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Abstract

We define a variant of intersection space theory that applies to many compact complex
and real analytic spaces X, including all complex projective varieties; this is a significant
extension to a theory which has so far only been shown to apply to a particular subclass
of spaces with smooth singular sets. We verify existence of these so-called algebraic
intersection spaces and show that they are the (reduced) chain complexes of known
topological intersection spaces in the case that both exist. We next analyze “local duality
obstructions”, which we can choose to vanish, and verify that algebraic intersection
spaces satisfy duality in the absence of these obstructions. We conclude by defining an
untwisted algebraic intersection space pairing, whose signature is equal to the Novikov

signature of the complement in X of a tubular neighborhood of the singular set.
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Chapter 1

Introduction

Singular compact complex varieties typically lack the Poincaré duality enjoyed by their
nonsingular counterparts. One approach to rectifying this disparity can be found in
Goresky-MacPherson’s (middle-perversity) intersection homology and cohomology [14],
[15]. These theories endow both singular and nonsingular compact complex varieties
with an intrinsic duality, extending Poincaré duality. Moreover, intersection homology
and cohomology exhibit stability under small resolutions. However, they suffer from
instability under smooth deformations, and intersection cohomology fails in general to
have a cup product structure.

A natural question is: does a duality-satisfying (co)homology-type theory exist that
behaves well under smooth deformations?

This question has been broached and, for hypersurfaces with isolated singularities,
answered partially in the affirmative in [8] and [9], in which an alternate theory is utilized:
the intersection space theory introduced in [3]. A generalization of this approach to
hypersurfaces with more complicated singular sets has not yet been discovered, because
intersection space theory has not been defined for the vast majority of singular spaces.

We briefly discuss the history and current limitations of intersection space the-

ory. Given a perversity p (in the sense of intersection homology theory) and a real



n-dimensional stratified pseudomanifold X with isolated singularities, Banagl in [3] de-
fined CW-complexes I?X, the perversity p intersection spaces. The cohomology of
an intersection space I? X, unlike the intersection cohomology of X, is always equipped
with a cup product structure. Moreover, if X is closed and oriented, there exist duality

isomorphisms:

H*(I’X;Q) = H, .(I'X;Q)

where ¢ is the complementary perversity to p. Banagl continued in [3] to prove the
uniqueness of the Betti numbers of I?X (dependent only on X and its stratification),
even though the intersection space itself need not be unique (even up to homotopy).

The essential component to the construction of intersection spaces in the isolated
singularities case is the selection of Moore approximations for the links of the singular
points. Banagl describes the existence of such Moore approximations in the case that
the connected components of the links are simply-connected CW-complexes, though this
is far from a necessary condition for existence.

Beyond isolated singularities, Banagl in [3] also defined intersection spaces for depth
one stratified pseudomanifolds whose singular strata have trivial link bundles. This idea
was generalized by Banagl and Chriestenson in [7], where intersection spaces were defined
for depth one Thom-Mather stratified pseudomanifolds. In contrast to the isolated
singularities case, there exist clear restrictions to the existence of such intersection spaces,
dependent on the structure of the link bundles of the singular strata (as indicated in the
following paragraph).

In this extended depth one setting, the primary ingredient for intersection space



construction is the selection of fiberwise truncations for the link bundles of the sin-
gular strata. There exist bundles which fail to have fiberwise truncations, and therefore
stratified spaces to which Banagl and Chriestenson’s process cannot associate intersec-
tion spaces. Even when a fiberwise truncation exists, there can arise local duality
obstructions that preclude the intersection space from satisfying duality.

Passing beyond depth one, Agustin-Ferndndez identify in [1] a variant/extension of
intersection space theory that applies to arbitrary depth spaces whose strata all have
trivial link bundles (though it applies in some other cases too). They do not prove
that their topological intersection spaces satisfy duality nor do they identify local du-
ality obstructions, however they abstract their construction to a sheaf level by defining
intersection space constructible complexes, from which they establish a generic
duality for generic choices of intersection space constructible complexes (which may or
may not be realized by topological intersection spaces).

Special cases where the stratification of the singular space is more elaborate have
been studied, for example in [5], but no all-encompassing picture has been painted.
Despite the limited collection of spaces for which it is defined, intersection space theory
has had applications in multiple fields: fiber bundle theory [1], algebraic geometry and
smooth deformations [3] and [9], perverse sheaves [0], and theoretical physics [3, Chapter
3.

This document devises a variant /extension of intersection space theory applicable in
particular to all complex projective varieties, and so enables future endeavors in these
fields.

More specifically, this document selects as its target the collection of compact ori-

entable Whitney stratified pseudomanifolds X that are subvarieties of a real/complex



analytic manifold, and from them systematically extracts chain complex alternatives to
topological intersection spaces, which we equip with the moniker perversity p alge-
braic intersection spaces. Though deprived of a topology, these algebraic intersec-
tion spaces carry homology, which we require to be an extension to, not replacement of,
the already existing intersection space homology. On the topological side, we define per-
versity p topological intersection spaces, which may or may not exist, and whose
chain complexes yield algebraic intersection spaces. The study of what conditions allow
an algebraic intersection space to be made topological could be the source of interesting
future research.

The introduction is followed in Chapter 2 with background on intersection spaces.
This chapter is intended to familiarize the reader with the theory and to motivate the
later algebraic intersection space construction.

Chapter 3 collects general theorems and lemmas that will enable, or in some cases
merely streamline, the arguments to be made toward the main results of the paper. Ex-
cept perhaps for Section 3.2 on tubular neighborhoods of singular sets, detailed reading
of this section should be left until the corresponding theorem or lemma is referred to in
a proof from the final four chapters, which form the core of the paper.

Suppose for the remainder of the introduction that k is a field and that X is a compact
orientable n-dimensional Whitney stratified pseudomanifold that is a subvariety of a
real /complex analytic manifold (for example X is a complex projective variety). 7' C X
denotes a tubular neighborhood of the singular set.

Just as with intersection spaces, algebraic intersection spaces are built in parts: first
locally, then globally. Chapter 4 describes the local construction, which rests on a p

algebraic intersection approximation for T with coefficients in k. It further



proves these approximations always exist.

Proposition 1.0.1 (4.3.3). p denotes a perversity function. A p algebraic intersection

approximation (As, fo) for T with coefficients in k always exists.

The concluding Section 4.4 describes local duality obstructions, an unfortunate fea-
ture of certain algebraic intersection approximations that prevents a global duality. On
the bright side, there always exist local intersection approximations for which there are

no local duality obstructions (here proved for even-dimensional Witt spaces):

Theorem 1.0.2 (4.4.4). Suppose that X is a Witt space of even dimension. Then there
exists a Witt algebraic intersection approzimation (A, fo) for T with coefficients in k

for which all the local duality obstructions vanish.

Chapter 5 takes the local construction and converts it into a global algebraic in-
tersection space I7, X associated to X. In the case that the local duality obstructions
vanish, duality isomorphisms are constructed between the homology and cohomology of

complementary perversity algebraic intersection spaces:

Theorem 1.0.3 (5.2.1). p and § denote complementary perversity functions. Assume
the local duality obstructions vanish for algebraic intersection approzimations (AL, fP),
(AL, f3) for T with coefficients in k. Then there exist non-canonical duality isomor-

phisms:
D:H,(I;pX) = H"*(I;:X).

Chapter 6 explicitly constructs a topological intersection space for a depth two pseu-
domanifold. It is compared against the [1] construction, from which it is shown to differ

on the level of homology.



When X is a Witt space, Chapter 7 extracts the signature of an intersection space
pairing on the middle-dimensional homology of the algebraic intersection space (again
in the case that the local duality obstructions vanish), which turns out to be equal to

the Novikov signature of X minus an open tubular neighborhood of the singular set:

Theorem 1.0.4 (7.3.1, 7.3.2). Suppose k = Q and that X is a closed, oriented Witt
space of dimension n = 2m, m even. If I X, is an algebraic intersection space obtained
from a Witt algebraic approximation whose local duality obstructions vanish, then there

18 a symmetric intersection space pairing:
(— —)ix : Ho(IX,) x Hp(IX,) — Q.

whose signature equals the Novikov signature of (X — T°,0T).



Chapter 2

Background on Intersection Spaces

2.1 Pseudomanifolds

All intersection spaces are associated to topological spaces called topological stratified
pseudomanifolds, which may be defined recursively as follows (see [2, Section 4.1] and

[13, Chapter 2| for further discussion):

e A O-dimensional topological stratified pseudomanifold is a 0-dimensional manifold

(i.e. a countable set of points with the discrete topology).

e An n-dimensional topological stratified pseudomanifold is a Hausdorff topological

space X with a filtration by closed subspaces
X:XnDXn,1:Xn,QDXn,'g,D"'DXlDX()DX,l:(Z)

such that:
1. Every X, — X, _x_1is a (possibly empty) topological manifold of dimension
n — k without boundary, called a stratum of X.
2. X — X,,_9is dense in X.

3. For all z € X,,_p — X,,_x_1, there exists an open neighborhood U of x in X,

a compact topological stratified pseudomanifold L of dimension k& — 1, and



a stratum preserving homeomorphism U = R" 7% x cL (ZL denotes the open
cone on L), i.e. a homeomorphism mapping U N X,,_, to R"7* x ¢Ly_1_g for

all £ <k (for £ > k we require UN X,,_, = 0).

This notion can be extended to stratified pseudomanifolds with boundary
(X, 0X), which (for our purposes) are defined in the same way as n-dimensional stratified
pseudomanifolds, except the dense stratum X,, — X,,_5 is allowed to have boundary 0.X,
as long as this boundary has a collar neighborhood in X that does not intersect X, _».

A compact stratified pseudomanifold without boundary is said to be closed.

2.1.1 Intersection Homology and Cohomology

For stratified pseudomanifolds, intersection (co)homology is often a more suitable alter-
native to usual (co)homology. There are various choices of intersection (co)homologies,
determined by the selection of a perversity function.

A perversity function is a function p : N>o — N such that p(2) = 0 and p(k) <
p(k+1) <p(k)+ 1 for all k. Among these are the lower middle perversity m(k) =
L%J and upper middle perversity n(k) = [%J Two perversity functions p and
g are said to be complementary if p(k) + g(k) = k — 2. Observe that the lower and
upper middle perversity functions are complementary.

Suppose X is a stratified pseudomanifold (with or without boundary) and p is a per-
versity function. Let Co(X) denote the usual singular chain complex on the topological
space X. A singular i-simplex o : A" — X is called p-allowable if 0~*(X,,_;) belongs to

the i — k + p(k)-skeleton of A’ for all k > 2. A singular chain £ € Co(X) is p-allowable



if both ¢ and 0¢ can be written as an integral combination of p-allowable singular sim-
plices. The collection of p-allowable chains determines a subcomplex IC?(X) of Co(X),
called the p-intersection chain complex.

The homology of ICP(X) is denoted by IHP(X) and called the p-intersection
homology of X. Applying Hom(—,Z) to IC?(X) yields the p-intersection cochain
complex IC} (X) and the corresponding p-intersection cohomology of X, denoted
by IH*(X). If A is an abelian group, one can instead begin from Co(X) ® A when
defining p-allowable chains to obtain p-intersection homology and cohomology
with coefficients in A, [H?(X; A) and 1H}(X; A).

If X has boundary 0X, then Co(0X) C ICP?(X), and from the resulting quo-
tient complex one obtains the relative p-intersection homology and cohomol-
ogy, [HP(X,0X) and IH*(X,0X). One can also consider the corresponding relative
intersection (co)homologies with coefficients in an abelian group A.

Like usual (co)homology, intersection (co)homology is a topological invariant, i.e.
does not depend on the particular stratification of the pseudomanifold (see for exam-
ple [13, Section 5.5]). However, it is no longer a homotopy invariant but instead is a
stratified homotopy invariant (see [13, Definition 4.1.9]). Furthermore, intersection
cohomology does not generally have a cup product structure.

A basic example demonstrating that intersection homology is not a homotopy invari-
ant is the cone formula (see [13, Theorem 4.2.1]). If L is an (n— 1)-dimensional closed

manifold, then the (closed) cone cL is an n-dimensional pseudomanifold with boundary
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for which:

_ 0 ifx>n—1-—pn
[HP(cL) = Q
H.(L) ifx<n—1-pn)

The isomorphism in low degrees is induced by the inclusion L < cL.

2.1.2 Duality

Suppose X is an n-dimensional stratified pseudomanifold (with or without boundary).
Then X is said to be orientable if the dense stratum X — X,,_, is orientable. An
orientation of X is an orientation of this dense stratum. For more discussion on
orientability of pseudomanifolds, see [13, Section 8.1].

