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LEARNING FROM IMPERFECT DATA: NOISY LABELS, TRUNCATION,
AND COARSENING

Vasilis Kontonis

Under the supervision of Professor Christos Tzamos
At the University of Wisconsin-Madison

The datasets used in machine learning and statistics are huge and often imperfect,
e.g., they contain corrupted data, examples with wrong labels, or hidden biases.
Most existing approaches (i) produce unreliable results when the datasets are
corrupted, (ii) are computationally inefficient, or (iii) come without any theoreti-
cal/provable performance guarantees. In this thesis, we design learning algorithms
that are computationally efficient and at the same time provably reliable, even
when used on imperfect datasets.

We first focus on supervised learning settings with noisy labels. We present
efficient and optimal learners under the semi-random noise models of Massart
and Tsybakov – where the true label of each example is flipped with probability
at most 50% – and an efficient approximate learner under adversarial label noise –
where a small but arbitrary fraction of labels is flipped – under structured feature
distributions. Apart from classification, we extend our results to noisy label-
ranking.

In truncated statistics, the learner does not observe a representative set of
samples from the whole population, but only truncated samples, i.e., samples from
a potentially small subset of the support of the population distribution. We give
the first efficient algorithms for learning Gaussian distributions with unknown
truncation sets and initiate the study of non-parametric truncated statistics. Closely
related to truncation is data coarsening, where instead of observing the class of an
example, the learner receives a set of potential classes, one of which is guaranteed
to be the correct class. We initiate the theoretical study of the problem, and present
the first efficient learning algorithms for learning from coarse data.

Christos Tzamos
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1 OVERVIEW

Here we summarize the results of this thesis and provide an overview of its
structure. We first briefly present the contents of each chapter and then provide a
more detailed summary of the novel contributions included in each one.

Chapter 2 We present the first polynomial time algorithm for learning Massart
halfspaces with respect to a broad class of structured distributions. Based on
Diakonikolas et al. (2020c) that was published in the Conference on Learning
Theory (COLT).

Chapter 3 We present a quasi-polynomial time algorithm for learning Tsybakov
halfspaces under structured distributions. This work introduced a novel and
general new learning framework based on certifying non-optimality of hypotheses.
Based on Diakonikolas et al. (2021b) that was published in the Symposium on
Theory of Computing (STOC) (merged with Diakonikolas et al. (2021a)).

Chapter 4 We improve upon the quasi-polynomial algorithm of Chapter 3 and
provide a polynomial-time algorithm for Tsybakov halfspaces under structured
marginals. Based on Diakonikolas et al. (2021a) that was published in the Sympo-
sium on Theory of Computing (STOC) (merged with Diakonikolas et al. (2021b)).

Chapter 5 We provide the first efficient algorithms for noisy linear label ranking.
Based on Fotakis et al. (2022) that was published in the Conference on Learning
Theory (COLT).

Chapter 6 We provide the first efficient algorithm for learning Gaussian distribu-
tions with unknown truncation sets. Our method only requires that the (Gaussian)
surface area of the uknown truncation set is bounded. Based on Kontonis et al.
(2019) that was published in Foundations of Computer Science (FOCS).
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Chapter 7 We initiate the study of non-parametric truncated statistics and provide
the first efficient algorithms for recovering truncated smooth densities. Based on
Daskalakis et al. (2021) that was published in the Conference on Learning Theory
(COLT).

Chapter 8 We initiate the theoretical study of inference from coarse labels and
establish a connection with Statistical Query learning algorithms. Based on Fotakis
et al. (2021a) that was published in the Conference on Learning Theory (COLT).

1.1 Learning Halfspaces with Massart Noise

The algorithmic problem of learning an unknown halfspace from random labeled
examples has been extensively investigated since the 1950s — starting with Rosen-
blatt’s Perceptron algorithm (Rosenblatt, 1958) — and has arguably been one of the
most influential problems in the field of machine learning. In the realizable case,
i.e., when all the labels are consistent with the target halfspace, this learning prob-
lem amounts to linear programming, hence can be solved in polynomial time (see,
e.g., Maass and Turan (1994); Shawe-Taylor and Cristianini (2000)). The problem
turns out to be much more challenging algorithmically in the presence of noisy
labels, and its computational complexity crucially depends on the noise model.

We study the problem of distribution-specific PAC learning of halfspaces in the
presence of Massart noise (Massart and Nedelec, 2006). In the Massart noise model,
an adversary can flip each label independently with probability at most h < 1/2,
and the goal of the learner is to reconstruct the target halfspace to arbitrarily high
accuracy. More formally, we have:

Definition 1.1 (Distribution-specific PAC Learning with Massart Noise). Let C be
a concept class of Boolean functions over X = Rd, F be a known family of structured
distributions on X, 0  h < 1/2, and 0 < e < 1. Let f be an unknown target
function in C. A noisy example oracle, EXMas( f ,F , h), works as follows: Each time
EXMas( f ,F , h) is invoked, it returns a labeled example (x, y), such that: (a) x ⇠ Dx,
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where Dx is a fixed distribution in F , and (b) y = f (x) with probability 1� h(x) and
y = � f (x) with probability h(x), for an unknown parameter h(x)  h. Let D denote
the joint distribution on (x, y) generated by the above oracle. A learning algorithm is
given i.i.d. samples from D and its goal is to output a hypothesis h such that with high
probability h is e-close to f , i.e., it holds Prx⇠Dx [h(x) 6= f (x)]  e.

Massart noise is a realistic model of random noise that has attracted significant
attention in recent years (see Section 1.1 for a summary of prior work). This noise
model goes back to the 80s, when it was studied by Rivest and Sloan (Sloan, 1988;
Rivest and Sloan, 1994a) under the name “malicious misclassification noise”, and a
very similar asymmetric noise model was considered even earlier by Vapnik (Vap-
nik, 1982). The Massart noise condition lies in between the Random Classification
Noise (RCN) (Angluin and Laird, 1988) – where each label is flipped independently
with probability exactly h < 1/2 – and the agnostic model (Haussler, 1992; Kearns
et al., 1994a) – where an adversary can flip any small constant fraction of the labels.

The sample complexity of PAC learning with Massart noise is well-understood.
Specifically, if C is the class of d-dimensional halfspaces, it is well-known (Massart
and Nedelec, 2006) that O(d/(e · (1� 2h)2)) samples information-theoretically
suffice to determine a hypothesis h that is e-close to the target halfspace f with
high probability (and this sample upper bound is best possible). The question is
whether a computationally efficient algorithm exists.

The algorithmic question of efficiently computing an accurate hypothesis in
the distribution-specific PAC setting with Massart noise was initiated in Awasthi
et al. (2015), and subsequently studied in a sequence of works (Awasthi et al.,
2016a; Zhang et al., 2017b; Yan and Zhang, 2017a; Mangoubi and Vishnoi, 2019a).
This line of work has given polynomial-time algorithms for learning halfspaces
with Massart noise, when the underlying marginal distribution Dx is the uniform
distribution on the unit sphere (i.e., the family F in Definition 1.1 is a singleton).

The question of designing a computationally efficient learning algorithm for this
problem that succeeds under more general distributional assumptions remained
open, and has been posed as an open problem in a number of places (Awasthi et al.,
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2016a; Awasthi, 2018; Balcan and Haghtalab, 2020a). Specifically, Awasthi et al.
(2016a) asked whether there exists a polynomial-time algorithm for all log-concave
distributions, and the same question was more recently highlighted in Balcan
and Haghtalab (2020a). In more detail, Awasthi et al. (2016a) gave an algorithm
that succeeds under any log-concave distribution, but has sample complexity and
running time d2poly(1/(1�2h))/poly(e), i.e., doubly exponential in 1/(1� 2h). Balcan
and Haghtalab (2020a) asked whether a poly(d, 1/e, 1/(1� 2h)) time algorithm
exists for log-concave marginals. As a corollary of our main algorithmic result
(Theorem 2.3), we answer this question in the affirmative. Perhaps surprisingly, our
algorithm is extremely simple (performing SGD on a natural non-convex surrogate)
and succeeds for a broader family of structured distributions, satisfying certain
(anti)-anti-concentration and tail bound properties.

Main Results and Techniques

Our main result is the first polynomial-time algorithm for learning halfspaces with
Massart noise with respect to a broad class of well-behaved distributions. Before
we formally state our algorithmic result, we define the family of distributions F
for which our algorithm succeeds:

Definition 1.2 (Well-Behaved Distributions). For L, R, U, b > 0 a distribution Dx

on Rd is called (L, R, U, b)-well-behaved if for any projection (Dx)V of Dx on a subspace
V of Rd of dimension at most 3, the corresponding pdf gV on V satisfies the following
properties:

1. gV(x)  U for all x 2 V (anti-concentration).

2. gV(x) � L, for all x 2 V with kxk2  R (anti-anti-concentration).

3. Prx⇠(Dx)V
[kxk2 � t]  exp(1� t/b) (sub-exponential concentration).

When the parameters L, R, U, b are all universal constants (independent from any other
parameter of the problem) we will simply say that the distribution is well-behaved without
specifying the constants explicitly.
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We remark that the above class contains many distributions previously con-
sidered in the literature, such as the standard normal and isotropic log-concave
distributions. In particular, the corresponding constants in Definition 1.2 for the
standard normal and isotropic log-concave distributions the definition is satisfied
with the corresponding parameters L, R, U, b being universal constants. Our al-
gorithm for Massart Noise succeeds under more general assumptions (namely it
does not require the sub-exponential concentration, see Definition 2.2) for a more
precise definition.

Our main result for learning with Massart noise is the following.

Theorem 1.3 (Informal – Learning Halfspaces with Massart Noise). There is a
computationally efficient algorithm that learns halfspaces in the presence of Massart noise
with respect to any well-behaved distribution on Rd. Specifically, the algorithm draws
m = poly (1/(1� 2h)) · O(d/e4) samples from a noisy example oracle at rate h < 1/2,
runs in sample-polynomial time, and outputs a hypothesis halfspace h that is e-close to the
target with probability at least 9/10.

See Theorem 2.3 for a more detailed statement. Theorem 1.3 provides the first
polynomial-time algorithm for learning halfspaces with Massart noise under a
fairly broad family of well-behaved distributions. Specifically, our algorithm runs
in poly(d, 1/e, 1/(1� 2h)) time, as long as the parameters R, U are bounded above
by some poly(d), and the function t(e) is bounded above by some poly(d/e).
These conditions do not require a specific parametric or nonparametric form for the
underlying density and are satisfied for several reasonable continuous distribution
families.

As we mentioned earlier, is not hard to show that the class of isotropic log-
concave distributions is (U, R, L, b)-bounded, for U, L, R, b = Q(1) (see Fact A.5).
Similar implications hold for a broader class of distributions, known as s-concave
distributions. (See Appendix A.1.) Therefore, we immediately obtain the following
corollary:

Corollary 1.4 (Learning Halfspaces with Massart Noise Under Log-concave Distri-
butions). There exists a polynomial-time algorithm that learns halfspaces with Massart
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noise under any isotropic log-concave distribution. The algorithm has sample complexity
m = eO(d/e4) · poly(1/(1� 2h)) and runs in sample-polynomial time.

Corollary 1.4 gives the first polynomial-time algorithm for this problem, an-
swering an open question of Awasthi et al. (2016a); Awasthi (2018); Balcan and
Haghtalab (2020a). We obtain similar implications for s-concave distributions. (See
Appendix A.1 for more details.)

While the preceding discussion focused on polynomial learnability, our algo-
rithm establishing Theorem 1.3 is extremely simple and can potentially be practical.
Specifically, our algorithm simply performs SGD (with projection on the unit ball)
on a natural non-convex surrogate loss, namely an appropriately smoothed version
of the misclassification error function, errD0�1(w) = Pr(x,y)⇠D[sign(x · w) 6= y]. We
also note that the sample complexity of our algorithm for log-concave marginals is
optimal as a function of the dimension d, within constant factors.

Our approach for establishing Theorem 1.3 is fairly robust and immediately
extends to a slightly stronger noise model, considered in Zhang et al. (2017b),
which we term strong Massart noise. In this model, the flipping probability can
be arbitrarily close to 1/2 for points that are very close to the true separating
hyperplane. These implications are stated and proved in Section 2.5.

Prior and Related Work

We start with a summary of prior work on distribution-specific PAC learning of
halfspaces with Massart noise. The study of this learning problem was initiated
in Awasthi et al. (2015). That work gave the first polynomial-time algorithm for the
problem that succeeds under the uniform distribution on the unit sphere, assuming
the upper bound on the noise rate h is smaller than a sufficiently small constant
(⇡ 10�6). Subsequently, Awasthi et al. (2016a) gave a learning algorithm with
sample and computational complexity d2poly(1/(1�2h))/poly(e) that succeeds for any
noise rate h < 1/2 under any log-concave distribution.

The approach in Awasthi et al. (2015, 2016a) uses an iterative localization-based
method. These algorithms operate in a sequence of phases and it is shown that
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they make progress in each phase. To achieve this, Awasthi et al. (2015, 2016a)
leverage a distribution-specific agnostic learner for halfspaces (Kalai et al., 2008)
and develop sophisticated tools to control the trajectory of their algorithm.

Inspired by the localization approach, Yan and Zhang (2017a) gave a perceptron-
like algorithm (with sample complexity linear in d) for learning halfspaces with
Massart noise under the uniform distribution on the sphere. Their algorithm again
proceeds in phases and crucially exploits the symmetry of the uniform distribution
to show that the angle between the current hypothesis bw(i) and the target halfspace
w⇤ decreases in every phase. Zhang et al. (2017b) also gave a polynomial-time al-
gorithm for learning halfspaces with Massart noise under the uniform distribution
on the unit sphere. Their algorithm works in the strong Massart noise model and
is based on the Stochastic Gradient Langevin Dynamics (SGLD) algorithm applied
to a smoothed version of the empirical 0� 1 loss. Their method leads to sample
complexity Wh(d4/e4) and its running time involves Wh(d13.5/e16) inner product
evaluations. More recently, Mangoubi and Vishnoi (2019a) improved these bounds
to Wh(d8.2/e11.4) inner product evaluations via a similar approach. Our method
is much simpler in comparison, running SGD directly on the population loss and
using one sample per iteration with a significantly improved sample complexity
and running time.

Furthermore, in contrast to the aforementioned approaches, we study a more
general setting (in the sense that our method works for a broad family of distribu-
tions), and our approach is not tied to the iterations of any particular algorithm.
Our structural lemma (Lemma 2.6) shows that any approximate stationary point
of our non-convex surrogate loss suffices. As a consequence, one can apply any
first-order method that converges to stationarity (and in particular vanilla SGD
with projection on the unit sphere works). The upshot is that we do not need to
establish guarantees for the trajectory of the method used to reach such a stationary
point. The only thing that matters is the endpoint of the algorithm. Intriguingly,
for a generic distribution in the class we consider, it is unclear if it is possible to
establish a monotonicity property for a first-order method reaching a stationary
point.
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We note that the d-dependence in the sample complexity of our algorithm
is information-theoretically optimal, even under Gaussian marginals. The e-
dependence seems tight for our approach, given recent lower bounds for the con-
vergence of SGD (Drori and Shamir, 2019), or any stochastic first-order method (Ar-
jevani et al., 2019), to stationary points of smooth non-convex functions.

Finally, we comment on the relation to a recent work on distribution-independent
PAC learning of halfspaces with Massart noise (Diakonikolas et al., 2019a). Di-
akonikolas et al. (2019a) gave a distribution-independent PAC learner for halfspaces
with Massart noise that approximates the target halfspace within misclassification
error ⇡ h, i.e., it does not yield an arbitrarily close approximation to the true
function. In contrast, the aforementioned distribution-specific algorithms achieve
information-theoretically optimal misclassification error, which implies that the
output hypothesis can be arbitrarily close to the true target halfspace. As a result,
the results of this work are not subsumed by Diakonikolas et al. (2019a).

Comparison to RCN and Agnostic Settings It is instructive to compare the com-
plexity of learning halfspaces in the Massart model with two related noise models.
In the RCN model, a polynomial-time algorithm is known in the distribution-
independent PAC model (Blum et al., 1996, 1997). In sharp contrast, even weak
agnostic learning is hard in the distribution-independent setting (Guruswami and
Raghavendra, 2006; Feldman et al., 2006a; Daniely, 2016a). Moreover, obtaining
information-theoretically optimal error guarantees remains computationally hard
in the agnostic model, even when the marginal distribution is the standard Gaus-
sian (Klivans and Kothari, 2014) (assuming the hardness of noisy parity). On
the other hand, recent work (Awasthi et al., 2017; Diakonikolas et al., 2018b) has
given efficient algorithms (for Gaussian and log-concave marginals) with error
O(opt) + e, where opt is the misclassification error of the optimal halfspace.
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1.2 Learning with Tsybakov Noise

We study the algorithmic problem of learning halfspaces under a well-known
generalization of the Massart Noise model: the Tsybakov noise condition Tsybakov
(2004). The Tsybakov noise model is a challenging noise model that has been
extensively studied in the statistics and machine learning communities. While the
information-theoretic aspects of learning with Tsybakov noise have been largely
characterized, prior to this work, the computational aspects of this broad problem
had remained wide open.

The Tsybakov noise condition prescribes that the label of each example is
independently flipped with some probability which is controlled by an adversary.
Importantly, this noise condition allows the flipping probabilities to be arbitrarily
close to 1/2 for a fraction of the examples. More formally, we have the following
definition:

Definition 1.5 (PAC Learning with Tsybakov Noise). Let C be a concept class of
Boolean-valued functions over X = Rd, F be a family of distributions on X, 0 < e < 1
be the error parameter, and 0  a < 1, A > 0 be parameters of the noise model. Let
f be an unknown target function in C. A Tsybakov example oracle, EXTsyb( f ,F ),
works as follows: Each time EXTsyb( f ,F ) is invoked, it returns a labeled example (x, y),
such that: (a) x ⇠ Dx, where Dx is a fixed distribution in F , and (b) y = f (x) with
probability 1� h(x) and y = � f (x) with probability h(x). Here h(x) is an unknown
function that satisfies the Tsybakov noise condition with parameters (a, A). That is, for
any 0 < t  1/2, h(x) satisfies the condition Prx⇠Dx [h(x) � 1/2� t]  A t

a
1�a .

Let D denote the joint distribution on (x, y) generated by the above oracle. A learning
algorithm is given i.i.d. samples from D and its goal is to output a hypothesis function h :
X ! {±1} such that with high probability h is e-close to f , i.e., it holds Prx⇠Dx [h(x) 6=
f (x)]  e.

Motivation for Tsybakov Noise Model The bounded (Massart) noise assumption,
i.e., that the probability that labels are flipped is globally bounded away from
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1/2, fails to accurately capture a number of practically relevant noise sources,
including the human annotator noise Klebanov and Beigman (2010, 2009); Beigman
and Klebanov (2009); Chhikara and McKeon (1984). In particular, the humans
responsible for labeling the training data are much more prone to incorrectly
classify points closer to the decision boundary (where “cats" and “dogs" look almost
the same), than points far from the boundary. For example, it was empirically
shown in Klebanov and Beigman (2010) that when non-expert annotators (Amazon
Mechanical Turk) were used to annotate the RTE-1 dataset Dagan et al. (2005),
roughly 20% of the datapoints were classified almost at random, i.e., had h(x) ⇡
1/2. More broadly, a long line of research (both applied and theoretical) Castro
and Nowak (2008); Frénay and Verleysen (2013); Zhang et al. (2017b); Menon et al.
(2018); Hopkins et al. (2020); Diakonikolas et al. (2020c) focuses on noise models
that do not restrict the flipping probability globally, but allow it to be arbitrarily
close to 1/2 near the decision boundary. On the other hand, since datapoints
from low-density regions are also likely to be classified almost randomly (see, e.g.,
Frénay and Verleysen (2013) and references therein), assuming that high noise
rates occur only close to the decision boundary does not sufficiently capture these
situations.

The Tsybakov noise model Mammen and Tsybakov (1999) provides a unified
framework that significantly extends the Massart noise condition to capture the
above scenarios: it prescribes that the label of each example is independently
flipped with some probability which is controlled by an adversary, but is not
uniformly bounded by a constant less than 1/2. In particular, it allows the flipping
probabilities to be arbitrarily close to 1/2 for a fraction of the examples. Importantly,
it makes no geometric assumptions about the noise, e.g., that it is only potentially
large close to the decision boundary.

The noise model of Definition 1.5 was first proposed in Mammen and Tsybakov
(1999) and subsequently refined in Tsybakov (2004). Since these initial works, a
long line of research in statistics and learning theory has focused on understanding
a range of statistical aspects of the model in various settings (see, e.g., Tsybakov
(2004); Boucheron et al. (2005); Bartlett et al. (2006); Balcan et al. (2007); Hanneke
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(2011); Hanneke and Yang (2015) and references therein). Ignoring computational
considerations, it is known that the class of halfspaces is learnable in this model
with poly(d, 1/e1/a) samples, where d is the dimension and e is the error to the
target halfspace.

On the other hand, the algorithmic question has remained poorly understood.
Roughly speaking, the only known algorithms in this noise model (for any non-
trivial concept class in high dimension) are the ones that follow via the naive
reduction to agnostic learning.

Main Results and Techniques

As explained in the above discussion, obtaining computationally efficient learning
algorithms in the presence of Tsybakov noise in any non-trivial setting — that is,
for any natural concept class and under any distributional assumptions — has
been a long-standing open problem in learning theory. Our main algorithmic result
resolves the complexity of learning halfspaces in this model.

We first present our result for learning under the well-behaved class of distribu-
tions defined in Definition 1.2.

Theorem 1.6 (Informal – Learning Tsybakov Halfspaces under Well-Behaved Dis-
tributions). Let D be a well-behaved isotropic distribution on Rd ⇥ {±1} that satis-
fies the (a, A)-Tsybakov noise condition with respect to an unknown halfspace f (x) =

sign(w⇤ · x). There exists an algorithm that draws N = OA,a(d/e)O(1/a) samples from
D, runs in poly(N, d) time, and computes a vector bw such that, with high probability we
have that errDx

0�1(h bw, f )  e.

See Theorem 4.39 for a more detailed statement. We remark that for the spe-
cial case of isotropic log-concave densities we are able to obtain a more efficient
algorithm with sample complexity and runtime poly(d)O(A/e)O(1/a2), see The-
orem 4.40. Since the sample complexity of the problem is poly(d, 1/e1/a), the
algorithm of Theorem 4.3 is qualitatively close to best possible.
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The Certificate Framework The main technical novelty of our works for learning
with Tsybakov noise is the development of the certificate framework. The certifi-
cate framework was introduced in our work Diakonikolas et al. (2021b) where a
quasipolynomial time algorithm for learning with Tsybakov noise was given. In
the follow-up work Diakonikolas et al. (2021a), we improved the runtime of the
certificate algorithm to polynomial which yielded Theorem 1.6.

At a high-level, this framework allows us to efficiently reduce the problem
of finding a near-optimal halfspace to the (easier) problem of certifying whether
a candidate halfspace hw(x) = sign(w · x) is “far” from the optimal halfspace
f (x) = sign(w⇤ · x). The idea is to use a certificate algorithm (as a black-box) and
combine it with an online convex optimization routine. Roughly speaking, starting
from an initial guess w0 for w⇤, a judicious combination of these two ingredients
allows us to efficiently compute a near-optimal halfspace bw, i.e., one that the
certifying algorithm cannot reject. We note that a similar approach has been used
in Chen et al. (2020a) for converting non-proper learners to proper learners in the
Massart noise model.

The key idea to design a certificate in the Tsybakov noise model is the following
simple but crucial observation: If w⇤ is the normal vector to true halfspace, then
for any non-negative function T(x), it holds that E(x,y)⇠D[T(x)y w⇤ · x] � 0. On
the other hand, for any w 6= w⇤ there exists a non-negative function T(x) such that
E(x,y)⇠D[T(x) y w · x] < 0. In other words, there exists a reweighting of the space that
makes the expectation of yw · x negative (Fact 3.3). Note that we can always use
as T(x) the indicator of the disagreement region between the candidate halfspace
hw(x) and the optimal halfspace f (x) = hw⇤(x).

Of course, since optimizing over the space of non-negative functions is in-
tractable, we need to restrict our search space to a “simple” parametric family of
functions.

Certificates via Low-Degree Polynomials Diakonikolas et al. (2021b) We start
by showing that given a candidate hypothesis w that is “far" from being optimal,
that is the angle q(w, w⇤) is bounded away from zero, we can construct a low
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complexity certificate F that will satisfy E(x,y)⇠D[F(x)w · xy] < 0. In particular, we
construct a certificate that is the product of a square of a low degree non-negative
polynomial and an indicator function that depends on the hypothesis w.

Proposition 1.7 (Informal – Low Degree Certificate). Let D be a distribution on
Rd ⇥ {±1} that satisfies the Tsybakov noise condition with parameters (a, A) and the
marginal Dx on Rd well-behaved. Let w⇤ 2 Sd�1 be the normal vector to the optimal
halfspace and bw 2 Sd�1 be such that the dissagreement probability of its corresponding
halfspace hypothesis h bw with the optimal halfpsace f is at least e: errDx

0�1(h bw, f ) � e. There
exists polynomial p : Rd 7! R of degree k = Oa,A(log2(1/e)) satisfying kpk2

2  dO(k)

such that

E
(x,y)⇠D

h
p(x)2 1{0  w · x  Q(e)} yw · x

i
 �W(e) .

We show that we can efficiently compute our polynomial certificate given
labeled examples from the target distribution. The crucial property that enables
efficient computation of our polynomial certificate is that it is a square of some
low-degree polynomial. Therefore, we can solve the following relaxation using
Sum-of-Squares (SoS) optimization (for which efficient algorithms based on Semi-
definite programming exist, see, e.g., Fleming et al. (2019)):

min
p2SoS,deg(p)k

E
(x,y)⇠D

[p(x) 1B(x)w · xy]

For more details, we refer to Section 3.4.

Certificates via Intersections of Halfspaces Diakonikolas et al. (2021a) The
previous approach relying on low-degree polynomials is inherently limited to
quasi-polynomial time (see also Section 4.3) and new ideas are needed to obtain a
polynomial time algorithm.

In the work Diakonikolas et al. (2021a), we considered certifying functions of
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the form:

T(x; v, s1, s2, t1, t2) =

1
w · x

1
n

s1  w · x  s2 ,�t1  v · projw?
x

w · x
 �t2

o

that are parameterized by a vector v and scalar thresholds s1, s2, t1, t2 > 0. Here
projw? denotes the orthogonal projection on the subspace orthogonal to w.

We observe that, in contrast with the dpoly(log(1/e)) parameters needed to specify
a polynomial of degree poly(log(1/e)) in d dimensions, the above function class
can be specified by O(d) parameters. Of course, it may not be a priori clear why
functions of this form can be used as certifying functions in our setting. The
intuition behind choosing functions of this simple form is given in Section 4.3.
In particular, in Claim 4.6, we show that for any incorrect guess w there exists a
certifying vector v that makes the expectation E(x,y)⇠D[T(x) y w · x] negative. In fact,
the vector v = projw?w⇤/

��projw?w⇤
��

2 := (w⇤)?w suffices for this purpose.
The key challenge is in finding such a certifying vector v algorithmically. We

note that our algorithm in general does not find (w⇤)?w . But it does find a vector v
with similar behavior, in the sense of making the E(x,y)⇠D[T(x) y w · x] sufficiently
negative. To achieve this goal, we take a two-step approach: The first step involves
computing an initialization vector v0 that has non-trivial correlation with (w⇤)?w .
In our second step, we give a perceptron-like update rule that iteratively improves
the initial guess until it converges to a certifying vector v. While this algorithm is
relatively simple, its correctness relies on a win-win analysis (Lemma 4.14) whose
proof is quite elaborate. In more detail, we show that for any non-certifying vector v
that is sufficiently correlated with (w⇤)?w , we can efficiently compute a direction
that improves its correlation to (w⇤)?w . We then argue (Lemma 4.19) that by
choosing an appropriate step size this iteration converges to a certifying vector
within a small number of steps. We show the next result:

Theorem 1.8 (Informal – Efficiently Certifying Non-Optimality). Let D be a distri-
bution on Rd ⇥ {±1} that satisfies the Tsybakov noise condition with parameters (a, A)
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and the marginal Dx on Rd well-behaved. Let f be the optimal halfspace and bw 2 Sd�1 be
such that the dissagreement probability of its corresponding halfspace hypothesis h bw with
the optimal halfpsace f is at least e: errDx

0�1(h bw, f ) � e. There is an algorithm that, given

N =
⇣
(A) · (d/e)

⌘O(1/a)
samples from D, runs in sample polynomial time, and with

high probability returns parameters v 2 Rd, s1, s2, t1, t2 such that

E
(x,y)⇠D

[T(x; v, s1, s2, t1, t2) yw · x]  �
⇣ e

A d

⌘O(1/a)
. (1.1)

For more details, we refer to Chapter 4.

1.3 Noisy Label Ranking

Label Ranking (LR) is the problem of learning a hypothesis that maps features to
rankings over a finite set of labels. Given a feature vector x 2 Rd, a sorting function
s(·) maps it to a ranking of k alternatives, i.e., s(x) is an element of the symmetric
group with k elements, Sk. Assuming access to a training dataset of features labeled
with their corresponding rankings, i.e., pairs of the form (x, p) 2 Rd ⇥ Sk, the goal
of the learner is to find a sorting function h(x) that generalizes well over a fresh
sample. LR has received significant attention over the years Dekel et al. (2003);
Shalev-Shwartz (2007); Hüllermeier et al. (2008); Cheng and Hüllermeier (2008);
Fürnkranz et al. (2008) due to the large number of applications. For example, ad
targeting Djuric et al. (2014) is an LR instance where for each user we want to use
their feature vector to predict a ranking over ad categories and present them with
the most relevant. The practical significance of LR has lead to the development
of many techniques based on probabilistic models and instance-based methods
Cheng and Hüllermeier (2008); Cheng et al. (2010), Grbovic et al. (2012); Zhou et al.
(2014a), decision trees Cheng et al. (2009), entropy-based ranking trees Rebelo de
Sá et al. (2015), bagging Aledo et al. (2017), and random forests de Sá et al. (2017);
Zhou and Qiu (2018). However, almost all of these works come without provable
guarantees and/or fail to learn in the presence of noise in the observed rankings.
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Linear Sorting Functions (LSFs). In this work, we focus on the fundamental
concept class of Linear Sorting functions Har-Peled et al. (2003). A linear sorting
function parameterized by a matrix W 2 Rk⇥d with k rows W1, . . . , Wk takes a
feature x 2 Rd, maps it to Wx = (W1 · x, . . . , Wk · x) 2 Rk and then outputs an
ordering (i1, . . . , ik) of the k alternatives such that Wi1 · x �Wi2 · x � . . . �Wik · x.
In other words, a linear sorting function ranks the k alternatives (corresponding to
rows of W) with respect to how well they correlate with the feature x. We denote a
linear sorting function with parameter W 2 Rk⇥d by sW (x) , argsort(Wx) where
argsort : Rk ! Sk takes as input a vector (v1, . . . , vk) 2 Rk, sorts it in decreasing
order to obtain vi1 � vi2 � . . . � vik and returns the ordering (i1, . . . , ik).

Noisy Ranking Distributions Learning LSFs in the noiseless setting can be done
efficiently by using linear programming. However, the common assumption both
in theoretical and in applied works is that the observed rankings are noisy in the
sense that they do not always correspond to the ground-truth ranking. We assume
that the probability that the order of two elements i, j in the observed ranking p is
different than their order in the ground-truth ranking s⇤ is at most h < 1/2.

Definition 1.9 (Noisy Ranking Distribution). Fix h 2 [0, 1/2). An h-noisy ranking
distribution M(s?) with ground-truth ranking s⇤ 2 Sk is a probability measure over Sk

that, for any i, j 2 [k], with i 6= j, satisfies Prp⇠M(s⇤)[i �p j | i �s⇤ j]  h. 1

Note that, when h = 0, we always observe the ground-truth permutation and, in
the case of h = 1/2, we may observe a uniformly random permutation. We remark
that most natural ranking distributions satisfy this bounded noise property, e.g., (i)
the Mallows model, which is probably the most fundamental ranking distribution
(see, e.g., Braverman and Mossel (2009); Lu and Boutilier (2011); Caragiannis et al.
(2013); Awasthi et al. (2014); Busa-Fekete et al. (2019); Fotakis et al. (2021c); De
et al. (2018); Liu and Moitra (2018); Mao and Wu (2020); Liu and Moitra (2021)
for a small sample of this line of research) and (ii) the Bradley-Terry-Mallows

1We use i �p j (resp. i �p j) to denote that the element i is ranked higher (resp. lower) than j
according to the ranking p.
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model Mallows (1957), which corresponds to the ranking distribution analogue
of the Bradley-Terry-Luce model Bradley and Terry (1952); Luce (2012) (the most
studied pairwise comparisons model; see, e.g., Hunter (2004); Negahban et al.
(2017); Agarwal et al. (2018) and the references therein). For more details, see
Appendix D.5. Appendix D.5.

We consider the fundamental setting where the feature vector x 2 Rd is gener-
ated by a standard normal distribution and the ground-truth ranking for each sam-
ple x is given by the LSF sW⇤(x) for some unknown parameter matrix W⇤ 2 Rk⇥d.
For a fixed x, the ranking that we observe comes from an h-noisy ranking distribu-
tion with ground-truth ranking sW⇤(x).

Definition 1.10 (Noisy Linear Label Ranking Distribution). Fix h 2 [0, 1/2) and
some ground-truth parameter matrix W⇤ 2 Rk⇥d. We assume that the h-noisy linear
label ranking distribution D over Rd ⇥ Sk satisfies the following:

1. The x-marginal of D is the d-dimensional standard normal distribution.

2. For any (x, p) ⇠ D, the distribution of p conditional on x is an h-noisy ranking
distribution with ground-truth ranking sW⇤(x).

At first sight, the assumption that the underlying x-marginal is the standard nor-
mal may look too strong. However, for k = 2, Definition 1.10 captures the problem
of learning linear threshold functions with Massart noise. Without assumptions
for the x-marginal, it is known Chen et al. (2020b); Diakonikolas and Kane (2020);
Nasser and Tiegel (2022) that optimal learning of halfspaces under Massart noise
requires super-polynomial time (in the Statistical Query model of Kearns (1998)).
On the other hand, a lot of recent works Balcan and Zhang (2017b); Mangoubi and
Vishnoi (2019b); Diakonikolas et al. (2020e); Zhang et al. (2020b); Zhang and Li
(2021) have obtained efficient algorithms for learning Massart halfspaces under
Gaussian marginals. The goal of this work is to provide efficient algorithms for
the more general problem of learning LSFs with bounded noise under Gaussian
marginals.
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Main Results and Techniques

Our main contributions are the first efficient algorithms for learning LSFs with
bounded noise with respect to Kendall’s Tau distance and top-r disagreement loss.

Learning in Kendall’s Tau Distance. The most standard metric in rankings
Shalev-Shwartz and Ben-David (2014b) is Kendall’s Tau (KT) distance which, for
two rankings p, t 2 Sk, measures the fraction of pairs (i, j) on which they disagree.
That is, DKT(p, t) = Âi�p j 1{i �t j}/(k

2). Our first result is an efficient learning
algorithm that, given samples from an h-noisy linear label ranking distribution D,
computes a parameter matrix W that ranks the alternatives almost optimally with
respect to the KT distance from the ground-truth ranking sW⇤(·).

Theorem 1.11 (Informal – Learning LSFs in KT Distance). Fix h 2 [0, 1/2) and
e 2 (0, 1]. Let D be an h-noisy linear label ranking distribution satisfying the assumptions
of Definition 1.10 with ground-truth LSF sW⇤(·). There exists an algorithm that draws
N = poly(1/(1� 2h)) eO(d log k/e) samples from D, runs in sample-polynomial time,
and computes a matrix W 2 Rk⇥d such that, with high probability,

E
x⇠Nd

[DKT(sW (x), sW⇤(x))]  e .

Theorem 5.1 gives the first efficient algorithm with provable guarantees for the
supervised problem of learning noisy linear rankings. We remark that the sample
complexity of our learning algorithm is qualitatively optimal (up to logarithmic
factors) since, for k = 2, our problem subsumes learning a linear classifier with
Massart noise 2 for which W(d/e) are known to be information theoretically nec-
essary Massart and Nédélec (2006). Moreover, our learning algorithm is proper in
the sense that it computes a linear sorting function sW (·). As opposed to improper
learners (see also Section 5.2), a proper learning algorithm gives us a compact rep-
resentation (storing W requires O(kd) memory) of the sorting function that allows

2Notice that in this case Kendall’s Tau distance is simply the standard 0-1 binary loss.
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us to efficiently compute (with runtime O(kd + k log k)) the ranking corresponding
to a fresh datapoint x 2 Rd.

Learning in top-r Disagreement We next present our learning algorithm for the
top-r metric formally defined as Dtop�r(p, t) = 1{p1..r 6= t1..r}, where by p1..r

we denote the ordering on the first r elements of the permutation p. The top-r
metric is a disagreement metric in the sense that it takes binary values and for
r = 1 captures the standard (multiclass) top-1 classification loss. We remark that, in
contrast with the top-r classification loss, which only requires the predicted label to
be in the top-r predictions of the model, the top-r ranking metric that we consider
here requires that the model puts the same elements in the same order as the ground
truth in the top-r positions. The top-r ranking is well-motivated as, for example,
in ad targeting (discussed in Section 5.1) we want to be accurate on the top-r ad
categories for a user so that we can diversify the content that they receive.

Theorem 1.12 (Informal – Learning LSFs in top-r Disagreement). Fix h 2 [0, 1/2),
r 2 [k] and e. Let D be an h-noisy linear label ranking distribution satisfying the
assumptions of Definition 1.10 with ground-truth LSF sW?(·). There exists an algorithm
that draws N = poly(1/(1� 2h)) eO(dkr/e) samples from D, runs in sample-polynomial
time and computes a matrix W 2 Rk⇥d such that, with high probability,

E
x⇠Nd

[Dtop�r(sW (x), sW?(x))]  e .

As a direct corollary of our result, we obtain a proper algorithm for learning
the top-1 element with respect to the standard 0-1 loss that uses eO(kd) samples. In
fact, for small values of r, i.e., r = O(1), our sample complexity is essentially tight.
It is known that Q(kd) samples are information theoretically necessary Natarajan
(1989) for top-1 classification. 3 For the case r = k, i.e., when we want to learn

3Strictly speaking, those lower bounds do not directly apply in our setting because our labels
are whole rankings instead of just the top classes but, in the Appendix D.4, we show that we can
adapt the lower bound technique of Daniely et al. (2011) to obtain the same sample complexity
lower bound for our ranking setting.
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the whole ranking with respect to the 0-1 loss, our sample complexity is O(k2d).
However, using arguments similar to Daniely et al. (2011), one can show that in
fact O(dk) ranking samples are sufficient in order to learn the whole ranking with
respect to the 0-1 loss. In this case, it is unclear whether a better sample complexity
can be achieved with an efficient algorithm and we leave this as an interesting
open question for future work.

1.4 Truncated Statistics with Unknown Truncation

A classical challenge in Statistics is estimation from truncated samples. Trunca-
tion occurs when samples falling outside of some subset S of the support of the
distribution are not observed. Truncation of samples has myriad manifestations
in business, economics, engineering, social sciences, and all areas of the physical
sciences.

Statistical estimation under truncated samples has had a long history in Statis-
tics, going back to at least the work of Galton Galton (1897) who analyzed truncated
samples corresponding to speeds of American trotting horses. Following Galton’s
work, Pearson and Lee Pearson (1902); Pearson and Lee (1908); Lee (1914) used
the method of moments in order to estimate the mean and standard deviation of a
truncated univariate normal distribution and later Fisher Fisher (1931) used the
maximum likelihood method for the same estimation problem. Since then, there
has been a large volume of research devoted to estimating the truncated normal
distribution; see e.g. Schneider (1986); Cohen (2016); Balakrishnan and Cramer
(2014). Nevertheless, the first algorithm that is provably computationally and
statistically efficient was only recently developed by Daskalakis et al. Daskalakis
et al. (2018), under the assumption that the truncation set S is known.

In virtually all these works the question of estimation under unknown trun-
cation set is raised. Our work resolves this question by providing tight sample
complexity guarantees and an efficient algorithm for recovering the underlying
Gaussian distribution. Although this estimation problem has clear and important
practical and theoretical motivation too little was known prior to our work even
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in the asymptotic regime. In the early work of Shah and Jaiswal Shah and Jaiswal
(1966) it was proven that the method of moments can be used to estimate a single
dimensional Gaussian distribution when the truncation set is unknown but it is
assumed to be an interval. In the other extreme where the set is allowed to be
arbitrarily complex, Daskalakis et al. Daskalakis et al. (2018) showed that it is
information theoretically impossible to recover the parameters. We provide the
first complete analysis of the number of samples needed for recovery taking into
account the complexity of the underlying set.

Main Results and Techniques

Our work studies the estimation task when the truncation set belongs in a family C
of “low complexity”. We use two different notions for quantifying the complexity
of sets: the VC-dimension and the Gaussian Surface Area.

Our first result is that for any set family with VC-dimension VC(C), the mean
and covariance of the true d-dimensional Gaussian Distribution can be recovered
up to accuracy e using only Õ

⇣
VC(C)

e + d2

e2

⌘
truncated samples.

Theorem 1.13 (Informal – Identifiaility via VC-Dimension). Let C be a class of sets
with VC-dimension VC(C) and let N = Õ

⇣
VC(C)

e + d2

e2

⌘
. Given N samples from a

d-dimensional Gaussian N (µ, rS) with unknown mean µ and covariance rS, truncated
on a set S 2 C with mass at least a, it is possible to find an estimate (µ̂, ˆrS) such that
dTV(N (µ, rS),N (µ̂, ˆrS))  e.

The estimation method computes the set of smallest mass that maximizes
the likelihood of the data observed and learns the truncated distribution within
error O(e) in total variation distance. To translate this error in total variation to
parameter distance, we prove a general result showing that it is impossible to
create a set (no matter the complexity) so that two Gaussians whose parameters
are far have similar truncated distributions (see Lemma 6.10).

A simple but not successful approach would be to first try to learn an approxi-
mation of the truncation set with symmetric difference roughly e2/d2 with the true
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set and then run the algorithm of Daskalakis et al. (2018) using the approximate
oracle. This approach would lead to a VC(S)d2/e2 sample complexity that is worse
than what we get. More importantly, doing empirical risk minimization4 using
truncated samples does not guarantee that we will find a set of small symmetric
difference with the true and it is not clear how one could achieve that.

Our result bounds the sample complexity of identifying the underlying Gaus-
sian distribution in terms of the VC-dimension of the set but does not yield a
computationally efficient method for recovery. Obtaining a computationally ef-
ficient algorithm seems unlikely, unless one restricts attention to simple specific
set families, such as axis aligned rectangles. One would hope that exploiting the
fact that samples are drawn from a “tame” distribution, such as a Gaussian, can
lead to general computationally efficient algorithms and even improved sample
complexity.

Indeed, our main result is an algorithm that is both computationally and sta-
tistically efficient for estimating the parameters of a spherical Gaussian and uses
only dO(G2(C)) samples, where G(C) is the Gaussian Surface Area of the class C, an
alternative complexity measure introduced by Klivans et al. Klivans et al. (2008):

Theorem 1.14 (Informal – Efficient Estimation of Truncated Gaussians). Let C be a
class of sets with Gaussian surface area at most G(C) and let k = poly(1/a, 1/e)G(C)2.
Given N = dk samples from a spherical d-dimensional Gaussian N (µ, s2rI), truncated
on a set S 2 C with mass at least a,in time poly(m), we can find an estimate µ̂, ŝ2 such
that

dTV(N (µ, s2rI),N (µ̂, ŝ2rI))  e.

The notion of Gaussian surface area can lead to better sample complexity
bounds even when the VC dimension is infinite. An example of such a case is
when C is the class of all convex sets. Table 1.1 summarizes the known bounds
for the Gaussian surface area of different concept classes and the implied sample
complexity in our setting when combined with our main theorem.

4That is finding a set of the family that contains all the observed samples.
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Concept Class Gaussian Surface Area

Polynomial threshold functions of degree k O(k) Kane (2011)
Intersections of k halfspaces O(

p
log k) Klivans et al. (2008)

General convex sets O(d1/4) Ball (1993)

Table 1.1: Summary of known results for Gaussian Surface Area. The last column gives
the sample complexity we obtain for our setting.

Beyond spherical Gaussians, our main result extends to Gaussians with ar-
bitrary diagonal covariance matrices. In addition, we provide an information
theoretic result showing that the case with general covariance matrices can also
be estimated using the same sample complexity bound by finding a Gaussian and
a set that matches the moments of the true distribution. We remark our main
algorithmic result Theorem 1.15 uses Gaussian Surface Area whereas our sample
complexity result Theorem 1.14 uses VC-dimension. We discuss the differences of
the two approaches in Section 6.6.

Theorem 1.15 (Informal – Identifiability via GSA). Let C be a class of sets with
Gaussian surface area at most G(C) and let k = poly(1/a, 1/e)G(C)2. Any truncated
Gaussian with N (µ̂, ˆrS, Ŝ) with Ŝ 2 C that approximately matches the moments up
to degree k of a truncated d-dimensional Gaussian N (µ, rS, S) with S 2 C, satisfies
dTV(N (µ, rS),N (µ̂, ˆrS))  e. The number of samples to estimate the moments within
the required accuracy is at most dO(k).

This shows that the first few moments are sufficient to identify the parameters.
Analyzing the guarantees of moment matching methods is notoriously challenging
as it involves bounding the error of a system of many polynomial equations. Even
for a single-dimensional Gaussian with truncation in an interval, where closed form
solutions of the moments exist, it is highly non-trivial to bound these errors Shah
and Jaiswal (1966). In contrast, our analysis using Hermite polynomials allows
us to easily obtain bounds for arbitrary truncation sets in high dimensions, even
though no closed form expression for the moments exists.
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We conclude by showing that the dependence of our sample complexity bounds
both on the VC-dimension and the Gaussian Surface Area is tight up to polynomial
factors. In particular, we construct a family in d dimensions with VC dimension 2d

and Gaussian surface area O(d) for which it is not possible to learn the mean of the
underlying Gaussian within 1 standard deviation using o(2d/2) samples.

Theorem 1.16 (Informal). There exists a family of sets S with G(S) = O(d) and
VC-dimension 2d such that any algorithm that draws N samples from N (µ, rI, S) and
computes an estimate eµ with keµ� µk2  1 must have N = W(2d/2).

Our techniques and relation to prior work The work of Klivans et al. Klivans
et al. (2008) provides a computationally and sample efficient algorithm for learning
geometric concepts from labeled examples drawn from a Gaussian distribution.
On the other hand, the recent work of Daskalakis et al. Daskalakis et al. (2018)
provides efficient estimators for truncated statistics with known sets. One could
hope to combine these two approaches for our setting, by first learning the set
and then using the algorithm of Daskalakis et al. (2018) to learn the parameters of
the Gaussian. This approach, however, fails for two reasons. First, the results of
Klivans et al. Klivans et al. (2008) apply in the supervised learning setting where
one has access to both positive and negative samples, while our problem can be
thought of as observing only positive examples (those falling inside the set). In
addition, any direct approach that extends their result to work with positive only
examples requires that the underlying Gaussian distribution is known in advance.

One of our key technical contributions is to extend the techniques of Klivans
et al. Klivans et al. (2008) to work with positive only examples from an unknown
Gaussian distribution, which is the major case of interest in truncated statistics.
To perform the set estimation Klivans et al. Klivans et al. (2008), rely on a fam-
ily of orthogonal polynomials with respect to the Gaussian distribution, namely
the Hermite polynomials and show that the indicator function of the set is well
approximated by its low degree Hermite expansion. While we cannot learn this
function directly in our setting, we are able to recover an alternative function, that
contains “entangled” information of both the true Gaussian parameters and the
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underlying set. After learning the function, we formulate an optimization problem
whose solution enables us to decouple these two quantities and retrieve both the
Gaussian parameters and the underlying set. We describe our estimation method
in more detail in Section 6.3. As a corollary of our approach, we obtain the first
efficient algorithm for learning geometric concepts from positive examples drawn
from an unknown spherical Gaussian distribution.

1.5 Non-Parametric Truncated Statistics: Learning
Smooth-Densities

Non-parametric density estimation is a well-developed field in Statistics and Ma-
chine Learning Wasserman (2006); Tsybakov (2008) with applications to many
scientific ares including economics Ahamada and Flachaire (2010); Li and Racine
(2007), and survival analysis Woodroofe et al. (1985). A central challenge in this
field is estimating a probability density function D(x) from samples, without
making strong parametric assumptions about the density. Of course, this is quite
challenging as D may exhibit very rich behavior which might be difficult or infor-
mation theoretically impossible to discern given a finite number of samples. Thus,
to make the task feasible at all, some constraints are placed on D, typically in the
form of smoothness, which allows estimators to interpolate among the observed
samples. Indeed, a prominent method for non-parametric density estimation is
based on kernels Wand and Jones (1994); Botev et al. (2010); Simonoff (2012); Scott
(2015), whose usual interpolating estimate takes the form D̂(x) = 1

n Ân
i=1 k(xi; x),

for some kernel function k(·; ·), where x1, . . . , xn are the observations from D. In
some settings is also preferable to use kernels to estimate the log-density function
Canu and Smola (2006). Even with smoothness assumptions, the problem is chal-
lenging enough information theoretically, that the achievable error takes the form
n�O(r/(r+d)), under various norms, where d is the dimension and r is the assumed
order of smoothness of D McDonald (2017); Li and Racine (2007). Similar results
can be obtained using histograms density estimation Barron et al. (1992).
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Despite the fact that both kernel based and histogram based estimators achieve
the information theoretic optimal consistency rates, the resulting estimator does
not have a form that is appealing for other statistical uses after estimation. For
example, if the estimation is then used to solve some hypothesis testing problems
then it would be helpful if the estimated distribution is represented as a member of
an exponential family Neyman (1937); Good (1963). A parallel line of research has
hence devoted in exponential series estimators of non-parametric densities, starting
with the celebrated work of Barron and Sheu Barron and Sheu (1991) which was
later extended to multidimensional settings as well Wu (2010). Our work follows
this line of research and the estimators that we compute are always members of
some exponential family distributions.

Our goal is to extend this literature from the traditional interpolating regime to
the much more challenging extrapolating regime. In particular, we consider settings
wherein we are constrained to observe samples of D in a subset of its support, yet
we want to procure estimates D̂ that approximate D over its entire support. This
question problem is motivated by truncated statistics, another well-developed field
in Statistics and Econometrics Cohen (1991); Heckman (1976); Maddala (1987);
Börsch-Supan and Hajivassiliou (1993), which targets statistical estimation in set-
tings where the samples are truncated depending on their membership in some
set. Truncation may occur for several reasons, ranging from measurement device
saturation effects to data collection practices, bad experimental design, ethical or
privacy considerations that disallow the use of some data, etc.

Non-parametric density estimation from truncated samples is well-studied
problem in statistics with many applications in economics and survival analysis
Padgett and McNichols (1984); Woodroofe et al. (1985); Lai and Ying (1991); Stute
et al. (1993); Gajek et al. (1988); Lai and Ying (1991). However, due to the very
challenging nature of this problem, all the previous works on this topic consider
only a soft truncation model that does not completely hide some part of the
support but only decreases the probability of observing something that lies in
the truncation set. In particular, each sample xi from D also samples a truncation
set Si which then determines whether this sample is truncated or not. As a result,
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samples from the entire support are ultimately collected, thus the unknown density
can be interpolated, with some appropriate re-weighting, from those samples
covering the entire support. Additionally the existing work only targets single-
dimensional densities despite the importance of non-parametric estimation in
multiple dimensions as we discussed above.

In this work we target in solving the seemingly impossible problem of estimat-
ing a non-parametric density, even in parts of the support that we don’t observe
any sample! More precisely, we consider the more standard, in truncated statistics,
hard truncation model, wherein there is a fixed set S that determines whether
each and every sample from D is truncated. We solve this problem under slightly
stronger but similar assumptions to the ones used in the vanilla non-parametric
density estimation problems. At the same time, we extend the non-parametric den-
sity estimation from truncated samples to the multi-dimensional settings, which is
a significant generalization of the existing work.

Our main theorems, summarized below, can be interpreted as a statistical
version of Taylor’s theorem, which allows us to use truncated samples from some
sufficiently smooth density D and extrapolate from these samples an estimate D̂
which approximates D on its entire support. The statistical rates achieved by our
theorems are slightly worse but comparable to those known in non-parametric
density estimation under untruncated samples, i.e., in the interpolating regime. It is
an interesting open problem whether we can improve the novel extrapolation rates
that we provide in this work, to match exactly the interpolation rates of the vanilla
non-parametric density estimation.

From a technical point of view, a central challenge that we face is to bound
the extrapolation error of multivariate polynomial approximation, which is a chal-
lenging problem that is a subject of active area of research. Our main technical
contribution is to show a novel way to prove strong bounds on the extrapolation
error of our algorithms invoking only well-studied anti-concentration theorems,
which is of independent interest and we believe that it will have applications
beyond truncated statistics. More precisely, one of our main technical results is a
“Distortion of Conditioning” lemma (Lemma 7.18), providing a tight relationship
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between the `1 distance between two exponential families as computed under
conditioning on different subsets of the support. As we said, this lemma is proven
using probabilistic techniques, and provides a viable route to prove our statis-
tical Taylor result in high dimensions, where polynomial approximation theory
techniques do not appear sufficient.

Main Results and Techniques

As we already mentioned, in this work we provide provable extrapolation of non-
parametric density functions from samples, i.e., given samples from the conditional
density on some subset S of the support we want to recover the shape of the
density function outside of S. We consider densities proportional to e f (x), where
f is a sufficiently smooth function. Our observation consists of samples from a
density proportional to 1S(x)e f (x), where S is a known (via a membership oracle)
subset of the support. For this problem to even be well-posed we need further
assumptions on the density function. Even if we are given the exact conditional
density 1S(x)e f (x), it is easy to see that, if f /2 C•, i.e., if f is not infinitely times
differentiable everywhere in the whole support, there is no hope to extrapolate its
curve outside of S; for a simple example, if we observe a density proportional to
e|x| truncated in (�•, 0] we cannot extrapolate this density to (0,+•), because we
cannot distinguish whether we are observing truncated samples from e�x or e|x|.
On the other hand, if the log-density f is analytic and sufficiently smooth, then
the value of f at every x can be determined only from local information, namely
its derivatives at a single point. This well known property of analytic functions
is quantified by Taylor’s remainder theorem. In this work we build upon this
intuition and show that even given samples from a sufficiently smooth density
and even if these samples are conditioned in a small subset of the support we can still
determine the function in the entire support and most importantly this can be done
in a statistically and computationally efficient way.

In the light of the above observation, we restrict our attention to functions
f that satisfy specific smoothness assumptions. In particular, we assume that
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the k-th order derivatives of f do not increase faster than exponentially in k, i.e.,
| f (k)(x)|  Mk for some M 2 R+ and all x in the support (see Definition 7.4).
Notice that similar assumptions are standard in non-parametric density estimation
problems, even when no extrapolation is needed, see, for example, Barron and
Sheu (1991); Wu (2010).

We start our exposition with the single-dimensional version of our extrapolation
problem in Section 7.2. We make this choice for several reasons: (1) it is easier
to compare with the existing line of work on non-parametric density estimation
both in the vanilla non-truncated and in the truncated setting, (2) in the single-
dimensional setting we are able to show a slightly stronger information theoretic
result, and (3) the single dimensional setting serves as a nice example where the
difference between interpolation and extrapolation. In this single dimensional
setting we assume that there exists some unknown log-density function f , a known
set S, and we observe samples from the distribution D( f , S), which has density
proportional to 1Se f (x). Our goal is to estimate the whole distribution D( f ) which
for simplicity we assume that f is supported on [0, 1] and hence S ✓ [0, 1]. Our first
step is to consider the semi-parametric class of densities p that consists of polynomial
series that can approximate the unknown non-parametric log-density f . Then we
truncate this polynomial series and we only consider densities of the form ep(x),
where p is a degree k polynomial, with large enough k; observe that these densities
belong to an exponential family.

Our first result shows that the polynomial which maximizes the likelihood
with respect to the conditional distribution D( f , S) (let us call this polynomial the
“MLE polynomial”) approximates the density e f (x) everywhere on [0, 1], i.e. the MLE
polynomial has small extrapolation error. Observe, that this result cannot follow
just from the fact that for example the Taylor polynomial extrapolates, because the
MLE polynomial and the Taylor polynomial are in principle very different. While it
is conceptually clear that the MLE polynomial of sufficiently large degree will have
small interpolation error and hence will approximate well the density inside S, our
result is the first to show that the same polynomial has small extrapolation error
and hence approximates the density on the entire interval [0, 1]. For the formal
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version, we refer to Theorem 7.7

Theorem 1.17 (Informal – MLE Extrapolation Error). Let D( f , [0, 1]) be a probability
distribution with sufficiently smooth log-density f and let D( f , S) be its conditional
distribution on S ⇢ [0, 1]. The MLE w.r.t D( f , S) polynomial p⇤ of degree O(log(1/e))

satisfies dTV(D( f , [0, 1]), D(p⇤, [0, 1]))  e.

Extending the previous result to multivariate densities is significantly more
challenging. The reason is that multivariate polynomial interpolation is much
more intricate and is a subject of active research, see for example the survey Gasca
and Sauer (2000). Instead of trying to characterize the properties of the exact MLE
polynomial we give an alternative method for obtaining multivariate extrapola-
tion guarantees that does not rely on multivariate polynomial interpolation. Our
approach uses the additional assumption that the set S from which we observe
samples has non-trivial volume, that is vol(S) � a for some a > 0. Under this
natural assumption we obtain the following theorem (for the formal version see
Therorem 7.8 ).

Theorem 1.18 (Informal – Multivariate MLE Extrapolation Error). Let D( f , [0, 1]d)
be a probability distribution with sufficiently smooth log-density f and let D( f , S) be its
conditional distribution on S ⇢ [0, 1]d with vol(S) � a. The MLE w.r.t D( f , S) polyno-
mial p⇤ of degree O(d3/a2 + log(1/e)) satisfies dTV(D( f , [0, 1]d), D(p⇤, [0, 1]d))  e.

Our approach for proving Theorem 1.18 is more general and of independent
interest. In particular, we use a structural result that quantifies the distortion of
the metric space of exponential families under conditioning. Given a polynomial
p with corresponding density D(p, [0, 1]d) we consider the conditioning map that
maps D(p, [0, 1]d) to the distribution D(p, S). We show this conditioning map
distorts the total variation distance metric by a factor of order at most (d/a)O(k).
In other words, distributions that are close in the image space of the conditioning
map are also close in the domain space and vice versa (for the formal version, see
Lemma 7.18 )
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Lemma 1.19 (Informal – Distortion of Conditioning ). Let p, q be polynomials of degree
at most k. For every S ✓ [0, 1]d with vol(S) � a it holds

(d/a)�O(k)  dTV( D(p, [0, 1]d), D(q, [0, 1]d) )
dTV(D(p, S), D(q, S))

 (d/a)O(k) .

Using the above theorem our strategy for showing Theorem 1.18 is illus-
trated in Figure 1.1 and is as follows. Our first step is to use Taylor’s remain-
der theorem to prove that there exists a polynomial p, associated with f , such
that both dTV(D(p, S), D( f , S)) and dTV(D(p, [0, 1]d), D( f , [0, 1]d)) are both very
small when p has sufficiently large degree. Next, we show that optimizing the
likelihood function on S over the space of degree k polynomials we obtain the
MLE polynomial q which achieves very small total variation distance to f on
S, i.e. dTV(D(q, S), D( f , S)) is also small. Hence, from the triangle inequality
we have that dTV(D(q, S), D(p, S)) is also very small. The next step, which is
the crucial one, is that we can now apply our novel Theorem 1.19 to obtain that
dTV(D(q, [0, 1]d), D(p, [0, 1]d)) blows up at most by a factor of (d/a)O(k). This ar-
gument leads to an upper bound on the extrapolation error (y in Figure 1.1). The
last key observation is that the quantity dTV(D(p, S), D( f , S)) decreases faster than
(d/a)�O(k) as the degree k increases and hence we can make the extrapolation error
arbitrarily small by choosing sufficiently high degree.

So far we have argued about the extrapolation error of the population MLE
polynomial, i.e., we assume that we have access to the population distribution
D( f , S) and that we can maximize the population MLE with no error. Therefore,
our next step is to show how we can incorporate the statistical error from the access
to only finitely many samples from D( f , S) and to provide an efficient algorithm
that computes the MLE polynomial with small enough approximation loss (for the
formal version see Theorem 7.9).

Theorem 1.20 (Informal – Extrapolation Algorithm). Let D( f , [0, 1]d) be sufficiently
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Figure 1.1: Using Theorem 1.19 to show the extrapolation guarantees of MLE.
K = [0, 1]d. p is the Taylor Polynomial of f : from Taylor’s remainder the-
orem we know that, in both S and K, p is very close to f . q is the MLE
polynomial on S: it is very close to f in S. The distance x is bounded
by triangle inequality. The distance of p and q in K is upper bounded
by x (d/a)O(k) by Theorem 1.19. Finally, y is the extrapolation error of
the MLE polynomial q on K and is bounded by another triangle inequality.
Overall, y  dTV(D( f , K), D(p, K)) + (d/a)O(k)x  dTV(D( f , K), D(p, K)) +
(d/a)O(k)(dTV(D( f , S), D(p, S)) + dTV(D( f , S), D(q, S))).

smooth. Let S ✓ [0, 1]d be such that vol(S) � a. There exists an algorithm that draws

N = 2 eO(d4/a2) · (1/e)O(d+log(1/a))

samples from D( f , S), runs in time polynomial in the number of samples, and with
probability at least 99% outputs a polynomial q of degree eO(d3/a2) + O(log(1/e)) such
that dTV(D( f , K), D(q, K))  e.

It is well known that non-parametric density estimation (in the interpola-
tion regime, i.e. from untruncated samples) under smoothness assumptions re-
quires samples that depend exponentially in the dimension, i.e. the typical rate is
(1/e)Q(d), see for example Tsybakov (2008); McDonald (2017); Li and Racine (2007).
The usual assumption is that the density has bounded derivatives, i.e. it belongs to
a Sobolev or a Besov space. Our problem of extrapolating the density function is a
strict generalization of non-parametric density estimation and therefore our sample
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complexity naturally scales as (1/e)O(d+log(1/a)), where the log(1/a) reflects the
impact of conditioning on a small volume set S. Our estimation algorithm suffers
from an additional 2 eO(d4/a2) which does not depend on the accuracy parameter
e. For sets of constant volume, in constant dimensions, we obtain a almost the
same asymptotic sample complexity with the interpolation setting and in particular
depends polynomially in the accuracy parameter e. For higher dimensions it is an
interesting open problem whether this additional factor is necessary or not.

For many learning problems one may not have access to fine grained label
information; e.g., an image can be labeled as husky, dog, or even animal depending
on the expertise of the annotator. In this work, we formalize these settings and
study the problem of learning from such coarse data. Instead of observing the
actual labels from a set Z , we observe coarse labels corresponding to a partition of
Z (or a mixture of partitions).

Our main algorithmic result is that essentially any problem learnable from fine
grained labels can also be learned efficiently when the coarse data are sufficiently
informative. We obtain our result through a generic reduction for answering Statis-
tical Queries (SQ) over fine grained labels given only coarse labels. The number of
coarse labels required depends polynomially on the information distortion due to
coarsening and the number of fine labels |Z|.

We also investigate the case of (infinitely many) real valued labels focusing on
a central problem in censored and truncated statistics: Gaussian mean estimation
from coarse data. We provide an efficient algorithm when the sets in the partition
are convex and establish that the problem is NP-hard even for very simple non-
convex sets.

1.6 Learning from Coarse Data

Supervised learning from labeled examples is a classical problem in machine
learning and statistics: given labeled examples, the goal is to train some model
to achieve low classification error. In most modern applications, where we train
complicated models such as neural nets, large amounts of labeled examples are
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required. Large datasets such as Imagenet, Russakovsky et al. (2015), often contain
thousands of different categories such as animals, vehicles, etc., each one of those
containing many fine grained subcategories: animals may contain dogs and cats and
dogs may be further split into different breeds etc. In the last few years, there have
been many works that focus on fine grained recognition, Guo et al. (2018); Chen
et al. (2018); Touvron et al. (2020); Qin et al. (2020); Lei et al. (2017); Jiao et al. (2019,
2020); Bukchin et al. (2020); Taherkhani et al. (2019). Collecting a sufficient amount
of accurately labeled training examples is a hard and expensive task that often
requires hiring experts to annotate the examples. This has motivated the problem
of learning from coarsely labeled datasets, where a dataset is not fully annotated
with fine grained labels but a combination of fine, e.g., cat, and coarse labels, e.g.,
animal, is given, Deng et al. (2013); Ristin et al. (2015).

Inference from coarse data naturally arises also in unsupervised, i.e., distri-
bution learning settings: instead of directly observing samples from the target
distribution, we observe “representative" points that correspond to larger sets of
samples. For example, instead of observing samples from a real valued random
variable, we round them to the closest integer. An important unsupervised prob-
lem that fits in the coarse data framework is censored statistics, Cohen (2016);
Wolynetz (1979); Breen et al. (1996); Schneider (1986). Interval censoring, that arises
in insurance adjustment applications, corresponds to observing points in some
interval and point masses at the endpoints of the interval instead of observing
fine grained data from the whole real line. Moreover, the problem of learning the
distribution of the output of neural networks with non-smooth activations (e.g.,
ReLU networks, Wu et al. (2019)) also fits in our model of distribution learning
with coarse data, see Figure 8.2(c).

Even though the problem of learning from coarsely labeled data has attracted
significant attention from the applied community, from a theoretical perspective
little is known. In this work, we provide efficient algorithms that work in both the
supervised and the unsupervised coarse data settings.
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Our Model and Results

We start by describing the generative model of coarsely labeled data in the su-
pervised setting. We model coarse labels as subsets of the domain of all possible
fine labels. For example, assume that we hire an expert on dog breeds and an
expert on cat breeds to annotate a dataset containing images of dogs and cats. With
probability 1/2, we get samples labeled by the dog expert, i.e., labeled according
to the partition

{cat = {persian cat, bengal cat, . . .}, {maltese dog}, {husky dog}, . . . } .

On the other hand, the cat expert will provide a fine grained partition over cat
breeds and will group together all dog breeds. Our coarse data model captures
exactly this mixture of different label partitions.

Definition 1.21 (Generative Process of Coarse Data with Context). Let X be an
arbitrary domain, and let Z = {1, . . . , k} be the discrete domain of all possible fine labels.
We generate coarsely labeled examples as follows:

1. Draw a finely labeled example (x, z) from a distribution D on X ⇥Z .

2. Draw a coarsening partition S (of Z) from a distribution p.

3. Find the unique set S 2 S that contains the fine label z.

4. Observe the coarsely labeled example (x, S).

We denote Dp the distribution of the coarsely labeled example (x, S).

In the supervised setting, our main focus is to answer the following question.

Question 1.22. Can we train a model, using coarsely labeled examples (x, S) ⇠ Dp, that
classifies finely labeled examples (x, z) ⇠ D with accuracy comparable to that of a classifier
that was trained on examples with fine grained labels?
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Definition 8.1 does not impose any restrictions on the distribution over parti-
tions p. It is clear that if partitions are very rough, e.g., we split Z into two large
disjoint subsets, we lose information about the fine labels and we cannot hope
to train a classifier that performs well over finely labeled examples. In order for
Question 8.2 to be information theoretically possible, we need to assume that the
partition distribution p preserves fine-label information. The following definition
quantifies this by stating that reasonable partition distributions p are those that
preserve the total variation distance between different distributions supported
on the domain of the fine labels Z . We remark that the following definition does
not require D to be supported on pairs (x, z) but is a general statement for the
unsupervised version of the problem, see also Definition 8.10.

Definition 1.23 (Information Preserving Partition Distribution). Let Z be any domain
and let a 2 (0, 1]. We say that p is an a-information preserving partition distribution
if for every two distributions D1, D2 supported on Z , it holds that dTV(D1

p, D2
p) �

a · dTV(D1, D2), where dTV(D1, D2) is the total variation distance of D1 and D2.

For example, the partition distribution defined in the dog/cat dataset scenario,
discussed before Definition 8.1, is 1/2-information preserving, since we observe
fine labels with probability 1/2. In this case, it is easy, at the expense of losing the
statistical power of the coarse labels, to combine the finely labeled examples from
both experts in order to obtain a dataset consisting only of fine labels. However,
our model allows the partitions to have arbitrarily complex combinatorial structure
that makes the process of “inverting" the partition transformation computationally
challenging. For example, specific fine labels may be complicated functions of
coarse labels: “medium sized" and “pointy ears" and “blue eyes" may be mapped
to the “husky dog" fine label.

Our first result is a positive answer to Question 8.2 in essentially full generality:
we show that concept classes that are efficiently learnable in the Statistical Query
(SQ) model, Kearns (1998), are also learnable from coarsely labeled examples. Our
result is similar in spirit with the result of Kearns (1998), where it is proved that SQ
learnability implies learnability under random classification noise.
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Theorem 1.24 (Informal – SQ Learnability implies Learnability from Coarse Exam-
ples). Any concept class C that is efficiently learnable with M statistical queries from finely
labeled examples (x, z) ⇠ D, can be efficiently learned from O(poly(k/a)) · M coarsely
labeled examples (x, S) ⇠ Dp under any a-information preserving partition distribution
p.

Statistical Queries are queries of the form E(x,z)⇠D[q(x, z)] for some query func-
tion q(x, z). It is known that almost all known machine learning algorithms Aslam
and Decatur (1998); Blum et al. (1998, 2005); Dunagan and Vempala (2008); Balcan
and Feldman (2015); Feldman et al. (2017) can be implemented in the SQ model. In
particular, in Feldman et al. (2015a), it is shown that (Stochastic) Gradient Descent
can be simulated by statistical queries. This implies that our result can be applied,
even in cases where it is not possible to obtain formal optimality guarantees, e.g.,
training deep neural nets. We can train such models using coarsely labeled data
and guarantee the same performance as if we had direct access to fine labels (see
also Appendix G.1). 5 As another application, we consider the problem of mul-
ticlass logistic regression with coarse labels. It is known, see e.g., Friedman et al.
(2001), that given finely labeled examples (x, z) ⇠ D, the likelihood objective for
multiclass logistic regression is concave with respect to the weight matrix. Even
though the likelihood objective is no-longer concave when we consider coarsely
labeled examples (x, S) ⇠ Dp, our theorem bypasses this difficulty and allows us
to efficiently perform multiclass logistic regression with coarse labels.

Formally, we design an algorithm (Algorithm 12) that, given coarsely labeled
examples (x, S), efficiently simulates statistical queries over finely labeled exam-
ples (x, z). Surprisingly, the runtime and sample complexity of our algorithm
do not depend on the combinatorial structure of the partitions, but only on the

5Given any objective of the form L(v) = E(x,y)⇠D [`(v; x, y)], its gradients correspond to
rvL(v) = E(x,y)⇠D [rv`(v; x, y)]. Having Statistical Query access to the distribution of (x, y),
we can directly obtain estimates of the above gradients using the query functions qi(x, y) =
(rv`(v; x, y))i. In Feldman et al. (2015a), the precise accuracy required for specific SQ implemen-
tations of first order methods depends on the complexity of the underlying distribution and the
particular objective function `(·).
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number of fine labels k and the information preserving parameter a of the partition
distribution p.

Theorem 1.25 (Informal – SQ from Coarsely Labeled Examples). Consider a dis-
tribution Dp over coarsely labeled examples in Rd ⇥ [k], (see Definition 8.1) with a-
information preserving partition distribution p. Let q : Rd ⇥ [k] ! [�1, 1] be a query
function, that can be evaluated on any input in time T, and t 2 (0, 1). There exists
an algorithm, that draws N = poly(k/(ta)) coarsely labeled examples from Dp and,
in poly(N, T) time, computes an estimate r̂ such that, with high probability, it holds��E(x,z)⇠D[q(x, z)]� r̂

��  t .

Learning Parametric Distributions from Coarse Samples. In many important
applications, instead of a discrete distribution over fine labels, a continuous para-
metric model is used. A popular example is when the domain Z of Definition 8.1
is the entire Euclidean space Rd, and the distribution of finely labeled examples is
a Gaussian distribution whose parameters possibly depend on the context x. Such
censored regression settings are known as Tobit models Tobin (1958); Maddala
(1986); Gourieroux (2000). Lately, significant progress has been made from a com-
putational point of view in such censored/truncated settings in the distribution
specific setting, e.g., when the underlying distribution is Gaussian Daskalakis et al.
(2018); Kontonis et al. (2019), mixtures of Gaussians Nagarajan and Panageas (2019),
linear regression Daskalakis et al. (2019); Ilyas et al. (2020); Daskalakis et al. (2020).
In this distribution specific setting, we consider the most fundamental problem of
learning the mean of a Gaussian distribution given coarse data.

Definition 1.26 (Coarse Gaussian Data). Consider the Gaussian distribution N (µ?),
with mean µ? 2 Rd and identity covariance matrix. We generate a sample as follows:

1. Draw z from N (µ?).

2. Draw a partition S (of Rd) from p.

3. Observe the set S 2 S that contains z.
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We denote the distribution of S as Np(µ?).

Remark 1.27. We remark that we only require membership oracle access to the subsets of
the partition S . A set S ✓ Rd corresponds to a membership oracle OS : Rd ! {0, 1} that
given x 2 Rd outputs whether the point lies inside the set S or not.

We first study the above problem, from a computational viewpoint. For the
corresponding problems in censored and truncated statistics no geometric assump-
tions are required for the sets: in Daskalakis et al. (2018) it was shown that an
efficient algorithm exists for arbitrarily complex truncation sets. In contrast in
our more general model of coarse data we show that having sets with geometric
structure is necessary. In particular we require that every set of the partition is con-
vex, see Figure 8.2(b,c). We show that when the convexity assumption is dropped,
learning from coarse data is a computationally hard problem even under a mixture
of very simple sets.

Theorem 1.28 (Informal – Hardness of Matching the Observed Distribution with
General Partitions). Let p be a general partition distribution. Unless RP = NP, no
algorithm with sample access to Np(µ?), can compute, in poly(d) time, a eµ 2 Rd such
that dTV(Np(eµ),Np(µ?)) < 1/dc for some absolute constant c > 1.

We prove our hardness result using a reduction from the well known MAX-
CUT problem, which is known to be NP-hard, even to approximate Håstad (2001).
In our reduction, we use partitions that consist of simple sets: fat hyperplanes,
ellipsoids and their complements: the computational hardness of this problem is
rather inherent and not due to overly complicated sets.

On the positive side, we identify a geometric property that enables us to design
a computationally efficient algorithm for this problem: namely we require all the
sets of the partitions to be convex, e.g., Figure 8.2(b,c). We remark that having finite
or countable subsets, is not a requirement of our model. For example, we can
handle convex partitions of the form (c) that correspond to the output distribution
of a ReLU neural network, see Wu et al. (2019). We continue with our theorem for
learning Gaussians from coarse data.
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(a) Non-Identifiable Case (b) Convex Partition Case (c) ReLU Case

Figure 1.2: Convex Partitions of R2.

Figure 1.3: (a) is a very rough partition, that makes learning the mean im-
possible: Gaussians N ((0, z)) centered along the same vertical line (0, z) as-
sign exactly the same probability to all cells of the partitions and therefore,
dTV(Np((0, z1)),Np((0, z2))) = 0: it is impossible to learn the second coordinate
of the mean. (b) is a convex partition of R2, that makes recovering the Gaussian
possible. (c) is the convex partition corresponding to the output distribution of one
layer ReLU networks. When both coordinates are positive, we observe a fine sam-
ple (black points correspond to singleton sets). When exactly one coordinate (say
x1) is positive, we observe the line Lz = {x : x2 < 0, x1 = z > 0} that corresponds
to the ReLU output (x1, 0). If both coordinates are negative, we observe the set
{x : x1 < 0, x2 < 0}, that corresponds to the point (0, 0).

Theorem 1.29 ((Informal) - Gaussian Mean Estimation with Convex Partitions). Let
e 2 (0, 1). Consider the generative process of coarse d-dimensional Gaussian data Np(µ?).
Assume that the partition distribution p is a-information preserving and is supported on
convex partitions of Rd. Then, the empirical log-likelihood objective

LN(µ) =
1
N

N

Â
i=1

logN (µ; Si)

is concave with respect to µ for Si ⇠ Np(µ?). Moreover, it suffices to draw N =
eO(d/(e2a2)) samples from Np(µ?) so that the maximizer eµ of the empirical log-likelihood
satisfies

dTV(N (eµ),N (µ?))  e ,

with probability at least 99%.
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Our algorithm for mean estimation of a Gaussian distribution relies on the log-
likelihood being concave when the partitions are convex. We remark that, similar
to our approach, one can use the concavity of likelihood to get efficient algorithms
for regression settings, e.g., Tobit models, where the mean of the Gaussian is given
by a linear function of the context Ax for some unknown matrix A.



Part I

Learning From Noisy Labels
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2 LEARNING WITH MASSART NOISE

2.1 Formal Statement of Results

Preliminaries

Let ei be the i-th standard basis vector in Rd. For d 2 N, let Sd�1 :� {x 2 Rd :
kxk2 = 1}. Let projU(x) be the projection of x to subspace U ⇢ Rd and U? be its
orthogonal complement.

We consider the binary classification setting where labeled examples (x, y) are
drawn i.i.d. from a distribution D on Rd ⇥ {±1}. We denote by Dx the marginal of
D on x. The misclassification error of a hypothesis h : Rd ! {±1} (with respect to
D) is errD

0�1(h) :� Pr(x,y)⇠D[h(x) 6= y]. The zero-one error between two functions
f , h (with respect to Dx) is errDx

0�1( f , h) :� Prx⇠Dx [ f (x) 6= h(x)].
We will use the following simple claim relating the zero-one loss between two

halfspaces (with respect to a bounded distribution) and the angle between their
normal vectors (see Appendix A.1 for the proof).

Claim 2.1. Let Dx be a (U, R)-bounded distribution on Rd. For any u, v 2 Rd we have
that R2/U · q(u, v)  errDx

0�1(hu, hv). Moreover, if Dx is (U, R, t(·))-bounded, for any
0 < e  1, we have that errDx

0�1(hu, hv)  Ut(e)2 · q(v, u) + e .

Our main result is the first polynomial-time algorithm for learning halfspaces
with Massart noise with respect to a broad class of well-behaved distributions. Be-
fore we formally state our algorithmic result, we define the family of distributions
F for which our algorithm succeeds:

Definition 2.2 (Bounded distributions). Fix U, R > 0 and t : (0, 1) ! R+. An
isotropic (i.e., zero mean and identity covariance) distribution Dx on Rd is called (U, R, t)-
bounded if for any projection (Dx)V of Dx onto a 2-dimensional subspace V the corre-
sponding pdf gV on R2 satisfies the following properties:

1. gV(x) � 1/U, for all x 2 V such that kxk2  R (anti-anti-concentration).
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2. gV(x)  U for all x 2 V (anti-concentration).

3. For any e 2 (0, 1), Prx⇠gV [kxk2 � t(e)]  e (concentration).

We say that Dx is (U, R)-bounded if concentration is not required to hold.

Our main result is the following theorem.

Theorem 2.3. Let D be a distribution on Rd ⇥ {�1,+1} such that the marginal Dx

on Rd is (U, R, t())-bounded. Let h < 1/2 be an upper bound on the Massart noise
rate. Algorithm 2 has the following performance guarantee: It draws m = O((U/R)12

·t8(e/2)/(1� 2h)10) · O(d/e4) labeled examples from D, uses O(m) gradient evalua-
tions, and outputs a hypothesis vector w̄ that satisfies errDx

0�1(hw̄, f )  e with probability
at least 1� d, where f is the target halfspace.

2.2 Overview of Techniques

Our approach is extremely simple: We take an optimization view and leverage the
structure of the learning problem to identify a simple non-convex surrogate loss
Ls(w) with the following property: Any approximate stationary point bw of Ls

defines a halfspace h bw, which is close to the target halfspace f (x) = sign(hw⇤, xi).
Our non-convex surrogate is smooth, by design. Therefore, we can use any first-
order method to efficiently find an approximate stationary point.

We now proceed with a high-level intuitive explanation. For simplicity of this
discussion, we consider the population versions of the relevant loss functions.
The most obvious way to solve the learning problem is by attempting to directly
optimize the population risk with respect to the 0� 1 loss, i.e., the misclassification
error Pr(x,y)⇠D[hw(x) 6= y] as a function of the weight vector w. Equivalently, we
seek to minimize the function F(w) = E(x,y)⇠D[1{�yw · x � 0}], where 1{t � 0}
is the zero-one step function. This is of course a non-convex problem and it is
unclear how to efficiently solve directly.

A standard recipe in machine learning to address non-convexity is to replace
the 0� 1 loss F(w) by an appropriate convex surrogate. This method seems to
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Figure 2.1: The step function and its surrogates.

inherently fail in our setting. However, we are able to find a non-convex surrogate
that works. Even though finding a global optimum of a non-convex function is
hard in general, we show that a much weaker requirement suffices for our learning
problem. In particular, it suffices to find a point where our non-convex surrogate
has small gradient. Our main structural result is that any such point is close to the
target weight vector w⇤.

To obtain our non-convex surrogate loss Ls, we replace the step function
1{t � 0} in F(w) by a well-behaved approximation. That is, our surrogate is
of the form Ls(w) = E(x,y)⇠D[r(�yw · x)], where r(t) is an approximation (in
some sense) of 1{t � 0}. A natural first idea is to approximate the step function
by a piecewise linear (ramp) function. We show (Section 2.3) that this leads to a
non-convex surrogate that indeed satisfies the desired structural property. The
proof of this statement turns out to be quite clean, capturing the key intuition of our
approach. Unfortunately, the non-convex surrogate obtained this way (i.e., using
the ramp function as an approximation to the step function) is non-smooth and it
is unclear how to efficiently find an approximate stationary point. A simple way
to overcome this obstacle is to instead use an appropriately smooth approximation
to the step function. Specifically, we use the logistic loss (Section 2.3), but several
other choices would work. See Figure 2.1 for an illustration.

We note that our structural lemma (showing that any stationary point of a
non-convex surrogate suffices) crucially leverages the underlying distributional
assumptions (i.e., the fact that Dx is (U, R) bounded). It follows from a lower
bound construction in Diakonikolas et al. (2019a) that the approach of this work
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does not extend to the distribution-independent setting. In particular, for any
loss function L, Diakonikolas et al. (2019a) constructs examples where there exist
stationary points of L defining hypotheses that are far from the target halfspace.

2.3 Main Structural Result: Stationary Points Suffice

In this section, we prove our main structural result. In Section 2.3, we define
a simple non-convex surrogate by replacing the step function by the (piecewise
linear) ramp function and show that any approximate stationary point of this
surrogate loss suffices. In Section 2.3, we prove our actual structural result for a
smooth (sigmoid-based) approximation to the step function.

Warm-up: Non-convex surrogate based on ramp function

The main point of this subsection is to illustrate the key properties of a non-convex
surrogate loss that allows us to argue that the stationary points of this loss are
close to the true halfspace w⇤. To this end, we consider the ramp function rs(t) with
parameter s > 0 – a piecewise linear approximation to the step function. The ramp
function and its derivative are defined as follows:

rs(t) =

8
>>><

>>>:

0, for t < �s/2
t
s + 1

2 , |t|  s/2

1, t > s/2

and r0s(t) =
1
s
1{|t|  s/2} . (2.1)

Observe that as s approaches 0, rs approaches the step function. Using the ramp
function, we define the following non-convex surrogate loss function

Lramp
s (w) = E

(x,y)⇠D


rs

✓
�y

w · x
kwk2

◆�
. (2.2)
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Figure 2.2: The sign of the two-
dimensional gradient projection.
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w⇤ w
q
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Figure 2.3: The “good" (blue) and “bad" (red)
regions inside a band of size s.

