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Decoupling and restriction inequalities for smooth compact

surfaces in three dimensions

Jianhui Li

Abstract

This dissertation establishes general decoupling and restriction inequalities for smooth

compact surfaces in R3. First, we prove decoupling inequalities in R3 for the graphs of

all bivariate polynomials of degree at most k with bounded coefficients over a compact

set, with the decoupling constant uniform in the coefficients of those polynomials. As a

consequence, we prove a decoupling inequality for smooth compact surfaces in R3. This

extends the decoupling theorem of Bourgain and Demeter to all smooth surfaces. Second,

we prove sharp L2 Fourier restriction inequalities for smooth compact surfaces in R3

equipped with the affine surface measure or a power thereof. The estimates are uniform

for all surfaces defined by the graph of polynomials of degrees at most k with bounded

coefficients. The primary tool is a variant of the aforementioned decoupling inequalities

for these surfaces.
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Lay summary

Harmonic analysis is a quantitative study of functions and their oscillations. The Fourier

transform, which decomposes a general function, such as the one that describes a musical

signal, into a superposition of waves with varying intensities and frequencies, is a funda-

mental component of the study. In practice, errors occur when sampling, transforming,

and reconstructing the signals. Quantitatively studying these operators controls the errors

and thus establishes stability results.

Over the past sixty years, harmonic analysts have spent significant efforts studying

functions formed by the superposition of waves with frequencies concentrated on hyper-

surfaces. One motivation is to study dispersive partial differential equations. Examples

include the Schrödinger, wave, and Helmholtz equations, the solutions to which have fre-

quencies confined on the paraboloids, cones, and spheres, respectively. While the above

three surfaces are better understood in the literature, this dissertation attempts to extend

the study to all smooth surfaces.

Consider a wave with frequencies on a small neighborhood of a smooth surface centered

at a point ξ0. Let n⃗ be the normal direction of the surface at ξ0. Then, the wave travels

along n⃗ in the physical space. Now, we describe a dichotomy. If all waves have frequencies

on a flat plane, they travel along the same direction in physical space. In this scenario,

no interference occurs as the solution evolves. In an opposite scenario, if all waves have

frequencies on a curved surface, for example, a sphere, they travel along different directions

in physical space. In this case, interference among waves occurs as time evolves. A way

to describe interference is to measure how “big” the resulting function can be. In the case



iv

when frequencies lie in a plane, the best we can say is that energy is conserved. In the

latter case of curved surfaces, a famous theorem proved by Tomas and Stein (also known

as Strichartz’s inequality) provides some excellent quantitative decay estimates.

What happens to surfaces that are not flat while also not as curved as a sphere? Given

how well we understand both extreme cases, we want to decompose the frequency support

of the function into smaller pieces, each of which can be enlarged to one of these two

extreme cases. Decoupling theory describes a technique for controlling the constructive

interference arising from multiple piece of this ensemble. Chapter 2 formulates and proves

decoupling inequalities for general smooth surfaces. Chapter 3 applies these inequalities

to prove the best possible extension of the Tomas-Stein theory to general smooth surfaces

with a measure that compensates flat regions to allow similar decay estimates.
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Chapter 1

Introduction

This dissertation concerns the theory of decoupling and affine restriction for surfaces in R3.

This introductory chapter attempts to survey the recent development of the two theories

and the results based on two recent preprints [44, 46]. The exact formulation and proof are

presented in Chapters 2 and 3 for decoupling and affine restriction theories, respectively.

1.1 Decoupling theory

Decoupling theory originated from Wolff [74] as a powerful tool to study local smoothing

type estimates. We now describe the general setting of the decoupling theory for hyper-

surfaces. Consider a smooth compact hypersurface M in Rn. By a partition of unity,

we may assume without loss of generality that M is given by the graph of a smooth

function ϕ : [−1, 1]n−1 → R. Let dµM be a measure defined on M and dµ be the push-

forward measure of dµM under the projection map (ξ, ϕ(ξ)) 7→ ξ. We assume that the

measure dµ is absolutely continuous with respect to the Lebesgue measure dξ. For any

g ∈ L1([−1, 1]n−1, dµ), define the extension operator EA = Eϕ,µA on A ⊆ [−1, 1]n−1 with

measure dµ:

EAg(x
′, xn) =

∫
A
g(ξ)e2πi(ξ·x

′+ϕ(ξ)xn)dµ(ξ), x = (x′, xn) ∈ Rn−1 × R. (1.1)
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We define the extension operator E := E[−1,1]n−1 .

In decoupling theory, the Radon–Nikodym derivative of the measure dµ can be ab-

sorbed into g. In this subsection, we will consider the Lebesgue measure dξ for simplicity.

The pullback of dξ under the projection map agrees with the surface measure up to a

constant depending only on the supremum of |∇ϕ| over [−1, 1]n−1.

Let P be a finitely overlapping covering of [−1, 1]n−1. We want to understand how

different pieces Eωg, for ω ∈ P, interact with each other. These can be measured by the

Lp norm of Eg over a large ball. More precisely, for p, q ≥ 2 and R ≫ 1, our goal is to

determine the smallest constant Decp,q(ϕ,R,P) such that the following ℓqLp decoupling

inequality holds for all B ⊂ Rn of radius at least R and g ∈ L1([−1, 1]n−1):

∥Eg∥Lp(B) ≤ Decp,q(ϕ,R,P)

(∑
ω∈P

∥Eωg∥qLp(wB)

)1/q

, (1.2)

where wB is a weight with exponentially decaying tails outside B. See equation (1.25)

below for the exact formulation. To avoid technicalities, we here present a morally correct

version that treats wB as the characteristic function on B.

The uncertainty principle tells us that localizing the physical observation of Eg on a

ball of radius R blurs its Fourier transform at scale R−1. We therefore shall consider the

R−1 neighborhood of the graph of ϕ over [−1, 1]n−1. This principle is made precise in

Section 3.2.

With no extra assumption on ϕ and some mild assumptions1 on P, we have the fol-

lowing general upper bound by interpolating Plancherel’s identity and the trivial L∞

estimate:

Decp,q(ϕ,R,P) ≲ |#P|1−1/p−1/q (1.3)

for 2 ≤ q ≤ p ≤ ∞. Here and throughout this dissertation, we say A ≲α,β,... B if there

exists a constant C depending on parameters α, β, ..., dimension n, Lebesgue exponents

p, q and degree k, that will be introduced later, such that A ≤ CB. This implicit constant

1For instance, there are O(1) sub-collections of P such that each sub-collection contains balls having
pairwise disjoint doubles.
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C may change from line to line.

Let M be a flat hypersurface that lies in R−1 neighborhood of a hyperplane. Let P

be a partition of [−1, 1]n−1 into disjoint congruent rectangular slabs having n− 2 sides of

length 1. Then, the general decoupling inequality (1.2) turns out to be the best we can

say for M and P. See for instance Proposition 9.5 and Exercise 12.13 of [18] for cases

when q = 2 and p = q respectively. Other cases follow similarly.

The opposite scenario is when the compact hypersurface M is far from being a hy-

perplane. This is measured by the lower bound of the Hessian determinant of ϕ, which is

roughly the Gaussian curvature of M up to a constant depending on the upper bound of

∇ϕ. Bourgain and Demeter proved the following sharp decoupling inequalities.

Theorem 1.1.1 (Bourgain-Demeter’s decoupling inequalities, [10, 11]). Let 2 ≤ p ≤
2(n+1)
n−1 and ε > 0. Let ϕ be a smooth function on [−1, 1]2. Suppose that |detD2ϕ| ≳ 1 and

P is a collection of finitely overlapping squares of side length R−1/2 that covers [−1, 1]2.

Then, there exist C1, C2 that depend only on ε, n, ∥ϕ∥C3 and the infimum of |detD2ϕ|

such that

C1|#P|1/2−1/p ≤ Decp,p(ϕ, δ,P) ≤ C2R
ε|#P|1/2−1/p. (1.4)

Moreover, if D2ϕ is positive definite, then we have

1 ≤ Decp,2(ϕ, δ,P) ≤ C2R
ε. (1.5)

It is worth noting that the lifting of each ω ∈ P onto the surface M lies in a CR−1

neighborhood of the tangent plane of the surface at the center of ω, denoted by c(ω). More

precisely, ω satisfies

sup
ξ∈ω

|ϕ(ξ)− ϕ(c(ω))−∇ϕ(c(ω)) · (ξ − c(ω))| ≲ R−1. (1.6)

We call parallelograms ω satisfying (1.6) (ϕ,R−1)-flat. As mentioned earlier, no non-

trivial decoupling other than (1.3) can happen on ω. Therefore, this is a canonical covering
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for hypersurfaces M with non-vanishing Gaussian curvature.

Decoupling inequalities of the form (1.2) can also be formulated for curves and, more

generally, manifolds of higher co-dimensions. Theorem 1.1.1 and its variants have rich

applications in harmonic analysis, PDE, and number theory. See, for example, [12, 23, 24,

25, 30, 36, 49] for curves and [3, 10, 19, 26, 27, 28, 29, 31] for more general manifolds.

For hypersurfaces, while the case when ϕ has a non-vanishing Hessian determinant

is settled in Theorem 1.1.1, the general decoupling theory for smooth hypersurfaces of

vanishing Gaussian curvature is still under-developed. In R2, a smooth hypersurface is

just a smooth curve, and its decoupling theory is relatively well-understood. In Section

12.6 of [18], Demeter proved a slightly more refined decoupling inequality for every compact

analytic curve, with the partition chosen to be adapted to the curve as in (1.6). Later, in

[75], Yang proved a decoupling inequality for the family of all polynomials of degree at most

d and with coefficients bounded by 1, with the decoupling constant depending only on d

but not the individual polynomial. This, together with a brute-force Taylor approximation

described in Section 2.2.2, implies a decoupling inequality for every smooth compact curve,

further generalizing the result in [18]. The first part of this dissertation extends the above

results to smooth surfaces in R3.

In the rest of this subsection, we consider n = 3. The range of p in Theorem 1.1.1 is

now 2 ≤ p ≤ 4. Prior to this dissertation, various partial progress has been made. In [14],

Bourgain, Demeter, and Kemp proved decoupling inequalities for all real-analytic surfaces

of revolution in R3. Later in [42, 43], Kemp respectively proved decoupling inequalities

for surfaces with constantly zero Gaussian curvature but without umbilical points and for

a broad class of C5 surfaces in R3 lacking planar points. Recently, Yang and the author

proved in [45] a decoupling inequality for surfaces given as graphs of mixed-homogeneous

polynomials in R3. Note that none of the previous partial results implies any of the others.

We now state our main decoupling result.

Theorem 1.1.2 (Yang-L., [46]). Let 2 ≤ p ≤ 4, n = 3 and R ≫ 1. Let ϕ be a smooth

function on [−1, 1]2. There exists a family P of parallelograms ω covering [−1, 1]2 such
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that for every ε > 0,

1. each ω ∈ P is (ϕ,R−1)-flat, i.e. it satisfies (1.6);

2. P has Oε(R
ε)-bounded overlap in the sense that

∑
ω∈P 1T ≲ϕ,ε R

ε;

3. We have the following ℓp(Lp) decoupling inequality:

Decp,p(ϕ,R,P) ≲ϕ,ε R
ε|#P|1/2−1/p. (1.7)

If, in addition, D2ϕ is positive semidefinite on [−1, 1]2, then (1.7) can be strengthened to

the ℓ2(Lp) inequality:

Decp,2(ϕ,R,P) ≲ϕ,ε R
ε. (1.8)

Moreover, the implicit constants in (1.7) and (1.8) can be made uniform over all polyno-

mials ϕ of degree up to k with bounded coefficients.

Note that (1.7) and (1.8) agree, up to Rε loss, with the lower bounds in (1.4) and (1.5),

respectively. Thus, up to Rε loss, we prove the optimal ℓp(Lp) and ℓ2(Lp) decoupling

inequalities for general smooth compact surfaces in R3 and 2 ≤ p ≤ 4.

1.2 Affine restriction theory

Originated from a discovery of Stein in 1967, the restriction problem [61] asks the following:

for which hypersurfaces M ⊆ Rn and which 1 ≤ p′ ≤ 2, can the Fourier transform of an

Lp
′
(Rn) function can be meaningfully restricted? More precisely, given a hypersurface

M ⊂ Rn equipped with a measure µM, what are the pairs of exponents (p′, q′) ∈ [1,∞]2

such that the following inequality holds:

∥f |M∥Lq′ (M,dµM) ≲M,µM,p′,q′ ∥f∥Lp′ (Rn), (1.9)

for all f ∈ Lp
′
(Rn) ∩ L1(Rn).
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In this dissertation, we consider only compact hypersurfaces. As in the decoupling

theory, we assume that M is given by the graph of a smooth function ϕ : [−1, 1]n−1 → R

and dµ is the pushforward measure of dµM under the projection map (ξ, ϕ(ξ)) 7→ ξ.

Recall from (1.1) that the extension operator EA = Eϕ,µA on A ⊆ [−1, 1]n−1, with

measure dµ, is defined by

EAg(x
′, xn) =

∫
A
g(ξ)e2πi(ξ·x

′+ϕ(ξ)xn)dµ(ξ), x = (x′, xn) ∈ Rn−1 × R, (1.10)

for g ∈ L1([−1, 1]n−1, dµ). Recall as well that E = E[−1,1]n−1 .

The extension operator E is dual to the restriction operator f 7→ f̂ |M. In the literature,

the restriction problem is usually reduced to studying the equivalent extension estimates

of the form:

∥Eg∥Lp(Rn) ≲ϕ,µ,p,q ∥g∥Lq(dµ), (1.11)

where 1
p +

1
p′ =

1
q +

1
q′ = 1. Here and throughout this dissertation, we adopt the notation

that 1
∞ = 0.

Harmonic analysts have spent enormous efforts solving for the best range of exponents

(p, q) for which (1.11) holds. The problem has only been solved for various low-dimensional

cases. These include circles S1 by Fefferman [22] (who credits Stein) and Zygmund [76],

three, four and five-dimensional cones by Taberner [66], Wolff [73] and Ou-Wang [50]

respectively. For higher dimensions, the problem is still largely open. Various methods

have been developed. They include bilinear methods [4, 67, 68, 69, 70, 73], multilinear

methods [5, 6, 7, 8, 9, 13, 33, 35], and polynomial methods [32, 34, 37, 41, 50].

Using tools only applicable to Hilbert spaces, the case where q = 2 is significantly

simpler. Nevertheless, the following theorem is significant to the study of Schrödinger

equations.

Theorem 1.2.1 (Tomas-Stein, [60, 71]). Let p ≥ 2(n+1)
n−1 . Let ϕ be a smooth function on

[−1, 1]n−1 and E = E[−1,1]n−1 be as in (1.10). Suppose that |detD2ϕ| ≳ 1 and dξ is the

n − 1 dimensional Lebesgue measure. There exists C that depends only on p, n, ∥ϕ∥C3
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and the infimum of | detD2ϕ| such that

∥Eg∥Lp(Rn) ≤ C∥g∥L2(dξ), (1.12)

for any g ∈ L2([−1, 1]n−1, dξ) ∩ L1([−1, 1]n−1, dξ).