Remarkably, using intersection (co)homology, Poincaré duality can be recovered for
pseudomanifolds when the coefficient group is a field. Duality was first identified in [11],

however the version we state here is closer to [13, Theorem 8.2.4].

Theorem (Poincaré Duality [14], [I3] ). Let k denote a field and (p,q) denote a pair of
complementary perversity functions. Suppose X 1is an n-dimensional closed, oriented,

stratified pseudomanifold. Then there exist duality isomorphisms:

D:TH:(X;k) 5 THL (X;k)

Likewise, when X has boundary we have Lefschetz duality:

Theorem (Lefschetz Duality [13]). Let k denote a field and (p,q) denote a pair of

complementary perversity functions. Suppose X is an n-dimensional compact oriented
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stratified pseudomanifold with boundary 0X. Then there exist duality isomorphisms:

D:IHX(X,0X;k) = IH! (X;k)

D:TH:(X:k) = [HL,

(X,0X; k)

2.1.3 W.itt Spaces and Signature

Closed, oriented manifolds X of dimension 2n, n even, have a well-defined signature

associated to the nondegenerate symmetric entersection pairing:
H,(X;Q) @ Hy(X;Q) = Q

induced by Poincaré duality (recall that the signature of a symmetric pairing is the differ-
ence between the number of positive and negative eigenvalues in a matrix representation
of the pairing). The same cannot be said if we replace manifold by pseudomanifold,
owing to the presence of different perversity functions in the pseudomanifold Poincaré
duality statement. If p and ¢ are complementary, then we only get a nondegenerate

bilinear pairing:
[HY(X;Q) ® THI(X;Q) — Q

However, there is a particular class of pseudomanifolds X, called Witt spaces (see
for example [13, Chapter 9]), for which there are natural isomorphisms I H™(X;Q) =
TH!(X;Q) where m and n denote the lower-middle and upper-middle perversity func-
tions. If X is Witt, we often omit the superscript m or n (which of these we select
doesn’t matter) and simply write I H,(X; Q).

The simplest examples of spaces that are Witt are those that can be equipped

with pseudomanifold stratifications whose nonempty strata all have even codimension.
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Equidimensional closed complex subvarieties of complex analytic manifolds can be equipped
with such stratifications, and therefore are all Witt.
If X is a closed, oriented Witt space of dimension 2n, n even, then we obtain a

symmetric pairing (see [13, Section 9.3]):
TH,(X;Q) @ THy(X;Q) = Q

whose signature is called the (Witt) signature of X. If X is in fact a manifold, this
recovers the usual signature of X.
If M is a compact manifold with boundary OM of dimension 2n, n even, the Novikov

signature of (M,0M) is obtained from a symmetric pairing:
im j, ® im j, — Q

where j, : H,(M;Q) — H,(M,0M;Q) is induced by the inclusion of pairs (M, ) —
(M,0M). The Novikov signature can be related to Witt signature in the following way.
Let M denote the space M Ugys ¢(OM) obtained by coning off the boundary OM. Then

the Novikov signature of (M, M) equals the Witt signature of M (see for example [19]).

2.2 Intersection Spaces in the Isolated Singularities
Case

The essential ingredient to an intersection space in the isolated singularities case is the

selection of Moore approximations of links of singularities, so we begin there.
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2.2.1 Moore Approximations

Suppose L is a topological space. Then a degree k Moore approxrimation for L is
pair (L., f<x) where Ly is a topological space and f. : Lo, — L is a continuous map

satisfying:
o Hi(L.y)=0fori>k
o fope: Hi(Loy) — H;(L) is an isomorphism for i < k.

In [3], Banagl discusses the existence of Moore approximations for simply-connected
CW-complexes L, though simple-connectivity is far from necessary for existence.

Moore approximations can be related to intersection homology in the following way.
Suppose p is a perversity function, L is an (n — 1)-dimensional manifold, and f? :
Lep1-5m)y — L is a degree n — 1 — p(n) Moore approximation. By the cone formula

described in Subsection 2.1.1, it follows that the composition:
L I
<n—1-p(n) — L = cL

induces an isomorphism H,(L) = IHP(cL).

2.2.2 Intersection Space

Suppose X is an n-dimensional (n > 2) compact oriented stratified pseudomanifold with

isolated singularities, i.e. the pseudomanifold stratification of X has the form:

X=X,D0X;D>X ;=0
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By definition, and because X is compact, Xy is a finite set of points {zy,...,zs}. The
x1,...,%s have disjoint conic neighborhoods cLy, ..., cLs where each L; is an (n — 1)-
dimensional compact manifold. Let T' C X denote the disjoint union of the cL;. Observe
that 0T is the disjoint union of the L;.

Let p denote a perversity function. To every degree n—1—p(n) Moore approximation:
fP 0T 1—pny — OT
in [3] Banagl associates a p-intersection space for X:
I+ X := cone <8T<n_1_ﬁ(n) ﬁ) ol — X — To) ,

the mapping cone on the composition of the Moore approximation with the inclusion
into X — T°, where T° denotes the interior of T'.
Banagl proceeds to establish a duality associated to reduced Betti numbers of inter-

section spaces:

Theorem ([3] Thereom 2.12). p and G denote complementary perversity functions. Sup-
pose X is an n-dimensional closed, oriented, stratified pseudomanifold with isolated sin-
gularities. Suppose Iy X is a p-intersection space for X and I;aX is a q-intersection

space. Then there exist non-canonical duality isomorphisms:
D:H,(IpX;Q) S H' ™ (I;:aX; Q)

A fundamental observation used to to prove this duality (essentially made at the end of

Subsection 2.2.1) is that the composition:

H., (0T 1-py) > Ho(OT) — TH(T)
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is an isomorphism. Banagl moreover proves that the rational (co)homology of an inter-
section space depends only on the perversity p and not on the particular choice of Moore
approximation fP.

If X happens to be Witt, then m-intersection spaces are the same as n-intersection

spaces. In this Witt case, we more simply denote an m, n intersection space by /;X.

2.2.3 Relation to Smooth Deformations of Hypersurfaces

Suppose f : C**1 — C is a holomorphic function. By a deformation of f we mean a

holomorphic function:
F:C""'xA—=C

where A C C is a small open disk centered at the origin, and we require f(—) = F(—,0).
For A € A we let fy(—) denote F(—,\) so that f = f;. Let V(—) denote the zero set
of the function (—). The restriction of the projection C"™ x A — A to V(F) — A is
called a deformation of V(f). Observe that V(f\) = V(f\) x {\} C V(F).

Suppose that f : C""? — C is a homogenous polynomial. Then we define a ho-
mogeneous deformation of f to be a deformation of f such that all the f, are
homogeneous polynomials. In this case, the V(f\) determine projective hypersurfaces
in CP"" and V(F) naturally sits inside of CP™""! x A. The restriction of the pro-
jection CP"™ x A — A to V(F) — A is called a deformation of (projective)
V(f). Observe that if U C CP"*! is a standard affine open chart, then the restriction
(U x A)NV(F)— A is a deformation of the affine hypersurface V(f) N U.

Suppose X C CP"*! is a projective hypersurface and 7 : X — A is a deformation of

X. Let X\ denote the fiber over A € A. Note that Ay = X. We say that 7 is a smooth
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deformation of X if the X are smooth projective varieties for all A # 0 (in which
case X — A} is also smooth) and moreover the restriction X — &y = A — {0} is a smooth
submersion. In particular, by Ehresmann’s fibration theorem, the X\ for A # 0 are all
diffeomorphic - we call these X\ smoothings of X.

Suppose f : C"*' — C is a holomorphic function, and let p € V(f) € C**!. For
e > 0 let S, denote a sphere of radius € centered at p (which has real dimension 2n + 1)
and let K, denote S. NV (f). Then (for example see [12, Section 3.1], though the notion

was introduced by Milnor in [18]) if € > 0 is sufficiently small, the map:
FIfL S\ K — St

is a smooth fiber bundle over the unit circle called the Milnor fibration of f at p
and whose fiber F' is called the Milnor fiber of f at p (the fibration is invariant of
the choice of sufficiently small € > 0). As with all fiber bundles over the circle, the fiber
F' has an associated monodromy homeomorphism h : F — F that is well-defined
up to isotopy.

Suppose V(f) € CP"! is a projective hypersurface and p € V(f) c CP""'. The
point p belongs to some standard affine chart U € CP"*! and f determines an algebraic
function fy : U — C such that p € V(fy). By the Milnor fiber of p in V(f) we
mean the Milnor fiber of fi; at p.

We can now state the following theorem about smooth deformations and intersection
spaces (here we assume lower-middle or upper-middle perversity beecause projective

complex varieties are Witt):

Theorem ([5] Theorem 4.1). Suppose X C CP™"! is a projective hypersurface with a

single (isolated) singularity p. Suppose 1;X is an intersection space for X. If X\ is a
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smoothing of X, then:
(i) H(1;X;Q) = H.(X); Q) for = #n, 2n.

i) H,(1;X;Q) = H,(Xx\;Q) if and only if hy : H,(F;Q) — H,(F;Q) is the identity,
f

where F s the Milnor fiber of p in X and h is the associated monodromy.

If h, # id, there is still a relationship between H,(/X;Q) and H,(X,;Q): their dimen-
sions differ by the rank of the linear map h, — id (see [3, Theorem 4.5]). Examples of
isolated hypersurface singularities for which A, = id include all nodal singularities for n

odd.

2.3 Intersection Spaces in the Depth One Case

The essential ingredient to an intersection space in the depth one case is the selection of
fiberwise truncations for the boundaries of tubular neighborhoods of the singular sets,

so we begin there.

2.3.1 Fiberwise Truncations

Suppose 7 : E — B is a topological fiber bundle with fiber L and topological structure
group G, defined for example in [11, Definition 4.2]. In particular, G acts on the left
on L. If G acts on the left on another topological space F', then (E,7) determines
an assoctated bundle with fiber F equipped with the same base space [11, Section
4.4]. Intuitively, the associated bundle is obtained by replacing fiber L with F, but

preserving the nature of the transition functions (which are determined by elements of
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G). A G-equivariant continuous map F' — L determines a morphism of bundles from
the associated bundle with fiber F' into (E, 7).

Suppose now that fo : Lo, — L is a degree k G-equivariant Moore approzx-
tmation, i.e. a Moore approximation in which L., admits a left G-action such that
f<k is G-equivariant. The associated bundle with fiber L. is denoted by (ft_xE, mx)
and the morphism of bundles induced by f. is denoted by F.; : ft., £ — E. The
data (ft—xF, <k, F<i) is called a degree k fiberwise truncation of (E, ), originally
defined by Banagl-Chriestenson in [7, Definition 6.1].

The (closed) cone cL is naturally equipped with a left G-action. The associated
bundle with fiber cL is denoted by (DE, D) and called the associated cone bundle.
There are natural inclusions £ < DE and B — DE. If (E,7) is a fiber bundle of
manifolds for which the fiber L is a closed manifold of strictly positive dimension, then

DF is naturally a stratified pseudomanifold with boundary F and stratification:
DE=X,>2X, .=B>X_ =1

wheren =dimFE +1 and c=dim L + 1.

Fiberwise truncations relate to intersection homology in the following way:

Theorem ([7] Proposition 6.5). p denotes a perversity function. Suppose m : E — B
1s a fiber bundle of closed manifolds with closed manifold fiber L of strictly positive
dimension. Setn =dim E+ 1 and ¢ =dim L + 1. Let DE denote the associated cone
bundle. If f? : ftec_1_p)E — E is a degree ¢ — 1 — p(c) fiberwise truncation, then the

composition:

H,(ftees_poB) £ H.(E) — THP(DE)



19
18 an isomorphism.

As a side note, this theorem presents an obstruction to what bundles admit fiberwise
truncations of a given degree: for the presented composition to be an isomorphism, in

particular H,(E) — IHP(DE) needs to be surjective, which is not true in general.

2.3.2 Intersection Space

Suppose X is an n-dimensional stratified pseudomanifold (with or without boundary).

We say that X has depth one if its stratification has the form:
X=X,2X,..DX_=0.

where X,,_. is a nonempty manifold of codimension ¢ > 2, which we will typically denote
by ¥ and call the singular set of X.

For example, a stratified pseudomanifold X with (a nonempty set of) isolated sin-
gularities is depth one, with ¥ = X,. If DFE is the cone bundle associated to a fiber
bundle 7 : E — B of manifolds whose fiber is a closed manifold of strictly positive
dimension, then DF has the structure of a depth one stratified pseudomanifold with
¥ =B.

