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abstract

The past decade has seen an explosion in the use of machine learning to model, to
understand, and to make recommendations to people. Machine learning systems
recommend videos and music, control advertising, and even generate content for
webpages and educational resources. This has ignited a resurgence of classical
questions in psychology, such as embedding from preference judgments, attacked
and analyzed with modern machine learning tools. The goal is to use machine
learning to improve inference, provide new techniques, and better model people.
Learning directly from human generated data presents several challenges that
researchers must face. First, as human judgments are frequently noisy and sub-
jective, researchers are often limited in the form of queries that they can reliably
ask people such as simple binary ‘yes’ or ’no’ comparisons. Second, collecting
crowdsourced data can be time-intensive, and expensive if expertise is required;
hence, it is important to develop methods to actively choose which data to query
and to collect only the most informative samples when learning from the crowd.
Third, people are heterogeneous in their skills and abilities. In settings such as
crowdsourced labelling, researchers must identify a large pool of capable workers
to answer queries, but it can be difficult to estimate individuals’ ability to perform
a potentially abstract task when choosing amongst a diverse group.

In this thesis, we approach all three of these challenges. First, motivated by
questions in educational psychology, we develop method for low-dimensional
metric learning from triplet comparisons of the form “item i and item j are closer
to each other than item i and item k.” We characterize how difficult metric learning
is through geometric and statistical arguments and provide a simple and efficient
convex optimization to learn metrics optimally. Informed by these theoretical
results for metric learning, we develop a new way of studying people’s perception
of images and also provide an empirical comparison of different active sampling
algorithms for metric learning which attempt to reduce the sample complexity.

We pay special attention to reduce the sample complexity of learning from
people as data collection is a bottleneck in many practical problems. This thesis
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studies active sampling algorithms to learn nearest neighbor graphs and nearest
neighbor data structures. Nearest neighbors is an efficient and flexible way to
model people’s preferences. Algorithms for both methods rely on multi-armed
bandits, a class of active sampling algorithms, to reduce the sample complexity
of learning. Finally, we propose and provide an algorithm for a new multi-armed
bandit objective tailored to settings where onewishes to findmany high-performing
alternatives: such as many highly accurate crowd-workers for a crowdsourcing
task.
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1 introduction

This thesis focuses on core challenges of learning from human generated data.
The goal throughout is to develop algorithms and theory that helps researchers
understand and model people and to develop methods that more efficiently gather
data from people for machine learning tasks.

Learning directly from human generated data presents several challenges that
researchers must face. First, as human judgments are frequently noisy and sub-
jective, researchers are often limited in the form of queries that they can reliably
ask people such as simple binary ‘yes’ or ‘no’ comparisons. Second, collecting
crowdsourced data can be time-intensive, and expensive if expertise is required;
hence, it is important to develop methods to actively choose which data to query
and to collect only the most informative samples when learning from the crowd.
Third, people are heterogeneous in their skills and abilities. In settings such as
crowdsourced labelling, researchers must identify a large pool of capable workers
to answer queries, but it can be difficult to estimate individuals’ ability to perform
a potentially abstract task when choosing amongst a diverse group. In this thesis,
we have approached each of these challenges focusing on the following areas:

• Low-dimensional metric learning We show that distance metrics can be
efficiently learned from noisy, binary comparison data and give some of the
first learning theory guarantees for metric learning.

• Actively learningnearest neighbor graphsWedevelop an adaptive sampling
method to learn nearest neighbor graphs which can be used to represent
peoples’ beliefs of similarity. The algorithm is the first to achieve the optimal
complexity in the presence of noise.

• Actively finding every near-optimal alternative We develop a multi-armed
bandit approach to actively detect every alternative that achieves near-optimal
performance, such as every worker that performs highly on a given task. This
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filled a gap in the literature and provided new analytical tools for studying
bandits.

1.1 Organization

In Chapter 2, we introduce a problem arising in educational psychology proposed
by collaborators wishing to develop personalized, intelligent tutoring systems. This
project serves as the overarching motivation for much of my work in machine
learning. Specifically, researchers wish to determine which features students pay
attention to when looking at images of molecules found in textbooks in settings
where methods such as eye-tracking are untenable. We propose a technique based
in similarity learning, a relative of metric learning, for this task. Next, in Chapter 3,
we develop new theory for triplet metric learning, establishing learning rates and
recovery guarantees. Then, in Chapter 4, we use the techniques and guarantees
developed in Chapter 3 to develop a novel method for cognitive task analysis
and apply it to the question proposed in Chapter 2. This closes some questions
about metric learning, but raises others about data efficiency. To address the data
efficiency question, in Chapter 5, we develop an active technique to efficiently learn
nearest neighbor graphs from noisy samples and apply it to human preference
data, showing that it is possible to apply active methods to reduce the sample
complexity of learning from people. In Chapter 6, motivated by the task of selecting
crowd-workers to label datasets, we propose and analyze a method to actively find
every near-optimal alternative. Finally, in Chapter 7 we apply the algorithm from
Chapter 6 to develop a method to learn data structures to answer nearest-neighbor
queries from noisy data, generalizing the results of Chapter 5 while achieving the
same optimal rate.
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1.2 Similarity Learning Methods for Intelligent
Tutoring Systems

To succeed in Science, Technology, Engineering, andMathematics (STEM), students
need to learn to use visual representations that depict important domain material,
such as graphs, models, and figures. As an example, in Figure 1.1, we show four
different visual representations of the water molecule. Each highlights different
properties of the molecule. Most prior research has focused on conceptual knowl-
edge about visual representations (ie, what concepts are depicted in the visual)
that is acquired via verbally mediated forms of learning. However, students also
need perceptual fluency: the ability to rapidly and effortlessly translate among
representations. Perceptual fluency is acquired via non-verbal, implicit learning
processes. Non-verbal mediation is common to perception tasks, but presents a
challenge for learning. For skills that are not verbally mediated, people are unable
to accurately say how they form the judgments they do or what it is they are focus-
ing on when they make their judgments. A classic example from the psychology
literature comes from asking people to guess gender based on images of faces.
Humans are extremely accurate at this task. However, when asked what features
of the image led them to their conclusion, their answers are often at odds with
the judgments they provide. A challenge for instructional interventions in class-
rooms that focus on implicit learning is to model students’ knowledge acquisition.
Because implicit learning is non-verbal, we cannot rely on traditional methods,
such as expert interviews or student think-alouds. In this chapter, we propose a
similarity learning (a relative of metric learning) technique to assess how people
perceive similarity between visual representations. We used this approach to model
how undergraduate students perceive similarity between visual representations of
chemical molecules. The approach achieved good accuracy in predicting students’
similarity judgments and expands expert predictions of how students might per-
ceive visual representations of molecules. This chapter is adapted from (Rau et al.,
2016), and the work was completed in collaboration with the authors therein.
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(a) A Lewis structure (b) A ball and stick figure

(c) A space-filling model (d) An electrostatic potential
map

Figure 1.1: Different visual representations of the water molecule

1.3 Learning Low-Dimensional Metrics from Triplets

Metric learning is a promising tool for learning from human judgments. In this
problem, one is given n items with feature vectors x1, · · · , xn ∈ Rd and collects
data in the form of triplets “item xi is closer to item xj than it is to item xk.” One
seeks to learn semidefinite matrix K such that the distance metric ‖xi − xj‖2

K :=

(xi−xj)
TK(xi−xj) agreeswith the triplet constraints aswell as possible. Triplets are

commonly collected in psychological experiments and used to model test subjects’
beliefs Cox and Cox (2008). A fundamental question is why and how people form
their beliefs. Using metric learning, we developed a method to identifywhat features
best explain peoples’ judgments. This research is motivated by collaborations
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(a) A triplet query between three Lewis structures

with educational psychologists described in Chapter 2. We gathered images from
chemistry textbooks and collected triplets as shown in Figure 1.2a, asking students
which of the bottom two molecules is most similar to the top. By leveraging metric,
we were able to compute the importance of any molecular feature, such as the
presence of a bond or atom, to students’ similarity judgments and generated the
visualization shown in Figure 1.3a accordingly. The method relies on learning a
metric given by a matrix K that predicts students’ judgments and then computing
which features explain these judgements as a function of K. Despite the promise of
metric learning for psychological experiments and its application to modern tasks
such as facial recognition Schroff et al. (2015), there was little theoretical analysis in
this area prior to this thesis.

This thesis provides some of the first learning theory results for metric learning
and the first recovery result. All results hold for noisy data as might be collected
from people. We focus on low-dimensionalmetric learning where K has low-rank
corresponding to the common assumption in psychology that comparisons are well
modeled coming as from a latent low-dimensional subspace Cox and Cox (2008).
We additionally analyze the case of K being sparse and low-rank, corresponding to
the assumption that only k of the d features correlate to people’s judgements. In this
chapter, we provide a simple convex optimization to learn a k-dimensional metric
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(a) Triplet embedding

on points in Rd that predicts unseen triplets inO(kd log(n)) samples, and we show
that this rate is optimal. Surprisingly, we also show that in the more restricted case
that one wishes to learn a sparse and low-rank K, the same number of samples is
needed, and the additional structure is not helpful. Finally, we provide the first
recovery result for metric learning. If there exists a trueK∗ which generates the data
with noise, we give the first result that shows it can be estimated from data. This
chapter is adapted from (Mason et al., 2017) and is collaborative with its authors.

1.4 Application of Metric Learning to Cognitive
Science and Intelligent Tutoring Systems

Using the new theoretical results about metric learning developed in Chapter 3, we
develop a new technique for cognitive task analysis and apply it to the problem first
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introduced in Chapter 2. To benefit from visuals in STEM instruction, students need
representational competencies that enable them to see meaningful information
in the visuals. Most research has focused on explicit conceptual representational
competencies. In addition, implicit perceptual competencies allow students to
efficiently see meaningful information in visuals. Most common methods to assess
students’ representational competencies rely on verbal explanations or assume that
students explicitly attend to the visuals. However, because perceptual competencies
are implicit and not necessarily verbally accessible, these methods are ill-equipped
to assess perceptual competencies. We address these shortcomings with a method
that draws on similarity learning methods, a type of machine learning method that
learns visual features that account for participants’ responses to triplet comparisons
of visuals. In Experiment 1, 614 chemistry students judged the similarity of Lewis
structure representations of chemical molecules. In Experiment 2, 489 chemistry
students judged the similarity of ball-and-stick models. Our results showed that
our method can detect visual features that drive students’ perception of visual
representations of chemical molecules. Our inspection of the features suggests that
students’ conceptual knowledge about molecules informed perceptual competen-
cies through top-down processes. Further, Experiment 2 tested whether we can
improve the efficiency of the method with active sampling. Results showed that
regular random sampling methods yield higher accuracy than active sampling for
small sample sizes. Together, the experiments provide the first method to assess
students’ perceptual competencies implicitly, without asking them to verbalize their
knowledge or assuming explicit visual attention. These findings have implications
for the design of instructional interventions that help students acquire perceptual
representational competencies. This chapter originally appeared in the Journal of
Cognitive Science (Mason et al., 2019a) and is collaborative with its authors.

1.5 Actively Learning Nearest Neighbor graphs

Though it is powerful, metric learning is not ideal for some tasks where one wishes
to learn from human data. When either the number of features, d, or the number
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of salient features, k, is large, collecting sufficient data from participants to learn a
full metric can be expensive. Furthermore, metric learning traditionally restricts
practitioners to distances between items in a Euclidean space. In some learning tasks
that use human generated data, such as computing word embeddings for natural
language processing, Euclidean structure has been shown to be overly restrictive
as compared to other metric spaces Dhingra et al. (2018). To address these two
challenges, we developed the first method to actively learn nearest neighbor graphs
from noisy data.

Actively learning nearest neighbor graphs gives practitioners a fast and flexible
method to learn similarity and preference. Precisely, consider n points x1, · · · , xn,
in a metric space (M,d)where the distance function d(·, ·) is unknown. One wishes
to learn the graph where each xi is connected via an edge to its nearest neighbor
xi∗ = arg minj6=i d(xi, xj). For instance, in the chemistry example, each molecule
image is a point and edges connect pairs that students judge to be similar. Given
noiseless access to the distance measure d, these graphs can be learned efficiently
in as few as O(n log(n)) distance measurements Vaidya (1989). While modelling
human judgements as being from a latent distance function is common, people’s
judgments can be noisy Coombs (1964), and this makes existing techniques ill-
suited. My thesis provides the first algorithm to achieve the optimal O(n log(n))
rate for learning nearest neighbor graphs while only assuming noisy estimates of
distance. The method is fully agnostic to the underlying metric space and does
not require Euclidean assumptions. Furthermore, we demonstrate efficiency of
our method empirically and theoretically, needing only O(n log(n)∆−2) queries in
favorable settings, where ∆−2 accounts for the effect of noise. Using crowd-sourced
data collected for a subset of the UT Zappos50K dataset, we apply our algorithm to
learn which shoes people believe are most similar and show that it beats both an
active baseline and ordinal embedding. This chapter originally appeared in (Mason
et al., 2019b) and is collaborative with the authors of that work.
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1.5.1 Actively Finding Every Near-Optimal Alternative

Crowdsourcing is commonly used to label datasets, but efficiently finding crowd-
workers capable of performing specialized tasks, such as identifying dog breeds or
molecules, can be challenging Doroudi et al. (2016). To quickly label a dataset, it is
desirable to have as many workers as possible, but these workers must be highly
accurate to minimize label noise Kazai et al. (2013). This problem may be modelled
as one of pure-exploration in multi-armed bandits. Each worker has an unknown
average accuracy that may be estimated by having them label individual points
where the truth is known. The pool of workers may be modeled as n distributions,
referred to as ‘arms’, with unknown means. Existing bandit objectives are ill-suited
for settings where practitioners wish to find many arms with high means. The
popular objective of finding the k arms with the largest means is unsuitable as it
does not provide a guarantee for the arms it returns. For instance, when finding
workers, actively searching for and hiring the 100 best workers if only 10 truly good
workers exist in the pool is wasteful. Setting a fixed threshold and finding workers
that exceed that threshold corrects this issue, but this raises the question of how
high a threshold should be set. If it is too high, algorithms will not find any workers.
Instead, to efficiently find skilled crowd-workers in as few samples as possible, we
seek an active algorithm to find every worker that performs almost as well as the
best worker.

We address this by proposing the all-ε identification objective. Given a set of
n distributions with means µ1, · · · ,µn and a value of ε > 0, the objective is to
identify the subset of arms {i : µi > (1 − ε)maxj µj}with a fixed probability 1 − δ.
Semantically, this allows one to find every worker within a factor of 1−ε of the best.
For instance, ε = .05 finds every worker with an average performance within 95% of
the best. This objective is naturally robust to the underlying distribution of means.
It guarantees that every near optimal arm will be detected and that no significantly
suboptimal arm will be returned. In this chapter we present several algorithms
that are tailored to different practical settings. To establish the optimality of these
methods, we develop a new analytical tool to study finite-time lower bounds. Finite
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time guarantees are not captured by traditional bounding techniques but can have
large practical impacts Simchowitz et al. (2017). Finally, in addition to strong
theoretical results, we show that these algorithms perform well in practice. In
particular, we show that one exceeds or matches the performance of several oracle
baselines on a real-world dataset. This chapter will appear at NeurIPS 2020 Mason
et al. (2020), and is collaborative with its authors.
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2 similarity learning for chemistry education

2.1 Introduction

Visual representations are ubiquitous instructional tools in science, technology,
engineering, andmath (STEM) domains (Ainsworth, 2008; (US), 2006). For example,
instructors use the visual representations shown in Figure 2.1 to help students learn
about chemical bonding. Yet, to a novice student, these visual representations may
not be helpful because the student may not know how to interpret the represen-
tations. For instance, does the red color in the ball-and-stick figure (Figure 2.1-b)
mean the same thing as in the electrostatic potential map (EPM; Figure 2.1-d)? (It
does not.)

Instructors often ask students to use visual representations that they have never
seen before to make sense of concepts that they have not yet learned about (Wertsch
and Kazak, 2011; Airey and Linder, 2009), an issue known as the representation
dilemma (Dreher and Kuntze, 2015). Hence, to succeed in STEM, students need
representational competencies that enable them to use visual representations to make
sense of and solve domain-relevant problems (Ainsworth, 2006; Gilbert, 2005). One
crucial representational competency is the ability to interpret visual representa-
tions; that is, to map visual representations to the abstract concepts they depict
(Ainsworth, 2006; Schnotz, 2005). For example, students need to understand how
the representations in Figure 2.1 show information about the molecule. For the
Lewis structure ( Figure 2.1-a), the student maymap the unbonded electrons shown
as dots to conceptual knowledge about how polarity in chemical molecules and
infer that the water molecule has a local negative charge by the Oxygen atom.

Educational technologies are particularly suitable to support representational
competencies because they can provide adaptive support while students solve
domain-relevant problems (Koedinger et al., 2006; VanLehn, 2011). Such adaptive
support relies on a cognitive model that infers whether the student has learned
target skills based on her/his interactions with the technology. Research shows that
adapting instruction to students’ representational competencies can enhance those
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(a) A Lewis structure (b) A ball and stick figure

(c) A space-filling model (d) An electrostatic potential
map

Figure 2.1: Visual representations of the water molecule.

competencies (Tuckey et al., 1991) and learning of domain knowledge (Davidowitz
and Chittleborough, 2009).

However, educational technologies for representational competencies have two
critical limitations. First, they typically focus on one set of representational com-
petencies: students’ conceptual understanding of representations (e.g., the ability
to explain how visual features depict concepts). This focus mimics education psy-
chology research’s focus on conceptual learning (Ainsworth, 2006; Seufert, 2003).
Conceptual knowledge is invariably intertwined with a second type of representa-
tional competency: perceptual knowledge (Kellman and Massey, 2013; Massey et al.,
2013); the ability to rapidly and effortlessly recognize conceptual information based
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on visual features of the representations. This ability results from textitimplicit
forms of learning. For example, expert chemists simply “see” that the molecules
depicted in Figure 2.1 have a local negative charge by the Oxygen atom, without
having to make a an effortful conceptual inference.

Second, of the few educational technologies that enhance perceptual fluency,
their adaptive capabilities are limited and their perceptual supports rely solely
on performance measures (e.g., accuracy, response times) to adapt to students’
representational competencies (Massey et al., 2013; Kellman et al., 2010). They
do not use a cognitive model of the latent skills that students acquire through
perceptual learning. As a result, they cannot provide specific feedback when
students make mistakes. Decades of research showing that cognitive models can
dramatically increase the effectiveness of educational technologies (VanLehn, 2011;
Anderson et al., 1990) suggest that we must address this limitation and create
adaptive instruction for perceptual knowledge.

These limitations likely result from cognitive modeling’s traditional focus on
explicit, verbally accessible knowledge. To develop cognitive models, researchers
analyze how students think about target skills (Koedinger et al., 2006; Rau et al.,
2013). We typically ask students to verbalize their problem-solving steps (Clark,
2014; Schraagen et al., 2000). Yet, verbalization is not suitable for assessing percep-
tual learning processes, which are implicit and not verbally accessible (Kellman and
Massey, 2013; Koedinger et al., 2012). Therefore, instructional designers have to rely
on “educated guesses” as to which visual features students may pay attention to.
These educated guesses are based on the novice-expert literature, which documents
the fact that novices tend to rely on surface features; that is, easily perceivable visual
cues such as color and shape, to judge the similarity between stimuli items. By
contrast, experts rely on visual features that are conceptually relevant and hence
make more refined distinctions between visual features. Thus, to create adaptive
perceptual supports, we need to develop cognitive models for perceptual learning.

Our research takes a first step towards developing a cognitive model for per-
ceptual learning by assessing students’ perceptual knowledge of a common visual
representation in chemistry. In particular, we investigate research question 1: Which
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visual features do students focus on when presented with visual representations?
To address this question, we asked hundreds of students to judge the similarity
between visual representations of molecules. We then used similarity learning–a
method that provides a formal approach to investigating how people perceive
similarity among visual stimuli. This method allowed us to estimate latent factors
that account for the perceived similarity relationships between representations.
Because we can map these latent factors to the visual features in the representations,
this approach allows us to investigate which visual features are most salient to
students’ perceptions of similarity. Comparing these visual features to “educated
guesses” allowed us to test research question 2: Do the visual features we identified
as salient via metric learning correspond to visual features that students are ex-
pected to attend to based on the expert-novice literature on perceptual learning? In
addition, we investigated a methodological research question 3: Howmany similarity
judgments we need to assess students’ perceptual knowledge?

Although we address these questions in the context of a particular domain
with a particular visual representation, this chapter makes two important broader
contributions. First, it provides an empirical validation of the “educated guesses”
that developers of perceptual learning technologies typically rely on. Second, it
establishes a methodology to assess perceptual knowledge that can serve as a
basis for a cognitive model of perceptual learning. These contributions build the
foundation for the development of adaptive instruction for perceptual knowledge
and other implicit knowledge.

2.2 Experiment

2.2.1 Visual Representations of Molecules

For our experiment, we selected visual representations of chemical molecules
common in undergraduate instruction. Lewis structure representations are the
most commonly used visual representations in undergraduate chemistry textbooks.
We reviewed textbooks and online instructional materials and listed the frequency
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Educated
guess features

Feature 
vector xi=1

Feature 
vector ci=2

Molecule representation → H2O CO2

↓ Features
single lines 2 4
dots 4 8
connections 2 2
bondType_single,O,H 2
bondType_single,C,O
bondType_double,C,O 2
bondAngle_O{H,H},90 1
bondAngle_C{O,O},180 1

number of letters 3 3
number distinct letters 2 2

… xi=50

Molecule vector rj=1

Molecule vector rj=2

Molecule vector rj=3

Molecule vector rj=4

Molecule vector rj=5

Molecule vector rj=6

Molecule vector rj=7

Molecule vector rj=8

…ri=110

Figure 2.2: Example features for H2O and CO2 molecule representations with
educated guess features in yellow, feature vectors in red, and molecule vectors in
blue.

of all occurring molecules using their chemical names (e.g., H2O) and common
names (e.g., water). For our experiment, we chose the 50 most common molecules.

First, we created educated guess features (Figure 2.2, yellow) that correspond to
expert assessments of which visual features students may attend to when making
similarity judgments. To obtain these educated guesses, we reviewed the literature
on chemistry expertise (Rappoport and Ashkenazi, 2008; Talanquer, 2009) and
on perceptual learning (Kellman and Massey, 2013; Goldstone et al., 2010), and
conducted learner-centered interviews with undergraduate and PhD students in
chemistry (Rau and Evenstone, 2014). We identified 6 educated guess features:
number of total letters, number of distinct letters, number of total bonds, number
of single bonds, number of unbonded electrons, and molecule geometry (linear,
planar, tetrahedral).
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To investigate which visual features drive students’ similarity judgments, we
quantitatively described the visual features of the molecule representations. To this
end, we created feature vectors for each of the molecules (see Figure 2.2, red) that
describe which visual features the representation contains (e.g., bond angles, the
numbers of specific atoms, or the numbers of different atoms present). The feature
vectors of our corpus of molecule representations contained a total of 110 features.
The 50 feature vectors collectively form matrix X = [x1, x2, · · · , x50] where xi ∈ R110

is the feature vector for the ith molecule.
We aggregated each element of the feature vectors into molecule vectors for indi-

vidual features (Figure 2.2, blue). Each molecule vector consisted of 50 values de-
scribing how many times the feature occurred in each representation. As molecule
vectors make up the rows of our matrix of 110 features by 50 molecules shown
in Figure 2.2, we will refer to the molecule vector for the jth feature as rj. Thus,
feature vectors provide a numeric description of the visual information present in
each representation, whereas molecule vectors provide a numeric description of
overall patterns of visual features in the dataset for all representations.

2.2.2 Similarity Judgment Tasks

Students completed similarity judgment tasks that were presented as triplet compar-
isons (see Figure 2.3). Given a representation of a molecule (the “target-molecule”),
students were asked to choose which molecule was most similar to the given one.
For each task, the student chose between one of the two choice-molecules that they
perceived to be more similar to the target-molecule. After each task, another triplet
was generated uniformly at random from our corpus of molecule representations.

We delivered the similarity judgment tasks via NEXT; a cloud- based machine
learning platform (Jamieson et al., 2015). NEXT allows users to upload their own
content and query participants to perform judgment tasks. It uses machine learning
algorithms to automate data collection and analyze results. More information about
the plat- form can be found at http://nextml.org. In NEXT, students first received
a brief description of the study and then worked through a sequence of 50 similarity

http://nextml.org
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Figure 2.3: Example of a similarity judgment task: given the molecule on the top,
students were asked which of the two molecules at the bottom is most similar.

judgment tasks. Students were instructed that these tasks are not a test and that
there is right or wrong answer, but that we they are simply asked about their
personal perceptions of similarities among molecule representations.