Theorem 1.2.1 is a special case of the Strichartz estimates [65], in which mixed norm

Lebesgue spaces are considered in place of Lp(Rn) in (1.12).

The range of p is optimal. This can be shown by Knapp example, which we now

describe. Note that rotation and translation of the surface M correspond to rotation

and modulation in physical space. Since these operations do not change the norm we

are considering, we may assume without loss of generality that ϕ(0) = 0 and ∇ϕ(0) = 0.

Let δ ≪ 1 be a small number. Let g be the characteristic function on the square ω :=

[−δ1/2, δ1/2]n−1. This means the convex hull of the lifting of ω onto the surface M is

essentially an axis-parallel box of dimensions roughly δ1/2 × ...× δ1/2 × δ. For x′ ∈ Rn−1

with |x′| < δ−1/2/(10n) and xn ∈ [−δ−1/(10n), δ−1/(10n)], we have |ξ ·x′+ϕ(ξ)xn| < 1/10.

Thus, for x = (x′, xn)

|Eg(x)| = |Eτg(x)| ≥
∣∣∣∣∫
τ
cos(1/10)dµ(ξ)

∣∣∣∣ ∼ µ(τ) = δ(n−1)/2,

and

∥Eg∥Lp(Rn) ≳n δ
(n−1)/2δ−(n+1)/(2p).

On the other hand,

∥g∥L2([−1,1]2,dµ) = µ(τ)1/2 ∼ δ(n−1)/4.

By sending δ → 0, we see that (1.12) can hold only if n−1
2 − n+1

2p ≥ n−1
4 , which is equivalent

to p ≥ 2(n+1)
n−1 .

It is worth noting that ω satisfies 1.6 and is (ϕ, δ)-flat. Moreover, one can repeat the

above calculation for squares ω of side length ∼ δ1/2 at any point on ω, since all these ω
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are (ϕ, δ)-flat.

We now turn to general smooth hypersurfaces M. Without the Gaussian curvature

assumption | detD2ϕ| ≳ 1, the size of ω is different at different points of the surface M.

Thus, the necessary condition on the Lebesgue exponent p ≥ pϕ differs for different M if

we insist on using the Lebesgue measure. The goal is then to determine the smallest pϕ

so that (1.12) holds for p ≥ pϕ for some C depending on ϕ. When n = 2, this problem

is completely settled. It follows from the methods of Stein and Tomas. When n = 3,

this becomes significantly harder because the set where the Hessian determinant detD2ϕ

vanishes is much more complicated. Nevertheless, for a large class of smooth functions ϕ,

including those that are analytic, pϕ is fully determined in [39], see also [40, 47, 51, 53,

72] for related results and developments.

In this dissertation, we take up a different question. We introduce the affine surface

measure µ0 defined by

dµ0(ξ) = |detD2ϕ(ξ)|
1

n+1dξ, (1.13)

such that the extension estimate

∥Eg∥
L

2(n+1)
n−1 (Rn)

≤ C∥g∥L2(dµ), (1.14)

is invariant under affine transformation that sends the surface M to M′.

Heuristically, µ0 puts small weight on the parts of M with small Gaussian curvature

and hence mitigates the obstruction to (1.12) due to the lack of curvature conditions.

In the literature, the restriction estimates with affine arclength measure for curves in

Rn are well understood. See [1, 2, 20, 21, 64]. For uniform results for polynomial curves

up to degree k, see [17, 55, 56, 59, 64]. On the other hand, the affine surface measure

has also been considered in [15, 57, 58] for convex surfaces of revolutions in R3, in [16] for

surfaces in R3 given by the graphs of homogeneous polynomials, and in [52] for surfaces in

R3 given by the graphs of mixed homogeneous polynomials. Other notable results include

[38, 48, 63].
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We successfully solve the L2 affine restriction problem in R3 for smooth surfaces. For

polynomial surfaces, the result is uniform for polynomials of bounded degree. The primary

tool comes from the decoupling theory. It is worth noting that decoupling inequalities are

also invariant under affine transformation.

To state our result, we introduce a slightly smaller µε defined by

dµε(ξ) = |detD2ϕ(ξ)|
1

n+1
+εdξ, for any ε > 0. (1.15)

The measure µε overdamps the variance of the Gaussian curvature of M

Theorem 1.2.2 (L., [44]). Let n = 3, ε > 0 and R ≫ 1. Let ϕ be a smooth function on

[−1, 1]n−1, and Eϕ,µ = Eϕ,µ
[−1,1]n−1 be as in (1.10). Let dµ0, dµε be defined in (1.13) and

(1.15), respectively. For any g ∈ S, we have

∥Eϕ,µ0g∥L4(B) ≲ε,ϕ R
ε∥g∥L2(dµ0), for any ball B of radius R, (1.16)

∥Eϕ,µεg∥L4 ≲ε,ϕ ∥g∥L2(dµε), (1.17)

and

∥Eϕ,µ0g∥Lp ≲ε,ϕ ∥g∥L2(dµ0), for any p > 4. (1.18)

Moreover, the implicit constants in (1.16), (1.17), and (1.18) are uniform over all poly-

nomials ϕ of degree at most k with bounded coefficients.

By abuse of notation, we define the measure dµ−1/4 on S to be the pullback of the

two-dimensional Lebesgue measure dξ. Then by trivial estimates, we have for any g ∈ S,

∥Eϕ,µ−1/4
g∥L∞(dµ−1/4) ≲ ∥g∥L2(dµ−1/4) (1.19)

and

∥Eϕ,µg∥L∞(dµ0) ≲ ∥g∥L1(dµ0). (1.20)

By complex interpolation, see for instance [62], among (1.17), (1.19) and (1.20), we
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get the following affine restriction estimates off the scaling line for affine surface measure

µ.

Corollary 1.2.3. Let 1 < q ≤ 2 and 2
p < 1− 1

q . Let Eϕ,µ and µ0 be as in Theorem 1.2.2.

For any g ∈ S, we have

∥Eϕ,µg∥Lp(dµ0) ≲ϕ ∥g∥Lq(dµ0). (1.21)

Moreover, the implicit constant in (1.21) can be made uniform over all polynomials ϕ of

degree up to k with bounded coefficients.

We remark that the ε losses in (1.16) and (1.17), and the off-scaling line conditions

p > 4 in (1.18) and 2/p < 1 − 1/q in (1.21) are necessary for the case of general smooth

surfaces. This may be seen by considering the highly oscillatory function

ϕ(ξ) =


e−1/|ξ| sin(|ξ|−3) if ξ ̸= 0;

0 if ξ = 0,

(1.22)

modified from Sjölin’s two-dimensional example in [59]. See Section 3.5.

1.3 Proof Strategies

In this section, we briefly describe the strategies to prove Theorem 1.1.2 and 1.2.2.

1.3.1 Passing to polynomials

Let n = 3. In all of our results, we can afford to lose Rε. We shall see later that such a

loss can be transferred to the measure µε in (1.17) and the non-endpoint exponent p > 4

in (1.18). In what follows, we write A ⪅ B to mean A ≲ε R
εB for any ε > 0.

The first reduction is to approximate a smooth function ϕ by its Taylor polynomial of

degree 2/ε on each square of side length R−ε/2. We trivially decompose, via the trivial

decoupling inequality (1.2), our domain [−1, 1]2 into a finitely overlapping cover of these

squares of side length R−ε/2. It suffices to prove Theorem 1.1.2 for all polynomials ϕ of
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degrees up to k with bounded coefficients, with implicit constants depending on k but not

the specific polynomial ϕ. The details are in Section 2.2.2. In the rest of this subsection,

we assume that ϕ is a polynomial of degree at most k with bounded coefficients.

1.3.2 Iterative decoupling

Note that decoupling inequalities of the form (1.2) can be iterated. More precisely, suppose

that ω0 can be decoupled into ω1 ∈ P1 at a cost of D1, i.e.

∥Eω0g∥Lp(wB) ≤ D1

 ∑
ω1∈P1

∥Eω1g∥
q
Lp(wB)

1/q

,

where wB is defined in (1.25), and each ω1 ∈ P1 can be decoupled into ω2 ∈ P2(ω1) at an

uniform cost of D2, i.e.

∥Eω1g∥Lp(wB) ≤ D2

 ∑
ω2∈P2(ω1)

∥Eω2g∥
q
Lp(wB)

1/q

.

Then, ω0 can be decoupled into ω2 ∈ P2 := ∪ω1P2(ω1) at a cost of D1D2, i.e.

∥Eω0g∥Lp(wB) ≤ D1D2

 ∑
ω2∈P2

∥Eω2g∥
q
Lp(wB)

1/q

.

See Proposition 9.17 of [18] for the proof.

For this reason, we use the phrase “ω can be decoupled into ω′ ∈ P at the cost of D”

to mean inequalities of the form above. We usually keep track of all the constant losses

after describing the iteration.

Moreover, if the number of elements in P is bounded by insignificant constants, in-

cluding those of order Oε(δ
−ε) for any ε > 0, we use triangle and Hölder inequalities to

get:

Decp,q(ϕ,R,P) ≲ |#P|1−1/q. (1.23)

The loss from the above trivial estimate is also of order Oε(δ
−ε) for any ε > 0, which
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is tolerable. An important situation in which we can apply this procedure is the dyadic

decomposition by Gaussian curvature which we describe below.

1.3.3 Dyadic decomposition

Since Bourgain-Demeter’s decoupling theorem (Theorem 1.1.1) and Tomas-Stein theorem

(Theorem 1.2.1) already cover the case where | detD2ϕ| ≳ 1, our enemy is the set where

detD2ϕ is small. Therefore, the first step is to dyadically decompose our domain [−1, 1]n−1

into sets of the form {|detD2ϕ| ∼ σ} for some dyadic number R−C < σ ≤ 1 and absolute

constant C, depending on degree k, to be determined.

We take a detour to look at the case when n = 2. In this case, the sets {|detD2ϕ| ∼

σ} = {|ϕ′′| ∼ σ} are significantly simpler: they are unions of at most 2k intervals. By

the trivial decoupling inequality, it suffices to consider one of these at a tolerable loss

depending only on k and the exponents p, q. The part of the curve M over these intervals

can be directly rescaled to part of a parabola. Since our problems are affine invariant and

they are solved in parabolic cases, this closes the proof.

1.3.4 Projection and 2D general decoupling

Our strategy for n = 3 is more complex than the n = 2 case. The first major obstacle

is that the sub-level sets {|detD2ϕ| ∼ σ} are in generally curved regions that cannot be

rescaled to the unit square, as opposed to the rescaling of intervals to the unit interval

when n = 2. We follow similar ideas in [42, 45] to project the part of M lying over

{|detD2ϕ| ∼ σ} down to a curved region in R2. Although a projection forgets certain

geometry of the surface, the decoupling of the projected sets, as a subset of R2, is easier

to study.

Write P = detD2ϕ. Note that P is a polynomial of degree at most 2k and with

bounded coefficients. We will decouple the projected set {|P | < δ} ⊂ [−1, 1]2 into par-

allelograms. We call this generalized 2D uniform decoupling. The special case where

|Py| ∼ 1 is more manageable because it is essentially a δ-neighborhood of an algebraic
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curve. We apply the Pramanik-Seeger iteration [54] to approximate the curve by graphs

of some carefully chosen polynomial-like functions in different scales. We then prove this

special case by applying the uniform decoupling on polynomial-like functions in R2 [75].

For the general case, we use induction on the degree of the polynomial. Morally, the set

{|∇P | ∼ σ}, for some dyadic number σ, can be treated as sub-level sets of polynomials of

one degree less and thus can be decoupled into parallelograms by the induction hypoth-

esis. Correct applications of rescaling arguments led us to the known case where |∇P |

is bounded below. The rigorous argument requires an in-depth analysis of the geometric

properties of the sets between consecutive steps.

1.3.5 Surfaces with small Gaussian curvature on the entire domain

By 2D uniform decoupling, we are able to localize ϕ to parallelograms with small Hessian

determinants. After rescaling these parallelograms to the unit square, the problem is

reduced to studying the polynomial surfaces with essentially constant Gaussian curvatures.

By the iterative structure of the decoupling inequality (1.2), it suffices to decouple each

of these rescaled pieces further. We denote the rescaled function ϕ̃.

For n = 2, one can always divide ϕ̃, which corresponds to rescaling the last variable

in the frequency space so that the new function has Hessian determinant bounded below.

This does not work for n = 3. The best we can say when the Gaussian curvature is

small on the entire unit square is that there exists a direction along which the surface

can be projected into a tiny neighborhood of the graph of a polynomial in one variable.

Quantitatively, if ϕ̃ has Hessian determinant ∼ ν ≪ 1 on [−1, 1]2, it admits the form

ϕ̃ ◦ ρ = A(ξ1) + ναB(ξ1, ξ2) (1.24)

for some rotation ρ, α = α(k) ∈ (0, 1) and polynomials A, B with bounded coefficients.

It is remarked that (1.24) is no longer true for non-polynomial ϕ. For example, the

cone has zero Gaussian curvature and hence function ϕ representing the truncated cone

{(ξ, |ξ|) : |ξ| ∈ [1, 2]} has zero Hessian determinant. Nevertheless, ϕ does not admit the
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form (1.24).

1.3.6 Induction on scale

Now, we may approximate ϕ̃ ◦ ρ by the graph of a cylinder (ξ, A(ξ1)). This allows us to

apply a cylindrical decoupling to ϕ̃◦ρ at the scale να. Each decoupled piece can be enlarged

to a polynomial surface living in the unit ball and having Gaussian curvature ∼ ν1−α/2.

Note that we start with a surface having Gaussian curvature ∼ ν ≪ ν1−α/2. Iteratively,

we arrive at the situation that all the resulting surfaces have Gaussian curvature bounded

away from 0. We then conclude Theorem 1.1.2 by applying Bourgain-Demeter’s decoupling

result (Theorem 1.1.1) to each resulting surface.

1.3.7 Affine restriction estimates

To prove affine restriction results for all smooth surfaces, including those having principle

curvatures of opposite signs, we should not apply Bourgain-Demeter’s decoupling result

(Theorem 1.1.1) to surfaces having Gaussian curvature bounded away from 0. The loss

|#P∥1/2−1/4 in (1.4) cannot be tolerated in the sharp restriction result. We instead apply

the Tomas-Stein inequality (Theorem 1.2.1) directly to these surfaces. It is worth noting

that except for the last step where we applied decoupling to surfaces having Gaussian

curvature bounded away from 0, all decouplings we used are cylindrical and is ℓ2(L4). By

affine invariance, we rescale back all these pieces and add them up in ℓ2 norms to obtain

the desired estimate (1.16).

For the over-damped situation, the measure compensates an extra factor of σε for the

region {|detD2ϕ| ∼ σ}. Thus, we shall keep track of all the cylindrical decouplings in the

iteration, ensuring the loss is at most Oε(σ
−ε/2). This allows us to sum all dyadic pieces

and obtain the L2 − L4 endpoint estimate (1.17).

The non-endpoint result p > 4 for the affine surface measure µ in (1.18) is a consequence

of interpolating the over-damped estimate (1.17) and the trivial L1 − L∞ estimate.
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1.4 Notations

In this section, we summarize the notations used throughout the dissertation.

