
Accelerating Active Machine Learning

by

Scott Sievert

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2021

Date of final oral examination: 2021-11-29

The dissertation is approved by the following members of the Final Oral Committee:
Robert Nowak, Professor, Electrical & Computer Engineering
Laurent Lessard, Associate Professor, Mechanical and Industrial Engineering

(Northeastern University)
Dan Negrut, Professor, Mechanical Engineering
Timothy Rogers, Professor, Psychology

© Copyright by Scott Sievert 2021
All Rights Reserved

i

For John

ii

acknowledgments

This dissertation describes work performed in my journey through
graduate school. I am indebted to enumerable colleagues, friends
and family for their invaluable help, including my co-authors.
Any errors which remain are my sole responsibility.

I would like to thank some individuals in particular. I would
especially like to thank Robert Nowak and Rebecca Willett for
allowing me to explore the focus for this dissertation. Finding
the topic for my dissertation is a direct result of the HAMLET
and LUCID collaborations between social scientists and machine
learning researchers, both organized in part by Robert Nowak and
Timothy Rogers. Kevin Jamieson has provided motivation for
large portions of this dissertation, some of which also come from
the HAMLET collaboration.

In addition, I would like to thank particular individuals for partic-
ular pieces of guidance, though this list is not exhaustive. Timothy
Rogers and Robert Nowak provided valuable experimental design
feedback to properly test software I developed. Laurent Lessard
provided valuable teaching insight in addition to providing a
very pragmatic outlook on optimization and programming. Dan
Negrut taught a class on high performance computation, which
inspired large portions of this dissertation. He clearly identi-
fied and explained performance bottlenecks in high performance
computation, and his slides and notes will remain reference ma-
terials. Matthew Rocklin has provided a (very) useful tool for
distributed computation and has provided valuable development
advice. Zachary Charles has provided guidance on the utility of
mathematical theorems.

I would also like to thank many others for non-technical advice

iii

and guidance, especially my friends and family. They have pro-
vided direction and guidance during my journey through graduate
school that has indirectly effected this dissertation. The most
relevant advice comes from my father, John Sievert who has
provided very useful advice on technical presentations.

The work presented in this dissertation would not be possible
without support from the Department of Defense’s SMART Schol-
arship Program, the National Science Foundation’s LUCID grad-
uate training program, Innovative Signal Analysis, and the Elec-
trical & Computer Engineering Department at the University of
Wisconsin–Madison.

— Scott Sievert (2021)

iv

contents

Contents iv

List of Tables vii

List of Figures vii

Abstract x

1 Introduction 1
1.1 Crowdsourcing active machine learning 4
1.2 Motivation . 5

2 Accelerating model selection with distributed computing 9
2.1 Problem . 9
2.2 Contributions . 10
2.3 Related work . 11
2.4 Dask’s implementation of Hyperband 16
2.5 Experimental results . 21
2.6 Conclusion . 25

3 Accelerating model updates 27
3.1 Improving the convergence of stochastic gradient descent (SGD)

via adaptive batch sizes . 31
3.1.1 Related work . 33
3.1.2 Preliminaries . 36
3.1.3 Convergence . 37
3.1.4 Experiments . 43
3.1.5 Conclusion . 47

3.2 Training PyTorch models faster with Dask 49
3.2.1 Contributions . 50

v

3.2.2 Related work . 51
3.2.3 Distributed training with Dask 52
3.2.4 Performance . 54
3.2.5 Conclusion . 56

3.3 Improving communication in distributed model updates . . . 59
3.3.1 Contributions . 60
3.3.2 Prior work . 60
3.3.3 Preliminaries . 62
3.3.4 Main results . 63
3.3.5 Experimental results 65
3.3.6 Conclusion . 67

3.4 Conclusion . 69

4 Efficient deployment of active machine learning algorithms for
crowdsourcing 70
4.1 Related Work . 71
4.2 Crowdsourcing active machine learning algorithms 73
4.3 Experimental results . 77
4.4 Conclusion . 83

5 Conclusion 85

Bibliography 87

A Hyperband 121
A.1 Serial simulation detail . 121
A.2 Parallel experiment detail 123
A.3 Hyperparameter search spaces 126

B Adaptive batch sizes 128
B.1 Gradient diversity bounds . 128
B.2 Convergence proofs . 131

vi

B.3 Proofs for required number of examples 137
B.4 Experiment details . 139

C Training PyTorch models faster with Dask 143
C.1 Example usage . 143
C.2 Future work . 144
C.3 Loss vs. time . 149

D Gradient compression 151
D.1 Rigorous statement . 151
D.2 Proofs . 154
D.3 Analysis of ATOMO via the KKT Condtions 159
D.4 Hyperparameter optimization 162

E Salmon 164
E.1 Exhaustive query searches 164
E.2 Adaptive search tuning . 165
E.3 Priority . 168

vii

list of tables

3.1 The convergence of adaptive batch sizes, gradient descent (GD)
and stochastic GD. 38

C.1 Simulations that indicate how the training time (in minutes) will
change under different architectures and networks. 146

D.1 Tuned stepsizes for the ResNet-18 model and the SVHN dataset. 163

list of figures

1.1 A query from The New Yorker Cartoon Caption Contest 2
1.2 Precision of two different sampling schemes for TNY Caption

Contest . 3
1.3 The active machine learning algorithm data flow. 5

2.1 Condensed psuedo-code for Dask-ML’s HyperbandSearchCV. . 18
2.2 The dataset and final validation accuracies on that dataset, which

has 60,000 examples (50,000 of which are used for training). . . 23
2.3 Dask’s performance for hyperparameter optimization. 24
2.4 The input and output for the image denoising problem. 24
2.5 The performance for a single hyperparameter search as the num-

ber of workers grows. 26

3.1 How does distance to solution affect “gradient diversity”? 32
3.2 Different performance metrics for different optimizers for the

minimization in Section 3.1.4.1. 44
3.3 Different performance metrics for Section 3.1.4.2. 47
3.4 Decentralized and centralized ML model training. 53
3.5 Learning rate/batch size decrease/increase schedules. 55
3.6 Reproduction of Smith et al. [152]. 56

viii

3.7 Wall-clock time for distributed simulations 57
3.8 The simulated performance of AdaDamp after improvements. . 58
3.9 The singular values for the gradient of one layer for a neural

network. 61
3.10 Convergence rates for three gradient compression schemes and

standard SGD. 67

4.1 Salmon’s architecture. 74
4.2 Salmon’s backend timing. 75
4.3 A comparison between NEXT and Salmon search performance. 77
4.4 Stimuli used for crowdsourcing. 78
4.5 How different sampling schemes perform during crowdsourcing. 79
4.6 Unique query “heads” that each user sees. 80
4.7 Salmon’s synthetic noise model. 81
4.8 A comparison of the searches schemes used with the synthetic

noise model. 82
4.9 Simulation on different search strategies for Salmon. 83

5.1 The active machine learning algorithm data flow 85

B.1 How does the batch size change for RadaDamp and GeoDamp? 142

C.1 Simulated training time with moderate network. 148
C.2 How does number of workers change the time for one epoch? . . 148
C.3 Test loss vs. time for a moderate network. 149
C.4 Test loss vs. time for a high performance network. 149
C.5 Test loss vs. time for the “centralized” network. 150

E.1 Embedding to evaluate query information gain. 164
E.2 Another embedding to evaluate information gain of different

queries. 165
E.3 Embedding before/after answering queries with a synthetic noise

model. 166

ix

E.4 Number of unique heads in top query pool. 166
E.5 Performance of different samplers that greedily select the top k

queries. 167
E.6 How long does the query “head” stay constant? 167
E.7 Performance of different greedy search lengths. 168
E.8 Illustration of “constant head” issue for different ARR priority

schemes . 169

x

abstract

Machine learning (ML) models typically require many data for training.
The number of data can be reduced with “active” ML, which chooses the
most informative data for training. However, active ML can be computa-
tionally intense, which is costly in time and/or resources. Better active ML
performance can arise from accelerating the core components required for
the active ML data flow, training the ML model and determining query
priority.

If the data flow of active ML is accelerated with the obvious solution of
using more hardware, then several subtle architecture questions can be posed
(e.g., when training a ML model with 4 graphical processing units a.k.a.
GPUs, how should those GPUs communicate?). In all cases, the answers to
these questions will require less wall-clock time to obtain a solution or enable
previously unrealized behavior. This dissertation will clearly explain the
architecture changes and benefits, and present experiments that illustrate
the practical benefits that the user experiences.

1

1 introduction

Many popular machine learning (ML) applications rely on large datasets
provided by humans, making them expensive to collect. In one example,
ML has become an “indispensable tool for drug designers” [99] and can
outperform practicing radiologists [130] – but these successes rely on labels
created be experts, making them costly to collect. Another example is
the ImageNet database, a database of at least 3.2 million images that are
hand annotated by at least 10 humans per image through a crowdsourcing
tool [47]. This dataset is popular with researchers (e.g., [58, 62, 75, 91, 131,
133]), perhaps in part due to a popular annual contest that has attracted
participation from over 50 institutions [137].

The data collection process is expensive whenever human intervention
is required. One example requires many humans to perform a simple
task, and the other requires a few experts with an advanced education to
perform a nontrivial task. These collected data can be used to obtain useful
models – for example, the ImageNet database has been used to create a
object-detection model capable of at least 90% top-5 accuracy on unseen
images [133, Sec. 3.3].

Active machine learning addresses the challenges posed by this informa-
tion bottleneck by using fewer data to achieve the same result, typically a
model of the same quality. This is enabled by adapting to previous responses
to ask about the most useful or informative queries [31, 158]. For example,
active ML can reduce the number of experiments required for drug discovery
in addition to assisting scientists [112].

One illustration of active ML is with The New Yorker (TNY) Cartoon
Caption Contest. Each week, TNY draws a cartoon and asks their readers
for funny captions, and they collect up to about 10,000 captions. TNY
has to find the funniest caption from these captions, and they now use
the knowledge of the crowd to help. In their crowdsourcing interface, they

2

present the comic alongside one caption with buttons to rate the caption as
“unfunny,” “somewhat funny” or “funny” as shown in Fig. 1.1.

Figure 1.1: A query from The New Yorker Cartoon Caption Contest

The caption’s “funniness” is evaluated by finding the average score when
buttons are assigned funniness scores of 1, 2 and 3. For TNY Cartoon
Caption Contest, the deployed active ML algorithm [159] clearly identifies
the funniest captions given the number of responses. The intuition behind
the active algorithm is simple: because the goal is find the funniest caption,
it only makes sense to ask about the funny captions. Notably, this process
clearly identifies the funniest captions, an improvement over a “passive” or
non-active sampling algorithm. A performance indicator is with the number
of captions that could possibly be the funniest, illustrated in Fig. 1.2.

TNY Cartoon Caption Contest is a remarkably successful application

3

Figure 1.2: The number of captions that could possibly be the funniest
aka “top captions” after a particular number of human responses have
been received for contest #519. During this contest, two different sampling
schemes were run, an adaptive scheme (lil’UCB [70]) and a passive scheme
(round robin, which rotates through the captions). Here, a caption i with
mean rating µi and variance σ2

i is a “top caption” if µ3 − σ3 < µi + σi when
the third highest score is µ3 because TNY chooses 3 winners.

of active ML: TNY has been using active learning for about five years1

and has undergone three system architecture changes.2 In total, over 200
million human ratings have been recorded to over 1.5 million captions.3 This
dataset has been used to improve the underlying sampling algorithm [159].

Generally, deploying active ML algorithms to crowdsourcing audiences
provides utility but can break down when the problem of interest is more
complicated than a simple ranking. Let’s examine that case more closely in
Section 1.1, which will lay the groundwork for the core motivation of this
dissertation in Section 1.2.

1At first (in Dec. 2015) they used lil’UCB [70] then switched to KL-LUCB [159]
in March 2017.

2TNY Cartoon Caption Contest has been run with NEXT, a refactored NEXT,
and a specialized solution with Amazon AWS.

3https://nextml.github.io/caption-contest-data/ and https:
//nextml.github.io/caption-contest-data2/.

https://nextml.github.io/caption-contest-data/
https://nextml.github.io/caption-contest-data2/
https://nextml.github.io/caption-contest-data2/

4

1.1 Crowdsourcing active machine learning

Running active ML algorithms in a crowdsourcing application has provided
significant benefit in recent years, including an 18% revenue lift on Microsoft’s
landing page [3]. Microsoft’s system to run active ML in crowdsourcing
contexts is now used by default on Microsoft’s landing page and deployed in
another half dozen contexts [3].

Other active ML systems have been developed to allow experimentalists
and/or domain experts to collect data more easily [27, 35, 71]. One system
in particular, NEXT is designed to accelerate the development of active
ML algorithms [71]. Towards this goal, it’s relatively easy to implement
active ML algorithms in NEXT, and to deploy and test algorithms with
experimentalists through any crowdsourcing service, including Amazon
Mechanical Turk [149]. This tight feedback loop enables addressing particular
issues in the algorithms through close integration with domain experts. Use
cases include improving algorithms designed to find the best item for the
average user [159] or for a specific user [79], to find the relative similarity
between items [108, 132, 145], and to generate a clustered ranking [81].

In particular, finding a shoe that a user would like to purchase presented
significant challenges [79]. In this use case, the user is presented with an
image of one shoe, and they are asked to rate it as positive or negative
before a new shoe appears. There is a catalog of 50,000 shoes (each of
which has 1,000 features), and scoring every shoe in the catalog is required
after every human response before a new shoe can appear. This requires
computation of 50,000 inner products (one for each shoe) for many popular
algorithms [10, 51, 94].4 Performing this simple computation for 50,000
shoes meant the user would wait 1.2 seconds before seeing another query.5

4Each score required the computation of xTi θk + f(xTi Axi) for some function
f : R → R, a shoe’s feature vector xi ∈ R1000 and a user preference vector
θk ∈ R1000 [79].

5The 1.2 second delay relied on reformulation into xTi Bxi for some matrix B,

5

This delay scaled linearly with the number of shoes: having 100,000 shoes
would result in a 2.4 second delay.

A 1.2 second delay is unacceptable in a web context (e.g., when crowd-
sourcing with Mechanical Turk). As a result, Jun et al. developed an
acceleration to the query search, one to return the optimal query with high
probability [79]. This acceleration enabled deploying an active ML algorithm
to crowdsourcing participants, and to scale to large shoe databases.

This dissertation will also focus on accelerating components of the active
ML data flow with a different and extremely obvious method: using more
hardware. Let’s examine that more closely in Section 1.2.

1.2 Motivation

Accelerating active machine learning (ML) is the main theme of this dis-
sertation. Practically, this involves accelerating the core components of
any active ML algorithm: training the ML model and determining query
priority, as shown in Fig. 1.3. These accelerations can enable use of active
ML algorithms with crowdsourcing audiences as described in Section 1.1,
and have the potential to enable higher performance.

Determine
query priority

Collect
responses

Train
model Results

Figure 1.3: The data flow of active ML. For passive ML, each query is
equally important and there is no feedback between collection of responses
and model training.

One simple and brute force method of acceleration is to use more hard-
ware by adding more computers with a distributed system. For simple
which meant the majority of computation relied on a linear algebra library [164].

6

computation (e.g., arithmetic) with common cloud providers, acceleration is
simple and does not increase the final cost.6 However, accelerating anything
active is not nearly as simple because some serial components must be
involved. In the most serial case, a trivial model update depends on a single
observation, which depends on the previous model (e.g., [31]). This case gets
much more interesting when multiple observations can be observed and/or
the model updates are not trivial.

The goal of this dissertation is to accelerate active ML algorithms or
components thereof with distributed systems. This will raise subtle architec-
ture questions that will eventually have surprisingly practical benefits (e.g.,
answering “how does gradient approximation error change during training?”
will eventually lead to accelerating ML model training). This dissertation
will specifically address the questions below:

1. How can an specific active ML algorithm for a widespread problem in
ML be accelerated with a specific distributed system? What accelera-
tions are enabled by a specific pairing of algorithm and distributed
system, and how large are the gains?

2. How can a popular model update—empirical risk minimization—be
accelerated using more hardware? With this, data scientists will be
able to iterate more quickly because their ML models will train more
quickly, a rough proxy for active ML.7

3. What software features are required to effectively deploy a challenging
active ML algorithm for the “ordinal embedding” problem to crowd-

6An Amazon AWS p3.2xlarge machine has one state-of-the-art NVIDIA
V100 GPU and can be rented for $3.06/hour. A p3.8xlarge has 4 NVIDIA
V100s and costs $12.24/hour, exactly 4 times as much (https://aws.amazon.
com/ec2/pricing/on-demand/). In both cases, a job that requires 16 GPU-hours
(a fixed number of floating point operations a.k.a. FLOPs) will cost $48.96.

7The data scientist decides which experiments to run, and collects results from
those computations. In Fig. 1.3, “model training” would be the data scientist
updating their internal mental model from these experiments, and choosing
experiments would be a substitute for evaluating “query priority.”

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

7

sourcing audiences? Active ML algorithms often have computationally
intense query searches for the ordinal embedding problem. How should
query priority be determined for complete searches?

These questions will be addressed in Chapters 2, 3, and 4 respectively.
In total, every box in the core loop of Figure 1.3 will be accelerated with
distributed computation.8 As a result, the user will experience practical
benefits: less than half the resources will be consumed to perform their
desired task. Specifically, Chapters 2, 3 and 4 will respectively present the
following conclusions:

1. Using an active ML algorithm in a distributed system means a result
of a particular quality9 will be found in T/3 minutes, an improvement
over the T minutes a passive algorithm requires. Notably, the active
ML algorithm would take at least T/6 minutes longer if the “query
priority” box in Fig. 1.3 were not addressed.

2. ML model training can be completed in about half the time of standard
SGD when a distributed system is present or when many model updates
are required.

3. Using an active ML algorithm will require half as many human re-
sponses to generate a high quality “ordinal embedding.”

These conclusions are listed here because there’s considerable amount of
context to cover before getting to the highlight(s) of each chapter.

Notation Some nomenclature will be used throughout this document:
8In addition, the “results” box has been somewhat addressed with the devel-

opment of a “humor model” [23] has been aided by the TNY Caption Contest
dataset collected with NEXT [71].

9A model of a particular validation loss in the “hyperparameter optimization”
problem.

8

• “Acceleration” means “to reduce the time required to finish the relevant
task.”

• “active” and “adaptive” will be used interchangeably. An active ML
algorithm and an adaptive ML algorithm both follow the process in
Fig. 1.3.

• “Amount of computation” means the “the total number of floating
point operations (FLOPs).”10

• “Distributed system” means “a collection of computers that work
together.”

• “Distributed training” means “training a ML model with a distributed
system.”

• “Epochs” essentially means “one pass through the dataset.”11

• “ML” stands for “machine learning.”
• “Step size” and “learning rate” will be used interchangeably to refer

to the size of model update in optimization.

Additionally, bold lower-case letters (e.g, x) will refer a vector and
normal lower-case letters with a subscript (e.g., xi) will refer to an element
of that vector. Likewise, bold upper-case letters (e.g, A) will refer to a
matrix, and Ai,j will refer to an element of that matrix in the ith row and
jth column. Bold lower-case letters (e.g, xi) will refer to a matrix row (or
one vector from a collection of vectors).

If a function f : Rd → R has a vector input x ∈ Rd and scalar output
f(x) ∈ R, then the gradient of a function will be represented by ∇f(x),
which is a vector of the same dimension as x.

10The commonly used “FLOPS” stands for “FLOPs per second” – which will
not be used in this dissertation.

11It precisely means “if the dataset has N examples, the gradient for N examples
have been computed” because some examples might have the gradient calculated
more than once.

9

2 accelerating model selection with
distributed computing

To get started, let’s examine a simple use case: accelerating a specific
active ML algorithm with a particular distributed system. In relation to
Fig. 1.3, this chapter involves effectively determining the query priority
when ML models provide responses. In context, implementing this active
ML algorithm in this distributed system will reduce the time required to
obtain a high quality solution while leaving the final result unchanged.

2.1 Problem

Training any machine learning pipeline requires data, an untrained model
and “hyperparameters,” parameters chosen before training begins that help
with cohesion between the model and data. The user needs to specify values
for these hyperparameters in order to use the model. A good example
is adapting the ridge regression or LASSO to the amount of noise in the
data with the regularization parameter [107, 161]. Hyperparameter choice
verification can not be performed until model training is completed.

Model performance strongly depends on the hyperparameters provided,
even for the simple examples above. This gets much more complex when
multiple hyperparameters are required. For example, a particular visual-
ization tool, t-SNE requires (at least) three hyperparameters [104] and the
first section in a study on how to use this tool effectively is titled “[t]hose
hyperparameters really matter” [170].

Hyperparameters need to be specified by the user, and their values are
typically found through a search over possible values through a “cross valida-
tion” search where models are scored on unseen holdout data (e.g., [9]). Even
in the simple ridge regression case above, a brute force search is required [107].
This search quickly grows infeasible as the number of hyperparameters grow

10

because of the frequent interactions between different hyperparameters. A
prime example is with deep learning, which has specialized algorithms for
handling many data but has difficulty providing basic hyperparameters.
For example, the commonly used stochastic gradient descent (SGD) has
difficulty with the most basic hyperparameter “learning rate” [18] because
of the number of data [105].

Finding the best values for the hyperparameters, or hyperparameter opti-
mization is required if high performance is desired. In practice, it’s expensive
and time-consuming for machine learning researchers and practitioners. Ide-
ally, hyperparameter optimization algorithms return high performing models
quickly and are simple to use.

Quickly returning quality hyperparameters relies on making decisions
about which hyperparameters to allocate training time. This might mean
progressively choosing higher-performing hyperparameter values or stopping
low-performing models early during training. Returning this high performing
model quickly would lower the expense and/or time barrier to performing
hyperparameter optimization.

2.2 Contributions

Many active ML algorithms for hyperparameter optimization have been
proposed (e.g., [14, 15, 86, 87, 95, 154] and references therein). One algorithm
in particular, Hyperband requires relatively little computation (because
it treats computation as a scarce resource1) and finds models with high
“validation” scores or low validation losses [95].

Our contributions include a Hyperband implementation in a popular
library for distributed ML, “Dask-ML.”2 The performance of the Dask-ML im-

1There is little benefit to this implementation if computation is not a scarce
resource – that is, if model selection finishes quickly, in less than 15 minutes.

2The Dask-ML implementation is available through the HyperbandSearchCV
class, referenced on https://ml.dask.org/hyper-parameter-search.html.

https://ml.dask.org/hyper-parameter-search.html

11

plementation will be illustrated in experiments, alongside some explanation
and illustration of the parallel underpinnings of Dask-ML and Hyperband
that allow for better performance.

First, let’s step through related work in Section 2.3, mostly detailing
Hyperband and Dask-ML. Then, let’s mention exactly how Hyperband is
implemented in Dask-ML in Section 2.4, then let’s perform an evaluation of
the implementation and internal details in Section 2.5.

2.3 Related work

Hyperparameter optimization finds the optimal set of hyperparameters for
a given model. These hyperparameters are chosen to maximize performance
on unseen data. The hyperparameter optimization process typically looks
like the following:

1. Split the dataset into the train and test datasets. The test dataset is
reserved for the final model evaluation.

2. Choose hyperparameters
3. Train models with those hyperparameters
4. Score those models with unseen data (a subset of the train dataset,

typically referred to as the “validation set”).
5. If not satisfied with the performance, go back to step (2) with refined

hyperparameters.
6. Use the best performing hyperparameters to train a model with those

hyperparameters on the complete train dataset
7. Score the model on the test dataset.

The score in step (6) is often the score that is reported in papers and/or
production. The rest of this section will focus on steps (2), (3) and (5),
which is where most of the work happens in hyperparameter optimization.

12

2.3.1 Hyperparameter optimization

A commonly used method for hyperparameter selection is a random selection
of hyperparameters, and is typically followed by training each model to
completion. This offers several advantages, including a simple implementa-
tion that is very amenable to parallelism. Other benefits include sampling
“important” hyperparameters more densely than “unimportant” hyperparam-
eters [14]. This randomized search is implemented in many places, including
in Scikit-Learn [123].

These implementations are by definition passive because they do not
adapt to previous training. Adaptive algorithms can return a higher quality
solution with less training by adapting to previous training and choosing
which hyperparameter values to evaluate. These adaptive algorithms fit
into Fig. 1.3 when models with a particular hyperparameter configuration
submit cross validation scores as responses.

A popular class of adaptive hyperparameter optimization algorithms
are Bayesian algorithms [154]. These algorithms treat the model as a
black box and the model scores as an evaluation of that black box. These
algorithms have an estimate of the optimal set of hyperparameters and use
some probabilistic methods to improve the estimate. The choice of which
hyperparameter value to evaluate depends on previous evaluations.

Popular Bayesian searches include sequential model-based algorithm
configuration (SMAC) [67], tree-structure Parzen estimator (TPE) [15],
and Spearmint [154]. Many of these are available through the “robust
Bayesian optimization” package RoBo [86] through AutoML. This package
also includes Fabolas, a method that takes dataset size as input and allows
for some computational control [87].

13

2.3.2 Hyperband

Hyperband is a principled early stopping scheme for randomized hyperparam-
eter selection3 and an adaptive hyperparameter optimization algorithm [95].
At the most basic level, it partially trains models before stopping models
with low scores, then repeats. By default, it stops training the lowest per-
forming 67% of the available models at certain times. This means that the
number of models decay over time, and the surviving models have high
scores (e.g., “validation accuracy” or “negative validation loss.”)

Naturally, the quality of any model depends on two factors: the amount
of training performed and the values of various hyperparameters. Any
hyperparameter optimization algorithm (HOA) needs consider this balance.
If training time only matters a little, it makes sense for HOAs to aggressively
stop training models. On the flip side, if only training time influences the
score, it only makes sense for HOAs to let all models train for as long as
possible and not perform any stopping.

Hyperband sweeps over the relative importance of hyperparameter choice
and amount of training. This sweep over training time importance enables a
theorem that Hyperband will return a much higher performing model than
a random search with no early stopping. This is best characterized by an
informal presentation of the main theorem:

Corollary 1. (informal presentation of [95, Theorem 5] and surround-
ing discussion) Assume a model’s validation loss at iteration k decays like
(1/k)1/α, and the final validation losses ν approximately follow the cumula-
tive distribution function F (ν) = (ν − ν∗)β with optimal validation loss ν∗
with ν − ν∗ ∈ [0, 1] .

Higher values of α mean slower convergence, and higher values of β
represent more difficult hyperparameter optimization problems because it’s
harder to obtain a validation loss close to the optimal validation loss ν∗. The

3In general, Hyperband is a resource-allocation scheme for model selection.

14

commonly used SGD has a convergence rate with α = 2 [19] [95, Cor. 6],4

and β > 1 means the validation losses are not uniformly distributed.
For any T ∈ N, let îT be the empirically best performing model when

models are stopped early according to the infinite horizon Hyperband algorithm
when T resources have been used to train models. Then with probability 1−δ,
the empirically best performing model îT has loss

νîT ≤ ν∗ + c

(
log(T)3 · a

T

)1/max(α, β)

for some constant c and a = log(log(T)/δ) where log(x) = log(x log(x)).
By comparison, finding the best model without the early stopping Hy-

perband performs (i.e., randomized searches and training until completion)
after T resources have been used to train models has loss

νîT ≤ ν∗ + c

(
log(T) · a

T

)1/(α+β)

For simplicity, only the infinite horizon case is presented though much of
the analysis carries over to the practical finite horizon Hyperband.5 Because
of this, it only makes sense to compare the loss when the number of resources
used T is large. When this happens, the validation loss of the Hyperband
produces ν̂

iT
decays much faster than the uniform allocation scheme.6 This

shows a definite advantage to performing early stopping on randomized
searches.

Li et al. show that the model Hyperband identifies as the best is identified
with a (near) minimal amount of training [95, Thm. 7], within log factors of

4Gradient descent has convergence rates with α = 1 [24, Thm. 3.3].
5To prove results about the finite horizon algorithm Li et al. only need the

result in Corollary 9 [95].
6This is clear by examining log(ν̂

iT
− ν∗) for Hyperband and uniform alloca-

tion.For Hyperband, the slope is approximately −1/max(α, β), which decays
much faster than the uniform allocation’s approximate slope of −1/(α+ β).

15

the known lower bound [82]. Adaptive searches minimize the computational
effort by choosing which models to evaluate; there is not much value in that
if the amount of computation is limited.

More relevant work involves combining Bayesian searches and Hyper-
band, which can be combined by using the Hyperband bracket framework
and progressively tuning a Bayesian prior to select parameters for each
bracket [50]. This work is also available through AutoML, and also works
with multiple machines: if there are infinite machines, there’s no gains from
their Bayesian on Hyperband (BOHB) approach.

2.3.3 Dask

Dask provides advanced parallelism for analytics, especially for NumPy,
Pandas and Scikit-learn [41]. It is familiar to Python users and does not
require rewriting code or retraining models to scale to larger datasets or
to more machines. It can scale up to clusters or to a massive dataset, and
also works on laptops and presents the same interface. Dask provides two
components:

• Dynamic task scheduling optimized for computation. This low level
scheduler provides parallel computation and is optimized for interactive
computational workloads.

• “Big Data” collections like parallel arrays, or dataframes, and lists that
extend common interfaces like NumPy, Pandas, or Python iterators
to larger-than-memory or distributed environments. These parallel
collections run on top of dynamic task schedulers.

Dask aims to be familiar and flexible: it aims to parallelize and dis-
tribute computation and/or datasets easily while retaining a task scheduling
interface for custom workloads and integration into other projects. It is fast
and the scheduler has low overhead. It’s implemented in pure Python and
can scale from massive datasets to a cluster with thousands of cores to a

16

laptop running a single process. In addition, it’s designed with interactive
computing and provides rapid feedback and diagnostics to aid humans.

Dask’s machine learning library is Dask-ML.7 Most of the details aren’t
relevant and focus on preprocessing, linear models, and adapting other
libraries to learning with large data. However, Dask-ML has some other
hyperparameter optimization algorithms are either focused on expensive
preprocessing or working well with many data (both common in NLP). These
implementations are passive and can not adapt to prior training. This work
will focus on filling the “compute constrained” niche, when models take a
long time to train and are adaptive (they can adapt to prior training).8

2.4 Dask’s implementation of Hyperband

We have implemented Hyperband in Dask-ML with HyperbandSearchCV in
Dask-ML’s model selection module.9 There are some details in the imple-
mentation that enhance performance. To see that, let’s begin unwrapping
the architecture of both Hyperband and Dask.

Combining Dask and Hyperband is a natural fit. Hyperparameter op-
timization searches often require significant amounts of computation and
can involve large datasets, calling for Dask’s ability to scale from laptops to
supercomputers.10 There are two levels of parallelism in Hyperband which
are rendered as two loops:

1. An “embarrassingly parallel” sweep over the different brackets of
training time importance.

7https://ml.dask.org/
8See https://ml.dask.org/hyper-parameter-search.html for detail.
9The API reference is available at https://ml.dask.org/modules/

generated/dask_ml.model_selection.HyperbandSearchCV.html.
10The existing passive hyperparameter optimization algorithms in Dask-ML

have limited use because they don’t adapt to previous training to reduce the
amount of training required.

https://ml.dask.org/
https://ml.dask.org/hyper-parameter-search.html
https://ml.dask.org/modules/generated/dask_ml.model_selection.HyperbandSearchCV.html
https://ml.dask.org/modules/generated/dask_ml.model_selection.HyperbandSearchCV.html

17

2. Inside each bracket, an early stopping scheme for random search is run.
This means the models are trained independently in parallel, except
training stops on certain models at certain times.

