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Abstract

Water in the atmosphere can exhibit complex phenomena. In this thesis, we investi-

gate some possible behaviors of atmospheric water in the mid-lattitudes. This is done in

a saturated setting using the Precipitating Quasi-geopstrophic (PQG) equations. The

main results include the following: the scale dependence of atmospheric water on rain-

fall, the presence and characteristics of Atmospheric Rivers (AR) in PQG, and also the

relation between the meridional water flux and rainfall. These results lead to a better

understanding of the PQG model in a single phase and also as a precursor for the full

PQG model with phase changes.
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Chapter 1

Introduction

1.1 Introduction

The atmosphere can be challenging to understand not only due to the complex thermo-

dynamic processes, such as phase changes and precipitation processes, but also due to

the multi-scale nature of the physical processes, such as rotation and advection. A few

historical findings which have advanced the understanding of the atmosphere are the

importance of rotation on the winds (Hadley), the equations of motion for fluids (Euler,

Navier-Stokes), Kelvin Waves, and more not mentioned here. Some more recent findings

are those such as the Quasi-geostrohic theory and baroclinic instability which use a less

complicated set of equations compared to the Navier-Stokes equations.

In this thesis, we present some new results from using the Precipitating Quasi-

geostrophic (PQG) equations in a saturated environment. These results can be summa-

rized as addressing the spectral slope of water in this set-up, and also the characteristics

of Atmospheric Rivers and meridional water fluxes.

Some background material which this thesis incorporates will be mentioned here. The

Boussinesq equations, the (dry) Quasi-geostrophic equations, and the Phillips’ problem

may be familiar to readers of Salmon [1998], Vallis [2006], Pedlosky [2013]. The Fast

Auto-conversion and Rain Evaporation (FARE) model as well as the Precipitating-Quasi
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Geostrophic (PQG) equations will also be described here.

1.2 Boussinesq Equations

When temperature variations are small within a fluid, the thermodynamic properties

of the fluid become essentially constant, and the fluid behaves as approximately an

incompressible fluid. However, buoyancy of the fluid is still important as acceleration

due to gravity is typically large compared to the acceleration of the fluid [Drazin, 2002].

So that it is easier to compare with equations further on in this chapter, the equations

will be written using potential temperature, where it is assumed that potential tempera-

ture can be written as a linear background θ0 + θ̄(z)+θ, as is done in Hernandez-Duenas

et al. [2013]. The Boussinesq equations can then be written as

Du

Dt
= −∇

(
p

ρ0

)
+ g

(
θ − θ̄(z)

θ0

)
k (1.1a)

∇ · u = 0 (1.1b)

Dθ

Dt
= 0 (1.1c)

where u = (u(x), v(x), w(x)) is the fluid velocity as a function of three spatial coor-

dinates x = (x, y, z) and time t; θ(x) is the anomalous potential temperature from the

linearzied base-state θ0 + θ̄(z); and p(x) is pressure. The parameter g is the acceleration

due to gravity and ρ0 is the constant density of the fluid.
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1.2.1 Including rotation

To include the effects of rotation on the fluid (more specifically projecting the equation

of motion to a coordinate system which is rotating) equation 1.1a would need to include

the term fk × u on the left hand side, where f is the Coriolis parameter. When using

the β − plane approximation f ≈ f0 + βy.

The equation of motion on a β − plane then looks like

Du

Dt
+ (f0 + βy)k× u = −∇

(
p

ρ0

)
+ g

(
θ − θ̄(z)

θ0

)
k (1.2)

1.3 Quasi-geostrophic Equations

By taking several assumptions which hold true in the midlatitude atmosphere, the above

6 time-dependent equations can be reduced to one. The assumptions are as follows:

1) The motion of the fluid is nearly geostrophic

Ro� 1 (1.3)

2) The scale of the motion is approximately that of the deformation scale Ld

Ro

(
L

Ld

)2

= O(Ro) (1.4)

3) The changes in the Coriolis parameter are small on the horizontal scale L of the

flow

βL� f0 (1.5)

4) Time scales advectively

T = L/U (1.6)
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Using these assumptions and taking the asymptotic limit of Ro → 0 on the non-

dimensional Boussinesq equations, the QG equations are obtained:

DhPV

Dt
= 0 (1.7)

where

PV = ∇2
hψ +

(
L

Ld

)2

∂zzψ + βy (1.8)

where the variables PV (x, t), ψ(x, t) are functions of the three dimensions in space

x = (x, y, z) and time t; PV represents potential vorticity and ψ represents the stream-

function. The subscript (·)h indicates that the the operator only has horizontal compo-

nents (e.g. ∇h = ∂xx + ∂yy).

1.3.1 Two-level QG and Baroclinic Instability

One of the first mathematical descriptions of baroclinic instability was done by Eady

[1949] by solving the linearized QG equations with uniform shear, uniform stratification

and also uniform rotation speed (β = 0). A more complete analysis which allows for

β 6= 0 was done by Charney [1947], however, the analysis is quite complex. By taking

a vertical finite difference of the QG equations (see Chapter 2, section 2.2.2 for more

details on the derivation), however, a simpler analysis can be done, as was done by

Phillips [1951]. This technique has been also used to study moist baroclinic instability

(see Appendix A.1.3 for more details and references).

The two level equations with a uniform sheer, U1 = U , U2 = −U can be written as

D1PV1

Dt
− U∂xPV1 + v1∂yPV1,bg + βv1 = 0 (1.9a)
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Figure 1: Growth rate of equations 1.9 where U = 0.2, β = 2.5, L/Ld =
√

8.

D2PV2

Dt
+ U∂xPV2 + v2∂yPV2,bg + βv2 = 0. (1.9b)

where
Dj(·)

Dt
represents the material derivative with advection by the velocities at level

j; PV1 = ∇2
hψ1 +

(
1

∆z
L
Ld

)2

(ψ2 − ψ1) the potential vorticity at level 1 and PV2 =

∇2
hψ2 +

(
1

∆z
L
Ld

)2

(ψ1 − ψ2) the potential vorticity at level 2; ψ the streamfunction; and

L/Ld the ratio of the length scale compared to the deformation radius. (See figure 2

for how the levels are defined.) The background values for PV are represented by

PVbg,1, PVbg,2 = −2U(L/(0.5Lds))
2.

The dispersion relation of the linearized equations from equations 1.9 are shown in

the appendix, equation A.3a. Figure 1 is shows the growth rate, when U = 0.2, β =

2.5, L/Ld =
√

8. A notable features is that when β = 0, there is a low-wave number

cutoff, such that below this cutoff, the growth rate is zero. Regardless of β = 0, there

will always be a high wave number cutoff.
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1.4 Fast Auto-conversion and Rain Evaporation Equa-

tions

The Fast Auto-conversion and Rain Evaporation (FARE) equations were originally de-

veloped for precipitating convection as equations which contained minimal physics, yet

could capture broad features of precipitating turbulent convection [Hernandez-Duenas

et al., 2013], compared with cloud resolving models (CRMs) which can more accurately

simulate physical processes, but contain much more physical processes which could make

it difficult to understand some fundamental features of precipitating convection.

The two main simplifications are: linearized thermodynamics and simplified cloud

microphysics. For more details, refer to [Hernandez-Duenas et al., 2013, 2015]

The (dimensional) FARE equations are presented below:

Du

Dt
= −∇p+ kg

[
θe
θ0

+

(
ε0 −

Lv
cpθ0

)
qv − qr

]
(1.10a)

∇ · u = 0 (1.10b)

Dθe
Dt

= 0 (1.10c)

Dqt
Dt
− VT

∂qr
∂z

= 0 (1.10d)

The variables θe, qt, qr, qv represent equivalent potential temperature, the mixing ra-

tio of total rain, rain water, and water vapor respectively. The parameters Lv, cp, VT

represent the latent heat factor, the specific heat, and the rainfall speed. The parameter

ε0 is related to the ratio of gas constants by ε0 = 1−Rv/Rd.
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1.5 Precipitating Quasi-geostrophic Equations

There have been numerous studies which include moisture or moisture effects in a QG

setting. These have provided insight into the dynamics of moisture and the role of

latent heat release in atmosphere. To name a few examples, Mak [1982], Bannon [1986]

investigated baroclinic instability with condensational heating using a similar approach

in the Eady problem; Lapeyre and Held [2004] observed that the effective static stability

could be reduced with moisture and latent heat release. An unusual feature of the PQG

equations is that these equations are asymptotic limiting equations.

Similar to how the dry QG equations were derived, by taking an asymptotic limit of

the FARE equations with Ro→ 0, and similar assumptions on the deformation radius,

the Precipitating Quasi-geostrophic equations can be obtained. Refer to Smith and

Stechmann [2017], Wetzel et al. [2017] and also chapter 2 of this text for more details.
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Chapter 2

Atmospheric Water Scaling

2.1 Introduction

Atmospheric water is notoriously difficult to model, predict, and understand. This is in

part due to the multitude of physical processes involved in the dynamics of water, such

as precipitation and related processes.

The power spectrum of water—i.e., the scale dependence of its variance—seems to

reflect water’s complex physics and dynamics. In particular, a range of spectral expo-

nents has been reported in observations of water, as widely as a range of −1.3 to −2.7,

but more commonly in terms of convenient numbers as a range of −5/3 to −2 [Nastrom

et al., 1986, Cho et al., 2000, Kahn and Teixeira, 2009, Kahn et al., 2011, Fischer et al.,

2012, Pressel and Collins, 2012]. A variety of factors could influence the spectrum of wa-

ter, such as, e.g., precipitation and meridional and vertical gradients of the background

state, and by investigating the influence of different factors, a better understanding of

the physics and dynamics of water could be obtained.

In this chapter, the overarching question is: Can some theoretical insight be gained

for the spectrum of water? To carry out the investigation here, a quasi-geostrophic (QG)

framework is used owing to its simplicity and amenability to theoretical understanding.

In the past, for instance, some of the achievements of the QG equations include, but
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are not limited to, explaining baroclinic instability [Charney, 1947, 1948, Phillips, 1954]

and geostrophic turbulence [Rhines, 1979, Salmon, 1980]. With such a background, it

is reasonable to hope that further understanding of water can be achieved in a similar

framework. Here it is shown that, in a simple moist QG framework, the spectral exponent

of water can take a range of values, and the spectrum can change significantly due to

the influence of precipitation.

