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Abstract 

Characterization of Carotid Plaque Vulnerability 

using Quantitative Ultrasound and Strain Imaging 

Xiao Wang 

Under the supervision of Professor Tomy Varghese and Professor Robert J. Dempsey 

At the University of Wisconsin-Madison 

 

Stroke is the leading cause of serious, long-term disability and the fourth leading 

cause of death in the United States. In addition to clinically recognized stroke, "silent" 

strokes may occur, and are five times more prevalent. Silent strokes are not detected 

based on classical transient ischemic attack (TIA) symptoms and therefore difficult to 

prevent. It is also likely that these "silent" strokes may cause accumulated cognitive 

decline, due to cerebral micro-emboli caused by instability in carotid vulnerable plaque. 

Thus it is important to characterize carotid plaque and assess its vulnerability. 

Plaque instability may be characterized by increased strain variations over a cardiac 

cycle with arterial pulsation. Therefore, strain imaging to detect plaque vulnerability 

based on regions with large strain fluctuations, may be able to determine plaque regions 

at increased risk for rupture. In this dissertation, accumulated axial, lateral and shear 

strain indices were correlated with cognitive function assessed on human subjects. 

Significant correlation of these maximum strain indices and cognitive function was 

demonstrated, indicating the feasibility of using strain indices to predict cognitive 

decline. Carotid plaque along with adventitia layer was segmented to identify vulnerable 

regions. Ultrasound strain imaging may therefore be a useful surrogate in the clinic to 
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detect vulnerability of plaque and assess potential risk of silent stroke.  

Statistical distributions of strain indices in different groups of patients and 

volunteers were also evaluated, followed by comparison of strain indices to trans-cranial 

Doppler (TCD) results. In addition to strain estimation along longitudinal scanning 

planes, an algorithm was developed to estimate radial and circumferential strain in a 

cross-sectional view of in vivo carotid artery using noninvasive ultrasound. 

Carotid plaque can also be characterized using quantitative ultrasound (QUS), to 

assess the acoustic properties of tissue. Differences in acoustic properties may reflect 

difference in tissue composition. A novel approach is proposed whereby localized 

calcified, fibrous and lipid regions within heterogeneous plaque using a region-to-region 

registration with 3D histology and 3D attenuation coefficient was performed. QUS may 

also provide improved characterization of vulnerable plaque composition using direct 

localization of plaque regions and structure to histology. 

  



iv 

 

Acknowledgements 

 

First of all I would like to thank my advisor, Professor Tomy Varghese. He gave 

me the opportunity to study medical physics here and introduced me to ultrasound 

research. His insightful ideas were the origination and directions of my research. Not 

only did he guide me in my academic life, but he gave me a lot of life advice and showed 

me patiently how to become a successful researcher. 

I would like to express my gratitude to Professor Robert Dempsey. He performed 

excellent surgeries on these patients and saved real lives. He is also a great leader of the 

Plaque Study group. His deep knowledge in neurosurgery was the clinical foundation of 

this dissertation. 

I want to specially thank Professor Carol Mitchell. She was my closest work mate 

in these four and a half years. I wouldn’t be able to show those beautiful ultrasound 

images in this dissertation without her steady hands on the ultrasound transducers. She 

was also very patient and segmented all the plaques for me. We solved the mystery of 

changing the size of Q-box on SuperSonic Aixplorer together. 

I greatly appreciate Professor Timothy Hall for his help and support, especially for 

letting me use his ultrasound machines. I would also like to thank Professor James 

Holden. He is such a great educator, and I will never forget the calm and elegant 

apporach he used in his lectures. 

I would like to sincerely thank Professor James Zagzebski. He is no doubt a 

wonderful mentor. I really enjoyed all the discussions with him. I would like to thank 

Professor Ernest Madsen and Gary Frank for the technical support and all the beautiful 

phantoms they made. 



v 

 

I would like to express my gratitude to all the members of the Plaque Study group: 

to Dr. Shahriar Salamat who spent a lot of time sitting in front of microscopes and 

segmenting pathology images; to Dr. Daren Jackson for sharing his thoughts in cognitive 

function and discussion on our publications; to Dr. Stephanie Wilbrand for her great 

organized coordination of patients and each research sub-group; and to all other members 

for working on the plaque research together.  

I would like to thank all the ultrasound group members; they are Dr. Matt 

McCormick, Dr. Ryan Dewall, Dr. Nick Rubert, Dr. Haiyan Xu, Dr. Eenas Omari, Dr. 

Chi Ma, Wenqi Ge, Atul Ingle, Kayvan Samimi and Wenjun Yang. Special thanks go to 

Dr. Matt McCormick, who laid a good foundation for Plaque Study research. 

I would also like to thank all my friends here in Madison, Wisconsin and far away. 

With their company, I didn’t not only survive but actually enjoyed many a cold winter in 

this forbidden north land. 

I owe my parents, Professor Qingyun Wang and Professor Ling Feng, a great debt 

of gratitude for their unconditional love and selfless support, and all the good things I 

inherited from them. They encouraged me to be a better me. I want to specially thank my 

mom who took very good care of my son when I was writing this dissertation late at night 

in WIMR. 

I want to dedicate this dissertation to my husband, Dr. Chi Ma, who was also an 

ultrasound group member. His love and support was my biggest motivation. I’m truly 

grateful that he took very good care of the family, even though he needed to drive a long 

way back from Mayo Clinic in Rochester, Minnesota every week. And my naughty son 

Russell, who is always a happy baby, is a blessing in my life. I love you both so much.  



vi 

 

Contents 

 

Abstract ii  

Acknowledgements iv  

Contents vi  

List of Figures xi  

List of Tables xvii  

  

Chapter 1 :  Introduction 1 

1.1       Motivation 1 

1.2       Organization of the Dissertation 2 

1.3       References 4 

 

Chapter 2 :  Literature Review 7 

2.1       Clinical Significance 7 

2.1.1    Stroke and Carotid Plaque Vulnerability 7 

2.1.2    Silent Stroke and Cognition 9 

2.1.3    Cognitive Function Assessments 10 

2.1.4    Carotid Artery Stiffness 11 

2.2       Carotid Plaque Characterization with Ultrasound Imaging 12 

2.2.1    Ultrasound Strain Imaging 12 

2.2.2    Ultrasound Strain Definition 16 

2.2.3    Quantitative Ultrasound Imaging 17 

2.2.4    Trans-cranial Doppler 19 

2.2.5    Pulse Wave Imaging 20 

2.2.6    Shear Wave Imaging 22  

2.3       References 23 

 

Chapter 3 :  Correlation of Ultrasound Strain Indices with Cognitive Function 

Assessed using RBANS 34 



vii 

 

3.1       Introduction 34 

3.2       Materials and Methods 35 

3.2.1    Data Acquisition 35 

3.2.2    Estimation of Strain Indices 38 

3.2.3    RBANS Scores 40 

3.3       Results 41 

3.3.1    Accumulated Axial, Lateral and Shear Strain over a Cardiac Cycle 41 

3.3.2    Correlation with RBANS Scores 44 

3.4       Discussion 52 

3.5       Improved Correlation with Inclusion of Adventitial Layer 55 

3.5.1    Comparison of the Strain Indices with and without Adventitia 55 

3.5.2    Improvement in Correlation with RBANS 68 

3.6       Shear Strain within the Adventitia 74 

3.7       Conclusions 75 

3.8       References 76 

 

Chapter 4 :  Correlation of Strain Indices with NINDS-CSN VCI Harmonization 

Standards 60-Minute Protocol 80 

4.1       Introduction 80 

4.2       Materials and Methods 80 

4.2.1    Data Acquisition 80 

4.2.2    Strain Indices Estimation 81 

4.2.3    Cognition Assessment 81 

4.2.4    Correlation Analysis 83 

4.3       Results 83 

4.4       Discussion 87 

4.5       Conclusions 88 

4.6       References 88 

 

Chapter 5 :  Receiver Operating Characteristic Analysis of Strain Indices as a 

Classifier for Cognitive Impairment 90 



viii 

 

5.1       Introduction 90 

5.2       Materials and Methods 91 

5.2.1    Data Acquisition 91 

5.2.2    Strain Indices Estimation 92 

5.2.3    Cognition Assessment 94 

5.2.4    Statistics and ROC Analysis 95 

5.3       Results 96 

5.3.1    Correlation Study 96 

5.3.2    ROC Analysis 100 

5.4       Discussion 110 

5.5       Conclusions 112 

5.6       References 112 

 

Chapter 6 :  Statistics of Strain Indices versus Plaque Study Patients and Volunteers 

 114 

6.1       Introduction 114 

6.2       Materials and Methods 115 

6.2.1    Data Acquisition on Human Subjects 115 

6.2.2    Data Acquisition on Human Volunteers 116 

6.2.3    Statistical Methods 117 

6.3       Results 118 

6.3.1    Strain Indices Histograms 118 

6.3.2    Statistics of Strain Indices for Different Clinical Groups 121 

6.3.3    Comparison with Human Volunteers 146 

6.4       Discussion 152 

6.5       Conclusions 152 

6.6       References 153 

 

Chapter 7 :  Trans-cranial Doppler versus Ultrasound Strain Indices 155 

7.1       Introduction 155 

7.2       Materials and Methods 156 



ix 

 

7.2.1    Data Acquisition 156 

7.2.2    Statistical Analysis 157 

7.3       Results 158 

7.3.1    HITS 158 

7.3.2    Correlations of MCA Velocities with Strain Indices and ICA Velocities 

 159 

7.4       Discussion 161 

7.5       Conclusions 162 

7.6       References 162 

 

Chapter 8 :  Estimation of Carotid Radial and Circumferential Strain 165 

8.1       Introduction 165 

8.2       Materials and Methods 166 

8.2.1    Data Acquisition 166 

8.2.2    Polar grid generation 168 

8.2.3    Radial and Circumferential Displacement Estimation 168 

8.2.4    Radial and Circumferential Strain Generation 169 

8.3       Results 170 

8.3.1    Radial and Circumferential Displacements 170 

8.3.2    Radial and Circumferential Strain Tensor Images 173 

8.4       Discussion 176 

8.5       Conclusions 177 

8.6       References 177 

 

Chapter 9 :  Characterization of Carotid Plaque with Histology and Quantitative 

Ultrasound 179 

9.1       Introduction 179 

9.2       Materials and Methods 181 

9.2.1    Attenuation Estimation 181 

9.2.2    Histology Reconstruction 184 

9.3       Results 186  



x 

 

9.3.1    Alignment of Attenuation Volumes to Histology 186 

9.3.2    Attenuation Coefficients in Different Regions 188 

9.4       Discussion 188 

9.5       Conclusions 189 

9.6       References 190 

 

Chapter 10  :  Conclusions and Future Work 192 

10.1      Contributions of this Dissertation 192 

10.2      Future Directions 194 

  



xi 

 

List of Figures  

 

Figure 3.1: B-mode image (a) and segmented plaque on B-mode image (b).  38 

Figure 3.2: Axial strain values overlaid on the B-mode image (a). Mean values in the 

small ROI and entire plaque are shown in (b), and their standard deviations in (c). 42 

Figure 3.3: Lateral strain values overlaid on the B-mode image (a). Mean values in the 

small ROI and entire plaque are shown in (b), and their standard deviations in (c). 43 

Figure 3.4: Shear strain values overlaid on the B-mode image (a). Mean values in the 

small ROI and entire plaque are shown in (b), and their standard deviations in (c). 44 

Figure 3.5: Linear least square fits of total RBANS score with maximum (a), absolute 

minimum (b), and peak-to-peak (c) axial strain averaged over the small ROI. ○ = 

Symptomatic, x = asymptomatic, □ = questionable, the dotted line represents the linear fit 

for symptomatic, dashed line the linear fit for asymptomatic, and the solid line denotes 

the linear fit for all patients. 46 

Figure 3.6: Linear least square fits of total RBANS score with maximum (a), absolute 

minimum (b), and peak-to-peak (c) lateral strain averaged over the small ROI. ○ = 

Symptomatic, x = asymptomatic, □ = questionable, the dotted line represents the linear fit 

for symptomatic, dashed line the linear fit for asymptomatic, and the solid line denotes 

the linear fit for all patients. 47 

Figure 3.7: Linear least square fits of total RBANS score with maximum (a), absolute 

minimum (b), and peak-to-peak (c) shear strain averaged over the small ROI. ○ = 

Symptomatic, x = asymptomatic, □ = questionable, the dotted line represents the linear fit 

for symptomatic, dashed line the linear fit for asymptomatic, and the solid line denotes 

the linear fit for all patients. 48 

Figure 3.8: Linear least square fits of total RBANS score with the maximum axial (a), 

lateral (b) and shear (c) strain averaged over the entire plaque. ○ = Symptomatic, x = 

asymptomatic, □ = questionable, the dotted line represents the linear fit for symptomatic, 

dashed line the linear fit for asymptomatic, and the solid line denotes the linear fit for all 

patients. 50 

Figure 3.9: Linear least square fit of the total RBANS score with peak-to-peak axial (a), 



xii 

 

lateral (b) and shear (c) strain averaged over the entire plaque. ○ = Symptomatic, x = 

asymptomatic, □ = questionable, the dotted line represents the linear fit for symptomatic, 

dashed line the linear fit for asymptomatic, and the solid line denotes the linear fit for all 

patients. 51 

Figure 3.10: B-mode image (a) and segmented plaque on B-mode image using the 

plaque-only segmentation (b) and the plaque-with-adventitia segmentation (c). 57 

Figure 3.11: Axial strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on a symptomatic 

plaque. 59 

Figure 3.12: Axial strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on an asymptomatic 

plaque. 60 

Figure 3.13: Lateral strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on a symptomatic 

plaque. 61 

Figure 3.14: Lateral strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on an asymptomatic 

plaque. 62 

Figure 3.15: Shear strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on a symptomatic 

plaque. 63 

Figure 3.16: Shear strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on an asymptomatic 

plaque. 64 

Figure 3.17: Accumulated axial (a), lateral (b) and shear (c) strain over two cardiac 

cycles with plaque-only and plaque-with-wall segmentation on a symptomatic (i) and an 

asymptomatic patient (ii). 66 

Figure 3.18: Accumulated axial (a), lateral (b) and shear (c) strain over two cardiac 

cycles in carotid artery wall on healthy human volunteer (i) and (ii). 67 

Figure 3.19: Linear least-squares fits of RBANS Total score with maximum axial (a), 

and maximum lateral (b) strain averaged over the small region of interest. ○ = 



xiii 

 

Symptomatic, x = asymptomatic, □ = questionable, the dotted line represents the linear fit 

for symptomatic, dashed line the linear fit for asymptomatic, and the solid line denotes 

the linear fit for all patients. 69 

Figure 3.20: Linear least-squares fits of RBANS Total score with maximum (a), and 

peak-to-trough (b) shear strain averaged over the small region of interest. ○ = 

Symptomatic, x = asymptomatic, □ = questionable, the dotted line represents the linear fit 

for symptomatic, dashed line the linear fit for asymptomatic, and the solid line denotes 

the linear fit for all patients. 71 

Figure 5.1: B-mode image reconstructed from RF data (A) and segmented plaque with 

adventitia on the B-mode image (B). 93 

Figure 5.2: Axial (A), lateral (B) and shear (C) strain images in the segmented region 

overlaid on the B-mode image. 97 

Figure 5.3: Linear least-squares fits of the z-scores with maximum axial strain (A), 

maximum lateral strain (B) and maximum shear strain (C). ○ = Symptomatic, x = 

asymptomatic, □ = questionable, the dotted line represents the linear fit for symptomatic, 

dashed line the linear fit for asymptomatic, and the solid line denotes the linear fit for all 

patients. 99 

Figure 5.4: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Higher cognition group (z<0), * = lower cognition 

group (z≥0). 101 

Figure 5.5: Three-dimensional scatter plot of z-score, maximum axial strain and 

maximum lateral strain plotted against each other. ○ = Symptomatic group, * = 

asymptomatic group. 102 

Figure 5.6: Three-dimensional scatter plot of z-score, maximum lateral strain and 

maximum shear strain plotted against each other. ○ = Symptomatic group, * = 

asymptomatic group. 103 

Figure 5.7: Three-dimensional scatter plot of z-score, maximum shear strain and 

maximum axial strain plotted against each other. ○ = Symptomatic group, * = 

asymptomatic group. 104 

Figure 5.8: ROC curves using individual strain indices or features (A) and combined 

features (B) for all patients. 105 



xiv 

 

Figure 5.9: ROC curves using individual features (A) and combined features (B) for 

symptomatic patients. 107 

Figure 5.10: ROC curves using individual features (A) and combined features (B) for 

asymptomatic patients. 109 

Figure 6.1: Histogram and fitted curve for maximum and peak-to-peak axial strain (a), 

lateral strain (b) and shear strain (c) for all patients. 119 

Figure 6.2: Normal distribution fitted histogram of maximum axial strain (a), lateral 

strain (b) and shear strain (c). 120 

Figure 6.3: Comparison of histograms with fitted curve for maximum axial strain for 

symptomatic group and asymptomatic group. 122 

Figure 6.4: Comparison of histograms with fitted curve for maximum lateral strain for 

symptomatic group and asymptomatic group. 123 

Figure 6.5: Comparison of histograms with fitted curve for maximum shear strain for 

symptomatic group and asymptomatic group. 124 

Figure 6.6: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Symptomatic group, * = asymptomatic group. 125 

Figure 6.7: Comparison of histograms with fitted curve for maximum axial strain for 

diabetes group and the no diabetes group. 127 

Figure 6.8: Comparison of histograms with fitted curve for maximum lateral strain for 

diabetes group and the no diabetes group. 128 

Figure 6.9: Comparison of histograms with fitted curve for maximum shear strain for 

diabetes group and the no diabetes group. 129 

Figure 6.10: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Diabetes group, * = no diabetes group. 130 

Figure 6.11: Comparison of histograms with fitted curve for maximum axial strain for 

hypertension and no hypertension group respectively. 132 

Figure 6.12: Comparison of histograms with fitted curve for maximum lateral strain for 

hypertension and no hypertension group respectively. 133 

Figure 6.13: Comparison of histograms with fitted curve for maximum shear strain for 

hypertension and no hypertension group respectively. 134 

Figure 6.14: Three-dimensional scatter plot of maximum axial, lateral and shear strain 



xv 

 

indices plotted against each other. ○ = Hypertension group, * = no hypertension group. 

 135 

Figure 6.15: Comparison of histograms with fitted curve for maximum axial strain for 

hyperlipidemia group and no hyperlipidemia group. 137 

Figure 6.16: Comparison of histograms with fitted curve for maximum lateral strain for 

hyperlipidemia group and no hyperlipidemia group. 138 

Figure 6.17: Comparison of histograms with fitted curve for maximum shear strain for 

hyperlipidemia group and no hyperlipidemia group. 139 

Figure 6.18: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Hyperlipidemia group, * = no hyperlipidemia 

group. 140 

Figure 6.19: Comparison of histograms with fitted curve for maximum axial strain for 

smoker group and non-smoker group. 142 

Figure 6.20: Comparison of histograms with fitted curve for maximum lateral strain for 

smoker group and non-smoker group. 143 

Figure 6.21: Comparison of histograms with fitted curve for maximum shear strain for 

smoker group and non-smoker group. 144 

Figure 6.22: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Smoker group, * = non-smoker group. 145 

Figure 6.23: Comparison of histograms for maximum axial strain (a), lateral strain (b) 

and shear strain (c) for patient group and volunteer group. 147 

Figure 6.24: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Patient group, * = volunteer group. 148 

Figure 6.25: Bivariate histograms of age and maximum axial strain (a), lateral strain (b) 

and shear strain (c) for patient group and volunteer group. 149 

Figure 6.26: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Patients in 40s, + = patients in 50s, * = patients in 

60s, Δ = patients in 70s, □ = patients in 80s. 150 

Figure 6.27: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Patients in 40s, + = patients in 50s, * = patients in 

60s, Δ = patients in 70s. 151 



xvi 

 

Figure 7.1: A classical HITS labeled on the TCD display. 159 

Figure 8.1: B-mode image reconstructed from RF data (a) and segmented plaque with 

adventitia on the B-mode image (b). 167 

Figure 8.2: Radial displacement images at systole (a) and end-diastole (b) in the 

segmented region. 171 

Figure 8.3: Circumferential displacement images at systole (a) and end-diastole (b) in the 

segmented region. 172 

Figure 8.4: Radial strain images at systole (a) and end-diastole (b) in the segmented 

region. 174 

Figure 8.5: Circumferential strain images at systole (a) and end-diastole (b) in the 

segmented region. 175 

Figure 9.1: 3D B-mode and QUS attenuation coefficient volumes for a plaque specimen. 

 184 

Figure 9.2: Pathology microscopic slides and color-coded segmentation of different 

plaque regions. 186 

Figure 9.3: Alignment of attenuation images with color-coded histology slides for the 

previously shown sample. 187 

Figure 9.4: Alignment of attenuation images with color-coded histology slides for 

another sample. 187 

 

 

  



xvii 

 

List of Tables  

 

Table 3.1: Characteristics of the human subject population utilized in this study. 36 

Table 3.2: Correlations of RBANS Total score for plaque-only and plaque-with-

adventitia segmentation. Significant correlations are marked in bold. 72 

Table 3.3: Correlations of the specific component scores in RBANS total with maximum 

strain indices. Significant correlations are marked in bold. 73 

Table 4.1: Significant correlations of each sub-test score to maximum strain indices for 

all patients (n = 51). 84 

Table 4.2: Significant correlations of each sub-test score to maximum strain indices for 

symptomatic group (n = 31). 85 

Table 4.3: Significant correlations of each sub-test score to maximum strain indices for 

asymptomatic group (n = 20). 85 

Table 4.4: Significant correlations of each sub-test score to maximum strain indices for 

diabetes group (n = 14). 86 

Table 4.5: Significant correlations of each sub-test score to maximum strain indices for 

hypertension group (n = 43). 86 

Table 4.6: Significant correlations of each sub-test score to maximum strain indices for 

hyperlipidemia group (n = 40). 87 

Table 4.7: Significant correlations of each sub-test score to maximum strain indices for 

smoker group (n = 37). 87 

Table 5.1: Correlation of z-score to maximum strain indices. 100 

Table 5.2: Sensitivity, specificity, area under curve (AUC) and 95% confidence intervals 

(CI) for individual features and combined features for all patients. 106 

Table 5.3: Sensitivity, specificity, area under curve (AUC) and 95% confidence intervals 

(CI) for individual features and combined features for symptomatic patients. 108 

Table 5.4: Sensitivity, specificity, area under curve (AUC) and 95% confidence intervals 

(CI) for individual features and combined features for asymptomatic patients. 110 

Table 6.1: Mean and standard deviation of the normal distribution fit for maximum axial, 

lateral and shear strain indices. 121 



xviii 

 

Table 6.2: Sensitivity and specificity for the classification of symptomatic patients for 

individual and combined features. 126 

Table 6.3: Sensitivity and specificity of classification of patients with diabetes for 

individual features and combined features. 131 

Table 6.4: Sensitivity and specificity of classification of patients with hypertension for 

individual features and combined features. 136 

Table 6.5: Sensitivity and specificity of classification of patients with hyperlipidemia for 

individual features and combined features. 141 

Table 6.6: Sensitivity and specificity of classification of patients with tobacco usage for 

individual features and combined features. 146 

Table 7.1: Correlations of maximum strain indices with MCA PSV on surgical side and 

non-surgical side for patients with HITS. 160 

Table 7.2: Correlations of ICA PSV with MCA PSV on surgical side and non-surgical 

side for patients with HITS. 160 

Table 9.1: Attenuation coefficients in different regions. 188 

 

  



1 

 

Chapter 1 : Introduction 

1.1   Motivation 

Stroke is the leading cause of serious, long-term disability and the fourth leading 

cause of mortality in the United States [1]. Over 700,000 strokes are reported each year 

and more than 130,000 people die each year from strokes in the United States [2]. 

