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Abstract

We define a variant of intersection space theory that applies to many compact complex

and real analytic spaces X, including all complex projective varieties; this is a significant

extension to a theory which has so far only been shown to apply to a particular subclass

of spaces with smooth singular sets. We verify existence of these so-called algebraic

intersection spaces and show that they are the (reduced) chain complexes of known

topological intersection spaces in the case that both exist. We next analyze “local duality

obstructions”, which we can choose to vanish, and verify that algebraic intersection

spaces satisfy duality in the absence of these obstructions. We conclude by defining an

untwisted algebraic intersection space pairing, whose signature is equal to the Novikov

signature of the complement in X of a tubular neighborhood of the singular set.



ii

Acknowledgements

I thank, above all, my advisor Laurentiu Maxim for the wholehearted support he has

shown me throughout my graduate studies. His topological awareness for what “should

be true” has propelled me down the fruitful avenues of research that culminated in

multiple papers and, ultimately, this thesis. His never-flagging optimism and impressive

mental store of relevant references have, in periods of doubt, repeatedly reignited my

mathematical willpower and inspired new approaches to a problem. Further, his genuine

interest in my short-term and long-term success has bestowed me with opportunities of

which graduate students dream.

I also thank my committee members: Botong Wang, Andrei Căldăraru, and Jose
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Chapter 1

Introduction

Singular compact complex varieties typically lack the Poincaré duality enjoyed by their

nonsingular counterparts. One approach to rectifying this disparity can be found in

Goresky-MacPherson’s (middle-perversity) intersection homology and cohomology [14],

[15]. These theories endow both singular and nonsingular compact complex varieties

with an intrinsic duality, extending Poincaré duality. Moreover, intersection homology

and cohomology exhibit stability under small resolutions. However, they suffer from

instability under smooth deformations, and intersection cohomology fails in general to

have a cup product structure.

A natural question is: does a duality-satisfying (co)homology-type theory exist that

behaves well under smooth deformations?

This question has been broached and, for hypersurfaces with isolated singularities,

answered partially in the affirmative in [8] and [9], in which an alternate theory is utilized:

the intersection space theory introduced in [3]. A generalization of this approach to

hypersurfaces with more complicated singular sets has not yet been discovered, because

intersection space theory has not been defined for the vast majority of singular spaces.

We briefly discuss the history and current limitations of intersection space the-

ory. Given a perversity p̄ (in the sense of intersection homology theory) and a real
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n-dimensional stratified pseudomanifold X with isolated singularities, Banagl in [3] de-

fined CW-complexes I p̄X, the perversity p̄ intersection spaces . The cohomology of

an intersection space I p̄X, unlike the intersection cohomology of X, is always equipped

with a cup product structure. Moreover, if X is closed and oriented, there exist duality

isomorphisms:

H̃∗(I p̄X;Q) ∼= H̃n−∗(I
q̄X;Q)

where q̄ is the complementary perversity to p̄. Banagl continued in [3] to prove the

uniqueness of the Betti numbers of I p̄X (dependent only on X and its stratification),

even though the intersection space itself need not be unique (even up to homotopy).

The essential component to the construction of intersection spaces in the isolated

singularities case is the selection of Moore approximations for the links of the singular

points. Banagl describes the existence of such Moore approximations in the case that

the connected components of the links are simply-connected CW-complexes, though this

is far from a necessary condition for existence.

Beyond isolated singularities, Banagl in [3] also defined intersection spaces for depth

one stratified pseudomanifolds whose singular strata have trivial link bundles. This idea

was generalized by Banagl and Chriestenson in [7], where intersection spaces were defined

for depth one Thom-Mather stratified pseudomanifolds. In contrast to the isolated

singularities case, there exist clear restrictions to the existence of such intersection spaces,

dependent on the structure of the link bundles of the singular strata (as indicated in the

following paragraph).

In this extended depth one setting, the primary ingredient for intersection space
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construction is the selection of fiberwise truncations for the link bundles of the sin-

gular strata. There exist bundles which fail to have fiberwise truncations, and therefore

stratified spaces to which Banagl and Chriestenson’s process cannot associate intersec-

tion spaces. Even when a fiberwise truncation exists, there can arise local duality

obstructions that preclude the intersection space from satisfying duality.

Passing beyond depth one, Agust́ın-Fernández identify in [1] a variant/extension of

intersection space theory that applies to arbitrary depth spaces whose strata all have

trivial link bundles (though it applies in some other cases too). They do not prove

that their topological intersection spaces satisfy duality nor do they identify local du-

ality obstructions, however they abstract their construction to a sheaf level by defining

intersection space constructible complexes , from which they establish a generic

duality for generic choices of intersection space constructible complexes (which may or

may not be realized by topological intersection spaces).

Special cases where the stratification of the singular space is more elaborate have

been studied, for example in [5], but no all-encompassing picture has been painted.

Despite the limited collection of spaces for which it is defined, intersection space theory

has had applications in multiple fields: fiber bundle theory [4], algebraic geometry and

smooth deformations [8] and [9], perverse sheaves [6], and theoretical physics [3, Chapter

3].

This document devises a variant/extension of intersection space theory applicable in

particular to all complex projective varieties, and so enables future endeavors in these

fields.

More specifically, this document selects as its target the collection of compact ori-

entable Whitney stratified pseudomanifolds X that are subvarieties of a real/complex
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analytic manifold, and from them systematically extracts chain complex alternatives to

topological intersection spaces, which we equip with the moniker perversity p̄ alge-

braic intersection spaces . Though deprived of a topology, these algebraic intersec-

tion spaces carry homology, which we require to be an extension to, not replacement of,

the already existing intersection space homology. On the topological side, we define per-

versity p̄ topological intersection spaces , which may or may not exist, and whose

chain complexes yield algebraic intersection spaces. The study of what conditions allow

an algebraic intersection space to be made topological could be the source of interesting

future research.

The introduction is followed in Chapter 2 with background on intersection spaces.

This chapter is intended to familiarize the reader with the theory and to motivate the

later algebraic intersection space construction.

Chapter 3 collects general theorems and lemmas that will enable, or in some cases

merely streamline, the arguments to be made toward the main results of the paper. Ex-

cept perhaps for Section 3.2 on tubular neighborhoods of singular sets, detailed reading

of this section should be left until the corresponding theorem or lemma is referred to in

a proof from the final four chapters, which form the core of the paper.

Suppose for the remainder of the introduction that k is a field and thatX is a compact

orientable n-dimensional Whitney stratified pseudomanifold that is a subvariety of a

real/complex analytic manifold (for example X is a complex projective variety). T ⊂ X

denotes a tubular neighborhood of the singular set.

Just as with intersection spaces, algebraic intersection spaces are built in parts: first

locally, then globally. Chapter 4 describes the local construction, which rests on a p̄

algebraic intersection approximation for T with coefficients in k. It further
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proves these approximations always exist.

Proposition 1.0.1 (4.3.3). p̄ denotes a perversity function. A p̄ algebraic intersection

approximation (A•, f•) for T with coefficients in k always exists.

The concluding Section 4.4 describes local duality obstructions , an unfortunate fea-

ture of certain algebraic intersection approximations that prevents a global duality. On

the bright side, there always exist local intersection approximations for which there are

no local duality obstructions (here proved for even-dimensional Witt spaces):

Theorem 1.0.2 (4.4.4). Suppose that X is a Witt space of even dimension. Then there

exists a Witt algebraic intersection approximation (A•, f•) for T with coefficients in k

for which all the local duality obstructions vanish.

Chapter 5 takes the local construction and converts it into a global algebraic in-

tersection space If•X associated to X. In the case that the local duality obstructions

vanish, duality isomorphisms are constructed between the homology and cohomology of

complementary perversity algebraic intersection spaces:

Theorem 1.0.3 (5.2.1). p̄ and q̄ denote complementary perversity functions. Assume

the local duality obstructions vanish for algebraic intersection approximations (Ap̄•, f
p̄
• ),

(Aq̄•, f
q̄
• ) for T with coefficients in k. Then there exist non-canonical duality isomor-

phisms:

D : H∗(If p̄•X)
'−→ Hn−∗(If q̄•X).

Chapter 6 explicitly constructs a topological intersection space for a depth two pseu-

domanifold. It is compared against the [1] construction, from which it is shown to differ

on the level of homology.
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When X is a Witt space, Chapter 7 extracts the signature of an intersection space

pairing on the middle-dimensional homology of the algebraic intersection space (again

in the case that the local duality obstructions vanish), which turns out to be equal to

the Novikov signature of X minus an open tubular neighborhood of the singular set:

Theorem 1.0.4 (7.3.1, 7.3.2). Suppose k = Q and that X is a closed, oriented Witt

space of dimension n = 2m, m even. If IX• is an algebraic intersection space obtained

from a Witt algebraic approximation whose local duality obstructions vanish, then there

is a symmetric intersection space pairing:

(−,−)IX : Hm(IX•)×Hm(IX•)→ Q.

whose signature equals the Novikov signature of (X − T ◦, ∂T ).
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Chapter 2

Background on Intersection Spaces

2.1 Pseudomanifolds

All intersection spaces are associated to topological spaces called topological stratified

pseudomanifolds , which may be defined recursively as follows (see [2, Section 4.1] and

[13, Chapter 2] for further discussion):

• A 0-dimensional topological stratified pseudomanifold is a 0-dimensional manifold

(i.e. a countable set of points with the discrete topology).

• An n-dimensional topological stratified pseudomanifold is a Hausdorff topological

space X with a filtration by closed subspaces

X = Xn ⊃ Xn−1 = Xn−2 ⊃ Xn−3 ⊃ · · · ⊃ X1 ⊃ X0 ⊃ X−1 = ∅

such that:

1. Every Xn−k−Xn−k−1 is a (possibly empty) topological manifold of dimension

n− k without boundary, called a stratum of X.

2. X −Xn−2 is dense in X.

3. For all x ∈ Xn−k −Xn−k−1, there exists an open neighborhood U of x in X,

a compact topological stratified pseudomanifold L of dimension k − 1, and
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a stratum preserving homeomorphism U ∼= Rn−k × ◦cL (
◦
cL denotes the open

cone on L), i.e. a homeomorphism mapping U ∩Xn−` to Rn−k × ◦cLk−1−` for

all ` ≤ k (for ` > k we require U ∩Xn−` = ∅).

This notion can be extended to stratified pseudomanifolds with boundary

(X, ∂X), which (for our purposes) are defined in the same way as n-dimensional stratified

pseudomanifolds, except the dense stratum Xn−Xn−2 is allowed to have boundary ∂X,

as long as this boundary has a collar neighborhood in X that does not intersect Xn−2.

A compact stratified pseudomanifold without boundary is said to be closed .

2.1.1 Intersection Homology and Cohomology

For stratified pseudomanifolds, intersection (co)homology is often a more suitable alter-

native to usual (co)homology. There are various choices of intersection (co)homologies,

determined by the selection of a perversity function.

A perversity function is a function p̄ : N≥2 → N such that p̄(2) = 0 and p̄(k) ≤

p̄(k + 1) ≤ p̄(k) + 1 for all k. Among these are the lower middle perversity m̄(k) =

bk−2
2
c and upper middle perversity n̄(k) = bk−1

2
c. Two perversity functions p̄ and

q̄ are said to be complementary if p̄(k) + q̄(k) = k − 2. Observe that the lower and

upper middle perversity functions are complementary.

Suppose X is a stratified pseudomanifold (with or without boundary) and p̄ is a per-

versity function. Let C•(X) denote the usual singular chain complex on the topological

space X. A singular i-simplex σ : ∆i → X is called p̄-allowable if σ−1(Xn−k) belongs to

the i− k+ p̄(k)-skeleton of ∆i for all k ≥ 2. A singular chain ξ ∈ C•(X) is p̄-allowable
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if both ξ and ∂ξ can be written as an integral combination of p̄-allowable singular sim-

plices. The collection of p̄-allowable chains determines a subcomplex IC p̄
• (X) of C•(X),

called the p̄-intersection chain complex.

The homology of IC p̄
• (X) is denoted by IH p̄

∗ (X) and called the p̄-intersection

homology of X. Applying Hom(−,Z) to IC p̄
• (X) yields the p̄-intersection cochain

complex IC•p̄(X) and the corresponding p̄-intersection cohomology of X, denoted

by IH∗p̄ (X). If A is an abelian group, one can instead begin from C•(X) ⊗ A when

defining p̄-allowable chains to obtain p̄-intersection homology and cohomology

with coefficients in A, IH p̄
∗ (X;A) and IH∗p̄ (X;A).

If X has boundary ∂X, then C•(∂X) ⊂ IC p̄
• (X), and from the resulting quo-

tient complex one obtains the relative p̄-intersection homology and cohomol-

ogy , IH p̄
∗ (X, ∂X) and IH∗p̄ (X, ∂X). One can also consider the corresponding relative

intersection (co)homologies with coefficients in an abelian group A.

Like usual (co)homology, intersection (co)homology is a topological invariant, i.e.

does not depend on the particular stratification of the pseudomanifold (see for exam-

ple [13, Section 5.5]). However, it is no longer a homotopy invariant but instead is a

stratified homotopy invariant (see [13, Definition 4.1.9]). Furthermore, intersection

cohomology does not generally have a cup product structure.

A basic example demonstrating that intersection homology is not a homotopy invari-

ant is the cone formula (see [13, Theorem 4.2.1]). If L is an (n−1)-dimensional closed

manifold, then the (closed) cone cL is an n-dimensional pseudomanifold with boundary
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for which:

IH p̄
∗ (cL) ∼=

 0 if ∗ ≥ n− 1− p̄(n)

H∗(L) if ∗ < n− 1− p̄(n)

The isomorphism in low degrees is induced by the inclusion L ↪→ cL.