2.2.3 Dataset

Undergraduate students enrolled in an introductory chemistry course at a large
U.S. university were invited to participate in a survey on learning with visual
representations. The course had an enrollment of 781 students. Participation
was voluntary. Altogether, we collected 26, 180 responses from 563 (possibly non-
unique) students. 61.6% of the students completed all 50 similarity judgment tasks.
On average, students completed 46.5 tasks. Each similarity judgment in response to
a triplet comparison task was associated with the feature vectors (xi) and molecule
vectors (rj) of the three molecule representations, as described in section 2.2.1.
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2.3 Analysis

In the following, we describe how we used similarity learning to investigate which
visual features drive students’ similarity judgments. We first provide a brief intro-
duction into the similarity learning method in general. Then, we describe how we
applied this method to our dataset in particular.

2.3.1 Introduction to Similarity Learning

In general, the goal of similarity learning is to learn a similarity function f that
agrees with students’ similarity judgments in the following sense: if item i is judged
to be more similar to j than to k, then f(i, j) < f(i,k). The function f can be thought
as quantifying the perceived distance or dissimilarity between pairs. Alternatively,
the function could quantify the perceptual similarity (inverse distance) between
pairs, in which case f(i, j) > f(i,k).

People are better at providing ordinal (i.e., comparative) responses than at
providing fine-grained quantitative judgments or ratings Stewart et al. (2005). For
example, when asked to compare the visual representations in Figure 2.3, people
find it easier to judge whether the target molecule is more similar to the left or the
right choice molecule than to judge their similarity on a rating scale. However, it is
challenging to learn embeddings from comparisons due to the sheer number of
possible triplet comparisons that could be made; the number of distinct triplets is
proportional to n3. For example, in our case of n = 50 molecule representations,
there exist nearly 125, 000 distinct triplets. Researchers have observed that while
triplet comparisons are easy to answer, they can become tedious and boring after
extended sessions (Bijmolt and Wedel, 1995). Since we hypothesize that perceived
dissimilarities can be accurately represented in d-dimensional space, it is reasonable
to conjecture that if the embedding dimension is low (i.e., d� n), then there will
be a high degree of redundancy among the triplet comparisons. In fact, researchers
have observed that a small subset of these triplet comparisons often suffice to learn
a reasonably accurate embedding, lending support to this conjecture (Agarwal
et al., 2007; Johnson, 1973; Tamuz et al., 2011).
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2.3.2 Similarity Learning Approaches

We applied two similarity learning approaches in this chapter: similarity learning
by ranking (Chechik et al., 2010) and non-metric multi-dimensional scaling. In both
cases, we modeled the perceptual similarity between molecules i and j as

Sij = x
T
iAxj

HereA is a symmetric matrix that parameterizes the model. The (k, l)th element of
the matrix,Akl, represents the importance of the interaction of feature k and feature
l in the model. Since we assume A is symmetric Akl = Alk and Skl = Slk. Before
introducing these approaches, let us define some notation. There are N triplet
comparisons. For the nth triplet, let in denote the target-molecule and let jn and kn
denote the two choice-molecules. Let yn denote the student’s judgment, specifically
yn = +1 if the student decided jn was more similar to in and yn = −1 otherwise.
Each of the p = 50 diagrams also has m associated features (e.g., numbers of
different atoms, bonds, etc.). Arrange the features for each molecule representation
into anm× 1 molecular feature vector, and them× 1 feature vectors into am× P
matrix, X. The ith column of X, denoted xi, contains them features for molecule i.
The jth row of X, denoted rj, is a molecule vector for feature j containing the value
of feature j for all 50 representations.

2.3.2.1 Approach 1: Similarity Learning by Ranking

This approach learns matrix A in our model of perceptual similarity directly from
triplet responses via linear regression.

Sij = x
T
iAxj

where xi and xj arem×1 dimensional feature vectors of the m features of molecule
representations i and j. The matrixA ism×m, and the similarity learning problem
is to estimateA that minimizes the number of disagreements between the ranking
predictions for each triple (i.e., either Sij > Sik or vice-versa) and the comparative
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judgments collected from the students, as proposed by (Chechik et al., 2010).
The first step in this analysis was to estimate A. Formally, the estimation of

A can be written as the following optimization problem. Let Sm be the set of all
m×m symmetric matrices. Solve for A that minimizes:

Â := arg min
A∈Sm

N∑
n=1

(yn − xTinAxjn + x
T
in
Axkn)

2.

The matrix A that minimizes the sum of squared errors weights the similarities
between the diagram features so as to predict perceptual similarity judgments. In
general, the solutionAwill place some weight on all m features. We anticipate that
the visual features that are not salient do not strongly affect students’ similarity
judgments and therefore have lower weights in A.

Taking this thinking a step further, we could consider many different optimiza-
tions of the type above, where in each case we use different subsets of the features,
in order to determine which are most predictive of student judgments. Indeed,
some featuresmay- be totally irrelevant andworsen, rather than help, the prediction
of students’ similarity judgments. Unfortunately, searching over all possible sub-
sets of features is computationally infeasible, so we instead consider the following
optimization that approximates this search problem called sparse-COMET (Atzmon
et al., 2015).

Â := arg min
A∈Sm

N∑
n=1

(yn − xTinAxjn + x
T
in
Axkn)

2 + λ

m∑
k=1

‖A(k, :)‖2

This optimization method uses a cost function that consists of two terms. The
first term represents least squares data-fitting cost in the previous optimization. The
second term is a Group LASSO penalty, which encourages solutions that have many
columns equal to 0. If a column in A is all zero, then the corresponding feature
is not used for prediction. The number of zero-valued columns in the solution
depends on λ > 0. Note that we recover the previous optimization when λ = 0.
Larger values of λ produce sparser solutions that effectively use fewer features.
Features crucial for prediction are excluded only if λ is exceedingly large.
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The second step in this analysis was to tune the parameter λ and then to assess
the prediction accuracy of ourmethod. To this end, we used 10-fold cross validation.
Specifically, we randomly split the complete dataset into 10 equal sized subsets.
We removed 2 random subsets as hold-out data and kept the remaining data as
training data. We then solved the optimization above with the training data over
a range of different λ values. For each λ, we scored prediction accuracy on one
set of hold-out data to select the optimal value. Then, using our chosen λ value,
we solved the optimization again to obtain a final A using 9/10 of the data, and
assessed the prediction accuracy on remaining 1/10 of the data.

The final step was to rank the features based on the weights in matrix. Due to
the Group LASSO penalty in the loss function, many of the columns in the resulting
matrix are zero. To get the aggregate weight of each relevant feature, we computed
the length (norm) of each non-zero column and ranked accordingly.

2.3.2.2 Approach 2: Ordinal Embedding

In this approach, rather than directly making predictions of similarity based on
feature vectors and triplet responses, we first used students’ similarity judgments to
learn an embedding that spatially represents the similarity of molecule representa-
tions as distances in 2-dimensional space. We then identified molecule vectors that
account for the distribution of molecule representations in the embedding space.

The first step in this analysis was to learn an embedding. We applied non-
metricmultidimensional scaling (NMDS) to the 26, 180 triplet comparison responses
collected from the experiment to learn an embedding of the 50 molecule repre-
sentations in a two-dimensional space (Agarwal et al., 2007). Embedding in two
dimensions allows visualizing the perceived similarity computed by NMDS. The
embedding reflects the consensus among students as towhichmolecular representa-
tions were more or less similar. We created 50 different embeddings, using multiple
random initializations per embedding in order to account for the non-convexity of
NMDS.

The second step was to validate the embedding. To this end, we computed a
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distance matrix for each embedding. To validate the distance matrices, we used
the following cross-validation procedure. We selected 6000 triplet comparison
responses uniformly at random to serve as a hold-out dataset. From the remaining
triplets, we randomly selected training sets of different size, ranging from 1000 to
20, 000 triplet comparison responses. We computed embeddings for each training
set. We then used these embeddings and the associated distance matrices to predict
students’ similarity judgments. Next, we used the distances in the embedding as a
predictor of judgments in the hold-out set; the prediction errors quantify how well
the embedding reflects the judgments. We repeated this procedure for training
sets of different size. We performed 50-fold cross validation to calculate average
prediction error on the learned embeddings. This procedure allowed assessing
how prediction performance relates to the training set size (i.e., how many triplets
were used to compute an embedding).

The third step in our analysis, after validating our embedding procedure, was
to compute an embedding and corresponding distance matrix from the full set of
triplets. Since the distance between points in the embedding corresponds to their
perceived dissimilarity, we computed a similarity matrix defined as the element-
wise inverse of the distance matrix, scaled from 0 to 1. This becomes matrix S.

The fourth stepwas to identifywhich features, represented by the feature vectors,
drive students’ similarity judgments. Because the embedding was performed in
2 dimensions, we can consider the problem of only choosing 2 feature vectors to
combine and compare combinations of pairs of feature vectors to the similarity
matrix. For each possible pair, we performed a least squares optimization to find
the ideal uniform scaling to match an outer product of our feature vectors to the
similarity matrix.

Â := arg min
A∈Sm

p∑
i,j=1

(Si,j − x
T
iAxj)

2

subject to As,t = 0 for all s, t not equal to k, l or l, k. In other words, only
let the k, l elements of A be non-zero and optimize these. This equates to fitting
S to the molecule vectors for features k and i. Here, Si,j represents the value of
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the perceptual similarity between molecules i and j from the embedding. The
magnitude of resulting value of Akl tells us how important the interaction of
features k and i is in representing the similarity. This is basically a correlation
coefficient, and it only gauges the marginal value of this interaction (i.e., in isolation
of all other interactions). In each case, after learning a matrix Awe computed the
corresponding residual value between similarity matrix S and our combination of 2
features. After performing all possible combinations of pairs of features, we ranked
pairs of features in ascending order of residual values, with the smallest residuals
being the best approximation of our observed similarity matrix. To evaluate the
feature rankings, we used 10-fold cross-validation by performing identical tests on
10 different similaritymatrices computed fromdifferent embeddings based on equal
numbers of triplets to ensure that the original embedding and the non-convexity of
NMDS was not a factor in the final ranking of feature pairs.

2.4 Results

2.4.1 Identifying Important Visual Features

To address research question 1, we used the two similarity learning approaches
just described to identify which visual features account for students similarity
judgments.

2.4.1.1 Approach 1: Similarity Learning by Ranking

Recall that the first approach entailed learning a similarity function that describes
students’ perceived similarity between molecule representations. This approach
yielded an average 69% prediction accuracy of students’ similarity judgments (as-
sessed via 10-fold cross validation). This finding indicates that there was consensus
over which representations were more or less similar, but also that there were some
disagreements among students’ similarity judgments.

To identify which visual features account for students similarity judgments,
we estimated the weights for each feature in the learned matrix A. The stronger a



24

Feature Avg. Weight
Distinct letters 4.50%
Single bonds between Oxygen and Hydrogen 3.45%
180-degree angle in Hydrogen-Carbon-Fluorine 3.16%
Double bonds between Oxygen and Nitrogen 3.03%
Number of Nitrogen atoms 2.99%
Double bonds between Carbon and Oxygen 2.78%
120-degree angle in Hydrogen-Carbon-Hydrogen 2.73%
Number of Oxygen atoms 2.64%
180-degree angle in Carbon-Carbon-Oxygen 2.62%
Single bonds between Carbon and Oxygen 2.37%

Table 2.1: Top 10 features from the ranking of features with strong weights obtained
by Approach 1.

feature’s weight in A, the more this feature affected students’ similarity judgments.
Hence, the feature’s weight corresponds to its saliency in students’ perception of
molecule representations.

Table 2.1 shows the 10 most important features, as determined by a ranking
of features according to their aggregate weight computed from matrix A. These
results show that the most highly ranked feature is the number of distinct letters,
which corresponds to an aggregate educated guess feature. Specific visual features
that are relevant to organic molecules were also ranked highly (e.g., the number of
single bonds between Oxygen and Hydrogen atoms, the number of bonds between
Carbon and Oxygen, the number of Nitrogen and Oxygen atoms). These specific
visual features were present in many of the molecules in our dataset. Several visual
features also included geometric aspects, specifically bond angles. These features
indicate the presence of chemical functional groups that are relevant to predicting
molecule’s reactive behaviors.

2.4.1.2 Approach 2: Ordinal Embedding

Recall that approach s learns an embedding that represents the similarity ofmolecule
representations as distances in ad-dimensional space, fromwhichwe then extracted
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Figure 2.4: Prediction accuracy on hold-out set by number of dimensions in em-
bedding.

the most important features. First, we established how many dimensions we need
to consider (i.e., which d to choose in representing similarity of molecule repre-
sentations in a d-dimensional space). Using the process of 50-fold cross validation
described above, we calculated unit through 20 dimensional embeddings of per-
ceptual similarity. We used 20, 000 triplets in this computation to ensure that the
number of triplets did not affect the prediction accuracy as the dimension became
large. Figure 2.4 shows that there is no drop in prediction accuracy when embed-
ding in low dimensions versus high, suggesting that perceptual similarity can be
accurately rep- resented in a low dimensional subspace, and that there is a high
degree of redundancy in the data. This result shows that students’ responses agreed
on the relative similarity about 70% of the time.

Next, we generated a 2-dimensional embedding that describes students’ per-
ceived similarity between the molecule representations. Figure 5 shows this embed-
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Figure 2.5: 2-dimensional similarity embedding. Distances between molecule
representations correspond to students’ perceived dissimilarity between them (i.e.,
molecule representations that are depicted close to one another are perceived to be
similar).

ding, illustrating that molecules naturally form clusters based on their perceptual
similarity. These clusters correspond to specific chemical properties shared among
the molecules, such the presence of a particular type of bond or a functional group.
We color-coded and labeled some of these clusters to illustrate these characteristics
of students’ perceptions. This illustration lends face validity to our embedding
approach.

From this embedding, we extracted an ordered list of the feature pairs that best
capture students’ similarity judgments, shown in Table 2.2. The feature pairs in
this table were ranked based on how well they approximate the similarity matrix
computed from the embedding in Figure 2.5. The same feature may appear twice
in a pair to account for the possibility that a weighted combination of a feature with
itself better reflects the observed similarity structure than does a pair of features.
In sum, these results show that the most highly ranked features are general visual
features, which correspond to the aggregate educated guess features (e.g., number
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Feature Avg. Weight
1 Distinct Letters & Distinct Letters
2 Total letters & Distinct Letters
3 Different Letters & Single Bonds
4 Total Bonds & Distinct Letters
5 Different Letters & Carbons
6 Hydrogens & Distinct Letters
7 Total Letters & Total Letters
8 Total Letters & Single Letters
9 Total Letters & Unbonded Electrons
10 Distinct Letters & Carbon-Hydrogen Bonds

Table 2.2: Top 10 feature pairs from the learned embeddings (approach 2). Each row
corresponds to a pair of feature vectors ranked in accordance with how accurately
they described the observed similarity structure from the embedding.

of letters, number of lines). Specific visual features that are relevant to hydrocarbon
molecules were also ranked highly (e.g., the number of Carbon and Hydrogen
atoms). These specific features were present in many of the molecules in our
dataset.

2.4.1.3 Comparing the Similarity Learning Approaches

While both methods agreed upon the top ranked feature, the similarity learning
by ranking approach ranked structural features of the representations that were
relevant to hydrocarbons and organic molecules more highly. As the ranking
from this method follow predictive power, this ranking indicates that students’
judgments of similarity can best be predicted, and therefore explained, through a
combination of the number of different letters and the structural features involving
Carbon, Hydrogen, and Oxygen.

2.4.2 Comparison with “Educated Guesses”

To address research question 2 (do the visual features we identified as salient via
metric learning correspond to visual features that students are expected to attend
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to?), we compared the results from the similarity learning approaches to the edu-
cated guess features that we had determined based on the expert-novice literature
on perceptual learning. Overall, the results from both metric learning approaches
agree with the educated guesses: aggregate features that describe general visual
features were ranked to be most important by both metric learning approaches.
The similarity learning by ranking approach also yielded a number of visual fea-
tures that are specific to the types of molecules in our corpus; in particular, visual
representations that are highly relevant for comparing organic molecules.

2.4.3 Number of Similarity Judgments Needed

We addressed our methodological research question 3 (how many similarity judg-
ments we need to assess students’ perceptual knowledge) with the ordinal embed-
ding approach. Specifically, we tested howmany triplet comparisons are required to
compute a representative embedding of the underlying similarity. Figure 6 shows
that gains in prediction accuracy of the embedding were no longer statistically
significant beyond 7000 triplet comparisons.

2.4.4 Differences Between the Two Approaches

The two methods are different and potentially complementary. There is no defini-
tively correct way to fit the common model Sij = xTiAxj to data. The main differ-
ences in the final rankings they produce stems from how we are learning matrix A
and the restrictions we put on its structure. In approach 1 we are directly working
with triplet responses which are perhaps noisy due to disagreements in students’
individual judgments of perceptual similarity, but we are placing fewer restric-
tions on the learned matrix, allowing for more feature interaction. In approach 2,
NMDS is useful for capturing perceived similarity in aggregate, but we enforce
much stronger restrictions on the structure ofA, namely that only two features may
interact at once, giving a clearer picture of the importance of a pair of features.
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Figure 2.6: Prediction accuracy on hold-out set by number of triplet comparison
judgments used in the training set.

2.5 Discussion

We applied similarity learning approaches to assess which visual features stu-
dents focus on when presented with visual representations. We compared two
approaches, one that allows us to assess the predictive power of the identified fea-
tures, and one that allows representing the perceived similarity in a d-dimensional
space. Both approaches yield similar results as to which visual features are salient
to students. Hence, both approaches address research question 1: Which visual
features do students focus on when presented with visual representations? We
found that students’ similarity judgments of Lewis structures appear to be driven
by general visual features such as the number of total and distinct letters, as well as
by visual features specific to the types of molecules in our dataset (e.g., number of
Hydrogen / Carbon atoms).
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Our results also address research question 2: Do the visual features we identified
as salient via similarity learning correspond to visual features that students are
expected to attend to based on the expert-novice literature on perceptual learning?
We found that the identified general visual features align with educated guesses
based on the literatures on expertise and perceptual learning, which validates the
common “educated guess” approach that instructional designers have to rely on in
the absence of assessments of perceptual knowledge. Our results also suggest that,
in addition to these general features, students learn to pay attention to key visual
features that are highly domain-specific; such as features that indicate the presence
of functional groups that are predictive of chemical behaviors. Furthermore, our
results show that a few key features predict students’ perceptions of similarity
between visual representations with accuracy of about 70%.

Finally, we addressed our methodical research question 3: Howmany similarity
judgments we need to assess students’ perceptual knowledge? Our results show
that about 7, 000 responses to triplet comparison tasks are sufficient in assessing
a population’s perceptual knowledge. Using a survey with 50 triplet comparison
tasks (as in our experiment), that means an N of 140 participants will yield valid
assessments of perceptual knowledge.

2.6 Limitations

Although both similarity learning approaches had rigorous theoretical backing,
we made a few assumptions about our triplet comparison data that had inherent
limitations of note. In both of these methods, we are not modeling individual
students, but rather the population as a whole. Consequently, we assume that the
triplets and therefore the judgments of similarity are independent of one another.
This assumption allows us to learn the rankings of features and feature pairs for the
students’ collectively, but it does not provide a ranking for an individual. Further,
because judging similarity representations is a subjective task, students’ judgments
may in certain cases conflict with one another. Evenwith an extremely large number
of similarity judgments, complete consensus is unlikely, and therefore, perfect
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prediction of student judgments is similarly difficult to achieve. Hence, future
research needs to investigate how to expand the present approach to modeling
individual perceptual knowledge.

Another limitation pertains to the ordinal embedding procedure. For visual-
ization purposes, we embedded the molecules into a 2-dimensional space. Higher
dimensional embedding may more accurately capture perceptual dissimilarities.
Future research should explore this question.

2.7 Future Directions

We will expand our research to other types of visual representations typically used
in chemistry instruction (see Figure 2.1). Further, we will gather data from expert
chemists and compare them to data from novices and advanced learners. Based on
this comparison, we will identify a “perceptual knowledge gap” between students
and experts. Specifically, we will identify visual features that experts attend to but
students do not.

Further, we will expand similarity learning so that it can assess an individual
student’s perceptual knowledge in real time. The current approach is limited in
that it requires a large number of similarity judgments to assess students’ percep-
tual knowledge, which is only feasible if we are interested in assessing perceptual
knowledge of a population of interest (e.g., novices, advanced students, experts),
and because we assume independence among similarity judgments. To address
this limitation, we will combine our similarity learning approach with cognitive
modeling methods (e.g., Bayesian knowledge tracing). For example, a similarity
judgment survey may provide a prior for in a cognitive model, and students’ per-
formance on perceptual learning tasks may inform the choice of representations
for a small number similarity judgment tasks interspersed in the learning activity.

This expansion will provide the basis for the design of adaptive instruction
for perceptual knowledge that can provide appropriate sequences of perceptual
learning tasks that draw students’ attention to visual features they yet have to learn.
Further, knowing which visual features students have not yet learned can serve
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as a basis for the design of visual feedback that highlights visual features when
students make mistakes on perceptual learning tasks.

In sum, we will use the similarity learning approach described in this chap-
ter both to design instruction for perceptual learning and to assess perceptual
knowledge as a learning outcome.

2.8 Conclusions

This chapter described a new approach to assess students’ perceptual knowledge.
We used this approach to validate the “educated guesses” approach. In addition,
we offer more formal pathways for instructional designers to create perceptual
learning assessments. Because developing adaptive instruction for perceptual
knowledge relies on such assessments, this chaptermakes an important contribution
to cognitive modeling research.

This chapter also makes important contributions to machine learning. We
provide a new mathematical approach to quantify the accuracy of perceptual em-
beddings learned from similarity judgments. Specifically, we derived bounds on
the accuracy of embeddings learned from small numbers of comparative judgments
by adapting recently developed large-sample analysis methods (Arias-Castro et al.,
2017). This approach provided new algorithms for generating embeddings that are
provably accurate. We investigated new methods for embedding based on spectral
methods inspired by spectral ranking algorithms (Negahban et al., 2012). Our exper-
iment yielded an empirical validation with perceptual data from undergraduates,
as well as new machine learning methods to assess how visual features predict or
encode perceptual similarity judgments. Specifically, we explored the application
of group Lasso algorithms for automatically selecting the most perceptually salient
features (Yuan and Lin, 2006). Our experiment empirically evaluated the group
Lasso approach.

In sum, our work provides a crucial stepping stone towards adaptive instruction
for perceptual knowledge. Perceptual knowledge is by definition implicit and does
not lend itself to the kinds of techniques used in traditional cognitive modeling
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approaches (e.g., think-alouds, interviews). We presented and evaluated two simi-
larity learning approaches that can determine which visual features students attend
to when perceiving visual representations.

Acknowledgements We thank Professor John Moore in the Chemistry Depart-
ment for his help in recruiting participants for this study, and the Learning Under-
standing Cognition Intelligence and Data Science group at UWMadison for their
suggestions.
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3 learning low-dimensional metrics

3.1 Low-Dimensional Metric Learning

This chapter studies the problem of learning a low-dimensional Euclidean metric
from comparative judgments. Specifically, consider a set of n items with high-
dimensional features xi ∈ Rp and suppose we are given a set of (possibly noisy)
distance comparisons of the form

sign(dist(xi, xj) − dist(xi, xk)),

for a subset of all possible triplets of the items. Here we have in mind comparative
judgments made by humans and the distance function implicitly defined according
to human perceptions of similarities and differences. For example, the items could
be images and the xi could be visual features automatically extracted by a machine.
Accordingly, our goal is to learn a p × p symmetric positive semi-definite (psd)
matrix K such that the metric dK(xi, xj) := (xi − xj)

TK(xi − xj), where dK(xi, xj)
denotes the squared distance between items i and j with respect to a matrix K,
predicts the given distance comparisons as well as possible. Furthermore, it is often
desired that the metric is low-dimensional relative to the original high-dimensional
feature representation (i.e., rank(K) 6 d < p). There are several motivations for
this:

• Learning a high-dimensional metric may be infeasible from a limited number
of comparative judgments, and encouraging a low-dimensional solution is a
natural regularization.

• Cognitive scientists are often interested in visualizing human perceptual judg-
ments (e.g., in a two-dimensional representation) and determining which
features most strongly influence human perceptions. For example, educa-
tional psychologists in Rau et al. (2016) collected comparisons between visual
representations of chemical molecules in order to identify a small set of vi-
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(a) A general low rank
psd matrix

(b) A sparse and low
rank psd matrix

Figure 3.1: Examples of K for p = 20 and d = 7. The sparse case depicts a situation
in which only some of the features are relevant to the metric.

sual features that most significantly influence the judgments of beginning
chemistry students.

• It is sometimes reasonable to hypothesize that a small subset of the high-
dimensional features dominate the underlying metric (i.e., many irrelevant
features).