Treatment of disabilities due to strokes also significantly adds to health care costs [2]. 

Twice as many stroke patients may also experience vascular cognitive impairment [3]. In 

addition, at least 5 “silent” strokes occur for each clinically recognized stroke [4]. Silent 

strokes, without clinical symptoms, have been associated with cognitive impairment [5]. 

Vascular cognitive impairment is the second leading cause of dementia after Alzheimer’s 

disease [6]. Instability in vulnerable plaque can generate cerebral micro-emboli, which 

may be related to both stroke and eventual cognitive abnormality. 

Plaques are not randomly distributed in vessel walls. Symptomatically sensitive areas 

for plaque deposition include coronary and carotid arteries and the descending aorta [7-

12]. Carotid plaque and its relationship to stroke has been an area of considerable 

research focus due to the devastating effects of emboli. In addition to stenosis, emboli in 

the carotid vessels may be more critical due to the smaller vessels and critical regions of 

the cerebral vasculature [13]. Carotid stenosis by itself may not result in emboli; 

however, the structural stability of the deposited plaque is a more direct indicator for 

emboli. Even small emboli may produce devastating and clinically relevant 
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consequences, therefore, it is clinically important to identify not only the presence of 

atherosclerotic plaques, but also those plaques that are biochemically or functionally 

more likely to produce emboli [14]. Emboli might be generated from rupture of 

vulnerable plaque, thus it is important to assess plaque vulnerability [15]. 

For superficial arteries, ultrasound imaging can become a viable screening modality 

for assessing plaque geometry and the extent of stenosis. Strain imaging [16] to detect 

plaque vulnerability based on identifying localized regions with large strain fluctuations, 

with arterial pulsation, may be able to determine risk for cognitive impairment. Plaque 

instability may be characterized by these increased strain variations over a cardiac cycle. 

Accumulated strain tensor indices over a cardiac cycle within a pulsating carotid plaque 

may be a viable biomarker for the diagnosis of plaque instability. In addition to strain 

imaging, quantitative ultrasound (QUS) imaging, which assesses the variation in acoustic 

properties such as the attenuation coefficient, may enable characterization of tissue 

composition in heterogeneous carotid plaque [17] and assist in the classification of 

vulnerable plaque [18].  

1.2   Organization of the Dissertation 

In Chapter 2, we discuss in more detail the clinical significance of stroke, silent 

stroke and vascular cognitive impairment. The importance of the characterization of 

carotid vulnerable plaque is emphasized. Previous work on the characterization of carotid 

plaque using ultrasound strain imaging and quantitative ultrasound is reviewed. 

In Chapters 3 through 5 we evaluate the distribution and variation of maximum and 

peak-to-trough axial, lateral and shear strains indices estimated from in vivo carotid 
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plaques in patients scheduled for a carotid endarterectomy (CEA) using noninvasive 

ultrasound imaging. We also examine the relationship between these strain indices and 

cognitive function. Chapter 3 focuses on the correlations between our strain indices and 

cognitive function measured using a Repeatable Battery for the Assessment of 

Neuropsychological Status (RBANS) in an initial group of patients. A improved 

segmentation method is also proposed in Chapter 3 that includes the adventitial layer that 

provides better correlations with our strain indices. Chapter 4 evaluates the strain indices 

in a second larger group of patients and correlate maximum strain indices to cognition 

scores obtained with National Institute of Neurological Disorder and Stroke-Canadian 

Stroke Network (NINDS-CSN) Vascular Cognitive Impairment Harmonization Standards 

60-minute protocol. Chapter 5 combines strain indices and cognition results of the two 

groups of patients and evaluates correlations between strain indices and cognitive 

function, as well as examine the feasibility of using strain indices to classify patients with 

cognitive impairment using Receiver Operating Characteristic (ROC) analysis. 

Chapter 6 conducts a statistical analysis on the variation in the strain indices among 

all patients and volunteers. Statistical distributions of maximum axial, lateral and shear 

strain indices for symptomatic patients are compared to those for asymptomatic patients. 

Strain distributions for patients with diabetes, hypertension, hyperlipidemia and tobacco 

smoking groups are compared to those without the condition. Strain and age distributions 

were also compared between patients and a limited study on volunteers. 

Micro-emboli generated by plaque rupture may be visualized using trans-cranial 

Doppler (TCD) monitoring. Chapter 7, provide a comparison of  middle cerebral artery 

(MCA) velocities measured using TCD with ultrasound strain indices and internal carotid 
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artery (ICA) velocities in patients with emboli observed with TCD monitoring.  

So far strain indices were estimated in a longitudinal scan of the carotid artery. A 

more straightforward and intuitive interpretation of deformation may be obtained by 

looking at the radial and circumferential strain along a cross-sectional view. In Chapter 8 

we present radial and circumferential strain indices estimation using a Lagrangian 

description for cross-sectional scans of in vivo carotid artery using noninvasive 

ultrasound.  

Chapter 9 presents QUS based evaluation of excised plaque using the attenuation 

coefficient as a parameter of interest. A novel approach is proposed to characterize 

localized calcified, fibrous and lipid regions within heterogeneous plaque using a region-

to-region registration with three-dimensional (3D) histology and 3D attenuation 

coefficient maps obtained using QUS methods.  

Finally, Chapter 10 describes the contributions of this dissertation and suggests 

possible avenues for future work on the characterization of carotid plaque vulnerability. 
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Chapter 2 : Literature Review 

2.1   Clinical significance 

2.1.1   Stroke and carotid plaque vulnerability 

Stroke is the leading cause of serious, long-term disability and the fourth leading 

cause of death in the United States. Stroke etiologies and vascular risk factors are 

different in young adult patients and older patients, and mortality or clinical outcome is 

not independently associated with age [1]. Carotid plaque and possible embolic stroke are 

strongly linked through emboli generated by plaque rupture. Carotid stenosis by itself 

may not result in emboli; however, the structural stability of the deposited plaque is a 

more direct indicator of emboli. Micro-emboli generated from the rupture of vulnerable 

carotid plaque can flow into the vasculature of the brain and cause ischemic events 

resulting in stroke, vascular cognitive impairment or both [2]. Vulnerable plaques are 

unstable and can be an origination point for emboli. In general, softer plaques that are 

prone to increased deformations over a cardiac cycle are hypothesized to be vulnerable 

and pre-disposed to shedding emboli. In historical classification, vulnerable plaques are 

plaques that have a thin fibrous cap or fissured cap covering the foamy or necrotic core, 

with the presence of overt hemorrhage, ulceration or thrombus [3-4]. A panel of proteins 

expressed or retained in atherosclerotic plaques excised from human carotid artery has 

been found to be more abundant in vulnerable unstable plaques defined by the histology 

criteria [4] than stable plaques using proteomics, and therefore may be involved in the 
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plaque rupture process [5]. It is possible that plaque vulnerability is enhanced when the 

plaque undergoes significant strain variations and fatigue over the arterial pulsation of the 

cardiac cycle.  

Carotid plaque composition is also related to coronary artery disease. Patients with 

acute myocardial infarction and coronary artery disease, frequently have unstable carotid 

plaques [6]. Complex carotid plaques with thrombi, ulceration, irregularity, 

predominantly echolucent or hypoechoic areas, and heterogeneity within echolucent 

areas, are associated with complex coronary plaques, and have higher prevalence in acute 

coronary syndromes than stable coronary artery disease [7]. Low integrated backscatter 

on echolucent plaques indicates lipid-rich lesions or unstable plaques. Echolucent or 

hypoechoic carotid plaques have been shown to predict the presence of complex coronary 

plaque, and also future coronary events in patients with stable coronary artery disease [8]. 

Studies have shown that irregularity on plaque surface in symptomatic carotid artery 

plaque predicts contralateral carotid plaque irregularity. Patients with plaque surface 

irregularity on both arteries tend to have previous myocardial infarction, and non-stroke 

vascular death [9]. 

Generally carotid endarterectomies (CEA) are performed on patients when the 

stenosis is greater than 70%, regardless of plaque composition [10]. Risk models of CEA 

on symptomatic carotid stenosis have been studied, since treatment decisions are based 

on the likelihood benefits and risks of CEA for individual patients [11]. It has been 

shown that CEA lowers death and morbidity rates for most patients, but risks are higher 

for patients with a smoking history, substantial angina, contralateral occlusion, or pre-

operative transient ischemic attacks (TIA) [12]. Studies have shown that there is only 
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moderate benefit with CEA for patients with <70% stenois in 5 years, but durable benefit 

for patients with >70% stenosis over 8 years, and there is no benefit for patients with 

<50% stenosis [13]. Clinical trials conducted indicated that CEA is highly beneficial for 

symptomatic patients with 70-99% stenosis [14], but studies also showed that 

symptomatic patients with 70 - 99% carotid stenosis may not benefit from CEA [15]. 

2.1.2   Silent stroke and cognition 

In addition to clinically recognized stroke, "silent" strokes may occur, and are five 

times more prevalent [16]. Silent strokes are not detected based on classical TIA 

symptoms and therefore difficult to prevent. It is likely that these "silent" strokes may be 

associated with accumulated cognitive decline. For every patient suffering a stroke, twice 

as many people will experience vascular cognitive impairment [17]. Studies have 

suggested that silent strokes may occur with concurrent subclinical micro-emboli [18] 

and have been associated with cognitive impairment [19]. The pathophysiology of silent 

strokes includes microvascular degeneration, either in the brain or in the feeding vessel 

walls, and embolic disorders [20-21]. The focus has been on the possibility of physical 

abnormalities within diseased carotid vessels as measurable markers of microvascular 

pathology and potential sources of microemboli [22-23]. Cerebral micro-emboli due to 

instability in carotid vulnerable plaque can lead to cognitive impairment [24], and thus it 

is important to characterize carotid plaque and assess its vulnerability. It has also been 

suggested that increased strain in plaque may correlate with cognitive abnormalities [25], 

suggesting that it is important to identify patients with vulnerable plaques to help prevent 

future stroke and cognitive impairment. Studies have shown that the risk of silent stroke is 

positively related to the extent of carotid stenosis for both symptomatic and asymptomatic 
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patients [26]. 

Vascular cognitive impairment [27], on the other hand, may also be predicted by 

arterial aging and stiffening [28]. There is evidence that cerebral micro-emboli have a 

significant correlation with vascular dementia and are associated with a faster decline of 

cognitive function [29-30]. Correlations have also been found between the number of 

intra-operative micro-emboli detected by trans-cranial Doppler and the post-operational 

cognitive measures [24, 31-32]. Vascular risk factors including diabetes, hypertension, 

dyslipidemia, smoking and atherosclerosis have also been associated with Alzheimer's 

disease [33]. Research has also focused on controlling cardiovascular risk factors to 

prevent or slow the progression of mixed dementia, coexistence of Alzheimer’s disease 

and vascular dementia, since cognition improved after treatment will eventually decline 

[34]. 

2.1.3   Cognitive function assessments 

The syndrome of dementia, either Alzheimer’s or vascular cognitive impairment, 

involves cognitive decline with memory impairment and deterioration in at least one 

other cognitive function [35]. Definition of cognitive function includes the processes of 

how a person perceives, registers, stores, retrieves, and uses information [36]. The 

purpose of cognitive assessment is to evaluate an individual’s cognitive abilities and to 

screen for the presence of cognitive impairment [37]. Assessing cognitive function is 

essential for early detection and prompt treatment of cognitive impairment, since 

undetected cognitive impairment is related to greater mobility and mortality [38]. Several 

cognition tests have been utilized in the clinic to screen for dementia and cognitive 

impairment [39], and for cognition assessment in elderly patients [37]. 
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To assess cognitive impairment, the Repeatable Battery for the Assessment of 

Neuropsychological Status (RBANS) [40] has been widely used as a cognition test 

protocol. RBANS takes less than 30 minutes, and it evaluates five cognitive domains. 

RBANS has been reported to be effective at both characterizing cognitive decline in older 

patients and screening for dementia in younger patients [40]. This cognition test was later 

extended by providing age and education-corrected scaled scores in the subtests [41]. 

The National Institute of Neurological Disorder and Stroke—Canadian Stroke 

Network (NINDS-CSN) Vascular Cognitive Impairment Harmonization Standards in 

2006 suggested different neuropsychological protocols for evaluation of cognition [17]. 

As a substitute for RBANS, the NINDS Vascular Cognitive Impairment Harmonization 

Standards has been suggested for the neuropsychological assessment of vascular 

cognitive impairment [28]. This cognitive function assessment protocol has been 

incorporated into stroke patient care in the clinic and has demonstrated clinical feasibility 

[42]. 

2.1.4   Carotid artery stiffness 

In addition to the acoustic properties of carotid plaque, the wall stiffness of carotid 

artery can also be an index in the prediction of stroke. Van Popele et al. [43] conducted 

the Rotterdam Study and found that both aortic and common carotid artery stiffness had 

strong positive association with atherosclerosis. Mattace-Raso et al. [44] demonstrated 

that aortic pulse wave velocity (PWV), which measures arterial stiffness along with 

carotid distensibility, strongly predicted coronary heart disease and stroke in the 

Rotterdam Study. Laurent et al. [45-46] assessed aortic stiffness in patients with essential 

hypertension by measuring carotid-femoral PWV and found that stiffness is an 
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independent predictor of cardiovascular mortality and fatal stroke. Tsivgoulis et al. [47] 

evaluated common carotid artery (CCA) distensibility, the change of CCA diameter 

during the cardiac cycle, and found that increased CCA stiffness was associated with 

ischemic stroke. Eigenbrodt et al. [48] showed that CCA diameter was positively and 

significantly associated with age among middle-aged, black and white men and women 

with no pre-existing disease, no plaques or shadowing, and no major vascular risk factors. 

Nikic et al. [49] evaluated CCA intima-media thickness (IMT) in patients with incident 

ischemic brain infarctions and in controls without cerebrovascular disease, and found that 

mean CCA IMT was significantly higher in patients than in controls. Sharma et al. [50] 

conducted a cohort study involving over 2000 individuals, they found that subclinical 

atherosclerosis determined by carotid IMT, carotid plaque score, and coronary artery 

calcium score in the absence of clinical cardiovascular event are significantly associated 

with parameters of left ventricular dyssynchrony as a marker of subclinical regional 

myocardial dysfunction. Paini et al. [51] compared carotid artery stiffness at the site of 

plaque to the upstream adjacent CCA, and showed that an inward bending strain pattern, 

defined by stiffer carotid artery at the level of plaque than proximal CCA, would 

associate with type 2 diabetes and dyslipidemia. Several ultrasound-based techniques 

have been introduced to quantify arterial stiffness, including pulse wave imaging [52] and 

shear wave imaging [53-54]. 

2.2   Carotid plaque characterization with ultrasound imaging 

2.2.1   Ultrasound strain imaging 

Characterization of carotid plaque plays an important role in detecting plaque 
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vulnerability to rupture. Ultrasound is a noninvasive option for imaging superior shallow 

vessels such as the carotid artery. B-mode images are commonly used clinically, but they 

are not sufficient to identify the vulnerability of plaque since they can only differentiate 

specific plaque types from normal tissue; but it is difficult to differentiate thrombus from 

surrounding lipidic plaque [55]. 

Plaque instability may be characterized by increased strain variations over a cardiac 

cycle with arterial pulsation. Therefore, strain imaging to detect plaque vulnerability 

based on regions with large strain fluctuations, may be able to determine risk of plaque 

rupture, which can lead to cognitive impairment. Thus ultrasound strain imaging [56] 

may be a useful surrogate in the clinic to detect vulnerability of plaque and assess 

potential risk of silent stroke. Ultrasound strain imaging has been utilized to estimate the 

mechanical deformation of plaque, and can therefore assist in characterization of plaque 

vulnerability [57]. Most of the research on plaque characterization has focused on high-

frequency intravascular ultrasound (IVUS) characterization of coronary arteries because 

of its high spatial resolution. Intravascular elastography has been shown to identify 

vulnerable plaque both in vitro and in vivo. Fibrous tissue present with lower mean radial 

strain (0 - 0.2%) when compared to lipidic tissue (1 - 2%) [58-61]. Schaar et al. [62] used 

strain imaging and histology separately to identify vulnerable plaque, and plotted strain 

values against histology indices. They showed intravascular elastography to be a good 

diagnostic tool due to the high sensitivity of 88% and 89% specificity using a receiver 

operator characteristic (ROC)  analysis for a strain threshold of 1.26% [62]. 

There are fewer studies of noninvasive carotid plaque imaging using elastography, 

and strain imaging [63-74]. Maurice et al. [63] proposed a Von Mises parameter to 
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characterize mechanical properties of the vessel wall and utilized a Lagrangian speckle 

model estimator to calculate the strain tensor in order to estimate axial, lateral, shear and 

radial strain in the plaque and to characterize the vessel wall. They indicated that their 

method was reproducible, since the correlation of strain values between left and right 

common carotid arteries was significant. Schmitt et al. [64] implemented a Lagrangian 

model to estimate strain tensors for both cross-sectional and longitudinal imaging views. 

They found that axial strain and axial shear strain provide plaque size information, along 

with composition and mechanical properties. Ribbers et al. [67] calculated the radial and 

circumferential strain in two ways; from axial and shear strain and from principle strain. 

The strain patterns obtained agree with the theory, but zero-strain zones were observed at 

the diagonal boundaries. Hansen et al. [69] improved this technique and was able to use 

an angle-compounding technique to reduce noise artifacts and obtain better radial and 

circumferential strain estimations from only the axial strain. Wan et al. [75] calculated 

radial and circumferential strain in a vessel phantom using reflection model-based 

corrected B-mode images. Majdouline et al. [76] investigated the condition of the plaque 

and associated shear strain elasticity index (SSE), with its absolute value statistically 

higher in plaques with increased vulnerability. Since ultrasound beams align with the 

axial direction during scanning, it is natural to study the plaque in a longitudinal imaging 

plane. Idzenga et al. [70] were able to examine the longitudinal shear strain in carotid 

artery utilizing radiofrequency (RF) data instead of B-mode data.  Mercure et al. [77] 

corrected the under-estimation of axial strain in plaques using a kinematics constraints 

based local angle compensation method. Naim et al. [78] found that strain index can 

index the presence of a lipid core with high sensitivity and moderate specificity, using 



15 

 

clinical findings from high resolution magnetic resonance imaging (MRI). Liu et al. [79] 

recently utilized a two-level, RF data based real-time tissue elastography (RTE) to 

identify vulnerable carotid atherosclerotic plaques. They showed that ultrasonic RTE has 

the potential to characterize composition of carotid plaques in vivo and identify plaques 

that are vulnerable to rupture. Widman et al. [80] demonstrated that it is feasible to track 

radial and longitudinal strain of plaque in the carotid artery using speckle tracking strain 

using a validation experiment by sonomicrometry in a plaque phantom.   

In our laboratory, Shi et al. [71] developed a multi-level tracking algorithm to 

calculate displacement and strain and indicated that axial strain and lateral displacement 

parameters can separate soft from calcified plaque. They therefore hypothesized that this 

differentiation could help identify vulnerable plaque using cumulated strain indices. 

McCormick et al. [73-74] developed a robust strain estimation algorithm based on a 

hierarchical framework utilizing a Lagrangian description and applied Bayesian 

regularization to estimate all components of the displacement vector and strain tensor 

within the two-dimensional (2D) imaging plane for plaque characterization. Accumulated 

strain indices derived from the strain tensor were utilized to assess the vulnerability of 

carotid plaque based on increased deformation over a cardiac cycle [71, 81]. 

Other ultrasound based elasticity imaging methods have also been widely 

investigated in assessing plaque vulnerability and identifying plaque prone to rupture [82-

84], and may assist in the prediction of embolism and resulting stroke. Kim et al. [82] 

showed that ultrasound-induced thermal strain images correspond well with B-mode 

images on arterial wall structure and could distinguish fatty tissue from muscle with a 

temperature change of less than 2 degrees, and therefore demonstrated the potential of 
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ultrasound-induced thermal strain imaging with small temperature increases for plaque 

characterization. Doherty et al. [83] performed parametric analysis using Finite Element 

Method (FEM) models to simulate acoustic radiation force impulse (ARFI) imaging on 

carotid plaques, and found that ARFI imaging could differentiate a softer lipid pool from 

surrounding stiffer tissue and the fibrous cap. As for safety concerns, they noted that the 

stresses induced by ARFI imaging are orders of magnitude lower than stresses induced 

due to blood pressure. Korukonda et al. [84] studied sparse-array  elastography and 

compared it to plane-wave imaging and compounded-plane-wave  imaging on simulated 

vessel and vessel phantoms. They concluded that the performance of sparse-array 

imaging was comparable to plane-wave and compounded-plane-wave imaging on 

phantoms. Hansen et al. [85] recently extended their strain compounding technique to 

plane wave based ultrafast ultrasonic imaging.  

2.2.2   Ultrasound strain definition 

Strain is the gradient of displacement. Axial strain is defined as    
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strain is defined as    
   

  
, and shear strain is defined as     

 

 
 
   

  
 

   

  
 , where dy 

and dx represent the axial and lateral displacements respectively. In axial direction, 

positive displacement indicates that the object is moving away from the transducer, while 

negative displacement indicates that the object is moving towards the transducer; in 

lateral direction, positive displacement indicates that the object is moving to the right 

while negative displacement indicates that the object is moving to the left. Strain over a 

cardiac cycle could be represented by accumulated strain, which is the gradient of 

accumulation of incremental frame-to-frame displacements. The accumulated 
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displacements for axial and lateral directions are defined as: 
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 ,   

 , and    
  represents axial, lateral and shear strains respectively. Positive 

strains indicate tissue expansion, while negative strain indicates tissue compression. 

2.2.3   Quantitative ultrasound imaging 

Carotid plaque is primarily composed of cholesterol, calcium, and fibrous tissue 

[86]. Heterogeneous plaques are difficult to characterize using conventional ultrasound 

B-mode imaging [55]. Differences in acoustic properties, which can be assessed using 

quantitative ultrasound (QUS) or elasticity imaging methods, may reflect difference in 
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tissue composition [87]. Therefore QUS has been widely used to assess acoustic 

properties of tissue, such as the integrated attenuation, attenuation coefficient and 

integrated backscatter coefficient, in order to characterize and classify plaque and the 

classification is often compared to pathology patterns.  

Characterization of carotid plaque may play an important role in detecting plaque 

vulnerability to rupture [88]. Plaque analysis using parameters such as the integrated 

attenuation, attenuation coefficient and integrated backscatter have been reported [55, 87-

100]. The integrated attenuation is defined as the integral value of attenuation coefficient 

over the frequency bandwidth. It was found that on freshly excised aorta walls, the 

integrated attenuation gradually increased from normal, fibrous, fibrofatty to calcified 

tissue, and the slope of fibrous tissue was lower than that of normal tissue at a center 

frequency of 10 MHz [89]. IVUS was used on excised femoral and iliac artery segments 

at 20MHz, and it was shown that attenuation can differentiate fibrous plaque from non-

fibrous plaque and normal vessel wall, although there was no correlation with pathology 

[90]. Studies that could distinguish between thrombus and non-thrombus tissue both in 

vivo and ex vivo using backscatter slope, intercept and total power of the spectrum were 

also presented [55, 88, 91]. Bridal et al. [92-94] measured the integrated attenuation, 

attenuation slope and integrated backscatter from 5MHz up to 56MHz, and classified 

lipid and calcified plaque from normal tissue by comparison to histology. Abdominal 

aorta was also examined at 10MHz and the study showed that integrated backscatter can 

classify calcified, fibrous, fibrofatty and normal regions in atherosclerotic plaque [87]. 