2.1.2 Duality

Suppose X is an n-dimensional stratified pseudomanifold (with or without boundary).

Then X is said to be orientable if the dense stratum X − Xn−2 is orientable. An

orientation of X is an orientation of this dense stratum. For more discussion on

orientability of pseudomanifolds, see [13, Section 8.1].

Remarkably, using intersection (co)homology, Poincaré duality can be recovered for

pseudomanifolds when the coefficient group is a field. Duality was first identified in [14],

however the version we state here is closer to [13, Theorem 8.2.4].

Theorem (Poincaré Duality [14], [13] ). Let k denote a field and (p̄, q̄) denote a pair of

complementary perversity functions. Suppose X is an n-dimensional closed, oriented,

stratified pseudomanifold. Then there exist duality isomorphisms:

D : IH∗p̄ (X; k)
'−→ IH q̄

n−∗(X; k)

Likewise, when X has boundary we have Lefschetz duality:

Theorem (Lefschetz Duality [13]). Let k denote a field and (p̄, q̄) denote a pair of

complementary perversity functions. Suppose X is an n-dimensional compact oriented
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stratified pseudomanifold with boundary ∂X. Then there exist duality isomorphisms:

D : IH∗p̄ (X, ∂X; k)
'−→ IH q̄

n−∗(X; k)

D : IH∗p̄ (X; k)
'−→ IH q̄

n−∗(X, ∂X; k)

2.1.3 Witt Spaces and Signature

Closed, oriented manifolds X of dimension 2n, n even, have a well-defined signature

associated to the nondegenerate symmetric intersection pairing :

Hn(X;Q)⊗Hn(X;Q)→ Q

induced by Poincaré duality (recall that the signature of a symmetric pairing is the differ-

ence between the number of positive and negative eigenvalues in a matrix representation

of the pairing). The same cannot be said if we replace manifold by pseudomanifold,

owing to the presence of different perversity functions in the pseudomanifold Poincaré

duality statement. If p̄ and q̄ are complementary, then we only get a nondegenerate

bilinear pairing:

IH p̄
n(X;Q)⊗ IH q̄

n(X;Q)→ Q

However, there is a particular class of pseudomanifolds X, called Witt spaces (see

for example [13, Chapter 9]), for which there are natural isomorphisms IHm̄
∗ (X;Q) ∼=

IH n̄
∗ (X;Q) where m̄ and n̄ denote the lower-middle and upper-middle perversity func-

tions. If X is Witt, we often omit the superscript m̄ or n̄ (which of these we select

doesn’t matter) and simply write IH∗(X;Q).

The simplest examples of spaces that are Witt are those that can be equipped

with pseudomanifold stratifications whose nonempty strata all have even codimension.
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Equidimensional closed complex subvarieties of complex analytic manifolds can be equipped

with such stratifications, and therefore are all Witt.

If X is a closed, oriented Witt space of dimension 2n, n even, then we obtain a

symmetric pairing (see [13, Section 9.3]):

IHn(X;Q)⊗ IHn(X;Q)→ Q

whose signature is called the (Witt) signature of X. If X is in fact a manifold, this

recovers the usual signature of X.

IfM is a compact manifold with boundary ∂M of dimension 2n, n even, the Novikov

signature of (M,∂M) is obtained from a symmetric pairing:

im jn ⊗ im jn → Q

where jn : Hn(M ;Q) → Hn(M,∂M ;Q) is induced by the inclusion of pairs (M, ∅) ↪→

(M,∂M). The Novikov signature can be related to Witt signature in the following way.

Let M̂ denote the space M ∪∂M c(∂M) obtained by coning off the boundary ∂M . Then

the Novikov signature of (M,∂M) equals the Witt signature of M̂ (see for example [19]).

2.2 Intersection Spaces in the Isolated Singularities

Case

The essential ingredient to an intersection space in the isolated singularities case is the

selection of Moore approximations of links of singularities, so we begin there.



13

2.2.1 Moore Approximations

Suppose L is a topological space. Then a degree k Moore approximation for L is

pair (L<k, f<k) where L<k is a topological space and f<k : L<k → L is a continuous map

satisfying:

• Hi(L<k) = 0 for i ≥ k

• f<k∗ : Hi(L<k)→ Hi(L) is an isomorphism for i < k.

In [3], Banagl discusses the existence of Moore approximations for simply-connected

CW-complexes L, though simple-connectivity is far from necessary for existence.

Moore approximations can be related to intersection homology in the following way.

Suppose p̄ is a perversity function, L is an (n − 1)-dimensional manifold, and f p̄ :

L<n−1−p̄(n) → L is a degree n − 1 − p̄(n) Moore approximation. By the cone formula

described in Subsection 2.1.1, it follows that the composition:

L<n−1−p̄(n)
f p̄−→ L ↪→ cL

induces an isomorphism H∗(L)
'−→ IH p̄

∗ (cL).

2.2.2 Intersection Space

Suppose X is an n-dimensional (n ≥ 2) compact oriented stratified pseudomanifold with

isolated singularities , i.e. the pseudomanifold stratification of X has the form:

X = Xn ⊃ X0 ⊃ X−1 = ∅.
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By definition, and because X is compact, X0 is a finite set of points {x1, . . . , xs}. The

x1, . . . , xs have disjoint conic neighborhoods cL1, . . . , cLs where each Li is an (n − 1)-

dimensional compact manifold. Let T ⊂ X denote the disjoint union of the cLi. Observe

that ∂T is the disjoint union of the Li.

Let p̄ denote a perversity function. To every degree n−1−p̄(n) Moore approximation:

f p̄ : ∂T<n−1−p̄(n) → ∂T

in [3] Banagl associates a p̄-intersection space for X:

If p̄X := cone
(
∂T<n−1−p̄(n)

f p̄−→ ∂T ↪→ X − T ◦
)
,

the mapping cone on the composition of the Moore approximation with the inclusion

into X − T ◦, where T ◦ denotes the interior of T .

Banagl proceeds to establish a duality associated to reduced Betti numbers of inter-

section spaces:

Theorem ([3] Thereom 2.12). p̄ and q̄ denote complementary perversity functions. Sup-

pose X is an n-dimensional closed, oriented, stratified pseudomanifold with isolated sin-

gularities. Suppose If p̄X is a p̄-intersection space for X and If q̄X is a q̄-intersection

space. Then there exist non-canonical duality isomorphisms:

D : H̃∗ (If p̄X;Q)
'−→ H̃n−∗ (If q̄X;Q)

A fundamental observation used to to prove this duality (essentially made at the end of

Subsection 2.2.1) is that the composition:

H∗
(
∂T<n−1−p̄(n)

) f p̄∗−→ H∗(∂T )→ IH p̄
∗ (T )
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is an isomorphism. Banagl moreover proves that the rational (co)homology of an inter-

section space depends only on the perversity p̄ and not on the particular choice of Moore

approximation f p̄.

If X happens to be Witt, then m̄-intersection spaces are the same as n̄-intersection

spaces. In this Witt case, we more simply denote an m̄, n̄ intersection space by IfX.

2.2.3 Relation to Smooth Deformations of Hypersurfaces

Suppose f : Cn+1 → C is a holomorphic function. By a deformation of f we mean a

holomorphic function:

F : Cn+1 ×∆→ C

where ∆ ⊂ C is a small open disk centered at the origin, and we require f(−) = F (−, 0).

For λ ∈ ∆ we let fλ(−) denote F (−, λ) so that f = f0. Let V (−) denote the zero set

of the function (−). The restriction of the projection Cn+1 ×∆ → ∆ to V (F ) → ∆ is

called a deformation of V (f). Observe that V (fλ) = V (fλ)× {λ} ⊂ V (F ).

Suppose that f : Cn+2 → C is a homogenous polynomial. Then we define a ho-

mogeneous deformation of f to be a deformation of f such that all the fλ are

homogeneous polynomials. In this case, the V (fλ) determine projective hypersurfaces

in CP n+1 and V (F ) naturally sits inside of CP n+1 × ∆. The restriction of the pro-

jection CP n+1 × ∆ → ∆ to V (F ) → ∆ is called a deformation of (projective)

V (f). Observe that if U ⊂ CP n+1 is a standard affine open chart, then the restriction

(U ×∆) ∩ V (F )→ ∆ is a deformation of the affine hypersurface V (f) ∩ U .

Suppose X ⊂ CP n+1 is a projective hypersurface and π : X → ∆ is a deformation of

X. Let Xλ denote the fiber over λ ∈ ∆. Note that X0 = X. We say that π is a smooth
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deformation of X if the Xλ are smooth projective varieties for all λ 6= 0 (in which

case X −X0 is also smooth) and moreover the restriction X −X0
π−→ ∆−{0} is a smooth

submersion. In particular, by Ehresmann’s fibration theorem, the Xλ for λ 6= 0 are all

diffeomorphic - we call these Xλ smoothings of X.

Suppose f : Cn+1 → C is a holomorphic function, and let p ∈ V (f) ⊂ Cn+1. For

ε > 0 let Sε denote a sphere of radius ε centered at p (which has real dimension 2n+ 1)

and let Kε denote Sε ∩V (f). Then (for example see [12, Section 3.1], though the notion

was introduced by Milnor in [18]) if ε > 0 is sufficiently small, the map:

f/|f | : Sε \Kε → S1

is a smooth fiber bundle over the unit circle called the Milnor fibration of f at p

and whose fiber F is called the Milnor fiber of f at p (the fibration is invariant of

the choice of sufficiently small ε > 0). As with all fiber bundles over the circle, the fiber

F has an associated monodromy homeomorphism h : F → F that is well-defined

up to isotopy.

Suppose V (f) ⊂ CP n+1 is a projective hypersurface and p ∈ V (f) ⊂ CP n+1. The

point p belongs to some standard affine chart U ⊂ CP n+1 and f determines an algebraic

function fU : U → C such that p ∈ V (fU). By the Milnor fiber of p in V (f) we

mean the Milnor fiber of fU at p.

We can now state the following theorem about smooth deformations and intersection

spaces (here we assume lower-middle or upper-middle perversity beecause projective

complex varieties are Witt):

Theorem ([8] Theorem 4.1). Suppose X ⊂ CP n+1 is a projective hypersurface with a

single (isolated) singularity p. Suppose IfX is an intersection space for X. If Xλ is a
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smoothing of X, then:

(i) H∗(IfX;Q) ∼= H∗(Xλ;Q) for ∗ 6= n, 2n.

(ii) Hn(IfX;Q) ∼= Hn(Xλ;Q) if and only if h∗ : Hn(F ;Q)→ Hn(F ;Q) is the identity,

where F is the Milnor fiber of p in X and h is the associated monodromy.

If h∗ 6= id, there is still a relationship between Hn(IX;Q) and Hn(Xλ;Q): their dimen-

sions differ by the rank of the linear map h∗ − id (see [8, Theorem 4.5]). Examples of

isolated hypersurface singularities for which h∗ = id include all nodal singularities for n

odd.

2.3 Intersection Spaces in the Depth One Case

The essential ingredient to an intersection space in the depth one case is the selection of

fiberwise truncations for the boundaries of tubular neighborhoods of the singular sets,

so we begin there.

2.3.1 Fiberwise Truncations

Suppose π : E → B is a topological fiber bundle with fiber L and topological structure

group G, defined for example in [11, Definition 4.2]. In particular, G acts on the left

on L. If G acts on the left on another topological space F , then (E, π) determines

an associated bundle with fiber F equipped with the same base space [11, Section

4.4]. Intuitively, the associated bundle is obtained by replacing fiber L with F , but

preserving the nature of the transition functions (which are determined by elements of
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G). A G-equivariant continuous map F → L determines a morphism of bundles from

the associated bundle with fiber F into (E, π).

Suppose now that f<k : L<k → L is a degree k G-equivariant Moore approx-

imation , i.e. a Moore approximation in which L<k admits a left G-action such that

f<k is G-equivariant. The associated bundle with fiber L<k is denoted by (ft<kE, π<k)

and the morphism of bundles induced by f<k is denoted by F<k : ft<kE → E. The

data (ft<kE, π<k, F<k) is called a degree k fiberwise truncation of (E, π), originally

defined by Banagl-Chriestenson in [7, Definition 6.1].

The (closed) cone cL is naturally equipped with a left G-action. The associated

bundle with fiber cL is denoted by (DE,Dπ) and called the associated cone bundle .

There are natural inclusions E ↪→ DE and B ↪→ DE. If (E, π) is a fiber bundle of

manifolds for which the fiber L is a closed manifold of strictly positive dimension, then

DE is naturally a stratified pseudomanifold with boundary E and stratification:

DE = Xn ⊃ Xn−c = B ⊃ X−1 = ∅

where n = dimE + 1 and c = dimL+ 1.

Fiberwise truncations relate to intersection homology in the following way:

Theorem ([7] Proposition 6.5). p̄ denotes a perversity function. Suppose π : E → B

is a fiber bundle of closed manifolds with closed manifold fiber L of strictly positive

dimension. Set n = dim E + 1 and c = dimL + 1. Let DE denote the associated cone

bundle. If f p̄ : ft<c−1−p̄(c)E → E is a degree c − 1 − p̄(c) fiberwise truncation, then the

composition:

H∗(ft<c−1−p̄(c)E)
f p̄∗−→ H∗(E)→ IH p̄

∗ (DE)



19

is an isomorphism.

As a side note, this theorem presents an obstruction to what bundles admit fiberwise

truncations of a given degree: for the presented composition to be an isomorphism, in

particular H∗(E)→ IH p̄
∗ (DE) needs to be surjective, which is not true in general.