In order to use fiberwise truncations, we need a bundle structure. If X has depth
one, then every point in ¥ has a neighborhood of the form R"~¢ x c¢L (where L is some
closed manifold of dimension ¢— 1) that naturally projects to R"~¢x {0} C 3. However,
in the general class of depth one stratified pseudomanifolds, we may not be able to glue
these projections into a global fiber bundle with base 3.

To obtain such a bundle structure, we restrict ourselves to the class of depth one

Thom-Mather stratified pseudomanifolds (see [17] for details). Thom-Mather
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manifolds are in particular smoothly stratified, i.e. their strata are smooth manifolds.
Specifically, suppose X is a depth one Thom-Mather stratified pseudomanifold whose

singular set X is closed and connected. Then > admits a closed tubular neighborhood

T (really a family of tubular neighborhoods) equipped with a retraction 7 : T' — 3 such

that:

e JT is a smoothly embedded closed submanifold of X — X.

e the restriction 7|sr : 9T — 3 is a smooth fiber bundle of manifolds with some

closed manifold fiber L of strictly positive dimension.
e (T, 7) is isomorphic to the cone bundle associated to (0T, 7|or).

See [7, Proposition 8.2] for details.
With notation and assumptions as above, let p denote a perversity function. Let
n = dim X and ¢ be the codimension of ¥.. To every degree degree ¢ — 1 — p(c) fiberwise

truncation:
fP 0T ceq_pe) — OT
in [7] Banagl associates a p-intersection space for X:
I+ X = cone <8T<C_1_ﬁ(c) fﬁ ol — X — T°> ,

the mapping cone on the composition of the fiberwise truncation with the inclusion into
X — T°, where T° denotes the interior of T'. This is a generalization of the isolated
singularities intersection case (they agree when both constructions apply).

Unlike in the case of isolated singularities, in the depth one case there can arise local

duality obstructions associated to fiberwise truncations that, if they do not vanish,



21

can preclude intersection spaces associated to closed, oriented pseudomanifolds from
satisfying duality. We detail a more general version of these obstructions in Section 4.4.

If the duality obstructions do vanish, then we have a duality:

Theorem ([7] Thereom 9.5). p and G denote complementary perversity functions. Sup-
pose X is an n-dimensional closed, oriented, depth one, Thom-Mather stratified pseudo-
manifold with connected singular set. Suppose It X 1s a p-intersection space for X and
I1aX is a g-intersection space. If the local duality obstructions associated to fP and f7

vanish, then there exist non-canonical duality isomorphisms:
D:H, (I X;Q) S H'* (I X; Q)

If X happens to be Witt, then m-intersection spaces are the same as n-intersection
spaces (recall we are referring to the lower middle and upper middle perversity functions).
In this Witt case, we more simply denote an m, n intersection space by Iy X. Moreover,

we can associate a signature to [¢.X:

Theorem ([7]). Suppose X is a closed, oriented, depth one, Thom-Mather stratified
Witt space of dimension 2n, n even, with connected singular set. Suppose I;X is an
intersection space for X and that the local duality obstructions associated to f vanish.
Then (associated to an appropriate choice of duality isomorphism) there is a symmetric

bilinear pairing:
Ho(1;X;Q) @ Ha(1;X;Q) — Q

whose signature equals the Novikov signature of the manifold with boundary (X —T°,0T),

where T is a tubular neighborhood of the singular set.
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2.4 Motivation for Algebraic Intersection Spaces

The following is an informal discussion motivating the algebraic intersection spaces to
be defined in this document.

In the constructions we’ve described of intersection spaces I X associated to a space
X, an essential ingredient was the selection of topological spaces AP and maps f? : AP —
OT (where OT is the boundary of a tubular neighborhood of the singular set of X') such

that the composition:
H.(AP) L5 H.(0T) — THP(T)

is an isomorphism. In the isolated singularities case, the map f? was an appropriate
Moore approximation, and in the depth one case, an appropriate fiberwise truncation.
A weakness to the theory is that it requires H,.(0T) — IHP(T) be surjective, which is
not generally true (and less often the more intricate the singular set becomes). This
seems to obstruct an entirely general intersection space construction.

We circumvent this obstruction by working with the image of this map, rather that
THP(T) itself. At the same time, we abstract the relevant notions to a chain complex
level (though being sure to define topological analogs along the way). By doing so,
we retain the Betti numbers of the intersection space, which may or may not have
physical relevance (as suggested by the relationship to smooth deformations in the case
of isolated singularities). There are certain features of intersection spaces that we expect
to reappear in our algebraic intersection spaces. Namely, the existence of local duality
obstructions, the presence of global duality when these obstructions vanish, and, for
Witt spaces, a symmetric pairing whose signature is related to the Novikov signature of

(X —T°,0T). We will see these features arise as we progress through the paper.
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Chapter 3

Preliminary Results

3.1 Triangulated Categories

The set of tools consisting of the language and results of triangulated categories will
streamline a number of the arguments made throughout this paper. We draw from [21]

throughout this section.
Lemma 3.1.1. Suppose R is a commutative, unital ring and:
PIELNY ; LN RN
1s an exact triangle of chain complexes of R-modules. For i € Z set:
Z; = im | Hi(A) &5 H(B.)|

Y; = coker [Hi(B.) LN Hi((].)] .

Interpret Hy(As), Zo, and Y, as chain complezes with zero differential. Then there is an

exact triangle:
Hy(AJ) = Zy — Yy —

whose maps are those induced by the maps of the long exact sequence in homology asso-

ciated to the given exact triangle.
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Proof. The given exact triangle induces a long exact sequence in homology, which pro-
vides us the natural identification:
Y; = ker [H,-_l(A.) IoH1, (B
So there is a short exact sequence of chain complexes:
0— Yoy = Ho(As) = Zo — 0.
By [21] Example 10.4.9, this induces an exact triangle:
—1

Yoi1 = He(As) = Zo — .

By the second axiom of triangulated categories, stated in [21], this new triangle induces

by translation another exact triangle:

Ho(As) = Zy — Y, L

A similar statement for cochain complexes is given below.
Lemma 3.1.2. Suppose R is a commutative, unital ring and:
oA ; LR LIREN
1s an exact triangle of cochain complexes of R-modules. For i € 7. set:

7' = coim [H@'(B’) LN Hi(A')}

Y = ker [H%C') L, Hi(B')] .
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Interpret H*(A®), Z*, and Y'* as cochain complexes with zero differential. Then there is

an exact triangle:
Y 7 — Ho(A%)
whose maps are those induced by the maps of the long exact sequence in cohomology
associated to the given exact triangle.
Proof. The first isomorphism theorem gives a natural identification:
Z' = im [H"(B') S Hi(A%)]

The long exact sequence in cohomology of the given exact triangle provides further

identifications:

Zi = ker [HI(A®) — HY(C*)]

Y'=im [Hiil(A') — Hi(C')] :
So there is a short exact sequence of cochain complexes:
0— Z°— H*(A®) = Y* — 0.

Proceed with the same argument given in the proof of Lemma 3.1.1 to obtain the desired

exact triangle. N

3.2 Tubular Neighborhoods of Singular Sets

Throughout this section, let C denote the category of real subanalytic sets (we refer
to [20] for a description of this category and its properties). Let X denote a compact

subvariety of a real analytic manifold and let ¥ C X denote its singular set.
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Lemma 3.2.1. There exists a C-map f: X — Rsq such that f~'0 = 2.

Proof. Let M be the real analytic manifold containing X. [20] D.19 provides a C-map
M — R with zero set 3. Square this map and restrict it to X to obtain the desired

C-map. This argument does not require that X be compact. O

Suppose f is a map satisfying the conditions of Lemma 3.2.1. Because X is compact,
f is proper and therefore can be smoothly Whitney stratified into subanalytic sets (see
[20] 1.19 and the following remark). Let S denote such a stratification of X and &’ the
stratification of R>g. Because 0-dimensional subanalytic sets are discrete (see [20] 1.15)
there exists a minimal ¢y > 0 for which {¢} € S

A triple £ = (f, S, €0) as in the previous paragraph is called global tubular data
for the singular set of X. Given such data and 0 < € < ¢y we let T' = T'(¢) denote
/710, €¢] and call it a (closed) tubular meighborhood of ¥ in X associated to &. T,
its boundary 07", and its interior T° will always be equipped with Whitney stratifications

induced by S (see [16] 1.1.3.1).
Lemma 3.2.2. Let & be tubular data. Then:

(i) the stratified homeomorphism type of T(€) does not depend on .

(1) the inclusion 0T (¢) — T'(e) — X is a codimension preserving stratified homotopy

equivalence.

(i17) for 0 < € <€ < ¢y the inclusions T'(€')° — T'(€)° and T(€')° — X — T(e)° — X are

stratified homotopy equivalences.

Proof. By Thom’s isotopy lemma [12] Theorem 1.3.5 and contractibility of the range,

the restriction f~1(0,¢9) — (0,€p) is a trivial stratified fiber bundle. We can use this
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trivialization to construct a stratified homeomorphism 7'(¢') = T'(e) for any 0 < € <
€ < €¢p and to show that the inclusions in question are codimension preserving stratified

homotopy equivalences (see [13] Definition 2.9.10). O

We say that tubular data ¢ is pseudomanifold compatible (pc) if and only
if S € £ induces on X the structure of a pseudomanifold. In other words: the top
dimensional strata of S are dense and the remaining strata have codimension at least
two.

Remark. Tubular data always exists. Pc tubular data £ exists for example if X is
complex and equidimensional. If £ is pc, then T inherits the structure of a pseudomani-
fold with boundary, since 7" admits a collar neighborhood (see [13] Definition 2.7.1) by

Thom’s isotopy lemma.

3.3 Intersection Homology and Cohomology

Let X denote a compact subvariety of a real analytic manifold. Assume X admits pc
tubular data (e.g. X is complex and equidimensional). All tubular data in this section
is assumed to be pc.

We implicitly draw from [13] throughout this section. For basic definitions see for
example [13] Definition 3.1.4, Remark 3.1.5, and Definition 3.4.1.

We begin by proving that the intersection homologies/cohomologies of a tubular

neighborhood T are independent of choices.

Lemma 3.3.1 (Invariance). The intersection homologies and cohomologies of the tubular

neighborhood T', its boundary 0T, and the pair (T,0T) do not depend on any choices.



28

Proof. By [13] Corollary 4.1.11 codimension preserving stratified homotopy equivalences
preserve intersection homologies and cohomologies. Moreover, the intersection homolo-
gies of a pseudomanifold with boundary are naturally isomorphic to those of the pseu-
domanifold minus the boundary. Together with Lemma 3.2.2 (ii) we then reduce to
checking invariance for 7°, T° — X, and the pair they form. By Lemma 3.2.2 (iii) the
choice of € for fixed £ doesn’t affect these homologies and cohomologies.

Let £ and E be pc tubular data for X. Because X is compact, any tube for one data
contains a smaller tube for the other data. In particular we can construct a sequence of

tubes:
TocTcTcCT,

corresponding in an alternating fashion to ¢ and 5 We may restrict these inclusions to
the open tubes (—)° or to the open tubes minus the singular set (—)° — X. Any com-
position of two of these restricted inclusions by Lemma 3.2.2 (iii) induces isomorphisms
on intersection homologies and cohomologies. A simple argument shows that the same

is true for the central inclusions, namely in the commutative diagram:

T° =Y —— T°

T°—% —— T°
the vertical maps induces isomorphisms on intersection homologies and cohomologies.
From naturality of long exact sequences of pairs and the five lemma, we obtain also

an isomorphism for intersection homologies and cohomologies of the pair. We have

successfully compared the tubular data ¢ and 5 O]

Remark. Our definition of tubular neighborhood is actually unnecessarily restrictive.

If T'(e) for 0 < € < ¢ is any increasing family of closed neighborhoods of ¥ such that:
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(1) Neso Te) = %
(ii) the T'(e¢) are pseudomanifolds whose boundary 97'(¢) is a submanifold of X — 3
(iii) the T'(e) satisfy the conditions of Lemma 3.2.2

then such a T'(¢) will do equally well, and will not affect the validity of Lemma 3.3.1.

We will use such a tubular neighborhood in Section 6.

The duality captured by any intersection space construction is inseparable from a
Lefschetz duality described by the results of intersection homology and cohomology. To
this end we will need orientability. If X as a pseudomanifold is oriented, then a tubular

neighborhood T inherits an orientation from X.