Nair et al. [97] built a classification tree model using autoregressive spectral analysis and 

developed a real-time automated tissue characterization approach using IVUS images on 
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coronary plaques. Their results correspond well with histology classifications and have 

potential for virtual histology evaluations and plaque vulnerability assessments [95-97]. 

Properties related to tissue scatterers such as scatterer size and spacing have also caught a 

lot of attention. Roth et al. [98] proposed a parameter called the relative Fourier energy, 

that is the normalized power spectrum of the demodulated ultrasound echo signal, 

determined by the scatterer distribution. They used this parameter to separate fibrofatty 

and calcified tissue from normal tissue and got a significant correlation with histology 

classification [98]. 

In our laboratory, Shi et al. [99-100] reported on the equivalent scatterer size and 

attenuation coefficient for calcified and soft regions of ex vivo carotid plaque in the 

frequency range of 2.5 to 7.5 MHz. Calcified regions have an equivalent scatterer size 

range of 120-180μm, with attenuation coefficients between 1.4-2.5dB/cm/MHz, while for 

softer regions the equivalent scatterer sizes distribution is in the 280-470μm range and the 

attenuation coefficients range from 0.3-1.3dB/cm/MHz [99-100].  

2.2.4   Trans-cranial Doppler 

Trans-cranial Doppler (TCD) measures the velocity of blood flow in middle cerebral 

arteries (MCA). During the monitoring process, a high intensity transient signal (HITS) 

can occur in the recordings, which may reflect the propagation of micro-emboli [101-

103]. TCD signatures that could separate signal of micro-emboli, both gaseous and solid, 

from artifacts has been provided [101]. The TCD signals of embolic source has been 

found to be transient and high intensity, and therefore TCD could be a sensitive detector 

of clinically silent emboli [102]. Several optimization approaches have been attempted to 

automate the detection of micro-emboli [103]. A real HITS should satisfy all of the 
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following criteria: the Doppler signal is less than 300 milliseconds, the amplitude of the 

signal is at least 3dB higher than the background blood flow signal, the signal is 

unidirectional within the velocity spectrum, and an audible “snap”, “chirp” or “moan” is 

present [104]. It has been shown that HITS occurs in 30% of symptomatic patients [105], 

and is more likely to be present in stroke-related symptomatic patients than TIA-related 

symptomatic patients or asymptomatic patients [106]. 

2.2.5   Pulse wave imaging 

When the heart contracts, the volumetric change induced by the inflowing blood 

generates a pressure pulse wave propagating through the arteries. PWV has been 

considered as one of the most important indices quantify arterial stiffness. PWV can be 

expressed by the Moens-Korteweg equation: 

     
  

   
 

where E denotes the Young's modulus of the artery wall along the circumferential 

direction, h is the thickness of the wall, R is the inner radius of the artery, ρ is the density 

of the wall material. This relationship holds true when the artery wall is thin and not 

embedded in an elastic medium, and assuming the perturbations of the artery are small 

[107]. PWV increases with an increase in the artery stiffness according to the equation 

above. 

 Traditionally, PWV is measured using the "foot-to-foot" velocity, which is 

considered as the gold standard. For example, in carotid-femoral PWV measurement, 

waveforms in right common carotid artery and right femoral artery are recorded and the 
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time delay (Δt) at the feet of these two waveforms are calculated. PWV can then 

calculated using the physical distance (ΔD) between the two measurement points as, PWV 

= Δ t/Δ D [108]. Because the pulse wave propagates at a relative high speed 

(meters/second), time delay measurement could potentially induce considerable 

uncertainty in final PWV value. One way to compensate time delay measurement error is 

to calculate PWV over a larger distance. This method, however, results in a global value 

and doesn't take into account local inhomogeneities in arterial stiffness [109]. 

Pulse wave imaging has also been developed for MRI [110-111] and ultrasound [52, 

112-114] as non-invasive imaging methods to measure regional PWV, rather than global 

value measured with the traditional method. When compared with ultrasound based 

methods, MRI based analysis is limited by patient selection, lower temporal resolution, in 

addition to its higher cost.  

Several high temporal rate ultrasound imaging techniques have been developed to 

achieve both quantitative visualization and estimation of PWV. Luo et al. [52] measured 

PWV in the human carotid artery in 8 healthy volunteers using an ultrasound system with 

a high frame rate of 8000 fps enabled using an ECG-gated synchronized acquisition. 

Couade et al. [112] developed an ultrafast ultrasound imaging system that enabled a 1000 

fps full-view imaging. They measured 25 PWV in 25 healthy volunteers. Hesegawa et al. 

[113] measured PWV in 3 healthy subjects using high frame rate ultrasound imaging 

achieved by plane wave transmission and parallel beam forming. Nagaoka et al. [114] 

measured PWV in 4 healthy young males and 1 healthy young female with high speed 

ultrasound achieved by plane wave transmission and spatial compounding. These 

methods generated PWV in good agreement with that reported in the literature. 
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2.2.6   Shear wave imaging 

Shear wave imaging has also been demonstrated to be a feasible option for assessing 

arterial stiffness. Nightingale et al. [115] showed that shear wave images generated using 

ARFI on ex vivo human breast tissue and in vivo human male abdomen all matched well 

following modulus reconstruction and comparison to B-mode images. The challenge lay 

in the small magnitude of displacement generated by induced radiation force [115-116]. 

Dumont et al. [117] combined ARFI-based shear wave imaging with ARFI-based spectral 

Doppler imaging to estimate wall shear rate, vascular wall displacement, spectral Doppler 

velocity and transverse wave velocity in tissue-mimicking phantoms, and the results 

showed reasonable agreement with other research groups. Couade et al.[53] validated that 

the elasticity of arterial wall is exhibited from shear wave propagation in an artery 

phantom and in the common carotid artery of one healthy volunteer. Behler et al. [118] 

proposed the use of reflected shear wave imaging (RSWI) and obtained parametric 

images on 3 porcine iliac arteries with plaques, and showed that RSWI could identify 

lipid, calcium and collagen regions in atherosclerotic plaque. Deffieux et al. [119] 

implemented this technology with a directional filter, which was previously applied in 

magnetic resonance elastography, to reduce the artifact since errors might be induced in 

shear wave velocity estimation from the propagation of the reflected shear waves. 

However, higher pressures associated with ultrasound radiation in shear wave imaging 

may induce the rupture of plaque in a diseased artery. The impact of adverse biological 

effects with shear wave imaging in clinical studies needs further investigation [120]. 

Ramnarine et al.[54] recently conducted a study involving eighty-one patients and 

demonstrated that shear wave elastography (SWE) is able to quantify carotid plaque 
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elasticity and provide clinically relevant information to help identify unstable carotid 

plaques. 
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Chapter 3 : Correlation of Ultrasound Strain Indices 

with Cognitive Function Assessed using RBANS 

3.1   Introduction 

In this chapter
1
, a hierarchical block-matching based motion tracking algorithm 

developed in our laboratory [1] is utilized to evaluate the distribution and variation of 

axial, lateral and shear strains indices estimated from noninvasive in vivo scans of carotid 

plaque. We focus on the correlation between multiple strain indices and cognitive 

function measured by Repeatable Battery for the Assessment of Neuropsychological 

Status (RBANS). 

Plaque instability may lead to chronic embolization, which may contribute to 

progressive cognitive decline in patients. Accumulated strain tensor indices over a 

cardiac cycle within a pulsating carotid plaque may become a viable biomarker for the 

diagnosis of plaque instability. Increased axial and lateral deformation and strain in 

plaque [2] has been shown to correlate with cognitive changes [3-4], suggesting that it is 

important to identify patients with unstable or vulnerable plaques to help prevent future 

silent strokes and cognitive impairment. However, we found no significant correlation of 
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shear strain indices with cognitive function if the strain was measured as an average over 

the entire plaque sample [4]. Since shear stress may develop at the interface between 

different tissue constituents with different stiffness inside the plaque [5], shear strain may 

be an important indicator in the pathogenesis of plaque rupture [6]. It has been previously 

reported that the shear strain in the adventitia of the common carotid artery presents with 

a cyclic behavior, induced by the pulsating blood pressure [7]. Other studies have shown 

that the intima-media layer in the vessel wall may have longitudinal movements 

introducing shear strain in the adventitia [8]. We have also shown previously that high 

strain values are observed at the plaque-adventitia interface during lateral motion in a 

human carotid artery [1-2].  

Inclusion of the adventitial layer focuses our strain or instability measures on the 

plaque vessel wall interface hypothesized to be a region with increased shearing forces 

and measureable instability. Accumulated axial, lateral, and shear strain distribution in 

plaques identified with the plaque-with- adventitia segmentation was also estimated and 

correlated to RBANS scores. We compare the strain indices obtained with the inclusion 

of the adventitial layer and their correlations to cognitive function in human subjects to 

our results obtained with plaque only. 

3.2   Materials and Methods 

3.2.1   Data acquisition 

Ultrasound imaging was performed on 24 patients, scheduled for a carotid 

endarterectomy procedure (CEA), and presented with significant plaque. Patients 

provided informed consent using a protocol approved by the University of Wisconsin-
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Madison Institutional Review Board (IRB) prior to the ultrasound and strain imaging 

study. The patients ranged in age from 44 to 79, with a mean and standard deviation (SD) 

of 65.88 ± 8.74 respectively. These patients then underwent CEA at the University of 

Wisconsin-Madison Hospitals and Clinics. Additional details on the patients and the 

different measurements are presented in Table 3.1. 

Clinical 

Classifica-

tion 

Subject 

Num 
Sex Age BMI 

Plaque 

Dimension 

(mm
2
) 

Total 

RBANS 

Score 

Max 

Axial 

Strain 

Max 

Lateral 

Strain 

Max 

Shear 

Strain 

Sympto-

matic 

1 F 79 18.1 36.67 82 16 13.59 16.45 

2 M 72 28.5 28.95 63 28 20.90 34.96 

3 M 72 36.5 148.62 72 26 15.72 21.58 

4 F 72 28 28.81 68 11.2 12.92 32.22 

5 M 71 29 39.29 72 15.6 22.19 13.97 

6 M 57 29.5 72.26 72 3.6 2.44 3.31 

7 M 66 27.3 78.86 83 30 14.68 13.88 

8 M 68 35 28.65 91 14.7 7.05 4.96 

9 M 63 27.3 25.34 88 18.6 14.09 32.46 

10 M 44 35.1 75.63 100 12.88 5.15 25.79 

11 M 62 29.6 14.59 116 4.45 3.09 8.41 

12 M 75 27.3 46.59 121 5.58 7.23 9.52 

13 M 75 30.8 120.97 100 7.21 4.84 13.02 

14 M 61 27.2 49.68 88 25.85 4.73 11.20 

15 M 49 28.3 100.85 78 20.68 16.54 30.11 

16 M 59 25.1 31.25 95 7.2 4.48 18.56 

Mean ± 

SD 
 

65.3

1±9.

71 

28.91

±4.3

3 

57.94±38.4

6 

86.81±1

6.63 

15.47

±8.74 

10.60±

6.46 

18.15

±10.2

5 

Asympto-

matic 

17 F 61 35.9 24.59 78 45 19.40 27.24 

18 F 74 27.1 27.95 86 11.3 9.76 15.21 

19 F 71 29.3 35.53 71 18.4 5.12 8.68 

20 F 59 N/A 33.85 85 19.83 7.99 16.39 

21 F 60 25.3 45.08 92 10.88 10.65 21.36 

22 M 63 26.9 83.32 81 23.11 25.20 34.26 

23 F 75 30.4 35.64 91 12.48 8.50 13.89 

Mean ± 

SD 
 

66.1

4±6.

94 

29.15

±3.7

7 

40.85±19.8

2 

83.43±7

.41 

20.14

±11.9

2 

12.38±

7.19 

19.58

±8.73 

Question-

able 
24 M 73 32.8 29.76 89 17 20.25 29.43 

All 
Mean ± 

SD 
 

65.8

8±8.

74 

29.14

±4.0

8 

51.78±33.9

3 

85.92±1

4.06 

16.90

±9.57 

11.52±

6.70 

19.04

±9.68 

Table 3.1: Characteristics of the human subject population utilized in this study. 
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RF echo signal data, along with clinical B-mode images and color-flow Doppler 

images, were acquired using a Siemens Antares ultrasound system (Siemens Ultrasound, 

Mountain View, CA, USA) equipped with a VFX 13-5 linear transducer. The transmit 

frequency of the transducer was set to 11.4 MHz with a single transmit focus set at the 

depth of plaque. The total depth of the B-mode image was 4 cm, and 508 A-lines in the 

lateral direction, with a total lateral width of 38 mm was acquired. RF data was digitized 

at a 40 MHz sampling frequency. At least two cardiac cycles of RF data were obtained. 

Plaque regions were segmented by a radiologist at end-diastole using the Medical 

Imaging Interaction Toolkit (MITK). Two complete cardiac cycles were chosen, with 

plaque segmentation performed on the three end-diastolic frames. The plaque regions 

were segmented on B-mode images constructed from RF data, as shown in Figure 3.1. 

Clinical B-mode and color-flow Doppler images were also used by the radiologist to 

better define plaque borders. The plaque dimension reported in Table 3.1 was measured 

by averaging the area of the segmented region over the three end-diastolic frames. 
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(a) 

 
(b) 

Figure 3.1: B-mode image (a) and segmented plaque on B-mode image (b). 

3.2.2   Estimation of strain indices 

A hierarchical block-matching based motion tracking algorithm developed in our 

laboratory [1], was utilized. Block matching between pre- and post-deformation frames 
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was performed using a hierarchical framework and normalized cross-correlation analysis 

performed over three iterations [9]. The matching block was 15 × 28 pixels at the top 

level, and 10 × 18 pixels at the bottom level. There was no overlap between the blocks. 

Along the axial or beam direction one pixel represents 0.02 mm, while on the lateral 

direction one pixel represents 0.075 mm. A dynamic frame skip method was utilized to 

obtain high quality motion tracking with a short frame skip during systole and a longer 

frame skip during end diastole. Incremental local displacements were tracked, estimated 

and then filtered with a 3 × 3 pixel median filter to remove outliers. Local strain was then 

assessed by applying a least-squares gradient over a 3 × 3 pixel radius from displacement 

estimates accumulated over a cardiac cycle using the end-diastolic frame as the reference 

frame. 

We utilized this approach to estimate the accumulated axial, lateral, and shear strain 

distribution in plaques identified within the imaging plane. Shear strain was defined by 

the expression     
 

 
 
   

  
 

   

  
 , where x and y represent the lateral and axial 

directions respectively [1]. Strain estimates were computed inside the segmented plaque 

and overlaid on the B-mode images. Displacement and strain between consecutive frames 

calculated by the block-matching motion tracking algorithm were relatively small since 

the frame rates used were no less than 27 fps. We present accumulated strain indices over 

a cardiac cycle to better characterize the elasticity of plaque tissue. 

From the accumulated strain calculated in each subsequent frame, a small region of 

interest (ROI) in the plaque with maximum strain was found. We limited this area to be 

within a 10 - 20 data points range, around the center of the ROI. The maximum strain of 

the selected plaque ROI in each frame was then obtained by averaging the strain values in 
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this small ROI to reduce noise. The corresponding minimum and peak-to-peak strain 

indices in the same ROI were also computed, as was the mean strain over the entire 

plaque. From the mean strains over two cardiac cycles, we estimated the maximum, 

minimum and peak-to-peak strain indices over the entire plaque region. Strain indices 

were then correlated with RBANS Total scores using Pearson's correlation coefficients. 

3.2.3   RBANS scores 

The 24 patients were classified as symptomatic, asymptomatic or questionable based 

on clinical findings. A patient was classified as symptomatic if he or she presented with 

stroke or a transient ischemic attack (TIA), and was deemed asymptomatic otherwise. 

Carotid stenosis and indication for CEA for asymptomatic patients were based on other 

clinical symptoms or imaging studies performed; for example on patients presenting with 

cardiac conditions. Patients underwent objective cognitive assessment using a mental 

status screening measure (Repeatable Battery for the Assessment of Neuropsychological 

Status (RBANS)) which provides an index of overall cognitive status as well as five 

indices for specific cognitive abilities (Immediate Memory, Visuospatial/Constructional, 

Language, Attention, and Delayed Memory) [10]. All index scores are age-adjusted and 

normalized [11]. Plaque assessment using B-mode and strain imaging was conducted 

while blinded to the cognitive results. To reduce the number of comparisons only the 

total RBANS score was used to compare with all strain indices with a significance level 

of p<0.05 using a t-test. 
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3.3   Results 

3.3.1   Accumulated axial, lateral and shear strain over a cardiac cycle 

Figure 3.2 (a) shows a typical axial strain image for the plaque demarcated in Fig. 

3.1. The axial strain magnitude and direction are depicted on the color bar overlaid on the 

gray-scale B-mode images. Axial strains were averaged in the small ROI and over the 

entire plaque, respectively. The mean axial strains and standard deviation (STD) are 

plotted in Fig. 3.2 (b) and (c). The strain curves depict the deformation over two cardiac 

cycles. The variation in the strain over the two cardiac cycles are not identical, as shown 

in Fig. 3.2 (b), because of the irregular and turbulent flow patterns caused by stenosis in 

the vessel due to the presence of plaque. Note that the mean axial strain computed over 

the entire plaque is significantly lower than that obtained within the small ROI. On the 

other hand, the STD over the entire plaque is significantly higher than that in the small 

ROI. This suggests that in this heterogeneous plaque, the axial strain estimate varies 

significantly. The maximum axial strain can get as high as 11%, but the mean peak axial 

strain is around 3%. 
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(a) 

 
(b) 

 
(c)

Figure 3.2: Axial strain values overlaid on the B-mode image (a). Mean values in the 

small ROI and entire plaque are shown in (b), and their standard deviations in (c). 

In a similar manner, the variability in the lateral strain estimated in the same plaque 

is shown in Figure 3.3. The lateral strain presents with similar trends; in that it varies 

significantly inside the plaque so the mean value is much smaller, with a peak value of 

2% compared to the maximum lateral strain of 9% in a small ROI, and the STD is also 

larger, as expected. The distribution of lateral strain inside the plaque suggests that the 

composition of plaque changes from region to region. 



43 

 

 
(a) 

 
(b) 

 
(c)

Figure 3.3: Lateral strain values overlaid on the B-mode image (a). Mean values in the 

small ROI and entire plaque are shown in (b), and their standard deviations in (c). 

Finally the shear strain in the same plaque is shown in Figure 3.4. The mean shear 

strain of the entire plaque does not exhibit a cyclic behavior, when compared to axial and 

lateral strain estimates. The mean peak shear strain is only 1%, but the maximum shear 

strain in the ROI is around 15%. Observe that the variation in the shear strain is quite 

similar to that of the axial and lateral strain. The behaviors of the three strain indices 

indicate the variability in the strain estimates over different types of tissue within a single 

plaque. Since the mean strain in the small ROI has a lower standard deviation, we 
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consider the maximum strain averaged over the small ROI to be the maximum strain 

value within the entire plaque. 

 
(a) 

 
(b) 

 
(c)

Figure 3.4: Shear strain values overlaid on the B-mode image (a). Mean values in the 

small ROI and entire plaque are shown in (b), and their standard deviations in (c). 

3.3.2   Correlation with RBANS scores 

The maximum, minimum and peak-to-peak strain indices over a small ROI with the 

largest deformation were then obtained from the mean strain value in the ROI. Figure 3.5 

is a plot of total RBANS score versus axial strain indices. As indicated in Table 3.1, 16 

out of 24 patients in this study were identified as symptomatic, 7 were asymptomatic and 
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1 was questionable. A linear fit was performed for symptomatic, asymptomatic and for 

all the patients respectively to show the correlation of the two variables. The strains 

shown in the plots are all scalar values; the maximum strain is always positive and the 

minimum strain is always negative. For better comparison, we use absolute value for the 

minimum axial strain values such all the indices are positive. The Pearson's coefficient 

(r) and the significance value (p) were also calculated for each correlation. Overall the 

total RBANS score appears lower with increasing strain indices. The maximum and 

peak-to-peak axial strain, also reveal correlation to the total RBANS score. The 

correlation or linear fit between the RBANS score for asymptomatic and symptomatic is 

improved for indices estimated within the ROI. However, the correlation of absolute 

minimum strain is weaker than the other two indices. 
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(a) 

  
(b) (c) 

Figure 3.5: Linear least square fits of total RBANS score with maximum (a), absolute 

minimum (b), and peak-to-peak (c) axial strain averaged over the small ROI. ○ = 

Symptomatic, x = asymptomatic, □ = questionable, the dotted line represents the linear fit 

for symptomatic, dashed line the linear fit for asymptomatic, and the solid line denotes 

the linear fit for all patients. 

The association of RBANS Total score with the lateral strain indices is depicted in 

Figure 3.6 where a negative correlation between cognition and the strain indices is 

observed. The maximum and peak-to-peak lateral strain correlated significantly with 

cognition. Although the absolute minimum lateral strain shows a weaker correlation, it is 

not as weak as the absolute minimum axial strain. Note that the association between 
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cognition and strain is higher for strains within the ROI; however, we observe a decrease 

in the correlation with asymptomatic patients, along with a change in the correlation to a 

positive value. 

 
(a) 

 
(b) (c) 

Figure 3.6: Linear least square fits of total RBANS score with maximum (a), absolute 

minimum (b), and peak-to-peak (c) lateral strain averaged over the small ROI. ○ = 

Symptomatic, x = asymptomatic, □ = questionable, the dotted line represents the linear fit 

for symptomatic, dashed line the linear fit for asymptomatic, and the solid line denotes 

the linear fit for all patients. 

Figure 3.7 demonstrates similar correlations with shear strain indices. Note that the 

correlation is much weaker for shear strain indices than the axial and lateral strain 
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indices. The absolute minimum shear strain reveals a positive correlation with RBANS 

Total score, as opposed to the negative correlations observed for the entire patient group 

for axial and lateral strain indices. 

 
(a) 

 
(b) (c) 

Figure 3.7: Linear least square fits of total RBANS score with maximum (a), absolute 

minimum (b), and peak-to-peak (c) shear strain averaged over the small ROI. ○ = 

Symptomatic, x = asymptomatic, □ = questionable, the dotted line represents the linear fit 

for symptomatic, dashed line the linear fit for asymptomatic, and the solid line denotes 

the linear fit for all patients. 

Observe from these plots that the correlation of the RBANS Total score to absolute 

minimum strain in the ROI is rather weak. Therefore only the maximum and peak-to-
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peak mean strain over the entire plaque region was computed, in the rest of the plots. The 

linear correlation between RBANS Total score with maximum mean strain indices over 

the entire plaque is shown in Figure 3.8, while the peak-to-peak mean strain indices are 

shown in Figure 3.9. Note that when the strain estimates are averaged over the entire 

plaque region, the maximum and peak-to-peak axial strain shows only a weak correlation 

with RBANS Total score for all patients. Note that the linear fits for the symptomatic 

patients generally follow the trend, and dominates the results for the entire group of 

patients for the axial and shear strain indices. However, we do observe significant 

deviations between the symptomatic and asymptomatic patients for the linear fit for the 

lateral strain indices; but the correlation is rather weak. 
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(a) (b) 

 
(c) 

Figure 3.8: Linear least square fits of total RBANS score with the maximum axial (a), 

lateral (b) and shear (c) strain averaged over the entire plaque. ○ = Symptomatic, x = 

asymptomatic, □ = questionable, the dotted line represents the linear fit for symptomatic, 

dashed line the linear fit for asymptomatic, and the solid line denotes the linear fit for all 

patients. 
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(a) (b) 

 
(c) 

Figure 3.9: Linear least square fit of the total RBANS score with peak-to-peak axial (a), 

lateral (b) and shear (c) strain averaged over the entire plaque. ○ = Symptomatic, x = 

asymptomatic, □ = questionable, the dotted line represents the linear fit for symptomatic, 

dashed line the linear fit for asymptomatic, and the solid line denotes the linear fit for all 

patients. 