As a quasi-geostrophic model with water, the recently derived precipitating quasi-

geostrophic (PQG) equations will be used [Smith and Stechmann, 2017]. For comparison,

there have been other variations/adaptations of the dry QG equations to include mois-

ture and moisture effects via latent heat release, etc. [e.g., Mak, 1982, Bannon, 1986,

Lapeyre and Held, 2004, Monteiro and Sukhatme, 2016]; these and other similar models

[e.g., Lambaerts et al., 2012] have provided insight into moisture dynamics and the role

of latent heat release in the atmosphere. One distinguishing and advantageous prop-

erty of the PQG equations is that they are asymptotic limiting equations. Specifically,

the PQG equations arise in the limit of rapid rotation and strong (moist) stratification,

starting from the equations for midlatitude dynamics with moisture, phase changes, and

precipitation [Hernandez-Duenas et al., 2013].

The ideas of passive versus active tracers will play an important role in providing

theoretical understanding. In particular, theoretical analysis is made possible here by

the observation that the model total water can be written as a linear combination, as

qt = M − GMθe, of a passive tracer M and an active tracer θe. These two quantities

are each related to an eigenmode of the system: M is related to a moist eigenmode

that is not present for a dry system, and θe is the equivalent potential temperature

and is related to the vortical mode. By understanding the individual spectra of the
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passive and active tracers, the spectrum of total water can then be better understood.

For instance, differences in spectra due to a variable behaving as a passive tracer or an

active tracer have been observed in other previous studies, for example in Babiano et al.

[1987], Lapeyre et al. [2001], Smith et al. [2002], and such results aid the theoretical

analysis here. It may seem counterintuitive that ideas of active tracers are used here to

understand the spectrum of water, since in the present setup the underlying dynamics of

velocity can be determined without consideration of the dynamics of the water variable;

such a lack of feedback seems to suggest that the water is a passive tracer in this setup.

Nevertheless, it is also true that the water can be written as a linear combination,

qt = M−GMθe, of a passive tracer M and an active tracer θe, which suggests that water

could possibly be viewed as an active tracer in some sense, or at least that ideas related

to active tracers could be used to provide a better understanding of water.

It is worth noting some of the complicating factors that are either neglected here, or

are not accessible within the framework of this chapter. As one example, phase changes

of water will be neglected here in order to facilitate some theoretical analysis. While

phase changes of water are undoubtedly important, it is possible to include some aspects

of precipitation without including the nonlinear switch associated with phase changes,

and it allows some theoretical understanding. As another example, the use of a quasi-

geostrophic model implies an assumption of dynamics that are large-scale (synoptic-

scale) and extratropical, whereas some of the observational studies listed in an earlier

paragraph were associated with smaller-scale behavior of water and convection, and not

necessarily outside the tropics. For instance, Cho et al. [2000] report measurements

from the tropics and also from the extratropics, and Fischer et al. [2012] and Cho et al.

[2000] use aircraft data that describes length scales of 100 km and smaller, whereas other
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studies such as Kahn and Teixeira [2009] report satellite observations for length scales of

∼150 to 1300 km. As a third example, the model here will use a crude vertical structure,

whereas the observational studies mentioned earlier were taken from a variety of vertical

levels in the atmosphere; for instance, Cho et al. [2000] observed a spectral slope of -1.46

in the boundary layer and a slope of -1.79 in the extratropical free troposphere; Kahn

et al. [2011] observed an increase in slope with height from -1.58 at 1.5 km height to -1.90

at 3 km; and in their LIDAR study, Fischer et al. [2012] observed -1.29 at lower altitudes

and -2.68 at higher altitudes. Other studies have used more comprehensive versions of

the dynamics [Spyksma and Bartello, 2008, Sukhatme et al., 2012, Schemann et al.,

2013, Mellado, 2017], without neglecting some or all of the factors listed above, and are

therefore able to provide a more precise connection to observational data, but at the

expense of complicating the possibility of a theoretical analysis like the one considered

here. For instance, the theoretical analysis here uses the linear decomposition of qt =

M −GMθe to write qt as a sum of a passive tracer M and an active tracer θe, and such

a decomposition would become nonlinear (piecewise linear) in the presence of phase

changes.

The organization of the chapter is as follows. In section 2, the precipitating quasi-

geostrophic (PQG) model is described, as well as details of the numerical method used

to solve the system projected onto two vertical levels. In section 3, the results from the

numerical simulations of 2-level PQG are presented. In section 4, a theoretical expla-

nation is provided for the exponent of the water spectra from the previous simulations.

In section 5, the effect of adding a meridional gradient to water is investigated, and the

discussion and conclusion are in section 6.
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2.2 PQG Model Description

The PQG equations can be considered as a moist version of the QG equations. The dry

QG equations describe the slow evolution of synoptic-scale flows under assumptions of

rapid rotation and strong stratification. Derivations for the dry QG equations can be

found in Salmon [1998], Vallis [2006], Pedlosky [2013].

PQG is derived starting from a cloud resolving model. Conversions between water

vapor, cloud water and rain water are modeled at macroscopic scales, and each conversion

process is associated with a time scale. For evolution of mid-latitude flows on length

scales of kilometers and time scales of hours to days, the time scales for conversions of

water substance are relatively short, on the order of seconds to minutes, compared to

the characteristic times associated with rotation, buoyancy effects, advection and rainfall

[Rogers and Yau, 1989, Houze, 1993, Klein and Majda, 2006, Morrison and Grabowski,

2008]. Thus, for large-scale mid-latitude flows, the assumption of asymptotically fast

cloud microphysics leads to a particularly simple model description denoted FARE,

standing for the assumptions of ‘fast auto-conversion and rain evaporation,’ in addition

to fast condensation [Hernandez-Duenas et al., 2013]. Beyond the assumptions of the dry

QG framework (rapid rotation and strong dry stratification), an additional assumption

in the PQG framework is a strong moist stratification of equivalent potential temperature

[Smith and Stechmann, 2017, Wetzel et al., 2017]. Furthermore, in PQG, boundaries

between unsaturated and saturated flow regions are represented by Heaviside nonlinear

switches: water below the saturation level exists in the vapor phase only; water above

the saturation level is instantaneously converted to rain water, which falls at a constant

speed Vr.
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Table 1: Definition of variables

x = (x, y, z) Horizontal coordinates
t Time
u(x, t) = (u, v, w) Velocities
uh = (u, v) Horizontal velocities
ζ(x, t) = ∂xv − ∂yu Relative vorticity
ψ(x, t) Streamfunction (pressure scaled by constant density)
θ Potential temperature
qv(x, t) Water vapor mixing ratio
qr(x, t) Rain water mixing ratio
qt(x, t) = qv + qr Total water mixing ratio
θe(x, t) = θ + qv Equivalent potential temperature
PV (x, t) = ∇2

hψ + (L/Lds)
2(∂2ψ/∂z2) Potential Vorticity

M(x, t) = qt +GMθe Thermodynamic variable M

Table 2: Dimensional parameters and typical values

L 1000km Characteristic length scale
Lds 700km Saturated deformation
cp 103 J kg−1 K−1 Specific heat
Lv 2.5× 106 J Latent heat factor

dθ̃e/dz 1.5 K km−1 Background vertical gradient of equivalent potential temperature
dq̃t/dz −0.6 g kg−1 km−1 Background vertical gradient of rain water
VT 0.3− 10 m s−1 Rainfall speed
U0 10 m s−1 Characteristic mid-latitude horizontal velocity
W0 0.1 m s−1 Characteristic vertical velocity
β0 2.5× 10−11 m−1 s−1 Change in rate of rotation

Here we focus on the structure and statistics of water, and for simplicity consider

exclusively saturated domains. After introducing the continuously stratified PQG equa-

tions in a saturated environment in section 2.1, the 2-level PQG equations and boundary

conditions are described in detail in section 2.2. Next, we provide an overview of the

numerical method and the model parameters used for our 2-level PQG simulations in

section 2.3. We end the section with descriptions of the basic structures of the dry and

moist variables in section 2.4.
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Table 3: Nondimensional parameters

L/Lds Nondimensional ratio of length scales
β = L2β0/U0 Nondimensional change in rate of rotation

GM = −Lvc−1
p (dq̃t/dz) (dθ̃e/dz)−1 Ratio of the background vertical gradients of qt and θe

Vr = VT/W0 Nondimensional rainfall speed

Table 4: Notation for derivatives

D
Dt

= ∂t + u · ∇h Material derivative
∇h = x̂ ∂x + ŷ ∂y Horizontal laplacian
Dh

Dt
= ∂t + uh · ∇h Horizontal material derivative

2.2.1 PQG equations

Including the variation of the Coriolis parameter with latitude (the β-effect; see e.g.,

Vallis [2006]), the PQG equations may be written in nondimensional form by

Dhζ

Dt
+ βv =

∂w

∂z
(2.1a)

Dhθe
Dt

+
Lds
L
w = 0 (2.1b)

Dhqt
Dt
−GM

Lds
L
w = Vr

∂qr
∂z

(2.1c)

where the variables u(x, t), ζ(x, t), θe(x, t), qt(x, t), qr(x, t) are functions of three space

dimensions x = (x, y, z) and time t; u = (u, v, w) is the fluid velocity with horizontal

components uh = (u, v); ζ = ∂xv − ∂yu is the vertical component of relative vorticity;

θe is the equivalent potential temperature; qt is the mixing ratio of total water; and qr

is the mixing ratio of rain water. With linearized thermodynamics, θe = θ + qv, where

θ(x, t) is the potential temperature and qv(x, t) is the mixing ratio of water vapor. The

Table 5: Notation of variable location

(·)1 (·) at level 1
(·)2 (·) at level 2
(·)m (·) at the mid-domain (between level 1 and level 2)
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horizontal material derivative Dh

Dt
= ∂t + uh · ∇h, where ∇h = x̂ ∂x + ŷ ∂y, appears

instead of the full material derivative D
Dt

= ∂t + u · ∇, as discussed below. Summaries of

the variables, parameters, and symbols are provided in Tables 1–4.

The velocity and vorticity are anomalous quantities assuming a Boussinesq back-

ground state of rest, whereas all thermodynamic quantities have been decomposed

into Boussinesq background functions of altitude and anomalies; for example, the to-

tal equivalent potential temperature θtote (x, t) = θ̃e(z) + θe(x, t) and the total water

qtott (x, t) = q̃t(z) + qt(x, t). In this Boussinesq setting, the background gradients dθ̃e/dz

and dq̃t/dz are taken to be constants. Also, q̃r is chosen to be a constant so that

dq̃r/dz = 0 and the background states (̃·) are a steady state solution of (2.1). As a

result, since q̃t = q̃v + q̃r = q̃vs + q̃r, the gradients dq̃t/dz and dq̃vs/dz are equal in this

setup and the anomalous total water, qt is equal to the anomalous rain water, qr. (See

appendix 7.1 for more details.) In the saturated setup here, upward motion is always

associated with condensation and latent heating, and downward motion is always asso-

ciated with evaporation and evaporative cooling. While the environmental background

state is chosen to be saturated here, it could also be chosen to be unsaturated in the

more general case [Smith and Stechmann, 2017].