• Downstream applications of the learned metric (e.g., for classification pur-
poses) may benefit from robust, low-dimensional metrics.

With this in mind, several authors have proposed nuclear norm and `1,2 group
lasso norm regularization to encourage low-dimensional and sparse metrics as in
Fig. 3.1b (see Bellet et al. (2015) for a review). Relative to such prior work, the
contributions of this work are three-fold:

1. We develop novel upper bounds on the generalization error and sample com-
plexity of learning low-dimensional metrics from triplet distance comparisons.
Notably, unlike previous generalization bounds, our bounds allow one to
easily quantify how the feature space dimension p and rank or sparsity d < p
of the underlying metric impacts the sample complexity.

2. We establish minimax lower bounds for learning low-rank and sparse metrics
that match the upper bounds up to polylogarithmic factors, demonstrating
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the optimality of learning algorithms for the first time. Moreover, the upper
and lower bounds demonstrate that learning sparse (and low-rank) metrics is
essentially as difficult as learning a general low-rank metric. This suggests
that nuclear norm regularization may be preferable in practice, since it places
less restrictive assumptions on the problem.

3. We use the generalization error bounds to obtain model identification error
bounds that quantify the accuracy of the learned Kmatrix. This problem has
received very little, if any, attention in the past and is crucial for interpreting
the learned metrics (e.g., in cognitive science applications). This is a bit
surprising, since the term “metric learning” strongly suggests accurately
determining a metric, not simply learning a predictor that is parameterized
by a metric.

3.1.1 Comparison with Previous Work

There is a fairly large body of work on metric learning which is nicely reviewed
and summarized in the monograph Bellet et al. (2015), and we refer the reader to
it for a comprehensive summary of the field. Here we discuss a few recent works
most closely connected to this work. Several authors have developed generalization
error bounds for metric learning, as well as bounds for downstream applications,
such as classification, based on learned metrics. To use the terminology of Bellet
et al. (2015), most of the focus has been on must-link/cannot-link constraints and
less on relative constraints (i.e., triplet constraints as considered in this chapter).
Generalization bounds based on algorithmic robustness are studied in Bellet and
Habrard (2015), but the generality of this framework makes it difficult to quantify
the sample complexity of specific cases, such as low-rank or sparse metric learning.
Rademacher complexities are used to establish generalization error bounds in the
must-link/cannot-link situation in Guo and Ying (2014); Ying et al. (2009); Bian
and Tao (2012), but do not consider the case of relative/triplet constraints. The
sparse compositional metric learning framework of Shi et al. (2014) does focus on
relative/triplet constraints and provides generalization error bounds in terms of
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covering numbers. However, this work does not provide bounds on the covering
numbers, making it difficult to quantify the sample complexity. To sum up, prior
work does not quantify the sample complexity of metric learning based on rela-
tive/triplet constraints in terms of the intrinsic problem dimensions (i.e., dimension
p of the high-dimensional feature space and the dimension d of the underlying
metric), there is no prior work on lower bounds, and no prior work quantifying the
accuracy of learned metrics themselves (i.e., only bounds on prediction errors, not
model identification errors). Finally we mention that Fazel et al. Oymak et al. (2015)
also consider the recovery of sparse and low rank matrices from linear observations.
Our situation is very different, our matrices are low rank because they are sparse -
not sparse and simultaneously low rank as in their case.

3.2 The Metric Learning Problem

Considern known pointsX := [x1, x2, . . . , xn] ∈ Rp×n. We are interested in learning
a symmetric positive semidefinite matrix K that specifies a metric on Rp given
ordinal constraints on distances between the known points. Let S denote a set of
triplets, where each t = (i, j,k) ∈ S is drawn uniformly at random from the full
set of n

(
n−1

2

)
triplets T := {(i, j,k) : 1 6 i 6= j 6= k 6 n, j < k}. For each triplet, we

observe a yt ∈ {±1}which is a noisy indication of the triplet constraint dK(xi, xj) <
dK(xi, xk). Specifically we assume that each t has an associated probability qt of
yt = −1, and all yt are statistically independent.

Objective 1: Compute an estimate K̂ from S that predicts triplets as well as
possible.

In many instances, our triplet measurements are noisy observations of triplets
from a true positive semi-definite matrix K∗. In particular we assume

qt > 1/2 ⇐⇒ dK∗(xi, xj) < dK∗(xi, xk) .

We can also assume an explicit known link function, f : R → [0, 1], so that qt =

f(dK∗(xi, xj) − dK∗(xi, xk)).



38

Objective 2: Assuming an explicit known link function f estimate K∗ from S.

3.2.1 Definitions and Notation

Our triplet observations are nonlinear transformations of a linear function of the
Gram matrixG := XTKX. Indeed for any triple t = (i, j,k), define

Mt(K) := dK(xi, xj) − dK(xi, xk)

= xTi Kxk + x
T
kKxi − x

T
i Kxj − x

T
j Kxi + x

T
j Kxj − x

T
kKxk .

So for every t ∈ S, yt is a noisy measurement of sign(Mt(K)). This linear
operator may also be expressed as a matrix

Mt := xix
T
k + xkx

T
i − xix

T
j − xjx

T
i + xjx

T
j − xkx

T
k ,

so thatMt(K) = 〈Mt,K〉 = Trace(MT
tK). We will useMt to denote the operator

and associated matrix interchangeably. Ordering the elements of T lexicographi-
cally, we letM denote the linear map,

M(K) = (Mt(K)| for t ∈ T) ∈ Rn(
n−1

2 )

Given a PSD matrix K and a sample, t ∈ S, we let `(yt〈Mt,K〉) denote the loss
of Kwith respect to t; e.g., the 0-1 loss 1

{sign(yt〈Mt,K〉) 6=1}, the hinge-loss max{0, 1−
yt〈Mt,K〉}, or the logistic loss log(1 + exp(−yt〈Mt,K〉)). Note that we insist that
our losses be functions of our triplet differences 〈Mt,K〉. Further, note that this
makes our losses invariant to rigid motions of the points xi. Other models proposed
for metric learning use scale-invariant loss functions Heim et al. (2015).

For a given loss `, we then define the empirical risk with respect to our set of
observations S to be

R̂S(K) :=
1
|S|

∑
t∈S

`(yt〈Mt,K〉).

This is an unbiased estimator of the true risk R(K) := E[`(yt〈Mt,K〉)] where the
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expectation is taken with respect to a triplet t selected uniformly at random and
the random value of yt.

Finally, we let In denote the identitymatrix inRn×n, 1n then-dimensional vector
of all ones and V := In − 1

n
1n1Tn the centering matrix. In particular if X ∈ Rp×n

is a set of points, XV subtracts the mean of the columns of X from each column.
We say that X is centered if XV = 0, or equivalently X1n = 0. If G is the Gram
matrix of the set of points X, i.e. G = XTX, then we say that G is centered if X
is centered or if equivalently, G1n = 0. Furthermore we use ‖ · ‖∗ to denote the
nuclear norm, and ‖ · ‖1,2 to denote the mixed `1,2 norm of a matrix, the sum of the
`2 norms of its rows. Unless otherwise specified, we take ‖ · ‖ to be the standard
operator norm when applied to matrices and the standard Euclidean norm when
applied to vectors. Finally we define the K-norm of a vector as ‖x‖2

K := xTKx.

3.2.2 Sample Complexity of Learning Metrics.

In most applications, we are interested in learning a matrix K that is low-rank and
positive-semidefinite. Furthermore as we will show in Theorem 3.1, such matrices
can be learned using fewer samples than general psd matrices. As is common
in machine learning applications, we relax the rank constraint to a nuclear norm
constraint. In particular, let our constraint set be

Kλ,γ = {K ∈ Rp×p|K positive-semidefinite, ‖K‖∗ 6 λ, max
t∈T
〈Mt,K〉 6 γ}.

Up to constants, a bound on 〈Mt,K〉 is a bound on xTi Kxi. This bound along
with assuming our loss function is Lipschitz, will lead to a tighter bound on the
deviation of R̂S(K) from R(K) crucial in our upper bound theorem.

Let K∗ := minK∈Kλ,γ R(K) be the true risk minimizer in this class, and let
K̂ := minK∈Kλ,γ R̂S(K) be the empirical risk minimizer. We achieve the following
prediction error bounds for the empirical risk minimzer.

Theorem 3.1. Fix λ,γ, δ > 0. In addition assume that max16i6n ‖xi‖2 = 1. If the loss
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function ` is L-Lipschitz, then with probability at least 1 − δ

R(K̂) − R(K∗) 6 4L

√140λ2 ‖XXT‖
n

log p
|S|

+
2 log p
|S|

+

√
2L2γ2 log 2/δ

|S|

Note that past generalization error bounds in the metric learning literature have
failed to quantify the precise dependence on observation noise, dimension, rank,
and our features X. Consider the fact that a p× pmatrix with rank d has O(dp)
degrees of freedom. With that in mind, one expects the sample complexity to
be also roughly O(dp). We next show that this intuition is correct if the original
representation X is isotropic (i.e., has no preferred direction).

The Isotropic Case. Suppose that x1, · · · , xn, n > p, are drawn independently
from the isotropic Gaussian N(0, 1

p
I). Furthermore, suppose that K∗ = p√

d
UUT

withU ∈ Rp×d is a generic (dense) orthogonal matrix with unit norm columns. The
factor p√

d
is simply the scaling needed so that the averagemagnitude of the entries in

K∗ is a constant, independent of the dimensions p and d. In this case, rank(K∗) = d
and ‖K∗‖F = trace(UTU) = p. These two facts imply that the tightest bound on the
nuclear norm of K∗ is ‖K∗‖∗ 6 p

√
d. Thus, we take λ = p

√
d for the nuclear norm

constraint. Now let zi =
√

p√
d
UTxi ∼ N(0, Id) and note that ‖xi‖2

K = ‖zi‖2 ∼ χ2
d.

Therefore, E‖xi‖2
K = d and it follows from standard concentration bounds that

with large probability maxi ‖xi‖2
K 6 5d logn =: γ see Davidson and Szarek (2001).

Also, because the xi ∼ N(0, 1
p
I) it follows that if n > p log p, say, then with large

probability ‖XXT‖ 6 5n/p. We now plug these calculations into Theorem 3.1 to
obtain the following corollary.

Corollary 3.2 (Sample complexity for isotropic points). Fix δ > 0, set λ = p
√
d, and

assume that ‖XXT‖ = O(n/p) and γ := maxi ‖xi‖2
K = O(d logn). Then for a generic

K∗ ∈ Kλ,γ, as constructed above, with probability at least 1 − δ,

R(K̂) − R(K∗) = O

√dp(log p+ log2 n)

|S|


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This bound agrees with the intuition that the sample complexity should grow
roughly like dp, the degrees of freedom on K∗. Moreover, our minimax lower
bound in Theorem 3.4 below shows that, ignoring logarithmic factors, the general
upper bound in Theorem 3.1 is unimprovable in general.

Beyond low rank metrics, in many applications it is reasonable to assume that
only a few of the features are salient and should be given nonzero weight. Such
a metric may be learned by insisting K to be row sparse in addition to being low
rank. Whereas learning a low rank K assumes that distance is well represented in a
low dimensional subspace, a row sparse (and hence low rank) K defines a metric
using only a subset of the features. Figure 3.1 gives a comparison of a low rank
versus a low rank and sparse matrix K.

Analogous to the convex relaxation of rank by the nuclear norm, it is common
to relax row sparsity by using the mixed `1,2 norm. In fact, the geometry of the `1,2

and nuclear norm balls are tightly related as the following lemma shows.

Lemma 3.3. For a symmetric positive semi-definite matrix K ∈ Rp×p, ‖K‖∗ 6 ‖K‖1,2.

Proof. ‖K‖1,2 =

p∑
i=1

√√√√ p∑
j=1

K2
i,j >

p∑
i=1

Ki,i = Trace(K) =
p∑
i=1

λi(K) = ‖K‖∗

This implies that the `1,2 ball of a given radius is contained inside the nuclear
norm ball of the same radius. In particular, it is reasonable to assume that it is easier
to learn a K that is sparse in addition to being low rank. Surprisingly, however, the
following minimax bound shows that this is not necessarily the case.

To make this more precise, we will consider optimization over the set

K ′λ,γ = {K ∈ Rp×p|K positive-semidefinite, ‖K‖1,2 6 λ, max
t∈T
〈Mt,K〉 6 γ}.

Furthermore, we must specify the way in which our data could be generated from
noisy triplet observations of a fixed K∗. To this end, assume the existence of a link
function f : R → [0, 1] so that qt = P(yt = −1) = f(Mt(K

∗)) governs the observa-
tions. There is a natural associated logarithmic loss function `f corresponding to
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the log-likelihood, where the loss of an arbitrary K is

`f(yt〈Mt,K〉) = 1{yt=−1} log 1
f(〈Mt,K〉)

+ 1{yt=1} log 1
1 − f(〈Mt,K〉)

Theorem 3.4. Choose a link function f and let `f be the associated logarithmic loss. For p
sufficiently large, then there exists a choice of γ, λ, X, and |S| such that

inf
K̂

sup
K∈K ′λ,γ

E[R(K̂)] − R(K) > C

√
C3

1 ln 4
2

λ2 ‖XXT‖
n

|S|

where C =
C2
f

32

√
inf|x|6γ f(x)(1−f(x))

sup|ν|6γ f
′(ν)2 with Cf = inf|x|6γ f ′(x), C1 is an absolute constant,

and the infimum is taken over all estimators K̂ of K from |S| samples.

Importantly, up to polylogarithmic factors and constants, our minimax lower
bound over the `1,2 ball matches the upper bound over the nuclear norm ball given
in Theorem 3.1. In particular, in the worst case, learning a sparse and low rank matrix
K is no easier than learning a K that is simply low rank. However in many realistic
cases, a slight performance gain is seen from optimizing over the `1,2 ball when K∗

is row sparse, while optimizing over the nuclear norm ball does better when K∗

is dense. We show examples of this in the Section 3.3. The proof is given in the
supplementary materials.

Note that if γ is in a bounded range, then the constant C has little effect. For
the case that f is the logistic function, Cf > 1

4e
−yt〈Mt,K〉 > 1

4e
−γ. Likewise, the term

under the root will be also be bounded for γ in a constant range. The terms in
the constant C arise when translating from risk and a KL-divergence to squared
distance and reflects the noise in the problem.

3.2.3 Sample Complexity Bounds for Identification

Under a general loss function and arbitrary K∗, we can not hope to convert our
prediction error bounds into a recovery statement. However in this section we will
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show that as long as K∗ is low rank, and if we choose the loss function to be the log
loss `f of a given link function f as defined prior to the statement of Theorem 3.4,
recovery is possible.

Firstly, note that under these assumptions we have an explicit formula for the
risk,

R(K) =
1
|T|

∑
t∈T

f(〈Mt,K∗〉) log 1
f(〈Mt,K〉)

+ (1 − f(〈Mt,K∗〉)) log 1
1 − f(〈Mt,K〉)

and
R(K) − R(K∗) =

1
|T|

∑
t∈T

KL(f(〈Mt,K∗〉)||f(〈Mt,K〉)).

The following theorem shows that if the excess risk is small, i.e. R(K̂) approx-
imates R(K∗) well, then M(K̂) approximates M(K∗) well. The proof, given in the
supplementary materials, uses standard Taylor series arguments to show the KL-
divergence is bounded below by squared-distance.

Lemma 3.5. Let Cf = inf|x|6γ f ′(x). Then for any K ∈ Kλ,γ,

2C2
f

|T|
‖M(K) −M(K∗)‖2 6 R(K) − R(K∗).

The followingmay give us hope that recoveringK∗ fromM(K∗) is trivial, but the
linear operatorM is non-invertible in general, as we discuss next. To see why, we
must consider a more general class of operators defined on Gram matrices. Given
a symmetric matrixG, define the operator Lt by

Lt(G) = 2Gik − 2Gij +Gjj −Gkk

If G = XTKX then Lt(G) =Mt(K), and more soMt = XLtX
T . Analogous to M,

we will combine the Lt operators into a single operator L,

L(G) = (Lt(G)| for t ∈ T) ∈ Rn(
n−1

2 ).
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Lemma 3.6. The null space of L is one dimensional, spanned by V = In − 1
n

1n1Tn.

The proof is contained in the supplementary materials. In particular we see that
M is not invertible in general, adding a serious complication to our argument. How-
ever L is still invertible on the subset of centered symmetric matrices orthogonal to
V, a fact that we will now exploit. We can decomposeG into V and a component
orthogonal to V denotedH,

G = H+ σGV

where σG := 〈G,V〉
‖V‖2

F

, and under the assumption that G is centered, σG = ‖G‖∗
n−1 .

Remarkably, the following lemma tells us that a non-linear function ofH uniquely
determinesG.

Lemma 3.7. If n > d + 1, and G is rank d and centered, then −σG is an eigenvalue of
H with multiplicity n − d − 1. In addition, given another Gram matrix G ′ of rank d ′,
σG ′ − σG is an eigenvalue ofH−H ′ with multiplicity at least n− d− d ′ − 1.

Proof. SinceG is centered, 1n ∈ kerG, and in particular dim(1⊥n∩kerG) = n−d−1.
If x ∈ 1⊥n ∩ kerG, then

Gx = Hx+ σGVx⇒ Hx = −σGx.

For the second statement, notice that dim(1⊥n ∩ kerG −G ′) > n − d − d ′ − 1. A
similar argument then applies.

If n > 2d, then the multiplicity of the eigenvalue −σG is at least n/2. So we
can trivially identify it from the spectrum ofH. This gives us a non-linear way to
recoverG fromH.

Now we can return to the task of recovering K∗ fromM(K̂). Indeed the above
lemma implies thatG∗ (and hence K∗ if X is full rank) can be recovered fromH∗

by computing an eigenvalue ofH∗. HoweverH∗ is recoverable from L(H∗), which
is itself well approximated by L(Ĥ) = M(K̂). The proof of the following theorem
makes this argument precise.
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Theorem 3.8. Assume that K∗ is rank d, K̂ is rank d ′, n > d+ d ′ + 1, X is rank p and
XTK∗X andXT K̂X are all centered. LetCd,d ′ =

(
1 + n−1

(n−d−d ′−1)

)
. Then with probability

at least 1 − δ,

nσmin(XX
T )2

|T|
‖K̂−K∗‖2

F 6
2LCd,d ′

C2
f

√140λ2 ‖XXT‖
n

log p
|S|

+
2 log p
|S|

+

√
2L2γ2 log 2

δ

|S|


where σmin(XX

T ) is the smallest eigenvalue of XXT .

The proof, given in the supplementary materials, relies on two key components,
Lemma 3.7 and a type of restricted isometry property forM on V⊥. Our proof tech-
nique is a streamlined andmore general approach similar to that used in the special
case of ordinal embedding. In fact, our new bound improves on the recovery bound
given in Jain et al. (2016a) for ordinal embedding.

We have several remarks about the bound in the theorem. If X is well condi-
tioned, e.g. isotropic, then σmin(XX

T ) ≈ n
p
. In that case nσmin(XXT )2

|T|
≈ 1
p2 , so the left

hand side is the average squared error of the recovery. In most applications the
rank of the empirical risk minimizer K̂ is approximately equal to the rank of K∗, i.e.
d ≈ d ′. Note that If d+ d ′ 6 1

2(n− 1) then Cd,d ′ 6 3. Finally, the assumption that
XTK∗X are centered can be guaranteed by centering X, which has no impact on the
triplet differences 〈Mt,K∗〉, or insisting that K∗ is centered. As mentioned above
Cf will be have little effect assuming that our measurements 〈Mt,K〉 are bounded.

3.2.4 Applications to Ordinal Embedding

In the ordinal embedding setting, there are a set of items with unknown locations,
z1, · · · , zn ∈ Rd and a set of triplet observations Swhere as in the metric learning
case observing yt = −1, for a triplet t = (i, j,k) is indicative of the ‖zi − zj‖2 6

‖zi − zk‖2, i.e. item i is closer to j than k. The goal is to recover the zi’s, up to rigid
motions, by recovering their Gram matrix G∗ from these comparisons. Ordinal
embedding case reduces to metric learning through the following observation.
Consider the case when n = p and X = Ip, i.e. the xi are standard basis vectors.
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Letting K∗ = G∗, we see that ‖xi − xj‖2
K = ‖zi − zj‖2. So in particular, Lt =Mt for

each triple t, and observations are exactly comparative distance judgements. Our
results then apply, and extend previous work on sample complexity in the ordinal
embedding setting given in Jain et al. (2016a). In particular, though Theorem 5 in
Jain et al. (2016a) provides a consistency guarantee that the empirical risk minimizer
Ĝ will converge to G∗, they do not provide a convergence rate. We resolve this
issue now.

In their work, it is assumed that ‖zi‖2 6 γ and ‖G‖∗ 6
√
dnγ. In particu-

lar, sample complexity results of the form O(dnγ logn) are obtained. However,
these results are trivial in the following sense, if ‖zi‖2 6 γ then ‖G‖∗ 6 γn, and
their results (as well as our upper bound) implies that true sample complexity
is significantly smaller, namely O(γn logn) which is independent of the ambient
dimension d. As before, assume an explicit link function f with Lipschitz constant
L, so the samples are noisy observations governed byG∗, and take the loss to be
the logarithmic loss associated to f.

We obtain the following improved recovery bound in this case. The proof is
immediate from Theorem 3.8.

Corollary 3.9. Let G∗ be the Gram matrix of n centered points in d dimensions with
‖G∗‖2

F =
γ2n2

d
. Let Ĝ = min‖G‖∗6γn,‖G‖∞6γ RS(G) and assume that Ĝ is rank d, with

n > 2d+ 1. Then,
‖Ĝ−G∗‖2

F

n2 = O

(
LCd,d

C2
f

√
γn logn

|S|

)

3.3 Experiments

To validate our complexity and recovery guarantees, we ran the following simu-

lations. We generate x1, · · · , xn
iid
∼ N(0, 1

p
I), with n = 200, and K∗ = p√

d
UUT for

a random orthogonal matrixU ∈ Rp×d with unit norm columns. In Figure 3.2a,
K∗ has d nonzero rows/columns. In Figure 3.2b, K∗ is a dense rank-dmatrix. We
compare the performance of nuclear norm and `1,2 regularization in each setting
against an unconstrained baseline where we only enforce that K be psd. Given a
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fixed number of samples, each method is compared in terms of the relative excess
risk, R(K̂)−R(K∗)

R(K∗)
, and the relative squared recovery error, ‖K̂−K∗‖2

F

‖K∗‖2
F

, averaged over 20
trials. The y-axes of both plots have been trimmed for readability.

In the case that K∗ is sparse, `1,2 regularization outperforms nuclear norm regu-
larization. However, in the case of dense low rank matrices, nuclear norm reular-
ization is superior. Notably, as expected from our upper and lower bounds, the
performances of the two approaches seem to be within constant factors of each
other. Therefore, unless there is strong reason to believe that the underlying K∗

is sparse, nuclear norm regularization achieves comparable performance with a
less restrictive modeling assumption. Furthermore, in the two settings, both the
nuclear norm and `1,2 constrained methods outperform the unconstrained baseline,
especially in the case where K∗ is low rank and sparse.

To empirically validate our sample complexity results, we compute the number
of samples averaged over 20 runs to achieve a relative excess risk of less than 0.1 in
Figure 3.3. First, we fix p = 100 and increment d from 1 to 10. Then we fix d = 10
and increment p from 10 to 100 to clearly show the linear dependence of the sample
complexity on d and p as demonstrated in Corollary 3.2. To our knowledge, these
are the first results quantifying the sample complexity in terms of the number of
features, p, and the embedding dimension, d.

Acknowledgments This work was partially supported by the NSF grants CCF-
1218189 and IIS-1623605
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(a) Sparse low rank metric

(b) Dense low rank metric

Figure 3.2: `1,2 and nuclear norm regularization performance

(a) d varying (b) p varying

Figure 3.3: Number of samples to achieve relative excess risk < 0.1



49

appendices

3.A Proof of Results

3.A.1 Proof of Theorem 3.1

Our argument follows standard statistical learning theory techniques used in the
classification literature. This framework is also similar to that used in the one bit
matrix completion literature, see Davenport et al. (2014). The main ingredient in
the proof is the use of a Matrix Bernstein to bound the Rademacher complexity of
our class.

By the Bounded Difference inequality,

R(K̂) − R(K?) = R(K̂) − R̂(K̂) + R̂(K̂) − R̂(K?) + R̂(K?) − R(K?)