1. For integer n ≥ 2, M is a smooth compact hypersurface in Rn defined by the graph

of a smooth function ϕ : [−1, 1]n−1 → R.

2. x = (x′, xn) ∈ Rn−1 × R denotes variables in physical space and (ξ, η) ∈ Rn−1 × R

denotes variables in frequency space.

3. Dyadic numbers are numbers of the form (1 + c)−k, k ∈ Z≥0, for some positive

constant c that will not change throughout the dissertation.

4. dξ is the n − 1 dimensional Lebesgue measure. dµ0M and dµεM, for ε > 0, are

respectively affine surface and over-damped affine surface measures on M defined

by

dµ0M(ξ, ϕ(ξ)) = | detD2ϕ(ξ)|
1

n+1dξ,

and

dµεM(ξ, ϕ(ξ)) = |detD2ϕ(ξ)|
1

n+1
+εdξ.

5. Measures dµ, respectively dµ0 and dµε, defined on [−1, 1]n−1 are the pushforward

measure of dµM, respectively dµ0M and dµεM, under the projection map (ξ, ϕ(ξ)) 7→

ξ.

6. For any L1 function g, define the extension operator EA = Eϕ,µA on A ⊆ [−1, 1]n−1

with measure dµ:

EAg(x
′, xn) =

∫
A
g(ξ)e2πi(ξ·x

′+ϕ(ξ)xn)dµ(ξ), x = (x′, xn) ∈ Rn−1 × R.

7. We use the standard notation A = Oα,β(B), or A ≲α,β B to mean there is a constant

C depending on α, β, dimension n, Lebesgue exponents p, q and degree k that may
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change from line to line such that A ≤ CB. We also use a ∼A b to mean a ≲A b and

b ≲A a.

8. For parallelograms ω ⊆ [−1, 1]n−1, we denote c(ω) to be the center of ω. ω is said

to be (ϕ,R−1)-flat if

sup
ξ∈ω

|ϕ(ξ)− ϕ(c(ω))−∇ϕ(c(ω)) · (ξ − c(ω))| ≤ R−1.

9. Given a ball B ⊂ Rn of radius R centered at c, define the weight wB to be

wB(x) := (1 +
|x− c|
R

)−100n. (1.25)

10. For any set A ⊆ [−1, 1]n−1 and any δ > 0, denote the (vertical) δ-neighbourhood of

the graph of ϕ above A by

N ϕ
δ (A) = {(ξ, η) : ξ ∈ A, |η − ϕ(ξ)| < δ}. (1.26)

11. For F : Rn → C and A ⊆ [−1, 1]n−1, we denote by FA the Fourier restriction of F

to the strip A× R, namely, FA is defined by the relation

F̂A(ξ, η) = F̂ (ξ, η)1A(ξ). (1.27)

12. For any smooth function ϕ, we define the norm of ϕ to be

∥ϕ∥ := sup
[−1,1]2

|ϕ|. (1.28)

13. For any polynomial P : R2 → R defined by P =
∑

α cαξ
α of degree at most k, the

norm ∥P∥ defined above can defined equivalently as below:

∥P∥ := sup
[−1,1]2

|P | ∼k max
α

|cα| ∼k

∑
α

|cα|. (1.29)
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We say a polynomial P is bounded if ∥P∥ ≲k 1.

14. For parallelogram ω ⊆ [−1, 1]2, define Tω be the invertible affine map that maps

[−1, 1]2 to ω. Tω sends the smooth function ϕ to ϕTω as follows:

ϕTω(ξ) := ϕ ◦ Tω(ξ)−∇(ϕ ◦ Tω)(0, 0) · ξ − ϕ ◦ Tω(0, 0). (1.30)

We normalise Tω by

ϕ̄Tω =
ϕTω

∥ϕTω∥
. (1.31)

Note that ω is (ϕ, δ)-flat if and only if ∥ϕTω∥ ≲ R−1.

15. For parallelogram ω ⊆ [−1, 1]2, the width of ω is the diameter of the largest ball

contained in ω.

16. We use the phrase “ω can be ℓ2(Lp) decoupled into ω′ ∈ P at a cost of D” to mean:

for each g ∈ L1([−1, 1]n−1, we have

∥Eωg∥Lp(wB) ≤ D

(∑
ω′∈P

∥Eω′g∥qLp(wB)

)1/q

.

ℓ2(Lp) is often omitted if it is clear in the context what p is. If D ⪅ 1 and there is

finitely many iterations, we sometimes also omit D.
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Chapter 2

Decoupling theory

In this chapter, we prove the decoupling inequalities for compact smooth surfaces in R3,

stated in Theorem 1.1.2.

2.1 Overview

In (1.2), we formulated the decoupling problem in terms of the extension operator. The

extension formulation involves more technical details to work with, mainly due to the

necessity of weight wB. We will instead use an alternative formulation in which functions

have frequency support on a neighborhood of the surface. Let Dp,q(ϕ, δ,P) be the small-

est constant such that the following ℓq(Lp) decoupling inequality holds for all F Fourier

supported on N ϕ
δ (∪P):

∥F∥Lp(Rn) ≤ Dp,q(ϕ, δ,P)

(∑
ω∈P

∥Fω∥qLp(Rn)

)1/q

. (2.1)

By Proposition 9.15 of [18], Theorem 1.1.2 is implied by the following equivalent version

under an extra assumption on the size of ω:

Proposition 2.1.1 (Yang-L., [44, 46]). Let 2 ≤ p ≤ 4, n = 3, and 0 < δ ≪ 1. Let

ϕ : [−1, 1]2 → R be a smooth function. There exists a family P = P(δ, ϕ) of parallelograms

ω covering [−1, 1]2 such that, for any ε > 0
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1. each ω ∈ P is (ϕ, δ)-flat;

2. P has Oε(δ
−ε)-bounded overlap in the sense that

∑
ω∈P 1ω ≲ϕ,ε δ

−ε;

3. The width of each ω ∈ P is at least δ;

4. We have the following ℓp(Lp) decoupling inequality:

Dp,p(ϕ, δ,P) ≲ϕ,ε δ
−ε|#P|1/2−1/p. (2.2)

If, in addition, D2ϕ is positive semidefinite on [−1, 1]2, then (2.2) can be strengthened to

the ℓ2(Lp) inequality:

Dp,2(ϕ, δ,P) ≲ϕ,ε δ
−ε. (2.3)

Moreover, the implicit constants in (2.2) and (2.3) can be made uniform over all polyno-

mials ϕ of degree up to k with bounded coefficients.

Conditions 1 and 3 above ensure that the following assumption in Proposition 9.15 of

[18] is met: for each ω ∈ P, there is a rectangular box Rω such that

Rω ⊂ ω and ω +B(0, δ) ⊂ Rω + T, (2.4)

for O(1) many points T independent of ω and δ. We briefly explain why this assumption

is important. In a standard localization argument, we multiply a smooth cutoff function

ψB, whose Fourier support is in B(0, δ), to Eg in (1.2), where R = δ−1. Let F = EgψB.

Then F̂ = Êg ∗ ψ̂B in distributional sense. Thus, to relate Fω and Egω, ω needs to satisfy

(2.4).

It is remarked that Proposition 2.1.1 is first proven by Yang and the author in [46],

without condition 3. In this dissertation, we describe the approach taken by the author

in [44]. As a side product of the approach, we prove some variants, Propositions 2.6.1 and

2.6.2, to Proposition 2.1.1, which will be used to prove the affine restriction results in the

next chapter.
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In Proposition 2.1.1, P is not allowed to depend on ε. It turns out that it suffices to

prove the superficially weaker version in which P is allowed to depend on ε.

Furthermore, the general smooth case is a corollary of the uniform polynomial case.

The following summarizes what we need to prove.

Proposition 2.1.2. Let 2 ≤ p ≤ 4, n = 3, ε > 0 and 0 < δ ≪ 1. Let ϕ be a bivariate

polynomial of degree at most k with bounded coefficients. There exists a family P =

P(δ, ϕ, ε) of parallelograms ω covering [−1, 1]2 such that the following hold:

1. each ω ∈ P is (ϕ, δ)-flat;

2. P has Ok,ε(δ
−ε)-bounded overlap in the sense that

∑
ω∈P 1ω ≲k,ε δ

−ε;

3. The width of each ω ∈ P is at least δ;

4. We have the following ℓp(Lp) decoupling inequality:

Dp,p(ϕ, δ,P) ≲k,ε δ
−ε|#P|1/2−1/p. (2.5)

If, in addition, D2ϕ is positive semidefinite on [−1, 1]2, then (2.5) can be strengthened to

the ℓ2(Lp) inequality:

Dp,2(ϕ, δ,P) ≲k,ε δ
−ε. (2.6)

The proof of Proposition 2.1.1 from Proposition 2.1.2 is contained in Section 2.2.

The following two propositions are the key ingredients of Proposition 2.1.2.

Proposition 2.1.3 (Generalised 2D uniform decoupling inequality with size estimates).

Let ε > 0, 2 ≤ p ≤ 6 , 0 < δ, λ ≤ 1 be dyadic numbers and P : R2 → R be a bounded

polynomial of degree at most k. For each dyadic number σ ∈ [λ, 1], there exists a family

P0
σ,λ = P0

σ,λ(δ, P ) of parallelograms such that the following statements hold:

1. for each λ, P0
λ := ∪σP0

σ,λ, where the union is over dyadic numbers σ ∈ [λ, 1], covers
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[−1, 1]2 in the sense that

∑
ω∈Pλ

1ω(ξ) ≥ 1 for ξ ∈ [−1, 1]2;

2. P0
λ has bounded overlap in the sense that

∑
ω∈P0

λ
1100ω ≲k 1;

3. for each ω ∈ P0
σ,λ, at least one of the following holds:

(a) λ < σ ≤ 1, |P | ∼ σ over 10ω, and the width of ω is ≳ max{σ, δ};

(b) λ < σ ≤ δ, |P | ≲ σ over 10ω, and the width of ω is ∼ δ.

(c) σ = λ, |P | ≲ λ over 10ω, and the width of ω is ≳ max{σ, δ}.

4. For λ′ < λ < σ, Pσ,λ = Pσ,λ′.

5. the following 2D ℓ2(Lp) decoupling inequality holds: for any f : R2 → C whose

Fourier transform is supported on
⋃
ω∈P0

σ,λ
ω, we have

∥f∥Lp(R2) ≲ε,k σ
−ε

 ∑
ω∈P0

σ,λ

∥fω∥2Lp(R2)


1/2

, (2.7)

where fω is the frequency projection of f onto ω, defined by f̂ω = f̂1ω.

Before proceeding, we make several remarks regarding Proposition 2.1.3. First, the

introduction of the parameter λ is primarily for induction purposes. When applying

Proposition 2.1.3, we will take λ ∼ δC for some C depending on k. Second, the width

estimates on ω in statement 3 are crucial in proving Proposition 2.1.1, which requires a

lower bound on the width of ω. Nevertheless, the other lower bound, σ, in items (3a)

and (3c), as well as the decoupling constant σ−ε, instead of the usual δ−ε in (2.7), are

for the purpose of the next chapter. (Compare Propositions 2.6.1 and 2.6.2 at the end of

the chapter with Propositions 2.1.1 and 2.1.2 above.) Heuristically, we shall not “over”

decouple sets in R2 by stopping at steps where the sub-level set {|P | ≲ σ} already has

width δ. On the other hand, since P has bounded derivatives, the set {|P | ∼ σ} contains
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the σ neighborhood of the algebraic varieties {|P | = σ}. Thus, it is expected that the

decoupled set has a width of at least σ.

Proposition 2.1.3 will be proved in Section 2.3.

Proposition 2.1.4. For each 2 ≤ k ∈ N, there is a constant α = α(k) ∈ (0, 1] such that

the following holds. Let ϕ : R2 → R be a bounded polynomial of degree at most k, without

linear terms. If ∥ detD2ϕ∥ ≤ ν ∈ (0, 1), then there exist a rotation ρ : R2 → R2, and

bounded polynomials A,B such that

ϕ(ξ) = A ◦ ρ(ξ) + ναB ◦ ρ(ξ),

and A is one-dimensional, i.e. for any ξ ∈ R2, A(ξ1, ξ2) = A(ξ1, 0).

Proposition 2.1.4 will be proved in Section 2.4.

In Section 2.5, we prove Proposition 2.1.2 using Propositions 2.1.3 and 2.1.4. This will

finish the proof of Proposition 2.1.1 and hence Theorem 1.1.2.

Finally, in section 2.6, we present variants of Propositions 2.1.1 and 2.1.2 for the

application of the next chapter.

2.2 Two reductions

In this section, we prove that Proposition 2.1.2 implies Proposition 2.1.1.

2.2.1 Removal of ε-dependence of the covering P

In this subsection, we remove ε-dependence of the covering P in Proposition 2.1.2. The

proof presented here was suggested by Joshua Zahl.

Let ε = ε(δ) be a function such that ε ↘ 0 as δ ↘ 0, with the rate of decay to be

determined.

Now with each δ > 0, there exists a family Pδ = P(δ, ϕ, ε(δ)) of parallelograms ω

satisfying the prescribed properties. Note that by definition, P(δ) depends on δ only.

Let ε > 0 be arbitrary.
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If ε < 2ε(δ), then using the monotonicity of the fixed function ε(δ), δ is bounded

below by a positive number depending on ε only. In this case, we have a trivial decoupling

inequality, with the constant depending on ϕ, ε.

If ε ≥ 2ε(δ), then it suffices to find a suitable C ′
ϕ,ε such that

Cϕ,ε(δ)δ
−ε(δ) ≤ C ′

ϕ,εδ
−ε, for all ε > 0, δ > 0,

where Cϕ,ε is the implicit constant in the ϵ depend version of decoupling. Since ε/2 ≥ ε(δ),

we have δ−ε(δ) ≤ δ−ε/2, and thus it suffices to show that

Cϕ,ε(δ)δ
ε/2 ≤ C ′

ϕ,ε, for all ε > 0, δ > 0. (2.8)

We may assume Cϕ,ε ↗ ∞ as ε↘ 0. If we choose ε(δ) to decrease slowly enough as δ ↘ 0,

then we may have Cϕ,ε(δ) ≤ log δ−1 for all δ small enough. Then for all ε > 0, we have

lim
δ→0+

Cϕ,ε(δ)δ
ε/2 ≤ lim

δ→0+
δε/2 log δ−1 = 0.

Thus, by choosing a suitable constant C ′
ϕ,ε, we have (2.8). The ε-bounded overlap follows

from the same proof. Thus we have removed the ε dependence of the family P.

2.2.2 Taylor approximation

In this subsection, we prove the decoupling of general smooth functions by using the

uniform decoupling inequalities for polynomials of degree k with bounded coefficients.

The idea is a standard Taylor polynomial approximation.

Fix ϕ ∈ C∞([−1, 1]2). We will first prove the general case without assuming that D2ϕ

is positive semidefinite.

Given ε > 0 and δ > 0, we first partition [−1, 1]2 into squares Q of side length δε.

Since we allow a loss of δ−ε in the decoupling inequality, by the triangle and Hölder’s

inequalities, it suffices to decouple each Q into (ϕ, δ)-flat rectangles.