Overall, the mean strain indices for the 7 asymptomatic patients are slightly higher 

than that for the 16 symptomatic patients, and the mean RBANS score for the 

asymptomatic group is also lower than that for the symptomatic group. From the figures, 

we observe that there is no significant correlation between the RBANS Total score and 

strain indices averaged over the entire plaque region. However, the maximum and peak-
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to-peak axial and lateral strains show some correlation with an r value around 0.5, and a 

significant p-value of less than 0.05. For the symptomatic group, the correlation for 

maximum and peak-to-peak strain indices is higher. However, the correlation for strain 

indices averaged over the entire plaque region is significantly higher for asymptomatic 

group. 

3.4   Discussion 

In this chapter we have shown that a relationship exists between cognitive function 

and the maximum and peak-to-peak axial and lateral strain indices. As the axial and 

lateral strain indices increase in plaque, there appears to be a corresponding poorer 

performance in the cognitive function for these patients. Since these strain indices 

primarily indicate the extent of deformation of plaque based on pulsatile flow in the 

carotid over the cardiac cycle, where larger deformations point to the presence of areas of 

softer plaques or variability in plaque composition over its length, larger deformations 

may therefore indicate an increased probability of plaque rupture in these softer plaques. 

Deformation of the carotid wall and plaque is caused by a combination of wall shear 

stress, wall tensile stress and cyclic force induced by the pulsatile blood pressure [12-15]. 

The buildup of plaque disrupts blood flow and results in hemodynamic changes such as 

high velocity jets that introduce shear stresses and turbulence which lead to blood 

pressure fluctuations over the length of the blood vessel [16-18]. Re-circulating flow, 

high shear stresses and increasing turbulence in turn can accelerate plaque rupture [19-

23]. As a consequence of plaque rupture, micro-emboli or even emboli may flow into the 

brain and cause ischemic events leading to stroke or vascular dementia, which may result 

in or be accompanied by cognitive impairment. This study helps establish the relationship 
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between increasing strain indices in plaque and cognitive impairment through embolism. 

Previous studies have shown that lateral strain estimation incurs more noise artifacts 

than axial strain because of the relative small dimensions of the plaque when compared to 

the lateral resolution of ultrasound system and their heterogeneous nature [2]. Shear 

strain may therefore include artifacts, since it is neither aligned, nor perpendicular to the 

ultrasound beam. This may explain the absence of a cyclic trend with the shear strain 

over a cardiac cycle. Axial strain indices overall provide the best correlation with 

RBANS Total score. Our improved algorithm allows for better tracking of the lateral 

deformation and thereby lateral strain estimation [1]. Lateral strain indices obtained using 

this algorithm, also show improved correlation with the RBANS Total score, although the 

correlation is not as good as that obtained using the axial strain indices as expected. The 

fact that lateral strain indices also show strong correlations with RBANS score especially 

for symptomatic patients indicate the utility of using lateral strains in this chapter. 

Most plaques are heterogeneous and difficult to completely classify as either soft or 

calcified. Plaque stiffness variations, however, can be evaluated by the distribution of 

local axial and lateral strains within the plaque, from the estimated strain images. These 

stiffness variations suggest that regions with highest strains (maximum values) or 

deformations may tend to break off and detach from the rest of plaque. Due to 

heterogeneity, a plaque with lower mean strain values can still possess localized regions 

with very high strain, which may be prone to rupture. The lack of significant correlation 

between the total RBANS score with strain indices averaged over the entire plaque 

region, could therefore be due to local strain estimates from the small pockets of softer 

plaque embedded in large heterogeneous plaque regions, being averaged out over the 
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entire plaque. 

Note that the correlation of maximum and peak-to-peak lateral strain to total RBANS 

score is much higher for symptomatic patients, but weaker for asymptomatic patients. 

The comparison of symptomatic and asymptomatic patients brings up a possible 

hypothesis, indicating that the rupture of carotid plaque for symptomatic patients may 

have already occurred with ongoing emboli, whereas for asymptomatic patients, the 

plaque is still intact. We hypothesize that ruptured plaque tend to have larger 

deformations in the lateral direction due to the possible fissures in plaque after rupture. 

On the other hand, for intact plaques, the fibrous cap may limit the lateral deformation of 

the entire plaque. However, lipidic regions within these plaques may break off and 

generate emboli eventually. This is consistent with our observation that asymptomatic 

patients have slightly higher axial than lateral strains within the plaque. Note the high 

correlation between RBANS Total score and axial strain indices averaged over the entire 

plaque region for asymptomatic patients, which are significantly higher. The RBANS 

correlation with the lateral strains indices for these patients are however significantly 

lower. 

Since both symptomatic and asymptomatic patients were studied, the relationship 

between cognitive impairment and characterization of plaque may lead to further 

investigation of these patient groups. In addition to clinically recognized stroke, "silent" 

strokes may occur, and are five times more prevalent [24]. Silent strokes are not detected 

based on classical transient ischemic attack (TIA) symptoms and therefore difficult to 

prevent. It is likely that these "silent" strokes may be causing accumulated cognitive 

decline. Studies have suggested that silent stroke occurs with concurrent subclinical 
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emboli [25] and is better understood with cognitive impairment studies [26]. This is 

consistent with our study that some of the asymptomatic patients may have great 

potential of developing emboli. Thus ultrasound strain imaging may be a surrogate in the 

clinic to detect the potential risk of having a silent stroke. 

Despite the relationship described in this chapter, examination of a larger number of 

patients is required to further establish the correlation. Note that the correlation not being 

significant for the asymptomatic patients may also be due to the small sample size. In 

addition, the blood pressure for patients was not documented in this study. More detailed 

analysis of the different RBANS components may also be enlightening, for example, the 

correlation of each of the index scores in RBANS to the strain indices. 

3.5   Improved correlation with inclusion of adventitia layer 

3.5.1   Comparison of the strain indices with and without adventitia 

In the previous analysis reported in this chapter, the adventitia layer was not included 

with the plaque region during segmentation process (i.e. plaque-only segmentation). 

Using plaque-only segmentations in the carotid artery, we demonstrated that impaired 

cognitive function correlated significantly with maximum axial and lateral strain indices 

within a localized region of interest in plaque. However, in another study we observed 

large shear strains in the carotid artery wall in volunteers without plaque and in animal 

models [27]. Therefore, in this sub-section, we included the adventitia in the 

segmentation (i.e. plaque-with-adventitia segmentation) based on the hypothesis that 

increased shearing strains may be present in the adventitial layer or at the plaque-

adventitia interface. 
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Plaque regions with adventitia were segmented by a radiologist on the B-mode 

images constructed from RF data, as shown in Figure 3.10. In the previous work we used 

the plaque-only segmentation, i.e. plaque was separated from artery wall on the plaque-

adventitia interface, as shown in Figure 3.10(b). In this section we propose including the 

adventitia layer in the demarcation of plaque, denoted as the plaque-with-adventitia 

segmentation in Figure 3.10(c). 
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(a) 

 
(b) 

 
         (c) 

Figure 3.10: B-mode image (a) and segmented plaque on B-mode image using the 

plaque-only segmentation (b) and the plaque-with-adventitia segmentation (c). 
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Figure 3.11 and Figure 3.12 shows the comparison of axial strain images using the 

two segmentation methods on carotid plaque for a symptomatic patient segmented in 

Figure 3.10. Accumulated axial strain estimates overlaid on the B-mode image using the 

plaque-only segmentation are illustrated in Figure 3.11(a) and the plaque-with-adventitia 

segmentation in Figure 3.11(b). For the plaque-with-adventitia segmentation, the axial 

strain distribution in the adventitia is also shown in addition to the strain in the plaque. 

Although large accumulated axial strain values around 10% were found in the adventitia 

region, this did not exceed the maximum axial strain in the plaque. An asymptomatic case 

is also presented in Figures 3.12(a) and 3.12(b). The asymptomatic plaque shows less 

heterogeneity, but similar trends can still be observed. 
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(a) 

 
         (b) 

Figure 3.11: Axial strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on a symptomatic 

plaque. 
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(a) 

 
         (b) 

Figure 3.12: Axial strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on an asymptomatic 

plaque. 

In a similar manner, accumulated lateral strain images on the same symptomatic 

plaque with the two segmentation methods are illustrated in Figures 3.13(a) and 3.13(b). 

The extended region also has lateral strain values as large as 10%. We hypothesize that 

large strains in the lateral direction could arise from soft plaque deformation with blood 

flow, especially around stenosis. However, similar to the case with the accumulated axial 

strain, the maximum accumulated lateral strain does not change for the plaque even after 
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including the adventitia layer. For the patient with asymptomatic plaque large lateral 

strains were observed closer to adventitia, as shown in Figures 3.14(a) and 3.14(b). 

 
(a) 

 
(b) 

Figure 3.13: Lateral strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on a symptomatic 

plaque. 
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(a) 

 
(b) 

Figure 3.14: Lateral strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on an asymptomatic 

plaque. 

Finally, accumulated shear strain images for the same symptomatic patient with the 

two segmentation methods are shown in Figures 3.15(a) and 3.15(b) respectively. Notice 

that in the extended adventitial layer we now observe large accumulated shear strain 

values on the order of approximately 20% shear strain. Therefore the maximum 

accumulated shear strain for this patient is located near the adventitia layer instead of 

within the plaque. Similarly large shear strains were revealed after including the 



63 

 

adventitia layer in the segmentation in the asymptomatic plaque shown in Figures 3.16(a) 

and 3.16(b). Note also that the increased accumulated shear strain in the adventitia could 

be due to the presence of both large accumulated axial and lateral shear strains in this 

region. 

 
(a) 

 
(b) 

Figure 3.15: Shear strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on a symptomatic 

plaque. 
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(a) 

 
(b) 

Figure 3.16: Shear strain values overlaid on the B-mode image using the plaque-only 

segmentation (a) and the plaque-with-adventitia segmentation (b) on an asymptomatic 

plaque. 

Variations in accumulated strain estimates after including the adventitia layer in the 

segmentation are demonstrated in Figure 3.17. Accumulated axial, lateral and shear 

strains over two cardiac cycles for both plaque-only and plaque-with-adventitia 

segmentation on a symptomatic and asymptomatic patient are shown in Figures 3.17(a), 

3.17(b) and 3.17(c) respectively. Note that the absolute values of the strain increases with 

the inclusion of the adventitia for both symptomatic and asymptomatic patient. 
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Accumulated axial, lateral and shear strain plots over two cardiac cycles in the carotid 

artery wall of two healthy human volunteers are also shown in Figure 3.18(a), 3.18(b) 

and 3.18(c) respectively. Note that the segmented region in this case, is only the vessel 

wall since no visible plaque was present. A cyclic variation in the accumulated strain 

tensor plots is clearly observed for both healthy vessels with normal blood flow. Observe 

the clear difference in the accumulated strain tensor estimates between that observed with 

a volunteer in Fig. 3.18, versus that for patients in Fig. 3.17. Irregular and turbulent flow 

patterns in the carotid arteries of patients with plaque introduce the non-periodic patterns 

observed in Fig. 3.17. Similar results has also been obtained and published by our lab on 

swine models[27]. 
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(a) 

 
(b) 

 
(c) 

(i)      (ii) 

Figure 3.17: Accumulated axial (a), lateral (b) and shear (c) strain over two cardiac 

cycles with plaque-only and plaque-with-wall segmentation on a symptomatic (i) and an 

asymptomatic patient (ii). 
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(a) 

 
(b) 

 
(c) 

(i)      (ii) 

Figure 3.18: Accumulated axial (a), lateral (b) and shear (c) strain over two cardiac 

cycles in carotid artery wall on healthy human volunteer (i) and (ii). 



68 

 

3.5.2   Improvement in correlation with RBANS 

The maximum and peak-to-trough strain indices over a small ROI with the largest 

deformation were obtained from the mean strain values within this ROI and then 

correlated with RBANS Total score. Note that the strain indices are absolute values. 

Figure 3.19 depicts the correlation of the RBANS Total score with maximum axial and 

lateral strain. As indicated before, the 16 symptomatic patients were plotted separately 

from the 7 asymptomatic patients. The uncertain one was also shown in the plot. A linear 

fit was performed for the two groups respectively, and also for all patients combined. The 

strains in the plots are all in scalar values. Pearson coefficient (r) and significance (p) 

values were also obtained for each correlation. Overall the RBANS Total score worsened 

with increasing strain indices for all the subjects, the same pattern identified in our 

previous work using plaque-only segmentation. For the maximum axial strain, the r 

values for the symptomatic group and for all patients combined improved from -0.533 

and -0.491 to -0.569 and -0.581 respectively. For the maximum lateral strain, the r values 

for the symptomatic group and for all patients combined improved from -0.650 and -

0.501 to -0.760 and -0.656 respectively. The correlations for the symptomatic group and 

for all patients combined were already significant in the previous results. Still, the p value 

decreased. Note that p<0.001 for the correlation of RBANS Total score to maximum 

lateral strain for the symptomatic group and for all patients combined. Minimum strain 

indices are not provided since we did not observe any significant improvement in the 

correlations for minimum strain from that described in our previous work. 
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(a) 

 
         (b) 

Figure 3.19: Linear least-squares fits of RBANS Total score with maximum axial (a), 

and maximum lateral (b) strain averaged over the small region of interest. ○ = 

Symptomatic, x = asymptomatic, □ = questionable, the dotted line represents the linear fit 

for symptomatic, dashed line the linear fit for asymptomatic, and the solid line denotes 

the linear fit for all patients. 
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The correlation of RBANS Total score with shear strain indices is illustrated in 

Figure 3.20. Here we show both maximum and peak-to-trough shear strain indices. The 

correlations with the plaque-with-adventitia segmentation exhibits significant 

improvement when compared to the previous results. The correlation coefficients r for 

maximum shear strain were -0.432 and -0.345 for the symptomatic group and for all 

patients combined using the plaque-only segmentation, while with the plaque-with-

adventitia segmentation, the correlation coefficients improved to -0.795 and -0.717. 

Similarly, the correlation coefficients r for peak-to-trough shear strain improved from -

0.319 and -0.257 to -0.832 and -0.728 for the symptomatic group and for all patients 

combined. The p values also decreased, now making the correlations significant for the 

symptomatic group and for all patients combined, which was not the case previously. 

This aspect is noteworthy since no significant correlation for shear strain indices was 

observed in the previous results. 
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(a) 

 
(b) 

Figure 3.20: Linear least-squares fits of RBANS Total score with maximum (a), and 

peak-to-trough (b) shear strain averaged over the small region of interest. ○ = 

Symptomatic, x = asymptomatic, □ = questionable, the dotted line represents the linear fit 

for symptomatic, dashed line the linear fit for asymptomatic, and the solid line denotes 

the linear fit for all patients. 
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A comparison of the RBANS Total scores obtained with plaque-only and plaque-

with-adventitia, along with correlations to maximum accumulated strain indices are 

shown in Table 3.2. Since the correlation with RBANS Total score improved 

significantly with the inclusion of adventitia, we also report on the correlation of 

maximum accumulated strain indices to each of the component subscales of the RBANS 

utilizing the plaque-with-adventitia segmentation in Table 3.3. Significant correlations 

are marked in bold. Note that the two areas of cognition that show significant correlation 

for the symptomatic group and for all patients combined are Immediate Memory and 

Delayed Memory. Immediate Memory also shows significant correlation for 

asymptomatic patients. For asymptomatic patients there is also significant correlation of 

Attention to maximum axial strain and shear strain indices respectively. 

 
Maximum 

Axial Strain 

Maximum 

Lateral Strain 

Maximum 

Shear Strain 

RBANS Total 

(Plaque-only) 

Symptomatic 
r=-0.533, 

p=0.032 

r=-0.650, 

p=0.006 

r=-0.432, 

p=0.092 

Asymptomatic 
r=-0.530, 

p=0.205 

r=-0.115, 

p=0.803 

r=0.037, 

p=0.937 

All 
r=-0.491, 

p=0.014 

r=-0.501, 

p=0.012 

r=-0.345, 

p=0.097 

RBANS Total 

(Plaque-with-

adventitia) 

Symptomatic 
r=-0.569, 

p=0.020 

r=-0.760, 

p<0.001 

r=-0.795, 

p<0.001 

Asymptomatic 
r=-0.661, 

p=0.089 

r=-0.326, 

p=0.466 

r=-0.300, 

p=0.505 

All 
r=-0.581, 

p=0.003 

r=-0.656, 

p<0.001 

r=-0.717, 

p<0.001 

Table 3.2: Correlations of RBANS Total score for plaque-only and plaque-with-

adventitia segmentation. Significant correlations are marked in bold. 
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Maximum 

Axial Strain 

Maximum 

Lateral Strain 

Maximum 

Shear Strain 

Immediate Memory 

Symptomatic 
r=-0.592, 

p=0.014 

r=-0.740, 

p<0.001 

r=-0.752, 

p<0.001 

Asymptomatic 
r=-0.852, 

p=0.008 

r=-0.568, 

p=0.167 

r=-0.722, 

p=0.052 

All 
r=-0.620, 

p=0.001 

r=-0.566, 

p=0.004 

r=-0.602, 

p=0.002 

Visuospatial / 

Constructional 

Symptomatic 
r=-0.191, 

p=0.476 
r=-0.575, 

p=0.018 

r=-0.611, 

p=0.011 

Asymptomatic 
r=0.195, 

p=0.670 

r=-0.047, 

p=0.919 

r=0.266, 

p=0.557 

All 
r=-0.162, 

p=0.448 
r=-0.506, 

p=0.011 

r=-0.521, 

p=0.009 

Language 

Symptomatic 
r=-0.321, 

p=0.222 

r=-0.202, 

p=0.452 

r=-0.258, 

p=0.332 

Asymptomatic 
r=-0.143, 

p=0.756 

r=-0.509, 

p=0.227 

r=-0.022, 

p=0.962 

All 
r=-0.187, 

p=0.381 

r=-0.158, 

p=0.459 

r=-0.132, 

p=0.539 

Attention 

Symptomatic 
r=-0.044, 

p=0.870 

r=-0.077, 

p=0.776 

r=-0.056, 

p=0.837 

Asymptomatic 
r=-0.838, 

p=0.011 

r=-0.303, 

p=0.499 
r=-0.758, 

p=0.036 

All 
r=-0.083, 

p=0.699 

r=-0.090, 

p=0.674 

r=-0.095, 

p=0.657 

Delayed Memory 

Symptomatic 
r=-0.609, 

p=0.011 

r=-0.762, 

p<0.001 

r=-0.744, 

p<0.001 

Asymptomatic 
r=-0.345, 

p=0.438 

r=0.119, 

p=0.796 

r=0.079, 

p=0.864 

All 
r=-0.549, 

p=0.005 

r=-0.559, 

p=0.004 

r=-0.604, 

p=0.002 

Table 3.3: Correlations of the specific component scores in RBANS total with maximum 

strain indices. Significant correlations are marked in bold. 
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3.6   Shear strain within the adventitia 

Cognitive function quantified by the RBANS Total score exhibits a negative 

correlation with maximum accumulated axial, lateral and shear strain indices when 

measured at the interface between normal adventitial wall and plaque. As the deformation 

or strain increases, the instability of plaque also increases concomitantly, expediting its 

possible rupture, resulting in embolism, and eventually leading to cognitive decline. The 

associations between strain and cognition reported in this work were significant for the 

symptomatic group and for all patients combined, suggesting a relationship between 

increasing strain indices in the carotid plaque and cognitive impairment through 

embolism. For the asymptomatic group, the correlations were not significant, partly due 

to the smaller size and reduced power. Despite the statistically significant correlation 

presented in this chapter, a larger sample size is essential to further establish this 

relationship. 

The improved strain-cognition correlation shown here supports our hypothesis that 

increased shear strains may exist in the adventitia layer or at the plaque-adventitia border. 

Our results are consistent with the evidence of shear strain in adventitia reported in the 

literature [7-8]. Compared to the plaque-only segmentation, the plaque-with-adventitia 

segmentation provides more information on the strain distribution in and around the 

plaque. The correlation coefficients between both the maximum accumulated axial strain 

and maximum lateral strain with cognitive function increased, though these changes were 

not as dramatic as those obtained for the accumulated shear strain indices. For the 

symptomatic group and for all patients combined, the maximum and peak-to-trough shear 

strain indices demonstrated significant correlation with cognitive function after including 
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adventitia, which suggests that large shear strain values in the adventitia should be 

considered in the characterization of carotid plaque. These results also suggest that 

plaque residual wall interface is of importance in the etiology of a symptomatic disorder, 

just as they suggest that carotid plaque instability is an important etiology of cognitive 

vascular decline. 

Shear strain within the arterial wall has been studied extensively since it may be 

responsible for plaque formation and rupture. As people age, their artery walls stiffen, 

thus the shear strain may also increase between the vascular arterial layers. The adventitia 

layer is associated with plaque progression and thrombus formation since angiogenesis, a 

possible factor in facilitating plaque rupture, originates from adventitia-media interface 

[28-31]. Significant shear can occur between adventitia and media, resulting in the 

tearing of the vasa vasorum, which arises from the adventitia to supply the media layer. 

Rupture of vasa vasorum can produce micro-hemorrhage into a plaque, leaving fissures 

that can cause instability, local thrombosis and embolism [32-34]. 

The plaque-with-adventitia segmentation method not only takes the shearing at 

plaque boundaries into account, but also is an easier and more convenient method for 

radiologists since it is difficult to distinguish plaque from adventitia in ultrasound B-

mode images in many instances. For the plaque-only method, intima-media was also 

included since it is almost inseparable from plaque. 

3.7   Conclusions 

In summary, the results reveal a significant relationship between the maximum and 

peak-to-peak axial, lateral and shear strain indices in carotid plaque with cognitive 



76 

 

function. Since ultrasound strain indices may assist in the identification of plaques prone 

to rupture, which in turn causes emboli; it plays an important role in characterizing 

plaque and detecting vulnerability of plaque. This correlation study indicates that these 

microemboli may be related to cognitive impairment. While silent stroke is strongly 

linked with cognitive impairment, it suggests that ultrasound strain imaging can play an 

important role in predicting embolism and resulting cognitive impairment, as well as 

preventing potential silent strokes. 

The recent results also demonstrate the feasibility and advantage of the plaque-with-

adventitia segmentation method over the plaque-only segmentation method. As this is the 

interface of microvascular abnormalities essential for plaque growth and instability, it is 

likely to be the area where one could most easily noninvasively image for plaque 

instability using these techniques. 
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Chapter 4 : Correlation of Strain Indices with NINDS-

CSN VCI Harmonization Standards 60-Minute 

Protocol 

4.1   Introduction 

In this chapter, we estimate strain indices in a second group of patients and correlate 

maximum strain indices to cognition scores obtained with a new cognition test protocol 

as a substitute for RBANS. We use National Institute of Neurological Disorder and 

Stroke-Canadian Stroke Network (NINDS-CSN) Vascular Cognitive Impairment 

Harmonization Standards [1] as a test protocol for a standardized cognitive assessment. 

NINDS-CSN Vascular Cognitive Impairment Harmonization Standards recommended 

common standards for the study of vascular cognitive impairment as a first step, and 

agreed that additional methodologies would be in need to integrate all specific sub-tests 

[2]. 

4.2   Materials and Methods 

4.2.1   Data acquisition 

Ultrasound imaging and cognition tests were performed on 51 patients (28 male and 

23 female) with significant plaque prior to a carotid endarterectomy (CEA) procedure at 

the University of Wisconsin-Madison Hospitals and Clinics. Patients were enrolled in the 

study after providing informed consent using a protocol approved by the University of 

Wisconsin-Madison Institutional Review Boards (IRB). The age of the patients ranged 
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from 43 to 85, with a mean and standard deviation of 69.96 ± 9.24 respectively.  