Underlying the saturated PQG system (2.1) are the geostrophic and hydrostatic

balances, resulting from, respectively, fast rotation and strong stable stratification:

ẑ× u = −∇hψ (2.2a)

θe =
L

Lds

∂ψ

∂z
, (2.2b)

where ψ is a streamfunction (pressure scaled by the constant density). Note that the

buoyancy in (2.2b) depends on θe but does not include the dependence on water vapor
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and liquid water, such as water loading, that is typical of the Boussinesq and anelastic

equations; this latter dependence is not included here because these effects are asymptot-

ically small in the precipitating quasi-geostrophic limit [see Smith and Stechmann, 2017,

for more details]. The balances (2.2) may be used to rewrite the PQG equations (2.1)

in terms of the streamfunction ψ in place of u, v, ζ, θe, with ζ = ∇2
hψ. The geostrophic-

hydrostatic balances (2.2) constrain the vertical velocity w to be small compared to

the horizontal velocity uh, leading to dominance of horizontal advection reflected by

the operator Dh

Dt
= ∂t + uh · ∇h. Equations (2.1a), (2.1b) and (2.2) are mathematically

equivalent to the dry quasi-geostrophic equations after replacing the saturated deforma-

tion radius Lds by the dry deformation radius Ld [Salmon, 1980, Vallis, 2006, Pedlosky,

2013].

In equations 2.1, there are four nondimensional parameters in the PQG equations:

the length-scale ratio Lds/L; change in the rotation rate with latitude, β; the rainfall

speed, Vr; and the scaled ratio of the background vertical gradients of total water and

equivalent potential temperature, GM . Later on in section 5, a fifth nondimensional

parameter, the meridional gradient of water, Qy is considered. Tables 2–3 list the di-

mensional and nondimensional parameters and relationships between them.

Periodic boundary conditions are imposed in the horizontal directions, and a rigid

lid boundary condition w = 0 is imposed at top and bottom. Applying these boundary

condition to equations (2.1)-(2.2), the vertical boundary condition becomes

w = 0,
Dhθe
Dt

= 0,
Dhqt
Dt

= Vr
∂qr
∂z

(2.3)

on both top and bottom. Further boundary conditions on qr will also be specified such

as no inflow of qr and this is discussed further in the description of the two-level setup
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in section 2.2.2.

In what follows, we recall from the discussion between (2.1) and (2.2) that the current

setup is fully saturated, so the anomaly qr represents the same quantity as qt:

qr = qt. (2.4)

From here on, all qr values will be replaced with qt.

Following a similar procedure as for dry QG, the vertical velocity w may be eliminated

from (2.1) by introducing the potential vorticity PV and a thermodynamic variable M :

PV = ∇2
hψ +

(
L

Lds

)2
∂2ψ

∂z2
(2.5a)

M = qt +GMθe (2.5b)

leading to the dynamical equations

DhPV

Dt
+ βv = 0 (2.6a)

DhM

Dt
= Vr

∂

∂z
qt. (2.6b)

For the PQG system, there are coupled equations (2.6) for PV and M , the latter which

is simply the combination of (2.1b) and (2.1c) that eliminates w within this framework.

2.2.2 Two-level PQG

There are several derivations of the dry two level QG equations, such as in Phillips

[1954], Salmon [1998]. Here we include a detailed derivation of PQG to make clear how

the discretized equation for M is obtained, and how we implement boundary conditions

for qt and M .
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According to the two-level set-up shown in figure 2, we use the notation D1

Dt
(·) =

∂t(·) + u1∂x(·) + v1∂y(·), and similarly for D2

Dt
(·) and Dm

Dt
(·). Using a finite difference

approximation in z of (2.6) and specific initial/boundary conditions described below, we

arrive at the two level PQG equations given by

D1PV1

Dt
+ βv1 = 0 (2.7a)

D2PV2

Dt
+ βv2 = 0 (2.7b)

DmMm

Dt
= − Vr

∆z
qt,m = − Vr

∆z
(Mm −GMθe,m) (2.7c)

with

PV1 = ∇2
hψ1 +

(
1

∆z

L

Lds

)2

(ψ2 − ψ1) (2.8a)

PV2 = ∇2
hψ2 +

(
1

∆z

L

Lds

)2

(ψ1 − ψ2) (2.8b)

θe,m =
L

Lds

ψ2 − ψ1

∆z
(2.8c)

ui = −∂ψi
∂y

for i = 1, 2 (2.8d)

vi =
∂ψi
∂x

for i = 1, 2 (2.8e)

um =
u1 + u2

2
(2.8f)

vm =
v1 + v2

2
. (2.8g)

In quasigeostrophic literature, the velocities um, vm are also known as the barotropic

(depth-averaged) velocities. Expressions (3.3a)-(3.3c) are obtained by a centered differ-

ence in z of (2.6a) with 1
∆z

(
∂ψ
∂z
|z=zm − ∂ψ

∂z
|zB
)

for level 1, and ∂2ψ
∂z
≈ 1

∆z

(
∂ψ
∂z
|zT −

∂ψ
∂z
|z=zm

)
for level 2, and where zB, zm, zT denote z at the bottom, middle and top, respectively.

For an initial condition of θe = 0 at top and bottom, the second equation of (2.3) ensures
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Figure 2: Diagram of the two-level set-up. The variables qt,M, θe are in fact
qt,m,Mm, θe,m, the indices were dropped here so as to match the variables in the later
sections.

that the value will remain zero for all time, and hence that ∂ψ
∂z
|zT = ∂ψ

∂z
|zB = 0 for all time

by (2.2b). For the more general vertical boundary condition Dhθe
Dt

= 0, it was shown that

the interior two-level dry QG equations are unchanged [Phillips, 1954, Salmon, 1998].

The same result also holds for the 2-level PQG equations within a single phase, either

unsaturated or saturated, but not in an environment with phase changes. For simplicity,

and since we consider a domain that is completely saturated for all time, we use the

vertical boundary condition θe = 0 as done similarly in the dry QG case (e.g. in Held

and O’Brien [1992]).

To obtain (3.2c), an upwind difference was taken to approximate (2.6b). For exam-

ple at zm, ∂
∂z

(M −GMθe) |z=zm ≈ Vr
∆z

(qt|z=zT − qt|z=zm). Imposing the initial condition

that qt(t = 0) = 0 for z ≥ zT , the upwind approximation of the third equation in (2.3)

gives qt(z = zT ) = 0 for all time. From this latter condition, ∂
∂z

(M −GMθe) |z=zm ≈

Vr
∆z

(0− (Mm −GMθe,m)). Since the main interest is on the dynamics of the moist vari-

ables in the interior (Mm and qt,m), and because the moist variables at the lower bound-

ary do not affect the values of the moist variables in the interior, the M -equation at the

lower boundary is omitted. To simplify notation, the subscript m will be dropped from

θe,M from here on.
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2.2.3 Discretized model for numerical computations

Our main goal is to investigate the structure and statistics of water in a statistically

quasi-steady state of saturated PQG, evolving from baroclinically unstable initial con-

ditions. To this end, we numerically computed the solution to (3.2) with additional

dissipation terms given by 4th-order hyperviscosity and lower-level friction:

D1PV1

Dt
− U∂xPV1 + v1∂yPV1,bg + βv1 = −κM∆ψ1 − ν∆4PV1 (2.9a)

D2PV2

Dt
+ U∂xPV2 + v2∂yPV2,bg + βv2 = −ν∆4PV2 (2.9b)

DmM

Dt
+ vm∂yMbg = − Vr

∆z
(M −GMθe)− ν∆4M. (2.9c)

The parameter values U = 0.2, β = 2.5, κM = 0.05, ν = 5 × 10−15 and kds = 4

were chosen to match the (dry) mid-latitude atmosphere case studied in Qi and Majda

[2016]. The expressions for the background values of θe and PV are, respectively, θe,bg =

Θy = − L
Lds

1
∆z

(2Uy) and PVj,bg = (−1)j
(

1
∆z

L
Lds

)2

(2Uy). The parameters reflecting the

presence of water in our 2-level PQG equations are GM and Vr: GM depends on the

background water profile and Vr is the rainfall speed. In the present study, we fix the

value GM = 1 and vary Vr. The baseline case considered in Sections 2.3 and 2.4 has

background meridional gradient Qy = 0 such that Mbg = (Qy + GMΘ)y = GMΘy;

Qy 6= 0, GM 6= 1 is considered in Section 2.5.

A pseudospectral solver was used to solve (3.4) on a doubly periodic, horizontal

domain. The time-stepping was done according to a 3rd-order Runge-Kutta scheme

with an adaptive ∆t chosen to satisfy the CFL condition. Three-halfs padding was

used for de-aliasing. Most of the simulations used resolution N2 = 5122 Fourier modes,

with a few higher-resolution simulations as described below. The initial condition was
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a band of eigenmodes centered around the unstable wave-vector (k, l) = (3, 1), and the

simulations were run long enough to obtain statistical steady states. These eigenmodes

can be obtained by solving the linearized equation (see appendix for more details on the

linearized equations and initial condition setup). In addition to the two modes obtained

from the PV equations, as done in dry QG, there is another eigenmode from the M

equation that is not present in dry QG.

2.2.4 Basic structure of the statistical steady state (baseline

case)

We end this section with figure 3 of zonally averaged variables in a time interval t ∈

[60, 100], in part to demonstrate that the chosen parameter values for β, deformation

radius k−1
ds , and background vertical shear U are consistent with mid-latitude dynamics.

Zonal averages are denoted by an overbar, e.g., the zonally averaged zonal velocity at

mid-height is denoted ūm(t, y). Figure 3 will also help with interpretation of later single-

time plots visualizing the water variables qt and M = qt +GMθe in the (x, y)-plane.

Figure 3a shows a single, persistent, eastward jet with minimal meandering in this

relatively short time window; some meandering is observed for longer time windows

as for the mid-latitude case of Qi and Majda [2016]. The asymmetry in the jet, with

the westward jet being broader and the eastward jet being narrower, is related to the

β effect [e.g., Kuo, 1949, Armi, 1989]. The potential temperature shown in figure 3b

is approximately constant below and above the jet, which separates warm air to the

south from colder air to the north. There is a gradient of decreasing temperature across

the jet region. Within the saturated one-phase PQG approximation, the dynamics of
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ψ, and hence the dynamics of velocity u and temperature θe, are not changed by the

presence of water. Thus figures 3a and 3b are the same for all values of rainfall speed

Vr. However, the dynamics of the water variables qt and M depend crucially on Vr as

will be demonstrated in the following Sections. For Vr = 0.1, the large-scale features of

M̄(t, y) roughly mirror the features of θ̄e(t, y), but with more fine-scale structure (figure

3c). The zonally averaged anomalous water qt is concentrated at the boundaries of the

jet, with less water on the southern warm side and more water on the northern cold side

(figure 3d). A more detailed analysis of zonally averaged water and meridional water

fluxes is planned for a forthcoming manuscript.