These two levels of parallelism are rendered as nested loops as shown
in Fig. 2.1. The for-loop that runs different “brackets” represents differ-
ent training vs. exploration tradeoffs, and each bracket does about the
approximately the same amount of computation. Each bracket is run in
parallel, and Dask’s dynamic task scheduling can launch jobs from within
each bracket.

Each bracket indicates a value in the trade-off between training time
and hyperparameter importance, and is specified by the list of tuples in
Fig. 2.1. Each bracket is specified so that the total number of partial_fit
calls is approximately the same among different brackets. Then, having
many models requires pruning models very aggressively and vice versa with
few models. As an example, with max_iter=243 the least adaptive bracket
has 5 models and no pruning. The most adaptive bracket has 81 models
and fairly aggressive early stopping schedule.

The exact aggressiveness of the early stopping schedule depends on
one optional input to HyperbandSearchCV, aggressiveness. The default
value is 3, which has some mathematical motivation [95, Sec. 2.6]. Either
the most aggressive bracket or aggressiveness=4 is likely more suitable
for initial exploration when not much is known about the model, data or
hyperparameters.

2.4.1 Combination of Dask and Hyperband

Dask can assign different priority levels to different jobs. When a Dask
worker is free, it pops the job with the highest priority off the stack of
pending jobs. This is relevant because Hyperband has many jobs to run in

18

def sha(n_models: int, iters: int, aggressiveness: int = 3):
Successive halving algorithm

3 models = [random_model() for i in range(n_models)]
while True:

Calls `m.partial_fit` a total of `iters` times
6 models = [train(m, iters) for m in models]

val_scores = [score(m) for m in models]
surviving_models = len(models) // aggressiveness

9 models = top_k(models, val_scores, k=n_surviving_models)
iters *= aggressiveness
if len(models) < aggressiveness:

12 return top_k(models, k=1)

def hyperband(max_iter: int = 243, aggressiveness=3):
15 # Each bracket does about the same amount of work.

Each tuple is (num_models, n_init_calls).
More models means more aggressive pruning

18 brackets = [(81,3), (34,9), (15,27), (8,81), (5,243)]
if max_iter != 243:

brackets = ... # inputs: max_iter, aggressiveness.
21

best_models = [sha(n, r, aggressiveness) for n, r in brackets]
return top_k(best_models, k=1)

Figure 2.1: Condensed psuedo-code for Dask-ML’s HyperbandSearchCV.
The user provides train, score (which is supplied with validation data),
and random_model, and specifies how much data each partial_fit call
receives. Details around brackets are hidden for simplicity and can be
found in Alg. 1 by Li et al. [95]. Lines 6, 7 and 22 (highlighted) are run in
parallel on the workers Dask has available.

19

parallel (e.g., HyperbandSearchCV creates 143 models for max_iter=81, all
of which require training).

Dask-ML’s implementation of Hyperband, HyperbandSearchCV can take
advantage of the priority scheme by giving higher priority to high performing
models. Assigning the priority of fitting the model to be the model’s most
recent validation score will tell Dask what models to focus on. To be clear,
the final model HyperbandSearchCV produces won’t change – but the final
model will be found sooner, which can be advantageous if the user wants to
stop computation early.

HyperbandSearchCV’s priority scheme to train high scoring models
sooner works best in very serial environments: priority makes no difference in
very parallel environment when every job can be scheduled instantaneously.
In moderately parallel environments, the different priorities may lead to
longer time to solution because of suboptimal scheduling. To get around
this, the worst performing P models all have the same priority for each
bracket when there are P Dask workers (the median of the P validation
scores).

Now, let’s go over some usability concerns for HyperbandSearchCV, which
will influence the user-facing API and how HyperbandSearchCV is used.

2.4.2 Input parameter rule-of-thumb

Hyperband is also fairly easy to use. It requires two input parameters:

1. The number of partial_fit calls for the best model (via max_iter)
2. The number of examples that each partial_fit call sees (which is

implicit and referred to as chunks, which can be the “chunk size” of
the Dask array).

These two parameters rely on knowing how long to train the model11

11e.g., something in the form “the most trained model should see 100 times
the number of examples (aka 100 epochs)”

20

and having a rough idea on the number of parameters to evaluate. With
those parameters, a rule-of-thumb can be developed:12

n_params = 200 # sample approximately 200 parameters
training_eg = 100 * len(X_train) # for longest trained model

inputs to HyperbandSearchCV
max_iter = n_params
chunks = int(training_eg / n_params)

Trying twice as many parameters with the same amount of computation
requires halving chunks and doubling max_iter. The longest-trained model
will see the same amount of data. The primary advantage to Hyperband’s
inputs is that they do not require balancing training time importance and
hyperparameter importance. Random searches also require two inputs:

1. How many parameters to try (via num_params).
2. The number of examples that each model sees (via training_eg).

Trying twice as many parameters with the same amount of computation
requires doubling num_params and halving training_eg, which means every
model will see half as many data. Implicitly, a balance between training
time and hyperparameter importance is being decided upon. Hyperband’s
inputs are simpler because it sweeps over different values for this importance
in different brackets.

2.4.3 Dwindling number of models

At first, Hyperband evaluates many models. As time progresses, the number
of models decay because Hyperband is an early stopping scheme. This

12This rule-of-thumb is oriented towards large data. The
dataset should be repeated if the dataset is too small (i.e., if
training_eg > n_params * len(X_train)), possible with dask.array.repeat
or numpy.repeat.

https://docs.dask.org/en/latest/generated/dask.array.repeat.html
https://numpy.org/doc/stable/reference/generated/numpy.repeat.html

21

means towards the end of the computation, a few (possibly high-performing)
models can be training while most of the computational hardware is idle.
This is might be a problem when computational resources are rented (e.g.,
with cloud platforms like Amazon AWS or Google Cloud Platform).

Hyperband is a principled early stopping scheme, but it doesn’t protect
against at least two common cases:

• When models have converged before training completes (i.e., the score
stays constant).

• When models have not converged and poor hyperparameters are chosen
(i.e, the scores are not increasing).

Providing a “stop on plateau” scheme will protect against these cases
because training will be stopped if a model’s score stops increasing [127].
This will require two additional parameters: patience to determine how
long to wait before stopping a model, and tol which determines how much
the score should increase.

Hyperband’s early stopping is designed to identify the highest perform-
ing model with minimal training. Setting patience to be high avoids
interference with this scheme, but still protects against both cases above
while erring towards giving models more training time. This early stopping
scheme is likely most relevant during the least adaptive brackets of Hyper-
band. So by default, using HyperbandSearchCV with patient=True sets
the high value of patience=int(max_iter / aggressiveness), which is
also the patience of the second least adaptive bracket in Hyperband and not
incredibly far from the user-specified value of max_iter.

2.5 Experimental results

In this section, two hyperparameter optimizations are compared, Hyperband
and random search. The incentive to compare these algorithms involves

22

the fact that Hyperband is a principled early stopping scheme for random
search, and randomized search is “embarrassingly parallel.” Both of these
schemes will be evaluated with a Dask computational cluster. In this section,
HyperbandSearchCV’s early stopping scheme will score models and stop
training models with a lower score.

2.5.1 Serial environment

This section is focused on the initial exploration of a model and it’s hyperpa-
rameters on a personal laptop. This section shows a performance comparison
to illustrate the HyperbandSearchCV’s utility, which will use a rule-of-thumb
detailed in Section 2.4.2 to determine the inputs to HyperbandSearchCV.

A synthetic dataset with 6 features shown in Fig. 2.2a is used for a 4-class
classification problem on a personal laptop with 4 cores. Let’s train a small
fully-connected neural network with 24 neurons, and vary the depth/width
in addition to tuning SGD. A visualization of this dataset with 4 features and
more details on the model/hyperparameters is relegated to Appendix A.1.

The results of these simulations are in Figs. 2.2b and 2.3 which em-
ulates an experiment where no information on the model or dataset are
known. As such, HyperbandSearchCV’s aggressiveness is set to 4 (not
the default 3) and the choice on number of passes through the dataset is
chosen without much knowledge.13 The results in Fig. 2.3a validate the
HyperbandSearchCV’s effectiveness: it finds high performing hyperparame-
ters with minimal training. Notably, the computational environment makes
the hyperparameter selection very serial and the number of partial_fit
calls or passes through the dataset a decent proxy for time.

The results in Fig. 2.3b validate the method of assigning priorities. The
two runs of HyperbandSearchCV shown only differ in how priorities are

13Accordingly, number of samples for the random search is perhaps under-
specified for the random search. Regardless, Hyperband performs well with this
minimal amount of computation.

23

(a) The synthetic dataset
used as input for the serial
simulations. The colors cor-
respond to different class la-
bels. In addition to these
two informative dimensions,
there are 4 uninformative di-
mensions with uniformly dis-
tributed random noise.

0.4 0.5 0.6 0.7 0.8 0.9
Final validation accuracy

0

20

40

60

Fr
eq

ue
nc

y passive
hyperband

(b) The final validation accuracy over the different
runs. Out of the 200 runs, the worst of the
hyperband runs performs better than 99 of the
passive runs, and 21 passive runs have final
validation accuracy less than 70%.

Figure 2.2: The dataset and final validation accuracies on that dataset,
which has 60,000 examples (50,000 of which are used for training).

assigned: both runs see the same datasets in the same order, the models
have the same internal random state, and the validation scores at the
beginning/end are exactly the same. This shows the method of assigning
priorities can reduce wall-clock time to obtain a particular validation score
by approximately a factor of 2, relevant if computation is stopped early.
In attempt to show the effect of this priority scheme in more parallel
environments, we selected a run that had a relatively small difference in
performance between the two priority schemes.

2.5.2 Parallel environments

This section will examine how Dask performs as the number of workers grow
using a model implemented in PyTorch [121], a popular deep learning library.
The inputs and desired outputs are given in Fig. 2.4. A shallow neural
network will be used because the noise variance varies slightly between

24

0 200 400 600 800 1000
Passes through dataset

0.70

0.75

0.80

0.85

0.90

Va
lid

at
io

n
ac

cu
ra

cy

passive
hyperband

(a) Validation accuracy after a given
amount of passes through the dataset
(epochs) for Dask’s Hyperband imple-
mentation HyperbandSearchCV (via
hyperband) and random search (via
passive).

0 200 400 600 800
Passes through dataset

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
ac

cu
ra

cy

passive
high-scores
fifo
25 75th percentiles

(b) The priority scheme influences
Hyperband’s time to solution. Two
schemes are relevant: high-scores,
which assigns higher priority to
higher scoring models, and fifo,
which assigns a “first in first out” pri-
ority and is Dask’s default priority.

Figure 2.3: A visualization of Dask’s performance for a hyperparameter
search over 200 runs. Four Dask workers are used, and the dotted green line
shows the amount of data required to train four models to completion. The
shaded regions represent the 75 and 25th percentiles, and the solid/dashed
lines represents the mean.

input

ground
truth

Figure 2.4: The input and ground truth for the image denoising problem.
There are 70,000 images in the output, the original MNIST dataset. For
the input, random noise is added to images, and amount of data grows to
350,000 input/output images. Each partial_fit calls sees (about) 20,780
examples and each call to score uses 66,500 examples for validation.

25

images, a fully-connected auto-encoder detailed in Appendix A.2.
The tuned hyperparameters include one hyperparameter that affects

model architecture, the activation function and varies among 4 rectified linear
unit variants [37, 62, 103, 113]. The other hyperparameters all control finding
the optimal model after the architecture is fixed. These hyperparameters
include 3 discrete hyperparameters (with 160 unique combinations) and 3
continuous hyperparameters. Some of these hyperparameters include choices
on the optimizer to use (SGD [18] or Adam [85]), initialization, regularization
and optimizer hyperparameters like learning rate or momentum. Complete
details are in Appendix A.2.

This implementation will set max_iter=243 to train for about 75 epochs
on the original dataset (which is inflated by a factor of 5 to add random noise),
and let’s set patience=True to stop training early plateauing models after
about 25 epochs. This is a regression problem, so the negative validation loss
will be used to score models (not the validation accuracy as in Section 2.5.1).

The hyperparameter search will be run once, and the history will be
recorded. From this history, simulations will be run where only the number
of Dask workers varies. Each model fitting/scoring will return the same
values from the recorded history and will take a deterministic time. In
these simulations, a partial_fit call consumes 1 second and score call
consumes 1.5 seconds [59]. The results in Fig. 2.5b illustrate what happens
if the number of workers changes for this rather complete search. For this
search, the total search time for 8 workers is less than 15 minutes and the
speedups begin to saturate between 16 and 24 workers.

2.6 Conclusion

This chapter has shown an implementation of a particular hyperparameter op-
timization algorithm that is amendable to parallelism. This implementation
is in a popular distributed computation library, Dask-ML. The combination

26

0 200 400 600 800
Time (s)

0.080

0.075

0.070

0.065

Va
lid

at
io

n
sc

or
e

workers
8
16
24
32

(a) The wall-clock time required to
reach a particular validation score
(the negative loss).

0 200 400 600 800
Time (s)

8
16
24
32

W
or

ke
rs

(b) The total wall-clock time to so-
lution for the runs in Fig. 2.5a. The
white line marks the time required
to train one model to completion.

Figure 2.5: How the Dask implementation of Hyperband scales with the
number of workers.

of these two items—Hyperband and Dask—is particularly potent because
of a scheme to prioritize model fitting, highlighted in Section 2.4.1. Given
Section 2.4.1, the use case of using N ≤ 16 GPUs on Amazon EC2 instead of
1 GPU is a viable method of accelerating the hyperparameter optimization
by about a factor of N .

Future work involves integrating a Bayesian sampling scheme into the
Hyperband implementation [50]. Falkner et al. describe updating a Bayesian
model for the hyperparameters as training progresses, and initializing a new
training model from the Bayesian model when the chance occurs. If there
are infinite workers, the Bayesian sampling scheme has no advantage.

In the context of Fig. 1.3, this section focused on a scheme to encode
query priority with more than one worker. However, each query response
takes a long time to generate as one it requires training a model for some
number of epochs. Now, let’s focus on a direct method to accelerate ML
model training with a system for distributed computation (which could be
Dask, and is in Section 3.2).

27

3 accelerating model updates

This section will focus on accelerating the model training portion of the
active learning data flow in Fig. 1.3. In some applications, this model
training may be simple. For example, algorithms used in the TNY Caption
Contest in Chapter 1 only require an empirical mean estimation and a high
probability precision calculation [159]. However, in many other applications
the task of model training is empirical risk minimization (ERM) (e.g., [63,
91, 119, 133, 143]), which tends to be more complex. ERM takes this form:

min
w
F (w) =

n∑
i=1

fi(w) (3.1)

where fi(w) = f(w; zi) where zi is the ith example for some function f that
is the same for all examples. In the case of least squares with a linear model
with d features, zi = (xi, yi) ∈ Rd×1 and f(w)i = (yi − 〈w,xi〉)2. ERM
is also used in active ML with the popular “follow-the-leader” framework
where n− 1 examples have been received at iteration/period n [61].

This chapter will be focused on methods to reduce the wall-clock time
required to perform this optimization while not increasing the final cost. In
the era of “big data,” one popular method to reduce the amount of compu-
tation is to use stochastic gradient descent (SGD) or a variant thereof [173].
Reducing the amount of computation is a good way to reduce the time
required for optimization if a single processor is used. The core computation
in the iterative process of SGD takes the following form:

wk+1 = wk − γk · ĝk,B (3.2)

where ĝk,B is a gradient estimate of F that uses B training examples at
iteration k (or modification thereof),1 and the step size or learning rate

1It’s common in SGD variants to use a linear combination of the model’s gradi-
ent ĝk,B and previous model wk−1 in place of ĝk,B [173]. If the gradient estimate

28

γ > 0. For vanilla mini-batch SGD, ĝk,B = 1/B ·∑B
i=1∇fis(x). The analysis

in this chapter will use the vanilla SGD update and be largely agnostic to
the gradient structure.2

A very simple method of acceleration is to use the SGD-style update
in Eq. (3.2) and task each of P worker machines with the computation of
B/P example gradients. This will require evaluation of B/P examples on
each of the P machines, a common parallelization strategy with popular
implementations in Tensorflow, PyTorch, Keras and Apache Spark [1, 39,
96, 110, 146, 155].3 In this context, two parameters control the time to train
any machine learning model:

1. The number of model updates.
2. The time required for each model update.

If model update i takes ti seconds and there are N updates, then the
time for model training will be ∑N

i=1 ti, or tN if every model update takes t
seconds. With that, two questions become relevant:

1. How does changing the batch size B influence the optimization? The
gradient estimate of F is computed with B examples. Does changing
B reduce the number of model updates?

is changed, the underlying computation doesn’t change drastically (instead of
evaluating ∇fis(wk), ∇fis(wk + ak) is evaluated for some vector ak [173]).

2e.g., sparsity assumptions will not be required as in Recht et al. [118].
3It’s certainly possible to distribute the minibatch SGD computation onto P

different machines. However, by Amdahl’s Law this does not mean the computa-
tion will be P× faster because communication and coordination are required [8].
Several studies have shown the speedups from these methods are far from optimal
and saturate with a low number of workers [46, 128] (A good visualization of the
work by Qi et al. [128] is at https://talwalkarlab.github.io/paleo/ when
“strong scaling” is selected). Even asynchronous methods that rely on a particular
gradient structure (sparsity) exhibit very moderate accelerations with common
hardware [118] (unless rare and radically different hardware is used with small
modifications [185]).

https://talwalkarlab.github.io/paleo/

29

2. How can the model update time be reduced with a distributed system?
Of course, in a distributed system, the number of workers is a free pa-
rameter and gradients must be communicated between those machines
for ML model training. How should the workers communicate, and
how should the number of workers relate to the batch size B?

These questions will be addressed in Sections 3.1, 3.2 and 3.3. The total
amount of computation is still relevant in the age of “big data” because
otherwise the amount of energy/money consumed by computation quickly
becomes infeasible. That means an ideal solution would minimize the total
amount of computation and minimize the training time while retaining the
same model performance. The free variables of batch size and workers in a
distributed system will mean that both can be achieved simultaneously, as
detailed in Sections 3.1 and 3.2. Section 3.3 details an efficient communi-
cation scheme for the not uncommon case when many model updates are
required to complete distributed model training. Specifically, the conclusions
of Sections 3.1, 3.2 and Section 3.3 are respectively listed below:

1. When the batch size grows in a particular manner, few model updates
are required compared to SGD, and the total amount of computation
does not grow.

2. The time required for model training is proportional to the number of
model updates when the number of workers in a distributed system
grows with the batch size.

3. The time spent while training a ML model with a distributed system
is reduced when a particular type of lossy gradient compression is
performed on the gradients. Many of the popular existing schemes for
lossy gradient compression fit into this framework.

The conclusions of Sections 3.1 and 3.2 are particularly powerful when
paired together. The conclusions are again listed here for because there is a

30

considerable amount of context/overhead before getting to the highlight of
each section.

31

3.1 Improving the convergence of
stochastic gradient descent (SGD) via
adaptive batch sizes

The main computational bottleneck in training ML models is computing the
gradient estimate ĝk,B in Eq. (3.2), which uses B training data to estimate
F ’s gradient. With a computational budget of evaluating the gradients for
C examples, how should the computation be distributed? Should every
model update use the same number of examples, or should the last updates
compute the gradients for C/2 examples?

Poorly initialized models provide a useful piece of intuition to begin
answering this question. In that case, evaluating the gradient estimate with
32 examples will have some error. That error will not change much when
the gradient estimate is evaluated with 1000 examples because the gradient
estimate doesn’t change significantly – for any set of examples, the optimal
model for any particular example in that set is in a similar direction. An
illustration of this intuition is in Fig. 3.1, and is formalized by examining
how “gradient diversity” [176] is influenced by distance to optimal solution
in Appendix B.1.

Appendix B.1 suggests that the batch size should increase throughout an
optimization if the goal is to improve the convergence of SGD, aka reduce
the number of model updates. That is, the static batch size B in Eq. (3.2)
should become the variable Bk and change each iteration. This section
expands upon that idea by adaptively growing the batch size with model
performance4 as the optimization proceeds. Specifically, this work does the
following:

• Provides methods to adapt the batch size to the model performance.
4“Model performance” defined as the objective function loss over the entire

training set for convex and strongly-convex functions.

32

Figure 3.1: An illustration of why the batch size should increase: the
gradients for each example are more “diverse” when the model is close to
the optimal model. Here, the optimal model is w = [wx, wy] and minimizes
the function f(wx, wy) = ∑3

i=0(wx − xi)2 + (wy − yi)2 where xi and yi are
the x and y coordinates of each datum. For model B, an estimate of the
optimal model estimate, the gradients are more “diverse,” so the magnitude
and orientation of each datum’s gradient varies more.

These methods require significant computation because they require
computing model performance before every model update.

• Shows that adapting the batch size to the model performance can
require significantly fewer model updates and approximately the same
number of gradient computations5 when compared with standard SGD.6

• Provides a simulation indicating that increasing the batch size requires
far fewer model updates than SGD.

• Details a practical implementation, and illustrates performance with
some experiments.

The benefit of reducing the number of model updates isn’t apparent at
first glance. The main benefit is that the wall-clock time required for any
one model update is agnostic to the batch size with a certain distributed

5At least for convex and strongly-convex functions.
6Note that our adaptive method receives the function value in addition to the

gradient, which is more information than SGD and variants thereof receive [114].

33

system configuration7 [58, Sec. 5.5] (which will become particularly relevant
in Section 3.2). When the batch size grows geometrically, the number of
model updates is a “meaningful measure of the training time” in a similar
system [152, Sec. 5.4]. Additionally, larger batch sizes improve distributed
system performance [128, 176].8

To precisely show the points above, let’s begin by showing related work
and preliminary notions are introduced in Section 3.1.1 and 3.1.2 respectively.
Then, let’s present the adaptive batch size method and the convergence
results in Section 3.1.3. This has some practical limitations, which are
addressed and evaluated in Section 3.1.4. The benefit growing the batch
size will be delayed until Section 3.2.

3.1.1 Related work

Mini-batch SGD with small batch sizes tends to bounce around the optimum
because the gradient estimate has high variance – the optimum depends on
all examples, not a few examples. Common methods to circumvent this issue
include some step size decay schedule [21, Sec. 4] and averaging model iterates
with averaged SGD (ASGD) [125]. Less common methods include stochastic
average gradient (SAG) and stochastic variance reduction (SVRG) because
they present memory and computational restrictions respectively [77, 142].
Our work is more similar in spirit to variance reduction techniques that use
variable learning rates and batch sizes, discussed below.

Adaptive learning rates Adaptive learning rates or step sizes can help
adapt the optimization to the most informative features with AdaGrad [49,
169] or to estimate the first and second moments of the gradients with
Adam [85]. AdaGrad has inspired Adadelta [181] which makes some modifi-

7Specifically when the number of workers is proportional to the batch size
8See https://talwalkarlab.github.io/paleo/ with “strong scaling”

(which keeps the batch size constant regardless of the number of workers).

https://talwalkarlab.github.io/paleo/

34

cations to average over a certain window and approximate the Hessian. Such
methods are useful for convergence and a reduction in hyperparameter tun-
ing.9 AdaGrad and variants thereof give principled, robust ways to vary the
learning rate that avoid having to tune learning rate decay schedules [169].

Constant batch sizes Using moderately large batch sizes yields high
quality results more quickly and, in practice, requires no more computation
than small batch sizes, both empirically [58] and theoretically [176]. Large
constant batch sizes present generalization challenges [36, 58], hypothe-
sized to come from convergence to a “sharp” minima, strongly influenced
by the learning rate and noise in the gradient estimate [83]. To match
performance on the training dataset, careful thought about choice of hy-
perparameters is required [58, Sec. 3 and 5.2]. In fact, this has motivated
algorithms specifically designed for large constant batch sizes and distributed
systems [75, 78, 178], which generally require fewer model updates to obtain
similar solutions to SGD.

There are many methods to choose the best constant batch size (e.g., [53,
84]). Some methods are data dependent [176], and others depend on the
model complexity. In particular, one method uses hardware topology (e.g.,
network bandwidth) in a distributed system [124].

Increasing batch sizes Increasing the batch size as an optimization
proceeds is another method of variance reduction. Strongly convex functions
provably benefit from geometrically increasing batch sizes in terms of the
number of model updates while requiring no more gradient computations
than SGD [20, Ch. 5]. The number of model updates required for strongly
convex, convex and non-convex functions is improved with batch sizes that

9The original work on SGD stated that the learning rate should decay to meet
some conditions, but did not specify the decay schedule [136].

35

increase like O
(
rk
)
, O (k2) and O (k) respectively [186].10

Smith et al. perform variance reduction by geometrically increasing the
batch size or decreasing the learning rate by the same factor, both in discrete
steps (e.g., every 60 epochs) [152]. Specifically, Smith et al. motivate their
method by connecting variance reduction to simulated annealing, in which
reducing the SGD model update variance or “noise scale” in a series of
discrete steps enhances the likelihood of reaching a “robust” minima [152,
Sec. 3]. Smith et al. show that increasing the batch size yields similar results
to decaying the learning rate by the same amount, which suggests that “it
is the noise scale which is relevant, not the learning rate” [152, Sec. 5.1]. By
that analogy, adaptive batch sizes are to geometrically increasing batch sizes
as adaptive learning rate methods are to SGD learning rate decay schedules.

Adaptive batch sizes Several schemes to adapt the batch size to the
model have been developed, ranging from model specific schemes [120]
to more general schemes [11, 26, 42]. These methods tend to look at the
sample variance of every individual gradient, which involves the computation
of a single gradient norm ‖∇fi(w)‖ for every example i in the current
batch [11, 26, 42]. Naively, this requires feeding every example through
the model individually. This can be circumvented; Balles et al. present an
approximation method to avoid the variance estimation that requires about
1.25× more computation than the standard mini-batch SGD update, with
some techniques to avoid memory constraints [11, Sec. 4.2].

Friedlander et al. use adaptive batch sizes to prove linear convergence
for strongly convex functions and a O (1/k) convergence rate for convex
functions [52]. Their adaptive approach relies on providing a batch size that
satisfies certain error bounds on the gradient residual (in Eq. 2.6), which
provides motivation for geometrically increasing batch sizes [52, Sec. 3].

10In HSGD, convex functions require O
(
ε−3) gradient computations [186,

Cor. 2]. As illustrated in Table 3.1, this work and SGD require O
(
ε−2) gradient

computations.

36

Work developed concurrently with this work includes an SVRG modifi-
cation [74], which involves modifying the outer-loop of SVRG. Instead of
calculating the gradient for all n examples during every loop, they propose
a scheme to calculate the gradient for Ns examples where Ns is inversely
proportional to the average gradient variance.11

3.1.2 Preliminaries

First, some basic definitions:

Definition 1. A function F : Rd → Rk is L-Lipschitz if ‖F (w1)− F (w2)‖2 ≤
L ‖w1 −w2‖2 for all w1,w2 ∈ Rd.

The norm ‖x‖2 refers to the Euclidean norm of x. From here on out,
‖x‖ := ‖x‖2.

Definition 2. A function F : Rd → R is β-smooth if the gradients ∇F are
β-Lipschitz, or if ‖∇F (w1)−∇F (w2)‖ ≤ β ‖w1 −w2‖ for all w1,w2 ∈ Rd.

The class of β-smooth functions is a result of the gradient norm being
bounded, or that all the eigenvalues of the Hessian are smaller than β.
If a function F is β-smooth, the function also obeys ∀w1,w2, F (w1) ≤
F (w2) + 〈∇F (w2),w1 −w2〉+ β

2 ‖w1 −w2‖2
2 [24, Lemma 3.4].

Definition 3. A function F : Rd → R is α-strongly convex if ∀w1,w2, F (w1) ≥
F (w2) + 〈∇F (w2),w1 −w2〉+ α

2 ‖w1 −w2‖2
2.

α-strongly convex functions grow quadratically away from the optimum
w? = arg minw F (w) since F (w)−F (w?) ≥ α

2 ‖w −w
?‖2

2. While amenable
to analysis, this criterion is often too restrictive. The Polyak- Lojasiewicz

11In later revisions of their work, they provide a comparison with this work,
which includes a similar proof to Theorem 5 [74, Appendix D].

37

condition is a generalization of strong convexity that’s less restrictive [80,
126]:

Definition 4. A function F : Rd → R obeys Polyak- Lojasiewicz (PL)
condition with parameter α > 0 if 1

2 ‖∇F (w)‖2
2 ≥ α(F (w) − F ?) when

F ? = minw F (w).

For simplicity, we refer to these functions F satisfying this condition
as being “α-PL”. The class of α-PL functions includes α-strongly convex
functions and a certain class non-convex functions [80]. One important
constraint of α-PL functions is that every stationary point must be a global
minimizer, though stationary points are not necessarily unique. Recent
work has shown similar convergence rates for α-PL and α-strongly convex
functions for a variety of different algorithms [80].

A bound on the expected gradient norm will also be useful because
it will appear in theorem statements. For ease of notation, the definition
fi(w) := f(w; zi) will continue to be used.

Definition 5. For modelw, letM2(w) := 1/n
∑n
i=1 ‖∇fi(w)‖2

2 and letM :=
{M2(wk) : k ∈ {0, 1, . . . , T − 1}} when T model updates are performed.
Define M2

L := minM and M2
U := maxM.

3.1.3 Convergence

In this section we will prove convergence rates for mini-batch SGD with
adaptive batch sizes and give bounds on the number of gradient computations
needed. Our main results are summarized in Table 3.1. In general, we
show that mini-batch SGD with appropriately chosen adaptive batch sizes
converges as quickly as gradient descent in terms of the number of model
updates required, but does not require more total gradient computations
than serial SGD (up to constants).12

12In this theoretical discussion, the batch size will unrealistically not require
any computation and be provided by an oracle. Some methods to workaround

38

Table 3.1: The number of model updates or gradient computations required
to reach a model of error at most ε. All function classes are β-smooth, and
for α-strongly convex functions the condition number κ is given by κ = β/α.
The function class column in Table 3.1a is shared with Table 3.1b. Error
is defined with loss F (wT) − F ? ≤ ε for smooth & convex functions and
α-strongly convex (α-SC) functions, and with gradient norm for smooth
functions, mink=0,...,T−1 ‖∇F (wk)‖ ≤ ε. See Section 3.1.3 for details and
references. Notably, the batch size is provided by an oracle for smooth
functions. Cells with minimum model updates/gradient computations (up
to constants) with n = 60 · 103, ε = 0.01, α = 0.1 and β = 1 are highlighted.

Function SGD Adaptive Gradient
class batch sizes descent
α-SC O (κ/βε) O (κ log(1/ε)) O (κ log(1/ε))

Convex O (1/ε2) O (1/ε) O (1/ε)
Smooth O (1/ε4) O (1/ε2) O (1/ε2)

(a) Total number of model updates required during optimization.
Function SGD Adaptive Gradient

class batch sizes descent
α-SC O (κ/βε) O (κ/ε log(1/ε)) O (nκ log(1/ε))

Convex O (1/ε2) O (1/ε2) O (n/ε)
Smooth O (1/ε4) O (1/ε3) O (n/ε2)

(b) Total number of gradient computations required during optimization.

In general, the adaptive batch sizes are inversely proportional to the
current model’s loss. This method is motivated by an approximate measure
of gradient dissimilarity as detailed in Appendix B.1. These adaptive batch
sizes Bk are computed with the current model wk and use the model update
in Eq. 3.2 to produce a new model wk+1.

Section 3.1.3 analyzes the required number of model updates, and an-
alyzes the required number of gradient computations. The theory in this
section might require significant computation; methods in Section 3.1.4
circumvent some of these issues.
this unrealistic assumptions are presented in Section 3.1.4.