Let k be the smallest integer greater than or equal to ε−1. For each Q, we may
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approximate ϕ by its k-th degree Taylor polynomial PQ, which depends on ε, δ. The error

is at most

Ck sup
[−1,1]2

|Dk+1ϕ(x, y)|(δε)k+1 ≤ Ck sup
[−1,1]2

|Dk+1ϕ(x, y)|δ1+ε.

For δ small enough (depending on ε), the above error will be less than δ/2. Hence, to

find a cover of Q by (ϕ, δ)-flat rectangles, it suffices to find a cover of Q by (PQ, δ/2)-flat

rectangles.

Since all coefficients of PQ are bounded by a large constant depending on ϕ, ε only,

we may normalize PQ to P̃Q with maximum coefficient having magnitude 1, and apply

Proposition 2.1.2 to P̃Q find a cover PQ = PQ(δ, P̃Q) of Q that satisfies the prescribed

properties. The final collection Pδ is simply defined to be the union of the collections

∪QPQ. The overlap between rectangles covering different Q’s is trivially bounded since

each covering rectangle of Q is a subset of 2Q, and 2Q’s have bounded overlap.

Although PQ depends on δ, our main uniform decoupling Proposition 2.1.2 ensures a

uniform bound of all decoupling constants as Q varies, and this uniform bound is indepen-

dent of δ. Thus, the final decoupling inequality (2.2) follows immediately by the triangle

and Hölder’s inequalities.

Lastly, in the special case when D2ϕ is positive semidefinite, by choosing the degree of

PQ to be greater than ε−3 if necessary, we may approximate ϕ by PQ such that detD2PQ ≥

−δ3. By normalising PQ to P̃Q with maximum coefficient having magnitude 1 and choosing

δ small enough, we also have 1 ≳ε detD2P̃Q ≥ −δ2. In this case, we get uniform ℓ2

decoupling inequalities from Proposition 2.1.2. This finishes the proof.

2.3 General 2D decoupling

In this section, we prove Proposition 2.1.3. The proof of the proposition involves three

steps. First, we show Proposition 2.1.3 under the assumptions that P = A(ξ1)− ξ2B(ξ1)

and that A/B is polynomial-like, the decoupling inequalities of which have been solved

by Yang in [75]. Second, we prove the case when |∇P | ∼ κ. In this case, |P | ∼ σ is
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roughly the σ/κ neighborhood of the zero set of P . This can be solved by a Pramanik-

Seeger iteration by approximating P at each scale by polynomials obeying the condition

of the first case. Third, we fully prove Proposition 2.1.3 by induction on the degrees of

polynomials P . Note that high enough derivatives of P are constant. Applying the second

step to derivatives of P iteratively, we conclude the proof of Proposition 2.1.3.

2.3.1 Uniform decoupling of polynomial-like rational functions

We first introduce the following definition of polynomial-like functions:

Definition 2.3.1. ψ is said to be a polynomial-like function of degree k over I0 if, for

each 0 < σ ≪ 1 and each interval J ⊆ I0, the set

B(ψ, σ, J) := {ξ1 ∈ J : |ψ′′(ξ1)| < σ(sup
ξ1∈J

|ψ′′(ξ1)|+ |J | sup
ξ1∈J

|ψ′′′(ξ1)|)}

is a disjoint union of at most Ok(1) subintervals of J , and satisfies

|B(ψ, σ, J)| ≲k σ
1
3k |J |.

Note that polynomials of degree at most k with bounded coefficients are polynomial-

like functions of degree k; see Lemma 1.7 of [75].

We need the following rescaled version of the uniform decoupling for polynomial-like

functions from [75].

Proposition 2.3.2 (Uniform decoupling for polynomial-like functions). Let k ≥ 1, ε > 0,

0 < δ ≪ 1, and let ψ be a polynomial-like function of degree k over I0 ⊆ [−1, 1]. There

exists a partition Iδ of I0 such that

1. each I ∈ Iδ is (ψ, δ)-flat.

2. each I ∈ Iδ has length at least δ1/2.

3. for any C > 1, there exists at most OC(1) many neighboring intervals whose union

is (ψ,C(δ))-flat.
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4. the following 2D ℓ2(Lp) decoupling inequality holds: for any f : R2 → C Fourier

supported in Nψ
O(δ)(I0), we have

∥f∥Lp(R2) ≲ε,k δ
−ε

∑
I∈Iδ

∥fI∥2Lp(R2)

 1
2

.

We remark that the above theorem will also be used repeatedly in the bootstrapping

argument, Section 2.5.2 below, for the special case when ψ is a polynomial.

Combined with the following lemma, we prove the uniform decoupling inequalities for

rational functions.

Lemma 2.3.3. Let 0 < κ ≤ 1. Suppose that A,B are univariate polynomials of degree at

most k such that |A| ≲ κ and |B| ∼ κ over an interval I0 ⊆ [−1, 1]. Then ψ := A/B is a

polynomial-like function of degree 3k.

Proof. By rescaling, it suffices to check these conditions for J = I0 = [−1, 1]. Then, the

coefficients of A and B are bounded by κ. By dividing A and B by κ, we may assume

without loss of generality that κ = 1. By direct computation, ψ′′ = A1/B
3 for some

polynomial A1 of degree at most 3k such that |A1| ≲ κ3 over [−1, 1]. Thus, by the

fundamental theorem of algebra, B(ψ, σ, [−1, 1]) is a union of Ok(1) many subintervals of

[−1, 1].

On the other hand,

sup
[−1,1]

|ψ′′′| = sup
[−1,1]

∣∣∣∣A′
1

B3
− 3A1B

2B′

B6

∣∣∣∣ ≲ sup
[−1,1]

|A′
1|+ |A1| ≲ sup

[−1,1]
|A1|,

where the last inequality follows from (1.29) because A1 is a polynomial.

Thus, B(ψ, σ, J) is contained in {|A1| ≲ σ sup[−1,1] |A1|}. Since degree of A1 is bounded

by 3k, the size of this set is ≲k σ
1
3k as desired.
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2.3.2 The case of constant gradient

In this subsection, we consider the case when |∇P | ∼ κ for some κ≪ 1 over a parallelogram

ω0 of width at least κ−1σ. Our goal is to decouple {|P | ≤ σ} ∩ ω0 into bounded overlap

parallelograms of width ∼ min{κ−1σ, 1}.

We first need the following structure lemma for the set {|P | ≤ σ} ∩ ω0.

Lemma 2.3.4. Let 0 < σ, κ≪ 1. Let ω0 ⊆ [−1, 1]2 be an axis-parallel rectangle. Suppose

that P is a polynomial of degree at most k such that |∇P | ∼ κ and |∂ξ2P | ∼ κ over ω0.

There exist Ok(1) many disjoint intervals I and smooth functions ψI on I, depending on

σ and κ, such that

{|P | ≤ σ} ∩ ω0 ⊆
⊔
I

NψI

O(κ−1σ)
(I), (2.9)

and, for each I,

NψI

O(κ−1σ)
(I) ∩ ω0 ⊆ {|P | ≲ σ} (2.10)

where B(0, r) is the ball of radius r centered at 0.

See Figure 2.1 below for an illustration of this lemma.

Proof. By the fundamental theorem of algebra, there are Ok(1) many ξ1 on [−1, 1] such

that P (ξ1, ξ2) = ±σ and (ξ1, ξ2) ∈ ∂ω0 for some ξ2. These ξ1 form intervals I on which

there exist ξ2 such that |P (ξ1, ξ2)| ≤ σ. Define ψI implicitly by P (ξ1, ψI(ξ1)) = ±σ using

implicit function theorem, where the sign is chosen as follows. We use −σ (resp. σ) if the

graph of ψI intersects the top (resp. bottom) of ω0. If it intersects both the top and the

bottom, we cut the interval into halves and choose the sign separated as described above.

The function ψI is smooth with bounded derivatives because all derivatives of ∂ξ1P are of

magnitude ≲ κ.

To see (2.9), let (ξ1, ξ2) ∈ {|P | ≤ σ} ∩ ω0. By construction, there exists I as above

such that ξ1 ∈ I. By the mean value theorem, there exists ξ′2 between ξ2 and ψI(ξ1) such

that

2σ ≥ |P (ξ1, ξ2)− P (ξ1, ψI(ξ1))| = |∂ξ2P (ξ′2)||ξ2 − ψI(ξ1)|.
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ψI

I

ψI

I

O(κ−1σ)

{|P | < σ} :

Figure 2.1: Illustration of the structure lemma

The way we construct ψI ensures that (ξ1, ξ
′
2) ∈ ω0, and hence |∂ξ2P (ξ′2)| ∼ κ. Therefore,

|ξ2 − ψI(ξ1)| ≲ κ−1σ.

It remains to show (2.10). Let (ξ1, ξ2) ∈ ω0 be such that |ξ2 − ψI(ξ1)| ≲ κ−1σ. Then,

by mean value theorem again, there exists ξ′2 between ξ2, ψI(ξ1) such that

|P (ξ1, ξ2)| = |P (ξ1, ξ2)− P (ξ1, ψI(ξ1))| = |∂ξ2P (ξ′2)||ξ2 − ψI(ξ1)| ≲ κ(κ−1σ) = σ

as desired.

The above lemma reduces the decoupling of {|P | ≤ σ} ∩ ω0 to the decoupling of the

neighborhood of level sets of polynomials P . Since there are Ok(1) many intervals, it

suffices to consider each interval separately.

Proposition 2.3.5. Let 0 < σ ≪ 1 and I0 ⊆ [−1, 1]. Suppose that ψ : I0 → R is a

smooth function and P (ξ1, ψ(ξ1)) = 0 for some polynomial P of degree at most k with

bounded coefficients. Moreover, |∇P | ≲ |∂ξ2P | ∼ κ on ω0 for some axis parallel rectangle

ω0 containing the graph of ψ above I0. Then, there exists a collection of (ψ, σ)-flat disjoint
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intervals I such that

1. the following 2D ℓ2(Lp) decoupling inequality holds: for any f : R2 → C Fourier

supported in Nψ
σ (I0), we have

∥f∥Lp(R2) ≲ε,k σ
−ε

(∑
I∈I

∥fI∥2Lp(R2)

) 1
2

;

2. each I has length at least σ1/2;

3. for any absolute constant C > 1, any ξ1 ∈ R stays in O(1) many I ∈ I.

Proof. Let I0 contain the singleton I0. Let σ0 ≲ 1 be the smallest number such that I0 is

(ψ, σ)-flat. Also, the side of ω0 that is parallel to the to ξ2 axis has a length of at least σ0.

Therefore, for any (ξ1, ξ2) ∈ ω0,

|P (ξ1, ξ2)| = |P (ξ1, ξ2)− P (ξ1, ψ(ξ1))| ≲ σ0 sup
ω0

|∂ξ2P | ≲ σ0κ. (2.11)

We now describe the Pramanik-Seeger iteration. At each step, we approximate ψ

locally by rational functions. For each i = 1, ..., our goal is to decouple each I ∈ Ii, which

is (ψ, σi)-flat, for some σi < σ0.

We consider the following one-dimensional variant of the rescaling (1.30). Let TI be

the translation and rescaling that maps [−1, 1] to I. Consider

ψTI (ξ1) := ψ ◦ TI(ξ1)−∇(ψ ◦ TI)(0)ξ1 − ψ ◦ TI(0),

and

PTI (ξ1, ξ2) = P (TI(ξ1), ξ2 +∇(ψ ◦ TI)(0)ξ1 + ψ ◦ TI(0))

so that PTI (ξ1, ψT1(ξ1)) = 0.

To decouple ψ over I, it suffices to decouple ψTI over [−1, 1].

Write

PTI (ξ1, ξ2) = A(ξ1)− ξ2B(ξ1) + ξ22E(ξ1, ξ2)
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for some polynomials A,B,E of degree at most k with bounded coefficients.

Note that ψTI (0) = 0 and P (0, 0) = 0. Recall from (1.29) that the norm of a polynomial

∥·∥ is equivalent to the supremum of the polynomial over the unit interval. We may bound

A and B by:

∥A∥ = sup
ξ1∈[−1,1]

|PTI (ξ1, 0)| ≲ sup
ω0

|P | ≲ σ0κ

and

∥B∥ = sup
ξ1∈[−1,1]

|∂ξ2PTI (ξ1, 0)| ∼ κ.

Thus, A/B satisfies the assumptions in Lemma 2.3.3 and is polynomial-like of degree 3k.

We now approximate ψTI by A/B.

Since I is (ψ, σi)-flat, we have |ψTI (ξ1)| ≲ σi. Moreover, for any |ξ2−ψT (ξ1)| ≤ σ0, we

have

|ξ22E(ξ1, ξ2)| ≤ sup
ξ∈ω0

|P (ξ)|+ ∥A∥+ σ0∥B∥ ≲ σ0κ,

and hence for any fixed ξ1 ∈ [−1, 1],

(σ0ξ2)
2E(ξ1, σ0ξ2) ≲ σ0κ.

This means that all coefficients of (ξ1, ξ2) 7→ E(ξ1, σ0ξ2) are bounded by κ/σ0, and there-

fore E(ξ1, ξ2) ≲ κ/σ0 for any |ξ2| ≤ σ0.

On the other hand, we have

0 = PTI (ξ1, ψT1(ξ1)) = A(ξ1)− ψT1(ξ1)B(ξ1) + ψ2
T1(ξ1)E(ξ1, ψT1(ξ1)).

Using |ψTI (ξ1)| ≲ σi, we have

|ψT1(ξ1)−A/B(ξ1)| ≤ C0σ
2
i /σ0.

This allows us to approximate NψTI
σ ([−1, 1]) by a σi+1 := max{σ,C0σ

2
i /σ0} neighbor-

hood of the graph of A/B, a polynomial-like function of degree 3k. By Proposition 2.3.2,
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[−1, 1] can be decoupled into (A/B, σi+1)-flat disjoint intervals I ′. Let Ii+1(I) denote

the collection of all TI(I
′). Rescaling back, we successfully decouple I into the partition

Ii+1(I), each interval of which is (ψ, σi+1)-flat, at a cost of Oε(σ
−ε
i+1).

Let Ii+1 be the union of Ii+1(I) for all I ∈ Ii. Since intervals I may be decoupled

into incomplete sub-intervals near both ends. In this case, we concatenate the incomplete

sub-intervals with its neighbor to ensure that the size of each interval in Ii+1 is at least

σ
1/2
i+1. This is possible at O(1) cost.

We are ready to conclude Proposition 2.3.5 using the above induction steps.

We start with σ1 = σ0/(10C0). The initial collection {I0} = I0 can be decoupled

into O(1) many (ψ, σ1)-flat intervals by the trivial decoupling inequality (1.3), at O(1)

cost. We then iteratively decouple each I ∈ Ii, for i = 1, ..., N until σN = σ. We

then take I = IN . Note that σi+1/σ0 = C0(σi/σ0)
2 for all 1 ≤ i ≤ N − 1 . Thus,

σ/σ0 ∼ (C0σ1/σ0)
(3/2)N−1

= (1/2)2
N−1

. Therefore, N ∼ log log(σ/σ0)
−1 . The total cost

is bounded above by

CNε

N∏
i=1

σ−εi ≤ (log(σ/σ0)
−1)logCεσ−ε(1+2/3+(2/3)2+... ≤ σ−O(ε).