Lemma 3.3.2. Let (p, q) be complementary perversity functions, k a field, and T' a tubu-

lar neighborhood of ¥.. Then there is an exact triangle of (intersection) chain complexes:
Co(0T; k) — ICP(T: k) — ICP(T, 0T k) —>

and of (intersection) cochain complezes:
[C2(T, 0T k) — IC3(Ts k) — C*(9T: k) = .

If X is oriented of dimension n, then there is a natural duality isomorphism between

their (shifted) associated long exact sequences:

- —— H{(0T; k) ——— [H!(T;k) ——— IHP(T,0T; k) — -~

o o o

oo —— HYOYOT k) —— ITH} Y(T,0T3 k) —— ITH} (T;k) —— -+
Proof. Because 0T is non-singular (recall the definition of tubular neighborhoods) there

are quasi-isomorphisms [C% (9T k) ~ Co(0T; k) and 1C3(0T; k) ~ C*(9T'; k). We may



30

therefore replace the former with the latter when we only care about complexes up to
quasi-isomorphism.
By the definition of the relative intersection chain complex given in [13] Definition

4.3.7, there is a short exact sequence of chain complexes:
0— ICP(OT; k) — ICP(T; k) — ICP(T,dT; k) — 0.

This (together with the first paragraph) produces the first distinguished triangle. The
second is obtained analogously. The duality isomorphism between their shifted long

exact sequences is described in the proof of [13] Corollary 8.3.10.

3.4 Linear Algebra

We will exclusively use field coefficients for the main results of the paper. To this end,

we let k& denote a field and establish a few lemmas.

Lemma 3.4.1. Suppose f : A — B is a morphism of k-vector spaces with dual map

f*: B* — A*. Then there are natural identifications:
(coker f)* = ker (f*)
(im f)* = coim (f*).
Proof. We dualize the exact sequence:
AL B coker f =0
to obtain exact:

0 — (coker f)* — B* EAN A",
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which proves the first identification by showing that (coker f)* maps isomorphically onto

ker (f*). We prove the second identification by dualizing the exact sequence:

0—imf— B —coker f =0

to obtain exact:

0 — (coker f)* — B* — (im f)* — 0

and utilizing the first identification (coker f)* = ker (f*). O

Lemma 3.4.2. Suppose there is a commutative diagram of exact sequences of k-vector

spaces:
dit1 N hi N
'—>Ci+1 /AZ’ /BZ‘ 'Ci /Ai_1—>“'
DQ/HTIZ D;TIZ D;’T\z D;_lTu
Oit1 u; v 05
- — Fi > D; > I > I > Dj_q — -

Then for each pair (re, Se), where ry : imhy — B,y and s, : imv, — FE, are (families) of

sections, there exists an induced isomorphism:
D, =D{"**) . E, = B,
whose description is found in the proof.

Proof. This is the content of [3, Lemma 2.46]. We recreate the argument here, because
it is important in Chapter 7 to understand exactly how D{"***) relates to the the choice
of (re, Se).

Because the diagram commutes and the rows are exact, there is an induced diagram
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of exact sequences:

~ker h; imh;

— ~ =
0 —— coker 0,4 > B, ker 9; —— 0

D;F 2 D;’TI 2

0 —— coker ;. —— E; —— ker §; — 0
—_—— ~——

~ker k; imw;

~

2\

where we are abusing notation by allowing D! and D/ to denote induced isomorphisms.
The sections r; and s; give splittings

E,=imu; ®ims; = imu; & im s;.
The isomorphism D; : E; — B; induced by the splittings (7, Se) is described on compo-
nents as follows.

DZ(U,ZO{) = gZD;(Oé), o € Dz

D;(s;8) = D} (B), p €imv; C F;



33

Chapter 4

Local Construction

4.1 Denotations and Assumptions

Throughout Section 4 we let k denote a field and X a compact subvariety of a real
analytic manifold with singular set ¥. Assume X admits pc tubular data and is oriented
of dimension n (e.g. X is complex and equidimensional). Let 7" denote a pc tubular
neighborhood of .

If p is a perversity function, for ¢ € Z we define:

77 = im [H)0T: k) — THV(T: k)], Z = (ZF)"

VP = coker [THY(T; k) — ITH!(T,0T; k)], Yy = (Y])".

We also write Z7 and Y (resp. Z3 and Y7*) if we'd like to interpret these collections of

vector spaces as chain (resp. cochain) complexes with zero differential.

4.2 Duality and the Image of the Boundary

Let p denote a perversity function. To begin, we’'d like to overcome the obstruction
discussed in Section 2.4. It will be essential to work with the image of H.(0T; k) —
THP(T; k) as opposed to I HP(T'; k) itself, the latter being more in line with the original

approach. We've already denoted this collection of vector spaces by ZP. The first step
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in this transition is to understand the “Lefschetz dual” object to Z?, in the sense of

Theorem 3.3.2.

Lemma 4.2.1. For all i € Z there are natural identifications:

Z% = coim [THY(T; k) — H'(0T}; k)]

Y = ker [THY(T,0T; k) — THL(T; k)]

Proof. 1t we apply universal coefficients (see [13] Theorem 7.1.4 for the intersection
cohomology version of universal coefficients) and the second identification of Lemma

3.4.1 to the map H;(0T; k) — IHP(T; k) then we obtain the identification:
Z% = coim [THY(T; k) — H'(OT; k)] .

If we next apply universal coefficients and the first identification of Lemma 3.4.1 to the

map [HY(T; k) — IHP(T,0T; k) then we obtain the identification:
Y? = ker [[HY(T, 0T k) — TH(T; k)] .
[

Lemma 4.2.2. Suppose (p,q) are complementary perversity functions. There exists an

exact triangle of chain complexes with zero differential:
HJ(0T; k) —» 27 = YP =
and an exact triangle of cochain complexes with zero differential:

° ° ° . +1
Y2 = Z; — H*(OT; k) — .
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Moreover there is a natural duality isomorphism between their (shifted) long exact se-

qUENCES.

- —— H;(0T; k) 3 Zz.ﬁ N Yf C o

i|o o o

oo —— HYUOT k) —— Y —— 20—

Proof. Existence of the first exact triangle is a direct consequence of Lemma 3.1.1 and
Theorem 3.3.2. Existence of the second exact triangle is a consequence of Lemma 3.1.2,
Theorem 3.3.2, and Lemma 4.2.1.

For the isomorphism of long exact sequences, we first recall the diagram from Theo-

rem 3.3.2:

+——— H(0T; R) ———— IH](T1R) ——— IH{(T,0T; R) —— -

i|o | |

- —— H" N 0T R) —— THg (T,0T; R) —— THg (T; R) —— -

Because this diagram is an isomorphism of long exact sequences, appealing to the defi-

nition of Z” we have:

D(ZF) = im [H"'""Y(0T; k) — ITH} (T, 0T} k)]
= ker [[H}'(T,0T; k) — IH} (T; k)] =Y~
where in the last step we have used Lemma 4.2.1. This provides us the middle isomor-
phism of the desired diagram.
To construct the rightmost isomorphism of the desired diagram we first observe that:
D (im [IH!(T; k) — IH!(T,0T; k)]) = im [ITH} (T, 0T; k) — TH} (T k)]

= ker [[H}'(T; k) — H" (0T k)] .
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Therefore D induces an isomorphism between Y and Z7 " after we make the identifi-
cation of Lemma 4.2.1.

That these isomorphisms fit into a commutative diagram follows from the fact that
all our maps are induced from the already existing commutative diagram of long exact

sequences from which we have been drawing. O

4.3 Local Intersection Approximation

Let p denote a perversity function. The results of Section 4.2 are the source of several
desired properties for our intersection space construction. Banagl constructs his inter-
section spaces by first selecting a “local approximation”, local in the sense that it takes
as input only the tubular neighborhood of the singular set. We will do the same, but will
also loosen some constraints by allowing approximations which are merely “algebraic”,
not necessarily topological.

A p algebraic intersection approximation for T with coefficients in k is a

pair (A,, f,) where A, is a chain complex of k-vector spaces and:
fo i Ae — Co(OT k)
is a chain map such that the composition:
Ho(A)) &5 H(OT; k) — 77

is an isomorphism. A p topological intersection approximation for T with co-
efficients in k is a pair (A, f) where A is a topological space and f: A — JT is a

continuous map such that (Ce(A; k), fx) is alocal p algebraic intersection approximation.
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Observe that the class of such approximations does not depend on the particular
choice of tubular neighborhood (see Lemmas 3.2.2 and 3.3.1 and their proofs). These

are extensions of Banagl’s “approximations” as indicated by the following examples.

Example 4.3.1. Suppose ¥ = {x} is a single point. Then the tubular neighborhood of
3} is conic: T = cL with cone point x where L is called the link of z. So 0T = L and

the cone formula (see [13, Theorem 4.2.1]) implies:
THI(T;k) = HE"' 770 (L k)

where H"" P (L: k) agrees with H;(L; k) for i < n—1—p(n) and vanishes otherwise.

The map:
Ho(L; k) — HI7P0 (L k)

is surjective so that ZP = HS""'7P (")(L; k). Consider a Moore approximation (defined

in [3]):
fiLep1—pm) — L.
By its defining properties, the composition:
Hu(Len1-pm; Q) £ Ha(L: Q) — H" 1 770(L; Q)

is an isomorphism. Therefore (L<,_1_5m), f) is a p topological intersection approxima-

tion for 7" with coefficients in Q. //

Example 4.3.2. Suppose X has a Whitney stratification consisting of exactly two strata
{X — %, ¥} where ¥ has codimension c. In particular, this means that 3 is smooth and

connected. Suppose also that 7' is homeomorphic to the mapping cylinder of a fiber



38

bundle projection 0T — ¥ (e.g. T is a tubular neighborhood in the Thom-Mather

sense). Suppose there exists a fiberwise truncation (defined in [7]):
f : ft<c_1_:5(c)aT — OT.
By [7] Proposition 6.5, the composition:
.0) & : P(T
H'(ft<cflfﬁ(c)aT7 Q) - H‘<8Ta Q) — IH- (Ta Q)

is an isomorphism. Therefore (ft<._1-5)07T, f) is a p topological intersection approxi-

mation for 7" with coefficients in Q. )/

Proposition 4.3.3 (Existence). A p algebraic intersection approximation (As, fe) for

T with coefficients in k always exists.
Proof. Pick a section s of the composition:
ker [0y : Co(OT; k) — Co_1(0T; k)] — Ho(OT; k) — 27

where the first map is the quotient map from cycles to homology classes and the second

is the obvious surjection. The composition:
7P 5 ker 0, — Co(0T'; k)
is an algebraic intersection approximation. ]
We next examine the “dual” object to an intersection approximation.

Lemma 4.3.4. Suppose (A, fo) is a p algebraic intersection approximation for T with
coefficients in k. Then the composition (where the first map is the boundary map of

Lemma 4.2.2):
Y2, — H(9T; k) — H.(cf.)

s an isomorphism, where cf, denotes the algebraic cone on f,.
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Proof. We will describe three exact triangles, then use the octahedral axiom for trian-
gulated categories (see [21]) to construct a fourth that will imply the theorem.

By definition of “algebraic cone”, we have an exact triangle:
AL o0 k) = ofs =

A consequence of the definition of algebraic intersection approximation is that the map
fv : Ho(As) = Ho(OT; k) is injective. Applying this to the long exact sequence from the
aforementioned exact triangle shows that the map H,(0T;k) — H.(cf,) is surjective
and the boundary map H,(cfs) — He_1(A,) is the zero map. We next translate this

exact triangle to obtain another (with the same long exact sequence in homology):
Co(OT: k) = cfs — Ay —> .

We apply Lemma 3.1.1 and our observations about the maps from this exact triangle to

find an exact triangle:

HJ (0T k) — Hu(cf) = He 1(A) =
and translate it back to obtain another exact triangle:

Ho(AJ) = HJ(0T; k) — Ho(cf.) = .

By definition of an algebraic intersection approximation, there is an isomorphism of
chain complexes (with zero differential) H,(A,) = Z?. Consequently there is an exact

triangle:

Ho(A) = ZP =0 = .
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Lastly, by Lemma 4.2.2 there is an exact triangle:
HJ(OT: k) — ZP — YP =
Altogether we have exact triangles:
Ho(AJ) = Ho(OT; k) — Ho(cf) =
HJ(0T: k) — ZP - YP =4
Hy(A) — ZP =0 = .
where the first map of the third exact triangle is the composition He(As) — He(9T'; k) —
ZP. This is the setting in which the octahedral axiom is applicable. The resulting exact
triangle is:
Hy(cfs) - 0—Y? -4
and the boundary map (which must be an isomorphism) is the composition:

Y2 — HJ(9T; k) — Ha(cf.).