To simplify notation, we will denote the inner product of x and the normalized
w as `(w, x) = w·x

kwk2
. By a straightforward calculation (see Appendix A.1), we get

that the gradient of the objective Lramp
s (w) is

rwLramp
s (w) = E

x⇠Dx

⇥
�r0s (`(w, x)) rw`(w, x) (1� 2h(x)) sign(w⇤ · x)

⇤
. (2.3)

Our goal is to establish a claim along the following lines.

Claim 2.4 (Informal). For every e > 0 there exists s > 0 such that for any vector bw
with q(w⇤, bw) > e, it holds

���rwLramp
s ( bw)

���
2
� e.

The contrapositive of this claim implies that for every e we can tune the param-
eter s so that all points with sufficiently small gradient have angle at most e with
the optimal halfspace w⇤. This is a parameter distance guarantee that is easy to
translate to missclafication error (using Claim 2.1).

Since it suffices to prove that the norm of the gradient of any “bad" hypothesis
(i.e., one whose angle with the optimal is greater than e) is large, we can restrict
our attention to any subspace and bound from below the norm of the gradient
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in that subspace. Let V = span(w⇤, w) and note that the inner products w⇤ · x,
w · x do not change after the projection to this subspace. Write any point x 2 Rd

as v + u, where v 2 V is the projection of x onto V and u 2 V?. Now, for each v,
we pick the worst-case u (the one that minimizes the norm of the gradient). We set
hV(v) = hV(v + u(v)). Since h(x)  h for all x, we also have that hV(v)  h, for
all v 2 V. Therefore, we have

���rwLramp
s (w)

���
2
�
���projVrwLramp

s (w)
���

2
=

���� E
(x,y)⇠DV

[rwLramp
s (w)]

����
2

.

Without loss of generality, assume that bw = e2 and w⇤ = � sin q · e1 + cos q · e2, see
Figure 2.2. To simplify notation, in what follows we denote by h(x) the function
hV(x) after the projection. Observe that the gradient is always perpendicular to
bw = e2 (this is also clear from the fact that Lramp

s (w) does not depend on the length
of w). Therefore,
���� E
(x,y)⇠DV

[rwLramp
s ( bw)]

����
2
= |rwLramp

s ( bw) · e1|

=

���� E
x⇠(Dx)V

[�r0s(x2)(1� 2h(x))sign(w⇤ · x)x1]

���� . (2.4)

We partition R2 in two regions according to the sign of the pointwise gradient

g(x) = �r0s(x2)(1� 2h(x))sign(w⇤ · x)x1 .

Let
G = {x 2 R2 : g(x) � 0} = {x 2 R2 : x1sign(w⇤ · x)  0} ,

and let Gc be its complement. See Figure 2.2 for an illustration. To give some
intuition behind this definition, imagine we were using SGD in this 2-dimensional
setting, and at some step t we have w(t) = bw = e2. We draw a sample (x, y) from
the distribution D and update the hypothesis. Then the expected update (with
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respect to the label y) is

w(t+1) = e2 � g(x) · e1e1 .

Therefore, assuming that q(w⇤, e2) 2 (0, p/2), the “good" points (region G) are
those that decrease the e1 component (i.e., rotate the hypothesis counter-clockwise)
and the “bad" points (region Gc) are those that try to increase the e1 component
(rotate the hypothesis clockwise); see Figure 2.2.

We are now ready to explain the main idea behind the choice of the ramp
function rs(t). Recall that the derivative of the ramp function is the (scaled)
indicator of a band of size s/2 around 0, r0s(t) = (1/s)1{|t|  s/2}. Therefore,
the gradient of this loss function amplifies the contribution of points close to the
current guess w, that is, points inside the band 1{|x2|  s/2} in our 2-dimensional
example of Figure 2.2. Assume for simplicity that the marginal distribution Dx

is the uniform distribution on the 2-dimensional unit ball. Then, no matter how
small the angle of the true halfspace and our guess q(w⇤, bw) is, we can always pick
s sufficiently small so that the contribution of the “good" points (blue region in
Figure 2.2) is much larger than the contribution of the “bad" points (red region).

Crucial in this argument is the fact that the distribution is “well-behaved” in
the sense that the probability of every region is related to its area. This is where
Definition 2.2 comes into play. To bound from below the contribution of “good"
points, we require the anti-anti-concentration property of the distribution, namely
a lower bound on the density function (in some bounded radius). To bound from
above the contribution of “bad" points, we need the anti-concentration property
of Definition 2.2, namely that the density is bounded from above (recall that we
wanted the probability of a region to be related to its area).

We are now ready to show that our ramp-based non-convex loss works for all
distributions satisfying Definition 2.2. In the following lemma, we prove that we
can tune the parameter s so that the stationary points of our non-convex loss are
close to w⇤. The following lemma is a precise version of our initial informal goal,
Claim 2.4.
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Lemma 2.5 (Stationary points of Lramp
s suffice). Let Dx be a (U, R)-bounded dis-

tribution on Rd, and h < 1/2 be an upper bound on the Massart noise rate. Fix
any q 2 (0, p/2). Let w⇤ 2 Sd�1 be the normal vector to the optimal halfspace and
bw 2 Sd�1 be such that q( bw, w⇤) 2 (q, p � q). For s  R

2U
p

1� 2h sin q, we have that���rwLramp
s ( bw)

���
2
� (1/8)R2(1� 2h)/U.

Proof. We will continue using the notation introduced in the above discussion. We
let V be the 2-dimensional subspace spanned by w⇤ and bw. To simplify notation,
we again assume without loss of generality that w⇤ = � sin q e1 + cos q e2 and
bw = e2, see Figure 2.2. Using the triangle inequality and Equation (2.4), we obtain
���� E
(x,y)⇠DV

[rwLramp
s ( bw)]

����
2
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(2.6)

We now bound from below the first term, as follows
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· Rsp

2U
=

R2

4U
(1� 2h), (2.7)

where the first inequality follows from the upper bound on the noise h(x)  h, and
the third one from the lower bound on the 2-dimensional density function 1/U
inside the ball kxk2  R (see Definition 2.2).
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We next bound from above the second term of Equation (2.6), that is the contri-
bution of “bad" points. We have that

E
x⇠(Dx)V
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s
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 1
s
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x⇠(Dx)V

[|x1|1{x 2 Gc, |x2|  s/2}] .

We now observe that for q 2 (0, p/2] it holds

Gc = {x : x1sign(w⇤ · x) > 0} = {x : x1sign(�x1 sin q + x2 cos q) > 0}
✓ {x : x1x2 > 0} .

On the other hand, if q 2 (p/2, p] we have Gc ✓ {x : x1x2 < 0}. Assume first
that q 2 (0, p/2] (the same argument works also for the other case). Then the
intersection of the band {x : |x2|  s/2} and Gc is contained in the union of two
rectangles R = {x : |x1|  s/(2 tan q), |x2|  s/2, x1x2 > 0}, see Figure 2.3.
Therefore,
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[1{x 2 R}]  1

2 tan q
· Us2

2 tan q

 R2

16U
(1� 2h) , (2.9)

where for the last inequality we used our assumption that s  R
2U
p

1� 2h sin q.
To finish the proof, we substitute the bounds (2.7), (2.9) in Equation (2.6).
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Main structural result: Non-convex surrogate via smooth
approximation

In this subsection, we prove the structural result that is required for the correctness
of our efficient gradient-descent algorithm in the following section. We consider
the non-convex surrogate loss

Ls(w) = E
(x,y)⇠D


Ss

✓
�y

w · x
kwk2

◆�
, (2.10)

where Ss(t) = 1
1+e�t/s is the logistic function with growth rate 1/s. That is, we

have replaced the step function by the sigmoid. As s ! 0, Ss(t) approaches the
step function. Formally, we prove the following:

Lemma 2.6 (Stationary points of Ls suffice). Let Dx be a (U, R)-bounded distribution
on Rd, and h < 1/2 be an upper bound on the Massart noise rate. Fix any q 2 (0, p/2).
Let w⇤ 2 Sd�1 be the normal vector to the optimal halfspace and bw 2 Sd�1 be such
that q( bw, w⇤) 2 (q, p � q). For s  R

8U
p

1� 2h sin q, we have that krwLs( bw)k2 �
1

32U R2(1� 2h).

The proof of Lemma 2.6 is conceptually similar to the proof of Lemma 2.5 for
the ramp function given in the previous subsection. The main difference is that,
in the smoothed setting, it is harder to bound the contribution of each region of
Figure 2.2 and the calculations end-up being more technical.

Proof of Lemma 2.6. Without loss of generality, we will assume that bw = e2 and
w⇤ = � sin q · e1 + cos q · e2. Using the same argument as in the proof of Section 2.3,
we let V = span(w⇤, w) and have

���� E
(x,y)⇠DV

[rwLs( bw)]

����
2
=

���� E
x⇠(Dx)V

[�S0s(|x2|)(1� 2h(x))sign(w⇤ · x)x1]

���� .

(2.11)
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e1

e2

w⇤ w

q

R
R

Figure 2.4: The “good" (blue) and “bad" (red) regions.

We partition R2 in two regions according to the sign of the gradient. Let

G = {(x1, x2) 2 R2 : x1sign(w⇤ · x) > 0} ,

and let Gc be its complement. Using the triangle inequality and Equation (2.11),
we obtain
���� E
(x,y)⇠DV

[rwLs( bw)]

����
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#
,

(2.12)

where we used the upper bound on the Massart noise rate h(x)  h and the fact
that the sigmoid Ss(|t|)2 is bounded from above by 1 and bounded from below by
1/4.

We can now bound each term separately using the fact that the distribution
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is (U, R)-bounded. Assume first that q(w⇤, bw) = q 2 (0, p/2). Then we can
express the region in polar coordinates as G = {(r, f) : f 2 (0, q) [ (p/2, p + q) [
(3p/2, 2p)}. See Figure 2.4 for an illustration.

We denote by g(x, y) the density of the 2-dimensional projection on V of the
marginal distribution Dx. Since the integral is non-negative, we can bound from
below the contribution of region G on the gradient by integrating over f 2 (p/2, p).
Specifically, we have:
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, (2.13)

where for the second inequality we used the lower bound 1/U on the density
function g(x, y) (see Definition 2.2) and for the last inequality we used that s  R

8 .
We next bound from above the contribution of the gradient in region Gc. Note

that Gc = {(r, f) : f 2 Bq = (p/2� q, p/2) [ (3p/2� q, 3p/2)}. Hence, we can
write:
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32U
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where the inequality follows from the upper bound U on the density g(x, y) (see
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Definition 2.2) and the last inequality follows from our assumption that s 
R

8U
p

1� 2h sin(q). Combining (2.13) and (2.14), we have
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where the second inequality follows from cos2 q  1 and 1
32 

(1�e�8)
24 . Using (2.15)

in (2.12), we obtain
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(x,y)⇠DV
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To conclude the proof, notice that the case where q( bw, w⇤) 2 (p/2, p � q) follows
similarly. Finally, in the case where q = p/2, the region Gc is empty, and we
again get the same lower bound on the gradient. This completes the proof of
Lemma 2.6.

2.4 Main Algorihtmic Result: Proof of Theorem 2.3

In this section, we prove our main algorithmic result.
Our algorithm proceeds by Projected Stochastic Gradient Descent (PSGD), with

projection on the `2-unit sphere, to find an approximate stationary point of our
non-convex surrogate loss. Since Ls(w) is non-smooth for vectors w close to 0, at
each step, we project the update on the unit sphere to avoid the region where the
smoothness parameter is high.

Recall that a function f : Rd 7! R is called L-Lipschitz if there is a parameter
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L > 0 such that k f (x)� f (y)k2  L kx� yk2 for all x, y 2 Rd. We will make use of
the following folklore result on the convergence of projected SGD (for completeness,
we provide a proof in Appendix A.2).

Algorithm 1 PSGD for f (w) = Ez⇠D[g(z, w)]

1: procedure PSGD( f , T, b) . f (w) = Ez⇠D[g(z, w)]: loss, T: number of steps, b:
step size.

2: w(0)  e1
3: for i = 1, . . . , T do
4: Sample z(i) from D.
5: v(i)  w(i�1) � brwg(z(i), w(i�1))

6: w(i)  v(i)/
���v(i)

���
2

7: return (w(1), . . . , w(T)).

Lemma 2.7 (PSGD). Let f : Rd 7! R with f (w) = Ez⇠D[g(z, w)] for some function
g : Rd ⇥Rd 7! R. Assume that for any vector w, g(·, w) is positive homogeneous of
degree-0 on w. Let W = {w 2 Rd : kwk2 � 1} and assume that f , g are continuously
differentiable functions on W . Moreover, assume that | f (w)|  R, rw f (w) is L-
Lipschitz on W , Ez⇠D

h
krwg(z, w)k2

2

i
 B for all w 2 W . After T iterations the

output (w(1), . . . , w(T)) of Algorithm 1 satisfies

E
z(1),...,z(T)⇠D

"
1
T

T

Â
i=1

���rw f (w(i))
���

2

2

#

r

LBR
2T

.

If, additionally, kEz⇠D[rwg(z, w)]k2
2  C for all w 2 W , we have that with T =

(2LBR + 8C2 log(1/d))/e4 it holds mini=1,...,T

���rw f (w(i))
���

2
 e, with probability at

least 1� d.

We will require the following lemma establishing the smoothness properties of
our loss (based on Ss). See Appendix A.2 for the proof.
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Lemma 2.8 (Sigmoid Smoothness). Let Ss(t) = 1/(1 + e�t/s) and

Ls(w) = E
(x,y)⇠D


Ss

✓
�y

w · x
kwk2

◆�
,

for w 2 W , where W = {w 2 Rd : kwk2 � 1}. We have that Ls(w) is con-
tinuously differentiable in W , |Ls(w)|  1, E(x,y)⇠D[krwSs(w, x, y)k2

2]  4d/s2,
krwLs(w)k2

2  4/s2, and rwLs(w) is (6/s + 12/s2)-Lipschitz.

Putting everything together gives Theorem 2.3.

Algorithm 2 Learning Halfspaces with Massart Noise

1: procedure ALG(e, U, R, t(·))
2: C1  Q(U12/R12).
3: C2  Q(R/U2).
4: T  C1 d t(e/2)8/(e4(1� 2h)10) log(1/d). . number of steps
5: b C2

2 d(1� 2h)3e2/(t(e/2)4T1/2). . step size
6: s C2

p
1� 2h e/t2(e/2).

7: (w(0), w(1), . . . , w(T)) PSGD( f , T, b). .

f (w) = E(x,y)⇠D

h
Ss

⇣
� y w·x

kwk2

⌘i
, (1)

8: L {±w(i)}i2[T]. . L: List of candidate vectors
9: Draw N = O(log(T/d)/(e2(1� 2h)2)) samples from D.

10: w̄ argminw2L ÂN
j=1 1{sign(w · x(j)) 6= y(j)}.

11: return w̄.

Proof of Theorem 2.3. By Claim 2.1, to guarantee errDx
0�1(hw̄, f )  e it suffices to

show that the angle q(w̄, w⇤)  O(e(1 � 2h)/(Ut2(e/2))) =: q0. Using (the
contrapositive of) Lemma 2.6, we get that with s = Q((R/U)

p
1� 2hq0), if

the norm squared of the gradient of some vector w 2 Sd�1 is smaller than
r = O((R2/U)(1� 2h)), then w is close to either w⇤ or �w⇤ – that is, q(w, w⇤) 
q0 – or q(w,�w⇤)  q0. Therefore, it suffices to find a point w with gradient
krwLs(w)k2  r.

From Lemma 2.8, we have that our PSGD objective function is bounded above
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by 1,

E

"����rwSs
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� y

w · x
kwk2

⌘����
2

2

#
 O(d/s2) ,

���E
h
rwSs

⇣
� y w·x

kwk2

⌘i���
2

2
 O(1/s2), and that the gradient is Lipschitz with Lips-

chitz constant O(1/s2). Using these bounds for the parameters of Lemma 2.7, we
get that with T = O( d

s4r4 log(1/d)) steps, the norm of the gradient of some vector

in the list (w(0), . . . , w(T)) will be at most r with probability 1� d. Therefore, the
required number of iterations is

T = O
✓

d
U12

R12
t8(e/2) log(1/d)

e4(1� 2h)10

◆
.

We know that one of the hypotheses in the list L (line 8 of Algorithm 2) is e-close
to the true w⇤. We can evaluate all of them on a small number of samples from
the distribution D to obtain the best among them. From Hoeffding’s inequality,
it follows that N = O(log(T/d)/(e2(1 � 2h)2)) samples are sufficient to guar-
antee that the excess error of the chosen hypothesis is at most e(1� 2h). Using
Fact A.2, for any hypotheses h, and the target concept f , it holds errDx

0�1(h, f ) 
1

(1�2h) (errD
0�1(h)� opt), and therefore the chosen hypothesis achieves error at most

2e. This completes the proof of Theorem 2.3.

2.5 Strong Massart Noise Model

We start by defining the strong Massart noise model, which was considered
in Zhang et al. (2017b) for the special case of the uniform distribution on the
sphere. The main difference with the standard Massart noise model is that, in the
strong model, the noise rate is allowed to approach arbitrarily close to 1/2 for
points that lie very close to the separating hyperplane.

Definition 2.9 (Distribution-specific PAC Learning with Strong Massart Noise). Let
C be the concept class of halfspaces over X = Rd, F be a known family of structured
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distributions on X, 0 < c  1 and 0 < e < 1. Let f (x) = sign(w⇤ · x) be an
unknown target function in C. A noisy example oracle, EXSMas( f ,F , h), works as
follows: Each time EXSMas( f ,F , h) is invoked, it returns a labeled example (x, y), such
that: (a) x ⇠ Dx, where Dx is a fixed distribution in F , and (b) y = f (x) with probability
1� h(x) and y = � f (x) with probability h(x), for an unknown parameter h(x) 
max{1/2� c|w⇤ · x|, 0}. Let D denote the joint distribution on (x, y) generated by the
above oracle. A learning algorithm is given i.i.d. samples from D and its goal is to output a
hypothesis h such that with high probability the misclassification error of h is e-close to the
misclassfication error of f , i.e., it holds errD

0�1(h)  errD
0�1( f ) + e.

The main result of this section is the following theorem:

Theorem 2.10 (Learning Halfspaces with Strong Massart Noise). Let D be a dis-
tribution on Rd ⇥ {±1} such that the marginal Dx on Rd is (U, R, t())-bounded. Let
0 < c < 1 be the parameter of the strong Massart noise model. Algorithm 3 has the
following performance guarantee: It draws m = O

�
(U12/R18)(t8(e/2)/c6)

�
O(d/e4)

labeled examples from D, uses O(m) gradient evaluations, and outputs a hypothesis vector
w̄ that satisfies errD

0�1(hw̄)  errD
0�1( f ) + e with probability at least 1� d.

The proof of Theorem 2.10 follows along the same lines as in the previous
sections. We show that any stationary point of our non-convex surrogate suffices
and then use projected SGD.

The main structural result of this section generalizes Lemma 2.6:

Lemma 2.11 (Stationary points of Ls suffice with strong Massart noise). Let Dx

be a (U, R)-bounded distribution on Rd, and let c 2 (0, 1) be the parameter of strong
Massart noise model. Let q 2 (0, p/2). Let w⇤ 2 Sd�1 be the normal vector to an optimal
halfspace and bw 2 Sd�1 be such that q( bw, w⇤) 2 (q, p � q). For s  R

24U
p

cR sin(q),
we have krwLs( bw)k2 � 1

288U c R3.

Proof. Without loss of generality, we can assume that bw = e2 and w⇤ = � sin q ·
e1 + cos q · e2. Using the same argument as in the Section 2.3, for V = span(w⇤, w),
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we have
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[�S0s(|x2|)(1� 2h(x))sign(w⇤ · x)x1]

���� (2.16)

We partition R2 in two regions according to the sign of the gradient. Let
G = {(x1, x2) 2 R2 : x1sign(w⇤ · x) > 0}, and let Gc be its complement. Using the
triangle inequality and Equation (2.16) we obtain
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[rwLs( bw)]

����
2

� E
x⇠Dx

[S0s(|x2|)(1� 2h(x))|x1|1G(x)]� E
x⇠Dx

[S0s(|x2|)(1� 2h(x))|x1|1Gc(x)]

� 1
4

E
x⇠Dx

"
(1� 2h(x))

e�|x2|/s

s
|x1| 1G(x)

#
� E

x⇠Dx

"
e�|x2|/s

s
|x1| 1Gc(x)

#
,

(2.17)

where we used the fact that the sigmoid Ss(|t|)2 is upper bounded by 1 and lower
bounded by 1/4.

We can now bound each term using the fact that the distribution is (U, R)-
bounded. Assume first that q(w⇤, w) = q 2 (0, p/2). Then, (see Figure 2.2) we
can express region G in polar coordinates as G = {(r, f) : f 2 (0, q) [ (p/2, p +

q) [ (3p/2, 2p)}. We denote by g(x, y) the density of the 2-dimensional projection
on V of the marginal distribution Dx. Since the integrand is non-negative we may
bound from below the contribution of region G on the gradient by integrating over
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f 2 (p/2, p).
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, (2.20)

where for the third inequality we used that for kxk2 � R/2, we have that w⇤ · x =
R
2 (cos(q) + sin(q)) � R/6, for the fourth inequality we used the lower bound
1/U on the density function g(r cos f, r sin f) (see Definition 2.2), and for the last
inequality we used that s  R/8.

We next bound from above the contribution of the gradient of region Gc. We
have Gc = {(r, f) : f 2 Bq = (p/2� q, p/2) [ (3p/2� q, 3p/2)}
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sin2 q
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2R3c cos2 q

242U
, (2.21)

where the inequality follows from the upper bound U on the density g(r cos f, r sin f)

(see Definition 2.2), and the last equality follows from the value of s. Combining



62

(2.20) and (2.21), we have
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where the second inequality follows from the identity cos2 q  1 and 2
242 

1
8

7(1�e�8)
144 . Using (2.22) in (2.17), we obtain
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To conclude the proof, notice that the case where q(w, w⇤) 2 (p/2, p � q)

follows by an analogous argument. Finally, in the case where q = p/2, the region
Gc is empty and we can again get the same lower bound on the gradient norm.
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Algorithm 3 Learning Halfspaces with Strong Massart Noise

1: procedure ALG(e, U, R, t(·))
2: C1  Q(U12/R18).
3: C2  Q(R3/2/U2).
4: T  C1 d t(e/2)8/(e4c6) log(1/d). . number of steps
5: b C2

2 d c3e2/(t(e/2)4T1/2).
6: s C2 c1/2 e/t2(e/2).
7: (w(0), w(1), . . . , w(T)) PSGD( f , T, b). .

f (w) = E(x,y)⇠D

h
Ss

⇣
� y w·x

kwk2

⌘i
, (1)

8: L {±w(i)}i2[T]. . L: List of candinate vectors
9: Draw N = O(log(T/d)/e2) samples from D.

10: w̄ argminw2L ÂN
j=1 1{sign(w · x(j)) 6= y(j)}.

11: return w̄.

Proof of Theorem 2.10. From Claim 2.1, we have that to make the errDx
0�1(hw̄, f )  e

it suffices to prove that the angle q(w̄, w⇤)  O(e/(Ut2(e/2))) =: q. Using (the
contrapositive of) Lemma 2.11 we get that with s  Q(R/U

p
cRq), if the norm

squared of the gradient of some vector w 2 Sd�1 is smaller than r = O(R3c/U),
then w is close to either w⇤ or �w⇤, that is q(w, w⇤)  q or q(w,�w⇤)  q.
Therefore, it suffices to find a point w with gradient krwLs(w)k2  r .

From Lemma 2.8, we have that our PSGD objective function Ls(w), is bounded
by 1,

E

"����rwSs

⇣
� y

w · x
kwk2

⌘����
2

2

#
 O(d/s2) ,

���E
h
rwSs

⇣
� y w·x

kwk2

⌘i���
2

2
 O(1/s2), and that the gradient of Ls(w) is Lips-

chitz with Lipschitz constant O(1/s2). Using these bounds for the parameters
of Lemma 2.7, we get that with T = O( d

s4r4 log(1/d)) rounds, the norm of the

gradient of some vector of the list (w(0), . . . , w(T)) will be at most r with 1� d
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probability. Therefore, the required number of rounds is

T = O
✓

U12

R18
dt8(e/2) log(1/d)

e4c6

◆
.

Now that we know that one of the hypotheses in the list L (line 8 of Algorithm 3)
is e-close to the true w⇤, we can evaluate all of them on a small number of
samples from the distribution D to obtain the best among them. The fact that
N = O(log(T/d)/(e2)) samples are sufficient to guarantee that the excess error
of the chosen hypothesis is at most e with probability 1� d follows directly from
Hoeffding’s inequality. This completes the proof.
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3 LEARNING WITH TSYBAKOV NOISE IN

QUASI-POLYNOMIAL TIME

3.1 Formal Statement of Results

Preliminaries

For a square matrix M, we say that M is positive semi-definite if only if all the
eigenvalues of M are non-negative. For m 2 Z+, we denote Sm the set of symmet-
ric matrices of dimension m. For an m-dimensional square matrix A, let tr(A) be
its trace.

Let S = (s1, s2, . . . , sd) be a d-dimensional multi-index vector, where for all
i 2 [d], si is non-negative integer. We denote |S| = Âd

i=1 si and for a d-dimensional
vector w = (w1, w2, . . . , wd), we denote wS = ’d

i=1 wsi
i . For a degree-k multi-

variate polynomial p(x) = ÂS:|S|k CSxS, let kpk2 :�
q

ÂS:|S|k C2
S and kpk1 :�

ÂS:|S|k |CS|. As we discussed in (Section 1.2), obtaining computationally efficient
learning algorithms in the presence of Tsybakov noise in any non-trivial setting —
that is, for any natural concept class and under any distributional assumptions —
has been a long-standing open problem in learning theory. In this work, we make
the first progress on this problem. Specifically, we give a learning algorithm for
halfspaces that succeeds under a class of well-behaved distributions (including
log-concave distributions) and runs in time quasi-polynomial in 1/e. We start by
describing the distribution family for which our algorithm succeeds. We remark
that the following definition is a special case of the more general definition of
bounded distributions Definition 2.2 (the difference is that now the tail must be
sub-exponential).

Definition 3.1 (Sub-Exponential Bounded Distributions). For any set of parameters
L, R, B, b > 0, an isotropic (i.e., zero mean and identity covariance) distribution Dx on
Rd is called (L, R, B, b)-bounded if for any projection (Dx)V of Dx on a 2-dimensional
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subspace V, the corresponding pdf gV on R2 satisfies the following properties:

1. We have that gV(x) � L, for all x 2 V such that kxk2  R (anti-anti-concentration).

2. For any t > 0, we have that Prx⇠gV [kxk2 � t]  B exp(�bt) (concentration).

Moreover, if there exists U > 0 such that for all x 2 V we have that gV(x)  U
(anti-concentration), then the distribution Dx is called (L, R, U, B, b)-bounded.

Definition 3.1 specifies the concentration and (anti-)anti-concentration proper-
ties on the underlying data distribution that are needed to prove the correctness of
our algorithm. We note that the sample complexity and runtime of our algorithm
depends on the values of these parameters.

For concreteness, we state a simplified version of our main result for the case
that L, R, U, B, b are positive universal constants. We call such distributions well-
behaved. We note that the class of well-behaved distributions is quite broad. In
particular, it is easy to show (Fact 3.14) that every isotropic log-concave distribution
is well-behaved. Moreover, the concentration and anti-concentration conditions of
Definition 3.1 do not require a specific nonparametric constraint for the underlying
density function, and are satisfied by many reasonable continuous distributions.

We show:

Theorem 3.2 (Learning Halfspaces with Tsybakov Noise). Let C be the class of
homogeneous halfspaces and F be a family of well-behaved distributions on Rd. There is
an algorithm with the following behavior: On input the error parameter e > 0 and oracle
access to a Tsybakov example oracle EXTsyb( f ,F ) with parameters (a, A), where f 2 C is
the target concept, the algorithm draws N = dO((1/a2) log2(1/e)) labeled examples, runs in
poly(N, d) time, and computes a hypothesis h 2 C that with high probability is e-close to
f .

See Theorem 3.13 for a more detailed statement that takes into account the
dependence on the parameters L, R, U, B, b.
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3.2 Overview of Techniques

In this subsection, we give an intuitive description of our techniques that lead to
Theorem 3.2 in tandem with a brief comparison to prior techniques and why they
fail in our context.

It is instructive to begin by explaining where algorithms for the related problem
of learning with Massart noise fall apart. The Massart noise model corresponds
to the special case of Tsybakov noise where the label of each example x is inde-
pendently flipped with probability h(x)  h, where h < 1/2 is a parameter of the
model. A line of work has developed efficient algorithms for learning halfspaces in
this model, with the recent works Zhang et al. (2020a); Diakonikolas et al. (2020c)
being the state-of-the-art. (See Section 3.5 for more details.)

We start by briefly describing the underlying idea behind several previous
algorithms for learning halfspaces with Massart noise Zhang et al. (2020a); Di-
akonikolas et al. (2020c). These algorithms are typically iterative: In each iteration t,
we have a current guess w for the normal vector w⇤ to the true halfspace, and our
goal is to perform a local step to improve our guess (in expectation). To perform
these updates, the algorithms aim to boost the contribution of the disagreement
region A between the halfspaces corresponding to w and w⇤. This is achieved by
considering points only around a small band around w, i.e., all x with |w · x| < T.
This idea suffices to obtain efficient algorithms for the Massart noise model under
well-behaved (e.g., log-concave) distributions as the total contribution of those
points is amplified.

For the case of Tsybakov noise however, the situation is much more challenging.
Even though the probability mass of the points in region A increases by restricting
to a band around the current guess, it does not guarantee that the angle between w
and w⇤ improves. This is because in the Tsybakov noise model, it is possible that
all points in region A have flipping probabilities h(x) ⇡ 1/2, which grow closer to
1/2 the more the band shrinks. Thus, even though the conditional probability of
region A increases with smaller band size T, the signal that these points provide
to improve the angle may not be strong enough to overcome the effect that the



68

remaining points have.
Our main idea to overcome this obstacle is to increase the contribution of

points in region A by appropriately reweighting them (see Figure 3.1). A key
observation that drives our algorithm (see Fact 3.3) is to find a weighting scheme
that certifies whether a given guess w is (near-)optimal. In more detail, if there exists
a non-negative weighting function F(x) such that E(x,y)⇠D[F(x)y sign(w · x)] <
0, then the weight vector w is not optimal. Conversely, if w is not optimal, a
weighting function F that makes the above expectation negative always exists (take
for example the indicator of the disagreement region between w and w⇤).

Our first technical contribution is making the aforementioned certificate algo-
rithmic. In more detail, we show that in order to certify that a guess w is e-far
from optimal, it suffices to consider weighting functions of a particular form, equal
to the square of a multivariate polynomial restricted on a band close to w. In
particular, we show (Theorem 3.4) that it suffices to consider polynomials of degree
at most k = O(log2(1/e)/a2). We provide an explicit construction of such a multi-
variate polynomial with bounded coefficients, making critical use of Chebyshev
polynomials.

Given this structural result, we can efficiently check the validity of a particular
guess by searching all functions of the aforementioned form. Drawing sufficiently
many samples so that all functions in the class converge uniformly, we can iden-
tify a good weighting (if one exists) by solving a semidefinite program to check
the required condition over all squares of polynomials of degree-k. The sample
complexity required to find our certificate is dO(k) and can be achieved in sample-
polynomial time (Lemma 3.11).

We note that while our algorithm searches over multivariate polynomials that
certify the error of our estimate, our approach differs significantly from other
approaches for learning halfspaces by approximating them by polynomial thresh-
old functions, like the L1-regression algorithm of Kalai et al. (2008). Our use of
polynomials is done in order to certify whether a candidate halfspace is sufficiently
accurate, instead of searching a larger class of hypotheses. Remaining within the
class of halfspaces allows us to use geometric properties of the underlying data
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distributions and the setting we consider, like the relationship of the misclassifica-
tion error and the angle between the guess and the optimal halfspace. Additionally,
while the L1-regression can be written as a linear program, our approach requires
searching over squares of polynomials and inherently relies on solving SDPs for
obtaining a certificate.

Finally, turning the above algorithm for obtaining certificates into a learning
algorithm is not immediate. To achieve this, we rely on online convex optimization
with a similar approach to the one used in Zhang et al. (2020a). In contrast to an
offline method like stochastic gradient descent, online convex optimization allows
us to change the distribution of examples with which we penalize the guess, and
the distribution is allowed to depend on the current guess. For every guess w, we
compute a loss function according to the reweighted distribution of points given
by our certificate. We set up the objective so that any guess that is not close to
optimal incurs a large loss, while the optimal guess always incurs a very small loss.
By the guarantees of online convex optimization, after few iterations, the average
loss of our guesses must be very close to the optimal loss. This means that one
of the guesses must be near-optimal (see Lemma 3.18). This property will cause
the certificate algorithm to accept this guess as close to optimal. A complication
that arises in designing the loss function is that guessing 0 must give a large loss
compared to the optimal, which we ensure by making the loss sufficiently negative
at the optimal linear classifier.

3.3 Certifying Optimality in Quasi-Polynomial Time

We now describe our quasi-polynomial algorithm to test whether a given candidate
hypothesis w is close to the optimal hypothesis w⇤. Our approach is based on the
following observation.

Fact 3.3 (Certifying Function). Let D be a distribution on Rd ⇥ {±1} such that: (a) For
any pair of distinct unit vectors v, u 2 Rd, we have that Prx⇠Dx [hv(x) 6= hu(x)] > 0.
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2T w⇤ w

w?
q

Figure 3.1: The disagreement region A (“blue”) of the halfspaces w and w⇤. Our
reweighting boosts points in region A: lower opacity means lower weight.

(b) D satisfies the Tsybakov noise condition with optimal classifier f (x) = sign(hw⇤, xi).
Then we have:

1. For any T : Rd 7! R+, we have that E(x,y)⇠D[T(x) yw⇤ · x] � 0.

2. For any non-zero vector w 2 Rd such that q(w, w⇤) > 0, there exists a function
T : Rd 7! R+ satisfying E(x,y)⇠D[T(x) yw · x] < 0.

Proof. For the first statement, note that

E
(x,y)⇠D

[T(x) yw⇤ · x] = E
x⇠Dx

[T(x)|w⇤ · x|(1� h(x))]� E
x⇠Dx

[T(x)|w⇤ · x| h(x)]

= E
x⇠Dx

[T(x)|w⇤ · x| (1� 2h(x))] � 0 ,

where we used the fact that h(x)  1/2 and T(x) � 0.
For the second statement, let w 6= 0 and q(w, w⇤) > 0. By picking as a certifying

function T the indicator function of the disagreement region between f and hw,
i.e., T(x) :� 1{hw(x) 6= f (x)}, we have that

E
(x,y)⇠D

[T(x) yw · x] = � E
x⇠Dx

[T(x)|w · x| (1� 2h(x))] .
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We claim that Ex⇠Dx [T(x)|w · x| (1� 2h(x))] > 0, which proves the second state-
ment. To see this, we use our assumption that the symmetric difference between
any pair of distinct homogeneous halfspaces has positive probability mass. First,
we note that from the Tsybakov condition (for any choice of parameters) we have
that Prx⇠Dx [h(x) = 1/2] = 0. So, it suffices to show that Ex⇠Dx [T(x)|w · x|] > 0.

Let w0 be a non-zero vector such that the hyperplane {x : hw0, xi = 0} is con-
tained in the disagreement region {x : hw(x) 6= f (x)} and q(w, w0), q(w⇤, w0) > 0.
This implies that {x : hw(x) 6= f (x)} � {x : hw0(x) 6= f (x)} and Prx⇠Dx [hw0(x) 6=
f (x)] > 0. Note that |hw, xi| > 0 for all x with hw0(x) 6= f (x). Therefore, we get
that

E
x⇠Dx

[T(x)|w · x|] � E
x⇠Dx

[1{hw0(x) 6= f (x)}|w · x|] > 0 .

This completes the proof of Fact 3.3.

From Fact 3.3, we see that, given a hypothesis vector w that is not optimal, there
exists a non-negative function that will make the expression of Item 2 of Fact 3.3
negative. One such function is F(x) = 1{sign(w · x) 6= sign(w⇤ · x)}, in which
case we have E(x,y)⇠D[F(x)w · xy] = �Ex⇠Dx [|w · x|(1� 2h(x))] < 0. Since we
cannot efficiently search over the space of all non-negative functions, we need to
restrict our search space of certifying functions to some parametric class, ideally
with a small number of parameters. In Section 3.3, we show that considering
squares of low-degree polynomials suffices. In Section 3.3, we show that we can
efficiently search in the space of (squares of) low-degree polynomials and find a
certifying one.

Existence of a Low-Degree Polynomial Certificate

We start by showing that given a candidate hypothesis w that is “far" from being
optimal, that is the angle q(w, w⇤) is bounded away from zero, we can construct a
low complexity certificate F that will satisfy E(x,y)⇠D[F(x)w · xy] < 0. In particular,
we construct a certificate that is the product of a square of a low degree non-
negative polynomial and an indicator function that depends on the hypothesis w.
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This result is formally stated in the lemma bellow, which is the main result of this
subsection.

Theorem 3.4 (Low-Degree Polynomial Certificate). Let D be a distribution on Rd ⇥
{±1} that satisfies the Tsybakov noise condition with parameters (a, A) and the marginal
Dx on Rd is (L, R, B, b)-bounded. Fix any q 2 (0, p/2]. Let w⇤ 2 Sd�1 be the normal
vector to the optimal halfspace and bw 2 Sd�1 be such that q( bw, w⇤) � q. There exists
polynomial p : Rd 7! R of degree

k = O
✓

1
a2Rb

log2
✓

BA
LRq

◆◆

satisfying kpk2
2  dO(k) such that

E
(x,y)⇠D

h
p(x)2 1{0  w · x  qR/4} yw · x

i
 �qR

4
.

We are going to use the following simple fact about Tsybakov noise that shows
that large probability regions will also have large integral even if we weight the
integral with the noise function 1� 2h(x) > 0. Notice that larger noise h(x) makes
1� 2h(x) closer to 0, and therefore tends to reduce the probability mass of the
regions where h(x) is large. A similar lemma can be found in Tsybakov (2004).
Since the definition of h(x) is slightly different than ours, we provide the proof for
completeness in Appendix B.1.

Lemma 3.5. Let D be a distribution on Rd ⇥ {±1} that satisfies the Tsybakov noise
condition with parameters (a, A). Then for every measurable set S ✓ Rd it holds

Ex⇠Dx [1S(x)(1� 2h(x))] � CA
a (Ex⇠Dx [1S(x)])

1
a , where CA

a = a
⇣

1�a
A

⌘ 1�a
a .

Using the lemma above, we can bound from below and above the errD
0�1(h)

with the errDx
0�1(h, f ) between our current hypothesis h and the optimal f .

Corollary 3.6. Let D be a distribution on Rd ⇥ {±1} that satisfies the Tsybakov noise
condition with parameters (a, A) and f (x) be the optimal halfspace. Then for any halfspace
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h(x), it holds

Pr
(x,y)⇠D

[h(x) 6= y]  Pr
(x,y)⇠D

[ f (x) 6= y] + Pr
x⇠Dx

[h(x) 6= f (x)]

and

Pr
(x,y)⇠D

[h(x) 6= y] � Pr
(x,y)⇠D

[ f (x) 6= y] + CA
a Pr

x⇠Dx
[h(x) 6= f (x)]

1
a .

Proof. Let S = {x 2 Rd : f (x) 6= h(x)} then

Pr
(x,y)⇠D

[h(x) 6= y] = E
(x,y)⇠D

[1{h(x) 6= y}]

= E
x⇠Dx

[1{h(x) 6= f (x)}(1� h(x))] + E
x⇠Dx

[1{h(x) = f (x)}h(x)]

= E
x⇠Dx

[1{h(x) 6= f (x)}(1� 2h(x))] + E
x⇠Dx

[h(x)] .

The first inequality follows from the fact that 1� 2h(x)  1 and the second one
from Lemma 3.5.

Central role in our construction play the Chebyshev polynomials. In the next
fact, we collect the properties of Chebyshev polynomials that we are going to use
in our argument, and we prove some of them in Appendix B.1.

Fact 3.7 (Chebyshev Polynomials Mason and Handscomb (2002)). We denote by
Tk(t) the degree-k Chebyshev polynomial of the first kind. It holds

Tk(t) =

8
><

>:

cos(k arccos t) , |t|  1

1
2

✓⇣
t�
p

t2 � 1
⌘k

+
⇣

t +
p

t2 � 1
⌘k
◆

, |t| � 1 .

Moreover, it holds kTkk2
2  26k+log k+4.

Given a univariate polynomial p(t), the following simple lemma bounds the
blow-up of the square norm of the multivariate polynomial q(x) = p(w · x). We
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�W R/4

1

Figure 3.2: Plot of the polynomial (Tk(g(t)))2 used in the proof of Theorem 3.4.
Observe that this polynomial boosts the contribution of points in the blue region
of Figure 3.1: points in A2 have significantly boosted contribution because their
density is lower bounded by some constant and the polynomial takes very large
values in A2, see Fact 3.9. In A0, even though the polynomial has large value, the
exponential tails of the distribution cancel the contribution of these points (given
that W is sufficiently large).

also give a simple bound on the coefficient norm blow-up under shift of the
argument of a univariate polynomial.

Lemma 3.8. Let p(t) = Âk
i=0 citi be a degree-k univariate polynomial. Given w 2 Rd

with kwk2  1, define the multivariate polynomial q(x) = p(w · x) = ÂS:|S|k CSxS.
Then we have that ÂS:|S|k C2

S  d2k Âk
i=0 c2

i . Moreover, let r(t) = p(at+ b) = Âk
i=0 diti

for some a, b 2 R. Then krk2
2  (2 max(1, a)max(1, b))2k kpk2

2 .

The proof of this lemma is given in Appendix B.1. We can now proceed to the
proof of the main technical theorem.

Proof of Theorem 3.4. Let V be the 2-dimensional subspace spanned by w⇤ and w.
To simplify notation, let q be the angle between w⇤ and w. First, we assume
that q  p/2. Without loss of generality, assume w = e2 and w⇤ = �ae1 + be2,
where e1, e2 are the standard basis vectors of R2. For some parameter W > 0 to be
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specified later, we define the linear transformation

g(t) = 1 + 2
t� R/4

W + R/4
.

Set p(x) = Tk(g(x1)), where Tk is the degree-k Chebyshev polynomial of Fact 3.7,
and define the following partition of Rd

A0 = {x : x1 2 [�•,�W]}, A1 = {x : x1 2 [�W, R/4]},

A2 = {x : x1 2 [R/4,+•]} .

We first investigate the behavior of p(x) in each of these three regions.

Fact 3.9. For the polynomial p(x) defined above, the following properties hold in each
region:

1. For all x 2 A0, p(x)2  (2g(x1))2k.

2. For all x 2 A1, p(x)2  1.

3. For all x such that x1 � R/2, it holds that p(x)2 � 1
2

⇣
1 +

q
R

2W+R/2

⌘2k
.

Proof. By Fact 3.7, for the univariate Chebyshev polynomials of degree-k, we know
that for all t  �1 it holds

|Tk(t)| =
����
1
2
((t�

p
t2 � 1)k + (t +

p
t2 � 1)k)

����  (2t)k .

Observe that for all x 2 A0, we have g(x1)  �1, thus p(x)2  (2g(x1))2k. For all
x 2 A1, we have �1  g(x1)  1, which leads to p(x)2  1.

Finally, from the definition of the Chebyshev polynomial Tk (Fact 3.7), we have
that for all t � 0 it holds

Tk(1 + t) � 1
2
(1 + t +

p
t2 + 2t)k � 1

2
(1 +

p
t)k.



76

Moreover, all the roots of Tk(t) lie in the interval [�1, 1] and hence, for t � 0, the
polynomial (Tk(1 + t))2 is increasing in t. Therefore, for any x with x1 � R/2 it
holds that

p(x)2 = Tk(g(x1)) � Tk(g(R/2)) � 1
2

 
1 +

r
R

2W + R/2

!2k

.

We bound the expectation E(x,y)⇠D[p(x)2w · xy sign(w · x)1{0  w · x  qR
4 }]

in each of the three regions separately. We start from A0, where we have

I0 = E
(x,y)⇠D

[p(x)2w · x y 1{w · x 2 [0, qR/4]} 1A0(x)]

= E
(x,y)⇠D

[Tk(g(x1))
2 x2y 1{x2 2 [0, qR/4]} 1{x1  �W}]

 qR
4

E
(x1,x2)⇠DV

[(2g(x1))
2k1{x1  �W}] ,

where to get the last inequality we used that x21[x2 2 [0, qR/4]  qR/4 and
Item 1 of Fact 3.9. Using the fact that for any real random variable X it holds
E[|X|m] =

R •
0 mtm�1 Pr[|X| � t]dt and the exponential concentration of DV (see

Definition 3.1), we obtain

E
(x1,x2)⇠DV

[g(x1)
2k1{x1  �W}]

=
Z •

0
2kt2k�1 Pr

(x1,x2)⇠DV
[|g(x1)1{x1  �W}|  t]dt

=
Z 1

0
2kt2k�1e�bWdt +

Z •

1
2kt2k�1e�b t+1

2 (W+ R
4 )+b R

4 dt .

We observe that for all t > 1, R > 0, W > 0 it holds

t + 1
2

✓
W +

R
4

◆
� R

4
� tW

2
.
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Therefore,
Z •

1
2kt2k�1e�b t+1

2 (W+ R
4 )+b R

4 dt 
Z •

1
2kt2k�1e�tbW/2dt


Z •

0
2kt2k�1e�tbW/2dt 

✓
Wb

2

◆�2k
(2k)! .

Combining the above inequalities we obtain

I0 
qRB22k

4

✓Z 1

0
2kt2k�1e�bWdt +

Z •

1
2kt2k�1e�b t+1

2 (W+ R
4 )+b R

4 dt
◆

=
qRB22k

4

⇣
e�bW + (Wb/2)�2k(2k)!

⌘
.

We now set W = 8k/b and get

I0 
qRB

4
(22ke�8k + (2k)�2k(2k)!)  qRB

4
(e�6k + e�2k+1

p
2k)  qRB

4
,

where we used Stirling’s approximation, i.e., (2k)!  e
p

2ke�2k(2k)2k, and the fact
that e�6k + e�2k+1

p
2k  1, for all k � 1.

Bounding the contribution of region A1 is quite simple. Using from Fact 3.9,
that p(x)2  1 for all x 2 A1, we obtain

I1 = E
(x,y)⇠D

[p(x)2w · x y 1{w · x 2 [0, qR/4]} 1A1(x)]  qR
4

.

We finally bound the contribution of region A2. We have

I2 = E
(x,y)⇠D

[p(x)2w · x y 1{w · x 2 [0, qR/4]} 1A2(x)]

= � E
x⇠Dx

[p(x)2w · x (1� 2h(x)) 1{w · x 2 [0, qR/4]} 1A2(x)]

 � E
x⇠Dx

[p(x)2w · x (1� 2h(x)) 1{w · x 2 [qR/8, qR/4]} 1{x1 � R/2}]

 �qR
8

Tk(g(R/2))2 E
x⇠Dx

[ (1� 2h(x)) 1{w · x 2 [qR/8, qR/4]} 1{x1 � R/2}] ,
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where we used Item 3 of Fact 3.9. Using Lemma 3.5, we obtain that

E
x⇠Dx

[ (1� 2h(x)) 1{w · x 2 [qR/8, qR/4]} 1{x1 � R/2}] � CA
a (LqR/16)1/a .

From Item 3 of Fact 3.9, we obtain

I2  �CA
a Tk(g(R/2))2 qR

8

✓
L

qR2

16

◆1/a

 �qR
4
(B + 2)

CA
a

2(B + 2)

 
1 +

r
R

2W + R/2

!2k ✓
L

qR2

16

◆ 1
a

.

Using the inequality 1 + t � et/2 for all t  2, we obtain that in order to prove that
I0 + I1 + I2  �qR/4, it suffices to pick the degree k so that

CA
a

2(B + 2)
e
q

Rk2
2W+R/2

✓
L

qR2

16

◆ 1
a

� 1.

By our choice of W = 8k/b, it follows that setting the degree of the polynomial to

k = O
✓

1
a2Rb

log2
✓

BA
LRq

◆◆

suffices. To complete the proof, we need to provide an upper bound on the
magnitude of the coefficients of the polynomial p. From Fact 3.7, we have that
kTk(x)k2

2  26k+2 log k+4. Using Lemma 3.8, we obtain that kTk(g(x))k2
2  22k ·

26k+2 log k+4 = 28k+2 log k+4. Moreover, from the Lemma 3.8, we can derive an
upper bound on the square norm of the multivariate polynomial p, which is
kpk2

2  d2k28k+2 log k+4 = dO(k).
Moreover, for the case where p � q > p/2, we can prove with the same

argument that

E
(x,y)⇠D

h
p(x)2 1{0  w · x  pR/8} yw · x

i
 �pR

8
.
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This follows from the fact that the expectation over the partitions A0 and A1 are at
most their values for the case of q = p/2, and the expectation over A2 is the same.

Efficiently Computing the Certificate

In this section, we show that we can efficiently compute our polynomial certificate
given labeled examples from the target distribution. For the rest of this section,
let Q = dQ(k) and let 1B(x) be the indicator function of the region B = {x : 0 
w · x  qR/4}. Denote by m(x) the vector containing all monomials up to degree
k, such that mS(x) :� xS, indexed by the multi-index S satisfying |S|  k. The
dimension of m(x) 2 Rm is m = (d+k

k ). For a real matrix A 2 Rm⇥m, we define the
following function

Lw(A) = E
(x,y)⇠D

h
m(x)T A m(x)1B(x)w · xy

i
= tr (AM) , (3.1)

where M = E(x,y)⇠D
⇥
m(x)m(x)T1B(x)w · xy

⇤
. Notice that Lw is linear in its

variable A. From the discussion of the previous subsection, and in particular from
Theorem 3.4, we know that if q(w, w⇤) � q, then there exists a polynomial p(x)
and a vector b of coefficients such that p(x) = b · m(x) and Lw(bbT)  �qR/4.
It follows that there exists a positive semi-definite rank-1 matrix B = bbT such
that Lw(B)  �qR/4. Moreover, we have that

��p2(x)
��2

2  Q, which translates
to kBk2

F  Q. Therefore, we can formulate the following semi-definite program,
which is feasible when q(w, w⇤) � q.

tr(AM)  �qR/4

kAk2
F  Q (3.2)

A ⌫ 0

We define fM = 1
N ÂN

i=1 m(x(i))m(x(i))T1B(x(i))y(i)w · x(i), the empirical estimate
of M using N samples from D. We can now replace the matrix M in Equation (3.1)
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with the estimate fM and define the following “empirical" SDP

tr(AfM)  �3qR
16

kAk2
F  Q (3.3)

A ⌫ 0

In the following lemma, we bound the sample size required so that fM is
sufficiently close to M.

Lemma 3.10 (Estimation of M). Let W = {A 2 Sm : A ⌫ 0, kAkF  Q}. There
exists an algorithm that draws

N = O

 
BQ2

e2
(d + k)3k+2

(b/2)2k log(1/d)

!

samples from D, runs in poly(N, d) time and with probability at least 1� d outputs a
matrix fM such that

Pr

"
sup
A2W

���tr(AfM)� tr(AM)
��� � e

#
 1� d .

Proof. Recall that fM is the empirical estimate of M, that is M = E(x,y)⇠D[m(x)m(x)T1B(x)yw ·
x]

fM =
1
N

N

Â
i=1

m(x(i))m(x(i))T1B(x(i))y(i)w · x(i) . (3.4)

Using the Cauchy-Schwarz inequality, we get

tr
⇣

A(M � fM)
⌘
 kAkF

���M � fM
���

F
.

Therefore, it suffices to bound the probability that
���M � fM

���
F
� e/Q. From
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Markov’s inequality, we have

Pr
h���M � fM

���
F
� e/Q

i
 Q2

e2 E
���M � fM

���
2

F

�
. (3.5)

Using multi-indices S1, S2 that correspond to the monomials xS1 , xS2 (as indices of
the matrix M), we have

E
���M � fM

���
2

F

�
= Â

S1,S2:|S1|,|S2|k
(MS1,S2 � fMS1,S2)

2 = Â
S1,S2:|S1|,|S2|k

Var[fMS1,S2 ] .

Using the fact that the samples (x(i), y(i)) are independent, we can bound from
above the variance of each entry (S1, S2) of fM

Var[fMS1,S2 ] 
1
N

E
(x,y)⇠D

h
x2(S1+S2) (1B(x)w · xy)2

i

 1
N

E
x⇠Dx

h
x2(S1+S2) kxk2

2

i

 1
N

E
x⇠Dx

h
(kxk2

2)
|S1+S2|+1

i
.

To bound the higher-order moments, we are going to use the (two-dimensional)
exponential tails of Dx of Definition 3.1. For all t � t0, it holds

Pr[kxk2 � t] = Pr[kxk2
2 � t2] 

d

Â
i=1

Pr

|xi|2 �

t2

d

�
 Bde�bt/

p
d ,

where b, B are the parameters of Definition 3.1. For every ` � 1, we have

E
x⇠Dx

h
(kxk2

2)
`
i
=

Z •

t=0
2`t2`�1 Pr

x⇠Dx
[kxk2 � t]dt  Bd `+1b�2`(2`)! .

Using the above bound for the variance and summing over all pairs S1, S2 with
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|S1|, |S2|  k, we obtain

E
���M � fM

���
2

F

�
 1

N
Bd k+1b�2k(2k)! m2 =

1
N

Bd k+1b�2k(2k)!
✓

d + k
k

◆2

 1
N

B(b/2)�2k(d + k)3k+1 , (3.6)

where we used the inequality (2n)!/(n!)2  4n. Combining Equations (3.5) and
(3.6) we obtain that with N � BQ2(b/2)�2k(d + k)3k+1/(4e2) samples we can
estimate M within the target accuracy with probability at least 3/4. To amplify
the probability to 1� d, we can simply use the above empirical estimate ` times
to obtain estimates fM(1), . . . , fM(`) and keep the coordinate-wise median as our
final estimate. It follows that ` = O(log(m/d)) repetitions suffice to guarantee
confidence probability at least 1� d.

The following is the main lemma of this subsection, where we bound the
number of samples and the runtime needed to construct the certificate given
samples from the distribution D.

Lemma 3.11. Let D be a distribution on Rd ⇥ {±1} that satisfies the Tsybakov noise
condition with parameters (a, A) and the marginal Dx on Rd is (L, R, B, b)-bounded.
Let w⇤ 2 Sd�1 be the normal vector to the optimal halfspace and w 2 Sd�1. Fix any
q 2 (0, p/2] and assume that q(w⇤, w) � q. Let

k = O
✓

1
a2Rb

log2
✓

BA
LRq

◆◆
,

and Q = dQ(k). There exists an algorithm that draws N = dO(k) log(1/d) samples from
D, runs in time poly(N, d), and with probability 1� d returns a positive semi-definite
matrix A such that kAk2

F  Q and tr(AM)  �qR/16.

Proof. From Lemma 3.10, we obtain that with N samples we can get a matrix
fM such that |tr(AfM � tr(AM)|  qR/16 with probability at least 1� d. From
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Theorem 3.4, we know that with the given bound for k and kAkF, there exists A⇤

such that
tr(A⇤M)  �qR/4.

Therefore, the SDP (3.2) is feasible. Moreover, from Lemma 3.10 we get that

tr(A⇤fM)  �qR/4 + qR/16  �3qR
16

.

Thus, the following SDP is also feasible

tr(AfM)  �3qR
16

kAk2
F  Q (3.7)

A ⌫ 0

Since the dimension of the matrix A is smaller than the number of samples, we
have that the runtime of the SDP is polynomial in the number of samples. Solving
the SDP using tolerance qR/16, we obtain an almost feasible eA, in the sense that
tr( eAfM)  �3qR/16+ qR/16 = �qR/8. Using again the guarantee of Lemma 3.10,
we get that solving the SDP (3.7), we obtain a positive-semi definite matrix eA such
that tr( eAM)  �qR/8 + qR/16 = �qR/16.

3.4 Learning the Optimal Halfspace via Online
Gradient Descent

In this section, we give a quasi-polynomial time algorithm that can learn a unit
vector bw with small angle from the normal vector of the optimal halfspace w⇤. Our
main result of this section is the following theorem.

Theorem 3.12 (Parameter Estimation under (L, R, B, b)-bounded distributions).
Let D be a distribution on Rd ⇥ {±1} that satisfies the Tsybakov noise condition with
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parameters (a, A) and the marginal Dx on Rd is (L, R, B, b)-bounded. Moreover, let
w⇤ 2 Sd�1 be the normal vector to the optimal halfspace. There exists an algorithm that
draws N = dO(k) log (1/d) examples from D where k = O

⇣
1

a2Rb
log2

⇣
BA
eLR

⌘⌘
, runs

in poly(N, d) time, and computes a vector bw such that q( bw, w⇤)  e, with probability
1� d.

Note here that we do not need the U bounded assumption for Theorem 3.12.
This corresponds to an anti-concentration assumption. If we have this additional
property, we immediately get Theorem 3.13, which is the main result of this paper.
Specifically, with this additional structure on the distribution, one can translate the
small angle guarantee of Theorem 3.12 to the zero-one loss of the hypothesis that
our algorithm outputs.

Theorem 3.13 (PAC-Learning under (L, R, U, B, b)-bounded distributions). Let D
be a distribution on Rd⇥ {±1} that satisfies the Tsybakov noise condition with parameters
(a, A) and the marginal Dx on Rd is (L, R, U, B, b)-bounded. Moreover, let w⇤ 2 Sd�1

be the normal vector to the optimal halfspace. There exists an algorithm that draws
N = dO(k) log (1/d) examples from D where k = O

⇣
1

a2Rb
log2

⇣
B UA
eLRb

⌘⌘
, runs in

poly(N, d) time, and computes a vector bw such that errDx
0�1(h bw, f )  e, with probability

1� d, where f is the target halfspace.

A corollary of the above theorem is that we can PAC learn halfspaces when the
marginal distribution Dx is log-concave. The following known fact (see, e.g., Fact
A.4 of Diakonikolas et al. (2020c)) shows that the family of log-concave distributions
is indeed (L, R, U, B, b)-bounded for constant values of the parameters.

Fact 3.14. An isotropic log-concave distribution on Rd is (2�12, 1/9, e217, c, 1)-bounded,
where c is an absolute constant.

From Thereom 3.13 and Fact 3.14, we obtain the following corollary.

Corollary 3.15 (PAC-Learning under Isotropic Log-Concave Distributions). Let D
be a distribution on Rd⇥ {±1} that satisfies the Tsybakov noise condition with parameters
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(a, A) and the marginal Dx is an isotropic log-concave distribution. There exists an algo-
rithm that draws N = dO(k) log (1/d) examples from D where k = O

⇣
1
a2 log2 (A/e)

⌘
,

runs in poly(N, d) time, and computes a vector bw such that errDx
0�1(h bw, f )  e, with

probability 1� d, where f is the target halfspace.

We now provide a high-level sketch of the proof of Theorem 3.12 for constant
values of the parameters L, R, B, and b. For every candidate halfspace w, that has
angle greater than e with the optimal hypothesis vector w⇤, our main structural
result, Theorem 3.4, guarantees that there exists a polynomial p of degree k =

O((log(1/e)/a)2) such that

E
(x,y)⇠D

[p2(x)1B(x)w · xy]  �W(e) .

Moreover, from Lemma 3.10, we get that, given a candidate w, we can compute
a witnessing polynomial p in time dO(k). The next step is to use the certificate to
improve the candidate w. We are going to use Online Projected Gradient Decent
(OPGD) to do this.

Lemma 3.16 (see, e.g., Theorem 3.1 of Hazan (2016)). Let V ✓ Rn a non-empty
closed convex set with diameter K. Let `1, . . . , `T be a sequence of T convex functions
`t : V 7! R differentiable in open sets containing V , and let G = maxt2[T] krw`tk2.
Pick any w1 2 V and set ht = K

G
p

t
for t 2 [T]. Then, for all u 2 V , we have that

T

Â
t=1

(`t(wt)� `t(u)) 
3
2

GK
p

T .

In particular, let pt be the re-weighting function returned by Lemma 3.10 for
a candidate w(t). If w(t) = 0, we set pt to be the zero function. The objective
function that we give to the online gradient descent algorithm, in the t-th step, is an
estimator of `t(w(t)) = �E(x,y)⇠D[(pt(w) + l)w · xy], where l is a non-negative
parameter. Using `t, we perform a gradient update and project to get a new
candidate w(t+1). The OPGD guarantees that after roughly dQ(k) steps, there exists
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a t, where the value of function `t for our candidate is close to the value of the
optimal one. From Theorem 3.4, we know that this is possible only if the angle
between the candidate and the optimal is less than e. For each iteration t, Step 15
of Algorithm 4 uses the OPGD algorithm, and the remaining steps are used to
calculate the function `t.

Algorithm 4 Learning Halfspaces with Tsybakov Noise
1: procedure ALG(e, d) . e: accuracy, d: confidence
2: w(0)  e1

3: k Q
⇣

1
a2Rb

log2
⇣

BA
eLR

⌘⌘

4: T  dQ(k)

5: for t = 1, . . . , T do
6: ht  1

dQ(k)
p

t
7: If w(t�1) = 0 then
8: pt  0
9: Else

10: pt gets the output of SDP (3.3) with input w(t�1)/
���w(t�1)

���
2

.

Lemma 3.11
11: If SDP fails and w(t�1) 6= 0 then
12: return w(t�1)

13: Draw N = dQ(k) log (T/d) samples {(x(1), y(1)), . . . , (x(N), y(N))} from
D

14: Set ˆ̀t(w) according to Lemma 3.17
15: w(t)  PV

⇣
w(t�1) � htrw ˆ̀t

⇣
w(t�1)

⌘⌘
. V = {x 2 Rd : kxk2  1}

For the set V , i.e., the unit ball with respect the k·k2, the diameter K equals
to 2. We are going to show that in fact the optimal vector w⇤ and our current
candidate vector w(t) have indeed a separation in the value of `t. Because we do
not have access to `t to optimize, we need a function ˆ̀t, which is close to `t with
high probability. The following lemma, which is proven in Appendix B.1, gives us
an efficient way to compute an approximation ˆ̀t of `t.

Lemma 3.17 (Estimating the function `t). Let pt(x) be the non-negative function, given
from the SDP (3.3). Then taking dO(k) log(1/d) samples, where k = O

⇣
1

a2Rb
log2

⇣
BA
eLR

⌘⌘
,
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we can efficiently compute a function ˆ̀t(w) such that with probability at least 1� d, the
following conditions hold

• | ˆ̀t(w)� E(x,y)⇠D[(pt(x) + l)yw · x]|  e, for any l > 0 and w 2 V ,

•
���rw ˆ̀t

���
2
 dO(k) .

The last thing we need to proceed to our main proof is to show that when the
Algorithm 4 in Step 10 returns a function pt, then there exists a function `t for
which our current candidate vector w(t) and the optimal one w⇤ are not close.

Lemma 3.18 (Error of `t). Let w(t) be a vector in V and w⇤ be the optimal vector.
Let gt(x) = �(pt(x) + l) and `t(w) = E(x,y)⇠D[gt(x)yx · w], where pt(x) is a

non-negative function such that E(x,y)⇠D[pt(x)yw(t) · x]  �
���w(t)

���
2

qR
16 and l a non-

negative parameter. Then it holds

`t (w⇤)  �l
R
4

CA
a

✓
R2 L
16

◆1/a

and `t(w(t)) �
���w(t)

���
2

✓
Rq

16
� l

◆
.

Proof. Without loss of generality, let w⇤ = e1. From Fact 3.3 and the definition of
h(x), for every t 2 [T], it holds `t(w⇤)  �l Ex⇠Dx [|w⇤ · x|(1� 2h(x))]. To bound
from above the expectation, we use the (L, R, B, b)-bound properties. We have

E
x⇠Dx

[|w⇤ · x|(1� 2h(x))] � R
2
p

2

Z R/
p

2

R/2

Z R/
p

2

R/(2
p

2)
(1� 2h(x1, x2))g(x1, x2)dx1dx2

(3.8)

� R
4

CA
a

✓
R2 L
16

◆1/a

,

where in the last inequality we used Lemma 3.5. Thus, `t (w⇤)  �l R
4 CA

a

⇣
R2 L
16

⌘1/a
.
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From Lemma 3.4, we have that

`t(w(t)) = � E
(x,y)⇠D

h
(pt (x) + l)w(t) · xy

i
�
���w(t)

���
2

Rq

16
� E

x⇠Dx

h
lw(t) · xy

i

�
���w(t)

���
2

Rq

16
� l

r
E

x⇠Dx

⇥
w(t) · x2

⇤
�
���w(t)

���
2

✓
Rq

16
� l

◆
,

where we used the Cauchy-Schwarz inequality and the fact that x is in isotropic
position.

We are now ready to prove our main results.

Proof of Theorem 3.12. We start by setting all the parameters that we use in the

proof. Let k = Q
⇣

1
a2Rb

log2
⇣

BA
eLR

⌘⌘
and e0 = e R2

512CA
a

⇣
R2 L

16

⌘ 1
a . Assume, in order to

reach a contradiction, that for all steps t, q
⇣

w(t), w⇤
⌘
� e. Let pt(x) be the non-

negative function output by the algorithm in Step 10. Then, from Lemma 3.11, we
have that E(x,y)⇠D[pt(x)yw(t) · x]  �

���w(t)
���

2
e R

16 . Let ˆ̀t(w) be as in Lemma 3.17.

Then `t (w) = E[ ˆ̀t(w)] = �E(x,y)⇠D[(pt(x) + l) yx · w]. Now using Lemma 3.17,

for N = dO(k)

e02
log

�T
d

�
samples, we have Pr

h
| ˆ̀t(w(t))� `t(w(t))| � e0

i
 d

2T and

Pr
h
| ˆ̀t(w⇤)� `t(w⇤)| � e0

i
 d

2T . From Lemma 3.18, for l = e R
32 , in each step t we

have `t(w(t)) �
���w(t)

���
2

R
32 e and `t (w⇤)  �4e0. From Lemma 3.16, for G = dO(k)

and K = 2, we get

T

Â
t=1

ˆ̀t
⇣

w(t)
⌘

T
�

T

Â
t=1

ˆ̀t (w⇤)
T

 3dO(k)
p

T
.

By the union bound, it follows that with probability at least 1� d, we have that

T

Â
t=1

`t

⇣
w(t)

⌘

T
�

T

Â
t=1

`t (w⇤)
T

 3dO(k)
p

T
+ 2e0 .

Thus, if the number of steps is T = dQ(k)/e02 then, with probability at least 1� d
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we have that, 1
T ÂT

t=1 `t

⇣
w(t)

⌘
� `t (w⇤)  3e0. This means that there exists t 2 [T]

such that `t

⇣
w(t)

⌘
� `t (w⇤)  3e0, which implies that `t

⇣
w(t)

⌘
< �e0 because

from Lemma 3.18 it holds `t (w⇤)  �4e0. Using the contrapositive of Theorem 3.4,
it follows that Step 10 does not return a witnessing function and also the w(t) is
not zero because then `t(w(t)) = 0, which lead us to a contradiction. Therefore, we
have that for the last t it holds q

⇣
w(t), w⇤

⌘
 e. Moreover, the number of samples

is O(TN) = (dk)O(k) log(1/d), and since k is smaller than the dimension we use
dO(k) log(1/d) samples.

To prove the Theorem 3.13, we need the following claim for the (L, R, U, B, b)-
bounded distributions.

Claim 3.19 (Claim 2.1 of Diakonikolas et al. (2020c)). Let Dx be an (L, R, U, B, b)-
bounded distribution on Rd. Then, for any 0 < e  1, we have that errDx

0�1(hu, hv) 

U log2( B
e )

b2 · q(v, u) + e .

Proof of Theorem 3.13. We run Algorithm 4 for e0 = eb2

2U
1

log(2/e) . From Theorem 3.12,

Algorithm 4 outputs a ŵ such that q(ŵ, w⇤)  eb2

2U
1

2 log(1/e) . From Claim 3.19, we
have that err0�1(hŵ, f )  e. This completes the proof.

3.5 Further Related Work

It is instructive to compare the Tsybakov noise model with two other classical noise
models, namely the agnostic model Haussler (1992); Kearns et al. (1994a) and the
bounded (or Massart) noise model Sloan (1988); Massart and Nedelec (2006). The
Tsybakov noise model lies in between these two models.

In the agnostic model Haussler (1992); Kearns et al. (1994a), the learner is
given access to iid labeled examples from an arbitrary distribution D on labeled
examples (x, y) 2 Rd ⇥ {±1} and the goal of the learner is to output a hypoth-
esis h such that the misclassification error errD

0�1(h) :� Pr(x,y)⇠D[h(x) 6= y] is as
small as possible. In more detail, we want to achieve errD

0�1(h)  opt + e, where
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opt :� infg2C errD
0�1(g) is the minimum possible misclassification error by any

function in the class C. Agnostic noise is the most challenging noise model in
the literature. Without assumptions on the marginal distribution Dx on the (un-
labaled) points, (even weak) agnostic learning is known to be computationally
intractable Guruswami and Raghavendra (2006); Feldman et al. (2006a); Daniely
(2016a).

On the other hand, if Dx is known to be well-behaved, in a precise sense,
dimension-efficient agnostic algorithms are known. Specifically, the L1-regression
algorithm of Kalai et al. (2008) agnostically learns halfspaces under the standard
Gaussian and, more generally, any isotropic log-concave distribution, with sample
complexity and runtime dm(1/e), for an appropriate function m. In more detail, if Dx

is the standard Gaussian N(0, I), then m(1/e) = Q̃(1/e2) (see, e.g., Diakonikolas
et al. (2010a,b)) and if Dx is any isotropic log-concave distribution, then m(1/e) =

2Q(poly(1/e)). These runtime bounds are tight for the L1-regression approach, as
they rely on the minimum degree of certain polynomial approximations of the
univariate sign function. Moreover, recent work Diakonikolas et al. (2020b); Goel
et al. (2020b) has shown Statistical Query lower bounds of dpoly(1/e) for agnostically
learning halfspaces, even under Gaussian marginals.

Prior to this work, the only known algorithms for Tsybakov noise are the ones
obtained via the straightforward reduction to agnostic learning. Specifically, by
applying the L1-regression algorithm Kalai et al. (2008) for e0 = Q(e1/a) in place of
e, where a 2 (0, 1] is the Tsybakov noise parameter of Definition 1.5, we have (see,
e.g., Corollary 3.6) that the output hypothesis h satisfies Prx⇠Dx [h(x) 6= f (x)]  e.
This straightforward reduction leads to algorithms with runtimes dpoly(1/e1/a) for

Gaussian marginals, and d2poly(1/e1/a)
for log-concave marginals.

We acknowledge a related line of work Klivans et al. (2009a); Awasthi et al.
(2017); Daniely (2015); Diakonikolas et al. (2018b) that gave efficient algorithms for
learning halfspaces with agnostic noise under similar distributional assumptions.
While these algorithms run in time poly(d/e), they achieve a “semi-agnostic” error
guarantee of O(opt) + e — instead of 1 · opt + e. This guarantee is significantly
weaker for our purposes and cannot be used to obtain a hypothesis that is arbitrarily
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close to the target halfspace.
Finally, it should be noted that this work is part of the broader agenda of

designing robust estimators for a range of generative models with respect to
various noise models. A recent line of work Klivans et al. (2009a); Awasthi et al.
(2017); Diakonikolas et al. (2016a); Lai et al. (2016a); Diakonikolas et al. (2017a,
2018a,b); Klivans et al. (2018); Diakonikolas et al. (2019c,b) has given efficient robust
estimators for a range of learning tasks (both supervised and unsupervised) in the
presence of a small constant fraction of adversarial corruptions.
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4 LEARNING WITH TSYBAKOV NOISE IN POLYNOMIAL

TIME

4.1 Formal Statement of Results

Preliminaries We will denote by projU(x) the projection of x onto the subspace
U ⇢ Rd. For a subspace U ⇢ Rd, let U? be the orthogonal complement of U. For a
vector w 2 Rd, we use w? to denote the subspace spanned by vectors orthogonal
to w, i.e., w? = {u 2 Rd : w · u = 0}. Finally, we denote by w?v the projection of
the vector w on the subspace v? after normalization, i.e., w?v = w�w·v v

kw�w·v vk2
.

In this chapter we present the first polynomial-time algorithm for learning half-
spaces with Tsybakov noise. Starting from a non-trivial warm-start, our algorithm
performs a novel “win-win” iterative process which, at each step, either finds a
valid certificate or improves the angle between the current halfspace and the true
one. Our warm-start algorithm for isotropic log-concave distributions involves
a number of analytic tools that may be of broader interest. These include a new
efficient method for reweighting the distribution in order to recenter it and a novel
characterization of the spectrum of the degree-2 Chow parameters. We start by
defining the distribution family for which our algorithms succeed.

Definition 4.1 (Well-Behaved Distributions). For L, R, U > 0 and k 2 Z+, a dis-
tribution Dx on Rd is called (k, L, R, U)-well-behaved if for any projection (Dx)V of
Dx on a k-dimensional subspace V of Rd, the corresponding pdf gV on V satisfies
the following properties: (i) gV(x) � L, for all x 2 V with kxk2  R (anti-anti-
concentration), and (ii) gV(x)  U for all x 2 V (anti-concentration). If, addition-
ally, there exists b � 1 such that, for any t > 0 and unit vector w 2 Rd, we have
that Prx⇠Dx [|w · x| � t]  exp(1� t/b) (sub-exponential concentration), we call Dx

(k, L, R, U, b)-well-behaved.

We focus on the case that the marginal distribution Dx on the examples is
well-behaved for some values of the relevant parameters. Definition 4.1 speci-
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fies the concentration and anti-concentration conditions on the low-dimensional
projections of the data distribution that are required for our learning algorithm.
Throughout this paper, we will take k = 3, i.e., we only require 3-dimensional
projections to have such properties.

Interestingly, the class of well-behaved distributions is quite broad. In particular,
it is easy to show that the broad class of isotropic log-concave distributions is
well-behaved for L, R, U, b being universal constants. Moreover, as Definition 4.1
does not require a specific functional form for the underlying density function, it
encompasses a much more general set of distributions.

Since the complexity of our algorithm depends (polynomially) on 1/L, 1/R, U, b,
we state here a simplified version of our main result for the case that these pa-
rameters are bounded by a universal constant. To simplify the relevant theorem
statements, we will sometimes say that a distribution D of labeled examples in
Rd ⇥ {±1} is well-behaved to mean that its marginal distribution Dx is well-
behaved. We show:

Theorem 4.2 (Learning Tsybakov Halfspaces under Well-Behaved Distributions).
Let D be a well-behaved isotropic distribution on Rd ⇥ {±1} that satisfies the (a, A)-
Tsybakov noise condition with respect to an unknown halfspace f (x) = sign(w⇤ · x).
There exists an algorithm that draws N = OA,a(d/e)O(1/a) samples from D, runs in
poly(N, d) time, and computes a vector bw such that, with high probability we have that
errDx

0�1(h bw, f )  e.

See Theorem 4.39 for a more detailed statement.

For the class of log-concave distributions, we give a significantly more efficient
algorithm:

Theorem 4.3 (Learning Tsybakov Halfspaces under Log-concave Distributions).
Let D be a distribution on Rd ⇥ {±1} that satisfies the (a, A)-Tsybakov noise condition
with respect to an unknown halfspace f (x) = sign(w⇤ · x) and is such that Dx is isotropic
log-concave. There exists an algorithm that draws N = poly(d)O(A/e)O(1/a2) samples
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from D, runs in poly(N, d) time, and computes a vector bw such that, with high probability,
we have that errDx

0�1(h bw, f )  e.

See Theorem 4.40 for a more detailed statement. Since the sample complexity of
the problem is poly(d, 1/e1/a), the algorithm of Theorem 4.3 is qualitatively close
to best possible.

4.2 Overview of Techniques

Here we give an intuitive summary of our techniques in tandem with a comparison
to the most relevant prior work. A more detailed technical discussion is provided
in the proceeding sections.

Our learning algorithms employ the certificate-based framework of Diakoniko-
las et al. (2021b). At a high-level, this framework allows us to efficiently reduce the
problem of finding a near-optimal halfspace h bw(x) = sign(h bw, xi) to the (easier)
problem of certifying whether a candidate halfspace hw(x) = sign(hw, xi) is “far”
from the optimal halfspace f (x) = sign(hw⇤, xi). The idea is to use a certificate al-
gorithm (as a black-box) and combine it with an online convex optimization routine.
Roughly speaking, starting from an initial guess w0 for w⇤, a judicious combination
of these two ingredients allows us to efficiently compute a near-optimal halfspace
bw, i.e., one that the certifying algorithm cannot reject. We note that a similar ap-

proach has been used in Chen et al. (2020a) for converting non-proper learners to
proper learners in the Massart noise model.

With the aforementioned approach as the starting point, the learning problem
reduces to that of designing an efficient certifying algorithm. In recent work Di-
akonikolas et al. (2021b), the authors developed a certifying algorithm for Tsybakov
halfspaces based on high-dimensional polynomial regression. This method leads
to a certifying algorithm with sample complexity and runtime dpolylog(1/e), i.e., a
quasi-polynomial upper bound. As we will explain in Section 4.3, the Diakonikolas
et al. (2021b) approach is inherently limited to quasi-polynomial time and new
ideas are needed to obtain a polynomial time algorithm. The main contribution of
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this paper is the design of a polynomial-time certificate algorithm for Tsybakov halfspaces
under well-behaved distributions.

The key idea to design a certificate in the Tsybakov noise model is the following
simple but crucial observation: If w⇤ is the normal vector to true halfspace, then
for any non-negative function T(x), it holds that E(x,y)⇠D[T(x)y w⇤ · x] � 0. On
the other hand, for any w 6= w⇤ there exists a non-negative function T(x) such that
E(x,y)⇠D[T(x) y w · x] < 0. In other words, there exists a reweighting of the space that
makes the expectation of yw · x negative (Fact 3.3). Note that we can always use
as T(x) the indicator of the disagreement region between the candidate halfspace
hw(x) and the optimal halfspace f (x) = hw⇤(x). Of course, since optimizing over
the space of non-negative functions is intractable, we need to restrict our search
space to a “simple” parametric family of functions. In Diakonikolas et al. (2021b),
squares of low-degree polynomials were used, which led to a quasi-polynomial
upper bound.

In this work, we consider certifying functions of the form:

T(x) =
1

w · x
1
n

s1  w · x  s2 ,�t1  v · projw?
x

w · x
 �t2

o

that are parameterized by a vector v and scalar thresholds s1, s2, t1, t2 > 0. Here
projw? denotes the orthogonal projection on the subspace orthogonal to w. It will
be important for our approach that functions of this form are specified by O(d)
parameters.

Of course, it may not be a priori clear why functions of this form can be used as
certifying functions in our setting. The intuition behind choosing functions of this
simple form is given in Section 4.3. In particular, in Claim 4.6, we show that for
any incorrect guess w there exists a certifying vector v that makes the expectation
E(x,y)⇠D[T(x) y w · x] negative. In fact, the vector v = projw?w⇤/

��projw?w⇤
��

2 :=
(w⇤)?w suffices for this purpose.

The key challenge is in finding such a certifying vector v algorithmically. We
note that our algorithm in general does not find (w⇤)?w . But it does find a vector v
with similar behavior, in the sense of making the E(x,y)⇠D[T(x) y w · x] sufficiently
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negative. To achieve this goal, we take a two-step approach: The first step involves
computing an initialization vector v0 that has non-trivial correlation with (w⇤)?w .
In our second step, we give a perceptron-like update rule that iteratively improves
the initial guess until it converges to a certifying vector v. While this algorithm is
relatively simple, its correctness relies on a win-win analysis (Lemma 4.14) whose
proof is quite elaborate. In more detail, we show that for any non-certifying vector v
that is sufficiently correlated with (w⇤)?w , we can efficiently compute a direction
that improves its correlation to (w⇤)?w . We then argue (Lemma 4.19) that by
choosing an appropriate step size this iteration converges to a certifying vector
within a small number of steps.

A subtle point is that the aforementioned analysis does not take place in the
initial space, where the underlying distribution is well-behaved and the labels
are Tsybakov homogeneous halfspaces, but in a transformed space. The trans-
formed space is obtained by restricting our points in a band and then performing
an appropriate “perspective” projection on the subspace orthogonal to w (Sec-
tion 4.3). Fortunately, we are able to show (Proposition 4.8) that this transformation
preserves the structure of the problem: The transformed distribution remains well-
behaved (albeit with somewhat worse parameters) and satisfies the Tsybakov noise
condition (again with somewhat worse parameters) with respect to a potentially
biased halfspace. In fact, this consideration motivated our use of the perspective
projection in the definition of T(x).

It remains to argue how to compute an initialization vector v0 that acts as a
warm-start for our algorithm. Naturally, the sample complexity and runtime of
our certificate algorithm depend on the quality of the initialization. The simplest
way to initialize is by using a random unit vector. With random initialization, we
achieve initial correlation roughly 1/

p
d, which leads to a certifying algorithm

with complexity (d/e)O(1/a) (Theorem 4.5). This simple initialization suffices to
obtain Theorem 4.2 for the general class of well-behaved distributions.

To obtain our faster algorithm for log-concave marginals (Theorem 4.3), we
use the exact same approach described above starting from a better initialization.
Our algorithm to obtain a better starting vector leverages additional structural
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properties of log-concave distributions. Our initialization algorithm runs in poly(d)
time (independent of 1/a) and computes a unit vector whose correlation with
(w⇤)?w is W(e1/a) (Theorem 4.24).

Specifically, our initialization algorithm works as follows:

1. It starts by conditioning on a random sufficiently narrow band around the
current candidate w and projecting the samples on the subspace w?.

2. It transforms the resulting distribution to ensure that it is isotropic log-
concave through rescaling and rejection sampling.

3. It then computes the degree-2 Chow parameters and uses them to construct
a low-dimensional subspace V inside which (w⇤)?w has sufficiently large
projection. This subspace V is the span of the degree-1 Chow vector and the
large eigenvectors of the degree-2 Chow matrix.

4. Finally, the algorithm outputs a uniformly random vector in V that can be
shown to have the desired correlation with (w⇤)?w .

The resulting distribution after the initial conditioning in Step 1 is still log-
concave and approximately satisfies the Tsybakov noise condition with respect
to a near-origin centered halfspace orthogonal to w. However, the distribution
may no longer be zero-centered and may contain a tiny amount of non-Tsybakov
noise — in the sense that we may end with points x having h(x) > 1/2. As we
can control the total non-Tsybakov noise, the latter is not a significant issue. We
address the former issue by reweighting the distribution to make it isotropic. We
do this by applying rejection sampling with probability min(1, exp(�hx, ri)), for
some vector r that we compute via SGD (so that the resulting mean is near-zero)
and then rescaling by the inverse covariance matrix.

After the first two steps, our goal is to find any vector with non-trivial correla-
tion (w⇤)?w , given that the underlying distribution is isotropic log-concave. We
show that the labels y must correlate with some degree-2 polynomial in (w⇤)?w · x
(Lemma 4.31). Our algorithm crucially exploits this property, along with recently
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established “thin shell” estimates Lee and Vempala (2017) for log-concave distri-
butions, to show that a large part of this correlation is explained by the vector of
degree-1 Chow parameters and the top few eigenvectors of the degree-2 Chow
matrix (Lemma 4.32). This implies that the subspace V spanned by those vec-
tors contains a non-trivial part of (w⇤)?w , and thus a random vector from V has
non-trivial correlation with (w⇤)?w with constant probability.

4.3 Efficiently Certifying Non-Optimality

In this section, we give an efficient algorithm that can certify whether a candidate
weight vector w defines a halfspace hw(x) = sign(hw, xi) that is far from the
optimal halfspace f (x) = sign(hw⇤, xi). Before we formally describe and analyze
our algorithm, we provide some intuition.