6 2 sup
K∈Kλ,γ

|R̂(K) − R(K)|

6 2E[ sup
K∈Kλ,γ

|R̂(K) − R(K)|] +

√
2β2 log 2/δ

|S|
,

where β = supK∈Kλ,γ
|`((yt〈Mt,K〉) − `((yt ′〈Mt ′ ,K〉)| 6 Lγ since 〈Mt,K〉 6

γ. Using standard symmetrization and contraction lemmas, we can introduce
Rademacher random variables εt ∈ {−1, 1} for all t ∈ T so that

E

[
sup

K∈Kλ,γ

|R̂(K) − R(K)|

]
6 E

2L
|S|

sup
K∈Kλ,γ

∣∣∣∣∣∑
t∈S

εt〈Mt,K〉

∣∣∣∣∣
6 E

2L
|S|

sup
K∈Kλ,γ

‖
∑
t∈S

εtMt‖‖K‖∗

6 E
2Lλ
|S|

sup
K∈Kλ,γ

‖
∑
t∈S

εtMt‖
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We employ amatrix Bernstein bound, Theorem 6.6.1 in Tropp (2015), to compute

E‖
∑
t∈S

εtMt‖ 6

√
140‖XX

T‖
n

|S| log p+ 2 log p.

To see this, it suffices to bound
∥∥∑

t∈TM
2
t

∥∥which is done in Lemma 3.10. Plugging
this in above gives

E
2Lλ
|S|

∥∥∥∥∥∑
t∈S

εtMt

∥∥∥∥∥ 6 2L

√140λ2 ‖XXT‖
n

log p
|S|

+
2 log p
|S|


Lemma 3.10.

1
n
(
n−1

2

) ∥∥∥∥∥∑
t∈T

M2
t

∥∥∥∥∥ 6 70‖XX
T‖

n

Proof. Let ei be the ith standard basis vector. For a triplet t = (i, j,k), define

Lt = eie
T
k + eke

T
i − eie

T
j − eje

T
i + eje

T
j − eke

T
k

(in particular Lt is the matrix corresponding to the operator Lt given in Section
2.3). A computation shows that 〈Lt,XTKX〉 = 〈Mt,K〉 andmoreoverMt = XLtX

T .
By definition,

∑
t∈T

M2
t =
∑
t∈T

XLtX
TXLtX

= X

(∑
t∈T

LtX
TXLt

)
XT

We now focus our attention on simplifying the middle term. Firstly, note that
we can assume that the X’s are centered, i.e. X1n = 0. To see this, note that the Lt’s
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are centered so in particular, LtV = Lt. Then

LtX
TXLt = LtV

TXTXVLt = Lt(XV)
T (XV)LT

so we can replaceXwithXV, i.e. we can centerX. Also note that note that centering
X only diminishes the operator normXXT , so centering does not affect the statement
of the bound, and furthermore a tighter statement is certainly possible by assuming
that X is centered.

Using the reduction to a centered X, a computation (omitted due to length)
shows that(∑
t∈T

LtX
TXLt

)
i,j

=

(2n− 3)‖XTX‖∗ + (n2 − 3n)‖xi‖2 i = j

(n− 4)〈xi, xj〉− (n− 2)‖xj‖2 − (n− 2)‖xi‖2 − ‖XTX‖∗ i 6= j

To bound ‖
∑
t∈T LtX

TXLt‖ 6 7n2, by Gershgorin’s Circle Theorem we just
have to bound the sums of the absolute values of the entries in each row. This ends
up being,

(2n− 3 + n− 1)‖XTX‖∗ + (n2 − 3n+ (n− 1)(n− 2))‖xi‖2 + (n− 2)
∑
i 6=j

‖xj‖2

+(n− 4)
∑
i 6=j

|〈xi, xj〉|

6 (2n− 3 + n− 1 + n− 2)‖XTX‖∗ + (n2 − 3n+ (n− 1)(n− 2) − 2)‖xi‖2

+(n− 4)
∑
j

‖xi‖‖xj‖

6 (4n− 6)‖XTX‖∗ + (2n2 − 6n)‖xi‖2 + n(n− 4)max
j
‖xj‖2

6 (4n− 6)nmax
j
‖xj‖2 + (2n2 − 6n)max

j
‖xj‖2 + (n2 − 4n)max

j
‖xj‖2

6 7n2 max
j
‖xj‖2
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So ‖
∑
t∈T LtX

TXLt‖ 6 7n2 and

1
n
(
n−1

2

) ∥∥∥∥∥∑
t∈T

XLtX
TXLtX

∥∥∥∥∥ 6 70‖XX
T‖

n

using the fact that 2n2

(n−1)(n−2) 6 10 for positive n > 3.

3.A.2 Proof of Theorem 3.4

We will need the following lemma relating the KL-divergence to squared distance
in this section and in the proof of Theorem 3.8.

Lemma 3.11. Let y, z ∈ (0, 1), then

2(z− y)2 6 KL(z||y) 6
(z− y)2/2

infx∈(0,1) x(1 − x)

Proof. For y, z ∈ (0, 1) let g(z) = z log z
y
+ (1 − z) log 1−z

1−y . Then g
′(z) = log z

1−z −

log y
1−y and g ′′(z) = 1

z(1−z) . By Taylor’s theorem, for some η in the interval between
y and z, g(z) = g ′′(η)

2 (z− y)2. So for a lower bound,

g(z) >
(z− y)2/2

supx∈(0,1) x(1 − x)
> 2(z− y)2.

Similarly an upper bound is given by,

g(z) 6
(z− y)2/2

infx∈(0,1) x(1 − x)

Now we resume the proof of Theorem 2.3. Fix X = I. Given triplet comparisons
generated according to K, we are interested in finding the minimax lower bound,

inf
K̂

sup
K∈K ′λ,γ

E[R(K̂)] − R(K)
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Where as previously computed in Section 3.2.3

R(K̂)−R(K) =
1
|T|

∑
t∈T

f(〈Mt,K〉) log f(〈Mt,K〉)
f(〈Mt, K̂〉)

+(1−f(〈Mt,K〉)) log 1 − f(〈Mt,K〉)
1 − f(〈Mt, K̂〉)

Lemma 3.5 implies,

R(K̂) − R(K) >
2C2
f

|T|
‖M(K) −M(K̂)‖2

2.

where Cf = inf|x|6γ f ′(x). We will construct a set κ ⊂ K ′λ,γ so that for any two
K1,K2 ∈ κ, with K1 6 =K2,

• 2C2
f

|T|
‖M(K1) −M(K2)‖2

F > 4s2
n, for K

1 6= K2

• Let PSK denote the sample distribution of a set of |S| samples conditioned on it
being drawn from K ∈ κ. Then we also require KL(PS

K1 ||P
S

K2) 6 1
16 ln |κ|

Following an argument similar to the proof of Theorem 2 in Abramovich and
Grinshtein (2016), it will then follow from a variant of Fano’s inequality, namely
Lemma A.1 from Bunea et al. (2007), that

inf
K̂

sup
K∈K ′λ,γ

E[R(K̂)] − R(K) > s2
n.

By Lemma 8.3 of Rigollet and Tsybakov (2011), there exists a subset κ ⊂ K ′λ,γ, and
an absolute constant 0 < C1 < 1 such that

• ln |κ| > C1d ln p
d

• Each element of κ has sparsity d, is 0 away from the diagonal, and on the
diagonal the elements are either 0 or γ, for a value of γ > 0 we will choose
later.

• For all Ki,Kj ∈ κ, ‖Ki −Kj‖0 > C1d.
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Therefore, for K1,K2 ∈ κ, we need only to show KL(K1||K2) 6 1
16 ln |κ|. Using the

fact that X = I,

2C2
f

|T|
‖M(K1) −M(K2)‖2

2 >
2C2
f

|T|
p
∑
j<k

((K1
kk −K

2
kk) − (K1

jj −K
2
jj))

2

>
2C2
fC1pd(p− 2d)γ2

|T|

To see the second to last inequality, note that there are at least C1d(p− 2d) pairs of
indices j,kwhere K1

kk 6= K
2
kk but K

1
jj = K

2
jj, because K

1 and K2 share at least p− 2d
entries on their diagonal that are both 0. Each such entry contributes a γ2 to the
sum.

In particular choose,

s2
n =

C2
fC1pd(p− 2d)γ2

2|T| .

We proceed by selecting γ such that KL(PS
K1 ||P

S

K2) 6 1
16 ln |κ|. Assume our sam-

ples are S = {(t,yt)}. Then since the samples are i.i.d.

KL(PS
K1 ||P

S

K2) =
∑
t∈S

KL(PK1(t)||PK2(t))

where PKi(t) is the distribution of yt conditioned onKi, in particular the probability
of yt = −1 is f(〈Mt,Ki〉).

We can bound each term of the sum above using the upper bound from Lemma
3.11.

KL(PK1(t)||PK2(t)) 6
(f(〈Mt,K1〉) − f(〈Mt,K2〉))2

2 inft f(〈Mt,K2〉)(1 − f(〈Mt,K2〉))

6
(〈Mt,K1 −K2〉)2 sup

|ν|6γ f
′(ν)2

2 inf|x|6γ f(x)(1 − f(x))
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6
γ2 sup

|ν|6γ f
′(ν)2

2 inf|x|6γ f(x)(1 − f(x))

Summing over t ∈ S, we require that

KL(PS
K1 ||P

S

K2) 6
γ2|S| sup

|ν|6γ f
′(ν)2

2 inf|x|6γ f(x)(1 − f(x))
6
C1

16d ln p
d
6

1
16 ln |κ|,

so in particular, we will take

γ2 sup
|ν|6γ f

′(ν)2

2 inf|x|6γ f(x)(1 − f(x))
=

C1

16|S|d ln p
d

From this point on, let’s take λ = p, and d = p
4 . Now we have a few additional

constraints on γ,

• Since ‖Ki‖1,2 6 λ for each Ki ∈ κ , we require γd 6 λ, so in particular γ 6 4.

• In addition, we are going to require γ > 1 since we will need pγ > λ (used
below).

Based on these conditions, we just take γ = 2 and after simplification choose,

|S| :=
C1p ln 4 inf|x|6γ f(x)(1 − f(x))

32γ2 sup
|ν|6γ f

′(ν)2

Now we are finally in a position to use our choice of γ,d, λ and |S|. We see that

s2
n =

C2
fC1pd(p− 2d)γ2

2|T| =
C2
fC1p

2γλ

16|T| (since pγ > λ)

>
C2
fC1γλ

8p

>
C2
f

√
inf|x|6γ f(x)(1 − f(x))

8p
√

sup
|ν|62 f

′(ν)2

√
C3

1 ln 4
32

p

|S|
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=
C2
f

32

√
inf|x|6γ f(x)(1 − f(x))

sup
|ν|6γ f

′(ν)2

√
C3

1 ln 4
2

λ2 ‖XXT‖
n

|S|

where the final equality follows from the fact that we have chosen X = In so n = p.
�

3.A.3 Proof of Lemma 3.5

Proof of Lemma 3.5. As computed prior to the statement of Theorem 3.8.

R(K̂) − R(K∗) =
1
|T|

∑
t∈T

KL(f(〈Mt,K∗〉)||f(〈Mt, K̂〉))

Now using Lemma 3.11 with z = f(〈Mt,K∗〉) and y = f(〈Mt, K̂〉) we see

KL(f(〈Mt,K∗〉)||f(〈Mt, K̂〉)) > 2C2
f(〈Mt,K∗〉− 〈Mt, K̂〉)2

Summing over all t ∈ T

R(K̂) − R(K?) >
2C2
f

|T|

∑
t∈T

(〈Mt,K∗〉− 〈Mt, K̂〉)2

=
2C2
f

|T|

∑
t∈T

(〈Mt, K̂−K?〉)2 =
2C2
f

|T|
‖M(K̂) −M(K∗)‖2

2.

3.A.4 Proof of Theorem 3.8

Before launching into the proof of Theorem 3.8, we first prove an auxiliary set
of results that depend on the classical correspondence between centered Gram
matrices and Euclidean distance matrices. For a more in depth discussion of this
correspondence, we refer interested readers to Dattorro (2011). Let Snh be the
subspace of symmetric hollowmatrices, i.e. symmetric matrices with zero diagonal,
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and let Snc be the subspace of centered Gram matrices, i.e. positive semi-definite
matrices with 1n in their kernel.

Note that dim Snh = dim Snc =
(
n
2

)
. In fact these spaces are isomorphic with an

explicit linear isomorphism given by the maps

Snh → Snc : D→ −
1
2VDV

with inverse
Snc → Snh : G→ diag(G)1Tn − 2G+ 1ndiag(G)T

where again, V = In − 1
n

1n1Tn.
Given a set of centered points X ∈ Rp, then under the isomorphism above, the

associated Gram matrixG ∈ Snc maps to the squared distance matrixD ∈ Snh. In
particular, a matrix in Snh is a valid Euclidean distance matrix if and only if−1

2VDV

is a centered Gram matrix.
Given a triplet t = (i, j,k) ∈ T, we can define an operator ∆t(D) := Dij −Dik

and
∆(D) := (∆t(D)| for t ∈ T)

analogous to L andM. In particular, for associatedD andG, ∆t(D) = Lt(G) for
all t so ∆(D) = L(G). We can now prove the key lemmas used in the proof of 3.8.

Lemma 3.12. The null space of L is one dimensional, spanned by V.

Proof. Lemma 2 in Jain et al. (2016a) shows ker∆ is one dimensional and is spanned
by J = 1n1Tn−In. A computation shows that−1

2VJV = 1
2V. SinceL(V) = ∆(J) = 0,

V spans kerL.

We rely on an analogous statement for distance matrices given in Lemma 3 in
Jain et al. (2016a).

Lemma 3.13. Let G ∈ Snc and H the component of G orthogonal V then ‖L(H)‖2 >

n‖H‖2
F.
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Proof. Again, letD be the symmetric hollow matrix corresponding toG. We can
take a decomposition ofD into a component perpendicular to ker∆

D = C+ σDJ.

Applying −1
2V ·V to both sides we get,

G = −
1
2VCV +

σD

2 V.

We claim that H = −1
2VCV and σG = σD/2. It suffices to prove that VCV is

perpendicular to V. To see this note that 〈VCV,V〉 = 〈C,V〉 = 0, since C is hollow
and perpendicular to J.

We now apply Lemma 3 in Jain et al. (2016a) which shows that the minimal
eigenvalue of ∆ is n.

‖L(H)‖2 = ‖∆(C)‖2

> n‖C‖2
F ( since C is perpendicular to the kernel of ∆)

> n

∥∥∥∥−1
2VCV

∥∥∥∥2

F

(Since V is a projection.)

> n‖H‖2
F

Proof of Theorem 3.8. We begin by applying Lemma 3.7 in the specific case where
G∗ = XTK∗X and Ĝ = XT K̂XwithH∗ and Ĥ defined analogously to above. Firstly,
by definition

Ĝ−G∗ = Ĥ−H∗ + (σĜ − σG∗)V

By orthogonality

‖Ĝ−G∗‖2
F = ‖Ĥ−H∗‖2

F + (σĜ − σG∗)
2‖V‖2

F

= ‖Ĥ−H∗‖2
F + (n− 1)(σĜ − σG∗)

2 (Since ‖V‖2
F = n− 1)
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6 ‖Ĥ−H∗‖2
F +

n− 1
(n− d− d ′ − 1)‖Ĥ−H∗‖2

F

(By Lemma 3.7 σĜ − σG∗ is a repeated eigenvalue with multiplicity n− d− d ′ − 1)

= Cd,d ′‖Ĥ−H∗‖2
F.

Now,

‖M(K̂) −M(K∗)‖2
2 = ‖L(X

TKX) − L(XTK∗X)‖2

> n‖Ĥ−H∗‖2
F (Using Lemma 3.13)

> ‖Ĝ−G∗‖2
F (From the above.)

=
n

Cd,d ′
‖XT K̂X− XTK∗X‖2

F

>
nσmin(XX

T )2

Cd,d ′
‖K̂−K∗‖2

F

To see the last line, recall vec(XTKX) = (XT ⊗ XT )vec(K). Now, the minimal
eigenvalue of XT ⊗ XT is σmin(XX

T ) which is nonzero since X is rank p.
So we see from Lemma 3.5, that

nσmin(XX
T )2

|T|
‖K− K̂‖2

F 6
Cd,d ′

C2
f

(R(K̂) − R(K∗))

The result now follows from Theorem 3.1.

3.B Kernelized Metric Learning

Traditional Mahalanobis distance metric learning is equivalent to learning a linear
mapping of the data such that Euclidean distance in the mapped space agrees with
a set of labels, such as class labels or triplet comparisons. Often, we are interested in
a richer set of mappings than linear ones. Indeed, this is the idea that underlies deep
learning and kernel learning. In this section, we show how to extend Mahalanobis
distance metric learning to the kernelized setting and then present a quick result
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about kernelized triplet metric learning following extending the results of this
chapter.

3.B.1 Warmup: Kernelized PCA

Here, we explain how to performPCA in a reproducing kernelHilbert space (RKHS).
In doing so, we will arrive at a general representer theorem from Chatpatanasiri
et al. (2010) which gives theoretical justification to extending Mahalanobis distance
metric learning to the kernelized regime.

Setup: Consider n points in Rd, x1, · · · , xn, and assume we have a mapping φ
from Rd to a D dimensional reproducing kernel Hilbert space (RKHS)H for D ∈
N ∪ {∞}. Further, assume that 〈φ(xi),φ(xj)〉H = k(xi, xj) for a k(·, ·) : H ×H→ R.
Lastly, will assume that the φ(xi) are linearly independent.

Computing principal components inH: Consider the subspace of H spanned
by {φ(x1), · · · ,φ(xn)}. Let ψ1, · · ·ψn be the n principal components in this space.
The term “kernelized PCA” is a slight misnomer as one does not compute the
principal components ψ1, · · ·ψn themselves, but rather the projection of data onto
them. This is important as the principal components live in the D dimensional
space H and D may be intractably large or infinite. Nevertheless, one can use a
kernel trick to efficiently compute these projections as follows:

1. Form the Grammian: K ∈ Rn×n such that Kij = k(φ(xi),φ(xj)).

2. Center the Grammian: K̃ = K− 1
n

1n×nK− 1
n
K1n×n + 1

n2 1n×nK1n×n where
1n×n is the n by nmatrix of all ones.

3. Compute alln eigenvectors of K̃,α1, · · · ,αn and formmatrixA = [α1, · · · ,αn].

4. For any x ∈ Rd and any principal component ψj with eigenvector αj, we have
that 〈φ(x),ψj〉H =

∑n
i=1αi,jk(x, xi).
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5. Therefore, for any x ∈ Rd we may represent φ(x) in terms of its projection
onto ψ1, · · · ,ψn as

ϕ(x) = AT


k(x, x1)

...
k(x, xn)

 (3.1)

It is important that we center the Grammian before computing eigenvectors as
x1, · · · , xn being centered does not in general imply that φ(x1), · · · ,φ(xn) are. It is
also worth noting that the eigenvalues of the Grammian do not provide the same
intuition in the kernelized case as they do in linear PCA. In the linear case, this
implies that one direction captures more variation than another. In the kernelized
case, for an unlucky choice of kernel, the variation in all directions may be the same,
and finding a good kernel such that this does not occur may be challenging.

3.B.1.1 Representer theorems for Kernelized PCA

In this subsection, we quote two results from Chatpatanasiri et al. (2010) about
optimization with respect to φ(x1), · · · ,φ(xn) ∈ H versus ϕ(x1), · · · ,ϕ(xn) ∈ Rn.

Theorem 3.14 (Full-Rank Representer Theorem, Chatpatanasiri et al. (2010)). Let
{ψ̃i}

n
i=1 be any set of points in H such that Span({ψ̃i}ni=1) = Span({φ(xi)}ni=1) and let

H ′ be a Hilbert space such thatH andH ′ are separable. For any objective function f, the
optimization

min
L
f({〈Lφ(xi),Lφ(xj)〉H ′}i,j∈[n])

such that L : H→ H ′ is a bounded linear map, has the same optimal value as

min
L̃∈Rn×n

f({ϕ̃(xi)
T L̃
T
L̃ϕ̃(xj)}i,j∈[n])

where ϕ̃(x) = [〈φ(x), ψ̃1〉, · · · , 〈φ(x), ψ̃n〉]T ∈ Rn.

Theorem 3.15 (Low-Rank Representer Theorem, Chatpatanasiri et al. (2010)). Let
{ψ̃i}

n
i=1 be any set of points in H such that Span({ψ̃i}ni=1) = Span({φ(xi)}ni=1), and let
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ϕ̃(x) = [〈φ(x), ψ̃1〉, · · · , 〈φ(x), ψ̃n〉]T ∈ Rn. For any objective function f, the optimiza-
tion

min
L
f({〈Lφ(xi),Lφ(xj)〉H ′}i,j∈[n])

such that L : H→ Rk is a bounded linear map, has the same optimal value as

min
L̃∈Rk×n

f({ϕ̃(xi)
T L̃
T
L̃ϕ̃(xj)}i,j∈[n]).

Remark 3.16. These theorems suggest that it is not actually important that the basis for
φ(x1), · · · ,φ(xn) is the principal component directions as the statement holds for arbitrary
bases. Instead, the use of the principal components is beneficial as inner products with this
basis can be easily computed.

3.B.2 Using Kernelized PCA to Compute Kernelized
Mahalanobis Distances

The above should give us hope that one can learn a kernelized-Mahalanobis dis-
tance as this family of distance functions can be written as a linear combination
of weighted inner products as in Theorems 3.14 and 3.15. Mahalanobis distances
in general may be written in terms of the square-root matrix of the semidefinite
weighting matrix. Below we expand out squared Mahalanobis distance in H in
terms of a bounded linear map L fromH to RD.

dL(φ(xi),φ(xj))2 = ‖Lφ(xi) − Lφ(xj)‖2

= 〈Lφ(xi) − Lφ(xj),Lφ(xi) − Lφ(xj)〉

= 〈Lφ(xi),Lφ(xi)〉− 2〈Lφ(xi),Lφ(xj)〉+ 〈Lφ(xj),Lφ(xj)〉.

Expand L := UATΦT for a linear map U from Rn to RD. Let A be as defined in
kernelized PCA and Φ := [φ(x1), · · · ,φ(xn)], the matrix whose columns are φ(xi).
As the φ(xi)’s are linearly independent by assumption,Φ is full rank. Additionally,
by definition of the kernel function k(·, ·),ΦTφ(x) = [k(x, x1), · · · ,k(x, xn)]T . A is



63

full rank by definition. Plugging this in,

〈Lφ(xi),Lφ(xi)〉− 2〈Lφ(xi),Lφ(xj)〉+ 〈Lφ(xj),Lφ(xj)〉

= 〈UATΦTφ(xi),UATΦTφ(xi)〉− 2〈UATΦTφ(xi),UATΦTφ(xj)〉

+ 〈UATΦTφ(xj),UATΦTφ(xj)〉

= 〈Uϕ(xi),Uϕ(xi)〉− 2〈Uϕ(xi),Uϕ(xj)〉+ 〈Uϕ(xj),Uϕ(xj)〉

= ‖Uϕ(xi) −Uϕ(xj)‖2

= ‖ϕ(xi) −ϕ(xj)‖2
M

for ϕ(x) defined by kernelized PCA on φ(x1), · · · ,φ(xn), and semidefniteM :=

UTU ∈ Rn×n. Therefore, we may use kernelized PCA to efficiently compute
distances in Rn as opposed to in the φ space. Furthermore, theorems 3.14 and
3.15 guarantee we may do this with no loss in performance for any downstream
application.

3.B.3 Learning low-dimensional kernelized metrics using
Kernelized PCA

To demonstrate the power of this framework, we use the above result to extend
Theorem 3.1 which establishes prediction error bounds for (linear) triplet metric
learning. In this setting, we assume as above that we have n points x1, · · · , xn ∈
Rd. Additionally, we collect a set S of triplets. Each triple t = (i, j,k) is sampled
uniformly (with replacement) from the set of n

(
n−1

2

)
unique triples and we observe

a label yt = ±1 which is a (possibly noisy) indication of the distance comparison

dL(φ(xi),φ(xj)) < dL(φ(xi),φ(xk))

for some unknown L. Let yt = −1 correspond to dij < dik and yt = 1 to the reverse.
We wish to predict these |S| triplets as well as possible. Assume for any L ′ we have
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an L-Lipschitz loss

`(yt[dL ′(φ(xi),φ(xj))2 − dL ′(φ(xi),φ(xk))2])

which is a function of yt times the difference of squared distances. For instance,
`(x) = log(1 + exp(−x)) corresponds to the logistic loss. We seek a distance metric
which minimizes our average loss over the data we have collected, S:

R̂S(L
′) =

1
|S|

∑
t=(i,j,k),yt∈S

`(yt[dL ′(φ(xi),φ(xj))2 − dL ′(φ(xi),φ(xk))2]),

the empirical risk of a Mahalanobis metric on H defined by linear map L ′. The
empirical risk is an unbiased estimator of the True Risk:

RS(L
′) = Et,yt

[
`(yt[dL ′(φ(xi),φ(xj))2 − dL ′(φ(xi),φ(xk))2])

]
,

the expected loss over the randomness in the selection of triplet t and any random-
ness in the label yt.