4.4 Local Duality Isomorphism

Let (p,q) denote complementary perversities. If our intersection spaces are to have a
global duality, a local duality must first be understood. Suppose (AZ, f?) and (A4, f2) are
p and ¢ algebraic intersection approximations for 7' with coefficients in k. We consider

the diagram:
Zpr b —— H YO k) —— H " H(AD)

J o]

VP ——— H.(0T; k) ———— H,(cf?).
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The upper composition is by definition an isomorphism and the lower composition is
by Lemma 4.3.4 also an isomorphism. So there exists a unique local duality isomor-

phism:
D: H,(cff) — H"1(A])
that makes the outer box commute. This describes a local intersection pairing:
(= =)t HY(ef?) X Hyp1(AD) = K, (o, B) = D()(B).

We say the rth local duality obstruction for (AZ, fP), (AL f) vanishes if and

only if the entire diagram:

ngrfl Hn—r—l (8T7 k) Hn—r—l (A(.j)

dl g dl

commutes (this is not necessarily true, because the right box need not commute). The
following theorem captures the physical notion that the local duality obstructions will

vanish if ¢m(f,) contains no pairs of “stably intersecting” cycles.

Proposition 4.4.1. The rth local duality obstruction for (AP, fP), (A%, f3) vanishes if

and only if given any:
a €1im fP C H,(0T; k), 8 € im fI C H (OT; k) with |a| =7, |B|=n—1r—1
we have the following vanishing of the intersection pairing on 0T :
(a, 8) = 0.

This vanishing occurs for example if o and 3 are representable by disjoint cycles.
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Proof. Fix r € Z and consider the commutative diagram whose maps have been named:

ngrfl l Hn—r—1<aT; k:) fa 5 Hn_r_l(A‘z)

d g

Y/ s H (T3 ) —— H,(cf?).

The rth local duality obstruction vanishes iff:
fiD = (fi1)D(vu)~'v
By commutativity we have equivalences:

[ng = (f;l)D(vu)_lv} — [ng = ngu(vu)_lv}

> [Va € H,(0T; k), fiD(a — u(vuw) wa) = 0] .
Next observe that:
{a —u(vu) wa | a € H(0T;k)} =ker v =im [f? : H,(A?) — H,(0T;k)];

The second equality is a consequence of a long exact sequence. The “C” part of the first
equality can be directly verified. For the “D” part of this equality, simply observe that

if a € ker v, then:
a=a—u(vu) tva.
Put together we have that the rth local duality obstruction vanishes iff:
D (im [f? : H,(AL) — H,(0T;k)]) C ker [fz: H* " 1(0T; k) — H" "' (AD)] .

This holds iff for all & € im fP with |a| =7 and 8 = fi(v) € im f with |5|=n—7r —1
we have:

0= £;D(0)(7) = D(@)(8) = (@, )
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where we have used the fact that the duality isomorphism induces the intersection pairing

on homology. O

Example 4.4.2. Suppose ¥ = {p} consists of a single point with link L. Then:
THY(T; k) = HE" ' 7PU(Ls k), THI(T; k) = HS" 9 (Ls k)

Therefore, given any algebraic intersection approximations (A2, f?), (A4, f%) for T with

coefficients in k, the subsets im f? and im f7 of H,(OT'; k) contain classes of degree strictly

less than n — 1 — p(n) and n — 1 — g(n) respectively. By definition of complementary

perversities we have:
m—1-=pn)—1+n—-1—¢n)—1=n-2.

Since 0T is an (n— 1)-dimensional manifold, no two of these classes can pair to a nonzero

field element. So the local duality obstructions always vanish. //

Example 4.4.3. In this example we show that our local duality obstructions all vanish
if and only if those of Banagl-Chriestenson [7] all vanish (when our local intersection
approximations are fiberwise truncations). We assume Q-coefficients. Suppose X has
a Whitney stratification consisting of exactly two strata {X — X, 3} where X has codi-
mension c¢. Suppose also that 7" is homeomorphic to the mapping cylinder of a fiber

bundle projection 0T — X, and that there exist fiberwise truncations:
fp : ft<c_1_ﬁ(c)aT — OT.
1 fteem1-g(e)0T — OT.

By Example 4.3.2 these maps are shown to be topological local intersection approxima-

tions and:
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from which we also conclude:

Y? = [H(T,0T), YA = IHY(T,0T).

There are also isomorphisms:
Ha(cfh) = Ha(cf?), Ho(cfh) = Ha(cf?)

where ¢fP and c¢f? are topological mapping cones. Therefore by definition our rth local

duality obstruction vanishes if and only if the entire diagram:

THY " NT) —— H" " Y9T) —— H" " Y(ftee1-g00T)

o o o

[H?,,(T,0T) —— H,(JT) » H,(cf?)

commutes. Compare this to the diagram appearing in |7, Proposition 6.10]: up to
labelling and the direction of duality isomorphisms, it is the same, since their Q>.—1_p(c)
is homotopy equivalent to our ¢f? by [7, Equation (6.4)]. Banagl-Chriestenson prove
that their local duality obstructions vanish if and only if the above diagram commutes
for all r. In other words: the local duality obstructions of Banagl-Chriestenson all vanish
if and only if our local duality obstructions all vanish (where both are associated to a

fixed complementary pair of fiberwise truncations). //

Remark. If X is a Witt space (see [13] Definition 9.1.2 and Proposition 9.1.8) then
so is T'. In this case, by definition, the approximations for 7" for the lower m and upper
n middle perversities would be indistinguishable. So for X Witt, an m approximation
(A, fo) is an 7 approximation - we call this a Witt approximation for T with
coefficients in k - and we can talk about vanishing of duality obstructions for (A, fs)

alone. For simplicity, we state the following theorem for Witt approximations.
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Theorem 4.4.4 (Existence). Suppose X is a Witt space of even dimension n = 2m.
Then there exists a Witt algebraic intersection approximation (As, fo) for T with coeffi-

cients in k for which all the local duality obstructions vanish.

Proof. We suppress perversity superscripts and subscripts since they yield isomorphic
objects below. Pick a Witt algebraic intersection approximation (A,, f,) with zero dif-
ferential as in Proposition 4.3.3. This allows us to assume A, C H,(9T;k); since
Ay = H,(A,) and the map Ho(A,) — Hl(OT; k) is injective by definition.

We will replace all the A, for » > m and leave unchanged all the A, for r < m. We
do this as follows. Fiz r < m and set s =2m — 1 —r > m. Replace our given A, with

the subspace of Hs(0T; k) on which D(A,) C H*(9T; k) vanishes. We pick a map:
fs: As = Cs(0T; k)

by selecting a section of the quotient map {s-cycles of 9T} — H,(OT; k), and then using

the composition:
As — H,(0T; k) : {s-cycles} — Cs(IT; k).
We must now check two things. First, that the composition:
As — Hy (0T k) — Z

is an isomorphism. Second, that the rth local duality obstruction vanishes (observe that
Proposition 4.4.1 implies we only have to check vanishing for » < n, because this leads
to vanishing for all r). Because the differentials of our old and new A, are zero, there is

nothing else to worry about.
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By Lemma 4.2.2 we have a commutative diagram of short exact sequences (where we

have arbitrarily assigned names to some maps and considered injections as inclusions):

0 AR > H5(0T; k) —— Y*t1 —— 0
DTZ DT& DTIZ
0 —— Yy —— H.(0T; k) —— Z, s 0.

By definition and from the diagram we have dim A, = dim Z, = dim Y**!. By construc-
tion, the codimension of A, in H*(0T; k) is equal to the dimension of A,. Combining

this with the diagram of short exact sequences we have:

dim A, = dim H*(9T; k) — dim Z, = dim H*(9T; k) — dim Y**!

= dim Z° = dim Z,.

This is a start, for we have shown that the dimensions of A, and Z, coincide. We now
need only show that A, does has trivial intersection with the kernel of H (0T, k) — Z;
to conclude that A, is suitable for an algebraic intersection approximation. Suppose
towards a contradiction that it has nontrivial intersection with this kernel. From the

short exact sequence:
0— Y — H (0T k) » Zs — 0

if follows that A,NY,,; is nontrivial. Pick a function g € Y**! which does not vanish on
A NY, 1. Our diagram identifies Y™ with Z,, and A, C H,(9T'; k) maps isomorphically

onto Z, under v, so there exists a € A, with:
g = Dv(a) =uD(a)

The map u is none other than the restriction to Ys;1. So the fact that ¢ = uD(«)

does not vanish on A; N Yy, implies D(«) does not vanish on A,. This contradicts the
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definition of A,. Hence, in fact A; N Y, = (0) and the composition:
As — H (0T k) — Z,

is an isomorphism.
Next we verify vanishing of the rth local duality obstruction. We know that D(A,)

vanishes on A,. Therefore for all « € A, and § € A, we have:

D(e)(B) = (o, 8) = 0.

Now apply Proposition 4.4.1. O
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Chapter 5

Global Construction

5.1 Denotations and Assumptions

Throughout Chapter 5 we let k£ denote a field and X a compact subvariety of a real ana-
lytic manifold with singular set ¥. Assume X admits pc tubular data and is oriented of
dimension n (e.g. X is complex and equidimensional). Let T' denote a pc tubular neigh-
borhood of X. Let (p,q) denote complementary perversity functions. Let (AL, fP) and
(A4, f8), respectively (AP, fP) and (A9, f9), denote algebraic, respectively topological,

intersection approximations for T" with coefficients in k.

5.2 Intersection Space

We are now in a position to define a global space extending earlier definitions of inter-
section space. The algebraic intersection space ;5 X associated to (A%, f7) is the

algebraic cone on the composition:

AP B O OT: k) T (X — T k).
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The topological intersection space Iy X associated to (AP, fP) is the topological

cone on the composition:
AP Ly o e x 7o,
We achieve a global duality assuming the local duality obstructions vanish.

Theorem 5.2.1. Assume the local duality obstructions vanish for (AL, fP), (AL, f3).

Then there exist non-canonical duality isomorphisms:
D:H.(I5X) = H"*(I;5X).

Proof. We temporarily omit the perversity superscripts and subscripts, as the following
statements about distinguished triangles hold for both. We have a set of three distin-

guished triangles:

Ao L5 00T k) = cfs =5
Co(OT; k) 2% Oy (X = T° k) — Cu(X = T°,0T; k) =

incleo feo

A, Co(X =T k) = I, X = .
The octahedral axiom implies the existence of a third distinguished triangle:

cfs = I X = Co(X —T°,0T; k) —> .

The octahedral axiom moreover relates the maps in these four distinguished triangles;
namely we have the following (every map below is a map from one of these distinguished

triangles, and a shift by “—1” in a subscript indicates we are considering a boundary
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map):
[Co(X —T°,0T3 k) = cfect] = [Co(X —T°, 0T k) = Co1(0T; k) — cfor1] (5.1)
[cfe = Aec1] = [cfe = 17, X — Ae_i] (5.2)

[Co(X =T k) = Co(X —T°,0T; k)] = [Co(X = T° k) = [, X — Co(X — T°, 0T k)]

(5.3)
[Ce(OT5 k) — cfe = I, X]| = [Ce(0T3 k) — Co(X — T k) — 17, X] (5.4)
If, X = Co(X —=T°,0T; k) = Co_1 (0T k)] = [L1. X — Aez1 = Cor(0T'; k)] (5.5)

We will only use the first of these in this proof, but the rest will be important later.
We now reintroduce perversity subscripts and superscripts. Consider two long exact

sequences obtained from the aforementioned distinguished triangles:

- — H"7HAD) — H'" (13 X) — H" (X = T°% k) — H"7(Al) — ---

d d d
- —— H(cf?) —— H,(IpX) — H (X —T°,0T;k) — H, 1(cf?) — ---.
If we can prove that this diagram is commutative, then we can use Lemma 3.4.2 to
construct (non-canonical) duality isomorphisms. The left (bigger) rectangle above com-
mutes by exactness. We next use vanishing of duality obstructions to show that the

right square also commutes. By our observation (1) about the boundary map of the

lower long exact sequence, the square of interest can be decomposed:

H (X = T° k) —— H" " (dT; k) —— H"" (A7)

dl dl dl

H. (X —=T°,0T;k) —— H, 1(0T;k) —— H,_1(cf?)
The leftmost box in this decomposed diagram always commutes, and the rightmost box
commutes owing to the vanishing of the (r — 1)th local duality obstruction.

We have successfully verified the hypotheses of Lemma 3.4.2. [
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There is an analogous statement for the topological intersection space.

Corollary 5.2.2. Assume the local duality obstructions for (AP, fP), (A4, f7) vanish.

