o over 2w and for any & € [—-1,1]2,

|det D?pr, ()| ~c 1 and > [DYr, (&) < 1. (3.5)
|a]=2,3

The motivation for this definition is the following proposition.

Proposition 3.1.3. Let ¢ > 0, R > 1, 0 < 0 < 1. Assume the parallelogram w C
[—1,1]2 is (¢, 0", R, €)-admissible for some o’ 2> o. For any function F such that suppF' C

Ng_l(w N {| det D2¢| ~ c}), we have
1] Lams) Se R_1/205/2||F\|L2(dM5)7 (3.6)

where the implicit constant is independent of w and ¢.

This allows us to estimate the left-hand side of (3.4) if F is further restricted to an
admissible set w. The proof of Proposition 3.1.3 is given in Section 3.3.

We recall from Propositions 2.6.1 and 2.6.2 in Chapter 2 that we can ¢£2(L*) decouple
N g_l ([~1,1]?) into admissible rectangles, regardless of the sign of the Hessian determinant
of ¢. This is the primary tool used in Section 3.4 to prove Proposition 3.1.1.

Finally, in Section 3.5, we compute a counterexample to show that the e losses in
(1.16), (1.17) and non-endpoint exponent p > 4 in (1.18) are necessary for the case of

general smooth surfaces.

3.2 An equivalent version

In this section, we deduce Theorem 1.2.2 from Proposition 3.1.1. The proof follows from
Proposition 1.27 of [18] with adaption to the new measures. We only prove the implication
from (3.4) to (1.17). The other cases are similar.

For R > 1, let g € S(R?) be such that

1. 1&1 is non negative and supported on B(0, 1);
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2. 1po,1) < ¥1;
3. Yp =Y (R,

Let F' = Egyr. Then we have

F(&,m) = g(&)| det D2p(&)[V 44 r(n — 6(£)).

We also define dm, such that

M.(&,m) = |det D*¢(€)| /4 ~2dédn = dm.(€&)dn.

Now, we have

1E9llar) < 1FllaBy)
Soe B2 F | p2gany

R1/2

< 71/2H det D2 1/4+¢
Sy B/ |lg | det D¢ L

= ||g||L2(d,uE)v

where the second-to-last inequality follows from (3.4) and Fubini’s theorem. By letting

R — o0, we have (1.17).

3.3 A scaling argument

In this section, we prove Proposition 3.1.3 by a scaling argument.
Since we have |det D?¢| ~ o on the support of F, we have dM. ~ oc—¢dM. Hence, it
suffices to show that

IF || pacrsy Se B2E | 2 ann- (3.7)
We need the following scaling lemma:

Lemma 3.3.1 (Affine invariance of measure M). Let R™' < s <1, w C [-1,1]2 be a



57

parallelogram, and ¢ be a smooth function over [—1,1)%. Let ¢1,, be defined as in (1.30).
Let ¢ = s ¢r,. Let F be such that suppF C Ng_l(w). Define G(&,1) = F(T(€),sn)
such that G is supported on A/'(J;R),l([—l, 1]2). Then we have

1| (ms) Gl L4 r3)

-1/2||F - —1/2||6 ’ (3.8)
R HFHLQ(dM¢) (sR) ”GHL2(dM¢’>)

Proof. Rotation and translation have no impact on the quantity of the left-hand side of
(3.8). Thus, we may assume without loss of generality that the center of w is the origin
and that ¢(0,0) =0, V¢(0,0) = (0,0).

Now, we keep track of the scaling, and we have G(&,7) = F(T,,(€), sn). Direct compu-

tation shows that
1

- F
Glo) s| det Tp,|

(Tw_t(xh xQ)a S_1x3)a

where T;" is the inverse transpose of T,,. Therefore, we have
1F | paces) = (sl det Tu))' |G| s s), (3.9)
On the other hand, |(det D?¢)(T,,-)||det T,,|> = 52| det D%¢(-)|. Hence,
1Bl p2anrey = (572 det T, [) /D2 (] det Tw’)l/ZHG||L2(dM<5)' (3.10)

Combining (3.9) and (3.10), we obtain (3.8) as desired. O

Now, after rescaling, (¢, 0’, R,e)-admissible sets are in one of the following situations:

1. ||¢r,]| S R! and supp G C Nll%d)T“([—l, 1]?), and s = R™1;

2. ldn, | ~e 1 and suppG € N7 ([=1,11%), whete s = [[ér, | and det Db, ~: 1
over [—1,1]2.