Since ε > 0 is arbitrary, we have proved the decoupling inequality. Also, the size estimate

is evident in the construction. It remains to show the bounded overlapping condition.

Fix ξ1 ∈ R and assume there is a collection I ′ of intervals I ∈ I such that ξ ∈ CI.

Suppose there are N intervals {Ii}Ni=1 ⊆ I to the right of ξ1 that lie in I ′. Then

c(Ii)− ξ1 ≤ C|Ii|/2,

where c(I) denotes the center of the interval I.

On the other hand, by disjointness of the intervals Ii, we have

c(Ii)− ξ1 ≥
i−1∑
j=1

|Ij |.
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Thus we have for every 1 ≤ i ≤ N ,

|Ii| ≥ 2C−1
i−1∑
j=1

|Ij |.

Therefore

|IN | ≥ 2C−1
N−1∑
j=1

|Ij | ≥ C−1(1 + C−1)

N−2∑
j=1

|Ij | ≥ ... ≥ 2C−1(1 + C−1)N−2|I1|.

Since IN is (ψ, σ)-flat, we have CIN ∩ [−1, 1] is (ψ,O(σ))-flat, i.e.

sup
ξ1∈CIN∩[−1,1]

|ψ′′(ξ1)||IN |2 ≲ σ.

Combining the above two display equations, we have

sup
ξ1∈CIN

|ψ′′(ξ1)||II |2 ≲ σ(1 + C−1)−N .

But since CIN ∩ [−1, 1] contains I1, we have

sup
x∈I1

|g′′(x)||I1|2 ≲ σ(1 + C−1)−N .

Since I ′ satisfies (3), we have N = OC(1). The argument for intervals lying to the left of

ξ1 is the same. This concludes the proof of Proposition 2.3.5.

Note that Lemmas 2.3.4 and 2.3.5 require ω0 to be an axis-parallel rectangle. This

condition can be removed under some slightly stronger assumptions on P . The following

proposition concludes this subsection by establishing the decoupling inequality in the case

of a constant gradient.

Proposition 2.3.6. Let 0 < κ′ ≤ κ ≪ 1, 0 < σ ≪ 1 and 2 ≤ p ≤ 6. Let ω0 ⊆ [−1, 1]2 be

a convex set and P be a polynomial of degree at most k with bounded coefficients. Suppose
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that ∂ξ1P ∼ κ′ and ∂ξ2P ∼ κ over 3ω0, defined by

3ω0 := {ξ ∈ R2 : ∃ξ0, ξ1 ∈ ω0 s.t. |ξ − ξ0| ≤ 3|ξ − ξ1|}.

There exists a family P of disjoint parallelograms such that the following hold:

1. P covers {|P | ≤ σ} ∩ ω0;

2. for any absolute constant C > 1, CP has bounded overlapping in the sense that∑
ω∈P 1Cω ≲ 1;

3. for each ω ∈ P, |P | ≲ σ over 10ω;

4. the width of each ω ∈ P is comparable to the minimum of the width of ω0 and κ−1σ;

5. the following 2D ℓ2(Lp) decoupling inequality holds: for any f : R2 → C whose

Fourier transform is supported on
⋃
ω∈P ω, we have

∥f∥Lp(R2) ≲ε,k σ
−ε

(∑
ω∈P

∥fω∥2Lp(R2)

)1/2

, (2.12)

where fω is defined by f̂ω = (f̂1ω).

Proof. First, we reduce ω0 to a rectangle by the following. By John’s ellipsoid theorem,

there exists an ellipse containing ω0 that is contained in 2ω0. This ellipse is contained in

a rectangle, and that rectangle is contained in
√
2 enlargement of the ellipse. Therefore,

there exists a rectangle containing ω0 that is contained in 2
√
2ω0 ⊂ 3ω0. Thus, it suffices

to consider rectangles ω0 on which ∇P ≲ ∂ξ2P ∼ κ over ω0.

Second, we rotate ω0 to an axis-parallel rectangle ω̃0. Let ρ be the counterclockwise

rotation by angle θ ∈ (−π/4, π/4]. Let P̃ = P ◦ ρ. By direct computation,

∂ξ1P̃ = (∂ξ1P ◦ ρ) cos θ + (∂ξ2P ◦ ρ) sin θ, ∂ξ2P̃ = −(∂ξ1P ◦ ρ) sin θ + (∂ξ2P ◦ ρ) cos θ.

If κ′ < κ/2, then ∇P ≲ ∂ξ2P̃ ∼ κ over an axis-parallel rectangle. Otherwise, either
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∇P ≲ ∂ξ2P̃ ∼ κ or ∇P ≲ ∂ξ1P̃ ∼ κ over an axis-parallel rectangle. By re-labeling the

axis if necessary, P̃ and ω̃0 meet the requirements of Lemma 2.3.4 and Proposition 2.3.5.

For notational simplicity, we write P̃ and ω̃0 as P and ω0, respectively, in the rest of the

proof.

By Lemma 2.3.4, decoupling of the set {|P | ≤ σ} ∩ ω0 reduces to the decoupling of

NψI

O(κ−1σ)
(I) for Ok(1) many I. By abuse of notation, we proceed by writing P as P ± σ,

so that P (ξ1, ψI(ξ1)) = 0. Doing so does not impact ∇P and the set {|P | ≲ σ}, up to a

possible absolute constant loss.

We now apply Proposition 2.3.5 to decouple I into (ψI , κ
−1σ)-flat disjoint intervals

I ∈ I. Equivalently, we have decoupled NψI

O(κ−1σ)
(I) into a family P of parallelograms ω

given by

ω = {(ξ1, ξ2) : ξ1 ∈ I, |ξ2 − ψI(ξ1)| ≲ κ−1σ} ∩ ω0.

A minor issue concerns the intersection of small parallelograms near the boundary of ω0.

In this case, the intersection may be a convex set that is not a parallelogram. We then

find a comparable parallelogram of this set to replace it. The properties still hold in a

slight enlargement of ω0.

Items 1, 2, 4 and 5 are immediate from Proposition 2.3.5. Item 3 follows from (2.10)

in Lemma 2.3.4.

2.3.3 Induction on degrees of polynomials

We are now ready to prove Proposition 2.1.3 by induction on the polynomial degree.

Heuristically, we seek to decouple [−1, 1]2 into sets having essentially constant |∇P |. This

can be achieved by our induction hypothesis. The key observation is that if |∇P | ≲ σ over

ω0 ⊆ [−1, 1]2, either |P | ≲ σ or |P | ∼ σ′, for some σ′ > σ, on ω0. Thus, to decouple the

sub-level set {|P | ≲ σ}, we need to consider only sets on which |∇P | ≲ σ or |∇P | ∼ σ′

for some σ′ > σ.

Proof of Proposition 2.1.3. Proposition 2.1.3 is clear when P is a constant function. By

induction on degree of the polynomial, we may assume that there exist families Pξ1
σ1,λ

,Pξ2
σ2,λ

,



35

for functions ∂ξ1P, ∂ξ2P replacing P in Proposition 2.1.3 respectively.

For each λ ≤ σ, we now construct the family Pσ,λ. Note that the parallelograms in

Pσ,λ are subsets of {|P | ≲ σ}.

Since the union of the Pξi
σi,σ/C

over all dyadic σi ∈ [σ, 1] covers [−1, 1]2, for i = 1, 2, and

some absolute constant C, we may restrict our attentions to ω1∩ω2, for some ωi ∈ Pξi
σi,σ/C

,

i = 1, 2. Note that

width(ω1 ∩ ω2) ≳ max{min{σ1, σ2}, δ} ≳ max{σ, δ}.

Without loss of generality, we may assume that σ1 ≤ σ2. We now consider the following

3 cases corresponding to the items (3a), (3b), and (3c), one of which ω2 satisfies by our

induction hypothesis.

Case 1: |∂ξ2P | ∼ σ2 over 10ω2 for some σ2 > σ.

If σ ∈ (max{λ, σ2δ}, σ2] , the set {|P − σ| < σ/2} ∩ ω1 ∩ ω2 can be decoupled into

parallelograms ω of width ≳ σ−1
2 σ ≥ max{σ, δ} by Proposition 2.3.6. We put these ω in

P0
σ,λ. They satisfy item (3a).

If σ = max{λ, σ2δ} by Proposition 2.3.6 again, the set {|P | < σ} ∩ ω1 ∩ ω2 can be

decoupled into parallelograms ω. We put these ω in P0
σ,λ. If σ = σ2δ, ω has width ∼ δ

and satisfies item (3b). If σ = λ, ω satisfies item (3c).

For σ in either of these regime, the ω that we just put in P0
σ,λ already cover {|P | ≲

σ2} ∩ ω1 ∩ ω2.

For other values of σ, P0
σ,λ has no element intersecting ω1 ∩ ω2.

Case 2: |∂ξ2P | ≲ σ2 over 10ω2 for some σ < σ2 ≤ δ, and ω2 has width δ.

If sup10ω1∩ω2
|P | < 4σ ≲ δ, we put the set ω1 ∩ ω2 in P0

σ,λ. Recall that ω1 has width at

least max{σ, δ}. Therefore, ω1 ∩ ω2 has width ∼ δ and hence satisfies item (3b).

If sup10ω1∩ω2
|P | > 4σ2, |P | ∼ σ′ for some dyadic number σ′ > σ2 > σ over ω1 ∩ ω2.

This is because |∇P | ∼ σ2 and ω1 ∩ ω2 ⊆ [−1, 1]2. Again, we put no element that has an
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intersection with ω1 ∩ ω2 inside P0
σ,λ. We shall see later that this kind of set has already

been considered in some P0
σ′,λ.

Case 3: |∂ξ2P | < σ/10 over 10ω2.

This assumption is guaranteed by choosing the absolute constant C in Pσi,σ/C large

enough.

This case is similar to Case 2. If sup10ω1∩ω2
|P | < σ/10, ω1 ∩ ω2 is put in P0

σ,σ and

satisfies item (3c). If |P | ∼ σ on 10ω1∩ω2, ω1∩ω2 is put in P0
σ,λ and it satisfies item (3a).

Otherwise, |P | ∼ σ′ > σ and we put no element that has intersection with ω1 ∩ ω2 inside

P0
σ,λ.

Verification of the statements in Proposition 2.1.3

Statement 1: for each λ, P0
λ := ∪σP0

σ,λ, where the union is over dyadic numbers σ ∈ [λ, 1],

covers [−1, 1]2.

Let ξ ∈ [−1, 1]2. Then either |P (ξ)| ∼ σ for some dyadic number σ > λ or |P (ξ)| < λ.

If |P (ξ)| ∼ σ for some dyadic number σ > λ, then ξ ∈ ω1 ∩ ω2 for some ωi ∈ Pξi
σi,σ/C

,

since Pξi
σi,σ/C

covers [−1, 1]2, i = 1, 2. Note that σi ≥ σ.

Now, suppose that ω1 ∩ω2 is as in case 1. Since the P0
σ,λ in case 1 cover ω1 ∩ω2, ξ ∈ ω

for some ω ∈ P0
σ,λ ⊂ P0

λ.

Second, we suppose that ω1 ∩ ω2 is as in case 2 or case 3. Since ξ ∈ ω1 ∩ ω2, |P | ∼ σ′

for some dyadic number σ′ > 4σ cannot holds. Thus, ω1 ∩ ω2 ∈ P0
σ,λ.

If |P (ξ)| < λ, ξ ∈ ω1 ∩ ω2 for some ωi ∈ Pξi
σi,λ

, i = 1, 2. We may argue similarly if

ω1 ∩ ω2 is as in case 1 or case 2. For ω1 ∩ ω2 as in case 3, ω1 ∩ ω2 ∈ P0
λ,λ.

Statement 2: P0
λ has bounded overlap in the sense that

∑
ω∈P0

λ
1100ω ≲k 1.

Since there are only O(k) many times we apply Proposition 2.3.6, the bounded over-

lapping condition follows from that in Proposition 2.3.6.

Statement 3: for each ω ∈ P0
σ,λ, at least one of the following holds:

(a) λ < σ ≤ 1, |P | ∼ σ over 10ω, and the width of ω is ≳ max{σ, δ};
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(b) λ < σ ≤ δ, |P | ≲ σ over 10ω, and the width of ω is ∼ δ.

(c) σ = λ, |P | ≲ λ over 10ω, and the width of ω is ≳ max{σ, δ}.

This follows directly from the construction.

Statement 4: For λ′ < λ < σ, Pσ,λ = Pσ,λ′.

Suppose that λ′ < λ < σ and ω ∈ Pσ,λ. Note that we apply the induction hypothesis

to get the same families Pξi
σi,σ/C

, i = 1, 2. If ω comes from Case 1, it is decoupled from

either the set {|P ± σ| < σ/2} ∩ ω1 ∩ ω2, or the set {|P | < σ} ∩ ω1 ∩ ω2. Thus, we get the

except same families of ω from these ω1∩ω2. Otherwise, ω comes from Case 2 or 3, where

ω = ω1 ∩ ω2. Thus, we see that in any case, ω ∈ Pσ,λ′ . The other direction is similar.

Statement 5: the following 2D ℓ2(Lp) decoupling inequality holds: for any f : R2 → C

whose Fourier transform is supported on
⋃
ω∈P0

σ,λ
ω, we have

∥f∥Lp(R2) ≲ε,k σ
−ε

 ∑
ω∈P0

σ,λ

∥fω∥2Lp(R2)


1/2

, (2.13)

where fω is the frequency projection of f onto ω, defined by f̂ω = f̂1ω.

It suffices to consider the decoupling constant. Note that the number of iterations is

O(k). Also, all ω put in Pσ,λ are from Pξi
σi,σ/C

, i = 1, 2, and σi ≥ σ. The decoupling loss

from the inductive step is therefore ≲ε (σ1σ2)
−Ok(ε) ≲ σ−Ok(ε). The decoupling loss from

Proposition 2.3.6 is ≲ε σ
−ε. The total loss is Oε(σ

−Ok(ε)). Since ε is arbitrary, we have

shown that the decoupling constant is Oε(σ
−ε) as desired.

This finishes the proof of Proposition 2.1.3.

2.4 Polynomials with small Hessian determinant

In this section, we prove Proposition 2.1.4.
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2.4.1 A reduction

In this subsection, we reduce Proposition 2.1.4 to studying a special type of polynomial.

We need the following lemma about the eigenvalues of the Hessian matrix of a polynomial.

Lemma 2.4.1. Let ϕ : R2 → R be a polynomial of degree at most k, without linear terms.

Suppose that ϕ has O(1) coefficients, and at least one of them is ∼ 1. Then there exists

ξ′ ∈ B(0, 1) such that one of the eigenvalues of D2ϕ(ξ′) is of magnitude ∼ 1.

Proof. By a rotation and replacing ϕ by −ϕ if necessary, we may assume that ∂2ξ1ξ1ϕ has

at least one coefficient ∼ 1. There exists ξ′ ∈ B(0, 1) such that ∂2ξ1ξ1ϕ(ξ
′) ∼ 1.