Then there exist non-canonical duality isomorphisms:
D:H.(IpX; k) = HV (1 X5 k).

Proof. This is a consequence of the arguments from Theorem 5.2.1, since there for either

perversity (omit the superscripts) there is an exact triangle:

incle

Cu(Ask) 2% (X = To5 k) — Cu(I;X) =5

associated to a topological mapping cone. O

Remark. While the cochain complex C*(1;X) of a topological intersection space is
naturally a differential graded k-algebra under cup product, the dual complex (17, X)* of
an algebraic intersection space does not seem to have a natural multiplicative structure.
Therefore finding topological, as opposed to just algebraic, intersection spaces will prove

to be an interesting task.

Example 5.2.3. We show that, when the local intersection approximation is a fiberwise
truncation, our topological intersection space coincides with the Banagl-Chriestenson
intersection space. With assumptions as in Example 4.3.2 we have a fiberwise truncation
[ fteeci—p0T — OT. As in Example 4.3.2, this fiberwise truncation constitutes a
topological intersection approximation for 7. The associated topological intersection

space is the cone on the composition:

flee1-pedT — T — X —T°.
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This is precisely [7, Definition 9.2], the definition of the Banagl-Chriestenson intersection

space.

Remark. There is not an obvious general sheaf interpretation of algebraic intersection
space cohomology. This is because the local intersection approximation takes as input
the not entirely local map Co(0T'; k) — [ Ho(T'; k). This in contrast to the AF intersec-
tion space pairs of [1], but we will show in the following chapter that the AF intersection
space is in general distinct from our algebraic intersection space: in an example, we will

show that homologies of the two do not even coincide.
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Chapter 6

A Worked out Example

6.1 Denotations and Assumptions

In this chapter, we will deal only with spaces with even-dimensional strata, so without
further comment we use middle-perversity intersection homology. Let X C CP? denote
an irreducible degree three nodal hypersurface with exactly one singular point p. Let B
denote a closed tubular neighborhood of p in X whose boundary is denoted by L. Let

M denote X — B°. Observe that:
e X is topologically a pinched torus.
e B=cL.
o L =SSt
o M xSt x DL

Let X C CP? denote the projective cone on X. Let co denote (0:0:0:1) € CP3. The
vector bundle C «— CP? — {00} — CP? restricts to a vector bundle C «— X —{oo} — X

which we denote by (X, 7). We also let:
e p denote the restriction of vector bundle X over p.

e 3 denote the restriction of vector bundle X over B.
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L denote the restriction of vector bundle X over L.

M denote the restriction of vector bundle X over M.

7 denote the line in CP? connecting p with oo, i.e. the closure of p in X, also the

singular set of X.
e S(—) denote the sphere bundle associated to a vector bundle (—).

e D(—) denote the disk bundle associated to a vector bundle (—).

6.2 Setting Up the Example

We will explicitly construct a topological intersection space for the projective cone X
on X C CP2%. Moreover we will show that the corresponding local duality obstructions
vanish. This example is of interest, because it is depth two with pseudomanifold strati-
fication X D p D {oo}, so the topological methods of [7] do not apply. We will also use
this example to distinguish our construction from the construction of [1].

To rigorously carry out this construction we need to analyze X in detail. Topologi-
cally it is the Thom space of the vector bundle (X, 7) as described for example in [10),
Page 18], therefore is the homotopy pushout of the following diagram involving disk and

circle bundles:
X =hp (DX «+ SX — cSX).
where ¢SX is the cone on SX. The singular set p is the homotopy pushout:

p=hp(Dp <« Sp — cSp)
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We then define:
T =hp (DB <+ SB — cSX).

Claim 1. T is a closed tubular neighborhood of 7 in X in the sense of the remark fol-

lowing Lemma 3.3.1. Moreover, the nonsingular boundary 97" is the homotopy pushout:
OT =hp (DL + SL — SM)
and X — 7T is the homotopy pushout:
X —T°=hp (DM < SM — SM)

Proof. Consider the inclusions of diagrams:

DX +— X — cSX

1

DB +— 8B — ¢SX

|

Dp <— Sp — ¢cSp.
Each vertical inclusion from the lower half of the diagram is the inclusion of a deformation
retract, so that the inclusion of homotopy pushouts p — T is also the inclusion of a
deformation retract. This provides our family T'(¢) as in the remark following Lemma
3.3.1. Therefore, once we check in the following paragraph that 07T is a submanifold of
X, we have our tubular neighborhood 7.

By inspection, the boundary of 9T in X is the homotopy pushout:

hp (DL + SL — SM).

Because DL and SM are manifolds with boundary SL, it follows that the homotopy

pushout 97 is in fact a closed manifold. By another inspection the complement X — 7°
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is the homotopy pushout:

hp (DM  SM — SM)

which again is a manifold with boundary OT. In particular, 9T is a submanifold of X

]

We will need to analyze various homologies and intersection homologies related to
the tube in order to construct an intersection space. First we find:
Claim 2.

7 ifx=0,3

0 otherwise.

Proof. Since X is a pinched torus, it has normalization v : S? — X where S? is a

two-sphere. Let SZ and 7 be such that the below is a pair of pullback diagrams:

SZ Y, Sx y S5

Ll

S?2 Y , X > CP2.

Then 7 is a normalization and SZ is a principal circle bundle over S?. Each principal
circle bundle corresponds to an element of H?(S?;Z). Let us determine to which element
SZ corresponds.

Since S° — CP? is the pullback of the universal circle-bundle S — CP> under
the inclusion, by composing pullbacks it follows that SZ — S? is the pullback of the

universal bundle under:

§* 5 X < CP? — CP™.
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We analyze this map on second cohomology. Both v and CP? — CP> induce isomor-
phisms on second cohomology. Because X is degree 3 the map Z = H*(CP*7Z) —
H?*(X;Z) = 7 is multiplication by +3. Therefore the composition H?(CP>;Z) —
H?(S?;Z) is multiplication by £3. Hence SZ is the unique principal circle bundle cor-

responding to +3 € H?(S?%;Z). A standard argument then shows that:

7 ifx=0,3
H.(SZ)=14 75 ifx=1

0  otherwise.
But 7 : SZ — SX is a normalization, so as detailed in [10, I.1.6] induces an isomorphism
H.(SZ) 2 [H.(SX). O

Next we work on the rational intersection homology of tubular neighborhood T

Claim 3.

Q ifx=0
TH(T;Q)=q Q2 ifx=2
0  otherwise.

Proof. Given the description of T" as the homotopy pushout of:
DB <+ SB = cSX

and the fact that DB and SB are circle bundles over contractible B, we obtain a long

exact sequence:

o = ITHy(B x S*;Q) = IH;(B x D*,Q) @ IH;(cSX;Q) — IH;(T;Q) — ---
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which, using the cone formula and Kiinneth for intersection homology (see [13, Theorem

4.2.1, Corollary 6.4.10]), becomes:
o [HA(L:Q) ® Ho(S4Q)], —» [HE (L Q) ® H(D*Q), @ TH(SX; Q)
— IH,(T;Q) — --- .

Recall that L = S' U S, For i = 0 the first map is given by:

Ho(L; Q) — Ho(L; Q) & [Ho(SX; Q).
which is obviously injective. Then for ¢ = 1 we have exact:

Ho(L; Q) ® Hi(SY;Q) — TH,(SX;Q) — IH\(T;Q) — 0.
But /H(SX;Q) =0 = IH,(T;Q) = 0. For i =2 we have:
0 — IH,(T; Q) — Ho(L; Q) ® Hi(S%Q) — 0

which implies I Ho(T; Q) = Q*. The remaining homology Q-vector spaces are trivially

computed owing to the vanishing of many terms in the long exact sequence. O]
Next let’s provide exact descriptions for X — T° and 9T
Claim 4. X —T° = St x D3 and 0T = St x S2.
Proof. By Claim 1 the space X — T° is the homotopy pushout:
hp (DM + SM — SM)

which (since SM has a collar neighborhood in DM) is homeomorphic to DM. But

H?*(M;Z) = 0 so the complex vector bundle M is trivial. Hence:

DM =M x D?>~S'x D! x D? ~ 8! x D3,
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6.3 The Intersection Space

We rely on the results of the preceding section to construct a topological intersection
approximation. Let S? Iy §1% §? = AT be the inclusion of a sphere such that f induces

an isomorphism on second homology.

Claim 5. The pair (52, f) is a topological intersection approximation for T' with coef-

ficients in Q.

Proof. We first must understand the map Ho(07T;Q) — IH.(7T;Q) and its image Z,.
For dimensional reasons, the description of the map is only unclear in degree two. In

this case we have exact:
[Hy(T,0T; Q) — Ho(9T;Q) — [Hy(T; Q).

Duality shows that:

[Hy(T,T; Q) = [H,(T;Q)* =0
and consequently that the induced map Hy(07T;Q) — IH5(T;Q) is an injection. We
explicitly specify:

im [Ho(0T;Q) — IHo(T;Q)] ifx=0

0 otherwise.
The map H,(5% Q) LN H.(0T; Q) is an isomorphism for * = 0, 2 and H,(S5?; Q) vanishes

otherwise. So the composition:
H.(S%Q) L5 H,(0T; Q) — Z.

is an isomorphism. O]
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We have a topological intersection approximation for the tube 7', so are granted a
topological intersection space [ f?. It is obtained by coning off an embedded S? in the
boundary 97 =2 S* x S? of X — T°. The long exact sequence associated to the inclusion

S? s St x D=2 X — T° gives:

_ Q ifx=0,1,3

0 otherwise.

Alternatively, check that I;X ~ STV S The dual Betti numbers of I;X seem to match

up. In fact this is because:

Claim 6. The local duality obstructions vanish for the intersection approximation S? ER

OT'. Therefore, the intersection space [ ff satisfies duality.

Proof. As usual we set:

Ze =im H(0T;Q) — IH,(T;Q)

Y, = coker H(T;Q) — I H(T,0T;Q).

Consider the diagram:

Zy., —— Hy (0T;Q)" —— Hy (5% Q)"
o] d g
Yipn —— H,(0T5;Q) ———— H,(cfy)
which a priori need not commute. The left box always commutes, and the outer box
commutes by construction. The local duality obstruction vanishes if and only if the right
box also commutes.
Commutativity is obvious when r # 1, 3 because the upper-rightmost term vanishes.

When r = 1 or r = 3 the map f* is an isomorphism (for r = 1 see the proof of Claim 5),
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from which it can derived that all maps are isomorphisms, in which case the box again

commutes (owing to the commutativity of the left box and the outer box). O]

Remark. With some effort, this example can be extended to the projective cone on
any irreducible hypersurface in CP? with isolated singularity. In this general case, the
topological local intersection approximation will be composed of a wedge of spheres and

circles. Again, the local duality obstructions will vanish.

6.4 Comparison with the AF intersection space.

We can compare with the method introduced in [1], and will show that their AF in-
tersection space pair is distinct from our notion of algebraic intersection space even on
the level of homology. Since the strata p and {oco} are contractible, [, Theorem 3.30]
implies that their construction applies. We avoid excruciating detail, choosing only to
outline the construction of this AF intersection space pair (I Xar, Pa F)

[1] requires a decomposition of the tubular neighborhood 7', which we provide in this

paragraph. Keeping in mind the homotopy pushout descriptions:
p=hp(Dp <+ Sp—cSp), T =hp (DB <+ SB — cSX)
with cone point oo, we define:

py=hp(Dp <+ Sp— Sp), Th =hp (DB + SB— SB), E; =hp (DL + SL — SL)

Po=0cSp, Ty =cSX, Ey =5SX.
Observe that:

o Ty N7 =7, TyNP =Py, and F, N5, = Sp.



62
o [, =011 N (X —T°) and Ey = 9Ty.
e [ fibers trivially over p; with fiber L.
e Ty = cyl(Ey — py), the mapping cylinder of the bundle projection.
e the pair (Ey, Sp) fibers trivally over {oco} with fiber (SX, Sp).

o (To,p0) = cyl((Fo, Sp) — {o0}), the mapping cylinder pair of the pair of bundle

projections. Since {oo} is a point set, this is actually a cone pair.
o 01, N 0Ty = SL = E|s,, the restricted fiber bundle over Sp.
o 0ToNTy = SB = cyl(E4|s, — Sp), the mapping cylinder of the bundle projection.

o ITy = SMUg,,, eyl (Erls, — Sp)

Keep these observations in mind when considering the construction detailed in the fol-
lowing paragraph.
The essence of the [1] construction for this example (up to homotopy, not word-for-

word) is the following:

(i) Select a fiberwise truncation ft1FE; — FEj of the trivial bundle £y — p,. Define

TAF = cyl (ft- By — py), the mapping cylinder of the bundle projection.
(ii) Define a Step 1 AF intersection space:
IX a1 = (X —=T°) Uy THF
by gluing T{Y to X — T° via:
TAY o ft By — By — X —T°

Effectively, we have deleted T from X, then replaced T} with TAF.