To view the simulations from a PV perspective, the power spectra for PV1, PV2 and

kinetic energy at level 1,2 as well as the potential energy are presented in figure 4b.

The simulations for this chapter are in the forward enstrophy cascade regime, with the

KE spectra matching those found in Qi and Majda [2016], also in the forward cascade

regime. If simulations were run in a different regime, a regime with the inverse cascade,

one would expect a different shape, notably a flatter KE spectra with a -5/3 slope, such

as those found in [Larichev and Held, 1995, Smith and Vallis, 2001].
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(c) M̄(t, y) for Vr = 0.1
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(d) q̄t(t, y) for Vr = 0.1

(e) Snapshot of PV1 (f) Snapshot of PV2

Figure 3: Panels (a)-(d) show zonally averaged quantities as a function of time t and
meridional direction y: (a) zonal velocity ūm, (b) equivalent potential temperature θ̄e,
(c) M̄(t, y) for Vr = 0.1, (d) total water q̄t for Vr = 0.1, and (e) snapshot of PV1 at
t = 60 (f) snapshot of PV2 at t = 60. One time unit corresponds to about one day.



24

100 101 102

kh

10 6

10 5

10 4

10 3

10 2

10 1

100

101

PV
(k

h)

PV1
PV2

(a) Spectra of PV1, PV2

100 101 102

kh

10 10

10 8

10 6

10 4

10 2

100
E(

k h
)

KEBT

KEBC

PE

(b) Spectra of KE1,KE2, PE

Figure 4: Panels (a), (b) show the spectra of (a) PV1, PV2 and (b) Kinetic Energy at
level 1, KE1 and level 2, KE2 and Potential Energy, PE.
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2.3 Simulation results for water variables

In this section, the variability of water is investigated, and it is illustrated in terms of

both its physical-space structure (section 2.3.1) and its power spectral density (section

2.3.2). A main goal is to explore how the water variability changes (if at all) as the

precipitation changes, as controlled in the model here by the parameter Vr.

2.3.1 Physical-space structure

Single-time snapshots of anomalous water qt and M = qt +GMθe are shown in figure 5,

where the different rows correspond to different values of rainfall speed Vr = 0, 0.1, 1.0.

The time is t = 60, after the simulation has reached a statistically steady state, and

the height is mid-level between levels 1 and 2 (see figures 2 and 3). One can see that

both the amplitude and variability of water depend strongly on Vr, with both amplitude

and fine-scale structure decreasing as Vr increases, similar to dissipation without scale-

selectivity. For Vr = 0, qt is indistinguishable to the eye from M . By contrast, for the

large value of Vr = 10 in figure 6, qt is seen to inherit the structure of vertical velocity

w, while M is indistinguishable to the eye from θe.

From the qt plots in both figures 5-6, one anticipates that variance spectra for water

qt will steepen as rainfall speed Vr increases and fine-scale structure decreases. In the

next section 2.3.2, we quantify the range of spectral scalings and the limiting spectral

exponents for Vr → 0 and Vr →∞. Later in section 2.4, we provide a rational basis for

understanding the structural transition from qt ∼M for Vr → 0, to qt ∼ w for Vr →∞.
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(a) qt, Vr = 0 (b) M , Vr = 0

(c) qt, Vr = 0.1 (d) M , Vr = 0.1

(e) qt, Vr = 1 (f) M , Vr = 1

Figure 5: Contours of total water qt and M = qt+GMθe for increasing Vr at time t = 60,
after quasi-steady state has been established.
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(a) qt, Vr = 10 (b) M , Vr = 10

(c) w (d) θe

Figure 6: Contours of (a) total water qt, (b) M = qt+GMθe, (c) vertical velocity w, and
(d) equivalent potential temperature θe; the rainfall speed is fixed at Vr = 10. For this
large Vr, the structure of qt is similar to the structure of w; M approaches θe since the
amplitude of qt � θe.
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2.3.2 Spectra of total water

Figure 7 shows that the spectra of total water variance steepen and decrease in magnitude

as rainfall speed Vr increases, reflecting the loss of fine-scale structure in qt as well as

the amplitude reduction seen in figures 5-6. To quantify the changes in the spectra,

figure 8 shows the spectral exponents as a function of Vr. (The spectral exponents were

computed by a linear fit from kh = 30 ± 5 to kh = 70 ± 5.) Broadly speaking, there

seem to be three distinct regimes: the spectral exponent approaches the value ≈ −1.4

as Vr → 0; there is a transition region for 10−2 < Vr < 1; the exponent approaches the

bottom dashed blue line as Vr → ∞, with value close to −4. The dashed horizontal

lines indicate the computed spectral exponent for w2 (there are two lines to indicate

uncertainty).

A detail that arises in figure 8 is the non-monotonic change in the spectral exponent

as a function of Vr. For Vr values between roughly 100 to 101, the spectral exponent

value falls below the large-Vr limiting value (about -4). To investigate whether the non-

monotonicity is a numerical artifact, higher-resolution simulations were carried out with

resolution of 10242 Fourier modes (as opposed to the standard cases with 5122 Fourier

modes), and the results are shown in figure 8 by the green marks. The higher-resolution

results appear to be only slightly more monotonic, which suggests the non-monotonicity

may be a natural property of the system. Further evidence is provided by comparison

with the spectral exponent of θe and M , as shown in figure 9. Since qt = M − GMθe,

the spectral slope of qt will match the shallower slope of M , which persists until around

Vr = 1. When Vr is approximately 1, the exponent of M is approaching −5.5 or −6,

which explains why the spectral exponent of qt is able to also reach approximately −5.5.
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Observational studies, for comparison, have reported spectral exponents that range

as widely as -1.3 to -2.7 [Fischer et al., 2012] or -1.4 to -2.2 [Kahn and Teixeira, 2009],

although the more convenient numbers of −5/3 and −2 are more commonly reported.

Such observational ranges are more narrow than the wide range of roughly −1.4 to −4

shown in figure 8 for the model. Nevertheless, it is interesting that the model’s bound

of −1.4 is roughly in line with the bound that is seen in observations. Moreover, in the

model a steeper spectrum can also be seen, and it is due to the influence of precipitation.

The observational spectra are influenced by numerous factors, as described in more

detail in the Introduction section, and not all factors are included in the present idealized

setup. In the present setup, it is mainly three parameters that could potentially influence

the water spectrum: rainfall (Vr), vertical moisture gradient, and meridional moisture

gradient. The latter two (the moisture gradients) will be shown in section 2.5 to have

limited influence on the water spectrum. Rainfall, on the other hand, is seen to have a

significant influence on the water spectrum.

To aid the comparison between observations and the present idealized model, the

parameter Vr here can be viewed as an indicator of the influence of precipitation on the

variability of water, in the following way. While the origin of the parameter Vr is as

a representation of terminal velocity of rain, the case of Vr = 0 here is equivalent to

the dynamics of a moist atmosphere that is always unsaturated and cloud-free. As a

result, small Vr values correspond to dynamics with little or no influence of precipitation,

moderate Vr values correspond with appreciable influence of precipitation, and large Vr

values correspond with a dominating influence of precipitation. The correspondence

between Vr in this saturated model and Vr in nature is not a perfect match, since the

model here is saturated whereas nature has phase changes of water. Nevertheless, the
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trends in the influence of Vr on water spectra can offer an idealized indication of trends

in the influence of precipitation on water spectra.

Given this viewpoint of Vr, and given all of the factors that complicate a perfect

comparison between observations and the present idealized model, it is interesting that

roughly -1.4 is seen as the bound on the spectral exponent in both observations and the

model, and it is seen in the model for the case of small Vr, indicating little or no influence

of precipitation. Beyond this bound, steeper spectra are also seen in both observations

and the present idealized model. While the steeper spectra in the model are mainly due

to a larger influence of precipitation (as indicated by larger Vr values), one can expect

that the steeper spectra in observations are likely influenced by precipitation as well as

numerous other factors. Also, while a large range of Vr values was used here in order

to explore the limiting cases, it is a smaller range of Vr values (roughly a factor of 10)

that causes the large changes in the spectral exponent, ranging from -1.4 to -4 or even

steeper.

From a broad point of view, the results here suggest that, even with a minimal

model such as PQG, it is possible to see a wide range of exponents, broadly similar

to the existence of ranges of exponents in observational data, rather than a unique,

universal exponent.
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Figure 7: Spectra of total water qt for different values of rainfall speed Vr.
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Figure 8: Spectral exponents of q2
t for increasing Vr, computed from figure 7 between

kh = 30 ± 5 and kh = 70 ± 5. Horizontal blue line segments indicate slope values
measured for kh ∈ [30, 70] for runs with resolution 5122 Fourier modes; error bars are
indicated by blue vertical line segments. Green line segments correspond to runs with
resolution 10242 Fourier modes. The dashed horizontal lines indicate the computed
spectral exponent for w2 (there are two lines to indicate uncertainty).
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Figure 9: Spectral exponents of M2 for increasing Vr, computed between kh = 30 ± 5
and kh = 70 ± 5. Horizontal blue line segments indicate slope values measured for
kh ∈ [30, 70] for runs with resolution 5122 Fourier modes; error bars are indicated by
blue vertical line segments. The dashed horizontal lines indicate the computed spectral
exponent for θ2

e (there are two lines to indicate uncertainty).
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2.4 Limiting values for water spectral exponents

In this section, we use the equations of motion (2.1) and (2.6b) to help understand the

limiting values of the spectral exponent for q2
t as Vr → 0 and Vr → ∞ observed in

figure 8.

2.4.1 Small rainfall speed

A rudimentary understanding of the limit Vr → 0 can be found from setting Vr = 0 in

the continuously stratified PV -M equations (2.6) with β = 0. There is a well-known

analogy between the PV -equation (2.6a) and the vorticity equation for 2D turbulence

[Charney, 1971]. By the analogy, one may predict the scalings for the kinetic energy

KE(kh) (associated with velocity) and potential energy PE(kh) (associated with θe)

resulting from the forced-dissipative version of (2.6). The theory relies on isotropy and

the existence of inertial ranges in a statistically steady state [Kraichnan, 1967]. In the

inertial range of scales smaller than the forcing scales and larger than the dissipation

scale, these predictions are KE(kh) ∝ k−3
h and PE(kh) ∝ k−5

h , where the latter uses the

relations between u, ψ, PV and θe given by (2.2) and (2.5a). The M -equation (2.6b)

with Vr = 0 describes the evolution of a passive scalar M advected by the horizontal

winds, with expected shallow spectrum M2(kh) ∝ k−1
h [e.g., Babiano et al., 1987]. (The

notation of M2(kh), q
2
t (kh) will be used to describe the power spectra of M, qt in terms

of the horizontal wavenumber.)