Note that ∂2ξ1ξ1ϕ + ∂2ξ2ξ2ϕ is the trace, and hence the sum of eigenvalues, of D2ϕ.

Thus, if |∂2ξ1ξ1ϕ(ξ
′) + ∂2ξ2ξ2ϕ(ξ

′)| > ∂2ξ1ξ1ϕ(ξ
′)/2 ∼ 1, we are done. Otherwise, we have

∂2ξ2ξ2ϕ(ξ
′) < −∂2ξ1ξ1ϕ(ξ

′)/2 < 0. However,

detD2ϕ(ξ′) < −(∂2ξ1ξ1ϕ)
2(ξ′)/2− (∂2ξ1ξ2ϕ)

2(ξ′).

Therefore

| detD2ϕ(ξ′)| ≥ (∂2ξ1ξ1ϕ)
2(ξ′)/2 ∼ 1.

This implies that the product of the eigenvalues of D2ϕ(ξ′) is bounded below. Since both

eigenvalues are O(1), they have magnitude ∼ 1, as desired.

Lemma 2.4.1 helps us to reduce Proposition 2.1.4 to the following case.

Proposition 2.4.2. There is a constant α = α(k) ∈ (0, 1] such that any polynomial Q(ξ)

satisfying

1. degQ ≤ k;

2. Q has no linear term;

3. the only second order term of Q(ξ1) is ξ
2
1;

4. all coefficients of Q are O(1);
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5. all coefficients of detD2Q are bounded by some ν ∈ (0, 1);

is of the form

Q(ξ) = Ã(ξ1) + ναB̃(ξ), (2.14)

where Ã, B̃ are polynomials with O(1) coefficients.

We will prove Proposition 2.4.2 in the following subsection.

Proof of Proposition 2.1.4 assuming Proposition 2.4.2. Let ϕ be a polynomial satisfying

the assumption of Proposition 2.1.4. By dividing ϕ by its largest coefficient, we may

assume without loss of generality that ϕ has some coefficient equal to 1.

Now, we apply Lemma 2.4.1 and get ξ′ ∈ B(0, 1) such that one of the eigenvalues λ1

of D2ϕ(ξ′) is of magnitude ∼ 1. By dividing ϕ by λ1 and replacing ϕ by −ϕ if necessary,

we assume without loss of generality that λ1 = 1.

Since supB(0,1) | detD2ϕ| ≲ ν, the other eigenvalue λ2 of D2ϕ(ξ′) is of magnitude

O(ν). Let ρ be a rotation that sends {e1, e2} to the unit eigenvectors of D2ϕ(ξ′) and τ

be a translation that sends the origin to ρ−1(ξ′). By the eigenvalue analysis, the second

order terms of ϕ̃ = ϕ ◦ ρ ◦ τ are given by ξ21 +O(ν)ξ22 . Define Q by removing all the terms

of degree at most two except ξ21 in ϕ̃. Then we see that all assumptions in Proposition

2.4.2 are satisfied. Hence, Q is of the form (2.14).

Now, we analyze the coefficients of ϕ ◦ ρ = ϕ̃ ◦ τ−1. First, Q ◦ τ−1 is also of the form

(2.14). Moreover, the linear terms in ϕ̃ have no impact on the higher order terms in ϕ̃◦τ−1

and O(ν)ξ22 can be absorbed to B̃. On the other hand, ϕ has no linear term, nor does

ϕ ◦ ρ. In conclusion, we see that

ϕ ◦ ρ(ξ) = A1(ξ1) + ναB(ξ),

for some polynomials A,B with O(1) coefficients. This implies Proposition 2.1.4 because

ϕ(ξ) = A ◦ ρ−1(ξ) + ναB ◦ ρ−1(ξ),
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where A(ξ) = A1(ξ1) is one-dimensional.

2.4.2 The representing line

In this subsection, we prove Proposition 2.4.2. We first introduce the following terminol-

ogy.

Definition 2.4.3. Let ϕ : R2 → R be a polynomial. We consider the set of multi-indices

appearing in ϕ, namely,

N(ϕ) := {(m,n) ∈ Z2
≥0 : the coefficient of ξm1 ξ

n
2 in ϕ is nonzero}.

Given a straight line ℓ ⊂ R2, we denote by ϕ|ℓ the sum of monomials in ϕ with multi-indices

lying on ℓ.

We have the following simple lemma.

Lemma 2.4.4. Let ℓ be such that all points of N(ϕ) lie on one side of ℓ, inclusive. Then

all points of N(detD2ϕ) lie on the same side of ℓ′ := ℓ+ ℓ− (2, 2). Moreover,

(detD2ϕ)|ℓ′ = detD2(ϕ|ℓ).

Proof. Write ϕ = ϕ|ℓ +R. Then

detD2ϕ = detD2(ϕ|ℓ) + ∂2ξ1ξ1(ϕ|ℓ)∂
2
ξ2ξ2R+ ∂2ξ2ξ2(ϕ|ℓ)∂

2
ξ1ξ1R− ∂2ξ1ξ2(ϕ|ℓ)∂

2
ξ1ξ2R+ detD2R.

All the terms except detD2(ϕ|ℓ) are strictly on one side of ℓ+ ℓ− (2, 2).

By Lemma 2.4.4, the boundaries of the convex hull of N(ϕ) are important in the

analysis. Since we are interested in polynomials whose only second-order term is ξ21 , the

boundaries containing the term ξ21 are particularly interesting.

Definition 2.4.5. Let Q be a polynomial that satisfies the five assumptions in Proposition

2.4.2. ℓ ⊂ R2 is called a representing line of Q if
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1. ℓ contains (2, 0) and at least one other point in N(Q);

2. ℓ is not horizontal;

3. all points of N(Q) lie on one side of ℓ, inclusive.

Proposition 2.4.6. Let Q be a polynomial that satisfies the five assumptions in Proposi-

tion 2.4.2 and let ℓ be a representing line of Q. Then

Q|ℓ = ξ21 + νβB(ξ),

for some β ∈ (0, 1] depending only on d and some polynomial B with O(1) coefficients.

Proof. Express ℓ in the (m,n)-plane by the equation m = tn+2 where t ∈ R. By Lemma

2.4.4, we see that detD2(Q|ℓ) has coefficients bounded by ν.

Case t < 0.

Since we are in Z2
ε0 we see Q|ℓ is either of the form Q|ℓ(ξ) = ξ21 + aξk2 where k ≥ 3 or

Q|ℓ(ξ) = ξ21 + a1ξ1ξ
k
2 + a2ξ

2k
2

where k ≥ 2.

In the former case, detD2(Q|ℓ) = 2ak(k−1)ξk−2
2 . Then a = O(ν) and we get the form

we want.

In the latter case, a direct computation shows that

detD2(Q|ℓ) = 2a1k(k − 1)ξ1ξ
k−2
2 + [4a2k(2k − 1)− a21k

2]ξ2k−2
2 .

Since detD2(Q|ℓ) has coefficients bounded by ν, we have a1 = O(ν), a2 = O(ν) as

desired.

Case t ≥ 0.

In this case, ℓ is either vertical or has a positive slope. Let cξk11 ξ
k2
2 be the highest order
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term of Q|ℓ. If k2 ≥ 1, then by direct computation,

detD2(Q|ℓ) = −c2k1k2(k1 + k2 − 1)ξ2k1−2
1 ξ2k2−2

2 + lower order terms.

In particular, we see that c = O(ν1/2). Thus we can approximate Q|ℓ by Q̃ = Q|ℓ−cξk11 ξ
k2
2

and see that all coefficients of detD2Q̃ are of the order O(ν1/2). Note that Q̃ satisfies the

same five assumptions with ν replaced by ν1/2. Each such approximation reduces the

degree by at least 1. This process can be repeated at most k times until we arrive at ξ21 .

In conclusion, we see that Q|ℓ is of the form ξ21+ν
βB(ξ) where B has bounded coefficients,

and β = 22−d.

We are now ready to prove Proposition 2.4.2, thus completing the proof of Proposition

2.1.4.

Proof of Proposition 2.4.2. Let Q be a polynomial that satisfies the five assumptions. If

there is no representing line of Q, we are done because, in this case, Q is a function of

ξ1. Otherwise, by Proposition 2.4.6, all coefficients on representing lines ℓ of Q are O(νβ).

We can then approximate Q by Q1 = Q−Q|ℓ + ξ21 and detD2Q1 has O(νβ) coefficients.

For j ≥ 1, repeat the process with ν replaced νβ
j
and let Qj+1 = Qj − (Qj)|ℓj , for

some representing lines ℓj of Qj . The process will be terminated in less than (d + 1)2

steps when no representing lines are available. In summary, we see that all coefficients of

Q, except those terms containing ξ1 only, are O(νβ
(d+1)2

). Thus, we obtain (2.14) with

α = β(d+1)2 .

2.5 Proof of Proposition 2.1.2

In this section, we prove Proposition 2.1.2.

We start by applying Proposition 2.1.3 with P = detD2ϕ to decouple [−1, 1]2 into

level sets of detD2ϕ. By the projection property, also known as cylindrical decoupling
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(See Exercise 9.22 in [18] for details), we can lift these sets in [−1, 1]2 onto the surfaces

M, given by the graph of ϕ over these sets.

More precisely, let λ = δ1/α, where α = α(k) in Proposition 2.1.4. Then [−1, 1]2 can

be decoupled into parallelograms in P0
λ by Proposition 2.1.3. To decouple N ϕ

δ ([−1, 1]2), it

suffices to decouple N ϕ
δ (ω) for each ω0 ∈ P0

λ = ∪σP0
σ,λ. There exists some dyadic number

σ ∈ [λ, 1] such that ω0 ∈ P0
σ,λ.

We recall the following notations in (1.30) and (1.31). Let Tω be the invertible affine

map such that Tω([−1, 1]2) = ω. Let

ϕTω := ϕ ◦ Tω −∇(ϕ ◦ Tω)(0, 0) · ξ − ϕ ◦ Tω(0, 0) (2.15)

and its normalisation

ϕ̄Tω =
ϕTω

∥ϕTω∥
. (2.16)

Note that the graph of ϕ̄Tω is a translated, rotated, and enlarged copy of the graph of ϕ

over ω. Thus, the Hessian determinant of ϕ̄ is also dyadically a constant over [−2, 2]2.

2.5.1 Two simple cases

We claim that if ω0 satisfies either item (3b) or item (3c) of Proposition 2.1.3, then

ϕTω0
= A ◦ ρ(ξ) +O(δ), (2.17)

for some one dimensional function A(ξ1, ξ2) = A(ξ1, 0) for all ξ2.

We first prove the claim. Suppose that ω0 satisfies item (3b). Let T be the composition

of rotation and translation that ω0 to ω̃0 so that ω̃0 is centered at 0 and has the shorter

side of length ∼ δ perpendicular to ξ1-axis. Therefore,

ϕ ◦ T−1(ξ1, ξ2) = ϕ ◦ T−1(ξ1, 0) +O(δ).

This proves (2.17).
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Suppose that ω0 satisfies item (3c). Note that detD2ϕ ≲ δ1/α over ω0. Thus,

detD2ϕTω0
≲ δ1/α over [−1, 1]2. By Proposition 2.1.4, there exists a rotation ρ such

that (2.17) holds because (δ1/α)αB(ξ) = O(δ) for some polynomial B with bounded coef-

ficients.

The claim is proven. We approximate N ϕTω
δ ([−1, 1]2) by NA

δ ([−1, 1]2). Since A is

one-dimensional, by cylindrical decoupling, it suffices to decouple a δ-neighborhood of the

curve ξ1 → A(ξ1, 0) in R2 into (A(·, 0), δ)-flat intervals. This can be done by applying

Proposition 2.3.2.

We have ℓ2(L6) decoupled ω0 ∈ P0
σ,λ into (ϕ, δ)-flat rectangles.

2.5.2 A bootstrapping argument

It remains to consider ω0 satisfying item (3a) of Proposition 2.1.3. We will deal with this

case by induction on scale argument.

We induct the Hessian determinant of the normalized function:

H(ω) := inf
ξ∈[−1,1]2

| detD2ϕ̄Tω(ξ)| ∼ ∥ϕTω∥−2|detTω|2σ = ∥ϕTω∥−2|ω|2σ ≲ 1. (2.18)

By the size estimate (3a), |ω| ≳ σ2 and hence H(ω) ≳ σ5.

By Theorem 1.1.1, if H(ω) ∼ 1, [−1, 1]2 can be decoupled into (ϕ̄Tω , δ/∥Tω∥)-flat

parallelograms. Rescaling back, ω is decoupled into (ϕ, δ)-flat parallelograms as desired.

On the other hand, if ∥ϕTω∥ ≲ δ, ω is (ϕ, δ)-flat and we are done. So our goal is to decouple

inductively until we achieve either of the conditions for all decoupled pieces.

Now, we are ready to state and prove the key induction step:

Proposition 2.5.1. Let ε > 0, δ ≪ 1, 2 ≤ d ∈ N, 2 ≤ p ≤ 6, λ := δα < σ ≤ 1, α as in

Proposition 2.1.4 and ϕ be a bounded polynomial of degree at most k. Let ω0 ⊆ [−1, 1]2 be

a parallelogram. Let Tω0, ϕ̄Tω0
and H(ω0) be as above. Suppose that H(ω0) ≳ σ5. Then,

there exists a covering Pω0 = Pω0
iter⊔P

ω0
stop of parallelograms ω such that the following holds:
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1. 100Pω0 has O(1)-bounded overlaps in the sense that

∑
ω∈Pω0

1100ω0 ≲k 1; (2.19)

2. for each ω ∈ Pω0
iter, H(ω) ≳k H(ω0)

1−α/2;

3. Pω0
stop = ∅ if σ ≥ δ1/2;

4. for each ω ∈ Pω0
stop, the width of ω is ∼ δ;

5. each ω ∈ Pω0 is contained inside
(
1 + CH(ω)α/d

)
ω for some absolute constant C;

6. the following ℓ2(Lp) decoupling inequality holds: for any F Fourier supported on

N ϕ
σ (ω0),

∥F∥Lp(R3) ≲ε,k H(ω0)
−ε

( ∑
ω∈Pω0

∥Fω∥2Lp(R3)

)1/2

. (2.20)

Proof of Proposition 2.5.1. The smaller α is, the weaker Proposition 2.1.4 is, so we may,

without loss of generality, assume that α < 1/5.

We apply Proposition 2.1.4 to ϕ̄Tω0
to obtain a rotation ρ : R2 → R2 and an one-

dimensional bounded polynomial A and bounded polynomial B such that

ϕ̄Tω0
(ξ)−A ◦ ρ(ξ) = H(ω0)

αB ◦ ρ(ξ) = O(H(ω0)
α).

Take δ′ = H(ω0)
α+σ ∼ H(ω0)

α. We see that support of F̂ lies in NA◦ρ
δ′ (ω0). Hence, by

cylindrical decoupling, along the direction of ρ−1(e2), the decoupling of the set NA◦ρ
δ′ (ω0)

is reduced to the decoupling of the two-dimensional set

{(ξ1, ξ2) ∈ ρ−1([−1, 1]2) ⊂ [−2, 2]2 : |ξ2 −A(ξ1, 0)| ≤ δ′}.