63
(iii) Define pair:
TS = SM Uypi_y ks, oY1 (ft<1Eils, — Sp) C IX ap.
and interpret (8T ars ,0) as a pair of fiber bundles over the point set {co}.

(iv) Select a fiberwise truncation of pairs (8TOAF , Sp) o (OT{F, Sp) of the pair of
fiber bundles (915", Sp) — {oo}. Set (T3, p5") = cyl (913, Sp)<a — {00}),

the mapping cylinder pair of the pair of bundle projections.

(v) Define the AF intersection space pair:

(IXap,Pap) = (IX a1, 7y) Y(orsr sp) (75" 757)

<2

by gluing (T5'", pgt") to (IX apy, py) via:
(T64Fa564F) - (@T64F75,0)<2 - (aTééxFysp) — (]?AF,hﬁl) .
Effectively, we have replaced (Tp, o) with (75, 5.

The rational homology of the pair (I?AF,E AF) has the potential to satisfy dual-
ity, and is what we will compare the rational homology of our algebraic intersection
spaces against. Having outlined the construction, let’s select fiberwise truncations and
determine an explicit AF intersection space.

We include the following claims without proof, as they can be verified in a straight-

forward manner.

Claim 7. Let Loy = {*} U{*} < L be the inclusion of two points into the two disjoint

circles that make up L. Let £ denote the restriction of bundle £ — L above subspace
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L_q. The space L1 like £ can also be interpreted as a trivial bundle over p, but with

fiber L. Then:
ftarBEy =hp (DL = SLoy — SLoy) — By
is a fiberwise truncation of bundles over p;. It is an inclusion.

Claim 8. Define BAY = cyl (Lo, — p). It is a subset of cyl(L — p) = B. Let BAF
denote the restriction of B — B above subspace BAF. Then T from (i) of the AF
construction is:

T = hp (DB « SBAT — SBAT) .
It is a subset of T7.

Claim 9. Define IX4F = M U BAF. 1t is a subset of X that is homotopy equivalent
to a wedge of two circles. Let ZX4F denote the restriction of X — X above subspace
IXAF Tt is a trivial bundle because I X4 has vanishing second cohomology. Then the

Step 1 AF intersection space I?AFJ is:
IX gpy = hp (DIXA  STXAT — STXAF)
and 0T from (iii) of the AF construction is:
OTM = STXAY,
It is a subset of 0Tj.

Claim 10. The pair (973", Sp) = (SZX4F, Sp), interpreted as a pair of bundles over

{00}, has fiberwise truncation:

(STXA, Sp)_, = (IX*F,p) = (STXAF, Sp)

<2

where the inclusion is any section of the trivial bundle pair (SIX AF.g p) — (I XAF p).
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Because all our truncation are inclusions, the associated AF intersection space IX zp

is a subset of X. We describe the pair (I?AF,ﬁAF):

Claim 11. Both IX 4r and p 4 are contractible. Therefore H, (ITAF,,BAF) vanishes

identically.

Proof. By Claims 9 and 10 and the AF construction, one verifies that the AF intersection

space pair is described by the following mapping cones:

IX 45 = e (IXY — DIXAT)

par = c(p— Dp)

where (IXAF p) — (DZXAY Dp) is the inclusion of a section of the trivial bundle
pair (SZXAF, Sp) — (IXAF,p). But IX4" € DIX*F and p C Dp are deformation

retracts. Therefore IX 4r and p4p are contractible. ]

We have shown that H, (I?Ap,ﬁ A F) vanishes identically. On the other hand, sup-
pose we are given any algebraic intersection approximation (As,, f.) for 7" with coefficients
in Q, and associated algebraic intersection space /7, X. Then we have the following exact

sequence:

But Hi(A.) = Z; = 0 (see Proof of Claim 5) and H,(907;Q) = Q together imply
Hi(I;,X) # 0. In other words, our notion of intersection space is distinct from the AF

notion. It seems difficult to compare them in general.
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Chapter 7

Intersection Space Pairing

7.1 Denotations and Assumptions

Throughout Chapter 7 we let k denote a field and X a compact subvariety of a real
analytic manifold with singular set ¥. Assume X admits pc tubular data and is oriented
of even dimension 2n (e.g. X is complex and equidimensional). Let T denote a pc
tubular neighborhood of ¥. Assume X is a Witt space and (A, fo) is a Witt algebraic
approximation for T with coefficients in k for which the local duality obstructions vanish.
Recall that an approximation for a Witt space is said to be Witt if it is either a lower m
or upper n middle perversity approximation, and that distinguishing between the two
is unnecessary as the constructed objects are naturally isomorphic. We thus omit any
perversity subscripts and superscripts (assuming them to be either m or 7, distinction
unnecessary).

We also use this section as a grand collection of names and properties of maps. We

give names to the following natural maps, all of which sit inside exact sequences (see
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preceding chapters to understand these sequences):

H.(cfs) = Ho(I;,X) = H (X —T°,0T; k)
Ho(X — T% k) 2 H,(1;,X) 2 Ho_1(A,)
HJ (0T k) 2 Ho(X — T° k) 25 Ho(X — T°,0T; k) 2 Ho_1 (0T k)

fofl

HJ (0T k) 2 Ho(cf) 2 Ho_1(A) 22% H,_ (0T k)

where maps that sit in the same row are sequential in a long exact sequence. Next we
gather the relationships between these maps (all of which can be found in the proof of

Theorem 5.2.1):

Jo = Nevs

0 = geue
hete = uels
Jo—19e = davs

l, is surjective and f, is injective.

We consider it allowable to use these properties without comment. The dual of a map,

uq for example, will be denoted by u°®. Lastly we name the duality isomorphisms:
Dy, : Ha(efo) S H™1=*(AL)
Dy : Hy(OT; k) = H* '=*(0T; k)
Dy H(X —T°,0T; k) = H™ *(X —T° k)

D) H(X —T°%k) = H™ *(X —T°,0T; k)

where “L” indicates Lefschetz duality. For o« € He(X — T°;k) and § € Hop o X —
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T°,0T; k) we have:

Di(a)(B) = (=1)*VIDL(B)(a)

since these duality isomorphisms (or more specifically their inverses) can be understood
in terms of cup products, which are anti-commutative. The duality isomorphisms are
related to each other as follows (again these properties are allowable to use without

comment):

Df.f. — an_l_.Da
/LLO — 52n_.D@

Drje=j>""*Dy.

where the first is a direct consequence of the local duality obstructions vanishing, and the
second two follow from commutativity of the duality isomorphism diagram relating the
long exact sequence of the pair (X —T°, 0T; k) in homology to the long exact sequence

of the pair in cohomology.

7.2 Families of Sections

We would like our duality isomorphisms on the intersection space to have some geometric
significance, and to give us a meaningful intersection space pairing. In this section, we
describe how duality isomorphisms are selected.

Lemma 3.4.2 gives us insight into the particular nature of a duality isomorphism

Dix : Ho(I;,X) — H**(I;,X). Consider the commutative diagram of exact sequences
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from the previous section:

e B (AN S LX) A X T k)

] ]

s Hycfs) —2— Hi(I;,X) —2— Hi(X —T°,0T; k) — --- .

where ¢*"% = (ga,_;)* and h*"~* = (hy,_;)* are dual maps to the maps on homology.
By Lemma 3.4.2, the intersection space duality isomorphism is constructed by selecting

families of sections:

r*imh® — H*(I;,X)

Se 1 imwve — He(If,X)

*

where we will utilize the identification im h® = (coim h,)* asserted by Lemma 3.4.1 to

write r® = (7.)* where 7o : He(If,x) — coimh, is a retraction of he : coimh, —
H.(I;,X). As in the proof of Lemma 3.4.2 (and with indices shifted for the family of

sections on cohomology) we thus have duality isomorphism:
Dix = DU H(I;,X) = H" *(I;,X)
which is entirely described by:

a € Hy(cf,) = Dix(wa) = ¢*" "' Dja

f€imy; = Dix(s;f) = "Dy B.

This will allow us to describe the intersection space pairing associated to (r°,s,),

which is defined by:

(= =)ix = (= =) ") Hy(I1,X) x Hyni(I5,X) = k, (o, B)1x = Dix(a)(8).
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Lemma 7.2.1. Suppose (r°,s,) is a family of sections and i € Z. Consider the decom-

positions:

H;(I;,X)=1imu; & ims;

Hgn_i(]f.X) = im h2n—i D ker Ton—i-
Under the intersection space pairing for (r®, ss) we have:

(imu;,imhop—i); =0, (ims;, ker rop_;); = 0.

and:
a € Hi(0T; k), B € Hopi(I;,X) = (uilicr, B)1x = (—1)"(van—if3, i)
Yy € iHlUi, 0 € Hgn,i(X — To;k) — (Si’y,hgn,lé)[)( = ("y,é)L
where (—, =), is the intersection pairing associated to Dy, i.e. (—, —) = Dp(—)(—).

Proof. Suppose o € H;(0T; k) and 8 € Ha,—i(I7,X). Then:
(uilicr, B)1x = Drx (uilia)(8) = (¢*" "Dy, i) (8) = (D, licx) (g2n—if3).

Since exactness implies ker g9, ; = imhsg,_;, and imwu; = imwuf;, this proves that
(im u;, im ha,—;);x = 0. But let’s go further with our computation of (w;l;a, B)rx; it

is equal to:

(g°" "Dy li)(B) = (g*" " f*" " Dor) (B)
= (v*"7'0*" " Do) (B) = D, (1) (v20-i3)

= (1) "D (v20-i8) (1ia) = (=1)" (v20-i3, @) -
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Next suppose v € imv; and § € Hy, (X — T°; k). Then:
(87, han—i0)rx = Dix (s77)(hzn—i0) = (r*" "' D7) (han—i0)
= (DY) (ran—ihan—id)
= (Dry)(0) = (7,9) .

Note that it makes sense to evaluate Dyy on imry, ; = coim hs,_;, since v belonging to

im v; implies Dyy belongs to:
im h*" ™" = (coim hg,_)* = {¢ € H* (X —T°) : ¢(ker hg,_;) = 0}

In the computations at the beginning of this paragraph, if we replace ho, ;0 with an

element of ker ry,_;, it easily follows that (im s;, ker 7o, ;);x = 0. H

Lemma 7.2.1 informs us how to carry out the intersection space pairing, but we will
seek an even finer decomposition of the homology vector spaces. We say a family of

sections (7°, s,) is untwisted if and only if each of the following hold:

(i) im seje C im he (Observe that j, = vehe implies im j, C iM,, SO Seje 1S in fact

well-defined).

(ii) ker ry C im s, and (ker 7q,1im So,_eJon—e)rx = 0.

We will prove the existence of an untwisted family of sections, but first must establish

a technical lemma.

Lemma 7.2.2. Suppose s, satisfies property (i) of untwisted, and Q, is the maximal

subspace of imwv, satisfying the vanishing:

(Q.7 h2_nl—.(1m SQn—Oan—o)>L — 0

Then imv, = Qe @ im J,.
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Proof. Fix i € Z. First we check that @); has trivial intersection with im j;. Suppose
Jia € im 7; N Q;. Then:
0= (jia> hop_;(im $2n7ij2n7i))L = (Dpjic) (hgnlfi(im 32n7ij2n7i))
= (7" 'Dy) (hgyi(im s20—ijon-—i)) -
Since j2"~% = h?""?"~% and im Sop_;jon_i C im ha,_;, this sequence of equalities contin-
ues into:
0 = (D)) (vap_iim sop_ijon_i) = (Dya)(im jo, ;) = ;> 'Dja =0
— Dpjia=0
= ;a0 = 0.

Having shown the intersection is trivial, we use dimension counting to complete the

proof. The duality isomorphism of long exact sequences of the pair (X —7°,9T) implies

Dy (imj;) = imj**~*. Vanishing of the local duality obstruction implies Dy (imwv;) =

im h?"~% (see the proof of Lemma 3.4.2); in particular this implies (im vy, ker ho,_;)r = 0.
By construction, and the fact that (imwv;, ker ho, ;) = 0, the vector space @; has

dimension greater than or equal to the difference:
dimy, imv; — dimy, hy,,(im 89, _ij2n—) + dimy ker hg,_;
= dimy imv; — dimg im jo,_;
= dimy imv; — dimy im j;
Rearranged, this is:
dim; @; + dimy, im j; > dimy imv;,

completing the proof. O]
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Proposition 7.2.3. There always exists an untwisted family of sections (1°, Se).