39

3.1.3.1 Model updates

Let’s start in the context of α-PL functions. In this setting, SGD requires
O (1/ε) model updates [80, Thm. 4]. Gradient descent with a constant
learning rate requires log (1/ε) model updates [80, Thm. 1], as does SGD
with geometrically increasing batch sizes for strongly convex functions [20,
Cor. 5.2]. We show that log (1/ε) model updates are also required when the
adaptive batch size is chosen appropriately:

Theorem 2. Let wk denote the k-th iterate of mini-batch SGD with step-
size γ on a β-smooth and α-PL function F . If the batch size Bk at each
iteration k is given by

Bk =
⌈

c

F (wk)− F ?

⌉
(3.3)

and the learning rate γ = α/[β (α +M2
U/2c)] for some constant c > 0, then

E [F (wT)]− F ? ≤ (1− r)T (F (w0)− F ?)

where r := α2/ (β (α +M2
U/2c)). This implies T ≥ O (log (1/ε)) model

updates are required to obtain wT such that E [F (wT)]− F ? ≤ ε.

The proof is detailed in Appendix B.2.1 and follows from the definition of
Bk, β-smooth and α-PL. This theorem can also be applied to Euclidean
distance from the optimal model for α-strongly convex functions because
α/2 ‖wk −w?‖2

2 ≤ F (wk)− F (w?). The learning rate γ is typically a user-
specified hyperparameter determined through trial-and-error (e.g, [141, 151]).
This theorem makes a fairly standard assumption that the optimal training
loss F ? is known, which influences γ by Ward et al. [169, Sec. 1.1] and
Orr [120, Eq. 15].13

13For most overparameterized neural nets, the optimal training loss is (approx-
imately) 0 [12, 140, 182].

40

When F is convex, the same adaptive batch size method obtains compa-
rable convergence rates to gradient descent. Gradient descent with constant
learning rate requires O (1/ε) model updates [24, Thm. 3.3], and has linear
convergence if an exact line search is used [22, Eq. 9.18]. SGD requires
O (1/ε2) model updates [24, Thm. 6.3]. Using adaptive batch sizes with SGD
also requires O (1/ε) model updates:

Theorem 3. Let xk denote the k-th iterate of mini-batch SGD with step
size γ on some β-smooth and convex function F . If the batch size Bk at
each iteration is given by Equation 3.3 and γ = (β + 1/c)−1, then for any
T ≥ 1,

E [F (wT)]− F ? ≤ r

T

where r := ‖w0 −w∗‖2
(
β + M2

U

c

)
+ F (w0)− F ∗ and wT := 1

T

∑T−1
i=0 wi+1.

This implies T ≥ r/ε model updates are required to obtain wT such that
E [F (wT)]− F ? ≤ ε.

This is proved in Appendix B.2.2, which is an adaptation of the classic SGD
convergence analysis [24].

Key Lemma Theorems 2 and 3 rely on a key lemma, one that controls
the gradient approximation error E [‖∇F (wk)− ĝk‖] as a function of the
number of model updates and the loss for a given gradient approximation
ĝk and the adaptive batch sizes Bk:

Lemma 4. Let the batch size Bk be chosen as in Eq. 3.3. Then when
the gradient estimate ĝk = 1/Bk

∑Bk
i=1∇fis(wk) is created with is chosen

uniformly at random, then the expected gradient error

E
[
‖∇F (wk)− ĝk‖2

2

∣∣∣ wk

]
≤ (F (wk)− F ?)M2

Uc
−1

The proof is Appendix B.2 and relies on substituting the definition of the
batch size Bk into the gradient approximation error, E

[
‖∇F (wk)− ĝk‖2

2

]
.

41

Lemma 4 is used to factor the approximation error F (wk)− F ? out of both
terms in the upper bound in the proof of Theorem 2, which allows for linear
convergence. It’s used in a similar manner in Theorem 3, specifically to
obtain multiples of the same term on both sides of the inequality.14

When F is smooth and non-convex, we’ll provide an upper bound on
the number of model updates required to find an ε-approximate critical
point so that ‖∇F (w)‖ ≤ ε, which requires computing the adaptive batch
size differently. In this setting, SGD requires O (1/ε4) model updates [176,
Thm. 2], and gradient descent requires O (1/ε2) model updates [76, Thm. 2].
Adaptive batch sizes require O (1/ε2) model updates:

Theorem 5. Let wk denote the k-th iterate of mini-batch SGD on a β-
smooth function F . If the batch size Bk at each iteration satisfies

Bk =
⌈

c

‖∇F (wk)‖2
2

⌉
(3.4)

for some c > 0 and the step size γ = β−1 · c/(c+M2
L), then for any T ≥ 1,

min
k=0,...,T−1

‖∇F (wk)‖ ≤
√
r

T

where r := 2(F (w0) − F ?) · β (M2
Lc
−1 + 1). This implies T ≥ r2/ε2 model

updates are required to obtain wT such that mink=0,...,T−1 ‖∇F (wk)‖ ≤ ε.

This theorem is proved in Appendix B.2.3. The proof adapts the proof of
Theorem 2 by Yin et al. [176] to the batch size in Eq. (3.4) and .

3.1.3.2 Number of gradient computations

The convergence rates above show that adaptively chosen batch sizes can
lead to fast convergence in terms of the number of model updates – which
is great if the time spent training is proportional to the number of model

14Theorem 5 relies on a similar procedure.

42

updates.15 However, in this case, the number of model updates doesn’t
characterize the total amount of work performed: when the model is close
to the optimum, the batch size will be large but only one model update will
be computed. A better metric for the amount of work performed is on the
number of gradient computations required to reach a model of a particular
error, or the sum of the batch sizes ∑T−1

i=0 Bi.
In short, the number of gradient computations ∑T−1

i=0 Bi that are required
by the adaptive batch size method is similar to the number of gradient
computations for SGD. A comparison is concisely summarized in Table 3.1.16

In this table, line searches are not performed for gradient descent on convex
functions.

Let’s start with α-PL and convex functions. When increasing the batch
size geometrically for α-strong convex functions, only O (1/ε) gradient com-
putations are required [20, Thm. 5.3].

Corollary 6. For an α-PL function F , no more than 4cr log (1/ε) /ε gradi-
ent computations are required in Theorem 2 where c and r are defined in
Theorem 2.

Corollary 7. For a convex and β-smooth function F , no more than 4cr/ε2

gradient computations are required in Theorem 3 where c and r are defined
in Theorem 3.

Now, let’s look at the gradient computations required for smooth func-
tions. For illustration, let’s assume the batch size in Eq. 3.4 is given by an
oracle and does not require any gradient computation.

15Which is possible in Section 3.2, even with batch size growth.
16The number of gradient computations for SGD and gradient descent are

reflected in the model update count; SGD and gradient descent require computing
1 and n gradients per model update respectively.

43

Corollary 8. For β-smooth functions F , no more than 4cr/ε3 gradient com-
putations are required to estimate the loss function’s gradient in Theorem 5
where c and r are defined in Theorem 5.

Proof is delegated to Appendix B.3. Corollaries 6, 7 and 8 rely on
Lemma 18, which is not tight. Tightening this bound requires finding
lower bounds on model loss, a statement of the form F (wk)− F ? ≥ g(ε, k)
for some function g. There are classical bounds of this sort for gradient
descent [115, Thms. 2.1.7 and 2.1.13], and more recent lower bounds for
SGD [117]. However, deriving a comprehensive understanding of lower
bounds for mini-batch SGD remains an open problem.

3.1.4 Experiments

In this section, we first show that the theory above works as expected: far
fewer model are required to obtain a model of a particular loss, and the
total number of gradient computations is the same as standard mini-batch
SGD. However, the implementation above is impractical: the batch size
requires significant computation. We suggest some workarounds to address
these practical issues, and provide experiments that compare the proposed
method with relevant work.17

3.1.4.1 Synthetic simulations

First, let’s train a neural network with linear activations to illustrate our
theoretical contributions. Practically speaking, this is an extremely inefficient
and roundabout way to compute a linear function. However, the associated
loss function is non-convex and more difficult to optimize. Despite the
non-convexity it satisfies the PL inequality almost everywhere in a measure–
theoretic sense [32, Thm. 13]. This section will focus on this optimization:

17These experiments are available at https://github.com/stsievert/
adadamp-experiments.

https://github.com/stsievert/adadamp-experiments
https://github.com/stsievert/adadamp-experiments

44

102 103 104

Model updates

1.05

1.10

1.15

1.20

1.25
Te

st
 lo

ss

(a) The number of
model updates required
to reach a particular
test loss.

0 10 20 30 40 50 60 70
Epochs

1.05

1.10

1.15

1.20

1.25

Te
st

 lo
ss

Adaptive
Batch SGD
AdaGrad
SGD
Gradient
descent
ERM test loss

(b) The number of
epochs required to be
processed to reach a
particular test loss.

0 50 100
Model updates u

100

101

102

103

104

105

Ba
tc

h
siz

e

pow2(x) + 3

(c) The batch sizes and
an exponential line. In
the legend, x = 0.17(u−
31) for u model updates.

Figure 3.2: Different performance metrics for different optimizers for the
minimization in Section 3.1.4.1. The legend in Figure 3.2b is shared with
Figures 3.2a and 3.2c, and the “ERM test loss” is the test loss of the linear
ERM solution. The solid lines represent the mean over 50 runs, and the
shaded region represent the interquartile range.

ŵ1, Ŵ2, Ŵ3 = arg min
w1,W2,W3

n∑
i=1

(
yi −wT

1W2W3xi
)2

(3.5)

where there are n = 104 observations and each feature vector has d = 100
dimensions, and w1 ∈ Rd, W2,W3 ∈ Rd,d. We generate synthetic data xi
with coordinates drawn independently from N (0, 1). Each label yi is given
by yi = xTi w

?+ni where ni ∼ N (0, d/100) and w? ∼ N (0, 1). Of the n = 104

observations, 2, 000 observations are used as test data.
In order to understand our adaptive batch size method, we compare the

model updates in Theorem 2 (aka “Adaptive Batch SGD”) with mini-batch
SGD to standard mini-batch SGD with decaying step size (SGD), gradient
descent and AdaGrad. The hyperparameters for these optimizers are not
tuned and details are in Appendix B.4.1. AdaGrad and SGD are run with
batch size B = 64.

Figure 3.2 shows that Adaptive Batch SGD requires far fewer model

45

updates, not far from the number that gradient descent requires. Adaptive
Batch SGD and SGD require nearly the same number of data, with AdaGrad
requiring more data than SGD but far less than gradient descent. Figure 3.2c
shows that the batch size grows nearly exponentially, very similar to the
passive batch size growth of Bottou et al. [20, Eq. 5.7].

3.1.4.2 Functional implementation

A practical issue immediately presents itself: the computation of the batch
size Bk. This is clearly infeasible because it requires evaluating the entire
training dataset every model update.18 To work around this issue, let’s
approximate the training loss with a rolling-average of batch losses, similar
to other stochastic optimization algorithms [85, 181]. Additionally, gener-
alization19 and GPU memory concerns may be present. To address these
concerns, prior work sets a maximum batch size and decays the learning rate
by the same amount the batch size would have increased [48, 152]. Both
actions reduces the “noise scale” or variance of the model update, and the
results in Smith et al. “suggest that it is the noise scale which is relevant,
not the learning rate” [152]. This additional noise decay might help with
generalization escape “sharp minima” that generalize poorly [33, 83, 153]

The implementation of this algorithm is shown shown in Algorithm 1,
which uses a rolling average to adaptively damp the noise in the gradient
estimate. This algorithm is designed with these experiments in mind, the

18Another method to remove this computational concern is to passively ap-
proximate the batch size. If the bounds in Theorem 3 characterize how the loss
decreases, then the loss will decay like 1/(k + 1) at model update k. If this is
the case, then that suggests the batch size Bk = B0 + dmke for some constant
m > 0. This mirrors batch size increase in HSGD [186] for smooth functions but
differs for convex functions; HSGD increases the batch size like O

(
k2). However,

HSGD requires O (1/ε3) [186, Cor. 2] while the adaptive batch size scheme requires
O (1/ε2) gradient computations (Thm. 3).

19There are concerns with large static batch sizes [73, 153]; it’s unclear what
happens for variable batch sizes.

46

reason the batch size is inversely proportional to a linear combination of the
training loss and gradient norm.

Algorithm 1 RadaDamp(step
size γ, memory ρ = 0.999, ini-
tial batch size B0, max. batch
size Bmax, model w0, regulariza-
tion λ = 10−3)
1: for k ∈ [0, 1, 2, . . .] do
2: γ′ ← γ
3: if Bk ≥ Bmax then
4: γ′ ← γBmax/Bk

5: Bk ← Bmax

6: L̂B ← 1/Bk

∑Bk
i=1 fis(wk)

7: wk+1 ← wk − γ′∇L̂B
8: tk ← L̂B + λ

∥∥∥∇L̂B∥∥∥2

2
9: if k > 0 then

10: d̂k ← ρ · d̂k−1 +(1−ρ)tk
11: else
12: d̂0 ← tk
13: Bk+1 ←

⌈
B0d̂0/d̂k

⌉
return wk+1

To evaluate our method, let’s use
a convolutional neural network on the
Fashion-MNIST dataset [174] with op-
timization algorithms that either pas-
sively or adaptively change the learn-
ing rate or batch size. Specifically, let’s
compare RadaDamp with SGD, “Geo-
Damp” [152], and AdaGrad [49].20 Dur-
ing this, let’s tune the batch size increase
schedule for RadaDamp/GeoDamp,
and use the same schedule for the corre-
sponding algorithms that only decay the
learning rate (“RadaDamp-LR” and
SGD respectively). Details are in Ap-
pendix B.4.

Our experimental results are shown
in Figure 3.3. As expected, they show
that RadaDamp and GeoDamp re-
quire far fewer model updates than
RadaDamp-LR and SGD, and similar performance is obtained for all
methods in terms of epochs.21 If the “noise scale” of the model updates
is relevant as Smith et al. hypothesize [152], then perhaps the relevant
comparison is between passive and adaptive methods of changing the “noise
scale” (i.e., RadaDamp is to AdaGrad as GeoDamp is to SGD).

20All optimizers use the same learning rate, momentum and initial/max batch
size, and basic tuning on the batch size increase/learning rate decay schedule is
performed

21With the exception of AdaGrad, possibly due to the fact that has been run
with only one random seed, not two.

47

(a) The number of model updates vs.
test accuracy.

(b) The number of epochs vs. test ac-
curacy.

Figure 3.3: Performance on the Fashion-MNIST dataset. “Binned epochs/-
model updates” means “rounded to multiple of 2/200” respectively, and the
mean of relevant values is shown. Before optimization begins, all models
start optimization with the same weights.

RadaDamp requires far fewer model updates than GeoDamp to reach
any test accuracy RadaDamp obtains (though GeoDamp obtains a final
test accuracy that is approximately 0.4% higher). Of course, Both AdaGrad
and RadaDamp require far less tuning than GeoDamp and SGD because
of the adaptivity to the (estimated) training loss. Figure B.1 shows that
both RadaDamp and GeoDamp (approximately) increase the batch size
exponentially as functions of model updates, at least initially. However Geo-
Damp’s learning rate decays much more and far quicker than RadaDamp’s
(perhaps a reason for GeoDamp’s increased performance).

3.1.5 Conclusion

This work presents theoretical motivation to increase the batch size, at least
if few model updates are desired. At first, this is in internal benefit because
it only reduces an internal variable (the number of model updates) from

48

SGD, not the total amount of computation (FLOPs or number of gradient
computations). Simulations and experiments confirm few model updates
are required.

Currently, large static batch sizes suffer from decreased performance on
the test set due to poor generalization [58, 75, 83]. Future work involves
determining how variable batch sizes influence this generalization gap.

Notably, GeoDamp [152] outperforms RadaDamp in terms of test
accuracy. Let’s use GeoDamp to show the primary benefit of increasing the
batch size: in some distributed systems, the time for training is strongly
correlated with the number of model updates.

49

3.2 Training PyTorch models faster with
Dask

Training deep machine learning (ML) models takes a long time. For example,
training a popular image classification model [133] to reasonable accuracy
takes “around 17 hours” on Google servers.22 Another example includes
training an NLP model for 10 days on 8 high-end GPUs [129].23 Notably,
the number of floating point operations (FLOPs) required for “the largest
AI training runs” doubles every 3.4 months.24

Increasing the batch size Bk will reduce the number of model updates
while not requiring more FLOPs or gradient computations – both empir-
ically [152] and theoretically [20, 186][150, in Sec. 3.1]. The number of
FLOPs controls the cost, as expressed in Section 1.2. Typically, the number
of FLOPs controls the training time because training is performed with a
single processor – so fewer model updates seems like an internal benefit that
doesn’t affect training time.

The benefit comes when training with multiple machines, aka a dis-
tributed system because the time required to complete a single model
update is (nearly) agnostic to the batch size provided the number of workers
in a distributed system grows with the batch size [58, Sec. 5.5], [152, Sec. 5.4].
So, it seems that ML model training can be accelerated over standard SGD
at no additional cost to the experimentalist as long as the proper distributed
system is used. Let’s investigate that more closely.

22Specifically, while training a ResNet-50 model on the Ima-
geNet database using a Google Tensor Processing Unit (TPU)
(github.com/tensorflow/tpu/.../resnet/README.md).

23See OpenAI’s blog post “Improving Language Understanding with Unsuper-
vised Learning.”

24See OpenAI’s blog post “AI and Compute.”

https://github.com/tensorflow/tpu/blob/4cee6f16f78a92b4da8b1b7bad1e4841c9bda77a/models/official/resnet/README.md
https://openai.com/blog/language-unsupervised/
https://openai.com/blog/language-unsupervised/
https://openai.com/blog/ai-and-compute/

50

3.2.1 Contributions

We provide software to accelerate ML model training, at least with certain
distributed systems. For acceleration, the distributed system must be capable
of assigning a different number of workers according to a fixed schedule.
Specifically, this work provides the following:

• Proposes a scheme to reduce the time required for training ML models:
growing the batch size and the number of workers in a distributed
system.

• A Python software package to train ML models with a distributed
system. Our software works on any cluster that is configured to work
with Dask, many of which can change the number of workers on
demand.25 The implementation26 provides a Scikit-learn API [25] to
PyTorch models [122].

• Experiments and simulations that illustrate that proposed training
scheme can effectively reduce the wall-clock time required for model
training.

A key component of our software is that the number of workers grows
with the batch size because then, the model update time is nearly agnostic
to the batch size [58, Sec. 5.5]. We envision our software being used by
a single data scientist to accelerate ML model training on Amazon AWS
or on their computational cluster (e.g., a SLURM or Kubernetes cluster
owned/operated by their company/institution). In that use case, the number
of servers is almost transparent to the data scientist because Dask can easily
request more computational resources (e.g., through Dask Cloud Provider27).

25Including the default usage (through LocalCluster), supercomputers (through
Dask Job-Queue), on cloud providers like Amazon AWS (through Dask Cloud
Provider), YARN/Hadoop clusters (through Dask Yarn) and Kubernetes clusters
(through Dask Kubernetes).

26https://github.com/stsievert/adadamp
27https://cloudprovider.dask.org/

https://distributed.dask.org/en/latest/api.html#distributed.LocalCluster
https://jobqueue.dask.org/
https://cloudprovider.dask.org/
https://cloudprovider.dask.org/
https://yarn.dask.org/
https://docs.dask.org/en/latest/setup/kubernetes.html
https://github.com/stsievert/adadamp
https://cloudprovider.dask.org/

51

Our software will also likely be useful for a team of data scientists sharing a
computational cluster (e.g., a bank of GPUs) for ML model training.

Now, let’s cover related work to gain understanding of why variable
batch sizes provide a benefit in a distributed system. Then, let’s cover the
details of our software before presenting simulations. These simulations
confirm that model training can be accelerated if the number of workers
grows with the batch size.28

3.2.2 Related work

The data flow for distributed model training involves distributing the com-
putation of the gradient estimate, ĝk,B = 1

B

∑B
i=1∇f(wk; zis). Typically,

each worker computes the gradients for B/P examples when there is a batch
size of B and P machines. Then, the average of these gradients is taken and
the model is updated.29

Clearly, Amdahl’s law is relevant because there are diminishing returns
as the number of workers P is increased [57]. This as referred to as “strong
scaling” because the batch size is fixed and the number of workers is treated as
an internal detail. By contrast, growing the amount of data with the number
of workers is known as “weak scaling.” Of course, relevant experiments show
that weak scaling exhibits better scaling than strong scaling [128].

3.2.2.1 Constant batch sizes

To circumvent Amdahl’s law, a common technique is to increase the batch
size alongside the learning rate [78, 183]. Using moderately large batch
sizes yields high quality results more quickly and, in practice, requires

28Methods to workaround limitations on the number of workers will be presented
in Appendix C.2.

29Related but tangential methods include methods to efficiently communicate
the gradient estimates [7, 60], [166, in Sec. 3.3].

52

no more computation than small batch sizes, both empirically [58] and
theoretically [176].

There are many methods to choose the best constant batch size (e.g., [53,
84]). Some methods are data dependent [176], and others depend on the
model complexity. In particular, one method uses hardware topology (e.g.,
network bandwidth) in a distributed system [124].

Large constant batch sizes present generalization challenges [58]. The
generalization error is hypothesized to come from “sharp” minima, strongly
influenced by the learning rate and noise in the gradient estimate [83]. To
match performance on the training dataset, careful thought must be given
to hyperparameter selection [58, Sec. 3 and 5.2]. In fact, this has motivated
algorithms specifically designed for large constant batch sizes and distributed
systems [75, 78, 178]. These algorithms mitigates the generalization issues
with large batches [75, 78, 177].

3.2.2.2 Increasing the batch size

Much of the work in Section 3.1.1 is relevant here too, and omitted for
brevity. Both growing the batch size [20, 150] and using large constant batch
sizes [78, 176, 179] should require fewer model updates and the same number
of floating point operations as standard SGD with small batch sizes to
reach a particular training loss. Some proof techniques suggest that variable
batch size methods mirror gradient descent [80, 150], so correspondingly, the
implementations do not require much additional hyperparameter tuning.

3.2.3 Distributed training with Dask

We have written AdaDamp, a software package to to train a PyTorch model
with a Scikit-learn API on any Dask cluster, a distributed system detailed
in Section 2.3.3.30 It supports the use of constant or variable batch sizes,

30While our software works with a constant batch size, the native implemen-
tations work with constant batch sizes and very likely have less overhead (e.g.,

53

which fits nicely with Dask’s ability to change the number of workers.31 In
this section, we will walk through the basic architecture of our software and
an example usage. We will defer showing the primary benefit of our software
to the experimental results.

3.2.3.1 Architecture

Our software uses a centralized synchronous parameter server and controls
the data flow of the optimization as illustrated in Fig. 3.4. We use Dask to
implement this data flow, which adds some overhead.32 AdaDamp supports
static batch sizes; however, there is little incentive to use AdaDamp with
a static batch sizes: the native solution has PyTorch less overhead [97],
and already has a Dask wrapper.33 Example usage of our software is in
Appendix C.1.

Figure 3.4: Let’s say the optimization scheme dictates a batch size of
B = 1024. For the decentralized case with 4 workers, each worker will
compute the gradient for 256 examples. The sum of all 1024 gradients
will be communicated to every worker, and each worker will perform the
same model update. For the centralized case with 2 workers, each worker
will compute the gradients for 512 examples and send the sum back to the
parameter server (PS). The PS will perform the model update, then send
the new model to the workers to compute another gradient.

PyTorch Distributed [97]).
31https://github.com/stsievert/adadamp
32An opportunity for future work.
33https://github.com/saturncloud/dask-pytorch-ddp

https://github.com/stsievert/adadamp
https://github.com/saturncloud/dask-pytorch-ddp

54

The key component of AdaDamp is that the number of workers grows
with the batch size. There’s some evidence the model update time is nearly
agnostic to the batch size in this case [58, Sec. 5.5], [152, Sec. 5.4].

3.2.4 Performance

In this section, we present two sets of experiments.34 Both experiments will
use the same setup, a Wide-ResNet model in a “16-4” architecture [180] to
perform image classification on the CIFAR10 dataset [90]. This is a deep
learning model with about 2.75 million weights that requires a GPU to
train.35 The experiments will provide evidence for the following points:

1. Increasing the batch size reduces the number of model updates.
2. The time required for model training is roughly proportional to the

number of model updates (presuming the number of workers grows
with the batch size as mentioned in Section 3.2.3.1).

To provide evidence for these points, let’s run one set of experiments
that varies the batch size increase schedule. These experiments will mirror
the experiments by Smith et al. [152]. Let’s train each batch size increase
schedule once, and then write the historical performance to disk. This reduces
the need for many GPUs, and allows us to simulate different networks and
highlight the performance of Dask. That means that in our simulations, we
simulate model training by having the computer sleep for an appropriate
and realistic amount of time.

34Full detail on these experiments can be found at https://github.com/
stsievert/adadamp-experiments

35Specifically, we used a NVIDIA T4 GPU with an Amazon g4dn.xlarge
instance. Training consumes 2.2GB of GPU memory with a batch size of 32, and
5.5GB with a batch size of 256.

https://github.com/stsievert/adadamp-experiments
https://github.com/stsievert/adadamp-experiments

55

3.2.4.1 Base training

First, let’s show that batch size increase schedules can require fewer model
updates. These experiments mirror the experiments by Smith et al. [152,
Sec. 5.1], which helps reduce the parameter tuning. These experiments only
differ in the choice of batch size and learning rate, as shown in Fig. 3.5.36

In these experiments, either the learning rate is decreased or the batch size
increases by a specified factor (5) at particular intervals (epochs 60, 120 and
180). This means that the variance of the model update is reduced by a
constant factor at each update.

0 50 100 150 200
Epochs

5 5

5 4

5 3

5 2

Le
ar

ni
ng

 ra
te

0 50 100 150 200
Epochs

28

210

212

214

Ba
tc

h
siz

e

Maximum
batch size

128
640
3.2k
16k
5.1k (*2)

Figure 3.5: The learning rate and batch size decrease/increase schedules for
various optimizers. After the maximum batch size is reached, the learning
rate decays. A postfix of (*2) means the initial batch size twice as large
(256 instead of 128). The legend applies to both plots.

These different decay schedules exhibit the same performance in terms
of number of epochs, which is proportional to the number of FLOPs, as
shown in Fig. 3.6. The number of FLOPs is (approximately) proportional
to the cost on Amazon EC2 where the cost to rent a server tends to be
proportional to the number of GPUs.37

36As in the Smith et al. experiments, every optimizer uses Nesterov momen-
tum [115] and the same momentum (0.9) and weight decay (0.5 · 10−3). They
start with the same initial learning rate (0.05), These hyperparameters are the
same as Smith et al. [152] with the exception of learning rate (which had to be
reduced by a factor of 2).

37An Amazon AWS p3.2xlarge machine has one state-of-the-art NVIDIA
V100 GPU and can be rented for $3.06/hour. A p3.8xlarge has 4 NVIDIA

56

Figure 3.6: The test set performance after a certain amount of epochs/model
updates. The legend applies to both plots.

3.2.4.2 Distributed training

Importantly, this work focuses on increasing the number of workers with
the batch size – the effect of which is hidden in Fig. 3.6. However, the
fact that the performance does not change with different schedules means
that choosing a different batch size increase schedule will not require more
wall-clock time if only a single worker is available. Combined with the
hyperparameter similarity between the different schedules, this reduces
deployment and debugging concerns.

If the number of workers grows with the batch size, then the number
of model updates is relevant to the wall-clock time. Figure 3.7 shows the
number of model updates and wall-clock time required to reach a model of
a particular test accuracy.

3.2.5 Conclusion

In this work, we have provided a package to train ML models implemented
with PyTorch ML with Dask cluster. Notably, this package reduces the
amount of time required to train a model when the number of workers grows

V100s and costs $12.24/hour, exactly 4 times as much (https://aws.amazon.
com/ec2/pricing/on-demand/).

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

57

0 10 20 30 40 50 60 70 80
Model updates (thousands)

82%

84%

86%

88%

90%

92%

Te
st

 a
cc

ur
ac

y

max batch size
128
640
3.2k
16k
5.1k (*2)

0 30 60 90 120 150 180 210
Training time (min)

82%

84%

86%

88%

90%

92%

Te
st

 a
cc

ur
ac

y

max batch size
128
640
3.2k
16k
5.1k (*2)

Figure 3.7: The same simulations as in Fig. 3.6, but plotted with the number
of model updates and wall-clock time plotted on the x-axis (the loss obeys
a similar behavior as illustrated in Appendix C.3).

with the batch size (a.k.a weak scaling). In this case, the number of model
updates is strongly correlated with the time required to complete training.

However, this package presents significant overhead, and some potential
solutions are discussed in Appendix C.2.38 When performance under these
improvements is simulated, only 45 minutes are required for training for
a particular model – an improvement over the 120 minutes required with
standard SGD. These simulations show the same relative performance as
Fig. 3.7, and a summary is presented in Fig. 3.8.

38We hypothesize the overhead comes from the centralized architecture, which
could be removed with with the integration of PyTorch’s decentralized commu-
nication [97]. The (concurrently developed) wrapper for Dask is available at
https://github.com/saturncloud/dask-pytorch-ddp.

https://github.com/saturncloud/dask-pytorch-ddp

58

Figure 3.8: A single point represents one run in Figure C.1. The point with
about 80k model updates represents a single worker, so there’s no overhead
in this decentralized simulation. Different network qualities are shown with
different colors, and the “ideal” line is as if every model update is agnostic
to batch size.

Now, let’s turn our focus to the case when distributed ML model training
is performed and many model updates are required. Of course, for training
workers will have to communicate gradients, as illustrated in Fig. 3.4. How
can gradient estimates be efficiently communicated?

59

3.3 Improving communication in
distributed model updates

With many model updates, communication overheads are one of the main
bottlenecks in distributed machine learning, and typically responsible for
the speedup saturation phenomenon [46, 60, 128, 144, 156]. Communication
bottlenecks are largely attributed to frequent gradient updates transmitted
between compute nodes. As the number of parameters in state-of-the-art
models scales to hundreds of millions [63, 66], the size of gradients scales
proportionally.

To reduce the cost of of communication during distributed model training,
a series of recent studies propose communicating low-precision or sparsified
versions of the computed gradients during model updates. Partially initiated
by a 1-bit implementation of SGD by Microsoft [144], a large number of
recent studies revisited the idea of low-precision training as a means to reduce
communication [7, 17, 43, 44, 45, 131, 171, 184, 187]. Other approaches for
low-communication training focus on sparsification of gradients, either by
thresholding small entries or by random sampling [5, 34, 93, 98, 106, 135, 156,
162]. Several approaches, including “QSGD” and “TernGrad,” implicitly
combine quantization and sparsification to maximize performance gains [7,
88, 89, 157, 171], while providing provable guarantees for convergence and
performance. We note that quantization methods in the context of gradient
based updates have a rich history, dating back to at least as early as the
1970s [6, 16, 55].

Notably, requiring fewer model updates also reduces the amount of
communication because communication only happens before a model update.
Reducing the number of model updates is also an attractive means to
reduce the amount of communication in a ML training session, which makes
Section 3.1 and references therein relevant.

60

3.3.1 Contributions

An atomic decomposition represents a vector as a linear combination of
simple building blocks in an inner product space. In this work, we show that
stochastic gradient sparsification and quantization are facets of a general
approach that sparsifies a gradient in any possible atomic decomposition,
including its entry-wise or singular value decomposition, its Fourier decom-
position, and more. With this in mind, we develop ATOMO, a general
framework for atomic sparsification of stochastic gradients. ATOMO sets
up and optimally solves a meta-optimization that minimizes the variance of
the sparsified gradient, subject to the constraints that it is sparse on the
atomic basis, and also is an unbiased estimator of the input.