Ultrasound radiofrequency (RF) echo signal data was acquired using a Siemens 

S2000 ultrasound system (Siemens Ultrasound, Mountain View, CA, USA) equipped 

with an 18L6 linear array transducer, along with clinical B-mode images and color-flow 

Doppler images on these patients. The transmit frequency was 11.4 MHz with a single 

transmit focus set at the depth of the plaque. The sampling frequency was 40 MHz, with 

at least two cardiac cycles of RF data acquired. 

4.2.2   Strain indices estimation 

Plaque regions with adventitia were segmented by a radiologist/research sonographer 

for end-diastole frames using the Medical Imaging Interaction Toolkit (MITK), as 

previously shown in Chapter 3. The segmented regions were automatically tracked over 

two complete cardiac cycles using the same hierarchical block-matching motion tracking 

algorithm developed in our laboratory [3], using the segmented end-diastolic frame as the 

initial frame of the sequence. Details of our algorithm were presented in Chapter 3. 

Maximum accumulated strain over two cardiac cycles was obtained with the absolute 

value of the maximum strain used in our analysis. 

4.2.3   Cognition assessment 

Cognition assessment was also performed before CEA, using NINDS-CSN Vascular 

Cognitive Impairment Harmonization Standards 60-minute protocol, which consisted of 

several scores evaluating executive/activation, visuospatial, language/lexical retrieval, 

memory/learning, neuropsychiatric/depression symptoms, and pre-morbid status [1]. 

A raw score and a t-score, which is a standardized scaled score, were generated in 
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each sub-tests, however, only the t-scores were used in our analysis. “ANMLT” denotes 

the t-score provided for a Sementic Fluency test, in other words, a test that involves 

listing Animals, which evaluates language and executive function. “COWAT” represents 

the t-score for Phonemic Fluency, which also evaluates language and executive function. 

WAIS-IV Digit Symbol scaled score (“WAISIVDigitSymbolSS”) evaluates speeded 

motor function. WAIS-IV Block Design scaled score (“WAISIVBlockDesignSS”) 

evaluates visuospatial and motor function. WAIS-IV Information scaled score 

(“WAISIVInformationSS”) evaluates general information and verbal IQ. WAIS-IV Digit 

Span scaled score (“WAISIVDigitSpanSS”) evaluates working memory and attention. 

“TMTAT” and “TMTBT” were the t-scores generated in Trail-Making Test A and Trail-

Making Test B, respectively. Trail-Making Test A evaluates motor and visual attention, 

whereas Trail-Making Test B also evaluates executive function in addition to motor and 

visual attention. “CESDR” is the raw score obtained in the Center for Epidemiologic 

Studies-Depression Scale test which is a screening test for depression and depressive 

disorders. The Hopkins Verbal Learning Test provides a total recall t-score 

(“HVLTRTRT”) which evaluates verbal learning and immediate verbal memory, and a 

delayed recall t-score (“HVLTRDRT”) which evaluates verbal learning and delayed 

verbal memory. The Rey Complex Figure Test includes a copy test, a immediate recall 

test, and a delayed recall test. The “RCFTCopyTime” evaluates visuospatial learning. 

The 3-second delay t-score (“RCFT3DelayT”) evaluates visuospatial learning and 

immediate spatial memory. The 30-second delay t-score (“RCFT30DelayT”) evaluates 

visuospatial learning and delayed spatial memory. The Boston Naming Test only 

provides the Confrontation Naming raw score (“ConfrontationNamingRaw”) which 
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evaluates language. Finally, the North American Reading Test evaluates pre-morbid 

status, including pre-morbid verbal IQ (“NARTREstimatedVIQ”), pre-morbid 

performance IQ (“NARTREstimatedPIQ”) and pre-morbid full-scale IQ 

(“NARTREstimatedFSIQ”). 

4.2.4   Correlation analysis 

Ultrasound imaging and cognition assessment were conducted separately and were 

blinded to each other. Since no overall or total score was provided by NINDS-CSN 

Vascular Cognitive Impairment Harmonization Standards, we conducted a correlation 

study on each sub-test with a scaled score. Maximum strain indices were correlated to the 

sub-test scaled scores using a Pearson’s correlation coefficient r and a significance level 

of p<0.05 using a two-tailed t-test. Correlation analysis was performed for all patients, 

and also in each clinically relevant group of patients separately. Patients were classified 

as symptomatic or asymptomatic group based on the same clinical criteria as described in 

Chapter 3. In this group of patients, 31 patients were symptomatic, and 20 were 

asymptomatic. Patients were also classified based on specific vascular risk factors 

including diabetes, hypertension, hyperlipidemia and tobacco usage. Among 51 patients, 

14 patients had diabetes, 43 had hypertension, 40 had hyperlipidemia, and 37 were 

smokers, or previous smokers, or used other tobacco products. 

4.3   Results 

Correlation coefficients and significance values of maximum axial, lateral and shear 

strain indices with each sub-test score for all patients are listed in Table 4.1. Among all 

correlations, we only listed significant correlations with the absolute value of r>0.5 and 
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p<0.05. Note that WAISIVDigitSymbolSS and TMTBT have negative correlations with 

maximum strain indices, while on the other hand RCFTCopyTime has positive 

association with maximum strain indices, indicating that the cognition score appears to 

trend lower with increasing strain indices. Note that the RCFTCopyTime is the time that 

takes to copy a figure, therefore the longer the copy time, the lower the cognition score. 

The significant correlations suggest that strain is associated with motor, speeded motor 

function, executive function, visual attention and visuospatial learning. 

 

Maximum Axial 

Strain 

Maximum Lateral 

Strain 

Maximum Shear 

Strain 

WAISIVDigitSymbolSS r = -0.595, p < 0.001 r = -0.539, p < 0.001 r = -0.620, p < 0.001 

TMTBT r = -0.501, p < 0.001 r = -0.509, p < 0.001 r = -0.528, p < 0.001 

RCFTCopyTime r = 0.524, p < 0.001 r = 0.509, p < 0.001 r = 0.489, p < 0.001 

Table 4.1: Significant correlations of each sub-test score to maximum strain indices for 

all patients (n = 51). 

Correlation coefficients and significance values of maximum axial, lateral and shear 

strain indices with each sub-test score for symptomatic patients and asymptomatic 

patients are listed in Table 4.2 and Table 4.3, respectively. In a similar manner, only 

significant correlations with the absolute value of r>0.5 and p<0.05 were listed. When 

compared to the results obtained with all patients, WAISIVDigitSymbolSS has 

significant correlations with maximum strain indices for both symptomatic and 

asymptomatic patients. Compared to the correlations obtained with all patients, TMTBT 

is only correlated significantly with maximum strain indices for asymptomatic patients, 

while RCFTCopyTime is only correlated significantly with maximum strain indices for 
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symptomatic patients. Correlations with maximum strain indices are also significant with 

RCFT30DelayT for symptomatic patients. Note that the highest correlation coefficient of 

-0.77 was obtained with WAISIVDigitSymbolSS for asymptomatic patients. 

 

Maximum Axial 

Strain 

Maximum Lateral 

Strain 

Maximum Shear 

Strain 

WAISIVDigitSymbolSS r = -0.522, p = 0.002 r = -0.509, p = 0.003 r = -0.556, p = 0.001 

RCFTCopyTime r = 0.616, p < 0.001 r = 0.622, p < 0.001 r = 0.608, p < 0.001 

RCFT30DelayT r = -0.441, p = 0.012 r = -0.554, p = 0.001 r = -0.435, p = 0.014 

Table 4.2: Significant correlations of each sub-test score to maximum strain indices for 

symptomatic group (n = 31). 

 

Maximum Axial 

Strain 

Maximum Lateral 

Strain 

Maximum Shear 

Strain 

WAISIVDigitSymbolSS r = -0.752, p < 0.001 r = -0.674, p < 0.001 r = -0.768, p < 0.001 

TMTBT r = -0.590, p = 0.006 r = -0.655, p = 0.001 r = -0.635, p = 0.002 

Table 4.3: Significant correlations of each sub-test score to maximum strain indices for 

asymptomatic group (n = 20). 

Correlation coefficients and significance values for maximum axial, lateral and shear 

strain indices with each sub-test score and for each specific group are listed in Table 4.4 

through Table 4.7. Similar to the results shown previously, only significant correlations 

with the absolute value of r>0.5 and p<0.05 were listed. Note that 

WAISIVDigitSymbolSS has significant correlations with maximum strain indices for all 

groups. ANMLT has significant correlations with maximum strain indices for the 
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diabetes group, while TMTAT has significant correlations with maximum strain indices 

for hypertension group and smoker group. TMTBT and RCFTCopyTime are also 

significantly correlated with maximum strain indices for diabetes group, hypertension 

group and smoker group.  

 

Maximum Axial 

Strain 

Maximum Lateral 

Strain 

Maximum Shear 

Strain 

ANMLT r = -0.312, p = 0.275 r = -0.543, p = 0.042 r = -0.346, p = 0.222 

WAISIVDigitSymbolSS r = -0.576, p = 0.029 r = -0.472, p = 0.085 r = -0.641, p = 0.012 

TMTBT r = -0.640, p = 0.012 r = -0.632, p = 0.013 r = -0.643, p = 0.011 

RCFTCopyTime r = 0.275, p = 0.338 r = 0.534, p = 0.046 r = 0.432, p = 0.119 

Table 4.4: Significant correlations of each sub-test score to maximum strain indices for 

diabetes group (n = 14). 

 

Maximum Axial 

Strain 

Maximum Lateral 

Strain 

Maximum Shear 

Strain 

WAISIVDigitSymbolSS r = -0.589, p < 0.001 r = -0.548, p < 0.001 r = -0.629, p < 0.001 

TMTAT r = -0.487, p < 0.001 r = -0.541, p < 0.001 r = -0.455, p = 0.002 

TMTBT r = -0.563, p < 0.001 r = -0.561, p < 0.001 r = -0.547, p < 0.001 

RCFTCopyTime r = 0.586, p < 0.001 r = 0.597, p < 0.001 r = 0.552, p < 0.001 

Table 4.5: Significant correlations of each sub-test score to maximum strain indices for 

hypertension group (n = 43). 
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Maximum Axial 

Strain 

Maximum Lateral 

Strain 

Maximum Shear 

Strain 

WAISIVDigitSymbolSS r = -0.575, p < 0.001 r = -0.589, p < 0.001 r = -0.609, p < 0.001 

Table 4.6: Significant correlations of each sub-test score to maximum strain indices for 

hyperlipidemia group (n = 40). 

 

Maximum Axial 

Strain 

Maximum Lateral 

Strain 

Maximum Shear 

Strain 

WAISIVDigitSymbolSS r = -0.597, p < 0.001 r = -0.515, p = 0.001 r = -0.600, p < 0.001 

TMTAT r = -0.464, p = 0.004 r = -0.531, p < 0.001 r = -0.455, p = 0.005 

TMTBT r = -0.515, p = 0.001 r = -0.524, p < 0.001 r = -0.518, p < 0.001 

RCFTCopyTime r = 0.601, p < 0.001 r = 0.588, p < 0.001 r = 0.596, p < 0.001 

Table 4.7: Significant correlations of each sub-test score to maximum strain indices for 

smoker group (n = 37). 

4.4   Discussion 

In this chapter, we have shown that a relationship exists between maximum strain 

indices and cognitive function. Overall, WAISIVDigitSymbolSS, which evaluates 

speeded motor function, has significant correlation with maximum strain indices for each 

specific group and for all patients combined. RCFTCopyTime and RCFT30DelayT from 

Rey Complex Figure Test, which evaluates visuospatial learning and delayed verbal 

memory, demonstrated significant correlations with maximum strain indices only for 

symptomatic patients. TMTBT, which evaluates motor, executive function and visual 
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attention, from the Trail-Making Test showed significant correlations with maximum 

strain indices only for asymptomatic patients. This is consistent with the correlations 

obtained with specific component scores in RBANS [4] in Chapter 3 [5]. In Chapter 3, 

we have shown that significant correlations were obtained with immediate memory for 

both the symptomatic and asymptomatic group. Maximum strain indices were correlated 

significantly with visuospatial/constructional and delayed memory only for symptomatic 

patients, and with attention only for asymptomatic patients. No significant correlation 

was observed with language. 

The only significant correlation with language in this chapter was observed in the 

diabetes group, since ANMLT evaluates language and executive function. For patients 

with vascular risk factors including diabetes, hypertension, hyperlipidemia and smoking, 

significant correlations were also obtained mainly with WAISIVDigitSymbolSS, 

TMTAT, TMTBT and RCFTCopyTime.  

4.5   Conclusions 

In summary, we demonstrate that maximum strain indices in carotid plaque as 

vascular biomarkers may be associated with specific cognitive function. Although the 

etiology of cognition impairment is still uncertain, our results suggest that the decline of 

motor function, speeded motor function, executive function, visual attention and 

visuospatial learning may be associated with embolization indicated by high strain 

indices in carotid plaque. 
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Chapter 5 : Receiver Operating Characteristic Analysis 

of Strain Indices as a Classifier for Cognitive 

Impairment 

5.1   Introduction 

In this chapter
1
, we combine cognition results obtained from a newer group of 

patients in Chapter 4 with the earlier group that we had reported in Chapter 3 [1-2], and 

evaluate correlations between strain indices and cognitive function, as well as the 

feasibility of using strain indices to classify patients with cognitive impairment. Vascular 

cognitive decline may be caused by micro-emboli generated from carotid plaque 

instability [3]. We have previously shown that maximum strain indices in carotid plaque 

were significantly correlated with cognitive function [1-2]. In this chapter, we examine 

correlations with a larger sample size, along with performance evaluation of these 

maximum strain indices to possibly predict cognitive impairment.  

Ultrasound based strain imaging and cognition assessment were conducted on 75 

human subjects. We use either a Repeatable Battery for the Assessment of 

Neuropsychological Status (RBANS) [4] or National Institute of Neurological Disorder 

and Stroke-Canadian Stroke Network (NINDS-CSN) Vascular Cognitive Impairment 
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Harmonization Standards [5] as a test protocol for a standardized cognitive assessment. 

Z-scores are tabulated to normalize cognition measures obtained from these two tests. 

Radiofrequency (RF) echo signals for ultrasound strain imaging are acquired on the 

carotid arteries using either a Siemens Antares with a VFX 13-5 linear array transducer or 

a Siemens S2000 with an 18L6 linear array transducer. The same hierarchical block-

matching motion tracking algorithm [6] developed in our laboratory is utilized to estimate 

accumulated axial, lateral, and shear strain indices in carotid plaque with inclusion of 

adventitia regardless of the ultrasound system and transducer used. Correlations of z-

score to the maximum strain indices are performed with Pearson’s correlation 

coefficients (r) and significance values (p) obtained. Maximum strain indices are also 

utilized to predict cognitive impairment using receiver operating characteristic (ROC) 

analysis. 

5.2   Materials and Methods 

5.2.1   Data acquisition 

Ultrasound imaging and corresponding cognition tests were performed on 75 patients 

(44 male and 31 female) with significant plaque prior to carotid endarterectomy (CEA) 

procedure at the University of Wisconsin-Madison Hospitals and Clinics. Patients 

participated in the study after providing informed consent using a protocol approved by 

the University of Wisconsin-Madison Institutional Review Boards (IRB). The age of the 

patients ranged from 43 to 85, with a mean and standard deviation of 68.65 ± 9.23 

respectively. The first group of 24 patients participated in the study before 2011, and a 

second group of 51 patients participated since 2011. 
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Ultrasound RF echo signal data was acquired, along with clinical B-mode images 

and color-flow Doppler images on these patients. A Siemens Antares ultrasound system 

(Siemens Ultrasound, Mountain View, CA, USA) equipped with a VFX 13-5 linear array 

transducer was used to acquire ultrasound data on the first group of 24 patients, while a 

Siemens S2000 ultrasound system (Siemens Ultrasound, Mountain View, CA, USA) 

equipped with an 18L6 linear array transducer was used on the second group of 51 

patients. Although different transducers and different ultrasound systems were utilized, 

the transmit frequency was set to 11.4 MHz for both transducers and on both systems. 

The sampling frequency of 40 MHz was also the same for both ultrasound systems with a 

single transmit focus set at the depth of the plaque. 

5.2.2   Strain indices estimation 

We used the same strain estimation algorithm on all patients regardless of the 

ultrasound system. Plaque regions with adventitia were segmented by a 

radiologist/research sonographer for end-diastole frames using the Medical Imaging 

Interaction Toolkit (MITK), as shown in Figure 5.1. Segmentations were done on B-

mode images reconstructed from RF data. Clinical B-mode images and color-flow 

Doppler images were also used to help determine plaque borders. The segmented regions 

were automatically tracked over two complete cardiac cycles using a hierarchical block-

matching motion tracking algorithm developed in our laboratory [6], using the segmented 

end-diastolic frame as the initial frame of the sequence. For optimal motion tracking 

purpose, a dynamic frame skip method was utilized with a short frame skip during systole 

and a long frame skip during end-diastole [6]. 
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(A) 

 
(B)  

Figure 5.1: B-mode image reconstructed from RF data (A) and segmented plaque with 

adventitia on the B-mode image (B). 

Displacements between consecutive frames were tracked utilizing normalized cross-

correlation analysis with recursive Bayesian regularization over three iterations [7], and 

filtered with a 3 × 3 pixel median filter. Accumulated displacements over a cardiac cycle 

were then utilized to estimate strain by applying a modified least squares fit over a 7 pixel 
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length. Strain images computed inside the segmented region were overlaid on the 

corresponding B-mode images. Maximum accumulated strain over two cardiac cycles 

was then located in the strain image and averaged over the surrounding 10-20 data points 

to reduce noise artifacts. The absolute value of the maximum strain over a cardiac cycle 

was used in our analysis. 

5.2.3   Cognition assessment 

Cognition assessment was also performed before the CEA procedure on each patient. 

Different cognition test protocols were conducted for the two groups of patients. The first 

group of 24 patients were assessed using Repeatable Battery for the Assessment of 

Neuropsychological Status (RBANS), which provides an total score for overall cognition 

status, as well as five sub-scores for specific cognitive abilities including immediate 

memory, visuospatial/constructional, language, attention and delayed memory [4]. The 

second group of 51 patients were assessed using National Institute of Neurological 

Disorders and Stroke-Canadian Stroke Network (NINDS-CSN) Vascular Cognitive 

Impairment Harmonization Standards 60-minute protocol, which consists of several 

scores evaluating executive/activation, visuospatial, language/lexical retrieval, 

memory/learning, neuropsychiatric/depression symptoms, and pre-morbid status [5]. 

To standardize and normalize the cognition scores, a z-score was generated for every 

patient from the two independent groups of patients assessed with the different protocols. 

For the first group of 24 patients, the z-scores represented the standardized score for 

RBANS Total score. For the second group of 51 patients, the z-score was calculated for 

each sub-test, and then averaged across all sub-tests. In this way, we combined the 

cognition evaluation for the two groups of patients using z-scores. 
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5.2.4   Statistics and ROC analysis 

Ultrasound imaging and cognition assessment were conducted separately and were 

blinded to each other. Maximum strain indices were correlated to the standardized z-

score using a Pearson’s correlation coefficient r and a significance level of p<0.05 using 

a two-tailed t-test. Correlation analysis were performed in each group of patients 

separately, and also in all patients combined. Patients were also divided into symptomatic 

and asymptomatic groups based on clinical criteria. Stroke and transient ischemic attack 

(TIA) were the clinical symptoms that were utilized for classifying a patient as 

symptomatic. Among the 75 patients, 47 patients were symptomatic, 27 patients were 

asymptomatic and one patient was questionable based on clinical findings. 

ROC analysis was performed to evaluate the efficacy of high strain indices to predict 

cognitive impairment. Patients were divided into 2 groups using z = 0 as a threshold; 

namely a lower cognition group with z < 0 and a higher cognition group with z ≥ 0. The 

lower cognition group was assigned to the positive category, and the higher cognition 

group assigned to the negative category. Maximum axial, lateral and shear strain indices 

were used as predictors, as well as a combination of two of them, and a combination of 

all three indices. Using a 10-fold cross-validation logistic regression as classifier, ROC 

analysis for the single features and combined features were performed using Weka 3 

(Version 3.7.12, Machine Learning Group at the University of Waikato) [8]. Sensitivity 

and specificity for both single features and combined features were also computed. ROC 

curves were fitted using parameters [9] generated with ROC-kit software (Version 0.9.1 

beta, Metz ROC Software at the University of Chicago). The area under curve (AUC) and 

the upper and lower bounds of a 95% confidence interval (CI) were also estimated using 
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ROC-kit. 

5.3   Results 

5.3.1   Correlation study 

Figure 5.2 shows typical axial, lateral and shear strain images overlaid on B-mode 

images for the plaque segmented in Figure 5.1. The magnitude and direction of strains are 

also depicted on the color bar. Positive strain represents expansion of the vessel wall and 

plaque, while negative strains represent compression. The distribution and variation of 

strain inside the plaque indicates plaque heterogeneity. Note that the composition or 

tissue type of plaque changes from region to region within a single plaque. Higher strains 

are observed at the vessel wall - plaque interface close to adventitia, especially for 

shearing strains. 
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(A) 

 
(B) 

 
(C) 

Figure 5.2: Axial (A), lateral (B) and shear (C) strain images in the segmented region 

overlaid on the B-mode image. 
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Figure 5.3 presents plots of correlations of z-scores with maximum axial, lateral and 

shear strain indices for all patients, and for symptomatic and asymptomatic groups 

separately. A linear fit was performed for all patients, and also for the two groups 

respectively. Correlation coefficients and significance values for all patients, the two 

groups of patients recruited at different time periods, and the symptomatic group and 

asymptomatic group are shown in Table 5.1. Since z-score represent the standardized 

RBANS Total score for the first group of 24 patients, the correlation coefficients and 

significance values are the same as reported previously [2]. Overall the z-score decreases 

with increasing strain indices, indicating that higher strain indices are associated with 

lower cognitive function. The correlation coefficient reduces when the two groups of 

patients were combined. However, all correlations remain significant, with p < 0.05. 
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(A) 

 
(B) 

 
(C) 

Figure 5.3: Linear least-squares fits of the z-scores with maximum axial strain (A), 

maximum lateral strain (B) and maximum shear strain (C). ○ = Symptomatic, x = 

asymptomatic, □ = questionable, the dotted line represents the linear fit for symptomatic, 

dashed line the linear fit for asymptomatic, and the solid line denotes the linear fit for all 

patients. 
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 Axial Strain Lateral Strain Shear Strain 

All (n=75) 

r = -0.481, p < 

0.001 

r = -0.564, p < 

0.001 

r = -0.470, p < 

0.001 

First group (n = 24) 

r = -0.581, p = 

0.003 

r = -0.656, p < 

0.001 

r = -0.717, p < 

0.001 

Second group (n = 51) 

r = -0.597, p < 

0.001 

r = -0.592, p < 

0.001 

r = -0.590, p < 

0.001 

Symptomatic (n=47) 

r = -0.471, p < 

0.001 

r = -0.612, p < 

0.001 

r = -0.493, p < 

0.001 

Asymptomatic (n=27) 

r = -0.529, p = 

0.004 

r = -0.404, p < 

0.001 

r = -0.445, p < 

0.001 

Table 5.1: Correlation of z-score to maximum strain indices. 

5.3.2   ROC analysis 

Figure 5.4 presents a three-dimensional scatter plot of the maximum axial, lateral 

and shear strain indices against each other for the lower cognition group (z < 0) and the 

higher cognition group (z ≥ 0). The strain indices were log-scaled to clearly visualize 

variations in the indices between individual patients. LSMAS in the axes represents log-

scaled maximum axial strain, LSMLS represents log-scaled maximum lateral strain, 

LSMSS represents log-scaled maximum shear strain. Although some overlap exist 

between the two groups, we can observe that the lower cognition group tends to have 

higher strain indices, while the higher cognition group tends to cluster in the region with 
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lower strain indices range, suggesting the possibility of using maximum strain indices to 

differentiate between the lower cognition group and the higher cognition group, 

respectively. 