Now, we consider the first case. Thus, we estimate by Hausdorfl-Young and Hoélder’s
inequalities:

IGlzs(ge) S 16 pars sy S NG agapgnon
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The last inequality follows from the facts that the support of G is of size < 1, and that
Rér, has bounded coefficients. Recall that s = R™!, the right-hand side of (3.8) is
bounded, and thus we obtain (3.7) as desired.

We consider the second case. By Theorem 1.2.1 in an equivalent formulation, we have

1G Laes) Se (5R)™2IIC  r2gagany Se (SB)™NG o gpgom

See Proposition 1.27 and Exercise 1.34 of [18]. Again, the right-hand side of (3.8) is

bounded. We obtain (3.7). This finishes the proof of Proposition 3.1.3.

3.4 Proof of Proposition 3.1.1

In this section, we prove Proposition 3.1.1 by using Propositions 2.6.1 and 2.6.2.

3.4.1 The set with tiny Gaussian curvature

In this subsection, we additionally assume F' is Fourier supported on N g,l ({€e[-1,1)%:

| det D?¢(¢)| < R™*}). In this case, we have

”F||L4(R3) S HF”L4/3(d§dn)’ (3.11)

by the Hausdorff-Young inequality. Since the support of F' is of size Oy(R7Y) (or Ok(R71)

in the polynomial case), (3.11) can be further bounded by
Se (or §k)371/4”15||1:2(d5dn) N Ril/ZiEHFHLQ(dME)v (3.12)

where we used

dM. Z (R™*)~*¢d¢dn.

This completes the proof of Proposition 3.1.1 for the set with tiny Gaussian curvature.
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3.4.2 Proof of the extra damped estimate

In this subsection, we prove the extra damped estimate (3.4). First, we decompose

F=F+ Y F (3.13)

o dyadic
R™%<o<1

where Fy, F, € S are such that Fy is Fourier supported on /\/'g,l ({€ € [-1,1)% : |det D?¢(¢)| <
R~*}) and F,, is Fourier supported on Ng,l({f € [-1,1]? : |det D2¢(¢&)| ~ o}).
We obtained the required estimate for Fy in section 3.4.1. For Fy, let () be a tiling of

€/8

[—1,1]2 by squares of side length ¢°/%. We apply Proposition 2.6.2 with ¢ replaced by ¢/8

and A\ = R~/ to get a partition 7380)\ such that

1/2

I(Fo)olrs Sew o [ Y. I(Fanullis | (3.14)

wepgg N

where the decoupling constant is independent of ), and each w € PQ A is (¢,0', R, ¢)-
admissible for some o’ > o.
By Proposition 3.1.3 and the fact that (F},), is Fourier supported on a (¢,0’, R, ¢)-

admissible set for some ¢’ > o, we have

|(Fo)grullzs Se B™Y20%2) (Fy)grullr2qan). (3.15)

Putting (3.15) to (3.14), we obtain

1/2

I(Fallzs Seo o™* | >0 B7202|(Fo)anel3aan,

WEP>qs 2

Sep R0 (Fo)all 2,
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e/4

By trivial decoupling (1.3) and the fact that there are 0~¢/* many squares ), we have

1/2

1o ot Sep (072 S (ool Se BTN | 2 ans,y.
Q
Finally, we sum up the dyadic pieces:

1Pl zasr) < 1 Follzasm + > I Follzacsn

o dyadic
R4<o<1
Seo RPN R | 2aney + Y, RTV20¥ NS 2,
o dyadic
R™%<o<1
1/2 1/2
-1/2 - 3e/8 o112 A2
<SRVPIR=+ Y 0% 1Fol o any + D NEol2(ans
o dyadic o dyadic
R™%<o<1 R%<0<1

S R_l/QHFHL2(dME)7

as desired.
For the case where ¢ is a bounded polynomial of degree at most k, the same proof
applies except we apply the uniform estimates from Proposition 2.6.1 so that every <. 4

is replaced by <¢ k.