We show that 1-bit QSGD and TernGrad are in fact special cases of
ATOMO, and each is optimal (in terms of variance and sparsity), in dif-
ferent parameter regimes. Then, we argue that for some neural network
applications, viewing the gradient as a concatenation of matrices (each
corresponding to a layer), and applying atomic sparsification to their SVD is
meaningful and well-motivated by the fact that these matrices are approxi-
mately low-rank (see Fig. 3.9). We show that ATOMO on the SVD of each
layer’s gradient, can lead to less variance, and faster training, for the same
communication budget as that of QSGD or TernGrad. We present extensive
experiments showing that using ATOMO with SVD sparsification can lead
to up to 2×/3× faster training time (including the time to compute the
SVD) compared to QSGD/TernGrad.

3.3.2 Prior work

ATOMO is closely related to work on communication-efficient distributed
mean estimation [88, 157]. These works both note, as we do, that variance
(or equivalently the mean squared error) controls important quantities such
as convergence, and they seek to find a low-communication vector averaging

61

scheme that minimizes it. Our work differs in two key aspects. First, we
derive a closed-form solution to the variance minimization problem for all
input gradients. Second, ATOMO applies to any atomic decomposition,
which allows us to compare entry-wise against singular value sparsification
for matrices. Using this, we derive explicit conditions for which SVD
sparsification leads to lower variance for the same sparsity budget.

5 10 15
Ranks

0.2

0.4

0.6

0.8

Si
gu

la
r

Va
lu

es

Data Pass: 0
Data Pass: 5
Data Pass: 10

Figure 3.9: The singular values
of a convolutional layer’s gradi-
ent, for ResNet-18 while training
on CIFAR-10. The gradient of
a layer can be seen as a matrix,
once we vectorize and appropri-
ately stack the conv-filters. For
all presented data passes, there is
a sharp decay in singular values,
with the top 3 standing out.

The idea of viewing gradient sparsifica-
tion through a meta-optimization lens was
also used by Wangni et al. [168]. Our work
differs in two key ways. First, Wangni et
al. [168] consider the problem of minimizing
the sparsity of a gradient for a fixed vari-
ance, while we consider the reverse problem,
that is, minimizing the variance subject to
a sparsity budget. The second more im-
portant difference is that while Wangni et
al. [168] focus on entry-wise sparsification,
we consider a general problem where we
sparsify according to any atomic decompo-
sition. One use case of our approach allows
directly sparsifying the singular values of the
gradient matrix, which gives rise to faster
training algorithms in experimentally.

Finally, low-rank factorizations and sketches of the gradients when viewed
as matrices have been proposed in many works (e.g, [68, 88, 139, 172, 175]).
Arguably most of these methods (with the exception of Konečnỳ et al. [88])
aimed to address the high FLOPs required when training low-rank models.
Though they did not directly aim to reduce communication, this arises as a
useful side effect.

62

3.3.3 Preliminaries

Mini-batch SGD is easily parallelized, as mentioned in Fig. 3.4. For this
work, let’s focus on the centralized architecture,39 in which the parameter
server (PS) stores the global model, and P compute nodes split the effort of
computing the B gradients. Once the PS receives these gradients, it applies
them to the model, and sends it back to the compute nodes.

To prove convergence bounds for stochastic-gradient based methods, we
usually require ĝ to be an unbiased estimator of the full-batch gradient, and
to have small variance E [‖ĝ‖2], as this controls the speed of convergence.
To see this, suppose wk is the model after model update k and that w∗ is a
critical point of F , then we have

E
[
‖wk+1 −w∗‖2

2

]
= E

[
‖wk −w∗‖2

2

]
−
(
2γ〈∇F (wk),wk −w∗〉 − γ2E[‖ĝ‖2

2]
)

︸ ︷︷ ︸
progress at step t

.

In particular, the progress made by the algorithm at a single step is, in
expectation, controlled by the term E [‖ĝ‖]22; the smaller it is, the bigger the
progress. This is a well-known fact in optimization, and most convergence
bounds for stochastic-gradient based methods, including minibatch, involve
upper bounds on E [‖ĝ‖2

2], in a multiplicative form, for both convex and
nonconvex setups [24, 38, 42, 54, 80, 118, 134, 138, 176]. Hence, recent
results on low-communication variants of SGD design unbiased quantized or
sparse gradients, and try to minimize their variance [7, 89, 168].

Since variance is a proxy for speed of convergence, in the context of
communication-efficient stochastic gradient methods, one can ask: what is
the smallest possible variance of a stochastic gradient that is represented

39This work can also use the decentralized case each worker receives every
worker’s gradient, not the sum of every worker’s gradient as other in distributed
SGD trainings [128, 146].

63

with k bits? This can be cast as the following meta-optimization:

minE
[
‖ĝk‖2

2

]
s.t. E [ĝk] = gk, ĝk can be expressed in k bits

(3.6)

Here, the expectation is taken over the randomness of ĝ. We are interested
in designing a stochastic approximation ĝ that “solves” this optimization.
However, it seems difficult to design a formal, tractable version of the last
constraint. In the next section, we replace this with a simpler constraint that
instead requires that ĝ is sparse with respect to a given atomic decomposition.

3.3.4 Main results

Let’s create the gradient estimate ĝ to be well-suited common bases (e.g.
the standard, Fourier, or wavelet bases). Let’s represent a basis vector with
ai where ‖ai‖2

2 = 1 for all i, and let the gradient estimate be given by

ĝ =
n∑
i=1

ti
pi
λiai (3.7)

where λi is a constant to ensure E [ĝ] = g when there are n basis vectors,
and the ti’s are independent random variables with ti ∈ Bernoulli(pi) for
pi ∈ (0, 1]. We refer to this scheme as atomic sparsification. With an
expected communication budget of s basis vectors and the formulation
above, Eq. (3.6) becomes

min
p
f(p) :=

n∑
i=1

λ2
i

pi
s.t. ∀i pi ∈ (0, 1],

n∑
i=1

pi = s (3.8)

with an expected communication budget of s. Theorem 23 solves this
optimization problem, which is relegated to Appendix D.1 because of edge
cases. Instead, here’s an informal solution:

Corollary 9 (informal presentation of Theorem 23). Given a communication

64

budget s, Eq. (3.8) is solved when the probabilities in Eq. (3.7) are

pi = s |λi|
‖λ‖1

if all pi ≤ 1.

This avoids edge cases where the gradient vector isn’t “balanced,” specifically
when pi > 1, and first discovered by Konečnỳ et al. [89]. Briefly, if there
exists an index where pi > 1, the optimal strategy of assigning probabilities
is to set pj = 1 and recurse the solution with the other n− 1 entries where
j = arg maxi∈[n] |λi|. A formal solution is in Appendix D.1.

3.3.4.1 Relation to QSGD and TernGrad

In this section, we will discuss how ATOMO is related to two recent
quantization schemes (1-bit QSGD [7] and TernGrad [171]) that have been
extensively tested/used [60, 88, 89, 157] We will show that in certain cases,
these schemes are versions of the ATOMO for a specific sparsity budget s.
Both schemes use the entry-wise atomic decomposition.

QSGD takes as input g ∈ Rn and b ≥ 1. This b governs the number of
quantization buckets. When b = 1, QSGD produces a random vector Q(g)
defined by

Q(g)i = ‖g‖2sign (gi)ζi.

Here, the ζi ∼ Bernoulli(|gi|/‖g‖2) are independent random variables. One
can show this is equivalent to Eq. (3.7) with pi = |gi|/‖g‖2 and sparsity
budget s = ‖g‖1/‖g‖2. Note that by definition, any g is s-balanced for this
s. Therefore, Theorem 23 implies that the optimal way to assign pi with
this given s is pi = |gi|/‖g‖2, which agrees with 1-bit QSGD.

TernGrad takes g ∈ Rn and produces a sparsified version T (g) given by

T (g)i = ‖g‖∞sign (gi)ζi

65

where ζi ∼ Bernoulli(|gi|/‖g‖∞). This is equivalent to Eq. (3.7) with
pi = |gi|/‖g‖∞ and sparsity budget s = ‖g‖1/‖g‖∞. Once again, any g is
s-balanced for this s by definition. Therefore, Theorem 23 implies that the
optimal assignment of the pi for this s is pi = |gi|/‖g‖∞, which agrees with
TernGrad.

We can generalize both of these with the following quantization method.
Fix q ∈ (0,∞]. Given g ∈ Rn, we define the `q-quantization of g, denoted
Lq(g), by

Lq(g)i = ‖g‖qsign (gi)ζi

where ζi ∼ Bernoulli(|gi|/‖g‖q). By the reasoning above, we derive the
following theorem.

Theorem 10. `q-quantization performs atomic sparsification in the standard
basis with pi = |gi|/‖g‖q. This solves Eq. (3.8) for s = ‖g‖1/‖g‖q and
satisfies E[‖Lq(g)‖2

2] = ‖g‖1‖g‖q.

In particular, 1-bit QSGD is obtained with q = 2 and Terngrad is obtained
with q =∞.

3.3.5 Experimental results

We have developed an encoding technique that uses the singular vectors
as the orthogonal basis vectors, a.k.a. spectral-ATOMO. We have run an
extensive empirical study to evaluate performance under real distributed
environments. The following are our main findings:

• We observe that spectral-ATOMO provides a useful alternative to
entry-wise sparsification methods. It reduces communication compared
to vanilla mini-batch SGD and can reduce training time compared to
QSGD and TernGrad by up to a factor of 2× and 3× respectively.

66

• We observe that spectral-ATOMO in distributed settings leads to
models with negligible accuracy loss when combined with parameter
tuning.

In this section, a comparison between spectral-ATOMO, QSGD [7]
and TernGrad [171] will be presented. Both ATOMO and QSGD have
parameters to control the amount of communication (the number of singular
values s and the number of bits b).

We evaluate the end-to-end convergence performance on different datasets
and neural networks, training with spectral-ATOMO(with sparsity budget
s = 1, 2, 3, 4), QSGD (with n = 1, 2, 4, 8 bits), and ordinary mini-batch
SGD. The model used is ResNet-18 [63] for the SVHN dataset [116], and
the training uses a distributed cluster with 16 compute nodes. SGD with
a batch size of 512 will be used, and SGD’s step size will be tuned (as
detailed in Appendix D.4). For simplicity and to reduce the formidable
tuning, momentum and weight decay will be disregarded.

Our distributed cluster with a parameter server (PS), implemented
in mpi4py [40] and PyTorch [121] and deployed on Amazon AWS EC2
g2.2xlarge machines, which have NVIDIA GRID GPUs. The PS imple-
mentation has 16 workers and is standard with point-to-point communi-
cations (as in Abadi et al. [2, Fig. 5b]). At the most basic level, the PS
implementation receives gradients from each compute nodes and broadcasts
the updated model once a batch has been received.

The gradients of convolutional layers are 4 dimensional tensors with
shape of [x, y, k, k] where x, y are two spatial dimensions and k is the size
of the convolutional kernel. However, matrices are required to compute
the SVD for spectral-ATOMO, and we choose to reshape each layer into
a matrix of size [xy/2, 2k2]. This provides more flexibility on the sparsity
budget for the SVD sparsification. For QSGD, we use the bucketing and
Elias recursive coding methods proposed by Alistarh et al. [7], with bucket
size equal to the number of parameters in each layer of the neural network.

67

(a) Convergence against model
updates/iterations.

(b) Convergence against wall-
clock time.

Figure 3.10: Convergence rates for ResNet-18 on the SVHN dataset with
four different optimizers: vanilla SGD, ATOMO, QSGD, and TernGrad.

We observe that QSGD and ATOMO speed up model training signifi-
cantly and achieve similar accuracy to vanilla mini-batch SGD in Fig. 3.10.
Tuning the communication budget is required in QSGD and ATOMO, so
the best performance over four different communication budgets is shown.
During this, we’ve observed that the best performance is not achieve with the
most sparsified/quantized method, but the optimal method lies somewhere
in the middle where enough information is preserved during the sparsifi-
cation. For instance, 8-bit QSGD converges faster than 4-bit QSGD, and
spectral-ATOMO with sparsity budget 3, or 4 seems to be the fastest.
Higher sparsity can lead to a faster running time, but extreme sparsification
can adversely affect convergence. For example, for a fixed number of itera-
tions, 1-bit QSGD has the smallest time cost, but may converge much more
slowly to an accurate model.

3.3.6 Conclusion

In this chapter, we have presented and analyzed ATOMO, a general sparsifi-
cation method for distributed stochastic gradient based methods. ATOMO
applies to any atomic decomposition, including the entry-wise and the SVD

68

of a matrix. ATOMO generalizes 1-bit QSGD and TernGrad, and prov-
ably minimizes the variance of the sparsified gradient subject to a sparsity
constraint on the atomic decomposition. We focus on the use ATOMO for
sparsifying matrices, especially the gradients in neural network training.

Future work involves determining which atoms are appropriate for dif-
ferent neural networks/layers.40 That’s especially relevant with the Fourier
decomposition given it’s use in image/audio compression.41

40Grubic et al. report that convolutional layers require more bits than fully-
connected layers [60].

41Since publication, there has been some relevant work on communicating the
Fourier transforms of the gradients between worker nodes [167]. Though they
have a high performance cluster and implementation, they don’t use the directly
applicable atomic sparsification described above, and instead rely on an extra
assumption to guarantee convergence [167, Assumption 3.2].

69

3.4 Conclusion

In summary, the following has been shown:

1. Few model updates are required when the batch size grows in a
particular manner. The particular method of batch size growth requires
the same amount of gradient computation as standard SGD.42

2. Training time is (approximately) proportional to the number of model
updates provided that the number of workers in a distributed system
is proportional to the batch size. This is particularly useful when
combined with item (1).

3. A particular type of lossy gradient compression can reduce training
time in the case when many model updates are required. The proposed
lossy gradient compression framework generalizes several other gradient
compression schemes [7, 167, 171].

With this, the “model training” block in Fig. 1.3 will require less time.
Of course, the methods above are not the only methods to reduce the time
required for this block; methods specifically designed for large batch training
perform rather well [58, 75, 78, 178], potentially at the cost of debugging
with many GPUs.

42At least for convex and strongly convex functions.

70

4 efficient deployment of active machine
learning algorithms for crowdsourcing

So far, this dissertation has focused on accelerating each individual block in
Fig. 1.3, specifically on adapting query priority to a distributed system in
Chapter 2 and accelerating model training in Chapter 3. In this chapter,
let’s focus on efficiently searching for queries and collecting responses while
deploying active ML algorithms to crowdsourcing audiences.

The problem of interest is the “ordinal embedding” problem, which
generates embeddings that cluster similar objects together. It’s common for
social scientists to generate these embeddings to estimate human perceived
similarity between objects. Use cases include generating embeddings for
facial emotions [108], molecules [109], shoes [64] and materials [92].

These embeddings are generated from relatively similarity judgments
via “triplet queries,” questions of the form “is item a or b more similar to
item h?” In practice a “prohibitively large number of responses” [64] are
required, meaning query collection is expensive and can limit the number
of objects in the embedding. As such, many active or adaptive machine
learning algorithms have been developed to reduce the number of queries by
selecting the most informative queries [4, 28, 65, 158, 163].

However, active ML algorithms for the ordinal embedding problem face
several challenges:

• There are many possible queries. The number of triplet queries
grows like O (n3) for an embedding of n objects.

• Scoring each query with information gain is computationally
intensive [64, 158]. Maximizing information gain is a popular method
to select the next query to show a user [64, 71, 158], but scoring every
triplet is “prohibitively expensive” [64].

• The model update requires a minimization over all data re-

71

ceived thus far, aka the “follow the leader” strategy [148]. Online
model updates require careful thought because the loss functions
for the ordinal embedding problem are (typically) non-convex [101]1

(definitely with neural networks [165]).

We have developed a software system that addresses these constraints.
When deployed to crowdsourcing audiences, our system and the implemented
active ML algorithms can require fewer responses than passive ML algo-
rithms. To show that, let’s mention some related work in Section 4.1 before
summarizing the features of our system in Section 4.2. Then, we’ll show
experimental results in Section 4.3 and mention future work in Section 4.4.
During this, we represent an embedding of n objects in d dimensions with
the matrix X ∈ Rn×d (typically, d = 2). The coordinates of embedding
object i will be represented by xi ∈ Rd. For the query “is item a or b more
similar to item h?”, we will refer to item h as the “head” and items a and b
as the “feet.”

4.1 Related Work

The most relevant work is with NEXT, a system to deploy general active
ML algorithms to crowdsourcing audiences [71]. For the ordinal embedding
problem, Jamieson et al. used a variety of active ML algorithms but
found “no evidence [of] gains from adaptive sampling” [71, Sec. 3.2] despite
finding gains for other problems [71, Sec. 3.1]. NEXT mirrors prior work
by performing information gain maximization over a subset of possible
triplets [64, 158].

1Even the strongly convex dual formulation requires projection onto the
positive semi-definite cone, which poses challenges for online methods [65].

72

4.1.1 Embedding schemes

A good overview of methods for generating embeddings is presented by
Vankadara et al. [165]. Briefly, it’s possible to find an embedding that
agrees with human responses by minimizing the negative log-likelihood
when the probability of response i being correct is characterized by pi [158,
163]. It’s also possible to find embeddings with the generalized non-metric
multidimensional scaling (GNMDS), essentially hinge loss on the squared
distances [4].

ERKLE is a method of generating ordinal embeddings that is designed
for online computation [65]. ERKLE uses the Gram matrix G ∈ Rn×n

instead of the embedding matrix X ∈ Rn×d, which provides a convex
embedding formulation at the cost of projecting onto the positive semi-
definite cone (an O (n3) operation) to ensure the Gram matrix has positive
eigenvalues. Heim et al. present a method to minimize the number of times
this operation is required and the number of eigenvalues/vectors that need
to be computed [65].

Regardless of the embedding scheme, O (nd log n) responses will be
required with high probability for random sampling to generate an approxi-
mate embedding for n objects into d dimensions [69, Sec. 4]. Even with an
adaptive scheme, at least Ω(nd log n) responses are required [72].

4.1.2 Choosing queries

In the classic serial pool based active learning setup, every query is scored
and the top scoring query receives a single response [147, Sec. 2.3]. Then, a
new model is produced that minimizes the loss function over all examples
received thus far in the “follow-the-leader” approach [148].

Two popular methods to score queries involve maximizing information
gain [28, 29, 64, 71, 158] or uncertainty [147, Sec. 3.1][100].2 Evaluating

2“Most uncertain” can mean the query that’s closest to the decision boundary

73

the information gain or uncertainty of a single query is an O (nd) or O (d)
operation respectively.3 Performing information gain maximization can
require significant computational effort [64, 158] but avoids low information
queries.4 For example, evaluating the score of every query with n = 50
objects will take about a minute if evaluating the information gain of a
single query takes 1 millisecond. This quickly becomes infeasible because
the number of queries grows like O (n3) for an embedding with n objects.
Correspondingly, there are (easier to compute) methods to approximate
information gain [29].

4.2 Crowdsourcing active machine learning
algorithms

We have developed Salmon, a software system to serve triplet queries
to crowdsourcing audiences. Salmon has a clear separation between the
primary components of deploying active ML algorithms to crowdsourcing
audiences – searching for queries and serving those queries (and likewise,
receiving responses and processing those responses). Salmon separates
these two components with a frontend and a backend, which communicate
with a database as shown in Figure 4.1.

Salmon’s backend searches for queries (then posts them to the database)
and generates embeddings from responses. All the tasks on the backend
are run concurrently and synchronously, as illustrated in Fig. 4.2. The
task scheduler is Dask Distributed [41], the same manager in Chapter 2
for hinge-loss, or closest to 50% probability with probabilistic models.

3For any scoring scheme, the computational complexity is reduced by a factor
of d if the Gram matrix G ∈ Rn×n is used instead of the embedding matrix
X ∈ Rn×d.

4A low information query is one that’s truly uncertain, common if the embed-
ding has similar objects. A similar phenomena have observed in natural language
processing [160, 188].

74

Figure 4.1: Four users receiving queries from Salmon, and Salmon’s
architecture for serving queries and processing responses. Both the frontend
and backend can be run independently; a random query is served if no
queries are present in the database.

and Section 3.2. The backend is only relevant for adaptive algorithms
because it’s used to generate embeddings, which passive algorithms do not
require to generate queries (almost by definition).

4.2.1 Generating embeddings

Salmon can generate embeddings from several loss functions, includ-
ing crowd kernel (CK) [158], [t-Distributed] stochastic triplet embedding
([t]STE) [163], soft ordinal embeeding (SOE) [165], and GNMDS [4]. By de-
fault, the t-STE noise model is used because it has a heavy-tailed probability
distribution (which is more robust to embedding errors [163, Sec. 4]).

The classic “follow-the-leader” minimization [148] is performed when the
“process answers” block in Figure 4.1 is executed for the kth time:

Xk+1 = arg min
X

Tk∑
i=0

`(X; qi, yi)

75

Figure 4.2: An illustration of the backend timing for Salmon. All red blocks
must be finished before the green line is reached. “Process answer” controls
the timing. When it’s finished, it sends a signal to stop searching/posting
queries, the reason the “process answer” box is the shortest. Model 1 is not
produced until sufficient answers have been received (and likewise for the
independent process of searching/posting queries).

when Tk responses have been received when iteration k begins, ` is the
loss function for one example, qi ∈ {1, . . . , n}3 is the ith query shown and
yi ∈ {±1} is the human’s response indicating which of the query’s “feet” is
closer to the query “head.” To perform this minimization, we use a modern
machine learning library (PyTorch5 [121]) with adaptive learning rates via
the Adadelta optimizer [181] by default. This minimization is performed for
between 50 and 200 epochs over the training data received thus far,6 provided
a sufficient number of responses have been received. This computation is
repeated until no answers have been received for 20 consecutive iterations of
Fig. 4.2 (approximately 2 minutes), and restarts shortly after one response
is received.

5In the Salmon context, PyTorch offers significant benefits around saving
models to the database because PyTorch models can be serialized.

6Enough for convergence for random sampling in brief testing.

76

4.2.2 Searching for queries

By default, Salmon performs information gain maximization, a common
method for ordinal embeddings [64, 71, 158]. By default, Salmon relies on
the heavy-tailed t-STE probability proposed by Maaten et al. [163]. We
have significantly accelerated the query search computation in two ways:

• By using the distance matrix. The information gain of a query
only depends on the Euclidean distances between embedding points.
Correspondingly, most of the time is spent in the computation of
(squared) Euclidean distance ‖xi − xj‖2

2 for two vectors xi,xj ∈ Rd,
which can be circumvented with quick computation of the distance
matrix.7

• By vectorization. An array of queries is scored instead of scoring a
single query. This allows utilization of efficient C and Fortran code
instead of (the much slower) Python code [164].

These accelerations mean that Salmon can search far more queries than
prior work [71], even without the architecture differences. This is illustrated
in Fig. 4.3, which shows a slightly improved version8 of NEXT’s publicly
available search.9

4.2.3 Usage

Launching Salmon only requires a web browser and Amazon AWS ac-
count, as detailed in the directions at https://docs.stsievert.com/
salmon/installation.html#experimentalist. Briefly, these directions

7The distance matrix can be computed from the Gram matrix G = XXT [65,
Sec. 3].

8NEXT’s search is accelerated by slightly less than factor of 3 by precomputing
a probability vector (instead of needlessly re-computing it twice).

9https://github.com/nextml/NEXT/blob/v1.2.5/apps/
PoolBasedTripletMDS/algs/STE/myAlg.py#L64-L90

https://docs.stsievert.com/salmon/installation.html#experimentalist
https://docs.stsievert.com/salmon/installation.html#experimentalist
https://github.com/nextml/NEXT/blob/v1.2.5/apps/PoolBasedTripletMDS/algs/STE/myAlg.py#L64-L90
https://github.com/nextml/NEXT/blob/v1.2.5/apps/PoolBasedTripletMDS/algs/STE/myAlg.py#L64-L90

77

Metric NEXT Salmon Ratio
Queries searched in 50ms ≤ 60 ≈ 10, 000 ≈ 167

Effective search time per response 50ms ≥ 200ms ≥ 4
Queries searched per response ≤ 60 ≥ 40, 000 ≥ 667

Figure 4.3: A comparison between (a slightly accelerated version of) NEXT
and Salmon’s search for n = 85 and d = 2. Salmon is capable of searching
far more queries per user, even with a moderately heavy load of 5 users with
a minimum response time of 1s.

detail launching an Amazon EC2 instance with a particular Amazon Ma-
chine Image (AMI).10 This documentation recommends launching with a
t3.xlarge machine,11 which is used in all of our experiments in Section 4.3.

After Salmon is launched, the experimentalist needs to upload a file(s) to
initialize their experiment12 and send a particular URL to the crowdsourcing
audience. Then, they can monitor the results and Salmon performance,
and download the responses and embedding.

4.3 Experimental results

Let’s run two sets of experiments13 that will embed n = 90 “alien eggs”
shown in Fig. 4.4 into d = 2 dimensions as in prior work [71]. The first
set of experiments will deploy Salmon to a crowdsourcing audience, and
the second set of experiments will use a synthetic noise model for a more
detailed comparison.

10ami-0e3134e3437ec5b85, available in the us-west-2 region.
11Which costs about $4/day.
12Documentation is available at https://docs.stsievert.com/salmon/

getting-started.html.
13Complete details are at https://github.com/stsievert/

salmon-experiments.

https://docs.stsievert.com/salmon/getting-started.html
https://docs.stsievert.com/salmon/getting-started.html
https://github.com/stsievert/salmon-experiments
https://github.com/stsievert/salmon-experiments

78

Figure 4.4: A subset of the n = 90 “alien eggs” used in this section. Humans
provide responses to the question “is alien egg a or b most similar to alien
egg h?”

4.3.1 Crowdsourcing

In this experiment, let’s recruit crowdsourcing participants from Amazon’s
Mechanical Turk. Let’s focus on three different search strategies:

• Random, which presents the user with a randomly chosen query without
regard to the current embedding.

• Greedy, which presents the query that maximizes information gain
given the current embedding [71].

• ARR aka “adaptive round robin,” which is nearly the same as Greedy
but randomly chooses the query’s “head” then finds the two “feet” that
maximize information gain (a slight modification of prior work [64,
158]).

In addition, we will collect some responses to random queries for testing.
Both Greedy and ARR will perform a near exhaustive search.14 Round-robin
schemes are not uncommon in the literature [28, 64, 158], likely due to the
fact that the exhaustive searches are “computationally intensive” [158] or
“prohibitively expensive” [64].

Both of these strategies will be implemented in Salmon to provide a
fair comparison between query selection strategies. Each crowdsourcing
participant will answer 50 queries from the same strategy, and each of

14Better performance may be obtained by tuning the search length, as shown
in Appendix E.2.

79

these schemes will be run independently 10 times. In total, 194,286 human
responses were collected.15

We have generated embeddings from these responses offline after down-
loading the responses from Salmon. The performance of these embeddings
is shown in Fig. 4.5, which is measured with two metrics: accuracy on a test
dataset and a measure of embedding “tightness,” the average distance to
the true nearest neighbor (NN) for each target item.16

Figure 4.5: The performance over 10 different independent runs of each
scheme. The solid line is the mean, and the shaded region is the inter-quartile
range.

In these experiments, Greedy and Random perform about equivalently,
and ARR requires fewer responses than either Random or Greedy to obtain
an embedding of a particular quality. For example, to reach a mean NN
distance of 4, the median ARR run requires at least 1,800 responses, and the
both the median Greedy and Random run require at least 4,500 responses.

15The responses collected for Random, Greedy, ARR, and testing are 52,806,
54,284, 67,583, and 19,613 respectively. All 10 ARR runs have at least 5,400
responses, and 8 runs have 6,300 responses. All 10 Greedy runs have at least
4,700 responses, and 4 runs have 5,400 responses.

16The “smoothness” parameter for each alien egg is known. We define the
“true nearest neighbor of an alien egg” to be “the alien egg that has the smallest
absolute difference in smoothness parameter.”

80

Greedy does not perform well, on par with Random. One possible reason
for the reduced performance is that the query head tends to remain constant
for many trials as illustrated in Fig. 4.6. We have found some evidence that
this “constant head” issue persists throughout a model update, as illustrated
in Appendix E.1.

Figure 4.6: The number unique heads for the crowdsourcing participants
that answer at least 50 queries and have at least 95% of their queries chosen
from the adaptive search. The left and right plots show Greedy and ARR
respectively. In each plot, each of the 10 lines represents one crowdsourcing
server.

4.3.2 Synthetic comparisons

Let’s look at the searches in more detail. To aid that, let’s isolate software
performance by using a synthetic noise model shown in Fig. 4.7 and submit-
ting responses at a constant response rate (an average of 1 response/sec).17

This section will also compare against prior work. Let’s run simulations
with five different sampling strategies:

1. Random, which asks about a random query regardless of the current
embedding.

17In our crowdsourcing experiments, we found that more difficult questions
had a slightly longer response time (an average of 2.5s and 4.5s for the easiest
and hardest queries respectively).

81

(a) The synthetic noise model and human
responses.

(b) An example query with ratio 0.59
(and some text removed).

Figure 4.7: The probability that the synthetic noise model answers correctly
is characterized by the orange line in (a), a sigmoid derived from the
human responses supplied by Jamieson et al. [71, Sec. 3.2]. The ratio is
max(|h− a|, |h− b|)/(|h− a|+ |h− b|) when h, a and b are the smoothness
parameters for the alien eggs in the head, left and right positions respectively.

2. NEXT, which evaluates the information gain of k random queries for
any one user and shows the query with maximum information gain.
Let’s use the public version of NEXT,18 which has k ≈ 20.

3. Greedy-100, which implements a search strategy in Salmon that
mirrors the search that NEXT performs. In addition to the difference
in backend embedding strategy, k is also approximately between 30
and 100,19 slightly more than NEXT.

4. Salmon, which is same ARR scheme in the crowdsourcing experiments
above. Again, it randomly chooses the query “head” then finds the
two “feet” that maximize information gain (a slight modification of

18NEXT v1.2.5 via their AMI on a c4.4xlarge instance which costs $19.10/day.
NEXT’s documentation recommends launching on a c3.4xlarge instance (which
is in the previous generation).

19The implementation of this speedup in NEXT is entirely feasible. The range
for k comes from the fact that Salmon has a frontend and a backend.

https://github.com/nextml/NEXT/releases/tag/v1.2.5
https://github.com/nextml/NEXT/wiki/EC2-launch#pricing

82

prior work [64, 158]).
5. ARR-100, the same search as Salmon, but one that is expected to search

between 37 and 111 queries per head,20 making it very approximately
similar to Greedy-100 with random head selection.

These search strategies are summarized in Fig. 4.8, which details two con-
founding variables: search length and head selection. Note that Greedy-100,
ARR-100 and NEXT all score roughly the same number of queries, and that
Greedy-100 and ARR-100 really only differ in head selection. Every strategy
except NEXT is implemented in Salmon to provide a fair comparison of
improvements. Greedy-100 and NEXT are designed to be similar implementa-
tions with different backend systems to verify that they generate embeddings
of similar quality.

Sampler Search length k Head selection Server
Random k = 1 n/a Salmon

NEXT short (k ≈ 20) Greedy NEXT
Greedy-100 short (k ≈ 100) Greedy Salmon

ARR-100 short (k ≈ 111) Random Salmon
Salmon long (k ≈ 200,000) Random Salmon

Figure 4.8: A comparison of the searches schemes used with the synthetic
noise model.