2.3.2 Intersection Space

Suppose X is an n-dimensional stratified pseudomanifold (with or without boundary).

We say that X has depth one if its stratification has the form:

X = Xn ⊃ Xn−c ⊃ X−1 = ∅.

where Xn−c is a nonempty manifold of codimension c ≥ 2, which we will typically denote

by Σ and call the singular set of X.

For example, a stratified pseudomanifold X with (a nonempty set of) isolated sin-

gularities is depth one , with Σ = X0. If DE is the cone bundle associated to a fiber

bundle π : E → B of manifolds whose fiber is a closed manifold of strictly positive

dimension, then DE has the structure of a depth one stratified pseudomanifold with

Σ = B.

In order to use fiberwise truncations, we need a bundle structure. If X has depth

one, then every point in Σ has a neighborhood of the form Rn−c × cL (where L is some

closed manifold of dimension c−1) that naturally projects to Rn−c×{0} ⊂ Σ. However,

in the general class of depth one stratified pseudomanifolds, we may not be able to glue

these projections into a global fiber bundle with base Σ.

To obtain such a bundle structure, we restrict ourselves to the class of depth one

Thom-Mather stratified pseudomanifolds (see [17] for details). Thom-Mather
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manifolds are in particular smoothly stratified, i.e. their strata are smooth manifolds.

Specifically, suppose X is a depth one Thom-Mather stratified pseudomanifold whose

singular set Σ is closed and connected. Then Σ admits a closed tubular neighborhood

T (really a family of tubular neighborhoods) equipped with a retraction π : T → Σ such

that:

• ∂T is a smoothly embedded closed submanifold of X − Σ.

• the restriction π|∂T : ∂T → Σ is a smooth fiber bundle of manifolds with some

closed manifold fiber L of strictly positive dimension.

• (T, π) is isomorphic to the cone bundle associated to (∂T, π|∂T ).

See [7, Proposition 8.2] for details.

With notation and assumptions as above, let p̄ denote a perversity function. Let

n = dim X and c be the codimension of Σ. To every degree degree c− 1− p̄(c) fiberwise

truncation:

f p̄ : ∂T<c−1−p̄(c) → ∂T

in [7] Banagl associates a p̄-intersection space for X:

If p̄X := cone
(
∂T<c−1−p̄(c)

f p̄−→ ∂T ↪→ X − T ◦
)
,

the mapping cone on the composition of the fiberwise truncation with the inclusion into

X − T ◦, where T ◦ denotes the interior of T . This is a generalization of the isolated

singularities intersection case (they agree when both constructions apply).

Unlike in the case of isolated singularities, in the depth one case there can arise local

duality obstructions associated to fiberwise truncations that, if they do not vanish ,
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can preclude intersection spaces associated to closed, oriented pseudomanifolds from

satisfying duality. We detail a more general version of these obstructions in Section 4.4.

If the duality obstructions do vanish, then we have a duality:

Theorem ([7] Thereom 9.5). p̄ and q̄ denote complementary perversity functions. Sup-

pose X is an n-dimensional closed, oriented, depth one, Thom-Mather stratified pseudo-

manifold with connected singular set. Suppose If p̄X is a p̄-intersection space for X and

If q̄X is a q̄-intersection space. If the local duality obstructions associated to f p̄ and f q̄

vanish, then there exist non-canonical duality isomorphisms:

D : H̃∗ (If p̄X;Q)
'−→ H̃n−∗ (If q̄X;Q)

If X happens to be Witt, then m̄-intersection spaces are the same as n̄-intersection

spaces (recall we are referring to the lower middle and upper middle perversity functions).

In this Witt case, we more simply denote an m̄, n̄ intersection space by IfX. Moreover,

we can associate a signature to IfX:

Theorem ([7]). Suppose X is a closed, oriented, depth one, Thom-Mather stratified

Witt space of dimension 2n, n even, with connected singular set. Suppose IfX is an

intersection space for X and that the local duality obstructions associated to f vanish.

Then (associated to an appropriate choice of duality isomorphism) there is a symmetric

bilinear pairing:

Hn(IfX;Q)⊗Hn(IfX;Q)→ Q

whose signature equals the Novikov signature of the manifold with boundary (X−T ◦, ∂T ),

where T is a tubular neighborhood of the singular set.
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2.4 Motivation for Algebraic Intersection Spaces

The following is an informal discussion motivating the algebraic intersection spaces to

be defined in this document.

In the constructions we’ve described of intersection spaces If p̄X associated to a space

X, an essential ingredient was the selection of topological spaces Ap̄ and maps f p̄ : Ap̄ →

∂T (where ∂T is the boundary of a tubular neighborhood of the singular set of X) such

that the composition:

H∗(A
p̄)

f p̄∗−→ H∗(∂T )→ IH p̄
∗ (T )

is an isomorphism. In the isolated singularities case, the map f p̄ was an appropriate

Moore approximation, and in the depth one case, an appropriate fiberwise truncation.

A weakness to the theory is that it requires H∗(∂T ) → IH p̄
∗ (T ) be surjective, which is

not generally true (and less often the more intricate the singular set becomes). This

seems to obstruct an entirely general intersection space construction.

We circumvent this obstruction by working with the image of this map, rather that

IH p̄
∗ (T ) itself. At the same time, we abstract the relevant notions to a chain complex

level (though being sure to define topological analogs along the way). By doing so,

we retain the Betti numbers of the intersection space, which may or may not have

physical relevance (as suggested by the relationship to smooth deformations in the case

of isolated singularities). There are certain features of intersection spaces that we expect

to reappear in our algebraic intersection spaces. Namely, the existence of local duality

obstructions, the presence of global duality when these obstructions vanish, and, for

Witt spaces, a symmetric pairing whose signature is related to the Novikov signature of

(X − T ◦, ∂T ). We will see these features arise as we progress through the paper.
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Chapter 3

Preliminary Results

3.1 Triangulated Categories

The set of tools consisting of the language and results of triangulated categories will

streamline a number of the arguments made throughout this paper. We draw from [21]

throughout this section.

Lemma 3.1.1. Suppose R is a commutative, unital ring and:

A•
f•−→ B•

g•−→ C•
−1−→

is an exact triangle of chain complexes of R-modules. For i ∈ Z set:

Zi = im
[
Hi(A•)

f∗−→ Hi(B•)
]

Yi = coker
[
Hi(B•)

g∗−→ Hi(C•)
]
.

Interpret H•(A•), Z•, and Y• as chain complexes with zero differential. Then there is an

exact triangle:

H•(A•)→ Z• → Y•
−1−→

whose maps are those induced by the maps of the long exact sequence in homology asso-

ciated to the given exact triangle.
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Proof. The given exact triangle induces a long exact sequence in homology, which pro-

vides us the natural identification:

Yi = ker
[
Hi−1(A•)

f∗−→ Hi−1(B•)
]
.

So there is a short exact sequence of chain complexes:

0→ Y•+1 → H•(A•)→ Z• → 0.

By [21] Example 10.4.9, this induces an exact triangle:

Y•+1 → H•(A•)→ Z•
−1−→ .

By the second axiom of triangulated categories, stated in [21], this new triangle induces

by translation another exact triangle:

H•(A•)→ Z• → Y•
−1−→ .

A similar statement for cochain complexes is given below.

Lemma 3.1.2. Suppose R is a commutative, unital ring and:

C•
f•−→ B•

g•−→ A•
+1−→

is an exact triangle of cochain complexes of R-modules. For i ∈ Z set:

Zi = coim
[
H i(B•)

g∗−→ H i(A•)
]

Y i = ker
[
H i(C•)

f∗−→ H i(B•)
]
.
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Interpret H•(A•), Z•, and Y • as cochain complexes with zero differential. Then there is

an exact triangle:

Y • → Z• → H•(A•)
+1−→

whose maps are those induced by the maps of the long exact sequence in cohomology

associated to the given exact triangle.

Proof. The first isomorphism theorem gives a natural identification:

Zi = im
[
H i(B•)

g∗−→ H i(A•)
]
.

The long exact sequence in cohomology of the given exact triangle provides further

identifications:

Zi = ker
[
H i(A•)→ H i+1(C•)

]
Y i = im

[
H i−1(A•)→ H i(C•)

]
.

So there is a short exact sequence of cochain complexes:

0→ Z• → H•(A•)→ Y •+1 → 0.

Proceed with the same argument given in the proof of Lemma 3.1.1 to obtain the desired

exact triangle.

3.2 Tubular Neighborhoods of Singular Sets

Throughout this section, let C denote the category of real subanalytic sets (we refer

to [20] for a description of this category and its properties). Let X denote a compact

subvariety of a real analytic manifold and let Σ ⊂ X denote its singular set.
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Lemma 3.2.1. There exists a C-map f : X → R≥0 such that f−10 = Σ.

Proof. Let M be the real analytic manifold containing X. [20] D.19 provides a C-map

M → R with zero set Σ. Square this map and restrict it to X to obtain the desired

C-map. This argument does not require that X be compact.

Suppose f is a map satisfying the conditions of Lemma 3.2.1. Because X is compact,

f is proper and therefore can be smoothly Whitney stratified into subanalytic sets (see

[20] 1.19 and the following remark). Let S denote such a stratification of X and S ′ the

stratification of R≥0. Because 0-dimensional subanalytic sets are discrete (see [20] 1.15)

there exists a minimal ε0 > 0 for which {ε0} ∈ S ′.

A triple ξ = (f,S, ε0) as in the previous paragraph is called global tubular data

for the singular set of X. Given such data and 0 < ε < ε0 we let T = T (ε) denote

f−1[0, ε] and call it a (closed) tubular neighborhood of Σ in X associated to ξ. T ,

its boundary ∂T , and its interior T ◦ will always be equipped with Whitney stratifications

induced by S (see [16] I.1.3.1).

Lemma 3.2.2. Let ξ be tubular data. Then:

(i) the stratified homeomorphism type of T (ε) does not depend on ε.

(ii) the inclusion ∂T (ε) ↪→ T (ε) − Σ is a codimension preserving stratified homotopy

equivalence.

(iii) for 0 < ε′ < ε < ε0 the inclusions T (ε′)◦ ↪→ T (ε)◦ and T (ε′)◦ − Σ ↪→ T (ε)◦ − Σ are

stratified homotopy equivalences.

Proof. By Thom’s isotopy lemma [12] Theorem 1.3.5 and contractibility of the range,

the restriction f−1(0, ε0) → (0, ε0) is a trivial stratified fiber bundle. We can use this
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trivialization to construct a stratified homeomorphism T (ε′) ∼= T (ε) for any 0 < ε′ <

ε < ε0 and to show that the inclusions in question are codimension preserving stratified

homotopy equivalences (see [13] Definition 2.9.10).

We say that tubular data ξ is pseudomanifold compatible (pc) if and only

if S ∈ ξ induces on X the structure of a pseudomanifold. In other words: the top

dimensional strata of S are dense and the remaining strata have codimension at least

two.

Remark. Tubular data always exists. Pc tubular data ξ exists for example if X is

complex and equidimensional. If ξ is pc, then T inherits the structure of a pseudomani-

fold with boundary, since ∂T admits a collar neighborhood (see [13] Definition 2.7.1) by

Thom’s isotopy lemma.

3.3 Intersection Homology and Cohomology

Let X denote a compact subvariety of a real analytic manifold. Assume X admits pc

tubular data (e.g. X is complex and equidimensional). All tubular data in this section

is assumed to be pc.

We implicitly draw from [13] throughout this section. For basic definitions see for

example [13] Definition 3.1.4, Remark 3.1.5, and Definition 3.4.1.

We begin by proving that the intersection homologies/cohomologies of a tubular

neighborhood T are independent of choices.

Lemma 3.3.1 (Invariance). The intersection homologies and cohomologies of the tubular

neighborhood T , its boundary ∂T , and the pair (T, ∂T ) do not depend on any choices.
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Proof. By [13] Corollary 4.1.11 codimension preserving stratified homotopy equivalences

preserve intersection homologies and cohomologies. Moreover, the intersection homolo-

gies of a pseudomanifold with boundary are naturally isomorphic to those of the pseu-

domanifold minus the boundary. Together with Lemma 3.2.2 (ii) we then reduce to

checking invariance for T ◦, T ◦ − Σ, and the pair they form. By Lemma 3.2.2 (iii) the

choice of ε for fixed ξ doesn’t affect these homologies and cohomologies.

Let ξ and ξ̃ be pc tubular data for X. Because X is compact, any tube for one data

contains a smaller tube for the other data. In particular we can construct a sequence of

tubes:

T0 ⊂ T̃ ⊂ T ⊂ T̃0

corresponding in an alternating fashion to ξ and ξ̃. We may restrict these inclusions to

the open tubes (−)◦ or to the open tubes minus the singular set (−)◦ − Σ. Any com-

position of two of these restricted inclusions by Lemma 3.2.2 (iii) induces isomorphisms

on intersection homologies and cohomologies. A simple argument shows that the same

is true for the central inclusions, namely in the commutative diagram:

T ◦ − Σ T ◦

T̃ ◦ − Σ T̃ ◦

the vertical maps induces isomorphisms on intersection homologies and cohomologies.

From naturality of long exact sequences of pairs and the five lemma, we obtain also

an isomorphism for intersection homologies and cohomologies of the pair. We have

successfully compared the tubular data ξ and ξ̃.

Remark. Our definition of tubular neighborhood is actually unnecessarily restrictive.

If T (ε) for 0 < ε < ε0 is any increasing family of closed neighborhoods of Σ such that:
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(i)
⋂
ε>0 T (ε) = Σ

(ii) the T (ε) are pseudomanifolds whose boundary ∂T (ε) is a submanifold of X − Σ

(iii) the T (ε) satisfy the conditions of Lemma 3.2.2

then such a T (ε) will do equally well, and will not affect the validity of Lemma 3.3.1.