In the discretized 2-level equations with hyperviscosity (3.4a)-(3.4b), the Phillips



35

background acts as a large-scale forcing, albeit anisotropic, leading to baroclinic insta-

bility and eventually to a statistically steady state. In previous studies of both forced-

dissipative 2D turbulence with β 6= 0 [e.g., Maltrud and Vallis, 1991] and 2-level QG-

equations with β 6= 0 [e.g., Qi and Majda, 2016], the spectrum has been observed to be

KE ∝ kqh with −4 < q < −3. As discussed in the latter references and many others, the

anisotropy introduced by nonzero β leads to a change in flow structure from vortices to

anisotropic jets, and as reproduced here in figure 3. Hence, the arguments surrounding

the scalings KE ∝ k−3
h , PE ∝ k−5

h and M2 ∝ k−1
h are no longer strictly valid, but the

observed spectra are nevertheless not far from the predictions associated with isotropic

conditions. Our simulations of (3.4) show, approximately, KE ∝ k−3.8
h , PE ∝ k−5.8

h

and M2 ∝ k−1.4
h (not shown). Factors contributing to steeper-than-isotropic spectra are

anisotropy, structure formation and truncated vertical structure.

Finally, we can use the information about the spectral scalings for PE(kh) and

M2(kh) together with relation qt = M − GMθe to understand the spectral scaling of

qt observed in figure 8 for Vr → 0. Since the potential energy spectrum PE(kh) falls

off much more rapidly than the M -spectrum M2(kh), it is clear that significantly more

‘energy’ is associated with M than with θe as soon as wavenumbers kh are larger than

the forcing scales kf , which are the largest scales in our simulation domain. Hence,

qt inherits the fine-scale structure of M as Vr → 0, and the spectrum of qt scales as

q2
t ∝ k−1.4

h , kh > kf .
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2.4.2 Large rainfall speed

Consider the discretized version of equation (2.1c) for qt at mid-height in the 2-level

set-up:

Dmqt
Dt
−GM

Lds
L
w + vQy = − Vr

∆z
qt. (2.10)

We set Qy = 0 for the baseline case considered above in figures 3-8. Defining ε = 1
Vr

,

the variables in 2.10 can be expanded in powers of ε, for example,

qt = q
(0)
t + εq

(1)
t + · · · (2.11a)

ψ = ψ(0) + εψ(1) + · · · (2.11b)

w = w(0) + εw(1) + · · · , (2.11c)

and so on. The order O
(

1
ε

)
balance gives

0 = − Vr
∆z

q
(0)
t . (2.12)

To leading order, then, the total water qt is small, and its contribution at next order,

q
(1)
t , satisfies the balance

−GM
Lds
L
w(0) = − Vr

∆z
q

(1)
t . (2.13)

(For a more formal derivation where this limit is included as part of the distinguished

limit for PQG, see Smith and Stechmann [2017].)

Accordingly, in our simulations with large Vr, we observe that the magnitude of qt

becomes small, and qt ∼ w, as in the time snapshot figure 6 with Vr = 10. Similarly, the

spectral scaling exponent for the spectrum of q2
t approaches the exponent characterizing

the spectrum w2 as seen in figure 8.
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2.5 Effects of a meridional and vertical moisture gra-

dients

In addition to precipitation, other factors can also influence the water variance spectrum.

Two such factors are the meridional moisture gradient, associated with parameter Qy,

and the vertical moisture gradient, associated with parameter GM .

The effect of meridional moisture gradient can be studied by taking Qy 6= 0 in (2.10).

We explored several values of Qy corresponding to |Qy| << GMLds/L, |Qy| ≈ GMLds/L,

and |Qy| >> GMLds/L.

We observed that the effects of Qy are the most apparent for large Vr, and thus we

present only this case. Returning to (2.10), the scaling Vr = O(1/ε) with ε → 0 gives

q
(0)
t = 0 and the O(1) balance

v(0)Qy −GM
Lds
L
w(0) = − Vr

∆z
q

(1)
t . (2.14)

Now q
(1)
t is a combination of v(0) and w(0). By changing the coefficients Qy and GMLds/L,

the structure of qt may inherit the structure of w, or the structure of v, or some combi-

nation of the two.

Single-time snapshots of w and vm at mid-height are plotted in figure 10, so that

their structure can be compared to qt. Note that the structure of the winds does not

depend on the value of Vr because of the one-way coupling. For fixed, large Vr = 10,

figure 11 illustrates the competition between w and v for determining the structure of

qt, depending on the value of background meridional water gradient Qy compared to

GMLds/L. Figure 11a is the baseline case with Qy = 0, showing that qt inherits the

structure of w seen in figure 10a. However, figure 11b for |Qy| ≈ GMLds/L, shows that
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qt inherits the structures of both v and w. While not as easy to see, the effects of w can

be observed in figure 11b, for example in the lower right corner near x = 1, y = −3,

there is a streak through the negative anomaly in qt corresponding to the weak positive

anomalies in w. The dual dependence of qt on w and v can also be observed in spectra

as shown in figure 12. For comparison to q2
t , the spectra for w2 and v2 have been

normalized by the appropriate coefficients from (2.14). For 1 ≤ kh ≤ 5, Qy causes the q2
t

spectra to have a similar shape to that of the v2 spectra. However, for large kh, the shape

of the q2
t spectra seems to independent of Qy. In this case of Vr = 10, where the rainfall

speed is large, yet not so large to be near the asymptotic regime, both the q2
t spectra are

between the normalized v2 and w2 spectra. If a larger value of Vr is taken, both of the

q2
t spectra approach that of the w2 spectra, for large kh. One sees that the background

meridional water gradient Qy is another parameter, in addition to the parameters of the

dry system and rainfall speed, Vr, which can change the characteristics of the spectral

scaling for total water qt.

Another water parameter, GM can also effect the spectral scaling of total water.

From 13, it can be seen that GM does not have as strong an effect on the shape of the

spectral curves for qt.
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(a) GM
Lds
L w (b) −Qyvm

Figure 10: Winds at mid-height: (a) w and (b) vm.

(a) qt with Qy = 0 (b) qt with Qy = −1

Figure 11: Contours of total water qt for large Vr = 10: (a) Qy = 0 corresponding
to Phillips background with zero background meridional water gradient; (b) |Qy| = 1
corresponding to Phillips background with large gradient of water in the meridional
direction.
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Figure 12: Velocity and total water spectra for large Vr = 10. Baseline case with Qy = 0
(zero Phillips background water): normalized v2 (dash-dot); q2

t (dot). Case |Qy| = 1
(non-zero meridional gradient of Phillips background water ): normalized w2 (solid);
q2
t (dashed). For even larger values of Vr, the slope at large wavenumbers for both qt

spectra approach that of w.
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Figure 13: Left column represents the change of the spectra based on changes in GM and
the right column represents that by changes in My. (Larger values of GM ,My correspond
to curves higher up. The parameters GM ,My do not effect the behavior of the qt spectra
at high wave numbers. For low wave-numbers, we do see some difference, which can
be explained from the combination of θe,M . (Note My = (·) should be considered as
My = (·)×base value. My = 1.1 corresponds with Qy = 0.1.)
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2.6 Discussion and Conclusion

In summary, we have investigated the organization and structure of water in simulations

of geostrophic turbulence. As there is no definitive variance spectrum from observational

data of water, we also explored possible influences on the ranges in variance spectrum

observed. This was done by using the PQG model which is based on a quasigeostrophic

approach. While this PQG model has the usual limitations from QG along with those

from having coarse vertical resolution due to being two-leveled, it provides a simple

framework for understanding one aspect of how water behaves.

A main focus was to study the influence of precipitation on the variability of water. In

the simple model setup here, the influence of precipitation can be controlled by varying

the rainfall speed parameter, Vr, and it was seen that different behaviors can observed:

small Vr leads to a prominent small-scale structure of water, while larger Vr essentially

filters out the small scales. The model showed that for small Vr, a spectral exponent

for qt will be between -2 and -1, and for large Vr, the spectrum slope will approach that

of w. Moreover, theoretical arguments provided explanations for these two asymptotic

limits.

While it is natural to search for a clean fractional value for the spectral exponent,

the results here are in line with the view that the spectral exponent in nature may

not have a simple fractional value, as even with a PQG model which contains few

parameters, by just adjusting the value of one, Vr, a continuum of possible spectral

exponent values is obtained, ranging from around -1.4 to around -5. Moreover, with

a presence of a meridional gradient of water, one can adjust the balance between the

vertical and meridional to obtain a qt which appears to be a combination of v and w in
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the limit of large Vr. In the case of comparable water gradients, there is a possibility

that qt will appear like v for a certain range and w for another, although this would

require further investigation to understand in more detail.

Wave or mode decompositions provided a key perspective here for understanding wa-

ter. In particular, it was shown that the water qt could be written as a linear combination

of two other variables: a passive tracer M and an active tracer θe, which correspond to

a moist eigenmode and the vortical mode, respectively. In the case where the passive

tracer is different from the active tracer, i.e. the small Vr regime, we saw that in our case,

qt behaved more as a passive tracer. In the case where the passive tracer was forced to

relax towards the active tracer, qt behaved as the difference between the passive tracer

and active tracer, which in our case was w.

With the ability to provide a continuum of behavior for water while also providing

asymptotic limits to the behavior, this study suggests that the two level PQG model

provides a useful framework to study water in the atmosphere. In the future, it would be

interesting to use the full version of the PQG equations including phase changes [Smith

and Stechmann, 2017], which would offer additional realism to the model, but likely at

the expense of complicating theoretical analyses.
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Chapter 3

Atmospheric Water transport

3.1 Introduction

Moisture transport in the atmosphere is important as it connects the evaporation

of water in the oceans to precipitation over land. With more understanding of the

physical processes involved in moisture transport, there could be improved forecasts of

precipitation. Two important large-scale dynamical structures for moisture transport

are the low-level jets (LLJ), in the tropics and subtropics, and the Atmospheric Rivers

(AR) mostly in the extra-tropics [Gimeno et al., 2016]. In this present paper, we will

focus on meridional moisture transport in the mid-latitudes using a quasi-geostrophic

framework. As such, we will be investigating ARs in a QG setting and some more general

properties of meridional moisture transport.