The performance of these different sampling methods is shown in Fig-
ure 4.9. For this simulation, Salmon requires fewer responses than Random
to obtain an embedding of a particular quality. In addition, it shows that
NEXT and Random produce embeddings with similar performance (as in prior
work [71]). ARR-100 significantly improves performance and is entirely fea-
sible to implement in NEXT because it searches approximately the same

20It’s expected that ARR-100 will search up to 111 queries per head because it
actually searches up to 10,000 queries then randomly chooses a head (necessary
because of Salmon’s decentralized architecture).

83

Figure 4.9: A comparison of the five search strategies mentioned in Sec. 4.3.2.
The test set consists of 60,000 synthetic responses, and the “average distance
to the true nearest neighbor (NN)” graph on the right is a measure of
embedding quality (possible because the ground truth embedding is known).
Every search except Random had one run, which is why no shaded region or
error bars are shown. The shaded region for Random represents the boundary
between the 20th and 80th percentiles over 5 runs with different random
seeds.

number of queries.21 Notably, Salmon and ARR-100 have roughly the same
performance, despite that Salmon performs a much more complete query
search. By that measure, perhaps a key competency of Salmon, enabling
long-running query searches is not relevant.22

4.4 Conclusion

We have designed a software system that can effectively run active ML
algorithms for crowdsourcing in the presence of slow query searches and/or

21Fig. 4.3 shows an improved version of NEXT that had been accelerated by a
factor of roughly 3.

22That would be relevant if the priority scheme changes shown in Appendix E.3
exhibited better performance.

84

model updates. In addition, we have illustrated good active ML performance
with a class of active ML algorithms that have relatively slow query searches
in prior work [64, 158]. Our system enables near exhaustive query searches.
However, exhaustive searches present some experimental design challenges
(constant query heads), and we illustrate that random head selection works
around this issue. Luckily, our system is ready to incorporate more complex
model updates [165]. Experiments illustrate that this strategy exhibits good
performance with human responses. In addition, we have presented some
evidence that random head selection would work well in systems developed
in prior work [71].

The most immediate future work involves incorporating adaptive step
size methods to more efficiently generate the embeddings from responses [101,
102], methods specifically designed for online learning [65], or tuning one
of the batch size increase schedules mentioned in Section 3.1. Future work
might involve resolving the issues with information gain maximization in
exhaustive query searches, some of which are mentioned in Appendices E.1
and E.3. In addition, future work involves generalizing Salmon to other
problems of interest (such as “dueling bandits” [13]).

85

5 conclusion

Determine
query priority

Collect
responses

Train
model Results

Figure 5.1: The data flow of active ML. For passive ML, each query is
equally important and there is no feedback between collection of responses
and model training.

Every component of Fig. 1.3 (repeated in Fig. 5.1) has been accelerated in
this dissertation. Though there is much context for each problem, the core
contributions in relation with Fig. 1.3 are listed below:

1. Chapter 2 determines a “query priority” scheme when using a dis-
tributed system for a particular active ML algorithm for hyperparam-
eter optimization. This priority scheme means that data scientists
can produce models of a particular quality at least 3 times
quicker than a passive method.

2. Chapter 3 focuses on some architecture questions for SGD, an ex-
tremely common technique for model training and very common in
the “model training” block in Fig. 1.3. These architecture questions
focus on inter-worker communication and allocating data to model
updates. Addressing these issues means that data scientists can
finish their ML model training 2 to 3 times quicker with a
distributed system.

3. Chapter 4 deploys the entire data flow in Fig. 1.3 to crowdsourcing
audiences, and focuses on cases where the query searches and/or model
updates are not fast. As a result, social scientists only need to

86

collect less than half of the responses required by random
sampling.

In total, every chapter/section involves an active/adaptive algorithm1

or the use of Dask, a Python tool for distributed computation2 (with the
exception of Section 3.3 which provides a general framework for distributed
ML model training). At the end of the day, items (1) and (3) both have
vaguely similar active algorithm that specifies multiple queries need answer-
ing; however, the priority schemes that exhibit the best performance are
rather different (highest scoring vs. random as detailed in Section 2.4.1 and
Appendix E.3 respectively).

In total, every component of the core loop in Fig. 1.3 has been acceler-
ated in this dissertation, and the whole loop has been effectively deployed
to crowdsourcing audiences. Relevant benefits include accelerations to
ML model training, ML model selection/hyperparameter optimization and
reducing the number of responses required from crowdsourcing audiences.

1Chapters 2 and 4 and Section 3.1.
2Chapters 2 and 4 and Section 3.2

87

bibliography

[1] Martin Abadi, Ashish Agarwal, Paul Barham, et al. Tensorflow: Large-
scale machine learning on heterogeneous distributed systems. Technical
report, Alphabet, Inc., 2015. URL: http://download.tensorflow.
org/paper/whitepaper2015.pdf.

[2] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, Savannah, GA, November 2016. USENIX
Association. URL: https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/abadi.

[3] Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang, John
Langford, Stephen Lee, Jiaji Li, Dan Melamed, Gal Oshri, Oswaldo
Ribas, et al. Making contextual decisions with low technical debt.
arXiv preprint arXiv:1606.03966, 2016. URL: https://arxiv.org/
pdf/1606.03966.pdf.

[4] Sameer Agarwal, Josh Wills, Lawrence Cayton, Gert Lanckriet, David
Kriegman, and Serge Belongie. Generalized non-metric multidimen-
sional scaling. In Marina Meila and Xiaotong Shen, editors, Proceedings
of the Eleventh International Conference on Artificial Intelligence and
Statistics, volume 2 of Proceedings of Machine Learning Research,
pages 11–18, San Juan, Puerto Rico, 21–24 Mar 2007. PMLR. URL:
https://proceedings.mlr.press/v2/agarwal07a.html.

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://arxiv.org/pdf/1606.03966.pdf
https://arxiv.org/pdf/1606.03966.pdf
https://proceedings.mlr.press/v2/agarwal07a.html

88

[5] Alham Fikri Aji and Kenneth Heafield. Sparse communication for
distributed gradient descent. In EMNLP, pages 440–445, 2017. doi:
10.18653/v1/D17-1045.

[6] S Alexander. Transient weight misadjustment properties for the finite
precision LMS algorithm. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 35(9):1250–1258, 1987. doi:10.1109/TASSP.
1987.1165279.

[7] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan
Vojnovic. QSGD: Communication-efficient SGD via gradient quantiza-
tion and encoding. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL: https://proceedings.neurips.cc/paper/2017/
file/6c340f25839e6acdc73414517203f5f0-Paper.pdf.

[8] Gene M Amdahl. Validity of the single processor approach
to achieving large scale computing capabilities. In Proceed-
ings of 1967 joint computer conference, pages 483–485. ACM,
1967. URL: https://www-inst.cs.berkeley.edu/˜n252/sp07/
Papers/Amdahl.pdf, doi:10.1145/1465482.1465560.

[9] Sylvain Arlot, Alain Celisse, et al. A survey of cross-validation
procedures for model selection. Statistics surveys, 4:40–79, 2010.
doi:10.1214/09-SS054.

[10] Peter Auer. Using confidence bounds for exploitation-exploration
trade-offs. Journal of Machine Learning Research, 3(Nov):397–422,
2002. URL: https://www.jmlr.org/papers/v3/auer02a.html.

[11] Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive
batch sizes with learning rates. In 33rd Conference on Uncertainty in

https://doi.org/10.18653/v1/D17-1045
https://doi.org/10.18653/v1/D17-1045
https://doi.org/10.1109/TASSP.1987.1165279
https://doi.org/10.1109/TASSP.1987.1165279
https://proceedings.neurips.cc/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://www-inst.cs.berkeley.edu/~n252/sp07/Papers/Amdahl.pdf
https://www-inst.cs.berkeley.edu/~n252/sp07/Papers/Amdahl.pdf
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1214/09-SS054
https://www.jmlr.org/papers/v3/auer02a.html

89

Artificial Intelligence (UAI 2017), pages 675–684. Curran Associates,
Inc., 2017. URL: http://auai.org/uai2017/proceedings/papers/
141.pdf.

[12] Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect
fitting? risk bounds for classification and regression rules that in-
terpolate. In Advances in Neural Information Processing Systems,
pages 2300–2311, 2018. URL: https://papers.nips.cc/paper/
2018/hash/e22312179bf43e61576081a2f250f845-Abstract.html.

[13] Viktor Bengs, Robert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke
Haellermeier. Preference-based online learning with dueling bandits:
A survey. Journal of Machine Learning Research, 22(7):1–108, 2021.
URL: http://jmlr.org/papers/v22/18-546.html.

[14] James Bergstra and Yoshua Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning Research,
13(Feb):281–281, 2012. URL: http://jmlr.csail.mit.edu/papers/
v13/bergstra12a.html.

[15] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 24, pages 2546–2554.
Curran Associates, Inc., 2011. URL: http://papers.nips.cc/paper/
4443-algorithms-for-hyper-parameter-optimization.pdf.

[16] José Carlos M Bermudez and Neil J Bershad. A nonlinear analytical
model for the quantized LMS algorithm-the arbitrary step size case.
IEEE Transactions on Signal Processing, 44(5):1175–1183, 1996. doi:
10.1109/78.502330.

[17] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and
Animashree Anandkumar. signSGD: Compressed optimisation for

http://auai.org/uai2017/proceedings/papers/141.pdf
http://auai.org/uai2017/proceedings/papers/141.pdf
https://papers.nips.cc/paper/2018/hash/e22312179bf43e61576081a2f250f845-Abstract.html
https://papers.nips.cc/paper/2018/hash/e22312179bf43e61576081a2f250f845-Abstract.html
http://jmlr.org/papers/v22/18-546.html
http://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
http://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://doi.org/10.1109/78.502330
https://doi.org/10.1109/78.502330

90

non-convex problems. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 560–569.
PMLR, 10–15 Jul 2018. URL: https://proceedings.mlr.press/
v80/bernstein18a.html.

[18] Léon Bottou. Large-scale machine learning with stochastic gradient
descent. In Yves Lechevallier and Gilbert Saporta, editors, Proceed-
ings of the 19th International Conference on Computational Statistics
(COMPSTAT’2010), pages 177–187. Springer, Paris, France, August
2010. URL: http://leon.bottou.org/papers/bottou-2010.

[19] Léon Bottou. Stochastic gradient tricks. In Grégoire Montavon,
Genevieve B. Orr, and Klaus-Robert Müller, editors, Neural Networks,
Tricks of the Trade, Reloaded, Lecture Notes in Computer Science
(LNCS 7700), pages 430–445. Springer, 2012. URL: http://leon.
bottou.org/papers/bottou-tricks-2012.

[20] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization
methods for large-scale machine learning. SIAM Review, 60:223–223,
2018. doi:10.1137/16M1080173.

[21] Léon Bottou. Online learning and stochastic approximations. On-line
learning in neural networks, 17(9):142, 1998. URL: https://leon.
bottou.org/publications/pdf/online-1998.pdf.

[22] Stephen Boyd, , and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004. ISBN: 978-0-521-83378-3. URL:
https://web.stanford.edu/˜boyd/cvxbook/bv_cvxbook.pdf.

[23] Jamie Brew, Joseph Holt, Lalit Jain, Robert Mankoff, Liam
Marshall, Robert Nowak, Rahul Parhi, and Scott Sievert.
A robot and comedian walk into a bar, and. . . aha! Poster:

https://proceedings.mlr.press/v80/bernstein18a.html
https://proceedings.mlr.press/v80/bernstein18a.html
http://leon.bottou.org/papers/bottou-2010
http://leon.bottou.org/papers/bottou-tricks-2012
http://leon.bottou.org/papers/bottou-tricks-2012
https://doi.org/10.1137/16M1080173
https://leon.bottou.org/publications/pdf/online-1998.pdf
https://leon.bottou.org/publications/pdf/online-1998.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

91

https://stsievert.com/research/2019/AHA.pdf, Description:
https://neurips2019creativity.github.io/doc/robot_and_
comedian.pdf, December 2019. Advances in Neural Information
Processing Systems, Workshop for “Machine Learning for Creativity
and Design”.

[24] Sébastien Bubeck et al. Convex optimization: Algorithms and
complexity. Foundations and Trends® in Machine Learning, 8(3-
4):231–357, 2015. URL: http://sbubeck.com/Bubeck15.pdf, doi:
10.1561/2200000050.

[25] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa,
Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer,
Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas,
Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine
learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
pages 108–122, 2013. URL: https://hal.inria.fr/hal-00856511.

[26] Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen Wu.
Sample size selection in optimization methods for machine learn-
ing. Mathematical programming, 134(1):127–155, 2012. doi:10.1007/
s10107-012-0572-5.

[27] David Campion. Text classification: Be lazy, use
prodigy, 2018. URL: https://medium.com/@david.campion/
text-classification-be-lazy-use-prodigy-b0f9d00e9495.

[28] Gregory Canal, Stefano Fenu, and Christopher Rozell. Active ordinal
querying for tuplewise similarity learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 3332–3340,
2020. doi:10.1609/aaai.v34i04.5734.

https://stsievert.com/research/2019/AHA.pdf
https://neurips2019creativity.github.io/doc/robot_and_comedian.pdf
https://neurips2019creativity.github.io/doc/robot_and_comedian.pdf
http://sbubeck.com/Bubeck15.pdf
https://doi.org/10.1561/2200000050
https://doi.org/10.1561/2200000050
https://hal.inria.fr/hal-00856511
https://doi.org/10.1007/s10107-012-0572-5
https://doi.org/10.1007/s10107-012-0572-5
https://medium.com/@david.campion/text-classification-be-lazy-use-prodigy-b0f9d00e9495
https://medium.com/@david.campion/text-classification-be-lazy-use-prodigy-b0f9d00e9495
https://doi.org/10.1609/aaai.v34i04.5734

92

[29] Gregory Canal, Andy Massimino, Mark Davenport, and Christopher
Rozell. Active embedding search via noisy paired comparisons. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceed-
ings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pages 902–911.
PMLR, 09–15 Jun 2019. URL: https://proceedings.mlr.press/
v97/canal19a.html.

[30] Venkat Chandrasekaran, Benjamin Recht, Pablo A Parrilo, and Alan S
Willsky. The convex geometry of linear inverse problems. Foundations
of Computational mathematics, 12(6):805–849, 2012. doi:10.1007/
s10208-012-9135-7.

[31] Olivier Chapelle and Lihong Li. An empirical evaluation of
thompson sampling. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems, volume 24. Curran Associates, Inc.,
2011. URL: https://proceedings.neurips.cc/paper/2011/file/
e53a0a2978c28872a4505bdb51db06dc-Paper.pdf.

[32] Zachary Charles and Dimitris Papailiopoulos. Stability and generaliza-
tion of learning algorithms that converge to global optima. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 745–754. PMLR, 10–15 Jul 2018. URL:
http://proceedings.mlr.press/v80/charles18a.html.

[33] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun,
Carlo Baldassi, Christian Borgs, Jennifer Chayes, Levent Sagun, and
Riccardo Zecchina. Entropy-SGD: biasing gradient descent into wide
valleys. 2019(12), dec 2019. doi:10.1088/1742-5468/ab39d9.

https://proceedings.mlr.press/v97/canal19a.html
https://proceedings.mlr.press/v97/canal19a.html
https://doi.org/10.1007/s10208-012-9135-7
https://doi.org/10.1007/s10208-012-9135-7
https://proceedings.neurips.cc/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
http://proceedings.mlr.press/v80/charles18a.html
https://doi.org/10.1088/1742-5468/ab39d9

93

[34] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei
Zhang, and Kailash Gopalakrishnan. AdaComp : Adaptive resid-
ual gradient compression for data-parallel distributed training. vol-
ume 32, Apr. 2018. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/11728.

[35] Rob Chew, Michael Wenger, Caroline Kery, Jason Nance, Keith
Richards, Emily Hadley, and Peter Baumgartner. Smart: An
open source data labeling platform for supervised learning. Jour-
nal of Machine Learning Research, 20(82):1–5, 2019. URL: http:
//jmlr.org/papers/v20/18-859.html.

[36] Kanchan Chowdhury, Ankita Sharma, and Arun Deepak Chandrasekar.
Evaluating deep learning in SystemML using layer-wise adaptive rate
scaling (LARS) optimizer. arXiv preprint arXiv:2102.03018, 2021.
URL: https://arxiv.org/abs/2102.03018.

[37] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and accurate deep network learning by exponential linear units (elus).
arXiv preprint arXiv:1511.07289, 2015. URL: https://arxiv.org/
abs/1511.07289.

[38] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan.
Better mini-batch algorithms via accelerated gradient methods. In
Advances in neural information processing systems, pages 1647–1655,
2011.

[39] Jason Jinquan Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang,
Yanzhang Wang, Xianyan Jia, Cherry Li Zhang, Yan Wan, Zhichao Li,
Jiao Wang, Shengsheng Huang, Zhongyuan Wu, Yang Wang, Yuhao
Yang, Bowen She, Dongjie Shi, Qi Lu, Kai Huang, and Guoqiong
Song. Bigdl: A distributed deep learning framework for big data. In

https://ojs.aaai.org/index.php/AAAI/article/view/11728
https://ojs.aaai.org/index.php/AAAI/article/view/11728
http://jmlr.org/papers/v20/18-859.html
http://jmlr.org/papers/v20/18-859.html
https://arxiv.org/abs/2102.03018
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289

94

Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19,
page 50–60, 2019. doi:10.1145/3357223.3362707.

[40] Lisandro D Dalcin, Rodrigo R Paz, Pablo A Kler, and Alejandro
Cosimo. Parallel distributed computing using Python. Advances in
Water Resources, 34(9):1124–1139, 2011. doi:10.1016/j.advwatres.
2011.04.013.

[41] Dask Development Team. Dask: Library for dynamic task scheduling,
2016. URL: https://dask.org.

[42] Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Auto-
mated Inference with Adaptive Batches. In Aarti Singh and Jerry Zhu,
editors, Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, volume 54 of Proceedings of Machine
Learning Research, pages 1504–1513. PMLR, 20–22 Apr 2017. URL:
https://proceedings.mlr.press/v54/de17a.html.

[43] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle
Olukotun. Understanding and optimizing asynchronous low-precision
stochastic gradient descent. In Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture, pages 561–574. ACM,
2017. doi:10.1145/3079856.3080248.

[44] Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev,
Christopher R Aberger, Kunle Olukotun, and Christopher Ré. High-
accuracy low-precision training. arXiv preprint arXiv:1803.03383,
2018. URL: https://arxiv.org/abs/1803.03383.

[45] Christopher M De Sa, Ce Zhang, Kunle Olukotun, Christopher
Ré, and Christopher Ré. Taming the wild: A unified analysis
of hogwild-style algorithms. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 28. Curran Associates, Inc.,

https://doi.org/10.1145/3357223.3362707
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://dask.org
https://proceedings.mlr.press/v54/de17a.html
https://doi.org/10.1145/3079856.3080248
https://arxiv.org/abs/1803.03383

95

2015. URL: https://proceedings.neurips.cc/paper/2015/hash/
98986c005e5def2da341b4e0627d4712-Abstract.html.

[46] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Marc' aurelio Ranzato, Andrew Senior, Paul
Tucker, Ke Yang, Quoc Le, and Andrew Ng. Large scale distributed
deep networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in neural information process-
ing systems, volume 25, pages 1223–1231. Curran Associates, Inc.,
2012. URL: https://proceedings.neurips.cc/paper/2012/hash/
6aca97005c68f1206823815f66102863-Abstract.html.

[47] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
page 248–248, 2009. doi:10.1109/CVPR.2009.5206848.

[48] Aditya Devarakonda, Maxim Naumov, and Michael Garland. Ad-
abatch: Adaptive batch sizes for training deep neural networks. arXiv
preprint arXiv:1712.02029, 2017. URL: https://arxiv.org/abs/
1712.02029.

[49] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(Jul):2121–2159, 2011. URL: http:
//jmlr.org/papers/v12/duchi11a.html.

[50] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust
and efficient hyperparameter optimization at scale. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1437–1446, Stockholmsmässan, Stockholm

https://proceedings.neurips.cc/paper/2015/hash/98986c005e5def2da341b4e0627d4712-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/98986c005e5def2da341b4e0627d4712-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1712.02029
https://arxiv.org/abs/1712.02029
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html

96

Sweden, 10–15 Jul 2018. PMLR. URL: http://proceedings.mlr.
press/v80/falkner18a.html.

[51] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba
Szepesvári. Parametric bandits: The generalized linear case.
In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta, editors, Advances in Neural Information Pro-
cessing Systems, volume 23. Curran Associates, Inc., 2010.
URL: https://proceedings.neurips.cc/paper/2010/file/
c2626d850c80ea07e7511bbae4c76f4b-Paper.pdf.

[52] Michael P Friedlander and Mark Schmidt. Hybrid deterministic-
stochastic methods for data fitting. SIAM Journal on Scientific Com-
puting, 34(3):A1380–A1405, 2012. doi:10.1137/110830629.

[53] Nidham Gazagnadou, Robert Gower, and Joseph Salmon. Optimal
mini-batch and step sizes for SAGA. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 2142–2150. PMLR, 09–15 Jun 2019. URL:
http://proceedings.mlr.press/v97/gazagnadou19a.html.

[54] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM Journal on
Optimization, 23(4):2341–2368, 2013. doi:10.1137/120880811.

[55] R Gitlin, J Mazo, and M Taylor. On the design of gradient algorithms
for digitally implemented adaptive filters. IEEE Transactions on Cir-
cuit Theory, 20(2):125–136, 1973. doi:10.1109/TCT.1973.1083627.

[56] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Yee Whye Teh and
Mike Titterington, editors, Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 9

http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
https://proceedings.neurips.cc/paper/2010/file/c2626d850c80ea07e7511bbae4c76f4b-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/c2626d850c80ea07e7511bbae4c76f4b-Paper.pdf
https://doi.org/10.1137/110830629
http://proceedings.mlr.press/v97/gazagnadou19a.html
https://doi.org/10.1137/120880811
https://doi.org/10.1109/TCT.1973.1083627

97

of Proceedings of Machine Learning Research, pages 249–256, Chia
Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL:
https://proceedings.mlr.press/v9/glorot10a.html.

[57] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir
Gholami, Kai Rothauge, Michael W Mahoney, and Joseph Gonzalez.
On the computational inefficiency of large batch sizes for stochastic
gradient descent. arXiv preprint arXiv:1811.12941, 2018. URL: https:
//arxiv.org/abs/1811.12941.

[58] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2018. URL: https://arxiv.org/
pdf/1706.02677.pdf.

[59] Andreas Griewank. On automatic differentiation. Mathematical Pro-
gramming: recent developments and applications, 6:83–107, 1989. URL:
https://ftp.mcs.anl.gov/pub/tech_reports/reports/P10.pdf.

[60] Demjan Grubic, Leo Tam, Dan Alistarh, and Ce Zhang. Synchronous
multi-GPU deep learning with low-precision communication: An
experimental study. In Proceedings of the 21st International Con-
ference on Extending Database Technology, pages 145 – 156, 2018.
doi:10.3929/ethz-b-000319485.

[61] Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic
regret algorithms for online convex optimization. In Proceedings of the
19th Annual Conference on Learning Theory, COLT’06, page 499–513.
Springer-Verlag, 2006. doi:10.1007/11776420_37.

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the IEEE

https://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1811.12941
https://arxiv.org/abs/1811.12941
https://arxiv.org/pdf/1706.02677.pdf
https://arxiv.org/pdf/1706.02677.pdf
https://ftp.mcs.anl.gov/pub/tech_reports/reports/P10.pdf
https://doi.org/10.3929/ethz-b-000319485
https://doi.org/10.1007/11776420_37

98

international conference on computer vision, pages 1026–1034,
2015. URL: https://openaccess.thecvf.com/content_iccv_
2015/html/He_Delving_Deep_into_ICCV_2015_paper.html.

[63] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pat-
tern recognition (CVPR), pages 770–778, June 2016. URL:
https://openaccess.thecvf.com/content_cvpr_2016/html/He_
Deep_Residual_Learning_CVPR_2016_paper.html.

[64] Eric Heim, Matthew Berger, Lee Seversky, and Milos Hauskrecht.
Active perceptual similarity modeling with auxiliary information. arXiv
preprint arXiv:1511.02254, 2015. URL: https://arxiv.org/pdf/
1511.02254.pdf.

[65] Eric Heim, Matthew Berger, Lee M Seversky, and Milos Hauskrecht.
Efficient online relative comparison kernel learning. In Proceedings
of the 2015 SIAM International Conference on Data Mining, pages
271–279. SIAM, 2015. doi:10.1137/1.9781611974010.31.

[66] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q.
Weinberger. Densely connected convolutional networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), volume 1, page 3, July 2017. URL: https:
//openaccess.thecvf.com/content_cvpr_2017/html/Huang_
Densely_Connected_Convolutional_CVPR_2017_paper.html.

[67] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential
model-based optimization for general algorithm configuration. In
International Conference on Learning and Intelligent Optimization,
pages 507–523. Springer, 2011. doi:10.1007/978-3-642-25566-3_
40.

https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://arxiv.org/pdf/1511.02254.pdf
https://arxiv.org/pdf/1511.02254.pdf
https://doi.org/10.1137/1.9781611974010.31
https://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40

99

[68] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up
convolutional neural networks with low rank expansions. In Proceedings
of the British Machine Vision Conference. BMVA Press, 2014. doi:
10.5244/C.28.88.

[69] Lalit Jain, Kevin G Jamieson, and Rob Nowak. Finite
sample prediction and recovery bounds for ordinal embed-
ding. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 29, pages 2711–2719. Curran Associates,
Inc., 2016. URL: https://papers.nips.cc/paper/2016/hash/
4e0d67e54ad6626e957d15b08ae128a6-Abstract.html.

[70] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien
Bubeck. lil’ ucb : An optimal exploration algorithm for multi-
armed bandits. In Maria Florina Balcan, Vitaly Feldman, and Csaba
Szepesvári, editors, Proceedings of The 27th Conference on Learn-
ing Theory, volume 35 of Proceedings of Machine Learning Research,
pages 423–439, Barcelona, Spain, 13–15 Jun 2014. PMLR. URL:
https://proceedings.mlr.press/v35/jamieson14.html.

[71] Kevin G Jamieson, Lalit Jain, Chris Fernandez, Nicholas J. Glattard,
and Rob Nowak. NEXT: A System for Real-World Development, Eval-
uation, and Application of Active Learning. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL: https://proceedings.neurips.cc/paper/2015/file/
89ae0fe22c47d374bc9350ef99e01685-Paper.pdf.

[72] Kevin G Jamieson and Robert D Nowak. Low-dimensional embedding
using adaptively selected ordinal data. In 2011 49th Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
page 1077–1077, 2011. doi:10.1109/Allerton.2011.6120287.

https://doi.org/10.5244/C.28.88
https://doi.org/10.5244/C.28.88
https://papers.nips.cc/paper/2016/hash/4e0d67e54ad6626e957d15b08ae128a6-Abstract.html
https://papers.nips.cc/paper/2016/hash/4e0d67e54ad6626e957d15b08ae128a6-Abstract.html
https://proceedings.mlr.press/v35/jamieson14.html
https://proceedings.neurips.cc/paper/2015/file/89ae0fe22c47d374bc9350ef99e01685-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/89ae0fe22c47d374bc9350ef99e01685-Paper.pdf
https://doi.org/10.1109/Allerton.2011.6120287

100

[73] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas,
Asja Fischer, Yoshua Bengio, and Amos Storkey. Three factors influ-
encing minima in sgd. arXiv preprint arXiv:1711.04623, 2017. URL:
https://arxiv.org/abs/1711.04623.

[74] Kaiyi Ji, Zhe Wang, Bowen Weng, Yi Zhou, Wei Zhang, and Ying-
bin Liang. History-gradient aided batch size adaptation for variance
reduced algorithms. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning Research, pages
4762–4772. PMLR, 13–18 Jul 2020. URL: https://proceedings.mlr.
press/v119/ji20a.html.

[75] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,
Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, and Liwei Yu.
Highly scalable deep learning training system with mixed-precision:
Training imagenet in four minutes. arXiv preprint arXiv:1807.11205,
2018. URL: https://arxiv.org/abs/1807.11205.

[76] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and
Michael I. Jordan. How to escape saddle points efficiently. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 1724–1732. PMLR, 06–11 Aug 2017.
URL: https://proceedings.mlr.press/v70/jin17a.html.

[77] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent
using predictive variance reduction. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 26. Curran Asso-
ciates, Inc., 2013. URL: https://proceedings.neurips.cc/paper/
2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf.

https://arxiv.org/abs/1711.04623
https://proceedings.mlr.press/v119/ji20a.html
https://proceedings.mlr.press/v119/ji20a.html
https://arxiv.org/abs/1807.11205
https://proceedings.mlr.press/v70/jin17a.html
https://proceedings.neurips.cc/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf

101

[78] Tyler Johnson, Pulkit Agrawal, Haijie Gu, and Carlos Guestrin. AdaS-
cale SGD: A user-friendly algorithm for distributed training. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th Inter-
national Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 4911–4920. PMLR, 13–18 Jul
2020. URL: https://proceedings.mlr.press/v119/johnson20a.
html.

[79] Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak, and Rebecca
Willett. Scalable generalized linear bandits: Online computation
and hashing. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page 98–108,
2017. URL: https://proceedings.neurips.cc/paper/2017/file/
28dd2c7955ce926456240b2ff0100bde-Paper.pdf.

[80] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of
gradient and proximal-gradient methods under the Polyak- lojasiewicz
condition. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, page 795–795, 2016. doi:10.1007/
978-3-319-46128-1_50.

[81] Sumeet Katariya, Lalit Jain, Nandana Sengupta, James Evans, and
Robert Nowak. Adaptive sampling for coarse ranking. In Amos
Storkey and Fernando Perez-Cruz, editors, Proceedings of the Twenty-
First International Conference on Artificial Intelligence and Statistics,
volume 84 of Proceedings of Machine Learning Research, pages 1839–
1848. PMLR, 09–11 Apr 2018. URL: https://proceedings.mlr.
press/v84/katariya18a.html.

[82] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the
complexity of best-arm identification in multi-armed bandit models.
Journal of Machine Learning Research, 17(1):1–42, 2016. URL: http:
//jmlr.org/papers/v17/kaufman16a.html.

https://proceedings.mlr.press/v119/johnson20a.html
https://proceedings.mlr.press/v119/johnson20a.html
https://proceedings.neurips.cc/paper/2017/file/28dd2c7955ce926456240b2ff0100bde-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/28dd2c7955ce926456240b2ff0100bde-Paper.pdf
https://doi.org/10.1007/978-3-319-46128-1_50
https://doi.org/10.1007/978-3-319-46128-1_50
https://proceedings.mlr.press/v84/katariya18a.html
https://proceedings.mlr.press/v84/katariya18a.html
http://jmlr.org/papers/v17/kaufman16a.html
http://jmlr.org/papers/v17/kaufman16a.html

102

[83] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. On large-batch training
for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016. URL: https://arxiv.org/abs/
1609.04836.

[84] Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou, Robert M
Gower, and Peter Richtárik. Unified analysis of stochastic gradi-
ent methods for composite convex and smooth optimization. arXiv
preprint arXiv:2006.11573, 2020. URL: https://arxiv.org/abs/
2006.11573.

[85] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. URL: https:
//arxiv.org/pdf/1412.6980.pdf.

[86] A. Klein, S. Falkner, N. Mansur, and F. Hutter. Robo: A flexible
and robust bayesian optimization framework in python. In NIPS
2017 Bayesian Optimization Workshop, December 2017. URL: https:
//github.com/automl/RoBO.

[87] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and
Frank Hutter. Fast bayesian optimization of machine learning hyper-
parameters on large datasets. arXiv preprint arXiv:1605.07079, 2016.
URL: https://arxiv.org/abs/1605.07079.