Main Result of this Section. Fact 3.3 shows that a certifying function exists.
However, in general, finding such a function is information-theoretically and
computationally hard. By leveraging our distributional assumptions, we show
that a certifying function of a specific simple form exists and can be computed in
polynomial time.

For the rest of this section, we work with distributions that are (3, L, R, b)-well-
behaved. These distributions satisfy the same properties as those in Definition 4.1,
except the anti-concentration condition. (The anti-concentration condition is only
required at the end of our analysis in Section 4.5 to deduce that small angle between
two halfspaces implies small 0-1 error.)

Definition 4.4. For L, R > 0, b � 1, and k 2 Z+, a distribution Dx on Rd is called
(k, L, R, b)-well-behaved if the following conditions hold: (i) For any projection (Dx)V

of Dx on a k-dimensional subspace V of Rd, the corresponding pdf gV on V satisfies
gV(x) � L, for all x 2 V with kxk2  R (anti-anti-concentration). (ii) For any
t > 0 and unit vector w 2 Rd, we have that Prx⇠Dx [|w · x| � t]  exp(1� t/b)

(sub-exponential concentration).
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Specifically, we have:

Theorem 4.5 (Efficiently Certifying Non-Optimality). Let D be a (3, L, R, b)-well-
behaved isotropic distribution on Rd ⇥ {±1} that satisfies the (a, A)-Tsybakov noise
condition with respect to an unknown halfspace f (x) = sign(w⇤ · x). Let w be a unit
vector with q(w, w⇤) � q, where q 2 (0, p]. There is an algorithm that, given as input w,
q, and N = ((A/(LR)) · (d/q))O(1/a) log(1/d) samples from D, it runs in poly(N, d)
time, and with probability at least 1� d returns a certifying function Tw : Rd 7! R+ such
that

E
(x,y)⇠D

[Tw(x) yw · x]  � 1
b

✓
LR q

A d

◆O(1/a)

. (4.1)

Intuition and Roadmap of the Proof

In this subsection, we give an intuitive proof overview of Theorem 4.5 along with
pointers to the corresponding subsections where the proof of each component
appears. First, we discuss the specific form of the certifying function that we
compute. The proof of Fact 3.3 shows that a valid choice for the certifying function
would be the characteristic function of the disagreement region between the can-
didate hypothesis w and the optimal halfspace w⇤, i.e., Tw(x) = 1{sign(w · x) 6=
sign(w⇤ · x}. Unfortunately, we do not know w⇤ (this is the vector we are trying to
approximate!), and therefore it is unclear how to algorithmically use this certifying
function.

Our goal is to judiciously define a parameterized family of “simple” certifying
functions and optimize over this family to find one that acts similarly to the
indicator of the disagreement region. A natural attempt to construct a certifying
function for a guess w would be to focus on a small “band” around the candidate
halfspace w. This idea bears some similarity with the technique of “localization",
an approach going back to Bartlett et al. (2005), which has previously seen success
for the problem of efficiently learning homogeneous halfspaces with Massart
noise Awasthi et al. (2015, 2016a); Zhang et al. (2020a); Diakonikolas et al. (2020c).
Unfortunately, this idea is inherently insufficient to provide us with a certifying
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w⇤ w

(w⇤)?w
(w⇤)?w ·x<t

s2

s1

Figure 4.1: The indicator of a band {x : s1  w · x  s2} cannot be used as
a certificate even when there is no noise and the underlying distribution is the
standard Gaussian: the contribution of the positive points (red region) is larger
than the contribution of the negative points (blue region). On the other hand,
taking the intersection of the band and the halfspace with normal vector (w⇤)?w

and a sufficiently negative threshold t < 0 gives us a subset of the disagreement
region (intersection of blue and green regions).

function for the following reason: Even an arbitrarily thin band around w will
assign more probability mass on points that do not belong in the disagreement
region, and therefore the expectation E(x,y)⇠D[1{s1  w · x  s2}yw · x] will be
positive. See Figure 4.1 for an illustration.

Intuitively, we need a way to boost the contribution of the disagreement region.
One way to achieve this is by constructing a smooth reweighting of the space. In
particular, we can look in the direction of the projection of w⇤ on the orthogonal
complement of w, i.e., the vector

(w⇤)?w =
projw?(w

⇤)��projw?(w⇤)
��

2
,

that lies in the 2-dimensional subspace spanned by w and w⇤; see Figure 4.1.
Notice that the disagreement region is a subset of the points that have negative
inner product with (w⇤)?w . Therefore, a candidate reweighting can be obtained
by using a polynomial p((w⇤)?w · x) of moderately large degree that will boost
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the points that lie in the disagreement region. This was the approach used in the
recent work Diakonikolas et al. (2021b). Since (w⇤)?w is not known, one needs to
formulate a convex program (SDP) over the space of all d-variate polynomials of
sufficiently large degree k implying that the corresponding SDP has dW(k) variables.
Unfortunately, it is not hard to show that the required degree cannot be smaller
than W(log(1/e)). Therefore, this approach can only give a dW(log(1/e)), i.e., quasi-
polynomial, certificate algorithm.

In this work, we instead use a hard threshold function together with a band
to isolate (a non-trivial subset of) the disagreement region. In more detail, we
consider a function of the form 1{(w⇤)?w · x < t} for some scalar threshold t; see
Figure 4.1. Since (w⇤)?w is unknown, we need to find a certifying vector v that is
perpendicular to w, i.e., v 2 w? and acts similarly to (w⇤)?w . This leads us to the
following non-convex optimization problem

min
t2R,v2w?

E
(x,y)⇠D

[1{s1  w · x  s2}1{v · x < t}w · x] .

Thus far, we have succeeded in reducing the number of parameters that we want to
compute down to O(d), but now we are faced with a non-convex optimization prob-
lem. Our main result is an efficient algorithm that computes a certifying vector v and
a threshold t that does not necessarily minimize the above non-convex objective,
but still suffice to make the corresponding expectation sufficiently negative.

We now describe the main steps we use to compute the certifying vector v.
The first obstacle we need to overcome is that, for v 2 w?, the corresponding
instance fails to satisfy the Tsybakov noise condition. In particular, when we
project the datapoints on w?, the region close to the boundary of the optimal
halfspace becomes “fuzzy" even without noise: Points with different labels are
mapped to the same point of w?; see Figure 4.2. We bypass this difficulty by
using a perspective projection to map the datapoints onto w?. For non-zero vectors
w, x 2 Rd, the perspective projection of x on w is defined as follows:

pw(x) :� projw?
x

w · x
. (4.2)
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w⇤ w

(w⇤)?w

w⇤w⇤ w

(w⇤)?w

Figure 4.2: The dotted line on top of the figures corresponds to the subspace w?.
When we project the points to w? orthogonally (shown in left figure), we map
points with different labels to the same point of w? and obtain the “fuzzy" region
where blue points (classified as negative by w⇤) overlap with red points (positive
according to w⇤). On the other hand, the perspective projection (shown in the right
figure) defined in Equation 4.2 preserves linear separability.

Notice that without noise the perspective projection keeps the dataset linearly
separable (see Figure 4.2), which means that after we perform this projection
the label noise of the resulting instance will again satisfy the Tsybakov noise
condition. In addition, we show that this transformation will preserve the crucial
distributional properties (concentration, anti-anti-concentration) of the underlying
marginal distribution Dx. For a detailed discussion and analysis of this data
transformation, see Subsection 4.3.

Given this setup, the certificate that our algorithm will compute for a candidate
weight vector w 2 Rd is a function of the form

Tw(x) =
1

w · x
1 {s1  w · x  s2 ,�t1  v · pw(x)  �t2} =:

y(x)
w · x

, (4.3)

for some vector v 2 Rd and scalars s1, s2, t1, t2 > 0. For an illustration, in Fig-
ure 4.2 we plot the set of the indicator function y(x) which is a (high-dimensional)
trapezoid.

It is not difficult to verify that by choosing v = (w⇤)?w and appropriately pick-
ing s1, s2, t1, t2, the corresponding certificate function Tw resembles the indicator
function of the disagreement region and certifies the non-optimality of the candidate
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halfspace w. In the following claim, we prove that for any non-optimal halfspace
there exists a certifying function of the above form.

Claim 4.6. Let D be a (3, L, R, b)-well-behaved isotropic distribution on Rd ⇥ {±1}
that satisfies the (a, A)-Tsybakov noise condition with respect to an unknown halfspace
f (x) = sign(w⇤ · x). Fix any non-zero vector w such that q(w, w⇤) > 0. Then, by
setting v = (w⇤)?w in the definition (4.3) of Tw(x), there exist s1, s2, t1, t2 > 0 such
that E(x,y)⇠D[Tw(x) yw · x] < 0.

We note here that the proof of Claim 4.6 is sketched below for the sake of
intuition and is not required for the subsequent analysis.

Proof Sketch. Setting v = (w⇤)?w in (4.3), we have

E
(x,y)⇠D

[Tw(x) yw · x] = E
(x,y)⇠D

[y(x) y] = E
(x,y)⇠D

[y(x) (1� 2h(x)) sign(w⇤ · x)] .

We will show that by appropriate choices of s1, s2, t1, t2 the indicator y(x) above
corresponds to a subset of the disagreement region {x : sign(w · x) 6= sign(w⇤ · x)}.
See Figure 4.3 for an illustration. More precisely, since the distribution satisfies
an anti-anti-concentration property, we can choose s1, s2 = Q(R), so that inside
the band {s1  w · x  s2} there is non-zero probability mass. In particular, by
setting s1 = rR/2 and s2 = rR/

p
2, for some r 2 (0, 1], we have that the band has

mass roughly W(rR3). For these choices of s1 and s2, we can pick t1 = Q(R/r)

and guarantee that the slope of the corresponding line in the two-dimensional
subspace is sufficiently small, so that we get a trapezoid whose intersection with
the aforementioned horizontal band is large (see Figure 4.3). It remains to tune
the parameter t2. Since q = q(w, w⇤) is known, we may pick t2 = Q(R tan q/r)

in order to make sure that the trapezoid is a subset of the disagreement region
between w⇤ and w.

From the above proof, it is clear that one does not really need to optimize the
scalars s1, s2, t1. Their values can be chosen according to the parameters of the
underlying well-behaved distribution. Our optimization problem will be with
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s2

s1

(w⇤)?w · pw(x) = �t2

(w⇤)?w · pw(x) = �t1

w⇤ w

(w⇤)?w

Figure 4.3: The function y(x) for v = (w⇤)?w =
projw? (w

⇤)

kprojw? (w
⇤)k2

defined in (4.3)

and appropriate scalars s1, s2, t1, t2 is the indicator of a subset of the disagreement
region {x : sign(w · x) 6= sign(w⇤ · x)}.

respect to the vector v and the threshold t2. However, optimizing the expectation
of the certifying function Tw of Equation (4.3) is still a non-convex problem. Given
a candidate certifying vector v0 that has non-trivial correlation with (w⇤)?w , our
main structural result is a win-win statement showing that either there exists a
threshold t2 that, together with v0, makes the corresponding expectation of Tw

sufficiently negative, or a perceptron-like update rule will improve the correlation
between (w⇤)?w and w. In particular, we show that after roughly poly(d/e)

updates the correlation between the guess v and (w⇤)?w will be sufficiently large
so that there exists some threshold t2 that makes v a certifying vector. Having such
a vector v, it is easy to optimize over all possible thresholds and find a value for t2

that works. For the formal statement of this claim and its proof, see Subsection 4.3
and Proposition 4.13.

Data Transformation

In this subsection, we show that we can simplify the problem of searching for a
certifying vector v in Tw(x) defined in Equation (4.3) by projecting the samples to
an appropriate (d� 1)-dimensional subspace via the perspective projection (4.2).
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The main proposition of this subsection (Proposition 4.8) shows that this oper-
ation in some sense preserves the structure of the problem. In more detail, the
transformed distribution remains well-behaved and satisfies the Tsybakov noise
condition (albeit with somewhat worse parameters).

The transformation we perform is as follows:

1. We first condition on the band B = {x : x · w 2 [s1, s2]}, for some positive
parameters s1, s2.

2. We then perform the perspective projection on the samples, pw(·), defined in
Equation (4.2).

To facilitate the proceeding formal description, we introduce the following
definition.

Definition 4.7 (Transformed Distribution). Let D be a distribution on Rd ⇥ {±1},
B ✓ Rd and (x, y) ⇠ D.

• We use DB to denote D conditioned on x being in the set B.

• Let q : Rd 7! Rd. We denote by Dq the distribution of the random variable (q(x), y).

With the above notation, Dq
B is the distribution obtained by first conditioning on B and

then applying the transformation q(·) to DB.

With Definition 4.7 in place, the distribution obtained from D after we condition
on the band B is DB, and the distribution obtained from DB after we perform the
perspective projection is Dpw

B . We can now state the main proposition of this
subsection.

Proposition 4.8 (Properties of Dpw
B ). Let D be a (3, L, R, b)-well-behaved isotropic

distribution on Rd ⇥ {±1} that satisfies the (a, A)-Tsybakov noise condition with re-
spect to an unknown halfspace f (x) = sign(w⇤ · x). Fix any unit vector w such that
q(w, w⇤) = q, and let B = {x : x · w 2 [rR/2, rR/

p
2]}, for some r 2 (0, 1]. Then, for

some c = (LR)O(1), the following conditions hold:
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1. The distribution Dpw
B on Rd ⇥ {±1} is

⇣
2, cr3, 1

r , b
cr log 1

r

⌘
-well-behaved.

2. The distribution Dpw
B satisfies the

⇣
a, A

cr

⌘
-Tsybakov noise condition with optimal

classifier sign
�
(w⇤)?w · x + 1/ tan q

�
.

The rest of this subsection is devoted to the proof of Proposition 4.8. Before we
proceed with the proof, we express the problem of finding a certifying vector v
satisfying (4.3) in the transformed domain. Indeed, it is not hard to see that after
we condition on B and perform the perspective projection pw, our goal is to find a
vector v and scalars t1, t2 > 0 such that

E
(z,y)⇠Dpw

B

[1{�t1  v · z  �t2} y] < 0 . (4.4)

More formally, we have the following simple lemma showing that if we find a
certifying vector v and parameters t1, t2 in the transformed instance Dpw

B satisfying
Equation (4.4), the same vector and parameters will be a certificate with respect to
the initial well-behaved distribution D. The relevant expectation remains negative
but is slightly closer to zero.

Lemma 4.9. Let D be a (3, L, R, b)-well-behaved distribution on Rd and let B = {x :
x · w 2 [rR/2, rR/

p
2]}, for some r 2 (0, 1]. Let w 2 Rd be a unit vector and let

v 2 w?, t1, t2 > 0 be such that E(z,y)⇠Dpw
B

[1{�t1  v · z  �t2} y] < �C, for some
C > 0. Then we have that E(x,y)⇠D[Tw(x) yw · x] = �W(CLR3r).

Proof. It holds

E
(z,y)⇠Dpw

B

[1{�t1  v · z  �t2}y] = E
(x,y)⇠DB

[1{�t1  v · pw(x)  �t2}y]

=
1

PrD[B]
E

(x,y)⇠D
[Tw(x)w · xy] .

Using the anti-anti concentration property of Dx, we can bound PrD[B] from below.
Observe that since the lower bound L on the 3-dimensional marginal density holds
inside a ball of radius R, to bound the above probability from below, we can
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multiply L by the volume of the intersection of B with the ball of radius R. Using
the formula for the volume of spherical segments, we obtain PrD[B] = W(LR3r).
This completes the proof.

Proof of Proposition 4.8. Our goal is to compute a certificate of the form (4.3).
As we already discussed, if we had chosen to simply project the points on the
subspace w?, we would have obtained an instance that is not linearly separable
— even if the noise rate h(x) was identically zero. By first conditioning on the set
B = {x : x · w 2 [s1, s2]}, where s1, s2 > 0, and then performing the perspective
projection pw, we keep the dataset linearly separable (with respect to the noiseless
distribution, i.e., for h(x) = 0), albeit by a biased linear classifier.

We have the following lemma.

Lemma 4.10. Let D be a distribution on Rd ⇥ {±1} such that for (x, y) ⇠ D we have
that y = sign(w⇤ · x). Let w be any unit vector such that q(w, w⇤) = q 2 (0, p]. For
(z, y) ⇠ Dpw

B it holds y = sign
⇣
(w⇤)?w · z + 1

tan q

⌘
, i.e., the transformed distribution

is linearly separable by a biased hyperplane.

Proof. Observe that w⇤ = l1(w⇤)?w + l2w, where l1 > 0. We then have

sign(w⇤ · x) = sign
⇣

l1(w⇤)?w · x + l2w · x
⌘
= sign

 
l1w · x

 
(w⇤)?w · x

w · x
+

l2
l1

!!

= sign
✓
(w⇤)?w · pw(x) +

l2
l1

◆
,

where to get the last equality we use the fact that l1 and w · x are both positive
given that we conditioned on the band B. Observe that if the angle between w and
w⇤ is q, then l1 = sin q and l2 = cos q. This completes the proof.

We next show that conditioning on the band B will not make the Tsybakov
noise condition substantially worse.

Lemma 4.11. Let D be a (3, L, R, b)-well-behaved isotropic distribution on Rd ⇥ {±1}
that satisfies the (a, A)-Tsybakov noise condition with respect to an unknown halfspace
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f (x) = sign(w⇤ · x). Let B = {x : x · w 2 [rR/2, rR/
p

2]}, for some r 2 (0, 1]. Then
DB satisfies the Tsybakov noise condition with parameters (a, O(A/(R3Lr))) and optimal
linear classifier w⇤.

Proof. We have that Prx⇠Dx [1� 2h(x) > t|x 2 B]  Prx⇠Dx [1� 2h(x) > t]/ Prx⇠Dx [B].
From the proof of Lemma 4.9, we have seen that we can use the anti-anti-concentration
property of Dx to bound Prx⇠Dx [B] from below. Specifically, we have Prx⇠Dx [B] �
W(LR3r). Therefore, DB satisfies the Tsybakov noise condition with parameters
(a, O(A/(R3rL)).

Finally, we show that the transformation of Equation (4.2) also preserves the
anti-anti-concentration and concentration properties of the marginal distribution
Dx.

Lemma 4.12. Let D be a (3, L, R, b)-well-behaved distribution. Fix any unit vector w
and let B = {x : x · w 2 [rR/2, rR/

p
2]}, for some r 2 (0, 1]. Then the transformed

distribution Dpw
B is

�
2, W(Lr3R3), 1/r, O(b/(Rr) log(1/(LRr)))

�
-well-behaved.

Proof. Let g(x) : Rd 7! R+ be the probability density function of Dx and B =

{x : rR/2  w · x  rR/
p

2}. Note that the conditional distribution (Dx)B of the
random vector x ⇠ Dx on the band B has density gB(x) = 1B(x)g(x)/(

R
B g(x)dx).

Since the transformation pw(·) is not injective, we consider the transformation
f(x) = (w · x, pw(x)) and observe that f(x) : Rd 7! Rd is injective. Denote by U
the random variable corresponding to the image of x, x ⇠ (Dx)B, under f. Without
loss of generality, we may assume that w = e1. By computing the Jacobian of the
above one-to-one transformation. we get that the density function of the random
vector U is given by gU(u) = |u1|d�1gB(u1(1, u2, . . . , ud)). We can marginalize out
the “dummy" variable u1 to obtain the density function g of z ⇠ (Dx)

pw
B , i.e.,

g(z) =
Z •

�•
|u1|d�1gB(u1(1, z))du1 .

Let V be any 2-dimensional subspace of w?. Without loss of generality, we may as-
sume that V = span(e2, e3). Denote z[3,d�1] = (z3, . . . , zd�1), U = span(e1, e2, e3),
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and U? = span(e4, . . . , ed). The marginal density of z ⇠ (Dx)
pw
B on V is then given

by

gV(z1, z2) =
Z

U?

Z •

�•
|u1|d�1gB(u1(1, z))du1 dz[3,d�1]

=
Z •

�•
|u1|d�1

Z

U?
gB(u1(1, z))dz[3,d�1] du1

=
1R

B g(x)dx

Z rR/
p

2

rR/2
|u1|d�1

Z

U?
g(u1(1, z))dz[3,d�1]du1

=
1R

B g(x)dx

Z rR/
p

2

rR/2
|u1|2gU(u1(1, z1, z2))du1 ,

where to get the third equality we used the definition of the conditional density
on B and the fact that the set B only depends on the first coordinate. The last
equality follows by a change of variables. Since Dx is (3, L, R, b)-well-behaved, we
have that if u2

1(1 + z2
2 + z2

3)  R2 we have that gU(u1(1, z1, z2)) � L. Therefore,
using the fact that u2

1  r2R2/2, we obtain that for z2
1 + z2

2  2/r2 � 1 it holds
gU(u1(1, z1, z2)) � L. Observe that since r  1, we can get the slightly looser

bound z2
2 + z2

3  1/r2. Note that
R

B g(x)dx  1 and also
R rR/

p
2

rR/2 |u1|2du1 =

W(r3R3). Combining these bounds, we obtain that gV(z1, z2) � W(Lr3R3).
It remains to prove that the transformed distribution still has exponentially

decaying tails. In the proof of Lemma 4.11, we have already argued that the proba-
bility mass of B is bounded below by CB = W(LR3r). Therefore, the distribution
(Dx)B obtained after conditioning has exponential concentration with parameter
b(1 � log CB). After we perform the perspective projection (Equation (4.2)) to
obtain (Dx)

pw
B , the concentration parameter becomes 2b(1� log CB)/(rR), since

we divide each coordinate of x by a quantity that is bounded from below by Rr/2.
This completes the proof of Lemma 4.12.

Proposition 4.8 follows by combining Lemmas 4.10, 4.11, 4.12.
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Efficient Certificate Computation Given Initialization

In this subsection, we give our main algorithm for computing a non-optimality
certificate in the transformed instance, i.e., a vector v and parameters t1, t2 > 0
satisfying Equation (4.4). Recall that after the perspective projection transformation
of Subsection 4.3, we now have sample access to i.i.d. labeled examples (x, y)
from a well-behaved distribution D on Rd ⇥ {±1} satisfying the Tsybakov noise
condition (albeit with somewhat worse parameters) with the optimal classifier
being a non-homogeneous halfspace (see Proposition 4.8.)

Our certificate algorithm in this subsection assumes the existence of an ini-
tialization vector, i.e., a vector that has non-trivial correlation with (w⇤)?w . The
simplest way to find such a vector is by picking a uniformly random unit vector.
A random initialization suffices for the guarantees of this subsection (and in par-
ticular for Theorem 4.5). We note that for the family of log-concave distributions,
we can leverage additional structure to design a fairly sophisticated initialization
algorithm that in turn leads to a faster certificate algorithm (see Section 4.4).

The main algorithmic result of this section is an efficient algorithm to compute a
certifying vector satisfying Equation (4.4). Note that we are essentially working in
(d� 1) dimensions, since we have already projected the examples to the subspace
w?. As shown in Proposition 4.8, the transformed distribution Dpw

B is still well-
behaved and follows the Tsybakov noise condition, but with somewhat worse
parameters than the initial distribution D.

To avoid clutter in the relevant expressions, we overload the notation and use
D instead of Dpw

B in the rest of this section. Moreover, we use the notation (L, R, b)

and (a, A) to denote the well-behaved distribution’s parameters and the Tsybakov
noise parameters. The actual parameters of Dpw

B (quantified in Proposition 4.8) are
used in the proof of Theorem 4.5. To simplify notation, we will henceforth denote
by v⇤ the vector (w⇤)?w . We show:

Proposition 4.13. Let D be a (2, L, R, b)-well-behaved distribution on Rd ⇥ {±1}
satisfying the (a, A)-Tsybakov noise condition with respect to an unknown halfspace
f (x) = sign(v⇤ · x + b). Let v0 2 Rd be a unit vector such that v0 · v⇤ � 4b/R. There
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is an algorithm (Algorithm 5) with the following performance guarantee: Given v0 and

N = d b2R2

b2

⇣
A

RL

⌘O(1/a)
log(1/d) samples from D, the algorithm runs in poly(N, d)

time, and with probability at least 1� d returns a unit vector v 2 Rd and a scalar t 2 R+

such that

E
(x,y)⇠D

[1[�R  v · x  �t] y]  � b
Rb

✓
RL
A

◆O(1/a)

.

Algorithm 5 employs a “perceptron-like" update rule that in polynomially
many rounds succeeds in improving the angle between the initial guess v0 and
the target vector (w⇤)?w = v⇤. While the algorithm is relatively simple, its proof
of correctness relies on a novel structural result (Lemma 4.14) whose proof is the
main technical contribution of this section. Roughly speaking, our structural result
establishes the following win-win statement: Given a vector whose correlation
with v⇤ is non-trivial, either this vector is already a certifying vector (see Item 1 of
Lemma 4.14 and Lemma 4.9) or the update step will improve the angle with v⇤

(Item 2 of Lemma 4.14).
In more detail, starting with a vector v0 that has non-trivial correlation with v⇤,

we consider the following update rule

v(t+1) = v(t) + lg , (4.5)

where l > 0 is an appropriately chosen step size and

g = E
(x,y)⇠D

[1{�R  hv(t), xi  �R/2} y proj(v(t))?(x)] ,

where proj(v(t))?(x) is the projection of x to the subspace (v(t))?. In Lemma 4.19,
we show that if v(t) is not a certifying vector, i.e., it does not satisfy Item 1 of
Lemma 4.19, then there exists an appropriately small step size l that improves the
correlation with v⇤ after the update. This is guaranteed by Item 2 of Lemma 4.19,
which shows that g has positive correlation with (v⇤)?v (the normalized projection
of v⇤ onto v?), and thus will turn v(t) towards the direction of v⇤ decreasing the
angle between them.
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v⇤ v

(v⇤)?v
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�R
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1 Bt
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b
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q

Figure 4.4: In the subspace w?, the certifying function is simply an indicator
1{�R  v · x  �t0}, for some t0 > 0. See also Equation (4.4). In the left figure we
plot the regions B1, B2, B3 defined in the definition of I2 in the proof of Lemma 4.14.
In the right figure we plot the the regions Bt

1, Bt
2, Bt

3 used in the definition of It
1 in

the proof of Lemma 4.14. The blue regions have negative contribution to the value
of It

1 (resp. I2), while the red regions have positive contribution.

Algorithm 5 Computing a Certificate Given Initialization

1: procedure COMPUTECERTIFICATE((L, R, b), (A, a), d, v0, bD)
2: Input: Empirical distribution bD of a (2, L, R, b)-well-behaved distribution that

satisfies the (a, A)-Tsybakov noise condition, initialization vector v0, confidence
probability d.

3: Output: A certifying vector v and positive scalars t1, t2 that satisfy (4.4).
4: v(0)  v0
5: T  poly(1/L, 1/R, A)1/a · poly(1/b, 1/b)
6: l 1

b3 poly(L, R, 1/A)1/a; c b
Rbpoly(L, R, 1/A)1/a

7: for t = 1, . . . , T do
8: Bt0 = {x : �R  v(t�1) · x  �t0}
9: if there exists t0 2 (R/2, R] such that E(x,y)⇠ bD [1Bt0 (x) y]  �c

10: return(v(t�1), R, t0)

11: ĝ(t)  E(x,y)⇠ bD

h
1BR/2(x) y proj(v(t�1))?(x)

i

12: v(t)  v(t�1)+lĝ(t)

kv(t�1)+lĝ(t)k2

We are now ready to state and prove our win-win structural result:
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Lemma 4.14 (Win-Win Result). Let D be a (2, L, R, b)-well-behaved distribution on
Rd ⇥ {±1} that satisfies the (a, A)-Tsybakov noise condition with respect to f (x) =

sign(v⇤ · x+ b), and v 2 Rd be a unit vector with v · v⇤ � 4b/R. Consider the band Bt =

{x : �R  v · x  �t} for t 2 [R/2, R] and define g = E(x,y)⇠D[1BR/2(x) y projv?(x)] .
For some c = (RL/A)O(1/a), one of the following statements is satisfied:

1. There exists t0 2 (R/2, R], such that E(x,y)⇠D [1Bt0 (x) y]  �c2 b
Rb .

2. It holds g · v⇤ � c2 pb
4b .

Moreover, the first condition always holds if q(v, v⇤)  b c/b.

Proof. Since v and v⇤ span a 2-dimensional subspace, we can assume without loss of
generality that v = e2 and v⇤ = (� sin q, cos q). Our analysis will consider the fol-
lowing regions: Bt

1 = {x 2 Bt : f (x) = +1}, Bt
2 =

�
x 2 Bt : f (x) = �1 and projv?x · v⇤ � 0

 
,

and Bt
3 =

�
x 2 Bt : f (x) = �1 and projv?x · v⇤ < 0

 
. See Figures 4.3, 4.4 for an

illustration.
For notation convenience, we will also denote (v⇤)?v = projv?(v

⇤)/
��projv?(v

⇤)
��

2
and z(x) = 1� 2h(x).

Given the above notation, we can rewrite the two quantities appearing in Items
1, 2 of Lemma 4.14 as follows:

It
1 = E

(x,y)⇠D
[1Bt(x)y] = E

x⇠Dx

h
(1Bt

1
(x)� 1Bt

2
(x))z(x)

i

| {z }
It
1,1

� E
x⇠Dx

h
1Bt

3
(x)z(x)

i

| {z }
It
1,2

,

(4.6)

I2 = g · (v⇤)?v = E
(x,y)⇠D

[1BR/2(x)yx] · (v⇤)?v

= E
x⇠Dx

h
(1BR/2

1
(x)� 1BR/2

2
(x))z(x)|x1|

i

| {z }
I2,1

+ E
x⇠Dx

h
1BR/2

3
(x)z(x)|x1|

i

| {z }
I2,2

. (4.7)

Since v⇤ = (� sin q, cos q), the quantity g · v⇤ (that appears in Item 2 of Lemma 4.14)
is equal to sin(q)I2. We work with the normalized (v⇤)?v in order to simplify
notation.
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Before we go into the details of the proof, we give a high-level description
of the main steps with pointers to the relevant claims. Note that the quantity It

1
corresponds to the value of the certifying function (in the subspace w?) when we
use v as certifying vector and t1 = �R, t2 = t as thresholds. See Equation (4.4).
When It

1 is small (see Item 1 of the lemma), we have a certifying function. On
the other hand, sin(q)I2 corresponds to the inner product of the update g and the
optimal vector v⇤. Item 2 of the lemma states that this quantity is large, which
means that if we update according to g we shall improve the correlation with v⇤.

Heuristic Argument. Since the formal proof is somewhat technical, we start with
a useful (but inaccurate) heuristic argument. If we ignore the presence of |x1| in I2,1

and I2,2, we see from Figure 4.3 that if the contribution of region BR/2
2 is sufficiently

large compared to the positive contribution of BR/2
1 (red region in Figure 4.3),

then I1 will be negative in total. That is, Item 1 is true. On the other hand, if the
contribution of BR/2

2 is not very large, then when we add the contribution of B3

(red region in Figure 4.4) overall, I2 will be positive and Item 2 now holds. Notice
that in this setting we could take the threshold t in the definition of It

1 to simply be
R/2, i.e., use the entire band in our certificate.

Unfortunately, in the actual proof, we need to deal with the term |x1| in the
expectations of I2 that makes the previous argument invalid. Using the Mean Value
Theorem (Fact 4.18), we show that there exists a threshold t 2 [�R,�R/2] that
makes It

1 sufficiently negative. This is done in Claim 4.17.

We can now proceed with the formal proof. We will require several technical
claims. First, we bound IR/2

1,2 and I2,2 from below using the fact that our distribu-
tion is well-behaved. We require the following claim in order to show that the
expressions in Item 1 (resp. Item 2) of our lemma are not simply negative (resp.
positive), but have a non-trivial gap instead. The proof of the claim relies on two
important observations. First, the fact that the distribution is well-behaved means
that the contribution of region B3 would be sufficiently large if we ignore the noise
function z(x) in the expectations. Second, we use the fact that the Tsybakov noise
rate z(x) = 1� 2h(x) cannot reduce the contribution of a region by a lot.
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Claim 4.15. We have that IR/2
1,2 and I2,2 are bounded from below by some c = (RL/A)O(1/a).

The proof of Claim 4.15 can be found in Appendix C.
Now we show that if the angle between the optimal vector and the current one

is small, then IR/2
1 is negative. In particular, the first condition always holds if

q(v, v⇤)  bc/(4b).

Claim 4.16. If q(v, v⇤)  bc/(4b), then IR/2
1  �c/4.

The proof of Claim 4.16 can be found in Appendix C.
Our next claim shows that when Item 2 does not hold, then Item 1 always does.

Having proved Claim 4.16, we may also assume that q(v, v⇤) � bc/(4b). Observe
that, in this case, if I2 � c/2, we have

I2 � c/2 = c sin q/(2 sin q) � pc2b/(4b sin q) ,

where we used the fact that sin(q) � 2q/p for all q 2 [0, p/2] and the fact that
q � b c/(4b). Therefore, to complete the proof, we need to show the following
claim proving that when I2  c/2, Item 1 of the lemma is always true.

Claim 4.17. If q = q(v, v⇤) � bc/(4b) and I2  c/2, there exists t0 2 (�R,�R/2]
such that It0

1  �bc2/(16Rb).

Proof. Given the lower bounds on I2,2 and IR
1,2, we distinguish two cases. Assume

that I2  c/2. This implies, from Claim 4.15, that I2,1  �c/2. We show that in this
case there exists a t0 such that It0

1,1  �bc2/(16Rb). To show this, we are going to
use the following variant of the standard Mean Value Theorem (MVT) for integrals.

Fact 4.18 (Second Integral MVT). Let G : R 7! R+ be a non-negative, non-increasing,
continuous function. There exists s 2 (a, b] such that

R b
a G(t)F(t)dt = G(a)

R s
a F(t)dt.

Let x(x2) = x2/ tan q + b/ sin q be the first coordinate of a point (x1, x2) that
lies on the halfspace defined by f , where f (x) = sign(v⇤ · x + b) (see Figure 4.4).
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We have

It
1,1 =

Z �t

�R

✓Z x(x2)

�•
z(x1, x2)g(x1, x2)dx1 �

Z 0

x(x2)
z(x1, x2)g(x1, x2)dx1

◆
dx2 =

Z �t

�R
g(x2)dx2 ,

where g(x2) =
R x(x2)
�• z(x1, x2)g(x1, x2)dx1 �

R 0
x(x2)

z(x1, x2)g(x1, x2)dx1. More-
over,

I2,1 =
Z �R/2

�R

✓Z x(x2)

�•
z(x1, x2)g(x1, x2)|x1|dx1 �

Z 0

x(x2)
z(x1, x2)g(x1, x2)|x1|dx1

◆
dx2

�
Z �R/2

�R
|x(x2)|g(x2)dx2 = |x(�R)|

Z �t0

�R
g(x2)dx2 = |x(�R)|It0

1,1,

for some t0 2 (�R,�R/2]. Observe that the inequality above follows by replacing
|x1| with its lower bound |x(x2)| in the first integral and by its upper bound |x(x2)|
in the second.

We now observe that |x(x2)| = �x2/ tan q � b/ sin q, where to remove the
absolute value we used the assumption that cos q � 4b/R. Therefore, |x(x2)| is
a decreasing and non-negative function of x2. Using the Mean Value Theorem,
Fact 4.18, we obtain

I2,1 �
Z �R/2

�R
|x(x2)|g(x2)dx2 = |x(�R)|

Z �t0

�R
g(x2)dx2 = |x(�R)|It0

1,1 . (4.8)

Thus,
It0
1,1  I2,1/|x(�R)|  �c sin q/(2R)  �bc2/(16Rb) ,

where we used that q � bc/(4b). This completes the proof of Claim 4.17.

Putting together the above claims, Lemma 4.14 follows.

In the next lemma, we show that if Item 2 of Lemma 4.14 is satisfied, then
an update step decreases the angle between the current vector v and the optimal
vector v⇤.
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Lemma 4.19 (Correlation Improvement). For unit vectors v⇤, v 2 Rd, let ĝ 2 Rd such
that ĝ · v⇤ � c

b , ĝ · v = 0, and kĝk2  b, with c > 0 and b � 1. Then, for v0 = v+lĝ
kv+lĝk2

,
with l = c

2b3 , we have that v0 · v⇤ � v · v⇤ + l2b2/2.

Proof. We will show that v0 · v⇤ = cos q0 � cos q + l2b2, where cos q = v · v⇤. We
have that

kv + lĝk2 =
q

1 + l2 kĝk2
2 + 2lĝ · v  1 + l2 kĝk2

2 , (4.9)

where we used that
p

1 + a  1 + a/2. Using the update rule, we have

v0 · v⇤ = v0 · (v⇤)?v sin q + v0 · v cos q =
lĝ · (v⇤)?v

kv + lĝk2
sin q +

v + lĝ · v
kv + lĝk2

cos q .

Now using Equation (4.9), we get

v0 · v⇤ � lĝ · (v⇤)?v

1 + l2 kĝk2
2

sin q +
cos q

1 + l2 kĝk2
2
= cos q +

lĝ · (v⇤)?v

1 + l2 kĝk2
2

sin q +
�l2 kĝk2

2 cos q

1 + l2 kĝk2
2

.

Then, using that ĝ · v⇤ = ĝ · (v⇤)?v sin q, we have that ĝ · (v⇤)?v � c
b sin q , thus

v0 · v⇤ � cos q +
lc/b� l2 kĝk2

2

1 + l2 kĝk2
2
� cos q +

lc/b� l2b2

1 + l2 kĝk2
2

= cos q +
1
2

lc/b

1 + l2 kĝk2
2

,

where in the first inequality we used that kĝk2  b and in the second that for
l = c/(2b3) it holds c/b� lb2 � c/(2b). Finally, we have that

cos q0 = v0 · v⇤ � cos q +
1
2

lc/b

1 + l2(9b2)
� cos q +

1
4

lc/b = cos q +
1
2

l2b2 .

This completes the proof.

To analyze the sample complexity of Algorithm 5, we require the following
simple lemma, which bounds the sample complexity of estimating the update
function and testing the current candidate certificate. The simple proof can be
found in Appendix C.
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Lemma 4.20 (Estimating g). Let D be a (2, L, R, b)-well-behaved distribution. Given
N = O((db2/e2) log(d/d)) i.i.d samples (x(i), y(i))) from D, the estimator

ĝ =
1
N

N

Â
i=1

1BR/2

⇣
x(i)

⌘
y(i)x(i)

satisfies the following with probability at least 1� d:

• kĝ � gk2  e, where g = E(x,y)⇠D[1BR/2(x) y x], and

• kĝk2  eb + e .

Before we proceed with the proof of Proposition 4.13, we show that we can
efficiently check for the certificate in Line 9 of Algorithm 5 with high probability.

Lemma 4.21. Let bDN be the empirical distribution obtained from D with N = O(log(1/d)/e2)

samples. Then, with probability 1� d, for every t 2 R+, |E(x,y)⇠D [1Bt(x) y]�E(x,y)⇠ bDN
[1Bt(x) y] | 

e .

The proof of Lemma 4.21 can be found in Appendix C. We are now ready to
prove Proposition 4.13.

Proof of Proposition 4.13. Consider the k-th iteration of Algorithm 5. Let g(k) =

E(x,y)⇠D[1BR/2
k

(x)yx], where BR/2
k (x) = {x : �R  x · v(k)  �R/2} and G :=

p
b(RL/A)O(1/a). Moreover, let ĝ(k) = 1

N ÂN
i=1 1BR/2

k

⇣
x(i)

⌘
y(i)x(i) and note that

from Lemma 4.20 we have that given N = O
�
db2/G4 log(1/(LR)) log(dT/d)

�

samples, for every iteration k, it holds that
���ĝ(k) � g(k)

���
2
 G2/(16b) and

���ĝ(k)
���

2


eb + G2/(16b)  3b, with probability 1� d/T.
We first show that if Condition 1 of Lemma 4.14 is satisfied, then Algorithm 5

terminates at Line 10 returning a certifying vector. The only issue is that we have
access to the empirical distribution bDN instead of D. From Lemma 4.21, we have
that the empirical expectation of Line 9 is sufficiently close to the true expectation
that appears in Condition 1 of Lemma 4.14, thus it is going to find it.
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We now analyze the case when Condition 1 of Lemma 4.14 is not true. From
Lemma 4.14, we immediately get that since Condition 1 is not satisfied, Condition
2 is true. Then, using the update rule v(k+1) = v(k)+lg̃(k)

kv(k)+lg̃(k)k2
with l = G2/(64b3),

where g̃(k) = proj(v(k))? ĝ(k) (here g̃(k) is the ĝ(k) with the component on the di-
rection v(k) removed). Note that this procedure only decreases the norm of g̃
(by the Pythagorean theorem). Then, from Lemma 4.19, we have v(k+1) · v⇤ �
v(k) · v⇤ + G4/b4.

The update rule is repeated for at most O(b4/G4) iterations. From Lemma 4.14,
we have that a certificate exists if the angle with the optimal vector is suffi-
ciently small. Putting everything together, our total sample complexity is N =

Õ
⇣

db4

b2G4

⌘
log(1/d). It is also clear that the runtime is poly(N, d), which completes

the proof.

Proof of Theorem 4.5

To prove Theorem 4.5, we will use the iterative algorithm developed in Proposi-
tion 4.13 initialized with a uniformly random unit vector v0. It is easy to show that
such a random vector will have non-trivial correlation with v⇤.

Fact 4.22 (see, e.g., Remark 3.2.5 of Vershynin (2018a)). Let v be a unit vector in Rd.
For a random unit vector u 2 Rd, with constant probability, it holds |v · u| = W(1/

p
d).

We now present the proof of Theorem 4.5 putting together the machinery
developed in the previous subsections.

Proof of Theorem 4.5. As explained in Section 4.3, we are looking for a certificate
function Tw(x) of the form given in Equation (4.3). As argued in Section 4.3, the
search for such a certificate function can be simplified by projecting the samples to
a (d� 1)-dimensional subspace via the perspective projection.

From Proposition 4.8, choosing r = O(q/
p

d), there is a c = (LR)O(1) such
that the resulting distribution Dpw

B is (2, cq/
p

d,
p

d/q, b
p

d/(cq) log(
p

d/q))-well-
behaved and satisfies the (a, Ad1/2/(cq))-Tsybakov noise condition.
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From Fact 4.22, a random unit vector v 2 Rd�1 with constant probability
satisfies v · (w⇤)?w = W(1/

p
d). We call this event E .

From Proposition 4.13, conditioning on the event E and using b4

b2

⇣
A

RL

⌘O(1/a)
log(1/d)

samples, with probability 1� d, we get a (v0, R, t0) such that

E
(x,y)⇠Dpw

B

⇥
1[�R  v0 · x  �t0] y

⇤
 � (qLR/(Ad))O(1/a) /b .

By inverting the transformation (Lemma 4.9), we get that

E
(x,y)⇠D

[Tw(x)x · wy]  � (qLR/(Ad))O(1/a) /b .

Overall, we conclude that with constant probability Algorithm 5 returns a
valid certificate. Repeating the process k = O(log(1/d)) times, we can boost the
probability to 1� d. The total number of samples for finding and testing these
candidate certificates until we find a correct one with probability at least 1� d is

N =
⇣

d A
qLR

⌘O(1/a)
log(1/d). It is also clear that the runtime is poly(N, d), which

completes the proof.

4.4 More Efficient Certificate for Log-Concave
Distributions

In this section, we present a more efficient certificate algorithm for the important
special case of isotropic log-concave distributions. To achieve this, we use Algo-
rithm 5 from the previous section starting from a significantly better initialization
vector. To obtain such an initialization, we leverage the structure of log-concave
distributions. The main result of this section is the following theorem.

Theorem 4.23 (Certificate for Log-concave Distributions). Let D be a distribution on
Rd ⇥ {±1} that satisfies the (a, A)-Tsybakov noise condition with respect to an unknown
halfspace f (x) = sign(w⇤ · x) and is such that Dx is isotropic log-concave. Let w be
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a unit vector that satisfies q(w, w⇤) � q, where q 2 (0, p]. There is an algorithm

that, given as input w, q, and N = poly(d) ·
⇣

A
q

⌘O(1/a2)
log(1/d) samples from D, it

runs in poly(d, N) time, and with probability at least 1� d returns a certifying function
Tw : Rd 7! R+ such that

E
(x,y)⇠D

[Tw(x) yw · x]  �
✓

q

A

◆O(1/a2)

. (4.10)

In other words, we give an algorithm whose sample complexity and running
time as a function of d is a fixed degree polynomial, independent of the noise
parameters.

To establish Theorem 4.23, we apply Algorithm 5 starting from a better ini-
tialization vector. The main technical contribution of this section is an efficient
algorithm to obtain such a vector for log-concave marginals.

Theorem 4.24 (Efficient Initialization for Log-Concave Distributions). Let D be
a distribution on Rd ⇥ {±1} that satisfies the (a, A)-Tsybakov noise condition with
respect to an unknown halfspace f (x) = sign(w⇤ · x) and is such that Dx is isotropic
log-concave. There exists an algorithm that, given an e > 0, a unit vector w such that
kw⇤ �wk2 = Q(e), and N = poly(d) · (A/(ae))O(1/a) samples from D, it runs
in poly(d, N) time, and with constant probability returns a unit vector v such that
v · (w⇤)?w � (ae/A)O(1/a), where (w⇤)?w is the component of w⇤ perpendicular to w.

Intuition and Roadmap of the Proof

Here we sketch the proof of Theorem 4.24 and point to the relevant lemmas in the
formal argument (Section 4.4). Given a weight vector w of unit length, our goal is
to find a unit vector v that has non-trivial correlation with (w⇤)?w , i.e., such that
(w⇤)?w · v is roughly e1/a, where w⇤ is the optimal halfspace.

Our first step is to condition on a thin band around the current candidate w
(similarly to Section 4.3, see Figure 4.1). When the size of the band approaches 0, we
get an instance whose separating hyperplane is perpendicular to (w⇤)?w and has
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much larger Tsybakov noise rate. After that, we would like (similarly to Section 4.3)
to project the points on the subspace (w⇤)?w . Instead of having a zero length
band, we will instead take a very thin band. We have already seen in Section 4.3
that we can apply a perspective transformation in order to project the points on
(w⇤)?w and obtain an instance that satisfies the Tsybakov noise condition (with
somewhat worse parameters). Unfortunately, for the current setting of log-concave
distributions, we cannot use the perspective projection, as it does not preserve the
log-concavity of the underlying distribution. On the other hand, we know that
log-concavity is preserved when we condition on convex sets (such as the thin
band we consider here) and when we perform orthogonal projections.

As we have seen (see Figure 4.2), an orthogonal projection will create a “fuzzy"
region with arbitrary sign. However, we can control the probability of this “fuzzy"
region by taking a sufficiently thin random band. In particular, instead of Tsybakov
noise, we will end up with the following noise condition: For some small x >

0, with probability 2/3 the noise h(x) is bounded above by 1/2� x, and with
probability roughly xQ(1) we have h(x) > 1/2 (this corresponds to the probability
of the “fuzzy" region). For the proof of this statement and detailed discussion on
how the random band results in this above noise guarantee, see Lemma 4.33.

From this point on, we will be working in the subspace w? and assume that the
distribution satisfies the aforementioned noise condition. As we have discussed,
the marginal distribution on the examples remains log-concave and it is not hard
to make its covariance be close to the identity. However, conditioning on the
thin slice may result in a distribution with large mean, even though originally the
distribution was centered. This is a non-trivial technical issue. We cannot simply
translate the distribution to be origin-centered, as this would result in a potentially
very biased optimal halfspace. Our proof crucially relies on the assumption of
having a distribution that is nearly centered and at the same time for the optimal
halfspace to have small bias. We overcome this obstacle in Step 1 below.

Our approach is as follows:

1. First, we show that there is an efficient rejection sampling procedure that
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preserves log-concavity and gives us a distribution that is nearly isotropic
(see Definition 4.25). For the algorithm and its detailed proof of correctness,
see Algorithm 7 and Lemma 4.36.

2. Then we show the following statement: Under the following assumptions

(i) the x-marginal is nearly isotropic,

(ii) the optimal halfspace has sufficiently small bias, and

(iiii) the noise h(x) is bounded away from 1/2 with constant probability,

we can compute in polynomial time a vector v with good correlation to the
target (w⇤)?w . This is established in Proposition 4.30.

We start by describing our algorithm to transform the distribution to nearly
isotropic position (Step 1 above). We avoid translating the samples by reweighting
the distribution using rejection sampling. To achieve this, we find an approximate
stationary point of the non-convex objective F(r) = kEx⇠Dx [x max(1, exp(�r · x)]k2

2.
Notice that, since this is a non-convex objective as a function of r, we can only
use (projected) SGD to efficiently find a stationary point. In particular, we show
that a g-stationary point r of F(r) will make the above norm of the expectation
roughly O(g) (Claim 4.37). Therefore, in time poly(d/g), we find a reweighting
of the initial distribution whose mean is close to 0. Given this point r, we then
perform rejection sampling: We draw x from the initial distribution D and accept
it with probability max(1, exp(�r · x)), i.e., we “shrink" the distribution along the
direction r.

We now explain how to handle the setting that the distribution is approximately
log-concave (Step 2 above). After we make our distribution nearly isotropic,
we compute the degree-2 Chow parameters of the distribution, i.e., the vector
E(x,y)⇠D[yx] and the matrix E(x,y)⇠D[y(xx| � I)]. We show that there exists a
degree-2 polynomial p((w⇤)?w · x) that correlates non-trivially with the labels
y (Lemma 4.31). This means that (w⇤)?w correlates reasonably with the degree-
2 Chow parameters. In particular, (w⇤)?w has a non-trivial projection on the
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subspace V spanned by the degree-1 Chow parameters (this is a single vector) and
the eigenvectors of the degree-2 Chow matrix with large eigenvalues. Our plan
is to return a random unit vector of the subspace V. However, in order for this
random vector to have non-trivial correlation with (w⇤)?w , we also need to show
that the dimension of V is not very large.

The last part of our argument shows that V has reasonably small dimension.
To prove this, we first show that the dimension of V can be bounded above by the
variance of the projection of D onto V, DprojV , Varx⇠DprojV [kxk

2
2]. Then we make

essential use of a recent “thin-shell” result about log-concave measures that bounds
from above Varx⇠DprojV [kxk

2
2], see Lemma 4.28 and Lemma 4.32.

Proof of Theorem 4.24

The proof of Theorem 4.24 requires a number of intermediate results. As already
mentioned, our initialization algorithm works by restricting D to a narrow band
perpendicular to w. Unfortunately, this restriction will be log-concave but will no
longer be isotropic, even in the directions perpendicular to w. However, it will be
close in the following sense.

Definition 4.25 ((a, b)-isotropic distribution). We say that a distribution D is (a, b)-
isotropic, if for every unit vector u 2 Rd, it holds |Ex⇠D[x · u]|  a and 1/b 
Ex⇠D[x · u2]  b.

Useful Technical Tools. We will require the following standard anti-concentration
result for low-degree multivariate polynomials under log-concave distributions.

Lemma 4.26 (Theorem 8 of Carbery and Wright (2001)). Let D be a log-concave
distribution on Rd and p : Rd 7! R be a polynomial of degree at most n. Then there
is an absolute constant C > 0 such that for any 0 < q < • and t 2 R+, it holds
Prx⇠D[|p(x)|  t]  Cqt1/n Ex⇠D[|p(x)|q/n]1/q .

The following statement is well-known. (It follows for example by combining
Theorem 5.14 of Lovász and Vempala (2007) and Lemma 7 of Klivans et al. (2009b).)
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Fact 4.27. Let z be an isotropic log-concave distribution on Rd and let g(·) be its density
function. There exists a constant cd > 0 such that:

1. For any z with kzk2  cd, we have that g(z) � cd.

2. For any z, we have that g(z)  1/cd exp(�1/cd kzk2).

Our proof makes essential use of the following “thin-shell” estimate bounding
the variance of the norm of any isotropic log-concave random vector.

Lemma 4.28 (Corollary 13 of Lee and Vempala (2017)). Let D be any isotropic log-
concave distribution on Rd. We have that Varx⇠D[kxk2

2]  d3/2 .

In particular, it is important for our analysis that the above bound is sub-quadratic
in d.

Finally, we will require the following simple lemma bounding the sample
complexity of approximating the degree-2 Chow parameters of a halfspace under
isotropic log-concave distributions.

Lemma 4.29. Let D be an isotropic log-concave distribution on Rd and bDN be the empirical
distribution obtained from D with N = poly(d/e) samples. Then, with high constant
probability, we have

���E(x,y)⇠D[yx]� E(x,y)⇠ bDN
[yx]

���
2
 e and

����� E
(x,y)⇠D

[y(xx| � I)]� E
(x,y)⇠ bDN

[y(xx| � I)]

�����
F

 e.

The proof of this lemma can be found in Appendix C.1.

We now have the necessary tools to proceed with our proof. We start by showing
how we can find a vector v with non-trivial correlation with (w⇤)?w if the marginal
distribution is (approximately) isotropic. Since in general this will not hold, we
will then need to reduce to the isotropic case.

Proposition 4.30. Let D be a distribution on Rd ⇥ {±1} such that Dx is (a, b)-isotropic
log-concave. Let f (x) = sign(v⇤ · x� q) be such that Pr(x,y)⇠D[y 6= f (x)|x] = h(x),
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where for some x > 0 we have that Prx⇠Dx [h(x) < 1/2� x] � 2/3 and Prx⇠Dx [h(x) >
1/2]  x 0, where x 0 is a constant degree polynomial in x1. Then, as long as |a|+ |q| is
less than a sufficiently small constant multiple of 1/(log(1/x)), there exists an algorithm
with sample complexity and runtime poly(d/x) that with constant probability returns a
unit vector v 2 Rd such that v · v⇤ > poly(x).

Proof. For clarity of the analysis, we begin by presenting our algorithm for the case
that Dx is exactly isotropic log-concave. We then show how the algorithm and its
analysis can be modified for the approximate log-concave setting.

Our algorithm is fairly simple. We compute high-precision estimates T 01 and
T 02 of the vector T1 := E(x,y)⇠D[yx] and the matrix T2 := E(x,y)⇠D[y(xx| � I)]
respectively. This can be easily done by taking poly(d/e) samples from D and
using the empirical estimates (see Lemma 4.29). We then define V to be the
subspace spanned by T1 and the eigenvectors of T2 whose eigenvalue has absolute
value at least 2z, for z some sufficiently large constant power of x. The algorithm
returns a uniform random unit vector v from V.

It is clear that the above algorithm has polynomial sample complexity and
runtime. We need to show that with constant probability it holds that v · v⇤ >
poly(x). The desired statement will follow by establishing the following two
claims:

1. The size of the projection of v⇤ onto V is at least poly(x).

2. The dimension of V is at most poly(1/x).

The desired result then follows by noting that the median value of |v⇤ · v| is on the
order of

��projV(v
⇤)
��

2 /
p

d(V), and observing that the sign of the inner product is
independent of its size.

To establish the first claim, we prove the following lemma for isotropic log-
concave distributions.

1It is not difficult to verify that x 0 = Q(x3) suffices.
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Lemma 4.31. Let Dx be isotropic log-concave. There exists a degree-2 polynomial p : R !
R such that Ex⇠Dx [p(v⇤ · x)] = 0, Ex⇠Dx [p(v⇤ · x)2] = 1, and E(x,y)⇠D[y p(v⇤ · x)] =
W(x).

Proof. We consider the polynomial

q(x) = (x� q)(x + 1/q) = x2 + (1/q � q)x� 1

and we set p(x) = q(x)/
p

Ex⇠Dx [q(v⇤ · x)2]. It is easy to see that Ex⇠Dx [p(v⇤ · x)] =
0 and Ex⇠Dx [p(v⇤ · x)2] = 1. To show that E(x,y)⇠D[yp(v⇤ · x)] = W(x), we note
that

E
(x,y)⇠D

[yp(v⇤ · x)] = E
x⇠Dx

[(1� 2h(x)) f (x)p(v⇤ · x)] .

We observe that if |v⇤ · x|  1/|q|, then sign(p(v⇤ · x)) = f (x), where f (x) =

sign(v⇤ · x � q). Thus, unless |v⇤ · x| > 1/|q| or h(x) > 1/2 (which happens
with probability at most x 0, a sufficiently high power of x), we have that (1 �
2h(x)) f (x)p(v⇤ · x) � 0 except with probability at most x 0.

Let I(x) denote the indicator of the event (1� 2h(x)) f (x)p(v⇤ · x) < 0. We
have that

E
(x,y)⇠D

[y p(v⇤ · x)] = E
x⇠Dx

[|(1� 2h(x))p(v⇤ · x)|]� 2 E
x⇠Dx

[|(1� 2h(x))p(v⇤ · x)|I(x)]

� E
x⇠Dx

[|(1� 2h(x))p(v⇤ · x)|]� 2
r

E
x⇠Dx

[I2(x)] E
x⇠Dx

[p(v⇤ · x)2]

� E
x⇠Dx

[|(1� 2h(x))p(v⇤ · x)|]� 2
p

x 0.

Recall that by assumption there is at least a 2/3 probability that (1� 2h(x)) � x.
By anti-concentration of Gaussian polynomials, Lemma 4.26, applied for q = 4

and n = 2, we have that Prx⇠Dx [|p(v⇤ · x)|  t] = O(
p

t). Thus, for small enough
t, we have that |p(v⇤ · x)| = W(1) with probability at least 2/3. Therefore, with
probability at least 1/3 both statements hold. Since |1 � 2h(x)||p(v⇤ · x)| � 0
for all x, we have that Ex⇠Dx [|1� 2h(x)||p(v⇤ · x)|] = W(x). This completes our
proof.
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Given Lemma 4.31, it is not hard to see that p(v⇤ · x) = a(v⇤ · x) + b((v⇤ · x)2�
1) for some real numbers a and b with |a| + |b| = Q(1). We note that there is
another way to compute E(x,y)⇠D[yp(v⇤ · x)] relating it to T1 and T2. In particular,
we can write

E
(x,y)⇠D

[y p(v⇤ · x)] = a E
(x,y)⇠D

[y(v⇤ · x)] + b E
(x,y)⇠D

[y((v⇤ · x)2 � 1)]

= av⇤ · E
(x,y)⇠D

[yx] + b E
(x,y)⇠D

[y((v⇤)|(xx| � I)v⇤)]

= av⇤ · T1 + b(v⇤)|T2v⇤.

Thus, Lemma 4.31 implies that either |v⇤ · T1| = W(x) or |(v⇤)|T2v⇤| = W(x).
Assuming that T 01 and T 02 estimate T1 and T2 to error less than this quantity, i.e.,

O(x), the above implies that either v⇤ · T 01 = W(x) or (v⇤)|T 02v⇤ = W(x). In the
former case, we have that

��projV(v
⇤)
��

2 � |v⇤ · T1| = W(x). In the latter case, we
note that since V contains the span of all eigenvectors of T 02 with eigenvalue having
absolute value at least z, it holds that |(v⇤)|T 02v⇤|  z + kT 02k2

��projV(v
⇤)
��

2. This
will imply that in this case as well we have that

��projV(v
⇤)
��

2 = W(x), if kT 02k2 is
O(1). To show this, we note that for any unit vector v, we have

v|T2v = E
(x,y)⇠D

[y(v|(xx| � I)v)] = E
(x,y)⇠D

[y(v · x2 � 1)]


r

E
(x,y)⇠D

[y2] E
x⇠Dx

[(v · x2 � 1)2] = O(1) .

This completes the proof that the projection of v⇤ onto V has size at least poly(x).
It remains to show that the dimension of V is at most poly(x). We prove the

following lemma:

Lemma 4.32. We have that d(V) = O(z�4).

Proof. Let V+ denote the subspace spanned by the eigenvectors of T 02 with eigen-
value at least z. Let V� denote the subspace spanned by eigenvectors of eigenvalue
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at most�z. Clearly d(V)  d(V+)+ d(V�)+ 1. We will show that d(V+) = O(z�4)

and the bound on d(V�) will follow symmetrically.
Let m = d(V+) and let P be the projection matrix that maps a vector z onto

V+. Since T 02 is sufficiently close to T2, the restriction of T 02 to V+ will have all of its
eigenvalues at least z/2. Therefore, it holds that

mz/2  tr(PT2) = E
(x,y)⇠D

[y tr(P(xx| � I))] = E
(x,y)⇠D

[y(kPxk2
2 �m)]


r

E
(x,y)⇠D

[y2] E
x⇠Dx

[(kPxk2
2 �m)2] =

q
Var[kPxk2

2] .

In other words, we have that

m2z2  4Var[kPxk2
2] .

To conclude the proof, observe that Px is a log-concave distribution in m dimen-
sions, since projections preserve log-concavity. From Lemma 4.28, we have that
Var[kPxk2

2] = O(m3/2) and together with the above, we obtain that m = O(z�4).
This completes our proof.

Thus far, we have shown the desired claim if the distribution is in isotropic
position, q = O(1/ log(1/x)), and we have access to sufficiently accurate ap-
proximations T 01, T 02 to the degree-2 Chow parameters with accuracy z/2. To
handle the case that the distribution D is (a, b)-isotropic, we can let z ⇠ D0z,
where z = Cov[x]�1/2(x � Ex⇠Dx [x]), be an isotropic log-concave distribution.
We need to show that if we have good approximations of Ex⇠Dx [x] and Cov[x],
we can compute O(z)-approximations to T1 and T2 for z (i.e., E(z,y)⇠D0 [yz] and
E(z,y)⇠D0 [y(zz| � I)]). By taking poly(d/z) samples, we can compute bm and
cM such that k bm� Ex⇠Dx [x]k2  z/16 and

���cM �Cov[x]
���

2
 z/16. Let bz =

cM�1/2(x� bm). Then we have that kbz� zk2  z/4. Thus, we obtain that

���� E
(z,y)⇠D0

[yz]� E
(z,y)⇠D0

[ybz]
����

2
 E

(z,y)⇠D0
[kz� bzk2]  z/4
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and similarly that
���� E
(z,y)⇠D0

[y(zz| � I)]� E
(z,y)⇠D0

[y(bzbz| � I)]
����

2
 z/4 .

By approximating the degree-2 Chow parameters T1, T2 to accuracy z/4, we obtain
overall error z/2.

We note that (z, y) satisfies our assumptions for the function

f 0(x) = sign
✓
(v⇤)|Cov[x]1/2x� (q � hv⇤, E

x⇠Dx
[x]i)

◆
.

From our assumptions, we have that |q � v⇤ · Ex⇠Dx [x]| = O(1/ log(1/x)). Using
the aforementioned algorithm for z, this allows us to compute a v so that with
constant probability v|Cov[x]1/2v⇤ � poly(x), or Cov[x]1/2v · v⇤ � poly(x). This
completes the proof.

Thus far, we have dealt with the case that the mean of our log-concave distri-
bution is sufficiently close to zero. As already mentioned, this property will not
hold in general after projection. The following important lemma shows that by
conditioning on a random thin band before projecting onto w?, we obtain a log-
concave distribution whose mean has small distance from the origin. Moreover, we
show that the noise condition of the instance after we perform this transformation
satisfies the assumptions of Proposition 4.30. We note that this is the step that
crucially relies on picking a random thin band.

Lemma 4.33 (Properties of Transformed Instance). Let D be a distribution on Rd ⇥
{±1} that satisfies the (a, A)-Tsybakov noise condition with respect to an unknown
halfspace f (x) = sign(w⇤ · x) and is such that Dx is isotropic log-concave. Fix e > 0
and unit vector w such that q(w, w⇤) = Q(e). Let s be a sufficiently small multiple of e2.
Set x = (Q(s/A))1/a and s0 = Q(x3 s e). Pick x0 uniformly at random from [s, 2s] and
define the random band Bx0 = {x 2 Rd : x · w 2 [x0, x0 + s0]}.

2We need s to be smaller than the absolute constant of Fact 4.27 for dimension d = 2.
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Define the distribution D? = D
projw?
Bx0

, the classifier f?(x?) = sign(x0/ tan q +

x? · (w⇤)?w), and the noise function

h?(x?) = Pr
(z,y)⇠D?

[y 6= f?(z)|z = x?] .

Then D? is an (O(1), O(1))-isotropic log-concave distribution and, with probability at
least 99%, satisfies the following noise condition:

Pr
x?⇠D?x

[h?(x?)  1/2� x] � 2/3 and Pr
x?⇠D?x

[h?(x?) � 1/2]  x3 .

Proof. We first calculate how far the distribution D
projw?
Bx0

is from being isotropic.
Since our final goal is to have a distribution whose mean is arbitrarily close to 0,
we need to bound the distance from 0 of the mean of the distribution obtained
after we condition on B and project onto w?. The following claim shows that the
mean and covariance of D

projw?
Bx0

differ from these of the initial distribution D only
by constant factors (additive for the mean and multiplicative for the covariance).

Claim 4.34. D
projw?
Bx0

is (O(1), O(1))-isotropic.

The proof of Claim 4.34 relies on Fact 4.27 and is given in Appendix C.1.
It remains to prove how the noise condition changes via the transformation. In

our argument, we are going to repeatedly use the following anti-concentration, and
anti-anti-concentration properties of log-concave distributions that follow directly
from Fact 4.27. In particular, for every interval [a, b], we have that:

1. Prx⇠Dx [x · v 2 [a, b]] = O(b� a) (anti-concentration).

2. If |a|, |b| are smaller than some absolute constant (see Fact 4.27), then it also
holds that Prx⇠Dx [x · v 2 [a, b]] = W(b� a) (anti-anti-concentration).

Using the condition q(w, w⇤) = Q(e), we can assume that w⇤ = l1w + l2(w⇤)?w ,
where l1 = cos q and l2 = sin q. It holds |l1| = 1�Q(e) and l2 = Q(e). Next we
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set x = (xw, x?), where xw = w · x and x? is the projection of x on the subspace
w?.

For some z 2 (0, 1), set x = (zs/A)1/a/2. In what follows, we shall see that z

is some absolute constant, i.e., that x = (Q(s/A))1/a. Recall that the orthogonal
projection on w? creates a “fuzzy" region, i.e., a region where h?(x?) � 1/2, see
Figure 4.2. We first show that we can control the probability that we get points
inside this “fuzzy" region. More, formally we will show that

Pr
(x?,y)⇠D?

[h?(x?) � 1/2]  x3 . (4.11)

Notice that in this part of the proof the randomness of x0 is not important and we
are able to establish a stronger claim that holds for every band Bx0 . Conditioned
on x 2 Bx0 , i.e., xw 2 [x0, x0 + s0], it holds that

w⇤ · x = l1xw + l2(w⇤)?w · x? = l1x0 + l2(w⇤)?w · x? + rs0 ,

for some r 2 [�1, 1] (recall that |l1|  1). Notice that when |l1x0 + l2(w⇤)?w ·
x?| > s0, f?(x?) is equal to the sign of w⇤ · x (recall that l2 > 0), and therefore
we are outside of the fuzzy region, see Figure 4.2. Thus, we need to bound the
probability of the event |l1x0 + l2(w⇤)?w · x?|  s0, or equivalently (w⇤)?w · x? 2
[�l1x0 � s0,�l1x0 + s0] =: Is0

x0
. We have that

Pr
x?⇠D?x

h
(w⇤)?w · x? 2 Is0

x0

i
=

Prx⇠Dx

h
(w⇤)?w · x 2 Is0

x0

i

Prx⇠Dx [x 2 Bx0 ]
= O(s0/(l2s))  x3 ,

where to bound the numerator we used the anti-concentration property of D,
Property 1, for the interval Is0

x0
of length s0, and to bound the denominator we

used the anti-anti-concentration, Property 2. The last inequality holds because
we have that l2 = Q(e) and also, from the assumptions of the lemma, we have
s0 = Q(x3se). This proves (4.11).

Now we deal with the case where |l1x0 + l2(w⇤)?w · x?|  s0, i.e., we are in
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the non-fuzzy region of Figure 4.2. This is where the randomness of x0 helps us
control the probability that the noise is close to 1/2. Recall that,

h?(x?) = Pr
(x?,y)⇠D?

h
y 6= sign((w⇤)?w · x? + x0)

i
=

Z x0+s0

x0
h(xw, x?)g(xw|x?)dxw ,

where g(xw|x?) is the density of DBx0
conditioned on x?, that is g(xw|x?) =

g(xw, x?)/
R

g(xw, x?)dxw , and g is the density of the x-marginal of DBx0
. Note

that, from Lemma 4.11, it follows that Pr[h(x) � 1/2� t | xw 2 [s, 2s + s0]] =
O(A

s ta). Therefore, Pr[h(x) > 1/2� 2x | xw 2 [s, 2s + s0]]  z, and it remains to
prove that Pr[h?(x?) > 1/2� x] is at most a small constant multiple of z with
high constant probability.

To prove this, let M(x) be the indicator of the event h(x) > 1/2 � 2x and
consider the random variable Y =

R x0+s0
x0

M(xw, x?)g(xw|x?)dxw. Observe that
the randomness of Y is over the randomly chosen x0 and x?. We will first show
that the probability that the noise function h?(x?) exceeds 1/2� x can be bounded
above by the probability that the random variable Y exceeds 1/2, that is

Pr
x?⇠D?x ,x0

[h?(x?) > 1/2� x]  Pr
x?⇠D?x ,x0

[Y � 1/2] . (4.12)

In fact, we show a stronger statement than Equation (4.12) that holds for any fixed
x0 2 [s, 2s]. To see this, let h0(x) = 1/2� 2x(1�M(x)) and notice that h0(x) � h(x)
for every x. Then, it holds

1/2� x < h?(x?) =
Z x0+s0

x0
h(xw, x?)g(xw|x?)dxw 

Z x0+s0

x0
h0(xw, x?)g(xw|x?)dxw

= 1/2� 2x + 2x
Z x0+s0

x0
M(xw, x?)g(xw|x?)dxw ,

which is equivalent to
R x0+s0

x0
M(xw, x?)g(xw|x?)dxw = Y � 1/2.

Our next step is to bound from above the probability of the event Y � 1/2. For
convenience, let f(x) be the density of the initial isotropic log-concave marginal Dx.
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Thus, we have g(xw, x?) = f(xw, x?)/ PrD[Bx0 ]. Moreover, set Q = minx02[s,2s] PrD[Bx0 ]

and recall that from Properties 1, 2 we have that for any x0 2 [s, 2s] it holds
PrD[Bx0 ] = Q(s0), and thus Q = Q(s0). We can bound from above the expectation
of Y, i.e.,

E[Y] =
Z 2s

s

1
s

Z x0+s0

x0

Z

w?
M(xw, x?)

f(xw, x?)
PrD[Bx0 ]

dx? dxw dx0

 1
sQ

Z 2s

s

Z x0+s0

x0

Z

w?
M(xw, x?)f(xw, x?)dx? dxw dx0

 s0

sQ

Z 2s+s0

s

Z

w?
M(xw, x?)f(xw, x?)dx? dxw

 s0 PrD[xw 2 [s, 2s + s0]]
sQ

Pr[h(x) > 1/2� 2x|xw 2 [s, 2s + s0]]  s0

Q
z = O(z) ,

where to get the third inequality we used the fact that for any non-negative function
g(t) it holds

Z 2s

s

Z u+s0

u
g(t)dtdu =

Z s0

0

Z 2s+u

s+u
g(t)dtdu 

Z s0

0

Z 2s+s0

s
g(t)dtdu = s0

Z 2s+s0

s
g(t)dt .

The final inequality follows from Properties 1 and 2. By Markov’s inequality, we
obtain Pr[Y � 1/2] = O(z). Therefore, combining this bound with Equation (4.12),
we obtain the probability that h(x?) > 1/2� x is at most

Pr
x?⇠D?x ,x0

[h?(x?) > 1/2� x]  Pr
x?⇠D?x ,x0

[Y � 1/2] = O(z) .

So, choosing z to be a sufficiently small absolute constant, we get that Pr(x?,y)⇠D? [h
?(x?) �

1/2]  x3 and Prx? [h
?(x?) > 1/2� x]  1/3 with probability at least 99%. This

completes the proof.

We next show how to efficiently decrease the mean of a nearly identity co-
variance log-concave distribution and make it arbitrary close to zero. We achieve
this by further conditioning. In particular, we show that we can efficiently find
a reweighting of the conditional distribution on x? such that it is approximately
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mean zero isotropic. The high-level idea to achieve this is, for some vector r, to
run rejection sampling, where x is kept with probability min(1, exp(�hr, xi)). The
problem is then to find r. We do this by finding an approximate stationary point of
an appropriately defined constrained non-convex optimization problem.

We will use the following standard fact about the convergence of projected
stochastic gradient descent (PSGD) to stationary points of smooth non-convex
functions. Consider the constrained optimization setting of minimizing a (differen-
tiable) function F in the set X . In this setting, a point x is called e-stationary, e > 0,
if for all u 2 X it holds rF(x) · u� x � �e ku� xk2. Note that if x 2 int(X ), i.e.,
x is not on the boundary of X , this inequality is equivalent to krF(x)k2  e.

Fact 4.35 (see, e.g., Ghadimi et al. (2016), Corollary 4 and Equations (4.23) and (4.25)).
Let D be a distribution supported on Rd. Let F : X 7! R be an L-smooth differentiable
function on a compact convex set X ⇢ Rd with diameter D. Let g : X ⇥Rd 7! Rd be
such that Ex⇠D[g(r, x)] = rF(r) and Ex⇠D[kg(r, x)k2

2]  s2, for some s > 0. Then
randomized projected SGD uses T = O(s3D2L2/e2) samples from D, runs poly(T, d)
time, and returns a point r0 such that with probability at least 2/3, r0 is an e-stationary
point of F.

We show the following:

Lemma 4.36. Let D be an isotropic log-concave distribution on Rd. Let w 2 Rd be
a unit vector and let B = {x 2 Rd : w · x 2 [a, b]} for a, b > 0 smaller than some
universal absolute constant. There exists an algorithm that, given g > 0 and poly(d/g)

independent samples from D
projw?
B , runs in sample polynomial time, and returns a vector r

such that if z is obtained from D
projw?
B by rejection sampling, where a sample x is accepted

with probability min(1, e�r·x), then:

• A sample is rejected with probability p, where p 2 (0, 1) is an absolute constant.

• The distribution of z is (g, O(1))-isotropic log-concave.
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Proof. For notational convenience, let D0 = D
projw?
B . First, we note that for u

any unit vector perpendicular to w and any r perpendicular to w, we can apply
Fact 4.27 to the projection of x onto the subspace spanned by u, w and r.

We denote by c the constant c3 from Fact 4.27. As a result, we have that the dis-
tribution of u · x0 will have constant probability density in a neighborhood of 0 and
will have exponential tails. Furthermore, this will still hold after rejection sampling
with probability min(1, e�r·x0). This implies that no matter what r is chosen, z will
be approximately isotropic. Moreover, z will be log-concave automatically, because
the rejection sampling multiplies the pdf by a log-concave function. Furthermore,
the probability of a sample being accepted will be at least Prx0⇠D0 [r · x0  0], which
is at least c4.

It remains to prove the second condition of the lemma. We let R be a sufficiently
large constant and apply projected SGD to find an approximate stationary point of
the non-convex function F(r) := kg(r)k2

2, where g(r) := Ex0⇠D0 [x0min(1, exp(�r ·
x0))], in the feasible set {r 2 Rd : krk2  R}. Note that g(r) is the mean of the
distribution of z.

We will need the following claim about the approximate stationary points of
F(r).

Claim 4.37. Any interior point of the feasible region, i.e., a point r such that krk2 < R,
has krF(r)k2 = W(kg(r)k2). Moreover, F has no stationary points on the boundary, i.e.,
on the set {r 2 Rd : krk2 = R}.

Proof. We show that the Jacobian matrix of g is negative definite. In particular, for
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any vector u 6= 0, we have

u · Jac(g(r))u = u ·� E
x0⇠D0

⇥
x0(x0)|1{r · x0 � 0} exp(�r · x0)

⇤
u

= � E
x0⇠D0

[1{r · x0 � 0} exp(�r · x0)(u · x0)2]

= � E
x0⇠D0


1{r · x0 � 0} exp(�r · x0)(

u
kuk2

· x0)2
�
kuk2

2

 � c2

4
e�c E

x0⇠D0


1{c � r · x0 � 0}1

⇢
u
kuk2

· x0 � c/2
��
kuk2

2

 � c5

24
e�c kuk2

2 ,

where we used Fact 4.27 which gives u · Jac(g(r))u = �O(kuk2
2). Observe that

the gradient of F at r is rF(r) = 2Jac(g(r))g(r), where Jac(g(r)) is the Jacobian
of g at point r, thus krF(r)k2 � u · Jac(g(r))g(r)/ kuk2 for any vector u. Setting
u = g(r), we have that krF(r)k2 = W(kg(r)k2).

It remains to prove that there is no stationary point on the boundary. That is, for
a point r with krk2 = R, the gradient of F at r is a negative multiple of r. It is easy
to see that, using Fact 4.27 for R at least a sufficiently large constant, g(r) · r < 0.
So, if the gradient of F at r is a negative multiple of r, we have that

0 < g(r) ·rF(r) = 2g(r) · Jac(g(r))g(r) < 0 ,

which is a contradiction.

As a result, an internal stationary point of F must have kg(r)k2 close to 0, which
would imply that the conditional distribution z with that r has mean less than g.
In the following claim, we prove that F(r) is smooth with respect the Euclidean
norm. See Appendix C.1 for the proof.

Claim 4.38. The function F(r) is L-smooth, for some L = poly(d).

Thus, by Fact 4.35, running Stochastic Gradient Descent for T = poly(d/g),
we obtain a g-stationary point, assuming we have an unbiased estimator for the
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gradient of F. Note that by taking two independent samples x(1) and x(2) from D0

and setting ĝ(r, x) = x min(1, exp(�r · x)), the quantity 2Jac(ĝ(r, x(1)))ĝ(r, x(2)) is
an unbiased estimator for rF(r). This completes our proof.

Algorithm 6 Computing a Good Initialization Vector

1: procedure WARMSTART((A, a), e, w, D)
2: Input: Samples from an O(g, O(1))-isotropic log-concave distribution that

satisfies the (a, A)-Tsybakov noise condition, and a unit vector w such that
q(w, w⇤) = Q(e).

3: Output: A vector v such that v · (w⇤)?w � (ae/A)O(1/a).
4:
5: s Q(ae/ log(A log(A)/(ae))), x  (Q(A/s))1/a, s0 = Q(x3se)
6: N  poly(d) · (A/(ae))O(1/a)

7: Let x0 be a uniform random number on [s, 2s].
8: Let D0 denote D conditioned on w · x 2 [x0, x0 + s0] and projected onto w?.
9: bD  MAKEISOTROPIC(D0, 1/ log(1/x), N)

10: x̄ Ex⇠ bDx
[x]; X̄  Ex⇠ bDx

[xx|]
11: Normalize all samples in bD with x̄ and X̄
12: T 01  E(x,y)⇠ bD[yx] and T 02  E(x,y)⇠ bD[y(xx| � I)]
13: Let V be the subspace spanned by T 01 and the eigenvectors of T 02 whose

eigenvalues have absolute value at least x.
14: return a random vector in V.
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Algorithm 7 Putting the Distribution in Nearly-Isotropic Position

1: procedure MAKEISOTROPIC(D
projw?
B , g, N)

2: Input: Samples from the log-concave distribution D
projw?
B , i.e., the log-concave

distribution D conditioned on a band B = {x : w · x 2 [a, b]} and then projected
onto w?.

3: Output: N i.i.d. samples from a (g, O(1))-isotropic log-concave distribution
obtained from D

projw?
B by rejection sampling.

4:

5: Let F(r) =
����E

x⇠D
proj

w?
B

[x min(1, exp(�r · x))]
����

2

2
6: Runs SGD on F to obtain a g-stationary point r0. . Takes poly(d/g) time.
7: S ∆
8: while |S|  N
9: Draw sample (x, y) from D

projw?
B .

10: S S [ {(x, y)} with probability min(1, exp(�r0 · x)).
11: Let DS be the uniform distribution from S.
12: return the sample DS.

We are now ready to prove Theorem 4.24.

Proof of Theorem 4.24. Using the condition q(w, w⇤) = Q(e), we can assume that
w⇤ = l1w + l2(w⇤)?w , where |l1| = 1� Q(e), and l2 = Q(e). If w · w⇤ = 0,
then we can directly apply Proposition 4.30 to obtain a vector with non-trivial
correlation. For the general case, we show how we can construct a distribution that
satisfies the conditions of Proposition 4.30.

Let s be a sufficiently small multiple of ae/ log(A log(A)/(ae)), x = (Q(s/A))1/a,
and let s0 = x3se. Finally, let x0 be a uniform random number in [s, 2s]. Consider
the conditional distribution on the random band Bx0 = {w · x 2 [x0, x0 + s0] and
projected onto w?, i.e., D

projw?
Bx0

:= D?.

Set x? = projw?x, f?(x?) = sign
⇣

x? · (w⇤)?w + l1x0
l2

⌘
, and

h?(x?) = Pr
(x?,y)⇠D?

[y 6= f?(z)|z = x?].



140

Using Lemma 4.33, we get that D? is (O(1), O(1))-isotropic and with high probabil-
ity it holds Prx?⇠D?x [h

?(x?)  1/2� x] � 2/3 and Prx?⇠D?x [h
?(x?) � 1/2]  x3.

At this point, we have that D? is approximately isotropic, but may be relatively
far from mean 0 (the mean can be at constant distance from the origin, whereas we
need it to be roughly 1/ log(1/x)). To overcome this issue, we apply Lemma 4.36.
We define D̄ to be the distribution of z that is produced according to Lemma 4.36
with g a small multiple of 1/ log(1/x), and consider the distribution on z and y.
Notice that y is a noisy version of f?(x) (with noise rate h?(x?)), because rejection
sampling does not increase the noise rate. Moreover, the mean of z · (w⇤)?w + l1x0

l2

is at most g + O(s/e), which is a sufficiently small multiple of 1/ log(1/x). This
means that we can apply Proposition 4.30 to the distribution on (z, y), yielding our
final result.

Proof of Theorem 4.23

Using Theorem 4.24, we can prove Theorem 4.23. The proof is similar to the proof
of Theorem 4.5, but we additionally need to guess how far the current guess w is
from w⇤.

Proof of Theorem 4.23. First, we guess a value e such that kw�w⇤k2 = Q(e), where
e = W(q). From Proposition 4.8, for r = O(q(ae/A)O(1/a)), the distribution
Dpw

B is (2, W(r), 1/r, O(1/r log(1/r))-well-behaved and satisfies the (a, O(A/r))-
Tsybakov noise condition, where we used (from Fact 4.27) that the values L, R
are absolute constants. Using Theorem 4.24, a random unit vector v 2 Rd with
constant probability d1 satisfies v · (w⇤)?w � (ae/A)O(1/a). We call this event E .

Conditioning on the event E , from Proposition 4.13, using b4

q2

⇣
A
qa

⌘O(1/a2)
log(1/d)

samples, with probability 1� d, we get a (v0, R, t0) such that

E
(x,y)⇠Dpw

B

⇥
1[�R  v0 · x  �t0]y

⇤
 � (qa/A)O(1/a2) /b .
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Using Lemma 4.9, we get that

E
(x,y)⇠D

[Tw(x)x · wy]  � (qa/A)O(1/a2) /b .

Conditioning on the event E c, where E c is the complement of E , Algorithm 5
either returns a certificate or returns nothing. Thus, by taking k = O(log(1/d))

random vectors, we get that the probability that event E c happens is at most
(1� d1)k  e�d1k. Thus, by taking O(log 1/d) random vectors and running Algo-
rithm 5 with confidence d/ log(1/d), we get a certificate with probability 1� 2d.
Moreover, the number of samples needed to construct the empirical distribution is
⇣

A
qa

⌘O(1/a2)
log(1/d). Finally, to guess the value of e, it suffices to run the algorithm

for the values q, 2q, . . . , 1 which will increase the complexity by a log(1/q) factor.
This completes the proof of Theorem 4.23.

4.5 Learning a Near-Optimal Halfspace via Online
Convex Optimization

In this section we present a black-box approach that uses our certificate algorithms
from the previous sections to learn halfspaces in the presence of Tsybakov noise.
In more detail, we provide a generic result showing that one can apply a certificate
oracle in a black-box manner combined with online gradient descent to learn the
unknown halfspace. We note that an essentially identical approach, with slightly
different formalism, was given in Diakonikolas et al. (2021b).