Atmospheric Rivers (ARs) are an important source of water transport in the at-

mosphere. They can carry more water than 7-15 Mississippi Rivers combined [Ralph

and Dettinger, 2011] and are reported to be able to transport more than 90% of the

total mid-latitude vertically integrated water vapor flux [Zhu and Newell, Gimeno et al.,

2014]. Due to the amount of water within these ARs, when one passes by a coastal

area, it can provide significant amounts of precipitation. For example, a study by Smith

et al. [2010] saw that about 20-40% of the water vapor in an atmospheric river rained
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out over northern California. Moreover, in these locations, a significant portion of the

annual precipitation is due to AR contributions [Dettinger, 2011, Ralph et al., 2013,

Rutz et al., 2014].

ARs are defined in the Glossary of Meterology to be ”a long, narrow, and transient

corridor of strong horizontal water vapor transport that is typically associated with a

low-level jet stream ahead of the cold front of an extratrpoical cyclone” [Ralph et al.,

2018]. The studies of ARs are mostly done on observational data or on data from

complex models. In this present paper, the overarching questions are: Can atmospheric

rivers form in a simple model, and if so how much of a contributing factor are they to

meridional moisture transport in a simple model? To investigate this question, a quasi-

geostrophic (QG) framework is used as it is simple enough to understand theoretically,

yet complex enough to have interesting behavior. Some examples of past achievements

of the quasi-geostrophic equations are the explaining baroclinic instability [Charney,

1947, 1948, Phillips, 1954] and geostrophic turbulence [Rhines, 1979, Salmon, 1980]. As

such, it is reasonable to hope that further understanding of ARs and water flux can be

achieved in a similar framework.

As a quasi-geostrophic model with water, the recently derived precipitating quasi-

geostrophic (PQG) equations will be used [Smith and Stechmann, 2017]. For comparison,

there have been other variations/adaptations of the dry QG equations to include mois-

ture and moisture effects via latent heat release, etc. [e.g., Mak, 1982, Bannon, 1986,

Lapeyre and Held, 2004, Monteiro and Sukhatme, 2016]; these and other similar models

[e.g., Lambaerts et al., 2012] have provided insight into moisture dynamics and the role

of latent heat release in the atmosphere. One distinguishing and advantageous prop-

erty of the PQG equations is that they are asymptotic limiting equations. Specifically,
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the PQG equations arise in the limit of rapid rotation and strong (moist) stratification,

starting from the equations for midlatitude dynamics with moisture, phase changes, and

precipitation [Hernandez-Duenas et al., 2013]. In Wetzel et al. [2017], moisture transport

in PQG was examined for the linearized equations in a single phase.

In this paper, we show that even with a simple model with only one phase, the

presence of ARs, as well as the fact that some of these ARs can represent a large

percentage of the meridional flux. We also show the effects of some of the parameters on

the meridional water fluxes. In particular, the effects of two parameters, the meridional

gradient of water and the rainfall speed are shown to have a non-negligible impact on

water transport.

The paper is organized as follows. In section 2, the precipitating quasi-geostrophic

equations (PQG) are introduced. Section 3 describes the numerical method used to solve

the PQG system, and also the algorithm used to identify the QG atmospheric rivers.

In section 4, there is a discussion on the characteristics of the atmospheric rivers. In

section 5 properties of the meridional transport of water as well as the effects rainfall

and meridional moisutre gradient on the meridional moisture transport is examined ,

and the discussion and conclusion is in section 6.

3.2 Description of Precipitating QG Equations

The PQG equations can be considered as a moist version of the QG equations. The

QG equations describe the slow evolution of synoptic-scale flows under assumptions of

rapid rotation and strong stratification. Derivations for the dry QG equations can be

found in Salmon [1998], Vallis [2006], Pedlosky [2013].
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The starting point for the derivation of the precipitating quasigeostrophic (PQG)

equations is a simplified cloud resolving model. Conversions between water vapor, cloud

water and rain water are modeled at macroscopic scales and for each conversion process,

a time scale is associated with it. In a quasigeostrophic framework, these processes

are taken to be instantaneous as these time scales are much smaller compared to the

time scales associated with rotation, buoyancy effects, advection, and rain fall in the

mid-latitude. These assumptions of fast cloud microphysics leads to the FARE model

( fast auto-conversion and rain evaporation) [Hernandez-Duenas et al., 2013] which can

be considered as a moist version of the Boussinesq equations used to obtain the PQG

equations.

Beyond the assumptions of the dry QG framework (rapid rotation and strong dry

stratification), an additional assumption in the PQG framework is a strong moist strati-

fication of equivalent potential temperature [Smith and Stechmann, 2017, Wetzel et al.,

2017]. In PQG, boundaries between unsaturated and saturated flow regions are repre-

sented by Heaviside nonlinear switches: water below the saturation level exists in the

vapor phase only; water above the saturation level is instantaneously converted to rain

water, which falls at a constant speed Vr. More detailed derivations of the PQG equa-

tion and the vertically finite differenced version can be found respectively in Smith and

Stechmann [2017] and chapter 2.

Now as we are considering only the case with no phase changes the anomolous total

water, qt is equivalent to anomolous rain water, qr

qt = qr (3.1)

so from here on all qr values will be replaced with qt.
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Similar to the dry case, by taking a finite difference in z with two levels, the two

level PQG equations can be obtained,

D1PV1

Dt
+ βv1 = 0 (3.2a)

D2PV2

Dt
+ βv2 = 0 (3.2b)

DmMm

Dt
= − Vr

∆z
qr,m = − Vr

∆z
(Mm −GMθe,m) (3.2c)

with

PV1 = ∇2
hψ1 +

(
1

∆z

L

Lds

)2

(ψ2 − ψ1) (3.3a)

PV2 = ∇2
hψ2 +

(
1

∆z

L

Lds

)2

(ψ1 − ψ2) (3.3b)

θe,m =
L

Lds

ψ2 − ψ1

∆z
(3.3c)

ui = −∂ψi
∂y

for i = 1, 2 (3.3d)

vi =
∂ψi
∂x

for i = 1, 2 (3.3e)

um =
u1 + u2

2
(3.3f)

vm =
v1 + v2

2
. (3.3g)

where ui, vi, ψj, for j = 1, 2 and θe,m,Mm, qt, qr are functions of two spatial variables

(x, y) and time, t; ui, vi represent the horizontal components of the fluid velocity at

level j; θe,m represents the equivalent potential temperature at the mid-level; qt,m, qr,m

represent the total water and rain water at the mid-level respectively. In the QG, the

(depth) averaged velocities um and vm are commonly known as the barotropic velocities.

Summaries of the variables, parameters, and symbols are provided in Tables 1–4. From
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here on, the subscript m will be omitted from the thermodynamic variables θe,M, qt to

reduce notation.

We use the notation D1

Dt
(·) = ∂t(·) + u1∂x(·) + v1∂y(·), and similarly for D2

Dt
(·) and

Dm

Dt
(·).

During the finite differencing, vertical boundary conditions of a rigid lid, w = 0 is

imposed on the top and bottom boundaries, and as well as a condition of no inflow of

qt from the top. Periodic boundary conditions are imposed in the horizontal direction.

In these equations, there are four nondimensional parameters in the PQG equations:

the length-scale ratio Lds/L; change in the rotation rate with latitude, β; the rainfall

speed, Vr; and the scaled ratio of the background vertical gradients of total water and

equivalent potential temperature, GM . In section 3, a fifth nondimensional parameter,

the meridional gradient of water, Qy is included.

3.3 Methods and Numerics

3.3.1 Numerics for simulation

Our main goal is to investigate the structure and statistics of ARs as water transport

in a statistically quasi-steady state of saturated PQG, evolving from baroclinically un-

stable initial conditions. To do so, we numerically computed the solution to equation 3.2

with additional dissipation terms given by 4th-order hyperviscosity and lower-level fric-

tion. The model used is the same as that used in chapter 2:

D1PV1

Dt
− U∂xPV1 + v1∂yPV1,bg + βv1 = −κM∆ψ1 − ν∆4PV1 (3.4a)
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D2PV2

Dt
+ U∂xPV2 + v2∂yPV2,bg + βv2 = −ν∆4PV2 (3.4b)

DmM

Dt
+ vm∂yMbg = − Vr

∆z
(M −GMθe)− ν∆4M. (3.4c)

The parameter values β = 2.5, κM = 0.05, ν = 5 × 10−15 and kds = 4 were chosen to

match the (dry) mid-latitude atmosphere case studied in Qi and Majda [2016]. Instead

of the value U = 0.2 as in their study, the parameter value U = 0.25, was chosen as it

produced a jet which had more movement which appeared to better allow atmospheric

rivers to form in our simulations. The parameters reflecting the presence of water in

our 2-level PQG equations are GM and Vr: GM depends on the background water

profile and Vr is the rainfall speed. In the present study, we fix the value GM = 1 and

vary Vr. The baseline case has background meridional gradient Qy = −1 such that

Mbg = (Qy +GMΘ)y = −1 +GMΘy.

A pseudospectral solver was used to solve ( 3.4) on a doubly periodic, horizontal

domain. The time-stepping was done according to a 3rd-order Runge-Kutta scheme

with an adaptive ∆t chosen to satisfy the CFL condition. Three-halfs padding was

used for de-aliasing. Most of the simulations used resolution N2 = 2562 Fourier modes,

with a few higher-resolution simulations as described below for about 400 days. The

initial condition was a band of eigenmodes centered around the unstable wave-vector

(k, l) = (3, 1), and the simulations were run long enough to obtain statistical steady

states. These eigenmodes can be obtained by solving the linearized equation (see chapter

2 for more details on the linearized equations). In addition to the two modes obtained

from the PV equations, as done in dry QG, there is another eigenmode from the M

equation that is not present in dry QG.
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3.3.2 Atmospheric River Identification Algorithm

There are several methods to identify ARs, most of which depend on intensity and/or

geometry thresholds. These can be largely split into three categories [Guan and Waliser,

2015]: (1) methods which use a single observation site or model grid cell, [e.g. in

Neiman et al., 2009, Dettinger, 2011, Ralph et al., 2013] (2) methods which track pre-

selected cross-sections while satisfying a set criteria for the geometry and intensity, [e.g.

in Lavers et al., 2011, 2012, Nayak et al., 2014, Gao et al., 2015] (3) methods which

consider geometry and intensity thresholds throughout the domain and identifying any

ARs in the domain [e.g. in Wick et al., 2013, Jiang et al., 2014, Rutz et al., 2014, Guan

and Waliser, 2015]. The first method is useful for studying AR landfalls in small, local

areas; the second method is useful for regional studies concerning AR landfalls; and the

third method for larger domains, where the interest is not only on AR landfalls.