We will use such a tubular neighborhood in Section 6.

The duality captured by any intersection space construction is inseparable from a

Lefschetz duality described by the results of intersection homology and cohomology. To

this end we will need orientability. If X as a pseudomanifold is oriented, then a tubular

neighborhood T inherits an orientation from X.

Lemma 3.3.2. Let (p̄, q̄) be complementary perversity functions, k a field, and T a tubu-

lar neighborhood of Σ. Then there is an exact triangle of (intersection) chain complexes:

C•(∂T ; k)→ IC p̄
• (T ; k)→ IC p̄

• (T, ∂T ; k)
−1−→

and of (intersection) cochain complexes:

IC•q̄ (T, ∂T ; k)→ IC•q̄ (T ; k)→ C•(∂T ; k)
+1−→ .

If X is oriented of dimension n, then there is a natural duality isomorphism between

their (shifted) associated long exact sequences:

· · · Hi(∂T ; k) IH p̄
i (T ; k) IH p̄

i (T, ∂T ; k) · · ·

· · · Hn−i−1(∂T ; k) IHn−i
q̄ (T, ∂T ; k) IHn−i

q̄ (T ; k) · · ·

D' D' D'

Proof. Because ∂T is non-singular (recall the definition of tubular neighborhoods) there

are quasi-isomorphisms IC p̄
• (∂T ; k) ' C•(∂T ; k) and IC•q̄ (∂T ; k) ' C•(∂T ; k). We may
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therefore replace the former with the latter when we only care about complexes up to

quasi-isomorphism.

By the definition of the relative intersection chain complex given in [13] Definition

4.3.7, there is a short exact sequence of chain complexes:

0→ IC p̄
• (∂T ; k)→ IC p̄

• (T ; k)→ IC p̄
• (T, ∂T ; k)→ 0.

This (together with the first paragraph) produces the first distinguished triangle. The

second is obtained analogously. The duality isomorphism between their shifted long

exact sequences is described in the proof of [13] Corollary 8.3.10.

3.4 Linear Algebra

We will exclusively use field coefficients for the main results of the paper. To this end,

we let k denote a field and establish a few lemmas.

Lemma 3.4.1. Suppose f : A → B is a morphism of k-vector spaces with dual map

f ∗ : B∗ → A∗. Then there are natural identifications:

(coker f)∗ = ker (f ∗)

(im f)∗ = coim (f ∗).

Proof. We dualize the exact sequence:

A
f−→ B → coker f → 0

to obtain exact:

0→ (coker f)∗ → B∗
f∗−→ A∗,
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which proves the first identification by showing that (coker f)∗ maps isomorphically onto

ker (f ∗). We prove the second identification by dualizing the exact sequence:

0→ im f → B → coker f → 0

to obtain exact:

0→ (coker f)∗ → B∗ → (im f)∗ → 0

and utilizing the first identification (coker f)∗ = ker (f ∗).

Lemma 3.4.2. Suppose there is a commutative diagram of exact sequences of k-vector

spaces:

· · · Ci+1 Ai Bi Ci Ai−1 · · ·

· · · Fi+1 Di Ei Fi Di−1 · · · .

∂i+1 gi hi ∂i

D′′i+1
'

δi+1

D′i

'

ui vi

D′′i

'

δi

D′i−1

'

Then for each pair (r•, s•), where r• : imh• → B• and s• : im v• → E• are (families) of

sections, there exists an induced isomorphism:

D• = D(r•,s•)
• : E•

'−→ B•

whose description is found in the proof.

Proof. This is the content of [3, Lemma 2.46]. We recreate the argument here, because

it is important in Chapter 7 to understand exactly how D
(r•,s•)
• relates to the the choice

of (r•, s•).

Because the diagram commutes and the rows are exact, there is an induced diagram
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of exact sequences:

0

'ker hi︷ ︸︸ ︷
coker ∂i+1 Bi

imhi︷ ︸︸ ︷
ker ∂i 0

0 coker δi+1︸ ︷︷ ︸
'ker ki

Ei ker δi︸ ︷︷ ︸
im vi

0

ḡi hi

D′i

'

ūi vi

D′′i

'

where we are abusing notation by allowing D′i and D′′i to denote induced isomorphisms.

The sections ri and si give splittings

Bi = im ḡi ⊕ im ri = im gi ⊕ im ri

Ei = im ūi ⊕ im si = imui ⊕ im si.

The isomorphism Di : Ei → Bi induced by the splittings (r•, s•) is described on compo-

nents as follows.

Di(uiα) = giD
′
i(α), α ∈ Di

Di(siβ) = riD
′′
i (β), β ∈ im vi ⊂ Fi
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Chapter 4

Local Construction

4.1 Denotations and Assumptions

Throughout Section 4 we let k denote a field and X a compact subvariety of a real

analytic manifold with singular set Σ. Assume X admits pc tubular data and is oriented

of dimension n (e.g. X is complex and equidimensional). Let T denote a pc tubular

neighborhood of Σ.

If p̄ is a perversity function, for i ∈ Z we define:

Z p̄
i = im

[
Hi(∂T ; k)→ IH p̄

i (T ; k)
]
, Zi

p̄ = (Z p̄
i )∗

Y p̄
i = coker

[
IH p̄

i (T ; k)→ IH p̄
i (T, ∂T ; k)

]
, Y i

p̄ = (Y p̄
i )∗.

We also write Z p̄
• and Y p̄

• (resp. Z•p̄ and Y •p̄ ) if we’d like to interpret these collections of

vector spaces as chain (resp. cochain) complexes with zero differential.

4.2 Duality and the Image of the Boundary

Let p̄ denote a perversity function. To begin, we’d like to overcome the obstruction

discussed in Section 2.4. It will be essential to work with the image of H∗(∂T ; k) →

IH p̄
∗ (T ; k) as opposed to IH p̄

∗ (T ; k) itself, the latter being more in line with the original

approach. We’ve already denoted this collection of vector spaces by Z p̄
∗ . The first step
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in this transition is to understand the “Lefschetz dual” object to Z p̄
∗ , in the sense of

Theorem 3.3.2.

Lemma 4.2.1. For all i ∈ Z there are natural identifications:

Zi
p̄ = coim

[
IH i

p̄(T ; k)→ H i(∂T ; k)
]

Y i
p̄ = ker

[
IH i

p̄(T, ∂T ; k)→ IH i
p̄(T ; k)

]
Proof. If we apply universal coefficients (see [13] Theorem 7.1.4 for the intersection

cohomology version of universal coefficients) and the second identification of Lemma

3.4.1 to the map Hi(∂T ; k)→ IH p̄
i (T ; k) then we obtain the identification:

Zi
p̄ = coim

[
IH i

p̄(T ; k)→ H i(∂T ; k)
]
.

If we next apply universal coefficients and the first identification of Lemma 3.4.1 to the

map IH p̄
i (T ; k)→ IH p̄

i (T, ∂T ; k) then we obtain the identification:

Y i
p̄ = ker

[
IH i

p̄(T, ∂T ; k)→ IH i
p̄(T ; k)

]
.

Lemma 4.2.2. Suppose (p̄, q̄) are complementary perversity functions. There exists an

exact triangle of chain complexes with zero differential:

H•(∂T ; k)→ Z p̄
• → Y p̄

•
−1−→

and an exact triangle of cochain complexes with zero differential:

Y •q̄ → Z•q̄ → H•(∂T ; k)
+1−→ .
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Moreover there is a natural duality isomorphism between their (shifted) long exact se-

quences:

· · · Hi(∂T ; k) Z p̄
i Y p̄

i · · ·

· · · Hn−1−i(∂T ; k) Y n−i
q̄ Zn−i

q̄ · · ·

D' D' D'

Proof. Existence of the first exact triangle is a direct consequence of Lemma 3.1.1 and

Theorem 3.3.2. Existence of the second exact triangle is a consequence of Lemma 3.1.2,

Theorem 3.3.2, and Lemma 4.2.1.

For the isomorphism of long exact sequences, we first recall the diagram from Theo-

rem 3.3.2:

· · · Hi(∂T ;R) IH p̄
i (T ;R) IH p̄

i (T, ∂T ;R) · · ·

· · · Hn−i−1(∂T ;R) IHn−i
q̄ (T, ∂T ;R) IHn−i

q̄ (T ;R) · · ·

D' D' D' .

Because this diagram is an isomorphism of long exact sequences, appealing to the defi-

nition of Z p̄
i we have:

D(Z p̄
i ) = im

[
Hn−1−i(∂T ; k)→ IHn−i

q̄ (T, ∂T ; k)
]

= ker
[
IHn−i

q̄ (T, ∂T ; k)→ IHn−i
q̄ (T ; k)

]
= Y n−i

q̄

where in the last step we have used Lemma 4.2.1. This provides us the middle isomor-

phism of the desired diagram.

To construct the rightmost isomorphism of the desired diagram we first observe that:

D
(
im
[
IH p̄

i (T ; k)→ IH p̄
i (T, ∂T ; k)

])
= im

[
IHn−i

q̄ (T, ∂T ; k)→ IHn−i
q̄ (T ; k)

]
= ker

[
IHn−i

q̄ (T ; k)→ Hn−i(∂T ; k)
]
.
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Therefore D induces an isomorphism between Y p̄
i and Zn−i

q̄ after we make the identifi-

cation of Lemma 4.2.1.

That these isomorphisms fit into a commutative diagram follows from the fact that

all our maps are induced from the already existing commutative diagram of long exact

sequences from which we have been drawing.

4.3 Local Intersection Approximation

Let p̄ denote a perversity function. The results of Section 4.2 are the source of several

desired properties for our intersection space construction. Banagl constructs his inter-

section spaces by first selecting a “local approximation”, local in the sense that it takes

as input only the tubular neighborhood of the singular set. We will do the same, but will

also loosen some constraints by allowing approximations which are merely “algebraic”,

not necessarily topological.

A p̄ algebraic intersection approximation for T with coefficients in k is a

pair (A•, f•) where A• is a chain complex of k-vector spaces and:

f• : A• → C•(∂T ; k)

is a chain map such that the composition:

H•(A•)
f∗−→ H•(∂T ; k)→ Z p̄

•

is an isomorphism. A p̄ topological intersection approximation for T with co-

efficients in k is a pair (A, f) where A is a topological space and f : A → ∂T is a

continuous map such that (C•(A; k), f#) is a local p̄ algebraic intersection approximation.
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Observe that the class of such approximations does not depend on the particular

choice of tubular neighborhood (see Lemmas 3.2.2 and 3.3.1 and their proofs). These

are extensions of Banagl’s “approximations” as indicated by the following examples.

Example 4.3.1. Suppose Σ = {x} is a single point. Then the tubular neighborhood of

Σ is conic: T = cL with cone point x where L is called the link of x. So ∂T = L and

the cone formula (see [13, Theorem 4.2.1]) implies:

IH p̄
• (T ; k) = H<n−1−p̄(n)

• (L; k)

where H
<n−1−p̄(n)
i (L; k) agrees with Hi(L; k) for i < n−1− p̄(n) and vanishes otherwise.

The map:

H•(L; k)→ H<n−1−p̄(n)
• (L; k)

is surjective so that Z p̄
• = H

<n−1−p̄(n)
• (L; k). Consider a Moore approximation (defined

in [3]):

f : L<n−1−p̄(n) → L.

By its defining properties, the composition:

H•(L<n−1−p̄(n);Q)
f∗−→ H•(L;Q)→ H<n−1−p̄(n)

• (L;Q)

is an isomorphism. Therefore (L<n−1−p̄(n), f) is a p̄ topological intersection approxima-

tion for T with coefficients in Q. �

Example 4.3.2. Suppose X has a Whitney stratification consisting of exactly two strata

{X −Σ,Σ} where Σ has codimension c. In particular, this means that Σ is smooth and

connected. Suppose also that T is homeomorphic to the mapping cylinder of a fiber
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bundle projection ∂T → Σ (e.g. T is a tubular neighborhood in the Thom-Mather

sense). Suppose there exists a fiberwise truncation (defined in [7]):

f : ft<c−1−p̄(c)∂T → ∂T.

By [7] Proposition 6.5, the composition:

H•(ft<c−1−p̄(c)∂T ;Q)
f∗−→ H•(∂T ;Q)→ IH p̄

• (T ;Q)

is an isomorphism. Therefore (ft<c−1−p̄(c)∂T, f) is a p̄ topological intersection approxi-

mation for T with coefficients in Q. �

Proposition 4.3.3 (Existence). A p̄ algebraic intersection approximation (A•, f•) for

T with coefficients in k always exists.

Proof. Pick a section s of the composition:

ker [∂• : C•(∂T ; k)→ C•−1(∂T ; k)]→ H•(∂T ; k)→ Z p̄
•

where the first map is the quotient map from cycles to homology classes and the second

is the obvious surjection. The composition:

Z p̄
•

s−→ ker ∂• ↪→ C•(∂T ; k)

is an algebraic intersection approximation.

We next examine the “dual” object to an intersection approximation.

Lemma 4.3.4. Suppose (A•, f•) is a p̄ algebraic intersection approximation for T with

coefficients in k. Then the composition (where the first map is the boundary map of

Lemma 4.2.2):

Y p̄
•+1 → H•(∂T ; k)→ H•(cf•)

is an isomorphism, where cf• denotes the algebraic cone on f•.
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Proof. We will describe three exact triangles, then use the octahedral axiom for trian-

gulated categories (see [21]) to construct a fourth that will imply the theorem.

By definition of “algebraic cone”, we have an exact triangle:

A•
f∗−→ C•(∂T ; k)→ cf•

−1−→ .