[88] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. In NIPS Work-
shop on Private Multi-Party Machine Learning, 2016. URL: https:
//arxiv.org/abs/1610.05492.

https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/2006.11573
https://arxiv.org/abs/2006.11573
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://github.com/automl/RoBO
https://github.com/automl/RoBO
https://arxiv.org/abs/1605.07079
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492

103

[89] Jakub Konečnỳ and Peter Richtárik. Randomized distributed mean
estimation: Accuracy vs communication. Frontiers in Applied Mathe-
matics and Statistics, 4:62, 2018. doi:10.3389/fams.2018.00062.

[90] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images (chapter 3). Technical report, Univer-
sity of Toronto, 2009. URL: https://www.cs.toronto.edu/˜kriz/
learning-features-2009-TR.pdf.

[91] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 25. Curran As-
sociates, Inc., 2012. URL: https://papers.nips.cc/paper/2012/
hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[92] Manuel Lagunas, Sandra Malpica, Ana Serrano, Elena Garces, Diego
Gutierrez, and Belen Masia. A similarity measure for material appear-
ance. ACM Trans. Graph., 38(4), July 2019. doi:10.1145/3306346.
3323036.

[93] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. ASAGA:
Asynchronous Parallel SAGA. In Aarti Singh and Jerry Zhu, edi-
tors, Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54 of Proceedings of Machine
Learning Research, pages 46–54. PMLR, 20–22 Apr 2017. URL:
https://proceedings.mlr.press/v54/leblond17a.html.

[94] Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algo-
rithms for generalized linear contextual bandits. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of Machine

https://doi.org/10.3389/fams.2018.00062
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1145/3306346.3323036
https://doi.org/10.1145/3306346.3323036
https://proceedings.mlr.press/v54/leblond17a.html

104

Learning Research, pages 2071–2080. PMLR, 06–11 Aug 2017. URL:
https://proceedings.mlr.press/v70/li17c.html.

[95] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. Hyperband: A novel bandit-based approach to
hyperparameter optimization. Journal of Machine Learning Research,
18(185):1–52, 2018. URL: http://jmlr.org/papers/v18/16-558.
html.

[96] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-
Yiing Su. Scaling distributed machine learning with the parameter
server. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pages 583–598, Broomfield, CO, Oc-
tober 2014. USENIX Association. URL: https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/li_mu.

[97] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter No-
ordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan,
Pritam Damania, and Soumith Chintala. Pytorch dis-
tributed: Experiences on accelerating data parallel train-
ing. Proc. VLDB Endow., 13(12):3005–3018, 2020. URL:
https://research.fb.com/wp-content/uploads/2020/08/
PyTorch-Distributed-Experiences-on-Accelerating-Data-Parallel-Training.
pdf, doi:10.14778/3415478.3415530.

[98] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William Dally. Deep
gradient compression: Reducing the communication bandwidth for
distributed training. 2018. URL: https://openreview.net/pdf?id=
SkhQHMW0W.

[99] Yu-Chen Lo, Stefano E Rensi, Wen Torng, and Russ B Altman. Ma-

https://proceedings.mlr.press/v70/li17c.html
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://research.fb.com/wp-content/uploads/2020/08/PyTorch-Distributed-Experiences-on-Accelerating-Data-Parallel-Training.pdf
https://research.fb.com/wp-content/uploads/2020/08/PyTorch-Distributed-Experiences-on-Accelerating-Data-Parallel-Training.pdf
https://research.fb.com/wp-content/uploads/2020/08/PyTorch-Distributed-Experiences-on-Accelerating-Data-Parallel-Training.pdf
https://doi.org/10.14778/3415478.3415530
https://openreview.net/pdf?id=SkhQHMW0W
https://openreview.net/pdf?id=SkhQHMW0W

105

chine learning in chemoinformatics and drug discovery. Drug discovery
today, 23(8):1538–1546, 2018. doi:10.1016/j.drudis.2018.05.010.

[100] Michael Lohaus, Philipp Hennig, and Ulrike von Luxburg. Uncertainty
estimates for ordinal embeddings. arXiv preprint arXiv:1906.11655,
2019. URL: https://arxiv.org/abs/1906.11655.

[101] Ke Ma, Jinshan Zeng, Jiechao Xiong, Qianqian Xu, Xiaochun Cao,
Wei Liu, and Yuan Yao. Stochastic non-convex ordinal embedding
with stabilized barzilai-borwein step size. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018. URL: https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/16082/16595.

[102] Ke Ma, Jinshan Zeng, Jiechao Xiong, Qianqian Xu, Xiaochun Cao, Wei
Liu, and Yuan Yao. Fast stochastic ordinal embedding with variance
reduction and adaptive step size. IEEE Transactions on Knowledge
and Data Engineering, 33(6):2467–2478, 2021. doi:10.1109/TKDE.
2019.2956700.

[103] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier
nonlinearities improve neural network acoustic models. In ICML
Workshop on Deep Learning for Audio, Speech and Language Process-
ing, 2013. URL: https://ai.stanford.edu/˜amaas/papers/relu_
hybrid_icml2013_final.pdf.

[104] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of machine learning research, 9(Nov):2579–2605, 2008.
URL: http://jmlr.csail.mit.edu/papers/v9/vandermaaten08a.
html.

[105] Maren Mahsereci and Philipp Hennig. Probabilistic line searches
for stochastic optimization. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in

https://doi.org/10.1016/j.drudis.2018.05.010
https://arxiv.org/abs/1906.11655
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16082/16595
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16082/16595
https://doi.org/10.1109/TKDE.2019.2956700
https://doi.org/10.1109/TKDE.2019.2956700
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://jmlr.csail.mit.edu/papers/v9/vandermaaten08a.html
http://jmlr.csail.mit.edu/papers/v9/vandermaaten08a.html

106

Neural Information Processing Systems 28, pages 181–189. Cur-
ran Associates, Inc., 2015. URL: http://papers.nips.cc/paper/
5753-probabilistic-line-searches-for-stochastic-optimization.
pdf.

[106] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht,
Kannan Ramchandran, and Michael I Jordan. Perturbed iterate
analysis for asynchronous stochastic optimization. SIAM Journal on
Optimization, 27(4):2202–2229, 2017. doi:10.1137/16M1057000.

[107] Donald W. Marquardt and Ronald D. Snee. Ridge regression in
practice. The American Statistician, 29(1):3–20, 1975. doi:10.1080/
00031305.1975.10479105.

[108] Jared D Martin, Adrienne Wood, William TL Cox, Scott Siev-
ert, Robert Nowak, et al. Evidence for distinct facial signals of
reward, affiliation, and dominance from both perception and pro-
duction tasks. Affective Science, pages 1–17, 2021. doi:10.1007/
s42761-020-00024-8.

[109] Blake Mason, Martina A Rau, and Robert Nowak. Cognitive task
analysis for implicit knowledge about visual representations with
similarity learning methods. Cognitive science, 43(9):e12744, 2019.
doi:10.1111/cogs.12744.

[110] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for
emerging AI applications. In 13th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 18), pages 561–577,
Carlsbad, CA, October 2018. USENIX Association. URL: https:
//www.usenix.org/conference/osdi18/presentation/moritz.

http://papers.nips.cc/paper/5753-probabilistic-line-searches-for-stochastic-optimization.pdf
http://papers.nips.cc/paper/5753-probabilistic-line-searches-for-stochastic-optimization.pdf
http://papers.nips.cc/paper/5753-probabilistic-line-searches-for-stochastic-optimization.pdf
https://doi.org/10.1137/16M1057000
https://doi.org/10.1080/00031305.1975.10479105
https://doi.org/10.1080/00031305.1975.10479105
https://doi.org/10.1007/s42761-020-00024-8
https://doi.org/10.1007/s42761-020-00024-8
https://doi.org/10.1111/cogs.12744
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz

107

[111] Noboru Murata. A statistical study of on-line learning, page
63–92. 1998. URL: https://www.researchgate.net/profile/
Noboru-Murata/publication/2666659_A_Statistical_Study_
on_On-line_Learning/links/09e4150b0273b4b7e8000000/
A-Statistical-Study-on-On-line-Learning.pdf.

[112] Robert F Murphy. An active role for machine learning in drug de-
velopment. Nature chemical biology, 7(6):327, 2011. doi:10.1038/
nchembio.576.

[113] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010. URL:
https://icml.cc/Conferences/2010/papers/432.pdf.

[114] Arkadiui Semenovich Nemirovsky and David Borisovich Yudin. Prob-
lem complexity and method efficiency in optimization. SIAM Review,
27, 1983. doi:10.1137/1027074.

[115] Yurii Nesterov. Introductory lectures on convex optimization: A basic
course, volume 87. Springer Science & Business Media, 2013.

[116] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y Ng. Reading digits in natural images with unsupervised
feature learning. In NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning 2011, 2011. URL: http://ufldl.stanford.
edu/housenumbers/nips2011_housenumbers.pdf.

[117] Phuong Ha Nguyen, Lam Nguyen, and Marten van Dijk. Tight
dimension independent lower bound on the expected conver-
gence rate for diminishing step sizes in sgd. In Advances
in Neural Information Processing Systems, pages 3665–3674,
2019. URL: https://proceedings.neurips.cc/paper/2019/hash/
deb54ffb41e085fd7f69a75b6359c989-Abstract.html.

https://www.researchgate.net/profile/Noboru-Murata/publication/2666659_A_Statistical_Study_on_On-line_Learning/links/09e4150b0273b4b7e8000000/A-Statistical-Study-on-On-line-Learning.pdf
https://www.researchgate.net/profile/Noboru-Murata/publication/2666659_A_Statistical_Study_on_On-line_Learning/links/09e4150b0273b4b7e8000000/A-Statistical-Study-on-On-line-Learning.pdf
https://www.researchgate.net/profile/Noboru-Murata/publication/2666659_A_Statistical_Study_on_On-line_Learning/links/09e4150b0273b4b7e8000000/A-Statistical-Study-on-On-line-Learning.pdf
https://www.researchgate.net/profile/Noboru-Murata/publication/2666659_A_Statistical_Study_on_On-line_Learning/links/09e4150b0273b4b7e8000000/A-Statistical-Study-on-On-line-Learning.pdf
https://doi.org/10.1038/nchembio.576
https://doi.org/10.1038/nchembio.576
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.1137/1027074
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://proceedings.neurips.cc/paper/2019/hash/deb54ffb41e085fd7f69a75b6359c989-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/deb54ffb41e085fd7f69a75b6359c989-Abstract.html

108

[118] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J.
Wright. Hogwild!: A lock-free approach to parallelizing stochas-
tic gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 24. Curran Associates,
Inc., 2011. URL: https://papers.nips.cc/paper/2011/hash/
218a0aefd1d1a4be65601cc6ddc1520e-Abstract.html.

[119] Adeola Ogunleye and Qing-Guo Wang. Xgboost model for chronic
kidney disease diagnosis. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 17(6):2131–2140, 2020. doi:10.1109/
TCBB.2019.2911071.

[120] Genevieve B Orr. Removing noise in on-line search using adaptive
batch sizes. In Advances in Neural Information Processing Systems,
pages 232–238, 1997. URL: https://papers.nips.cc/paper/1996/
file/cd758e8f59dfdf06a852adad277986ca-Paper.pdf.

[121] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. In Neural
Information Processing Systems, Workshop on Autodiff, 2017. URL:
https://openreview.net/forum?id=BJJsrmfCZ.

[122] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural

https://papers.nips.cc/paper/2011/hash/218a0aefd1d1a4be65601cc6ddc1520e-Abstract.html
https://papers.nips.cc/paper/2011/hash/218a0aefd1d1a4be65601cc6ddc1520e-Abstract.html
https://doi.org/10.1109/TCBB.2019.2911071
https://doi.org/10.1109/TCBB.2019.2911071
https://papers.nips.cc/paper/1996/file/cd758e8f59dfdf06a852adad277986ca-Paper.pdf
https://papers.nips.cc/paper/1996/file/cd758e8f59dfdf06a852adad277986ca-Paper.pdf
https://openreview.net/forum?id=BJJsrmfCZ

109

Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL: https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[123] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Pe-
ter Prettenhofer, Ron Weiss, and Vincent Dubourg. Scikit-learn:
Machine learning in python. Journal of machine learning re-
search, 12(Oct):2825–2830, 2011. URL: http://jmlr.csail.mit.
edu/papers/v12/pedregosa11a.html.

[124] Michael P. Perrone, Haidar Khan, Changhoan Kim, Anastasios Kyril-
lidis, Jerry Quinn, and Valentina Salapura. Optimal mini-batch size
selection for fast gradient descent. CoRR, abs/1911.06459, 2019. URL:
http://arxiv.org/abs/1911.06459.

[125] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic ap-
proximation by averaging. SIAM Journal on Control and Optimization,
30(4):838–838, 1992. doi:10.1137/0330046.

[126] Boris Teodorovich Polyak. Gradient methods for minimizing of func-
tionals. USSR Computational Mathematics and Mathematical Physics,
3(4):643–653, 1963. doi:10.1016/0041-5553(63)90382-3.

[127] Lutz Prechelt. Automatic early stopping using cross validation:
quantifying the criteria. Neural Networks, 11(4):761–767, 1998.
doi:10.1016/S0893-6080(98)00010-0.

[128] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo: A performance
model for deep neural networks. In ICLR (Poster), 2017. URL:
https://talwalkarlab.github.io/paleo/.

[129] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
Improving language understanding by generative pre-training. Blog

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://arxiv.org/abs/1911.06459
https://doi.org/10.1137/0330046
https://doi.org/10.1016/0041-5553(63)90382-3
https://doi.org/10.1016/S0893-6080(98)00010-0
https://talwalkarlab.github.io/paleo/

110

post: https://openai.com/blog/language-unsupervised/,
2018. URL: https://cdn.openai.com/research-covers/
language-unsupervised/language_understanding_paper.pdf.

[130] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel
Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie
Shpanskaya, et al. CheXNet: Radiologist-level pneumonia detection
on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225,
2017. URL: https://arxiv.org/pdf/1711.05225.pdf.

[131] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. XNOR-Net: Imagenet classification using binary convolu-
tional neural networks. In European Conference on Computer Vision,
pages 525–542. Springer, 2016. doi:10.1007/978-3-319-46493-0_
32.

[132] Martina A Rau, Blake Mason, and Robert Nowak. How to model
implicit knowledge? similarity learning methods to assess perceptions
of visual representations. International Educational Data Mining
Society, 2016. doi:10.1111/cogs.12744.

[133] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal
Shankar. Do ImageNet classifiers generalize to ImageNet? In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pages 5389–5400. PMLR, 09–15
Jun 2019. URL: https://proceedings.mlr.press/v97/recht19a.
html.

[134] Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and
Alex Smola. Stochastic variance reduction for nonconvex optimization.
In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine Learning (ICML),

https://openai.com/blog/language-unsupervised/
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/pdf/1711.05225.pdf
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1111/cogs.12744
https://proceedings.mlr.press/v97/recht19a.html
https://proceedings.mlr.press/v97/recht19a.html

111

volume 48 of Proceedings of Machine Learning Research, pages 314–
323, New York, New York, USA, 20–22 Jun 2016. PMLR. URL:
https://proceedings.mlr.press/v48/reddi16.html.

[135] Cèdric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan Alistarh,
and Torsten Hoefler. SparCML: High-performance sparse commu-
nication for machine learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’19, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3295500.3356222.

[136] Herbert Robbins and Sutton Monro. A stochastic approximation
method. The annals of mathematical statistics, page 400–407, 1951.
URL: https://www.jstor.org/stable/pdf/2236626.pdf.

[137] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal
of Computer Vision (IJCV), 115(3):211–252, 2015. doi:10.1007/
s11263-015-0816-y.

[138] Christopher De Sa, Christopher Re, and Kunle Olukotun. Global
convergence of stochastic gradient descent for some non-convex matrix
problems. In Francis Bach and David Blei, editors, Proceedings of
the 32nd International Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages 2332–2341, Lille,
France, 07–09 Jul 2015. PMLR. URL: https://proceedings.mlr.
press/v37/sa15.html.

[139] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and
Bhuvana Ramabhadran. Low-rank matrix factorization for deep neural
network training with high-dimensional output targets. In Acoustics,

https://proceedings.mlr.press/v48/reddi16.html
https://doi.org/10.1145/3295500.3356222
https://www.jstor.org/stable/pdf/2236626.pdf
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://proceedings.mlr.press/v37/sa15.html
https://proceedings.mlr.press/v37/sa15.html

112

Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 6655–6659. IEEE, 2013. doi:10.1109/ICASSP.
2013.6638949.

[140] Ruslan Salakhutdinov. Deep learning tutorial at the Simons Institute,
Berkeley, 2017, 2017. URL: https://simons.berkeley.edu/talks/
ruslan-salakhutdinov-01-26-2017-1.

[141] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning
rates. In Sanjoy Dasgupta and David McAllester, editors, Proceedings
of the 30th International Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pages 343–351, Atlanta,
Georgia, USA, 17–19 Jun 2013. PMLR. URL: https://proceedings.
mlr.press/v28/schaul13.html.

[142] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite
sums with the stochastic average gradient. Mathematical Programming,
page 83–112, 2017. doi:10.1007/s10107-016-1030-6.

[143] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning
and decision-making for autonomous vehicles. Annual Review of
Control, Robotics, and Autonomous Systems, 1:187–210, 2018. doi:
10.1146/annurev-control-060117-105157.

[144] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-
bit stochastic gradient descent and its application to data-parallel
distributed training of speech DNNs. In Fifteenth Annual Confer-
ence of the International Speech Communication Association, 2014.
URL: https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/02/IS140694.pdf.

[145] Ayon Sen, Purav Patel, Martina A Rau, Blake Mason, Robert
Nowak, Timothy T Rogers, and Xiaojin Zhu. Machine beats

https://doi.org/10.1109/ICASSP.2013.6638949
https://doi.org/10.1109/ICASSP.2013.6638949
https://simons.berkeley.edu/talks/ruslan-salakhutdinov-01-26-2017-1
https://simons.berkeley.edu/talks/ruslan-salakhutdinov-01-26-2017-1
https://proceedings.mlr.press/v28/schaul13.html
https://proceedings.mlr.press/v28/schaul13.html
https://doi.org/10.1007/s10107-016-1030-6
https://doi.org/10.1146/annurev-control-060117-105157
https://doi.org/10.1146/annurev-control-060117-105157
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/IS140694.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/IS140694.pdf

113

human at sequencing visuals for perceptual-fluency practice.
In International Educational Data Mining Society. ERIC, 2018.
URL: http://educationaldatamining.org/files/conferences/
EDM2018/papers/EDM2018_paper_94.pdf.

[146] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy dis-
tributed deep learning in TensorFlow. arXiv preprint arXiv:1802.05799,
2018. URL: https://arxiv.org/pdf/1802.05799.pdf.

[147] Burr Settles. Active learning literature survey, volume 52. University
of Wisconsin, Madison, 2010. URL: http://digital.library.wisc.
edu/1793/60660.

[148] Shai Shalev-Shwartz et al. Online Learning and Online convex op-
timization, volume 4. Now Publishers Inc., 2012. doi:10.1561/
2200000018.

[149] Scott Sievert, Daniel Ross, Lalit Jain, Kevin Jamieson, Rob Nowak,
and Robert Mankoff. NEXT: A system to easily connect crowd-
sourcing and adaptive data collection. In Katy Huff, David Lippa,
Dillon Niederhut, and M Pacer, editors, Proceedings of the 16th
Python in Science Conference, pages 113 – 119, 2017. doi:10.25080/
shinma-7f4c6e7-010.

[150] Scott Sievert and Shrey Shah. Improving the convergence of sgd
through adaptive batch sizes. arXiv preprint arXiv:1910.08222, 2021.
URL: https://arxiv.org/abs/1910.08222.

[151] Leslie N Smith. No more pesky learning rate guessing games.
CoRR, abs/1506.01186, 5, 2015. URL: https://arxiv.org/abs/
1506.01186.

[152] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay
the learning rate, increase the batch size. In International Conference

http://educationaldatamining.org/files/conferences/EDM2018/papers/EDM2018_paper_94.pdf
http://educationaldatamining.org/files/conferences/EDM2018/papers/EDM2018_paper_94.pdf
https://arxiv.org/pdf/1802.05799.pdf
http://digital.library.wisc.edu/1793/60660
http://digital.library.wisc.edu/1793/60660
https://doi.org/10.1561/2200000018
https://doi.org/10.1561/2200000018
https://doi.org/10.25080/shinma-7f4c6e7-010
https://doi.org/10.25080/shinma-7f4c6e7-010
https://arxiv.org/abs/1910.08222
https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1506.01186

114

on Learning Representations, 2018. URL: https://openreview.net/
forum?id=B1Yy1BxCZ.

[153] Samuel L. Smith and Quoc V. Le. A bayesian perspective on general-
ization and stochastic gradient descent. In International Conference
on Learning Representations, 2018. URL: https://openreview.net/
forum?id=BJij4yg0Z.

[154] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical
bayesian optimization of machine learning algorithms. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 2951–2959.
Curran Associates, Inc., 2012. URL: http://papers.nips.cc/paper/
4522-practical-bayesian-optimization-of-machine-learning-algorithms.
pdf.

[155] Evan R. Sparks, Ameet Talwalkar, Virginia Smith, Jey Kottalam,
Xinghao Pan, Joseph Gonzalez, Michael J. Franklin, Michael I. Jordan,
and Tim Kraska. Mli: An api for distributed machine learning. In
2013 IEEE 13th International Conference on Data Mining, pages
1187–1192, 2013. doi:10.1109/ICDM.2013.158.

[156] Nikko Strom. Scalable distributed DNN training using com-
modity GPU cloud computing. In Sixteenth Annual Confer-
ence of the International Speech Communication Association, 2015.
URL: https://www.isca-speech.org/archive_v0/interspeech_
2015/papers/i15_1488.pdf.

[157] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan
McMahan. Distributed mean estimation with limited communication.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pages 3329–3337. PMLR, 06–11

https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=BJij4yg0Z
https://openreview.net/forum?id=BJij4yg0Z
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
https://doi.org/10.1109/ICDM.2013.158
https://www.isca-speech.org/archive_v0/interspeech_2015/papers/i15_1488.pdf
https://www.isca-speech.org/archive_v0/interspeech_2015/papers/i15_1488.pdf

115

Aug 2017. URL: https://proceedings.mlr.press/v70/suresh17a.
html.

[158] Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and Adam Tau-
man Kalai. Adaptively learning the crowd kernel. In Proceedings of the
28th International Conference on International Conference on Machine
Learning, ICML’11, page 673–680, Madison, WI, USA, 2011. Omni-
press. URL: http://www.icml-2011.org/papers/395_icmlpaper.
pdf.

[159] Ervin Tanczos, Robert Nowak, and Bob Mankoff. A kl-
lucb algorithm for large-scale crowdsourcing. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL: https://proceedings.neurips.cc/paper/2017/file/
c02f9de3c2f3040751818aacc7f60b74-Paper.pdf.

[160] Min Tang, Xiaoqiang Luo, and Salim Roukos. Active learning for
statistical natural language parsing. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pages 120–
127, Philadelphia, Pennsylvania, USA, July 2002. Association for Com-
putational Linguistics. URL: https://aclanthology.org/P02-1016,
doi:10.3115/1073083.1073105.

[161] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B (Methodological),
58(1):267–288, 1996. doi:10.1111/j.2517-6161.1996.tb02080.x.

[162] Yusuke Tsuzuku, Hiroto Imachi, and Takuya Akiba. Variance-based
gradient compression for efficient distributed deep learning. arXiv
preprint arXiv:1802.06058, 2018. URL: https://arxiv.org/abs/
1802.06058.

https://proceedings.mlr.press/v70/suresh17a.html
https://proceedings.mlr.press/v70/suresh17a.html
http://www.icml-2011.org/papers/395_icmlpaper.pdf
http://www.icml-2011.org/papers/395_icmlpaper.pdf
https://proceedings.neurips.cc/paper/2017/file/c02f9de3c2f3040751818aacc7f60b74-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/c02f9de3c2f3040751818aacc7f60b74-Paper.pdf
https://aclanthology.org/P02-1016
https://doi.org/10.3115/1073083.1073105
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://arxiv.org/abs/1802.06058
https://arxiv.org/abs/1802.06058

116

[163] Laurens Van Der Maaten and Kilian Weinberger. Stochas-
tic triplet embedding. In 2012 IEEE International Work-
shop on Machine Learning for Signal Processing, pages 1–6.
IEEE, 2012. URL: http://www.cs.cornell.edu/˜kilian/papers/
stochastictriplet.pdf, doi:10.1109/MLSP.2012.6349720.

[164] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The
numpy array: a structure for efficient numerical computation. Com-
puting in science & engineering, 13(2):22–30, 2011. doi:10.1109/
MCSE.2011.37.

[165] Leena Chennuru Vankadara, Siavash Haghiri, Michael Lohaus, Faiz Ul
Wahab, and Ulrike von Luxburg. Insights into ordinal embedding
algorithms: A systematic evaluation. arXiv preprint arXiv:1912.01666,
2019. URL: https://arxiv.org/abs/1912.01666.

[166] Hongyi Wang*, Scott Sievert*, Shengchao Liu, Zachary Charles, Dim-
itris Papailiopoulos, and Stephen Wright. Atomo: Communication-
efficient learning via atomic sparsification. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL: https://proceedings.neurips.cc/paper/2018/file/
33b3214d792caf311e1f00fd22b392c5-Paper.pdf.

[167] Linnan Wang, Wei Wu, Junyu Zhang, Hang Liu, George Bosilca,
Maurice Herlihy, and Rodrigo Fonseca. FFT-based gradient sparsifi-
cation for the distributed training of deep neural networks. In Pro-
ceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’20, page 113–124, 2020.
doi:10.1145/3369583.3392681.

http://www.cs.cornell.edu/~kilian/papers/stochastictriplet.pdf
http://www.cs.cornell.edu/~kilian/papers/stochastictriplet.pdf
https://doi.org/10.1109/MLSP.2012.6349720
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://arxiv.org/abs/1912.01666
https://proceedings.neurips.cc/paper/2018/file/33b3214d792caf311e1f00fd22b392c5-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/33b3214d792caf311e1f00fd22b392c5-Paper.pdf
https://doi.org/10.1145/3369583.3392681

117

[168] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradi-
ent sparsification for communication-efficient distributed optimiza-
tion. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL: https://proceedings.neurips.cc/paper/2018/file/
3328bdf9a4b9504b9398284244fe97c2-Paper.pdf.

[169] Rachel Ward, Xiaoxia Wu, and Leon Bottou. AdaGrad stepsizes: Sharp
convergence over nonconvex landscapes. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 6677–6686. PMLR, 09–15 Jun 2019. URL:
https://proceedings.mlr.press/v97/ward19a.html.

[170] Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use
t-SNE effectively. Distill, 2016. URL: http://distill.pub/2016/
misread-tsne, doi:10.23915/distill.00002.

[171] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li. Terngrad: Ternary gradients to re-
duce communication in distributed deep learning. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
89fcd07f20b6785b92134bd6c1d0fa42-Abstract.html.

[172] Simon Wiesler, Alexander Richard, Ralf Schluter, and Hermann Ney.
Mean-normalized stochastic gradient for large-scale deep learning.
In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on, pages 180–184. IEEE, 2014. doi:10.
1109/ICASSP.2014.6853582.

https://proceedings.neurips.cc/paper/2018/file/3328bdf9a4b9504b9398284244fe97c2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3328bdf9a4b9504b9398284244fe97c2-Paper.pdf
https://proceedings.mlr.press/v97/ward19a.html
http://distill.pub/2016/misread-tsne
http://distill.pub/2016/misread-tsne
https://doi.org/10.23915/distill.00002
https://proceedings.neurips.cc/paper/2017/hash/89fcd07f20b6785b92134bd6c1d0fa42-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/89fcd07f20b6785b92134bd6c1d0fa42-Abstract.html
https://doi.org/10.1109/ICASSP.2014.6853582
https://doi.org/10.1109/ICASSP.2014.6853582

118

[173] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Sre-
bro, and Benjamin Recht. The marginal value of adap-
tive gradient methods in machine learning. 30, 2017.
URL: https://proceedings.neurips.cc/paper/2017/file/
81b3833e2504647f9d794f7d7b9bf341-Paper.pdf.

[174] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747, 2017. URL: https://arxiv.org/abs/
1708.07747.

[175] Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural
network acoustic models with singular value decomposition. In Inter-
speech, pages 2365–2369, 2013. URL: https://www.microsoft.com/
en-us/research/wp-content/uploads/2013/01/svd_v2.pdf.

[176] Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos,
Kannan Ramchandran, and Peter Bartlett. Gradient diversity: a
key ingredient for scalable distributed learning. In Amos Storkey
and Fernando Perez-Cruz, editors, Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, vol-
ume 84 of Proceedings of Machine Learning Research, pages 1998–2007.
PMLR, 09–11 Apr 2018. URL: https://proceedings.mlr.press/
v84/yin18a.html.

[177] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong
Cheng. Image classification at supercomputer scale. arXiv preprint
arXiv:1811.06992, 2018. URL: https://arxiv.org/pdf/1811.06992.
pdf.

[178] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of
convolutional networks. arXiv preprint arXiv:1708.03888, 2017. URL:
https://arxiv.org/abs/1708.03888.

https://proceedings.neurips.cc/paper/2017/file/81b3833e2504647f9d794f7d7b9bf341-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/81b3833e2504647f9d794f7d7b9bf341-Paper.pdf
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/svd_v2.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/svd_v2.pdf
https://proceedings.mlr.press/v84/yin18a.html
https://proceedings.mlr.press/v84/yin18a.html
https://arxiv.org/pdf/1811.06992.pdf
https://arxiv.org/pdf/1811.06992.pdf
https://arxiv.org/abs/1708.03888

119

[179] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar,
Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer,
and Cho-Jui Hsieh. Large batch optimization for deep learning: Train-
ing bert in 76 minutes. In International Conference on Learning
Representations, 2020. URL: https://openreview.net/forum?id=
Syx4wnEtvH.

[180] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks.
In British Machine Vision Conference 2016. British Machine Vision
Association, 2016. doi:10.5244/C.30.87.

[181] Matthew D Zeiler. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012. URL: https://arxiv.org/
pdf/1212.5701.pdf.

[182] C Zhang, S Bengio, M Hardt, B Recht, and O Vinyals. Under-
standing deep learning requires rethinking generalization. In In-
ternational Conference on Learning Representations, 2017. URL:
https://openreview.net/forum?id=Sy8gdB9xx.

[183] Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant
Sachdeva, George Dahl, Chris Shallue, and Roger B Grosse. Which
algorithmic choices matter at which batch sizes? insights from a
noisy quadratic model. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL: https://proceedings.neurips.cc/paper/2019/file/
e0eacd983971634327ae1819ea8b6214-Paper.pdf.

[184] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and
Ce Zhang. ZipML: Training linear models with end-to-end low preci-
sion, and a little bit of deep learning. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on

https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://doi.org/10.5244/C.30.87
https://arxiv.org/pdf/1212.5701.pdf
https://arxiv.org/pdf/1212.5701.pdf
https://openreview.net/forum?id=Sy8gdB9xx
https://proceedings.neurips.cc/paper/2019/file/e0eacd983971634327ae1819ea8b6214-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e0eacd983971634327ae1819ea8b6214-Paper.pdf

120

Machine Learning (ICML), volume 70 of Proceedings of Machine
Learning Research, pages 4035–4043. PMLR, 06–11 Aug 2017. URL:
https://proceedings.mlr.press/v70/zhang17e.html.