In addition, there is also a choice in variable between using integrated water vapor

(IWV) and integrated vapor transport (IVT). Initially, IWV was used to identify and

measure the AR’s intensity and spatial distribution [e.g. in Ralph et al., 2004, Neiman

et al., 2008] since these studies used satellite-based observations. However, more recently,

IVT is used as it is more directly related to precipitation outcomes and as it depends

less on surface elevation [e.g. in Rutz et al., 2014, Ralph et al., 2019].

In this manuscript, the identifying atmospheric rivers is essentially based on the

algorithm mentioned in Guan and Waliser [2015], which is a method in the third family

which can be used to study large scales, and does not require a pre-selection of a cross-

section. To be consistent with their algorithm, we also chose IVT to be the variable of

interest over IWT. As our model only has qt(z) at z = zm (at the midlevel), the qt will
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be assumed to be independent of z for simplicity.

The general idea of the algorithm is to identify locations with high intensity of IVT

with specific geometries (long and thin) where the direction of the IVT corresponds

with the direction of the geometry. Further details are in the next paragraph. A key

difference from Guan and Waliser [2015] is that they use a length criterion of having

at least 2000km, whereas in our case, we use adjusted the criterion to 1000km as the

domain is smaller.

The algorithm is as follows.

First to find high intensity IVT regions, connected regions in which the magnitude

of the water transport is at least at the 85th percentile are identified. The mean water

transport direction is then determined for each of these regions and compared to the

water transport direction in each cell. If more than half of the grid cells deviate by

more than 45o from the mean water transport direction, this region is removed from the

possible candidates for an AR.

To determine if the high intensity IVT regions have the correct geometry, the line

which connects the two points which are furthest apart from each other, known as the

major axis, is first identified. If the orientation of the major axis differs from the direction

of the mean water transport direction by more than 45o, this region is also discarded.

The length is considered to be the length of the major axis for each region. The width

is computed by taking the area of each candidate region and dividing by the length. If

the candidate region has a length greater than the length threshold, and if it also has

a ratio of length/width greater than 2, than we define this to be an AR. As mentioned

above, in Guan and Waliser [2015] a length threshold of having at least 2000km is used,

whereas in our case, as the domain is smaller, we use adjusted the criterion to 1000km.
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3.4 Characteristics of QG atmospheric rivers

In this section we explore to what extent do atmospheric rivers appear in this model,

and the characteristics that these ARs have compared to nature. Furthermore, we

explore the effect of varying the rainfall parameter, Vr on the occurrences of the rivers.

In nature, most ARs appear as very long and thin corridors of water transport, a

typical example being a long filament reaching from the Hawaiian islands to northern

California. Moreover, ARs are known to carry a large percentage of meridional flux

[Zhu and Newell], which will be explored in the next section. There is a tendency for

ARs to appear more frequently in the winter, due to the strong association with extra-

tropical cyclones [Gimeno et al., 2014]. For the time period between 2008-2010, Waliser

et al. [2012] counted a total of 259 ARs (for the first year, 122; for the second, 137),

in roughly 5 different regions (North-East Pacific, South-East Pacific, North Atlantic,

South Atlantic, South Indian) of which approximately a quarter make landfall. It has

been suggested in Bao et al. [2006], Dacre et al. [2015] that ARs could also form and

be maintained due to individual cyclones which accumulates moisture ahead of the cold

front at the base of a warm conveyor belt airflow.

We present two examples of ARs which were identified by the algorithm mentioned in

section 3.2. Figures 14 and 15 show the anomalous total water, qt and the zonal velocity,

um which advects the qt in two different times and instances of the simulations. Both

figures show areas where there are filamentary regions of qt which roughly correspond

to the edges of the eastward zonal jet. Away from the zonal jet, the qt anomalies are

weaker and less filamented.
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Figure 14: Example 1: Snapshot of qt (top) and um (bottom) t = 360
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Figure 15: Example 2: Snapshot of qt (top) and um (bottom)
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Figure 16: Example 1: Snapshot of river (top), vqt (middle), uqt (bottom) t = 360
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Figure 17: Example 2: Snapshot of river (top), vqt (middle), uqt (bottom) t = 700
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Figures 16 and 17 show the ARs which were identified and the accompanying snap-

shots of uqt and vqt. The regions of strongest water transport in the x and y direction

are, as one would expect, regions where qt and u, v are strong, which in these cases

appear to correspond with the location of the zonal jet. The AR in figure 16 especially

shows that these structures can appear to be long and filamented, like those which can

be seen in nature. Several factors can cause regions of strong filamented qt to not be

identified as ARs due to the criteria and algorithm that we are using. Some reasons

are: the direction of water transport does not roughly align with the geometry of the

region; the region could have weak winds resulting in weak water transport; the region

is too small to be considered, etc. In this case, the uqt, vqt snapshots would be better

indicators for regions which could potentially be identified as ARs.

It is important to note, however, that the model lacks phase changes and fronts, so

one cannot expect all the ARs in these simulations to have the exact same properties as

the ARs seen in nature.

In figure 18, the effect of the rainfall parameter, Vr, on the number of ARs seen is

presented below. To ensure that there we do not count the same ARs twice, we run the

algorithm on snapshots which are taken 20 time units apart (one time unit corresponds

to around one day). For each Vr value, 10 simulations are run and the minimum and

maximum number of ARs are shown by the vertical line. The circle represents the

average number of ARs observed.

From this figure, it is observed that for Vr values which are not too large, the number

of atmospheric rivers are within the range of observational values of ARs seen in one

region, which observe around 5 to 20 atmospheric rivers per year [Byna et al., 2011,

Lavers et al., 2012]. This is due to large Vr causing qt to have similar structure to w as
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Figure 18: Number of atmospheric rivers observed as a function of the rainfall speed
parameter, Vr. Qy = 1. The horizontal bar indicates the average number of rivers from
the simulations.

mentioned in chapter 2. Moreover, from the same chapter it is known the if Vr is very

small, qt will appear to only have filamented structure and lack some of the larger scale

structure, and so would not be a good candidate to use the AR identification algorithm.

In the next section, we will consider what percentage of the meridional flux are in

the ARs which are identified.
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3.5 Meridional water transport

In this section, we explore the characteristics of the meridional water transport, the

impact of the moist parameters of the meridional gradient of water and the rainfall pa-

rameter on the meridional water transport, and also, the amount of meridional transport

seen in an AR compared to the total meridional water transport in this model.

It has been reported that atmospheric rivers can provide more than 90% of the total

mid-latitude vertically integrated water vapor flux Zhu and Newell, Gimeno et al. [2014].

Splitting the total water flux Qt, into a ”broad flux,” Qb and a ”river flux”, Qr as done in

Zhu and Newell, we also observe that Qr can be a large portion of the zonally averaged

meridional flux. This splitting is computed by

Qr ≥ Qmean + 0.3(Qmax −Qmean) (3.5)

where Qr is the water flux at a given point, Qmean is the zonally averaged magnitude

of the water flux and Qmax is the maximum zonally averaged magnitude of the water

flux for a given latitude. If the inequality holds, the point is considered to be part of

the river flux.

Figure 19 shows the the result of using this splitting on example 1. The river

identified by the algorithm from 3.2 is shown in the ”river flux” plot. As can be seen

from figure 20 the ”river flux” can contain much of the meridional flux, as was observed

in Zhu and Newell. For example, near the latitude y = −1 which corresponds with the

location of the AR from example 1, the meridional river flux is around 66% of the total

meridional flux. Note that the regions near the edges of the zonal jet (y = −1.5 and

y = 1.5) contain the strongest zonally-averaged meridional flux.
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Figure 19: The ”river flux” (top) and ”broad flux” (bottom) determined from Zhu and
Newell

Figure 20: Zonally averaged meridional fluxes where ”rivers” are identified by a cutoff
mentioned in Zhu and Newell



62

To more precisely determine the amount of meridional water flux which is due to the

ARs, the ratio between the total meridional water flux in the ARs by the algorithm in

3.2 can be compared to the total meridional water flux of the whole domain. The ratio

of the meridional flux from the atmospheric river is calculated by

P =< vqr >river / < vqr >total . (3.6)

For the case of Vr = 1, values of P ranged from 0.06 to 0.46, with most of the values

around 0.20-0.30. For Vr = 0.1 values of P ranged from 0.05 - 1.26, with most values near

0.30-0.50. Values greater than 1.00 indicate that there were a higher amount meridional

water flux in the river than the total meridional water flux in some instances. Although

the ARs only take up a fraction of the space as seen from figures 16 and 17, we see that

even in a simple model they can contribute a disproportionate amount of the meridional

transport of water.

The behavior of the meridional water flux over time is illustrated below. Figure 21

shows the total meridional θe flux, < vθe > and total meridional water flux, < vqt > as

a function of time, for a long time simulation for the standard case, with Vr = 1. The

two lines in each plot indicate the total flux and the positive flux (e.g. < vqt >total=<

vqt >positive −| < vqt >negative |). This is meant to show how much of the total flux can

be attributed to the positive flux. The smaller distance between the total and positive

flux indicates that there is less negative flux; and in contrast, the further apart the total

and positive flux, the more negative flux there is. An interesting feature of this figure is

that the spikes in the total meridional water flux corresponds to the spikes in the total

meridional θe flux.

For a better understanding of the behavior of some of the dry and moist variables,
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Figure 21: The total meridional θe flux < vθe > (top) and total meridional water flux
< vqt > as a function of time.(long time)

the zonal averages of um, θe, qt, vqt are presented in Figure 22. The location of the

spikes in the meridional fluxes in figure 21 seem to correspond with the change in

behavior of the flow, where the zonal jet starts to change direction. The zonal jet

can be seen in the top plot, which shows zonally averaged um. The zonally averaged

potential temperature appears to also have the jet-like structure, with a phase-shift in

the y−direction. Moreover, we observe in the third plot that there is strong positive qt

above the eastward jet and negative qt below the jet, and in the fourth plot, that the

meridional transport of water is strongest where the eastward jet is located.

Referring back to figure 21, we observe that for < vqr > total meridional flux is

always positive, and that there is very little negative flux as can be seen by the two lines

almost overlapping with each other. By changing the values of the two moist parameters

the meridional moisture gradient, Qy, and the rainfall parameter, Vr, the effects on the
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Figure 22: Zonally averaged um (top), θe (second), qt (third), vqt (bottom) as a function
of time. Vr = 1. (long time)
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Figure 23: The total meridional flux < vqt > as a function of time, with Qy = −1.

positive-ness of the total meridional water flux can be observed.

The standard case simulation with Qy = −1 and Vr = 1 is presented in figure 23

and the case with no meridional moisture gradient, Qy = 0 in figure 24. The first of

these figures shows that the total meridional flux is mostly positive, as can be seen by

the two overlapping lines. The second of these figures shows that the total meridional

flux is centered around 0, and indicates that the negative flux is not insignificant. As

one might expect, the meridional gradient Qy seems to allow for the meridional water

flux to be nonzero and positive, in these simulations.