A consequence of the definition of algebraic intersection approximation is that the map

f∗ : H•(A•)→ H•(∂T ; k) is injective. Applying this to the long exact sequence from the

aforementioned exact triangle shows that the map H•(∂T ; k) → H•(cf•) is surjective

and the boundary map H•(cf•) → H•−1(A•) is the zero map. We next translate this

exact triangle to obtain another (with the same long exact sequence in homology):

C•(∂T ; k)→ cf• → A•−1
−1−→ .

We apply Lemma 3.1.1 and our observations about the maps from this exact triangle to

find an exact triangle:

H•(∂T ; k)→ H•(cf•)→ H•−1(A•)
−1−→

and translate it back to obtain another exact triangle:

H•(A•)→ H•(∂T ; k)→ H•(cf•)
−1−→ .

By definition of an algebraic intersection approximation, there is an isomorphism of

chain complexes (with zero differential) H•(A•)
'−→ Z p̄

• . Consequently there is an exact

triangle:

H•(A•)→ Z p̄
• → 0

−1−→ .



40

Lastly, by Lemma 4.2.2 there is an exact triangle:

H•(∂T ; k)→ Z p̄
• → Y p̄

•
−1−→ .

Altogether we have exact triangles:

H•(A•)→ H•(∂T ; k)→ H•(cf•)
−1−→

H•(∂T ; k)→ Z p̄
• → Y p̄

•
−1−→

H•(A•)→ Z p̄
• → 0

−1−→ .

where the first map of the third exact triangle is the composition H•(A•)→ H•(∂T ; k)→

Z p̄
• . This is the setting in which the octahedral axiom is applicable. The resulting exact

triangle is:

H•(cf•)→ 0→ Y p̄
•
−1−→

and the boundary map (which must be an isomorphism) is the composition:

Y p̄
•+1 → H•(∂T ; k)→ H•(cf•).

4.4 Local Duality Isomorphism

Let (p̄, q̄) denote complementary perversities. If our intersection spaces are to have a

global duality, a local duality must first be understood. Suppose (Ap̄•, f
p̄
• ) and (Aq̄•, f

q̄
• ) are

p̄ and q̄ algebraic intersection approximations for T with coefficients in k. We consider

the diagram:

Zn−r−1
q̄ Hn−r−1(∂T ; k) Hn−r−1(Aq̄•)

Y p̄
r+1 Hr(∂T ; k) Hr(cf

p̄
• ).

D D
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The upper composition is by definition an isomorphism and the lower composition is

by Lemma 4.3.4 also an isomorphism. So there exists a unique local duality isomor-

phism :

D : Hr(cf
p̄
• )→ Hn−r−1(Aq̄•)

that makes the outer box commute. This describes a local intersection pairing :

(−,−) : H p̄
r (cf p̄• )×Hn−r−1(Aq̄•)→ k, (α, β) = D(α)(β).

We say the rth local duality obstruction for (Ap̄•, f
p̄
• ), (Aq̄•, f

q̄
• ) vanishes if and

only if the entire diagram:

Zn−r−1
q̄ Hn−r−1(∂T ; k) Hn−r−1(Aq̄•)

Y p̄
r+1 Hr(∂T ; k) Hr(cf

p̄
• )

D D D

commutes (this is not necessarily true, because the right box need not commute). The

following theorem captures the physical notion that the local duality obstructions will

vanish if im(f∗) contains no pairs of “stably intersecting” cycles.

Proposition 4.4.1. The rth local duality obstruction for (Ap̄•, f
p̄
• ), (Aq̄•, f

q̄
• ) vanishes if

and only if given any:

α ∈ im f p̄∗ ⊂ H•(∂T ; k), β ∈ im f q̄∗ ⊂ H•(∂T ; k) with |α| = r, |β| = n− r − 1

we have the following vanishing of the intersection pairing on ∂T :

(α, β) = 0.

This vanishing occurs for example if α and β are representable by disjoint cycles.
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Proof. Fix r ∈ Z and consider the commutative diagram whose maps have been named:

Zn−r−1
q̄ Hn−r−1(∂T ; k) Hn−r−1(Aq̄•)

Y p̄
r+1 Hr(∂T ; k) Hr(cf

p̄
• ).

l f∗q̄

D

u

D

v

The rth local duality obstruction vanishes iff:

f ∗q̄D = (f ∗q̄ l)D(vu)−1v

By commutativity we have equivalences:

[
f ∗q̄D = (f ∗q̄ l)D(vu)−1v

]
⇐⇒

[
f ∗q̄D = f ∗q̄Du(vu)−1v

]
⇐⇒

[
∀α ∈ Hr(∂T ; k), f ∗q̄D(α− u(vu)−1vα) = 0

]
.

Next observe that:

{α− u(vu)−1vα | α ∈ Hr(∂T ; k)} = ker v = im [f p̄∗ : Hr(A
p̄
•)→ Hr(∂T ; k)] ;

The second equality is a consequence of a long exact sequence. The “⊂” part of the first

equality can be directly verified. For the “⊃” part of this equality, simply observe that

if α ∈ ker v, then:

α = α− u(vu)−1vα.

Put together we have that the rth local duality obstruction vanishes iff:

D (im [f p̄∗ : Hr(A
p̄
•)→ Hr(∂T ; k)]) ⊂ ker

[
f ∗q̄ : Hn−r−1(∂T ; k)→ Hn−r−1(Aq̄•)

]
.

This holds iff for all α ∈ im f p̄∗ with |α| = r and β = f q̄∗ (γ) ∈ im f q̄∗ with |β| = n− r − 1

we have:

0 = f ∗q̄D(α)(γ) = D(α)(β) = (α, β)
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where we have used the fact that the duality isomorphism induces the intersection pairing

on homology.

Example 4.4.2. Suppose Σ = {p} consists of a single point with link L. Then:

IH p̄
• (T ; k) = H<n−1−p̄(n)

• (L; k), IH q̄
•(T ; k) = H<n−1−q̄(n)

• (L; k)

Therefore, given any algebraic intersection approximations (Ap̄•, f
p̄
• ), (Aq̄•, f

q̄
• ) for T with

coefficients in k, the subsets im f p̄∗ and im f q̄∗ ofH•(∂T ; k) contain classes of degree strictly

less than n − 1 − p̄(n) and n − 1 − q̄(n) respectively. By definition of complementary

perversities we have:

(n− 1− p̄(n))− 1 + (n− 1− q̄(n))− 1 = n− 2.

Since ∂T is an (n−1)-dimensional manifold, no two of these classes can pair to a nonzero

field element. So the local duality obstructions always vanish. �

Example 4.4.3. In this example we show that our local duality obstructions all vanish

if and only if those of Banagl-Chriestenson [7] all vanish (when our local intersection

approximations are fiberwise truncations). We assume Q-coefficients. Suppose X has

a Whitney stratification consisting of exactly two strata {X − Σ,Σ} where Σ has codi-

mension c. Suppose also that T is homeomorphic to the mapping cylinder of a fiber

bundle projection ∂T → Σ, and that there exist fiberwise truncations:

f p̄ : ft<c−1−p̄(c)∂T → ∂T.

f q̄ : ft<c−1−q̄(c)∂T → ∂T.

By Example 4.3.2 these maps are shown to be topological local intersection approxima-

tions and:

Z p̄
• = IH p̄

• (T ), Z q̄
• = IH q̄

•(T )
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from which we also conclude:

Y p̄
• = IH p̄

• (T, ∂T ), Y q̄
• = IH q̄

•(T, ∂T ).

There are also isomorphisms:

H•(cf
p̄
#) ∼= H̃•(cf

p̄), H•(cf
p̄
#) ∼= H̃•(cf

p̄)

where cf p̄ and cf q̄ are topological mapping cones. Therefore by definition our rth local

duality obstruction vanishes if and only if the entire diagram:

IHn−r−1
q̄ (T ) Hn−r−1(∂T ) Hn−r−1(ft<c−1−q̄(c)∂T )

IH p̄
r+1(T, ∂T ) Hr(∂T ) H̃r(cf

p̄)

D D D

commutes. Compare this to the diagram appearing in [7, Proposition 6.10]: up to

labelling and the direction of duality isomorphisms, it is the same, since their Q≥c−1−p̄(c)

is homotopy equivalent to our cf p̄ by [7, Equation (6.4)]. Banagl-Chriestenson prove

that their local duality obstructions vanish if and only if the above diagram commutes

for all r. In other words: the local duality obstructions of Banagl-Chriestenson all vanish

if and only if our local duality obstructions all vanish (where both are associated to a

fixed complementary pair of fiberwise truncations). �

Remark. If X is a Witt space (see [13] Definition 9.1.2 and Proposition 9.1.8) then

so is T . In this case, by definition, the approximations for T for the lower m̄ and upper

n̄ middle perversities would be indistinguishable. So for X Witt, an m̄ approximation

(A•, f•) is an n̄ approximation - we call this a Witt approximation for T with

coefficients in k - and we can talk about vanishing of duality obstructions for (A•, f•)

alone. For simplicity, we state the following theorem for Witt approximations.
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Theorem 4.4.4 (Existence). Suppose X is a Witt space of even dimension n = 2m.

Then there exists a Witt algebraic intersection approximation (A•, f•) for T with coeffi-

cients in k for which all the local duality obstructions vanish.

Proof. We suppress perversity superscripts and subscripts since they yield isomorphic

objects below. Pick a Witt algebraic intersection approximation (A•, f•) with zero dif-

ferential as in Proposition 4.3.3. This allows us to assume A• ⊂ H•(∂T ; k); since

A• = H•(A•) and the map H•(A•)→ H•(∂T ; k) is injective by definition.

We will replace all the Ar for r ≥ m and leave unchanged all the Ar for r < m. We

do this as follows. Fix r < m and set s = 2m− 1− r ≥ m. Replace our given As with

the subspace of Hs(∂T ; k) on which D(Ar) ⊂ Hs(∂T ; k) vanishes. We pick a map:

fs : As → Cs(∂T ; k)

by selecting a section of the quotient map {s-cycles of ∂T} → Hs(∂T ; k), and then using

the composition:

As Hs(∂T ; k) {s-cycles} Cs(∂T ; k).

We must now check two things. First, that the composition:

As ↪→ Hs(∂T ; k)→ Zs

is an isomorphism. Second, that the rth local duality obstruction vanishes (observe that

Proposition 4.4.1 implies we only have to check vanishing for r < n, because this leads

to vanishing for all r). Because the differentials of our old and new A• are zero, there is

nothing else to worry about.
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By Lemma 4.2.2 we have a commutative diagram of short exact sequences (where we

have arbitrarily assigned names to some maps and considered injections as inclusions):

0 Zs Hs(∂T ; k) Y s+1 0

0 Yr+1 Hr(∂T ; k) Zr 0.

u

D

'

D

'

v

D

'

By definition and from the diagram we have dimAr = dimZr = dimY s+1. By construc-

tion, the codimension of As in Hs(∂T ; k) is equal to the dimension of Ar. Combining

this with the diagram of short exact sequences we have:

dimAs = dimHs(∂T ; k)− dimZr = dimHs(∂T ; k)− dimY s+1

= dimZs = dimZs.

This is a start, for we have shown that the dimensions of As and Zs coincide. We now

need only show that As does has trivial intersection with the kernel of Hs(∂T ; k)→ Zs

to conclude that As is suitable for an algebraic intersection approximation. Suppose

towards a contradiction that it has nontrivial intersection with this kernel. From the

short exact sequence:

0→ Ys+1 ↪→ Hs(∂T ; k)→ Zs → 0

if follows that As∩Ys+1 is nontrivial. Pick a function g ∈ Y s+1 which does not vanish on

As∩Ys+1. Our diagram identifies Y s+1 with Zr, and Ar ⊂ Hr(∂T ; k) maps isomorphically

onto Zr under v, so there exists α ∈ Ar with:

g = Dv(α) = uD(α)

The map u is none other than the restriction to Ys+1. So the fact that g = uD(α)

does not vanish on As ∩ Ys+1 implies D(α) does not vanish on As. This contradicts the
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definition of As. Hence, in fact As ∩ Ys+1 = 〈0〉 and the composition:

As ↪→ Hs(∂T ; k)→ Zs

is an isomorphism.

Next we verify vanishing of the rth local duality obstruction. We know that D(Ar)

vanishes on As. Therefore for all α ∈ Ar and β ∈ As we have:

D(α)(β) = (α, β) = 0.

Now apply Proposition 4.4.1.
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Chapter 5

Global Construction

5.1 Denotations and Assumptions

Throughout Chapter 5 we let k denote a field and X a compact subvariety of a real ana-

lytic manifold with singular set Σ. Assume X admits pc tubular data and is oriented of

dimension n (e.g. X is complex and equidimensional). Let T denote a pc tubular neigh-

borhood of Σ. Let (p̄, q̄) denote complementary perversity functions. Let (Ap̄•, f
p̄
• ) and

(Aq̄•, f
q̄
• ), respectively (Ap̄, f p̄) and (Aq̄, f q̄), denote algebraic, respectively topological,

intersection approximations for T with coefficients in k.

5.2 Intersection Space

We are now in a position to define a global space extending earlier definitions of inter-

section space. The algebraic intersection space If p̄•X associated to (Ap̄•, f
p̄
• ) is the

algebraic cone on the composition:

Ap̄•
f p̄•−→ C•(∂T ; k)

incl•−−→ C•(X − T ◦; k).
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The topological intersection space If p̄X associated to (Ap̄, f p̄) is the topological

cone on the composition:

Ap̄
f p̄−→ ∂T

incl−−→ X − T ◦.

We achieve a global duality assuming the local duality obstructions vanish.