 

Figure 5.4: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Higher cognition group (z<0), * = lower cognition 

group (z≥0).  

Figure 5.5 through 5.7 presents three-dimensional scatter plots of the z-scores and 

two of the maximum strain indices against each other for the symptomatic group and 

asymptomatic group. The strain indices were log-scaled to clearly visualize variations in 

the indices between individual patients. LSMAS in the axes represents log-scaled 

maximum axial strain, LSMLS represents log-scaled maximum lateral strain, LSMSS 
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represents log-scaled maximum shear strain. 

 

Figure 5.5: Three-dimensional scatter plot of z-score, maximum axial strain and 

maximum lateral strain plotted against each other. ○ = Symptomatic group, * = 

asymptomatic group.  
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Figure 5.6: Three-dimensional scatter plot of z-score, maximum lateral strain and 

maximum shear strain plotted against each other. ○ = Symptomatic group, * = 

asymptomatic group.  
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Figure 5.7: Three-dimensional scatter plot of z-score, maximum shear strain and 

maximum axial strain plotted against each other. ○ = Symptomatic group, * = 

asymptomatic group.  

Figures 5.8 depicts the comparisons of ROC curves for the maximum axial, lateral 

and shear strain indices individually and in combination to predict cognition decline for 

all patients. The sensitivity, specificity, AUC and 95% CI for each classifier are listed in 

Table 5.2. The AUC values for the seven individual and group of indices lie between 0.75 

and 0.8, suggesting a good detection performance. Lateral strain indices exhibit the best 

performance with an AUC of 0.79. However, there was no significant improvement with 

the combination of strain indices, indicating that the strain indices are not completely 

independent of each other. 
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(A) 

 
(B) 

Figure 5.8: ROC curves using individual strain indices or features (A) and combined 

features (B) for all patients. 
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 Sensitivity Specificity AUC 95% (CIupper-CIlower) 

Axial Strain 0.667 0.633 0.7406 0.8382-0.6191 

Lateral Strain 0.693 0.675 0.7923 0.8781-0.6785 

Shear Strain 0.653 0.622 0.7557 0.8503-0.6358 

Axial and Lateral Strain 0.653 0.632 0.7750 0.8647-0.6587 

Axial and Shear Strain 0.640 0.601 0.7750 0.8648-0.6587 

Lateral and Shear Strain 0.707 0.686 0.7832 0.8710-0.6683 

All 0.680 0.649 0.7685 0.8600-0.6507 

Table 5.2: Sensitivity, specificity, area under curve (AUC) and 95% confidence intervals 

(CI) for individual features and combined features for all patients. 

Similar ROC analyses were also conducted for the symptomatic patients only and for 

the asymptomatic patients only. The ROC curves for symptomatic group and for 

asymptomatic group are illustrated in Figure 5.9 and Figure 5.10, respectively. The 

sensitivity, specificity, AUC and 95% CI for symptomatic group and for asymptomatic 

group are listed in Table 5.3 and Table 5.4, respectively. For the symptomatic group, the 

AUC values improve to be between 0.78 and 0.85. Lateral strain individually, and the 

combination of lateral and shear strain provide the best performance with an AUC of 

0.85. For the asymptomatic group, the AUC values are not as high, between 0.59 and 

0.69. Among all classifiers, lateral strain indices provide the best performance with an 

AUC of 0.68. The comparison between different groups of patients indicates that the 

performance of maximum strain indices to predict cognition impairment is better for 
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symptomatic patients. Similarly, there was no significant improvement with the 

combination of features, for both symptomatic and asymptomatic patient groups as 

observed for the entire group of patients. 

 
(A) 

 
(B)

Figure 5.9: ROC curves using individual features (A) and combined features (B) for 

symptomatic patients. 
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 Sensitivity Specificity AUC 95% (CIupper-CIlower) 

Axial Strain 0.681 0.641 0.8054 0.9051-0.6596 

Lateral Strain 0.723 0.703 0.8483 0.9326-0.7133 

Shear Strain 0.638 0.607 0.7801 0.8892-0.6267 

Axial and Lateral Strain 0.723 0.703 0.8143 0.9105-0.6714 

Axial and Shear Strain 0.681 0.641 0.8086 0.9069-0.6640 

Lateral and Shear Strain 0.723 0.694 0.8495 0.9333-0.7147 

All 0.723 0.694 0.8199 0.9143-0.6781 

Table 5.3: Sensitivity, specificity, area under curve (AUC) and 95% confidence intervals 

(CI) for individual features and combined features for symptomatic patients. 

  



109 

 

 
(A) 

 
(B) 

Figure 5.10: ROC curves using individual features (A) and combined features (B) for 

asymptomatic patients. 
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 Sensitivity Specificity AUC 95% (CIupper-CIlower) 

Axial Strain 0.667 0.652 0.6549 0.8330-0.4329 

Lateral Strain 0.630 0.629 0.6812 0.8582-0.4483 

Shear Strain 0.593 0.583 0.6240 0.8115-0.4007 

Axial and Lateral Strain 0.667 0.663 0.6197 0.8058-0.4000 

Axial and Shear Strain 0.667 0.652 0.6316 0.8141-0.4125 

Lateral and Shear Strain 0.667 0.663 0.6719 0.8458-0.4490 

All 0.741 0.732 0.5909 0.7834-0.3721 

Table 5.4: Sensitivity, specificity, area under curve (AUC) and 95% confidence intervals 

(CI) for individual features and combined features for asymptomatic patients. 

5.4   Discussion 

In this chapter, we have shown that the evaluation of cognitive function represented 

using z-scores possess significant correlations with the maximum strain indices. The 

primary reason for combining the two groups of patients was to obtain a larger sample 

size and thereby a more robust prediction model. The negative association indicates that 

patients with higher strain indices tend to have lower cognitive function, which is also 

supported by what was observed in the three-dimensional scatter plot for the lower 

cognition group and the higher cognition group, respectively. This is consistent with our 

hypothesis that micro-emboli that may lead to cognitive impairment could be generated 

from rupture of vulnerable plaque that manifest with increased strain, since higher strain 

suggests larger deformation and increased probability of plaque rupture. Despite the 
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statistically significant correlation described in this chapter, examination of a larger 

number of patients is essential to further establish this relationship. 

Note that correlation of cognitive function with the maximum lateral strain indices is 

much higher for symptomatic patients than asymptomatic patients. This is consistent with 

our hypothesis that plaque in symptomatic patients may have ruptured already, resulting 

in increased lateral strain with possible fissures than the possibly intact plaque in 

asymptomatic patients. For asymptomatic patients, the plaque might still be intact, thus 

the fibrous cap may limit the deformation of plaque in the lateral direction. However, 

softer plaque regions with increased strain or deformation in asymptomatic plaque may 

eventually break off and generate emboli. 

Overall, we demonstrated the feasibility of classifying and determining patients at 

higher risk of cognitive impairment using maximum strain indices. The improved 

performance of high strain indices that predict cognition impairment in symptomatic 

patients than that in asymptomatic patients is as expected, since asymptomatic patients 

are patients devoid of possible clinical symptoms, suggesting there might be other 

contributions to cognition decline, in addition to embolization. Comparison of ROC 

curves for symptomatic patients and asymptomatic patients reveal that the etiology of 

cognitive decline might be different for symptomatic patients and asymptomatic patients. 

Carotid plaque instability might be an important etiology of vascular cognitive decline for 

symptomatic patients. 

We have shown previously that it is essential to include adventitia into plaque 

segmentation, since higher shearing strain might occur at the interface of plaque and 

vessel wall [2]. In this chapter we also observed higher strains at the border of plaque and 
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at the vessel wall - plaque interface, especially in the shear strain images. The fact that all 

correlations are significant when we include adventitia in the strain analysis further 

proves the feasibility of the plaque-with-adventitia segmentation method, and supports 

theories of the importance of the vessel wall - plaque interface in the pathophysiology of 

embolic disease. 

5.5   Conclusions 

In summary, we demonstrated significant correlations between maximum strain 

indices and cognitive function, and the feasibility of using these maximum strain indices 

to predict cognitive decline. The significant correlation (p < 0.05) and high AUC values 

visualized in the ROC curves suggest that strain indices obtained in the plaque with the 

inclusion of adventitia may assist in the characterization of vulnerable plaque and 

identification of plaque prone to rupture. Ultrasound strain imaging can therefore play an 

important role in the prediction of embolism from vulnerable plaque and resulting 

cognitive impairment. 
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Chapter 6 : Statistics of Strain Indices versus Plaque 

Study Patients and Volunteers 

6.1   Introduction 

In this chapter, we perform a statistical analysis on the strain indices among all 

human subjects and volunteers. We compare histogram and scatter plots of maximum 

axial, lateral and shear strain indices for groups stratified by clinical findings based on 

specific vascular risk factors when compared to normal controls. 

Vascular risk factors for atherosclerosis, vascular dementia and Alzheimer’s disease 

includes diabetes, hypertension, hyperlipidemia, and tobacco smoking [1]. Patients with 

hypertension were reported to have larger carotid plaque area, when compared to 

individuals with normal blood pressure [2]. Hypertension and dyslipidemia were found to 

coexist with the more vulnerable plaque in Chinese patients with type 2 diabetes [3]. 

Lower values of high-density lipoprotein (HDL) cholesterol were related to echolucent 

carotid plaques in Japanese patients with type 2 diabetes [4]. Smoking was found to 

greatly increase the risk of atherosclerosis, although the effect of smoking may vary 

among individuals [5]. Cigarette smoking was associated with both hyperechoic calcified 

plaques and echolucent or hypoechoic soft plaques, where the latter plaques are generally 

classified as vulnerable plaques prone to rupture [6]. 

Estimated strain indices in carotid plaque were also compared to the strain estimated 

in the carotid vessel wall. Paini et al. conducted a study on the strain gradient in plaque 
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and adjacent CCA wall [7]. He found that patients with a negative strain gradient, namely 

sites with plaque that had lower radial strain values than that of the CCA wall, were more 

likely to have type 2 diabetes and dyslipidemia, and thus more prone to plaque rupture. 

We compare the strain indices obtained in patients with arterial strain indices estimated in 

the vessel wall of volunteers. 

6.2   Materials and Methods 

6.2.1   Data acquisition on human subjects 

Ultrasound strain imaging was performed on 94 patients with significant plaque prior 

to an carotid endarterectomy (CEA) procedure at the University of Wisconsin-Madison 

Hospitals and Clinics. Patients participated in the study after providing informed consent 

using a protocol approved by the University of Wisconsin-Madison Institutional Review 

Boards (IRB). The first group of 36 patients participated in the study before 2011, and a 

second group of 58 patients participated since 2011. The 94 patients comprised of 54 

male patients and 38 female patients. Clinical information was missing for 2 of the 

patients. The patients’ age ranged from 43 to 87, with a mean and standard deviation of 

69.45 ± 9.34 respectively. The patients’ BMI ranged from 18.1 to 45.62, with a mean and 

standard deviation of 28.53 ± 4.60 respectively. 

Ultrasound radiofrequency (RF) echo signal data, along with clinical B-mode images 

and color-flow Doppler images, were acquired on these patients. A Siemens Antares 

ultrasound system (Siemens Ultrasound, Mountain View, CA, USA) equipped with a 

VFX 13-5 linear array transducer was used to acquire ultrasound data on the first group 

of 36 patients, while a Siemens S2000 ultrasound system (Siemens Ultrasound, Mountain 
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View, CA, USA) equipped with an 18L6 linear array transducer was used on the second 

group of 58 patients. Although different transducers and different ultrasound systems 

were utilized, the transmit frequency was set to 11.4 MHz for both transducers and on 

both systems. The sampling frequency of 40 MHz was also the same for both ultrasound 

systems with a single transmit focus set at the depth of the plaque. 

We used the same segmentation method and strain estimation algorithm on all 

patients regardless of the ultrasound system. Details of our algorithm were presented in 

Chapter 5. Maximum accumulated strain over two cardiac cycles was then located in the 

strain image and averaged over surrounding 10-20 data points to reduce noise artifacts. 

The absolute value of the maximum strain over a cardiac cycle was used in our analysis. 

The corresponding minimum strain was then obtained in the same cardiac cycle. Peak-to-

peak strain was defined as the difference between maximum and minimum strain. 

6.2.2   Data acquisition on human volunteers 

Ultrasound strain imaging was performed on the bilateral vessel walls of 26 human 

volunteers with or without plaque. Patients participated in the study with informed 

consent using a protocol approved by the University of Wisconsin-Madison Institutional 

Review Boards (IRB). Among 26 volunteers, 11 were male, and 15 female. The 

volunteers’ age ranged from 48 to 78, with a mean and standard deviation of 62.23 ± 7.46 

respectively.  

Ultrasound radiofrequency (RF) echo signal data was acquired, along with clinical 

B-mode images and color-flow Doppler images using a Siemens S2000 ultrasound 

system (Siemens Ultrasound, Mountain View, CA, USA) equipped with an 18L6 linear 
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array transducer. The acquisition environment for human volunteers was the same with 

that for patients. A rectangular region of interest (ROI) within the vessel wall was 

segmented by a research sonographer on three end-diastole frames using the Medical 

Imaging Interaction Toolkit (MITK) on B-mode images reconstructed from RF data. 

Clinical B-mode images and color-flow Doppler images were also used to help keep the 

ROIs identical in the three frames. We used the same strain estimation algorithm as that 

for patients. The absolute value of the maximum strain over a cardiac cycle was used in 

our analysis.  

6.2.3   Statistical methods 

The 92 patients were classified into two groups using different clinical criteria. 

Clinical information was missing for 2 patients. In the first classification, 92 patients 

were classified as symptomatic, asymptomatic or questionable based on clinical findings. 

59 patients were symptomatic, 32 were asymptomatic, and 1 patient was questionable. 

Then, the patients were classified based on whether they possessed specific vascular risk 

factors including diabetes, hypertension, hyperlipidemia and tobacco usage. Among 92 

patients, 25 patients were diabetic, 74 had hypertension, 75 had hyperlipidemia, and 73 

were smokers, or previous smokers, or used other tobacco products. 

Histograms and fitted curves, along with three-dimensional scatter plots of different 

strain indices for different groups were plotted in Matlab (Mathworks, Natick, MA, 

USA). Maximum axial, lateral and shear strain indices were used as individual predictors, 

as well as a combination of two of them, and a combination of all three indices. Using a 

10-fold cross-validation logistic regression as classifier, sensitivity and specificity for 

both individual features and combined features were obtained using Weka 3 (Version 
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3.7.12, Machine Learning Group at the University of Waikato) [8].  

6.3   Results 

6.3.1   Strain indices histograms 

Figure 6.1 shows the histograms for maximum and peak-to-peak axial, lateral and 

shear strain indices for all patients. Histograms were plotted using 50 bins. The curves 

were also fitted using the kernel smoothing function in Matlab. Note that for each strain 

histogram, the distribution of all patients has a peak and then a side lobe. 
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(a) 

 
(b) 

 

(c) 

Figure 6.1: Histogram and fitted curve for maximum and peak-to-peak axial strain (a), 

lateral strain (b) and shear strain (c) for all patients. 

A normal distribution fit was then applied to the maximum strain histograms plotted 

with 20 bins and is shown in Figure 6.2. Mean and standard deviation of the normal 
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distribution for maximum axial, lateral and shear strain are listed in Table 6.1. Due to the 

side lobe, the normal distribution and the histogram do not match very well. 

 
(a) 

 
 (b) 

 
(c) 

Figure 6.2: Normal distribution fitted histogram of maximum axial strain (a), lateral 

strain (b) and shear strain (c). 
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Maximum Axial 

Strain 

Maximum Lateral 

Strain 

Maximum Shear 

Strain 

Mean 30.765 17.542 32.222 

Standard Deviation 29.526 13.053 25.287 

Table 6.1: Mean and standard deviation of the normal distribution fit for maximum axial, 

lateral and shear strain indices. 

6.3.2   Statistics of strain indices for different clinical groups  

As mentioned before, 59 out of 94 patients were symptomatic, while 32 were 

asymptomatic. The rest are either questionable or lack clinical information. Thus the 59 

patients were classified as the symptomatic group, and the 32 patients were classified as 

the asymptomatic group. Figure 6.3 through 6.5 presents the comparison of strain 

histograms for the two groups. Different distribution of the histogram can be observed 

between symptomatic and asymptomatic group with the same strain indices. Note that 

symptomatic group tends to have higher lateral strain compared to the asymptomatic 

group. 
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(a) 

 
(b)

 
(c) 

Figure 6.3: Comparison of histograms with fitted curve for maximum axial strain for 

symptomatic group and asymptomatic group. 
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(a) 

 
(b)

 
(c) 

Figure 6.4: Comparison of histograms with fitted curve for maximum lateral strain for 

symptomatic group and asymptomatic group. 
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(a) 

 
(b)

 
(c) 

Figure 6.5: Comparison of histograms with fitted curve for maximum shear strain for 

symptomatic group and asymptomatic group. 

Figure 6.6 depicts a three-dimensional scatter plot of the maximum axial, lateral and 

shear strain indices plotted against each other for the symptomatic group and the 
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asymptomatic group. The strain indices were log-scaled to clearly visualize variations in 

the indices between individual patients. LSMAS in the axes represents log-scaled 

maximum axial strain, LSMLS represents log-scaled maximum lateral strain, LSMSS 

represents log-scaled maximum shear strain. Although some overlap can be observed for 

the two groups, the strain indices of symptomatic group were distributed over a larger 

range when compared to the asymptomatic group. Maximum axial, lateral and shear 

strain indices individually and in combination were used as classifiers to differentiate 

symptomatic patients from asymptomatic patients. The sensitivity and specificity for each 

classifier with individual feature or combined features are listed in Table 6.2. 

 

Figure 6.6: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Symptomatic group, * = asymptomatic group.  
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 Sensitivity Specificity 

Axial Strain 0.648 0.648 

Lateral Strain 0.648 0.648 

Shear Strain 0.637 0.654 

Axial and Lateral Strain 0.648 0.648 

Axial and Shear Strain 0.626 0.660 

Lateral and Shear Strain 0.615 0.666 

All 0.615 0.666 

Table 6.2: Sensitivity and specificity for the classification of symptomatic patients for 

individual and combined features. 

Since clinical information was missing for 2 patients, only 92 patients had clinical 

documentation of diabetes, hypertension, hyperlipidemia, or tobacco usage. Of these 

patients 25 out of 92 were diabetic, while the rest, i.e. 67 patients, were not diagnosed 

with diabetes. Figure 6.7 through 6.9 presents the comparison of strain histograms for the 

diabetes groups and no diabetes group. No significant difference can be observed for 

axial and shear strain, since high axial and shear strain also exist in the diabetes group. 

However, the diabetes group tends to have lower lateral strain. 
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(a) 

 
(b)

 
(c) 

Figure 6.7: Comparison of histograms with fitted curve for maximum axial strain for 

diabetes group and the no diabetes group. 
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(a) 

 
(b)

 
(c) 

Figure 6.8: Comparison of histograms with fitted curve for maximum lateral strain for 

diabetes group and the no diabetes group. 
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(a) 

 
(b)

 
(c) 

Figure 6.9: Comparison of histograms with fitted curve for maximum shear strain for 

diabetes group and the no diabetes group. 

Figure 6.10 depicts a three-dimensional scatter plot of the maximum axial, lateral 

and shear strain indices against each other for the diabetes group and no diabetes group. 
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The strain indices were log-scaled to clearly visualize variations in the indices between 

individual patients. LSMAS in the axes represents log-scaled maximum axial strain, 

LSMLS represents log-scaled maximum lateral strain, LSMSS represents log-scaled 

maximum shear strain. No significant difference was observed, but the strain indices for 

patients in the no diabetes group is distributed more in the lower strain range than the 

diabetes group. Maximum axial, lateral and shear strain indices individually and in 

combination were used as classifiers to differentiate diabetic patients from patients 

without diabetes. The sensitivity and specificity for each classifier with individual feature 

or combined features are listed in Table 6.3. The sensitivity and specificity values are 

higher than that for classifying between the symptomatic group and asymptomatic group. 

 

Figure 6.10: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Diabetes group, * = no diabetes group.  
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 Sensitivity Specificity 

Axial Strain 0.728 0.728 

Lateral Strain 0.707 0.736 

Shear Strain 0.728 0.728 

Axial and Lateral Strain 0.728 0.678 

Axial and Shear Strain 0.728 0.728 

Lateral and Shear Strain 0.696 0.715 

All 0.717 0.682 

Table 6.3: Sensitivity and specificity of classification of patients with diabetes for 

individual features and combined features. 

Among the 92 patients, 74 patients had hypertension or were treated for 

hypertension. Figure 6.11 through 6.13 presents the comparison of strain histograms for 

hypertension group with n = 74 and no hypertension group with n = 18. The hypertension 

group has more patients with higher axial, lateral and shear strain indices than the no 

hypertension group. The strain distribution in the histogram and smoothing curves are 

also different for the two groups. 
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(a) 

 
(b)

 
(c) 

Figure 6.11: Comparison of histograms with fitted curve for maximum axial strain for 

hypertension and no hypertension group respectively. 
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(a) 

 
(b)

 
(c) 

Figure 6.12: Comparison of histograms with fitted curve for maximum lateral strain for 

hypertension and no hypertension group respectively. 
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(a) 

 
(b)

 
(c) 

Figure 6.13: Comparison of histograms with fitted curve for maximum shear strain for 

hypertension and no hypertension group respectively. 

Figure 6.14 depicts a three-dimensional scatter plot of the maximum axial, lateral 

and shear strain indices against each other for the hypertension group and no 
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hypertension group. The strain indices were log-scaled to clearly visualize variations in 

the indices between individual patients. LSMAS in the axes represents log-scaled 

maximum axial strain, LSMLS represents log-scaled maximum lateral strain, LSMSS 

represents log-scaled maximum shear strain. Similar to what we observed in the 

histogram comparison, the hypertension group tends to have more strain indices 

distributed in the high strain range. Maximum axial, lateral and shear strain indices 

individually and in combination were used as classifiers to differentiate the hypertension 

group from no hypertension group. The sensitivity and specificity for each classifier with 

individual feature or combined features are listed in Table 6.4. Both the sensitivity and 

specificity were above 0.8. 

 

Figure 6.14: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Hypertension group, * = no hypertension group.  
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 Sensitivity Specificity 

Axial Strain 0.804 0.804 

Lateral Strain 0.804 0.804 

Shear Strain 0.804 0.804 

Axial and Lateral Strain 0.804 0.804 

Axial and Shear Strain 0.804 0.804 

Lateral and Shear Strain 0.804 0.804 

All 0.804 0.804 

Table 6.4: Sensitivity and specificity of classification of patients with hypertension for 

individual features and combined features. 

Similarly, 75 out of 92 patients are classified as belonging to the hyperlipidemia 

group, and the rest 17 were classified as no hyperlipidemia group. Figure 6.15 through 

6.17 presents the comparison of strain histograms for the hyperlipidemia group and no 

hyperlipidemia group. Although the axial and lateral distribution are quite similar for the 

two groups, some difference in shear strain distribution can be observed. 
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(a) 

 
(b)

 
(c) 

Figure 6.15: Comparison of histograms with fitted curve for maximum axial strain for 

hyperlipidemia group and no hyperlipidemia group. 
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(a) 

 
(b)

 
(c) 

Figure 6.16: Comparison of histograms with fitted curve for maximum lateral strain for 

hyperlipidemia group and no hyperlipidemia group. 
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(a) 

 
(b)

 
(c) 

Figure 6.17: Comparison of histograms with fitted curve for maximum shear strain for 

hyperlipidemia group and no hyperlipidemia group. 