To decouple this set, we apply Proposition 2.3.2 to obtain a partition of [−2, 2] into

intervals I ∈ I. For each I, we define ωI to be a parallelogram such that (Tω ◦ ρ)−1(ωI)
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is the smallest rectangle of the form I × [a, b] that contains ((Tω ◦ ρ)−1(ω))∩ (I ×R). See

Figure 2.2 below.

2h

(Tω0 ◦ ρ)−1(ω)

II

...

II

|I| ≤ H(ω0)
α/k

: (Tω0
◦ ρ)−1(ω0)

∼ H(ω0)
α/k

Figure 2.2: The cylindrical decoupling

We merge intervals in I so that the width of ωI is at least δ. If merges are involved,

ωI has width δ and we put ωI into Pω0
stop. In this case, we also write I = I ′. We do the

following for each remaining (A, δ′)-flat intervals I.

Recall that (Tω0◦ρ)−1(ωI) = I×[a, b]. Since we allow finite overlapping, we may assume

without loss of generality that for ξ1 in half of I, {ξ1} × R has a nonempty intersection

with (Tω0 ◦ ρ)−1(ω0). Therefore, we have 2h := b − a ≥ |I|/2. Let T0 be the translation

that maps I × [−h, h] to I × [a, b]. By putting all terms involving ξ1 only to A ◦ T0 if

necessary, we may assume that

ϕ̄Tω ◦ ρ−1 ◦ T0 −A ◦ T0 = H(ω)αξ2B̃,

for some bounded polynomial B̃. Since |ξ2| ≤ h and δ′ ∼ H(ω0)
α, we have

ϕ̄Tω0
◦ ρ−1 ◦ T0 −A ◦ T0 = O(δ′h).
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Thus, we may apply Proposition 2.3.2 again to decouple I into (A◦T0, δ′h)-flat intervals

I ′ ∈ II . We define ωI′ to be a parallelogram such that (Tω0 ◦ ρ)−1(ωI′) = (I ′ × R) ∩(
(Tω ◦ ρ)−1(ωI)

)
. Similarly, we merge the intervals I ′ if necessary so that the width of ωI′

is at least δ and put these ωI′ into Pω0
stop. We put all remaining parallelograms ω = ωI′

into Pω0
iter.

We now check Properties (1), (5) and (6) for this family Pω0 = Pω0
iter ⊔Pω0

stop. Property

(1) is inherited from that of P and PI . Note that (Tω ◦ρ)−1(ωI) is contained in the dotted

rectangle, (1 + CH(ω0)
α/k)(Tω ◦ ρ)−1(ω). Thus, rescaling back, we obtain property (5)

for ω ⊂ ωI . The decoupling inequality (2.20) in the property (6) follows from Proposi-

tion 2.3.2, invariance of decoupling inequalities under affine transformations, cylindrical

decoupling, and the fact that δ′ ≳ H(ω0).

Now, we check property (2). For δh-flat intervals I ′, ∥ϕTω∥ ≤ δh∥ϕTω∥. On the other

hand, in the size estimate in Proposition 2.3.2, we have

|ω| = |I ′|(2h)|ω0| ≳ h3/2δ′1/2|ω0|,

and h ≳ |I| ≳ δ1/2.

Therefore,

∥ϕTω∥−2|ω|2σ ≳ (hδ)−2(h3/2δ1/2)2∥ϕTω∥−2|ω0|2σ

∼ H(ω0)hδ ≳ δ1/2H(ω0) ∼ H(ω0)
1−α/2,

as desired.

Property (4) is immediate by the definition of the collection Pω0
stop. For intervals I ′

such that ωI′ has width δ, we have, |I ′|σ ≲ δ because ω has width at least σ. By the

size estimate, |I ′| ≳ h1/2δ′1/2 ≳ δ′3/4 ∼ H(ω)3α/4 ≥ σ15α/4. Thus, σ15α/4+1 ≲ δ. Since

0 ≤ α < 1/5, we have σ ≲ δ
1

15α/4+1 ≪ δ1/2. Thus, if σ ≥ δ1/2, such ωI′ cannot exist. This

proves property (3).

We have obtained all properties for the family Pω0 , and hence Proposition 2.5.1 is
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proved.

2.5.3 Induction on scale

In this section, we continue the proof of Proposition 2.1.2. Recall that we want to decouple

ω0 ∈ P0
σ,λ satisfying item (3a) of Proposition 2.1.3 for some σ ∈ [λ, 1], λ = δ1/α and

α = α(k) in Proposition 2.1.4.

Let K = K(ε) ≫ 1 to be determined. Note that H(ω0) ≥ |ω0|2σ ≳ σ5. We apply

Proposition 2.5.1 to decouple each ω0 into ω1 ∈ Pω0 . We apply Proposition 2.5.1 again

to decouple each ω1 ∈ Pω0
iter into ω2 ∈ Pω1 , and so on. The process stops if ω•−1 ∈

Pω•−2

stop , or H(ω•−1) ≥ 1/K. If ω•−1 ∈ Pω•−2

stop , then ω•−1 has width δ and σ ≤ δ1/2. We

repeat subsection 2.5.1 to get a decoupling of ω•−1 into (ϕ, δ)-flat parallelograms ω•, with

decoupling constant δ−ε = σ−O(ε).

The tree diagram (Figure 2.3) below describes the process where every branch leads

to some set ω• satisfying either ω• is (ϕ, δ)-flat or H(ω•) ≥ 1/K. The value next to each

edge in the tree diagram represents an upper bound of the decoupling constant in that

step.

Let {ωi}Ni=0 be a sequence of sets that forms a branch of the tree diagram. Since

H(ωi+1) ≳k H(ωi)
1−α, we have H(ωi+1) > H(ωi)

1−α/2 by picking K large enough. We

see that the maximum number of steps N we need is ≤ cα log(σ
−1)/ log(K).

Moreover, the cost to decouple in each iteration in this sequence is CεH(ωi)
−ε, except

possibly the last one, and so the total cost is at most

Cεσ
−O(ε)CNε

N∏
i=0

H(ωi)
−ε ≤ CN+2

ε σ−O(ε)
(
σ3 · σ3(1−α/2) · ... · σ3(1−α/2)N

)−ε
≲ε σ

−Od(ε),

if we pick

logK ∼ cα
logCε
ε

=⇒ logCε ·
cα log σ

−1

logK
∼ ε log σ−1 =⇒ CN+2

ε ≤ σ−ε.

Now, we apply Bourgain-Demeter’s decoupling inequalities, Theorem 1.1.1, on ϕ̄TωN
.
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ω0

ω1 ∈ Pω0
iter

ω2 ∈ Pω1
iter

. . .

ω• ∈ Pω•−1

iter ; H(ω•) ≥ 1/K ω•−1 ∈ Pω•−2

stop

ω•

ω2 ∈ Pω1
stop

ω•

ω1 ∈ Pω0
stop

ω•

H(ω0)
−ε

H(ω1)
−ε

H(ω•−1)
−ε H(ω•−2)

−ε

δ−ε = σ−O(ε)

H(ω1)
−ε

δ−ε = σ−O(ε)

H(ω0)
−ε

δ−ε = σ−O(ε)

Figure 2.3: Tree diagram for the induction

Since H(ωN ) ∼ 1, [−1, 1]2 can be ℓ4(L4) (or ℓ2(L4) if detD2ϕ̄Tω > 0) decoupled into

(ϕ̄Tω , δ/∥Tω∥)-flat parallelograms. Rescaling back, ω is decoupled into (ϕ, δ)-flat parallel-

ograms as desired. On the other hand, if ∥ϕTω∥ ≲ δ, ω is (ϕ, δ)-flat and we are done. This

proves items 1 and 4 in Proposition 2.1.2. Item 3 is evident from our construction. See

the corresponding size estimate for Propositions 2.1.3 and 2.5.1.

We now prove the overlap bound among P, item 2. We recall thatH(ωi) < H(ωi+1)
1−α/2

and hence H(ωi) < H(ωN )
(1−α/2)N−i

< K−(1−α/2)N−i
. Therefore,

∑
i

log(1+CH(ωi)
α/k) ≲

∑
i

H(ωi)
α/k ≲ ...+K−(1−α/2)2α/k+K−(1−α/2)α/k+K−α/k ≤ log 2,

by choosing K large enough. The last inequality in the above display equation follows

from estimating the sum by a geometric series with common ratio K−(1−α/2). Thus, we
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have ∏
i

(1 + CH(ωi)
α/k) ≤ 2 (2.21)

and hence 50ωN ⊂ 100ω0. Since 100P0 has O(1)-bounded overlaps and in each iteration,

the overlaps are also O(1), 50P has Oε(σ
−ε) overlaps.

We have finished the proof of Proposition 2.1.2.

2.6 Variants of decoupling inequalities

We end the chapter by recording two versions of decoupling inequalities. The theorem

below can be seen directly by not applying Bourgain-Demeter’s decoupling inequalities

on ωN , but instead stopping when we arrive at ω• in Figure 2.3. These inequalities are

essential tools in Chapter 3.

Proposition 2.6.1. Let 2 ≤ p ≤ 6, n = 3, ε > 0, 0 < δ ≪ 1 and λ = δ1/α for α = α(k)

as in Proposition 2.1.4. Let ϕ be a bivariate polynomial of degree at most k with bounded

coefficients. For each dyadic number σ ∈ [λ, 1], there exist families Pσ,λ = Pσ,λ(δ, ϕ, ε) of

parallelograms such that the following statements hold:

1. Pλ := ∪σPσ,λ (the union is over dyadic numbers σ ∈ [λ, 1]) covers [−1, 1]2;

2. each ω ∈ Pλ satisfies either of the followings

(a) ω is (ϕ, δ)-flat;

(b) ϕ̄Tω , defined as in (1.31), has Hessian determinant ∼ε 1;

3. Pλ has Ok,ε(δ
−ε)-bounded overlap in the sense that

∑
ω∈Pλ

1ω ≲k,ε δ
−ε;

4. the width of each ω ∈ Pλ is at least δ;

5. for any λ < σ, P≥σ,λ := ∪σ≤σ′≤1Pσ′,λ covers {|detD2ϕ| ∼ σ};

6. the following ℓ2(Lp) decoupling inequality holds: for any F : R3 → C whose Fourier
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transform is supported on N ϕ
δ (∪ω∈P≥σ,λ

ω),

∥F∥Lp ≲ε,k σ
−ε

 ∑
ω∈P≥σ,λ

∥Fω∥2Lp

1/2

. (2.22)

We tile [−1, 1]2 by squares Q of side length σε, followed by an approximation of each

square Q of side length σε by polynomials of degree ∼ 1
ε as in Subsection 2.2.2. We arrive

at the following theorem.

Proposition 2.6.2. Let 2 ≤ p ≤ 6, n = 3, ε > 0, 0 < δ ≪ 1 and λ = δ1/α for some

α = α(ε) ∈ (0, 1/4). Let ϕ : [−1, 1]2 → R be a smooth function. Let Q be a tiling

of [−1, 1]2 by squares of side length σε. For each dyadic number σ ∈ [λ, 1], there exist

families PQ
σ,λ = PQ

σ,λ(δ, ϕ, ε) of parallelograms such that the following statements hold:

1. PQ
λ := ∪σPQ

σ,λ (the union is over dyadic numbers σ ∈ [λ, 1]) covers Q;

2. each ω ∈ PQ
λ satisfies one of the following

(a) ω is (ϕ, δ)-flat;

(b) ϕ̄Tω , defined as in (1.31), has Hessian determinant ∼ε 1;

3. PQ
λ has Oϕ,ε(δ

−ε)-bounded overlap in the sense that
∑

ω∈PQ
λ
1ω ≲ϕ,ε δ

−ε;

4. the width of each ω ∈ PQ
λ is at least δ;

5. for any λ < σ, PQ
≥σ,λ := ∪σ≤σ′≤1PQ

σ′,λ covers {|detD2ϕ| ∼ σ} ∩Q;

6. the following ℓ2(Lp) decoupling inequality holds: for any F : R3 → C whose Fourier

transform is supported on N ϕ
δ (∪ω∈PQ

≥σ,λ
ω),

∥F∥Lp ≲ε,ϕ σ
−ε

(∑
ω∈Pσ

∥Fω∥2Lp

)1/2

, (2.23)

where the implicit constant is independent of the choice of Q.
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Note that we restrict the range of α(ε) ∈ (0, 1/4) for purely technical reasons in the

next chapter. This can be achieved by picking α = α(k) in Proposition 2.1.4 smaller than

1/4.
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Chapter 3

Affine restriction theory

In this chapter, we prove Theorem 1.2.2, the L2 affine restriction theorem for compact

smooth surfaces in R3. We also demonstrate the optimality of Theorem 1.2.2 by establish-

ing counterexamples in Section 3.5. We works in the ambient dimension n = 3 throughout

the chapter.

3.1 Overview

The neighborhood formulation for the decoupling theorem serves as an essential ingredient

in the proof of our restriction theorem. As in our proof of the decoupling result, we will

prove Theorem 1.2.2 by proving the following equivalent version.

Proposition 3.1.1. Let ε > 0 and R ≪ 1. Let ϕ : [−1, 1]2 → R be a smooth function.

Define measures M,Mε on (ξ, η) ∈ [−1, 1]2 × R by

dM(ξ, η) = dMϕ(ξ, η) = | detD2ϕ(ξ)|−1/4dξdη (3.1)

and

dMε(ξ, η) = dMϕ
ε (ξ, η) = | detD2ϕ(ξ)|−1/4−εdξdη. (3.2)

Then for any ball, BR of radius R and any function F such that F̂ is supported on the
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R−1 vertical neighborhood of the graph of ϕ above [−1, 1]2, we have

∥F∥L4(BR) ≲ε,ϕ R
ε−1/2∥F̂∥L2(dM), if F̂ ∈ L2(dM), (3.3)

and

∥F∥L4(BR) ≲ε,ϕ R
−1/2∥F̂∥L2(dMε), if F̂ ∈ L2(dMε). (3.4)

Moreover, the implicit constants in (3.3) and (3.4) can be made uniform over all

polynomials ϕ of degree up to k with bounded coefficients.

The deduction of Theorem 1.2.2 from Proposition 3.1.1 is given in Section 3.2.

We recall the following notation from (1.30) and (1.31). For parallelogram ω ⊆ [−1, 1]2,

Tω is an invertible affine map that maps [−1, 1]2 to ω, and Tω sends the smooth function

ϕ to ϕTω as follows:

ϕTω(ξ) := ϕ ◦ Tω(ξ)−∇(ϕ ◦ Tω)(0, 0) · ξ − ϕ ◦ Tω(0, 0).

We normalise ϕTω by

ϕ̄Tω =
ϕTω
∥ϕTω∥

,

where ∥ϕTω∥ := sup[−1,1]2 |ϕTω | is as defined in (1.28).

From the definition of (ϕ, δ)-flatness in (1.6), we see that ω is (ϕ, δ)-flat if and only if

∥ϕTω∥ ≲ δ.