Theorem 5.2.1. Assume the local duality obstructions vanish for (Ap̄•, f
p̄
• ), (Aq̄•, f

q̄
• ).

Then there exist non-canonical duality isomorphisms:

D : H∗(If p̄•X)
'−→ Hn−∗(If q̄•X).

Proof. We temporarily omit the perversity superscripts and subscripts, as the following

statements about distinguished triangles hold for both. We have a set of three distin-

guished triangles:

A•
f•−→ C•(∂T ; k)→ cf•

−1−→

C•(∂T ; k)
incl•−−→ C•(X − T ◦; k)→ C•(X − T ◦, ∂T ; k)

−1−→

A•
incl•◦f•−−−−→ C•(X − T ◦; k)→ If•X

−1−→ .

The octahedral axiom implies the existence of a third distinguished triangle:

cf• → If•X → C•(X − T ◦, ∂T ; k)
−1−→ .

The octahedral axiom moreover relates the maps in these four distinguished triangles;

namely we have the following (every map below is a map from one of these distinguished

triangles, and a shift by “−1” in a subscript indicates we are considering a boundary
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map):

[C•(X − T ◦, ∂T ; k)→ cf•−1] = [C•(X − T ◦, ∂T ; k)→ C•−1(∂T ; k)→ cf•−1] (5.1)

[cf• → A•−1] = [cf• → If•X → A•−1] (5.2)

[C•(X − T ◦; k)→ C•(X − T ◦, ∂T ; k)] = [C•(X − T ◦; k)→ If•X → C•(X − T ◦, ∂T ; k)]

(5.3)

[C•(∂T ; k)→ cf• → If•X] = [C•(∂T ; k)→ C•(X − T ◦; k)→ If•X] (5.4)

[If•X → C•(X − T ◦, ∂T ; k)→ C•−1(∂T ; k)] = [If•X → A•−1 → C•−1(∂T ; k)] (5.5)

We will only use the first of these in this proof, but the rest will be important later.

We now reintroduce perversity subscripts and superscripts. Consider two long exact

sequences obtained from the aforementioned distinguished triangles:

· · · Hn−r−1(Aq̄•) Hn−r(If q̄•X) Hn−r(X − T ◦; k) Hn−r(Aq̄•) · · ·

· · · Hr(cf
p̄
• ) Hr(If p̄•X) Hr(X − T ◦, ∂T ; k) Hr−1(cf p̄• ) · · · .

D D D

If we can prove that this diagram is commutative, then we can use Lemma 3.4.2 to

construct (non-canonical) duality isomorphisms. The left (bigger) rectangle above com-

mutes by exactness. We next use vanishing of duality obstructions to show that the

right square also commutes. By our observation (1) about the boundary map of the

lower long exact sequence, the square of interest can be decomposed:

Hn−r(X − T ◦; k) Hn−r(∂T ; k) Hn−r(Aq̄•)

Hr(X − T ◦, ∂T ; k) Hr−1(∂T ; k) Hr−1(cf p̄• )

D D D

The leftmost box in this decomposed diagram always commutes, and the rightmost box

commutes owing to the vanishing of the (r − 1)th local duality obstruction.

We have successfully verified the hypotheses of Lemma 3.4.2.
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There is an analogous statement for the topological intersection space.

Corollary 5.2.2. Assume the local duality obstructions for (Ap̄, f p̄), (Aq̄, f q̄) vanish.

Then there exist non-canonical duality isomorphisms:

D : H̃r(If p̄X; k)
'−→ H̃n−r(If q̄X; k).

Proof. This is a consequence of the arguments from Theorem 5.2.1, since there for either

perversity (omit the superscripts) there is an exact triangle:

C•(A; k)
incl•◦f#−−−−−→ C•(X − T ◦; k)→ C̃•(IfX)

−1−→ .

associated to a topological mapping cone.

Remark. While the cochain complex C•(IfX) of a topological intersection space is

naturally a differential graded k-algebra under cup product, the dual complex (If•X)∗ of

an algebraic intersection space does not seem to have a natural multiplicative structure.

Therefore finding topological, as opposed to just algebraic, intersection spaces will prove

to be an interesting task.

Example 5.2.3. We show that, when the local intersection approximation is a fiberwise

truncation, our topological intersection space coincides with the Banagl-Chriestenson

intersection space. With assumptions as in Example 4.3.2 we have a fiberwise truncation

f : ft<c−1−p̄(c)∂T → ∂T . As in Example 4.3.2, this fiberwise truncation constitutes a

topological intersection approximation for T . The associated topological intersection

space is the cone on the composition:

ft<c−1−p̄(c)∂T → ∂T → X − T ◦.
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This is precisely [7, Definition 9.2], the definition of the Banagl-Chriestenson intersection

space. �

Remark. There is not an obvious general sheaf interpretation of algebraic intersection

space cohomology. This is because the local intersection approximation takes as input

the not entirely local map C•(∂T ; k)→ IH•(T ; k). This in contrast to the AF intersec-

tion space pairs of [1], but we will show in the following chapter that the AF intersection

space is in general distinct from our algebraic intersection space: in an example, we will

show that homologies of the two do not even coincide.



53

Chapter 6

A Worked out Example

6.1 Denotations and Assumptions

In this chapter, we will deal only with spaces with even-dimensional strata, so without

further comment we use middle-perversity intersection homology. Let X ⊂ CP 2 denote

an irreducible degree three nodal hypersurface with exactly one singular point p. Let B

denote a closed tubular neighborhood of p in X whose boundary is denoted by L. Let

M denote X −B◦. Observe that:

• X is topologically a pinched torus.

• B ∼= cL.

• L ∼= S1 t S1.

• M ∼= S1 ×D1.

Let X ⊂ CP 3 denote the projective cone on X. Let∞ denote (0 : 0 : 0 : 1) ∈ CP 3. The

vector bundle C ↪→ CP 3−{∞} → CP 2 restricts to a vector bundle C ↪→ X −{∞} → X

which we denote by (X , π). We also let:

• ρ denote the restriction of vector bundle X over p.

• B denote the restriction of vector bundle X over B.
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• L denote the restriction of vector bundle X over L.

• M denote the restriction of vector bundle X over M .

• ρ denote the line in CP 3 connecting p with ∞, i.e. the closure of ρ in X , also the

singular set of X .

• S(−) denote the sphere bundle associated to a vector bundle (−).

• D(−) denote the disk bundle associated to a vector bundle (−).

6.2 Setting Up the Example

We will explicitly construct a topological intersection space for the projective cone X

on X ⊂ CP 2. Moreover we will show that the corresponding local duality obstructions

vanish. This example is of interest, because it is depth two with pseudomanifold strati-

fication X ⊃ ρ ⊃ {∞}, so the topological methods of [7] do not apply. We will also use

this example to distinguish our construction from the construction of [1].

To rigorously carry out this construction we need to analyze X in detail. Topologi-

cally it is the Thom space of the vector bundle (X , π) as described for example in [10,

Page 18], therefore is the homotopy pushout of the following diagram involving disk and

circle bundles:

X = hp (DX ← SX → cSX ) .

where cSX is the cone on SX . The singular set ρ is the homotopy pushout:

ρ = hp (Dρ← Sρ→ cSρ)
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We then define:

T = hp (DB ← SB → cSX ) .

Claim 1. T is a closed tubular neighborhood of ρ in X in the sense of the remark fol-

lowing Lemma 3.3.1. Moreover, the nonsingular boundary ∂T is the homotopy pushout:

∂T = hp (DL ← SL → SM)

and X − T ◦ is the homotopy pushout:

X − T ◦ = hp (DM← SM→ SM)

Proof. Consider the inclusions of diagrams:

DX SX cSX

DB SB cSX

Dρ Sρ cSρ.

Each vertical inclusion from the lower half of the diagram is the inclusion of a deformation

retract, so that the inclusion of homotopy pushouts ρ → T is also the inclusion of a

deformation retract. This provides our family T (ε) as in the remark following Lemma

3.3.1. Therefore, once we check in the following paragraph that ∂T is a submanifold of

X , we have our tubular neighborhood T .

By inspection, the boundary of ∂T in X is the homotopy pushout:

hp (DL ← SL → SM) .

Because DL and SM are manifolds with boundary SL, it follows that the homotopy

pushout ∂T is in fact a closed manifold. By another inspection the complement X − T ◦
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is the homotopy pushout:

hp (DM← SM→ SM)

which again is a manifold with boundary ∂T . In particular, ∂T is a submanifold of X .

We will need to analyze various homologies and intersection homologies related to

the tube in order to construct an intersection space. First we find:

Claim 2.

IH∗(SX ) =


Z if ∗ = 0, 3

Z3 if ∗ = 1

0 otherwise.

Proof. Since X is a pinched torus, it has normalization ν : S2 → X where S2 is a

two-sphere. Let SZ and ν̂ be such that the below is a pair of pullback diagrams:

SZ SX S5

S2 X CP 2.

ν̂

ν

Then ν̂ is a normalization and SZ is a principal circle bundle over S2. Each principal

circle bundle corresponds to an element of H2(S2;Z). Let us determine to which element

SZ corresponds.

Since S5 → CP 2 is the pullback of the universal circle-bundle S∞ → CP∞ under

the inclusion, by composing pullbacks it follows that SZ → S2 is the pullback of the

universal bundle under:

S2 ν−→ X ↪→ CP 2 ↪→ CP∞.
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We analyze this map on second cohomology. Both ν and CP 2 ↪→ CP∞ induce isomor-

phisms on second cohomology. Because X is degree 3 the map Z ∼= H2(CP 2;Z) →

H2(X;Z) ∼= Z is multiplication by ±3. Therefore the composition H2(CP∞;Z) →

H2(S2;Z) is multiplication by ±3. Hence SZ is the unique principal circle bundle cor-

responding to ±3 ∈ H2(S2;Z). A standard argument then shows that:

H∗(SZ) =


Z if ∗ = 0, 3

Z3 if ∗ = 1

0 otherwise.

But ν̂ : SZ → SX is a normalization, so as detailed in [10, I.1.6] induces an isomorphism

H∗(SZ) ∼= IH∗(SX ).

Next we work on the rational intersection homology of tubular neighborhood T .

Claim 3.

IH∗(T ;Q) =


Q if ∗ = 0

Q2 if ∗ = 2

0 otherwise.

Proof. Given the description of T as the homotopy pushout of:

DB ← SB → cSX

and the fact that DB and SB are circle bundles over contractible B, we obtain a long

exact sequence:

· · · → IHi(B × S1;Q)→ IHi(B ×D2;Q)⊕ IHi(cSX ;Q)→ IHi(T ;Q)→ · · ·
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which, using the cone formula and Künneth for intersection homology (see [13, Theorem

4.2.1, Corollary 6.4.10]), becomes:

· · · →
[
H<1
∗ (L;Q)⊗H∗(S1;Q)

]
i
→
[
H<1
∗ (L;Q)⊗H∗(D2;Q)

]
i
⊕ IH<2

i (SX ;Q)

→ IHi(T ;Q)→ · · · .

Recall that L ∼= S1 t S1. For i = 0 the first map is given by:

H0(L;Q)→ H0(L;Q)⊕ IH0(SX ;Q).

which is obviously injective. Then for i = 1 we have exact:

H0(L;Q)⊗H1(S1;Q)→ IH1(SX ;Q)→ IH1(T ;Q)→ 0.

But IH1(SX ;Q) = 0 =⇒ IH1(T ;Q) = 0. For i = 2 we have:

0→ IH2(T ;Q)→ H0(L;Q)⊗H1(S1;Q)→ 0

which implies IH2(T ;Q) ∼= Q2. The remaining homology Q-vector spaces are trivially

computed owing to the vanishing of many terms in the long exact sequence.

Next let’s provide exact descriptions for X − T ◦ and ∂T .

Claim 4. X − T ◦ ∼= S1 ×D3 and ∂T ∼= S1 × S2.

Proof. By Claim 1 the space X − T ◦ is the homotopy pushout:

hp (DM← SM→ SM)

which (since SM has a collar neighborhood in DM) is homeomorphic to DM. But

H2(M ;Z) = 0 so the complex vector bundle M is trivial. Hence:

DM∼= M ×D2 ∼= S1 ×D1 ×D2 ∼= S1 ×D3.
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6.3 The Intersection Space

We rely on the results of the preceding section to construct a topological intersection

approximation. Let S2 f−→ S1×S2 ∼= ∂T be the inclusion of a sphere such that f induces

an isomorphism on second homology.

Claim 5. The pair (S2, f) is a topological intersection approximation for T with coef-

ficients in Q.

Proof. We first must understand the map H•(∂T ;Q) → IH•(T ;Q) and its image Z•.

For dimensional reasons, the description of the map is only unclear in degree two. In

this case we have exact:

IH3(T, ∂T ;Q)→ H2(∂T ;Q)→ IH2(T ;Q).

Duality shows that:

IH3(T, ∂T ;Q) ∼= IH1(T ;Q)∗ = 0

and consequently that the induced map H2(∂T ;Q) → IH2(T ;Q) is an injection. We

explicitly specify:

Z∗ =


im [H0(∂T ;Q) ↪→ IH0(T ;Q)] if ∗ = 0

im [H2(∂T ;Q) ↪→ IH2(T ;Q)] if ∗ = 2

0 otherwise.

The map H∗(S
2;Q)

f∗−→ H∗(∂T ;Q) is an isomorphism for ∗ = 0, 2 and H∗(S
2;Q) vanishes

otherwise. So the composition:

H•(S
2;Q)

f∗−→ H•(∂T ;Q)→ Z•

is an isomorphism.
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We have a topological intersection approximation for the tube T , so are granted a

topological intersection space IfX . It is obtained by coning off an embedded S2 in the

boundary ∂T ∼= S1×S2 of X − T ◦. The long exact sequence associated to the inclusion

S2 ↪→ S1 ×D3 ∼= X − T ◦ gives:

H∗(IfX ;Q) =

 Q if ∗ = 0, 1, 3

0 otherwise.