Using the aforementioned approach, we establish the two main algorithmic
results of this paper.

Theorem 4.39 (Learning Tsybakov Halfspaces under Well-Behaved Distributions).
Let D be a (3, L, R, U, b)-well-behaved isotropic distribution on Rd ⇥ {±1} that satis-
fies the (a, A)-Tsybakov noise condition with respect to an unknown halfspace f (x) =

sign(w⇤ · x). There exists an algorithm that draws N = b4
⇣

d U A
RL e

⌘O(1/a)
log (1/d) sam-
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ples from D, runs in poly(N, d) time, and computes a vector bw such that, with probability
1� d, we have that errDx

0�1(h bw, f )  e.

For the important special case of log-concave distributions on examples, we
give a more efficient learning algorithm.

Theorem 4.40 (Learning Tsybakov Halfspaces under Log-concave Distributions).
Let D be a distribution on Rd ⇥ {±1} that satisfies the (a, A)-Tsybakov noise condition
with respect to an unknown halfspace f (x) = sign(w⇤ · x) and is such that Dx is isotropic

log-concave. There exists an algorithm that draws N = poly(d) ·
⇣

A
e

⌘O(1/a2)
log (1/d)

samples from D, runs in poly(N, d) time, and computes a vector bw such that, with
probability 1� d, we have that errDx

0�1(h bw, f )  e.

To formally describe the approach of this section, we require the notion of
a certificate oracle. A certificate oracle is an algorithm that, given a candidate
weight vector w and an accuracy parameter r > 0, it returns a certifying function
T(x). Recall that a certifying function is a non-negative function that satisfies
E(x,y)⇠D[T(x)yx · w]  �r for some r > 0. We have already described how to
efficiently implement such an oracle in Section 4.3.

Definition 4.41 (Certificate Oracle). Let D be a distribution on Rd ⇥ {±1}that satis-
fies the (a, A)-Tsybakov noise condition with respect to an unknown halfspace f (x) =

sign(w⇤ · x). For a decreasing function r(·) : R+ 7! R+, we define C(w, q, d) to be the
following r-certificate oracle: For any unit vector w and q > 0, if q(w, w⇤) � q, then a
call to C(w, q, d), with probability at least 1� d, returns a function T(x), with kTk•  1
such that

E
(x,y)⇠D

[T(x)yx · w]  �r(q) ,

and with probability at most d returns “FAIL”.

Remark 4.42. We note that the above oracle provides a “one-sided” guarantee in the
following sense. When the candidate vector w satisfies q(w, w⇤) � q, the oracle is
required to return a certifying function T with high probability. But it may also return
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such a function when q(w, w⇤)  q. In other words, the oracle is not required to output
“FAIL" with high probability when w is nearly parallel to w⇤. We show that an one-sided
oracle of non-optimality suffices for our purposes.

Remark 4.43. By Fact 3.3, the optimal halfspace w⇤ satisfies E(x,y)⇠D[T(x) yx · w⇤] � 0
for any non-negative function T. Therefore, as w approaches w⇤, we have that

lim
q(w,w⇤)!0

inf
T:kTk•1

E
(x,y)⇠D

[T(x) yx · w] = 0,

where kTk• is the `• norm for functions, i.e., kTk• = supx2Rd |T(x)|. That is,
limq!0 r(q) = 0 and it is natural that the non-negative function r(q) is a decreas-
ing function of the (lower bound on the) angle between w and w⇤. Intuitively, the closer w
is to w⇤, the harder it is to find a certifying function T that makes E(x,y)⇠D[T(x) yx · w]

sufficiently negative. Moreover, if our goal is to estimate the vector w⇤ within angle e, we
can always give the oracle this worst-case target angle, i.e., q = e. Finally, notice that
when the distribution D is isotropic, we have r(q)  1, as follows from kTk•  1 and the
Cauchy-Schwarz inequality.

Given a certificate oracle, the following result shows we can efficiently approxi-
mate the optimal halfspace using projected online gradient descent.

Proposition 4.44 (Certificate-Based Optimization). Let D be a (3, L, R, b)-well-behaved
isotropic distribution on Rd ⇥ {±1} that satisfies the (a, A)-Tsybakov noise condition
with respect to an unknown halfspace f (x) = sign(w⇤ · x), and let C be a r-certificate

oracle. There exists an algorithm that makes at most T = 1
r2(e)

1
a

⇣
A

R L

⌘O(1/a)
calls to

C(·), draws N = d Tb2

r2(e)
log

⇣
dT

dr(e)

⌘
samples from D, runs in time poly(T, N, d), and

computes a weight vector bw such that with probability 1� d we have that q( bw, w⇤)  e .

The algorithm establishing Proposition 4.44 is given in pseudocode in Algo-
rithm 8. In the remaining part of this section, we provide a proof sketch of Proposi-
tion 4.44. The full argument is given in Appendix C.2.
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Proof Sketch. The main idea of the algorithm is to provide a sequence of adaptively
chosen convex loss functions to an Online Convex Optimization algorithm, for
example Online Gradient Descent (OGD). In more detail, we construct these loss
functions using our certificate oracle C. At round t, we call the certificate oracle to
obtain a certifying function T(x) and set

`t(w) = � E
(x,y)⇠D

[(T(x) + l)yx] · w ,

where l > 0 acts similarly to a regularizer. The term l E(x,y)⇠D[yx] · w prevents the
trivial vector w = 0 from being a valid solution (in the sense of one that minimizes
regret, see also the full proof in Appendix C.2).

The crucial property of the above sequence of loss functions is that they are
positive and bounded away from 0 when w is far from w⇤. Their value will always
be greater than (roughly) r(e), given the guarantee of our certificate oracle from
Definition 4.41 for q = e and assuming that the regularizer l is sufficiently small.

We then provide this convex loss function to the OGD algorithm that updates
the guess according to the gradient of `t(w). Our analysis follows from the regret
guarantee of OGD. Since we provide convex (and in particular linear) loss func-
tions to OGD, we know the average regret will converge to 0 as T ! • with a
convergence rate roughly O(1/

p
T). This means that the oracle can only succeed

in returning certifying functions for a bounded number of rounds, since every
time the oracle succeeds, OGD suffers loss of at least r(e). Therefore, after roughly
1/r(e)2 rounds the regret will be so small that for at least one round the certificate
oracle must have failed. Our algorithm then stops and returns the halfspace of that
iteration. Even though our certificate is “one-sided", we know that the probability
that it failed with q(w, w⇤) being larger than e is very small, which implies that we
have indeed found a vector w very close to w⇤.
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Algorithm 8 Learning Halfspaces with Tsybakov Noise using a r-certificate oracle
C

1: procedure ALG(e, d, D, C) . e: accuracy, d: confidence
2: Input: D is a (3, L, R, b)-well-behaved distribution that satisfies the (a, A)-

Tsybakov noise condition, and C is a r-certificate oracle.
3: Output: A vector bw such that errDx

0�1(h bw, f )  e with probability at least 1� d.
4: w(0)  e1

5: T  1
r(e)2a

⇣
A

R L

⌘O(1/a)

6: Draw N = Õ
⇣

d · Tb2

r2(e)
log

⇣
1
d

⌘⌘
samples from D to form the empirical

distribution bD
7: for t = 1, . . . , T do
8: ht  1/(

p
t + r(e))

9: if w(t�1) = 0 then
10: Set ˆ̀t(w) w ·�E(x,y)⇠ bD

h
r(e)

2 yx
i

11: w(t)  PB
⇣

w(t�1) � htrw ˆ̀t
⇣

w(t�1)
⌘⌘

12: else
13: ANS  C(w(t�1)/

���w(t�1)
���

2
, e, d/T)

14: if ANS = FAIL then
15: return w(t�1)

16: Tw(t) (x) ANS

17: Set ˆ̀t(w) w ·�E(x,y)⇠ bD

h⇣
Tw(t) (x) + r(e)

2

⌘
yx
i

18: w(t)  PB
⇣

w(t�1) � htrw ˆ̀t
⇣

w(t�1)
⌘⌘

. B = {x 2 Rd : kxk2  1}

Given Proposition 4.44, it is straightforward to prove our main results. Here we
give the proof for the case of log-concave densities and provide a similar argument
for well-behaved distributions in Appendix C.2.

Proof of Theorem 4.40. First, we require a r-certificate oracle for log-concave distri-
butions. The algorithm of Theorem 4.23 returns a function Tw such that

E
(x,y)⇠D

[Tw(x)yw · x]  � (q/A)O(1/a2) .
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From the definition of Tw (i.e., Equation (4.3)), it is clear that kTwk•  1
minx2B |w·x| ⇣

log A
aq

⌘O(1/a)
, where B is the band from Equation (4.3). Note that the function

Tw/ kTwk• satisfies the conditions of the r-certificate oracle. Thus, by scaling the
output of the algorithm of Theorem 4.23, we obtain a (qa/A)O(1/a2)-certificate
oracle. From Proposition 4.44, this gives us an algorithm that returns a vector
bw such that q( bw, w⇤)  e

log2(1/e)
with probability 1� d. Using the fact that for

log-concave distributions errDx
0�1(h bw, f )  O

⇣
log2(1/e)q( bw, w⇤)

⌘
+ e (Claim C.12)

the result follows.
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5 NOISY LABEL RANKING

5.1 Formal Statement of the Results

Our main contributions are the first efficient algorithms for learning LSFs with
bounded noise with respect to Kendall’s Tau distance and top-r disagreement loss.

Learning in Kendall’s Tau Distance. The most standard metric in rankings
Shalev-Shwartz and Ben-David (2014a) is Kendall’s Tau (KT) distance which, for
two rankings p, t 2 Sk, measures the fraction of pairs (i, j) on which they disagree.
That is, DKT(p, t) = Âi�p j 1{i �t j}/(k

2). Our first result is an efficient learning
algorithm that, given samples from an h-noisy linear label ranking distribution D,
computes a parameter matrix W that ranks the alternatives almost optimally with
respect to the KT distance from the ground-truth ranking sW?(·).

Theorem 5.1 (Learning LSFs in KT Distance). Fix h 2 [0, 1/2) and e, d 2 (0, 1).
Let D be an h-noisy linear label ranking distribution satisfying the assumptions of
Definition 1.10 with ground-truth LSF sW?(·). There exists an algorithm that draws
N = eO

⇣
d

e(1�2h)6 log(k/d)
⌘

samples from D, runs in sample-polynomial time, and

computes a matrix W 2 Rk⇥d such that, with probability at least 1� d,

E
x⇠Nd

[DKT(sW (x), sW?(x))]  e .

Theorem 5.1 gives the first efficient algorithm with provable guarantees for the
supervised problem of learning noisy linear rankings. We remark that the sample
complexity of our learning algorithm is qualitatively optimal (up to logarithmic
factors) since, for k = 2, our problem subsumes learning a linear classifier with
Massart noise 1 for which W(d/e) are known to be information theoretically nec-
essary Massart and Nédélec (2006). Moreover, our learning algorithm is proper in
the sense that it computes a linear sorting function sW (·). As opposed to improper

1Notice that in this case Kendall’s Tau distance is simply the standard 0-1 binary loss.
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learners (see also Section 5.2), a proper learning algorithm gives us a compact rep-
resentation (storing W requires O(kd) memory) of the sorting function that allows
us to efficiently compute (with runtime O(kd + k log k)) the ranking corresponding
to a fresh datapoint x 2 Rd.

Learning in top-r Disagreement. We next present our learning algorithm for
the top-r metric formally defined as Dtop�r(p, t) = 1{p1..r 6= t1..r}, where by p1..r

we denote the ordering on the first r elements of the permutation p. The top-r
metric is a disagreement metric in the sense that it takes binary values and for
r = 1 captures the standard (multiclass) top-1 classification loss. We remark that, in
contrast with the top-r classification loss, which only requires the predicted label to
be in the top-r predictions of the model, the top-r ranking metric that we consider
here requires that the model puts the same elements in the same order as the ground
truth in the top-r positions. The top-r ranking is well-motivated as, for example,
in ad targeting (discussed in Section 5.1) we want to be accurate on the top-r ad
categories for a user so that we can diversify the content that they receive.

Theorem 5.2 (Learning LSFs in top-r Disagreement). Fix h 2 [0, 1/2), r 2 [k]
and e, d 2 (0, 1). Let D be an h-noisy linear label ranking distribution satisfying the
assumptions of Definition 1.10 with ground-truth LSF sW?(·). There exists an algorithm
that draws N = eO

⇣
drk

e(1�2h)6 log(1/d)
⌘

samples from D, runs in sample-polynomial time

and computes a matrix W 2 Rk⇥d such that, with probability at least 1� d,

E
x⇠Nd

[Dtop�r(sW (x), sW?(x))]  e .

As a direct corollary of our result, we obtain a proper algorithm for learning
the top-1 element with respect to the standard 0-1 loss that uses eO(kd) samples. In
fact, for small values of r, i.e., r = O(1), our sample complexity is essentially tight.
It is known that Q(kd) samples are information theoretically necessary Natarajan
(1989) for top-1 classification. 2 For the case r = k, i.e., when we want to learn

2Strictly speaking, those lower bounds do not directly apply in our setting because our labels
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the whole ranking with respect to the 0-1 loss, our sample complexity is O(k2d).
However, using arguments similar to Daniely et al. (2011), one can show that in
fact O(dk) ranking samples are sufficient in order to learn the whole ranking with
respect to the 0-1 loss. In this case, it is unclear whether a better sample complexity
can be achieved with an efficient algorithm and we leave this as an interesting
open question for future work.

5.2 Overview of Techniques

Learning in Kendall’s Tau distance. Our proper learning algorithm consists of
two steps: an improper learning algorithm that decomposes the ranking problem
to O(k2) binary linear classification problems and a convex (second order conic)
program that “compresses” the k2 linear classifiers to obtain a k⇥ d matrix W . Our
improper learning algorithm splits the ranking learning problem into O(k2) binary,
d-dimensional linear classification problems with Massart noise. In particular,
for every pair of elements i, j 2 [k], each binary classification task asks whether
element i is ranked higher than element j in the ground-truth permutation sW?(x).
As we already discussed, we have that, under the Gaussian distribution, there exist
efficient Massart learning algorithms Balcan and Zhang (2017b); Mangoubi and
Vishnoi (2019b); Diakonikolas et al. (2020e); Zhang et al. (2020a); Zhang and Li
(2021) that can recover linear classifiers sign(vij · x) that correctly order the pair
i, j for all x apart from a region of O(e)-Gaussian mass. However, we still need to
aggregate the results of the approximate binary classifiers in order to obtain a ranking
of the k alternatives for each x. We first show that we can design a “voting scheme”
that combines the results of the binary classifiers using an efficient constant factor
approximation algorithm for the Minimum Feedback Arc Set (MFAS) problem
Ailon et al. (2008). This gives us an efficient but improper algorithm for learning
LSFs in Kendall’s Tau distance. In order to obtain a proper learning algorithm, we

are whole rankings instead of just the top classes but, in the Appendix D.4, we show that we can
adapt the lower bound technique of Daniely et al. (2011) to obtain the same sample complexity
lower bound for our ranking setting.
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further “compress” the O(k2) approximate linear classifiers with normal vectors vij

and obtain a matrix W 2 Rk⇥d with the property that the difference of every two
rows Wi �Wj is O(e)-close to the vector vij. More precisely, we show that, given
the linear classifiers vij 2 Rd, we can efficiently compute a matrix W 2 Rk⇥d such
that the following angle distance with W? is small:

dangle(W , W?) , max
i,j

q(Wi �Wj, W?
i �W?

j )  O(e) . (5.1)

It is not hard to show that, as long as the above angle metric is at most O(e),
then (in expectation over the standard Gaussian) Kendall’s Tau distance between
the LSFs is also O(e). A key technical difficulty that we face in this reduction is
bounding the “condition number” of the convex (second order conic) program that
finds the matrix W given the vectors vij, see Claim 5.6. Finally, we remark that
the proper learning algorithm of Theorem 5.1 results in a compact and efficient
sorting function that requires: (i) storing O(k) weight vectors as opposed to the
initial O(k2) vectors of the improper learner; and (ii) evaluating k inner products
with x to find its ranking (instead of O(k2)).

Learning in top-r Disagreement. We next turn our attention to the more challeng-
ing top-r ranking disagreement metric. In particular, suppose that we are interested
in recovering only the top element of the ranking. One approach would be to di-
rectly use the improper learning algorithm for this task and ask for KT distance
of order roughly e/k2. The resulting hypothesis would produce good predictions
for the top element but the required sample complexity would be O(dk2). While
it seems that training O(k2) d-dimensional binary classifiers inherently requires
O(dk2) samples, we show that, using the proper KT distance learning algorithm
of Theorem 5.1, we can also obtain improved sample complexity results for the
top-r metric. Our main technical contribution here is a novel estimate of the top-r
disagreement in terms of the angle metric. In general, one can show that the
top-r disagreement is at most O(k2) dangle(W , W?). We significantly sharpen this
estimate by showing the following lemma.
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Lemma 5.3 (Top-r Disagreement via Parameter Distance). Consider two matrices
W , W? 2 Rk⇥d and let Nd be the standard Gaussian in d dimensions. We have that

Pr
x⇠Nd

[s1..r(Wx) 6= s1..r(W?x)]  eO(kr) dangle(W , W?) .

We remark that Lemma 5.3 is a general geometric tool that we believe will
be useful in other distribution-specific multiclass learning settings. The proof of
Lemma 5.3 mainly relies on geometric Gaussian surface area computations that
we believe are of independent interest. For the details, we refer the reader to
Section 5.5. An interesting question with a convex-geometric flavor is whether the
sharp bound of Lemma 5.3 also holds under the more general class of isotropic
log-concave distributions.

5.3 Notation and Preliminaries

General Notation. We use eO(·) to omit poly-logarithmic factors. A learning
algorithm has sample-polynomial runtime if it runs in time polynomial in the size
of the description of the input training set. We denote vectors by boldface x (with
elements xi) and matrices with W , where we let Wi 2 Rd denote the i-th row of
W 2 Rk⇥d and Wij its elements. We denote a · b the inner product of two vectors
and q(a, b) their angle. Let Nd denote the d-dimensional standard normal and G(·)
the Gaussian surface area.

Rankings. We let argsorti2[k]v denote the ranking of [k] in decreasing order
according to the values of v. For a ranking p, we let p(i) denote the position of
the i-th element. If p = p(x), we may also write p(x)(i) to denote the position of
i. We often refer to the elements of a ranking as alternatives. For a ranking s, we
let s1..r denote the top-r part of s. When s = s(x), we may also write s1..r(x) and
s`(x) will be the alternative at the `-th position. We let DKT denote the (normalized)
KT distance, i.e., DKT(p, t) = Âi�p j 1{i �t j}/(k

2) for p, t 2 Sk.
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5.4 Learning in KT distance: Theorem 5.1

In this section, we present the main tools required to obtain our proper learning
algorithm of Theorem 5.1. Our proper algorithm adopts a two-step approach:
it first invokes an efficient improper algorithm which, instead of a linear sorting
function (i.e., a matrix W 2 Rk⇥d), outputs a list of O(k2) linear classifiers. We
then design a novel convex program in order to find the matrix W satisfying the
guarantees of Theorem 5.1. Let us begin with the improper learner for LSFs with
bounded noise with respect to the KT distance, whose description can be found in
Algorithm 9.

Improper Learning Algorithm

Algorithm 9 Non-proper Learning Algorithm ImproperLSF

Input: Training set T = {(xt, pt)}t2[N], e, d 2 (0, 1), h 2 [0, 1/2)
Output: Sorting function h : Rd ! Sk

For any 1  i < j  k, create Tij = {(xt, sign(pt(i)� pt(j)))}
For any 1  i < j  k, compute vij = MassartLTF(Tij, e

4 , d
10k2 , h) . See Appendix

D.1
Ranking Phase: Given x 2 Rd:

(a) Construct directed graph G with V(G) = [k] and edges ei!j only if
vij · x > 0 8i 6= j

(b) Output h(x) = MFAS(G) . See Appendix D.1

Let us assume that the target function is s?(x) = sW?(x) = argsort(W?x) for
some W? 2 Rk⇥d.

Step 1: Binary decomposition and Noise Structure. For each drawn example
(x, p) from the h-noisy linear label ranking distribution D (see Definition 1.10), we
create (k

2) binary examples (x, yij) with yij = sign(p(i)� p(j)) for any 1  i < j 
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k. We have that

Pr
(x,p)⇠D

h
yij · sign((W?

i �W?
j ) · x) < 0 | x

i

= Pr
p⇠M(s?(x))

h
p(i) < p(j) | W?

i · x < W?
j · x

i
.

Since M(s?(x)) is an h-noisy ranking distribution (see Definition 1.9), we get that
the above quantity is at most h < 1/2. Therefore, each sample (x, yij) can be
viewed as a sample from a distribution Dij with Gaussian x-marginal, optimal
linear classifier sign((W?

i �W?
j ) · x), and Massart noise h. Hence, we have reduced

the task of learning noisy LSFs to a number of (k
2) sub-problems concerning the

learnability of halfspaces in the presence of bounded (Massart) noise.

Step 2: Solving Binary Sub-problems. We can now apply the algorithm MassartLTF

for LTFs with Massart noise under standard Gaussian marginals Zhang et al. (2020a)
(for details, see Appendix D.1): for all the pairs of alternatives 1  i < j  k
with accuracy parameter e0, confidence d0 = O(d/k2), and a total number of
N = eW

⇣
d

e0(1�2h)6 log(k/d)
⌘

i.i.d. samples from D, we can obtain a collection of
linear classifiers with normal vectors vij for any i < j. We remark that each one
of these halfspaces vij achieves e disagreement with the ground-truth halfspaces
W?

i �W?
j with high probability, i.e.,

Pr
x⇠Nd

[sign(vij · x) 6= sign((W?
i �W?

j ) · x)]  e0 .

Step 3: Ranking Phase. We now have to aggregate the linear classifiers and
compute a single sorting function h : Rd ! Sk. Given an example x, we create the
tournament graph G with k nodes that contains a directed edge ei!j if vij · x > 0.
If G is acyclic, we output the induced permutation; otherwise, the graph contains
cycles which should be eliminated. In order to output a ranking, we remove
cycles from G with an efficient, 3-approximation algorithm for MFAS Ailon et al.
(2008); Van Zuylen and Williamson (2009). Hence, the output h(x) and the true
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target s?(x) will have Ex⇠Nd [DKT(h(x), s?(x))]  e0+ 3e0 = 4e0 . This last equation
indicates why a constant factor approximation algorithm suffices for our purposes
– we can always pick e0 = e/4 and complete the proof. For details, see Appendix
D.1.

Proper Learning Algorithm: Theorem 5.1

Having obtained the improper learning algorithm, we can now describe our proper
Algorithm 10. Initially, the algorithm starts similarly with the improper learner
and obtains a collection of binary linear classifiers. The crucial idea is the next step:
the design of an appropriate convex program which will efficiently give the matrix
W . We proceed with the details. For the proof, see Appendix D.1.

Algorithm 10 Proper Learning Algorithm ProperLSF

Input: Training set T = {(xt, pt)}t2[N], e, d 2 (0, 1), h 2 [0, 1/2)
Output: Linear Sorting function h : Rd ! Sk, i.e., h(·) = sW (·) for some matrix
W 2 Rk⇥d

Compute (vij)1i<jk = ImproperLSF(T, e, d, h) . See Algorithm 9
Setup the CP 5.2 and compute W = Ellipsoid(CP) . See Appendix D.1
Ranking Phase: Given x 2 Rd, output h(x) = argsort(Wx)

Step 1: Calling Non-proper Learners. As a first step, the algorithm calls
Algorithm 9 with parameters e, d and h 2 [0, 1/2) and obtains a list of linear
classifiers with normal vectors vij for i < j. Without loss of generality, assume that
kvijk2 = 1.

Step 2: Designing and Solving the CP 5.2. Our main goal is to find a matrix W
whose LSF is close to the true target in KT distance. We show the following lemma
that connects the KT distance between two LSFs with the angle metric dangle(·, ·)
defined in Eq. (5.1). The proof can be found in the Appendix D.1.

Lemma 5.4. For W , W? 2 Rk⇥d, it holds Ex⇠Nd [DKT(sW (x), sW?(x))]  dangle(W , W?) .
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The above lemma states that, for our purposes, it suffices to control the dangle

metric between the guess W and the true matrix W?. It turns out that, given
the binary classifiers vij, we can design a convex program whose solution will
satisfy this property. Thinking of the binary classifier vij as a proxy for W?

i �W?
j ,

we want each difference Wi �Wj to have small angle with vij or equivalently to
have large correlation with it, i.e., (Wi �Wj) · vij ⇡ kWi �Wjk2. To enforce this
condition, we can therefore use the second order conic constraint (Wi �Wj) · vij �
(1� f)kWi �Wjk2. We formulate the following convex program 5.2 with variable
the matrix W :

Find W 2 Rk⇥d, kWkF  1,

such that (Wi �Wj) · vij � (1� f) · kWi �Wjk2 for any 1  i < j  k,
(5.2)

for some f 2 (0, 1) to be decided. Intuitively, since any vij has good correlation
with W?

i �W?
j (by the guarantees of the improper learning algorithm) and the CP

5.2 requires that its solution W similarly correlates well with vij, we expect that
dangle(W , W?) will be small. We show that:

Claim 5.5. The convex program 5.2 is feasible and any solution W of 5.2 satisfies
dangle(W , W?)  e.

To see this, note that any solution of CP 5.2 is a matrix W whose angle metric
(see Eq. (5.1)) with the true matrix is small by an application of the triangle
inequality between the angles of (vij, Wi �Wj) and (vij, W?

i �W?
j ) for any i 6= j.

We next have to deal with the feasibility of CP 5.2. Our goal is to determine the
value of f that makes the CP 5.2 feasible. For the pair 1  i < j  k, the guess vij

and the true normal vector W?
i �W?

j satisfy, with high probability,

Pr
x⇠Dx

[sign(vij · x) 6= sign((W?
i �W?

j ) · x)]  e . (5.3)

Under the Gaussian distribution (which is rotationally symmetric), it is well known
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that the angle q(u, v) between two vectors u, v 2 Rd is equal to p · Prx⇠Nd [sign(u ·
x) 6= sign(v · x)]. Hence, using Eq. (5.3), we get that the angle between the guess
vij and the true normal vector W?

i �W?
j is q(W?

i �W?
j , vij)  ce. For sufficiently

small e, this bound implies that the cosine of the above angle is of order 1� (ce)2

and so the following inequality will hold (since vij is unit):

(W?
i �W?

j ) · vij � (1� 2(ce)2) · kW?
i �W?

j k2 .

Hence, by setting f = 2(ce)2, the convex program 5.2 with variables W 2 Rk⇥d

will be feasible; since kW?kF  1 comes without loss of generality, W? will be a
solution with probability 1� d.

Next, we have to control the volume of the feasible region. This is crucial in
order to apply the ellipsoid algorithm (for details, see in Appendix D.1) and, hence,
solve the convex program. We show the following claim (see Appendix D.1 for the
proof):

Claim 5.6. There exists r � 2�poly(d,k,1/e,log(1/d)) so that the feasible set of CP 5.2 with
f = O(e2) contains a ball (with respect to the Frobenius norm) of radius r.

Critically, the runtime of the ellipsoid algorithm is logarithmic in 1/r. So, the
ellipsoid runs in time polynomial in the parameters of the problem and outputs
the desired matrix W .

5.5 Learning in top-r Disagreement: Theorem 5.2

In this section we show that the proper learning algorithm of Section 5.4 learns
noisy LSFs in the top-r disagreement metric. We have seen that, with eO(d log(k)/e)

samples, Algorithm 10 of Section 5.4 computes a matrix W such that dangle(W , W?) 
e, see Claim 5.5. Let us be more specific. Lemma 5.4 relates the expected KT dis-
tance with the angle metric of the two matrices (see also Equation (5.1)). Our
Algorithm 10 essentially gives an upper bound on this angle metric. When we shift
our objective and our goal is to control the top-r disagreement, we can still apply
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Algorithm 10 which essentially controls the angle metric. The crucial ingredient
that is missing is the relation between the loss we have to control, i.e., the expected
top-r disagreement and the angle metric of Equation 5.1. This relation is presented
right after and essentially says that the expected top-r disagreement is at most
O(kr) times this angle metric. Hence, in order to get top-r disagreement of order e,
it suffices to apply our Algorithm 10 with e0 = O(e/(kr)).

We continue with our main contribution which is the following lemma that
connects the top-r disagreement metric with the geometric distance dangle(·, ·),
recall Lemma 5.3. To keep this sketch simple we shall present a sketch of the proof
of Lemma 5.3 for the special case of top-1 classification, which we restate below.
The proof of the top-1 case can be found at the Appendix D.2. The detailed proof
of the general case (r > 1) can be found in the Appendix D.3.

Lemma 5.7 (Top-1 Disagreement Loss via dangle(·, ·)). Consider two matrices U, V 2
Rk⇥d and let Nd be the standard Gaussian in d dimensions. We have that

Pr
x⇠Nd

[s1(Ux) 6= s1(V x)]  O
⇣

k
p

log k
⌘

dangle(U, V) .

We observe that

Pr
x⇠Nd

[s1(Ux) 6= s1(V x)] = Â
i2[k]

Pr
x⇠Nd

[s1(Ux) = i, s1(V x) 6= i] . (5.4)

We denote by C(i)
U , 1{x : s1(Ux) = i} = ’j 6=i 1{(Ui �Uj) · x � 0}, i.e., this is the

set where the ranking corresponding to U picks i as the top element. Note that
C(i)

U is the indicator of a homogeneous polyhedral cone since it can be written as
the intersection of homogeneous halfspaces. Using these cones we can rewrite the
top-1 disagreement of Eq. (5.4) as

Pr
x⇠Nd

[s1(Ux) 6= s1(V x)] = Â
i2[k]

Pr
x⇠Nd

[C(i)
U (x) = 1, C(i)

V (x) = 0] . (5.5)

Hence, our task is to control the mass of the disagreement region of two cones. The



158

next Lemma 5.8 achieves this task and, combined with Eq. (5.5) directly gives the
conclusion of Lemma 5.7.

Next we work with two general homogeneous polyhedral cones with set indi-
cators C1, C2:

Lemma 5.8 (Cone Disagreement). Let C1, C2 : Rd 7! {0, 1} be homogeneous polyhedral
cones defined by the k unit vectors v1, . . . , vk and u1, . . . , uk respectively. For some univer-
sal constant c > 0, it holds that Prx⇠Nd [C1(x) 6= C2(x)]  c

p
log k maxi2[k] q(vi, ui) .

Roadmap of the Proof of Lemma 5.8: Assume that we rotate one face of
the polyhedral cone C1 by a very small angle q to obtain the perturbed cone C2.
At a high-level, we expect the probability of the disagreement region between
the new cone C2 and C1 to be roughly (this is an underestimation) equal to the
size of the perturbation q times the (Gaussian) surface area of the face of the
convex cone that we perturbed. The Gaussian Surface Area (GSA) of a convex set
A ⇢ Rd, is defined as G(A) ,

R
∂A fd(x)dµ(x), where dµ(x) is the standard surface

measure in Rd and fd(x) = (2p)�d/2 · exp(�kxk2
2/2). In fact, in Claim 5.10 below,

we show that the probability of the disagreement between C1 and C2 is roughly
O(q)G(F1)

p
log(1/G(F1) + 1), where F1 is the face of cone C1 that we rotated. Now,

when we perturb all the faces by small angles (all perturbations are at most q), we
can show (via a sequence of triangle inequalities) that the total probability of the
disagreement region is bounded above by the perturbation size q times the sum of
the Gaussian surface area of every face (times a logarithmic blow-up factor):

Pr
x⇠Nd

[C1(x) 6= C2(x)]  O(q)
k

Â
i=1

G(Fi)
q

log(1/G(Fi) + 1) .

Surprisingly, for homogeneous convex cones, the above sum cannot grow very
fast with k. In fact, we show that it can be at most O(

p
log k). To prove this, we

crucially rely on the following convex geometry result showing that the Gaussian
surface area of a homogeneous convex cone is O(1) regardless of the number of its
faces k.
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Lemma 5.9 (Nazarov (2003b)). Let C be a homogeneous polyhedral cone with k faces
F1, . . . , Fk. Then C has Gaussian surface area G(C) = Âk

i=1 G(Fi)  1.

Using an inequality similar to the fact that the maximum entropy of a discrete
distribution on k elements is at most log k, and, since, from Lemma 5.9, it holds
that Âk

i=1 G(Fi)  1, we can show that Âk
i=1 G(Fi)

p
log(1/G(Fi) + 1) = O(

p
log k).

Therefore, with the above lemma we conclude that, if the maximum angle pertur-
bation that we perform on C1 is q, then the probability of the disagreement region
is O(q). We next give the formal proof resulting in the upper bound of O(

p
log k q)

for the disagreement.
Single Face Perturbation Bound: Claim 5.10: We will use the following no-

tation for the positive orthant indicator R(z) = ’k
i=1 1{zi � 0}. Notice that the

homogeneous polyhedral cone C1 can be written as C1(x) = R(V x) = R(v1 ·
x, . . . , vk · x). Claim 5.10 below shows that the disagreement of two cones that
differ on a single normal vector is bounded by above by the Gaussian surface area
of a particular face F1 times a logarithmic blow-up factor

p
log(1/G(F1) + 1).

Claim 5.10. Let v1, . . . , vk 2 Rd and r 2 Rd with q(v1, r)  q for some sufficiently
small q 2 (0, p/2). Let F1 be the face with v1 · x = 0 of the cone R(V x) and c > 0 be
some universal constant. Then,

Pr
x⇠Nd

h
R(v1 · x, . . . , vk · x) 6= R(r · x, v2 · x, . . . , vk · x)

i

 c · q · G(F1)

s

log
✓

1
G(F1)

+ 1
◆

.

Proof Sketch of Claim 5.10. Since the constraints v2 · x � 0, . . . , vk · x � 0 are com-
mon in the two cones, we have that R(v1 · x, . . . , vk · x) 6= R(r · x, v2 · x, . . . , vk · x)
only when the first “halfspaces” disagree, i.e., when (v1 · x)(r · x) < 0. Thus, we
have that the LHS probability of Claim 5.10 is equal to

E
x⇠Nd

[R(v2 · x, . . . , vk · x) · 1{(v1 · x)(r · x) < 0}] . (5.6)
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This expectation contains two terms: the term R(v2 · x, . . . vk · x) that contains
the last k� 1 common constrains of the two cones and the region where the first
two halfspaces disagree, i.e., the set {x : (v1 · x)(r · x) < 0}. In order to upper
bound this integral in terms of the angle q, we observe that (for q sufficiently
small) it is not hard to show (see Appendix B) that the disagreement region, which
is itself a (non-convex) cone, is a subset of the region {x : |v1 · x|  2q|q · x|},
where q the normalized projection of r onto the orthogonal complement of v1, i.e.,
q = projv?1 r/kprojv?1 rk2. Therefore, we have that the integral of Eq. (5.6) is at most

E
x⇠Nd

[R(v2 · x, . . . , vk · x) 1{|v1 · x|  2q|q · x|}] .

This is where the definition of the Gaussian surface area appears. In fact, we
have to compute the derivative of the above expression (which is a function of
q) with respect to q and evaluate it at q = 0. The idea behind this computation
is that we can upper bound probability mass of the cone disagreement, i.e., the
term Prx⇠Nd [R(v1 · x, . . . , vk · x) 6= R(r · x, v2 · x, . . . , vk · x)] by its derivative with
respect to q (evaluated at 0) times q by introducing o(q) error. Hence, it suffices to
upper bound the value of this derivative at 0, which is:

2 E
x⇠Nd

[R(v2 · x, . . . , vk · x) |q · x| d(|v1 · x|)] ,

where d is the Dirac delta function. Notice that, if we did not have the term |q · x|,
the above expression would be exactly equal to two times the Gaussian surface
area of the face with v1 · x = 0, i.e., it would be equal to 2G(F1). We now show that
this extra term of |q · x| can only increase the above surface integral by at most a
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logarithmic factor. For some x to be decided, we have that

E
x⇠Nd

[R(v2 · x, . . . , vk · x) |q · x| d(|v1 · x|)] =
Z

x2F1
fd(x)|q · x|dµ(x)


Z

x2F1
fd(x)|q · x|1{|q · x|  x}dµ(x) +

Z

x2F1
fd(x)|q · x|1{|q · x| � x}dµ(x)

 x
Z

x2F1
fd(x)dµ(x) +

Z

x2F1
fd(x)|q · x|1{|q · x| � x}dµ(x) ,

where dµ(x) is the standard surface measure in Rd. The first integral above is
exactly equal to the Gaussian surface area of the face F1. To bound from above the
second term we can use the next claim showing that not a lot of mass of the face F1

can concentrate on the region where |q · x| is very large. Its proof relies on standard
Gaussian concentration arguments, and is provided in Appendix D.2.

Claim 5.11. It holds that
R

x2F1
fd(x)|q · x|1{|q · x| � x}dµ(x)  O(exp(�x2/2)) .

Using the above result, we get that

d
dq

⇣
E

x⇠Nd
[R(v2 · x, . . . , vk · x) 1{|v1 · x|  2q|q · x|}]

⌘���
q=0

 O(x) G(F1) + O(exp(�x2/2)) .

By picking x = Q(
p

log(1 + 1/G(F1))), the result follows since, up to introducing
o(q) error, we can bound the term Prx⇠Nd [R(v1 · x, . . . , vk · x) 6= R(r · x, v2 · x, . . . , vk · x)]
by its derivative with respect to q, evaluated at 0, times q.

Further Related Work

Robust Supervised Learning. We start with a summary of prior work on PAC
learning with Massart noise. The Massart noise model was formally defined in
Massart and Nédélec (2006) but similar variants had been defined by Vapnik,
Sloan and Rivest Vapnik (1982); Sloan (1988, 1992); Rivest and Sloan (1994b); Sloan
(1996). This model is a strict extension of the Random Classification Noise (RCN)
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model Angluin and Laird (1988), where the label noise is uniform, i.e., context-
independent and is a special case of the agnostic model Haussler (2018); Kearns
et al. (1994b), where the label noise is fully adversarial and computational barriers
are known to exist Guruswami and Raghavendra (2009); Feldman et al. (2006b);
Daniely (2016b); Diakonikolas et al. (2020d); Goel et al. (2020c); Diakonikolas et al.
(2021e); Hsu et al. (2022). Our work partially builds upon on the algorithmic task of
PAC learning halfspaces with Massart noise Balcan and Haghtalab (2020b). In the
distribution-independent setting, known efficient algorithms Diakonikolas et al.
(2019a); Chen et al. (2020b); Diakonikolas et al. (2021c) achieve error h + e and
the works of Diakonikolas and Kane (2020); Nasser and Tiegel (2022) indicate that
this error bound is the best possible in the Statistical Query model Kearns (1998).
This lower bound motivates the study of the distribution-specific setting (which
is also the case of our work). There is an extensive line of work in this direction:
?Awasthi et al. (2016b); Yan and Zhang (2017b); Zhang et al. (2017c); Balcan and
Zhang (2017b); Mangoubi and Vishnoi (2019b); Diakonikolas et al. (2020e); Zhang
et al. (2020a); Zhang and Li (2021) with the currently best algorithms succeeding
for all h < 1/2 with a sample and computational complexity poly(d, 1/e, 1/(1�
2h)) under a class of distributions including isotropic log-concave distributions.
For details, see Diakonikolas et al. (2021d). In this work we focus on Gaussian
marginals but some of our results extend to larger distribution classes.

Label Ranking. Our work lies in the area of Label Ranking, which has received
significant attention over the years Shalev-Shwartz (2007); Hüllermeier et al. (2008);
Cheng and Hüllermeier (2008); Har-Peled et al. (2003); Fürnkranz et al. (2008);
Dekel et al. (2003). There are multiple approaches for tackling this problem (see
Vembu and Gärtner (2010), Zhou et al. (2014b)). Some of them are based on
probabilistic models Cheng and Hüllermeier (2008); Cheng et al. (2010); Grbovic
et al. (2012); Zhou et al. (2014a) or may be tree based, such as decision trees Cheng
et al. (2009), entropy based ranking trees and forests Rebelo de Sá et al. (2015);
de Sá et al. (2017), bagging techniques Aledo et al. (2017) and random forests
Zhou and Qiu (2018). There are also works focusing on supervised clustering
Grbovic et al. (2013). Finally, Cheng and Hüllermeier (2008); Cheng et al. (2010,
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2009) adopt an instance-based approaches using nearest neighbors approaches.
The above results are industrial. From a theoretical perspective, LR has been
mainly studied from a statistical learning theory framework Clémençon and Vogel
(2020); Clémençon et al. (2018); Korba et al. (2018, 2017). Fotakis et al. (2021b)
provide some computational guarantees for the performance of decision trees in
the noiseless case and some experimental results on the robustness of random
forests to noise. The setting of Djuric et al. (2014) is close to ours but is investigated
from an experimental standpoint. We remark that while reducing LR to multiple
binary classification tasks has been used in prior literature Hüllermeier et al. (2008);
Cheng and Hüllermeier (2012); Fotakis et al. (2021b), standard reductions can not
tolerate noise in rankings (nevertheless, from an experimental perspective, e.g.,
random forests seem robust to noise but lack formal theoretical guarantees). Our
reduction crucially relies on the existence of efficient learning algorithms for binary
linear classification with Massart noise.



Part II

Learning From Truncated or Coarse
Data
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6 LEARNING TRUNCATED GAUSSIANS

6.1 Formal Statement of Results

Preliminaries

Notation Let A 2 Rd⇥d, we define A[ 2 Rd2 to be the standard vectorization of
A. Let also Qd be the set of all the symmetric d⇥ d matrices. The Frobenius norm of
a matrix A is defined as kAkF =

���A[
���

2
.

Gaussian Distribution. Let N (µ, S) be the normal distribution with mean µ and
covariance matrix S, with the following probability density function

N (µ, S; x) =
1p

det(2pS)
exp

✓
�1

2
(x� µ)TS�1(x� µ)

◆
. (6.1)

Also, let N (µ, S; S) denote the probability mass of a measurable set S under this
Gaussian measure. We shall also denote by N0 the standard Gaussian, whether it
is single or multidimensional will be clear from the context.

Truncated Gaussian Distribution. Let S ✓ Rd be a subset of the d-dimensional
Euclidean space, we define the S-truncated normal distribution N (µ, S, S) the normal
distribution N (µ, S) conditioned on taking values in the subset S. The probability
density function of N (µ, S, S) is the following

N (µ, S, S; x) =
1S(x)

N (µ, S; S)
N (µ, S; x). (6.2)

We will assume that the covariance matrix S is full rank. We can easily detect
the case where S is not full rank and solve the estimation problem in the linear
subspace of samples.
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The core complexity measure of Borel sets in Rd that we use is the notion of
Gaussian Surface Area defined below.

Definition 6.1 (GAUSSIAN SURFACE AREA). For a Borel set A ✓ Rd, d � 0 let
Ad = {x : hrmdist(x, A)  d}. The Gaussian surface area of A is

G(A) = lim inf
d!0

N0(Ad \ A)
d

.

We define the Gaussian surface area of a family of sets C to be G(C) = supC2C G(C).

Problem formulation

Given samples from a truncated Gaussian N ⇤S , N (µ⇤, S⇤, S), our goal is to learn
the parameters (µ⇤, S⇤) and recover the set S. We denote by a⇤ = N (µ⇤, S⇤; S),
the total mass contained in set S by the untruncated Gaussian N ⇤ , N (µ⇤, S⇤).
Throughout this paper, we assume that we know an absolute constant a > 0 such
that

N (µ⇤, S⇤; S) = a⇤ � a. (6.3)

We first analyze the sample compexity of learning the true Gaussian parameters
when the truncation set has bounded VC-dimension. In particular, we show that
the overhead over the d2/e2 samples (which is the sample compexity of learning
the parameters of the Gaussian without truncation) is proportional to the VC
dimension of the class.

Theorem 6.2. Let S be a family of sets of finite VC dimension, and let N (µ, S, S) be a
truncated Gaussian distribution such that N (µ, S; S) � a. Given N

N = poly(1/a) eO
✓

d2

e2 +
VC(S)

e

◆
,

samples, then, with probability at least 99%, it is possible to identify (eµ, eS) that satisfy

dTV(N (µ, S),N (eµ, eS))  e
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and
��S�1/2(µ� eµ)

��
2  e and

���I � S�1/2eSS�1/2
���

F
 e.

We now show our algorithmic results under the assumption that the untrun-
cated Gaussian N ⇤ is known to be in near-isotropic position.

Definition 6.3 (Near-Isotropic Position). Let µ 2 Rd, S 2 Rd⇥d be a positive semidefi-
nite symmetric matrix and a, b > 0. We say that (µ, S) is in (a, b)-isotropic position if the
following hold.

kµk2
2  a, kS� Ik2

F  a, (1� b)I � S � 1
1� b

I

We later transform the more interesting case with an unknown mean and an
unknown diagonal covariance matrix to the isotropic case.

Theorem 6.4. Let N (µ⇤, S⇤) be a d-dimensional Gaussian distribution that is in

(O(log(1/a⇤), 1/16)-isotropic position

and consider a set S such that N (µ⇤, S⇤; S) � a. There exists an algorithm such that for

all e > 0, the algorithm uses n > dpoly(1/a) G2(S)
e8 samples and produces, in poly(n) time,

estimates that, with probability at least 99%, satisfy dTV(N (µ⇤, S⇤),N (µ̂, Ŝ))  e.

We next investigate the sample complexity of the problem of estimating the
parameters of a truncated Gaussian using a different approach that does not de-
pend on the VC dimension of the family S of the truncation sets to be finite. For
example, we settle the sample complexity of learning the parameters of a Gaussian
distribution truncated at an unknown convex set (recall that the class of convex sets
has infinite VC dimension). Our method relies on finding a tuple (eµ, eS, eS) of pa-
rameters so that the moments of the corresponding truncated Gaussian N (eµ, eS, eS)
are all close to the moments of the unknown truncated Gaussian distribution, for
which we have unbiased estimates using samples. The main question that we
need to answer to determine the sample complexity of this problem is how many
moments are needed to be matched in order to be sure that our guessed parameters
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are close to the parameters of the unknown truncated Gaussian. We state now the
main result. Its proof is based on Lemma 6.31 and can be found in Appendix E.6.

Theorem 6.5 (Moment Matching). Let S be a family of subsets of Rd of bounded Gaus-
sian surface area G(S). Moreover, assume that if T is an affine map and T(S) = {T(S) :
S 2 S} is the family of the images of the sets of S , then it holds G(T(S)) = O(G(S)).
For some S 2 S , let N (µ, S, S) be an unknown truncated Gaussian. dO(G(S)/e4) samples
are sufficient to find parameters eµ, eS, eS such that dTV(N (µ, S, S),N (eµ, eS, eS))  e.

Finally, we present an information-theoretic lower bound showing that there
exists families of truncation sets whose sample complexity depends exponentially
on their Gaussian Surface Area.

Theorem 6.6. There exists a family of sets S with G(S) = O(d) such that any algorithm
that draws m samples from N (µ, I, S) and computes an estimate eµ with keµ� µk2  1
must have m = W(2d/2).

Simulations. In addition to the theoretical guarantees of our algorithm, we em-
pirically evaluate its performance using simulated data. We present the results
that we get in Figure 6.3, where one can see that even when the truncation set is
complex, our algorithm finds an accurate estimation of the mean of the untruncated
distribution. Observe that our algorithm succeeds in estimating the true mean of
the input distribution despite the fact that the set is unknown and the samples look
similar in both cases.

6.2 Identifiability with Bounded VC dimension

In this section we analyze the sample compexity of learning the true Gaussian
parameters when the truncation set has bounded VC-dimension. In particular we
show that the overhead over the d2/e2 samples (which is the sample compexity of
learning the parameters of the Gaussian without truncation) is proportional to the
VC dimension of the class. For convenience, we restate Theorem 6.2 below.
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Figure 6.1: Execution of our algorithm for isotropic Gaussian distribution with
µ⇤ = (0.1, 0.78) and µS = (0.48, 0.32).

Figure 6.2: Execution of our algorithm for isotropic Gaussian distribution with
µ⇤ = (0, 0) and µS = (0.47, 0.27).

Figure 6.3: Illustration of the results of our algorithm for an unknown truncation
set. The ⇥ sign corresponds to the conditional mean of the truncated distribution,
while the green point corresponds to the true mean and the red points correspond
to the estimated true mean depending on the degree of the Hermite polynomials
that are being used by the algorithm.

Theorem 6.7. Let S be a family of sets of finite VC dimension, and let N (µ, S, S) be a
truncated Gaussian distribution such that N (µ, S; S) � a. Given N

N = poly(1/a) eO
✓

d2

e2 +
VC(S)

e

◆
,

samples, then, with probability at least 99%, it is possible to identify (eµ, eS) that satisfy

dTV(N (µ, S),N (eµ, eS))  e
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and
��S�1/2(µ� eµ)

��
2  e and

���I � S�1/2eSS�1/2
���

F
 e.

Our algorithm works by first learning the truncated distribution within total
variation distance e. To do this, we first assume that we know the mean and
covariance of the underlying Gaussian by guessing the parameters and accurately
learn the underlying set. After drawing N = Q(VC(S) log(1/e)

e ) samples from
the distribution, any set in the class that contains the samples will only exclude
at most an e fraction of the total mass. Picking the set eS that maximizes the
likelihood of those samples, i.e. the set with minimum mass according to the
guessed Gaussian distribution, guarantees that the total variation distance between
the learned truncated distribution and the true is at most e, if the guess of the
parameters was accurate (Lemma 6.8). The proof of Lemma 6.8 can be found in
Appendix E.2.

Lemma 6.8. Let S be a family of subsets in Rd and Let N (µ, S, S⇤) = N ⇤S be a Normal
distribution truncated on the set S⇤ 2 S . Fix e 2 (0, 1), d 2 (0, 1/4) and let

N = O
✓

VC(S) log(1/e)
e

+ log
✓

1
d

◆◆

Moreover, let eµ, eS be such that dTV(N (eµ, eS),N (µ, S))  e. Assume that we draw N
samples xi from NS⇤ , Let eS be the solution of the problem

min
S

N (eµ, eS; S) subject to xi 2 S for all i 2 [n]

Then with probability at least 1� d we have dTV(N (eµ, eS, eS),N (µ, S, S))  3e/(2a).

This is because the total variation distance between two densities f and g can be
written as

R
( f (x)� g(x))1 f (x)>g(x)dx. Note that by choosing the set of the smallest

mass consistent with the samples, we guarantee that the guess will have higher
density at every point apart from those outside the support eS. However, as we
argued the outside mass is at most e with respect to the true distribution which
gives the bound in the total variation distance.
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To remove the assumption that the true parameters are known, we build a cover
of all possible mean and covariance matrices that the underlying Gaussian might
have and run the tournament from Daskalakis and Kamath (2014) to identify the
best one (Lemma E.10). While there are (d/e)O(d2) such parameters, the number
of samples needed for running the tournament is only logarithmic which shows
that an additional eO(d2/e2) are sufficient to find a hypothesis in total variation
distance e (Lemma 6.9). The proof of Lemma 6.9 can be found in Appendix E.2.

Lemma 6.9. Let S 2 S be a subset of Rd and N (µ, S, S) be the corresponding trun-
cated normal distribution. Then eO

�
VC(S)/e + d2/e2� samples are sufficient to find

parameters eµ, eS, eS such that dTV(N (µ, S, S),N (eµ, eS, eS))  e with probability at least
99%.

We finally argue that the e error in total variation of the truncated distributions
translates to an O(e) bound in total variation distance of the untruncated distri-
butions (Lemma 6.10). We show that this is true in general and does not depend
on the complexity of the set. To prove this statement, we consider two Gaussians
with parameters that are far from each other and construct the worst possible set
to make their truncated distributions as close as possible. We show that under the
requirement that the set contains at least a mass, the total variation distance of the
truncated distributions will be large.

Lemma 6.10 (Total Variation of Truncated Normals). Let D1 = N (µ1, S1, S1) and
D2 = N (µ2, S2, S2) be two truncated Normal distributions such that

N (µ1, S1; S1),N (µ2, S2; S2) � a.

Then,

dTV(D1, D2) � Ca dTV(N (µ1, S1),N (µ2, S2)),

where Ca < a/8 is a positive constant that only depends on a, Ca = W(a3).
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Proof. Without loss of generality we assume that D1 = N (0, I, S1) and D2 =

N (µ, L, S2), where L is a diagonal matrix. We want to find the worst sets S1, S2 so
that dTV(D1, D2) is small. If D1(S1 \ S2) � a/2 then the statement holds. Therefore,
we consider the set S = S1 \ S2 and relax the constraint that the truncated Gaussian
D2 integrates to 1. Taking into account the fact that the set S = S1 \ S2 must have at
least some mass a/2 with respect to N (0, I), the following optimization problem
provides a lower bound on the total variation distance of D1 and D2.

min
S2S ,b>0

1
a

Z
|N (0, I; x)� a

b
N (µ, L; x)| 1S(x)dx

subj. to
Z

N (0, I; x) 1S(x)dx � a/2,

For any fixed b > 0 this is a fractional knapsack problem and therefore we should
include in the set the points x in order of increasing ratio of weight that is contribu-
tion to the L1 error |N (0, I; x)� a

bN (µ, L; x)|, over value, that is density N (0, I; x)
until we reach some threshold T. Therefore, the set is defined to be

S =

(
x 2 Rd :

|N (0, I; x)� a
bN (µ, L; x)|

N (0, I; x)
 T

)
=
n

x 2 Rd : |1� exp(p(x))|  T
o

,

where p(x) = � 1
2(µ � x)TL�1(µ � x) + 1

2 xTx + log(a/(
p
|L|b)). Using Theo-

rem E.4 for the degree 2 polynomial p(x) and setting q = 4, g = a2(Ex⇠N0 p2(x))1/2/(256C2),
where C is the absolute constant of Theorem E.4, we get that

N0({z : |p(z)|  g})  a

4
.

To simplify notation set Q = {z : |p(z)|  g}. Therefore, for any x in the remaining
a/4 mass of the set S we know that |p(x)| � g. Next, we lower bound g in terms
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of the distance of the parameters of the two Gaussians. We have

E
x⇠N0

[p2(x)] � Varx⇠N0 [p(x)] = Varx⇠N0


�1

2
(µ� x)TL�1(µ� x) +

1
2

xTx
�

= Varx⇠N0

"
d

Â
i=1

✓
µi
li

x + x2 (1� 1/li)
2

◆#

=
d

Â
i=1

Varx⇠N (0,1)


µi
li

x + x2 (1� 1/li)
2

�

=
d

Â
i=1

1
2

✓
1
li
� 1

◆2
+

µ2
i

l2
i

=
1
2

���L�1 � I
���

2

F
+
���L�1/2µ

���
2

2

Therefore, using the inequality
p

2
p

x + y �
p

x +
py we obtain

g � a2

256
p

2C2

✓
1p
2

���L�1 � I
���

F
+
���L�1/2µ

���
2

◆

� a2

256C2 dTV(N (µ1, S1),N (µ2, S2)),

where we used Lemma E.1. Assume first that g  1. We have that the L1 distance
between the functions f (x) = N (0, I; x)1S(x) and g(x) = a

bN (µ, L; x)1S(x) is

Z
| f (x)� g(x)|dx = E

x⇠N0
[|1� exp(p(x))|1S(x)] � E

x⇠N0


|p(x)|

2
1S\Q(x)

�

� g E
x⇠N0

h
1S\Q(x)

i
� ag

4
� CadTV(N (µ1, S1),N (µ2, S2)),

where for the first inequality we used the inequality |1� ex| � |x|/2 for |x|  1.
Note that Ca = W(a3). If g > 1 we have

Z
| f (x)� g(x)|dx = E

x⇠N0
[|1� exp(p(x))|1S(x)] � E

x⇠N0


1
2

1S\Q(x)
�
� a/8,

where we used the inequality |1� ex| � 1/2 for |x| > 1.
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6.3 Estimation Algorithm for bounded Gaussian
Surface Area

In this section, we present the main steps of our estimation algorithm. In later
sections, we provide details of the individual components. The algorithm can be
thought of in 3 stages.

First Stage In the first stage, our goal is to learn a weighted characteristic function
of the underlying set. Even though we cannot access the underlying set directly,
for any given function f we can evaluate the expectation Ex⇠N (µ⇤,S⇤,S)[ f (x)] using
truncated samples.

This expectation can be equivalently written as Ex⇠N (0,I)[ f (x)y(x)] for the
function

y(x) , 1S(x)
a⇤

N (µ⇤, S⇤; x)
N (0, I; x)

=
1S(x)

a⇤
N ⇤(x)
N0(x)

.

By evaluating the above expectation for different functions f corresponding
to the Hermite polynomials HV(x), we can recover y(x), through its Hermite
expansion:

y(x) = Â
V2Nd

E
x⇠N0

[HV(x)y(x)]HV(x) = Â
V2Nd

E
x⇠N ⇤S

[HV(x)]HV(x).

Of course, it is infeasible to calculate the Hermite expansion for any V 2 Nd.
In Section 6.3, we show that by estimating only terms of degree at most k, we
can achieve a good approximation to y where the error depends on the Gaussian
surface area of the underlying set S. To do this, we show that most of the mass of
the coefficients cV = Ex⇠N0 [HV(x)y(x)] is concentrated on low degree terms, i.e.
Â|V|>k c2

V is significantly small. Moreover, we show that even though we can only
estimate the coefficients cV through sampling, the sampling error is significantly
small.

Overall, after the first stage, we obtain a non-negative function yk that is close
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to y. The approximation error guarantees are given in Theorem 6.18.

Second Stage Given the function yk that was recovered in the first stage, our
goal is to decouple the influence of the set 1S(x)

a⇤ and the influence of the underlying
Gaussian distribution which corresponds to the multiplicative term N (µ⇤,S⇤;x)

N (0,I;x) .
This would be easy if we had the exact function y in hand. In contrast, for the
polynomial function yk the problem is significantly challenging as it is only close
to y on average but not pointwise.

To perform the decoupling and identify the underlying Gaussian we explicitly
multiply the function yk with a corrective term of the form N (0,I;x)

N (µ,S;x) . We set up an op-

timization problem seeking to minimize the function C(µ, S)Ex⇠N ⇤S [
N (0,I;x)
N (µ,S;x)yk(x)]

with an appropriate choice of C(µ, S) so that the unique solution corresponds to
(µ, S) = (µ⇤, S⇤). Under a reparameterization of (u, B) = (S�1µ, S�1), we show
that the corresponding problem is strongly convex. Still, optimizing it directly
is non-trivial as it involves taking the expectation with respect to the unknown
truncated Gaussian. Instead, we perform stochastic gradient descent (SGD) and
show that it quickly converges in few steps to point close to the true minimizer
(Algorithm 11).

This allows us to recover parameters (µ̂, Ŝ) so that the total variation distance
between the recovered and the true (untruncated) Gaussian is very small, i.e.
dTV

�
N (µ̂, Ŝ),N (µ⇤, S⇤)

�
 e. Theorem 6.4 describes the guarantees of the second

stage. Further details are provided in Section 6.3.

Third Stage Given the weighted indicator function yk and the recovered Gaussian
N (µ̂, Ŝ), we move on to recover the underlying set S. To do this, we compute
the function N (0,I;x)

N (µ̂,Ŝ;x)yk(x) and set a threshold at 1/2. It is easy to check that if

there were no errors, i.e. yk = y and dTV
�
N (µ̂, Ŝ),N (µ⇤, S⇤)

�
= 0, that this

thresholding step would correctly identify the set. In Section 6.3 we bound the
error guarantees of this approach. We show that it is possible to obtain an estimate
Ŝ of the underlying set so that the mass of the symmetric difference with the true
Gaussian is small, i.e. N (µ⇤, S⇤; S4Ŝ) < e. Overall, our algorithm requires at most
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dpoly(1/a,1/e)G2(S), where G(S) is the Gaussian surface area of the set S and a is a
lower-bound on the mass that is assigned by the true Gaussian on the set S. The
running time of our algorithm is linear in the number of samples.

The guarantees of the algorithm We first show our algorithmic results under
the assumption that the untruncated Gaussian N ⇤ is known to be in near-isotropic
position, see Definition 6.3. We later transform the more interesting case with an
unknown mean and an unknown diagonal covariance matrix to the isotropic case.
We next restate Theorem 6.4 for convenience.

Theorem 6.11. Let N (µ⇤, S⇤) be a d-dimensional Gaussian distribution that is in
(O(log(1/a⇤), 1/16)-isotropic position and consider a set S such that N (µ⇤, S⇤; S) � a.

There exists an algorithm such that for all e > 0, the algorithm uses n > dpoly(1/a) G2(S)
e8

samples and produces, in poly(n) time, estimates that, with probability at least 99%,
satisfy dTV(N (µ⇤, S⇤),N (µ̂, Ŝ))  e.

We can apply this theorem to estimate the parameters of any Gaussian distri-
bution with an unknown mean and an unknown diagonal covariance matrix by
bringing the Gaussian to an (O(log(1/a⇤), 1/16)-isotropic position. Lemma E.3
shows that with high probability, we can obtain initial estimates eµS and eSS so that
kS�1/2(eµS � µ⇤)k2

2  O(log 1
a ) and

eSS ⌫ W(a2)S⇤, and
���S⇤�1/2eSSS⇤�1/2 � I

���
2

F
 O(log

1
a
).

Given these estimates, we can transform the space so that eµS = 0, and eSS =

I. We note that after this transformation, the mean will be at the right dis-
tance from 0, while the eigenvalues li of S⇤ will all be within the desired range
15
16  li  16

15 apart from at most O(log(1/a)). This is because the condition���S⇤�1/2eSSS⇤�1/2 � I
���

2

F
 O(log 1

a ) implies that Âi(1� 1
li
)2  O(log(1/a)). With

this observation, since we know of the eigenvectors of S⇤, we would be able to
search over all possible corrections to the eigenvalues to bring the Gaussian in
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(O(log(1/a)), 1
16)-isotropic position as required by Theorem 6.4. We only need to

correct O(log(1/a)) of them.
We can form a space of candidate hypotheses for the underlying distribution,

for each choice of O(log(1/a)) out of the d vectors along with the all possible
scalings. These hypotheses are at most dO(log(1/a)) times (log(1/a))O(log(1/a)) for
all possible scalings. Thus, there are at most dO(log(1/a)) hypotheses. Running the
algorithm for each one of them, we would learn at least one distribution and one set
that is accurate according to the guarantees of Theorems 6.4. Running the generic
hypothesis testing algorithm of Lemma E.10, we can identify one that is closest
in total variation distance to the true distribution N tS. The sample complexity
and runtime would thus only increase by at most dO(log(1/a)). As we showed in
Lemma 6.10, knowing the truncated Gaussian in total variation distance suffices to
learn in accuracy e the parameters of the untruncated distribution. We thus obtain
as corollary, that we can estimate the parameters when the covariance is spherical
or diagonal. The same results hold when one wants to recover the underlying set
in these cases.

Learning a Weighted Characteristic Function

Our goal in this section is to recover using conditional samples from N ⇤S a weighted
characteristic function of the set S. In particular, we will show that it is possible to
learn a good approximation to the function

y(x) =
1S(x)

a⇤
N (µ⇤, S⇤; x)
N (0, I; x)

=
1S(x)

a⇤
N ⇤(x)
N0(x)

. (6.4)

We will later use the knowledge of this function to extract the unknown param-
eters and learn the set S.

Hermite Concentration

We start by showing that the function y(x) admits strong Hermite concentration.
This means that we can well-approximate y(x) if we ignore the higher order terms
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in the Hermite expansion of y(x).

Theorem 6.12 (Low Degree Approximation). Let Sky denote the degree k Hermite
expansion of function y defined in (6.4). We have that

E
x⇠N0

h
(Sky(x)� y(x))2

i
= Â

|V|�k
ŷ(V)2  poly(1/a)

 p
G(S)

k1/4 +
1
k

!
.

where G(S) is the Gaussian surface area of S, and a < a⇤ is the absolute constant of (6.3).

We note that the Hermite expansion of y is well-defined as y(x) 2 L2(Rd,N0).
This can be seen from the following lemma which will be useful in many calcula-
tions throughout the paper.

Lemma 6.13. Let N (µ1, S1) and N (µ2, S2) be two (B, 1�d
2k )-isotropic Gaussians for

some parameters B, d > 0 and k 2 N. It holds

exp
✓
�13k2

d
B
◆
 E

x⇠N0

"✓
N (µ1, S1; x)
N (µ2, S2; x)

◆k
#
 exp

✓
13k2

d
B
◆

.

Lemma 6.13 applied for N0 and N ⇤ for k = 2 implies that y(x) 2 L2(Rd,N0).
To get the desired bound for Theorem 6.12 we use the following lemma, which

allows us to bound the Hermite concentration of a function f through its noise
stability.

Lemma 6.14. For any function f : Rd 7! R and parameter r 2 (0, 1), it holds

Â
|V|�1/r

f̂ (V)2  2 E
x⇠N (0,I)

h
f (x)2 � f (x)T1�r f (x)

i

Lemma 6.14 was originally shown in Kalai et al. (2005) for indicator functions
of sets, but their proof extends to arbitrary real functions. We provide the proof in
the appendix for completeness.

Using Lemma 6.14, we can obtain Theorem 6.12 by bounding the noise sensitiv-
ity of the function y. The following lemma directly gives the desired result.
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Lemma 6.15. For any r 2 (0, 1),

E
x⇠N0

h
y(x)2 � y(x)T1�ry(x)

i
 poly(1/a)

✓q
G(S)r1/4 + r

◆
.

To prove Lemma 6.15, we will require the following lemma whose proof is
provided in the appendix.

Lemma 6.16. Let r(x) 2 L2(Rd,N (0, I)) be differentiable at every x 2 Rd. Then

1
2

E
(x,z)⇠Dr

[(r(x)� r(z))2]  r E
x⇠N (0,I)

h
krr(x)k2

2

i

We now move on to the proof of Lemma 6.15.

Proof of Lemma 6.15 For ease of notation we define the following distribution

Dr = N
 

0,

 
I (1� r)I

(1� r)I I

!!
.

We also denote by r(x) = N ⇤(x)/N0(x) We can now write

2 E
x⇠N0

h
y(x)2 � y(x)T1�ry(x)

i

= E
(x,z)⇠Dr

h
y(x)2 � y(x)y(z)

i

=
1

a⇤2 E
(x,z)⇠Dr

[1S(x)r2(x)� 1S(x)1S(z)r2(x)]+

E
(x,z)⇠Dr

[1S(x)1S(z)r2(x)� 1S(x)1S(z)r(x)r(z)]
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We bound each of the two terms separately. For the first term, using Schwarz’s
inequality we get

E
(x,z)⇠Dr

[1S(x)r2(x)� 1S(x)1S(z)r2(x)]


⇣

E
(x,z)⇠Dr

[1S(x)1S̄(z)]
⌘1/2⇣

E
(x,z)⇠Dr

[r4(x)]
⌘1/2

 (N S[S])1/2poly(1/a) 
q

G(S)r1/4poly(1/a)

where the bound on the expectation of r4(x) follows from Lemma 6.13 and the last
inequality follows from Lemma E.9.

For the second term, we have that

E
(x,z)⇠Dr

[1S(x)1S(z)(r2(x)� r(x)r(z))]

= E
(x,z)⇠Dr


1S(x)1S(z)

✓
r2(x)

2
+

r2(z)
2
� r(x)r(z)

◆�

= E
(x,z)⇠Dr


1S(x)1S(z)

1
2
(r(x)� r(z))2

�

 1
2

E
(x,z)⇠Dr

h
(r(x)� r(z))2

i
 r E

x⇠N0
[krr(x)k2

2],

where the last inequality follows from Lemma 6.16. It thus suffices to bound the
expectation of the gradient of r. We have

E
x⇠N0

[krr(x)k2
2]

= E
x⇠N0

����S⇤�1(x� µ⇤) + x
���

2

2
r2(x)

�

 2 E
x⇠N0

[
���(I � S⇤)�1x

���
2

2
r2(x)] + 2

���S⇤�1µ⇤
���

2

2
E

x⇠N0
[r2(x)]

 2
r

E
x⇠N0

[k(I � S⇤�1)xk4
2] E

x⇠N0
[r4(x)] + 2

���S⇤�1µ⇤
���

2

2
E

x⇠N0
[r2(x)]  poly(1/a),
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where the bound on the expectation of r4(x) and r2(x) follows from Lemma 6.13
and the expectation

E
x⇠N0

���(I � S⇤�1)x
���

4

2

�
= E

x⇠N0

2

4
 

Â
i
(1� li)

2x2
i

!2
3

5

 3

 

Â
i
(1� li)

2

!2

 3 log2(1/a)  poly(1/a).

Learning the Hermite Expansion

In this section we deal with the sample complexity of estimating the coefficients of
the Hermite expansion. We have

cV = E
x⇠N (µ,S,S)

[HV(x)]

Using samples xi from N (µ, S, S), we can estimate this expectation empirically
with the unbiased estimate

ecV =
ÂN

i=1 HV(xi)
N

.

We now show an upper bound for the variance of the above estimate. The proof
of this lemma can be found in Appendix E.3.

Lemma 6.17. Let N (µ⇤, S⇤, S) be the unknown truncated Gaussian. The variance of
the following unbiased estimator of the Hermite coefficients ecV = ÂN

i=1 HV(xi)
N , is upper

bounded

E
x⇠N (µ,S,S)

[(ecV � cV)
2]  poly(1/a)

5|V|

N
.

Theorem 6.18. Let S be an arbitrary (Borel) subset of Rd. Let a be the constant of (6.3). Let
N (µ⇤, S⇤, S) be the corresponding truncated Gaussian in (O log(1/a), 1/16)-isotropic
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position (see Definition 6.3), Then, for the estimate

yk(x) = max

0

@0, Â
V:0|V|k

ecV HV(x)

1

A , ecV =
ÂN

i=1 HV(xi)
N

it holds for k⌧ d, G(S) > 1,

E
x1,...,xN⇠N (µ⇤,S⇤,S)


E

x⇠N (0,I)

h
(yk(x)� y(x))2

i�
 poly(1/a)

 p
G(S)

k1/4 +
(5d)k

N

!
.

Alternatively, for k = poly(1/a)G(S)2/e4 we obtain that with N = dpoly(1/a)G(S)2/e4

samples, with probability at least 9/10, it holds Ex⇠N0 [(yN,k(x)� y(x))2]  e.

Proof. Instead of considering the positive part of the Hermite expansion, we will
prove the claim for the empirical Hermite expansion of degree k and N samples

pN,k = Â
V:0|V|k

ecV HV(x).

As usual we denote by Sky(x) the true (exact) Hermite expansion of degree k of
y(x). Using the inequality (a� b)2  2(a� c)2 + 2(c� b)2 we obtain

E
x⇠N0

h
(pN,k(x)� f (x))2

i
 2 E

x⇠N0

h
(pN,k(x)� Sky(x))2

i
+ 2 E

x⇠N0

h
(Sky(x)� y(x))2

i

Since Hermite polynomials form an orthonormal system with respect to N0, we
obtain

E
x⇠N0

h
(pN,k(x)� Sky(x))2

i
= E

x⇠N0

2

64

0

@ Â
V:0|V|k

(ecV � cV)HV(x)

1

A
2
3

75

= Â
V:0|V|k

(ecV � cV)
2.
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Using Lemma 6.17 we obtain

E
x1,...,xN⇠N ⇤

2

4 Â
V:0|V|k

(ecV � cV)
2

3

5  poly(1/a)
N Â

V:0|V|k
5|V|

 poly(1/a)
N

✓
d + k

k

◆
5k,

where we used the fact that the number of all multi-indices V of d elements such
that 0  |V|  k is (d+k

k ). Moreover, from Theorem 6.12 we obtain that

E
x⇠N0

h
(Sky(x)� y(x))2

i
 poly(1/a)

 p
G(S)

k1/4 +
1
k

!
.

The theorem follows.

Optimization of Gaussian Parameters

In this section we show that we can formulate a convex objective function that can
be optimized to yield the unknown parameters µ⇤, S⇤ of the truncated Gaussian.
Let S be the unknown (Borel) subset of Rd such that N (µ⇤, S⇤; S) = a⇤ and let
N tS = N (µ⇤, S⇤, S) be the corresponding truncated Gaussian.

To find the parameters µ⇤, S⇤, we define the function

Mf (u, B) , E
x⇠N tS

h
eh(u,B;x)N (0, I; x) f (x)

i
(6.5)

where h(u, B; x) = xT Bx
2 � tr((B�I)(eSS+eµSeµT

S ))
2 � uT(x� eµS) +

d
2 log 2p.

We will show that the minimizer of Mf (u, B) for the polynomial function
f = yk, will satisfy (B�1u, B�1) ⇡ (µ⇤, S⇤). Note that Mf (u, B) can be estimated
through samples. Our goal will be to optimize it through stochastic gradient
descent.

In order to make sure that SGD algorithm for Myk converges fast in the parame-
ter space we need to project after every iteration to some subset of the space as we
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will see in more details later in this Section. Assuming that the pair (µ⇤, S⇤) is in
(
p

log(1/a⇤), 1/16)-isotropic position we define the following set

D =
n
(u, B) | (B�1u, B�1) is in (c · log(1/a⇤), 1/16)-isotropic position

o
(6.6)

Where c is the universal constant guaranteed to exist from Section 6.1 so that

max
�
kµ⇤ � µ̃kS⇤ ,

��S⇤ � S̃
��

F
 
 c · log(1/a⇤).

It is not hard to see that D is a convex set and that for any (u, B) the projection to
D can be done efficiently. For more details we refer to Lemma 8 of Daskalakis et al.
(2018). Since after every iteration of our algorithm we project to D we will assume
for the rest of this Section that (u, B) 2 D.

An equivalent formulation of Mf (u, B) that will be useful for the analysis of
the SGD algorithm is

Mf (u, B) (6.7)

= e�
1
2(tr((B�I)(eSS+eµSeµT

S )))+uT B�1u�uTeµS)
q
|B| E

x⇠N tS


N (0, I; x)

N (B�1u, B�1; x)
f (x)

�

, Cu,B E
x⇠N tS


N0(x)
Nu,B(x)

f (x)
�

(6.8)

Lemma 6.19. For (u, B) 2 D, we have that poly(a)  Cu,B  poly(1/a).

Proof. We have that

|2 log Cu,B| =
���tr((B� I)(eSS + eµSeµT

S ))) + uTB�1u� uTeµS � log |B|
���

=
���tr(B� I) + tr((B� I)(eSS � I)) + uTB�1u� log |B|

���

 |tr(B� I)� log |B||+
���tr((B� I)(eSS � I))

���+
���uTB�1u

���

We now bound each of the terms separately. Let l1, ..., ld be the eigenvalues of
B.
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1. For the first term, we have that

|tr(B� I)� log |B|| = |
d

Â
i=1

(li � 1� log li)| 
d

Â
i=1

(li � 1)2

li
 kB� Ik2

F
lmin

where we used the fact that 0  x� 1� log x  (x�1)2

x for all x > 0.

2. For the second term, we have that
���tr((B� I)(eSS � I))

���  kB� IkFkeSS �
IkF

3. For the third term, we have that
��uTB�1u

�� = uTB�1BB�1u  lmaxkB�1uk2
2

Now from the assumption (u, B) 2 D we have that kB� IkF  O(
p

log(1/a⇤)),��B�1u
��

2  O(
p

log(1/a⇤)), lmin � 15/16 and lmax  17/16. Also from Lemma E.3
we get that

��S̃S � I
��

F  O(
p

log(1/a⇤)) and hence |2 log Cu,B|  O(log(1/a⇤)).
This means that Cu,B = poly(1/a) and the lemma follows.

The Objective Function and its Approximation

To show that the minimizer of the function Myk is a good estimator for the un-
known parameters µ⇤, S⇤, we consider the function M0f , defined as Mf (u, B) =

Ex⇠N tS

h
eh0(u,B;x)N (0, I; x) f (x)

i
for h0(u, B; x) = xT Bx

2 �
tr((B�I)(SS+µSµT

S ))
2 �uT(x�

µS) +
d
2 log 2p. This function corresponds to an ideal situation where we know the

parameters µS, SS exactly. Similarly to (6.8), we can write M0f as C0u,B Ex⇠N tS

h
N0(x)
Nu,B(x) f (x)

i
.

We argue that both Mf and M0f are convex.

Claim 6.20. For any function f : Rd 7! R�0, Mf (u, B) and M0f (u, B) are convex
functions of the parameters (u, B).

Proof. We show the statement for Mf . The proof for M0f is identical. The proof
follows by computing the Hessian of Mf and arguing that it is positive semidefinite.
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The gradient with respect to (u, B) is

rMf (u, B) = E
x⇠N (µ⇤,S⇤,S)

h
rh(u, B; x)eh(u,B;x)N (0, I; x) f (x)

i

= E
x⇠N (µ⇤,S⇤,S)

" 
1
2
�
xxT � S̃S � µ̃Sµ̃T

S
�[

µ̃S � x

!
eh(u,B;x)N (0, I; x) f (x)

#

(6.9)

Moreover, the Hessian is

HMf (u, B) = E
x⇠N (µ⇤,S⇤,S)

" 
1
2
�
xxT � S̃S � µ̃Sµ̃T

S
�[

µ̃S � x

! 
1
2
�
xxT � S̃S � µ̃Sµ̃T

S
�[

µ̃S � x

!T

eh(u,B;x)N (0, I; x) f (x)

#

which is clearly positive semidefinite since for any z 2 Rd⇥d+d we have

zTHMf (u, B)z = E
x⇠N (µ⇤,S⇤,S)

" 
zT

 
1
2
�
xxT � S̃S � µ̃Sµ̃T

S
�[

µ̃S � x

!!2

eh(u,B;x)N (0, I; x) f (x)

#
� 0.

We now argue that the minimizer of the convex function M0y for the weighted

characteristic function y(x) = 1S(x)
a⇤

N (µ⇤,S⇤;x)
N (0,I;x) is (u, B) = (S⇤�1, S⇤�1µ⇤).

Claim 6.21. The minimizer of M0y(u, B) is (u, B) = (S⇤�1, S⇤�1µ⇤).
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Proof. The gradient of M0y with respect to (u, B) is

rM0y(u, B)

= E
x⇠N tS

" 
1
2
�
xxT � SS � µSµT

S
�[

µS � x

!
eh(u,B;x)N (0, I; x)

1S(x)
a⇤

N (µ⇤, S⇤; x)
N (0, I; x)

#

= E
x⇠N tS

" 
1
2
�
xxT � SS � µSµT

S
�[

µS � x

!
eh(u,B;x)N (µ⇤, S⇤; x)

a⇤

#

For (u, B) = (S⇤�1µ⇤, S⇤�1), this is equal to

rM0y(S
⇤�1µ⇤, S⇤�1)

= Cu,B · E
x⇠N tS

" 
1
2
�
xxT � SS � µSµT

S
�[

µS � x

!
1

N (µ⇤, S⇤; x)
N (µ⇤, S⇤; x)

a⇤

#

=
Cu,B
a⇤

· E
x⇠N tS

" 
1
2
�

xxT � SS � µSµT
S
�[

µS � x

!#

where Cu,B that does not depend on x. This is equal to 0 by definition of µS and
SS.

We want to show that the minimizer of Myk is close to that of M0y. To do this,
we bound the difference of the two functions pointwise. The proof of the following
lemma is technical and can be found in Appendix E.4.

Lemma 6.22 (POINTWISE APPROXIMATION OF THE OBJECTIVE FUNCTION). Assume
that we use Lemma E.2 to estimate µ̃S, S̃S with e = 1

poly(1/a⇤)e0 and Theorem 6.18 with
e = 1

p(1/a⇤)e02 then
���Myk(u, B)�M0y(u, B)

���  e0.

Now that we have established that Myk is a good approximation of M0y we will
prove that we can optimize Myk and get a solution that is very close to the optimal
solution of M0y.
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Optimization of the Approximate Objective Function

Our goal in this section is to prove that using sample access to N (µ⇤, S⇤, S) we can
find the minimum of the function Myk defined in the previous section. First of all
recall that Myk can be written as an expectation over N (µ⇤, S⇤, S) in the following
way

Myk(u, B) , E
x⇠N tS

h
eh(u,B;x)N (0, I; x)yk(x)

i
.

In Section 6.3 we prove that we can learn the function yk and hence Myk can be
written as

Myk(u, B) = E
x⇠N tS

⇥
myk(u, B; x)

⇤

where myk(u, B; x) = eh(u,B;x)N (0, I; x)yk(x), and for any u, B and x we can com-
pute myk(u, B; x). Since Myk is convex we are going to use stochastic gradient
descent to find its minimum. To prove the convergence of SGD and bound the
number of steps that SGD needs to converge we will use the the formulation devel-
oped in Chapter 14 of Shalev-Shwartz and Ben-David (2014c). To be able to use
their results we have to define for any (u, B) a random vector v(u, B) and prove
the following

UNBIASED GRADIENT ESTIMATION

E [v(u, B)] = rMyk ,

BOUNDED STEP VARIANCE

E
h
kv(u, B)k2

2

i
 r,

STRONG CONVEXITY for any z 2 D it holds

zTHMf (u, B)z � l.
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We start with the definition of the random vector v. Given a sample x from
N (µ⇤, S⇤, S), for any (u, B) we define

v(u, B) = ru,B myk(u, B; x) (6.10)

=

 
1
2
�
xxT � S̃S � µ̃Sµ̃T

S
�[

µ̃S � x

!
eh(u,B;x)N (0, I; x)yk(x) (6.11)

observe that the randomness of v only comes from the random sample x ⇠
N (µ⇤, S⇤, S). The fact that v(u, B) is an unbiased estimator of rMf (u, B) fol-
lows directly from the fact calculation of rMf (u, B) in Section 6.3. For the other
two properties that we need we have the following lemmas. The following lemma
bounds the variance of the step of the SGD algorithm. It’s rather technical proof
can be found in Appendix E.4.

Lemma 6.23 (BOUNDED STEP VARIANCE). Let a be the constant of (6.3). For every
(u, B) 2 D it holds

E
x⇠N tS

h
kv(u, B)k2

2

i
 poly(1/a) · d2k,

We are now going to prove the strong convexity of the objective function Myk .
For this we are going to use a known anti-concentration result (Theorem E.4) for
polynomial functions over the Gaussian measure. See Appendix E.1.

The following lemma shows that our objective is strongly convex as long as the
guess u, B remains in the set D. Its proof can be found in Appendix E.4.

Lemma 6.24 (STRONG CONVEXITY). Let a be the absolute constant of (6.3). For every
(u, B) 2 D, any z 2 Rd such that kzk2 = 1 and the first d2 coordinated of z correspond
to a symmetric matrix, then

zTHMf (u, B)z � poly(a),
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Recovering the Unconditional Mean and Covariance

The framework that we use for proving the fast convergence of our SGD algorithm
is summarized in the following theorem and the following lemma.

Theorem 6.25 (Theorem 14.11 of Shalev-Shwartz and Ben-David (2014c).). Let
f : Rd ! R. Assume that f is l-strongly convex, that E

h
v(i) | w(i�1)

i
2 ∂ f (w(i�1))

and that E
���v(i)

���
2

2

�
 r2. Let w⇤ 2 arg minw2D f (w) be an optimal solution. Then,

E [ f (w̄)]� f (w⇤)  r2

2lT
(1 + log T) ,

where w̄ is the output projected stochastic gradient descent with steps v(i) and projection
set D after T iterations.

Lemma 6.26 (Lemma 13.5 of Shalev-Shwartz and Ben-David (2014c).). If f is l-
strongly convex and w⇤ is a minimizer of f , then, for any w it holds that

f (w)� f (w⇤) � l

2
kw�w⇤k2

2 .

Now we have all the ingredients to present the proof of Theorem 6.4.