Define L̂ as the bounded linear map that minimizes R̂S(L) (the empirical risk
minimizer) and L∗ as the bounded linear operator that minimizes RS(L) (the true
risk minimizer). As L̂ is a linear operator on H which is D dimensional, it is
intractable to compute in practice. However, the above framework for computing
Mahalanobis distances via kernelized PCA guarantees that

dL ′(φ(xi),φ(xj))2 − dL ′(φ(xi),φ(xk))2]) = ‖ϕ(xi) −ϕ(xj)‖2
M − ‖ϕ(xi) −ϕ(xk)‖2

M

for an appropriately chosenM. Therefore, define

R̂S(M) =
1
|S|

∑
t=(i,j,k),yt∈S

`(yt[‖ϕ(xi) −ϕ(xj)‖2
M − ‖ϕ(xi) −ϕ(xk)‖2

M]).
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The representer theorems guarantee that

min
L
R̂S(L) = min

M
R̂S(M)

where the latter optimization is over n×n semidefinite matricesM. LetM denote
a minimizer to the latter optimization. A similar statement can be made about the
true risk as well. Let R(M) denote the true risk with respect to a matrixM and let
M∗ denote the minimizer of R(M).

Sincewehave now reduced the problem to linearmetric learning overϕ(xi), · · · ,ϕ(xn),
the results of Mason et al. (2017) apply. To apply the guarantees therein, we place
two additional restrictions beyond semidefiniteness on the M that minimizes
R̂S(M). Firstly, we assume that

∣∣‖ϕ(xi) −ϕ(xj)‖2
M

− ‖ϕ(xi) −ϕ(xk)‖2
M

∣∣ 6 γ.

This is necesssary as a technical assumption for the proof. Secondly, we assume that
‖M‖∗ 6 λ. This bound on the nuclear norm ofM is a convex relaxation enforcing
thatM be low rank. This is equivalent to the assumption that the metric is captured
by a low-dimensional combination of the φ(x1), · · · ,φ(xn) in the high dimensional
space. Namely, we lie on a low-dimensional subspace of the high-dimensional φ
space.

Corollary 3.17 (Cor. to Theorem3.1). Fix δ,γ, λ > 0. Assume thatmaxi∈[n] ‖ϕ(xi)‖ 6
1. Then with probability at least 1 − δ

R(L̂)−R(L∗) = R(M)−R(M∗) 6 4L 6

√
140λ2σmax

n
log(n)

|S|
+

2 log(n)
|S|

+L

√
2γ2 log(2/δ)

|S|

where σmax is the largest singular value of the matrix [ϕ(x1), · · · ,ϕ(xn)].

Remark 3.18. The constraint that maxi∈[n] ‖ϕ(xi)‖ 6 1 is a mild one and can easily be
relaxed by scaling the right hand side of the inequality.
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Remark 3.19. Instead of a constraint that maxi∈[n] ‖ϕ(xi)‖ 6 1, one could instead
assume that maxi∈[n] ‖xi‖ 6 1 and scale the RHS by ‖φ‖H, the operator norm of φ in H.

3.C Geometric Bounds for Large Margin Metric
Learning from Labelled Data

3.C.1 Introduction

The previous results in this chapter all deal with learning metrics from triplet
comparisons of the form “item i is closer to item j than it is to item k.” A related
setting to this is learning metrics from labelled data. This is common in many real-
world problems that use metric learning to learn feature representations for tasks
such as facial recognition Schroff et al. (2015). Indeed, many empirical works in
metric learning such as Weinberger and Saul (2009) which proposed the Large
Margin Nearest Neighbors algorithm assume access to labelled data. In general,
we assume that we have a set of high dimensional feature vectors x1, · · · , xn ∈ Rd

with labels y1, · · · ,yn. Here, the goal is to learn a metric given by a semidefinite
matrixM such that if yi = yj 6= yk for points xi, xj, and xk, then ‖xi − xj‖M <

‖xi − xk‖M. This is spiritually similar to the setting of triplet metric learning
considered previously in this chapter except now triplet labels are determined by
the class labels themselves.

As the authors of Weinberger and Saul (2009) note, this is not always possible
for any three randomly chosen xi, xj, and xk and can lead to unstable learning.
Instead, a better posed question is to learn a metric given by matrixM such that for
any xi with label yi, and a margin parameter γ > 0, if ‖xi− xj‖M 6 γ, then yi = yj
for all xj within γ of xi according to the metric. We are especially interested in the
case that this metric is low-dimensional. This corresponds to the case that there
exists a low dimensional subspace such that any two points within γ of each other
must share a label.

We consider a binary classification problem with two class-conditional distribu-
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tions in Rd. Assume we have a set of labeled points drawn from these distributions
and that the distributions are separable (i.e., have disjoint supports). Furthermore,
assume that the distributions are separable in an optimal low-dimensional subspace,
but non-separable in the complementary orthogonal subspace. The minimum dis-
tance between the distributions is called themargin. We analyze the question of how
many samples are necessary to learn a low-dimensional projection that preserves
the margin, ideally by estimating the projection onto the optimal low-dimensional
subspace.

3.C.2 Approaches for Dimensionality Reduction from Labelled
Data

Linear Discriminant Analysis (LDA) is a common approach for dimensionality
reduction from labelled data. Unfortunately, it makes somewhat strict modeling
assumptions and is restricted to identifying subspaces that are ‘number of classes’
minus 1 dimensional Balakrishnama andGanapathiraju (1998). In the case of binary
classification for instance, this restricts to 1-dimensional subspaces. Additionally,
LDA can be ill-suited for data that is not linearly separable. As Principle Compo-
nent Analysis (PCA) is not applicable to labelled data, Bair et al. (2006) propose
Supervised-PCA (SPCA). SPCA finds a matrixU that maximizes the dependence
between y andUTx according to the Hilbert-Schmidt independence criterion. Find-
ing U is done by a process very similar to PCA, and in the case that labels y are
related to features x via a latent linear model, SPCA can recover the underlying
linear model. Another method in this setting is Sufficient Dimensionality Reduction
(SDR) which seeks to find a U that maximizes the mutual information between
y and UTx Globerson and Tishby (2003). Finally, Sliced Inverse Regression is a
classical approach for dimensionality reduction, but requires strong assumptions
on the distribution of the x’s (independent of the y values) Li (1991). None of these
methods consider the effect of margin, however. McWhirter et al. (2018) study this
same problem setting and propose the SqeezeFit algorithm which does account
for the effect of margin. The algorithm achieves great empirical performance. Un-
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fortunately, the theoretical results require an additional assumption that is unlikely
to be satisfied by any real distribution: the practitioner is able to query multiple x’s
that have identical components projected onto the U subspace. Unfortunately, this
is a probability 0 event if either PX|y=0 or PX|y=1 are continuous as they are in most
real problems. Even for discrete probability distributions over a fixed set of x’s, the
probability that this condition holds is exponentially small.

In the case of binary classification that we focus on, this problem is strongly
related to learning linear k-juntas as analyzed in Mossel et al. (2004). In this setting,
one wishes to learn a boolean function on {0, 1}d that maps to {0, 1}. If the function
depends on a subset of k < d variables, O

((
d
k

))
samples are needed. This is

equivalent to the problem in Section 3.C.3 specialized to the case that x1, · · · , xn ⊂
{0, 1}d andU being a k-dimensional axis-aligned subspace of Rd. In particular, this
suggests that O(dk) samples are necessary for this problem, exponentially more
than is needed for traditional triplet metric learning as shown in Theorem 3.4!

3.C.3 Problem Setup

Assume we are given a dataset of n labeled pairs {xi,yi}ni=1 : xi ∈ Rd =: X yi ∈
{0, 1} =: Y drawn from a joint distribution PX×Y on X× Y ∀ i. Let PX|y=0 and PX|y=1

denote the class conditional densities of the feature vectors X given the labels. We
assume that there exists a known margin of at least γ > 0 between the supports of
PX|y=0 and PX|y=1.

Definition 3.20 (Margin). The margin between two densities P1(x) and P2(x) on vectors
x is

inf ‖x− x ′‖2 s.t. x ∈ Support(P1) and x ′ ∈ Support(P2).

Further, we assume that there exists a k-dimensional subspace U of Rd with
associated projection operator PU such that:

1. Labels y are fully described by a projection of the features onto U : Pyi|xi =
Pyi|PUxi



69

2. Labels y are independent of the projection of features x onto U⊥, the orthogo-
nal complement of U.

3. The class conditional densities marginalized onto U, PPUX|y=0 and PPUX|y=1,
have margin γ > 0 between their supports.

4. Any subspace U ′ ⊂ U of dimension strictly less than k achieves margin 0.

This corresponds to the hypothesis that the labels y are fully explained by the
projection of feature vectors x onto a low-dimensional subspace and all other
d − k dimensions are noise independent of the label. The last assumption is to
prevent pathological cases where a lower dimensional subspace than U satisfies
the same conditions. The final assumption is a simple boundedness condition. We
are interested in learning U as a means of pre-training for downstream machine
learning tasks, such as non-parametric estimation or nearest neighbors classification
which can suffer greatly from the curse of dimensionality.

Throughout we will make use of the concept of a difference vector between two
oppositely labelled points. Given two samples, (x1,y1) and (x2,y2) such thaty1 6= y2,
z := x1 − x2 is a difference vector. Let

Z({xi,yi}ni=1) := {xi − xj : yj 6= yj})

be the set of difference vectors. We can rewrite the margin condition on subspace U
as ‖PUz‖ = ‖z‖PUP

T
U
> γ for any difference vector z between a point in the supports

of each class conditional density. We consider the same black box problem as in
McWhirter et al. (2018).

Minimize Rank(PV) s.t. ‖z‖PVP
T
V
> γ ∀ z ∈ Z({xi,yi}ni=1), PV = PTV, PV = P2

V.
(3.2)

The final two conditions that PV = PTV and PV = P2
V enforce that PV is a projector

and we say that PV projects from Rd to a 2-dimensional subspace V. Note that this
optimization is always feasible as PU satisfies all constraints and is optimal if one
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had access to the class conditional densities. Throughout, we will make frequent
use of the fact that for any x ∈ Rd, ‖Ux‖ = ‖x‖UUT . Hence, distance wish respect
to a Mahalanobis distance and magnitude of a projected vector are equivalent
concepts. We restrict to Mahalanobis metrics defined by projectors to avoid trivial
solutions. In particular, given any set of data, dilating all distances sufficiently
ensures that every pairwise distance is at least γwithout need to estimate U. The
above problem is non-convex and developing efficient methods to optimize it is a
separate avenue. Instead, we focus on the fundamental question of when can we
guarantee that its solution is well-behaved, independent of being able to solve it.
Precisely, we consider the following question:

Problem Statement: Given a dataset {xi,yi}ni=1 with difference vectors Z = {xi−

xj : yj 6= yj})
i.i.d.
∼ PX×Y. Let PV be a solution to Problem (3.2). How many

samples a sufficient to ensure that the metric ‖ · ‖PVP
T
V
achieves nonzero margin?

3.C.4 Geometric Results for k = 2 relevant dimensions

Sample complexity and error bounds for large margin metric learning is in general
an open problem. In this section, we present results in the special case that U is
a 2-dimensional subspace (k=2) of an arbitrary d-dimensional feature space. We
begin by stating a geometric condition on the difference vectors in set Z and prove
that it is sufficient to ensure that a solution PV to Problem (3.2) achieves margin
O(γ) (with respect to the supports of the class-conditional densities). Later, we will
present a family of distributions that satisfies this condition with high probability
if enough data has been collected.

Theorem 3.21. Let PV solve problem (3.2). Assume that for any x1 ∈ Support(PX|y=0)

and x2 ∈ Support(PX|y=1), ‖PU(x1 − x2)‖ 6 1. If there exists z1, z2 ∈ Z for any
2-dimensional subspaceW of U⊥ such that

max{‖PWz1‖, ‖PWz2‖} 6 ε1
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and ∣∣∣∣〈 PUz1

‖PUz1‖
, PUz2

‖PUz2‖

〉∣∣∣∣ 6 ε2,

then the margin between PPVX|y=0 and PPVX|y=1 is at least

γ

2

(√
γ2 − ε2

1
1 − ε2

1
− ε2

)

Remark 3.22. This theorem provides sufficient conditions to ensure that the solution
to problem (3.2) as a margin of at least Ω(γ2). Hence, PV perfectly separates the class
conditional densities.

Proof of Theorem 3.21. To prove this, we first require two lemmas. For brevity, we
define ui = PUzi/‖PUzi‖ and vi = PVzi/‖PVzi‖ for i = 1, 2. The first ensures that
if the data contains z1 and z2 such that u1 and u2 form a nearly orthogonal basis for
U and the angle between ui and vi is small for i = 1, 2, then the margin between
PPVX|y=0 and PPVX|y=1 is non-zero.

Lemma 3.23. Let PU and PV be projectors onto U and V respectively where PV solves
problem (3.2). If |uT1 u2| 6 ε2 and min{|uT1 v1|, |uT2 v2|} > γ ′ for some γ ′ > 0, then the
margin between the class conditional densities projected onto V, PPVX|y=0 and PPVX|y=1 is
at least γγ ′−ε2

2

The above lemma relies on the assumption that min{|uT1 v1|, |uT2 v2|} > γ ′ for some
γ ′ > 0. Next, we show that if max{‖PWz1‖, ‖PWz2‖} 6 ε1 for any 2-dimensional
subspaceW of U⊥, then this condition is satisfied.

Lemma 3.24. Let PV solve problem (3.2) and assume that Rank(PV) = 2. Assume that for
any x1 ∈ Support(PX|y=0) and x2 ∈ Support(PX|y=1), ‖PU(x1 − x2)‖ 6 1. If there exists
z1, z2 ∈ Z such that

max{‖PWz1‖, ‖PWz2‖} 6 ε1
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for any 2-dimensional subspaceW of U⊥ then

min
i=1,2

|uTi vi| >

√
γ2 − ε2

1
1 − ε2

1
.

Plugging in γ ′ =
√
γ2−ε2

1
1−ε2

1
from Lemma 3.24 to Lemma 3.23 completes the proof of

this Theorem.

Proof of Lemma 3.23. Choose any x ∈ Support(PX|y=0) and x ′ ∈ Support(PX|y=1).
Let z = x = x ′.

‖PVz‖ > ‖PVPUz‖ >
1
2
(
|vT1 PUz|+ |vT2 PUz|

)
We may write PUz = a1u1 + a2u2 for appropriately chosen a1, a2. Then,

|vT1 PUz| = |vT1 (a1u1 + a2u2)|

> |a1||v
T
1 u1|− |a2||v

T
1 u2|

> |a1|γ
′ − |a2||u

T
1 u2|

> |a1|γ
′ − |a2|ε2.

Similarly, |vT2 PUz| > |a2|γ
′ − |a1|ε2. Putting these pieces together,

‖PVz‖ >
|a1|+ |a2|

2 (γ ′ − ε2)

=
|a1|‖u1‖+ |a2|‖u2‖

2 (γ ′ − ε2)

=
‖a1u1‖+ ‖a2u2‖

2 (γ ′ − ε2)

>
‖a1u1 + a2u2‖

2 (γ ′ − ε2)

=
γ ′ − ε

2 ‖PUz‖
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> γ
γ ′ − ε2

2

where the final inequality follows from the assumption that the margin between
PPUx|y=0 and PPUx|y=1 is at least γ.

Proof of Lemma 3.24. First, note that PV has rank at most 2 since PU has rank 2 and
satisfies all constraints of problem (3.2). Hence, V is supported on the Cartesian
product of U and a noise subspaceW ⊂ U⊥. We may expand PVzi for i = 1, 2 as

PVzi = αiPUzi +
√

1 − α2
iPWzi.

Therefore,

γ
(a)

6 ‖PVzi‖ 6
√
α2
i‖PUzi‖2 + (1 − α2

i)‖PWzi‖2

(b)

6
√
α2
i + (1 − α2

i)‖PWzi‖2

(c)

6
√
α2
i + (1 − α2

i)ε
2
1.

Inequality (a) follows since zi ∈ Z({xi,yi}) and PV is a solution to (3.2). In-
equality (b) follows from the assumption that for any x1 ∈ Support(PX|y=0) and
x2 ∈ Support(PX|y=1), ‖PU(x1 − x2)‖ 6 1. Inequality (c) follows from the assump-
tion that there exist z1, z2 ∈ Z such that max{‖PWz1‖, ‖PWz2‖} 6 ε1 for any noise
subspaceW. Rearranging, we see that

αi >

√
γ2 − ε2

1
1 − ε2

1

Finally, note that αi is the cosine of the angle between PUzi and PWzi. Hence,
αi = u

T
i vi, completing the proof.
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3.C.5 Geometric Results for k > 2 Relevant Dimensions

Assume that Dimension(U) = k. For k > 2 dimensions, the conditions for learning
U are unknown. Beyond learning U, a simpler and still unanswered question is
what conditions ensure that any solution PV to problem (3.2) cannot be orthogonal
to PU (in the sense that U and V are not orthogonal subspaces). In this section, we
provide a simple condition that ensures that a solution PV cannot be orthogonal to
PU and bound the number of samples sufficient to ensure that this condition holds
with high probability for any joint distribution PX×Y with γmargin.

Lemma 3.25. Consider an i.i.d. sample {xi,yi}ni=1 drawn from PX×Y with difference
vectors Z({xi,yi}ni=1). Let PV be any solution to problem (3.2). If

∃zi ∈ Z : ‖zi‖PWP
T
W
< γ

for any W ⊂ U⊥, then PVPU 6= 0. This holds for any PX×Y with γ margin.

Intuitively, this Lemma states that if in any noise subspaceW there exists a zi
such that ‖zi‖PWP

T
W
< γ, then any PW cannot solve problem (3.2).

Proof. Assume for contradiction that PV solves problem (3.2) and that V ⊂ U⊥. In
this case, we have that PVPU = 0. By assumption, there exists a zi ∈ Z such that
‖zi‖PVP

T
V
< γ. However, this contradicts the assumption that PV solves problem

(3.2). In particular, this is true for any PX×Y.

Next, we upper bound the number of samples sufficient to ensure that the
condition of Lemma 3.25 holds with high probability. For this, we require two
additional assumptions on PX×Y beyond those from Section 3.C.3.

1. Support(PX) ⊂ {x ∈ Rd : ‖x‖ 6 1}

2. PY = Bernoulli(1/2)

Both assumptions could be changed to others depending on the problem setting.
The first bounds the support of PX×Y inside the unit ball in Rd. Bounded support
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is necessary for our proof technique, but the same technique is applicable to a
different bounded region with only minor changes. The second condition is to
ensure that we see examples with both the label y = 0 and y = 1. In particular,
for a degenerate density where P(y = 1) = 1, Z = ∅ and any projector PV solves
problem (3.2). The probability of either label could be changed, and the technique
we present would require only minimal changes. Intuitively, this assumption is
equivalent to the assumption that the classes are balanced (as many points have
label y = 0 as have y = 1) in expectation.

The technique proceeds via a covering argument. The probability that any two
points share a label is 1/2 by assumption. Hence, if one packs enough points, the
probability that no two points within γ of each other shares a label becomes small.
To make this precise, we employ a covering argument.

Definition 3.26 (ε-Covering number, Bartlett (2013)). An ε-cover of a set T in metric
space (M,d) is a set T̂ ⊂ T such that for any t ∈ T , there exists a t̂ ∈ T̂ such that
d(t, t̂) 6 ε. The ε-covering number of T is the

N(ε, T ,d) := min{|T̂ | : T̂ is an ε-cover of T }

In the case that the metric d(·, ·) is the standard Euclidean metric, we denote
N(ε, T , ‖ · ‖2) = N(ε, T).

Theorem 3.27. Let {(xi,yi)}ni=1
i.i.d.
∼ PX×Y where PX×Y satisfies both of the above assump-

tions. If

n >

(
4
γ
+ 1
)2

+m,

then the probability that there exists z1 ∈ Z({(xi,yi)}ni=1) such that ‖PWz1‖ for every k
dimensional subspaceW ⊂ U⊥ is at least

1 −

(
5
γ

)2kd

2−m/2.
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Corollary 3.28. In the same setting as Theorem 3.27, if

m > 3 log
(

1
δ

)
+ 6kd log

(
5
γ

)
then the probability that there exists z2 ∈ Z({(xi,yi)}ni=1) such that ‖PWz1‖ 6 γ for every
k-dimensional subspaceW ⊂ U⊥ is at least 1 − δ.

Proof of Theorem 3.27. Let EW(ε) be the event

EW(ε) = 1 { 6 ∃z1 ∈ Z({bxi,yi}) : ‖PWz1‖ 6 ε} .

We are interested in controlling

P

( ⋃
W∈U⊥

EW(ε)

)
.

Note that we consider all possible k-dimensional noise subspacesW ∈ U⊥. We
begin by controlling P(EW(ε)) for a fixedW and then union bound. Let PPWx|y=0

and PPWx|y=1 denote the class conditional densities marginalized onto W. For any
two xi, xj with labels yi, yj, we say that they collide in W if ‖PW(xi − xj)‖ < ε/2
but yi 6= yj. We seek to bound the probability that there is not a collisions inW.

Let B1(Rk) denote the Euclidean ball of radius 1 in Rk. By the assumption on
PX×Y, the supports of PPWx|y=0 and PPWx|y=1 are contained in B1(Rk). If we collect
at least

N(ε1/4,B1(Rk)) +m

samples from PX×Y, there are b(m+ 1)/2c independent pairs of points within ε1 of
another deterministically.

To see this, note that if themmore points than ε/4-covering number of B1(Rk)
have been sampled, then at least m must be within ε/4 of one of the others by
deterministically. In the worst case, all m points are within an ε1/4 radius ball
of a single other point, forming

(
m+1

2

)
pairs (and are within ε1/2 of each other).

Note that points may appear in multiple pairs creating dependency between these
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random variables. However, note that of the
(
m+1

2

)
pairs, at least b(m+ 1)/2c are

independent such that each individual point only appears in a single pair.
Let S be the set of pairs. We are interested in the probability that at least 1 pair

collides. SinceW ⊂ U⊥, PY is independent of PPWx, which denotes Px marginalized
onto W. Furthermore, PY = Bernoulli(1/2). Combining this with independence
between y and PWx for (x,y) ∼ PX×Y, the probability that a pair in S collides is 1/2.

Therefore, the probability that there are no collisions in S is at most 2−|S| 6

2−b(m+1)/2c 6 2−m/2. Hence we have that

P(EW(ε/2)) 6 2−m/2.

The above analysis is with applies for collisions with respect to metric ‖ · ‖PWP
T
W
for

a fixedW. It remains to union bound over allW ⊂ U⊥.
To do so, we again appeal to covering numbers, but in this case over k-dimensional

projection matrices. Let Md
k denote the set of Mahalanobis metrics on Rd such that

for anyM ∈Md
k ,M can be written asM = UUT whereU is a projection from Rd

to an k dimensional subspace:

Md
k = {PSP

T
S ∈ Rd×d : Rank(PSPTS) = k, PSPTS < 0, (PSPTS)2 = PSP

T
S }.

In Lemma 3.29 we bound the distortion incurred by restricting to a covering set of
metrics. In particular, let M̂ be an ε2/4 cover of Md

k . By Lemma 3.29,⋃
W:PWP

T
W∈M̂

EW(ε/2) =⇒
⋃

W∈U⊥
EW(ε).

Hence, we need only union bound over M̂. We bound the covering number of Md
k

in the Lemma 3.30. Therefore

P

 ⋃
W:PWP

T
W∈M̂

EW(ε/2)

 6 ∑
PWP

T
W∈M̂

P(EW(ε/2))

6 N(ε,Md
k , ‖ · ‖)2−m/2
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Lem3.30
6

(
24
ε2

)kd
2−m/2

6

(
5
ε

)2kd

2−m/2

The proof concludes by noting that the ε/2-covering number of the unit ball in Rk

is
( 4
ε
+ 1
)k and plugging in ε = γ throughout.

Lemma 3.29. Let M̂ be an ε-cover ofMd
r with respect to the spectral norm. For any z ∈ Rd

with ‖z‖ 6 2 and metricM ∈Md
r , there exists anM ∈ M̂ such that

|‖z‖M − ‖z‖M| 6 2
√
ε.

Lemma 3.30. There exists a cover ofMd
r at a scale ε with respect to the spectral norm such

that N(ε,Md
r , ‖ · ‖) 6

( 6
ε

)dr
Proof of Lemma 3.29.