Alternatively, check that IfX ' S1∨S3. The dual Betti numbers of IfX seem to match

up. In fact this is because:

Claim 6. The local duality obstructions vanish for the intersection approximation S2 f−→

∂T . Therefore, the intersection space IfX satisfies duality.

Proof. As usual we set:

Z• = imH•(∂T ;Q)→ IH•(T ;Q)

Y• = cokerH•(T ;Q)→ IH•(T, ∂T ;Q).

Consider the diagram:

Z∗3−r H3−r(∂T ;Q)∗ H3−r(S
2;Q)∗

Yr+1 Hr(∂T ;Q) Hr(cf#)

f∗

D D D

which a priori need not commute. The left box always commutes, and the outer box

commutes by construction. The local duality obstruction vanishes if and only if the right

box also commutes.

Commutativity is obvious when r 6= 1, 3 because the upper-rightmost term vanishes.

When r = 1 or r = 3 the map f ∗ is an isomorphism (for r = 1 see the proof of Claim 5),
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from which it can derived that all maps are isomorphisms, in which case the box again

commutes (owing to the commutativity of the left box and the outer box).

Remark. With some effort, this example can be extended to the projective cone on

any irreducible hypersurface in CP 2 with isolated singularity. In this general case, the

topological local intersection approximation will be composed of a wedge of spheres and

circles. Again, the local duality obstructions will vanish.

6.4 Comparison with the AF intersection space.

We can compare with the method introduced in [1], and will show that their AF in-

tersection space pair is distinct from our notion of algebraic intersection space even on

the level of homology. Since the strata ρ and {∞} are contractible, [1, Theorem 3.30]

implies that their construction applies. We avoid excruciating detail, choosing only to

outline the construction of this AF intersection space pair
(
IXAF , ρAF

)
.

[1] requires a decomposition of the tubular neighborhood T , which we provide in this

paragraph. Keeping in mind the homotopy pushout descriptions:

ρ = hp (Dρ← Sρ→ cSρ) , T = hp (DB ← SB → cSX )

with cone point ∞, we define:

ρ1 = hp (Dρ← Sρ→ Sρ) , T1 = hp (DB ← SB → SB) , E1 = hp (DL ← SL → SL)

ρ0 = cSρ, T0 = cSX , E0 = SX .

Observe that:

• T1 ∩ ρ = ρ1, T0 ∩ ρ = ρ0, and ρ0 ∩ ρ1 = Sρ.
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• E1 = ∂T1 ∩ (X − T ◦) and E0 = ∂T0.

• E1 fibers trivially over ρ1 with fiber L.

• T1 = cyl (E1 → ρ1), the mapping cylinder of the bundle projection.

• the pair (E0, Sρ) fibers trivally over {∞} with fiber (SX , Sρ).

• (T0, ρ0) ∼= cyl ((E0, Sρ)→ {∞}), the mapping cylinder pair of the pair of bundle

projections. Since {∞} is a point set, this is actually a cone pair.

• ∂T0 ∩ ∂T1 = SL = E1|Sρ, the restricted fiber bundle over Sρ.

• ∂T0∩T1 = SB = cyl (E1|Sρ → Sρ), the mapping cylinder of the bundle projection.

• ∂T0 = SM∪E1|Sρ cyl (E1|Sρ → Sρ)

Keep these observations in mind when considering the construction detailed in the fol-

lowing paragraph.

The essence of the [1] construction for this example (up to homotopy, not word-for-

word) is the following:

(i) Select a fiberwise truncation ft<1E1 → E1 of the trivial bundle E1 → ρ1. Define

TAF1 = cyl (ft<1E1 → ρ1), the mapping cylinder of the bundle projection.

(ii) Define a Step 1 AF intersection space:

IXAF,1 = (X − T ◦) ∪ft<1E1 T
AF
1

by gluing TAF1 to X − T ◦ via:

TAF1 ←↩ ft<1E1 → E1 ↪→ X − T ◦

Effectively, we have deleted T from X, then replaced T1 with TAF1 .
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(iii) Define pair:

∂TAF0 = SM∪ft<1E1|Sρ cyl (ft<1E1|Sρ → Sρ) ⊂ IXAF,1.

and interpret
(
∂TAF0 , Sρ

)
as a pair of fiber bundles over the point set {∞}.

(iv) Select a fiberwise truncation of pairs
(
∂TAF0 , Sρ

)
<2
→ (∂TAF0 , Sρ) of the pair of

fiber bundles
(
∂TAF0 , Sρ

)
→ {∞}. Set (TAF0 , ρAF0 ) = cyl

(
(∂TAF0 , Sρ)<2 → {∞}

)
,

the mapping cylinder pair of the pair of bundle projections.

(v) Define the AF intersection space pair:

(
IXAF , ρAF

)
= (IXAF,1, ρ1) ∪(∂TAF0 ,Sρ)

<2

(
TAF0 , ρAF0

)
by gluing (TAF0 , ρAF0 ) to (IXAF,1, ρ1) via:

(
TAF0 , ρAF0

)
←↩
(
∂TAF0 , Sρ

)
<2
→
(
∂TAF0 , Sρ

)
↪→
(
IXAF,1, ρ1

)
.

Effectively, we have replaced (T0, ρ0) with
(
TAF0 , ρAF0

)
.

The rational homology of the pair
(
IXAF , ρAF

)
has the potential to satisfy dual-

ity, and is what we will compare the rational homology of our algebraic intersection

spaces against. Having outlined the construction, let’s select fiberwise truncations and

determine an explicit AF intersection space.

We include the following claims without proof, as they can be verified in a straight-

forward manner.

Claim 7. Let L<1 = {∗}t {∗} ↪→ L be the inclusion of two points into the two disjoint

circles that make up L. Let L<1 denote the restriction of bundle L → L above subspace
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L<1. The space L<1 like L can also be interpreted as a trivial bundle over ρ, but with

fiber L<1. Then:

ft<1E1 = hp (DL<1 ← SL<1 → SL<1) ↪→ E1

is a fiberwise truncation of bundles over ρ1. It is an inclusion.

Claim 8. Define BAF = cyl (L<1 → p). It is a subset of cyl(L → p) = B. Let BAF

denote the restriction of B → B above subspace BAF . Then TAF1 from (i) of the AF

construction is:

TAF1 = hp
(
DBAF ← SBAF → SBAF

)
.

It is a subset of T1.

Claim 9. Define IXAF = M ∪ BAF . It is a subset of X that is homotopy equivalent

to a wedge of two circles. Let IXAF denote the restriction of X → X above subspace

IXAF . It is a trivial bundle because IXAF has vanishing second cohomology. Then the

Step 1 AF intersection space IXAF,1 is:

IXAF,1 = hp
(
DIXAF ← SIXAF → SIXAF

)
and ∂TAF0 from (iii) of the AF construction is:

∂TAF0 = SIXAF .

It is a subset of ∂T0.

Claim 10. The pair
(
∂TAF0 , Sρ

)
=
(
SIXAF , Sρ

)
, interpreted as a pair of bundles over

{∞}, has fiberwise truncation:(
SIXAF , Sρ

)
<2

=
(
IXAF , p

)
↪→
(
SIXAF , Sρ

)
where the inclusion is any section of the trivial bundle pair

(
SIXAF , Sρ

)
→
(
IXAF , p

)
.
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Because all our truncation are inclusions, the associated AF intersection space IXAF

is a subset of X . We describe the pair
(
IXAF , ρAF

)
:

Claim 11. Both IXAF and ρAF are contractible. Therefore H∗
(
IXAF , ρAF

)
vanishes

identically.

Proof. By Claims 9 and 10 and the AF construction, one verifies that the AF intersection

space pair is described by the following mapping cones:

IXAF
∼= c

(
IXAF ↪→ DIXAF

)
ρAF
∼= c (p ↪→ Dρ)

where (IXAF , p) ↪→ (DIXAF , Dρ) is the inclusion of a section of the trivial bundle

pair
(
SIXAF , Sρ

)
→
(
IXAF , p

)
. But IXAF ⊂ DIXAF and p ⊂ Dρ are deformation

retracts. Therefore IXAF and ρAF are contractible.

We have shown that H∗
(
IXAF , ρAF

)
vanishes identically. On the other hand, sup-

pose we are given any algebraic intersection approximation (A•, f•) for T with coefficients

in Q, and associated algebraic intersection space If•X. Then we have the following exact

sequence:

H1(A•)→ H1(∂T ;Q)→ H1(If•X)

But H1(A•) ∼= Z1 = 0 (see Proof of Claim 5) and H1(∂T ;Q) ∼= Q together imply

H1(If•X) 6= 0. In other words, our notion of intersection space is distinct from the AF

notion. It seems difficult to compare them in general.
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Chapter 7

Intersection Space Pairing

7.1 Denotations and Assumptions

Throughout Chapter 7 we let k denote a field and X a compact subvariety of a real

analytic manifold with singular set Σ. Assume X admits pc tubular data and is oriented

of even dimension 2n (e.g. X is complex and equidimensional). Let T denote a pc

tubular neighborhood of Σ. Assume X is a Witt space and (A•, f•) is a Witt algebraic

approximation for T with coefficients in k for which the local duality obstructions vanish.

Recall that an approximation for a Witt space is said to be Witt if it is either a lower m̄

or upper n̄ middle perversity approximation, and that distinguishing between the two

is unnecessary as the constructed objects are naturally isomorphic. We thus omit any

perversity subscripts and superscripts (assuming them to be either m̄ or n̄, distinction

unnecessary).

We also use this section as a grand collection of names and properties of maps. We

give names to the following natural maps, all of which sit inside exact sequences (see
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preceding chapters to understand these sequences):

H•(cf•)
u•−→ H•(If•X)

v•−→ H•(X − T ◦, ∂T ; k)

H•(X − T ◦; k)
h•−→ H•(If•X)

g•−→ H•−1(A•)

H•(∂T ; k)
ι•−→ H•(X − T ◦; k)

j•−→ H•(X − T ◦, ∂T ; k)
δ•−→ H•−1(∂T ; k)

H•(∂T ; k)
`•−→ H•(cf•)

0−→ H•−1(A•)
f•−1−−→ H•−1(∂T ; k)

where maps that sit in the same row are sequential in a long exact sequence. Next we

gather the relationships between these maps (all of which can be found in the proof of

Theorem 5.2.1):

j• = h•v•

0 = g•u•

h•ι• = u•`•

f•−1g• = δ•v•

`• is surjective and f• is injective.

We consider it allowable to use these properties without comment. The dual of a map,

u• for example, will be denoted by u•. Lastly we name the duality isomorphisms:

Df• : H•(cf•)
'−→ H2n−1−•(A•)

D∂ : H•(∂T ; k)
'−→ H2n−1−•(∂T ; k)

DL : H•(X − T ◦, ∂T ; k)
'−→ H2n−•(X − T ◦; k)

D′L : H•(X − T ◦; k)
'−→ H2n−•(X − T ◦, ∂T ; k)

where “L” indicates Lefschetz duality. For α ∈ H•(X − T ◦; k) and β ∈ H2n−•(X −
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T ◦, ∂T ; k) we have:

D′L(α)(β) = (−1)|α||β|DL(β)(α)

since these duality isomorphisms (or more specifically their inverses) can be understood

in terms of cup products, which are anti-commutative. The duality isomorphisms are

related to each other as follows (again these properties are allowable to use without

comment):

Df•`• = f 2n−1−•D∂

D′Lι• = δ2n−•D∂

DLj• = j2n−•D′L.

where the first is a direct consequence of the local duality obstructions vanishing, and the

second two follow from commutativity of the duality isomorphism diagram relating the

long exact sequence of the pair (X − T ◦, ∂T ; k) in homology to the long exact sequence

of the pair in cohomology.

7.2 Families of Sections

We would like our duality isomorphisms on the intersection space to have some geometric

significance, and to give us a meaningful intersection space pairing. In this section, we

describe how duality isomorphisms are selected.

Lemma 3.4.2 gives us insight into the particular nature of a duality isomorphism

DIX : H•(If•X)→ H2n−•(If•X). Consider the commutative diagram of exact sequences
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from the previous section:

· · · H2n−i−1(A•) H2n−i(If•X) H2n−i(X − T ◦; k) · · ·

· · · Hi(cf•) Hi(If•X) Hi(X − T ◦, ∂T ; k) · · · .

g2n−i
h2n−i

Df•

ui vi

DL

where g2n−i = (g2n−i)
∗ and h2n−i = (h2n−i)

∗ are dual maps to the maps on homology.

By Lemma 3.4.2, the intersection space duality isomorphism is constructed by selecting

families of sections :

r• : imh• → H•(If•X)

s• : im v• → H•(If•X)

where we will utilize the identification imh• = (coimh•)
∗ asserted by Lemma 3.4.1 to

write r• = (r•)
∗ where r• : H•(If•X) → coimh• is a retraction of h• : coimh• ↪→

H•(If•X). As in the proof of Lemma 3.4.2 (and with indices shifted for the family of

sections on cohomology) we thus have duality isomorphism:

DIX = D(r•,s•) : H•(If•X)
'−→ H2n−•(If•X)

which is entirely described by:

α ∈ Hi(cf•) =⇒ DIX(uiα) = g2n−iDf•α

β ∈ im vi =⇒ DIX(siβ) = r2n−iDLβ.