The proof of Theorem 6.4 The estimation procedure starts by computing the poly-

nomial function yk using dpoly(1/a⇤) G2(S)
e08 samples from N (µ⇤, S⇤, S) as explained in

Theorem 6.18 to get error poly(a⇤)e02. Then we compute µ̃S and S̃S as explained in
Section 6.1 with e = q(a⇤)

8p(1/a⇤) (e
0)2 where p comes from Lemma 6.22 and q comes

from Lemma 6.24. Our estimators for µ̂, Ŝ are the outputs of Algorithm 11.
We analyze the accuracy of our estimation by proving that the minimum of Myk

is close in the parameter space to the minimum of M0y. Let u0, B0 be the minimum
of the convex function M0y and uk, Bk be the minimum of the convex function Myk .
Using Lemma 6.22 we have the following relations

���M0y(u0, B0)�Myk(u
0, B0)

���  e0,
���M0y(uk, Bk)�Myk(uk, Bk)

���  e0
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and also

M0y(u
0, B0)  M0y(uk, Bk), Myk(uk, Bk)  Myk(u

0, B0).

These relations imply that

��Myk(u
0, B0)�Myk(uk, Bk)

��

= Myk(u
0, B0)�Myk(uk, Bk)

 Myk(u
0, B0)�M0y(u

0, B0) + M0y(uk, Bk)�Myk(uk, Bk)


���M0y(u0, B0)�Myk(u

0, B0)
���+

���M0y(uk, Bk)�Myk(uk, Bk)
���  2e0.

But from Lemma 6.24 and Lemma 6.26 we get that

�����

 
B0[

u0

!
�
 

B[
k

uk

!�����
2

 e0
2 . Now

we can apply the Claim 6.21 which implies that
�����

 
(S⇤�1)[

S⇤�1µ⇤

!
�
 

B[
k

uk

!�����
2

 e0

2
. (6.12)

Therefore it suffices to find (uk, Bk) with accuracy e0/2 to get our theorem.

Let w⇤ =

 
B[

k
uk

!
To prove that Algorithm 11 converges to w⇤ we use Theorem

6.25 which together with Markov’s inequality, Lemma 6.23 and Lemma 6.24 gives
us

Pr

 
Myk(û, B̂)�Myk(uk, Bk) � poly(1/a⇤) · d2k

T
(1 + log(T))

!
 1

3
. (6.13)

To get our estimation we first repeat the SGD procedure K = log(1/d) times
independently, with parameters T, l each time. We then get the set of estimates
E = {w̄1, w̄2, . . . , w̄K}. Because of (6.13) we know that, with high probability
1� d, for at least the 2/3 of the points w̄ in E it is true that Myk(w)�Myk(w

⇤) 
h where h = poly(1/a⇤) · d2k

T (1 + log(T)). Moreover we will prove later that
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Myk(w)�Myk(w
⇤)  h and this implies kw�w⇤k  c · h, where c is a universal

constant. Therefore with high probability 1� d for at least the 2/3 of the points
w̄, w̄0 in E it is true that kw�w0k  2c · h. Hence if we set ŵ to be a point that is at
least 2c · h close to more that the half of the points in E then with high probability
1� d we have that f (w̄)� f (w⇤)  h. Hence we can we lose probability at most d

if we condition on the event

Myk(û, B̂)�Myk(uk, Bk)  poly(1/a⇤) · d2k

T
(1 + log(T)) .

Using once again Lemma 6.26 we get that
�����

 
B̂[

û

!
�
 

B[
k

uk

!�����
2

 e0

2
.

which together with (6.12) implies
�����

 
B̂[

û

!
�
 
(S⇤�1)[

S⇤�1µ⇤

!�����
2

 e0

2
.

and the theorem follows as closeness in parameter distance implies closeness in
total variation distance for the corresponding untruncated Gaussian distributions.
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Algorithm 11 Projected Stochastic Gradient Descent. Given access to samples from
N (µ⇤, S⇤, S).

1: procedure SGD(T, l) . T: number of steps, l: parameter.

2: w(0) =

✓
(B(0))[

u(0)

◆
 

✓
(S̃�1

S )[

S̃�1
S µ̃S

◆

3: for i = 1, . . . , T do
4: Sample x(i) from N (µ⇤, S⇤, S)
5: hi  1

l·i

6:

✓
(B(i�1))[

u(i�1)

◆
 w(i�1)

7: v(i)  

0

@
1
2

⇣
x(i)x(i)T � S̃S � µ̃Sµ̃T

S

⌘[

µ̃S � x(i)

1

A eh(u(i�1),B(i�1);x(i))N (0, I; x(i))yk

⇣
x(i)

⌘

. From (6.9).
8: r(i)  w(i�1) � hiv(i)

9: w(i)  arg minw2D
���w� r(i)

���
2

2
. From Lemma 8 of Daskalakis et al.

(2018).

10:

✓
B̂[

û

◆
 1

T ÂT
i=1 w(i)

11: Ŝ B̂�1

12: µ̂ B̂�1û
13: return (µ̂, Ŝ)

Recovering the Set

In this section we prove that, given only positive examples from an unknown
truncated Gaussian distribution, that is samples from the conditional distribution
on the truncation set, one can in fact learn the truncation set. We only give here the
main result, for details see Appendix E.5.

Theorem 6.27 (RECOVERING THE SET). Let S be a class of measurable sets with
Gaussian surface area at most G(S). Let N ⇤ be a Gaussian in (O(log(1/a), 1/16))-
isotropic position. Then, given dpoly(1/a)G(S)2/e32 samples from the conditional distribution
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N ⇤S we can recover an indicator of the set eS such that with probability at least 99% it holds
Prx⇠N ⇤ [eS(x) 6= 1S(x)]  e.

6.4 Lower Bound for Learning the Mean of a
Truncated Normal

In this section we prove our information-theoretic lower bound, Theorem 6.6,
which we restate below for conveniece.

Theorem 6.28. There exists a family of sets S with G(S) = O(d) such that any algorithm
that draws m samples from N (µ, I, S) and computes an estimate eµ with keµ� µk2  1
must have m = W(2d/2).

Proof. Let H = [�1, 1]d+1 be the d + 1-dimensional cube. We will also use the left
and right subcubes H+ = [�1, 0] ⇥ [�1, 1]d, H� = [0, 1] ⇥ [�1, 1]d respectively.
Let N+ = N (e1, I) and N� = N (�e1, I). We denote by r the (scaled) pointwise
minimum of the two densities truncated at the cube H, that is

r(x) =
min(N+(H; x),N�(H; x))

c
=

1H(x)
c

min(N+(x),N�(x)),

where c = 1� dTV(N+,N�).
To simplify notation we assume that we work in Rd+1 instead of Rd. Let

V = (v1, . . . , vd) 2 {+1,�1}d. For every V we define the set GV = H \ {y 2 Rd :
yivi � 0}. We also define the subcubes HV = [0, 1]⇥GV . We consider the following
subset of H parameterized by the 2d parameters tV 2 [0, 1] and d 2 [�1, 1].

S+ = [�1 + d, 0]⇥ [�1, 1]d [
[

V2{�1,+1}d

[0, tV ]⇥ GV

We will argue that there exists a distribution D+ on the values tV such that on
expectation dTV(N S+

+ ,N S�
� ) is O(2�d). We show how to construct the distribution

D+ since the construction for D� is the same. In fact we will show that both
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distributions are very close to r(x). Notice that for some (t, y) 2 Rd+1 we have We
draw each tV independently from the distribution with cdf

F(t) = 1[0,1)(t)(1� e�2t) + 1[1,+•)(t)

Notice that for t 2 (0, 1) and any y 2 Rd we have that 1� F(t) = N�(t, y)/N+(t, y).
After we draw all tV from F we choose d so that N+(S+; x) = c. We will show

that on expectation over the tV we have d = 0, which means that no correction is
needed. In fact we show something stronger, namely that for all x 2 H+ we have
that ES+⇠D+[N+(S+; x)] = r(x). Assume that x 2 HV . Indeed,

E
S+⇠D+

[N+(S+; x)] =
N+(x)

c
E

S+⇠D+

[1S+(x)] =
N+(x)

c
E

S+⇠D+

[1{x1tV}]

=
N+(x)

c
(1� F(tV)) =

N�(x)
c

= r(x)

Moreover, observe that for all x 2 H� \ S+ we have that N+(S+; x) = r(x) always
(with probability 1). We now argue that in order to have constant probability
to distinguish N+(S+) from r(x) one needs to draw W(2d) samples. Since the
expected density of N+(S+) matches r(x) for all x 2 H+, to be able to distinguish
the two distributions one needs to observe at least two samples in the same cube
HV . Since we have 2d disjoint cubes HV the probability of a sample landing in HV

is at most 1/2d. Therefore, using the birthday problem, to have constant probability
to observe a collision one needs to draw W(

p
2d) = W(2d/2) samples. Since for

all x 2 H� \ S+, N+(S+) exactly matches r(x), to distinguish between the two
distributions one needs to observe a sample x with �1 + d < x1 < �1. Due to
symmetry, N+ assigns to all cubes HV equal probability, call that p. Moreover, we
have that c = 2d+1p. Now let pV be the random variable corresponding to the
probability that N+ assigns to [0, tV ]⇥ GV . We have that EtV⇠F[pV ] = p for all V.
Since the independent random variables pV are bounded in [0, 1/2d], Hoeffding’s
inequality implies that |ÂV2{�1,1}d(pV � p)| < 1/2d/2 with probability at least
1� 2/e2. This means that with probability at least 3/4 one will need to draw
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W(2d/2) samples in order to observe one with x1 < �1 + d.
Since any set S in our family S has almost everywhere (that is except the set of

its vertices which a finite set and thus of measure zero) smooth boundary we may
use the following equivalent (see e.g. Nazarov (2003a)) definition of its surface area

G(S) =
Z

∂S
N0(x)ds(x),

where ds(x) is the standard surface measure on Rd. Without loss of generality we
assume that S corresponds to the set S+ defined above (the proof is the same if we
consider a set S�). We have

∂S ✓
[

V2{+1,�1}d

({tV}⇥ GV) [ ∂([�1,+1]d+1) [
d+1[

i=1
{x : xi = 0}.

By the definition of Gaussian surface area it is clear that G(A [ B)  G(A) + G(B).
From Table 1.1 we know that G([�1,+1]d+1) = O(

p
log d). Moreover, we know

that a single halfspace has surface area at most
p

2/p (see e.g. Klivans et al. (2008)).
Therefore G

⇣Sd+1
i=1 {x : xi = 0}

⌘
 Âd+1

i=1
p

2/p = O(d). Finally, we notice that for
any point x on the hyperplane {x : x1 = 0} and any y on {x : x1 = c} (for any
c � 0), we have N0(x) � N0(y). Therefore, the surface area of each set tV ⇥ GV is
maximized for tV = 0. In this case

S
V2{+1,�1}d({tV}⇥ GV) ✓ {x : x1 = 0}, which

implies that the set
S

V2{+1,�1}d({tV}⇥ GV) contributes at most
p

2/p to the total
surface area. Putting everything together, we have that G(S) = O(d).

6.5 Identifiability with bounded Gaussian Surface
Area

In this section we investigate the sample complexity of the problem of estimating
the parameters of a truncated Gaussian using a different approach that does not
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Figure 6.4: The set S+ when d = 1.

t�1

t+1

H+1

H�1

depend on the VC dimension of the family S of the truncation sets to be finite. For
example, we settle the sample complexity of learning the parameters of a Gaussian
distribution truncated at an unknown convex set (recall that the class of convex sets
has infinite VC dimension). Our method relies on finding a tuple (eµ, eS, eS) of pa-
rameters so that the moments of the corresponding truncated Gaussian N (eµ, eS, eS)
are all close to the moments of the unknown truncated Gaussian distribution, for
which we have unbiased estimates using samples. The main question that we
need to answer to determine the sample complexity of this problem is how many
moments are needed to be matched in order to be sure that our guessed parameters
are close to the parameters of the unknown truncated Gaussian. We state now the
main result. Its proof is based on Lemma 6.31 and can be found in Appendix E.6.
We show Theorem 6.5, which we restate here for convenience.

Theorem 6.29 (Moment Matching). Let S be a family of subsets of Rd of bounded Gaus-
sian surface area G(S). Moreover, assume that if T is an affine map and T(S) = {T(S) :
S 2 S} is the family of the images of the sets of S , then it holds G(T(S)) = O(G(S)).
For some S 2 S , let N (µ, S, S) be an unknown truncated Gaussian. dO(G(S)/e4) samples
are sufficient to find parameters eµ, eS, eS such that dTV(N (µ, S, S),N (eµ, eS, eS))  e.

The key lemma of this section is Lemma 6.31. It shows that if two truncated
normals are in total variation distance e then there exists a moment where they
differ. The main idea is to prove that there exists a polynomial that approximates
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well the indicator of the set { f1 > f2}. Notice that the total variation distance
between two densities can be written as

R
1{ f1> f2}(x) f1(x)� f2(x)dx. In our proof

we use the chi squared divergence, which for two distributions with densities f1, f2

is defined as

Dc2( f1k f2) =
Z

( f1(x)� f2(x))2

f2(x)
dx

To prove it we need the following nice fact about chi squared divergence between
Gaussian distributions. In general chi squared divergence may be infinite for some
pairs of Gaussians. In the following lemma we prove that for any pair of Gaussians,
there exists another Gaussian N such that Dc2(N1kN) Dc2(N2kN) are finite even
if Dc2(N1kN2) = •.

Lemma 6.30. Let N1 = N (µ1, S1), and N2 = N (µ1, S2) be two Normal distributions
that satisfy the conditions of Lemma E.3. Then there exists a Normal distribution N such
that

Dc2(N1kN), Dc2(N2kN)  exp

 
2
���S�1/2

1 (µ1 � µ2)
���

2

+
1
2

max(1, kS1k2)
���S�1/2

1 S2S�1/2
1 � I

���
2

F

!

Now we state the main lemma of this section. We give here a sketch of its proof.
It’s full version can be found in Appendix E.6.

Lemma 6.31. Let S be a family of subsets of Rd of bounded Gaussian surface area G(S).
Moreover, assume that if T is an affine map and T(S) = {T(S) : S 2 S} is the family
of the images of the sets of S , then it holds G(T(S)) = O(G(S)). Let N (µ1, S1, S1)

and N (µ2, S2, S2) be two truncated Gaussians with densities f1, f2 respectively. Let
k = O(G(S)/e4). If dTV( f1, f2) � e, then there exists a V 2 Nd with |V|  k such that

���� E
x⇠N (µ1,S1,S1)

[xV ]� E
x⇠N (µ2,S2,S2)

[xV ]

���� � e/dO(k).
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Proof sketch. Let W = S1 \ S2 \ { f1 > f2} [ S1 \ S2, that is the set of points where
the first density is larger than the second. We now write the L1 distance between
f1, f2 as Z

| f1(x)� f2(x)|dx =
Z

1W(x)( f1(x)� f2(x))dx

Denote p(x) the polynomial that will do the approximation of the L1 distance.
From Lemma 6.30 we know that there exists a Normal distribution within small
chi-squared divergence of both N (µ1, S1) and N (µ2, S2). Call the density function
of this distribution g(x). We have

���
Z

| f1(x)� f2(x)|dx�
Z

p(x)( f1(x)� f2(x))
��� (6.14)


Z

|1W(x)� p(x)| | f1(x)� f2(x)|dx


Z

|1W(x)� p(x)|
q

g(x)
| f1(x)� f2(x)|p

g(x)
dx


rZ

(1W(x)� p(x))2g(x)dx

sZ
( f1(x)� f2(x))2

g(x)
dx, (6.15)

where we use Schwarzs’ inequality. From Lemma 6.30 we know that

Z f1(x)2

g(x)
dx 

Z N (µ1, S1; x)2

g(x)
dx = exp(poly(1/a)).

Similarly,
R f2(x)2

g(x) dx = exp(poly(1/a)). Therefore we have,

���
Z

| f1(x)� f2(x)|dx�
Z

p(x)( f1(x)� f2(x))
���

 exp(poly(1/a))

rZ
(1W(x)� p(x))2g(x)dx

Recall that g(x) is the density function of a Gaussian distribution, and let µ, S be
the parameters of this Gaussian. Notice that it remains to show that there exists a
good approximating polynomial p(x) to the indicator function 1W . We can now
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transform the space so that g(x) becomes the standard normal. Notice that this is
an affine transformation that also transforms the set W; Since the Gaussian surface
area is "invariant" under linear transformations

Since 1W 2 L2(Rd,N0) we can approximate it using Hermite polynomials. For
some k 2 N we set p(x) = Sk1W(x), that is

pk(x) = Â
V:|V|k

c1WV HV(x).

Combining Lemma 6.14 and Lemma E.9 we obtain

E
x⇠N0

[(1W(x)� pk(x))2] = O
✓

G(S)
k1/2

◆
.

Therefore,
���
R
| f1(x)� f2(x)|dx�

R
pk(x)( f1(x)� f2(x))

��� = exp(poly(1/a))G(S)1/2

k1/4 .
Ignoring the dependence on the absolute constant a, to achieve error O(e) we need
degree k = O(G(S)2/e4).

To complete the proof, it remains to obtain a bound for the coefficients of the
polynomial q(x) = pk(S

�1/2(x� µ)). Using known facts about the coefficients
of Hermite polynomials we obtain that kq(x)k•  (d+k

k )
2
(4d)k/2(O(1/a2))k. To

conclude the proof we notice that we can pick the degree k so that

����
Z

q(x)( f1(x)� f2(x))
���� =

������
Â

V:|V|k
xV( f1(x)� f2(x))

������
� e/2.

Since the maximum coefficient of q(x) is bounded by dO(k) we obtain the result.

6.6 VC-dimension vs Gaussian Surface Area

We use two different complexity measures of the truncation set to get sample
complexity bounds, the VC-dimension and the Gaussian Surface Area (GSA) of
the class of the sets. As we already mentioned in the introduction, there are classes,
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for example convex sets, that have bounded Gaussian surface area but infinite VC-
dimension. However, this is not the main difference between the two complexity
measures in our setting. Having a class with bounded VC-dimension means that
the empirical risk minimization needs finite samples. To get an efficient algorithm
we still need to implement the ERM for this specific class. Therefore, it is not clear
whether it is possible to get an algorithm that works for all sets of bounded VC-
dimension. On the other hand, bounded GSA means that we can approximate
the weighted indicator of the set using its low order Hermite coeffients. This
approximation works for all sets of bounded GSA and does not depend on the
specific class of sets. Therefore, using GSA we manage to get a unified approach
that learns the parameters of the underlying Gaussian distribution using only the
assumption that the truncation set has bounded GSA. In other words, our approach
uses the information of the class that the truncation set belongs only to decide how
large the degree of the approximating polynomial should be. Having said that, it is
an interesting open problem to design algorithms that learn the parameters of the
Gaussian and use the information that the truncation set belongs to some class (e.g.
intersection of k-halfspaces) to beat the runtime of our generic approach that only
depends on the GSA of the class.

6.7 Further Related Work

Our work is related to the field of robust statistics as it can robustly learn a Gaussian
even in the presence of an adversary erasing samples outside a certain set. Recently,
there has been a lot of theoretical work doing robust estimation of the parameters
of multi-variate Gaussian distributions in the presence of arbitrary corruptions
to a small # fraction of the samples, allowing for both deletions of samples and
additions of samples that can also be chosen adaptively Diakonikolas et al. (2016b);
Charikar et al. (2017); Lai et al. (2016b); Diakonikolas et al. (2017a, 2018c). When the
corruption of the data is so powerful it is easy to see that the estimation error of the
parameter depends on e and cannot shrink to 0 as the number of samples grows to
infinity. In our model the corruption is more restrictive but in return our results
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show how to estimate the parameters of a multi-variate Gaussian distribution to
arbitrary accuracy even when the fraction of corruption is any constant less than 1.

Our work also has connections with the literature of learning from positive
examples. At the heart of virtually all of the results in this literature is the use
of the exact knowledge of the original non-truncated distribution to be able to
generate fake negative examples, e.g. Denis (1998); Letouzey et al. (2000). When
the original distribution is uniform, better algorithms are known. Diakonikolas et
al. De et al. (2014) gave efficient learning algorithms for DNFs and linear threshold
functions, Frieze et al. Frieze et al. (1996) and Anderson et al. Anderson et al. (2013)
gave efficient learning algorithms for learning d-dimensional simplices. Another
line of work proves lower bounds on the sample complexity of recovering an
unknown set from positive examples. Goyal et al. Goyal and Rademacher (2009)
showed that learning a convex set in d-dimensions to accuracy e from positive
samples, uniformly distributed inside the set, requires at least 2W(

p
d/e) samples,

while the work of Eldan (2011) showed that 2W(
p

d) samples are necessary even
to estimate the mass of the set. To the best of our knowledge, no matching upper
bounds are known for those results. Our estimation result implies that dpoly( 1

e )
p

d

are sufficient to learn the set and its mass when given positive samples from a
Gaussian truncated on the convex set.
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7 NON-PARAMETRIC TRUNCATED STATISTICS:
LEARNING SMOOTH-DENSITIES

7.1 Formal Statement of Results

Definitions and Preliminaries

Notation. Let K ✓ Rd and B 2 R+, we define L•(K, B) to be the set of all
functions f : K ! R such that maxx2K | f (x)|  B. We may use L•(B) instead
of L•([0, 1]d, B). We also define diamp(K) = supx,y2K kx� ykp where k·kp is
the usual `p-norm of vectors. Let Rd⇥···(k times)···⇥d be the set of k-order tensors
of dimension d, which for simplicity we will denote by Rdk . For a 2 Nd, we
define the factorial of the multi-index a to be a! = (a1!) · · · (ad!). Additionally
for any x, y, z 2 Rd we define za = za1

1 · · · zad
d and in particular (x� y)a = (x1 �

y1)a1 · · · (xd � yd)
ad .

Remark 7.1. Throughout the paper, for simplicity of exposition, we will consider the
support K of the densities that we aim to learn to be the hypercube [0, 1]d. Our results
hold for arbitrary convex sets with the following property [a, b]d ✓ K ✓ [c, d]d. Then all
our results will be modified by multiplying with a function of R , d�c

b�a . We will add a
note in our theorems to specify the function of R in every case, but we will keep our main
statements for K = [0, 1]d to simplify our statements. The set K should not be confused
with the survival set S from which we see the samples, which can be an arbitrary measurable
subset of K.

Multivariate Polynomials

When we use a polynomial to define a probability distribution, as we will see in
Section 7.1, the constant term of the polynomial has to be determined from the rest
of the coefficients so that the resulting function integrates to 1. For this reason we
can ignore the constant term. A polynomial q of d variables, degree k, and zero
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constant term is a function q : Rd ! R of the form

q(x) = Â
a2Nd,0<|a|k

vaxa (7.1)

where va 2 R. The monomials of degree  k can be indexed by a multi-index
a 2 Nd with |a|  k and any polynomial belongs to the vector space defined by
the monomials as per (7.1).

To associate the space of polynomials with a Euclidean space we can use any
ordering of monomials, for example the lexicographic ordering. Using this ordering
we can define the monomial profile of degree k, mk : Rd ! Rtk�1, as (mk(x))a = xa

where tk = (d+k
k ) is equal to the number of monomials with d variables and degree

at most k and where we abuse notation to index a coordinate in Rtk�1 via a multi-
index a 2 Nd with |a|  k and a 6= 0; this can be formally done using the
lexicographic ordering. Therefore the vector space of polynomials is homomorphic
to the vector space Rtk�1 via the following correspondence

v 2 Rtk�1 $ vTmk(x) , qv(x). (7.2)

We denote by Qd,k the space of polynomials of degree at most k with d variables
and zero constant term, where we might drop d from the notation if it is clear from
context.

High-order Derivatives and Taylor’s Theorem

In this section we will define the basic concepts about high order derivatives of a
multivariate real-valued function f : K ! R, where K ✓ Rd.

Fix k 2 N and let u 2 [d]k. We define the order k derivative of f with index
u = (u1, . . . , uk) as Dk

u f (x) = ∂k f
∂xu1 ···∂xuk

(x), observe that Dk
u f is a function from S

to R. The order k derivative of f at x 2 S is then the tensor Dk f (x) 2 Rdk where
the entry of Dk f (x) that corresponds to the index u 2 [d]k is (Dk f (x))u = Dk

u f (x).
Because of the symmetry of the partial derivatives the k-th order derivatives can



205

be indexed with a multi-index a , (a1, . . . , ad) 2 Nd, with |a| = Âd
i=1 ai = k,

as follows Da f (x) = ∂|a| f
∂a1 x1···∂ad xd

(x). Observe that the k-order derivative of f is a

function Dk f : K ! Rdk .

Norm of High-order Derivative. There are several ways to define the norm of the
tensor and hence the norm of a k-order derivative of a multi-variate function. Here
we will define only the norm that we will use in the rest of the paper as follows

���Dk f
���

•
, sup

x2K
max
u2[d]k

���Dk
u f (x)

��� = sup
x2K

max
u2[d]k

�����
∂k f

∂xu1 · · · ∂xuk

(x)

����� . (7.3)

Observe that this definition depends on the set K, but for ease of notation we
eliminate K from the notation of the norm and we make sure that this set will be
clear from the context. For most part of the paper K is the box [0, 1]d.

In order to present the main application of Taylor’s Theorem that we are using
in the rest of the paper we need the definition of a k-order Taylor approximation of
a multi-variate function.

Definition 7.2. (Taylor Approximation) Let f : K ! R be a (k + 1)-times differentiable
function on the convex set K ✓ Rd. Then we define f̄k(·; x) to be the k-order Taylor
approximation of f around x as follows

f̄k(y; x) = Â
a2Nd,|a|k

Da f (x)
a!

(y� x)a.

We are now ready to state the main application of Taylor’s Theorem. For a proof
of this theorem together with a full statement of the multi-dimensional Taylor’s
Theorem we refer to the Appendix F.1.

Theorem 7.3 (Corollary of Taylor’s Theorem). Let K ✓ Rd and f : K ! R be a
(k + 1)-times differentiable function such that diam•(K)  R and

��Dk+1 f
��

•  W,
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then for any x, y 2 K it holds that

�� f (y)� f̄k(y; x)
�� 

✓
15d

k

◆k+1
· Rk+1 · W.

Bounded and High-order Smooth Function

In this section we define the set of functions that our statistical Taylor theorem
applies. It is also the domain of function with respect to which we are solving the
non-parametric truncated density estimation problem. This set of functions is very
similar to the functions consider for interpolation of probability densities from
exponential families Barron and Sheu (1991). We note that in this paper our goal is
to solve a much more difficult problem since our goal is to do extrapolation instead
of interpolation. We call the set of function that we consider bounded and high-order
smooth functions.

Definition 7.4 (Bounded and High-order Smooth Functions). Let K = [0, 1]d, we define
the set L(B, M) of functions f : K ! R for which the following conditions are satisfied.

I (Bounded Value) It holds that maxx2K | f (x)|  B.

I (High-Order Smoothness) For any natural number k with k � k0, f is k-times
continuously differentiable and it holds that

��Dk f
��

•  Mk.

We note that the definition of the class L depends on k0 as well but for ease of notation we
don’t keep track of this dependence and we treat k0 as a constant throughout the paper.

The above definition can be extended to convex sets K but for ease of notation
we fix K = [0, 1]d as discussed in Remark 7.1. Next we provide examples of
bounded and high-order smooth functions.

Example 7.5. Let q be a polynomial of degree k, with q 2 L•(B) then obviously q 2
L(B, 0). Also for d = 1, the trigonometric functions sin, cos lie inside L(1, 1). The
exponential function x 7! exp(c · x) lies inside L(emax(c,0), c) when K = [0, 1]. Also if
f 2 L(B, M) and g 2 L(B0, M0) then f + g 2 L(B + B0, M + M0). If f 2 L(B, M, 0)
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and g 2 L(B0, M0, 0) then f · g 2 L(B · B0, 2 · M · M0, 0). On the other hand the log
function is not in L(B, M) for any B, M since

��Dk log
��

• � (k� 1)! and hence it cannot
be bounded by any exponential function.

Probability Distributions

We are now ready to define the main object that we study in our paper, which is
probability distributions with a given log-density function.

Definition 7.6. Let S ✓ Rd and let f : S ! R such that
R

S exp( f (x))dx < •. We
define the distribution D( f , S) with log-density f supported on S to be the distribution
with density

D( f , S; x) =
1S(x) e f (x)
R

S e f (x) dx
= 1S(x) exp( f (x)� y( f , S)) ,

where y( f , S) = log
R

S e f (x)dx. If f is equal to a k degree polynomial qv 2 Qk with
coefficients v 2 Rtk�1 then instead of D(qv, S) we abuse notation and we write D(v, S).
Finally, let T ✓ S, we define D( f , S; T) =

R
T D( f , S; x)dx.

Our main focus in this paper is on probability distributions D( f , [0, 1]d) where
f 2 L(B, M) for some known parameters B, M. More specifically our main goal is
to approximation the density of D( f , [0, 1]d) given samples from D( f , S), where S
is a measurable subset of [0, 1]d.

As we already mentioned in Section 1.5, in this work we provide provable
extrapolation of non-parametric density functions from samples, i.e., given samples
from the conditional density on some subset S of the support we want to recover
the shape of the density function outside of S. We consider densities proportional
to e f (x), where f is a sufficiently smooth function. Our observation consists of
samples from a density proportional to 1S(x)e f (x), where S is a known (via a
membership oracle) subset of the support. For this problem to even be well-posed
we need further assumptions on the density function. Even if we are given the
exact conditional density 1S(x)e f (x), it is easy to see that, if f /2 C•, i.e., if f is
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not infinitely times differentiable everywhere in the whole support, there is no
hope to extrapolate its curve outside of S; for a simple example, if we observe
a density proportional to e|x| truncated in (�•, 0] we cannot extrapolate this
density to (0,+•), because we cannot distinguish whether we are observing
truncated samples from e�x or e|x|. On the other hand, if the log-density f is
analytic and sufficiently smooth, then the value of f at every x can be determined
only from local information, namely its derivatives at a single point. This well
known property of analytic functions is quantified by Taylor’s remainder theorem.
In this work we build upon this intuition and show that even given samples from
a sufficiently smooth density and even if these samples are conditioned in a small
subset of the support we can still determine the function in the entire support and
most importantly this can be done in a statistically and computationally efficient
way.

Our first result shows that the polynomial which maximizes the likelihood
with respect to the conditional distribution D( f , S) (let us call this polynomial the
“MLE polynomial”) approximates the density e f (x) everywhere on [0, 1], i.e. the MLE
polynomial has small extrapolation error. Observe, that this result cannot follow
just from the fact that for example the Taylor polynomial extrapolates, because the
MLE polynomial and the Taylor polynomial are in principle very different. While
it is conceptually clear that the MLE polynomial of sufficiently large degree will
have small interpolation error and hence will approximate well the density inside
S, our result is the first to show that the same polynomial has small extrapolation
error and hence approximates the density on the entire interval [0, 1].

Theorem 7.7 (Information Projection Extrapolation Error). Let I = [0, 1] ✓ R and
f : I 7! R be a function that is (k + 1)-times continuously differentiable on I, with��� f (k+1)(x)

���  Mk+1 for all x 2 I. Let S ✓ I be a measurable set such that vol(S) > 0,
and p be a polynomial of degree at most k defined as

p = argmin
q2Qk

DKL(D( f , S)kD(q, S)) .
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Then, it holds that DKL(D( f , I)kD(p, I))  eWkW2
k , Wk =

Mk+1

(k+1)! .

Extending the previous result to multivariate densities is significantly more
challenging. The reason is that multivariate polynomial interpolation is much
more intricate and is a subject of active research, see for example the survey Gasca
and Sauer (2000). Instead of trying to characterize the properties of the exact MLE
polynomial we give an alternative method for obtaining multivariate extrapola-
tion guarantees that does not rely on multivariate polynomial interpolation. Our
approach uses the additional assumption that the set S from which we observe
samples has non-trivial volume, that is vol(S) � a for some a > 0. Under this
natural assumption we obtain the following theorem.

Theorem 7.8 (Extrapolation Error of MLE). Let K = [0, 1]d ✓ Rd, f 2 L(B, M) be
function supported on K, and S ✓ K be a measurable subset of K such that vol(S) � a.
Moreover, define

k = eW
✓

d3M
a2 + log

✓
2B

e

◆◆
, D = {v : max

x2K

���vTmk(x)
���  3B},

and r⇤k = minu2D DKL(D( f , S)kD(u, S)). Then, for every u 2 D such that

DKL(D( f , S)kD(u, S))  r⇤k + exp
✓
�eW

✓
d3M
a2 + B

◆◆
·
✓

1
e

◆�W(log(d/a))

,

it holds that dTV(D( f , K), D(u, K))  e.

So far we have argued about the extrapolation error of the population MLE
polynomial, i.e., we assume that we have access to the population distribution
D( f , S) and that we can maximize the population MLE with no error. Therefore,
our next step is to show how we can incorporate the statistical error from the access
to only finitely many samples from D( f , S) and to provide an efficient algorithm
that computes the MLE polynomial with small enough approximation loss.

Theorem 7.9 (Multi-Dimensional Statistical Taylor Theorem). Let f : [0, 1]d ! R

with f 2 L(B, M) and S ✓ [0, 1]d such that vol(S) � a. Let k = eW(d3M/a2 + B) +
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2 log(1/e), then there exists an algorithm that uses N = 2 eO(d4 M/a2+Bd) · (1/e)O(d+log(1/a))

samples from D( f , S), runs in poly(N) time and outputs a vector of coefficients v such
that dTV(D( f , K), D(qv, K))  e.

7.2 Single Dimensional Densities

In this section we show our Statistical Taylor Theorem for single-dimensional den-
sities. We keep this analysis separate from our main multi-dimensional theorem
for several reasons. First, there exists a great body of work on single-dimensional
non-parametric estimation problems in the vanilla setting and more specifically
in truncated estimation problems this is the only setting that has been considered
so far. Therefore, it is easier to compare the estimators and results that we get
with the existing results. In fact this is the strategy that is followed in other multi-
dimensional non-parametric estimation problems, e.g., see Wu (2010). Another
reason is that in the single dimensional setting we are able to obtain a slightly
stronger information theoretic result using more elementary tools, although the
analysis of our efficient algorithmic procedure is the same as in multiple dimen-
sions. Finally, the single dimensional setting serves as a nice example where the
difference between interpolation and extrapolation is more clear.

In this section our goal is to estimate the density of the distribution D( f , [0, 1])
using only samples from D( f , S), where the log-density f is a bounded and high-
order smooth function, i.e. f 2 L(B, M), and S is a measurable subset of [0, 1]. As
a first step we need to understand what is a sufficient degree for a polynomial
to well-approximate (Section 7.2) this is the part that is different compared to the
multi-dimensional case that we present in Section 7.3. Them in Section 7.2 we state
the application of our general multi-dimensional statistical and computational
result to the single dimensional case where the assumptions and guarantees have a
simpler form.
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Identifying the Sufficient Degree

In this section we assume population access to D( f , S) and our goal is to identify a
polynomial q such that D(q, [0, 1]) approximates D( f , [0, 1]). In particular, we want
to answer the question: if q minimizes the KL-divergence between D(q, S) and
D( f , S), what can we say about the total variation distance between D(q, [0, 1]) and
D( f , [0, 1])? Moreover, how does this depend on the degree of q? As the degree
of q grows, it certainly allows D(q, S) to come closer to D( f , S). The natural thing
to expect hence is that the same is true of D(q, [0, 1]), coming closer to D( f , [0, 1]).
Unfortunately, this is not necessarily the case, because it could be that, as the
degree of the polynomial increases, the approximant D(q, S) overfits to D( f , S), so
extrapolating to [0, 1] fails to give a good approximation to D( f , [0, 1]). This is the
main technical difficulty of this section.

In the next theorem, we show is that if the function is high-order smooth, then
there is some threshold beyond which we get better approximations using higher
degrees, i.e. overfitting does not happen for any degree above some threshold.
We illustrate this behavior in Example 7.11. We now restate Theorem 7.7 for
convenience.

Theorem 7.10 (Information Projection Extrapolation Error). Let I = [0, 1] ✓ R

and f : I 7! R be a function that is (k + 1)-times continuously differentiable on I, with��� f (k+1)(x)
���  Mk+1 for all x 2 I. Let S ✓ I be a measurable set such that vol(S) > 0,

and p be a polynomial of degree at most k defined as

p = argmin
q2Qk

DKL(D( f , S)kD(q, S)) .

Then, it holds that DKL(D( f , I)kD(p, I))  eWkW2
k , Wk =

Mk+1

(k+1)! .

The proof of Theorem 7.7 can be found in Appendix F.2. A weaker version of
this theorem and be proved by applying the multi-dimensional Lemma 7.16 for
d = 1. Nevertheless, Theorem 7.7 is slightly stronger its proof is more elementary.
We also note that we can prove a more general version of Theorem 7.7 where I
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is any interval [a, b]. The difference in the guarantees is that the term Wk will be
multiplied by Rk+1 where R , b� a.

To convey the motivation for our theorem and illustrate its guarantees, we use the
following example.

Example 7.11. Let f (x) = sin(10 · x) and S = [0, 1/2]. Our goal is to estimate the
probability distribution D( f , [0, 1]) using only samples from D( f , S). The guarantees of
Theorem 7.7 are illustrated in Figure 7.1 where we can see the density of the distributions
D( f , [0, 1]), D( f , S), D(q, S) and D(q, [0, 1]) for various values of the degree of q, where
q is always chosen to minimize the KL-divergence between D( f , S) and D(q, S), i.e., using
no further information about D( f , [0, 1]). As we see, D(q, S) approximates D( f , S) very
well for each one of the presented degrees, with a marginal improvement in the quality of
approximation as the degree of q is increased.

An important observation is that for small values of the degree of q the approximation
error between D( f , [0, 1]) and D(q, [0, 1]) is not monotone in the degree of q. In particular,
when the degree of q is 10 then D(q, [0, 1]) is reasonably close to D( f , [0, 1]) while when
the degree of q becomes 12 then D(q, [0, 1]) is way off. This suggests that the overfitting
occurs for degree equal to 12. This is the point of Theorem 7.7. It guarantees that, for degree
greater than a threshold, overfitting cannot happen and D(q, [0, 1]) will always be a good
approximation to D( f , [0, 1]).

Handling the Optimization Error

Our next goal is to provide a version of Theorem 7.7 where approximation error is
also introduced, due to finite samples.

Theorem 7.12 (Approximate Information Projection Extrapolation Error). Let I =
[0, 1], f 2 L(B, M) be a function supported on I, S ✓ I be a measurable set such
that vol(S) � a, Dk be the convex set Dk = {p 2 Qk : p 2 L•(I, 3B)} ., where
k = W(M + log(1/e)), and let also r⇤k = minp2Dk DKL(D( f , S)kD(p, S)). If some q
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(c) The densities of
D( f , [0, 1]) and D(q, [0, 1])
for different deg(q).

Figure 7.1: In figure (a) we can see the probability density functions of the dis-
tributions D( f , [0, 1]) and D( f , S). In figure (b) we have the density of D( f , S)
together with the functions exp(q(x)) for various degrees of q normalized so that
the integral on S is 1. As we can see all the degrees approximate very well the
conditional density but they have completely different behavior outside S. In figure
(c) we can see the densities D( f , [0, 1]) and D(q, [0, 1]) for various degrees of q. The
difference between (b) and (c) is that in (c) the functions are normalized so that
their integral over [0, 1] is equal to 1 whereas in (b) the integral over S is equal to 1.

with q 2 Dk satisfies

DKL(D( f , S)kD(q, S))  r⇤k + 2�O(k log(1/a)+B), (7.4)

then it holds that dTV(D( f , I), D(q, I))  e.

The proof of Theorem 7.12 can be found in Appendix F.2. Now what is left to
do is to argue that we can efficiently compute a polynomial q that satisfies (7.4).
Unfortunately, the proof of this step is not simplified in the single dimensional
case and we need to invoke our general multi-dimensional theorem with the
assumptions and guarantees simplified due to the single dimensionality of the
distribution. For more details about the specific algorithm that we use we refer to
Section 7.3. A theorem that summarizes all these steps is the following.

Theorem 7.13 (1-D Statistical Taylor Theorem). Let I = [0, 1], f 2 L(B, M) be a
function supported on I, and S ✓ I be a (measurable) subset of I such that vol(S) �
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a. There exists an algorithm that draws N = 2 eO((M+log(1/e)) log(1/a)+B) samples from
D( f , S), runs in time polynomial in the number of samples, and outputs a vector of
coefficients v such that dTV(D( f , K), D(qv, K))  e.

Proof. We define the convex set Dk =
n

v 2 Rm : maxx2[0,1]d
��vTmk(x)

��  3B
o

,

where m = (d+k
k ) � 1. From Theorem 7.12 we know that it suffices to fix some

degree k = O(M + log(1/e)) and find a candidate v such that the conditional
Kullback-Leibler divergence DKL(D( f , S)kD(qv, S))  minu2Dk DKL(D( f , S)kD(qu, S))+
2�O(k log(1/a)+B). Therefore, from Theorem 7.20 we obtain that with N = 2 eO(k log(1/a)+B)

samples and in time poly(N), we can compute such a candidate.

7.3 Multi-Dimensional Densities

In this section we show the general form of our Statistical Taylor Theorem that
applies to multi-dimensional densities. Although the techniques used in this
section and involved and possibly of independent interest, our strategy to prove
this theorem is similar to the strategy that we followed in Section 7.2: (1) we identify
the sufficient degree that we need to use, (2) we handle approximation errors that
we get as a result of finite sample, and (3) we design an efficient algorithm to
compute the solutions that are information-theoretically shown to exist. Putting all
these together we prove the following which is the main theorem of our paper. We
now restate Theorem 7.9 for convenience.

Theorem 7.14 (Multi-Dimensional Statistical Taylor Theorem). Let f : [0, 1]d ! R

with f 2 L(B, M) and S ✓ [0, 1]d such that vol(S) � a. Let k = eW(d3M/a2 + B) +
2 log(1/e), then there exists an algorithm that uses N = 2 eO(d4 M/a2+Bd) · (1/e)O(d+log(1/a))

samples from D( f , S), runs in poly(N) time and outputs a vector of coefficients v such
that dTV(D( f , K), D(qv, K))  e.

Towards proving the above theorem the main bottleneck is that in the multi-
dimensional polynomial interpolation theory there are no sufficient tools to prove
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the extrapolation properties of an estimator that can be computed efficiently. Sur-
prisingly, our formulation of the extrapolation problem in the language of density
estimation enables us to use strong anti-concentration results to prove extrapolation
results for polynomial approximations.

We begin this section with a presentation of our main lemma in this direction
which we call “Distortion of Conditioning Lemma” and we believe is of inde-
pendent interest and could be useful in other multi-dimensional extrapolation
problems.

Identifying the Sufficient Degree – The Distortion of Conditioning
Lemma

The goal of this section is to identify the sufficient degree so that the MLE polyno-
mial approximates well the true density in the whole domain K = [0, 1]d, i.e., it has
small extrapolation error. We restate Theorem 7.8 for convenience.

Theorem 7.15 (Extrapolation Error of MLE). Let K = [0, 1]d ✓ Rd, f 2 L(B, M) be
function supported on K, and S ✓ K be a measurable subset of K such that vol(S) � a.
Moreover, define

k = eW
✓

d3M
a2 + log

✓
2B

e

◆◆
, D = {v : max

x2K

���vTmk(x)
���  3B},

and r⇤k = minu2D DKL(D( f , S)kD(u, S)). Then, for every u 2 D such that

DKL(D( f , S)kD(u, S))  r⇤k + exp
✓
�eW

✓
d3M
a2 + B

◆◆
·
✓

1
e

◆�W(log(d/a))

,

it holds that dTV(D( f , K), D(u, K))  e.

The first step in proving Theorem 7.8 is to understand the approximation error
as a function of the degree that we use when we have access to the population
distribution D( f , S). This is established in the following lemma whose proof can
be found in Appendix F.3.
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Lemma 7.16 (Approximation of Log-density). Let K ✓ Rd be a convex set centered at
the origin 0 of diameter diam•(K)  R and let f 2 L(B, M) be a function supported on
K. There exists polynomial p(x) = vTmk(x) 2 Qd,k such that for every S ✓ K it holds

DKL(D( f , S)kD(v, S))  2
✓

15MRd
k

◆k+1
, and k1K pk•  2B+

✓
15MRd

k

◆k+1
.

From Lemma 7.16 we obtain that by choosing 0 2 K, there exists v such that��1KvTmk(x)
��

•  2B + (15Md/k)k+1. Moreover, from the same lemma we have
that minw2D DKL(D( f , S)kD(w, S))  DKL(D( f , S)kD(v, S))  2 (15Md/k)k+1.
To simplify notation set rk = 2 (15Md/k)k+1. Now, let q(x) = uTmk(x) be any
approximate minimizer in D of the KL-divergence between D(q, S) and D( f , S)
that satisfies

DKL(D( f , S)kD(u, S))  min
w2D

DKL(D( f , S)kD(w, S)) + ē  rk + ē.

This bound implies the following via Pinsker’s inequality and the subadditivity of
the square root

dTV(D( f , S), D(u, S))  prk +
p

ē. (7.5)

Our next step is to relate the conditional total variation dTV(D( f , S), D(u, S))
with the total variation in the whole domain dTV(D( f , K), D(u, K)). For this we
develop a novel extrapolation technique based on anti-concentration of polynomial
functions. In particular we use the following Theorem from Carbery and Wright
(2001).

Theorem 7.17 (Theorem 2 of Carbery and Wright (2001)). Let K = [0, 1]d and let
p : Rd 7! R be a polynomial of degree at most k. If q 2 [1,+•], then there exists absolute
constant C such that for any g > 0 it holds

✓Z

K
|p(x)|q/kdx

◆1/q Z

K
1{|p(x)|  g}dx  Cg1/k min(q, d) .
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This anti-concentration result is very useful for extrapolation because it can be
used to bound the behavior of a polynomial function even outside the region from
which we get the samples. This is the main idea of the following lemma which is
one of the main technical contributions of the paper and we believe that it is of
independent interest.

Lemma 7.18 (Distortion of Conditioning). Let K = [0, 1]d and let p, q be polynomials
of degree at most k such that p, q 2 L•(K, B). For every S ✓ K with vol(S) > 0 it holds
that

e�2Bvol(S)  dTV(D(p, K), D(q, K))
dTV(D(p, S), D(q, S))

 8e5B (2C min(d, 2k))k

vol(S)k+1 ,

where C is the absolute constant of Theorem 7.17.

Remark 7.19. Both Theorem 7.17 and Lemma 7.18 hold for the more general case where K
is an arbitrary convex subset of Rd. We choose to state this weaker expression for ease of
notation and to be coherent with the rest of the paper.

Unfortunately it is still not clear how to apply Lemma 7.18 to equation (7.18)
because Lemma 7.18 assumes that both the distributions that we are comparing
have as a log-density a bounded degree polynomial. Nevertheless, we can use
a sequence of triangle inequalities togethet with and the multi-variate Taylor’s
Theorem (see Theorem 7.3) to combine Lemma 7.18 and equation (7.18) from which
we can prove Theorem 7.8 by choosing the appropriate value for ē as we explain
in detail in Appendix F.3. The proof of the Distortion of Conditioning Lemma in
presented in Appendix F.3.

Computing the MLE

In this section we describe an efficient algorithm that solves the Maximum Likeli-
hood problem that we need in order to apply Theorem 7.8.

The efficient algorithm that we design in this section solves the following prob-
lem: given sample access to the conditional distribution D( f , S) and fix a degree k,
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our algorithm finds a polynomial p of degree k that approximately minimizes the
distance DKL(D( f , S)kD(u, S)). More precisely we prove the following.

Theorem 7.20. Let f : [0, 1]d ! R and S ✓ [0, 1]d with vol(S) � a. Fix a degree
k 2 N and a parameter C > 0 and define D = {v : maxx2[0,1]d |vTmk(x)| 
C}. There exists an algorithm that draws N = 2O(dk)(C2/e)2 samples from D( f , S),
runs in time 2O(dk+C)/(ae2), and outputs v̂ 2 D such that DKL(D( f , S)kD(v̂, S)) 
minu2D DKL(D( f , S)kD(u, S)) + e, with probability at least 99%.

The algorithm that we use for proving Theorem 7.20 is Projected Stochastic
Gradient Descent with projection set D. In order to prove the guarantees of
Theorem 7.20 we have to prove: (1) an upper bound on the number of steps that
the PSGD algorithm needs, (2) find an efficient procedure to project to the set D.
For the second we can use the celebrated algorithm by Renegar for the existential
theory of reals Renegar (1992a,b), as we explain in detail in the appendix. To bound
the number of steps that the PSGD performs we use the following lemma.

Lemma 7.21 (Theorem 14.8 of Shalev-Shwartz and Ben-David (2014c)). Let R, r > 0.
Let f be a convex function, D ✓ Rd be a convex set of bounded diameter, diam2(D)  R,
and let w⇤ 2 argminw2D f (w). Consider the following Projected Gradient Descent
(PSGD) update rule wt+1 = projD(wt � hvt), where vt is an unbiased estimate of
r f (w). Assume that PSGD is run for T iterations with h =

p
R2r2/T. Assume also

that for all t, kvtk2  r with probability 1. Then, for any e > 0, in order to achieve
E[ f (w̄)]� f (w⇤)  e it suffices that T � R2r2/e2.

From the above lemma we can see that it remains to find an upper bound on the
diameter of the set D and an upper bound on the norm of the stochastic gradient
kvtk. The latter follows from some algebraic calculations whereas the first one from
tight bounds on the coefficients of a polynomial with bounded values Ben-David
et al. (2018). A detailed proof of Theorem 7.20 is presented in the Appendix F.3.
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Putting Everything Together – The Proof of Theorem 7.9

From Theorem 7.8 we have that if we fix the degree k = O(d3M/a2 + B) +
2 log(1/e) then it suffices to optimize the function L(v) of Equation F.7 constrained
in the convex set

D =
n

v 2 Rm :
���1KvTmk(x)

���
•
 3B

o
.

From Theorem 7.8 we have that a vector v with optimality gap 2�eW(d3 M/a2+B)(1/e)�W(log(d/a)

achieves the extrapolation guarantee dTV(D( f , K), D(vT, K))  e. From Theo-
rem 7.20 we have that there exists an algorithm that achieves this optimality gap
with sample complexity

N = B22O(dk)2 eO(d3 M/a2+B)(1/e)O(log(d/a)) = 2 eO(d4 M/a2+Bd)(1/e)d+log(1/a) .
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8 LEARNING FROM COARSE DATA

8.1 Formal Statement of Results

Notation and Preliminaries For a graph G, we denote by LG its Laplacian matrix.
We denote B(x, r) the Euclidean ball of radius r centered at x; we simply refer
to B if the radius and the center are clear from the context and we denote the
associated sphere ∂B, i.e., its boundary. The probability simplex is denoted by Dn

and discrete distributions D supported on [n] will usually be represented by their
associated probability vectors p 2 Dn. For any distribution D, we overload the
notation and we use the same notation for the corresponding density and denote
D(S) = Âx2S D(x) for any S ✓ [n]. We denote the support of the probability
distribution D by supp(D). The d-dimensional Gaussian distribution will be
denoted by N (µ, S). When the covariance matrix is known, we simplify to N (µ).
For a set S ✓ Rd, we let NS denote the conditional Gaussian distribution on
the set S, i.e., NS(µ, S; x) = 1{x 2 S}N (µ, S; x)/N (µ, S; S). We denote F (resp.
f) the cdf (resp. pdf) of the standard Normal distribution. The total variation
distance of p, q 2 Dn is dTV(p, q) = maxS✓[n] p(S)� q(S) = kp� qk1/2. Let D
be a joint distribution over labeled examples X ⇥ Z , with X be the input space
and Z the label space. A statistical query (SQ) oracle STAT(D, t) with tolerance
parameter t 2 [0, 1] takes as input a statistical query defined by a real-valued
function q : X ⇥ Z ! [�1, 1] and outputs an estimate of E(x,z)⇠D[q(x, z)] that is
accurate to within an additive ±t.

We start by describing the generative model of coarsely labeled data in the
supervised setting. We model coarse labels as subsets of the domain of all possible
fine labels.

Definition 8.1 (Generative Process of Coarse Data with Context). Let X be an
arbitrary domain, and let Z = {1, . . . , k} be the discrete domain of all possible fine labels.
We generate coarsely labeled examples as follows:
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1. Draw a finely labeled example (x, z) from a distribution D on X ⇥Z .

2. Draw a coarsening partition S (of Z) from a distribution p.

3. Find the unique set S 2 S that contains the fine label z.

4. Observe the coarsely labeled example (x, S).

We denote Dp the distribution of the coarsely labeled example (x, S).

In the supervised setting, our main focus is to answer the following question.

Question 8.2. Can we train a model, using coarsely labeled examples (x, S) ⇠ Dp, that
classifies finely labeled examples (x, z) ⇠ D with accuracy comparable to that of a classifier
that was trained on examples with fine grained labels?

Definition 8.1 does not impose any restrictions on the distribution over parti-
tions p. It is clear that if partitions are very rough, e.g., we split Z into two large
disjoint subsets, we lose information about the fine labels and we cannot hope
to train a classifier that performs well over finely labeled examples. In order for
Question 8.2 to be information theoretically possible, we need to assume that the
partition distribution p preserves fine-label information. The following definition
quantifies this by stating that reasonable partition distributions p are those that
preserve the total variation distance between different distributions supported
on the domain of the fine labels Z . We remark that the following definition does
not require D to be supported on pairs (x, z) but is a general statement for the
unsupervised version of the problem, see also Definition 8.10.

Definition 8.3 (Information Preserving Partition Distribution). Let Z be any domain
and let a 2 (0, 1]. We say that p is an a-information preserving partition distribution
if for every two distributions D1, D2 supported on Z , it holds that dTV(D1

p, D2
p) �

a · dTV(D1, D2), where dTV(D1, D2) is the total variation distance of D1 and D2.

Our first result is a positive answer to Question 8.2 in essentially full generality:
we show that concept classes that are efficiently learnable in the Statistical Query
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(SQ) model, Kearns (1998), are also learnable from coarsely labeled examples. Our
result is similar in spirit with the result of Kearns (1998), where it is proved that SQ
learnability implies learnability under random classification noise.

Theorem 8.4 (SQ from Coarsely Labeled Examples). Consider a distribution Dp over
coarsely labeled examples in Rd ⇥ [k], (see Definition 8.1) with a-information preserving
partition distribution p. Let q : Rd ⇥ [k] ! [�1, 1] be a query function, that can
be evaluated on any input in time T, and t, d 2 (0, 1). There exists an algorithm
(Algorithm 12), that draws N = eO(k4/(t3a2) log(1/d)) coarsely labeled examples from
Dp and, in poly(N, T) time, computes an estimate r̂ such that, with probability at least
1� d, it holds

��E(x,z)⇠D[q(x, z)]� r̂
��  t .

Learning Parametric Distributions from Coarse Samples. In many important
applications, instead of a discrete distribution over fine labels, a continuous para-
metric model is used. A popular example is when the domain Z of Definition 8.1
is the entire Euclidean space Rd, and the distribution of finely labeled examples is
a Gaussian distribution whose parameters possibly depend on the context x. Such
censored regression settings are known as Tobit models Tobin (1958); Maddala
(1986); Gourieroux (2000). Lately, significant progress has been made from a com-
putational point of view in such censored/truncated settings in the distribution
specific setting, e.g., when the underlying distribution is Gaussian Daskalakis et al.
(2018); Kontonis et al. (2019), mixtures of Gaussians Nagarajan and Panageas (2019),
linear regression Daskalakis et al. (2019); Ilyas et al. (2020); Daskalakis et al. (2020).
In this distribution specific setting, we consider the most fundamental problem of
learning the mean of a Gaussian distribution given coarse data.

Definition 8.5 (Coarse Gaussian Data). Consider the Gaussian distribution N (µ?),
with mean µ? 2 Rd and identity covariance matrix. We generate a sample as follows:

1. Draw z from N (µ?).

2. Draw a partition S (of Rd) from p.

3. Observe the set S 2 S that contains z.



223

We denote the distribution of S as Np(µ?).

Remark 8.6. We remark that we only require membership oracle access to the subsets of
the partition S . A set S ✓ Rd corresponds to a membership oracle OS : Rd ! {0, 1} that
given x 2 Rd outputs whether the point lies inside the set S or not.

We first study the above problem, from a computational viewpoint. For the
corresponding problems in censored and truncated statistics no geometric assump-
tions are required for the sets: in Daskalakis et al. (2018) it was shown that an
efficient algorithm exists for arbitrarily complex truncation sets. In contrast in
our more general model of coarse data we show that having sets with geometric
structure is necessary. In particular we require that every set of the partition is con-
vex, see Figure 8.2(b,c). We show that when the convexity assumption is dropped,
learning from coarse data is a computationally hard problem even under a mixture
of very simple sets.

Theorem 8.7 (Hardness of Matching the Observed Distribution with General
Partitions). Let p be a general partition distribution. Unless RP = NP, no algorithm
with sample access to Np(µ?), can compute, in poly(d) time, a eµ 2 Rd such that
dTV(Np(eµ),Np(µ?)) < 1/dc for some absolute constant c > 1.

We prove our hardness result using a reduction from the well known MAX-
CUT problem, which is known to be NP-hard, even to approximate Håstad (2001).
In our reduction, we use partitions that consist of simple sets: fat hyperplanes,
ellipsoids and their complements: the computational hardness of this problem is
rather inherent and not due to overly complicated sets.

On the positive side, we identify a geometric property that enables us to design
a computationally efficient algorithm for this problem: namely we require all the
sets of the partitions to be convex, e.g., Figure 8.2(b,c). We remark that having finite
or countable subsets, is not a requirement of our model. For example, we can
handle convex partitions of the form (c) that correspond to the output distribution
of a ReLU neural network, see Wu et al. (2019). We continue with our theorem for
learning Gaussians from coarse data.
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(a) Non-Identifiable Case (b) Convex Partition Case (c) ReLU Case

Figure 8.1: Convex Partitions of R2.

Figure 8.2: (a) is a very rough partition, that makes learning the mean im-
possible: Gaussians N ((0, z)) centered along the same vertical line (0, z) as-
sign exactly the same probability to all cells of the partitions and therefore,
dTV(Np((0, z1)),Np((0, z2))) = 0: it is impossible to learn the second coordinate
of the mean. (b) is a convex partition of R2, that makes recovering the Gaussian
possible. (c) is the convex partition corresponding to the output distribution of one
layer ReLU networks. When both coordinates are positive, we observe a fine sam-
ple (black points correspond to singleton sets). When exactly one coordinate (say
x1) is positive, we observe the line Lz = {x : x2 < 0, x1 = z > 0} that corresponds
to the ReLU output (x1, 0). If both coordinates are negative, we observe the set
{x : x1 < 0, x2 < 0}, that corresponds to the point (0, 0).

Theorem 8.8 (Gaussian Mean Estimation with Convex Partitions). Let e, d 2 (0, 1).
Consider the generative process of coarse d-dimensional Gaussian data Np(µ?), as in
Definition 8.5. Assume that the partition distribution p is a-information preserving and is
supported on convex partitions of Rd. The following hold.

1. The empirical log-likelihood objective

LN(µ) =
1
N

N

Â
i=1

logN (µ; Si)

is concave with respect to µ where the sets Si for i 2 [N] are i.i.d. samples from
Np(µ?).

2. There exists an algorithm, that draws N = eO(d/(e2a2) log(1/d)) samples from
Np(µ?) and computes an estimate eµ that satisfies dTV(N (eµ),N (µ?))  e , with
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probability at least 1� d.

Our algorithm for mean estimation of a Gaussian distribution relies on the log-
likelihood being concave when the partitions are convex. We remark that, similar
to our approach, one can use the concavity of likelihood to get efficient algorithms
for regression settings, e.g., Tobit models, where the mean of the Gaussian is given
by a linear function of the context Ax for some unknown matrix A.

8.2 Supervised Learning from Coarse Data

In this section, we consider the problem of supervised learning from coarse data. In
this setting, there exists some underlying distribution over finely labeled examples,
D. However, we have sample access only to the distribution associated with
coarsely labeled examples Dp, see Definition 8.1. As discussed in Section 8.1,
under this setting, even problems that are naturally convex when we have access
to examples with fine labels, become non-convex when we introduce coarse labels
(e.g., multiclass logistic regression). The main result of this section is Theorem 8.4,
which allows us to compute statistical queries over finely labeled examples.

Overview of the Proof of Theorem 8.4

In order to simulate a statistical query we take a two step approach. Our first build-
ing block considers the unsupervised version of the problem, see Definition 8.10,
i.e., we marginalize the context x and try to learn the distribution of the fine labels
z given coarse samples S. This can be viewed as learning a general discrete distri-
bution supported on Z = {1, . . . , k} given coarse samples, i.e., subsets of Z . We
show that, when the partition distribution p is a-information preserving, this can
be done efficiently, see Proposition 8.11. Our algorithm (Algorithm 12) exploits
the fact that even though in general having coarse data results in non-concave
likelihood objectives, when we consider parametric models (see, for example, the
case of logistic regression in Appendix G.2), this is not true when we maximize over
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all discrete distributions. In Proposition 8.11, we show that eO(k/(ea)2) samples
are sufficient for this step. For the details of this step, see Section 8.2.

Using the above algorithm, one could try to separately learn the marginal
distribution over x, Dx and the distribution of the fine labels z conditional on some
fixed x; let us denote this distribution as Dx

z . Then one could generate finely labeled
examples (x, z) and use them to estimate the query E(x,z)⇠D[q(x, z)]. The reason
that this naive approach fails is that it requires many coarse examples (x, S) with
exactly the same value of x. Unless the domain X is very small, the probability
that we observe samples with the same value of x is going to be tiny. In order to
overcome this obstacle, at a high level, our approach is to split the domain X into
larger sets and then, learn the conditional distribution of the labels, not on a fixed
point x, but on these larger sets of non-trivial mass.

Intuitively, in order to have an effective partition of the domain X , we want
to group together points x whose values q(x, z) are close. Since z belongs in
a discrete domain Z = [k], we can decompose the query q(x, z) as q(x, z) =

Âk
i=1 q(x, i)1{z = i}. We estimate the value of E(x,z)⇠D[q(x, i)1{z = i}] separately.

To find a suitable reweighting of the domain X , we perform rejection sampling,
accepting a pair (x, S) ⇠ D with probability q(x, i) 1: points x that have small
value q(x, i) contribute less in the expectation and are less likely to be sampled.
After performing this rejection sampling process based on x, we have pairs (x, S),
conditional that x was accepted. Now, using our previous maximum likelihood
learner of Proposition 8.11 we learn the marginal distribution over fine labels and
use it to answer the query. We provide the details of this rejection sampling step in
the full proof of Theorem 8.4, see Section 8.2.

For a description of the corresponding algorithm that simulates statistical
queries, see Algorithm 12. To keep the presentation simple we state the algo-
rithm for the case where the query function q(x, z) is positive. It is straightforward
to generalize it for general queries, see Section 8.2.

Remark 8.9 (Empirical Likelihood Approach). One could try to use the empirical
1It is easy to handle the case where this function takes negative values, see the proof of

Theorem 8.4.
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Algorithm 12 Statistical Queries from Coarse Labels.
1: Input: Query q : X ⇥Z 7! (0, 1], tolerance t 2 [0, 1], confidence d 2 [0, 1].
2: Oracle: Access to coarsely labeled samples (x, S) ⇠ Dp, p is a-information

preserving.
3: Output: Estimate br such that

��E(x,z)⇠D[q(x, z)] � br
��  t with probability at

least 1� d.

4: procedure STATQUERY(q, t, d)
5: Compute bri  SQ(q, i, O(t/k), d/k) for any i 2 Z .
6: Output br  Âk

i=1bri.

7: procedure SQ(q, i, r, d)
8: Draw N1 = eQ

� log(1/d)
r2

�
samples (xj, Sj) from Dp.

9: Compute bµi  1
N1

ÂN1
j=1 q(xj, i).

10: if bµi  r do
11: Output bri  0.
12: end
13: Draw N2 = eQ

� k log(1/d)
r3a2

�
samples (xj, Sj) from Dp. . eQ

� k4 log(1/d)
t3a2

�
examples

overall.
14: Taccept  ∆. . Training set of accepted samples.
15: Add Sj in Taccept with probability q(xj, i), 8j 2 [N2]. . Rejection Sampling

Process.
16: Compute eD using Proposition 8.11 with input (Taccept, r, d).
17: Output bri  bµi · eD(i).

likelihood directly over the coarsely labeled data (as defined in Owen (2001)). However, in
general, these empirical likelihood objectives are non-convex when the data are coarse and
therefore it is computationally hard to optimize them directly. Our approach for simulating
statistical queries consists of two ingredients: reweighting the feature space via rejection
sampling in order to group together points and learning discrete distributions from coarse
data. To learn the discrete distributions (Section 8.2), we use a (direct) empirical likelihood
approach similar to that of Owen (1988); Owen et al. (1990); Owen (2001). However, our
main contribution is the use of rejection sampling to reduce the initial non-convex problem
to the special case of learning a discrete distribution (with small support) from coarse data
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which, as we prove, is a tractable (convex) problem. For more connections with censored
statistics techniques, we refer the reader to Thomas and Grunkemeier (1975); Owen (1988);
Gill et al. (1997); Owen (2001).

Learning Marginals Over Fine Labels

In this subsection, we deal with unsupervised learning from coarse data in discrete
domains. Although this is an ingredient of our main result for simulating statistical
queries in a supervised setting where labeled data (x, S) are given, the result of this
section does not depend on the points x and concerns the unsupervised version of
the problem. To keep the notation simple, we will use D to denote a distribution
over finite labels Z .

Definition 8.10 (Generative Process of Coarse Data). Let Z be a discrete domain
and D be a distribution supported on Z . Moreover, let p be a distribution supported on
partitions of Z . We consider the following generative process:

1. Draw z from D.

2. Draw a partition S from the distribution over all partitions p.

3. Observe the set S 2 S that contains z.

We denote the distribution of S as Dp.

The assumption that we require is that the partition distribution p is a-information
preserving, see Definition 8.3. At this point we give some examples of information
preserving partition distributions. We first observe that a = 0 if and only if the
problem is not identifiable. For instance, if p is supported only on the partition
S = {{1, 2}, {3, . . . , k}}, the problem is not identifiable, since, for example, the fine
label 1 is indistinguishable from the fine label 2. The value a = 1 is attained when
the partition totally preserves the distribution distance. Intuitively, the value 1� a

corresponds to the distortion that the coarse labeling introduces to a finely labeled
dataset.
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In many cases most fine labels may be missing. Consider two data providers
that use different methods to round their samples. The rounding’s uncertainty can
be viewed as a coarse labeling of the data. Assume that we add discrete (balanced
Bernoulli) noise x to some true value x 2 [0..k]. Consider two partitions {S1, S2}
with S1 = {{0, 1}, {2, 3}, . . . , {k � 1, k}, {k + 1}} and S2 = {{0}, {1, 2}, . . . {k �
1, k}}. Observe that, when x + x is odd, we can think of the rounded sample, as a
draw from S1 and when x + x is even, as a draw from S2. This example shows that
we can capture the problem of deconvolution of two distributions D1, D2, where
one of them is known and we observe samples x1 + x2, xi ⇠ Di.

The following proposition establishes the sample complexity of unsupervised
learning of discrete distributions with coarse data. Our goal is to compute an
estimate of the discrete distribution D? with probability vector p? 2 Dk from N
coarse samples S1, . . . , SN drawn from the distribution D?

p. Our algorithm maxi-
mizes the empirical likelihood. Analyzing the empirical log-likelihood objective
LN(p) = 1

N ÂN
n=1 log

�
Âi2Sn pi

�
, where p 2 Dk is a guess probability vector, we

observe that the problem is concave and, therefore, can be efficiently optimized
(e.g., by gradient descent).

Proposition 8.11. Let Z be a discrete domain of cardinality k and let D be a distribution
supported on Z . Moreover, let p be an a-information preserving partition distribution for
some a 2 (0, 1]. Then, with N = eO(k/(e2a2) log(1/d)) samples from Dp and in time
polynomial in the number of samples N, we can compute a distribution eD supported on Z
such that dTV( eD, D)  e.

Proof. Let D? be the target discrete distribution, supported on a discrete domain
of size k, and let p? 2 Dk be the corresponding probability vector. For some
distribution D supported on a discrete domain of size k, we define the following
population log-likelihood objective.

L(D) = E
S⇠D?

p

[log D(S)] = E
S⇠D?

p

h
log

�
Â
i2S

D(i)
�i

. (8.1)

Since D is a discrete distribution for simplicity we may identify with its probability
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vector p, where pi = D(i). Therefore, for any p in the probability simplex Dk, we
define

L(p) = E
S⇠D?

p

h
log Â

i2S
pi

i
. (8.2)

The corresponding empirical log-likelihood objective after drawing N independent
samples S1, . . . , SN from D?

p is given by

LN(p) =
1
N

N

Â
n=1

log

 

Â
i2Sn

pi

!
. (8.3)

We first observe that the log-likelihood (both the population and the empirical)
is a concave function and therefore can be efficiently optimized (e.g., by gradient
descent). Thus, our main focus in this proof is to bound its sample complexity. We
first observe that when the guess p 2 Dk has some very biased coordinates, i.e.,
for some subset S the corresponding pi’s are close to 0, the probability of a set S,
Âi2S pi will be close to zero and therefore log

�
Âi2S pi

�
will be large. Thus, we

have to restrict our search to a subset of the probability simplex, i.e., have pi � e/k.
We set eDk = {p 2 Dk, pi � e/k for all i = 1, . . . , k }. We now prove that, given
roughly k/(e2a2) samples, we can guarantee that probability vectors that are far
from the optimal vector p? will also be significantly sub-optimal in the sense that
they are far from being maximizers of the empirical log-likelihood.

Claim 8.12. Let N � eW(k/(e2a2) log(1/d)). With probability at least 1� d, we have
that, for every p 2 eDk such that kp� p?k1 � e, it holds

max
q2eDk

LN(q)� LN(p) � W
⇣
(ea)2

⌘
.

Proof. We first construct a cover of the probability simplex eDk by discretizing
each coordinate pi to integer multiples of O((e3/2a/k)2). The resulting cover C
contains O((k/(e3/2a))2k) elements. We first observe that we can replace any
element p 2 eDk with an element p0 inside our cover C without affecting the value
of the objective LN(p) by a lot. In particular, using the fact that x 7! log(x) is
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1/r-Lipschitz in the interval [r,+•), we have that for any set S ✓ {1, . . . , k} it
holds

��� log
⇣

Â
i2S

pi

⌘
� log

⇣
Â
i2S

qi

⌘��� 
1

Âi2S pi

��� Â
i2S

(pi � qi)
��� 

k
e
kp� qk1 ,

where we used the fact that, since p 2 eDk, it holds pi � e/k. Therefore, when we
round each coordinate of a vector p to the closest integer multiple of O((e3/2a/k)2)

we get a vector p0 2 C such that for any set S it holds | log(Âi2S pi)� log(Âi2S qi)| 
e2a2/6 which implies that the empirical log-likelihood satisfies |LN(p)�LN(p0)| 
e2a2/6. We will now show that, with high probability, any element p of the cover
C such that kp� p?k1 � e, satisfies LN(p?)� LN(p) � e2a2/2. We will use the
following concentration result on likelihood ratios.

Lemma 8.13 (Proposition 7.27 of Massart (2007)). Let D1, D2 be two distributions (on
any domain) with positive density functions f , g respectively. For any x 2 R, it holds

Pr
x1,...,xN⇠D1

"
1
N

N

Â
n=1

log
f (xn)
g(xn)

 (dTV(D1, D2))
2 � 2x/N

#
 e�x .

Using the above lemma with x = O(log(|C|/d)) = O(k log(k/(ed))) and

N = Q(k log(k/(ed))/(a2e2)) ,

we obtain that, with probability at least 1� d/|C|, it holds LN(p?) � LN(p) �
dTV(Dp, D?

p)
2� a2e2/2. From the union bound, we obtain that the same is true for

all vectors p 2 C with probability at least 1� d. We are now ready to finish the
proof of the claim. Let p 2 eDk be any probability vector such that kp� p?k1 � e.
Let p̄ 2 eDk be the maximizer of the empirical likelihood constrained on eDk, i.e.,
p̄ = arg maxq2eDk LN(q) and let ep? be the closest vector of the cover C to p?. We
have

LN(p̄)� LN(p) � LN(ep?)� LN(p) � LN(p?)� e2a2/6� LN(p) .
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The first inequality holds since both p̄ and ep? lie in eDk. The second inequality holds
since we can replace the point of the cover ep? 2 C, with each closest point in the
simplex p? without affecting the likelihood value by a lot. Finally, since p lies in
eDk, we can replace it with a point p0 in the cover with kp0 � p?k1 � e, and get that

LN(p̄)� LN(p) � LN(p?)� e2a2/6� LN(p0)� e2a2/6 ,

and, since LN(p?)� LN(p0) � e2a2/2, we have that LN(p̄)� LN(p) = W(e2a2) .

This concludes the proof of Proposition 8.11.

The Proof of Theorem 8.4

In this subsection, we prove Theorem 8.4. Our goal is to simulate a statistical query
oracle which takes as input a query function q with domain X ⇥Z and outputs an
estimate of its expectation with respect to finely labeled examples E(x,z)⇠D[q(x, z)],
using coarsely labeled examples. Recall that since we have sample access only to
coarsely labeled examples (x, S) ⇠ Dp, we cannot directly estimate this expectation.
The key idea is to perform rejection sampling on each coarse sample (x, S) with
acceptance probability q(x, j) for any fine label j 2 Z . Because of the rejection
sampling process, this marginal distribution is not the marginal of D on the fine
labels Z , but the marginal of D on the fine labels, conditional on the accepted
samples. However, the task of estimating from this marginal distribution can be
still reduced to the unsupervised problem (see Proposition 8.11) of the previous
section. Consider an arbitrary query function q : X ⇥ Z ! [�1, 1] and, without
loss of generality, let Z = [k]. Recall that D is the joint probability distribution on
the finely labeled examples (x, z). We have that

E
(x,z)⇠D

[q(x, z)] =
k

Â
j=1

E
(x,z)⇠D

h
q(x, j)1{z = j}

i
=

k

Â
j=1

E
(x,z)⇠D

h
qj(x)1{z = j}

i
. (8.4)
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Since we would like to estimate the expectation of the query q(x, z) with tolerance
t, it suffices to estimate the expectation of each query qj(x)1{z = j} with toler-
ance t/k for any j 2 [k]. Hence, it suffices to estimate expectations of the form
E(x,z)⇠D[ f (x)1{z = j}] for arbitrary functions f : X ! [0, 1]2 and j 2 [k].

Let Dx denote the marginal distribution of the examples x 2 X . The algorithm
performs rejection sampling. Each coarsely labeled example (x, S) ⇠ Dp is ac-
cepted with probability f (x), that does not depend on the coarse label S. Hence, the
rejection sampling process induces a distribution D f over finely labeled examples
(x, z) 2 X ⇥Z with density

D f (x, z) =
f (x)

Ex⇠Dx [ f (x)]
D(x, z) .

We remark that, we do not have sample access to D f because we do not have
sample access to the distribution D of the fine examples; we introduced the above
notation for the purposes of the proof. Similarly, to Dx, we define D f

x to be the
marginal distribution of x conditional on its acceptance, i.e.,

D f
x(x) =

f (x)
Ex⇠Dx [ f (x)]

Dx(x) . (8.5)

Let Dz denote the marginal distribution of the fine labels [k] and let Dz(·|x) be the
marginal distribution conditional on the example x. We have that

E
(x,z)⇠D

h
f (x)1{z = j}

i
=

Z

X
f (x)D(x, j)dx =

Z

X
f (x)Dx(x)Dz(j|x)dx .

The above expectation can be equivalently written, by multiplying and dividing
by D f

x ,

E
(x,z)⇠D

h
f (x)1{z = j}

i
=

Z

X

⇣ f (x)Dx(x)

D f
x(x)

⌘⇣
D f

x(x)Dz(j|x)
⌘

dx .

2Any function f : X ! [�1, 1] can be decomposed into f = f+ � f� with f+, f� � 0 and, by
linearity of expectation, it suffices to work with functions f with image in [0, 1].
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The first term in the integral is equal to Ex⇠Dx [ f (x)], by substituting Equation (8.5)
and, hence, is constant. The second term corresponds to the probability of observ-
ing the fine label j, given an example x, that has been accepted from the rejection
sampling process. Similarly, to the marginal Dz, we define D f

z to be the marginal
distribution of the fine labels z conditional on acceptance. Hence, we can write

E
(x,z)⇠D

h
f (x)1{z = j}

i
= E

x⇠Dx
[ f (x)] · Pr

z⇠D f
z

[z = j] . (8.6)

The decomposition of the expectation of Equation (8.6) is a key step: we now only
need to learn the marginal distribution of fine labels conditional on acceptance D f

z .
Recall that our goal is to estimate the left-hand side expectation of Equation (8.6)

with tolerance t/k. We claim that it suffices to estimate each term of the right hand
side product of Equation (8.6) with tolerance t/(2k). This is implied from the
following: consider an estimate eµ of the value Ex⇠Dx [ f (x)] and an estimate ep of the
value Pr

z⇠D f
z
[z = j]. Then, using Equation (8.6), we have that

���eµ · ep� E
(x,z)⇠D

[ f (x)1{z = j}]
��� =

���eµ · ep� E
x⇠Dx

[ f (x)] · Pr
z⇠D f

z

[z = j]
��� ,

and, hence, by adding and subtracting the term eµ Pr
z⇠D f

z
[z = j], using the triangle

inequality and, since both Ex⇠Dx [ f (x)] and Pr
z⇠D f

z
[z = j] are at most 1, we get that

���eµ · ep� E
(x,z)⇠D

[ f (x)1{z = j}]
��� 

���eµ� E
x⇠Dx

[ f (x)]
���+

���ep� Pr
z⇠D f

z

[z = j]
��� .

We will show that O(k4/(t3a2) log(1/d)) samples are sufficient to bound each term
of the right hand side by t/(2k), with high probability. In order to estimate the
expectation E(x,z)⇠D[q(x, z)], the algorithm applies (in parallel) the above process
k times with f = qj for any j 2 [k] (using Equation (8.4)) using a single training
set of size N = O(k4/(t3a2) log(1/d)) drawn from the distribution Dp of coarsely
labeled examples. Moreover, the running time is polynomial in the number of
samples N. To conclude the proof, it suffices to show the following claims.
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Claim 8.14. There exists an algorithm that, uses N = eO(k4/(t3a2) log(1/d)) samples
from Dp and computes an estimate ep, that satisfies

���ep� Pr
z⇠D f

z
[z = j]

���  t/(2k) , with
probability at least 1� d.

Proof. Recall that the distribution D f
z is the marginal distribution of the fine labels

z 2 Z = [k], conditional that the example x ⇠ D f
x , i.e., that the example x 2 X

has been accepted by the rejection sampling process. Hence, the distribution D f
z is

supported on Z . We can then directly apply Proposition 8.11, using as training set
the set of accepted coarsely labeled samples (x, S) and can compute an estimate eD,
that is e-close in total variation distance to D f

z . By setting e = t/(2k), the algorithm
uses eO(k3/(t2a2) log(1/d)) samples from the set of accepted samples and outputs
the estimate ep = eD(j). For the example x 2 X , the acceptance probability f (x) can
be considered W(t/k). Otherwise, we can set the desired expectation equal to 0.
Hence, the algorithm needs to draw in total eO(k4/(t3a2) log(1/d)) samples from
Dp in order to compute an estimate ep that satisfies

���ep� Pr
z⇠D f

z

[z = j]
���  t/(2k) ,

with probability at least 1� d.

Claim 8.15. There exists an algorithm that, uses N = O((k2/t2) log(1/d)) samples
from Dp and computes an estimate eµ, that satisfies

���eµ� Ex⇠Dx [ f (x)]
���  t/(2k) , with

probability at least 1� d.

Proof. The algorithms draws N coarsely labeled examples from Dp and computes
the estimate eµ = 1

N ÂN
i=1 f (xi). From the Hoeffding bound, since the estimate is a

sum of independent bounded random variables, we get

Pr
 ���eµ� E

x⇠Dx
[ f (x)]

��� � t/(2k)
�
 2 exp(�Nt2/(2k2)) .

Using N = O((k2/t2) log(1/d)) samples, the algorithm estimates the desired
expectation with error t/(2k), with probability at least 1� d. Note that, if eµ <
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t/(2k), the algorithm can output 0, since the estimated value will lie in the desired
tolerance interval.

8.3 Learning Gaussians from Coarse Data

In this section, we focus on an unsupervised learning problem with coarse data.
Recall that we have already solved such a problem in the discrete setting as an
ingredient of our supervised learning result, see Section 8.2. In this section, we
study the fundamental problem of learning a Gaussian distribution given coarse
data. In Section 8.3, we show that, under general partitions, this problem is NP-
hard. In Section 8.3, we show that we can efficiently estimate the Gaussian mean
under convex partitions of the space.

Computational Hardness under General Partitions

In this section, we consider general partitions of the d-dimensional Euclidean
space, that may contain non-convex subsets. For instance, a compact convex
body and its complement define a non-convex partition of Rd. In order to get
this computational hardness result, we reduce from MAX-CUT and make use of
its hardness of approximation (see Håstad (2001)). Recall that MAX-CUT can be
viewed as a maximization problem, where the objective function corresponds
to a particular quadratic function (associated with the Laplacian matrix of the
given graph instance) and the constraints restrict the solution to lie in the Boolean
hypercube (the constraints can be seen geometrically as the intersection of bands,
see Figure 8.3).

We first define MAX-CUT and a variant of MAX-CUT where the optimal cut
score is given as part of the input. Let G = (V, E) be a graph3 with d vertices. A cut
is a partition of V into two subsets S and S0 = V \ S and the value of the cut (S, S0)
is c(S, S0) = Âu,v2E 1{u 2 S, v 2 S0}. The goal of the problem is find the maximum
value cut in G, i.e., to partition the vertices into two sets so that the number of

3We are going to work with graphs with unit weights.
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edges crossing the cut is maximized. We can define MAX-CUT as the following
maximization problem for the graph G = (V, E) with |V| = d:

max Â
(i,j)2E

(xi � xj)
2 , subj. to xi 2 {�1,+1} 8i 2 [d] .

The objective function is the quadratic form xT LGx, where LG is the Laplacian
matrix of the graph G. We may also assume that the value of the optimal cut is
known and is equal to opt.4 Before proceeding with the overview of the proof, we
state a key result of Håstad (2001) about the inapproximability of MAX-CUT .

Lemma 8.16 (Inapproximability of Maximum Cut Problem Håstad (2001)). It is
NP-hard to approximate MAX-CUT to any factor higher than 16/17.

x1

x2

x1

x2

Figure 8.3: The geometry of the MAX-CUT instance. The left figure corresponds
to the fat hyperplanes, i.e., the constraints of MAX-CUT and the right figure (the
ellipsoid) corresponds to the objective function of MAX-CUT . The green points lie
in the Boolean hypercube.

4Observe that this problem is still hard, since the maximum value of a cut is bounded by d2

and, hence, if this problem could be solved efficiently, one would be able to solve MAX-CUT by
trying all possible values of opt.
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Sketch of the Proof of Theorem 8.7

The first step of the proof is to construct the distribution over partitions of Rd. The
MAX-CUT problem can be viewed as a collection of d + 1 non-convex partitions
of the d-dimensional Euclidean space. Consider an instance of MAX-CUT with
|V| = d and optimal cut value opt. Consider the collection of d + 1 partitions
B = {S1, . . . , Sd, T }. We define the partitions as follows: for any i = 1, . . . , d,
we let Si = {x : �1  xi  1} be the sets that correspond to fat hyperplanes of
Figure 8.3(a) and the partitions Si = {Si, Sc

i }, i.e., pairs of fat hyperplanes and
their complements (see Figure 8.4(a,b)). These d partitions will simulate the MAX-
CUT constraints, i.e., that the solution vector lies in the hypercube {�1, 1}d. It
remains to construct T , which intuitively corresponds to the quadratic objective of
MAX-CUT .

Figure 8.4: The mixture of partitions that corresponds to the MAX-CUT problem.
In figures (a) and (b), we partition the Euclidean space using fat hyperplanes (the
blue set S1 and the red set S2 respectively) and their complements Sc

1 = Rd \ S1
and Sc

2 = Rd \ S2. The third figure (c) partitions Rd using the ellipsoid T = {x :
xTS�1x  q} and its complement Tc = Rd \ T (for some d⇥ d covariance matrix
S and positive real q).