‖z‖M =
√
zTMz

=
√
zTMz+ zTMz− zTMz (subadditivity)

6
√
zTMz+

√
|zTMz− zTMz|

= ‖z‖M +

√
|zT (M−M)z|

6 ‖z‖M +

√
‖zzT‖∗‖M−M‖ (Hölder’s inequality)

6 ‖z‖M +

√
4‖M−M‖ (‖z‖ 6 2)

= ‖x− x ′‖M +

√
4‖M−M‖

Reversing the roles ofM andM in the above computation, we get that

|‖z‖M − ‖z‖M| 6 2
√
‖M−M‖ 6 2

√
ε

where the final inequality follows since M̂ is an ε cover ofMd
r .
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Proof of Lemma 3.30. This proof follows similarly to that of Candes and Plan (2011).
We will construct an ε-cover of Md

r with respect to the spectral norm, and will
bound the cardinality of this set. By the spectral decomposition, for allM ∈Md

r ,
there exits matricesU ∈ Rd×r and Σ ∈ Rd×d such thatM = UΣUT . Furthermore,
the columns ofU are orthonormal and Σ is diagonal with its first r diagonal entries
equal to 1 and bounded by 1 and its remaining entries 0 since we have assumed
M =M2. We proceed by covering unitary matrices to form our cover.

We wish to cover matrices in Rd×r whose columns are orthonormal, again with
respect to the spectral norm. Let Udr be the set of such matrices. Define ‖X‖2,∞ :=

maxi ‖X‖2, where Xi is the ith column of X. Define Qdr := {X ∈ Rd×r : ‖X‖2,∞ 6 1}.
Then Udr ⊂ Qdr . For all matrices X ∈ Rm×n, ‖X‖F > ‖X‖. Then the Frobenius norm
ball aroundX of radius ε > 0 is a subset of the spectral norm ball of radius ε around
X. Therefore,

N(ε,Qdr , ‖ · ‖) 6 N(ε,Qdr , ‖ · ‖F) ∀ε > 0

Using the proof of Lemma 3.1 from Candes and Plan (2011), there exists an ε/2
Frobenius covering of cardinality at most

( 6
ε

)dr, which via duality of the spectral
an Frobenius norms, is also a valid spectral norm ε/2 covering of Qdr . Denote this
covering as Qdr .

Then we define the ε cover ofMd
r with respect to the spectral norm as

Md
r := {UΣU

T
: U ∈ Qdr }.

Then |Md
r | 6 |Sdr | 6

( 6
ε

)dr. It remains to show that this is a valid cover. Choose
M ∈Md

r , and letM = arg min
X∈Md

r
‖M− X‖

‖UΣUT −UΣUT‖ = ‖UΣUT −UΣUT +UΣUT −UΣUT‖

6 ‖UΣUT −UΣUT‖+ ‖UΣUT −UΣUT‖
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To bound the first term,

‖UΣUT −UΣUT‖ = ‖(U−U)Σ‖

6 ‖U−U‖‖Σ‖

6
ε

2

The second term can be bounded similarly. Therefore, each term is bounded by
ε/2, so ‖M−M‖ 6 ε.

3.C.6 A Generative Family of Distributions for k = 2

In this section we provide a generative family of data distributions that satisfy
the assumptions of Theorem 3.21. We seek to ensure that there exists a pair of
z1, z2 ∈ Z({xi, xj}) for any 2-dimensional subspace W of U⊥ such that

1. max{‖PWz1‖, ‖PWz2‖} 6 ε1

2.
∣∣∣〈 PUz1
‖PUz1‖

, PUz2
‖PUz2‖

〉∣∣∣ 6 ε2.

In Theorem 3.32 we bound how many samples are sufficient to ensure the first
condition. In Theorem 3.34 we bound the number of samples necessary for the
second condition. As one condition is onW ⊂ U⊥ and the other is on U, the two
are independent. Hence, to satisfy the conditions of Theorem 3.21, one need only
collect enough samples to satisfy both bounds such that both events co-occur as
shown in Corollary 3.35.

Fix an arbitrary 2-dimensional subspace U of Rd and consider the following
class of joint probability distributions PX×Y.

1. PX×Y satisfies all assumptions in section 3.C.3

2. Support(PX) ⊂ {x ∈ Rd : ‖x‖ 6 1}

3. PPUx|y=0 and PPUx|y=1 are both isotropic in U as defined in Definition.

4. PY = Bernoulli(1/2).
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In particular, we show that if PPUx|y=0 and PPUx|y=1 are isotropic inU both classes
are equally likely, then if sufficiently many samples are drawn, then the conditions
are satisfied with high probability.

Definition 3.31. [Isotropic distribution in a subspace, adapted from Definition 1 of Eaton
et al. (1981)] A distribution fx on Rd is isotropic on a subspace U if fΓPUx = fPUx where
fPUx is the marginal of fx on U and Γ is any rotation in the U subspace.

3.C.6.1 Ensuring the first condition

In this section, we analyze howmany samples are needed to ensure that there exists
z1, z2 ∈ Z such that max{‖PWz1‖, ‖PWz2‖} 6 ε1 for any 2-dimensional subspace W
of U⊥. Similar to the proof of Theorem 3.27, this proceeds via a covering argument.

Theorem 3.32. Fix ε1 6 γ. Let {(xi,yi)}ni=1
i.i.d.
∼ PX×Y where PX×Y follows the 4 above

assumptions. If

n >

(
4
ε1

+ 1
)2

+m,

then the probability that there exists z1 and z2 ∈ Z({(xi,yi)}ni=1) such thatmax{‖PWz1‖, ‖PWz2‖} 6
ε1 for every W ⊂ U⊥ is at least

1 − (m+ 3)
(

5
ε1

)4d

2−(m/2+1).

Corollary 3.33. In the same setting as Theorem 3.32, if

m > 6 log
(

1
δ

)
+ 24d log

(
5
ε1

)
+ 34

then the probability that there exists z1 and z2 ∈ Z({(xi,yi)}ni=1) such thatmax{‖PWz1‖, ‖PWz2‖} 6
ε1 for every W ⊂ U⊥ is at least 1 − δ.

Proof of Corollary 3.33. We seek a sufficiency condition onm to imply that

(m+ 3)
(

5
ε1

)4d

2−(m/2+1) 6 δ
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This is equivalent to the condition that

m log(
√

2) − log(m+ 3) > log(1/δ) + 4d log(5/ε1) − log(2).

By inspection, we see thatm > 2 as the above is not satisfied form < 2. Form > 2,
log(m+ 3) 6 3 log(m). Hence, the above is implied by

m log(
√

2) − 3 log(m) > log(1/δ) + 4d log(5/ε1) − log(2).

Plugging in Proposition 4 of Antos et al. (2010), the above holds for

m > 6 log
(

1
δ

)
+ 24d log

(
5
ε1

)
+ 34

completing the proof.

Proof of Theorem 3.32. We proceed similarly to the proof of Theorem 3.27 except that
we wish to guarantee that at least two z’s exist. Let EW(ε) be the event

EW(ε) = 1 { 6 ∃z2, z2 ∈ Z({bxi,yi}) : max{‖PWz1‖, ‖PWz2‖} 6 ε} .

We are interested in controlling P
(⋃

W∈U⊥ EW
)

. We begin by controlling P(EW(ε))

for a fixedW and then union bound.
Let B1(R2) denote the Euclidean ball of radius 1 in R2. By the assumption on

PX, the supports of PPWx|y=0 and PPWx|y=1 are contained in B1(R2). If we collect at
least N(ε1/4,B1(R2)) +m samples from PX×Y, there are b(m+ 1)/2c independent
pairs of points within ε1 of another deterministically. Since PY = Bernoulli(1/2)
and label y is independent of PWx for (x,y) ∼ PX×Y, the probability that a pair in S

collides is 1/2.
Therefore, the probability that there are no collisions in S is at most 2−b(m+1)/2c 6

2−m/2. The probability there there is exactly 1 collision is at most(
b(m+ 1)/2c

1

)
2−b(m+1)/2c = b(m+ 1)/2c2−b(m+1)/2c 6 (m+ 1)2−(m/2+1).
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Hence we have that

P(EW(ε/2)) 6 2−m/2 + (m+ 1)2−(m/2+1) = (m+ 3)2−(m/2+1).

The above analysis is with applies for collisions with respect to metric ‖ · ‖PWP
T
W

for a fixedW. It remains to union bound over allW ⊂ U⊥. We wish to control the
probability To do so, we again appeal to covering numbers, but in this case over
2-dimensional projection matrices. LetMd

r denote the set of Mahalanobis metrics
defined by projections as in the proof of Theorem 3.27. Let M̂ be an ε2

1/4 cover of
Md

2 . By Lemma 3.29, ⋃
W:PWP

T
W∈M̂

EW(ε1/2) =⇒
⋃

W∈U⊥
EW(ε1).

Hence, we need only union bound over M̂. Therefore

P

 ⋃
W:PWP

T
W∈M̂

EW(ε1/2)

 6 ∑
PWP

T
W∈M̂

P(EW(ε1/2))

6 (m+ 3)N(ε,Md
2 , ‖ · ‖)2−(m/2+1)

Lem3.30
6 (m+ 3)

(
24
ε2

1

)2d

2−(m/2+1)

6 (m+ 3)
(

5
ε1

)4d

2−(m/2+1)

The proof concludes by noting that the ε-covering number of the unit ball in R2 is( 2
ε
+ 1
)2 and plugging in ε = ε1/2.

3.C.6.2 Ensuring the second condition

In this section, we bound how large the set Z({xi,yi}) must be to ensure that the
condition ∣∣∣∣〈 PUz1

‖PUz1‖
, PUz2

‖PUz2‖

〉∣∣∣∣ 6 ε2
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must hold with high probability for a z1, z2 ∈ Z.

Theorem 3.34. Fix ε2 > 0. Let {(xi,yi)}ni=1
i.i.d.
∼ PX×Y where PX×Y follows the 4 above

assumptions.

P
(
6 ∃z1, z2 ∈ Z :

∣∣∣∣〈 PUz1

‖PUz1‖
, PUz2

‖PUz2‖

〉∣∣∣∣ 6 ε2

)
6 (1 − pε2)

min(n0,n1)−1

where n0 := |{xi : yi = 0}|, n1 := |{xi : yi = 1}|, and

pε2 := 2
(

arccos(−ε2) − arccos(ε2)

π

)
.

Corollary 3.35. Fix ε1 < γ and ε2 > 0. Let {(xi,yi)}ni=1
i.i.d.
∼ PX×Y where PX×Y follows

the 4 above assumptions. If

min(n0,n1) > 1 +
log(2/δ)

log(1/(1 − pε2))

and

n0 + n1 >

(
4
ε1

+ 1
)2

+ 6 log
(

2
δ

)
+ 24d log

(
5
ε1

)
+ 34

then with probability at least 1 − δ, there exists a pair of z1, z2 ∈ Z({xi, xj}) for any
2-dimensional subspaceW of U⊥ such that max{‖PWz1‖, ‖PWz2‖} 6 ε1 and∣∣∣〈 PUz1
‖PUz1‖

, PUz2
‖PUz2‖

〉∣∣∣ 6 ε2 .

Proof of Theorem 3.34. Let Z ′({xi,yi}) ⊂ Z({xi,yi}) be the subset of the set of differ-
ence vectors such that each xi only appears in a single difference vector z. This is
done so all difference vectors are independent. We bound how large Z ′ must be for
the condition to occur. Since Z ′ ⊂ Z, this implies that Z also satisfies the condition.

Let x ∼ PUx|y=0 and x ′ ∼ PUx|y=1. Let z
D
= x− x ′ where ‘D=’ denotes equality in

distribution. Let Pz denote the associated density function. We begin by showing
that Pz is also isotropic in U. To see this, let PU denote the projector onto U, and
consider any rotation Γ in the U subspace. Note that PPUx|y=0 and PPUx|y=1 being
isotropic in U implies that PUx

D
= ΓPUx and PUx ′

D
= ΓPUx

′ by Definition 3.31.
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Therefore,

PUz
D
= PU(x− x

′)
D
= PUx− PUx

′ D
= ΓPUx− ΓPUx

′ D
= ΓPU(x− x

′)
D
= ΓPUZ.

By Definition 3.31, this implies that Pz is isotropic. Therefore, fixing any u ∈ U and
z ∼ Pz, the angle between u and PUz is a Uniform[−π,π] random variable. Hence,
if we fix an arbitrary direction v ∈ Rd.

Pz

(∣∣∣∣〈 PUv

‖PUv‖
, PUz

‖PUz‖

〉∣∣∣∣ 6 ε2

)
= Pz

(
0 6

〈
PUv

‖PUv‖
, PUz

‖PUz‖

〉
6 ε2 or 0 >

〈
PUv

‖PUv‖
, PUz

‖PUz‖

〉
> −ε2

)
= Pz (0 6 θvz 6 arccos(ε2) or 0 > θvz > arccos(−ε2))

= Pz (arccos(−ε2) 6 θvz 6 arccos(ε2))

= 2
(

arccos(−ε2) − arccos(ε2)

π

)
=: pε2 .

Therefore, for a set of independent directions Z ′,

P
(
∃zi 6∈ Z ′ :

∣∣∣∣〈 PUv

‖PUv‖
, PUzi

‖PUzi‖

〉∣∣∣∣ 6 ε2

)
= (1 − pε2)

|Z ′|.

Next we extend this analysis to random directions in U by integrating over all such
directions and noting that the distribution of such directions is uniform by the
isotropic assumption.

P
(
6 ∃z1, z2 ∈ Z ′ :

∣∣∣∣〈 PUz1

‖PUz1‖
, PUz2

‖PUz2‖

〉∣∣∣∣ 6 ε2

)
= E

[
1

(
6 ∃z1, z2 ∈ Z ′ :

∣∣∣∣〈 PUz1

‖PUz1‖
, PUz2

‖PUz2‖

〉∣∣∣∣ 6 ε2

)]
= Ez1

[
Ez2

[
1

(
6 ∃z1, z2 ∈ Z ′ :

∣∣∣∣〈 PUz1

‖PUz1‖
, PUz2

‖PUz2‖

〉∣∣∣∣ 6 ε2

)∣∣∣∣ z1

]]
= Ez1

[
(1 − pε2)

|Z ′|−1
]
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= (1 − pε2)
|Z ′|−1

where the exponent of |Z ′| − 1 is due to the fact that if one fixes a single zi there
are |Z ′|− 1 elements of Z ′ remaining. It remains to compute |Z ′| in terms of Z. Let
n0 := |{xi : yi = 0}| and n1 := |{xi : yi = 1}|. |Z| = n0n1 and |Z ′| = min(n0,n1).
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4 applications of metric learning to cognitive science
and education

4.1 Introduction

Visual representations are ubiquitous in science, technology, engineering, and
math (STEM) domains (Ainsworth, 2008; (US), 2006). For example, chemistry
instruction on bonding typically uses the visuals shown in Figure 4.1. While we
typically assume that such visuals help students learn because they make abstract
concepts more accessible, they can also impede students’ learning if students do
not know how the visuals show information (Rau, 2017). To successfully learn with
visuals, students need representational competencies: knowledge about how visual
representations show information (Ainsworth, 2006; Gilbert, 2005). For example, a
chemistry student needs to learn that dots in Lewis structures (e.g., Figure 4.1a)
show electrons and white spheres in ball-and-stick models (e.g., Figure 4.1b) show
hydrogen atoms.

Educational technologies can help students learn by adding instructional sup-
port for representational competencies to problem-solving activities. A particular

Figure 4.1: Commonly used visual representations of chemical molecules. A: Lewis
structure of water. B: ball-and-stick model of water.
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advantage of educational technologies is that they can adapt such supports to
individual student’s knowledge about the visuals (Koedinger et al., 2006; VanLehn,
2011). To do so, technologies use a cognitive model that infers whether the stu-
dent has learned target knowledge based on their interactions with the visuals.
Tailoring instruction to students’ representational competencies can enhance their
learning about the representations (Tuckey et al., 1991) and of domain knowledge
(Davidowitz and Chittleborough, 2009).

However, current educational technologies have two critical limitations. First,
most technologies support only conceptual representational competencies: the ability
to map visual features to concepts and to use visuals to reason about concepts
(Bodemer et al., 2004; Stieff, 2005; van der Meij and de Jong, 2011; Wu et al., 2001).
For example, chemists can explain how the number of lines and dots shown in a 2D
Lewis structure allow inferences about bonding. Such competencies are learned
via explicit, verbally mediated processes that are best supported by prompting
students to explain how visuals show concepts (Koedinger et al., 2012).

In addition, learning with visuals involves perceptual representational competen-
cies: the ability to quickly and effortlessly see meaning in visuals (Gibson, 2000;
Goldstone and Barsalou, 1998; Goldstone et al., 2010; Kellman et al., 2010). For
example, chemists can immediately see that both visuals in Figure 4.1 show water,
without having to make effortful inferences about this. Perceptual representational
competencies are acquired via implicit induction processes that involve non-verbal
pattern recognition (Koedinger et al., 2012). Perceptual representational compe-
tencies play an important role in students’ learning because they free cognitive
resources for higher-order complex reasoning, allowing students to use the visuals
to learn new domain knowledge (Goldstone et al., 1997b; Rau, 2017).

A second limitation of current educational technologies is that–if they do incor-
porate supports for perceptual competencies–they do so without a cognitive model
of these competencies but instead rely on performance measures (Kellman and
Garrigan, 2009). That is, they treat each visual as an independent skill for students
to learn (e.g., a Lewis structure of water, a Lewis structure of carbon dioxide), in-
stead of considering the visual features students have to learn to perceive (e.g., dots,



89

lines, letters). As a result, existing educational technologies cannot trace students’
acquisition of perceptual competencies or provide tailored feedback if students
fail to attend to particular visual features. Given that decades of research show
that cognitive models can increase the effectiveness and efficiency of educational
technologies (Anderson et al., 1990; van der Meij and de Jong, 2011), we need to
address this limitation and develop adequatemeasures for perceptual competencies
to create adaptive supports for them.

We address this limitation with a method to assess students’ perceptual compe-
tencies.

4.2 Prior Research

4.2.1 Learning with Visual Representations

Visuals are a specific type of external representation. External representations are
objects that stand for something other than themselves: a referent, which can be a
concrete object or an abstract concept (Peirce, 1931). Representations in instructional
materials are defined as external representations because they are external to the
viewer. By contrast, internal representations are mental objects that students can
manipulate through imagination. Internal representations are building blocks
of mental models, which constitute students’ knowledge of a particular topic or
domain. External representations can be symbolic or visual. For example, text or
equations are symbolic external representations that have arbitrary (or convention-
based) mappings to the referent (Schnotz, 2005). By contrast, visual representations
are external representations that that consist of icons that have similarity-based
mappings to the referent (e.g., diagrams, simulations, or physical models) (Schnotz,
2005).

Several theories describe how students learn with visuals. Mayer’s (Mayer and
Mayer, 2005) Cognitive Theory of Multimedia Learning (CTML) and (Schnotz, 2005;
Schnotz and Bannert, 2003) Integrated Model of Text and Picture Comprehension
(ITPC) draw on information processing theory (Baddeley, 1992, 2012; Chandler
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and Sweller, 1991; Paivio, 1990) to describe learning from external representations
as the integration of new information into a mental model. We focus on processes
that pertain to visual representations.

First, students select relevant sensory information from the visual for further
processing in working memory. To this end, students use perceptual processes that
capture visuo-spatial patterns of the representation in working memory (Schnotz,
2005). This process is affected by conceptual competencies about relevant visual
features, which enables top-down thematic selection of visual features (Goldstone
et al., 1997a; Harel, 2016). Hence, the selection of relevant sensory information
involves both perceptual and conceptual competencies, allowing students to se-
lect features based on learned perceptual cues that are linked to domain-relevant
concepts.

Second, students organize this information into an internal representation that
depicts the information. Because visuals have similarity-based mappings to ref-
erents, their structure can be directly mapped to internal representations that are
also analogs of the referent (Gentner et al., 2003; Gentner and Markman, 1997;
Schnotz, 2005). In forming the internal representation, students engage the percep-
tual processes of pattern recognition based on visual cues. They engage conceptual
processes to map visual cues to concepts. The resulting internal representation is
depictive in that its organization corresponds to the visuo-spatial organization of
the external visual (Schnotz, 2005). Thus, the formation of an internal representa-
tion involves both perceptual and conceptual competencies, yielding a perceptual
analog of the external visual representation that is linked to conceptual knowledge
the domain.

Third, students integrate the information of the internal representations into
a mental model of the domain knowledge (e.g., schemas). To this end, students
integratemap the analog features of the internal representation to concepts retrieved
from long-termmemory. This third step constitutes learning: students learn content
by integrating the internal representation into a mental model of domain (Hegarty
and Just, 1993; Mayer and Mayer, 2005; Schnotz, 2005; Wylie and Chi, 2014). Thus,
mental model formation involves perceptual and conceptual competencies.
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In sum, students’ learning with visuals involves both conceptual and perceptual
competencies (Rau, 2017). While this brief review illustrates that conceptual and
perceptual competencies are inter-related (Goldstone et al., 1997a; Harel, 2016),
we discuss each of them separately to highlight that they are learned via different
processes and hence require different assessments (Goldstone et al., 1997a; Kellman
and Massey, 2013; Koedinger et al., 2012).

4.2.1.1 Conceptual Representational Competencies

Experts can map visuals to concepts, make inferences based on visual representa-
tions, and choose a particular visual for a task because it shows relevant concepts
(Ainsworth, 2006; Rau, 2017; Schnotz, 2005). For example, a chemist can use Lewis
structures and ball-and-stick models to show how the geometry and its lone elec-
trons explain properties of water. According to the CTML and ITPC (Mayer and
Mayer, 2005; Schnotz, 2005), conceptual competencies are involved when students
select information by identifying meaningful features, when they form internal
representations by mapping the features to concepts, and when they integrate
internal representations with conceptual knowledge. According to cognitive learn-
ing theories, the acquisition of conceptual representational competencies involves
learning about general principles of how a visual shows concepts (DeLoache, 2000;
Eilam, 2012; Uttal and O’Doherty, 2008). Furthermore, because most STEM do-
mains use multiple visuals, the acquisition of conceptual competencies involves
understanding how one visual constrains the interpretation of a second visual and
how they complement one another (Ainsworth, 2006, 2014).

The cognitive science literature (e.g., (Koedinger et al., 2012)) suggests that
students learn conceptual competencies via sense-making processes. Sense-making
processes are explicit processes in that students have to willfully engage in them
(Chi et al., 1994; Sherin et al., 2000). They are verbally mediated because they
involve explanations (Chi et al., 1989; Gentner et al., 2003; Koedinger et al., 2012).
The importance of sense-making processes for learning with visuals is widely
recognized. For example, (Ainsworth, 2006) and (Schnotz, 2005) describe sense-
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making processes in terms of structure mapping that allows students to distinguish
relevant and irrelevant features and to determine which information is (or is not)
shown in different visuals (Gentner et al., 2003). Sense-making processes are also
involved when students explain why a visual can help solve a given problem
(Acevedo Nistal et al., 2013, 2014; Disessa, 2004)

4.2.1.2 Perceptual Representational Competencies

Further, experts see connections among visuals, translate among visuals, and inte-
grate information across visuals with little time and cognitive effort (Dreyfus, 2004;
Gibson, 1969, 2000; Richman et al., 1996). For example, chemists can see “at a glance”
that a Lewis structure and ball-and-stick model both show water. Such percep-
tual expertise frees cognitive resources for higher-order reasoning (Goldstone and
Barsalou, 1998; Richman et al., 1996) and is considered an important goal in STEM
education (Airey and Linder, 2009; Kozma and Russell, 2005; Pape and Tchoshanov,
2001). According to the CTML and ITCP, perceptual competencies are characterized
by high efficiency in forming accurate internal representations (Mayer and Mayer,
2005; Schnotz, 2005). Further, the ability to automatically combine information
from different visuals without little mental effort (Chase and Simon, 1973; Kellman
and Garrigan, 2009; Kellman and Massey, 2013) results from efficiency in mapping
analog internal representations of visuals to one another (Mayer and Mayer, 2005;
Schnotz, 2005).

The cognitive science literature (e.g., (Gibson, 2000; Goldstone et al., 1997b;
Koedinger et al., 2012)) suggests that students acquire perceptual expertise via
perceptual-induction processes. These processes are inductive because students
can infer how visual features map to concepts through experience with many
examples (Fahle et al., 2002; Gibson, 2000; Goldstone et al., 1997b; Kellman and
Massey, 2013). Students gain efficiency in seeing meaning in visuals via perceptual
chunking: rather thanmapping specific features to concepts, they learn to treat each
analog feature as one perceptual chunk that relates tomultiple concepts. Perceptual-
induction processes are considered to be non-verbal because they do not require
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explicit reasoning (Koedinger et al., 2012; Richman et al., 1996; Fiore, 1997). They
are implicit because they happen unintentionally and sometimes unconsciously
(Frensch and Rünger, 2003; Shanks et al., 2005). Hence, they do not rely on students’
deliberate direction of conscious attention.