[185] Huan Zhang, Cho-Jui Hsieh, and Venkatesh Akella. Hogwild++: A
new mechanism for decentralized asynchronous stochastic gradient
descent. In 2016 IEEE 16th International Conference on Data Mining
(ICDM), pages 629–638, 2016. doi:10.1109/ICDM.2016.0074.

[186] Pan Zhou, Xiaotong Yuan, and Jiashi Feng. New insight into
hybrid stochastic gradient descent: Beyond with-replacement
sampling and convexity. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31, pages 1234–1243.
Curran Associates, Inc., 2018. URL: http://papers.nips.cc/paper/
7399-new-insight-into-hybrid-stochastic-gradient-descent-beyond-with-replacement-sampling-and-convexity.
pdf.

[187] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and
Yuheng Zou. DoReFa-Net: training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016. URL: https://arxiv.com/abs/1606.06160.

[188] Jingbo Zhu, Huizhen Wang, Tianshun Yao, and Benjamin K Tsou.
Active learning with sampling by uncertainty and density for word
sense disambiguation and text classification. In Proceedings of the 22nd
International Conference on Computational Linguistics (Coling 2008),
pages 1137–1144, Manchester, UK, August 2008. Coling 2008 Orga-
nizing Committee. URL: https://aclanthology.org/C08-1143.

https://proceedings.mlr.press/v70/zhang17e.html
https://doi.org/10.1109/ICDM.2016.0074
http://papers.nips.cc/paper/7399-new-insight-into-hybrid-stochastic-gradient-descent-beyond-with-replacement-sampling-and-convexity.pdf
http://papers.nips.cc/paper/7399-new-insight-into-hybrid-stochastic-gradient-descent-beyond-with-replacement-sampling-and-convexity.pdf
http://papers.nips.cc/paper/7399-new-insight-into-hybrid-stochastic-gradient-descent-beyond-with-replacement-sampling-and-convexity.pdf
https://arxiv.com/abs/1606.06160
https://aclanthology.org/C08-1143

121

a hyperband

This appendix mentions some details for our experiments with Hyperband.
For complete detail, see https://github.com/stsievert/dask-hyperband-comparison.

A.1 Serial simulation detail

Here’s the creation of the dataset:

from dask_ml.model_selection import train_test_split
X, y = make_4_circles(num=60e3)
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=int(10e3)
)

A visualization of this dataset is in Figure 2.2a.
Scikit-learn’s fully-connected neural network is used, their MLPClassifier

which has several hyperparameters. Only one affects the architecture of the
best model: hidden layer sizes, which controls the number of layers and
number of neurons in each layer.

There are 5 values for the hyperparameter. It is varied so the neural
network has 24 neurons but varies the network depth and the width of each
layer. Two choices are 12 neurons in 2 layers or 6 neurons in four layers.
One choice has 12 neurons in the first layer, 6 in the second, and 3 in third
and fourth layers.

The other six hyperparameters control finding the best model and do
not influence model architecture. 3 of these hyperparameters are continuous
and 3 are discrete (of which there are 10 unique combinations). Details are
in Appendix A.3. These hyperparameters include the batch size, learning
rate (and decay schedule) and a regularization parameter:

https://github.com/stsievert/dask-hyperband-comparison

122

from sklearn.neural_network import MLPClassifier
model = MLPClassifier(...)
params = {'batch_size': [32, 64, ..., 512], ...}
print(params.keys())
dict_keys([
"batch_size", # 5 choices
"learning_rate", # 2 choices
"hidden_layer_sizes", # 5 choices
"alpha", # cnts
"power_t", # cnts
"momentum", # cnts
"learning_rate_init" # cnts
])

A.1.1 Usage: rule of thumb on HyperbandSearchCV’s
inputs

Now that we’ve specified the search space and model architecture, let’s create
our HyperbandSearchCV object. As discussed in Section 2.4.2, HyperbandSearchCV
only requires two parameters besides the model and data as discussed above:
the number of partial fit calls for each model (max iter) and the number
of examples each call to partial fit sees (which is implicit via the Dask
array chunk size chunks). These inputs control how many hyperparameter
values are considered and how long to train the models.

The values for max iter and chunks can be specified by a rule-of-thumb
once the number of parameter to be sampled and the number of examples
required to be seen by at least one model, n examples. This rule of thumb
is below:

n_examples = 50 * len(X_train)
n_params = 299

123

The rule-of-thumb to determine inputs
max_iter = n_params
chunks = n_examples // n_params

The value of 299 is chosen because n params is only approximate and
the Dask array evenly chunks evenly with that value. Creation of a
HyperbandSearchCV object and the Dask array is simple with this:

from dask_ml.model_selection import HyperbandSearchCV
search = HyperbandSearchCV(

model, params,
max_iter=max_iter, aggressiveness=4)

X_train = da.from_array(X_train, chunks=chunks)
y_train = da.from_array(y_train, chunks=chunks)
search.fit(X_train, y_train)

aggressiveness=4 is chosen because this is my first time optimizing
these hyperparameters – I only made one small edit to the hyperparame-
ter search space.1 With max iter, no model sees more than n examples
examples as desired and Hyperband evaluates (approximately) n params
hyperparameter combinations.2

A.2 Parallel experiment detail

The inputs and desired outputs are given in Figure 2.4. This is an especially
difficult problem because the noise variance varies slightly between images.

1For personal curiosity, I changed total number of neurons to 24 from 20 to
allow the [12, 6, 3, 3] configuration.

2Exact specification is available through the metadata attribute of
HyperbandSearchCV.

124

To protect against this, a shallow neural network is used that’s slightly more
complex than a linear model. This means hyperparameter optimization is
not simple.

Specifically, this section will find the best hyperparameters for a model cre-
ated in PyTorch [121] (with the wrapper Skorch3 for an image denoising task.
Again, some detail is mentioned in Appendix A.3 and complete details can be
found at https://github.com/stsievert/dask-hyperband-comparison.

A.2.1 Model architecture & Hyperparameters

Autoencoders are a type of neural network useful for image denoising. They
reduce the dimensionality of the input before expanding to the original
dimension, which is similar to a lossy compression. Let’s create that model
and the images it will denoise:

custom model definition with PyTorch
from autoencoder import Autoencoder
from dask_ml.model_selection import train_test_split
import skorch # scikit-learn API wrapper for PyTorch

model = skorch.NeuralNetRegressor(Autoencoder, ...)

X, y = noisy_mnist(augment=5)
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.05)

Of course, this is a neural network so there are many hyperparame-
ters to tune. Only one hyperparameter affects the model architecture:
estimator activation, which specifies the activation the neural network
should use. This hyperparameter is varied between 4 different choices, all

3https://github.com/skorch-dev/skorch

https://github.com/stsievert/dask-hyperband-comparison
https://github.com/skorch-dev/skorch

125

different types of the rectified linear unit (ReLU) [113], including the leaky
ReLU [103], parametric ReLU [62] and exponential linear units (ELU) [37].

The other hyperparameters all control finding the optimal model af-
ter the architecture is fixed. These hyperparameters include 3 discrete
hyperparameters (with 160 unique combinations) and 3 continuous hyperpa-
rameters. Some of these hyperparameters include choices on the optimizer
to use (SGD [18] or Adam [85]), initialization, regularization and optimizer
hyperparameters like learning rate or momentum. Here’s a brief summary:

params = {'optimizer': ['SGD', 'Adam'], ...}
print(params.keys())
dict_keys([
"optimizer", # 2 choices
"batch_size", # 5 choices
"module__init", # 4 choices
"module__activation", # 4 choices
"optimizer__lr", # cnts
"optimizer__momentum", # cnts
"optimizer__weight_decay" # cnts
])

Details are in Appendix A.3. Now, let’s create our HyperbandSearchCV
object: HyperbandSearchCV supports specifying patience=True to make a
decision on how long to wait to see if scores stop increasing, as mentioned
above. Let’s create a HyperbandSearchCV object that stops training non-
improving models.

A.2.2 Usage: plateau specification for
non-improving models

from dask_ml.model_selection import HyperbandSearchCV
search = HyperbandSearchCV(

126

model, params, max_iter=max_iter, patience=True)
search.fit(X_train, y_train)

The current implementation uses patience=True to choose a high value
of patience=max iter // 3. This is most useful for the least adaptive
bracket of Hyperband (which trains a couple models to completion) and
mirrors the patience of the second least adaptive bracket in Hyperband.

In these experiments, patience=max iter // 3 has no effect on per-
formance. If patience=max iter // 6 for these experiments, there is a
moderate effect on performance (patience=max iter // 6 obtains a model
with validation loss 0.0637 instead of 0.0630 like patience=max iter // 3
and patience=False).

A.3 Hyperparameter search spaces

A.3.1 Serial Simulation

Here are some of the other hyperparameters tuned, alongside descriptions
of their default values and the values chosen for tuning.

• alpha, a regularization term that can affect generalization. This value
defaults to 10−4 and is tuned logarithmically between 10−6 and 10−3

• batch size, the number of examples used to approximate the gradient
at each optimization iteration. This value defaults to 200 and is chosen
to be one of [32, 64, . . . , 512].

• learning rate controls the learning rate decay scheme, either constant
or via the “invscaling” scheme, which has the learning rate decay
like γ0/t

p where p and γ0 are also tuned. γ0 defaults to 10−3 and is
tuned logarithmically between 10−4 and 10−2. p defaults to 0.5 and is
tuned between 0.1 and 0.9.

• momentum, the amount of momentum to include in Nesterov’s momen-
tum [115]. This value is chosen between 0 and 1.

127

The learning rate scheduler used is not Adam [85] because it claims to
be most useful without tuning and has reportedly has marginal gain [173].

A.3.2 Parallel Experiments

Here are some of the other hyperparameters tuned:

• optimizer: which optimization method should be used for training?
Choices are stochastic gradient descent (SGD) [18] and Adam [85].
SGD is chosen with 5/7th probability.

• estimator init: how should the estimator be initialized before train-
ing? Choices are Xavier [56] and Kaiming [62] initialization.

• batch size: how many examples should the optimizer use to approxi-
mate the gradient? Choices are [32, 64, . . . , 512].

• weight decay: how much of a particular type of regularization should
the neural net have? Regularization helps control how well the model
performs on unseen data. This value is chosen to be zero 1/6th of the
time, and if not zero chosen uniformly at random between 10−5 and
10−3 logarithmically.

• optimizer lr: what learning rate should the optimizer use? This is
the most basic hyperparameter for the optimizer. This value is tuned
between 10−1.5 and 101 after some initial tuning.

• optimizer momentum, which is a hyper-parameter for the SGD opti-
mizer to incorporate Nesterov momentum [115]. This value is tuned
between 0 and 1.

128

b adaptive batch sizes

B.1 Gradient diversity bounds

Yin et al. introduced a measure of gradient dissimilarity called “gradient
diversity” [176]. When the gradients for each examples are orthogonal, then
the gradient diversity ∆k = 1 and when all the gradients are exactly the
same, then ∆k = 1/n. The definition is repeated below:

Definition 6. The gradient diversity of a model w with respect to F is
given by

∆(w) :=
∑n
i=1 ‖∇fi(w)‖2

2

‖∑n
i=1∇fi(w)‖2

2
=

∑n
i=1 ‖∇fi(w)‖2

2∑n
i=1 ‖∇fi(w)‖2

2 +∑
i 6=j 〈fi(w), fj(w)〉

.

(B.1)
when fi(w) = f(w;xi). Let ∆k := ∆(wk) given iterates {wi}Ti=1.

Yin et al. show that serial SGD and mini-batch SGD produce similar
results with the same number of gradient evaluations [176, Theorem 3]. In
this result, the batch size must obey a bound proportional to the maximum
gradient diversity over all iterates. Let’s see how gradient diversity changes
as an optimization proceeds:

Theorem 11. If F is β-smooth, the gradient diversity ∆k obeys ∆k ≥
c/ ‖wk −w?‖2

2 for c = M2
L/β

2n.

Theorem 12. If F is α-strongly convex, the gradient diversity ∆k obeys
∆k ≤ c/ ‖wk −w?‖2

2 for c = M2
U/α

2n.

Corollary 13. If F is α-PL, then the gradient diversity ∆k obeys ∆k ≤
c/(F (wk)− F ?) for c = M2

U/2αn.

Straightforward proofs of the above are given in Appendix B.1.1 and B.1.2.
These proofs will rely on these statements:

129

Lemma 14. If a function f is λ-strongly convex, then f is also λ-PL.

Corollary 15 (from Lemma 1 on [176]). Let wk be a model after k updates.
Let wk+1 be the model after a mini-batch iteration given by Equation 3.2
with batch size Bk ≤ nδ∆k + 1 for an arbitrary δ. Then,

E
[
‖wk+1 −w?‖2

2

∣∣∣ wk

]
≤ ‖wk −w?‖2

2 − 2γk 〈∇F (wk),wk −w?〉

+ (1 + δ)γ2M2(wk)
Bk

with equality when there are no projections.

Proof is in Appendix B.1.3.

B.1.1 Proof of Theorem 11

Proof. First, let’s expand the gradient diversity term and exploit that
∇F (w?) = 0 when w? is a local minimizer or saddle point:

∆k =
∑
i ‖∇fi(wk)‖2

2

‖∑i∇fi(wk)‖2
2

=
∑
i ‖∇fi(wk)‖2

2

‖n∇F (wk)‖2
2

=
1
n

∑
i ‖∇fi(wk)‖2

2

n ‖∇F (wk)−∇F (w?)‖2
2

Because F is β-smooth, ‖∇F (w1)−∇F (w2)‖ ≤ β ‖w1 −w2‖. Then,

∆k = M2(wk)
n ‖∇F (wk)−∇F (w?)‖2

2
≥ M2(wk)
nβ2 ‖wk −w?‖2

2
≥ M2

L

nβ2 ‖wk −w?‖2
2

130

B.1.2 Proof of Theorem 12

Proof. Now, define expand gradient diversity and take advantage that
∇F (x?) = 0 when x? is a local minima or saddle point:

∆k =
∑
i ‖∇fi(wk)‖2

2

‖∑i∇fi(wk)‖2
2

=
1
n

∑
i ‖∇fi(wk)‖2

2

n ‖∇F (wk)‖2
2

= M2(wk)
n ‖∇F (wk)‖2

2

≤ M2(wk)
2αn (F (wk)− F (w?))

In the context of Theorem 12, the function F is assumed to be α-strongly
convex. This implies that the function F is also α-PL as shown in Lemma 14.
With this, the fact that strongly convex functions grow at least quadratically
can be used, so

M2(wk)
2αn (F (wk)− F (w?)) ≤

M2(wk)
α2n ‖wk −w?‖2

2

Then, by definition of M2 and M2
U , there’s also

∆k ≤
M2

U

2αn (F (wk)− F (w?)) ≤
M2

U

α2n ‖wk −w?‖2
2

B.1.3 Proof of Lemma 14

There is a brief proof of this in Appendix B of [80]. It is expanded here for
completeness.

Proof. Recall that λ-strongly convex means ∀x ∈ Rd and ∀y ∈ Rd

131

f(y) ≥ f(x) +∇f(x)T (y − x) + λ

2 ‖y − x‖
2
2

and λ-PL means that 1
2 ‖∇f(x)‖2

2 ≥ λ(f(x)− f(x?)).
Let’s start off with the definition of strong convexity, and define g(y) =

∇f(x)T (y − x) + λ
2 ‖y − x‖

2
2. Then, it’s simple to see that

f(x?)− f(x) ≥ ∇f(x)T (x? − x) + λ

2 ‖x
? − x‖2

2

≥ min
y
g(y)

g is a convex function, so the minimum can be obtained by setting∇g(y) = 0.
When the minimum of g(y) is found, y = x− 1

λ
∇f(x). That means that

min
y
g(y) = g(x− λ−1∇f(x))

= −1
λ
‖f(x)‖2

2 + 1
2λ ‖∇f(x)‖2

2

≥ −1
2λ ‖∇f(x)‖2

2

because y − x = −1
λ
∇f(x).

B.2 Convergence proofs

This section will analyze the convergence rate of mini-batch SGD on F (w).
In this, at every iteration k, Bk examples are drawn uniformly at random
with repetition via i(k)

1 , . . . , i
(k)
Bk

from the possible example indices {1, . . . , n}.
Let Sk = {i(k)

1 , . . . , i
(k)
Bk
}. The model is updated with wk+1 = wk − γkĝk

where
ĝk = 1

Bk

∑
i∈Sk

∇fi(wk).

Note that E[ĝk] = ∇F (wk). Now, let’s prove Lemma 4, repeated here for
convenience:

132

Lemma 16. Let c′ = c/M2
U . When the gradient estimate ĝk = 1/Bk

∑Bk
i=1∇fis(wk)

is created with batch size Bk in Eq. 3.3 with is chosen uniformly at random,
then the expected variance

E
[
‖∇F (wk)− gk‖2

2

∣∣∣ wk

]
≤ F (wk)− F ?

c′
.

Proof.

E
[
‖∇F (wk)− ĝk‖2

2

∣∣∣ wk

]
= E

[
‖∇F (wk)‖2

2 + ‖ĝk‖2
2 − 2 〈∇F (wk), ĝk〉

∣∣∣ wk

]
= E


∥∥∥∥∥∥ 1
Bk

Bk∑
i=1
∇fik(wk)

∥∥∥∥∥∥
2

2

∣∣∣∣∣∣∣ wk

− ‖∇F (wk)‖2
2

=
E
[
‖∇f(wk)‖2

2

∣∣∣ wk

]
Bk

+ Bk − 1
Bk

‖∇F (wk)‖2
2 − ‖∇F (wk)‖2

2

≤ E [M2(wk) | wk]
Bk

≤ E [M2(wk) | wk] (F (wk)− F ?)
c′M2

U

≤ E [Fk − F ?]
c′

when the batch size Bk = dc(F (wk)− F ?)−1e and with c = c′M2
U .

B.2.1 Proof of Theorem 2

Proof. From definition of β-smooth (Definition 2) and with the mini-batch
SGD iterations,

F (wk+1) ≤ F (wk)− γ
〈
∇F (wk),

1
B

B∑
i=1
∇fsi

(w)
〉

+ βγ2

2

∥∥∥∥∥ 1
B

B∑
i=1
∇fsi

(wk)
∥∥∥∥∥

2

2

133

Wrapping with conditional expectation and noticing that
〈∑B

i=1 ai,
∑B
i=1 ai

〉
=∑B

i=1 ‖ai‖
2 +∑B

i=1
∑B
j=1,j 6=i 〈ai,aj〉 and defining Ωk := F (wk)−F (w?), and

Ωk := Ωk − γ ‖∇F (wk)‖2
2 then

E [Ωk+1 | wk] ≤ Ωk + βγ2

2 E

∥∥∥∥∥ 1
B

B∑
i=1
∇fsi

(wk)
∥∥∥∥∥

2

2

∣∣∣∣∣∣ wk


= Ωk + βγ2

2 E
[〈

1
B

B∑
i=1
∇fis(wk),

1
B

B∑
i=1
∇fis(wk)

〉 ∣∣∣∣∣ wk

]

= Ωk + βγ2

2B2E

 B∑
i=1
‖∇fis(wk)‖2

2 +
B∑
i 6=j
〈∇fis(wk),∇fjs(wk)〉

∣∣∣∣∣∣ wk


= Ωk + βγ2

2

E
[
‖∇f(wk)‖2

2

]
B

+ B − 1
B
‖∇F (wk)‖2

2


= Ωk + βγ2

2

(
M2(wk)

B
+ B − 1

B
‖∇F (wk)‖2

2

)

≤ Ωk + ‖∇F (wk)‖2
2

(
βγ2

2 − γ
)

+ βγ2

2
F (wk)− F (w?)

c′

when c = c′M2
U by Lemma 4. Choose γ < 2

β
so βγ2

2 − γ < 0. Then because
F is α-PL,

≤ F (wk)− F ? −
(
γ − βγ2

2

)
· 2α(F (wk)− F (w?)) + βγ2

2
F (wk)− F (w?)

c′

=
(

1− 2αγ + 2αβγ
2

2 + βγ2

2c′

)
(F (wk)− F (w?))

=
(
1− aγ + bγ2

)
(F (wk)− F (w?))

when a = 2α and b = β
(
α + 1

2c′
)
. Choose the step size γ = a/2b =

α/[β
(
α + 1

2c′
)
] < 1/β. Then

134

=
(

1− a2

4b

)
(F (wk)− F (w?))

=
1− α2

β
(
α + 1

2c′
)
 (F (wk)− F (w?))

This holds for any k. Then, by law of iterated expectation:

E [F (w2)− F ? | w0] = E [E [F (w2)− F ? | w1] | wk]
≤ E [(1− r)E [F (w1)− F ? | w1] | w0]
= (1− r)E [F (w1)− F ? | w0]
≤ (1− r)E [(1− r)(F (w0)− F ?) | w0]
= (1− r)2(F (w0)− F ?)

when r :=
(

1− α2

β(α+ 1
2c′)

)
. Continuing this process to iteration T ,

E [F (wT)− F (w?) | w0] ≤
1− α2

β
(
α + 1

2c′
)
T (F (w0)− F (w?))

Noticing that 1− x ≤ e−x for all x ≥ 0, E [F (wT)− F (w?)] ≤ ε when

T ≥ log
(
F (w0)− F (w?)

ε

)β
(
α + 1

2c′
)

α2

 (B.2)

B.2.2 Proof of Theorem 3

Proof. Suppose we use a step-size of γ = 1/(β + 1/η) for η > 0. Then,
we have the following relation, extracted from the proof of Theorem 6.3 of
Bubeck et al. [24].

135

E[F (wk+1)−F ?] ≤ (β + 1/η)
2 (E‖wk −w∗‖ − E‖wk+1 −w∗‖)+

η

2E‖∇F (wk)−ĝk‖2.

By Lemma 4, and taking η = c′, we have

E[F (wk+1)− F ?] ≤ (β + 1/η)
2 (E‖wk −w∗‖ − E‖wk+1 −w∗‖) + η

2
E[F (wk)− F ?]

c′

= (β + 1/c′)
2 (E‖wk −w∗‖ − E‖wk+1 −w∗‖) + 1

2E[F (wk)− F ?].

Summing k = 0 to k = T − 1 we have

T−1∑
k=0

E[F (wk+1)− F ?] ≤ (β + 1/c′)
2 (E‖w0 −w∗‖ − E‖wk+1 −w∗‖) + 1

2

T−1∑
k=0

E[F (wk)− F ?]

≤ (β + 1/c′)
2 R2 + 1

2

T−1∑
k=0

E[F (wk)− F ?].

Rearranging, we have

T−1∑
k=0

E[F (wk+1)− F ?] = (β + 1/c′)R2 + F (w0)− F ? − 2(F (wT)− F ?)

≤ (β + 1/c′)R2 + F (w0)− F ?

This implies the desired result after applying the law of iterated expec-
tation and convexity.

B.2.3 Proof of Theorem 5

Proof. By definition of β-smooth,

F (wk+1) ≤ F (wk) + 〈∇F (wk),wk+1 −wk〉+ β

2 ‖wk+1 −wk‖2
2

136

Then substitution of wk+1 = wk − γ
Bk

∑Bk
i=1∇fis(wk), the following is

obtained:

γ

〈
∇F (wk),

1
Bk

Bk∑
i=1
∇fis(wk)

〉
≤ Fk − Fk+1 + βγ2

2

∥∥∥∥∥∥ 1
Bk

Bk∑
i=1
∇fis(wk)

∥∥∥∥∥∥
2

2

Wrapping in conditional expectation given wk and using the shorthand
∇fi := ∇fi(w) = ∇f(w; zi)

γ ‖∇F (wk)‖2
2 ≤ E [Fk − Fk+1 | wk] + βγ2

2 E


∥∥∥∥∥∥ 1
Bk

Bk∑
i=1
∇fis(wk)

∥∥∥∥∥∥
2

2

∣∣∣∣∣∣∣ wk


≤ E [Fk − Fk+1 | wk] + βγ2

2B2
k

E

Bk∑
i=1

Bk∑
j=1
〈∇fis ,∇fjs〉

∣∣∣∣∣∣ wk


≤ E [Fk − Fk+1 | wk] + βγ2

2B2
k

E

Bk∑
i=1
‖∇fis‖

2
2 +

Bk∑
i=1

Bk∑
j=1
〈∇fis ,∇fjs〉

∣∣∣∣∣∣ wk


≤ E [Fk − Fk+1] + βγ2

2

(
M2(wk)
Bk

+ Bk − 1
Bk

‖∇F (wk)‖2
2

)

because the indices is and js are chosen independently and E [∇fis(w)] =
F (w). Then, substituting the definition of Bk in Eq. 3.4,

≤ E [Fk − Fk+1] + βγ2

2

(
‖∇F (wk)‖2

2
c

+ ‖∇F (wk)‖2
2

)

when c = c′M2
L. Then this inequality is obtained after rearranging:

‖∇F (wk)‖2
2

(
γ − γ2β

2 (c′−1 + 1)
)
≤ E [Fk − Fk+1]

Then with this result and iterated expectation

137

min
k=0,...,T−1

‖∇F (wk)‖2
2 ≤

1
T

T−1∑
k=0
‖∇F (wk)‖2

2

≤ F0 − F ?

T

(
γ − γ2β

2 (c′−1 + 1)
)−1

≤ F0 − F ?

T
2β
(1
c′

+ 1
)

when γ = β−1c/(c+M2
L)).

Corollary 17.

T−1∑
k=0
‖∇F (wk)‖2

2 ≤ 2β (F0 − F ?)
(1
c′

+ 1
)

B.3 Proofs for required number of
examples

The number of examples required to be processed is the sum of batch sizes,∑T
i=1 Bi over T iterations. This section will assume an oracle provides the

batch size Bi to provide bounds on the number of examples to provide
bounds on ∑T

i=1 Bi.

B.3.1 Proof of Corollaries 6 and 7

These proofs require another lemma that will be used in both proofs:

Lemma 18. If a model is trained so the loss difference from optimal F (w)−
F ? ∈ [ε/2, ε], then 4B0(F (w0)−F ?)T/ε examples need to be processed when
there are T model updates the initial batch size is B0.

138

Proof of Corollary 6

Proof. This case requires T ≥ cα,β log (δ0/ε) iterations for some constant c
when F is α-PL and β-smooth by Equation B.2 when δ0 = F (w0) − F ?.
Applying Lemma 18 gives that the adaptive batch size scheme in Eq. (3.3)
requires no more then the number of examples

T−1∑
k=0

Bk ≤
log (δ0/ε)

ε
· 4cα,βB0δ0

Proof of Corollary 7

Proof. This case requires T ≥ rβ/ε iterations when F is convex and β-
smooth by Theorem 2. Applying Lemma 18 gives that the adaptive batch
size scheme in Eq. (3.3) requires no more then the number of examples

T−1∑
k=0

Bk ≤
1
ε2 · 4rβB0δ0

when δ0 := F (w0)− F ?.

B.3.2 Proof of Lemma 18

Proof.
T∑
k=1

Bk =
T∑
k=1

⌈
B0(F (w0)− F ?)
F (wk)− F ?

⌉

≤ 2B0(F (w0)− F ?)
T∑
k=1

1
F (wk)− F ?

≤ 4B0(F (w0)− F ?)T/ε

139

B.3.3 Proof of Corollary 8

Proof. Following the proof of Lemma 18,

T∑
k=1

Bk =
T∑
k=1

⌈
c

‖∇F (wk)‖2
2

⌉

≤ 2c
T∑
k=1

1
‖∇F (wk)‖2

2

≤ 4cT/ε
≤ 4cr/ε3

using Theorem 5 when ‖∇F (wk)‖ ≤ ε (and not when ‖∇F (wk)‖2
2 ≤ ε).

B.4 Experiment details

PyTorch [121] is used to implement all optimization.

B.4.1 Simulation with synthetic dataset

All optimizers use learning rate γ = 2.5 · 10−3 unless explicitly noted
otherwise.

• SGD with adaptive batch sizes. Batch size: Bk = dB0(F (w0)− F ?)(F (wk)− F ?)−1e,
B0 = 2.

• SGD with decaying step sizes: Static batch size B = 64, decaying
step size γk = 10γ/k at iteration k [111].

• AdaGrad is used with a batch size of B = 64 and PyTorch 1.1’s
default hyperparameters, γ = 0.01 and 0 for all other hyperparameters.

• Gradient descent. No other hyperparameters are required past
learning rate.

140

These hyperparameters were not tuned past ensuring the convergence of
each optimizer.

B.4.2 Experiment with Fashion MNIST

Fashion MNIST is a dataset with 60,000 training examples and 10,000
testing examples. Each example includes a 28× 28 image that falls in one
of 10 classes (e.g., “coat” or “bag”) [174]. The standard pre-processing in
PyTorch’s MNIST example is used.1 The CNN in the example will used,
which has about 111,000 parameters that specify 3 convolutional layers with
max-pooling and 2 fully-connected layers, with ReLU activations after every
layer.

The hyperparameter optimization process followed the data flow below
for each optimizer:

• Randomly sample hyperparameters, and train the model for 200 epochs
on 80% of the training set (using the remaining 20% for validation).

• Refine hyperparameters based on the hyperparameters that had valida-
tion loss within 0.005 of the minimum, and had fewer model updates
than the mean number of model updates.

• Repeat steps 1 and 2 until satisfied with validation performance.
• Manually choose one set of hyperparameters for each optimizer, and

train for 200 epochs with the entire training set, and report performance
on the test set.

Step (4) has only been run once for RadaDamp. For GeoDamp, we
sampled at least 268 hyperparameters, and for AdaGrad we sampled at least

1The transform at http://github.com/pytorch/examples/.../mnist/main.py#L105
is used; the resulting pixels value have a mean of 0.504 and a standard deviation
of 1.14, not zero mean and unit variance as is typical for preprocessing. The
model used has about 110 thousand parameters and includes biases in all layers,
likely resolving any issues.

https://github.com/pytorch/examples/blob/b9f3b2ebb9464959bdbf0c3ac77124a704954828/mnist/main.py#L105

141

179 hyperparameters. We spent a while on step (3) for RadaDamp2 Both
GeoDamp and AdaGrad required fewer iterations of step (3).

Hyperparameter sampling space, and tuned values are below. After some
initial sampling, the learning rate is fixed at to be 0.005 and initial/maximum
batch sizes to be 256/1024 respectively for all optimizers. We tuned the
value of weight decay more for RadaDamp, and set it to be 0.003 for all
optimizers.

With those fixed hyperparameters, in our last run of hyperparameter
optimization we sampled from these hyperparameters:

• AdaGrad:

– Batch size: [16, 32, 64, 128, 256] (tuned value: 256)

• GeoDamp:

– Damping delay (epochs): (2, 5, 10, 20, 30, 60] (tuned value:
10)

– Damping factor: log-uniform between 1 to 10 (tuned value:
1.219231)

• RadaDamp:

– “Dwell”: [1, 10, 20, 30, 50, 100] (tuned value: 1)
– Memory ρ: [0.95, 0.99, 0.995, 0.999] (tuned value: 0.999)

“Dwell” is the frequency at which to update the batch size; if dwell= 7,
then the batch size will be updated every 7 model updates. Because we
found the best value of dwell to be 1, it is not included in the description of
Algorithm 1.

GeoDamp and RadaDamp change the batch size/learning rate for SGD
with Nesterov momentum (and a momentum value 0.9). GeoDamp-LR aka
SGD and RadaDamp-LR change the learning rate by the same amount

2Primarily to tune the regularization balance between loss and gradient norm,
λ. We didn’t have much success with large λ.

142

the batch size would have changed; if RadaDamp increases the batch size
by a factor of d, RadaDamp-LR will decay the learning rate by a factor of
d instead. When the maximum batch size is reached for RadaDamp and
GeoDamp, the learning rate is decayed instead of the batch size increasing
by the same scheme.