Fix the covariance matrix S = L�1
G opt 5 , i.e., S is the inverse of the Laplacian

normalized by opt. We let T = {x : xTS�1x  q} for some positive value q to be
5In fact, LG has zero eigenvalue with eigenvector (1, . . . , 1): we have to project the Laplacian to

the subspace orthogonal to (1, . . . , 1) to avoid this. We ignore this technicality here for simplicity.
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defined later (see Figure 8.3(b) and Figure 8.4(c)). Then, we let T = {T, Tc}. We
construct a mixture p of these partitions by picking each one uniformly at random,
i.e., with probability 1/(d + 1).

Let us assume that there exists an algorithm that, given access to samples from
Np(µ?, S), with known covariance S, computes, in time poly(d), a mean vector
µ so that the output distributions are matched, i.e., dTV(Np(µ, S),Np(µ?, S)) is
upper bounded by 1/dc for some absolute constant c > 1. Equivalently this means
that the mass that N (µ, S) assigns to each set Si and T is within poly(1/d) of the
corresponding mass that Np(µ?, S) assigns to the same set. There are two main
challenges in order to prove the reduction:

1. How can we generate coarse samples from Np(µ?, S) since µ? is the solution
of the MAX-CUT problem and therefore is unknown?

2. Given opt, is it possible to pick the threshold q of the ellipsoid T = {x 2
Rd : xTS�1x  q} so that any vector µ (rounded to belong in {�1, 1}d),
that achieves N (µ, S; T) ⇡ N (µ?, S; T) and N (µ, S; Si) ⇡ N (µ?, S; Si), also
achieves an approximation ratio better than 16/17 for the MAX-CUT objective
?

The key observation to answer the first question is that, by the rotation invari-
ance of the Gaussian distribution, the probability N (µ?, S; T) = Prx⇠N (µ?,S)

⇥
xTS�1x 

q
⇤

is a constant p that only depends on the value opt of the MAX-CUT problem.
Therefore, having this value p, we can flip a coin with this probability and give
the coarse sample T if we get heads and Tc otherwise. Similarly, the value of
N (µ?, S; Si) is an absolute constant that does not depend on µ? 2 {�1, 1}d and
therefore we can again simulate coarse samples by flipping a coin with probability
equal to N (µ?, S; Si).

To resolve the second question, we first show that any vector µ that approxi-
mately matches the probabilities of the d fat halfspaces, lies very close to a corner
of the hypercube, see Lemma 8.20. Therefore, by rounding this guess µ, we obtain
exactly a corner of the hypercube without affecting the probability assigned to
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the ellipsoid constraint by a lot. We then show that any vector of the hypercube
that almost matches the probability of the ellipsoid achieves large cut value. In
particular, we prove that there exists a value for the threshold q of the ellipsoid
xTS�1x  q that makes the probability N (µ, S; T) very sensitive to changes of µ.
Therefore, the only way for the algorithm to match the observed probability is to
find a µ that achieves large cut value. We show the following lemma.

Lemma 8.17 (Sensitivity of Gaussian Probability of Ellipsoids). Let N (µ?, S),
N (µ, S) be d-dimensional Gaussian distributions. Let v? = S�1/2µ?, v = S�1/2µ

and assume that kvk2  kv?k2 = 1. Denote q = d + kv?k2
2 +

q
2d + 4kv?k2

2. Then,
assuming d is larger than some sufficiently large absolute constant, it holds that

��� Pr
x⇠N (µ?,S)

⇥
xTS�1x  q

⇤
� Pr

x⇠N (µ,S)

⇥
xTS�1x  q

⇤��� �
kv?k2

2 � kvk2
2

6
p

2d + 4
� o(1/

p
d) .

Notice that with S = L�1
G opt, in the above lemma, we have kv?k2

2 = 1, since
µ? achieves cut value opt. By assumption, we know that the learning algorithm
can find a guess µ that makes the left hand side of the inequality of Lemma 8.17
smaller than poly(1/d). Thus, we obtain that, for d large enough, it must be that
kvk2

2 = µT LGµ/opt � 16/17. Therefore, µ achieves value greater than (16/17)opt.

Remark 8.18. The transformation p used in the above hardness result is not information
preserving. In Theorem 8.7, we prove that it is computationally hard to find a vector
µ 2 Rd that matches in total variation the observed distribution over coarse labels.
In contrast, as we will see in the upcoming Section 8.3, when the sets of the partitions
are convex, we show that there is an efficient algorithm that can solve the same problem
and compute some µ 2 Rd such that TV(Np(µ?),Np(µ)) is small regardless of whether
the transformation p is information preserving. When the transformation is information
preserving, we can further show that the vector µ that we compute will be close to µ?.
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Sensitivity of Gaussian Probabilities

We now prove Lemma 8.17, namely that the probability of an ellipsoid with respect
to the Gaussian distribution is sensitive to small changes of its mean.

Proof of Lemma 8.17. We first observe that

Pr
x⇠N (µ,S)

⇥
xTS�1x  q

⇤
= Pr

x⇠N (0,I)

⇥
xTx + 2µTS�1/2x  q� µTS�1µ

⇤

= Pr
x⇠N (0,I)

⇥
xTx + 2vTx  q� kvk2

2
⇤
,

where v = S�1/2µ. Similarly, we have Prx⇠N (µ?,S)
⇥
xTS�1x  q

⇤
= Prx⇠N (0,I)

⇥
xTx+

2(v?)Tx  q� kv?k2
2
⇤
, where v? = S�1/2µ?. From the rotation invariance of the

Gaussian distribution, we may assume, without loss of generality, that v = kvke1

and v? = kv?ke1. Notice that (kvk2 + x1)2 + Âd
i=2 x2

i is a sum of independent
random variables. To estimate these probabilities we are going to use the central
limit theorem.

Lemma 8.19 (CLT, Theorem 1, Chapter XVI in Feller (1957) ). Let X1, . . . , Xn be
independent random variables with E[|Xi|3] < +• for all i. Let m1 = E[Ân

i=1 Xi] and
mj = Ân

i=1 E[(Xi � E[Xi])j]. Then,

Pr

(Ân

i=1 Xi)�m1p
m2

 x
�
�F(x) = m3

(1� x2)f(x)
6m3/2

2
+ o

⇣
n/m3/2

2

⌘
,

where F(·), resp., f(·) is the CDF resp., PDF of the standard normal distribution and the
convergence is uniform for all x 2 R.

Using the above central limit theorem we obtain

Pr
x⇠N (0,I)

"
(kv?k2 + x1)

2 +
d

Â
i=2

x2
i  q

#
= F(q̄1)+O

✓
1p
d

◆
(1� q̄1

2)f(q̄1)+ o
⇣

1/
p

d
⌘

,
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where q̄1 =
q�(d+kv?k2

2)p
2d+4kv?k2

2
. Since q = d + kv?k2 +

q
2d + 4kv?k2

2 we obtain q̄1 = 1

and therefore

Pr
x⇠N (0,I)

h
xTx + 2(v?)Tx  q� kv?k2

2

i
= F(1) + o

⇣
1/
p

d
⌘

.

Similarly, from the central limit theorem, we obtain

Pr
x⇠N (0,I)

"

(kvk2 + x1)
2 +

d

Â
i=2

x2
i  q

#
= F(q̄2)+O

✓
1p
d

◆
(1� q̄2

2)f(q̄2)+ o
⇣

1/
p

d
⌘

,

where q̄2 =
q�(d+kvk2

2)p
2d+4kvk2

2
= 1 + O(1/

p
d). Therefore, we have

Pr
x⇠N (0,I)

h
xTx + 2vTx  q� kvk2

2

i
= F(q̄2) + o

⇣
1/
p

d
⌘

.

Moreover, we have that q̄2 � 1 + (kv?k2
2 � kvk2

2)/(
q

2d + 4kvk2
2). Using the fact

that d is sufficiently large and standard approximation results on the Gaussian
CDF, we obtain

F

0

@1 +
kv?k2

2 � kvk2
2q

2d + 4kvk2
2

1

A�F(1) � (kv?k2
2 � kvk2

2)/
✓

6
q

2d + 4kvk2
2

◆
,

and, since kvk2  1, we conclude that the left-hand side satisfies

F

0

@1 +
kv?k2

2 � kvk2
2q

2d + 4kvk2
2

1

A�F(1) � (kv?k2
2 � kvk2

2)/
⇣

6
p

2d + 4
⌘

.

The result follows.

We will also require the following sensitivity lemma about the Gaussian proba-
bility of bands, i.e., sets of the form {x : |xi|  1}. We show that the probabilities
of such regions are also sensitive under perturbations of the mean of the Gaus-
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sian. This means that any vector µ that has Prx⇠N (µ,S)
⇥
� 1  xi  1

⇤
close to

Prx⇠N (µ?,S)
⇥
� 1  xi  1

⇤
must be very close to a corner of the hypercube.

Lemma 8.20 (Sensitivity of Gaussian Probability of Bands). Let N (µ?, S),N (µ, S)

be two d-dimensional Gaussian distributions with eT
i Sei  Q, and |µ?

i | = 1 for all i 2 [d].
Then, for any i 2 [d], it holds that

���� Pr
x⇠N (µ?,S)

⇥
� 1  xi  1

⇤
� Pr

x⇠N (µ,S)

⇥
� 1  xi  1

⇤���� � c · min(1, (1� |µi|)2)
Q4 ,

for some absolute constant c 2 (0, 1].

Proof. Let us fix i 2 [d], define µ? (resp. µ) for µ?
i (resp. µi), and s2 = Sii. Without

loss of generality since both Gaussians have the same variance s by symmetry we
may assume that µ? = 1 and µ 2 [0,+•). We first deal with the case µ > 1. We
have

Pr
x⇠N (µ?,S)

⇥
� 1  xi  1

⇤
� Pr

x⇠N (µ,S)

⇥
� 1  xi  1

⇤

= E
t⇠N (1,s2)


1{|t|  1}

✓
1� N (µ, s2; t)

N (1, s2; t)

◆�
.

We have that since µ > 1 the ratio N (µ,s2;t)
N (1,s2;t) = e

(µ�1)(�µ+2t�1)
2s2 is maximized for t = 1

and has maximum value e�
(µ�1)2

2s2 . By taking the derivative with respect to s we
observe that the probability that N(1, s) assigns to [�1, 1] is decreasing with respect
to s and therefore it is minimized for s = 1. We have that Prt⇠N (1,s)[�1 < t <
1] = W(1/s) and therefore Prx⇠N (µ?,S)

⇥
� 1  xi  1

⇤
� Prx⇠N (µ,S)

⇥
� 1  xi 

1
⇤
� C ·

✓
1� e�

(µ�1)2

2s2

◆
. We can obtain the significantly weaker lower bound of

c min(1, (1� |µ|)2) for some absolute constant c 2 (0, 1] by using the inequality
1� e�x � 1/2 min(1, x) that holds for all x 2 [0,+•).

We now deal with the case µ 2 [0, 1). In that case the expression of their ratio
of the densities of N (1, s) and N (µ, s) derived above shows us that they cross
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at t = (1 + µ)/2. Therefore, they completely cancel out in the interval [µ, 1]. We
have Prx⇠N (µ,S)[�1  xi  1] � Prx⇠N (µ?,S)[�1  xi  1] = Prt⇠N (µ,s)[�1 
t  µ]� Prt⇠N (1,s)[�1  t  µ] = W((1� µ)/(1 + s4)) , where to obtain the last
inequality we use standard approximations of Gaussian integrals. Combining the
above two cases we obtain the claimed lower bound.

The Proof of Theorem 8.7

We are now ready to provide the complete proof of Theorem 8.7. Consider an
instance of MAX-CUT with |V| = d and optimal value opt = O(d2). Let LG be the
Laplacian matrix of the (connected) graph G. Since the minimum eigenvalue of LG

is 0, we project the matrix onto the subspace V that is orthogonal to 1 = (1, . . . , 1).
We introduce a (d� 1)⇥ d partial isometry R, that satisfies RRT = I and R1 = 0,
i.e., R projects vectors to the subspace V. We consider L0G = RLGRT. It suffices
to find a solution x 2 V and then project back to Rd: y = RTx. We note that the
matrix L0G is positive definite (the smallest eigenvalue of L0G is equal to the second
smallest eigenvalue of LG) and preserves the optimal score value, in the sense that

opt = max
y2Rd

yT LGy = max
x2Rd

(RTx)T LG(RTx) = max
x2V

xT L0Gx .

Assume that there exists an efficient black-box algorithm A, that, given sample
access to a generative process of coarse Gaussian data Np(µ?, S) with known
covariance 6 matrix S, computes an estimate eµ in poly(d) time, that satisfies

dTV(Np(eµ, S),Np(µ
?, S)) < 1/dc .

We choose the known covariance matrix to be equal to S = (L0G)
�1opt, where opt is

the given optimal MAX-CUT value and let µ? 2 {�1, 1}d�1 be the unknown mean
6We remark that our hardness result is stated for identity covariance matrix (and not for an

arbitrary known covariance matrix). In order to handle this case, we provide a detailed discussion
after the end of the proof of Theorem 8.7.
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vector. Recall that, not only the black-box algorithm A, but also the generative
process that we design is agnostic to the true mean. However, as we will see the
knowledge of the optimal value opt and the fact that the true mean lies in the
hypercube {�1, 1}d�1 suffice to generate samples from the true coarse generative
process Np(µ?, S).

In what follows, we will construct such a coarse generative process using the
objective function and the constraints of the MAX-CUT problem. Specifically, we
will design a collection B = {S1, . . . , Sd�1, T } of d partitions of the d-dimensional
Euclidean space and let the partition distribution p be the uniform probability
measure over B.

We define the partitions as follows: for any i = 1, . . . , d � 1, let Si = {x :
�1  xi  1} and Si = {Si, Sc

i }. These d� 1 partitions simulate the integrality
constraints of MAX-CUT , i.e., the solution vector should lie in the hypercube
{�1, 1}d�1. It remains to construct T , which corresponds to the quadratic objective
of MAX-CUT . We let T = {x 2 Rd : xTS�1x  q}, for q > 0 to be decided. Then,
we let T = {T, Tc}. Recall that the known covariance matrix S = (L0G)

�1opt lies
in R(d�1)⇥(d�1) and, so, we will use d� 1 bands (i.e., fat hyperplanes).

The main question to resolve is how to generate efficiently samples from the de-
signed general partition, i.e., the distribution Np(µ?, S), without knowing the value
of µ?. The key observation is that, by the rotation invariance of the Gaussian distri-
bution, the probability N (µ?, S; T) = Prx⇠N (µ?,S)

⇥
xTS�1x  q

⇤
is a constant p that

only depends on the value opt of the maximum cut (see the proof of Lemma 8.17).
Therefore, having this value p, we can flip a coin with this probability and give the
coarse sample T if we get heads and Tc otherwise. At the same time, the value of
N (µ?, S; Si) is an absolute constant that does not depend on µ? 2 {�1, 1}d�1 and,
therefore, we can again simulate coarse samples by flipping a coin with probability
equal to N (µ?, S; Si). More precisely, since Si is a symmetric interval around 0, we
have that

Pr
x⇠N (µ?,S)

⇥
� 1  xi  1] = Pr

t⇠N (1,Sii)

⇥
� 1  t  1] .

Notice that the above constant only depends on the known constant Sii and can be
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computed to very high accuracy using well known approximations of the Gaussian
integral or rejection sampling. Moreover, all the probabilities N (µ?, S; Si),N (µ?, S; T)
are at least polynomially small in 1/d. In particular, N (µ?, S; Si), is always
larger than W(1/s) � poly(1/d) and smaller than 1/2 and N (µ?, S; T) = F(1) +
o(1/
p

d) 7, see the proof of Lemma 8.17. Having these values we can generate
samples from Np as follows:

1. Pick one of the d sets S1, . . . , Sd�1, T uniformly at random.

2. Flip a coin with success probability equal to the probability of the correspond-
ing sets and return either the set or its complement.

Giving sample access to the designed oracle with B = {S1, . . . , Sd�1, T }, the
black-box algorithm A computes efficiently and returns an estimate eµ 2 Rd�1, that
satisfies

dTV(Np(eµ, S),Np(µ
?, S)) < o(1/dc) .

We proceed with two claims: (i) the algorithm’s output eµ should lie in a ball of
radius poly(1/d), centered at one of the vertices of the hypercube {�1, 1}d�1 and
(ii) it will hold that the rounded vector bµ = (sgn(eµi))1id�1 2 {�1, 1}d�1 will
attain a cut score, that approximates the MAX-CUT within a factor larger than
16/17. By the algorithm’s guarantee, since p is the uniform distribution, we get
that

|N (eµ, S; T)�N (µ?, S; T)|+
d�1

Â
i=1

|N (eµ, S; Si)�N (µ?, S; Si)| = o(1/dc�1) .

Hence, we get that each of the above d summands is at most o(1/dc�1).

Claim 8.21. It holds that keµ� bµk• < e, where eµ is the black-box algorithm’s estimate
and bµ its rounding to {�1, 1}d�1.

7F(·) is the CDF of the standard Normal distribution.
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Proof. For any coordinate i 2 [d� 1], we will apply Lemma 8.20 in order to bound
the distance between the estimated guess and the true, based on the Gaussian mass
gap in each one of the d� 1 bands.

Note that |µ?
i | = 1 for all i 2 [d� 1]. Also, note that the (d� 1)⇥ (d� 1) matrix

L0G is positive definite and the minimum eigenvalue l(L0G) is equal to the second
smallest eigenvalue of the d ⇥ d Laplacian matrix LG. It holds that l(L0G) > 0.
Hence, the maximum entry of the covariance matrix S = (L0G)

�1opt is upper
bounded by 1/(opt · l(L0G)) < Q = poly(d) for some value Q. Using Lemma 8.20
and the algorithm’s guarantee, we have that

(|eµi|� 1)2/Q4  |N (eµ, S; Si)�N (µ?, S; Si)| = o
⇣

1/dc�1
⌘

.

For sufficiently large c, we get that each coordinate of the estimated vector eµ lies
in an interval, centered at either 1 or �1 of length o(1/dc�1). This implies that
keµ � wk• < e for some e = o(1/dc�1) and some vertex w of the hypercube
{�1, 1}d�1. Hence, we have that eµ should lie in a ball, with respect to the L• norm,
centered at one of the vertices of the (d � 1)-hypercube with radius of order e

and note that this vertex corresponds to the rounded vector bµ of the estimated
vector.

We continue by claiming that the rounded vector bµ attains a MAX-CUT value,
that approximates the optimal value opt withing a factor strictly larger than 16/17.

Claim 8.22. The MAX-CUT value of the rounded vector bµ 2 {�1, 1}d�1 satisfies

bµT L0Gbµ > (16/17) · opt .

Proof. We will make use of Lemma 8.17, in order to get the desired result via
the Gaussian mass gap between the two means on the designed ellipsoid. In
order to apply this Lemma, note that, for the true mean µ?, we have that kv?k2

2 =

k(S?)�1/2µ?k2
2 = ((µ?)T L0Gµ?)/opt = 1, since the true mean attains the optimal

MAX-CUT score. Similarly, for the rounded estimated mean bµ, the associated vector
bv satisfies kbvk2  1, since its cut value is at most opt. So, we can apply Lemma 8.17
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with v? = S�1/2µ? and v = S�1/2bµ and get that

1�
�
bµT L0Gbµ

�
/opt

6
p

2d + 4
� o

⇣
1/
p

d
⌘
< o

⇣
1/dc�1

⌘
,

which implies that, for some small constant c0, the value of the estimated mean
satisfies bµT L0Gbµ > (1� c0 � 1/dc�1)opt. This implies that the algorithm A can
approximate the MAX-CUT value within a factor higher than 16/17.

Known Covariance vs. Identity Covariance. Recall that our hardness result
(Theorem 8.7) states that there is no algorithm with sample access to Np(µ?) =

Np(µ?, I), that can compute a mean eµ 2 Rd in poly(d) time such that dTV(Np(eµ),Np(µ?)) <

1/dc for some absolute constant c > 1. In order to prove our hardness result, we as-
sume that there exists such a black-box algorithm A. Hence, to make use of A, one
should provide samples generated by a coarse Gaussian with identity covariance
matrix. However, in our reduction, we show that we can generate samples from a
coarse Gaussian (which is associated with the MAX-CUT instance) that has known
covariance matrix S. Let us consider a sample S ⇠ Np(µ?, S). Since S is known,
we can rotate the sets and give as input to the algorithm A the set

S�1/2 · S :=
n

S�1/2x : x 2 S
o

,

i.e., we can implement the membership oracle OS�1/2·S(·), assuming oracle access
to OS(·). We have that OS�1/2·S(x) = OS(S1/2x). We continue with a couple of
observations.

1. We first observe that, for any partition S of the d-dimensional Euclidean
space, there exists another partition S�1/2 · S consisting of the sets S�1/2 · S,
where S 2 S . Note that since S�1/2 is full rank, the mapping x 7! S�1/2x is a
bijection and so S�1/2 · S is a partition of the space with p(S�1/2 · S) = p(S).
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2. We have that x 2 S if and only if S�1/2x 2 S�1/2 · S and so

E
x⇠N (µ,S)

[1{x 2 S}] = E
x⇠N (µ,S)

[1{S�1/2x 2 S�1/2 · S}] .

Since it holds that w ⇠ N (µ, S) if and only if w = S1/2z + µ with z ⇠
N (0, I), we get for an arbitrary subset S ✓ Rd that

E
x⇠N (µ,S)

[1{x 2 S}] = E
x⇠N (0,I)

h
1
n

S�1/2
⇣

S1/2x + µ
⌘
2 S�1/2 · S

oi

= E
x⇠N (S�1/2µ,I)

h
1{x 2 S�1/2 · S}

i
.

Let us consider a set S ✓ Rd distributed as Np(µ?, S). This set is the one that the
algorithm with the known covariance matrix works with. We are now ready to
combine the above two observations in order to understand what is the input to
the identity covariance matrix algorithm. We have that

Pr
S⇠Np(µ?,S)

[S] = Â
S

1{S 2 S}p(S)N (µ?, S; S)

= Â
S

1{S 2 S}p(S)N (S�1/2µ?, I; S�1/2 · S)

= Â
S�1/2·S

1{S�1/2 · S 2 S�1/2 · S}p(S�1/2 · S)N (S�1/2µ?, I; S�1/2 · S)

= Pr
S0⇠Np0 (S

�1/2µ?,I)
[S0] ,

where the set S0 is distributed as Np0(S
�1/2µ?, I) where p0 is the ’rotated’ partition

distribution supported on the rotated partitions S�1/2 · S for each S with p(S) > 0.
We remark that the second equation follows from the second observation and the
third equation from the first one. Hence, the algorithm A (the one that works with
identity matrix) obtains the rotated sets (i.e., membership oracles) S�1/2 · S and
the (unknown) target mean vector is u = S�1/2µ?.



250

Efficient Mean Estimation under Convex Partitions

In this section, we formally state and prove Theorem 8.8 which is stated in Sec-
tion 8.1: we provide an efficient algorithm for Gaussian mean estimation under
convex partitions. The following definition of information preservation is very
similar with the one given in the introduction, see Definition 8.3. The difference is
that we only require from p to preserve the distances of Gaussians around the true
Gaussian N (µ?) as opposed to the distance of any pair of Gaussians N (µ?): this is
a somewhat more flexible assumption about the partition distribution p and the
true Gaussian N (µ⇤) as a pair.

Definition 8.23 (Information Preserving Partition Distribution for Gaussians). Let
a 2 [0, 1] and consider a d-dimensional Gaussian distribution N (µ?). We say that p

is an a-information preserving partition distribution with respect to the true Gaussian
N (µ?) if for any Gaussian distribution N (µ), it holds that dTV(Np(µ),Np(µ?)) �
a · dTV(N (µ),N (µ?)).

We refer to Appendix G.3 for a geometric condition, under which a partition is
a-information preserving. In particular, we prove that a partition is a-information
preserving if, for any hyperplane, it holds that the mass of the cells of the partition
that do not intersect with the hyperplane is at least a. This is true for most natural
partitions, see e.g., the Voronoi diagram of Figure 8.2. In this section, we discuss
and establish the two structural lemmata required in order to prove Theorem 8.8.
Our goal is to maximize the empirical log-likelihood objective

LN(µ) =
1
N

N

Â
i=1

logN (µ; Si) , (8.7)

where the N (convex) sets S1, . . . , SN are drawn from the coarse Gaussian gen-
erative process Np(µ?). We first show that the above empirical likelihood is a
concave objective with respect to µ 2 Rd. In the following lemma, we show that
the log-probability of a convex set S, i.e., the function logN (µ; S) is a concave
function of the mean µ.
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Lemma 8.24 (Concavity of Log-Likelihood). Let S ✓ Rd be a convex set. The function
logN (µ; S) is concave with respect to the mean vector µ 2 Rd.

In order to prove that the Hessian matrix of this objective is negative semi-
definite, we use a variant of the Brascamp-Lieb inequality. Having established
the concavity of the empirical log-likelihood, we next have to bound the sample
complexity of the empirical log-likelihood. We prove the following lemma.

Lemma 8.25 (Sample Complexity of Empirical Log-Likelihood). Let e, d 2 (0, 1)
and consider a generative process for coarse d-dimensional Gaussian data Np(µ?) (see
Definition 8.5). Also, assume that every S 2 supp(p) is a convex partition of the
Euclidean space. Let N = eW(d/(e2a2) log(1/d)). Consider the empirical log-likelihood
objective

LN(µ) =
1
N

N

Â
i=1

logN (µ; Si) .

Then, with probability at least 1� d, we have that, for any Gaussian distribution N (µ) that
satisfies dTV(N (µ),N (µ?)) � e, it holds that maxeµ2Rd LN(eµ)� LN(µ) � W(e2a2) .

The above lemma states that, given roughly eO(d/(e2a2)) samples from Np(µ?),
we can guarantee that the maximizer eµ of the empirical log-likelihood achieves a to-
tal variation gap at most e against the true mean vector µ?, i.e., dTV(N (eµ),N (µ?)) 
e. In fact, thanks to the concavity of the empirical log-likelihood objective, it suffices
to show that Gaussian distributions N (µ), that satisfy dTV(N (µ),N (µ?)) > e, will
also be significantly sub-optimal solutions of the empirical log-likelihood maxi-
mization. The key idea in order to attain the desired sample complexity, is that is
suffices to focus on guess vectors µ that lie in a sphere of radius W(e). Technically,
the proof of Lemma 8.25 relies on a concentration result of likelihood ratios and in
the observation that, while the empirical log-likelihood objective LN is concave
(under convex partitions), the regularized objective LN(µ) + kµk2

2 is convex with
respect to the guess mean vector µ.
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Concavity of Log-likelihood: Proof of Lemma 8.24

In this section, we show that the log-likelihood is concave when the underlying
partitions are convex. The Hessian of the log-likelihood L for the set S has a notable
property. When restricted to a direction v 2 Rd, the quadratic vT(r2L)v quan-
tifies the variance reduction, observed between the distributions NS (Gaussian
conditioned on S) and N (unrestricted Gaussian, i.e., S = Rd). When the set S is
convex (and, hence the indicator function 1S is log-concave), the variance of the un-
restricted Gaussian is always larger than the conditional one. This intriguing result
is an application of a variation of the Brascamp-Lieb inequality, due to Hargé (see
Lemma 8.26 for the inequality that we utilize). Recall that, both the empirical and
the population log-likelihood objectives are convex combinations of the function
f (µ, S; S) = logN (µ, S; S) and, hence, it suffices to show that f is concave with
respect to µ 2 Rd, when the set S is convex.

Proof of Lemma 8.24. Without loss of generality, we can take S = I 2 Rd⇥d. Let
f (µ; S) = logN (µ, I; S) for an arbitrary convex set S ✓ Rd. The gradient rµ f (µ)
of f with respect to µ is equal to

rµ

 
log

Z

S

1p
(2p)d

exp
✓
� (x� µ)T(x� µ)

2

◆
dx

!

=

R
S x exp(�(x� µ)T(x� µ)/2)dxR
S exp(�(x� µ)T(x� µ)/2)dx

� µ .

Hence, we get that
rµ f (µ) = E

x⇠NS(µ,I)
[x]� µ .

We continue with the computation of the Hessian of the function f with respect to
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µ

r2
µ f (µ) =� I +

R
S x(x� µ)TN (µ, I; x)dx

N (µ, I; S)

�

⇣ R
S xN (µ, I; x)dx

⌘⇣ R
S(x� µ)TN (µ, I; x)dx

⌘

N (µ, I; S)2 ,

and, so, we have that

r2
µ f (µ) = �I +

⇣
E

x⇠NS(µ,I)
[xxT]� E

x⇠NS(µ,I)
[x] E

x⇠NS(µ,I)
[xT]

⌘
= Cov

x⇠NS(µ,I)
[x]� I .

Observe that, when S = Rd, we get that both the gradient and the Hessian vanish.
In order to show the concavity of f with respect to the mean vector µ, consider an
arbitrary vector v 2 Rd in the ball kvk2 = 1. We have the quadratic form

vTr2
µ f (µ)v = vT Cov

x⇠NS(µ,I)
[x]v� 1 = E

x⇠NS(µ,I)

h
(vTx)2

i
�
⇣

E
x⇠NS(µ,I)

[vTx]
⌘2
� 1 .

In order to show the desired inequality, we will apply the following variant of the
Brascamp-Lieb inequality.

Lemma 8.26 (Brascamp-Lieb Inequality, Hargé (see Guionnet (2009))). Let g be
convex function on Rd and let S be a convex set on Rd. Let N (µ, S) be the Gaussian
distribution on Rd. It holds that

E
x⇠NS


g
✓

x + µ� E
x⇠NS

[x]
◆�
 E

x⇠N
[g(x)] . (8.8)

We apply the above Lemma with g(x) = (vTx)2. We get that

Z

Rd
(vT(x + µ� E

y⇠NS(µ,I)
y))2 · 1S(x)N (µ, I; x)dxR

Rd 1S(x)N (µ, I; x)dx


Z

Rd
(vTx)2N (µ, I; x)dx .
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Hence, we get the desired variance reduction in the direction v

Varx⇠NS(µ,I)[v
Tx]  Varx⇠N (µ,I)[v

Tx] ,

that implies the concavity of the function logN (µ, S; S) for convex sets S with
respect to the mean vector µ 2 Rd.

Sample Complexity of Empirical Log-Likelihood: Proof of Lemma 8.25

In this section, we provide the proof of Lemma 8.25. This lemma analyzes the
sample complexity of the empirical log-likelihood maximization LN, whose con-
cavity (in convex partitions) was established in Lemma 8.24. We show that, given
roughly N = eO(d/(e2a2)) samples from Np(µ?), we can guarantee that Gaus-
sian distributions N (µ) with mean vectors µ, that are far from the true Gaussian
N (µ?) in total variation distance, will also be sub-optimal solutions of the em-
pirical maximization of the log-likelihood objective, i.e., they are far from being
maximizers of the empirical log-likelihood objective. We first give an overview
of the proof of Lemma 8.25. In Proposition 8.11 we provided a similar sample
complexity bound for an empirical log-likelihood objective. However, in contrast
to the analysis of Proposition 8.11, the parameter space is now unbounded – µ

can be any vector of Rd – and we cannot construct a cover of the whole space
with finite size. However, thanks to the concavity of the empirical log-likelihood
objective LN, we can show that it suffices to focus on guess vectors µ that lie in
a sphere ∂B (i.e., the boundary of a ball B) of radius W(e). This argument heav-
ily relies on the claim that the maximizer of the empirical log-likelihood LN lies
inside B, which can be verified by monotonicity properties of the log-likelihood.
Afterwards, we consider a discretization C of the sphere and, for any vector µ 2 C,
we can prove that LN(µ?)� LN(µ) � W(a2e2). The main technical tool for this
claim is a concentration result on likelihood ratios and the fact that the partition
distribution is a-information preserving. In order to extend this property to the
whole sphere, we exploit the convexity (with respect to µ) of a regularized version
of the empirical log-likelihood objective LN(µ)+ kµk2

2. The complete proof follows.
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Proof of Lemma 8.25. Let eµ be the maximizer of the empirical log-likelihood objec-
tive

eµ = arg max
µ2Rd

1
N

N

Â
i=1

logN (µ; Si) .

Since eµ is the maximizer of the empirical objective, it is sufficient to prove that for
any Gaussian N (µ) whose total variation distance with N (µ?) is greater than e, it
holds that LN(µ?)� LN(µ) � W(a2e2).

Moreover, we know that when kµ1 � µ2k2 is smaller than some sufficiently
small absolute constant, it holds dTV(N (µ1),N (µ2)) � W(kµ1 � µ2k2). Therefore,
any Gaussian whose mean µ is far from µ?, i.e., kµ� µ?k2 � W(e) will be in total
variation distance at least e from N (µ?) Therefore, to prove the lemma, it suffices
to prove it for Gaussians whose means lie outside of a ball B of radius r := W(e)

around µ?.
Since all observed sets Si are convex, the empirical log-likelihood objective

LN(µ) is concave with respect to µ, see Lemma 8.24. Since LN is concave, it suffices
to prove that for any µ that lies exactly on the sphere of radius r, i.e., the surface of
the ball B it holds LN(µ?)� LN(µ) � W(a2e2). To prove this we first show that
the maximizer of the empirical objective eµ has to lie inside the ball B. Assuming
that eµ lies outside of B, let r1 and r2 be the antipodal points on the sphere ∂B that
belong to the line eµ connecting eµ and µ? and assume that r2 lies between µ? and eµ.
In that case the restriction of LN on that line cannot be concave, since it has to be
increasing from r1 to µ?, decreasing from µ? to r2 and then increase again from r2

to eµ. Thus, eµ lies inside B. Now, by concavity of LN, we obtain that, by projecting
any point µ that lies outside of the ball B onto B, we can only increase its empirical
likelihood. Therefore, it suffices to consider only points that lie on the sphere ∂B.

We will now show that the claim is true for any µ 2 ∂B. We can create a cover of
the sphere of radius r

p
1 + ca2, centered at µ? for some sufficiently small absolute

constant c > 0, whose convex hull contains B. The following lemma shows that
such a cover can be constructed with (1/(ae))O(d) points.
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Lemma 8.27 (see, e.g., Corollary 4.2.13 of Vershynin (2018b)). For any e > 0, there
exists an e-cover C of the unit sphere in Rk, with respect to the `2-norm, of size O((1/e)k).
Moreover, the convex hull of the cover C contains the sphere of radius 1� e.

Since the partition distribution p is a-information preserving we obtain that for
any µ 2 C, it holds dTV(Np(µ),Np(µ?)) � W(ae). Applying Lemma 8.13 with x =

O(log(|C|/d)) = O(d log(1/(ed))), we get that, with N = eO(d/(a2e2) log(1/d)),
with probability at least 1� d, it holds that, for any µ in the cover C, we have

LN(µ
?)� LN(µ) � dTV(Np(µ

?),Np(µ))
2 � a2e2/2 � W(a2e2) . (8.9)

Next, we need to extend this bound from the elements of the cover C to all
elements of the sphere ∂B. In what follows, in order to simplify notation, we may
assume without loss of generality that µ? = 0. We are going to use the fact that
log(N (µ; Si)) + kµk2

2/2 is convex. To see that, write

log(N (µ; Si))+ kµk2
2/2 = log

⇣
ekµk

2
2/2

Z

S
e�kx�µk2

2/2dx
⌘
= log

⇣ Z

S
e�kxk

2
2/2+xTµdx

⌘
,

which is a log-sum-exp function and thus convex (this can also be verified by
directly computing the Hessian with respect to µ). This means that LN(µ) + kµk2

2
is also convex with respect to µ. Let µ 2 ∂B. From the construction of the cover C,
we have that its convex hull contains the sphere ∂B. Therefore, µ can be written as
a convex combination of points of the cover, i.e., µ = Â|C|

i=1 aiµi, where µi 2 C. The
convexity of LN(µ) + kµk2

2 implies that

LN(µ) + kµk2
2 

|C|

Â
i=1

ai(LN(µi) + kµik2
2)  max

i
LN(µi) + r2(1 + ca2) ,

where to get the last inequality we used the fact that all points of our cover C belong
to the sphere of radius r

p
1 + ca2. Since kµk2

2 = r2 the above inequality implies
that LN(µ)  maxi LN(µi) + ca2r2. Combining this inequality with Equation (8.9),
we obtain that, since c is sufficiently small and r = Q(e), it holds LN(µ) 
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LN(µ?)�W(e2a2).

The Proof of Theorem 8.8

We conclude this section with the proof of Theorem 8.8. Since the likelihood
function is concave (and therefore can be efficiently optimized) we focus mainly
on bounding the sample complexity of our algorithm.

Proof of Theorem 8.8. Let us assume that the partition distribution p is a-information
preserving and that is supported on convex partitions of Rd. Our goal is to show that
there exists an algorithm, that draws eO(d/(e2a2) log(1/d)) samples from Np(µ?)

and computes an estimate eµ 2 Rd so that dTV(N (eµ),N (µ?))  e with proba-
bility at least 1� d. The algorithm works as follows: it optimizes the empirical
log-likelihood objective

LN(µ) =
1
N

N

Â
i=1

logN (µ; Si) ,

where the samples are i.i.d. and Si ⇠ Np(µ?) for any i 2 [N]. Using Lemma 8.24,
we establish that the function LN is concave with respect to the mean µ 2 Rd.
This follows from the fact that convex combinations of concave functions remain
concave. From Lemma 8.25, we obtain that it suffices to compute a point µ such
that LN(µ) � maxµ0 LN(µ0)�O(a2e2). Specifically, given roughly eO(d/(e2a2))

samples from Np(µ?), we can guarantee, with high probability, that the maximizer
eµ of the empirical log-likelihood achieves a total variation gap at most e against
the true mean vector µ?, i.e., dTV(N (eµ),N (µ?))  e.

We proceed with a discussion about the running time of the above algorithm.
Since LN(µ) is a concave function with respect to µ, this can be done efficiently.
For example, we may perform gradient-ascent: for a fixed convex set S ✓ Rd

the gradient of the function f (µ) = logN (µ; S) = log Ex⇠N (µ) [1{x 2 S}] (see
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Lemma 8.24) is equal to

rµ f (µ) = E
x⇠NS(µ)

[x]� µ .

In order to compute the gradient of f , it suffices to approximately compute
Ex⇠NS(µ)[x] = Ex⇠N (µ)[x 1{x 2 S}] /N (µ; S) . Both terms of this ratio can be
estimated using independent samples from the distribution N (µ) and access to
the oracle OS(·), since the mean µ is known (the current guess of the learning
algorithm). Hence, the running time will be polynomial in the number of samples
using, e.g., the ellipsoid algorithm.

Remark 8.28. We remark that a precise calculation of the runtime would also depend on
the regularity of the concave objective (Lipschitz or smoothness assumptions etc.) which in
turn depend on the geometric properties of the sets. We opt not to track such dependencies
since our main result is that, in this setting, the likelihood objective is concave and therefore
can be efficiently optimized using standard black-box optimization techniques.

8.4 Further Related Work

Our work is closely related to the literature of learning from censored-truncated
data and learning with noise. There has been a large number of recent works
dealing inference with truncated data from a Gaussian distribution Daskalakis
et al. (2018); Kontonis et al. (2019), mixtures of Gaussians Nagarajan and Panageas
(2019), linear regression Daskalakis et al. (2019); Ilyas et al. (2020); Daskalakis et al.
(2020), sparse Graphical models Bhattacharyya et al. (2020) or Boolean product
distributions Fotakis et al. (2020), and non-parametric estimation Daskalakis et al.
(2021). A significant feature of our work is that it can capture the closely related
field of censored statistics Cohen (2016); Breen et al. (1996); Wolynetz (1979).

The area of robust statistics Huber (2004) is also very related to our work as
it also deals with biased data-sets and aims to identify the distribution that gen-
erated the data. Recently, there has been a large volume of theoretical work for
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computationally-efficient robust estimation of high-dimensional distributions Di-
akonikolas et al. (2016b); Charikar et al. (2017); Lai et al. (2016b); Diakonikolas
et al. (2017a, 2018c); Klivans et al. (2018); Hopkins and Li (2019); Diakonikolas
et al. (2019b); Cheng et al. (2020); Bakshi et al. (2020) in the presence of arbitrary
corruptions to a small # fraction of the samples.

The line of research dealing with statistical queries Kearns (1998); Blum et al.
(1998); Feldman et al. (2015b,a); Feldman (2017); Feldman et al. (2017); Diakonikolas
et al. (2017b, 2020a) is closely related to one of our main results (Theorem 8.4). It
is generally believed that SQ algorithms capture all reasonable machine learning
algorithms Aslam and Decatur (1998); Blum et al. (1998, 2005); Dunagan and Vem-
pala (2008); Feldman et al. (2017); Balcan and Feldman (2015); Feldman et al. (2015a)
and there is a rich line of research indicating SQ lower-bounds for these classes
of algorithms Feldman et al. (2017); Diakonikolas et al. (2017b); Shamir (2018);
Vempala and Wilmes (2019); Diakonikolas et al. (2020a,d); Goel et al. (2020a,c).

Learning from coarse labels is also referred in the ML literature as Partial Label
Learning Cour et al. (2011); Chen et al. (2014); Yu and Zhang (2016) (a weakly
supervised learning problem where each training example is associated with a set
of candidate labels among which only one is true). We refer to Appendix G.4 for
an extensive discussion.
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A APPENDIX TO CHAPTER 2

A.1 Omitted Technical Lemmas

Formula for the Gradient

Recall that to simplify notation, we will write `(w, x) = w·x
kwk2

. Note thatrw`(w, x) =
x
kwk2

�w · x w
kwk3

2
. The gradient of the objective Lramp

s (w) is then

rwLramp
s (w) (A.1)

= E
(x,y)⇠D

⇥
�r0s (�y `(w, x))rw`(w, x) y

⇤

= E
(x,y)⇠D

⇥
�r0s (`(w, x)) rw`(w, x) y

⇤

= E
x⇠Dx

⇥
�r0s (`(w, x)) rw`(w, x) (sign(w? · x)(1� h(x))� sign(w? · x)h(x))

⇤

= E
x⇠Dx

⇥
�r0s (`(w, x)) rw`(w, x) (1� 2h(x)) sign(w? · x)

⇤
, (A.2)

where in the second equality we used that the r0s(t) is an even function.

Proof of Claim 2.1

The following claim relates the angle between two vectors and the zero-one loss
between the corresponding halfspaces under bounded distributions.

Claim A.1. 2.1 Let Dx be a (U, R)-bounded distribution on Rd. Then for any u, v 2 Rd

we have
(R2/U)q(u, v)  errDx

0�1(hu, hv) . (A.3)

Moreover, if D is (U, R, t(·))-bounded, we have that for any e 2 (0, 1]

errDx
0�1(hu, hv)  Ut(e)2q(v, u) + e . (A.4)
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Proof. Let V be the subspace spanned by v, u, and let (Dx)V be the projection of
Dx onto V. Since v · x = v · projV(x) and u · x = u · projV(x) we have

errDx
0�1(hu, hv) = err(Dx)V

0�1 (hu, hv) .

Without loss of generality, we can assume that V = span(e1, e2), where e1, e2 are
orthogonal vectors of R2. Then from Definition 2.2, using the fact that 1/U  fV(x)
for all x such that kxk•  R, which is also true for all x with kxk2  R, the above
probability is bounded below by R2

U q(u, v), which proves (A.3). To prove (A.4), we
observe that

err(Dx)V
0�1 (hu, hv)

 Pr
x⇠(Dx)V

[sign(u · x) 6= sign(v · x) and kxk2  t(e)] + Pr
x⇠(Dx)V

[kxk2 � t(e)]

 Ut(e)2q + e.

Relation Between Misclassification Error and Error to Target
Halfspace

The following well-known fact relates the misspecification error with respect to D
and the zero-one loss with respect to the optimal halfspace. We include a proof for
the sake of completeness.

Fact A.2. Let D be a distribution on Rd ⇥ {±1}, h < 1/2 be an upper bound on the
Massart noise rate. Then if f (x) = sign(w? · x) and h(x) = sign(u · x) we have

errDx
0�1(h, f )  1

1� 2h

⇣
errD

0�1(h)� opt
⌘

.
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Proof. We have that

errD
0�1(h) = E

(x,y)⇠D
[1{h(x) 6= f (x)}

= E
x⇠Dx

[(1� h(x))1{h(x) 6= f (x)}] + E
x⇠Dx

[h(x)1{h(x) = f (x)}]

= E
x⇠Dx

[(1� 2h(x))1{h(x) 6= f (x)}] + E
x⇠Dx

[h(x)]

� E
x⇠Dx

[(1� 2h)1{h(x) 6= f (x)}] + opt

= (1� 2h) errDx
0�1(h, f ) + opt ,

where in the second inequality we used that h(x)  h and Ex⇠Dx [h(x)] = opt.

Log-concave and s-concave distributions are bounded

Lemma A.3 (Isotropic log-concave density bounds Lovász and Vempala (2007)).
Let g be the density of any isotropic log-concave distribution on Rd. Then g(x) � 2�6d

for all x such that 0  kxk2  1/9. Furthermore, g(x)  e 28ddd/2 for all x.

We are also going to use the following concentration inequality providing sharp
bounds on the tail probability of isotropic log-concave distributions.

Lemma A.4 (Paouris’ Inequality Paouris (2006)). There exists an absolute constant
c > 0 such that if Dx is any isotropic log-concave distribution on Rd, then for all t > 1 it
holds

Pr
x⇠Dx

[kxk2 � ct
p

d]  exp(�t
p

d) .

Fact A.5. An isotropic log-concave distribution on Rd is (e217, 1/9, c log(1/e) + 2c)-
bounded, where c > 0 is the absolute constant of Lemma A.4.

Proof. Follows immediately from Lemma A.3, Lemma A.4, and the fact that the
marginals of isotropic log-concave distributions are also isotropic log-concave.

Now we are going to prove that s-concave are also (U, R, t) bounded for all
s � � 1

2d+3 . We will require the following lemma:
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Lemma A.6 (Theorem 3 Balcan and Zhang (2017a)). Let g(x) be an isotropic s-concave
distribution density on Rd, then the marginal on a subspace of R2 is s

1+(d�2)s -concave.

Lemma A.7 (Theorem 5 Balcan and Zhang (2017a)). Let x come from an isotropic
distribution over Rd, with s-concave density. Then for every t � 16, we have

Pr[kxk2 >
p

dt] 
✓

1� cst
1 + ds

◆(1+ds)/s
,

where c is an absolute constant.

Lemma A.8 (Theorem 9 Balcan and Zhang (2017a)). Let g : Rd ! R+ be an isotropic
s-concave density. Then

(a) Let D(s, d) = (1 + a)�1/a 1+3b
3+3b , where b = s

1+(d�1)s , a = b
1+b and z = (1 +

a)�
1
a

1+3b
3+3b . For any x 2 Rd such that kxk  D(s, d), we have

g(x) �
✓
kxk

z
((2� 2�(d+1)s)�1 � 1) + 1

◆1/s
g(0).

(b) g(x)  g(0)
h⇣

1+b
1+3b

p
3(1 + a)3/a2d�1+1/s

⌘s
� 1

i1/s
for every x.

(c) (4ep)�d/2
h⇣

1+b
1+3b

p
3(1 + a)3/a2d�1+ 1

s

⌘s
� 1

i� 1
s
< g(0)  (2� 2�(d+1)s)1/s dG(d/2)

2pd/2zd .

(d) g(x)  (2� 2�(d+1)s)1/s dG(d/2)
2pd/2zd

h⇣
1+b
1+3b

p
3(1 + a)3/a2d�1+1/s

⌘s
� 1

i1/s
for

every x.

Lemma A.9. Any isotropic s-concave distribution on Rd with s � � 1
2d+3 , is

�
Q(1), Q(1), c/e1/6�-

bounded where c is an absolute constant.

Proof. Set G =
�
(1+2s

1+4s

q
3(1 + s/(1 + 2s))(3+6s)/s21+1/s)s� 1

�1/s. From Lemma A.8,
we have

1. For any x 2 R2 such that kxk2  (1+ s
1+2s )

� 1+2s
s (1+4s

3+6s ), we have g(x) � 1
4epG .

2. For any x 2 R2, we have: g(x)  (23s+1�1)1/s(3+6s)2G

4p(1+4s)2( 1+3s
1+2s )

� 1+2s
s

.



264

From Lemma A.6, we have that the marginals of an isotropic s-concave distribution
on Rd, on a 2-dimensional subspace, are s0-concave where s0 = s

1+(d�2)s . Using
s � � 1

2d+3 , for d � 3, we have s0 > � 1
8 and when d = 2, we have s0 = s � �1/7.

Thus, the value of s0 is lower bounded by �1/7. To find the values (U, R), we need
to find a lower bound and an upper bound on density. From the expression of
G, we observe that for s0 � �1/7 it holds G < 34 · 103. Therefore, we obtain the
following bounds

g(x) � 1
4epG

>
1

107 ,

R =

✓
1 +

s0

1 + 2s0

◆� 1+2s
s0 1 + 4s0

3 + 6s0
� 0.065 ,

g(x)  (23s0+1 � 1)1/s0(3 + 6s0)2G

4p(1 + 4s0)2(1+3s0
1+2s0 )

� 1+2s0
s0

< 3.3 · 107 ,

where we simplified each expression using the bounds of s0. From Lemma A.7 we
get tail bounds, by taking the appropriate s0 that maximizes the error in the tail
bound (which is s0 = �1/7). This completes the proof.

A.2 Omitted Proofs from Section 2.4

In Section A.2, we establish the convergence properties of projected SGD that we
require. Even though this lemma should be folklore, we did not find an explicit
reference. In Section A.2, we establish the smoothness of our non-convex surrogate
function.

Proof of Lemma 2.7

For convenience, we restate the lemma here.

Lemma A.10 (PSGD). Let f : Rd 7! R with f (w) = Ez⇠D[g(z, w)] for some function
g : Rd ⇥Rd 7! R. Assume that for any vector w, g(·, w) is positive homogeneous of
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degree-0 on w. Let W = {w 2 Rd : kwk2 � 1} and assume that f , g are continuously
differentiable functions on W . Moreover, assume that | f (w)|  R, rw f (w) is L-
Lipschitz on W , Ez⇠D

h
krwg(z, w)k2

2

i
 B for all w 2 W . After T iterations the

output (w(1), . . . , w(T)) of Algorithm 1 satisfies

E
z(1),...,z(T)⇠D

"
1
T

T

Â
i=1

���rw f (w(i))
���

2

2

#

r

LBR
2T

.

If, additionally, kEz⇠D[rwg(z, w)]k2
2  C for all w 2 W , we have that with T =

(2LBR + 8C2 log(1/d))/e4 it holds mini=1,...,T

���rw f (w(i))
���

2
 e, with probability at

least 1� d.

Proof. Consider the update v(i) = w(i�1) � brg(z(i), w(i�1)) at iteration i of Al-
gorithm 1. The projection step on the unit sphere (line 6 of Algorithm 1) ensures
that

���w(i�1)
���

2
= 1. Observe that, since g(z, w) is constant in the direction of

w, we have that rwg(z, w(i�1)) is perpendicular to w(i�1). Therefore, by the

Pythagorean theorem,
���v(i)

���
2

2
=

���w(i�1)
���

2

2
+ b2

���rg(z(i), w(i�1))
���

2

2
> 1 which

implies that v(i) 2 W . Observe that the line that connects v(i) and w(i�1) is also
contained in W . Therefore, we have

f (v(i))� f (w(i�1))

= rw f (w(i�1)) · v(i) �w(i�1)

+
Z 1

0
rw f (w(i�1) + t(v(i) �w(i�1)))�rw f (w(i�1)) · (v(i) �w(i�1))dt

 �br f (w(i�1)) ·rwg(z(i), w(i�1)) +
b2L

2

���rwg(z(i), w(i�1))
���

2

2
.

Observe now that, since f does not depend on the length of its argument, we have
f (v(i)) = f (w(i)) and therefore

f (w(i))� f (w(i�1))  �br f (w(i�1)) ·rwg(z(i), w(i�1)) +
b2L

2

���rwg(z(i), w(i�1))
���

2

2
.
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Conditioning on the previous samples z(1), . . . , z(i�1) we have

E
z(i)

[ f (w(i))� f (w(i�1))|z(1), . . . , z(i�1)]

 b
���rw f (w(i�1))

���
2

2
+

b2L
2

E
z(i)

���rwg(z(i), w(i�1))
���

2

2

�

 �b
���rw f (w(i�1))

���
2

2
+

b2LB
2

.

Rearranging the above inequality, taking the average over T iterations and using
the law of total expectation, we obtain that by setting b =

p
2R/(LBT). To get the

high-probability version, we set

ST(w(1), . . . , w(T)) = (1/T)
T

Â
i=1

���r f (w(i))
���

2

2
.

Notice that with T = 2LBR/e4 from the previous argument we obtain that
E[ST(w(1), . . . , w(T))]  e2/2. Observe that

���ST(w(1), . . . , w(i), . . . , w(T))� ST(w(1), . . . , w(i)0, . . . , w(T))
���



����
���r f (w(i))

���
2

2
�
���r f (w(i)0)

���
2

2

����
T

 2C
T

.

Lemma A.11 (Theorem 2.2 of Devroye and Lugosi (2001)). Suppose that X1, . . . Xd 2
X are independent random variables, and let f : X d 7! R. Let c1, . . . , cn satisfy

sup
x1,...,xd,x0i

| f (x1, . . . xi, . . . xd)� f (x1, . . . x0i, . . . xd)|  ci
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for i 2 [d]. Then

Pr[ f (X)� E[ f (X)] � t]  exp
✓
� 2t2/

d

Â
i=1

c2
i

◆
.

Now using Lemma A.11, we obtain that

Pr[ST(w(1), . . . , w(T))� E[ST(w(1), . . . , w(T))] > t]  exp(�t2T/(2C2)).

Choosing T � 2LBR/e4 + 8C2 log(1/d)/e4 and combining the above bounds,
gives us that with probability at least 1� d, it holds ST(w(1), . . . , w(T))  e2. Since
the minimum element is at most the average, we obtain that with probability at
least 1� d it holds

min
i2[T]

���r f (w(i))
���

2
 e .

This completes the proof.

Proof of Lemma 2.8

We start with the following more general lemma from which we can deduce
Lemma 2.8.

Lemma A.12 (Objective Properties). Let D be a distribution on Rd ⇥ {�1,+1} such
that the marginal Dx on Rd is in isotropic position. Let g(x, y, w) = f (�yw · x) and

Ls(w) = E
(x,y)⇠D

[g(x, y, w)] .

Assume that f is a twice differentiable function on R such that | f (t)|  R, | f 0(t)|  B,
and f 00(t)  K for all t 2 R. Then Ls(w) is continuously differentiable, |Ls(w)|  R
for all w in W = {w : kwk2 � 1}, E(x,y)⇠D[krwg(x, y, w)k2

2]  4B2d,

���� E
(x,y)⇠D

[rwg(x, y, w)]

����
2

2
 3B2
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, and rwLs(w) is (6B + 4K)-Lipschitz.

Proof. Write g(x, y, w) = f (`(w, x)y), where `(w, x) = w · x/ kwk2. Note that
|g(x, y, w)|  R. Therefore, |Ls(w)|  R.

We now deal with the function `(w, x) = w · x/ kwk2. We have thatrw`(w, x) =
x
kwk2

�w · x w
kwk3

2
. Observe that krw`(w, x)k2  2 kxk2 / kwk2  2 kxk2. There-

fore, since Dx is isotropic, we get that E(x,y)⇠D[krwg(x, y, w)k2
2]  4B2 E(x,y)⇠D[kxk2

2] =

4B2d. Moreover, we have

���� E
(x,y)⇠D

[rwg(x, y, w)]

����
2

2
=

 
sup
kvk2=1

E
(x,y)⇠D

[rwg(x, y, w) · v]

!2

 B2

 
sup
kvk2=1

E
x⇠Dx

[rw`(w, x) · v]

!2

 B2

 
sup
kvk2=1

E
x⇠Dx

"
|x · v|
kwk2

+ |w · x| |w · v|
kwk3

2

#!2

 B2

 
2 sup
kvk2=1

r
E

x⇠Dx
[|x · v|2]

!2

 4B2 ,

where in the first inequality we used f 0(t)  B and in the third we used the
Cauchy-Swartz inequality and that kwk2 � 1.

We finally prove that the gradient of Ls is Lipschitz. We have that

r2
w`(w, x) = � xwT

kwk3
2
� wxT

kwk3
2
� x · w
kwk3

2
I + 3x · w

wwT

kwk5
2

.
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Therefore,

r2
wg(x, y, w) = f 00(y`(w, x))rw`(w, x)rw`(w, x)T + f 0(`(w, x))r2

w`(w, x)

= f 00(y`(w, x))

 
xxT

kwk2
2
� w · x
kwk4

2
wxT � w · x

kwk4
2

xwT +
w · x2

kwk6
2

wwT

!

+ f 0(y`(w, x))y r2
w`(w, x).

To prove that Ls(w) has Lipschitz gradient, we will bound
��r2

wLs(w)
��

2. Let
v 2 Sd�1. We have

�����v · E
(x,y)⇠D

"
f 00(y`(w, x))
kwk2

2
xxT

#
v

�����  E
(x,y)⇠D

"
| f 00(y`(w, x))|
kwk2

2
x · v2

#

 K
kwk2

2
E

(x,y)⇠D

h
x · v2

i
 K
kwk2

2
,

where we used the fact that | f 00(t)|  K for all t. To get the last equality, we used
the fact that the marginal distribution on x is isotropic. Similarly, we have
�����v · E

(x,y)⇠D

"
f 00(y`(w, x))
kwk4

2
w · xwxT

#
v

�����  E
(x,y)⇠D

"
| f 00(y`(w, x))|
kwk4

2
|w · x||v · w||x · v|

#

 K
kwk3

2
E

(x,y)⇠D
[|w · x||x · v|]  K

kwk3
2

r
E

(x,y)⇠D
[w · x2]

r
E

(x,y)⇠D
[x · v2]  K

kwk3
2

,

where the last step follows because the distribution Dx is isotropic. Similarly, we
can bound the rest of the terms of |vTr2

wLs(w)v| to obtain

|vTr2
wLs(w)v|  B

 
2
kwk2

2
+

4
kwk3

2

!
+K

 
1
kwk2

2
+

2
kwk3

2
+

1
kwk4

2

!
 6B+ 4K ,

where we used the fact that kwk2 � 1.

Our desired lemma now follows as a corollary.

Lemma A.13 (Sigmoid Smoothness). Let Ss(t) = 1/(1 + e�t/s) and Ls(w) =
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E(x,y)⇠D

h
Ss

⇣
�y w·x
kwk2

⌘i
, for w 2 W , where W = {w 2 Rd : kwk2 � 1}. We have

that Ls(w) is continuously differentiable in W , |Ls(w)|  1, E(x,y)⇠D[krwSs(w, x, y)k2
2] 

4d/s2, krwLs(w)k2
2  4/s2, and rwLs(w) is (6/s + 12/s2)-Lipschitz.

Proof. We first observe that |Ss(t)|  1 for all t in R. Moreover, Ss is continuously
differentiable. The first and the second derivative of Ss with respect to t is

S0s(t) = S2
s(t)

e�t/s

s
and S00s(t) = S3

s(t)
2e�2t/s

s2 � S2
s(t)

e�t/s

s2 .

We have that S0s(t)  S0s(0) = 1/s and S00s(t)  3/s2. The result follows by
applying Lemma A.12.
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B APPENDIX TO CHAPTER 3

B.1 Omitted Proofs

Proof of Lemma 3.5

Lemma B.1. 3.5 Let D be a distribution on Rd ⇥ {±1} that satisfies the Tsybakov
noise condition with parameters (a, A). Then for every measurable set S ✓ Rd it holds

Ex⇠Dx [1S(x)(1� 2h(x))] � CA
a (Ex⇠Dx [1S(x)])

1
a , where CA

a = a
⇣

1�a
A

⌘ 1�a
a .

Proof. We have

E
x⇠Dx

[1S(x)(1� 2h(x))] � t E
x⇠Dx

[1S(x)1{1� 2h(x) � t}]

� t E
x⇠Dx

[1S(x)]� t E
x⇠Dx

[1S(x)1{1� 2h(x)  t}]

� t E
x⇠Dx

[1S(x)]� A t
1

1�a .

Let G = Ex⇠Dx [1S(x)] and set t =
⇣
(1�a)G

A

⌘ 1�a
a . Then we have

E
x⇠Dx

[1S(x)(1� 2h(x))] � G1/aa

✓
1� a

A

◆ 1�a
a

.

Proof of Fact 3.7 and Lemma 3.8

Fact B.2. 3.7 We denote by Tk(t) the degree-k Chebyshev polynomial of the first kind. It
holds

Tk(t) =

8
><

>:

cos(k arccos t) , |t|  1

1
2

✓⇣
t�
p

t2 � 1
⌘k

+
⇣

t +
p

t2 � 1
⌘k
◆

, |t| � 1 .
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Moreover, it holds kTkk2
2  26k+2 log k+4.

Proof. Using that kTkk2
2  kTkk2

1, we are going to show that kTkk2
1  26k+2 log k+4.

We have that

kTk(t)k1 =
k
2

b k
2c

Â
i=1

2k�2i
✓

k� i
i

◆
1

k� i
xi  Fib(k + 1)2k k

2

⇣

1 +
p

5
⌘k+1

2kk ,

where we used that Â
b k

2c
i=1 (k�i

i ) = Fib(k + 1). Thus, kTkk2
1  26k+2 log k+4.

Lemma B.3. 3.8 Let p(t) = Âk
i=0 citi be a degree-k univariate polynomial. Given w 2 Rd

with kwk2  1, define the multivariate polynomial q(x) = p(w · x) = ÂS:|S|k CSxS. It
holds, ÂS:|S|k C2

S  d2k Âk
i=0 c2

i . Moreover, let r(t) = p(at + b) = Âk
i=0 diti for some

a, b 2 R. Then krk2
2  (2 max(1, a)max(1, b))2k kpk2

2 .

Proof. We write

q(x) =
k

Â
i=0

ciw · xi =
k

Â
i=0

ci Â
S:|S|=i

i!
S!

d

’
i=1

(xiwi)
Si =

k

Â
i=0

ci Â
S:|S|=i

i!
S!

wSxS .

We have

k

Â
i=0

Â
S:|S|=i

c2
i

✓
i!
S!

◆2
w2S 

k

Â
i=0

c2
i

0

@ Â
S:|S|=i

i!
S!

1

A
2

 d2k
k

Â
i=0

c2
i ,

where we used the fact that |wi|  1 for all i. To prove the second claim, we work
similarly. We have

r(x) =
k

Â
i=0

ci

i

Â
j=0

✓
i
j

◆
ajbi�jxj =

k

Â
i=0

ci

i

Â
j=0

✓
i
j

◆
ajbi�jxj.
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We have

k

Â
i=0

c2
i

i

Â
j=0

✓✓
i
j

◆
ajbi�j

◆2
 (2 max(1, a)max(1, b))2k

k

Â
i=0

c2
i .

Proof of Lemma 3.17

Lemma B.4. 3.17 Let pt(x) be the non-negative function, given from the SDP (3.3).
Then taking dO(k) log(1/d) samples, where k = O

⇣
1

a2Rb
log2

⇣
BA
eLR

⌘⌘
, we can efficiently

compute a function ˆ̀t(w) such that with probability at least 1� d, the following conditions
hold

• | ˆ̀t(w)� E(x,y)⇠D[(pt(x) + l)yw · x]|  e, for any l > 0 and w 2 V ,

•
���rw ˆ̀t

���
2
 dO(k) .

Proof. For convenience, let gt(x) = pt(x) + l. The proof is similar to Lemma 3.10.
Let ˆ̀t(w) = 1

N ÂN
i=1 gt(x(i))y(i)x(i) · w and `t(w) = E(x,y)⇠D[gt(x)yx · w]. Then

from Cauchy-Schwarz we have

| ˆ̀t(w)� `t(w)| 
�����

1
N

N

Â
i=1

gt(x(i))y(i)x(i) � E
(x,y)⇠D

[gt(x)yx]

�����
2

kwk2 .

We have that kwk2  1, thus we need to prove that

Pr

"�����
1
N

N

Â
i=1

gt(x(i))y(i)x(i) � E
(x,y)⇠D

[gt(x)yx]

�����
2

> e

#
 d . (B.1)

Let Mj = E(x,y)⇠D[m(x)m(x)T1B(x)]xj and fMj =
1
N ÂN

i=1 m(x(i))m(x(i))T1B(x(i))x(i)j ,
and then A be a matrix such that tr

�
AMj

�
= E(x,y)⇠D[pt(x)yxj], i.e., the matrix of

the coefficients of the polynomial and assume that kAkF  Q, where Q = dO(k).
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Using the same proof ideas as in Lemma 3.10, we get

tr
⇣

A(Mj � fMj)
⌘
 kAkF

���Mj � fMj

���
F

.

Therefore, it suffices to bound the probability that
���Mj � fMj

���
F
� e/(2dQ). From

Markov’s inequality, we have

Pr
h���Mj � fMj

���
F
� e/(2dQ)

i
 4d2Q2

e2 E
���Mj � fMj

���
2

F

�
.

Using Equation (3.6) (which holds in our case as well and is proved the same way
by setting w = ej), we get

Pr
h���Mj � fMj

���
F
� e/(2dQ)

i
 4d2Q2

e2
1
N

B(b/2)�2k(d + k)3k+1 .

Then, for N � Bd3Q2(b/2)�2k(d + k)3k+1/(4e2) samples we can estimate Mj

within the target accuracy with probability at least 1� 1/(8d). Now we are going
to give a loose bound for the

Pr

"�����
1
N

N

Â
i=1

ly(i)x(i) � E
(x,y)⇠D

[lyx]

�����
2

> e

#
 d .

Using the same argument as before, we have from Markov’s inequality, that

Pr

"�����
1
N

N

Â
i=1

y(i)x(i) � E
(x,y)⇠D

[yx]

�����
2

� e/(2dl)

#
 4d2l2

e2 E

2

4
�����

1
N

N

Â
i=1

y(i)x(i) � E
(x,y)⇠D

[yx]

�����

2

2

3

5 .
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Using the linearity of expectation, we have

E

2

4
�����

1
N

N

Â
i=1

y(i)x(i) � E
(x,y)⇠D

[yx]

�����

2

2

3

5 
d

Â
j=1

E

2

4
 

1
N

N

Â
i=1

y(i)x(i)j � E
(x,y)⇠D

[yxj]

!2
3

5


d

Â
j=1

Var

"
1
N

N

Â
i=1

y(i)x(i)j

#
.

Then, using the fact that x is in isotropic position, we have

Var

"
1
N

N

Â
i=1

y(i)x(i)i

#
 1

N
E

(x,y)⇠D
[(x(i)i y)2] = 1/N .

Thus, for N > 4d3l2/e2, with probability at least 1� 1/8, we have that
�����

1
N

N

Â
i=1

ly(i)x(i) � E
(x,y)⇠D

[lyx]

�����
2

 e/2 .

Putting everything together and by the union bound, we have that for N >

max(Bd3Q2(b/2)�2k(d + k)3k+1/(4e2), 4d3l2/e2), with probability 3/4, we have
that
�����

1
N

N

Â
i=1

gt(x(i))y(i)x(i) � E
(x,y)⇠D

[pt(x)yx]

�����
2


�����

1
N

N

Â
i=1

pt(x(i))y(i)x(i) � E
(x,y)⇠D

[gt(x)yx]

�����
2

+

�����
1
N

N

Â
i=1

ly(i)x(i) � E
(x,y)⇠D

[lyx]

�����
2

 e/2 + e/2 = e .

To amplify the confidence probability to 1� d, we can use the above empirical

estimate ` times to obtain estimates fMj
(1)

, . . . , fMj
(`)

for all j 2 [d] and keep the
median as our final estimate. It follows that ` = O(log(d/d)) repetitions suffice to
guarantee confidence probability at least 1� d.

To prove the second statement, from Equation (B.1), we have that with proba-
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bility 1� d ���rw ˆ̀t
���

2
 krw`tk2 + e  dO(k) + e = dO(k) ,

where we used Theorem 3.4. This completes the proof.
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C APPENDIX TO CHAPTER 4

Proof of Claim 4.15

Proof of Claim 4.15. To bound from below the expectation I2,2, we use the fact that
the distribution is (2, L, R, b)-well-behaved. For IR/2

1,2 , we have

I2,2 = E
x⇠Dx

h
1BR/2

3
(x)z(x)|x1|

i
=

Z

BR/2
3

|x1|z(x)g(x)dx

�
Z R/

p
2

0

Z R/
p

2

R/(2
p

2)
x1z(x1, x2)g(x1, x2)dx1x2

� R
2
p

2

Z R/
p

2

R/2

Z R/
p

2

R/(2
p

2)
z(x1, x2)g(x1, x2)dx1x2

� R
2
p

2
CA

a

 Z R/
p

2

R/2

Z R/
p

2

R/(2
p

2)
g(x1, x2)dx1x2

!1/a

� R
4

CA
a

✓
R2L
16

◆1/a

,

where we used Lemma C.7, and we bound from below the integral by a smaller
square region, i.e., [R/2, R/

p
2]⇥ [R/(2

p
2), R/

p
2]. For I2,2, we have

IR/2
1,2 = E

x⇠Dx

h
1BR/2

3
(x)z(x)

i
=

Z

BR/2
3

z(x)g(x)dx

� CA
a

✓Z

BR/2
3

g(x)dx
◆1/a

� CA
a

 Z R/
p

2

0

Z R/
p

2

R/(2
p

2)
g(x1, x2)dx1x2

!1/a

� CA
a

✓
R2L

4

◆1/a

,
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where we used Lemma C.7. Thus,

IR/2
1,2 � CA

a

✓
R2L

4

◆1/a

= (RL/A)O(1/a) and I2,2 � (RL/A)O(1/a) .

This completes the proof of Claim 4.15.

Proof of Claim 4.16

Proof of Claim 4.16. Recall that x(x2) = x2/ tan q + b/ sin q. We have that

IR/2
1  E

x⇠Dx

h
1BR/2

1
(x)z(x)

i
� IR/2

1,2  E
x⇠Dx

h
1BR/2

1
(x)z(x)

i
� G/2 .

We can bound from below the first term as follows

E
x⇠Dx

h
1BR/2

1
(x)z(x)

i


Z �R/2

�R

Z x(x2)

�•
g(x1, x2)dx1dx2


Z �R/2

�R

Z x(�R)

�•
g(x1, x2)dx1dx2

 Pr[x2 � |x(�R)|]
 exp(1� |x(�R)|/b) .

Note that |x(�R)| = (R cos q � b)/ sin q � 3b/ sin q, thus using the assumption
q < bG/(4b), we obtain exp(1� |x(�R)|/b)  G/4, and therefore IR/2

1  �G/4 ,
completing the proof of Claim 4.16.

Proof of Lemma 4.20

We start with a useful fact about the sub-exponential random variables.

Fact C.1 (see, e.g., Corollary of Proposition 2.7.1 in Vershynin (2018a)). Let X be
sub-exponential random variable with tail parameter b. For any function f : R 7! R, the
random variable X f (X)� E[X f (X)] is zero mean sub-exponential with tail parameter
O(b sup | f |).
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Using Fact C.1, we can bound from above the sample complexity needed to
construct bD.

Proof of Lemma 4.20. Let ĝ = 1
N ÂN

i=1 1BR/2

⇣
x(i)

⌘
y(i)x(i). For any u 2 Rd, we have

that

|u · g|  E
x⇠Dx

[|u · x|] =
Z •

0
Pr

x⇠Dx
[|u · x| � t]dt 

Z •

0
exp(1� t/b)dt = eb ,

(C.1)

thus kgk2  eb. Next we prove that the random variable X = 1BR/2(x)yx� g is
zero-mean with sub-exponential tails. First, we clearly have that E[X] = 0. Using
Fact C.1, it follows that X is sub-exponential with tail parameter b0 = O(b). We
will now use the following Bernstein-type inequality.

Fact C.2. Let X1, X2, . . . , XN be independent zero-mean sub-exponential random variables
with tail parameter b � 1. There exists an absolute constant c > 0 such that for every
e > 0 we have

Pr

"�����

N

Â
i=1

Xi

����� � eN

#
 2 exp

⇣
�cNe2/b2

⌘
.

Using Fact C.2, we have that for every 1  j  d it holds

Pr
h��ĝj � gj

�� � e/
p

d
i
 2 exp

⇣
�cNe2/

⇣
db02

⌘⌘
.

Thus, taking N = O
�
(db2/e2) log(d/d)

�
, we get that kĝ � gk2  e with probabil-

ity 1� d. For the second statement, using the triangle inequality and Equation (C.1)
the result follows.

Proof of Lemma 4.21

The proof requires a couple of known probabilistic facts. The first one is the
bounded-difference inequality.
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Fact C.3 (see, e.g., Theorem 2.2 of Devroye and Lugosi (2001)). Let X1, . . . , Xd 2 X
be independent random variables and let f : X d 7! R. Let c1, . . . , cd satisfy

sup
x1,...,xd,x0i

�� f (x1, . . . , xi, . . . , xd)� f (x1, . . . , x0i, . . . , xd)
��  ci

for i 2 [d]. Then we have that Pr [ f (X)� E[ f (X)] � t]  exp
✓
� 2t2/ Âd

i=1 c2
i

◆
.

We additionally require the symmetrization of the empirical distribution.

Fact C.4 (see, e.g., Exercise 8.3.24 of Vershynin (2018a)). Let F be a class of measurable
real-valued functions. Let X1, . . . , XN be N i.i.d. samples from a distribution D. Then

E

"
sup
f2F

�����
1
N

N

Â
i=1

f (Xi)� E[ f (X)]

�����

#
 2 E

"
sup
f2F

�����
1
N

N

Â
i=1

ei f (Xi)

�����

#
,

where the ei’s are independent Rademacher random variables.

The last fact we need connects the symmetrization with the VC dimension.

Definition C.5 (VC dimension). A collection of sets F is said to shatter a set S if for all
S0 ✓ S, there is an F 2 F so that F \ S = S0. The VC dimension of F , denoted VC(F ),
is the largest n for which there exists an S with |S| = n such that F shatters S.

We note that a collection of sets F over a ground set is equivalent to a class of
Boolean-valued functions on the same ground set. With this terminology, we have
the following fact.

Fact C.6 (VC Inequality, see, e.g., Devroye and Lugosi (2001) or Theorem 8.3.3 in
Vershynin (2018a)). Let F be a class of Boolean-valued functions with VC(F ) � 1. Let
X1, . . . , XN be N i.i.d. samples from a distribution D. Then

E
ei

"
sup
f2F

�����
1
N

N

Â
i=1

ei f (Xi)

�����

#
 C

q
VC(F )/N ,
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where C > 0 is an absolute constant and the ei’s are independent Rademacher random
variables.

We are ready to bound the sample complexity required to check if Algorithm 5
finds a certificate.

Proof of Lemma 4.21. The proof is a simple application of the VC inequality. In
more detail, we first use the bounded-difference inequality and then, using the
symmetrization, we can apply the VC inequality to obtain the desired result.

For N = O(log(1/d)/e2), we apply Fact C.3 for the function

f ((X1, Y1), . . . , (XN, YN)) = sup
t2R+

����� E
(x,y)⇠D

[1Bt(x) y]� 1
N

N

Â
i=1

[1Bt(Xi)Yi]

����� ,

noting that ci = 2/N for all i  N. Therefore, with probability at least 1� d, we
have that

sup
t2R+

����� E
(x,y)⇠D

[1Bt(x) y]� 1
N

N

Â
i=1

[1Bt(Xi)Yi]

�����

 E

"
sup
t2R+

����� E
(x,y)⇠D

[1Bt(x) y]� 1
N

N

Â
i=1

[1Bt(Xi)Yi]

�����

#
+ e .

Then, by Fact C.4, we have that

E

"
sup
t2R+

����� E
(x,y)⇠D

[1Bt(x) y]� 1
N

N

Â
i=1

[1Bt(Xi)Yi]

�����

#
 2 E

ei

"
sup
t2R+

�����
1
N

N

Â
i=1

eiYi1Bt(Xi)

�����

#

= 2 E
ei

"
sup
t2R+

�����
1
N

N

Â
i=1

ei1Bt(Xi)

�����

#
,

where the last inequality follows from the fact that Yiei and ei have the same
distribution (because ei and Yi are independent). Finally, using the fact that the
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class of indicators of the form 1{x  t} has VC dimension 1, Fact C.6 implies that

E
ei

"
sup
t2R+

�����
1
N

N

Â
i=1

ei1Bt(Xi)

�����

#
= O(

p
1/N) = O(e) .

Putting everything together completes the proof.

Useful Technical Lemma

We are going to use the following simple fact about Tsybakov noise that shows
that large probability regions will also have large integral even if we weight the
integral with the noise function 1� 2h(x) > 0. Notice that larger noise h(x) makes
1� 2h(x) closer to 0, and therefore tends to reduce the probability mass of the
regions where h(x) is large. A similar lemma can be found in Tsybakov (2004).

Lemma C.7. Let D be a distribution on Rd ⇥ {±1} that satisfies the (a, A)-Tsybakov
noise condition. Then for every measurable set S ✓ Rd it holds Ex⇠Dx [1S(x)(1 �

2h(x))] � CA
a (Ex⇠Dx [1S(x)])

1
a , where CA

a = a
⇣

1�a
A

⌘ 1�a
a .

See Diakonikolas et al. (2021b) for the simple proof.

C.1 Omitted Proofs from Section 4.4

Proof of Lemma 4.29

Proof of Lemma 4.29. For the first condition, the lemma follows from Lemma 4.20.
For the second condition, let X = E(x,y)⇠D[y(xx| � I)] and bX = E(x,y)⇠ bD[y(xx| �
I)]. We are going to bound the variance, so we can apply Chebyshev’s inequality.
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For 0 < i, j  d, we have

Var(x,y)⇠D[ bXij] =
1
N

Var(x,y)⇠D[Xij] 
1
N

E
(x,y)⇠D

[X2
ij] =

1
N

E
(x,y)⇠D

[y2(xixj � 1)2]

 2
N

✓
E

x⇠Dx
[x2

i x2
j ] + 1

◆
 2

N

 r
E

x⇠Dx
[x4

i ] E
x⇠Dx

[x4
j ] + 1

!
= O(1/N) ,

where the last inequality follows from the fact that the marginals of a log-concave
density have sub-exponential tails. Thus, from Chebyshev’s inequality, for 0 <

i, j  d, we have that

Pr
(x,y)⇠D

[| bXij � X ij| � e/d] = O
✓

d2

e2N

◆
.

Choosing N = O(d4/e2), we have that
���X � bX

���
F
 e with high constant probabil-

ity. This completes the proof.

Proof of Claim 4.34

Proof of Claim 4.34. For notational convenience, let D? = D
projw?
Bx0

. Fix any unit

vector u 2 w?. Without loss of generality, we may assume that w = e1 and u = e2.
Denote by g(x1, x2) the marginal density of D on the first two coordinates. We
have that

E
x⇠D?

[|x|u|] = 1
PrD[Bx0 ]

Z
|x2|1{x0  x1  x0 + s0}g(x1, x2)dx1dx2 .

From Fact 4.27, we have that g(x1, x2)  (1/c) exp(�|x2|/c), for some absolute
constant c > 0. Therefore,

1
PrD[Bx0 ]

Z •

�•

Z x0+s0

x0
|x2|g(x1, x2)dx1dx2 

s0

c PrD[Bx0 ]

Z •

�•
|x2|e�|x2|/cdx2 = O(1) ,
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where we used that x0, x0 + s0 are sufficiently small and it holds PrD[Bx0 ] = Q(s0),
see Fact 4.27.

We next bound the covariance. Pick a unit vector u 2 w?. Without loss of
generality, we may assume that u = e2. Let q = e|2 Ex⇠D? [x] be the projection
of the mean of D? on the direction e2. To bound the maximum and minimum
eigenvalues of the covariance matrix of D?, we need to bound from above and
below the following expectation:

E
x⇠D?

[(x2 � q)2] =
1

PrD[Bx0 ]

Z •

�•

Z x0+s0

x0
(x2 � q)2g(x1, x2)dx1dx2 .

We first bound it from below. Using again Fact 4.27 we know that, for the same
absolute constant c as above, it holds that g(x1, x2) � c for points with distance
smaller than c from the origin. Therefore,

1
PrD[Bx0 ]

Z •

�•

Z x0+s0

x0
(x2 � q)2g(x1, x2)dx1dx2

� c
PrD[Bx0 ]

Z c/
p

2

�c/
p

2
(x2 � q)2dx2

Z x0+s0

x0
dx1 = W(1) ,

where we used again the fact that PrD[Bx0 ] = Q(s0) and also picked the worst case
q to minimize the above expression, i.e., q = 0. We next bound the covariance
eigenvalues from above. Using again the fact that g(x1, x2)  c exp(�c|x2|) for
some absolute constant c > 0, we compute

1
PrD[Bx0 ]

Z •

�•

Z x0+s0

x0
(x2 � q)2g(x1, x2)dx1dx2

 1
c PrD[Bx0 ]

Z •

�•

Z x0+s0

x0
(x2 � q)2e�|x2|/cdx1dx2 = O(1) ,

where we used the fact that q = O(1), as already shown above, and that PrD[Bx0 ] =

Q(s0). This completes the proof.
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Proof of Claim 4.38

Proof of Claim 4.38. To prove that F is L-smooth, we need to show that supkrk2R
��r2F(r)

��
2 

L, for some L > 0. We have

G(r) := rF(r) = �2 E
x⇠Dx

[xx|1{r · x � 0}e�r·x] E
x⇠Dx

[x min(1, e�r·x)]

= �2 E
x⇠Dx

[xx|g1(r|x)] E
x⇠Dx

[xg2(r|x)] ,

where g1(t) = 1{t � 0}e�t and g2(t) = min(1, e�t). Using the product rule, we
obtain that the derivative of G(r) at r, DG|r, is the following linear function from
Rd to Rd:

DG|rh = �2 E
x⇠Dx

[xx|g01(x|r)x|h] E
x⇠Dx

[xg2(x|r)]� 2 E
x⇠Dx

[xx|g1(x|r)] E
x⇠Dx

[xg02(x|r)x|h] ,

where g01(t) = d(t)e�t�1{t � 0}e�t (here by d we denote the Dirac delta function),
and g02(t) = �1{t � 0}e�t. To show that F is smooth, we need to bound the
operator norm of DG|r, i.e.,

sup
h:khk2=1

kDG|rhk2 .

Using the triangle and Cauchy-Schwarz inequalities, we can bound the first term
as follows:

���� E
x⇠Dx

[xx|g01(x|r)x|h] E
x⇠Dx

[xg2(x|r)]
����

2


���� E

x⇠Dx
[xx|g01(x|r)x|h]

����
2

���� E
x⇠Dx

[xg2(x|r)]
����

2


���� E

x⇠Dx
[xx|x|h d(x|r)e�x|r]

����
2
+

���� E
x⇠Dx

[xx|x|h]
����

2

���� E
x⇠Dx

[x]
����

2
.
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We will first handle the term kEx⇠Dx [xx|x|h d(x|r)]k2. To simplify notation, we
may set without loss of generality r = e1. We have

E
x⇠Dx

[xx|x|h d(x|r)e�x|r] = E
x0⇠D0x

[x0(x0)|(x0)|hg(0)] ,

where D0x is the distribution Dx conditioned on x1 = 0, and g(0) is the one-
dimensional p.d.f. at point 0 (which is bounded by a universal constant for log-
concave distributions). Note that D0x is still log-concave.

Since Dx is (O(1), O(1))-isotropic, it holds
���� E

x0⇠D0x
[x0(x0)|(x0)|h

����
2
 E

x⇠D0x
[
��x0(x0)|(x0)|h

��
2]  E

x⇠D0x
[
��x0

��3
2]  poly(d) ,

where we used that kABk2  kAk2 kBk2, and that khk2 = 1. Similarly, kEx⇠Dx [xx|x|h]k2 
poly(d). Finally, ���� E

x⇠Dx
[x]

����
2
 E

x⇠Dx
[kxk2]  poly(d) .