Figure 25 show the effects of changing the value Vr in the standard case. As the

rainfall term acts as a dissipative term, it is expected that the amplitudes of these

would decrease with increasing Vr. An interesting feature, however, is that it seems with

increased Vr, the positive flux converges to the total flux, indicating that there is less

negative flux. Moreover, once Vr is strong enough, the total flux appears to always be

positive.

The average percentage of the total flux to the positive flux is computed in table 6,
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Figure 24: The total meridional flux < vqt > as a function of time, with Qy = 0. The
total meridional flux seems to be centered around zero.

Vr < vqt >total / < vqt >positive

0.01 0.161
0.1 0.654
1 0.838
10 0.929

Table 6: The ratio between the total meridional water flux and the positive meridional
averaged over time. Larger values of Vr correspond to values closer to 1, meaning that
the amount of negative flux is decreasing and that the total flux is composed mostly of
the positive flux.

which shows that indeed with increasing Vr the positive flux converges to the total flux.

In the case for large Vr, the importance of Qy and the positive-ness of the total

meridional water flux can be explained by taking the asymptotic limit of Vr →∞.

From chapter 2, in the asymptotic limit of Vr →∞ there is the O(1) balance of

vmQy −GM
Lds
L
wm = − Vr

∆z
qt (3.7)

where wm is the vertical wind at the mid-level. This indicates that for sufficiently large

Vr, qt will appear to be a linear combination of wm and vm. By multiplying both side
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Figure 25: The total meridional flux < vqt > as a function of time for different Vr.
Vr = 0.01 (top), Vr = 0.1 (middle), Vr = 10 (bottom).
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by vm and rearranging some terms to obtain equation 3.8, the meridional water flux can

be better understood.

vmqt =
∆z

Vr

(
GM

Lds
L
wmvm − v2

mQy

)
(3.8)

As Vr is increased, from equation 3.7, the < vqt > begins to resemble a linear

combination of < wmvm > and < v2
m >. The second term is positive when Qy < 0,

and hence shows that for large enough Vr, the total meridional flux will be positive

which is consistent with the observation from figure 25 . Furthermore, we see that when

Qy = 0, the contributing term to the meridional flux will only be < wmvm > which is

not guaranteed to be positive, which is also consistent with figure 24.

Based on some preliminary simulations done with different values of β, it was ob-

served that when the jet was stronger, water would organize near the jet boundary more

consistently, whereas for the case of a weak jet which would intermittently show vortical

behavior, the organization of water seemed to be more noisier.

3.6 Conclusions

In summary, we have investigated some properties of meridional water transport in

a simple model. More specifically, the presence and characteristics of ARs and also the

factors influencing the meridional water fluxes were investigated. This was done in a

quasi-geostrophic approach by using the saturated PQG model. While this PQG inherits

the limitations from two level QG, such as low vertical resolution, and the lack of ability

to model fronts due to lack of phase changes, it provides a simple framework which can

help understand one aspect of water transport in terms of ARs and meridional fluxes.
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Even with this simple model setup, which lacks many physical processes, it was seen

that ARs could form and could be identified from the simulations based off the algorithm

by Guan and Waliser [2015]. Moreover, it was seen that these ARs could contribute a

disproportionate amount of meridional moisture flux compared to its size.

Also, it was observed that in this model varying only the moist parameters, Qy and

Vr, could lead to different behaviors in the total meridional water flux. By using a simple

model, these behaviors could be explained in terms of an asymptotic analysis, at least

for the case for sufficiently large Vr.

This study suggests that the two level PQG model provides a framework to un-

derstand certain aspects of water structures in the atmosphere. In the future, the full

version of PQG with phase changes [Smith and Stechmann, 2017] could allow for more

insight into the importance of certain physical processes to the structure of water and

water fluxes, although most likely at the expense of more complicated analyses.
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Appendix A

More Details

A.1 Chapter 1 appendix

A.1.1 Details on q̃t, q̃r

The saturation water vapor takes the value of its background state, so that qtotvs =

q̃vs. Taken together, since q̃t = q̃v + q̃r = qtotvs + q̃r and the water vapor is always at

its saturation value, the anomalies of total water are equal to the anomalies of rain

water: qt = qr. The saturation water vapor qtotvs (z) is taken to be a function of z, since

qtotvs (T tot, ptot) ≈ qtotvs (T̃ (z), p̃(z)) in this Boussinesq setup where the anomalies T and p

are small compared with the background states T̃ (z) and p̃(z) [e.g., Hernandez-Duenas

et al., 2013]. For an environment that remains saturated for all time, the total mixing

ratio of water vapor qtotv is always equal to a prescribed saturation function of altitude

qtotvs (z), such that qtotv = qtotvs . Furthermore, the mixing ratio of total water qtott is always

above saturation, with qtotr = qtott − qtotvs > 0. The latter inequality, in turn, implies that

the background rain q̃r must be sufficiently large to allow for negative anomalies in our

simulations (see Section 2.3).
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A.1.2 Computation of w

The values for w is obtained by solving the ω equation:

−

(
2

∆z
−∇2

h

(
Lds
L

)2

∆z

)
w =

[
(v2 − v1)β +

[
J(ψ2,∇2

hψ2)− J(ψ1,∇2
hψ1)

]
+∇2

h(v2u1 − u2v1)

+κM∇2ψ1 + 2U∇2
h∂x (ψ2 + ψ1)

]
(A.1)

where J(a, b) represents the determinant of the jacobian. The horizontal derivatives are

computed spectrally in Fourier space.

A.1.3 Baroclinic instability of the linearized PQG equations in

a saturated environment

In the numerical simulations, the initial conditions are a band of linearly unstable eigen-

modes. In what follows, these eigenmodes are presented for the PQG equations. The

PGQ eigenmodes are similar to the dry QG eigenmodes, but they differ because of the

additional moist variable M , as explained below.

The effect of water on the linear stability of the two-level PQG equations can be

studied by solving the ‘Phillips problem’ [Phillips, 1954], which is perhaps the simplest

framework to study baroclinic instability on a β-plane. Related formulations of the

linear stability problem for the dry QG equations may be found in [Salmon, 1980, Vallis,

2006, Pedlosky, 2013].

From (3.2) written in terms of the streamfunction ψ and M , one can see that (3.2a)-

(3.2b) form a closed subsystem for ψ which is mathematically equivalent to the dry

Phillips formulation. There is only a one-way coupling with (3.2c), such that ψ influences

the dynamics of M but not the other way around. As will be verified below, the presence
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of moisture does not introduce new instabilities, but only changes the range of unstable

wavelengths and growth rates. The effect of moisture on the growth rate of unstable

modes has been examined in previous studies, such as Emanuel et al. [1987], Lapeyre and

Held [2004]. The linear instability analysis of the continuously stratified PQG equations

without the β-effect (the so-called Eady problem Eady 1949, Pedlosky 2013) has been

studied in Wetzel et al. [2017]. Moist baroclinic instability has also been studied in

other contexts, such as in, Gall [1976], Thorpe and Emanuel [1985], Whitaker and Davis

[1994], Zhang et al. [2007], Booth et al. [2015]. It was observed in Wetzel et al. [2017]

that with the continuous PQG in a saturated regime, the ratio between the moist and

dry maximum growth rates were comparable to that found in Gall [1976]. However,

the wavenumber of the maxmimum growth rate was unchanged in Gall [1976] even with

moisture, whereas for Wetzel et al. [2017], the wavenumber increased.

To impose a zonal flow with vertical shear, together with a meridional temperature

gradient, the Phillips background streamfunction is chosen at levels j = 1, 2 to be

ψj,bg = Ujy with Uj = (−1)jU and U constant [Haidvogel and Held, 1980, Lapeyre

and Held, 2004]. The resulting expressions for θe and PV are, respectively, θe,bg =

Θy = − L
Lds

1
∆z

(2Uy) and PVj,bg = (−1)j
(

1
∆z

L
Lds

)2

(2Uy). For analysis of the saturated

environment, we also impose a background water profile qt,bg = Qyy with Qy constant.

Thus both temperature and water decrease linearly from south to north. From here

on, all variables are decomposed into Boussinesq and Phillips background state and

anomalies, in which case the equations (3.2) may be written as

D1PV1

Dt
− U∂xPV1 + v1∂yPV1,bg + βv1 = 0 (A.2a)

D2PV2

Dt
+ U∂xPV2 + v2∂yPV2,bg + βv2 = 0 (A.2b)
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DmM

Dt
+ vm∂yMbg = − Vr

∆z
(M −GMθe) (A.2c)

where Mbg = qt,bg +GMθe,bg = (Qy +GMΘ)y.

The linearized version of (A.2) has constant coefficients U, β,Qy, GM , Vr, and thus one

may look for exponential solutions ψj =Re{ψ̂jei(kx+ly−ωt)} and M =Re{M̂ei(kx+ly−ωt)},

leading to the possible values of ω:

ω± = − k

k2
h + k2

ds

{
β

(
1 +

k2
ds

2k2
h

)
∓ k2

ds

2k2
h

[
β2 +

4U2k4
h(k

4
h − k4

ds)

k4
ds

]1/2
}

(A.3a)

ωr = −i Vr
∆z

, (A.3b)

with kh =
√
k2 + l2 and k2

ds = 8L2/L2
ds.

To simplify the notation, ψ̂1, ψ̂2 to represent the eigenmodes found from the solution

of the two level dry QG linearized instability problem. (For more details, see Vallis

[2006], Pedlosky [2013].)

The eigenmode associated with ω± is given by


ψ̂1

ψ̂2

− 1
−iω±+Vr/∆z

(
Vr
∆z

(
GM

L
Lds

ψ̂2−ψ̂1

∆z

)
− ik ψ̂1+ψ̂2

2
Mbg

)
 (A.4)

and that associated with ωr is given by


0

0

1

 . (A.5)

The initial conditions for ψ̂1, ψ̂2 are obtained from a band of these eigenmodes, with

uniformly random phase, as in the dry case. For the initial condition of M̂ , the linear
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combination of the M−component of ω± +αβωr is used, with α being the amplitude of

the wave from ωpm and β being a random number chosen from a normal distribution.

A.2 Detailed plot

Figure 26 is a more detailed version of figure 18 which shows the distribution of the

number of rivers. The darker shade of blue indicates more instances where the same

number of rivers were observed.
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Figure 26: Number of atmospheric rivers observed as a function of the rainfall speed

parameter, Vr. Qy = 1. The horizontal bar indicates the average number of rivers from

the simulations.
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