3.4.3 Proof of the estimate with affine surface measure

In this subsection, we prove the estimate with the affine surface measure (3.3). This is
implied by (3.4) and the estimates in Section 3.4.1.

We decompose F' = Fj + Fj so that Fy is Fourier supported on Ng_l({f € [-1,1]?:
|det D?2¢(¢)| < R™*}) and Fy is Fourier supported on Ng,l({f € [~1,1]? : |det D?2¢(&)| >
R™}). The estimate for Fy was already obtained in Section 3.4.1. It suffices to estimate

Fy.
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Note that on the set where |det D2¢(¢)| > R4, we have
dM. < R*dM.
Therefore, by using (3.4), we have
IFl e Ses BV ogaany < RSV E | 2 gann. (3.16)

Since (3.16) is true for arbitrary € > 0, we have obtained (3.3).
The case where ¢ is a bounded polynomial of degree at most k is similar. We have

proved Proposition 3.1.1.

3.5 A counterexample

In this section, we prove that the estimates in Theorem 1.2.2, Corollary 1.2.3, and Propo-
sition 3.1.1 are optimal in the following sense. The following counterexample is modified

from Sj6lin’s two dimensional example in [59].

Proposition 3.5.1. Let 1 < g < oo, % =1- % and 3 < k € N. Let ¢(§) = ¥(|¢|), where

e /7 sin(r=k) if r > 0;
P(r) =
0 if r=0.

Let 11 be defined as in (1.13) and E = E®* be as in (1.1). Then, there is no constant C

such that the following holds for all g € LI(du°):

1Eglr < CllgllLaauo)- (3.17)

2

Proof. Let p,q be on the scaling line: 2 — 5= % and 1 < g < 0o. Suppose that there exists
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constant C such that the following holds for all g € L9(du®):

1Egllzr < CligllLagauo)- (3.18)

Let g = XB(0,1) for some n > 1.

Note that if [(z1,22)| < {5 and |z3| < /10, we have

Bo@) 2 [ laer Do) e

n

Thus,

|Eglly = (ne)V? / | det D26()| .
B(0,1)

On the other hand,

1/q
N9l Laap) = (/ |detD2¢(£)|‘1‘df> :
B(0,1)

Rearranging, (3.18) can be rewritten as

1/q
( / | det D%p(g)ﬁdg) < C(n te )M/, (3.19)
B(0,1)

We now compute the integral. Using det D?¢(¢) = %, we have det D?¢(€) is

a finite sum of terms of the forms

k k k k k k

616_2/T7"_02 sinr~ " cosr” ,616_2/TT_C2 sinr "sinr~ ,016_2/”7"_52 cosT "cosr™

where || = r. The term involving the largest power (c2) of r typically dominates when r

is small. It is given by

k k

—2/r, —(3k+4) cosr*,

cre sinr™

for some ¢, # 0.



63

Therefore, the integral on the left-hand side (3.19) is bounded below by

2 i
/ | det D?¢(€)|7d¢ 2 / / o1y GBI/ gin (2070 VA rdrdo
B(0.7) o Jo
N/ e_t/2t3k/4_2]sin(2tk)]1/4dt

> /2 3k/4-2,

Now, (3.19) and above implies that

(efn/Qan/4f2)l/q’ < C/(nflefn)l/p’

for some finite C'.
Using 1/¢' = 2/p, we have

n3k/2=3 < o1

This is impossible for large enough n unless p = co. The scaling condition then implies

q = oo, contradicting the assumption. We have finished proving Proposition 3.5.1. 0
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