Putting everything together, we get that L = poly(d), which completes the proof.

C.2 Omitted Proofs from Section 4.5

Proof of Proposition 4.44

We will require the following standard regret bound from online convex optimiza-
tion.

Lemma C.8 (see, e.g., Theorem 3.1 of Hazan (2016)). Let V ✓ Rn be a non-empty
closed convex set with diameter K. Let `1, . . . , `T be a sequence of T convex functions
`t : V 7! R differentiable in open sets containing V , and let G = maxt2[T] krw`tk2.
Pick any w(1) 2 V and set ht = K

G
p

t
for t 2 [T]. Then, for all u 2 V , we have that

ÂT
t=1(`t(w(t))� `t(u))  3

2 GK
p

T.
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For the set B, i.e., the unit ball with respect the k·k2, the diameter K equals to
2. We will show that the optimal vector w? and our current candidate vector w(t)

have a separation in the value of `t. Since we do not have access to `t precisely, we
need a function ˆ̀t, which is close to `t with high probability. The following simple
lemma gives us an efficient way to compute an approximation ˆ̀t of `t.

Lemma C.9 (Estimating the function `t). Let D be a (3, L, R, b)-well-behaved dis-
tribution and Tw(x) be the non-negative function given by a r-certificate oracle. Then
after drawing O(db2/e2 log(d/d)) samples from D, with probability at least 1� d, the
empirical distribution bD satisfies the following conditions:

•
���E(x,y)⇠ bD[(Tw(x) + r

2 )yu · x]� E(x,y)⇠D[(Tw(x) + r
2 )yu · x]

���  e, for any u 2
B.

•
���E(x,y)⇠ bD[(Tw(x) + r

2 )yx]
���

2
 1 + r

2 + e.

Proof. The proof of this lemma is similar to the proof of Lemma 4.20. Let ĝ =

E(x,y)⇠ bD[(Tw(x) + r
2 )yx] and g = E(x,y)⇠D[(Tw(x) + r

2 )yx]. For any unit vector u,
we have

|u · g|  E
x⇠Dx

[|Tw(x)||u · x|] + r

2
E

x⇠Dx
[|u · x|]  1 +

r

2
,

where we used that |T(x)|  1 and that the distribution Dx is in isotropic position.
Moreover, from Fact C.1, the random variable X = (Tw(x) + r

2 )yx � g is sub-
exponential with tail bound b0 = O(b). Thus, the rest of proof follows as in
Lemma 4.20.

The last item we need to proceed with our main proof is to establish that when
the oracle C in Step 13 of Algorithm 8 returns a function Tw(t) , then there exists a
function `t for which our current candidate vector w(t) and the optimal vector w?

are not close.

Lemma C.10 (Error of `t). Let w(t) 2 B and w? be the optimal weight vector. For
gt(x) = �(Tw(t) (x) + r

2 ) and `t(w) = E(x,y)⇠D[gt(x)yx · w], where Tw(t) (x) is the



288

function given by a r-certificate oracle, we have that

`t (w?)  �ra

✓
R L
A

◆O(1/a)

and `t(w(t)) �
���w(t)

���
2

r

2
.

Proof. Without loss of generality, let w? = e1. From Fact 3.3 and the definition
of h(x), we have that for every t 2 [T], it holds `t(w?)  �l Ex⇠Dx [|w? · x|(1�
2h(x))]. To bound from above this expectation, we use the (L, R, B, b)-bound
properties. We have that

E
x⇠Dx

[|w? · x|(1� 2h(x))] � R
4

CA
a

✓
R3 L

2

◆1/a

,

where in the last inequality we used Lemma C.7. Therefore, `t (w?)  � r
2

R
4 CA

a

⇣
R3 L

2

⌘1/a
.

Then we bound from below `t(w(t)) as follows

`t(w(t)) = � E
(x,y)⇠D

h
(Tw(t) (x) + l)w(t) · xy

i
�
���w(t)

���
2

r� E
x⇠Dx

hr

2
w(t) · xy

i

�
���w(t)

���
2

r� r

2

r
E

x⇠Dx

⇥
w(t) · x2

⇤
�
���w(t)

���
2

r

2
,

where we used the Cauchy-Schwarz inequality and the fact that x is in isotropic
position.

We are ready to prove Proposition 4.44.

Proof of Proposition 4.44. Let G = a
�R L

A
�O(1/a). Assume, in order to reach a contra-

diction, that for all steps t 2 [T] it holds that q
⇣

w(t), w?
⌘
� e. For each step t, let

Tw(t) (x) be the non-negative function output by the oracle C(w(t), e, d/T). Note
that

E
(x,y)⇠D

[Tw(t) (x)yw(t) · x]  �
���w(t)

���
2

r

2
.

Let ˆ̀t(w) be the empirical estimator of `t (w) = E[ ˆ̀t(w)] = �E(x,y)⇠D[
�
Tw(t) (x) + r

2
�

yx ·
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w]. Using Lemma C.9, for N = O
⇣

db2

r2G2 log
�T

d

�⌘
samples, we have that

Pr

| ˆ̀t(w(t))� `t(w(t))| � 1

4
Gr

�
 d

2T

and Pr
h
| ˆ̀t(w?)� `t(w?)| � 1

4 Gr
i
 d

2T .

From Lemma C.10, for every step t, we have that `t(w(t)) � 1
2

���w(t)
���

2
r � 0

and `t (w?)  �rG, thus, with probability at least 1� d
T , ˆ̀t(w(t)) � � 1

4 Gr and
ˆ̀t (w?)  � 3

4 Gr. Using Lemma C.8, we get

1
T

T

Â
t=1

⇣
ˆ̀t
⇣

w(t)
⌘
� ˆ̀t (w⇤)

⌘


1 + r
2 +

1
4 rGp

T
.

By the union bound, it follows that with probability at least 1� d, we have that

1
2

Gr  1
T

T

Â
t=1

⇣
ˆ̀t
⇣

w(t)
⌘
� ˆ̀t (w?)

⌘
 4p

T
,

which leads to a contradiction for T = 16
(rG)2 .

Thus, either there exists t 2 [T] such that q
⇣

w(t), w?
⌘
< e, which the algorithm

returns in Step 15, or the oracle C did not provide a correct certificate, which
happens with probability at most d. Moreover, the algorithm calls the certificate T
times and the number of samples needed to construct the empirical distribution bD
is

O(T N) =
db2

r4 log
✓

1
dr

◆
1
a

✓
A

R L

◆O(1/a)

.

This completes the proof.

Using Proposition 4.44 and our certificate algorithms, we obtain the following
parameter estimation result for halfspaces with Tsybakov noise.

Theorem C.11 (Parameter Estimation of Tsybakov Halfspaces Under Well-Be-
haved Distributions). Let D be a (3, L, R, b)-well-behaved isotropic distribution on
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Rd ⇥ {±1} that satisfies the (a, A)-Tsybakov noise condition with respect to an un-
known halfspace f (x) = sign(w? · x). There exists an algorithm that draws N =

b4
⇣

d A
RLe

⌘O(1/a)
log (1/d) samples from D, runs in poly(N, d) time, and computes a

vector bw such that with probability 1� d we have q( bw, w?)  e.

We note here that Theorem C.11 does not require the “U bounded” condition
of the underlying distribution on examples that is required in our Theorem 4.39.
Recall that this condition corresponds to an anti-concentration property of the
data distribution. With this additional property, Theorem 4.39 follows easily
from Theorem C.11, since it allows us to translate the small angle guarantee of
Theorem C.11 to the zero-one loss.

Proof of Theorem C.11. We start by noting how to obtain a r-certificate oracle for
(3, L, R, b)-well-behaved distributions. The algorithm of Theorem 4.5, returns a
function Tw such that E(x,y)⇠D [Tw(x)yw · x]  � 1

b (qLR/(dA))O(1/a). By defini-
tion, the function Tw (i.e., Equation (4.3)) is bounded, namely kTwk•  1

minx2B |w·x| 

O
⇣

d
q

⌘
, where B is the band from Equation (4.3). Therefore, the function Tw/ kTwk•

satisfies the conditions of a r-certificate oracle. Thus, by scaling the output of the al-
gorithm of Theorem 4.23, we obtain a 1

b (qLR/(dA))O(1/a)-certificate oracle. From
Proposition 4.44, this gives us an algorithm that returns a vector bw such that
q( bw, w?)  e with probability 1� d.

To prove Theorem 4.39, we need the following claim for (L, R, U, B, b)-well-
behaved distributions.

Claim C.12 (see, e.g., Claim 2.1 of Diakonikolas et al. (2020c)). Let Dx be an
(L, R, U, B, b)-well-behaved distribution on Rd. Then, for any 0 < e  1, we have
that errDx

0�1(hu, hv)  Ub2 log2 (1/e) · q(v, u) + e .

Proof of Theorem 4.39. Running Algorithm 8 for e0 = e
2Ub2

1
log2(2/e)

, by Theorem C.11,

Algorithm 8 outputs a bw such that q( bw, w?)  e
2Ub2

1
2 log2(1/e)

, then from Claim C.12,
we have err0�1(h bw, f )  e.
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D APPENDIX TO CHAPTER 5

D.1 Learning LSFs with Bounded Noise in Kendall’s
Tau distance

Improperly Learning LSFs with Bounded Noise

We provide an improper learner for LSFs in the presence of bounded noise. We first
restate the main result of this section, whose proof relies on a connection between
noisy linear label ranking distributions and the Massart noise model.

Theorem D.1 (Non-Proper Learning Algorithm). Fix h 2 [0, 1/2) and e, d 2 (0, 1).
Let D be an h-noisy linear label ranking distribution satisfying the assumptions of Defini-
tion 1.10. ImproperLSF (Algorithm 9) draws N = eO

⇣
d

e(1�2h)6 log(k/d)
⌘

samples from
D, runs in poly(d, k, 1/e, log(1/d)) time and, with probability at least 1� d, outputs a
hypothesis h : Rd ! Sk that is e-close in KT distance to the target.

Proof. Assume that the target function is s?(x) = sW?(x) = argsort(W?x) for
some unknown matrix W? 2 Rk⇥d. Consider a collection of N i.i.d. samples from
an h-noisy linear label ranking distribution D (see Definition 1.10) and let T be the
associated training set. For each example (x, p) 2 T, we create a list of (k

2) binary
examples (x, yij) with yij = sign(p(i)� p(j)) for any 1  i < j  k, where p(i)
denotes the position of the element i. Hence, we create the datasets Tij consisting
of the binary labeled examples (x, yij). We have that

Pr
(x,p)⇠D

h
yij · sign((W?

i �W?
j ) · x) < 0 | x

i
= Pr

p⇠M(s?(x))

h
p(i) < p(j) | W?

i · x < W?
j · x

i
.

Since M(s?(x)) is an h-bounded noise ranking distribution (see Definition 1.9),
we get that

Pr
p⇠M(s?(x))

[p(i) < p(j) | s?(x)(i) > s?(x)(j)]  h < 1/2 ,
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where s?(x)(i) denotes the position of the element i in the ranking s?(x). Focusing
on the training set Tij, we have that the sign yij is flipped with probability at most h.
So, we have reduced the problem to (k

2) sub-problems concerning the learnability
of halfspaces in the presence of Massart noise. The Massart noise model is a special
case of Definition 1.10 where k = 2. Note also that for each training set Tij, the
features x have the same distribution. We can now apply the following result
for LTFs with Massart noise for the standard Gaussian distribution. Recall that
the concept class of homogeneous halfspaces (or linear threshold functions) is
CLTF = {hw(x) = sign(w · x) : w 2 Rd}.

Lemma D.2 (Learning Halfspaces with Massart noise Zhang et al. (2020b)). Fix
h 2 [0, 1/2) and let e, d 2 (0, 1). Let D be an h-noisy linear label ranking distribution
satisfying the assumptions of Definition 1.10 with k = 2 (where CLSF = CLTF). There
is a computationally efficient algorithm MassartLTF that draws m = O( d polylog(d)

e(1�2h)6 ·
log(1/d)) samples from D, runs in poly(m) time and outputs a linear threshold function
h that is e-close to the target linear threshold function h? with probability at least 1� d,
i.e., it holds Prx⇠Nd [h(x) 6= h?(x)]  e.

We can invoke the algorithm of Lemma D.2 for any alternatives 1  i < j  k
with accuracy e0 = O(e), d0 = O(d/k2) and error rate h < 1/21. We remark that
Lemma D.2 returns a halfspace. Each one of the (k

2) calls will provide a vector
vij 2 Rd such that, with probability at least 1� d0, it satisfies

Pr
x⇠Nd

[sign(vij · x) 6= sign((W?
i �W?

j ) · x)]  e0 ,

where the true target halfspace has normal vector W?
i �W?

j . Moreover, for any
i < j, the algorithm requires that the training set Tij is of size

|Tij| = W
✓

d
e0

· 1
(1� 2h)6 · log(1/d0)

◆
,

1We can assume that h is known without loss of generality.
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and, so, a total number of

N = W
✓

d
e
· 1
(1� 2h)6 · log(k/d)

◆
,

samples (x, p) is required from the distribution D. Given a collection of linear
classifiers with normal vectors vij for any i < j, it remains to aggregate them
and compute a sorting function h : Rd ! Sk. To this end, the estimator h, given
an example x, creates the directed complete graph G with k nodes with directed
edge i ! j if vij · x > 0. If all the linear classifiers are correct (which occurs with
probability 1�O(ek2) over Dx due to the union bound), the graph G is acyclic
(since it will match the true directions induced by W?) and the estimator h outputs
the induced permutation. Observe that the KT distance is

1
(k

2)
· E

x⇠Nd

"

Â
1i<jk

1{sign(vij · x) 6= sign((W?
i �W?

j ) · x)}
#
 e0 .

Otherwise, the classifiers are inconsistent and G contains cycles. So, the expected
number of mistakes in the graph G is ek2. The estimator in order to output a
ranking uses a deterministic constant approximation algorithm for the minimum
Feedback Arc Set Ailon et al. (2008) in order to remove the cycles. For an overview
of this fundamental line of research, we refer to Ailon et al. (2008); Van Zuylen and
Williamson (2009); Kenyon-Mathieu and Schudy (2006).

Lemma D.3 (3-Approximation Algorithm for mimimum FAS (see Van Zuylen and
Williamson (2009); Ailon et al. (2008))). There is a deterministic algorithm MFAS for
the minimum Feedback Arc Set on unweighted tournaments with k vertices that outputs
orderings with cost less than 3 · OPT. The running time is poly(k).

In the above, OPT is the minimum number of flips the algorithm should per-
form. With input the cyclic directed graph G induced by the estimated linear classi-
fiers, the algorithm of Lemma D.3 computes, in poly(k) time, a 3-approximation of
the optimal solution (i.e., instead of correcting e0 directed edges, the algorithm will
provide a directed acyclic graph with 3e0 changed edges). Hence, for the hypoth-
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esis h : Rd ! Sk, where h(x) is the output of the minimum FAS approximation
algorithm with input G (G depends on the input x, the randomness of the samples
and the internal randomness of the (k

2) calls of the Massart linear classifiers), and
the target function s?(x), we have that

E
x⇠Nd

[DKT(h(x), s?(x))]  (e0 + 3e0) = 4e0 ,

which completes the proof, by setting e0 = e/4.

Remark D.4. Consider the following variant of the above procedure: compute the O(k2)

linear classifiers with accuracy e0 = e/k2: If the induced directed graph is acyclic, output
the ranking; otherwise, output a random permutation. With probability e, the KT distance
will be of order k2. Hence, one has to draw in total O(k4d/e) samples to make the expected
KT distance roughly O(e). The algorithm of Theorem D.1 improves on this approach.

The Proof of Theorem 5.1: Properly Learning LSFs with Bounded
Noise

We first restate the main result of this section.

Theorem D.5 (Proper Learning Algorithm). Fix h 2 [0, 1/2) and e, d 2 (0, 1). Let D
be an h-noisy linear label ranking distribution satisfying the assumptions of Definition 1.10.
ProperLSF (Algorithm 10) draws N = eO

⇣
d

e(1�2h)6 log(k/d)
⌘

samples from D, runs
in poly(d, k, 1/e, log(1/d)) time and, with probability at least 1� d, outputs a Linear
Sorting function h : Rd ! Sk that is e-close in KT distance to the target.

We are now ready to provide the proof of our efficient proper learning algorithm
for the class of Linear Sorting functions in the presence of bounded noise with
respect to the standard Gaussian probability measure.

Proof. As a first step, the algorithm calls the improper learning algorithm ImproperLSF

(Algorithm 9) with parameters e, d and h < 1/2 and obtains a list of linear clas-
sifiers with normal vectors vij for i < j. The utility of this step implies that, with
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probability at least 1� d, each one of the classifiers e-learns the associated true
halfspace, i.e., it holds

Pr
x⇠Nd

[sign(vij · x) 6= sign((W?
i �W?

j ) · x)]  e ,

where W? is the matrix of the target Linear Sorting function. Without loss of
generality, assume that kvijk2 = 1. In order to make the learner proper, it suffices
to solve the following convex program on W :

Find W 2 Rk⇥d, (D.1)

such that (Wi �Wj) · vij � (1� f) · kWi �Wjk2 for any 1  i < j  k , (CP)

(D.2)

kWkF  1 , (D.3)

for some f 2 (0, 1) to be decided. The main key ideas are summarized in the next
claim.

Claim D.6. The following properties hold true for f = O(e2) with probability at least
1� d.

1. The convex program D.1 is feasible.

2. Any solution of the convex program D.1 induces an LSF that is e-close in KT distance
to the true target sW?(·).

3. The feasible set of the convex program D.1 contains a ball of radius r = 2�poly(d,k,1/e,log(1/d))

and is contained in a ball of radius 1. Both balls are with respect to the Frobenius
norm.

4. The convex program D.1 can be solved in time poly(d, k, 1/e, log(1/d)) using the
ellipsoid algorithm.

Proof of Item 1. First, we can choose the error f so that this convex program is
feasible. Let us set W = W?, where W? is the underlying matrix of the target Linear
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Sorting function s? with s?(x) = argsort(W?x). Recall that, by the guarantees of
the improper learning algorithm, for the pair 1  i < j  k, it holds

Pr
x⇠Nd

[sign(vij · x) 6= sign((W?
i �W?

j ) · x)]  e . (D.4)

Since the standard Gaussian is rotationally symmetric, the angle q(u, v) between
two vectors u, v 2 Rd is equal to p ·Prx⇠Nd [sign(u · x) 6= sign(v · x)]. Hence, using
this observation and Equation (D.4), we get that the angle between the guess vector
vij and the true normal vector W?

i �W?
j is

q(W?
i �W?

j , vij)  c · e ,

for some constant c > 0. For sufficiently small e, this bound implies that the cosine
of the above angle is of order 1� (ce)2 and so the following inequality will hold

(W?
i �W?

j ) · vij � (1� 2(ce)2) · kW?
i �W?

j k2 ,

since vij is unit. Hence, by setting f = 2(ce)2, the convex program with variables
W 2 Rk⇥d will be feasible; W? will be a solution with probability 1� d, where the
randomness is over the output of the algorithm dealing with the Massart linear
classifiers. Note that we can assume that kW?kF  1 without loss of generality,
since we can divide each row with the Frobenius norm.

Proof of Item 2. Let fW be a solution of the convex program.We will make use of
the observation that the angle between two vectors is equal to the disagreement of
the associated linear threshold functions with respect to the standard normal times
p. Observe that any solution fW to the convex program will satisfy that

(8i, j) q(vij, fWi �fWj)  O(
p

f) = ce .

and
(8i, j) q(W?

i �W?
j , vij)  e .
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This implies that
dangle(W?, fW)  c0 e

Claim D.7. For the matrices W , W? 2 Rk⇥d, it holds that

E
x⇠Nd

[DKT(sW (x), sW?(x))]  dangle(W , W?) .

Proof. We have that

E
x⇠Nd

[DKT(sW (x), sW?(x))]

=
1
(k

2)
· E

x⇠Nd
[ Â
1i<jk

1{((Wi �Wj) · x) ((W?
i �W?

j ) · x) < 0}

=
1
(k

2)
· Â

1i<jk
Pr

x⇠Nd
[sign(Wi �Wj) · x) 6= sign((W?

i �W?
j ) · x)]

=
1
p

max
i,j

q(Wi �Wj, W?
i �W?

j )

 dangle(W , W?) .

Using the above claim, we get an expected KT distance bound of order O(e).
This gives the desired result.

Proof of Item 3. We will make use of the next lemma.

Lemma D.8. Fix e, d 2 (0, 1). Let W? 2 Rk⇥d be the true parameter matrix. There
exists a matrix fW? 2 Rk⇥d such that, with probability at least 1� d:

• Prx⇠Nd [sign((W?
i �W?

j ) · x) 6= sign((fW?
i �fW?

j ) · x)]  e for all i 6= j, and,

• kfW?
i �fW?

j k2 � 2�poly(d,k,1/e,log(1/d)) for any i 6= j.

Proof of Lemma D.8. The above lemma is a result of the next Appendix D.1. In
particular, it is a direct implication of Lemma D.11 and Corollary D.17.
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Note that the above lemma implies that

(8i, j) Pr
x⇠Nd

[sign(vij · x) 6= sign((fW?
i �fW?

j ) · x)]  2e ,

with probability at least 1� 2d. Hence, up to constants, the analysis concerning the
feasibility of the true matrix W? (see Item 1) will still hold for fW?. From now on we
can work with this matrix fW? which enjoys the “well-conditionedness” property
of the second item of the lemma.

We will use the above lemma in order to prove Item 3 which controls the
volume of the feasible region: it states that there exist 0 < r < R so that the feasible
region of the convex program contains a ball of radius r and is contained in a ball
of radius R (where the balls are with respect to the Frobenius norm). Moreover,
r = 2�poly(d,k,1/e,log(1/d)) and R = 1.

For the chosen f 2 (0, 1), the feasible set contains matrices W 2 Rk⇥d that
satisfy kW �fW?kF  2r, r to be decided. For any i 6= j, we have that the following
properties hold:

1. kfW?
i �fW?

j k2 � 2�poly(d,k,1/e,log(1/d)) (well-conditionedness).

2. (fW?
i �fW?

j ) · vij � (1� f) kfW?
i �fW?

j k2 (feasibility).

3. kW �fW?kF  2r which implies that kWi �fW?
i k2  2r for any i 2 [k] (ball

around feasible point).

4. kvijk2 = 1.

Our goal is to prove that for a matrix in the above ball it holds (Wi �Wj) · vij �
(1� f) kWi �Wjk2.

We have that

(fW?
i �fW?

j ) · vij = (fW?
i �Wi) · vij + (Wj �fW?

j ) · vij + (Wi �Wj) · vij

 kfW?
i �Wik2 + kWj �fW?

j k2 + (Wi �Wj) · vij

 4r + (Wi �Wj) · vij .
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More to that

kWi �Wjk2 = kWi �fW?
i +fW?

i �fW?
j +fW?

j �Wjk2

 kWi �fW?
i k2 + kfW?

i �fW?
j k2 + kfW?

j �Wjk2

 4r + kfW?
i �fW?

j k2 ,

and similarly: kWi �Wjk2 � kfW?
i �fW?

j k2 � 4r.
Combining the above inequalities, we get that

(Wi �Wj) · vij � (fW?
i �fW?

j ) · vij � 4r

� (1� f) kfW?
i �fW?

j k2 � 4r

� (1� f) (kWi �Wjk2 � 4r)� 4r

= (1� f) kWi �Wjk2 � 8r .

We pick r sufficiently small and of order 2�poly(d,k,1/e,log(1/d)) and get that W is
a feasible solution of the convex program. Moreover, we can select R = 1 since
kfW?kF = 1 without loss of generality, since we can normalize the row differences
of fW? with the norm kfW?kF.

Proof of Item 4. We apply the ellipsoid algorithm in order to solve the convex
program D.1 and compute a matrix fW 2 Rk⇥d. The algorithm ProperLSF outputs
the linear sorting function h(·) = sfW (·).

Lemma D.9 (Efficiency of the Ellipsoid Algorithm Vishnoi (2021)). Suppose that
P ✓ Rd is a full-dimensional polytope that is contained in a d-dimensional Euclidean
ball of radius R > 0 and contains a d-dimensional Euclidean ball of radius r > 0. Then,
the ellipsoid method outputs a point ex 2 P after O(d2 log(R/r)) iterations. Moreover,
every iteration can be implemented in O(d2 + Tsep) time, where Tsep is the time required
to answer a single query by the separation oracle.

Assume that Item 3 holds true. Then the algorithm can be used with r =

2�poly(d,k,1/e,log(1/d)) and R = 1. Hence, the ellipsoid algorithm will provide in time
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poly(d, k, 1/e, log(1/d)) a point fW that lies in the feasible region of the convex
program D.12.

Remark D.10. We remark that both the improper (Algorithm 9) and the proper (Algo-
rithm 10) learning algorithms hold for the more general case where the x-marginal lies in
the class of isotropic log-concave distributions Lovász and Vempala (2007): A distribution
Dx lies inside the class of isotropic log-concave distributions FLC over Rd if Dx has a
probability density function f over Rd such that log f is concave, its mean is zero, and its
covariance is identity, i.e., Ex⇠Dx [xx>] = I.

The proof of Lemma D.8

We provide the following result.

Lemma D.11. Fix e, d 2 (0, 1). Let W? 2 Rk⇥d be the true parameter matrix. There
exists a matrix W 2 Rk⇥d such that, with probability at least 1� d:

• Prx⇠Nd [sign((W?
i �W?

j ) · x) 6= sign((Wi �Wj) · x)]  e for all i 6= j, and,

• The bit complexity of W is poly(k, d, 1/e, log(1/d))

Proof. The matrix W will be the output of a linear program that can be used to
learn the LSF sW?(·) in the noiseless setting.

Consider the unit sphere Sd�1 and a d0-cover of the unit sphere with parameter
d0 > 0 to be decided. For any sample (x, p) ⇠ D of the 0-noisy linear label ranking
distribution, i.e., x ⇠ Nd and p = sW?(x), we consider the rounded sample (ex, p)

where ex is obtained by first projecting x 2 Rd to Sd�1 and then by obtaining the
closest point of bx in the cover. The cover’s size is O(1/d0)d.

Let us fix 1  i < j  k and set yij = sign(p(i) � p(j)). For a training set
{(x(t), p(t))}t2[N] of size N, we create the following linear system Lij with variables

2We remark that the runtime will also depend on the time required to answer a single query by
the separation oracle. We assume that this time is polynomial in the parameters of our problem and
we opt not to track these details in this work.
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W 2 Rk⇥d:
y(t)ij (Wi �Wj) · ex(t) � 0 , t 2 [N] (Lij) .

Consider the concatenation of the linear systems L = [i<jLij. The number of
equations in the linear system of equations L is N · (k

2).
We first have to show that, with high probability, the system L is feasible, i.e.,

there exists W that satisfies the system’s equations. Note that if we replace ex(t)

with the original points x(t), the true matrix W? is a solution to the system. We
now have to study the rounded linear system.

Claim D.12. The (rounded) linear system L is feasible with high probability.

Proof. In order to show the feasibility of L, we will use the anti-concentration
properties of the Gaussian.

Fact D.13 (Dasgupta et al. (2005)). Let P be the standard normal distribution over Rd.
For any fixed unit vector a 2 Rd and any g  1,

g/4  Pr
x⇠P


|a · x
kxk2

|  gp
d

�
 g .

Let us focus on the pair 1  i < j  k. We first observe that scaling all samples
to lie on the unit sphere does not affect the feasibility of the system. It suffices
to focus on that single halfspace with normal vector vij = W?

i �W?
j 2 Rd and

consider the probability of the event that the collection of the N rounded points
{ex(t)}t with labels {y(t)ij }t, that come from N Gaussian vectors {x(t)}t which are

linearly separable (with labels {y(t)ij }t), becomes non-linearly separable. For this it
suffices to control the probability that the rounding procedure flips the label of the
data point. Using the union bound, we have that, if the rounding has accuracy d0,
the described bad event has probability

Pr
x(1),...,x(N)⇠Nd

[9t 2 [N] : sign(vij · ex(t)) 6= sign(vij · x(t))]

 N · Pr
x⇠Nd

⇥
|vij · x/kxk2|  2d0

⇤
 N · O(d0

p
d) ,



302

where we remark that the first event is scale invariant and so we can assume that
the normal vector is unit, the first inequality follows from the fact that it suffices to
control the mass assigned to a strip of width 2d0 (due to the discretization) and the
second inequality follows from Fact D.13. We now have to select the discretization.
Let d 2 (0, 1). By choosing d0 = O( d

N
p

dk2 ), the bad event for all the pairs i < j
occurs with probability at most d, i.e., with probability at least 1� d, each one of
the N drawn i.i.d. samples does not fall in any one of the (k

2) “bad” strips.

We can now consider the case that the system L is feasible (with the target
matrix W? being a feasible point) that occurs with probability 1� d. The class of
homogenous halfspaces in d dimensions has VC dimension d; therefore, the sample
complexity of learning halfspaces using ERM is O((d + log(1/d))/e). Moreover,
in the realizable case, we can implement the ERM using e.g., linear programming
and find a solution in poly(d, 1/e, log(1/d)) time. We next focus on the quality of
the solution which will give the desired sample complexity.

Claim D.14. Assume that the algorithm draws N = eO( d+log(k/d)
e ) i.i.d. samples of the

form (x, p) with x ⇠ Nd and p = sW?(x). For any i 6= j and with probability at least
1� 2d, the solution W of the linear system L satisfies

Pr
x⇠Nd

[sign((W?
i �W?

j ) · x) 6= sign((Wi �Wj) · x)]  e .

Proof. Since the matrix W satisfies the sub-system Lij, the result follows using a
union bound on the events that (i) the linear system is feasible and (ii) the ERM is
a successful PAC learner.

Claim D.15. Consider the solution W of the linear system. Then, W has bounded bit
complexity of order poly(d, k, 1/e, log(1/d)).

Proof. We will make use of the following result that relates the size of the input
and the output of a linear program using Cramer’s rule.

Lemma D.16 (Schrijver (1998); Papadimitriou (1981)). Let A 2 Zm⇥n, b 2 Zm, c 2
Zn. Consider a linear program min c · x subject to Ax  b and x � 0. Let U be
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the maximum size of Aij, bi, cj. The output of the linear program has size O(m(nU +

n log(n))) bits.

We will apply the above lemma (which holds even by dropping the constraint
x � 0) to our setting where Aw � 0 where w = (Wi)i2[k] 2 Qkd, i.e., w is
the vectorization of the matrix W . Moreover, A is the matrix containing the
N (rounded) Gaussian samples ex(t). We have that the matrix A has dimension
N(k

2) ⇥ kd and each entry Aij is an integer and has size at most U = poly(d, k)
(since the samples are rounded on the d0-cover of the sphere. Recall that the
labels y(t)ij 2 {�1,+1} and ex(t) lie in the unit sphere. In particular, each row of
the matrix A has 2d non-zero entries and is associated with a tuple (i, j, t) for
1  i < j  k and t 2 [N]. Then, it holds that the output has size at most
O(Nk2(dU + dk log(dk))) bits. So, we get that the output W can be described using
at most poly(d, k, 1/e, U, log(1/d)) = poly(d, k, 1/e, log(1/d)) bits (due to the size
of the entries of the matrix A).

Combining the above claims, we conclude the proof.

As a corollary of the bounded bit complexity, we obtain the following key result.

Corollary D.17. Let e > 0. Assume that W 2 Rk⇥d has bit complexity at most
poly(d, k, 1/e, log(1/d)). Then, for any i, j 2 [k] with i 6= j, it holds that kWi�Wjk2 >

2�poly(d,k,1/e,log(1/d)).

Proof. First, we can assume that Wi 6= Wj for any i 6= j; in case of equal rows, we
obtain a low-dimensional instance. Then, since any vector Wi has bounded bit
complexity, we have that the difference of any two such vectors, provided that it is
non-zero, has a lower bound in its norm, i.e., kWi �Wjk2 > 2�poly(d,k,1/e,log(1/d))

for any i, j 2 [k].
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D.2 Learning in Top-1 Disagreement from Label
Rankings

Let us set s1(Wx) = argmaxi2[k] Wi · x for x 2 Rd. The main result of this section
follows.

Theorem D.18 (Proper Top-1 Learning Algorithm). Fix h 2 [0, 1/2) and e, d 2
(0, 1). Let D be an h-noisy linear label ranking distribution satisfying the assumptions

of Definition 1.10. There exists an algorithm that draws N = O
✓

dk
p

log k
e(1�2h)6 log(k/d)

◆

samples from D, runs in poly(N) time and, with probability at least 1� d, outputs a
Linear Sorting function h : Rd ! Sk that is e-close in top-1 disagreement to the target.

Proof. Note that the MassartLTF algorithm (see Lemma D.2) has the guarantee that
it returns a vector w so that

Pr
x⇠Nd

[sign(w · x) 6= sign(w? · x)]  e ,

with probability 1 � d, where w? is the target normal vector. Since the above
misclassification probability with respect to Nd is directly connected with the
angle q(w, w?), we get that we can control the angle between w and w? efficiently.
Moreover, in our setting, for a matrix W 2 Rk⇥d, there exist (k

2) homogeneous
halfspaces with normal vectors Wi �Wj and so we can control the angles q(Wi �
Wj, W?

i �W?
j ). In order to deduce the sample complexity bound of Theorem D.18,

we show the next lemma which essentially bounds the top-1 misclassification error
using the angles of these O(k2) halfspaces. We apply Lemma D.19 with U = W
and V = W? and so we can take e0 = e/(k

p
log k) and invoke the proper learning

algorithm of Algorithm 10. This completes the proof.

We continue with the proof of our key lemma.
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Lemma D.19 (Misclassification Error). Consider two matrices U, V 2 Rk⇥d and let
Nd be the standard Gaussian in d dimensions. We have that

Pr
x⇠Nd

[s1(Ux) 6= s1(V x)]  c · k ·
p

log k · max
i 6=j

q(Ui �Uj, Vi � Vj) ,

where c > 0 is some universal constant.

Proof. We have that

Pr
x⇠Nd

[s1(Ux) 6= s1(V x)] = Â
i2[k]

Pr
x⇠Nd

[s1(Ux) = i, s1(V x) 6= i] .

We have that C(i)
U = 1{x : s1(Ux) = i} = ’j 6=i 1{(Ui �Uj) · x � 0} is the set indi-

cator of a homogeneous polyhedral cone as the intersection of k� 1 homogeneous
halfspaces. Similarly, we consider the cone C(i)

V = {x : s1(V x) = i}. Hence, we
have that {x : s1(V x) 6= i} is the complement of a homogeneous polyhedral cone.
Let us define C(i)

U : Rd 7! {0, 1} and C(i)
V : Rd 7! {0, 1} be the associated indicator

functions of the two cones. We have that

Pr
x⇠Nd

[s1(Ux) = i, s1(V x) 6= i] = Pr
x⇠Nd

[C(i)
U (x) = 1, C(i)

V (x) = 0] .

Finally, we have that

C(i)
U \

⇣
C(i)

V

⌘c
= C(i)

U \ C(i)
V ✓ C(i)

U \ C(i)
V [ C(i)

V \ C(i)
U .

We can hence apply Lemma D.20 for the cones C(i)
U , C(i)

V for each i 2 [k].

Lemma D.20 (Cone Disagreement). Let C1 : Rd 7! {0, 1} be the indicator function
of the homogeneous polyhedral cone defined by the k unit vectors v1, . . . , vk 2 Rd, i.e.,
C1(x) = ’k

i=1 1{vi · x � 0}. Similarly, define C2 : Rd 7! {0, 1} to be the homogeneous
polyhedral cone with normal vectors u1, . . . , uk. It holds that

Pr
x⇠Nd

[C1(x) 6= C2(x)]  c
q

log(k) max
i2[k]

q(vi, ui) ,
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where c > 0 is some universal constant.

Proof. To simplify notation, denote q = maxi2[k] q(vi, ui). We first observe that
it suffices to prove the upper bound on the probability of C1(x) 6= C2(x) for
sufficiently small values of q. Indeed, if we have that the bound is true for q smaller
than some q0 we can then form a path of sufficiently large length N (in particular we
need q/N  q0) starting from the vectors v1, . . . , vk to the final vectors u1, . . . , uk,
where at each step we only rotate the vectors by at most q/N  q0. By the triangle
inequality, we immediately obtain that the probability that C1(x) 6= C2(x) is at
most equal to the sum of the probabilities of the intermediate steps which is at
most ÂN

i=1 c
p

log(k) q
N = c

p
log(k)q. Notice in the above argument the constant q0

can be arbitrarily small and may also depend on k and d.
We define the indicator of the positive orthant in k dimensions to be R(t) =

’k
i=1 1{ti � 0}. Using this notation, we have that the cone indicator can be written

as C1(x) = R(v1 · x, . . . , vk · x) = R(V x), where V is the k⇥ d matrix whose i-th
row is the vector vi. Moreover, we define the i-th face of the cone R(V x) to be

Fi(V x) = R(V x) 1{vi · x = 0} .

We will first handle the case where only one of the normal vectors vi changes.
We show the following claim.

Claim D.21. Let v1, . . . , vk 2 Rd and r 2 Rd with q(v1, r)  q for some sufficiently
small q 2 (0, p/2). It holds that

Pr
x⇠Nd

[R(v1 · x, . . . , vk · x) 6= R(r · x, v2 · x, . . . , vk · x)]  c · q ·G(F1)

s

log
✓

1
G(F1)

+ 1
◆

,

where F1 is the face with v1 · x = 0 of the cone R(V x) and c is some universal constant.



307

r

v1q

Figure D.1: The vectors r, v1 and q and the disagreement region of the halfspaces
with normal vectors r and v1.

Proof. We have

Pr
x⇠Nd

[R(v1 · x, . . . , vk · x) 6= R(r · x, v2 · x, . . . , vk · x)]

= E
x⇠Nd

[|R(v1 · x, . . . , vk · x)� R(r · x, v2 · x, . . . , vk · x)|]

= E
x⇠Nd

[R(v2 · x, . . . , vk · x) |1{v1 · x � 0}� 1{r · x � 0}|] .

We have that |1{v1 · x � 0}� 1{r · x � 0}| = 1{(v1 · x)(r · x) < 0}, i.e., this is
the event that the halfspaces 1{v1 · x � 0} and 1{r · x � 0} disagree. Let q be
the normalized projection of r onto the orthogonal complement of v1, i.e., q =

projv?1 r/kprojv?1 rk2. We have that v1 and q is an orthonormal basis of the subspace
spanned by the vectors v1 and r. We have that r = cos q(v1, r)v1 + sin q(v1, r)q.
Moreover, we have that the region (v1 · x)(r · x) < 0 is equal to

{0 < v1 · x < �(q · x) tan q(v1, r)} [ {�(q · x) tan q(v1, r) < v1 · x < 0} .

Thus, we have that the disagreement region (v1 · x)(r · x) < 0 is a subset of
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the region {|v1 · x|  |q · x| tan q(v1, r)}. Since tan q(v1, r)  q and we have that
q is sufficiently small we can also replace the above region by the larger region:
{|v1 · x|  2q|q · x|}. Therefore, we have

E
x⇠Nd

[R(v2 · x, . . . , vk · x) 1{(v1 · x)(r · x) < 0}}]

 E
x⇠Nd

[R(v2 · x, . . . , vk · x) 1{|v1 · x|  2q|q · x|}] .

The derivative of the above expression with respect to q is equal to

E
x⇠Nd


R(v2 · x, . . . , vk · x) d

✓
|v1 · x|
2|q · x| � q

◆�
,

where d(t) is the Dirac delta function. At q = 0 and using the property that
d(t/a) = ad(t), we have that the above derivative is equal to

2 E
x⇠Nd

[R(v2 · x, . . . , vk · x) |q · x| d(|v1 · x|)] .

Notice that, if we did not have the term |q · x|, the above expression would be
exactly equal to two times the Gaussian surface area of the face with v1 · x = 0, i.e.,
it would be equal to 2G(F1). We now show that this extra term of |q · x| can only
increase the above surface integral by at most a logarithmic factor. We have that

E
x⇠Nd

[R(v2 · x, . . . , vk · x) |q · x| d(|v1 · x|)] =
Z

x2F1
fd(x)|q · x|dµ(x)


Z

x2F1
fd(x)|q · x|1{|q · x|  x}dµ(x) +

Z

x2F1
fd(x)|q · x|1{|q · x| � x}dµ(x)

 x
Z

x2F1
fd(x)dµ(x) +

Z

x2F1
fd(x)|q · x|1{|q · x| � x}dµ(x) ,

where dµ(x) is the standard surface measure in Rd. The first term above is exactly
equal to the Gaussian surface area of the face F1. To bound from above the second
term we can use the fact that the face F1 is a subset of the hyperplane v1 · x = 0,
i.e., it holds that F1 ✓ {x : |v1 · x| = 0}. To simplify notation we may assume that
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v1 = e1 and q = e2 (recall that v1 and q are orthogonal unit vectors), and in this
case we obtain

Z

x2F1
fd(x)|q · x|1{|q · x| � x}dµ(x) 

Z

x1=0
fd(x)|x2|1{|x2| � x}dµ(x)

=
1p
2p

Z +•

�•
|x2|1{|x2| � x} e�x2

2/2
p

2p
dx2

=
1
p

e�x2/2 .

Combining the above bounds we obtain that the derivative with respect to q of the
expression Ex⇠Nd [R(v2 · x, . . . , vk · x) 1{|v1 · x|  2q|q · x|}] is equal to

d
dq

⇣
E

x⇠Nd
[R(v2 · x, . . . , vk · x) 1{|v1 · x|  2q|q · x|}]

⌘���
q=0
 2xG(F1) +

2e�x2/2

p
.

By picking x =
p

2 log(1 + 1/G(F1)), the result follows since up to introducing o(q)
error we can bound the term Prx⇠Nd [R(v1 · x, . . . , vk · x) 6= R(r · x, v2 · x, . . . , vk · x)]
by its derivative with respect to q (evaluated at 0) times q.

We can complete the proof of Lemma D.20 using Claim D.21. In order to bound
the disagreement of the cones C1 and C2 we can start from C1 and change one of
its vectors at a time so that we can use Claim D.21 that can handle this case. For
example, at the first step, we can swap v1 for u1 and use the triangle inequality to
obtain that

Pr
x⇠Nd

[C1(x) 6= C2(x)]  Pr
x⇠Nd

[R(v1 · x, . . . , vk · x) 6= R(u1 · x, v2 · x . . . , vk · x)]

+ Pr
x⇠Nd

[R(u1 · x, v2 · x, . . . , vk · x) 6= R(u1 · x, u2 · x . . . , uk · x)]

 c · q G(F1)
q

log(1/G(F1) + 1)

+ Pr
x⇠Nd

[R(u1 · x, v2 · x, . . . , vk · x) 6= R(u1 · x, u2 · x . . . , uk · x)] ,

where F1 = F1(V x) is the face with v1 · x = 0 of the cone C1. Notice that we have
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replaced v1 by u1 in the above bound. Our plan is to use the triangle inequality
and continue replacing the vectors of C1 by the vectors of C2 sequentially. To make
this formal we define the matrix A(i) 2 Rk⇥d whose first i� 1 rows are the vectors
u1, . . . , ui�1 and its last k� i + 1 rows are the vectors vi, . . . , vk, i.e.,

A(i)
j =

8
<

:
uj if 1  j  i� 1,

vj if i  j  k .

Notice that A(1) = V and A(k+1) = U. Using the triangle inequality we obtain that

Pr
x⇠Nd

[C1(x) 6= C2(x)] 
k

Â
i=1

Pr
x⇠Nd

[R(A(i)x) 6= R(A(i+1)x)].

Since the matrices A(i) and A(i+1) only differ on one row, we can use Claim D.21 to
obtain the following bound:

Pr
x⇠Nd

[C1(x) 6= C2(x)]  c · q ·
k

Â
i=1

G(Fi(A(i)x))

s
1

G(Fi(A(i)x))
+ 1 .

We now observe that the Gaussian surface area G(Fi(A(i)x)) is a continuous func-
tion of the matrix A(i). By flattening the matrix A(i) (since it is isomorphic to a vec-
tor z 2 Rn2

) and letting Sz be the induced surface {x : R(A(i)x) = 1^ vi · x = 0},
it suffices to show that

lim
w!z

Z
fn(x)1{x 2 Sw}dµ(x) =

Z
fn(x)1{x 2 Sz}dµ(x) ,

by the smoothness of the surface Sz. Consider a sequence of functions (gm) and
vectors (wm) so that gm(x) = fn(x)1{x 2 Swm} and limm!• wm = z. Note that
|gm(x)|  1 everywhere. Hence, by the dominated convergence theorem, we have
that

lim
m!•

Z
gm(x)dµ(x) =

Z
lim

m!•
gm(x)dµ(x) =

Z
fn(x) lim

m!•
1{x 2 Swm}dµ(x) .
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Since the sequence consists of smooth surfaces, we have that limm!• 1{x 2
Swm} = 1{x 2 Sz} and so the Gaussian surface area is continuous with respect to
the matrix A(i) for any i 2 [k].

Also, as q ! 0, we have that A(i) ! V . This is because the sequence of matrices
A(i) depends only on the vectors uj and vj for j 2 [k] and the following two
properties hold true: q = maxj2[k] q(vj, uj) and all the vectors are unit. Hence, as q

tends to zero, they tend to become the same vectors and so any matrix A(i) tends
to become V . Therefore, taking this limit we obtain that for q ! 0 it holds that

lim
q!0

Prx⇠Nd [C1(x) 6= C2(x)]
q

 c ·
k

Â
i=1

G(Fi(V x))
q

log (1/G(Fi(V x)) + 1) . (D.5)

We will now use the following lemma that shows that the surface area of any
homogeneous polyhedral cone is independent of the number of faces k and in fact
is at most 1 for all k.

Lemma D.22 (Gaussian Surface Area of Homogeneous Cones Nazarov (2003b)).
Let C be a cone with apex at the origin (i.e., an intersection of arbitrarily many halfspaces
all of whose boundaries contain the origin). Then C has Gaussian surface area G(C) at
most 1.

Using Lemma D.22 we obtain that Âk
i=1 G(Fi(V x))  1. Next, we observe that,

when the positive numbers a1, . . . , ak satisfy Âk
i=1 ai  1, it holds that Âk

i=1 ai
p

log(1/ai) q
Âk

i=1 ai log(1/ai) 
p

log(k) (using the fact that the uniform distribution maxi-
mizes the entropy). Using this fact and Equation (D.5), we obtain

lim
q!0

Prx⇠Nd [C1(x) 6= C2(x)]
q

 c
q

log(k) .

Thus, we have shown that, for sufficiently small q, it holds that Prx⇠Nd [C1(x) 6=
C2(x)]  c

p
log(k)q, but, as we discussed in the start of the proof, the general

bound follows directly from the bound for sufficiently small values of q > 0.
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D.3 Learning in Top-r Disagreement from Label
Rankings

We prove the next result which corresponds to a proper learning algorithm for LSF
in the presence of bounded noise with respect to the top-r disagreement.

Theorem D.23 (Proper Top-r Learning Algorithm). Fix h 2 [0, 1/2), r 2 [k] and
e, d 2 (0, 1). Let D be an h-noisy linear label ranking distribution satisfying the assump-
tions of Definition 1.10. There exists an algorithm that draws N = eO

⇣
d rk

e(1�2h)6 log(1/d)
⌘

samples from D, runs in poly(N) time and, with probability at least 1� d, outputs a
Linear Sorting function h : Rd ! Sk that is e-close in top-r disagreement to the target.

The main result of this section is the next lemma, which directly implies the
above theorem (using the same steps as the proof of Theorem D.18).

Lemma D.24 (Top-r Misclassification). Let r 2 [k]. Consider two matrices U, V 2
Rk⇥d and let Nd be the standard Gaussian in d dimensions. We have that

Pr
x⇠Nd

[s1..r(Ux) 6= s1..r(V x)]  c · k · r ·
q

log(kr) · max
i 6=j

q(Ui �Uj, Vi � Vj) ,

where c > 0 is some universal constant.

Proof. Let us set s1..r(Wx) denote the ordering of the top-r alternatives in the
ranking s(Wx). Moreover, recall that s`(Wx) denotes the alternative in the `-th
position of the ranking s(Wx). For two matrices U, V 2 Rk⇥d, we have that

Pr
x⇠Nd

[s1..r(Ux) 6= s1..r(V x)] =
k

Â
j=1

Pr
x⇠Nd

"
r[

`=1
{j = s`(Ux), j 6= s`(V x)}

#
.

The first step is to understand the geometry of the set
Sr
`=1{x : j = s`(Ux)} = {x :

j 2 s1..r(Ux)} for j 2 [k]. We have that this set is equal to

T (j)
U =

[

S✓[k]:|S|r�1

\

i2S
{x : (Ui �Uj) · x � 0} \

\

i/2S
{x : (Ui �Uj) · x  0} .
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In words, T (j)
U iterates over any possible collection of alternatives that can win the

element j (they lie in the set of top elements S) and the remaining elements lose
when compared with j (they lie in the complement set [k] \ S). Overloading the
notation, let us define the mapping T(t) = T(t1, ..., tk) = ÂS✓[k]:|S|r�1 ’i2S 1{ti �
0}’i/2S 1{ti  0}. Using this mapping, we can define the indicator of the set T(j)

U as
T((U1�Uj) · x, . . . , (Uk�Uj) · x). The top-r disagreement Prx⇠Nd [j 2 s1..r(Ux), j /2
s1..r(V x)] is equal to:

Pr
x⇠Nd

[T((U1 �Uj) · x, ..., (Uk �Uj) · x) = 1, T((V1 � Vj) · x, ..., (Vk � Vj) · x) = 0] .

So we have that

Pr
x⇠Nd

[s1..r(Ux) 6= s1..r(V x)] =
k

Â
j=1

Pr
x⇠Nd

[Tj(Ux) = 1, Tj(V x) = 0]


k

Â
j=1

Pr
x⇠Nd

[Tj(Ux) 6= Tj(V x)] .

In order to show the desired bound, it suffices to prove the following two lemmas.

Lemma D.25 (Disagreement Region). Consider a positive integer r  k. Fix j 2 [k]
and let q = maxi2[k] q(Ui �Uj, Vi � Vj). Then it holds that

lim
q!0

Prx⇠Nd [Tj(Ux) 6= Tj(V x)]
q

 c · Â
i2[k]

G(Fj
i )

vuutlog

 
1

G(Fj
i )

+ 1

!
,

where c > 0 is some constant and Fj
i is the surface {x : j 2 s1..r(V x)} \ {x : Vi · x =

Vj · x} for the matrix V 2 Rk⇥d.

and,
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Lemma D.26. Let Fj
i , r, k as in the previous lemma. It holds that

Â
i2[k]

Â
j2[k]

G(Fj
i )  2kr .

Applying these two lemmas with q = maxi 6=j q(Ui �Uj, Vi � Vj), we get that

Z := lim
q!0

Âj2[k] Prx⇠Nd [Tj(Ux) 6= Tj(V x)]
q

 c · Â
j2[k]

Â
i2[k]

G(Fj
i )

vuutlog

 
1

G(Fj
i )

+ 1

!
.

Let us set G0(Fj
i ) = G(Fj

i )/(2kr). Then we have that

Z  2ckr · Â
j2[k]

Â
i2[k]

G0(Fj
i )

vuutlog

 
1

2kr · G0(Fj
i )

+ 1

!
.

It suffices to bound the quantity

Â
j2[k]

Â
i2[k]

G0(Fj
i )

vuutlog

 
1

G0(Fj
i )

+ 1

!
= O

✓
kr
q

log(kr)
◆

,

where we used a similar “entropy-like” inequality as we did in the top-1 case. This
yields (by recalling that it is sufficient to consider only the case of arbitrarily small
angles, as in the top-1 case) that

Pr
x⇠Nd

[s1..r(Ux) 6= s1..r(V x)]  c rk
q

log(kr) · max
i 6=j

q(Ui �Uj, Vi � Vj) ,

for some universal constant c.
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The proof of Lemma D.25

We proceed with the proof of the key lemma concerning the disagreement region.
We first show the following claim where we only change a single vector. Recall that

T(V x) = Â
S:|S|r�1

’
i2S

1{vi · x � 0}’
i/2S

1{vi · x  0} .

We will be interested in the surface F1 := F1(V x) = T(V x)1{v1 · x = 0}.

Claim D.27. Let v1, . . . , vk 2 Rd and r 2 Rd with q(v1, r)  q for some sufficiently
small q 2 (0, p/2). It holds that

Pr
x⇠Nd

[T(v1 · x, . . . , vk · x) 6= T(r · x, v2 · x, . . . , vk · x)]  c · q ·G(F1)

s

log
✓

1
G(F1)

+ 1
◆

,

where F1 is the surface T(V x) \ {x : v1 · x = 0} and c is some universal constant.

Proof. We first decompose the sum of T(V x) depending on whether 1 2 S or not.
Hence, we have that T(v1 · x, . . . , vk · x) = T+(v1 · x, . . . , vk · x) + T�(v1 · x, . . . , vk ·
x) where

T+(v1 · x, . . . , vk · x)

= Â
S✓[k]:|S|r�1,12S

’
i2S

1{vi · x � 0}’
i/2S

1{vi · x  0}

= Â
S✓[k]:|S|r�1,12S

1{v1 · x � 0} · ’
i2S\{1}

1{vi · x � 0}’
i/2S

1{vi · x  0}

= 1{v1 · x � 0} · Â
S✓[k]:|S|r�1,12S

’
i2S\{1}

1{vi · x � 0}’
i/2S

1{vi · x  0}

=: 1{v1 · x � 0} · G+(v2 · x, . . . , vk · x) ,
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and similarly

T�(v1 · x, . . . , vk · x)

= 1{v1 · x  0} · Â
S✓[k]:|S|r�1,1/2S

’
i2S

1{vi · x � 0} ’
i/2S\{1}

1{vi · x  0}

=: 1{v1 · x  0} · G�(v2 · x, . . . , vk · x) .

Notice that the indicator Gs does not depend on the alternative 1 for s 2 {�,+}.
Since T : Rk ! {0, 1}, we have that

Pr
x⇠Nd

[T(v1 · x, . . . , vk · x) 6= T(r · x, v2 · x, . . . , vk · x)]

= E
x⇠Nd

[|T(v1 · x, . . . , vk · x)� T(r · x, v2 · x, . . . , vk · x)|]

 Â
s2{�,+}

E
x⇠Nd

[|Ts(v1 · x, . . . , vk · x)� Ts(r · x, v2 · x, . . . , vk · x)|]

= Â
s2{�,+}

E
x⇠Nd

[Gs(v2 · x, . . . , vk · x) · |1{s · v1 · x � 0}� 1{s · r · x � 0}|] .

Let us focus on the case s = +. The difference between the two indicators in
the last line of the above equation corresponds to the event that the halfspaces
1{v1 · x � 0} and 1{r · x � 0} disagree. Hence, we have that |1{v1 · x � 0}�
1{r · x � 0}| = 1{(v1 · x)(r · x) < 0}. Note that the above indicator depends on
both v1 and r. We would like to work only with one of these two vectors. To
this end, let us introduce q, the normalized projection of r onto the orthogonal
complement of v1, i.e., q = projv?1 r/kprojv?1 rk2. We have that v1 and q is an
orthonormal basis of the subspace spanned by the vectors v1 and r. Notice that
r = cos q(v1, r)v1 + sin q(v1, r)q, by the construction of q. Our goal is to understand
the structure of the region (v1 · x)(r · x) < 0. This set is equal to

{0 < v1 · x < �(q · x) tan q(v1, r)} [ {�(q · x) tan q(v1, r) < v1 · x < 0} .

To see this, we have that (v1 · x)(r · x) = (v1 · x)(cos q(v1, r)v1 · x+ sin q(v1, r)q · x).
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This quantity must be negative. The left-hand set considers the case where v1 · x > 0
and so tan q(v1, r)(q · x) < �v1 · x. We obtain the right-hand set in a similar way.
Thus, we have that the disagreement region (v1 · x)(r · x) < 0 is a subset of the
region {|v1 · x|  |q · x| tan q(v1, r)}. Since tan q(v1, r)  q and we have that q

is sufficiently small we can also replace the above region by the larger region:
{|v1 · x|  2q|q · x|}. Therefore, we have

E
x⇠Nd

⇥
G+(v2 · x, . . . , vk · x) 1{(v1 · x)(r · x) < 0}}

⇤

 E
x⇠Nd

⇥
G+(v2 · x, . . . , vk · x) 1{|v1 · x|  2q|q · x|}

⇤
.

From this point, the proof goes as in the top-1 case. In total, we will get that

Pr
x⇠Nd

[T(v1 · x, . . . , vk · x) 6= T(r · x, v2 · x, . . . , vk · x)]

= E
x⇠Nd

⇥
(G+(v2 · x, . . . , vk · x) + G�(v2 · x, . . . , vk · x)) |q · x| d(|v1 · x|)

⇤

 2
Z

x2F1
fd(x)|q · x|dµ(x)

 2
Z

x2F1
fd(x)|q · x|1{|q · x|  x}dµ(x) + 2

Z

x2F1
fd(x)|q · x|1{|q · x| � x}dµ(x)

 2x
Z

x2F1
fd(x)dµ(x) + 2

Z

x2F1
fd(x)|q · x|1{|q · x| � x}dµ(x) ,

where dµ(x) is the standard surface measure in Rd. Let us explain the first inequal-
ity above. Note that the space induced by G�(v2 · x, . . . , vk · x) contains the space
induced by G+(v2 · x, . . . , vk · x). Hence, in the integration, we can integrate over
the surface F1 = T(V x) \ 1{x : v1 · x = 0} twice. Essentially, this surface corre-
sponds to 1{v1 · x = 0} · ÂS✓[k]\{1}:|S|r�1 ’i2S 1{vi · x � 0}’i/2S 1{vi · x  0}.
Applying the steps of the top-1 case, we can obtain the desired bound in terms of
the Gaussian surface area of F1.

Next, for fixed j 2 [k], we can apply the above claim sequentially (as we did in
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the end of the top-1 case) to get

lim
q!0

Prx⇠Nd [Tj(Ux) 6= Tj(V x)]
q

 c · Â
i2[k]

G(Fj
i )

vuutlog

 
1

G(Fj
i )

+ 1

!
,

for some small constant c > 0.

The proof of Lemma D.26

Using the above result, we get that it suffices to control the value G(Fj
i ), where Fj

i is
the surface of Tj(V x) \ {x : Vi · x = Vj · x} for the matrix V and i, j 2 [k]. We next
have to control the Gaussian surface area of the induced shape, i.e., the quantity

G({x : j 2 s1..r(V x)} \ {x : Vi · x = Vj · x}) .

To this end, we give the next lemma.

Lemma D.28. Let r  k with r, k 2 N. For any matrix V 2 Rk⇥d and i, j 2 [k], there
exists a matrix Q = Q(i) 2 Rk⇥d which depends only on i such that

G(Fj
i ) := G({x : j 2 s1..r(V x)} \ {x : Vi · x = Vj · x})  2 · Pr

x⇠Nd
[j 2 s1..r(Qx)] .

Before proving this result, let us see how to apply it in order to get Lemma D.26.
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We will have that

Â
i2[k]

Â
j2[k]

G(Fj
i ) = Â

i2[k]
Â

j2[k]
G({x : j 2 s1..r(V x)} \ {x : Vi · x = Vj · x})

 2 Â
i2[k]

Â
j2[k]

Pr
x⇠Nd

[j 2 s1..r(Q(i)x)]

= 2 Â
i2[k]

E
x⇠Nd

[|s1..r(Q(i)x)|]

= 2 Â
i2[k]

r

= 2kr .

Proof of Lemma D.28. For this proof, we fix i, j 2 [k]. The first step is to design the
matrix Q. As a first observation, we can subtract the vector Vi from each weight
vector and do not affect the resulting orderings. Second, we can assume that the
weight vectors that correspond to indices which j beats are unit. Let us be more
specific Assume that initially we have that

(Vj � V`) · x � 0 .

The first observation gives that

(Vj � Vi) · x � (V` � Vi) · x .

Let us set eQ the intermediate matrix with rows Vj � Vi. The second observation
states that the inequalities where j beats some index ` are not affected by normaliza-
tion. Note that eQj · x = 0 and hence eQ` · x  0. Hence, dividing with non-negative
numbers will not affect the order of these two values, i.e.,

eQj · x

k eQjk2
�

eQ` · x
k eQ`k2

.

Note that the above ordering is x-dependent, since the indices that j beats depend
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on x. However, we can normalize any row of eQ without affecting the fact that
the element j is top-r (since the sign of the inner products is not affected by nor-
malization). This transformation yields a matrix Q = Q(i) and depends only on i
(crucially, it is independent of j). For simplicity, we will omit the index i in what
follows. For this matrix, we have that

{x : j 2 s1..r(Qx), Qj · x = 0} = {x : j 2 s1..r(V x), Vi · x = Vj · x} .

We will now prove that

Pr
x⇠Nd

[j 2 s1..r(Qx)] �
G(Fj

i )

2
.

Let us fix some x and set xk = projQj
x and x? = projQ?j x. We assume that x lies

in the set {x : j 2 s1..r(Qx)}. This implies that there exist an index set I of size at
least k� r so that if ` 2 I then

Qj · xk + Qj · x? � Q` · xk + Q` · x? .

Let us condition on the event

Qj · x? � Q` · x? .

We hence get that

Qj · xk = (Qj · Qj) · (Qj · x) � Q` · xk = (Q` · Qj) · (Qj · x)

Using that Qj is unit, that the inner product between Q` and Qj is at most one and
that Qj · x is a univariate Gaussian, we get that

Pr
z⇠N (0,1)

[z · (1�Q` · Qj) � 0] = 1/2 .
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The above discussion implies that

Pr
x⇠Nd

[j 2 s1..r(Qx)] = Pr
x⇠Nd

[(8` 2 I) Qj · xk + Qj · x? � Q` · xk + Q` · x?]

and so Prx⇠Nd [j 2 s1..r(Qx)] equals to

Pr
x⇠Nd

[(8` 2 I) Qj · xk � Qj · xk | (8` 2 I) Qj · x? � Q` · x?]·

Pr
x⇠Nd

[(8` 2 I) Qj · x? � Q` · x?] .

However, in the above product, we have that the first term is 1/2 and the second
term is the probability that j 2 s1..r(Qx?), i.e.,

Pr
x⇠Nd

[j 2 s1..r(Qx)] � Pr[j 2 s1..r(Qx?)]
2

= G(Fj
i )/2 ,

since the space in the RHS is low-dimensional and corresponds to the desired
surface.

D.4 Distribution-Free Lower Bounds for Top-1
Disagreement Error

We begin with some definitions concerning the PAC Label Ranking setting. Let X
be an instance space and Y = Sk be the space of labels, which are rankings over k
elements. A sorting function or hypothesis is a mapping h : X ! Sk. We denote by
h1(x) the top-1 element of the ranking h(x). A hypothesis class is a set of classifiers
H ⇢ SX

k .
Top-1 Disagreement Error. The top-1 disagreement error with respect to a joint

distribution D over X ⇥ Sk equals to the probability Pr(x,s)⇠D[h1(x) 6= s�1(1)]. We
mainly consider learning in the realizable case, which means that there is h? 2 H
which has (almost surely) zero error. Therefore, we can focus on the marginal dis-
tribution Dx over X and denote the top-1 disagreement error of a sorting function



322

h with respect to the true hypothesis h? by ErrDx,h?(h) := Prx⇠Dx [h1(x) 6= h?1(x)].
A learning algorithm is a function A that receives a training set of m instances,

S 2 Xm, together with their labels according to h?. We denote the restriction of h?

to the instances in S by h?|S. The output of the algorithm A, denoted A(S, h?|S) is
a sorting function. A learning algorithm is proper if it always outputs a hypothesis
from H.

The top-1 PAC Label Ranking sample complexity of a learning algorithm A is
the function m(1)

A,H defined as follows: for every e, d > 0, m(1)
A,H(e, d) is the minimal

integer such that for every m � m(1)
A,H(e, d), every distribution Dx on X , and every

target hypothesis h? 2 H, PrS⇠Dm
x [ErrDx,h?(A(S, h?|S)) > e]  d. In this case,

we say that the learning algorithm (e, d)-learns the class of sorting functions H
with respect to the top-1 disagreement error. If no integer satisfies the inequality
above, define m(1)

A (e, d) = •. H is learnable with A if for all e and d the sample
complexity is finite. The top-1 PAC Label Ranking sample complexity of a class
H is m(1)

PAC,H(e, d) = infA m(1)
A,H(e, d), where the infimum is taken over all learning

algorithms. Clearly, the above top-1 definition can be extended to the top-r setting.
In this section, we show the next result. We denote by Ld,k the class of Linear

Sorting functions in d dimensions with k labels.

Theorem D.29. In the realizable PAC Label Ranking setting, any algorithm that (e, d)-
learns the class Ld,k with respect to the top-1 disagreement error requires at least W((dk +
log(1/d))/e) samples.

Top-1 Ranking Natarajan Dimension

In order to establish the above result, we introduce a variant of the standard
Natarajan dimension Natarajan (1989); Ben-David et al. (1992); Daniely et al. (2011);
Daniely and Shalev-Shwartz (2014). For a ranking p, we will also let L1(p) its
top-1 element and L3..k(p) the ranking after deleting its top-2 part.

Definition D.30 (Top-1 Ranking Natarajan Dimension). Let H ✓ SX
k be a hypothesis

class of sorting functions and let S ✓ X . We say that H N-shatters S if there exist
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two mappings f1, f2 : S ! Sk such that for every y 2 S, L1( f1(y)) 6= L1( f2(y)) and
L3..k( f1(y)) = L3..k( f2(y)) and for every T ✓ S, there exists a sorting function g 2 H
such that

(i) 8x 2 T, g(x) = f1(x), and (ii) 8x 2 S \ T, g(x) = f2(x) .

The top-1 Ranking Natarajan dimension of H, denoted d(1)N (H) is the maximal cardi-
nality of a set that is N-shattered by H.

First, we connect PAC Label Ranking learnability to the top-1 disagreement
error with the notion of top-1 Ranking Natarajan dimension.

Theorem D.31 (Top-1-Natarajan Lower Bounds Sample Complexity). In the realiz-
able PAC Label Ranking setting, we have for every hypothesis class H ✓ SX

k

m(1)
PAC,H(e, d) = W

 
d(1)N (H) + ln(1/d)

e

!
.

Proof. Let H ✓ SX
k be a class of sorting functions of top-1-Natarajan dimension

d(1)N = dN. Consider the binary hypothesis class Hbin = {0, 1}[dN ] which contains
all the classifiers from [dN ] = {1, ..., dN} to {0, 1}. It suffices to show the following.

Claim D.32. It holds that m(1)
PAC,H(e, d) � mPAC,Hbin(e, d).

This is sufficient since we have that mPAC,Hbin(e, d) = W
⇣

VC(Hbin)+ln(1/d)
e

⌘
and

VC(Hbin) = dN. Let us now prove the claim.
We assume that the instance space is the set X . Assume that A is a learning

algorithm for the hypothesis class H ✓ SX
k and Abin is a learning algorithm for

the associated binary class Hbin. It suffices to show that A requires at least as
many samples as Abin. In fact, we will show that whenever Abin errs, so does
A. Let S = {s1, ..., sdN}, f0, f1 be the set and the two functions that witness that
the top-1-Natarajan dimension of H is dN. Given a training set (xi, yi)i2[m] 2
([dN ]⇥ {0, 1})m, we set g : X ! Sk be equal to the output of the algorithm A with
input (sxi , fyi(xi))i2[m] 2 (S⇥ Sk)

m. We also set f be the output of the algorithm
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Abin with input (xi, yi)i2[m] by setting f (i) = 1 if and only if L1(g(si)) = L1( f1(si)).
We will show that whenever Abin errs, so does A. Fix (xi, yi) 2 S⇥ {0, 1}. Assume
that Abin(xi) 6= yi and say yi = 0. Then f (i) = 1 and so L1(g(si)) = L1( f1(si)) 6=
L1( f0(si)). This implies that A errs. The case yi = 1 is similar.

Lower Bound for top-1 disagreement error for LSFs

Theorem D.33 (Top-1 Natarajan Dimension of LSFs). Consider the hypothesis class
Ld,k = {sW : Rd ! Sk : sW (x) = argsort(Wx), W 2 Rk⇥d}. Then, d(1)N (Ld,k) =

W(dk).

Proof. Fix k 2 N. Let us consider the case d = 2 that will correspond as the
building block for the general case d > 2. Let us first choose the set of points: Set
P be the collection of pairs P = {(2i� 1, 2i)}i2[b] for any i 2 [b] with b = bk/2c
and S = {xm}m2P where these points correspond to |P| equidistributed points on
the unit sphere in R2. This set of points has size |P| = Q(k) and we are going to
N-shatter it using L2,k.

Consider the matrix W 2 Rk⇥2 so that {Wi}i2[k] correspond to the rows of
W . The structure of the problem relies on the hyperplanes with normal vectors
(Wi �Wj)i 6=j and our choice of W will rely on these hyperplanes. For any m =

(2i� 1, 2i), we set W2i�1, W2i on the unit sphere so that W2i�1 · W2i = 1� f with
f 2 (0, 1) sufficiently small (set arccos(1� f) = 2p/(100k)) and let Cm be the
cone generated by these two vectors with axis Im. We place W2i�1 so that the
distance between xm and the hyperplane Im is sufficiently small (say that the angle
between xm and Im is arccos(1� f)/100). Note that the normal vector of Im is
W2i�1 �W2i and we place xm so that it has positive correlation with this vector.
This uniquely identifies the location of W2i. Crucially, each vector xm has the
following properties: (i) xm is very close to the boundary of the hyperplane with
normal vector (W2i�1 �W2i), (ii) W2i�1 · xm > W2i · x > Wj · xm for any j /2 m and
(iii) xm is far from any boundary induced by hyperplanes with normal vectors
Wj �Wj0 for any (j, j0) 6= m.
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Since the points are well-separated on the unit sphere, for any m = (2i� 1, 2i) 2
P, we have W2i�1 · W2i = 1� f ⇡ 1 and for any other pair of indices (i, j) /2 P,
there exists c = c(k) 2 (0, 1), |hWi, Wji|  c.

For any m = (2i � 1, 2i) 2 P, we set W 0
2i�1 �W 0

2i = Rq(W2i�1 �W2i) for
some q to be chosen, where Rq is the 2⇥ 2 rotation matrix. We choose q so that
each point xm for m = (2i � 1, 2i) 2 P with (W2i�1 �W2i) · xm > 0 satisfies
(W 0

2i�1 �W 0
2i) · xm < 0. The main idea is that since xm has the properties (i)-(iii)

described above, the rankings induced by the vectors Wxm and W 0xm will be
different in the first two positions but the same in the rest.

Given the training set {xm}m2P, we have to construct f0, f1 and verify that they
satisfy the top-1 Ranking Natarajan conditions. For m = (2i� 1, 2i), we have that
f0(xm) = (2i� 1, 2i, p) and f1(xm) = (2i, 2i� 1, p) for some ranking p of size k� 2
that depends on m. Specifically, we will set f0(x) = s(Wx) and f1(x) = s(W 0x),
where s gives the decreasing ordering of the elements of the input vector. By
the choice of the set S and W , W 0, it remains to show that the k� 2 last elements
of the rankings f0(xm) (say p0) and of f1(xm) (say p1) are in the same order, i.e.,
L3..k( f0(xm)) = L3..k( f1(xm)) . Assume that u � v in p0. It suffices to show that
(W 0

u �W 0
v) · xm � 0, i.e., the order of u and v is preserved when transforming

W to W 0. We have that (Wu �Wv) · xm > c1 for some constant c1 > 0 (c1 is the
minimum over (u, v) 6= m = (2i � 1, 2i)). Hence, we can pick q small enough
so that (W 0

u �W 0
v) · xm > c2 and this can be done for any pair u, v that does not

correspond to m. This implies that p0 = p1 = p. In particular, we have that

(W 0
u�W 0

v) · xm = cos(q) · (Wu�Wv) · xm + sin(q) · (W(1)
uv x(2)m �W(2)

uv x(1)m ) > c2 > 0

for some q sufficiently small, where W(t)
uv is the t-th entry of the vector Wu �Wv for

t 2 {1, 2} and xm, Wu, Wv are unit vectors.
For any subset T of S, it remains to choose a linear classifier in L2,k (which

is allowed to depend on T). For any T ✓ S = {xm}m2P, we consider the matrix
W 2 Rk⇥2 so that for the i-th row Wi = Wi1{i 2 m 2 T}+ W 0

i 1{i 2 m 2 S \ T}
for any i 2 [k]. This is valid since the pairs m 2 P partition [k]. We have to show
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the following two properties: (i) s(Wx) = f0(x) for x 2 T and (ii) s(Wx) = f1(x)
for x 2 S \ T.

Assume that m = (2i� 1, 2i) and xm 2 T. We have that f0(xm) = (2i� 1, 2i, p)

and W2i�1 �W2i = W2i�1 �W2i and so 2i � 1 � 2i in the ranking s(Wxm). It
remains to show that the remaining (k

2)� 1 pairwise comparisons are the same in
the two rankings. Let us consider a pair of points u 6= v so that u � v in f0(xm). It
suffices to show that u � v in s(Wxm).

1. If u, v are so that Wu �Wv = Wu �Wv, the result holds.

2. If u, v are so that Wu �Wv = Wu �W 0
v: In this case, u and v lie in a different

pair of P and this implies that the correct direction is preserved if q is appro-
priately chosen. For q as above, it holds that (Wu � RqWv) · xm has the same
sign as (Wu �Wv) · xm. In particular,

Wu · xm � RqWv · xm

= Wu · xm � (cos(q)W(1)
v � sin(q)W(2)

v )x(1)m � (sin(q)W(1)
v + cos(q)W(2)

v )x(2)m ,

and so

(Wu�W 0
v) · xm = cos(q) · (Wu�Wv) · xm + sin(q)(W(2)

v x(1)m �W(1)
v x(2)m ) > 0 .

3. If u, v are so that Wu �Wv = W 0
u �W 0

v, the analysis for the inner product
with xm will be similar.

We now have to extend this proof for d > 2. We will “tensorize” the above
construction as follows. Let S = {ymj}m2[b],j2[d/2] with |S| = bk/2c · bd/2c. We first
define the points of S: For s 2 [d], set ymj[s] = xm[1]1{s = 2j� 1}+ xm[2]1{s = 2j}
with ymj 2 Rd, i.e., ymj has the values of xm at the consecutive entries indicated by
m = (2i� 1, 2i) 2 P and zeros at the other positions.

We have to show that the set S is N-shattered. Given T ✓ S, we are going
to create the matrix W 2 Rk⇥d. For illustration, think of each row of the matrix
as having d/2 blocks of size two. If ymj 2 T with m = (2i � 1, 2i), set the two
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associated rows (indicated by m) of W with W2i�1, W2i at the j-th block and with
W 0

2i�1, W 0
2i otherwise. We will have that s(Wy) = f0(y) if y 2 T and s(Wy) =

f1(y) otherwise and the analysis is the same as the d = 2 case.

D.5 Examples of Noisy Ranking Distributions

Definition D.34 (Mallows model Mallows (1957)). Consider k alternatives and let
p 2 Sk, f 2 [0, 1]. The Mallows distribution MMal(p, f) with central ranking p and
spread parameter f is a probability measure over Sk with density Prs⇠MMal(p,f)[s] that is
proportional to fd(s,p), where d is a ranking distance.

We focus on Mallows models accociated with the Kendall’s Tau distance d =

dKT (the standard distance, not the normalized one), which measures the number
of discordant pairs.

Fact D.35. When f < 1, the Mallows model MMal(p, f) is a ranking distribution with
bounded noise at most 1+f

4 < 1/2.

Proof. The following property holds Mallows (1957)

Pr
s⇠MMal(p,f)

[s(i) < s(j)|p(i) < p(j)] =
p(j)� p(i) + 1
1� fp(j)�p(i)+1 �

p(j)� p(i)
1� fp(j)�p(i)

� 1
2
+

1� f

4
.

The Bradley-Terry-Luce model Bradley and Terry (1952); Luce (2012) is the
most studied pairwise comparisons model. In his seminal paper, Mallows Mallows
(1957) also studied the following natural ranking distribution:

Definition D.36 (Bradley-Terry-Mallows Mallows (1957)). Consider a score vector
w 2 Rk

+ with k distinct entries and let p be the ranking induced by the values of w in
decreasing order. The Bradley-Terry-Mallows distribution MBTM(w) with central ranking
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p is a probability measure over Sk with density Prs⇠MBTM(w)[s] that is proportional to
’i�s j

wi
wi+wj

.

Lemma D.37. There exists a real number 0 < h < 1/2 so that the Bradley-Terry-Mallows
distribution MBTM(w) is a ranking distribution with bounded noise at most h.

Proof. In the standard Bradley-Terry-Luce model, the pairwise comparison between
the alternatives i, j is a Bernoulli random variable with Pr[i � j] = wi/(wi +

wj). The Bradley-Terry-Mallows distribution can be considered as the Bradley-
Terry-Luce model conditioned on the event that all the pairwise comparisons are
consistent to a ranking. Hence, we have that

Pr
s⇠MBTM(w)

[s] =
1

Z(k, w) ’
i�s j

wi
wi + wj

.

Let us set Ai�j = {s 2 Sk : s(i) < s(j)}. We are interested in the following
probability

Pr
s⇠MBTM(w)

[i �s j|wi > wj] = Pr
s⇠MBTM(w)

[s(i) < s(j)|wi > wj]

=
1

Z(k, w) Â
s2Ai�j

’
p�sq

wp

wp + wq
.

Note that in order to show the desired property, it suffices to show that

Â
s2Ai�j

’
p�sq

wp

wp + wq
> Â

s2Ai�j

’
p�sq

wp

wp + wq
.

First, observe that there exists a correspondence mapping s 2 Ai�j to Ai�j, where
one flips the elements i and j. Hence, it suffices to show that the mass of the ranking
(ua)i(ub)j(uc) is larger than the one of the ranking (ua)j(ub)i(uc), where ua, ub, uc

are permutations of length between 0 and k� 2 with elements in [k] \ {i, j}. For
the two above rankings, the only terms of the product that are not identical are the
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following

wi
wi + wj

’
x2ub

wi
wi + wx

wx
wx + wj

>
wj

wi + wj
’

x2ub

wj

wj + wx

wx
wx + wi

,

since wi > wj and so the result follows.
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E APPENDIX TO CHAPTER 6

E.1 Additional Preliminaries and Notation

We first state the following simple lemma that connects the total variation distance
of two Normal distributions with their parameter distance. For a proof see e.g.
Corollaries 2.13 and 2.14 of Diakonikolas et al. (2016b).

Lemma E.1. Let N1 = N (µ1, rS1) , N2 = N (µ2, rS2) be two Normal distributions.
Then

dTV(N1, N2) 
1
2

���rS�1/2
1 (µ1 � µ2)

���
2
+
p

2
���rI � rS�1/2

1 rS2rS�1/2
1

���
F

We readily use the following two lemmas from Daskalakis et al. (2018). The
first suggests that we can accurately estimate the parameters (µS, SS).

Lemma E.2. Let (µS, SS) be the mean and covariance of the truncated Gaussian N (µ, S, S)
for a set S such that N (µ, S; S) � a. Using Õ( d

e2 log(1/a) log2(1/d)) samples, we can
compute estimates eµS and eSS such that, with probability at least 1� d,

kS�1/2(eµS � µS)k2  e and (1� e)SS � eSS � (1 + e)SS

The second lemma suggests that the empirical estimates are close to the true
parameters of underlying truncated Gaussian.

Lemma E.3. The empirical mean and covariance eµS and eSS computed using Õ(d2 log2(1/ad))

samples from a truncated Normal N (µ, S, S) with N (µ, S; S) � a satisfies with probabil-
ity 1� d that:

kS�1/2(eµS�µ)k2
2  O(log

1
a
), eSS ⌫ W(a2)S,

���S�1/2eSSS�1/2 � I
���

2

F
 O(log

1
a
).

Moreover, W(a2) 
���eS�1/2

S rSeS�1/2
S

���
2
 O(1/a2).
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In particular, the mean and covariance eµS and eSS that satisfy the conditions of
Lemma E.3, are in (O(log(1/a)), 1�O(a2))-near isotropic position.

We will use the following very useful anti-concentration result about the Gaus-
sian mass of sets defined by polynomials.

Theorem E.4 (Theorem 8 of Carbery and Wright (2001)). Let q, g 2 R+, µ 2 Rd,
rS 2 Rd⇥d such that S is symmetric positive semidefinite and p : Rd ! R be a
multivariate polynomial of degree at most `, we define

Q̄ =
n

x 2 Rd | |p(x)|  g
o

,

then there exists an absolute constant C such that

N (µ, rS; Q̄)  Cqg1/`

⇣
Ez⇠N (µ,rS)

h
|p(z)|q/`

i⌘1/q .

Hermite Polynomials, Ornstein-Uhlenbeck Operator, and
Gaussian Surface Area.

We denote by L2(Rd,N0) the vector space of all functions f : Rd ! R such that
Ex⇠N0 [ f 2(x)] < •. The usual inner product for this space is Ex⇠N0 [ f (x)g(x)].
While, usually one considers the probabilists’s or physicists’ Hermite polynomi-
als, in this work we define the normalized Hermite polynomial of degree i to be
H0(x) = 1, H1(x) = x, H2(x) = x2�1p

2
, . . . , Hi(x) = Hei(x)p

i!
, . . . where by Hei(x)

we denote the probabilists’ Hermite polynomial of degree i. These normalized
Hermite polynomials form a complete orthonormal basis for the single dimen-
sional version of the inner product space defined above. To get an orthonormal
basis for L2(Rd,N0), we use a multi-index V 2 Nd to define the d-variate nor-
malized Hermite polynomial as HV(x) = ’d

i=1 Hvi(xi). The total degree of HV

is |V| = Â vi 2 Vvi. Given a function f 2 L2 we compute its Hermite coeffi-
cients as f̂ (V) = Ex⇠N0 [ f (x)HV(x)] and express it uniquely as ÂV2Nd f̂ (V)HV(x).
We denote by Sk f (x) the degree k partial sum of the Hermite expansion of f ,
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Sk f (x) = Â|V|k f̂ (V)HV(x). Then, since the basis of Hermite polynomials is com-
plete, we have limk!• Ex⇠N0 [( f (x)� Sk f (x))2] = 0. We would like to quantify the
convergence rate of Sk f to f . Parseval’s identity states that

E
x⇠N0

[( f (x)� Sk f (x))2] =
•

Â
|V|=k

f̂ (V)2.

Definition E.5 (HERMITE CONCENTRATION). Let g(e, d) be a function g : (0, 1/2)⇥
N 7! N. We say that a class of functions F over Rd has a Hermite concentration bound
of g(e, d), if for all d � 1, all e 2 (0, 1/2), and f 2 F it holds Â|V|�g(e,d) f̂ (V)2  e.

We now define the Gaussian Noise Operator as in O’Donnell (2014). Using a
different parametrization, which is not convenient for our purposes, these operators
are also known as the Ornstein-Uhlenbeck semigroup, or the Mehler transform.

Definition E.6. The Gaussian Noise operator Tr is the linear operator defined on the space
of functions L1(Rd,N0) by

Tr f (x) = E
y⇠N0


f (rx +

q
1� r2y)

�
.

A nice property of operator T1�r that we will use is that it has a simple Hermite
expansion

Sk(Tr f )(x) = Â
V:|V|k

r|V| bf (V)HV(x) (E.1)

We also define the noise sensitivity of a function f .

Definition E.7 (NOISE SENSITIVITY). Let f : Rd 7! R be a function in L2(Rd,N0).
The noise sensitivity of f at r 2 [0, 1] is defined to be

NSr[ f ] = 2 E
x⇠N0

[ f (x)2 � f (x)T1�r f (x)]

Since, the vectors x and z = (1� r)x +
p

1� r2y are jointly distributed accord-
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ing to

Dr = N
  

0
0

!
,

 
I (1� r)I

(1� r)I I

!!
. (E.2)

we can write

NSr[ f ] = E
(x,z)⇠Dr

h
f (x)2

i
+ E

(x,z)⇠Dr

h
f (z)2 � 2 f (x) f (z)

i
= E

(x,z)⇠Dr

[( f (x)� f (z))2].