This will allow us to describe the intersection space pairing associated to (r•, s•),

which is defined by:

(−,−)IX = (−,−)(r•,s•) : Hi(If•X)×H2n−i(If•X)→ k, (α, β)IX = DIX(α)(β).
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Lemma 7.2.1. Suppose (r•, s•) is a family of sections and i ∈ Z. Consider the decom-

positions:

Hi(If•X) = imui ⊕ im si

H2n−i(If•X) = imh2n−i ⊕ ker r2n−i.

Under the intersection space pairing for (r•, s•) we have:

(imui, imh2n−i)IX = 0, (im si, ker r2n−i)IX = 0.

and:

α ∈ Hi(∂T ; k), β ∈ H2n−i(If•X) =⇒ (ui`iα, β)IX = (−1)i(v2n−iβ, ιiα)L

γ ∈ im vi, δ ∈ H2n−i(X − T ◦; k) =⇒ (siγ, h2n−iδ)IX = (γ, δ)L.

where (−,−)L is the intersection pairing associated to DL, i.e. (−,−)L = DL(−)(−).

Proof. Suppose α ∈ Hi(∂T ; k) and β ∈ H2n−i(If•X). Then:

(ui`iα, β)IX = DIX(ui`iα)(β) = (g2n−iDf•`iα)(β) = (Df•`iα)(g2n−iβ).

Since exactness implies ker g2n−i = imh2n−i, and imui = imui`i, this proves that

(imui, imh2n−i)IX = 0. But let’s go further with our computation of (ui`iα, β)IX ; it

is equal to:

(g2n−iDf•`iα)(β) = (g2n−if 2n−i−1D∂α)(β)

= (v2n−iδ2n−iD∂α)(β) = D′L(ιiα)(v2n−iβ)

= (−1)i(2n−i)DL(v2n−iβ)(ιiα) = (−1)i(v2n−iβ, α)L.
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Next suppose γ ∈ im vi and δ ∈ H2n−i(X − T ◦; k). Then:

(siγ, h2n−iδ)IX = DIX(siγ)(h2n−iδ) = (r2n−iDLγ)(h2n−iδ)

= (DLγ)(r2n−ih2n−iδ)

= (DLγ)(δ) = (γ, δ)L.

Note that it makes sense to evaluate DLγ on im r2n−i = coimh2n−i, since γ belonging to

im vi implies D∂γ belongs to:

imh2n−i = (coimh2n−i)
∗ = {φ ∈ H2n−i(X − T ◦) : φ(ker h2n−i) = 0}

In the computations at the beginning of this paragraph, if we replace h2n−iδ with an

element of ker r2n−i, it easily follows that (im si, ker r2n−i)IX = 0.

Lemma 7.2.1 informs us how to carry out the intersection space pairing, but we will

seek an even finer decomposition of the homology vector spaces. We say a family of

sections (r•, s•) is untwisted if and only if each of the following hold:

(i) im s•j• ⊂ imh• (observe that j• = v•h• implies im j• ⊂ im v•, so s•j• is in fact

well-defined).

(ii) ker r• ⊂ im s• and (ker r•, im s2n−•j2n−•)IX = 0.

We will prove the existence of an untwisted family of sections, but first must establish

a technical lemma.

Lemma 7.2.2. Suppose s• satisfies property (i) of untwisted, and Q• is the maximal

subspace of im v• satisfying the vanishing:

(
Q•, h

−1
2n−•(im s2n−•j2n−•)

)
L

= 0.

Then im v• = Q• ⊕ im j•.
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Proof. Fix i ∈ Z. First we check that Qi has trivial intersection with im ji. Suppose

jiα ∈ im ji ∩Qi. Then:

0 =
(
jiα, h

−1
2n−i(im s2n−ij2n−i)

)
L

= (DLjiα)
(
h−1

2n−i(im s2n−ij2n−i)
)

= (j2n−iD′Lα)
(
h−1

2n−i(im s2n−ij2n−i)
)
.

Since j2n−i = h2n−iv2n−i and im s2n−ij2n−i ⊂ imh2n−i, this sequence of equalities contin-

ues into:

0 = (D′Lα)(v2n−iim s2n−ij2n−i) = (D′Lα)(im j2n−i) =⇒ j2n−iD′Lα = 0

=⇒ DLjiα = 0

=⇒ jiα = 0.

Having shown the intersection is trivial, we use dimension counting to complete the

proof. The duality isomorphism of long exact sequences of the pair (X−T ◦, ∂T ) implies

DL(im ji) = im j2n−i. Vanishing of the local duality obstruction implies DL(im vi) =

imh2n−i (see the proof of Lemma 3.4.2); in particular this implies (im vi, ker h2n−i)L = 0.

By construction, and the fact that (im vi, ker h2n−i)L = 0, the vector space Qi has

dimension greater than or equal to the difference:

dimk im vi − dimk h
−1
2n−i(im s2n−ij2n−i) + dimk ker h2n−i

= dimk im vi − dimk im j2n−i

= dimk im vi − dimk im ji

Rearranged, this is:

dimk Qi + dimk im ji ≥ dimk im vi,

completing the proof.
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Proposition 7.2.3. There always exists an untwisted family of sections (r•, s•).

Proof. First let’s check that there exist sections s• : im v• → H•(If•X) of v• such that

im s•j• ⊂ imh•. This is possible iff v• maps imh• onto im j• (because then we can

construct a restricted section s•| : im j• → imh• ⊂ H•(If•X) which by choice of a basis

for im v• can be extended to a full section s•). But im j• = im v•h•, so v• indeed maps

imh• surjectively onto im j•.

Given these sections s• satisfying (i), we next verify that there exist retractions

r• : H•(If•X)→ coimh• satisfying (ii). Let Q• be as in Lemma 7.2.2. We will first show

that r• can be selected so that ker r• ⊂ s•Q•; this is possible iff s•Q•+imh• = H•(If•X).

We already know from Lemma 7.2.1 that im s•+imu• = H•(If•X). But g•u• = 0 implies

imu• ⊂ ker g• = imh•, were we have used exactness in the last step. So:

im s• + imh• = H•(If•X).

If we can show im s• = s•Q• + im s•j• then we will be done with selecting our r•, since

im s•j• ⊂ imh• by property (i) of being untwisted. But this follows by applying s• to

the equality of Lemma 7.2.2.

It remains to verify that ker r• ⊂ s•Q• satisfies property (ii). This is clear, because

Lemma 7.2.1 and the definition of Q• imply:

(s•Q•, im s2n−•j2n−•)IX =
(
Q•, h

−1
2n−•(im s2n−•j2n−•)

)
L

= 0.

Lemma 7.2.4. Suppose (r•, s•) is an untwisted family of sections and i ∈ Z. Then there
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exist further decompositions:

imhi = imui ⊕ im siji

im si = ker ri ⊕ im siji.

Proof. Let’s begin with the decomposition of imhi. First we verify imui ⊂ imhi: we

have giui = 0, so imui ⊂ ker gi = imhi where we have used exactness in the last equality.

Next, we know from Lemma 7.2.1 that im siji has trivial intersection with imui. Finally,

we count dimension (using rank and nullity of maps):

rk ji = rk vihi ≥ rkhi − nul vi =⇒ rkhi ≤ nul vi + rk ji

=⇒ dimk imhi ≤ dimk ker vi + dimk im ji

=⇒ dimk imhi ≤ dimk imui + dimk im siji

where in the last step we have used exactness of a long exact sequence and injectivity

of si.

Now let’s approach the decomposition of im si. First we verify ker ri ∩ im siji = 〈0〉:

because the family of sections is untwisted, we know im siji ⊂ imhi, but Lemma 7.2.1

implies imhi ∩ ker ri = 〈0〉. Finally for (2), we again count dimension:

dimk imui + dimk im si = dimk Hi(If•X)

= dimk imhi + dimk ker ri

= dimk imui + dimk im siji + dimk ker ri.

where we have used Lemma 7.2.1 for the first two inequalities, and (1) of this Lemma

for the last. We then obtain:

dimk im si = dimk im siji + dimk ker ri



75

as desired.

7.3 Signature

Suppose throughout this section that (r•, s•) is a family of sections. We would like to

prove that, in the case that n is even, an untwisted family of sections (r•, s•) induces a

symmetric pairing:

(−,−)IX : Hn(If•X)×Hn(If•X)→ k.

But first let’s compute the signature when k = Q if we assume the induced pairing

(−,−)IX is symmetric. We will do so by comparing to the already existing symmetric

pairing on im jn:

(−,−)j : im jn × im jn → Q, (jnα, jnβ)j = (jnα, β)L = (jnβ, α)L;

this signature is called the Novikov signature , which is known (for example, [19]) to

equal the signature of the pairing:

IHn(X̂ − T ◦;Q)× IHn(X̂ − T ◦;Q)→ Q

where X̂ − T ◦ is the space (X − T ◦) ∪T cone(T ).

Theorem 7.3.1. Suppose n is even, k = Q, and (r•, s•) is an untwisted family of

sections that induces a symmetric intersection space pairing:

(−,−)IX : Hn(If•X)×Hn(If•X)→ Q.

Then the signature of (−,−)IX is equal to the Novikov signature.
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Proof. Remember that throughout this proof we are assuming (−,−)IX is symmetric.

We will frequently use Lemmas 7.2.1 and 7.2.4 in this proof. Combined they give us the

decompositions:

Hn(If•X) = imun ⊕ im snjn ⊕ ker rn

imhn = imun ⊕ im snjn

im sn = im snjn ⊕ ker rn.

Let’s observe how these components pair. By Lemma 7.2.1, the above decompositions,

and symmetry of the intersection space pairing, we know that under the intersection

space pairing:

imun ⊥ (imun ⊕ im snjn)

im snjn ⊥ (imun ⊕ ker rn)

ker rn ⊥ (im snjn ⊕ ker rn).

Therefore, in a basis that respects the direct sum decomposition imun⊕ im snjn⊕ker rn,

the pairing (−,−)IX is represented by a symmetric block matrix of the form:

M =


0 0 A

0 Y 0

AT 0 0

 ,

where Y is the symmetric matrix associated to the restricted pairing:

(−,−)IX : im snjn × im snjn → Q.

Let p(t) and q(t) be the respective characteristic polynomials for Y and AAT . Linear

algebra shows that the characteristic polynomial of the block matrix M is the product:

p(t)q(t2).
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Therefore the signature of M (the number of positive eigenvalues minus the number of

negative eigenvalues) is equal to the signature of Y , i.e. the signature of the restricted

pairing:

im snjn × im snjn → Q.

It remains to prove that the signature of this restricted pairing is the same as the

signature of (−,−)j; this is established if we can prove that the following diagram

commutes:
im snjn × im snjn k

im jn × im jn k.

sn×sn
'

Let jnα and jnβ in im jn be given. Since im snjn ⊂ imhn by untwistedness of the

family of sections, there exists γ ∈ Hn(X−T ◦) such that hnγ = snjnβ. By Lemma 7.2.1

we have:

(snjnα, snjnβ)IX = (snjnα, hnγ)IX = (jnα, γ)∂ = (jnγ, α)∂,

where symmetry of the j-pairing was used in the last step. Since jn = vnhn this further

becomes:

(snjnα, snjnβ)IX = (vnhnγ, α)∂ = (vnsnjnβ, α) = (jnβ, α)∂ = (jnα, jnβ)j.

This proves that the diagram in question commutes, and we are finished.

Next we verify that the pairing (−,−)IX induced by an untwisted family is indeed

symmetric. If V and W are subspace of Hn(If•X), we say that the pairing (−,−)IX is

symmetric on (V,W ) if and only if for all α ∈ V and β ∈ W we have:

(α, β)IX = (β, α)IX .
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Proposition 7.3.2. Suppose n is even and (r•, s•) is an untwisted family of sections.

Then (−,−)IX is symmetric on Hn(If•X).

Proof. Symmetry on (imun, imun): By Lemmas 7.2.1 and 7.2.4, we know the pairing

(imun, imun)IX = 0.

Symmetry on (imun, im snjn): By the same Lemmas, we know (imun, im snjn)IX =

0. We must then check (im snjn, imun)IX = 0. Let snjnα and unβ be given. Since

imun ⊂ imhn = ker vn, we can write unβ = hnγ and we observe:

jnγ = vnhnγ = vnunβ = 0.

Using Lemma 7.2.1 and symmetry of the j-pairing we compute:

(snjnα, unβ)IX = (snjnα, hnγ)IX = (jnα, γ)L = (jnγ, α)L = 0.

Symmetry on (imun, ker rn). Let un`nα ∈ imun`n = imun and snβ ∈ ker rn ⊂ im sn

be given. Since imun ⊂ imhn by Lemma 7.2.4, there exists γ such that un`nα = hnγ.

By Lemma 7.2.1:

(un`nα, snβ)IX = (vnsnβ, ιnα)L = (β, ιnα)L

and:

(snβ, un`nα)IX = (snβ, hnγ)IX = (β, γ)L

Next note that β ∈ im vn implies (β,−)L ∈ imhn vanishes on ker hn. So symmetry can

be proven if ιnα− γ ∈ ker hn. This follows from:

hnιnα = un`nα = hnγ.
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Symmetry on (im snjn, im snjn). Let snjnα, snjnβ ∈ im snjn. The reasoning from the

last part of the proof of Theorem 7.3.1 did not rely on symmetry of (−,−)IX and shows:

(snjnα, snjnβ)IX = (jnα, jnβ)j

which of course is symmetric.

Symmetry on (im snjn, ker rn). By Lemma 7.2.1 we have the vanishing of the pair-

ing (im snjn, ker rn)IX = 0. By property (ii) of being untwisted, we have the reverse

vanishing (ker rn, im snjn)IX .
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