Proof. First let’s check that there exist sections s, : imwv, — He ([ foX ) of v, such that
im s,je C imh,. This is possible iff v, maps imh, onto imj, (because then we can
construct a restricted section s,| : im j, — im he C He(I, X) which by choice of a basis
for im v, can be extended to a full section s,). But im j, = im vehe, S0 v, indeed maps
im h, surjectively onto im 7j,.

Given these sections s, satisfying (i), we next verify that there exist retractions
Te : Ho(I7,X) — coim h, satisfying (ii). Let Qs be as in Lemma 7.2.2. We will first show
that r, can be selected so that ker ry C s4Qs; this is possible iff s,Qe+im he = Ho(17, X).
We already know from Lemma 7.2.1 that im s +imue = He(I7, X). But geue = 0 implies

imu, C ker g, = im h,, were we have used exactness in the last step. So:
im s, +imhe = He(I7, X).

If we can show im s, = $4()e + i 547, then we will be done with selecting our r,, since
im sej, C im he by property (i) of being untwisted. But this follows by applying s. to
the equality of Lemma 7.2.2.

It remains to verify that ker r, C s,(), satisfies property (ii). This is clear, because

Lemma 7.2.1 and the definition of )4 imply:

(San im 82nfoj2nfo>IX = (Qn h;;—.(lm Sanonnfo))L =0.
]

Lemma 7.2.4. Suppose (r°, s,) is an untwisted family of sections and i € Z. Then there
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exist further decompositions:

imh; = imu; @ im s;J;

ims; = ker r; @ im s, ;.
Proof. Let’s begin with the decomposition of im h;. First we verify imu;, C imh;: we
have g;u; = 0, soimu; C ker g; = im h; where we have used exactness in the last equality.

Next, we know from Lemma 7.2.1 that im s;7; has trivial intersection with im w;. Finally,

we count dimension (using rank and nullity of maps):

rk j; = rkv;h; > tkh; — nulv; = rkh; < nulv; +rk j;
= dim; im h; < dimy ker v; + dimy, im j;
= dimy, im h; < dimy im u; + dimg, im s;7;
where in the last step we have used exactness of a long exact sequence and injectivity
of S;.

Now let’s approach the decomposition of im s;. First we verify ker r; Nim s;7; = (0):
because the family of sections is untwisted, we know ims;j; C im h;, but Lemma 7.2.1
implies im h; N ker r; = (0). Finally for (2), we again count dimension:

dimy, imw; + dimy im s; = dimy, H; ({7, X)
= dim;, im h; + dimy, ker r;
= dimy im u; + dimy im s;j; + dimy ker r;.
where we have used Lemma 7.2.1 for the first two inequalities, and (1) of this Lemma

for the last. We then obtain:

dimy im s; = dimy, im s;j; + dimy, ker r;
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as desired. O

7.3 Signature

Suppose throughout this section that (r®, s,) is a family of sections. We would like to
prove that, in the case that n is even, an untwisted family of sections (r®, s,) induces a

symmetric pairing:
(—, —)ix : Hy(I;,X) x H,(I;,X) — k.

But first let’s compute the signature when k£ = Q if we assume the induced pairing
(—, —)rx is symmetric. We will do so by comparing to the already existing symmetric

pairing on im j,:
(_a _)] . lm]n X lmjn — Q) (]naajnﬁ)j = (]naaﬁ)L - (jnﬁva)[n

this signature is called the Novikov signature, which is known (for example, [19]) to

equal the signature of the pairing:
[H, (X —T°Q) x [H,(X —T%Q) - Q
where X — T° is the space (X — T°) Ur cone(T).

Theorem 7.3.1. Suppose n is even, k = Q, and (r®,s,) is an untwisted family of

sections that induces a symmetric intersection space pairing:
(— —)ix: Hy(I;,X) x H,(I;,X) — Q.

Then the signature of (—, —)x 1is equal to the Novikov signature.
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Proof. Remember that throughout this proof we are assuming (—, —);x is symmetric.
We will frequently use Lemmas 7.2.1 and 7.2.4 in this proof. Combined they give us the
decompositions:
H,(I;,X)=1imu, & im s,j, G ker ,
imh,, = imu, & ims,7J,
im s,, = im s,,J, b ker r,.
Let’s observe how these components pair. By Lemma 7.2.1, the above decompositions,
and symmetry of the intersection space pairing, we know that under the intersection
space pairing:
imu, L (imwu, ®im s,j,)
im s, 7, L (imu, ® ker r,)
ker r, L (im s,j, & ker r,).

Therefore, in a basis that respects the direct sum decomposition im u,, &im s,,7, G ker 7,

the pairing (—, —)x is represented by a symmetric block matrix of the form:
0 0 A
M=1 0 Y 0|
AT 0 0

where Y is the symmetric matrix associated to the restricted pairing:
(_7 _)IX :im Snjn X im Snjn — Q

Let p(t) and q(t) be the respective characteristic polynomials for Y and AAT. Linear

algebra shows that the characteristic polynomial of the block matrix M is the product:

p(t)a(t?).
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Therefore the signature of M (the number of positive eigenvalues minus the number of
negative eigenvalues) is equal to the signature of Y, i.e. the signature of the restricted

pairing:
im s, j, X im s,7, — Q.

It remains to prove that the signature of this restricted pairing is the same as the
signature of (—,—);; this is established if we can prove that the following diagram

commutes:
ims,J, X im s$,j, —— k

SnXSnTR H

im j, x im j, — k.
Let j,a and 7,8 in im 7, be given. Since im s,7j, C im h, by untwistedness of the
family of sections, there exists v € H, (X —T°) such that h,y = s,j,5. By Lemma 7.2.1

we have:

(Sn,jnaa Snjnﬁ)IX = (Snjnaa hn’V)IX = (jna;f}/)(? = (]nf}/a 05)87

where symmetry of the j-pairing was used in the last step. Since j, = v,h,, this further

becomes:
(Snjna7 Snjnﬁ)IX = (Unhn’% a)(’? - (Unsnjnﬁ7 O-/) = (]nﬁa Oé)a = (]na7]n6)j
This proves that the diagram in question commutes, and we are finished. O

Next we verify that the pairing (—, —);x induced by an untwisted family is indeed
symmetric. If V' and W are subspace of H, (I, X), we say that the pairing (—, —);x is

symmetric on (V,W) if and only if for all « € V and § € W we have:

(a,B)ix = (5,04)1)(-
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Proposition 7.3.2. Suppose n is even and (r®,s,) is an untwisted family of sections.

Then (—, —)x is symmetric on H,(I;, X).

Proof. Symmetry on (imu,,imu,): By Lemmas 7.2.1 and 7.2.4, we know the pairing
(im wy,, imu,)rx = 0.

Symmetry on (imu,,im s,j,): By the same Lemmas, we know (imw,,,im s,j,)rx =
0. We must then check (ims,j,,imu,);x = 0. Let s,j,« and u, be given. Since

imu, C imh, = ker v,,, we can write u,, = h,7y and we observe:

InY = Vphyy = vu, B = 0.

Using Lemma 7.2.1 and symmetry of the j-pairing we compute:

(Snjnc, unB)rx = (Snin, hnY)rx = (Jn, 7). = (Juy, @)L = 0.

Symmetry on (im u,, ker r,). Let u,l,o € imu,f, = imu, and s,5 € ker r,, C im s,
be given. Since imu, C imh, by Lemma 7.2.4, there exists v such that w, ¢, = h,7.

By Lemma 7.2.1:

(ungnaa Snﬁ)IX - (UTLSTLB’ Lna)L - (ﬁ? [/na>L

and:

(Snﬂvunéna)IX = (Snﬁ7 hnv)IX - (B)’Y)L

Next note that 8 € imv,, implies (5, —), € im h" vanishes on ker h,,. So symmetry can

be proven if 1, — v € ker h,,. This follows from:

hptna = uplyoe = hyry.
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Symmetry on (im $,,Jp, 1M S, Jp,). Let 8,70, $pjn3 € im 8,7,. The reasoning from the

last part of the proof of Theorem 7.3.1 did not rely on symmetry of (—, —);x and shows:

(SnjnOé, SnjnB)IX = (]nahjnﬁ)J

which of course is symmetric.
Symmetry on (im s,j,, ker r,). By Lemma 7.2.1 we have the vanishing of the pair-
ing (im s,j,, ker 7,)7x = 0. By property (ii) of being untwisted, we have the reverse

vanishing (ker r,,1im $,,7,)rx- O



80

Bibliography

[1] M. AGUSTIN AND J. F. DE BOBADILLA, Intersection space constructible complezes,

arXiv preprint arXiv:1804.06185, (2018).

[2] M. BANAGL, Topological invariants of stratified spaces, Springer Science & Business

Media, 2007.

[3] ——, Intersection spaces, spatial homology truncation, and string theory, Springer

Science & Business Media, 2010.

[4] ——, Isometric group actions and the cohomology of flat fiber bundles, arXiv

preprint arXiv:1105.0811, (2011).

[5] ——, First cases of intersection spaces in stratification depth 2, Journal of Singu-

larities, 5 (2012), pp. 57-84.

[6] M. BANAGL, N. BUDUR, L. MAXIM, ET AL., Intersection spaces, perverse sheaves
and type b string theory, Advances in Theoretical and Mathematical Physics, 18

(2014), pp. 363-399.

[7] M. BANAGL AND B. CHRIESTENSON, [ntersection spaces, equivariant moore ap-

proximation and the signature, Journal of Singularities, 16 (2016), pp. 147-179.

[8] M. BANAGL AND L. MaAXxiM, Deformation of singularities and the homology of

intersection spaces, Journal of Topology and Analysis, 4 (2012), pp. 413-448.



81

9] ——, Intersection spaces and hypersurface singularities, Journal of Singularities, 5

(2012), pp. 48-56.
[10] A. BOREL, Intersection cohomology, Springer Science & Business Media, 2009.

[11] J. F. Davis AND P. KIRK, Lecture notes in algebraic topology, vol. 35, American

Mathematical Soc., 2001.

[12] A. DiMcA, Singularities and topology of hypersurfaces, Springer Science & Business

Media, 2012.
[13] G. FRIEDMAN, Singular intersection homology, Book in progress, (2014).

[14] M. GORESKY AND R. MACPHERSON, Intersection homology theory, Topology, 19

(1980), pp. 135162,
[15] ——, Intersection homology i, Inventiones Mathematicae, 72 (1983), pp. 77-129.
[16] ——, Stratified morse theory, in Stratified Morse Theory, Springer, 1988, pp. 3-22.

[17] J. MATHER, Notes on topological stability, Bulletin of the American Mathematical

Society, 49 (2012), pp. 475-506.

[18] J. MILNOR, Singular Points of Complex Hypersurfaces.(AM-61), vol. 61, Princeton

University Press, 2016.

[19] P. H. SIEGEL, Witt spaces: a geometric cycle theory for ko-homology at odd primes,

American Journal of Mathematics, 105 (1983), pp. 1067-1105.

[20] L. VAN DEN DrIEs, C. MILLER, ET AL., Geometric categories and o-minimal

structures, Duke Math. J, 84 (1996), pp. 497-540.



82

[21] C. A. WEIBEL, An introduction to homological algebra, Cambridge university press,

1995.



	Abstract
	Acknowledgements
	Introduction
	Background on Intersection Spaces
	Pseudomanifolds
	Intersection Homology and Cohomology
	Duality
	Witt Spaces and Signature

	Intersection Spaces in the Isolated Singularities Case
	Moore Approximations
	Intersection Space
	Relation to Smooth Deformations of Hypersurfaces

	Intersection Spaces in the Depth One Case
	Fiberwise Truncations
	Intersection Space

	Motivation for Algebraic Intersection Spaces

	Preliminary Results
	Triangulated Categories
	Tubular Neighborhoods of Singular Sets
	Intersection Homology and Cohomology
	Linear Algebra

	Local Construction
	Denotations and Assumptions
	Duality and the Image of the Boundary
	Local Intersection Approximation
	Local Duality Isomorphism

	Global Construction
	Denotations and Assumptions
	Intersection Space

	A Worked out Example
	Denotations and Assumptions
	Setting Up the Example
	The Intersection Space
	Comparison with the AF intersection space.

	Intersection Space Pairing
	Denotations and Assumptions
	Families of Sections
	Signature

	Bibliography