4.2.1.3 Enhancing domain knowledge by supporting representational
competencies

In sum, conceptual and perceptual representational competencies are learned via
different processes but mutually enhance one another. Empirical evidence for this
claim comes from studies showing that interventions that support sense-making
and perceptual-induction processes have complementary effects on students’ learn-
ing (Rau, 2017). Several studies show that sense-making support enhances students’
learning of domain knowledge in engineering (van der Meij and de Jong, 2011),
biology (Seufert, 2003), math (Rau et al., 2015a), physics (Gutwill et al., 1999), and
chemistry (Chiu and Linn, 2012).

Less research has focused on perceptual-induction support. Kellman and col-
leagues developed interventions that expose students to many short tasks where
they have to rapidly translate among representations. For example, a student may
be asked to select one of several pie charts that shows the same fraction as a number
line. Tasks are sequenced to expose students to systematic variation, often in the
form of contrasting cases, so that irrelevant features vary but relevant features
appear across several tasks (Kellman and Massey, 2013; Massey et al., 2013). Ex-
periments show that these interventions enhance learning in math and chemistry
(Kellman et al., 2008; Wise et al., 2000). Finally, experiments on math and chemistry
learning show that combining perceptual-induction support and sense-making
support yields higher learning gains on domain knowledge tests compared to
sense-making support alone (Rau et al., 2015a; Rau, 2017, 2016).
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4.2.2 Adaptive Educational Technologies for Representational
Competencies

Much research on learning with visuals has been done in the context of educational
technologies because they make it easy to integrate instructional supports for
representational competencies into problem-solving activities. Many technologies
include supports for representational competencies (Ainsworth et al., 2002; Linn
et al., 2015; Linn and Slotta, 2000; van derMeij, 2007; van derMeij and de Jong, 2011).
However, current technologies have two important limitations. First, they typically
do not adapt such support to the individual student’s level of representational
competencies. This limitation results from the fact that these technologies do not
contain a cognitive model of students’ learning of representational competencies.
One prominent exception is the External Representation Selection Tutor (ERST),
(Cox and Brna, 2016; Grawemeyer, 2006). ERST incorporates a cognitive model of
students’ conceptual representational competencies, in particular, their knowledge
about which visual to use for which type of problem. It provides adaptive feedback
on students’ choice of visual and has been shown to improve representational
competencies and domain knowledge.

A second limitation is that only a few educational technologies support percep-
tual representational competencies. Kellman and colleagues spearheaded efforts
to develop such technologies (Massey et al., 2013; Wise et al., 2000), which pro-
vide single-step translation problems that expose students to numerous visuals.
However, these technologies do not take full advantage of adaptive capabilities
that educational technologies can achieve. Specifically, Kellman and colleagues’
technologies are adaptive in that they trace students’ improvement in accuracy and
speed. Until students achieve a mastery threshold, the same translation problems
are repeated, hence treating each problem as an independent skill. Thus, existing
technologies that support perceptual competencies lack a cognitive model that
maps each translation problem to a latent skill that describes mappings between
visual features that students can apply to a variety of visuals. Without such a
cognitive model, the technology cannot adequately adapt to students’ learning of
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perceptual competencies. We propose that the main reason for this limitation lies
in traditional methods for the assessment of representational competencies.

4.2.2.1 Assessments of representational competencies

Prior research has yielded different assessments of conceptual and perceptual rep-
resentational competencies. To assess conceptual competencies, research has used
tests that assess students’ ability to explain how visuals show concepts (e.g., (Lux-
ford, 2013; Rau et al., 2015b)). Further, research has used think-alouds to assess how
students learn these competencies during problem solving (e.g., ainsworth2003effects,
ploetzner2008successful). Also, research has used eye-tracking to assess students’
visual attention to conceptually relevant features (for an overview, see (Alemdag
and Cagiltay, 2018)). Eye-tracking research is based on the so-called eye-mind
assumption (Hegarty and Just, 1993; Underwood and Everatt, 1992), which states
that the duration of eye-gaze fixations reflects the duration of cognitive processes
that students use on the information they are looking at. Consequently, most eye-
tracking research on multimedia learning has focused on measures that reflect
intentional direction of visual attention and assumes that these measures reflect
conceptual processes. The most prominent measures include fixation duration and
switching between stimuli (for recent meta-reviews, see (Alemdag and Cagiltay,
2018; Gegenfurtner et al., 2011; Lai et al., 2013)). For example, long fixations on
a stimulus are assumed to reflect deep processing of the information (e.g., (Lai
et al., 2013; Mason et al., 2013; Schmidt-Weigand et al., 2010)). Further, frequent
switching between stimuli is assumed to reflect integration of information across
the stimuli (e.g., (Alemdag and Cagiltay, 2018; Johnson and Mayer, 2012; Stalbovs
et al., 2015)). Indeed, these measures correlate with students’ conceptual compe-
tencies (Rau et al., 2015a; Van Gog and Scheiter, 2010). In sum, these measures
rely on verbalization (e.g., think-alouds) or behaviors that can be mapped to verbal
processes (e.g., eye-tracking).

To assess perceptual competencies, research has relied on measures of accuracy
and efficiency in recognizing, classifying, or categorizing visuals (Hill and Sharma,
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2015; Kellman et al., 2008; Kellman and Garrigan, 2009; Rau, 2016)). However, these
measures cannot determine which features drive students’ gains in accuracy and
efficiency. Further, research has used gestures as a measure of how students learn
perceptual competencies. Specifically, gestures can reveal which visual features
they attend to while interacting with visuals (e.g., (Airey and Linder, 2009; Bieda
and Nathan, 2009)). Also, teachers’ use of gestures reveal which features they aim
to draw students’ attention to (e.g., (Alibali et al., 2014; Cope et al., 2015)). However,
as gestures typically accompany speech, these measures are related to students’ and
teachers’ explicit use of visual features in conceptual reasoning. Hence, they cannot
reliably distinguish perceptual from conceptual competencies. Finally, research has
used eye-tracking measures of students’ efficiency in processing visuals (e.g., (Gold-
stone et al., 2010; Jarodzka et al., 2012)). Here, decreased fixation durations indicate
increased efficiency, which contradicts the use of increased fixation durations as an
indicator of increased conceptual competencies. Further, eye-tracking measures
have been criticized for the assumption that cognitive processing is exclusively
related to foveal location (Irwin, 2004). It is possible that peripheral vision plays
a role in perceptual competencies. In sum, these measures cannot capture the
implicit impact of visual features because they involve verbalization (e.g., gestures),
do not distinguish visual features (e.g., accuracy and efficiency), or assume explicit
attention (e.g., eye tracking).

4.2.2.2 Methods for cognitive model development

The lack of adequate methods to assess perceptual competencies is paralleled by a
neglect of perceptual-induction processes in the development of cognitive models
for educational technologies. To develop cognitive models, researchers typically
analyze how experts and students solve tasks (Koedinger et al., 2006; Rau, 2016;
Rau et al., 2015a). Such cognitive task analyses involve asking experts and students
to “think aloud”; that is, to verbalize their thought processes (Clark, Richard E
and Feldon, David E, and Van Merrienboer, Jeroen JG and Yates, Kenneth and
Early, Sean, 2007; Schraagen et al., 2000). The main idea underlying this method
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is that think-alouds provide a readout of working memory (Ericsson and Simon,
1984). Think-aloud protocols can then be analyzed for conceptual and procedural
knowledge used to solve a problem (Clark, Richard E and Feldon, David E, and Van
Merrienboer, Jeroen JG and Yates, Kenneth and Early, Sean, 2007; Schraagen et al.,
2000). A cognitive model then captures conceptual and procedural knowledge
prevalent among experts and traces students’ progress towards expert thinking
(Rau, 2016).

Think-aloud methods have been augmented with eye tracking, for example in
cued retrospective reports (Conati et al., 2005; De Koning et al., 2010; Van Gog et al.,
2005). Because talking can interfere with eye tracking, students’ eye gaze is recorded
while they solve problems quietly. Then, they view their gaze recordings and
think aloud retrospectively. While this method allows gathering some information
about processing efficiency, it emphasizes verbal knowledge. Further, the issues
mentioned above of assessing perceptual competencies with eye tracking persist.

In sum, think-aloud methods are suitable for conceptual and procedural knowl-
edge that can be verbalized but they likely cannot capture implicit and nonverbal
knowledge.

4.2.3 Similarity Learning Methods

To identify an alternative method to assess implicit, nonverbal perceptual competen-
cies, we draw on techniques for metric learning from triplet similarity judgments.
Figure 4.2 shows an example of a triplet judgment with Lewis structure representa-
tions of chemical molecules. Given the top image (the “target molecule”), partici-
pants are asked to click on one of the bottom two images (the “choice molecules”)
that they perceive as most similar to the top image. Participants receive many such
triplet similarity judgments in a row.

This approach draws on findings that people are better at providing ordinal
(i.e., comparative) responses than at providing fine-grained quantitative judgments
or ratings (Kruskal, 1964a). We assume that participants’ perceived similarity
among visuals is a function of the visual features present in each image. Hence,
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Figure 4.2: Example triplet judgment task with Lewis structures, as used in Experi-
ment 1. Participants are given a target molecule (top) and asked to click on one of
the two choice molecules (bottom) that are most similar to the target molecule.

if we know which features account for students’ perception of similarity, we can
predict participants’ similarity judgments. In the example shown in Figure 4.2,
if participants’ similarity judgments are strongly affected by the presence of the
letter C, then the molecule on the left is more likely to be selected. However, if
participants’ similarity judgments are more affected the presence of the letter O, the
molecule on the right is more likely to be selected. These conjectures do not rely on
the assumption that students are aware of these features driving their perception,
the assumption that students explicitly attend to the features, or even that they
foveally fixate on them.

Our method involves three steps. First, we code a corpus of visuals based
on simple features they contained (e.g., the presence or absence of lines between
two letters). Second, we collect triplet similarity judgments for each visual of the
form “molecule i is more similar to j than it is to k,” which provides information
about the relative perceptual similarity of the molecules shown in a visual. Third,



99

we analyze which features drive participants’ similarity judgments using metric
learning, a branch of machine learning interested in learning notions of distance
that correspond to the similarity between items. Before we detail each step, we
review how metric learning allow detecting correlations between features and
similarity judgments.

4.2.3.1 Computational metric learning approach

To detect which visual features drive participants’ similarity judgments, we apply
the model developed in previous work (Mason et al., 2017). Simply put, the model
seeks to learn a notion of distance between the visuals parametrized by their features
such that the most visually similar visuals are nearest to each other. To achieve
this goal, the model learns an ordinal embedding that spatially represents the
similarity of molecule representations as distances. Formally, the model describes
the ith visual by a q-dimensional feature vector xi. Our goal is to learn a distance
metric parametrized by a symmetric positive-semidefinite matrix K, called a kernel
matrix. The kernel matrix K is chosen such that triplet similarity judgments of the
form “visual i is more similar to visual j than to k” are consistent with the distance
metric defined as dK(xi, xj) = (xi − xj)

TK(xi − xj). Further, K is assumed to be
sparse, giving weight to only a subset of the features, corresponding to the belief
that a small number of features significantly influence human similarity judgments
(Shepard, 1980). By comparing the weight given to each feature in this subset, we
rank the features that are most important in determining similarity among the
visuals.

Note that this method is not biased towards selecting features that are more
prevalent in the dataset. As in (Mason et al., 2017) uses differences of distances with
respect to kernel K to predict similarity. As shown in the definition of dK(xi, xj),
distance and hence the prediction of similarity relies on differences of the feature
vectors xj. For a feature to have the chance of being predictive, it must vary between
feature vectors. For example, a feature that is present in all molecules but takes the
same value for all molecules is ignored, except for its interaction with other features.
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Additionally, by focusing on the difference of feature vectors, the absence of a given
feature can also be used to predict similarity or dissimilarity. Finally, the model
seeks to reweight features only based on their ability to predict triplet judgements
and hence does not assume to attention to any specific features. Reweighting fea-
tures also has the benefit that it allows themodel to further correct for features being
more common by giving them less weight if they are not predictive of similarity.

There are three advantages of this model that make it suitable for modeling
perceptual competencies. First, by Theorem 2.1 in (Mason et al., 2017), the number
of triplet responses that are necessary and sufficient to learn K is known: if q is the
number of features that describe each representation, d is the number of relevant
features that affect students’ similarity judgments, andn is the number of molecules
students are comparing, thenK can be uniquely identified withO(dq logn) triplets
where O(·) hides constant factors. This ensures that sufficient data is collected to
learn K and detect relevant features. Second, Theorem 2.7 in (Mason et al., 2017)
guarantees that the metric is uniquely determined by the triplet responses for a
generative model. This ensures that a ranking of the importance of features for
participants’ triplet judgments uniquely describes their perceived similarity and
can hence be confidently used for a cognitive model of perceptual learning. Third,
it may be reasonable to expect that participants agree on some triplets more than
others, and students may not be fully self-consistent. Other conventional methods
that require consistency place a stringent requirement on the data unlikely to be
satisfied in practice. The model in (Mason et al., 2017) makes no such assumption.
Instead, it directly models he level of disagreement in different triplets and can use
this information to better estimate the kernel matrix K. The resulting kernel yields
the best predictions on average for the collected data, and correspondingly yields
the best explanation on average of students’ judgments.

4.2.3.2 Efficiency of metric learning method

As mentioned, sample size (i.e., the number of similarity judgments) needed to
learn K is a practical concern. Active machine learning research has investigated
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how to reduce the data needed to achieve good model performance by querying
the most informative data-points (see (Settles, 2009) for an overview). Several
algorithms have been proposed for triplet-based active machine learning. While
some algorithms rely on uncertainty- sampling based approaches to select the most
informative queries with respect to a learned model, others rely on an information
theoretic approach has been proposed (Tamuz et al., 2011) to select triplets for
queries. Both are agnostic to the features (i.e., they do not have access to the
features) and instead directly focus on participants’ judgments. Notably, none of
the algorithms guarantee a number of samples necessary and sufficient to learn K.
In fact, the sample complexity of triplet-based metric learning was an open problem
until (Mason et al., 2017) demonstrated a lower bound of O(qd) samples being
necessary for any algorithm to learn the kernelmatrix,K. Since ourmethod requires
only O(qd logn) triplets, it is essentially optimal up to logarithmic factors using
random sampling. This does not preclude, however, the possibility of constant and
logarithmic factor gains in performance of active versus random sampling, which
can have significant impact in real world settings.

In our experiments, we use an implementation of the algorithm proposed by
(Tamuz et al., 2011), developed originally as part of the NEXT system (Jamieson
et al., 2015). This package showed empirical success versus random sampling in
previous, offline experiments (Heim et al., 2015), which we expect to generalize to
our context. The results by (Heim et al., 2015) are referred to as offline in the context
of active learning research, because the authors first collected all O(n3) possible
samples for their dataset, and then allowed the algorithm to query from this set of
collected samples as if it was progressively seeing the data. This mitigates some
practical concerns of actively querying people such as server and network latency.
Our experiments take place in the online setting, where the algorithm progressively
updates and queries new samples in real time from participants, but we make use
of the same implementation of the same algorithm, which controls the sampling as
in (Heim et al., 2015).
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4.3 Research Questions

In sum, perceptual representational competencies are acquired via implicit, non-
verbal learning processes that result from the induction of relevant visual features
through experience with many visuals. We propose a similarity learning method
that draws on metric learning to assess participants’ perceptual representational
competencies without explicitly asking them to explain visual features or assuming
that they explicitly attend to these features. We chose chemistry as a domain for this
study for several reasons. First, our goal is to develop a method that is applicable
to realistic educational scenarios. Much prior research on perceptual learning has
used artificial visual stimuli that vary only one or two feature dimensions (e.g.,
Gabor patches; see (Fahle et al., 2002)). Real visuals are more complex in that
they vary on many feature dimensions, and the visuals used in chemistry are a
good example. Second, the visuals used in chemistry share several characteristics
with visuals commonly used in other STEM domains. For example, they encode
spatial information that is relevant to domain-specific concepts, combine symbols,
shapes, and color, and they recur throughout instruction. Third, perceptual fluency
trainings have been shown to be effective for this population (e.g., (Rau, 2018)), and
therefore chemistry students are a representative target population for perceptual
fluency trainings.

In sum, to test if the similarity learning method can assess chemistry students’
perceptual competencies, we address the following research questions:

1. Which visual features drive chemistry students’ perception of similarity
among visual representations, as assessed with similarity learning?

2. How do features identified for chemistry students compare to features that
novices and experts are expected to attend to, based on prior research that
used traditional methods?

While chemistry students are not completely novice to the visuals, they also
do not have decades of experience with the visuals that is characteristic of percep-
tual expertise (Kellman and Massey, 2013; Fiore, 1997). Therefore, we expect that
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students will attend to broader features that are not specific to particular molecules–
as is common among novices–rather than to features that are specific to a given
molecule and that reflect top-down processes through which conceptual knowl-
edge affects perception–as is common among experts. Further, we examine ways to
enhance the efficiency of this method by addressing:

3. Does the use of an active learning algorithm improve the efficiency of the
method?

While there are many proposed active algorithms, replicating their successes in
real world settings remains a challenge (Jamieson et al., 2015). To maximize our
chance of success, we employ an implementation of the algorithm proposed by
(Tamuz et al., 2011), which independently showed empirical success in an offline
setting (Heim et al., 2015) similar to our online, real-time sampling setting. We
used the same implementation to select which triplets to sample with the same
parameters. Showing that active learning can improve the efficiency of learning
from triplets would be some of the first evidence of its efficacy in real world settings
where data is sampled in real time and a significant contribution to the field of
active learning.

4.4 Experiment 1

Experiment 1 was designed to address research questions 1 and 2. To this end, we
collected similarity judgments of Lewis structures (see Figure 4.1a) from undergrad-
uate chemistry students and applied the similarity learning method as described
above to these judgments.

4.4.1 Method

4.4.1.1 Participants

A total of 614 freshmen undergraduate students from a general chemistry course
for science majors at a large US university participated in the experiment. The
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course prerequisite was high-school chemistry. Students were invited to participate
in the survey in the middle of the semester, three weeks had covered the basics of
covalent bonding, which included information about common functional groups
such as alcohols and carboxylic acids. Hence, all students had some knowledge of
chemistry and had seen Lewis structures before, but they had not had the level of
experience that is characteristic of expertise. Participants were invited via email
with a request from the instructor to help with a research project on learning with
visual representations. They were not offered any incentive. Participants were
allowed to quit the survey at any time.

4.4.1.2 Materials

Participants took a brief online survey asking them to make similarity judgments
between Lewis structures showing different molecules. The survey asked them to
make triplet similarity judgments of the form shown in Figure 4.2 for three Lewis
structures at a time. Each participant received 50 triplets, which they completed
at home. They were asked not to use course materials or other support. For each
triplet, they had to choose which of the choice molecules was most similar to the
target molecule. To create the triplets, we selected 212 molecules that commonly
appear in textbooks. From this set, we then selected 50 molecules uniformly at
random without replacement. All triplets of three unique molecules were sampled
uniformly at random with replacement from the set of 58, 880 possible triplets
from the 50 molecules, totaling 26, 180 samples. As per Theorem 2.1 of (Mason
et al., 2017), this sample size satisfies the necessary and sufficient number of triplet
responses for the rank/sparsity of K.

Further, for each of the 50 molecules, we hand-coded visual features of their
Lewis structure representations. Specifically, we coded for 106 specific features
that describe anything a naive viewer could see, such as the number of distinct
letters, the number of bonds, etc. (see Table 4.1). These features are specific to a
given molecule in the sense that they uniquely and sufficiently distinguish between
molecules. We quantified these features in feature vectors, which encoded whether
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the feature was present or absent. These features include counts of individual
letters as well as information about specific bonds present in each molecule. In
addition, we created four summary features that reflect our interpretation of the
expert-novice literature, which documents that students tend to focus on broader
characteristics that are not specific to particular molecules. The summary features
are the sum of specific features of a given type; for example, the total number of
letters in a Lewis structure is the sum of the number of distinct letters. In total,
there were q = 110 unique features describing each molecule. To guarantee that
our method satisfies the conditions of Theorems 2.3 and 2.7 in (Mason et al., 2017)
that guarantee a unique and optimal ranking of features by this procedure, we
selected a subset of 50 features of these 110 features that are relevant to the greatest
number of molecules. Our prior work shows that reducing the number of features
from 110 to 50 features has no effect on the results because many of the features that
are left out pertain to only a small number of the molecules and are hence unlikely
to explain perceived similarity of the whole set of visuals. Figure 4.3 shows feature
vectors for two visuals (red), including their summary features (yellow).

We collected participants’ triplet similarity judgments using the NEXT open-
source system for activemachine learning (Jamieson et al., 2015). NEXThasmodules
for triplet experiments and runs on top of Amazon Web Services. Further, NEXT
provides an easy interface for active data collection, as shown in Figure 4.2.

4.4.1.3 Analysis

To detect which visual features drive chemistry students’ perception of similarity
(research question 1) and to compare these to features to expected novice-expert
differences (research question 2), our goal was to learn a ranking of the features
based on how strongly they correlate with students’ triplet similarity judgments. As
described above, we achieve this goal by learning a symmetric positive-semidefinite
kernel matrix K that defines a distance metric from triplet similarity judgments of
the form “molecule i is more similar to molecule j than to k.”

Specifically, for a given Lewis structure, let xi be its feature vector (i.e., red
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Feature Type Number of features
per molecule

Prevalence of feature
across molecule

Specific: Charge 1 8
Specific: Number of dots 1 475
Specific: Number of distinct letters
(e.g., number of C’s) 14 361

Specific: Number of single bonds
between two letters 20 260

Specific: Number of double bonds
between two letters 6 22

Specific: Number of triple bonds
between two letters 2 6

Specific: Number of 90-degree bond
angles between any two bonds 20 232

Specific: Number of 120-degree bond
angles between any two bonds 15 76

Specific: Number of 180-degree bond
angles between any two bonds 27 132

Summary: Total number of connections
(i.e., double bond and triple
bonds count as one connection)

1 293

Summary: Total number of bonds
(i.e., double bond counts double,
triple bonds counts triple)

1 315

Summary: Total number
of different letters 1 122

Summary: Total number of letters 1 365

Table 4.1: Summary of hand-coded visual features for Lewis structure representa-
tions for the 50 molecules used in Experiment 1. Features include four summary
features and 106 specific features.
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Figure 4.3: Feature vectors of molecules represented as Lewis structures. Columns
show example feature vectors for H2O and CO2 Lewis structure representations
(red). Rows show features, including surface features (yellow).

columns in Figure 4.3). We model each triplet similarity judgment as a relative
distance constraint of the form dK(xi, xj) < dK(xi, xk), where dK(xi, xj) := (xi −

xj)
TK(xi − xj). This distance function weights differences between some features

more than others such that relative distances are as consistent as possible with
participants’ similarity judgments. Features with more weight (i.e., larger values in
K) have stronger correlations with participants’ similarity judgments. Importantly,
we consider a method for learning K that does not require knowledge of d and is
not biased towards any feature.

For each triplet t = (i, j,k), in the set S = {t : (i, j,k)} of queried triplets, there
is an associated label yt = ±1 indicating a participant’s response (e.g., yt = −1
means “i is more similar to j than to k”). The distance function predicts similarity
judgments according to
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ŷt =

−1 x 6 dK(xi, xj) < dK(xi, xk)

1 0 6 dK(xi, xj) > dK(xi, xk)

for a learned kernel matrix K, and if ŷt = yt, the distance function agrees
with the participant’s response for triplet t. We assume that there exists a latent,
generative kernel matrix K∗, and that participants’ responses are noisy indications
of relative distances with respect to the distance function defined by K∗. Note that
their responses may be contradictory and Smay contain duplicate triplets as the
queries are generated uniformly at random.

Further, based on the assumption that few features drive participants’ judgments,
we restrict the learned kernel matrix to be row-sparse, such that only few, d < q =

50, features receive weight in K. That is, the distance function only considers
differences between a small set of the features to determine the distance between
representations. Ideally for a range of choices for d, wewould search over all subsets
of d features and learn matrices K that satisfy as many of the triplet constraints as
possible. Unfortunately, this optimization is computationally infeasible. Instead,
for the set of triplets, S with associated labels yt, we optimize the following convex
relaxation:

K = arg min
Kλ

1
S

∑
t∈S

log (1 + exp (yt (dK(xi, xj) − dK(xi, xk))))

over the convex set

Kλ := {K ∈ Rq×q : K symmetric PSD, ‖K‖1,2 6 λ}

where ‖K‖1,2 :=
∑q
i=1
(∑q

j=1K
2
i,j
)1/2. This norm encourages solutions that give

weight to fewer features without explicitly enforcing a specific number. By increas-
ing and decreasing λ, we can control the number of features in the solution. We
solve this optimization via projected gradient descent and choose λ by splitting our
dataset into training, validation, and test sets. In particular, we used 80% of the
collected queries to learn kernel matrices, K, for a range of different values of λ. We
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then tested each kernel on the validation set to find the optimal value of λ. With
the selected value of λ, we relearn K using both the training and validation sets as
training data and evaluated the performance on the held-out test set. Additionally,
as a form of preprocessing, we normalized all features to have 0 mean, further
aligning the procedure with the conditions of Theorem 2.7 in (Mason et al., 2017)
for our choice of loss function. This theorem guarantees that the K we recover
as a result of this convex optimization is the unique optimum and hence that the
corresponding ranking of features uniquely describes participants’ judgments.