Figure 6.18 depicts a three-dimensional scatter plot of the maximum axial, lateral 

and shear strain indices plotted against each other for the hyperlipidemia group and no 
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hyperlipidemia group. The strain indices were log-scaled to clearly visualize variations in 

the indices between individual patients. LSMAS in the axes represents log-scaled 

maximum axial strain, LSMLS represents log-scaled maximum lateral strain, LSMSS 

represents log-scaled maximum shear strain. Due to the much smaller sample size in the 

patients listed in the no hyperlipidemia group compared to the hyperlipidemia group, no 

significant difference of the two groups can be observed. Maximum axial, lateral and 

shear strain indices individually and in combination were used as classifiers to 

differentiate hyperlipidemia group from no hyperlipidemia group. The sensitivity and 

specificity for each classifier with individual feature or combined features are listed in 

Table 6.5. The sensitivity and specificity are also around 0.8. 

 

Figure 6.18: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Hyperlipidemia group, * = no hyperlipidemia 

group.  
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 Sensitivity Specificity 

Axial Strain 0.804 0.818 

Lateral Strain 0.815 0.815 

Shear Strain 0.804 0.818 

Axial and Lateral Strain 0.815 0.770 

Axial and Shear Strain 0.793 0.820 

Lateral and Shear Strain 0.804 0.772 

All 0.793 0.775 

Table 6.5: Sensitivity and specificity of classification of patients with hyperlipidemia for 

individual features and combined features. 

In the smoking group, 73 out of 92 patients were classified as smokers, while 19 

were classified as non-smokers. Patients with previous smoking history or other tobacco 

usage are also classified as smokers in our analysis. Figure 6.19 through 6.21 presents the 

comparison of strain histograms for the two groups. The smoker group has higher axial 

and shear strain indices compared to the non-smoker group.  
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(a) 

 
(b)

 
(c) 

Figure 6.19: Comparison of histograms with fitted curve for maximum axial strain for 

smoker group and non-smoker group. 



143 

 

 
(a) 

 
(b)

 
(c) 

 

Figure 6.20: Comparison of histograms with fitted curve for maximum lateral strain for 

smoker group and non-smoker group. 
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(a) 

 
(b)

 
(c) 

Figure 6.21: Comparison of histograms with fitted curve for maximum shear strain for 

smoker group and non-smoker group. 

Figure 6.22 depicts a three-dimensional scatter plot of the maximum axial, lateral 

and shear strain indices plotted against each other for the smoker group and the non-
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smoker group. The strain indices were log-scaled to clearly visualize variations in the 

indices between individual patients. LSMAS in the axes represents log-scaled maximum 

axial strain, LSMLS represents log-scaled maximum lateral strain, LSMSS represents 

log-scaled maximum shear strain. Some overlap and no significant difference can be 

observed. Maximum axial, lateral and shear strain indices individually and in 

combination were used as classifiers to differentiate smokers from non-smokers. The 

sensitivity and specificity for each classifier with individual feature or combined features 

are listed in Table 6.6. The sensitivity and specificity are close to 0.8, but not high as 

those for patients clinically classified as belonging to the hypertension or hyperlipidemia 

groups. 

 

Figure 6.22: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Smoker group, * = non-smoker group.  
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 Sensitivity Specificity 

Axial Strain 0.793 0.793 

Lateral Strain 0.793 0.793 

Shear Strain 0.793 0.793 

Axial and Lateral Strain 0.783 0.796 

Axial and Shear Strain 0.793 0.793 

Lateral and Shear Strain 0.783 0.796 

All 0.783 0.796 

Table 6.6: Sensitivity and specificity of classification of patients with tobacco usage for 

individual features and combined features. 

6.3.3   Comparison with human volunteers 

Figure 6.23 shows the comparison of histograms of the strain indices between 

patients and volunteers. For patients, the maximum strain was calculated within the 

plaque or adventitia. For volunteers, the maximum strain was estimated within the vessel 

wall, since there might be no plaque in the carotid artery of a healthy volunteer. 

Therefore, the comparison is between the strain in plaque and the strain in vessel wall. 

Plaque tends to have higher strain than vessel wall, in every strain histogram comparison. 
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(a) 

 
 (b) 

 
(c) 

Figure 6.23: Comparison of histograms for maximum axial strain (a), lateral strain (b) 

and shear strain (c) for patient group and volunteer group. 
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Figure 6.24 depicts a three-dimensional scatter plot of the maximum axial, lateral 

and shear strain indices plotted against each other for the patient group and volunteer 

group. The strain indices were log-scaled to clearly visualize variations in the indices 

between individual patients. LSMAS in the axes represents log-scaled maximum axial 

strain, LSMLS represents log-scaled maximum lateral strain, LSMSS represents log-

scaled maximum shear strain. Note that vessel wall strain indices for volunteers tend to 

cluster in the middle range, with plaque strain being more widely distributed. 

 

Figure 6.24: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Patient group, * = volunteer group.  

Figure 6.25 shows bivariate histograms of age and maximum strain indices for 

patients and volunteers. The bars were colored according to height. The patient group has 
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larger range of both age and strain than the volunteer group. 

 
(a) 

 
(b) 

 

(c) 

Figure 6.25: Bivariate histograms of age and maximum axial strain (a), lateral strain (b) 

and shear strain (c) for patient group and volunteer group.  

To better visualize the relationship between strain and age, all 94 patients were 



150 

 

divided into five age groups, 40s (40-49), 50s (50-59), 60s (60-69), 70s (70-79) and 80s 

(80-89). Figure 6.26 depicts a three-dimensional scatter plot of the maximum axial, 

lateral and shear strain indices against each other for different age groups. The strain 

indices were log-scaled to clearly visualize variations in the indices between individual 

patients. LSMAS in the axes represents log-scaled maximum axial strain, LSMLS 

represents log-scaled maximum lateral strain, LSMSS represents log-scaled maximum 

shear strain. Most patients are in their 70s, and the 70s group is widely distributed with 

low strain values, and also some of the highest strain values. 

 

Figure 6.26: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Patients in 40s, + = patients in 50s, * = patients in 

60s, Δ = patients in 70s, □ = patients in 80s.  
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Similarly, all 26 volunteers were divided into four age groups, 40s (40-49), 50s (50-

59), 60s (60-69), and 70s (70-79). Figure 6.27 depicts a three-dimensional scatter plot of 

the maximum axial, lateral and shear strain indices against each other for different age 

groups. The strain indices were log-scaled to clearly visualize variations in the indices 

between individual patients. LSMAS in the axes represents log-scaled maximum axial 

strain, LSMLS represents log-scaled maximum lateral strain, LSMSS represents log-

scaled maximum shear strain. Different from the patients in 70s, volunteers in 70s have 

lower strain among all volunteers. That is to say the plaque strain is high for people in 

70s, but the vessel wall strain is not as high due to arterial stiffening. 

 

Figure 6.27: Three-dimensional scatter plot of maximum axial, lateral and shear strain 

indices plotted against each other. ○ = Patients in 40s, + = patients in 50s, * = patients in 

60s, Δ = patients in 70s.  
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6.4   Discussion 

In this chapter we have illustrated the distribution in strain indices for patients and 

volunteers as well as for each specific risk factor group. In general no significant 

difference in the strain indices were observed in the comparison presented in this chapter, 

and the classification using strain indices versus clinical symptomology needs further 

study. In addition, due to the small sample sizes for both patients and volunteers, the 

trend in the distribution of the strain indices for each clinical group was difficult to 

discern. 

The diabetes group was shown to have lower strain indices, suggesting that arterial 

stiffening may have happened in these patients. Patients with type 1 and type 2 diabetes 

have been compared to healthy controls and the results revealed that diabetes patients 

tend to have higher carotid intima-media thickness (IMT) and arterial stiffness [9-10]. 

The fact that patients in 70s showed high plaque strain and low vessel wall strain 

also leads to the assumption of arterial stiffening with age. Carotid arterial stiffening was 

reported to accelerate with aging in a study of 2650 participants [11]. The contributions 

of age-related arterial stiffening to cardiovascular disease has been extensively studied 

[12]. It has been shown that arterial stiffening may contribute to hypertension [13]. 

Variations in carotid artery stiffness with age were reported to be associated with 

hypertension in both male and female subjects, although contributions from hypertension 

differed between the sexes [14]. 

6.5   Conclusions 

In summary, the results reveal different strain statistics of patients versus volunteers, 
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symptomatic versus asymptomatic patients, as well as patients with diabetes, 

hypertension, hyperlipidemia, tobacco usage versus normal controls. Although some 

trends could be observed, the relationships should be further examined in a larger number 

of patients and volunteers.  
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Chapter 7 : Trans-cranial Doppler versus Ultrasound 

Strain Indices 

7.1   Introduction 

In this chapter, we provide a comparison of trans-cranial Doppler (TCD) and 

ultrasound strain indices described in previous chapters for predicting embolism and 

preventing potential silent strokes. Ultrasound strain indices may predict plaque prone to 

rupture and generate micro-emboli, which may be visualized during TCD monitoring. 

TCD monitoring has been utilized to detect intraprocedural micro-emboli during 

transapical transcatheter aortic valve implantation (TA-TAVI) [1], orthopedic surgery 

[2], and at the vertebrobasilar junction during vertebral artery dissection (VAD) [3].  

TCD measures the velocity of blood flow in middle cerebral arteries (MCA), 

including peak systolic velocity (PSV), end-diastolic velocity (EDV) and mean velocity 

during a cardiac cycle. MCA velocities measured by TCD were compared to MRI 

findings in asymptomatic patients with internal carotid artery (ICA) stenosis [4], and 

during hypercapnia and hypocapnia [5]. TCD also provides a pulsatility index (PI), the 

difference between systolic and diastolic velocities divided by the mean velocity, which 

was also utilized for arterial disease studies in patients with stroke [6]. During the 

monitoring process, a high intensity transient signal (HITS) can occur in the recordings, 

which may reflect the propagation of micro-emboli [7-9] through the MCA. Clinical 

studies have shown that patients with HITS may have different clinical characteristics 
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including age and vascular risk factors from patients without HITS [10], and 

characteristics of HITS in symptomatic patients may also differ from those in 

asymptomatic patients [11]. HITS were associated with unstable lipid-rich carotid plaque 

and luminal thrombus in symptomatic patients prior to CEA [12]. In symptomatic 

patients with mild to moderate carotid artery stenosis, HITS was not associated with 

intraplaque hemorrhage and thin fibrous cap evaluated with MRI, suggesting TCD and 

MRI provide independent information on plaque vulnerability [13]. HITS has been 

reported to show high correlation with symptomatic carotid disease [14-15]. HITS was 

more likely to occur in patients with symptomatic lesions and high cholesterol in TCD 

monitoring after carotid artery stenting [16]. HITS may also suggest the presence of a 

right-to-left shunting in patients who suffer strokes with an undetermined etiology [17]. 

7.2   Materials and Methods 

7.2.1   Data acquisition 

TCD monitoring was conducted on 50 patients with significant plaque and scheduled 

for a carotid endarterectomy (CEA) procedure at the University of Wisconsin-Madison 

Hospitals and Clinics. Patients provided informed consent using a protocol approved by 

the University of Wisconsin-Madison Institutional Review Board (IRB) prior to the TCD 

and ultrasound study. 30 out of 50 patients were male, and 20 were female. The age of 

the patients ranged from 43 to 87, with a mean and standard deviation of 68.96 ± 9.37 

respectively. The BMI of the patients ranged from 19.22 to 45.62, with a mean and 

standard deviation of 28.27 ± 5.02 respectively.TCD signals were monitored for one 

hour, followed by ultrasound strain imaging on carotid artery. Maximum PSV on bilateral 
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sides were obtained. PSV in proximal ICA, middle ICA and distal ICA were also 

acquired using Doppler Ultrasound.  

During monitoring, the TCD system recorded Doppler waveforms of the blood flow 

velocity in the MCA, and labeled HITS with a “complex” waveform, which is the high 

resolution raw time domain Doppler data. Since HITS may reflect the progression of 

micro-emboli or a possible artifact, HITS recorded by the TCD system were filtered by 

physician and real HITS identified. A real HITS should satisfy all of the following 

criteria: the Doppler signal was less than 300 milliseconds, the amplitude of the signal 

was at least 3dB higher than the background blood flow signal, the signal was 

unidirectional within the velocity spectrum, and an audible “snap”, “chirp” or “moan” 

was present [18]. 

7.2.2   Statistical analysis 

Strain indices were estimated previously, as described in Chapter 2 to Chapter 6. 

Since patients were scheduled for a CEA procedure, bilateral TCD and ultrasound data 

were acquired and labeled as surgical side or non-surgical side respectively. Maximum 

strain indices on the surgical side and non-surgical side were correlated to the PSV in 

MCA on the corresponding side using a Pearson’s correlation coefficient r and a 

significance level of p<0.05 using a two-tailed t-test. To better understand the 

hemodynamics of ICA and MCA, PSV in different segments of ICA and the maximum 

PSV in ICA were also correlated to the PSV in MCA on the same side using a Pearson’s 

correlation coefficient r and a significance level of p<0.05 using a two-tailed t-test. 
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7.3   Results 

7.3.1   HITS 

Among the 50 patients monitored, HITS were recorded on 13 patients (9 male and 4 

female). The age of the patients with HITS ranged from 59 to 87, with a mean and 

standard deviation of 73.38 ± 8.86 respectively. The BMI of the patients ranged from 

24.08 to 33.74, with a mean and standard deviation of 28.18 ± 2.87 respectively. Figure 

7.1 shows a typical TCD display with the labeling of a classical HITS. The “complex” 

window shows the original Doppler quadrature data with two signals with a π/2 phase 

shift. This HITS was real since an audible chirp was present, and the signal was within 

300 microseconds and unidirectional within the Doppler waveform. Also, the amplitude 

of the signal fluctuated significantly and was much higher than the background, with a 

classical “complex” shape for HITS. The large amplitude of the signal can also be 

observed from the high velocity represented in red color in the Doppler spectrum window 

denoted by the yellow arrow. 
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Figure 7.1: A classical HITS labeled on the TCD display. 

7.3.2   Correlations of MCA velocities with strain indices and ICA 

velocities 

The Pearson’s correlation coefficient r and significance level p for correlations of 

maximum axial, lateral and shear strain indices with PSV in MCA for the 13 patients 

identified with HITS are listed in Table 7.1. The Pearson’s correlation coefficient r is 

highest for the correlation of maximum lateral strain to MCA PSV on the surgical side, 

with p value also closest to become significant. Note that the correlations are not 

significant due to the fact that the sample size is rather small. 
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 Axial Strain Lateral Strain Shear Strain 

surgical side (n = 12) 

r = 0.456, p = 

0.132 

r = 0.502, p = 

0.092 

r = 0.342, p = 

0.273 

non-surgical side (n = 10) 

r = 0.295, p = 

0.403 

r = 0.477, p = 

0.156 

r = 0.060, p = 

0.869 

Table 7.1: Correlations of maximum strain indices with MCA PSV on surgical side and 

non-surgical side for patients with HITS. 

The Pearson’s correlation coefficient r and significance level p for correlations of 

PSV in proximal ICA, middle ICA, distal ICA and the maximum of the three with PSV in 

MCA for the same 13 patients identified with HITS are listed in Table 7.2. Note that the 

correlations are rather weak. The highest correlation is the correlation of maximum ICA 

PSV with MCA PSV on the surgical side, with an r value close to 0.5 and the lowest p 

value. 

 ICA-Proximal ICA-Mid ICA-Distal 

Maximum of 

ICA 

surgical side (n = 11) 

r = 0.438, p = 

0.171 

r = 0.397, p = 

0.221 

r = 0.354, p = 

0.280 

r = 0.474, p = 

0.134 

non-surgical side (n = 9) 

r = 0.400, p = 

0.279 

r = 0.264, p = 

0.488 

r = -0.441, p 

= 0.226 

r = -0.385, p = 

0.298 

Table 7.2: Correlations of ICA PSV with MCA PSV on surgical side and non-surgical 

side for patients with HITS. 
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7.4   Discussion 

In this chapter we demonstrated the feasibility of detecting micro-emboli using TCD 

on pre-op patients. On some of the patients, over 100 HITS identified by TCD system 

could be observed. It took a lot of time and effort in the differentiation of real HITS from 

artifact by human observers. More efficient implementations are needed for better 

automatic identification of real HITS [19]. 

The results revealed some trend in the association of maximum strain indices and 

maximum ICA PSV with MCA PSV on the surgical side of patients identified with 

HITS, although the correlations were not statistically significant due to the low patient 

number. The correlations for the non-surgical side were weaker as expected, since 

significant plaque is present on the surgical side, with blood flow velocities more affected 

by the micro-emboli generated by possible plaque rupture. Since, we did not observe a 

significant correlation, examination of a larger sample size is essential to establish any 

relationship. Also, human errors can occur since the values obtained were highly 

dependent on human operation. The placement of transducers may affect the 

measurements and result in lower velocities obtained than the true velocities. 

Unstable plaques with high strain indices may also be associated with vascular 

mediated brain damage. In a recent analysis in our Plaque Study group, maximum strain 

indices in carotid plaque in ICA were correlated to white matter hyperintensities (WMH) 

[20]. WMH are the bright regions on T2 weighted brain MRI image, and are postulated to 

result from cumulative subclinical microvascular injury. Berman et al. [20] found that 

WMH total lesion volume, adjusted for age and gender, was positively correlated to 

maximum strain indices estimated in carotid plaque in the ICA. 
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7.5   Conclusions 

In summary, we have shown that TCD is a sensitive detector of clinically silent 

micro-emboli. A relationship exists between maximum strain indices, maximum ICA 

velocity and maximum MCA velocity on the surgical side with significant plaque. 

Increased strains in carotid plaque in ICA are also significantly associated with an 

increase in WMH. Since HITS in TCD monitoring may reflect the existence of micro-

emboli, correlation of strain indices to HITS would give us more insight into the ability 

of strain imaging for predicting the vulnerability or rupture of carotid plaques.  
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Chapter 8 : Estimation of Carotid Radial and 

Circumferential Strain 

8.1   Introduction 

In this chapter, we generate a Lagrangian description [1-2] of radial and 

circumferential strains over a cardiac cycle utilizing a Lagrangian polar strain generation 

framework previously developed in our lab. Originally designed for cardiac short axes 

views [3], the framework described in this chapter utilizes luminal or plaque borders and 

adventitia contours to generate a polar grid to follow arterial wall and plaque deformation 

over two cardiac cycles. Radial and circumferential components of displacement and 

strain in a polar coordinate system are readily generated from the geometrical 

arrangement of polar grid data points.   

Polar strain, i.e. radial and circumferential strain described in a polar coordinate 

system has been investigated for vascular ultrasound strain imaging, usually with FEA 

based concentric wall models [4-5]. Hansen et al. [4] calculated radial strains using a 

transverse cross-section of a homogeneous vessel with a concentric lumen for evaluating 

angular compounding, using a single quasi-static compressional state with an applied 

pressure of 0.532 kPa. Richards et al. [5] designed a concentric FEA model for 

intravascular ultrasound (IVUS) and investigated 8 independent quasi-static radial and 

circumferential strain deformations ranging from 0.1% to 10%. They utilized a polar 

registration mesh for displacement interpolation. These studies, however, were mainly 
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focused on tissue deformations at selected time instances in a cardiac cycle, and not over 

a continuous deformation as described in this chapter.  

In this chapter, we present radial and circumferential strain results in carotid artery 

over a cardiac cycle. The radial and circumferential strain indices are obtained using 

Lagrangian strain estimation using a polar grid between the inner lumen or plaque 

borders and the outer adventitia wall in cross-sectional scans of the carotid artery. 

8.2   Materials and Methods 

8.2.1   Data acquisition 

Ultrasound imaging was performed on patients with significant plaque prior to 

carotid endarterectomy (CEA) procedure at the University of Wisconsin-Madison 

Hospitals and Clinics. Patients provided informed consent using a protocol approved by 

the University of Wisconsin-Madison Institutional Review Boards (IRB) to participate in 

the study. Ultrasound radiofrequency (RF) echo signal data was acquired on the cross-

sectional view of the carotid artery, along with clinical B-mode images and color-flow 

Doppler images, using a Siemens S2000 ultrasound system (Siemens Ultrasound, 

Mountain View, CA, USA) equipped with an 18L6 linear array transducer. The transmit 

frequency was set to 11.4 MHz with a single transmit focus set at the depth of the plaque, 

and the sampling frequency was 40 MHz. 

Plaque regions with adventitia were segmented by a research sonographer at two 

end-diastole frames using the Medical Imaging Interaction Toolkit (MITK), as shown in 

Figure 8.1. Segmentations were done on B-mode images reconstructed from RF data, and 

were intentionally demarcated as a closed loop. Clinical B-mode images and color-flow 
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Doppler images were used to help determine the plaque inner borders in the lumen since 

the RF reconstructed B-mode images are noisier when compared to clinical B-mode 

images of the same region. The segmented regions were automatically tracked over a 

complete cardiac cycle using a hierarchical block-matching motion tracking algorithm 

developed in our laboratory [6].  

 
(a) 

 
(b) 

Figure 8.1: B-mode image reconstructed from RF data (a) and segmented plaque with 

adventitia on the B-mode image (b). 
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8.2.2   Polar grid generation 

A frame work that generate radial and circumferential strains using Lagrangian 

deformation tracking algorithm [3] previously developed in our laboratory was adapted in 

this chapter. Here, inner and outer wall contour pairs over two cardiac cycles were 

generated using a hierarchical block-matching motion tracking algorithm [6] also 

developed in our laboratory. A centroid was then calculated from the donut-shaped 

carotid artery wall in cross-sectional view with the contour pair for each image frame. 

The contour pair was then divided in an equiangular fashion along the circumferential 

direction with equidistant points in the radial direction to generate a polar grid. In this 

study, contour lines were divided into 600 sections along the circumferential direction. In 

addition, 40 data points along the radial direction between the inner and outer carotid 

artery wall contours were generated for this study. These numbers were chosen to closely 

approximate the resolution of the estimated displacement field. Axial and lateral 

displacements were then overlaid onto the polar grid, with non-overlapping points filled 

in with bilinear interpolation. 

8.2.3   Radial and circumferential displacement estimation 

Accumulated axial and lateral displacements in a Cartesian coordinate system were 

previously computed with a hierarchical block-matching motion tracking algorithm [6] 

described in previous chapters. Radial and circumferential displacements were then 

estimated using a 2D rotation matrix M, which defined as: 

   
        
         

    (2) 

where   denotes the counter-clockwise angle measured from a pre-defined 0
o
 line 
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crossing the centroid and a point on the polar grid. Radial and circumferential 

displacements in polar coordinates can be generated using: 

                    (3) 

where 

        
  

  
  

             
      

        
   (4) 

In Equation 4, dr and dθ denote the radial and circumferential displacement vector 

components for the polar coordinate system, while daxial and dlateral denote the 

displacement components for Cartesian coordinate system. Equation 3 finally reduces to: 

                             

                              (5) 

8.2.4   Radial and circumferential strain generation 

After the polar displacement vector components were computed, radial and 

circumferential strains can be calculated using: 

    
   

  
 

    
 

 

   

  
 

  

 
 (6) 

where r denotes the distance between the centroid and a computation point or 

particle. Note that the contribution of the radial displacement to circumferential strain 

comes from the elongation or shortening of carotid artery wall along the circumferential 
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direction when the radial deformation occurs. Along the radial direction, radial strains 

were computed using a 9-point least squares strain estimator (LSQSE) [7]. In a similar 

manner in the circumferential direction, 
   

  
 was also computed with a 9-point LSQSE. 

Note that this was achievable because the polar grid is divided equi-distantly in the radial 

direction and equi-angularly in the circumferential direction. 