(E.3)
When f is an indicator of a set, the noise sensitivity is

NSr[1S] = 2 E
(x,z)

[1S(x)(1� 1S(z))] = 2 E
(x,z)

[1S(x)1Sc(z)], (E.4)

which is equal to the probability of the correlated points x, z landing at "opposite"
sides of S.

Ledoux Ledoux (1994) and Pisier Pisier (1986) showed that the noise sensitivity
of a set can be bounded by its Gaussian surface area.

Definition E.8 (Gaussian Surface Area). For a Borel set A ✓ Rd, its Gaussian surface
area is G(A) = lim infd!0

N0(Ad\A)
d , where Ad = {x : hrmdist(x, A)  d}.

We will use the following lemma given in Klivans et al. (2008).

Lemma E.9 (Corollary 14 of Klivans et al. (2008)). For a Borel set S ✓ Rd and r � 0,
NSr[1S(x)] 

p
p
p

r G(S).

For more details on the Gaussian space and Hermite Analysis (especially from
the theoretical computer science perspective), we refer the reader to O’Donnell
(2014). Most of the facts about Hermite polynomials that we shall use in this work
are well known properties and can be found, for example, in Szegö (1967).

E.2 Missing proofs of Section 6.2

We will use a standard tournament based approach for selecting a good hypotheses.
We will use a version of the tournament from Daskalakis and Kamath (2014). See
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also Devroye and Lugosi (2012).

Lemma E.10 (Tournament Daskalakis and Kamath (2014)). There is an algorithm,
which is given sample access to some distribution X and a collection of distributions H =

{H1, . . . , HN} over some set, access to a PDF comparator for every pair of distributions
Hi, Hj 2 H, an accuracy parameter e > 0, and a confidence parameter d > 0. The
algorithm makes O(log(1/d)e2) log N) draws from each of X, H1, . . . , HN and returns
some H 2 H or declares ”failure” If there is some H 2 H such that dTV(H, X)  e then
with probability at least 1� d the returned distribution H satisfies dTV(H, X)  512e. The
total number of operations of the algorithm is O(log(1/d)(1/e2)(N log N + log 1/d)).

We first argue that if the class of sets S has VC-dimension VC(S) then we
can learn the truncated model in e total variation by drawing roughly VC(S)/e

samples. We will use the following standard fact whose proof may be found for
example in page 398 of Shalev-Shwartz and Ben-David (2014c). For convenience
we restate the result using our notation.

Lemma E.11 (Shalev-Shwartz and Ben-David (2014c)). Let D be a distribution on
Rd. Let S be a family of subsets of Rd. Fix e 2 (0, 1), d 2 (0, 1/4) and let N =

O(VC(S) log(1/e)/e + log(1/d)) Then, with probability at least 1� d over a choice of
a sample X ⇠ DN we have that if D(S) � e then |S \ X| 6= ∆.

The proof of Lemma 6.8 We define the class of sets A = {S⇤ \ S : S 2 S}.
We first argue that for any A ⇢ Rd we have VC(A)  VC(S). Let X ⇢ Rd

be a set of points. The set of different labelings of X using sets of S resp. A is
LS = {X \ S : S 2 S} resp. LA = {X \ S : S 2 A} = {X \ (A \ S) : S 2 S}. We
define the function g : LA ! LS by g(X \ (A \ S)) = X \ S. We that observe for
S1, S2 2 S we have that X \ S1 = X \ S2 implies that X \ (A \ S1) = X \ (A \ S2).
Therefore, g is one-to-one and we obtain that |LA|  |LS |. We draw N samples
X = {xi, i 2 N}. Applying Lemma E.11 for the family A, we have that with N
samples, with probability at least 1� d it holds that if N (µ, rS; S⇤ \ S) � e for
some set S 2 S then |(S⇤ \ S) \ X| > 0. Therefore, every set that is consistent
with the samples, i.e. every S that that contains the samples, satisfies the property
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N (µ, rS; S⇤ \ S)  e. Moreover, since dTV(N (eµ, eS),N (µ, rS))  e we obtain that
N (eµ, eS, S⇤ \ S)  2e for any set S consistent with the data.

Next, we use the fact that eS is chosen so that N (eµ, eS, S⇤) � N (eµ, eS, eS). This
means that for all x 2 S⇤ \ eS it holds N (eµ, eS, S⇤; x)  N (eµ, eS, eS; x). To simplify
notation we set fNeS = N (eµ, eS, eS), fNS⇤ = N (eµ, eS, S⇤), and NS⇤ = N (µ, rS, S⇤). We
have

2dTV(fNeS, fNS⇤) =
Z

fNS⇤ (x)�fNeS(x)

⇣
fNS⇤(x)� fNeS(x)

⌘
dx


Z

S⇤\eS
fNS⇤(x)dx

 N (eµ, eS; S⇤ \ eS)
a

 e

a
.

Moreover,

dTV(fNS⇤ ,NS⇤) 
dTV(N (eµ, eS),N (µ, rS))

a
 e

a

Using the triangle inequality we obtain that dTV(N (eµ, eS, eS),N (µ, rS, S⇤))  3e/(2a).

The proof of Lemma 6.9 Using Lemma E.3 we know that we can draw eO(d2 log2(1/ad))

samples and obtain estimates of the conditional mean and covariance eµC, frSC.
Transforming the space so that eµC = 0 and frSC = rI. For simplicity, we will
keep denoting the parameters of the unknown Gaussian µ, rS after transform-
ing the space. From Lemma E.3 we have that

��rS�1/2µ
��

2  O(log(1/a)1/2/a),
W(a2) 

��S�1/2
��

2  O(1/a2) and kI � SkF  O(log(1/a)/a2). Therefore, the
cube of Rd+d2 where all the parameters µi, Sij of the mean and the covariance lie
has side length at most O(1/poly(a)). We can partition this cube into smaller cubes
of side length O(epoly(a)/d) and obtain that there exists a point of the grid (u, rB)
such that

��S�1/2(u� µ)
��

2  e,
��rI � rS�1/2rBrS�1/2

��
F  e, which implies that

dTV(N (u, rB),N (µ, rS))  e. Assume now that for each guess (u, rB) of our grid
we solve the optimization problem as defined in Lemma 6.8 and find a candidate
set Su,rB. Notice that the set of our hypotheses u, rB, Su,rB is O((d2/e)d2+d). More-
over, using Lemma 6.8 and the fact that there exists a point u, rB) in the grid so that
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dTV(N (u, rB),N (µ, rS))  e, we obtain that dTV(N (u, rB, Su,rB),N (µ, rS, S))  e.
Now we can use Lemma E.10 we can select a hypotheses N (u, rB, eS) within O(e)

total variation distance of N (µ, rS, S), and the number samples required to run the
tournament is as claimed.

E.3 Missing Proofs of Section 6.3

To prove Theorem 6.12 we shall use the inequalities of Lemma E.12.

Lemma E.12. Let k 2 N. Then for all 0 < x < 2k+1
2k it holds,

�k log x� 1
2

log(1� 2k(x� 1)  2k2(x� 1)2
✓

1
x
+

1
1� 2k(x� 1)

◆

Moreover, for all x > 2k�1
2k

k log x� 1
2

log(1� 2k(1� x))  k2(1� x)2
✓

1 +
1

1� 2k(1� x)

◆
.

Proof. We start with the first inequality. Let f (x) = �k log x� 1
2 log(1� 2k(x� 1).

We first assume that 1  x 2k+1
2k . We have

f (x) =
Z x

1

✓
k

1� 2k(t� 1)
� k

t

◆
dt

= k(1 + 2k)
Z x

1

t� 1
t(1� 2k(t� 1))

dt

 k(1 + 2k)
1� 2k(x� 1)

Z x

1
(t� 1)dt

 2k2 (x� 1)2

1� 2k(x� 1)

If 0 < x  1 we have

f (x)  k(1 + 2k)
x

Z x

1
(t� 1)dt  2k2 (x� 1)2

x
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Adding these two bounds gives an upper bound for all 0 < x < 2k+1
2k . Similarly,

we now show the second inequality. Let g(x) = k log x� 1
2 log(1� 2k(1� x)). We

first assume that 1  x and write

g(x) =
Z x

1

✓
k
t
� k

1� 2k(1� t)

◆
dt

= k
Z x

1

(t� 1)(2k� 1)
t(1 + 2k(t� 1))

dt

 k(2k� 1)
Z x

1

t� 1
d

t

 k2(x� 1)2.

Similarly, if 2k�1
2k < x  1 we have

g(x)  k2 (1� x)2

1� 2k(1� x)
.

We add the two bounds together to get the desired upper bound.

The proof of Lemma 6.13 For simplicity we denote Ni = N (µ1, Si). We start by
proving the upper bound. Using Schwarz’s inequality we write

E
x⇠N0

"✓
N1(x)
N0(x)

◆k ✓N0(x)
N2(x)

◆k
#

 

E
x⇠N0

✓
N1(x)
N0(x)

◆2k
!1/2  

E
x⇠N0

✓
N0(x)
N2(x)

◆2k
!1/2

.

We can now bound each term independently. We start by the ratio of N1/N0. With-
out loss of generality we may assume that S1 is diagonal, S1 = hrmdiag(l1, . . . , ld).
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We also let µ1 = (µ1, . . . , µd). We write

E
x⇠N0

"✓
N1(x)
N0(x)

◆2k
#
=

1
|S1|k

E
x⇠N0

h
exp

⇣
�k(x� µ1)

TS1
�1(x� µ1) + kxTx

⌘i

=
exp(�kµ1

TS1
�1µ1)

|S1|k
E

x⇠N0

h
exp

⇣
kxT(I � S�1

1 )x + 2kµT
1 S1

�1x
⌘i

 1
|S1|k

E
x⇠N0

"
exp

 
d

Â
i=1

✓
k(1� 1/li)x2

i + 2k
µi
li

xi

◆!#

=
d

’
i=1

1
lk

i
E

x⇠N0


exp

✓
k(1� 1/li)x2 + 2k

µi
li

x
◆�

| {z }
A

We now use the fact that for all a < 1/2.

E
x⇠N0

[exp(ax2 + bx)] =
1p

1� 2a
exp

✓
b2

2� 4a

◆

At this point notice that since for all i it holds li < 2k/(2k� 1) we have that term
A is bounded. We get that

A = exp

 
d

Â
i=1

✓
k log

1
li
� 1

2
log

✓
1� 2k

✓
1� 1

l i

◆◆◆!

| {z }
A1

exp

 
d

Â
i=1

2k2µ2
i

l2
i (1� 2k(1� 1/li))

!

| {z }
A2

To bound the term A1 we use the second inequality of Lemma E.12 to get

A1  exp

 
d

Â
i=1

k2(1� 1/li)
2
✓

1 +
1

1� 2k(1� 1/li)

◆!
 exp

✓
2k2B

d

◆
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Bounding A2 is easier

A2  exp

 
2k2 kµ1k2

2
l2

mind

!

Combining the bounds for A1 and A2 we obtain

E
x⇠N0

"✓
N1(x)
N0(x)

◆2k
#
 exp

✓
10k2

d
B
◆

We now work similarly to bound the ratio N0/N2. We will again assume that
S2 = hrmdiag(l1, . . . , ld) and µ2 = (µ1, . . . , µd). We have

E
x⇠N0

"✓
N0(x)
N2(x)

◆2k
#

= exp(kµT
2 S�1

2 µ2) E
x⇠N0

h
|S2|k exp

⇣
kxT(S�1

2 � I)x� 2kµ2S�1
2 x

⌘i

 exp((k + 1)B)
d

’
i=1

E
x⇠N0

h
exp

⇣
k(1/li � 1)x2 � k log(1/li)� 2k(µi/li)x

⌘i

= exp
✓✓

8k2

d
+ k + 1

◆
B
◆

exp

 
d

Â
i=1

✓
�k log(1/li)�

1
2

log (1� 2k(1/li � 1))
◆!

 exp
✓✓

10k2

d
+ 4k2 + k + 1

◆
B
◆

,

where to obtain the last inequality we used the first inequality of Lemma E.12 and
the bounds for the maximum and minimum eigenvalues of S2. Finally, plugging
in the bounds for the two ratios we get for i = 1, 2

E
x⇠N0

"✓
N3�i(x)
Ni(x)

◆k
#
 exp

✓
13k2

d
B
◆

.



340

Having the upper bound it is now easy to prove the lower bound using the
convexity of x 7! x�1 and Jensen’s inequality.

E
x⇠N0

"✓
N1(x)
N2(x)

◆k
#
= E

x⇠N0

"✓
N2(x)
N1(x)

◆�k
#
�
 

E
x⇠N0

"✓
N2(x)
N1(x)

◆k
#!�1

� exp
✓
�13k2

d
B
◆

.

The proof of Lemma 6.14 For any r 2 (0, 1), using identity E.1, we write

E
x⇠N0

[ f (x)T1�r(x)] = Â
V2Nd

(1� r)|V| bf (V)2

E
x⇠N (0,I)

h
f (x)2 � f (x)T1�r f (x)

i
= Â

V2Nd

bf (V)2 � Â
V2Nd

(1� r)|V| bf (V)2

= Â
V2Nd

(1� (1� r)|V|) bf (V)2

� Â
|V|�1/r

(1� (1� r)|V|) bf (V)2

� Â
|V|�1/r

(1� (1� r)1/r) bf (V)2

� (1� 1/e) Â
|V|�1/r

bf (V)2

The proof of Lemma 6.16 We first write

1
2

E
(x,z)⇠Dr

[(r(x)� r(z))2] =
1
2

E
(x,z)⇠Dr


r(x)2

2
+

r(z)2

2
� r(x)r(z)

�

= E
(x,z)⇠Dr

[r(x)2 � r(z)r(x)].

Let

Â
V2Nd

br(V)HV(x)
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be the Hermite expansion of r(x). From Parseval’s identity and the Hermite
expansion of Ornstein–Uhlenbeck operator, (E.1) we have

E
(x,z)⇠Dr

[r(x)2 � r(x)r(z)] = Â
V2Nd

br(V)2 � Â
V2Nd

(1� r)|V|br(V)2

 r Â
V2Nd

|V|br(V)2,

where the last inequality follows from Bernoulli’s inequality 1� r|V|  (1� r)|V|.
We know that (see for example Szegö (1967))

∂

∂xi
HV(x) =

∂

∂xi
’

vi2V
Hvi(xi) = ’

vj2V\vi

Hvj(xj)
p

viHvi�1(xi)

Therefore,
∂r(x)

∂xi
= Â

V2Nd

br(V)
p

viHvi�1(xi) ’
vj2V\vi

Hvj(xj)

From Parseval’s identity we have

E
x⇠N (0,I)

"✓
∂r(x)

∂xi

◆2
#
= Â

V2Nd

br(V)2vi.

Therefore,
E

x⇠N (0,I)

h
krr(x)k2

2

i
= Â

V2Nd

|V|br(V)2.

The lemma follows.

Learning the Hermite Expansion

In this section we present a way to bound the variance of the empirical estimation
of Hermite coefficients. To bound the variance of estimating Hermite polynomials
we shall need a bound for the expected value of the fourth power of a Hermite
polynomial.
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Lemma E.13. For any V 2 Nd it holds Ex⇠N0 [H
4
V(x)]  9|V|.

Proof. We compute

E
x⇠N0

[H4
V(x)] = ’

vi2V
E

x⇠N (0,1)
[H2

vi
(xi)H2

vi
(xi)]

= ’
vi2V

E
x⇠N (0,1)

" 
vi

Â
r=0

✓
vi
r

◆p
2r!
r!

H2r(xi)

! 
vi

Â
r=0

✓
vi
r

◆p
2r!
r!

H2r(xi)

!#

= ’
vi2V

vi

Â
r=0

✓
vi
r

◆2 (2r)!
(r!)2 E

x⇠N (0,1)

h
H2r(xi)

2
i
= ’

vi2V

vi

Â
r=0

✓
vi
r

◆2 (2r)!
(r!)2

 ’
vi2V

vi

Â
r=0

✓
vi
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9vi = 9|V|.

In the above computation we used the formula for the product of two (normalized)
Hermite polynomials

Hi(x)Hi(x) =
vi

Â
r=0

✓
vi
r

◆p
2r!
r!

H2r(xi),

see, for example, Szegö (1967).

The proof of Lemma 6.17 We have
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We have
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To bound term A we use Lemma E.13. Using Lemma 6.13 we obtain

B  E
x⇠N (0,I)

"✓
N ⇤(x)
N0(x)

◆2
#
 poly(1/a).

The bound for the variance follows from the independence of the samples.

E.4 Missing Proofs of Section 6.3

The proof of Lemma 6.23 We have that
���Myk(u, B)�M0y(u, B)

��� 
��Myk(u, B)�My(u, B)

��+
���My(u, B)�M0y(u, B)

��� .
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For the first term we have that
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[(yk(x)� y(x))2]

now we can use Lemma 6.13, Lemma 6.19 and Theorem 6.18 to get
���Myk(u, B)�M0y(u, B)

���  poly(1/a⇤)
p

e

For the second term we have that
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��� 
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We need to bound
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C0u,B
Cu,B

�����

=
���1� e�

1
2(tr((B�I)(SS+µSµT

S�eSS)))�uTµS)
���

 e|
1
2(tr((B�I)(SS+µSµT

S�eSS)))�uTµS)| � 1

 e
1
2(kB�IkFkSS+µSµT

S�eSSkF+kuk2kµSk2) � 1

 kB� IkFkSS + µSµT
S � eSSkF + kuk2kµSk2

where the last inequality holds when kB� IkFkSS + µSµT
S � eSSkF + kuk2kµSk2 

1. But we know that (u, B) 2 D and hence kB � IkF  poly(1/a⇤), kuk2 
poly(1/a⇤). Also from Section 6.1 we have that kSS + µSµT

S � eSSkF  e and
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kµSk2  e and we can set e to be any inverse polynomial in 1/a⇤ times e. Hence
we get �����1�

C0u,B
Cu,B

�����  e

Now we can also use Lemma 6.19 and Lemma 6.13 which imply that

Cu,B E
x⇠N ⇤S


N ⇤(x)

a⇤Nu,B(x)

�
 poly(1/a⇤)

and therefore we have
���My(u, B)�M0y(u, B)

���  poly(1/a⇤)e.

Hence we can once again divide e by any polynomial of 1/a⇤ without increasing
the complexity presented in Section 6.1 and the lemma follows.

The proof of Lemma 6.23 We apply successive Cauchy-Schwarz inequalities
to separate the terms that appear in the expression for the squared norm of the
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gradient. We have that
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We now bound each term separately.

• By Lemma 6.19, C2
u,rB  poly(1/a).

• Given that (µ̃S, S̃S) are near-isotropic,
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• By Lemma 6.13,
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• For the last term, we have
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From Lemma 6.17 and the conditioning on the event that the estimators of
the Hermite coefficients are accurate we have that (c̃V � cV)2  1 and hence
we get the following.
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we use Lemma E.13. Moreover, from Parseval’s
identity we obtain that Â0|V|• c2

V = Ex⇠N0 y2(x). From Lemma 6.13 we
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result follows from the above estimates.
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The proof of Lemma 6.24 We will prove this lemma in two steps, first we will
prove

���zTHMyk
(u, B)z� zTHMy(u, B)z

���  l (E.5)

and then we will prove that

zTHMy(u, B)z � 2l (E.6)

for some parameter l � poly(a⇤). To prove (E.5) we define
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���zTHMyk

(u, B)z� zTHMy(u, B)z
���


r

E
x⇠N0

h
e2h(u,B;x) · 1S(x) · (N ⇤(x))2 · p2(z; x)

i
·
r

E
x⇠N0

h
(yk(x)� y(x))2

i

we apply now the Hermite concentration from Theorem 6.18 and we get
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we now use (6.8), Lemma 6.19 and the fact that 1S(x)  1 to get
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and finally we use Lemma 6.13 to prove the following
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Next we prove (E.6). We have that
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where C is the universal constant guaranteed from Theorem E.4. Then using
Theorem E.4 and the fact that p(z; x) has degree 4 we get that N(µ⇤, S⇤; Q̄)  a⇤

2 .
Hence we define the set S0 = S \ Q̄ and we have that N(µ⇤, S⇤; S0) � a⇤/2.
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and from the definition of S0 and Lemma 6.19 we have that
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now we can apply Jensen’s inequality on the convex function x 7! 1/x and we get
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finally using Lemma 6.13 we get

zTHMy(u, B)z � poly(a⇤) 4

r
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[p4(z; x)] (E.8)

Now using (E.7) and (E.8) we can see that it is possible to pick e in the Hermite
concentration to be the correct polynomial in a⇤ so that

���zTHMyk
(u, B)z� zTHMy(u, B)z

���  zTHMy(u, B)z

which implies from Jensen’s inequality that

zTHMyk
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x⇠N ⇤
[p4(z; x)]

� poly(a⇤) E
x⇠N ⇤

[p(z; x)]

So the last step is to prove a lower bound for Ex⇠N ⇤ [p(z; x)]. For this we can
use the Lemma 3 of Daskalakis et al. (2018) from which we can directly get
Ex⇠N ⇤ [p(z; x)] � poly(a⇤) and the lemma follows.

E.5 Details of Section 6.3

We present here the of the proof of Theorem 6.27. We already proved that given only
positive examples from a truncated normal can obtain arbitrarily good estimations
of the unconditional (true) parameters of the normal using Algorithm 11. Recall
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also that with positive samples we can obtain an approximation of the function y(x)
defined in 6.4. From Theorem 6.18 we know that with dpoly(1/a)G(S)2/e4 samples we
can obtain a function yk(x) such that

E
x⇠N0

[((yk(x)� y(x))2]  e.

Now we can construct an almost indicator function using yk and the learned
parameters eµ, eI. We denote fN = N (eµ, eS).

ef (x) =
N0(x)
fN (x)

yk(x). (E.9)

This function should be a good enough approximation to the function

f (x) =
N0(x)
N ⇤(x)

y(x) =
1S(x)

a⇤
. (E.10)

Notice that even though we do not know the mass of the truncation set a⇤ we
can still construct a threshold function that achieves low error with respect to the
zero-one loss. We first prove a standard lemma that upper bounds the zero-one
loss with the distance of f and ef . We prove it so that we have a version consistent
with our notation.

Lemma E.14. Let S be a subset of Rd. Let D be a distribution on Rd and let f : Rd !
{0, B}, where B > 1 such that f (x) = B 1S(x). For any g : Rd 7! [0,+•) it holds
Ex⇠D [1{g(x) > 1/2)} 6= 1S(x)}] 
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i
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Proof. It suffices to show that for all x 2 Rd it holds
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p

2
q
|g(x)� f (x)|. (E.11)

We only need to consider the case where sign(g(x) � 1/2) 6= S(x). Assume
first that g(x) > 1/2 and x 6= S. Then the LHS of Equation (E.11) is 1 and
the RHS of (E.11) is

p
2
p
|g(x)� f (x)| �

p
2
p
|1/2� 0| = 1. Assume now that
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g(x) < 1/2 and S(x) = 1. Then the RHS of (E.11) equals
p

2
p
|g(x)� f (x)| �p

2
p
|B� 1/2| � 1.

We now state the following lemma that upper bounds the distance of f and ef
in with the sum of the total variation distance of the true and learned distributions
as well as the approximation error of yk.

Lemma E.15. Let a be the absolute constant of (6.3). Let S ✓ Rd and let N ⇤, fN be
(O(log(1/a)), 1/16)-isotropic. Let y be as in (6.4). Moreover, let ef , f be as in (E.9),
(E.10). Then,
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where for term C we used Jensen’s inequality. Using Lemma E.16 and Lemma 6.13
we have that

A 
✓

E
x⇠N0

h
(yk(x)� y(x))2

i◆1/2 ✓
E

x⇠N ⇤


N0(x)
N ⇤(x)

�◆1/2


✓

E
x⇠N0

h
(yk(x)� y(x))2

i◆1/2
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Since N0, fN , and N ⇤ are (O(log(1/a), 1/16)-isotropic, using Lemma 6.13 we ob-
tain that
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We now bound term C. We write
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To simplify notation, let `(x) =
���N

⇤(x)
fN (x)

� 1
��� . Moreover, notice that Ex⇠fN [`(x)] =

dTV(N ⇤, fN ). Using the second bound of Lemma E.16 and Lemma 6.13 we obtain

C  1
a

dTV(N ⇤, fN ) + poly(1/a)
q

dTV(N ⇤, fN )  poly(1/a)
q

dTV(N ⇤, fN ).

Combining the bounds for A, B and C we obtain the result.

Since we have the means two make both errors of Lemma E.15 small we can
now recover the unknown truncation set S.

The proof of Theorem 6.27 We first run Algorithm 11 to find estimates eµ, eS.
From Theorem 6.4 we know that N = dpoly(1/a)G2(S)/e32 samples suffice to obtain
parameters eµ, eS such that dTV(N (µ⇤, S⇤),N (eµ, eS))  poly(a)e4. Notice, that from
Theorem 6.12 we also know that N samples from the conditional distribution N ⇤S
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suffice to learn a function yk such that Ex⇠N0 [(yk(x)� y(x))2]  poly(a)e4. Now
we can construct the approximation ef (x) = yk(x)N0(x)/fN (x). Let our indicator
eS = 1{ ef ((x) > 1/2} and from Lemma E.14 and Lemma E.15 we obtain the result.

Lemma E.16. Let P, Q be two distributions on Rd such that P(x), Q(x) > 0 for all x
and ` : Rd 7! R be a function. Then it holds
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Now observe that
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E.6 Missing Proofs of Section 6.5

In the following we use the polynomial norms. Let p(x) = ÂV:|V|k cV xV be a mul-
tivariate polynomial. We define the kpk• = maxV:|V|k |cV |, kpk1 = ÂV:|V|k |cV |.

The proof of Lemma 6.31 Let W = S1 \ S2 \ { f1 > f2} [ S1 \ S2, that is the set
of points where the first density is larger than the second. We now write the L1

distance between f1, f2 as
Z

| f1(x)� f2(x)|dx =
Z

1W(x)( f1(x)� f2(x))dx

Denote p(x) the polynomial that will do the approximation of the L1 distance. From
Lemma 6.30 we know that there exists a Normal distribution within small chi-
squared divergence of both N (µ1, rS1) and N (µ2, rS2). Call the density function
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of this distribution g(x). We have

���
Z

| f1(x)� f2(x)|dx�
Z

p(x)( f1(x)� f2(x))
��� (E.13)

=

����
Z
(1W(x)� p(x)) ( f1(x)� f2(x))dx

����


Z

|1W(x)� p(x)| | f1(x)� f2(x)|dx


Z

|1W(x)� p(x)|
q

g(x)
| f1(x)� f2(x)|p

g(x)
dx


rZ

(1W(x)� p(x))2g(x)dx

sZ
( f1(x)� f2(x))2

g(x)
dx, (E.14)

where we use Schwarzs’ inequality. From Lemma 6.30 we know that

Z f1(x)2

g(x)
dx 

Z N (µ1, rS1; x)2

g(x)
dx = exp(poly(1/a)).

Similarly,
R f2(x)2

g(x) dx = exp(poly(1/a)). Therefore we have,

���
Z

| f1(x)� f2(x)|dx�
Z

p(x)( f1(x)� f2(x))
���

 exp(poly(1/a))

rZ
(1W(x)� p(x))2g(x)dx

Recall that g(x) is the density function of a Gaussian distribution, and let µ, rS be
the parameters of this Gaussian. Notice that it remains to show that there exists a
good approximating polynomial p(x) to the indicator function 1W . We can now
transform the space so that g(x) becomes the standard normal. Notice that this
is an affine transformation that also transforms the set W; call the transformed
set Wt. We now argue that the Gaussian surface area of the transformed set
Wt at most a constant multiple of the Gaussian surface area of the original set
W. Let N (µi, rSi; Si) = ai for i = 1, 2 and let h1(x) = N (µ1, rS1; x)/a1 resp.
h2(x) = N (µ2, rS2; x)/a2 be the density of first resp. second Normal ignoring
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the truncation sets S1, S2. Notice that instead of f1, f2 we may use h1, h2 in the
definition of W, that is

W = (S1 \ S2 \ {h1 � h2}) [ S1 \ S2.

Now, since rS�1/2 > 0 we have that the affine map T(x) = rS�1/2(x � µ) is
a bijection. Therefore T(A \ B) = T(A) \ T(B) and T(A [ B) = T(A) [ T(B).
Similarly to Wt = T(W), let St

1, St
2, {h1 � h2}t be the transformed sets. Therefore,

Wt = (St
1 \ St

2 \ {h1 � h2}t) [ St
1 \ St

2.

We will use some elementary properties of Gaussian surface area (see for example
Fact 17 of Klivans et al. (2008)). We have that for any sets S1, S2 G(S1 \ S2) and
G(S1 [ S2) are upper bounded from G(S1) + G(S2). Moreover, G(S1 \ S2)  G(S1) +

G(Sc
2) = G(S1) + G(S2). From our assumptions, we know that the Gaussian surface

area of the sets St
1, St

2 is O(G(S). Notice now that the set {h1 � h2}t is a degree
2 polynomial threshold function. Therefore, using the result of Kane (2011) (see
also Table 1.1) we obtain that G({h1 � h2}t) = O(1). Combining the above we
obtain that G(Wt) = O(G(S). To keep the notation simple we from now on we
will by W the transformed set Wt. Now, assuming that a good approximating
polynomial p(x) of degree k exists with respect to N (0, rI) then p(rS�1/2(x� µ))

is a polynomial of degree k that approximates 1W(x) with respect to g(x). Since
1W 2 L2(Rd, N0) we can approximate it using Hermite polynomials. For some
k 2 N we set p(x) = Sk1W(x), that is

pk(x) = Â
V:|V|k

c1W HV(x).

Combining Lemma 6.14 and Lemma E.9 we obtain

E
x⇠N0

[(1W(x)� pk(x))2] = O
✓

G(S)
k1/2

◆
.
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Therefore,

���
Z

| f1(x)� f2(x)|dx�
Z

pk(x)( f1(x)� f2(x))
��� = exp(poly(1/a))

G(S)1/2

k1/4

Therefore, ignoring the dependence on the absolute constant a, to achieve error
O(e) we need degree k = O(G(S)2/e4).

To complete the proof, it remains to obtain a bound for the coefficients of the
polynomial q(x) = pk(rS�1/2(x� µ)). We use the standard notation of polynomial
norms, e.g. kpk• is the maximum (in absolute value) coefficient, kpk1 is the sum
of the absolute values of all coefficients etc. From Parseval’s identity we obtain
that the sum of the squared weights is less than 1 so these coefficients are clearly
not large. The large coefficients are those of the Hermite Polynomials. We consider
first the 1 dimensional Hermite polynomial and take an even degree Hermite
polynomial Hn. The explicit formula for the k-th degree coefficient is

2k/2�n/2
p

n!
(n/2� k/2)!k!

 2n,

see, for example, Szegö (1967). Similarly, we show the same bound when the
degree of the Hermite polynomial is odd. Therefore, we have that the maximum
coefficient of HV(x) = ’d

i=1 Hi(xi) is at most ’d
i=1 2vi = 2Âd

i=1 vi = 2|V|. Using
Lemma E.17 we obtain that

���HV(rS�1/2(x� µ))
���

1

✓

d + |V|
|V|

◆
2|V|

⇣p
d
���rS�1/2

���
2
+
���rS�1/2µ

���
2

⌘|V|


✓

d + |V|
|V|

◆
(4d)|V|/2(O(1/a2))|V|

Now we have

kq(x)k•  Â
V:|V|k

|cV |
���HV(rS�1/2(x� µ))

���
•

✓

d + k
k

◆2
(4d)k/2(O(1/a2))k,

where we used the fact that since ÂV |cv|2  1 it holds that |cV |  1 for all V. To
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conclude the proof we notice that we can pick the degree k so that

����
Z

q(x)( f1(x)� f2(x))
���� =

������
Â

V:|V|k
xV( f1(x)� f2(x))

������
� e/2.

Since the maximum coefficient of q(x) is bounded by dO(k) we obtain the result.

The proofof Theorem 6.5 We first draw O(d2/e2) and compute estimates of the
conditional mean eµC and covariance eSC that satisfy the guarantees of Lemma E.2.
We now transform the space so that eµC = 0 and rSC = rI. For simplicity we still
denote µ and rS the parameters of the unknown Gaussian after the transformation.
From Lemma E.3 we have that

��rS�1/2µ
��

2  O(log(1/a)1/2/a), and W(a2) ��rS1/2
��

2  O(1/a2). Let emV be the empirical moments of N (µ, rS, S), emV =
ÂN

i=1 xV

N . We first bound the variance of a moment xV .

Varx⇠N (µ,rS,S)[x
V ]  E

x⇠N (µ,rS,S)
[x2V ]  1

a
E

x⇠N (µ,rS)
[x2V ] =

1
a

E
x⇠N (0,rI)

[(rS1/2x+µ)2V ]

Following the proof of Lemma E.17 we get that
��(rS1/2x + µ)2V��

•  (
p

d
��rS1/2

��
2 +

kµk2)
|V|. Using Lemma 6.31 we know that if we set k = G(S)/e4 then given any

guess of the parameters eµ, eS, eS we can check whether the corresponding truncated
Gaussian N (eµ, eS, eS) is in total variation distance e from the true by checking that
all moments Ex⇠N (eµ,eS,eS)[x

V ] of the guess are close to the (estimates) of the true mo-
ments. Using the above observations and ignoring the dependence on the constant
a we get that

��(rS1/2x + µ)2V��
•  dO(k). Chebyshev’s inequality implies that

with dO(k)/e2 samples we can get an estimate such that with probability at least
3/4 it holds | emV �mV |  e/dO(k). Using the standard process of repeating and
taking the median estimate we amplify the success probability to 1� d. Since we
want all the estimates of all the moments V with |V|  k to be accurate we choose
d = 1/dO(k) and by the union bound we obtain that with constant probability
| emV � mV |  e/dO(k) for all V with |V|  k. Now, for any tuple of parameters
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(eµ, eS, eS) we check whether the first dO(k) moments of the corresponding truncated
Gaussian N (eµ, eS, eS) are in distance e/dO(k) of the estimates emV . If this is true for
all the moments, then Lemma 6.31 implies that dTV(N (µ, rS, S),N (eµ, eS, eS))  e.

The proof of Lemma 6.30 Without loss of generality we may assume that N1 =

N (0, rI) and N2 = N (µ, rL), where rL is a diagonal matrix with elements li > 0.
We define the normal N = N (0, rR) with ri = max(1, li). We have

Dc2(N2kN) + 1 =
Z N (µ, rL; x)2

N (0, rR; x)
dx

=

p
|rR|

(2p)d/2|rL|
exp(�µTrL�1µ)

·
Z

exp
✓

xT
✓

1
2

rR�1 � rL�1
◆
+ 2µTrL�1x

◆
dx

| {z }
I

We have

I =
d

’
i=1

Z
exp

✓
x2

i

✓
1

2ri
� 1

li

◆
+ 2

µi
li

xi

◆
dxi = (2p)d/2

d

’
i=1

exp
✓

2riµ
2
i

2rili�l2
i

◆

p
2/li � 1/ri

Therefore,

Dc2(N2kN) + 1 
d

’
i=1

s
ri

2li � l2
i /ri

exp

 
2riµ

2
i

2rili � l2
i

!

= exp

 
d

Â
i=1

1
2

log

 
ri

2li � l2
i /ri

!
+

2riµ
2
i

2rili � l2
i

!

Using the fact that ri = max(1, li) we have

d

Â
i=1

log

 
ri

2li � l2
i /ri

!
= Â

i:li<1
log

 
1

2li � l2
i

!
 Â

i:li<1

✓
1
l i
� 1

◆2

���rL�1 � rI

���
2

F
,
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where we used the inequality log(1/(2x� x2))  (1/x� 1)2 which holds for all
x 2 (0, 1). Moreover,

d

Â
i=1

2riµ
2
i

2rili � l2
i
= Â

i:l1

2µ2
i

2li � l2
i
+ Â

i:l>1

2µ2
i

li


d

Â
i=1

2µ2
i

li
= 2

���rL�1/2µ
���

2

2
,

where we used the inequality 1/(2x � x2)  1/x which holds for all x 2 (0, 1).
Combining the above we obtain

Dc2(N2kN)  exp
✓

1
2

���rL�1/2µ
���

2
+ 2

���rL�1 � rI
���

2

F

◆

Similarly, we compute

Dc2(N1kN) + 1 =
d

’
i=1

r
ri

2� 1/ri
= exp

 
1
2 Â

i:li>1
log

✓
li

2� 1/li

◆!

 exp

 
1
2 Â

i:li>1
li

✓
1� 1

l i

◆2
!

 exp
✓

1
2

max(krLk2 , 1)
���rL�1 � rI

���
2

F

◆

The following lemma gives a very rough bound on the maximum coefficient of
multivariate polynomials of affine transformations.

Lemma E.17. Let p(x) = ÂV:|V|k cV xV be a multivariate polynomial of degree k. Let

rA 2 Rd⇥d, b 2 Rd. Let q(x) = p(rAx+ b). Then kqk•  kpk• (d+k
k )

⇣p
d krAk2 + kbk2

⌘k
.

Proof. We have that

q(x) = Â
V:|V|k

cV

d

’
i=1

 
d

Â
j=1

Aijxj + bi

!vi



362

Therefore,

kqk1  Â
V:|V|k

cV

d

’
i=1

 
d

Â
j=1

|Aij|+ |bi|
!vi

 Â
V:|V|k

cV

d

’
i=1

(krAk• + kbk•)vi

= Â
V:|V|k

cV (krAk• + kbk•)|V|  kpk•

✓
d + k

k

◆
(krAk• + kbk•)k

 kpk•

✓
d + k

k

◆⇣p
d krAk2 + kbk2

⌘k
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F APPENDIX TO CHAPTER 7

F.1 Multidimensional Taylor’s Theorem

In this section we present the Taylor’s theorem for multiple dimensions and we
prove Theorem 7.3. We remind the following notation from the preliminaries
section xa = xa1

1 · xa2
2 · · · xad

d .

Theorem F.1 (Multi-Dimensional Taylor’s Theorem). Let S ✓ Rd and f : S! R be
a (k + 1)-times differentiable function, then for any x, y 2 S it holds that

f (y) = Â
a2Nd,|a|k

Da f (x)
a!

(y� x)a + Hk(y; x), with

Hk(y; x) = Â
b2Nd,|b|=k+1

Rb(y; x)(y� x)b

and
Rb(y; x) =

|b|
b!

Z 1

0
(1� t)|b|�1Db f (x + t(y� x))dt.

We now provide a proof of Theorem 7.3.

Proof of Theorem 7.3. We start by observing that

�� f (y)� f̄k(y; x)
�� 

0

@ Â
b2Nd,|b|=k+1

1
b!

1

A · Rk+1 · W.

This inequality follows from multidimensional Taylor’s Theorem by some simple
calculations. Now to show wanted result it suffices to show that Âb2Nd,|b|=k+1

1
b! ⇣

15d
k

⌘k+1
. To prove the latter we first show that minb2Nd,|b|=k+1 b! = (`!)d�r((`+

1)!)r where ` = b k+1
d c and r = k + 1 (mod d). We prove this via contradiction, if

this is not true then the minimum minb2Nd,|b|=k+1 b! is achieved in multi-index
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b such that there exist i, j 2 [d] such that bi < ` and b j > `+ 1. In this case we
define b0 to be equal to b except for b0i = bi + 1 and b0j = b j � 1. In this case we get

b0! < b j
bi+1 b0! = b!, which contradicts the optimality of b. Therefore we have that

Âb2Nd,|b|=k+1
1
b!  (d+k+1

k+1 ) 1
((`+1)!)d . Now via upper bounds from Stirling’s approx-

imation we get that (d+k+1
k+1 ) 1

((`+1)!)d 
ek+1(1+ d

k+1)
k+1

((k+1)/d)k+1e�k�1 
⇣

e2d
k

⌘k+1 ⇣
1 + k

k+1

⌘k+1

and the Theorem follows from simple calculations on the last expression.

F.2 Missing Proofs for Single Dimensional Densities

In this section we provide the proof of the theorems presented in Section 7.2.

Proof of Theorem 7.7

We are going to use the following result that bounds the error of Hermite polyno-
mial interpolation, wherein besides matching the values of the target function the
approximating polynomial also matches its derivatives. The following theorem
can be seen as a generalization of Lagrange interpolation, where the interpolation
nodes are distinct, and Taylor’s remainder theorem where we find a polynomial
that matches the first k derivatives at a single node.

Lemma F.2 (Hermite Interpolation Error). Let x1, . . . , xs be distinct nodes in [a, b]
and let m1, . . . , ms 2 N such that Âs

i=1 mi = k + 1. Moreover, let f be a (k + 1) times
continuously differentiable function over [a, b] and p be a polynomial of degree at most k
such that for each xi

p(xi) = f (xi) p0(xi) = f 0(xi) . . . p(mi�1)(xi) = f (mi�1)(xi) .

Then for all x 2 [a, b], there exists x 2 (a, b) such that

f (x)� p(x) =
f (k+1)(x)
(k + 1)!

s

’
i=1

(x� xi)
mi .



365

We are also going to use the following upper bound on Kullback-Leibler diver-
gence. For a proof see Lemma 1 of Barron and Sheu (1991).

Lemma F.3. Let P ,Q be distributions on R with corresponding density functions p, q.
Then for any c > 0 it holds

DKL(PkQ)  eklog(p(x)/q(x))�ck•

Z
p(x)

✓
log

p(x)
q(x)

� c
◆2

dx .

Before, the proof of Theorem 7.7 we are going to show a useful lemma. Let
f , g be two density functions such that DKL( f kg) > 0 and let r another function r
that lies strictly between the two densities f , g. The following lemma states that
after we normalize r to become a density function r̄ we get that r̄ is closer to f in
Kullback-Leibler divergence than g.

Lemma F.4 (Kullback-Leibler Monotonicity). Let f , g be density functions over R such
that the measure defined by f is absolutely continuous with respect to that defined by g,
i.e. the support of f is a subset of that of g. Let also r be an integrable function such that
r(x) � 0, for all x 2 R, and moreover, for all x 2 R \ Z

f (x)  r(x) < g(x) or g(x) < r(x)  f (x)

where Z is a set that has measure 0 under both f and g. Then, if r̄(x) = r(x)/
R

r(x)dx
is the density function corresponding to r(·), it holds that

DKL( f kr̄) < DKL( f kg).

Proof. To simplify notation we are going to assume that the support of f is the
entire R, and we define the sets A< = {x 2 R : r(x) < g(x)}, A> = {x 2 R :
r(x) > g(x)}. In the following proof we are going to ignore the measure zero
set where the assumptions about g, r, f do not hold. Denote C =

R
r(x)dx =
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1�
R
(g(x)� r(x))dx. We have

DKL( f kg)�DKL( f kr̄) =
Z

f (x) log
r̄(x)
g(x)

dx =
Z

f (x) log
r(x)
g(x)

dx� log C

�
Z

r(x) log
r(x)
g(x)

dx� log C ,

where for the last inequality we used the fact that f (x) < r(x) for all x 2 A<

and f (x) > r(x) for all x 2 A>. Using the inequality log(1 + z)  z we obtain
� log C �

R
(g(x)� r(x))dx. Using this fact we obtain

DKL( f kp)�DKL( f kr̄) �
Z

r(x) log
r(x)
g(x)

dx +
Z
(g(x)� r(x)) dx

�
Z ✓

r(x) log
r(x)
g(x)

+ g(x)� r(x)
◆

dx.

To finish the proof we observe that r(x) log(r(x)/g(x)) + g(x)� r(x) > 0 for every
x. To see this we rewrite the inequality as log r(x)

g(x) � 1 + g(x)
r(x) > 0. To prove this we

use the inequality log(z)� 1 + 1/z > 0 for all z 6= 1.

We are now ready to prove the main result of this section which is Theorem 7.7.

Proof of Theorem 7.7

Recall that
p = argmin

q2Qk

DKL(D( f , S)kD(q, S)) .

To simplify notation, we define the functions f f (x) = f (x) � y( f , S) and
fp(x) = p(x)� y(p, S). Notice that these are the log densities of the conditional
distributions D( f , S) and D(p, S) on the set S, viewed as functions over the entire
interval I (i.e. they are the conditional log densities without the indicator 1S(x)).
Notice that fp is a polynomial of degree at most k. Let g(x) = f f (x)� fp(x). We
first show the following claim.

Claim F.5. The equation g(x) = 0 has at least k + 1 roots in S, counting multiplicities.
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Proof of Claim F.5. To reach a contradiction, assume that it has k (or fewer) roots.
Let x1, . . . , xs 2 I be the distinct roots of g(x) = 0 ordered in increasing order and
let m1, . . . , ms be their multiplicities. Denote by I0, . . . , Is the partition of I using
the roots of g(x), that is

I0 = (�•, x1] \ I = [x0, x1], I1 = [x1, x2], . . . , Is = [xs, xs+1] = [xs,+•) \ I .

Let q be the polynomial that has the same roots as g(x) and also the same sign
as g(x) in every set Ij of the partition. We claim that there exists lj > 0 such
that, for every j and x 2 int(Ij), the expression f f (x)� (fp(x) + lq(x)) has the
same sign as f f (x)� fp(x) and also |f f (x)� (fp(x) + ljq(x))| < |f f (x)� fp(x)|.
Indeed, fix an interval Ij and without loss of generality assume that g(x) > 0 for
all x 2 Ij \ {x j, x j+1}. Then it suffices to show that there exists lj > 0 such that
0 < g(x)� ljq(x) < g(x). Since q(x) > 0 for every x 2 int(Ij), we need to choose
lj < g(x)/q(x). Since x j is a root of the same multiplicity of both g(x) and q(x)
and g(x), q(x) > 0 for all x 2 int(Ij) we have limx!x+j

g(x)
q(x) = a > 0. Similarly, we

have limx!x�j+1

g(x)
q(x) = b > 0. We can now define the following function

h(x) =

8
>>><

>>>:

a, x = x j

g(x)/q(x), x j < x < x j+1

b, x = x j+1

.

We showed that h(x) is continuous in Ij = [x j, x j+1] and therefore has a minimum
value rj > 0 in the closed interval Ij. We set lj = rj. With the same argument as
above we obtain that for each interval Ij we can pick lj > 0. Since the number of
intervals in our partition is finite we may set l = minj=0,...,s lj and still have l > 0.

We have shown that the polynomial r(x) = fp(x)+lq(x) is almost everywhere,
that is apart from a measure zero set, strictly closer to f f (x). In particular, we
have that fp(x) for every x 2 [0, 1], |f f (x) � r(x)|  |f f (x) � fp(x)| and for
every x 2 S \ {x0, . . . , xs+1} it holds |f f (x)� r(x)| < |f f (x)� fp(x)|. Moreover,
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by construction we have that f f (x) � r(x) and f f (x) � p(x) are always of the
same sign. Finally, the degree of r(x) is at most k. Using Lemma F.4 we obtain
that DKL(D( f , S)kD(r, S)) < DKL(D( f , S)kD(p, S)), which is impossible since we
know that p is the polynomial that minimizes the Kullback-Leibler divergence.

We are now ready to finish the proof of our lemma. Using Lemma F.2 and
Claim F.5 we have that fp and f f are close not only in S but in the whole interval I.
In particular, for every x 2 I it holds

���� f (x)� log
Z

S
e f (x)dx� p(x) + log

Z

S
ep(x)dx

���� 
M

(k + 1)!
Rk+1 := Wk . (F.1)

Using the above bound together with Lemma F.3, where we set c = log y( f ,I)y(p,S)
y(p,I)y( f ,S) ,

we obtain
DKL(D( f , I)kD(p, I))  eWkW2

k .

Proof of Theorem 7.12

We first show that the minimizer of the Kullback-Leibler divergence belongs to
the set Dk. Let q⇤ = argminq2Qk

DKL(D( f , S)kD(q, S)) be the minimizer over the
set of degree k polynomials. From the assumption that f 2 L•(I, B) we have that
e�Ba 

R
S e f (x)dx  eB and therefore |y( f , S)|  B + log(1/a). We know from

Equation (F.1) that for all x 2 I it holds

|q(x)� y(q, S)� f (x) + y( f , S)|  Wk =
Mk+1

(k + 1)!
.

In particular, for x = 0 using the above inequality we have |y(q⇤, S)|  Wk +

|y( f , S)|+ | f (0)|  Wk + 2B+ log(1/a). Therefore, q⇤ 2 Dk. From the Pythagorean
identity of the information projection we have that for any other q 2 Dk it holds

DKL(D( f , S)kD(q, S)) = DKL(D( f , S)kD(q⇤, S)) + DKL(D(q⇤, S)kD(q, S)).
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Therefore, from the definition of q as an approximate minimizer with optimality
gap e we have that DKL(D(q⇤, S)kD(q, S))  e and from Pinsker’s inequality we
obtain dTV(D(q⇤, S), D(q, S)) 

p
e. Using the triangle inequality, we obtain

dTV(D(q, I), D( f , I))  dTV(D(q, I), D(q⇤, I)) + dTV(D(q⇤, I), D( f , I))

From Theorem 7.7 and Pinsker’s inequality we obtain that dTV(D(q⇤, I), D( f , I)) 
eWk/2Wk. Moreover, from Lemma 7.18 we have that dTV(D(q, I), D(q⇤, I)) 
4e10B(2C/a)k+8pe, where C is the absolute constant of Theorem 7.17.

F.3 Missing Proofs for Multi-Dimensional Densities

In this section we provide the proofs of the lemmas and theorems presented in
Section 7.3.

Proof of Lemma 7.16

We remind that Qd,k is the space of polynomials of degree at most k with d variables
and zero constant term, where we might drop d from the notation if it is clear from
context.

The bound on the norm k1K pk• follows directly from Taylor’s theorem. In
particular, using Theorem 7.3 we obtain that there exists the Taylor polynomial
fk(·; 0) of degree k around 0 satisfies k1K( f � fk)k•  (15MRd/k)k+1.

The bound on the Kullback-Leibler now follows directly from the following
simple inequality that bounds the Kullback-Leibler divergence in terms of the `•
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norm of the log-densities. We have

DKL(D( f , S)kD(g, S)) (F.2)

=
Z

S
D( f , S; x)( f (x)� g(x))dx + log

✓Z

S
eg(x)dx

◆
� log

✓Z

S
e f (x)dx

◆

 k1S( f � g)k• + log
✓Z

S
e f (x)+k1S( f�g)k•dx

◆
� log

✓Z

S
e f (x)dx

◆

 2 k1S( f � g)k• . (F.3)

The polynomial provided by Theorem 7.3 does not necessarily have zero con-
stant term. We can simply subtract this constant and show that the L• norm of the
resulting polynomial does not grow by a lot. Using the triangle inequality we get

k1K( fk � fk(0))k•  k1K f k• + k1K( fk � f )k• + | fk(0)|

 2B + M
✓

15Rd
k

◆k+1
.

Finally, we observe that the polynomials fk and fk � fk(0) correspond to the same
distribution after the normalization, therefore it still holds DKL(D( f , S)kD( fk �
fk(0), S)) = DKL(D( f , S)kD( fk, S))  2(15MRd/k)k+1.

Proof of Distortion of Conditioning Lemma 7.18

The Distortion of Conditioning Lemma contains two inequalities; an upper bound
and a lower bound on dTV(D(p, K), D(q, K))/dTV(D(p, K), D(q, K)). We begin our
proof with the upper bound and then we move to the lower bound.

Upper Bound. We first observe that for every set R ✓ K it holds

e�k1K pk•vol(R) 
Z

R
ep(x)dx  ek1K pk•vol(R) (F.4)

which implies that |y(p, R)|  k1K pk• + log(1/vol(R)).

Now to prove the upper bound on the ratio dTV(D(p, K), D(q, K))/dTV(D(p, K), D(q, K)),
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we will prove an upper bound on dTV(D(p, K), D(q, K)) and a lower bound on
dTV(D(p, K), D(q, K)). We begin with the lower bound on dTV(D(p, K), D(q, K)).

2dTV(D(p, S), D(q, S)) =
Z

S

�����
ep(x)

ey(p,S) �
eq(x)

ey(q,S)

�����dx

� min
x2S

 
ep(x)

ey(p,S)

!Z

S

�����1�
e�p(x)

e�y(p,S) ·
eq(x)

ey(q,S)

�����dx

� e�2k1K pk•

vol(S)

Z

S

���1� er(x)
���dx , (F.5)

where r(x) = q(x)� y(q, S)� (p(x)� y(p, S)). For some g > 0 we define the set
Q = K\ {z : |r(z)|  g}. Using Theorem 7.17 for the degree k polynomial r(x) and

setting q = 2k, g =
⇣

vol(S)
2C min{d,2k}

⌘k qR
K(r(x))2dx, we get that vol (Q)  vol(S)/2.

Using these definitions we have

Z

S
|1� er(x)|dx �

Z

S\Q
|1� er(x)|dx � vol(S)

2
min

x2S\Q
|1� er(x)| .

Since |r(x)| � g for all x 2 S \ Q we have that if g � 1 then from the inequality
|1� ex| � 1/2 for |x| > 1 and from equation (F.5) we obtain

2dTV(D(p, S), D(q, S)) � e�2k1K pk•

4

If g < 1 then we can use the inequality |1� ex| � |x|/2 for |x|  1 together with
(F.5) to get

2dTV(D(p, S), D(q, S)) � e�2k1K pk•

4
vol(S) · g.

and hence for every value of g we have that

2dTV(D(p, S), D(q, S)) � e�2k1K pk•

4
min{vol(S) · g, 1}. (F.6)



372

Next we find an upper bound on dTV(D(p, K), D(q, K)). In particular, we are going
to relate the total variation distance of D(p) and D(q) with the integral

R
K(r(x))2dx.

Applying Lemma F.3 with c = �(y(q, K)� y(p, K)) + (y(q, S)� y(p, S)) we have
that

DKL(D(p, K)kD(q, K))  ek1Krk•

Z

K
D(p, K; x)(r(x))2dx  ek1Krk•+2k1K pk•

Z

K
(r(x))2 dx.

From equation (F.4) we obtain that k1Krk•  2 k1K pk• + 2 k1Kqk• + 2 log(1/vol(S)).
Now, using Pinsker’s and the above inequality we obtain

dTV(D(p, K), D(q, K)) 
q

DKL(D(p, K)kD(q, K))  e2k1K pk•+k1Kqk•

vol(S)

rZ

K
(r(x))2dx

 e2k1K pk•+k1Kqk•
(2C min{d, 2k})k

vol(S)k+1 g.

which implies our desired upper bound on the ratio dTV(D(p,K),D(q,K))
dTV(D(p,S),D(q,S)) , using (F.6)

and vol(S)  1.

Lower Bound. We now show the lower bound on dTV(D(p, K), D(q, K))/dTV(D(p, S), D(q, S)).
We have that

2dTV(D(p, S), D(q, S)) =
Z

1S(x)
����
D(p, K; x)
D(p, K; S)

� D(q, K; x)
D(q, K; S)

����dx

=
Z

1S(x)
����
D(p, K; x)
D(p, K; S)

� D(q, K; x)
D(p, K; S)

+
D(q, K; x)
D(p, K; S)

� D(q, K; x)
D(q, K; S)

����dx

 1
D(p, K; S)

Z
1S(x) |D(p, K; x)� D(q, K; x)|dx

+
Z
1S(x)

����
D(q, K; x)
D(p, K; S)

� D(q, K; x)
D(q, K; S)

����dx

 1
D(p, K; S)

dTV(D(p, K), D(q, K)) +
����

D(q, K; S)
D(p, K; S)

� 1
����

 2
D(p, K; S)

dTV(D(p, K), D(q, K)) ,

where for the last step we used the fact that |D(p, K; S)�D(q, K; S)|  dTV(D(p, K), D(q, K)).
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Using again equation (F.4) we obtain that

D(p, K; S) = ey(p,S)�y(p,K) =

✓Z

S
ep(x)dx

◆
·
✓Z

K
ep(x)dx

◆�1

� e�k1K pk•vol(S)
ek1K pk•vol(K)

� e�2B vol(S)
vol(K)

,

and since vol(K) = 1 the wanted bound of the lemma follows.

Proof of Theorem 7.8

From Lemma 7.16 we obtain that by choosing 0 2 K, there exists v such that��1KvTmk(x)
��

•  2B + (15Md/k)k+1. Moreover, from the same lemma we have
that minw2D DKL(D( f , S)kD(w, S))  DKL(D( f , S)kD(v, S))  2 (15Md/k)k+1.
To simplify notation set rk = 2 (15Md/k)k+1. Now, let q(x) = uTmk(x) be any
approximate minimizer in D of the KL-divergence between D(q, S) and D( f , S)
that satisfies

DKL(D( f , S)kD(u, S))  min
w2D

DKL(D( f , S)kD(w, S)) + e  rk + e.

Using the triangle inequality, we have

dTV(D( f , K), D(u, K))  dTV(D( f , K), D(v, K)) + dTV(D(v, K), D(u, K)).

Using Lemma 7.18 we obtain that dTV(D(v, K), D(u, K))  UdTV(D(v, S), D(u, S))
where U = 4e15B(2Cd)k/ak+3. Using again the triangle inequality we obtain that

dTV(D(v, K), D(u, K))  U (dTV(D(v, S), D( f , S)) + dTV(D( f , S), D(u, S)))

Overall, we have proved the following important inequality that shows that we
can extend the conditional information to whole set K without increasing the error
by a lot. In other words, the polynomial with parameters u that we found by
(approximately) minimizing the Kullback-Leibler divergence to the conditional
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distribution is a good approximation on the whole convex set K.

dTV(D( f , K), D(u, K))

 dTV(D(v, K), D( f , K)) + U (dTV(D(v, S), D( f , S)) + dTV(D( f , S), D(u, S)))

 (U + 1)(2
p

rk +
p

ē) .

where we set ē = 2
�eW

⇣
d3 M
a2 +B

⌘

(1/e)�W(log(d/a)) is the optimality gap of the vector
u. For the last inequality we use Pinsker’s inequality to get that dTV(D(v, S), D( f , S)) p

DKL(D(v, S)kD( f , S))  prk since the guarantee of Lemma 7.16 holds for every
subset R ✓ K. Using again Pinsker’s inequality to upper bound the other two total
variation distances we obtain the final inequality. Substituting the values of U, L
we obtain that

(U + 1)(2
p

rk) = O

 
e15B (2Cd)k

ak+3
(15Md)k/2+1/2

kk/2

!

= O

 
exp

 
15B + log

 p
Md
a3

!
+ k log

 
C0
p

d3M
a

!
� k log

p
k

!!
,

where C0 is an absolute constant. Therefore, for k = O(d3M/a2 + B) + 2 log(1/e)

it holds that U(2
p

rk)  e/2. Moreover, we observe that U
p

ē  e/2 and therefore
for this value of k we have dTV(D( f , K), D(u, K))  e/2 + e/2  e.

Proof of Theorem 7.20

We start with two lemmas that we are going to use in our proof of Theorem 7.20.

Lemma F.6 (Theorem 46 of Ben-David et al. (2018)). Let p be a polynomial with real
coefficients on d variables with some degree k such that p 2 L•([0, 1]d, B). Then, the
magnitude of any coefficient of p is at most B(2k)3k and the sum of magnitudes of all
coefficients of p is at most B min((2(d + k))3k, 2O(dk)).
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We note that in Ben-David et al. (2018) the (2(d + k))3k upper bound is given,
the other follows easily from the single dimensional bound 2O(k).

Lemma F.7 (Renegar (1992a,b)). Let pi : Rd 7! R, i 2 [m] be m polynomials over
the reals each of degree at most k. Let K = {x 2 Rd : pi(x) � 0, for all i 2 [m]}. If
the coefficients of the pi’s are rational numbers with bit complexity at most L, there is an
algorithm that runs in time poly(L, (mk)d) and decides if K is empty or not. Furthermore,
if K is non-empty,the algorithm runs in time poly(L, (mk)d, log(1/d)) and outputs a
point in K up to an L2 error d.

Objective Function of MLE

Now we define our objective, which is the Kullback-Leibler divergence between f
and the candidate distribution, or equivalently the maximum-likelihood objective.

L(v) = DKL(D( f , S)kD(v, S)) (F.7)

=
Z

D( f , S; x) log D( f , S; x)dx�
Z

D( f , S; x)vTmk(x)dx + log
Z

S
evTmk(x)dx

The gradient of L(v) with respect to v is

rvL(v) = �
Z

D( f , S; x)mk(x)dx +

R
S mk(x)eaTmk(x)dx
R

S evTmk(x)dx

= E
x⇠D(v,S)

[mk(x)]� E
x⇠D( f ,S)

[mk(x)] (F.8)

The Hessian of L(a) with respect to v is

r2
vL(v) =

R
S mk(x)mT

k (x)evTmk(x)dx
R

S evTmk(x)
�
R

S mk(x)mT
k (x)evTmk(x)dx

⇣R
S evTmk(x)

⌘2

= E
x⇠D(v,S)

[mk(x)mT
k (x)]� E

x⇠D(v,S)
[mk(x)] E

x⇠D(v,S)
[mT

k (x)]. (F.9)
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We observe that the Hessian is positive semi-definite since it is the covariance of
the vector mk(x). Therefore, we verify that L(v) is convex as a function of v.

Convergence of PSGD

Now, we prove that using Algorithm 13 we can efficiently estimate the parameters
of a polynomial whose density well approximates the unknown density D( f , [0, 1]d)
in the whole unit cube.

We want to optimize the function L(v) of Equation F.7 constrained in the convex
set

D =
n

v 2 Rm :
���1KvTmk(x)

���
•
 C

o
.

To be able to perform SGD we need to have unbiased estimates of the gradients. In
particular, from the expression of the gradient (see Equation F.8) we have that in or-
der to have unbiased estimates we need to generate a sample from the distribution
D(v, S). We first observe that the initialization v(0) 2 D. Using rejection sampling
we can generate with probability at least 1� d a sample uniformly distributed on
S after log(1/d)/a draws from the uniform distribution on K. Using the samples
distributed uniformly over S we can use again rejection sampling to create a sample
from D(v, S) using as base density the uniform over S. Since evTmk(x)  eC, the
acceptance probability is e�C. We need to generate eC log(1/d) samples from the
uniform on S in order to generate one sample from D(v, S). Overall, the total
samples from the uniform on K in order to generate a sample from D(v, S) with
probability 1� d is O(eCC log(1/d)). To generate an unbiased estimate of the gra-
dient we can simply draw samples xt ⇠ D(v, S), yt ⇠ D( f , S) and then take their

difference, i.e. g(t) = mk(x(t))�mk(y(t)). We have
���g(t)

���
2

2
 2(d+k

k ) for any x 2 K.
Moreover, we need a bound on the L2 diameter of D. From Lemma F.6 we have
that since vTmk(x) 2 L•(K, C) we get that kvk2  kvk1  C(2(d + k))k. Now, we
have all the ingredients to use Lemma 7.21, and obtain that after

T =
C22O(dk) · (d+k

k )

e2 =
C22O(dk)

e2
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rounds, we have a vector v(T) with optimality gap e.
We next describe an efficient way to project to the convex set D. The projection

to D is defined as argminu2D ku� vk2
2. We can use the Ellipsoid algorithm (see for

example Martin Grötschel (1993)) to optimize the above convex objective as long
as we can implement a separation oracle for the set D. The set D has an infinite
number of linear constraints (one constraint for each x 2 K but we can still use
Renegar’s algorithm to find a violated constraint for a point v /2 D. Specifically,
given a guess v we set up the following system of polynomial inequalities,

vTmk(x) � C

0  xi  1 for all i 2 [d] ,

where x is the variable. Using Lemma F.7 we can decide if the above system is
infeasible or find x that satisfies vTmk(x) � C in time poly(((d + 1)k)d), where
we suppress the dependence on the accuracy and bit complexity parameters.1 If
Renegar’s algorithm returns such an x we have a violated constraint of D. Since D
bounds the absolute value of vTmk(x) we need to run Renegar’s algorithm also
for the system {x : vTmk(x)  �C, x 2 K}. The overall runtime of our separation
oracle is poly(((d + 1)k)d) and thus the runtime of Ellipsoid to implement the
projection step is also of the same order. Combining the runtime for sampling, the
projection, and the total number of rounds we obtain that the total runtime of our
algorithm is 2O(dk+C)/(ae2).

1Since the dependence of Renegar’s algorithm is polynomial in the bit size of the coefficients
and the accuracy of the solution it is straightforward to do the analysis of our algorithm assuming
finite precision rational numbers instead of reals.
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Algorithm 13 Projected Stochastic Gradient Descent. Given access to samples from
D( f , S).

1: procedure SGD(T, h, C) . T: number of steps, h: step size, C: projection
parameter.

2: v(0)  0
3: Let D = {v : maxx2K |vTmk(x)|  C}
4: for t = 1, . . . , T do
5: Draw sample x(t) ⇠ D(v(t�1), S) and y(t) ⇠ D( f , S)
6: g(t)  mk(x(t))�mk(y(t))
7: v(t)  projD(v

(t�1) � hg(t))
8: return
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G APPENDIX TO CHAPTER 8

G.1 Training Models from Coarse Data

Consider a parameterized family of functions x! f (x; w), where the parameters w
lie in some parameter space W ✓ Rp. For instance, the family may correspond to a
feed-forward neural network with L layers. Given a finely labeled training sample
(x1, y1), . . . , (xN, yN) 2 X ⇥ Y , the parameters w are chosen using a gradient
method in order to minimize the empirical risk,

LN(w) =
1
N

N

Â
i=1

`( f (xi; w), yi) ,

for some loss function ` : Y ⇥ Y ! R and the goal of this optimization task is to
minimize the population risk function L(w) = E(x,y)⇠D(w?)[`( f (x; w), y)] (where
the distribution D(w?) is unknown). For simplicity, let us focus on differentiable
loss functions. Performing the SGD algorithm, we can circumvent the lack of
knowledge of the population risk function L. Specifically, instead of computing
the gradient of L(w), the algorithm steps towards a random direction v with
the constraint that the expected value of v is equal to the negative of the true
gradient, i.e., it is an unbiased estimate of �rL(w). Such a random vector v can
be computed without knowing D(w?) using the interchangeability between the
expectation and the gradient operators. Assume that the algorithm is at iteration
t � 1. Let (x, y) ⇠ D(w?) be a fresh sample and define vt be the gradient of the
loss function with respect to w, at the point wt, i.e.,

E[vt|wt] = E
(x,y)⇠D(w?)

[r`( f (x; wt), y)] = r E
(x,y)⇠D(w?)

[`( f (x; wt), y)] = rL(wt) .

Hence, an algorithm that has query access to a SQ oracle can implement a noisy
version of the above iterative process (with inexact gradients, see e.g., d’Aspremont
(2008); Devolder et al. (2014); Feldman et al. (2015a)) using the query functions
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qi(x, y) = (r`( f (x; wt), y))i for any i 2 [p]. Note that the algorithm knows the loss
function `, the parameterized functions’ family { f (· ; w) : w 2W} and the current
guess wt. Specifically, the algorithm performs p queries (one for each coordinate
of the parameter vector) and the oracle returns to the algorithm a noisy gradient
vector rt that satisfies krt �rL(wt)k•  t.

In our setting, we do not have access to the SQ oracle with finely labeled
examples. Our main result of this section (Theorem 8.4) is a mechanism that
enables us to obtain access to such an oracle using a few coarsely labeled examples
(with high probability). Hence, we can still perform the noisy gradient descent of
the previous paragraph with an additional overhead on the sample complexity,
due to the reduction.

G.2 Multiclass Logistic Regression with Coarsely
Labeled Data

A first application for the above generic reduction from coarse data to statistical
queries is the case of coarse multiclass logistic regression. In the standard (finely
labeled) multiclass logistic regression problem, there are k fine labels (that corre-
spond to classes), each one associated with a weight vector wz 2 Rn with z 2 [k].
We can consider the weight matrix W 2 Rk⇥n. Given an example x 2 Rn, the
vector x is filtered via the softmax function s(W , x), which is a probability dis-
tribution over Dk with s(W , x; z) = exp(wT

z x)/ Ây2[k] exp(wT
y x), z 2 [k] and the

output is the finely labeled example (x, z) 2 Rn ⇥ [k]. The goal is to estimate the
weight matrix W , given finely labeled examples. Let us denote by D(W) the joint
distribution over the finely labeled examples for simplicity. When we have access
to finely labeled examples (x, z) ⇠ D(W?), the population log-likelihood objective
L of the multiclass logistic regression problem

L(W) = E
(x,z)⇠D(W?)

h
wT

z x� log
⇣

Â
j2Z

exp(wT
j x)

⌘i
,
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is concave (see Friedman et al. (2001)) with respect to the weight matrix W 2 Rk⇥n

and is solved using gradient methods. On the other hand, if we have sample access
only to coarsely labeled examples (x, S) ⇠ Dp(W?), the population log-likelihood
objective Lp of the coarse multiclass logistic regression problem

Lp(W) = E
(x,S)⇠Dp(W?)

h
log

⇣
Â
z2S

exp(wT
z x)

⌘
� log

⇣
Â
j2Z

exp(wT
j x)

⌘i
,

which is no more concave. However, as an application of our main result (Theo-
rem 8.4), we can still solve it. In fact, since we can implement statistical queries
using the sample access to the coarse data generative process Dp(W?), we can
compute the gradients of the log-likelihood objective that corresponds to the finely
labeled examples. Hence, the total sample complexity of optimizing this non-convex
objective is equal to the sample complexity of solving the convex problem with an
additional overhead at each iteration of computing the gradients, that is given by
Theorem 8.4.

G.3 Geometric Information Preservation

In this section, we aim to provide some intuition behind the notion of information
preserving partitions. The following result provides a geometric property for the
partition distribution p. We show that if the partition distribution satisfies this
particular geometric property, then it is also information preserving. We underline
that the geometric property is quite important for our better understanding and it
has the advantage that it is easy to verify. Hence, while the notion of information
preserving distributions may be less intuitive, we believe that the geometric preser-
vation property that we state in Lemma G.1 can fulfill this lack of intuition. The
property informally states that, for any hyperplane, the sets in the partition that
are not cut by this hyperplane have non trivial probability mass with respect to
the true Gaussian. In the case of mixtures of convex partitions, we would like the
same property to hold in expectation.



382

Figure G.1: (a) is a very rough partition that makes learning the mean im-
possible: Gaussians N ((0, z)) centered along the same vertical line (0, z) as-
sign exactly the same probability to all cells of the partitions and therefore,
dTV(Np((0, z1)),Np((0, z2))) = 0: it is impossible to learn the second coordinate
of the mean. (b) is a convex partition of R2, that makes recovering the Gaussian
possible.

Before stating Lemma G.1, let us return to Figure G.1. Observe that, in the first
example with the four halfspaces, the geometric property does not hold, since there
exists a line (i.e., a hyperplane) that intersects with all the sets. On the other hand,
if we consider the second example with the Voronoi partition and assume that the
true mean lies in the middle of the picture, we can see that any hyperplane does
not intersect with a sufficient number of sets and, hence, the union of the uncut
sets has non trivial probability mass for any hyperplane.

For a hyperplane Hw,c = {x 2 Rd : wTx = c} with normal vector w 2 Rd

and threshold c 2 R, we denote the two associated halfspaces by H+
w,c = {x 2

Rd : wTx > c} and H�w,c = {x 2 Rd : wTx < c}. Before stating the next Lemma,
we shortly describe what means for a hyperplane to cut a set with respect to a
Gaussian N . The set S is not cut by the hyperplane H, if it totally lies in a halfspace
induced by the hyperplane, say H+, i.e., it holds that N (S) = N (S \H+).

Lemma G.1 (Geometric Information Preservation). Consider the generative process of
coarse d-dimensional Gaussian data Np(µ?), (see Definition 8.5). Consider an arbitrary
hyperplane Hw,c with normal vector w 2 Rd and threshold c 2 R. For a partition
S 2 supp(p) of Rd, consider the collection that contains all the sets that are not cut by
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the hyperplane Hw,c, i.e.,

Uw,c,S =
[n

S 2 S : N ?(S \H+
w,c) = N ?(S) _N ?(S \H�w,c) = N ?(S)

o
.

Assume that p satisfies
E

S⇠p

h
N (µ?; Uw,c,S)

i
� a , (G.1)

for some a 2 (0, 1]. Then, for any Gaussian distribution N (µ), it holds that

dTV(Np(µ),Np(µ
?)) � Ca · dTV(N (µ),N (µ?)) ,

for some Ca that depends only on a and satisfies Ca = poly(a), i.e., the partition distribu-
tion is Ca-information preserving.

Hence, the above geometric property is sufficient for information preserva-
tion. If we assume that the total variation distance between the true Gaussian
distribution N (µ?) and a possible guess N (µ) is at least e and the partition
distribution satisfies the geometric property of Equation (G.1), we get that the
coarse generative process preserves a sufficiently large gap, in the sense that
dTV(Np(µ?),Np(µ)) � poly(a)e. The proof of the above lemma, which relies on
high-dimensional anti-concentration results on Gaussian distributions, follows.

Proof of Lemma G.1. Let us denote the true distribution by N ? = N (µ?, I) for short.
Consider an arbitrary hyperplane Hw,c with normal vector w 2 Rd and threshold
c 2 R. Since the partition distribution (supported on a family of partitions B)
satisfies Equation (G.1), we have that, for the random variable N ?(Uw,c,S), that
takes values in [0, 1], there exists a such that

E
S⇠p

h
N ?(Uw,c,S)

i
= a .

We will use the following simple Markov-type inequality for bounded random
variables.
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Fact G.2 (Lemma B.1 from Shalev-Shwartz and Ben-David (2014a)). Let Z be a
random variable that takes values in [0, 1]. Then, for any a 2 (0, 1), it holds that

Pr[Z > a] � E[Z]� a

1� a
� E[Z]� a .

By the Fact G.2, it holds that

Pr
S⇠p

h
N ?(Uw,c,S) � a/2

i
� a/2 .

Hence, the mass of the “good” partitions is at least a/2. Fix such a partition S 2 B
(in the support of the partition distribution) and consider the true N ? = N (µ?)

and the guess N = N (µ) distributions. For this pair of distributions, consider the
set

H =
n

x 2 Rd : xT(µ� µ?) =
�
kµk2

2 � kµ?k2
2
�
/2
o

.

Observe that this set is a hyperplane with normal vector µ? � µ, that contains the
midpoint 1

2(µ + µ?) (see Figure G.2).

µ1 = µ⇤

µ2
H

Figure G.2: Illustration of the worst-case set in testing the hypotheses h1 = {µ1 =
µ?} and h2 = {µ2 = µ?}.

Our main focus is to lower bound the total variation distance of the coarse
distributions N ?

p and Np. We claim that this lower bound can be described as a
fractional knapsack problem and, hence, it is attained by a worst-case set, that
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(intuitively) places points as close as possible to the hyperplane H, until its mass
with respect to the true Gaussian N ? is at least a/2. Recall that the total variation
distance between the two coarse distributions is

dTV(Np,N ?
p) = Â

S2B
p(S) Â

S2S

���N (S)�N ?(S)
��� .

So, the LHS is at least Q(a) times the absolute gap of the masses assigned by N and
N ? over a worst-case set that lies in a good partition (one with N ?(Uw,c,S) � a/2).
This holds since the probability to draw a good partition is at least a/2. The
following optimization problem gives a lower bound on the mass gap of a worst-
case set in a good partition and, consequently, a lower bound on the total variation
distance between N ?

p and Np.

min
S

���
Z
(N (µ?; x)�N (µ; x))1S(x)dx

��� ,

subj. to
Z

N (µ?; x)1S(x)dx � a/2 .

We begin with a claim about the shape of the worst case set. Let t = (kµk2
2 �

kµ?k2
2)/2 be the hyperplane threshold.

Claim G.3. Let H+ = {x : xT(µ� µ?) < t} and H� = {x : xT(µ� µ?) > t}. The
mass of the solution of the fractional knapsack is totally contained in either H+ or H�.

Since the partition distribution satisfies Equation (G.1) with respect to the true
Gaussian N (µ?) and since the set H is a hyperplane, the probability mass that is
not cut by H is at least a. Hence, there exists a halfspace (either H+ or H�) with
mass at least a/2. Also, observe that the hyperplane H is the zero locus of the
polynomial q(x) = kx� µk2

2 � kx� µ?k2
2 and, hence, it is the set of points where

the two spherical Gaussians N (µ) and N (µ?) assign equal mass. We have that

H+ =
n

x : N (µ?) > N (µ)
o

.

Hence, we can assume that the worst-case set lies totally in H+ and, then, the
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optimization problem can be written as

min
S

Z ✓
1� N (µ; x)

N (0; x)

◆
N (0; x)1S(x)dx ,

subj. to
Z

N (0; x)1S(x)dx � a/2, S 2 H+ .

Without loss of generality, we assume that N ? = N (0, I) and N = N (µ, I). In
order to design the worst-case set, since the optimization has the structure of the
fractional knapsack problem, we can think of each point x 2 H+ as having weight
equal to its contribution to the mass gap (N (0; x)�N (µ; x)) and value equal to
its density with respect to the true Gaussian N (0; x). Hence, in order to design
the worst-case set, the points x 2 H+ should be included in the set in order of
increasing ratio of weight over value, until reaching a threshold T. So, we can
define the worst-case set to be

S =
n

x 2 H+ : 1� N (µ; x)
N (0; x)

 T
o
=
n

x 2 H+ : 1� exp(p(x))  T
o

,

where p(x) = � 1
2(µ� x)T(µ� x) + 1

2 xTx = � 1
2 µTµ + µTx and note that p(x)  0

for any x 2 H+. We will use the following anti-concentration result about the
Gaussian mass of sets, defined by polynomials.

Lemma G.4 (Theorem 8 of Carbery and Wright (2001)). Let q, g 2 R+, µ 2 Rd and
S in the positive semidefinite cone Sd

+. Consider p : Rd ! R a multivariate polynomial of
degree at most ` and let

Q =
n

x 2 Rd : |p(x)|  g
o

.

Then, there exists an absolute constant C such that

N (µ, S;Q)  Cqg1/`

(Ez⇠N (µ,S)[|p(z)|q/`])1/q .

We can apply Lemma G.4 for the quadratic polynomial p(x) by setting g =
a2

256C2

p
Ex⇠N ? [p2(x)] with q = 4, where C is the absolute Carbery-Wright constant.
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Hence, we get that the Gaussian mass of the set Q = {x : |p(x)|  g} is equal to

N ?(Q)  a/4 .

So, for any point x in the remaining a/4 mass of the set S, it holds that |p(x)| � g.
We first observe that g can lower bounded by the total variation distance of N ?

and N . It suffices to lower bound the expectation Ex⇠N ? [p2(x)]. We have that

E
x⇠N ?

h
p2(x)

i
� Varx⇠N ?

h
p(x)

i
= Varx⇠N ?

h
� 1

2
µTµ + µTx

i
= kµk2

2 ,

and, hence

g � a2

256C2 · kµk2 .

We will use the following lemma for the total variation distance of two Normal
distributions.

Lemma G.5 (see Corollaries 2.13 and 2.14 of Diakonikolas et al. (2016b)). Let
N1 = N (µ1, S1), N2 = N (µ2, S2) be two Normal distributions. Then, it holds

dTV(N1, N2) 
1
2

���S�1/2
1 (µ1 � µ2)

���
2
+
p

2
���I � S�1/2

1 S2S�1/2
1

���
F

.

Applying Lemma G.5 to the above inequality, we get

g � a2

256C2 · dTV(N (µ),N (µ?)) .

To conclude, we have to lower bound the L1 gap between N (0, I; x)1S(x) and
N (µ, I; x)1S(x) and since S lies totally in H+

Z

S
(N (0; x)�N (µ; x))dx = E

x⇠N ?

h
1� exp(p(x))

���1S(x)
i

.

To proceed, we distinguish two cases: First, assume that g  1 and recall that
Q = {x : |p(x)|  g}. Note that for y 2 [�1, 0], it holds that 1� exp(y) � |y|/2
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and, hence, we have that:

Z

S
(N (0; x)�N (µ; x))dx � E

x⇠N ?


|p(x)|

2
1S\Q(x)

�
� g E

x⇠N ?

h
1S\Q(x)

i
� ag

4
,

and, by the lower bound for g, we get
Z

S
(N (0, I; x)�N (µ, I; x))dx � Ca · dTV(N (µ),N (µ?)) ,

for some Ca = W(a3). Otherwise, let g > 1. Note that for y < �1, it holds that
1� exp(y) � 1/2. Hence, we get that

Z

S
(N (0; x)�N (µ; x))dx � E

x⇠N ?


1
2

1S\Q(x)
�
� a/8 .

In conclusion, we get that

dTV(N ⇤p ,Np) � Ca · dTV(N ?,N ) ,

where Ca = poly(a) and depends only on a.

G.4 Literature Overview on Partial Label Learning

The problem of learning from coarse labels falls in the regime of semi-supervised
learning Chapelle et al. (2006) and it appears in various literature threads termed as
(i) partial label learning Cour et al. (2011), (ii) ambiguous label learning Cour et al.
(2009); Hüllermeier and Beringer (2006), (iii) superset label learning Hüllermeier
and Cheng (2015) and (iv) soft label learning Côme et al. (2008). Closely related to
these tasks are the problems of learning from complementary labels Ishida et al.
(2017) and, more generally, learning from noisy and corrupted examples Angluin
and Laird (1988); Scott et al. (2013); Blanchard and Scott (2014); Van Rooyen and
Williamson (2017); Lukasik et al. (2020).

We stick with the term partial label learning for now since this is the most
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widely used. Many real-world learning tasks were solved under the framework of
partial label learning such as multimedia content analysis Cour et al. (2009, 2011)
and semantic image segmentation Papandreou et al. (2015).

We refer to Jin and Ghahramani (2002); Nguyen and Caruana (2008) and the
references therein for some seminal papers in the area. Through the years, vari-
ous approaches have been proposed to solve this challenging problem by utiliz-
ing major machine learning techniques, such as maximum likelihood estimation
and Expectation-Maximization Jin and Ghahramani (2002), convex optimization
Cour et al. (2011), k-nearest neighbors Hüllermeier and Beringer (2006) and error-
correcting output codes Zhang (2014); Zhang et al. (2017a). For an overview of
the practical treatment on the problem, we refer the interested reader to ?Xu et al.
(2021); Wen et al. (2021) (and the references therein) and more broadly to Triguero
et al. (2015); Van Engelen and Hoos (2020).

Despite extensive studies on partial label learning from an industrial perspective
(applied ML), our theoretical level of understanding is still limited. A fundamental
line of research deals with the statistical consistency (see e.g., Cour et al. (2011);
Cid-Sueiro et al. (2014); Feng et al. (2020); Cabannnes et al. (2020); Lv et al. (2020);
Wen et al. (2021)) and the learnability Liu and Dietterich (2014) of partial label
learning algorithms. Moreover, Cauchois et al. (2022) present a methodology
between partial supervision and validation.

Closer to our learning from coarse labels approach are the works of Cid-Sueiro
(2012) and Van Rooyen and Williamson (2017). In the former, the goal is to estimate
the posterior class probabilities from partially labelled data while, in the latter, the
authors study a more general problem of learning from corrupted labels and aim
to “invert” the corruption. This technique is inspired by the work of Natarajan et al.
(2013), where the authors proposed the method of unbiased estimators (which is
close to the connection between random classification noise and the SQ framework
of Kearns (1998)). This backward correction procedure of Natarajan et al. (2013);
Cid-Sueiro (2012); Van Rooyen and Williamson (2017) recovers the information
lost from the corrupted labels (under some structural assumptions) and results in
an unbiased estimate of the risk with respect to true distribution. Crucially, these
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works have to assume that the corruption process (i.e., the coarsening mechanism)
is known. This is also commented in Cabannnes et al. (2020). Our SQ reduction does
not require to know the mechanism; in some sense, the algorithm uses rejection
sampling and learning coarse discrete distributions (which is an unsupervised
learning problem) in order to invert the coarsening in the sense of Van Rooyen and
Williamson (2017) and obtain statistical queries with respect to the distribution
over the finely-labeled examples.
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