If the damping factor is d and the damping delay is e epochs, the batch
size increases by a factor of d or the step size decays by a factor of d every e
epochs.

Figure B.1: The batch size against the number of model updates u. Here,
r = 0.5u/103 + 8 and g = 0.3u/103 + 7.

143

c training pytorch models faster with
dask

C.1 Example usage

First, let’s create a standard PyTorch model. This is a simple definition; a
more complicated model or one that uses GPUs can easily be substituted.

import torch.nn as nn
import torch.nn.functional as F

class HiddenLayer(nn.Module):
def __init__(self, features=4, hidden=2, out=1):

super().__init__()
self.hidden = nn.Linear(features, hidden)
self.out = nn.Linear(hidden, out)

def forward(self, x, *args, **kwargs):
return self.out(F.relu(self.hidden(x)))

Now, let’s create our optimizer:

from adadamp import DaskRegressor
import torch.optim as optim

est = DaskRegressor(
module=HiddenLayer, module__features=10,
optimizer=optim.Adadelta,
optimizer__weight_decay=1e-7,
max_epochs=10

)

144

So far, a PyTorch model and optimizer have been specified. As per the
Scikit-learn API, we specify parameters for the model/optimizer with double
underscores, so in our example “HiddenLayer(features=10)“ will be created.
We can set the batch size increase parameters at initialization if desired, or
inside set params.

from adadamp.dampers import GeoDamp
est.set_params(

batch_size=GeoDamp, batch_size__delay=60,
batch_size__factor=5)

This will increase the batch size by a factor of 5 every 60 epochs, which
is used in the experiments. Now, we can train:

from sklearn.datasets import make_regression
X, y = make_regression(n_features=10)
X = torch.from_numpy(X.astype("float32"))
y = torch.from_numpy(y.astype("float32")).reshape(-1, 1)

est.fit(X, y)

C.2 Future work

C.2.1 Architecture

Fundamentally, the model weights can be either be held on a master node
(centralized), or on every node (decentralized). Respectively, these storage
architectures typically use point-to-point communication or an “all-reduce”
communication. Both centralized [2, 96] and decentralized [97, 146] commu-
nication architectures are common.

Future work is to avoid the overhead introduced by manually having
Dask control the model update workflow. With any synchronous centralized

145

system, the time required for any one model update is composed of the time
required for the following tasks:

1. Broadcasting the model from the master node to all workers
2. Finishing gradient computation on all workers.
3. Communicating gradients back to master node.
4. Various overhead tasks (e.g., serialization, worker scheduling, etc).
5. Computing the model update after all gradients are computed &

gathered.

Items (1), (3) and (4) are a large concern in our implementation. De-
centralized communication has the advantage of eliminating item (1) and
most of item (4), and mitigates (3) with a smarter communication strategy
(all-reduce vs. point-to-point). Item (2) is still a concern with straggler
nodes [46], but recent work has achieved “near-linear scalability with 256
GPUs” in a homogeneous computing environment [97]. Items (2) and (5)
can be avoided with asynchronous methods (e.g., [118, 185]).

That is, most of the concerns in our implementation will be resolved with
a distributed communication strategy. The PyTorch distributed communi-
cation package uses a synchronous decentralized strategy, so the model is
communicated to each worker and gradients are sent between workers with
an all-reduce scheme [97]. It has some machine learning specific features to
reduce the communication time, including performing both computation
and communication concurrently as layer gradients become available [97,
Sec. 3.2.3].

The software library dask-pytorch-ddp1 allows use of the PyTorch de-
centralized communications [97] with Dask clusters, and is a thin wrapper
around PyTorch’s distributed communication package. Future work will
likely involve ensuring training can efficiently use a variable number of
workers.

1https://github.com/saturncloud/dask-pytorch-ddp

https://github.com/saturncloud/dask-pytorch-ddp

146

C.2.2 Simulations

We have simulated the expected gain from the work of enabling decentral-
ized communication with two networks that use a decentralized all-reduce
strategy:

• decentralized-medium It assumes an a network with inter-worker
bandwidth of 54Gb/s and a latency of 0.05µs.

• centralized uses a centralized communication strategy (as imple-
mented) and the same network as decentralized-medium.

• decentralized-high has the same network as decentralized-medium
but has an inter-worker bandwidth of 800Gb/s and a latency of 0.025µs.

To provide baseline performance, we also show the results with the
current implementation:

• centralized uses the same network as decentralized-medium but
with the centralized communication scheme that is currently imple-
mented.

Table C.1: Simulations that indicate how the training time (in minutes)
will change under different architectures and networks. The “centralized”
architecture is the currently implemented architecture, and has the same
numbers as “training time” in Table 3.7.

Maximum batch size Centralized Decentralized (moderate) Decentralized (high)

5.1k (*2) 69.9 45.1 43.5
3.2k 107.2 67.7 65.5
16k 107.5 67.7 65.7
640 116.9 73.6 71.8
128 200.2 121.7 121.5

147

decentralized-medium is most applicable for clusters that have decent
bandwidth between nodes. It’s also applicable to for certain cases when
Amazon EC2 is used with one GPU per worker,2 or workers have a very
moderate Infiniband setup.3 decentralized-high is a simulation of the
network used by the PyTorch developers to illustrate their distributed
communication [97]. We have run simulations to illustrate the effects of
these networks. Of course, changing the underlying networks does not affect
the number of epochs or model updates, so Figs. 3.6 and 3.7 also apply here.

A summary of how different networks affect training time is shown in Ta-
ble C.1. We show the training time for a particular network (decentralized-moderate)
in Figure C.1; decentralized-high shows similar performance as illustrated
in Table C.1. A visualization of Table C.1 is shown in Figure 3.8. This
shows how network quality affects the performance of different optimization
methods in Figure C.1. Clearly, the optimization method (and the maximum
number of workers) is more important than the network.

Finally, let’s show how the number of Dask workers affects the time
required to complete a single epoch with a constant batch size. This
simulation will use the decentralized-high network and has the advantage
of removing any overhead. The results in Figure C.2 show that the speedups
start saturating around 128 examples/worker for the model used with a
batch size of 512. Larger batch sizes will likely mirror this performance –
computation is bottleneck with this model/dataset/hardware.

250Gb/s and 25Gb/s networks can be obtained with g4dn.8xlarge and
g4dn.xlarge instances respectively. g4dn.xlarge machines have 1 GPU each
and are the least expensive for a fixed number of FLOPs on the GPU.

3A 2011 Infiniband setup with 4 links (https://en.wikipedia.org/wiki/
InfiniBand#Performance)

https://en.wikipedia.org/wiki/InfiniBand#Performance
https://en.wikipedia.org/wiki/InfiniBand#Performance

148

Figure C.1: The training time required for different optimizers under the
decentralized-moderate network.

Figure C.2: The median time to complete a pass through the training set
with a batch size of 512. As expected, the speedups diminish when there
is little computation and much communication (say with 32 examples per
worker).

149

C.3 Loss vs. time

Figure C.3: The training time required for different optimizers under the
decentralized-moderate network.

Figure C.4: The training time required for different optimizers under the
decentralized-high network.

150

Figure C.5: The training time required for different optimizers under the
centralized network.

151

d gradient compression

D.1 Rigorous statement

Let (V, 〈·, ·〉) be an inner product space over R and let ‖ · ‖ denote the
induced norm on V . In what follows, you may think of g as a stochastic
gradient of the function we wish to optimize. An atomic decomposition of
g is any decomposition of the form g = ∑

a∈A λaa for some set of atoms
A ⊆ V . Intuitively, A consists of simple building blocks. We will assume
that for all a ∈ A, ‖a‖ = 1, as this can be achieved by a positive rescaling
of the λa.

An example of an atomic decomposition is the entry-wise decomposition
g = ∑

i giei where {ei}ni=1 is the standard basis. More generally, any
orthonormal basis of V gives rise to a unique atomic decomposition of g.
While we focus on finite dimensional vectors, one could use Fourier and
wavelet decompositions in this framework. When considering matrices, the
singular value decomposition gives an atomic decomposition in the set of
rank-1 matrices. More general atomic decompositions have found uses in a
variety of situations, including solving linear inverse problems [30].

We are interested in finding an approximation to g with fewer atoms. Our
primary motivation is that this reduces communication costs, as we only need
to send atoms with non-zero weights. We can use whichever decomposition
is most amenable for sparsification. For instance, if X is a low rank matrix,
then its singular value decomposition is naturally sparse, so we can save
communication costs by sparsifying its singular value decomposition instead
of its entries.

Suppose A = {ai}ni=1 and we have an atomic decomposition g =∑n
i=1 λiai. We wish to find an unbiased estimator ĝ of g that is sparse

in these atoms, and with small variance. Since ĝ is unbiased, minimizing
its variance is equivalent to minimizing E[‖ĝ‖2]. We use Eq. 3.7 for our

152

estimator. We have the following lemma about ĝ in Eq. 3.7:

Lemma 19. E[ĝ] = g and E[‖ĝ‖2] = ∑n
i=1 λ

2
i p
−1
i +∑

i 6=j λiλj〈ai,aj〉.

Let λ = [λ1, . . . , λn]T , p = [p1, . . . , pn]T . In order to ensure that this
estimator is sparse, we fix some sparsity budget s. That is, we require∑
i pi = s. This is a sparsity on average constraint. We wish to minimize

E[‖ĝ‖2] subject to this constraint. By Lemma 19, this is equivalent to
Eq. (3.8), rephrased below:

min
p

n∑
i=1

λ2
i

pi
s.t. ∀i, 0 < pi ≤ 1,

n∑
i=1

pi = s. (D.1)

An equivalent form of this problem was presented in [89] (Section 6.1). The
authors considered this problem for entry-wise sparsification and found a
closed-form solution for s ≤ ‖λ‖1/‖λ‖∞. We give a version of their result
but extend it to all s. A similar optimization problem was given in [168],
which instead minimizes sparsity subject to a variance constraint.

Algorithm 2 ATOMO probabilities
1: procedure ATOMO(λ ∈ Rn with |λ1| ≥ . . . |λn|; sparsity budget s

such that 0 < s ≤ n.)
2: i = 1
3: while i ≤ n do
4: if |λi|s ≤

∑n
j=i |λi| then

5: for k = i, . . . , n do
6: pk = |λk|s

(∑n
j=i |λi|

)−1

7: i = n+ 1
8: else
9: pi = 1, s = s− 1

10: i = i+ 1
return p ∈ Rn solving Eq. (3.8)

We will show that Algorithm 2 produces p ∈ Rn solving Eq. (3.8). While
we show in Appendix D.3 that this can be derived via the KKT conditions,

153

we focus on an alternative method relaxes Eq. (3.8) to better understand
its structure. This approach also analyzes the variance achieved by solving
Eq. (3.8) more directly.

Note that Eq. (3.8) has non-empty feasible set only for 0 < s ≤ n. Define
f(p) := ∑n

i=1 λ
2
i /pi. To understand how to solve Eq. (3.8), we first consider

the following relaxation:

min
p

n∑
i=1

λ2
i

pi
s.t. ∀i, 0 < pi,

n∑
i=1

pi = s. (D.2)

We have the following lemma about the solutions to Eq. (D.2), first
shown in [89].

Lemma 20 ([89]). Any feasible vector p to Eq. (D.2) satisfies f(p) ≥ 1
s
‖λ‖2

1.

This is achieved iff pi = |λi|s
‖λ‖1

.

Lemma 20 implies that if we ignore the constraint that pi ≤ 1, then
the optimal p is achieved by setting pi = |λi|s/‖λ‖1. If the quantity in the
right-hand side is greater than 1, this does not give us an actual probability.
This leads to the following definition.

Definition 21. An atomic decomposition g = ∑n
i=1 λiai is s-unbalanced at

entry i if |λi|s > ‖λ‖1.

We say that g is s-balanced otherwise. Clearly, an atomic decomposition
is s-balanced iff s ≤ ‖λ‖1/‖λ‖∞. Lemma 20 gives us the optimal way to
sparsify s-balanced vectors, since the optimal p for Eq. (D.2) is feasible for
Eq. (3.8). If g is s-unbalanced at entry j, we cannot assign this pj as it is
larger than 1. In the following lemma, we show that in pj = 1 is optimal in
this setting.

Lemma 22. Suppose that g is s-unbalanced at entry j and that q is feasible
in Eq. (3.8). Then ∃ p that is feasible such that f(p) ≤ f(q) and pj = 1.

154

Let φ(g) = ∑
i 6=j λiλj〈ai,aj〉. Lemmas 20 and 22 imply the following

theorem about solutions to Eq. (3.8).

Theorem 23. If g is s-balanced, then E[‖ĝ‖2] ≥ s−1‖λ‖2
1+φ(g) with equality

if and only if pi = |λi|s/‖λ‖1. If g is s-unbalanced, then E[‖ĝ‖2] > s−1‖λ‖2
1+

φ(g) and is minimized by p with pj = 1 where j = arg maxi=1,...,n |λi|.

Due to the sorting requirement in the input, Algorithm 2 requires
O(n log n) operations. In Appendix D.3 we describe a variant that uses
only O(sn) operations. Thus, we can solve Eq. (3.8) in O(min{n, s} log(n))
operations.

D.2 Proofs

D.2.1 Proof of Lemma 20

Proof. Suppose we have some p satisfying the conditions in Eq. (D.2). We
define two auxiliary vectors α,β ∈ Rn by

αi = |λi|√
pi
.

βi = √pi.

Then note that using the fact that ∑i pi = s, we have

f(p) =
n∑
i=1

λ2
i

pi
=
(

n∑
i=1

λ2
i

pi

)(
1
s

n∑
i=1

pi

)
= 1
s

(
n∑
i=1

λ2
i

pi

)(
n∑
i=1

pi

)
= 1
s
‖α‖2

2‖

bmbeta‖2
2.

By the Cauchy-Schwarz inequality, this implies

f(p) = 1
s
‖α‖2

2‖β‖2
2 ≥

1
s
|〈α,β〉|2 = 1

s

(
n∑
i=1
|λi|

)2

= 1
s
‖λ‖2

1. (D.3)

155

This proves the first part of Lemma 20. In order to have f(p) = 1
s
‖λ‖2

1,
Eq. (D.3) implies that we need

|〈α,β〉| = ‖α‖2‖β‖2.

By the Cauchy-Schwarz inequality, this occurs iff α and β are linearly
dependent. Therefore, cα = β for some constant c. Solving, this implies
pi = c|λi|. Since ∑n

i=1 pi = s, we have

c‖λ‖1 =
n∑
i=1

c|λi| =
n∑
i=1

pi = s.

Therefore, c = ‖λ‖1/s, which implies the second part of the theorem.

D.2.2 Proof of Lemma 22

Fix q that is feasible in Eq. (3.8). To prove Lemma 22 we will require a
lemma. Given the atomic decomposition g = ∑n

i=1 λiai, we say that λ is
s-unbalanced at i if |λi|s > ‖λ‖1, which is equivalent to g being unbalanced
in this atomic decomposition at i. For notational simplicity, we will assume
that λ is s-unbalanced at i = 1. Let A ⊆ {2, . . . , n}. We define the following
notation:

sA =
∑
i∈A

qi.

fA(q) =
∑
i∈A

λ2
i

qi
.

(λA)i =

λi, for i ∈ A,

0, for i /∈ A.

156

Note that under this notation, Lemma 20 implies that for all p > 0,

fA(p) ≥ 1
sA
‖λA‖2

1. (D.4)

Lemma 24. Suppose that q is feasible and that there is some set A ⊆
{2, . . . , n} such that

1. λA is (sA + q1 − 1)-balanced.
2. |λ1|(sA + q1 − 1) > ‖λA‖1.

Then there is a vector p that is feasible satisfying f(p) ≤ f(q) and p1 = 1.

Proof. Suppose that such a set A exists. Let B = {2, . . . , n}\A. Note that
we have

f(q) =
n∑
i=1

λ2
i

qi
= λ2

1
q1

+ fA(q) + fB(q).

By Eq. (D.4), this implies

f(q) ≥ λ2
1
q1

+ 1
sA
‖λA‖2

1 + fB(q). (D.5)

Define p as follows.

pi =



1, for i = 1,
|λi|(sA + q1 − 1)

‖λA‖1
, for i ∈ A,

qi, for i /∈ A.

Note that by Assumption 1 and Lemma 20, we have

fA(p) = 1
sA + q1 − 1‖λA‖

2
1.

157

Since pi = qi for i ∈ B, we have fB(p) = fB(q). Therefore,

f(p) = λ2
1 + 1

sA + q1 − 1‖λA‖
2
1 + fB(q). (D.6)

Combining Eq. (D.5) and Eq. (D.6), we have

f(q)− f(p) = λ2
1

(
1
q1
− 1

)
+ ‖λA‖2

1

(
1
sA
− 1
sA + q1 − 1

)

= λ2
1

(
1− q1

q1

)
+ ‖λA‖2

1

(
q1 − 1

sA(sA + q1 − 1)

)
.

Combining this with Assumption 2, we have

f(q)−f(p) ≥ ‖λA‖2
1

(sA + q1 − 1)2

(
1− q1

q1

)
+‖λA‖2

1

(
q1 − 1

sA(rA + q1 − 1)

)
. (D.7)

To show that the RHS of Eq. (D.7) is at most 0, it suffices to show

sA ≥ q1(sA + q1 − 1). (D.8)

However, note that since 0 < q1 < 1, the RHS of Eq. (D.8) satisfies

q1(sA + q1 − 1) = sAq1 − q1(1− q1) ≤ sAq1 ≤ sA.

Therefore, Eq. (D.8) holds, completing the proof.

We can now prove Lemma 22. In the following, we will refer to Conditions
1 and 2, relative to some set A, as the conditions required by Lemma 24.

Proof. We first show this in the case that n = 2. Here we have the atomic
decomposition

g = λ1a1 + λ2a2.

158

The condition that λ is s-unbalanced at i = 1 implies

|λ1|(s− 1) > |λ2|.

In particular, this implies s > 1. For A = {2}, Condition 1 is equivalent to

|λ2|(sA + q1 − 2) ≤ 0.

Note that sA = q2 and that q1+q2−2 = s−2 by assumption. Since qi ≤ 1,
we know that s− 2 ≤ 0 and so Condition 1 holds. Similarly, Condition 2
becomes

|λ1|(s− 1) > |λ2|

which holds by assumption. Therefore, Lemma 22 holds for n = 2.
Now suppose that n > 2, q is some feasible probability vector, and that λ

is s-unbalanced at index 1. We wish to find an A satisfying Conditions 1 and
2. Consider B = {2, . . . , n}. Note that for such B, sB+q1−1 = s−1. By our
unbalanced assumption, we know that Condition 2 holds for B = {2, . . . , n}.
If λB is (s− 1)-balanced, then Lemma 24 implies that we are done.

Assume that λB is not (s− 1)-balanced. After relabeling, we can assume
it is unbalanced at i = 2. Let C = {3, . . . , n}. Therefore,

|λ2|(s− 2) > ‖λC‖1. (D.9)

159

Combining this with the s-unbalanced assumption at i = 1, we find

|λ1| >
‖λB‖1

s− 1

= |λ2|
s− 1 + ‖λC‖1

s− 1

>
‖λC‖1

(s− 1)(s− 2) + ‖λC‖1

s− 1

= ‖λC‖1

s− 2 .

Therefore,

|λ1|(s− q2 − 1) ≥ |λ1|(s− 2) > ‖λC‖1. (D.10)

Let D = {1, 3, 4, . . . , n} = {1, . . . , n}\{2}. Then note that Eq. (D.10)
implies that λD is (s− q2)-unbalanced at i = 1. Inductively applying this
theorem, this means that we can find a vector p′ ∈ R|D| such that p′1 = 1
and fD(p′) ≤ fD(q). Moreover, sD(p′) = s− q2. Therefore, if we let p be
the vector that equals p′ on D and with p2 = q2, we have

f(p2) = fC(p′) + λ2
2
q2
≤ fD(q) + λ2

2
q2

= f(q).

This proves the desired result.

D.3 Analysis of ATOMO via the KKT
Condtions

In this section we show how to derive Algorithm 2 using the KKT conditions.
Recall that we wish to solve the following optimization problem:

min
p

f(p) :=
n∑
i=1

λ2
i

pi
subject to ∀i, 0 < pi ≤ 1,

n∑
i=1

pi = s. (D.11)

160

We first note a few immediate consequences.

1. If s > n then the problem is infeasible. Note that when s ≥ n, the
optimal thing to do is to set all pi = 1, in which case no sparsification
takes place.

2. If λi = 0, then pi = 0. This follows from the fact that this pi does
not change the value of f(p), and the objective could be decreased by
allocating more to the pj associated to non-zero λj. Therefore we can
assume that all λi 6= 0.

3. If |λi| ≥ |λj| > 0, then we can assume pi ≥ pj. Otherwise, suppose
pj > pi but |λi| ≥ |λj|. Let p′ denote the vector with pi, pj switched.
We then have

f(p)− f(p′) =
λ2
i − λ2

j

pi
+
λ2
j − λ2

i

pj

= λ2
i

(
1
pi
− 1
pj

)
− λ2

j

(
1
pi
− 1
pj

)
≥ 0.

We therefore assume 0 < s ≤ n and |λ1| ≥ |λ2| ≥ . . . ≥ |λn| > 0. As
above we define λ := [λ1, . . . , λn]T . While the formulation of Eq. (D.11)
does not allow direct application of the KKT conditions, since we have a
strict inequality of 0 < pi, this is fixed with the following lemma.

Lemma 25. The minimum of Eq. (D.11) is achieved by some p∗ satisfying

p∗i ≥
sλ2

i

n‖λ‖2
2
.

Proof. Define p by pi = s/n. This vector is clearly feasible in Eq. (D.11).
Let p be any feasible vector. If f(p) ≤ f(q) then for any i ∈ [n] we have

λ2
i

pi
≤ f(p) ≤ f(p).

161

Therefore, pi ≥ λ2
i /f(p). A straightforward computations shows that f(p) =

n‖λ‖2
2/s. Note that this implies that we can restrict to the feasbile set

sλ2
i

n‖λ‖2
2
≤ pi ≤ 1.

This defines a compact region C. Since f is continuous on this set, its
maximum value is obtained at some p∗.

The KKT conditions then imply that at any point p solving Eq. (D.11),
we must have

0 ≤ 1− pi ⊥ µ− λ2
i

pi
≥ 0, i = 1, 2, . . . , n (D.12)

for some µ ∈ R. Since |λi| > 0 for all i, we actually must have µ > 0. We
therefore have two conditions for all i.

1. pi = 1 =⇒ µ ≥ λ2
i .

2. pi < 1 =⇒ pi = |λi|/
√
µ.

Note that in either case, to have p1 feasible we must have µ ≥ λ2
1. Combining

this with the fact that we can always select p1 ≥ p2 ≥ . . . ≥ pn, we obtain
the following partial characterization of the solution to Eq. (D.11). For
some ns ∈ [n], we have p1, . . . , pns = 1 while pi = |λi|/

√
µ ∈ (0, 1) for

i = ns + 1, . . . , n. Combining this with the constraint that ∑n
i=1 pi = s, we

have
s =

n∑
i=1

pi = ns +
n∑

i=ns+1
pi = ns +

n∑
i=ns+1

|λi|√
µ
. (D.13)

Rearranging, we obtain

µ =

(∑n
i=ns+1 |λi|

)2

(s− ns)2 (D.14)

162

which then implies that

pi = 1, i = 1, . . . , ns, pi = |λi|(s− ns)∑n
j=ns+1 |λj|

, i = ns + 1, . . . , n. (D.15)

Thus, we need to select ns such that the pi in Eq. (D.15) are bounded
above by 1. Let n∗s denote the first element of [n] for which this holds. Then
the condition that pi ≤ 1 for i = n∗s + 1, . . . , n is exactly the condition that
[λn∗s+1, . . . , λn] is (s− ns)-balanced. In particular, Lemma 20 implies that,
fixing pi = 1 for i = 1, . . . , n∗s, the optimal way to assign the remaining pi is
by

pi = |λi|(s− n
∗
s)∑n

j=n∗s+1 |λj|
.

This agrees with Eq. (D.15) for ns = n∗s. In particular, the minimal value of
f occurs at the first value of ns such that the pi in Eq. (D.15) are bounded
above by 1.

Algorithm 2 scans through the sorted λi and finds the first value of ns
for which the probabilities in Eq. (D.15) are in [0, 1], and therefore finds
the optimal p for Eq. (D.11). The runtime is dominated by the O(n log n)
sorting cost. It is worth noting that we could perform the algorithm in
O(sn) time as well. Instead of sorting and then iterating through the λi
in order, at each step we could simply select the next largest |λi| not yet
seen and perform an analogous test and update as in the above algorithm.
Since we would have to do the selection step at most s times, this leads to
an O(sn) complexity algorithm.

D.4 Hyperparameter optimization

We firstly provide results of step size tunning, as shows in Table D.1 we
reported stepsize tunning results for all of our experiments. We tuned
these step sizes by evaluating many logarithmically spaced step sizes (e.g.,

163

2−10, . . . , 20) and evaluated on validation loss.
This step sizes tuning, for 8 gradient coding methods and 3 datasets was

only possible because fairly small networks were used.

Table D.1: Tuned stepsizes for the ResNet-18 model and the SVHN dataset.

Optimizer Learning rate/step size
SVD rank 1 0.1
SVD rank 2 0.125
SVD rank 3 0.125
SVD rank 4 0.125
QSGD 1bit 0.0078125
QSGD 2bit 0.0078125
QSGD 4bit 0.046875
QSGD 8bit 0.125

We empirically study runtime costs of spectral-ATOMO with sparsity
budget set at 1, 2, 3, 6 and made comparisons among b-bit QSGD and Tern-
Grad. In some scenarios, spectral-ATOMO attains a higher compression
ratio than QSGD and TernGrad. For example, singular value sparsification
with sparsity budget 1 may communicate smaller messages than {2, 4}-bit
QSGD and Terngrad.

164

e salmon

E.1 Exhaustive query searches

Let’s run a query search for the embedding in Figure E.1, which is chosen
to be somewhat accurate but not close to perfect. When the information
gain of all N = n(n− 1)(n− 2)/2 queries are scored, some heads get chosen
to be the most informative and have higher information gain than any other
head.

Figure E.1: The embedding on which query searches will be performed.
This embedding has been learned from 1,800 human responses to randomly
selected queries. Item 32 is circled with a solid red line.

The head with the highest information gain is item 32, and the top 849
queries have head 32. To see how this changes after a model update, let’s
answer the top 100 scoring queries (all with head 32) with a synthetic noise
model and perform a complete model update1 This embedding is shown in

1With 100,000 epochs and warm starting from the embedding in Figure E.1,
more complete than Salmon’s online embedding.

165

Fig. E.2, and shows some modifications around item 32, which is shown in
Figure E.3.

Figure E.2: The embedding on which query searches will be performed.
This embedding has been learned from 1,800 human responses to randomly
selected queries, with 100 responses from a synthetic noise model. Item 32
is circled with a solid red line.

After the model update, the head of the top 3,916 queries is item 32.
Before the model update, only 54% of the top 3,916 queries had a head of
item 32. Every one of the 849 questions from before the model update is
included in the top 3,916 queries after the model update. A more complete
illustration is in Fig. E.4

E.2 Adaptive search tuning

Salmon’s search makes three modifications to NEXT’s greedy search: search
length and random head selection. This section will present simulation
results validating each of those choices.

First, let’s show how search length changes performance in the greedy
search. In Figure E.5, the performance for different “greedy-k” searches

166

(a) Before the model update.

(b) After the model update and answer-
ing the top 10 scored queries from Fig-
ure E.3a with a synthetic noise model.

Figure E.3: Before and after the model update, the top 10 queries with the
highest information gain had item 32 as head with one bottom from box A
and one bottom from box B.

Figure E.4: The number of unique heads in the pool of the P queries with
highest information gain. When ranked by information gain, the top 849
queries have the same head, item 32. The top 7,832 queries only have two
unique heads, item 32 and item 35.

is shown. In each of these, between k/3 and k queries are searched per
user (roughly), and the query with maximum information from that list
is provided to the synthetic noise model. Figure E.5 shows that moderate
searches tend to perform the best; both exhaustive and minimal searches do

167

not perform well. Perhaps that is due to the behavior shown in Figure E.6,
which illustrates that the greedy searches can select the same head repeatedly,
especially as the search length increases.

Figure E.5: The performance of different samplers that choose the query
with maximum information gain from a list of up to length k.

Figure E.6, which shows different “greedy-k” that searches between
roughly k/3 and k queries per user.

Figure E.6: The average “run” length for search length k. A “run” is defined
to be “number of queries with the same head,” and the query with maximum
information gain is chosen from a list of length k.

Now, let’s see how random head selection changes the performance.
Again, let’s plot different search lengths, and compare with the best of

168

the “greedy-k” searches in Fig. E.7.2 Random head selection improves
performance over the best “greedy-k” performance, and performs slightly
better than any of the “greedy-k” searches. Search length seems somewhat
important, but does not appear to be critical. Notably, the implementation
of a round-robin scheme is a lot simpler than figuring out the correct value
of k.

Figure E.7: The performance of different samplers that score k queries
and randomly selects a head, then finds the best query with that head. In
practice, k/n queries are expected to be searched per head.

E.3 Priority

The ARR and Salmon schemes in Sections 4.3.1 and 4.3.2 follow this process:

1. Perform an near-exhaustive query search
2. Find the top query for each query head.
3. Randomly assign scores to queries.
2In Figure E.5, we only show a subset of the greedy-k searches for sim-

plicity; “best(greedy-k)” is the minimum error/nearest neighbor distance for
k ∈ {30, 100, 300, . . . , 100 · 103, 300 · 103}.

169

Figure E.8: The number of unique heads in the last 90 adaptively chosen
queries for different priority schemes. The number of received responses
includes both adaptively and randomly chosen queries.

4. Post those queries to the database.
5. When a query is requested, pop the highest scoring query of the

database.

This section will modify step (3), and substitute these choices:

1. Random: randomly assign scores to each query.
2. InfoGain: set the score to be the query’s information gain.

The second choice is very similar to Section 2.4.1. However, it exhibits the
same “constant head” behavior in Appendix E.1 as shown in Fig. E.8. When
embeddings are generated embeddings from simulated human responses,
the embeddings from the InfoGain scheme perform worse than random
sampling.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Crowdsourcing active machine learning
	Motivation

	Accelerating model selection with distributed computing
	Problem
	Contributions
	Related work
	Dask's implementation of Hyperband
	Experimental results
	Conclusion

	Accelerating model updates
	Improving the convergence of stochastic gradient descent (SGD) via adaptive batch sizes
	Related work
	Preliminaries
	Convergence
	Experiments
	Conclusion

	Training PyTorch models faster with Dask
	Contributions
	Related work
	Distributed training with Dask
	Performance
	Conclusion

	Improving communication in distributed model updates
	Contributions
	Prior work
	Preliminaries
	Main results
	Experimental results
	Conclusion

	Conclusion

	Efficient deployment of active machine learning algorithms for crowdsourcing
	Related Work
	Crowdsourcing active machine learning algorithms
	Experimental results
	Conclusion

	Conclusion
	Bibliography
	Hyperband
	Serial simulation detail
	Parallel experiment detail
	Hyperparameter search spaces

	Adaptive batch sizes
	Gradient diversity bounds
	Convergence proofs
	Proofs for required number of examples
	Experiment details

	Training PyTorch models faster with Dask
	Example usage
	Future work
	Loss vs. time

	Gradient compression
	Rigorous statement
	Proofs
	Analysis of ATOMO via the KKT Condtions
	Hyperparameter optimization

	Salmon
	Exhaustive query searches
	Adaptive search tuning
	Priority