8.3   Results 

8.3.1   Radial and circumferential displacements 

Figure 8.2 shows typical accumulated radial displacement images at systole and end-

diastole for the plaque demarcated in Figure 8.1. Positive radial displacements are 

depicted in a red color, indicating the motion is away from the centroid. Negative radial 

displacements are depicted in blue color, indicating the motion is towards the centroid. 

Radial displacement in maximum amplitude can be observed at systole, as shown in 

Figure 8.2 (a), while the amplitude of radial displacement decreases at end-diastole, as 

shown in Figure 8.2 (b). Note that the displacement doesn’t go back to zero because the 

contour of the plaque with adventitia is not a perfectly symmetric loop with equally 

distributed mass. 
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(a) 

 

(b) 

Figure 8.2: Radial displacement images at systole (a) and end-diastole (b) in the 

segmented region. 

Figure 8.3 presents the corresponding accumulated circumferential displacement 

images at systole and end-diastole. Positive circumferential displacements are depicted in 

a red color, indicating that the motion is in a counter-clockwise direction. Negative 
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circumferential displacements are depicted in blue color, indicating the motion is in a 

clockwise direction. 

 

(a) 

 
 (b) 

Figure 8.3: Circumferential displacement images at systole (a) and end-diastole (b) in the 

segmented region. 
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8.3.2   Radial and circumferential strain tensor images 

Figure 8.4 exhibits the accumulated radial strain images at systole and end-diastole 

for the same plaque. Positive radial strains are depicted in a red color indicating 

expansion along the radial direction. Negative radial strains are depicted in a blue color 

indicating compression along the radial direction. The maximum strain can get as high as 

20%, suggesting that regions with higher strain are more prone to rupture. Note that the 

radial strain distribution is not symmetrical. The distribution of the radial strain also 

suggests that the composition of plaque varies inside the plaque and adventitia region. 
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(a) 

 
 (b) 

Figure 8.4: Radial strain images at systole (a) and end-diastole (b) in the segmented 

region. 

Figure 8.5 demonstrates the corresponding accumulated circumferential strain 

images at systole and end-diastole. Positive circumferential strains are depicted in a red 

color indicating expansion along the circumferential direction. Negative circumferential 
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strains are depicted in blue color indicating compression in circumferential direction. 

Similarly the distribution of circumferential strain is not symmetrical, as expected. 

 

(a) 

 
 (b) 

Figure 8.5: Circumferential strain images at systole (a) and end-diastole (b) in the 

segmented region. 
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8.4   Discussion 

In this chapter we present an algorithm developed for radial and circumferential 

strain estimation. We also showed the feasibility of utilizing this algorithm in cross-

sectional scans of the carotid arteries with plaque in human subjects. Previous studies of 

radial and circumferential strain estimation on carotid or coronary plaque reported in the 

literature were mostly performed utilizing IVUS since it can provide better symmetry and 

image quality due to the higher transmit frequencies used [4, 8-13]. Strain imaging using 

in vivo transverse scanning planes for carotid strain imaging is challenging for several 

reasons. First, it is more difficult to distinguish plaque from the vessel wall and segment 

adventitia and plaque in a cross-sectional fashion on in vivo images. Secondly, 

determining a centroid value is complicated by the lack of symmetry in the presence of 

plaque. Thirdly, only parts of the plaque or vessel along the beam propagation direction, 

i.e. A-lines, provide good strain estimation results. 

Note that the displacement and strain images look significantly different from that 

for a perfectly contracting and expanding vessel, for example, when compared to a 

simulated homogeneous vessel with a concentric lumen as shown in [4]. In our case, for 

the carotid artery with plaque the data loop segmented was not symmetrical because of 

the presence of plaque and inhomogeneity of human vessel wall tissue. The center of 

mass, or the centroid, was not at the center of the carotid artery. In addition, movement of 

the handheld transducer during data acquisition may introduce more motion artifacts for 

cross-sectional scans.  

In previous chapters, we had two complete cardiac cycles when the carotid artery 

was studied along a longitudinal scan view. However, with cross-sectional views, we 
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found that it was difficult for the research sonographer to segment two complete cardiac 

cycles using MITK software. Significant mis-registration of the artery wall and plaque 

was found when going beyond a cardiac cycle. This may due to the fact that the 

ultrasound transducer may not be perfectly perpendicular to the carotid artery during data 

acquisition. In the future, a 3D data acquisition might be helpful in obtaining more 

precision in the placement of the transducer. Besides, a lot of patients have arrhythmias, 

resulting in a short cardiac cycle followed by a long cardiac cycle or vice versa. This 

further adds to the difficulty in segmentation of the end diastolic frames. Therefore, in 

this study, we only estimated radial and circumferential strain indices over a cardiac 

cycle. 

Another concern regarding the segmentation of plaque is that the inner contour is 

difficult to segment on the reconstructed B-mode images for the research sonographer. 

To ensure the accuracy and consistency of border determination, we also need a 

verification and validation system for the segmentation of plaque. Future work including 

automatic segmentation could help solve the problem and facilitate the process. 

8.5   Conclusions 

In summary, our preliminary results demonstrate the feasibility of in vivo radial and 

circumferential strain estimation in cross-sectional views of the carotid artery with 

plaque.  
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Chapter 9 : Characterization of Carotid Plaque with 

Histology and Quantitative Ultrasound 

9.1   Introduction 

In this chapter
1
, we propose a novel approach to characterize localized plaque 

regions with heterogeneous tissue directly to their histology. Most atherosclerotic plaques 

are heterogeneous, making it difficult to classify them in the clinic as calcified or lipidic 

plaques. Ultrasound is a noninvasive option for imaging superior shallow vessels such as 

the carotid artery. Conventional ultrasound B-mode images are commonly used 

clinically, but they are not sufficient to determine heterogeneous plaque composition, 

since they are primarily utilized to differentiate plaque from normal tissue [1].  

Quantitative ultrasound (QUS) has been used to assess acoustic properties of tissue, 

using parameters such as the integrated attenuation and integrated backscatter coefficient, 

since differences in acoustic properties may reflect differences in tissue composition [2]. 

QUS has been widely used to characterize and classify plaque with the classification 

often compared to pathology patterns [3-9]. Experimental evaluations using parameters 

such as the integrated attenuation, attenuation coefficient and integrated backscatter have 

been reported [4-5, 7-12]. Most of these studies utilized intravascular ultrasound (IVUS), 

utilizing higher frequency transducers. Virtual histology based intravascular ultrasound 
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(VH-IVUS) technology at 45 MHz has been validated to have an accuracy of greater than 

88% in indentifying different tissue types when compared to histology as the gold 

standard [3]. Integrated backscatter based intravascular ultrasound (IB-IVUS) systems 

have also shown good performance in characterizing coronary plaques when compared to 

histological diagnoses [4]. IB-IVUS has been compared to VH-IVUS at 40 MHz using 

histology as the gold standard, and the former has been shown to provide higher 

diagnostic accuracy than the latter [5]. IB-IVUS has been used to detect lipidic and 

fibrous tissue in carotid and coronary plaques [10]. Attenuated plaques in IVUS and near-

infrared spectroscopy (NIRS) detected lipid-rich plaques in human coronary arteries were 

compared with histopathology and showed improved accuracy in predicting the necrotic 

core or large lipid pool when the two technologies were combined together [6]. 

Fewer studies however, have utilized non-invasive external ultrasound transducers to 

assess acoustic properties of plaques. Bridal et al. measured the integrated attenuation, 

attenuation slope and integrated backscatter from 5 MHz up to 56 MHz, and estimated 

the attenuation coefficient for dense collagen region to be 2.8 ± 0.6 dB/cm/MHz, and the 

attenuation coefficient for media beneath the lipid region to be 1.9 ± 0.3 dB/cm/MHz at 

37.5 MHz. The integrated attenuation calculated was 97 ± 20 dB/cm for media, 107 ± 33 

dB/cm for dense collagen, 142 ± 51 dB/cm for collagen-lipidic region, 139 ± 53 dB/cm 

for lipid, and 245 ± 93 dB/cm for calcifications at 30 to 50 MHz [7-9]. In our laboratory, 

Shi et al. reported on the attenuation coefficient for calcified and soft regions of ex vivo 

carotid plaque in the frequency range of 2.5 to 7.5 MHz. Calcified regions were reported 

with attenuation coefficients between 1.4 - 2.5 dB/cm/MHz, while for softer regions the 

attenuation coefficients ranged from 0.3 - 1.3 B/cm/MHz [11-12].  
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In this chapter, 3D attenuation volumes for ex vivo carotid plaque in a higher 

frequency range are generated and correlated to 3D histology volumes. We will compare 

and correlate calcified, fibrous and lipid regions within heterogeneous plaque using a 

region-to-region registration with histology and QUS imaging. Different regions such as 

the lumen, calcified, lipid and fibrous regions were segmented by a pathologist and 

digitally color-coded into the 3D histology volumes. Similar tissue types from the 3D 

histology volume were then compared to the estimated 3D attenuation coefficient 

obtained using QUS methods.  

9.2   Materials and Methods 

9.2.1   Attenuation estimation 

Six atherosclerotic plaque samples were obtained from three independent patients 

following carotid endarterectomy procedures (CEA) at the University of Wisconsin-

Madison Hospitals and Clinics. Patients provided informed consent prior to the CEA 

procedure. Excised intact CEA plaque specimens were then imaged ex vivo immediately 

after surgery. The study was conducted under a protocol approved by the University of 

Wisconsin-Madison Institutional Review Board (IRB). 

A VisualSonics Vevo 770 ultrasound system equipped with a RMV710B high 

frequency transducer was used to image four of the excised plaque tissue. Plaque 

specimens were scanned in a water bath, suspended between two catheters on either end. 

The transducer was connected to a 3D motion table and immersed in degassed distilled 

water. The center frequency of the transducer was 25 MHz, with a frequency bandwidth 

up to 37.5 MHz. The transducer has an axial resolution of 70 μm and a lateral resolution 
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of 140 μm. Two-dimensional radiofrequency (RF) data was collected for each cross-

section of the plaque, and the motor stepped over the length of the plaque to form a three-

dimensional (3D) RF data volume. Each acquisition consisted of 250 beam lines with 

2128 samples. The axial dimension of the beam line was 3.9 mm, with a lateral spacing 

of 60 μm. In the elevational direction, frames were separated by 100 μm to 200 μm 

depending on the dimensions of the plaque specimen, which ranged from 20 mm to 40 

mm. Up to 250 frames were collected and rendered into a 3D volume.  

A Siemens S2000 ultrasound system equipped with an 18L6 linear array transducer 

was used to image two other excised plaque tissue. The experimental setup was the same 

with the other two plaque specimen. The transmit frequency of the transducer was 11.4 

MHz with a single transmit focus set at the depth of plaque. The total depth of the B-

mode image was 4 cm, and the lateral width was 3.8 cm that included 508 A-lines. RF 

data was digitized at a 40 MHz sampling frequency. The plaque was scanned 

longitudinally, with a frame separation of 500 μm in the elevational direction. RF data 

was acquired and rendered into a 3D volume. 

For each 2D image frame, an attenuation coefficient image was obtained from RF 

data using a reference phantom method [13]. A well-characterized high frequency tissue-

mimicking (TM) reference phantom manufactured in our laboratory [14] was imaged 

immediately after scanning the plaque sample with the same transducer and time-gain 

compensation (TGC) settings. In the reference phantom method, the ratio of the power 

spectrum of the sample and reference phantom is utilized. This ratio is approximately 

equal to the product of the ratio of the backscatter coefficient and ratio of attenuation 

coefficient, as shown in (1):  
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where f  denotes frequency and z  denotes depth. ),( zfSs  represents the power 

spectrum of the sample, and ),( zfSr  represents the power spectrum of the reference 

phantom. )( fBs  is the backscatter coefficient of the sample, depending on frequency f , 

and )( fBr  is the backscatter coefficient of the reference phantom. ),( zfAs  represents 

total attenuation of the sample, accounting for both frequency f  and depth z , and 

),( zfAr  represents total attenuation of  the reference phantom. 

The attenuation coefficient can be modeled as shown in (2): 
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where   denotes the attenuation coefficient, independent of frequency f  and depth z . 

Taking the logarithm of the power spectral ratio, the attenuation coefficient is 

obtained by performing a linear regression against depth and frequency, as shown in (3). 
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where s  is the attenuation coefficient of the sample, and r  is the already known 

attenuation coefficient of the reference phantom. 

Attenuation coefficient was estimated in each region of interest (ROI). The ROI size 

was 2 mm × 2 mm. The ROIs had 85% overlap on each other. Along the frequency 

spectrum, the frequencies were separated by 0.2 MHz. The kernel of the depth utilized 

was 6 mm. The power spectrum was estimated using multitaper method. 
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Using this method, for each RF frame, a 2D attenuation map was generated. 2D 

attenuation images were then stacked and rendered into a 3D volume. Figure 9.1 presents 

rendered results of both the attenuation coefficient estimates and the 3D B-mode volume. 

 

Figure 9.1: 3D B-mode and QUS attenuation coefficient volumes for a plaque specimen. 

9.2.2   Histology reconstruction 

After high-frequency ultrasound imaging and RF data acquisition, the plaque 

specimens were fixed in formalin and returned to the pathology department on the same 

day for histology sectioning. Plaque tissues were longitudinally sectioned in 5 μm 

thickness, and sections separated by 100 μm were selected for analysis and 3D histology 

reconstructions. Typically between 20 to 60 histology slides were obtained for each 

plaque specimen based on its dimensions. A PathScan Enabler IV was used to scan and 

digitize the 2D histopathology images from the histology glass slides. Each histology 

slide was digitized into a 9967 × 5832 image. The 2D digitized grayscale histology 

images obtained were then registered and reconstructed into a 3D volume using a cross-

correlation based registration algorithm in Matlab (Mathworks, Natick, MA, USA).  

Registration of the histology images were performed using the following steps. 

Possible transformations between consecutive histology images included translation, 
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rotation and deformation. Since some of the plaque specimens were calcified and 

sometimes the tissue could get torn apart when sectioned, no quantification of this 

deformation could be performed and only translation and rotation were done to align the 

2D histology images. First, a fixed point in every 2D histology image was manually 

chosen and all these points were aligned to form an axis. The general procedure followed 

was to choose the tip of the flow divider, which is typically depicted in the longitudinally 

sectioned histological image of plaque specimens. Then rotations were performed for 

each histology image about this axis. For each rotation angle in increment of one degree, 

a cross-correlation coefficient was calculated between this 2D histology image and the 

previously aligned image. The rotation angle that provided the highest peak value of the 

normalized cross-correlation coefficient was selected and the current histology image was 

then rotated to that angle. After this iterative procedure was performed on all the 2D 

histology images with respect to the one immediately preceding it, all the 2D histology 

images were thus aligned to the first histology slide or image. 

Different regions such as the lumen, calcified, lipid and fibrous regions were then 

segmented by a pathologist and digitally color-coded into the 3D histology data. Figure 

9.2 presents an example of a slide of the original histology data and corresponding color-

coded pathology classification of the same plaque sample presented in Fig. 9.1. As 

illustrated in Fig. 9.2, calcified regions were color-coded in red, lipidic regions color-

coded in yellow, and fibrous regions colored in light blue. The lumen was colored in 

blue, same as the background color. 
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Figure 9.2: Pathology microscopic slides and color-coded segmentation of different 

plaque regions. 

9.3   Direct Comparison of QUS to histology 

9.3.1   Alignment of attenuation volumes to histology 

Our results indicate that calcified, fibrous and lipidic regions in the two volumes 

showed good correlation with attenuation results, as illustrated in Figure 9.3. From the 

figure, we can observe that calcified regions delineated on the histology volume 

correspond to the high attenuation coefficient region in the 3D attenuation coefficient 

volume, while lipidic regions tend to have lower attenuation coefficient values. Fibrous 

regions in histology correlate to the lowest attenuation coefficient value. 
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Figure 9.3: Alignment of attenuation images with color-coded histology slides for the 

previously shown sample. 

The same procedure were performed on additional plaque specimens and the average 

attenuation coefficient in each region obtained. Comparison of attenuation image with 

histology slide for a second specimen is presented in Figure 9.4. Similar to the results for 

the first sample, different regions in attenuation images correspond well with color-coded 

histology regions. 

 

Figure 9.4: Alignment of attenuation images with color-coded histology slides for 

another sample. 
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9.3.2   Attenuation coefficients in different regions 

A summary of the mean and standard deviation of calculated mean attenuation 

coefficient and its standard deviation in different regions for the six plaque samples are 

presented in Table 9.1. 

 Attenuation Coefficient (dB/cm/MHz) 

calcified lipid fibrous 

Sample 1 2.48 ± 0.33 1.47 ± 0.53 0.86 ± 0.22 

Sample 2 2.42 ± 0.20 1.79 ± 0.42 0.88 ± 0.29 

Sample 3 2.41 ± 0.40 1.52 ± 0.43 0.80 ± 0.11 

Sample 4 2.39 ± 0.43 1.52 ± 0.58 0.77 ± 0.31 

Sample 5 (S2000) 2.36 ± 0.74 1.75 ± 0.62 0.86 ± 0.34 

Sample 6 (S2000) 2.32 ± 0.43 1.55 ± 0.48 0.78 ± 0.42 

Mean ± Standard 

Deviation 

2.40 ± 0.38 1.60 ± 0.49 0.83 ± 0.22 

Table 9.1: Attenuation coefficients in different regions. 

9.4   Discussion 

Our results show that the attenuation coefficient values in different regions were 

consistent with those reported in literature [8, 12]. Therefore, the reference phantom 
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method provides comparable mean attenuation estimates in the higher frequency range 

and for the smaller plaque dimensions. 

Heterogeneous plaques are difficult to characterize in the clinic since they cannot be 

precisely classified as calcified, lipidic or fibrous plaques. In this study we show that the 

generated 3D high-frequency parametric attenuation coefficient images may be a useful 

tool for plaque characterization. To date, no previous work has reconstructed and 

compared similar regions identified on 3D histology volumes to 3D attenuation 

coefficient maps in carotid plaque. With a 3D volume, different compositions within the 

plaque can be better identified and understood, and correlations can be made between 

irregular shapes in pathology images and corresponding ultrasound and QUS images. 3D 

attenuation and histology volumes provide a promising way to characterize plaque within 

localized regions with different heterogeneous tissue types. For future work, it might be 

useful to register and correlate the 3D histology volume to 3D in vivo ultrasound image 

volumes, which in turn could be registered to the high-frequency 3D ex vivo ultrasound 

volume to quantify the composition of plaque tissue. 

9.5   Conclusions 

This chapter compared and correlated localization and registration of calcified, 

fibrous and lipidic regions within heterogeneous plaque using 3D histology and 

quantitative ultrasound imaging. Our results indicate that calcified, lipidic and fibrous 

regions in the two volumes showed a good correlation. This work demonstrates a direct 

correlation between histopathology and quantitative ultrasound (QUS) imaging 

characterization of plaque. Using 3D histology volumes, different tissue composition 

within the plaque can be better identified and characterized. It provides a promising way 
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for direct localization of plaque regions and structures, and for improved determination of 

plaque composition.  
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Chapter 10 : Conclusions and Future Work 

10.1   Contributions of this Dissertation 

Characterization of carotid plaque vulnerability using strain imaging and quantitative 

ultrasound was presented in this dissertation. Relationships between ultrasound strain 

indices, cognition and embolization were investigated to show the importance of carotid 

plaque characterization. 

Since ultrasound strain indices may assist in the identification of plaques prone to 

rupture, which in turn causes emboli; it plays an important role in characterizing plaque 

and detecting vulnerability of plaque. The results also demonstrate the feasibility and 

advantage of the plaque-with-adventitia segmentation method over the plaque-only 

segmentation method. The vessel wall-plaque interface was shown to be an important 

region for increased plaque instability, especially utilizing the shear strain indices. 

 Overall cognitive function, and specific cognitive function test scores for motor 

function, speeded motor function, executive function, visual attention and visuospatial 

learning, were found to have significant associations with maximum strain indices in 

carotid plaque. The results demonstrated that maximum strain indices in carotid plaque as 

vascular biomarkers may be significantly associated with cognitive function through 

embolization, and the feasibility of using these maximum strain indices to predict 

cognitive impairment. Ultrasound strain imaging can therefore assist in the identification 

of plaque prone to rupture, as well as prediction of embolism from vulnerable plaque and 
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resulting cognitive impairment. Since silent stroke is strongly linked with cognitive 

impairment and difficult to diagnose or predict clinically, ultrasound strain imaging have 

clinical significance in preventing potential silent strokes.  

Evaluation of variation in the strain indices in patients versus volunteers, 

symptomatic versus asymptomatic patients, as well as patients with diabetes, 

hypertension, hyperlipidemia, tobacco usage versus normal controls were also evaluated. 

This will help assess the correlation of plaque strain indices to clinical symptomology 

and each specific vascular risk factor. 

In a few patients. clinically occult micro-emboli that did not produce clinical 

symptoms were visualized using TCD. Associations between maximum strain indices, 

maximum ICA velocity and maximum MCA velocity on the surgical side of patients with 

significant plaque were evaluated. Increased strains in carotid plaque in ICA were also 

significantly associated with an increase in WMH. Since the existence of micro-emboli 

may be reflected in TCD monitoring, correlation of strain indices to TCD would provide 

us with the ability to indicate strain imaging feasibility for predicting plaque prone to 

rupture. 

The feasibility of in vivo radial and circumferential strain estimation in cross-

sectional views of the carotid artery with plaque was demonstrated. Radial and 

circumferential strain in cross-sectional views would give us a more straightforward and 

intuitive interpretation of deformation and this noninvasive ultrasound approach would be 

more clinically friendly when compared to IVUS based approaches. 

Localization and registration of calcified, fibrous and lipidic regions within 

heterogeneous plaque using 3D histology and quantitative ultrasound imaging was 
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performed. Calcified, lipidic and fibrous regions in the 3D histology volume and 3D 

attenuation coefficient volume showed good correlation. Heterogeneous tissue 

composition within the plaque would be better identified and characterized using a direct 

correlation between histopathology and QUS characterization of plaque.  

10.2   Future Directions 

Arterial strain in the carotid vessel wall of a limited number of volunteers in the 

general population has been investigated. A study on a larger number of volunteers over a 

large age range is essential to demonstrate variations in the strain indices with age. 

Another approach that could be pursued would be utilization of strain estimation in the 

vessel wall of the common carotid artery (CCA) in patients for normalization of the 

estimated strain in plaque in the same carotid artery. This will provide another feature to 

analyze, i.e. the strain ratio of plaque and CCA wall, subject to possibly similar blood 

pressures. This approach would take into account the mechanical stress that causes the 

deformation of carotid vessel wall, and also give us more insight into arterial stiffening. 

Three-dimensional data acquisition in strain imaging might be helpful in obtaining 

more precision in the placement of the transducer and better geometry. It might be 

worthwhile to register and correlate 3D in vivo strain volumes to 3D histology volumes, 

which in turn could be registered to the high-frequency 3D ex vivo attenuation coefficient 

volumes to quantify composition of plaque tissue. Other approaches other than cross-

correlation to facilitate registration of the 2D histological images to obtain the 3D volume 

should be explored.  In addition to the attenuation coefficient, other QUS parameters such 

as the scatterer size and backscatter coefficient could also be estimated in 3D to obtain 

variations in these QUS parameters over the entire plaque volume. 
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An automatic segmentation method would be a logical next step for carotid plaque 

strain imaging. Automatic segmentation could help overcome some of the challenges 

with manual plaque segmentation and facilitate the process of strain imaging with 

reduced user interaction and also ensure improved consistency of plaque demarcation. 

Manual segmentation will require experienced operators to segment the plaque from the 

vessel wall and lumen. 

Despite the statistically significant correlations described in this dissertation, 

examination of a larger number of patients and volunteers is essential to further establish 

the relationships illustrated in this dissertation. 

 

 