We need the following definition of admissible sets

Definition 3.1.2. For ε > 0, 0 < σ ≤ 1, R ≫ 1, and ϕ a smooth function over [−1, 1]2,

a parallelogram ω ⊆ [−1, 1]2 is said to be (ϕ, σ,R, ε)-admissible if either of the following

holds:

1. | detD2ϕ| ≲ σ over 2ω and ∥ϕTω∥ ≲ R−1;
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2. | detD2ϕ| ∼ σ over 2ω and for any ξ ∈ [−1, 1]2,

| detD2ϕ̄Tω(ξ)| ∼ε 1 and
∑

|α|=2,3

|Dαϕ̄Tω(ξ)| ≲ε 1. (3.5)

The motivation for this definition is the following proposition.

Proposition 3.1.3. Let ε > 0, R ≥ 1, 0 < σ ≤ 1. Assume the parallelogram ω ⊆

[−1, 1]2 is (ϕ, σ′, R, ε)-admissible for some σ′ ≳ σ. For any function F such that suppF̂ ⊆

N ϕ
R−1(ω ∩ {| detD2ϕ| ∼ σ}), we have

∥F∥L4(R3) ≲ε R
−1/2σε/2∥F̂∥L2(dMε), (3.6)

where the implicit constant is independent of ω and ϕ.

This allows us to estimate the left-hand side of (3.4) if F̂ is further restricted to an

admissible set ω. The proof of Proposition 3.1.3 is given in Section 3.3.

We recall from Propositions 2.6.1 and 2.6.2 in Chapter 2 that we can ℓ2(L4) decouple

N ϕ
R−1([−1, 1]2) into admissible rectangles, regardless of the sign of the Hessian determinant

of ϕ. This is the primary tool used in Section 3.4 to prove Proposition 3.1.1.

Finally, in Section 3.5, we compute a counterexample to show that the ε losses in

(1.16), (1.17) and non-endpoint exponent p > 4 in (1.18) are necessary for the case of

general smooth surfaces.

3.2 An equivalent version

In this section, we deduce Theorem 1.2.2 from Proposition 3.1.1. The proof follows from

Proposition 1.27 of [18] with adaption to the new measures. We only prove the implication

from (3.4) to (1.17). The other cases are similar.

For R ≥ 1, let ψR ∈ S(R3) be such that

1. ψ̂1 is non negative and supported on B(0, 1);
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2. 1B(0,1) ≤ ψ1;

3. ψR = ψ1(R
−1·).

Let F = EgψR. Then we have

F̂ (ξ, η) = g(ξ)|detD2ϕ(ξ)|1/4+εψ̂R(η − ϕ(ξ)).

We also define dmε such that

dMε(ξ, η) = | detD2ϕ(ξ)|−1/4−εdξdη = dmε(ξ)dη.

Now, we have

∥Eg∥L4(BR) ≤ ∥F∥L4(BR)

≲ϕ,ε R
−1/2∥F̂∥L2(dMε)

≲ψ R
−1/2

∥∥∥g | detD2ϕ|1/4+ε
∥∥∥
L2(dmε)

R1/2

= ∥g∥L2(dµε),

where the second-to-last inequality follows from (3.4) and Fubini’s theorem. By letting

R→ ∞, we have (1.17).

3.3 A scaling argument

In this section, we prove Proposition 3.1.3 by a scaling argument.

Since we have | detD2ϕ| ∼ σ on the support of F̂ , we have dMε ∼ σ−εdM . Hence, it

suffices to show that

∥F∥L4(R3) ≲ε R
−1/2∥F̂∥L2(dM). (3.7)

We need the following scaling lemma:

Lemma 3.3.1 (Affine invariance of measure M). Let R−1 ≤ s ≤ 1, ω ⊆ [−1, 1]2 be a
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parallelogram, and ϕ be a smooth function over [−1, 1]2. Let ϕTω be defined as in (1.30).

Let ϕ̄ = s−1ϕTω . Let F be such that suppF̂ ⊆ N ϕ
R−1(ω). Define Ĝ(ξ, η) = F̂ (T (ξ), sη)

such that Ĝ is supported on N ϕ̄
(sR)−1([−1, 1]2). Then we have

∥F∥L4(R3)

R−1/2∥F̂∥L2(dMϕ)

=
∥G∥L4(R3)

(sR)−1/2∥Ĝ∥L2(dM ϕ̄)

. (3.8)

Proof. Rotation and translation have no impact on the quantity of the left-hand side of

(3.8). Thus, we may assume without loss of generality that the center of ω is the origin

and that ϕ(0, 0) = 0, ∇ϕ(0, 0) = (0, 0).

Now, we keep track of the scaling, and we have Ĝ(ξ, η) = F̂ (Tω(ξ), sη). Direct compu-

tation shows that

G(x) =
1

s| detTω|
F (T−t

ω (x1, x2), s
−1x3),

where T−t
ω is the inverse transpose of Tω. Therefore, we have

∥F∥L4(R3) = (s| detTω|)1−1/4 ∥G∥L4(R3), (3.9)

On the other hand, |(detD2ϕ)(Tω·)||detTω|2 = s2|detD2ϕ̄(·)|. Hence,

∥F̂∥L2(dMϕ) = (s−2| detTω|2)(1/4)(1/2)(s| detTω|)1/2∥Ĝ∥L2(dM ϕ̄). (3.10)

Combining (3.9) and (3.10), we obtain (3.8) as desired.

Now, after rescaling, (ϕ, σ′, R, ε)-admissible sets are in one of the following situations:

1. ∥ϕTω∥ ≲ R−1 and supp Ĝ ⊂ NRϕTω
1 ([−1, 1]2), and s = R−1;

2. ∥ϕ̄Tω∥ ∼ε 1 and supp Ĝ ⊂ N ϕ̄Tω
(sR)−1([−1, 1]2), where s = ∥ϕTω∥ and detD2ϕ̄TΩ ∼ε 1

over [−1, 1]2.

Now, we consider the first case. Thus, we estimate by Hausdorff-Young and Hölder’s

inequalities:

∥G∥L4(R3) ≲ ∥Ĝ∥L4/3(R3) ≲ ∥Ĝ∥
L2(dMRϕTω )

.
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The last inequality follows from the facts that the support of Ĝ is of size ≲ 1, and that

RϕTω has bounded coefficients. Recall that s = R−1, the right-hand side of (3.8) is

bounded, and thus we obtain (3.7) as desired.

We consider the second case. By Theorem 1.2.1 in an equivalent formulation, we have

∥G∥L4(R3) ≲ε (sR)
−1/2∥Ĝ∥L2(dξdη) ≲ε (sR)

−1/2∥Ĝ∥
L2(dM ϕ̄Tω )

.

See Proposition 1.27 and Exercise 1.34 of [18]. Again, the right-hand side of (3.8) is

bounded. We obtain (3.7). This finishes the proof of Proposition 3.1.3.

3.4 Proof of Proposition 3.1.1

In this section, we prove Proposition 3.1.1 by using Propositions 2.6.1 and 2.6.2.

3.4.1 The set with tiny Gaussian curvature

In this subsection, we additionally assume F is Fourier supported on N ϕ
R−1({ξ ∈ [−1, 1]2 :

| detD2ϕ(ξ)| ≲ R−4}). In this case, we have

∥F∥L4(R3) ≲ ∥F̂∥L4/3(dξdη), (3.11)

by the Hausdorff-Young inequality. Since the support of F̂ is of size Oϕ(R
−1) (or Ok(R

−1)

in the polynomial case), (3.11) can be further bounded by

≲ϕ (or ≲k)R
−1/4∥F̂∥L2(dξdη) ≲ R−1/2−ε∥F̂∥L2(dMε), (3.12)

where we used

dMε ≳ (R−4)−1/4−εdξdη.

This completes the proof of Proposition 3.1.1 for the set with tiny Gaussian curvature.
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3.4.2 Proof of the extra damped estimate

In this subsection, we prove the extra damped estimate (3.4). First, we decompose

F = F0 +
∑

σ dyadic
R−4<σ≤1

Fσ (3.13)

where F0, Fσ ∈ S are such that F0 is Fourier supported onN ϕ
R−1({ξ ∈ [−1, 1]2 : | detD2ϕ(ξ)| ≲

R−4}) and Fσ is Fourier supported on N ϕ
R−1({ξ ∈ [−1, 1]2 : |detD2ϕ(ξ)| ∼ σ}).

We obtained the required estimate for F0 in section 3.4.1. For Fσ, let Q be a tiling of

[−1, 1]2 by squares of side length σε/8. We apply Proposition 2.6.2 with ε replaced by ε/8

and λ = R−1/α to get a partition PQ
≥σ,λ such that

∥(Fσ)Q∥L4 ≲ε,ϕ σ
−ε/8

 ∑
ω∈PQ

≥σ,λ

∥(Fσ)Q∩ω∥2L4


1/2

, (3.14)

where the decoupling constant is independent of Q, and each ω ∈ PQ
≥σ,λ is (ϕ, σ′, R, ε)-

admissible for some σ′ ≥ σ.

By Proposition 3.1.3 and the fact that (Fσ)ω is Fourier supported on a (ϕ, σ′, R, ε)-

admissible set for some σ′ ≥ σ, we have

∥(Fσ)Q∩ω∥L4 ≲ε R
−1/2σε/2∥ ̂(Fσ)Q∩ω∥L2(dMε). (3.15)

Putting (3.15) to (3.14), we obtain

∥(Fσ)Q∥L4 ≲ε,ϕ σ
−ε/8

 ∑
ω∈P≥σ,λ

R−1/2σε/2∥ ̂(Fσ)Q∩ω∥2L2(dMε)

1/2

≲ε,ϕ R
−1/2σε/4∥(̂Fσ)Q∥L2(dMε).
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By trivial decoupling (1.3) and the fact that there are σ−ε/4 many squares Q, we have

∥Fσ∥L4 ≲ε,ϕ (σ−ε/4)1−1/2−1/4

∑
Q

∥(Fσ)Q∥2L4

1/2

≲ε,ϕ R
−1/2σ3ε/16∥F̂σ∥L2(dMε).

Finally, we sum up the dyadic pieces:

∥F∥L4(BR) ≤ ∥F0∥L4(BR) +
∑

σ dyadic
R−4<σ≤1

∥Fσ∥L4(BR)

≲ε,ϕ R
−1/2−ε∥F̂0∥L2(dMε) +

∑
σ dyadic
R−4<σ≤1

R−1/2σ3ε/16∥F̂σ∥L2(dMε)

≤ R−1/2

R−ε +
∑

σ dyadic
R−4<σ≤1

σ3ε/8


1/2∥F̂0∥2L2(dMε)

+
∑

σ dyadic
R−4<σ≤1

∥F̂σ∥2L2(dMε)


1/2

≲ R−1/2∥F̂∥L2(dMε),

as desired.

For the case where ϕ is a bounded polynomial of degree at most k, the same proof

applies except we apply the uniform estimates from Proposition 2.6.1 so that every ≲ε,ϕ

is replaced by ≲ε,k.

3.4.3 Proof of the estimate with affine surface measure

In this subsection, we prove the estimate with the affine surface measure (3.3). This is

implied by (3.4) and the estimates in Section 3.4.1.

We decompose F = F0 + F1 so that F0 is Fourier supported on N ϕ
R−1({ξ ∈ [−1, 1]2 :

| detD2ϕ(ξ)| ≲ R−4}) and F1 is Fourier supported on N ϕ
R−1({ξ ∈ [−1, 1]2 : |detD2ϕ(ξ)| ≥

R−4}). The estimate for F0 was already obtained in Section 3.4.1. It suffices to estimate

F1.



61

Note that on the set where | detD2ϕ(ξ)| ≥ R−4, we have

dMε ≤ R4εdM.

Therefore, by using (3.4), we have

∥F∥L4 ≲ε,ϕ R
−1/2∥F̂∥L2(dMε) ≤ R4ε−1/2∥F̂∥L2(dM). (3.16)

Since (3.16) is true for arbitrary ε > 0, we have obtained (3.3).

The case where ϕ is a bounded polynomial of degree at most k is similar. We have

proved Proposition 3.1.1.

3.5 A counterexample

In this section, we prove that the estimates in Theorem 1.2.2, Corollary 1.2.3, and Propo-

sition 3.1.1 are optimal in the following sense. The following counterexample is modified

from Sjölin’s two dimensional example in [59].

Proposition 3.5.1. Let 1 < q ≤ ∞, 2
p = 1− 1

q and 3 ≤ k ∈ N. Let ϕ(ξ) = ψ(|ξ|), where

ψ(r) =


e−1/r sin(r−k) if r > 0;

0 if r = 0.

Let µ0 be defined as in (1.13) and E = Eϕ,µ
0
be as in (1.1). Then, there is no constant C

such that the following holds for all g ∈ Lq(dµ0):

∥Eg∥Lp ≤ C∥g∥Lq(dµ0). (3.17)

Proof. Let p, q be on the scaling line: 2− 2
p = 1

q and 1 ≤ q <∞. Suppose that there exists
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constant C such that the following holds for all g ∈ Lq(dµ0):

∥Eg∥Lp ≤ C∥g∥Lq(dµ0). (3.18)

Let g = χB(0, 1
n
) for some n≫ 1.

Note that if |(x1, x2)| ≤ n
10 and |x3| ≤ en/10, we have

|Eg(x)| ≳
∫
B(0, 1

n
)
|detD2ϕ(ξ)|

1
4dξ.

Thus,

∥Eg∥Lp ≳ (nen)1/p
∫
B(0, 1

n
)
| detD2ϕ(ξ)|

1
4dξ.

On the other hand,

∥g∥Lq(dµ) =

(∫
B(0, 1

n
)
| detD2ϕ(ξ)|

1
4dξ

)1/q

.

Rearranging, (3.18) can be rewritten as

(∫
B(0, 1

n
)
|detD2ϕ(ξ)|

1
4dξ

)1/q′

≤ C(n−1e−n)1/p. (3.19)

We now compute the integral. Using detD2ϕ(ξ) = ψ′(|ξ|)ψ′′(|ξ|)
|ξ| , we have detD2ϕ(ξ) is

a finite sum of terms of the forms

c1e
−2/rr−c2 sin r−k cos r−k, c1e

−2/rr−c2 sin r−k sin r−k, c1e
−2/rr−c2 cos r−k cos r−k

where |ξ| = r. The term involving the largest power (c2) of r typically dominates when r

is small. It is given by

cke
−2/rr−(3k+4) sin r−k cos r−k,

for some ck ̸= 0.
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Therefore, the integral on the left-hand side (3.19) is bounded below by

∫
B(0, 1

n
)
|detD2ϕ(ξ)|

1
4dξ ≳

∫ 2π

0

∫ 1
n

0
e−1/2rr−(3k+4)/4| sin(2r−k)|1/4rdrdθ

∼
∫ ∞

n
e−t/2t3k/4−2| sin(2tk)|1/4dt

≥ e−n/2n3k/4−2.

Now, (3.19) and above implies that

(e−n/2n3k/4−2)1/q
′ ≤ C ′(n−1e−n)1/p,

for some finite C ′.

Using 1/q′ = 2/p, we have

n3k/2−3 ≤ C ′pn−1.

This is impossible for large enough n unless p = ∞. The scaling condition then implies

q′ = ∞, contradicting the assumption. We have finished proving Proposition 3.5.1.
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