4.4.2 Results

4.4.2.1 Prior Checks

We evaluated the accuracy of the model using ten-fold cross validation. Our model
achieved an average 72% prediction accuracy of students’ similarity judgments.
Note that in general, triplet queries were not repeated for different students, which
makes it difficult to compute an absolute metric of consistency among participants.
From the 50 molecules we considered, there were 58, 880 unique triplets that could
have been queried, and not deliberately repeating triplets allowed us to maximize
our coverage of this set. Some triplets were repeated due to the random sampling
procedure, but 90% of triplets were unique. Due to the large size of the training
and test sets, the effect of repeated triplets is minimal. In particular, all theoretical
guarantees of the model discussed in (Mason et al., 2017) are from the perspective
of random sampling and do not preclude the possibility of repeated samples. That
said, the prediction accuracy of this procedure serves as a proxy for estimating the
consistency of participants’ responses as well as a participant’s self-consistency.
Note that consistency in the context of triplet judgements is richer than agreement
on repeated samples because triplet judgments imply transitive information about
the molecules of the form “if molecule i is more similar to j than to k, and i is
more similar to k than to i, then we can infer that i is more similar to j than to i.”
Prediction accuracy captures this richer notion of consistency. In particular, if there
was perfect consistency, the model would achieve accuracy close to 100%, whereas
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if there was little to no consistency, the model would achieve accuracy near 50%.
Thus, the 72% accuracy of our model indicates that there was consensus over which
visuals were more or less similar, but also that there were some disagreements
among students’ similarity judgments.

Further, we validated the claim outlined in Section 4.2.3 that the method is not
biased towards selecting more common features. An alternative method to predict
triplets, as opposed to learning a kernel matrix, is to use the standard Euclidean
distance directly on the feature vectors. More common features have a greater
impact on this distance metric. Hence, if our method was biased towards selecting
common features, and the most common features explain participants’ judgments,
then the Euclidean distance method should do well and perform similarly to our
model in terms of prediction accuracy. Instead, the Euclidean distance method
only achieves 50.3% accuracy, which is markedly worse than the 72% percent
accuracy of our method and barely above a model that lacks any consistency..
Note that this merely highlights the importance of feature selection for predicting
similarity judgments. It would be possible to use multidimensional scaling to
predict similarity judgments; but this would not address research questions 1 and 2.
Thus, our method is not simply selecting common features but reweights features
that explaining students’ similarity judgments.

4.4.2.2 Similarity Judgments

To identify which visual features account for students’ similarity judgments, we
estimated theweights for each feature inmatrixK. The stronger a feature’s weight in
matrixK, the more this feature affected students’ similarity judgments. To compute
theweight for a given feature, we calculated the Euclidean normof that feature’s row
in the kernel matrixK. Note that sinceK is symmetric, it is equivalent to computing
this for columns. This norm correlates to the amount that a given feature influences
the overall distance metric, with features with greater corresponding norms in K
having greater influence in determining similarity between visuals. For rowswhose
norm is 0, the corresponding feature is given no weight in determining similarity.
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Thus, a feature’s weight corresponds to its saliency in students’ perception of
visuals.

First, we used thismatrix to investigatewhich features drive students’ perception
of similarity among visuals (research question 1). Table 4.2 shows the top ten ranked
features selected in our kernel matrix K. This ranking shows that the presence and
counts of specific atoms (e.g., sulfur and oxygen) affected similarity judgments.
Further, the most prevalent features relate to specific features of bonds. Specifically,
with respect to bond types, students focus on whether specific atoms are bonded to
one another by single, double, or triple bonds. Finally, similarity judgments rely
strongly on angles between specific atoms in chains (e.g., carbon-oxygen-hydrogen
chains).

Second, we used matrix K to investigate how features identified by similarity
learning correspond to features that novices and experts are expected to attend
to (research question 2). No summary features were among the highest ranked
features. The three summary features (total letters, connections, different letters),
ranked 32, 39, and 40, and the last two had little weight in K. The observation that
several of the highest ranked specific features were related to chemical functional
groups aligns with features we expected to be characteristic of expert perception.

4.4.3 Discussion

With respect to visual features that drive students’ similarity judgments (research
question 1), our results indicate that students’ similarity judgments are strongly
affected by the presence or absence of specific atoms. This finding may reflect
the fact that Lewis structures make atom identity very salient through the use of
letters. We note that the most highly ranked bond types contain atoms between less
frequent atoms, such as sulfur and nitrogen. Hence, the saliency of atom identity
may cause students’ perceptual learning processes to be sensitive to specific atoms
that are present in fewer molecules, rather than common atoms that appear in most
molecules, such as carbon and hydrogen.

Further, we found that students’ similarity judgments are not only affected by
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Ranking Feature name Average Weight
1 Number of sulfur atoms 11.8%

2
180 degree bond angle
in fluorine-carbon
-fluorine chain

10.0%

3 Sulfur-oxygen
double bond type 7.4%

4 Carbon-nitrogen
single bond type 6.7%

5
180 degree bond angle
in carbon-oxygen
-hydrogen chain

6.1%

6
180 degree bond angle
in hydrogen-carbon
-nitrogen chain

5.3%

7
90 degree bond angle
in carbon-carbon
-oxygen chain

4.3%

8 Number of oxygen atoms 4.1%

9 Nitrogen-oxygen double
bond type 3.9%

10 Carbon-carbon triple
bond type 3.8%

Table 4.2: Top ten ranked visual features in Experiment 1 on Lewis structure repre-
sentations.

individual atoms, but also by groups of atoms. For instance, while the feature
pertaining to the number of carbon atoms is not ranked highly, carbon is present
in most of the bond angle and bond type features present in the top ten ranked
features. This indicates that students’ perceptual learning processes are attuned
to how carbon interacts with other atoms, rather than its presence directly. This
result may reflect that most molecules contain carbon, hydrogen, and oxygen, and
consequently bonds amongst these three may be less informative when comparing
the similarity of molecules. More broadly, this ranking suggests that students
perceptually process bonding when judging the similarity of Lewis structures, a
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key concept these visuals depict.
With respect to the comparison of visual features assessed by similarity learning

to those suggested by prior expert-novice research (research question 2), our results
suggest that students’ similarity judgments are more strongly affected by specific
visual features than we had expected. Whereas the summary features captured
broader information about the visuals (e.g., the number of atoms in the molecule),
students instead processed more fine-grained information about the visuals such
as the presence of specific atoms and their interactions with other specific atoms
via bonding. The impact of more specific features may allow students to compare
the molecules more so than the broader features. For example, it is possible that for
difficult triplets (i.e., triplets where all three molecules are somewhat dissimilar),
students may answer the triplet query by focusing on the presence or absence of a
specific feature (e.g., “these three molecules are all kind of different, but these two
contain fluorine”). Thus, the impact of specific features on similarity judgments
may reflect that these are more informative than the summary features.

Finally, when inspecting the specific features related to bond angles, we observed
that they are indicative of functional groups that characterize the type of molecule.
For instance, carbon-oxygen-hydrogen chains indicate alcohols, hydrogen-carbon-
nitrogen chains indicate amides, and triple bonds indicate unstable molecules. This
suggests that students’ perceptual processes may reflect conceptual knowledge
about how Lewis structures show molecules. Hence, chemistry students seem to
exhibit stronger top-down processes through which conceptual knowledge affects
perception than we would expect for students who are completely novice to the
visuals. Thus, metric learning reveals useful information about how chemistry
students perceive visuals, without requiring them to explicitly explain how they
do so.

A limitation of our method is that it requires a rather large number of sam-
ples. Hence, Experiment 2 investigates if active machine learning can improve the
efficiency of this method.
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4.5 Experiment 2

Experiment 2 addresses research questions 1-3. To this end, we collected similarity
judgements of ball-and-stick models (see Figure 4.1-b) using random and active
sampling from undergraduate chemistry students and used the same similarity
learning method as above.

4.5.1 Methods

4.5.1.1 Participants

A total of 489 freshmen undergraduate students were recruited from the same
general chemistry course as Experiment 1. The course was taught by a different
instructor than the course we used in Experiment 1, but thanks to a standardization
of the course, the course materials were identical (i.e., content covered, sequence of
content, representations used, lecture slides, syllabus, etc.). Students were invited
at the same time during the semester as in Experiment 1. All students had some
knowledge of chemistry and had seen ball-and-stick models before, but they had
not had the level of experience that is characteristic of expertise. Participants were
recruited in the same way as in Experiment 1 and did not receive incentives.

4.5.1.2 Materials

Participants again took part in a brief online survey asking them to make similarity
judgments between visual representations. We generated 50 ball-and-stick model
representations of the same molecules as in Experiment 1 using WebMO, a mod-
elling software for chemical molecules. As in Experiment 1, each ball-and-stick
model representation had a hand-coded q = 132 dimensional feature vector which
fromwhich we took a subset of q = 50 features that included the summary features
by the same method as in Experiment 1, described above (see Table 4.3). Figure 4.4
shows feature vectors for two visuals (red), including their summary features (yel-
low). We collected 9005 randomly sampled triplet similarity judgments as well as
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Figure 4.4: Feature vectors of molecules represented as ball-and-stick models.
Columns show example feature vectors for H2O and CO2 ball-and-stick model
representations (red). Rows show features, including educated guess features
(yellow).

8792 actively sampled triplets, totaling 17, 797 samples. An example triplet with
three ball-and-stick model is shown in Figure 4.5.

As with Experiment 1, we used the NEXT system (Jamieson et al., 2015) to collect
participants’ similarity judgments, and responses were collected via an online sur-
vey that asked students not to use any outsidematerials. A difference to Experiment
1 was that we used active sampling, so as to address research question 3. Active
triplets were sampled according to the CrowdKernel algorithm for active triplet
embedding (Tamuz et al., 2011). To select the next triplet to query, the algorithm
computes an information gain criterion that estimates which triplets provide the
most information based on past responses. Importantly, as opposed to random sam-
pling, which gathers independent samples, active sampling is inherently sequential,
collecting dependent samples to minimize redundant information. Ideally, this
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Feature type Number of features per molecule Prevalence of feature
across molecules

Specific: Number of dis-
tinct sphere colors 15 367

Specific: Number of sin-
gle bonds between any
two spheres

19 291

Specific: Number of
double bonds between
any two spheres

5 21

Specific: Number of tri-
ple bonds between any
two spheres

2 6

Specific: Bond lengths
of single bonds between
any two spheres

19 99

Specific: Bond lengths
of double bonds be-
tween any two spheres

5 17

Specific: Bond lengths
of triple bonds between
any two spheres

2 6

Specific: Number of
109-degree bond angles
between any two bonds

22 364

Specific: Number of
120-degree bond angles
between any two bonds

19 85

Specific: Number of
180-degree bond angles
between any two bonds

6 13

Specific: Atomic radii of
spheres of a given color 15 122

Summary: Total number
of connections 1 321

Summary: Total number
of different sphere col-
ors

1 121

Summary: Total number
of spheres 1 367

Table 4.3: Summary of hand-coded visual features for ball-and-stick model rep-
resentations for the 50 molecules used in Experiment 2. Features include three
summary features and 129 specific
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Figure 4.5: Example triplet judgment task with ball-and-stick models, as used in
Experiment 2. Participants are given a target molecule (top) and asked to click
on one of the two choice molecules (bottom) that are most similar to the target
molecule.

would allow the algorithm to achieve a more precise estimate ofK in fewer samples.
We used the standard implementation of this algorithm provided in the NEXT
system. Because searching over the full set of triplets is computationally expensive
and because it is important to minimize downtime when querying participants, the
implementation instead computes the information gain criterion over a randomly
drawn subset of the full set of triplets and returns the most informative triplet from
that subset. In spite of this issue, the implementation has been shown to achieve
gains in efficiency with respect to random sampling (Heim et al., 2015).

4.5.1.3 Analysis

To detect which features drive students’ perception of similarity among visuals
(research question 1) and to compare them to expected features (research question
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2), we used the same procedure as in Experiment 1, except that for Experiment 2, K
is learned from a combination of both actively and randomly sampled triplets, so
as to make maximum use of our data. In addition, we compared the performance
of an active learning for triplet selection to randomly sampling triplets in terms of
learning an embedding based on perceptual similarity (research question 3). To this
end, we used the algorithm outlined in (Jain et al., 2016b) for the randomly sampled
triplets to learn a Euclidean embedding from participants’ similarity judgments.
The embedding maximally satisfies the provided constraints from both actively and
randomly sampled triplets. We chose this method instead of other methods (e.g.,
(Agarwal et al., 2007; Jamieson and Nowak, 2011; Kruskal, 1964b; Van Der Maaten
andWeinberger, 2012)) because it is theoretically motivated and the only method to
give optimality guarantees. To learn an embedding of the actively sampled triplets,
we used the algorithm outlined by (Tamuz et al., 2011), which–although it lacks
the guarantees of the algorithm by (Jain et al., 2016b)–guarantees asymptotically
recovering an optimal solution. Moreover, this algorithm is better suited for learning
from actively sampled triplets according to the CrowdKernel model (Tamuz et al.,
2011) than the algorithm by (Jain et al., 2016b). It is worth noting, however, that
both algorithms have the same optimal solution in the generative setting that a
true embedding exists from which we sample noiseless triplets and attempt to
reconstruct the embedding. Further, if triplet responses are noisy as is common in
realistic contexts, both recover similar embeddings.

To compare how the accuracy of the active and random sampling embeddings
changes as a function of the sample size used for training, we computed errors
of each embedding for different training set sizes. We computed errors as the
proportion of triplet constraints the learned embedding violates, given the training
set size that was used to learn the embedding. If active learning is more efficient,
we should see fewer errors (i.e., fewer constraints violated on the unseen test set)
for an embedding learned from a training set of actively sampled triplets than for
randomly sampled ones. Specifically, of the 9005 triplet similarity judgments, we
used up to 6000 for training and 3005 for testing. For example, to determine the
relative accuracy of the active and random sampling embeddings for a training set
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size of 500 triplets, we trained each with 500 triplets and tested them on 3005 triplets
to compute their errors. Likewise, to determine the relative accuracy of the active
and random sampling embeddings for a training set size of 1000 triplets, we trained
each with 1000 triplets and tested them on 3005 triplets to compute their errors.
We repeated this procedure at intervals of 500 triplets between 500 to 6000 triplets.
The training sets from the randomly sampled triplets were selected uniformly at
random without replacement. The training sets from the actively sampled triplets
were grown progressively in the order that the active algorithm queried triplets to
mimic the sequential, dependent procedure of the active algorithm.

We opted not to use an alternate method for assessing the performance of the
active learningmethod, whichwould be to performmetric learning (see Experiment
1) by learning two matrices K1, K2 from similarity judgments generated by the
randomand the active algorithms. From there, with the notion of distancedK(xi, xj)
as defined above, we could likewise compare the proportion of held out triplets
each K satisfies when learned from actively versus randomly sampled triplets. We
also did not compare performance on feature selection directly because it is difficult
to measure accuracy in this setting without a ground truth set of important features.
Instead, we chose to compare performance on ordinal embedding for three reasons.
First, ordinal embedding compared to low-dimensional metric learning is a better
studied problem. There are efficient and precise parameter-free algorithms that
yield simpler and computationally efficient analyses. This is important because the
goal of this research is to develop a cognitive model for educational technologies,
which would frequently assess student performance. Second, our active sampling
method is agnostic to the features of the visuals. However, the geometry of the
features that characterize each visual impacts the ability to learn K (see Theorem
2.1 by (Mason et al., 2017)). By performing ordinal embedding as opposed to metric
learning, we mitigate the confounding factor of the geometry of the feature vectors
impacting our ability to learn amatrixK that satisfies triplet constraints. Instead, we
can compare the quality of the embeddings themselves. Third, ordinal embedding
from triplets is a restricted version of the more general problem of metric learning
from triplets (see (Mason et al., 2017)). Hence, if actively sampled triplets generate
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an embedding that more readily generalizes to unseen triplets than an embedding
generated from random triplets, it implies that it is possible to learn a matrix K
with similarly superior generalization performance in the metric learning problem.
In sum, comparing the actively and randomly sampled triplets by their ability to
generate ordinal embeddings that generalize to unseen data is a better method for
comparing actively and randomly sampled datasets than comparing the quality of
learned metrics or selected features directly.

4.5.2 Results

Using ten-fold cross validation, we achieved an average 63% prediction accuracy of
students’ similarity judgments on the ball-and-stick models. This finding indicates
that there was consensus about the similarity among visuals, but also that there
were some disagreements among students’ similarity judgments. Further, there
was greater disagreement for ball-and-stick triplets than for Lewis structure triplets.
To identify which visual features account for students’ similarity judgments, we
estimated the weights for each feature in matrix K as in Experiment 1.

First, we investigated which features drive perception of similarity among visu-
als (research question 1). Table 4 shows the top ten ranked features selected in our
kernel matrix K.

Most notably, this ranking indicates that a single feature dominates the metric
far more strongly than was the case for the Lewis structure representations. This
indicates not only that students’ similarity judgments are strongly affected by this
feature, but also that there is a greater degree of consensus between students
about how this feature corresponds to similarity between ball-and-stick models.
Further, we notice that students’ similarity judgments of the ball-and- stick models
are strongly affected by specific features, such as the number of carbon atoms or
beryllium atoms. Also, their judgments are driven by specific features related to
bonding, specifically bond types between specific atoms and bond angles in specific
atom chains. In addition, summary features such as the total number of atoms and
number of bonds also impacted students’ similarity judgments. These summary
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Ranking Feature Name Average Weight

1 109.5 degree bond angle in
hydrogen-oxygen-carbon chain 27.3%

2 Length of a single bond between
oxygen and hydrogen 7.0%

3 Length of a single bond between
carbon and carbon 6.3%

4 Number of carbon atoms 5.1%

5 Length of a single bond between
oxygen and nitrogen 4.2%

6 Number of bonds 3.9%
7 Number of beryllium atoms 3.5%

8 120 degree bond angle in
flourine-carbon-carbon chain 3.4%

9 Atomic radii of hydrogen atoms 3.0%
10 Number of total atoms 2.6%

Table 4.4: Top ten ranked visual features in Experiment 2 on ball-and-stick model
representations.

features are ranked amongst the top ten features but are weighted less strongly
than the more specific features.

The ranking visual features also allows us to investigate how the features as-
sessed with similarity learning correspond to visual features that novices and
experts are expected to attend to (research question 2). As noted above, summary
features were predictive of students’ similarity judgments, but not as strongly as
the specific visual features that uniquely describe specific molecules. Hence, while
students’ similarity judgments were affected by broad features, they were more
strongly affected by specific features that experts would be expected to attend to.

Finally, we investigated whether active learning improves the efficiency of the
method (research question 3). Figure 4.6 shows a comparison of the errors of active
versus random sampling in predicting triplet judgments by training sample sizes.

To analyze this data, we computed t-tests for different training set sizes in
intervals of 500 samples, yielding 12 t-tests (corresponding to the 12 data points
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Figure 4.6: Errors of random sampling (blue) and active (blue) sampling methods
as a function of the number of triplets used in the training set. The y-axis shows
the percentage of triplet queries that are not satisfied in the embedding learned
for with the training set of each size on the x-axis. Lower values correspond to
better performance with respect to this metric. Error bars were computed using a
binomial proportion confidence interval for one standard deviation.

in Figure 4.6). Each t-test compared the performance of the model learned by the
active or random method on predicting students’ responses to 3, 005 triplet queries
that were held out for testing. Table 4.5 shows the Bonferoni-adjusted p-values from
the t-tests. For training set sizes lower than 1, 500, we found significant advantages
of the random sampling method, but not for larger training set sizes.

4.5.3 Discussion

With respect to visual features that drive chemistry students’ similarity judgments
(research question 1), our results indicate that students’ perceptual learning pro-
cesses are attuned to specific features such as the presence or absence of specific
atoms as well as on features related to interactions among specific atoms via bond
type and bond angles. These results align with our findings on students’ perceptual
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Training
set size t-value p-value

(unadjusted)
p-value
(Bonferoni adjusted)

500 t(3005) = 2.904 0.004 0.044
1000 t(3005) = 4.28 <.001 <.001
1500 t(3005) = 2.88 0.004 0.048
2000 t(3005) = 2.123 0.034 0.405
2500 t(3005) = 0.611 0.542 1.0
3000 t(3005) = 1.887 0.059 0.711
3500 t(3005) = 0.16 0.873 1.0
4000 t(3005) = −0.187 0.851 1.0
4500 t(3005) = 1.261 0.207 1.0
5000 t(3005) = 0.756 0.45 1.0
5500 t(3005) = 1.103 0.27 1.0
6000 t(3005) = 1.245 0.213 1.0

Table 4.5: Results from t-tests comparing active and random sampling methods by
training set size.

processing of Lewis structures in Experiment 1. We observe that the bonding-
related features include a combination of atoms present in many molecules (e.g.,
carbon), as well as atoms that are more distinctive, such as chlorine and fluorine.
Further, when inspecting the atoms in bonding-related features, we note that they
are indicative of chemical functional groups and hence seem to carry conceptual
meaning. These findings align with our findings from Experiment 1.

A difference between the findings from the experiments is, however, that the
ball-and-stick model features contain more common atoms than the Lewis structure
features from Experiment 1. A possible explanation is that ball-and-stick models
show atom identity by color, which may make it more difficult for students to
map them to elements than Lewis structures that show atom identity by letters
that resemble the element name (e.g., yellow for sulfur is less intuitive than S
for sulfur). It is likely that students are more familiar with the color used for
common atoms such as carbon, oxygen, and hydrogen than with the colors used
for uncommon atoms. Hence, when presented with ball-and-stick models, their
perceptual learning processes may be more strongly affected by common atoms
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than when presented with Lewis structures. This may explain why the top ten
features for ball-and-stick models contained more common atoms than those for
Lewis structures.

A further difference to Experiment 1 regards how the features we identified
compare to features that we expected novices and experts to attend to (research
question 2). While Experiment 1 had shown that students’ perceptual processing
of Lewis structures is mostly driven by specific features, Experiment 2 showed
that students’ perceptual processing of ball-and-stick models was also driven by
broader summary features, such as the total number of atoms and the total number
of bonds–although less than by the specific features. Again, the fact that ball-
and-stick models show atom identity by color may explain this difference. First,
identifying atom identity with ball-and-stick models may require more experience
because mappings to atom identity is less salient than for Lewis structures. Second,
because Lewis structures are more prevalent in chemistry instruction, students
may have less experience with ball-and-stick models. If students lack experience
with how ball-and-stick models show atoms, their perception may have to rely on
broader features such as the total number of atoms.

With respect to whether the use of active learning improves the efficiency of the
method (research question 3), our results are somewhat disappointing. First, in the
initial stages of sampling (less than 1, 500 triplets in the training set), we find an
advantage of the random sampling. We explain this result in the following way.
Before the active algorithm can ask potentially more informative queries, it must
first build an initial estimate of the model it is attempting to learn. This is referred
to as the “cold start problem” (Su and Khoshgoftaar, 2009). To do this, the model
begins by deterministically asking queries where each visual is the “targetmolecule”
for a set number of queries with different visuals as the “choice molecules.” As a
result, in the initial stages of sampling triplets, the active algorithm may be prone
to asking correlated and thus less informative queries as compared to random
sampling. This may explain why the random sampling method performs better
at the initial stages of sampling. Second, for larger numbers of training set sizes
(2, 000 triplets or more in the training set), we find no differences between the
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methods. Here, the active algorithm has begun asking the queries it believes to be
most informative as opposed to queries with a given target molecule. Note that
the algorithm’s guess at which query is most informative is always with respect to
the embedding it has learned thus far. We hypothesize that for moderate numbers
of triplets, the embedding learned thus far is somewhat inaccurate so the gain
with respect to random sampling may be small if present at all. It is possible that
with a larger number of samples, the active algorithm may eventually outperform
random sampling, but the effect of the cold-start problem is such that this effect is
not visible for the number of samples collected in Experiment 2. It is also possible
that the performance gain is very small due to that fact that participants’ responses
tend to be noisy and even self-contradictory, which makes learning an embedding
challenging, independent of the sampling method and cold-start problem. In sum,
our results show that there seems to be no advantage in actively sampling similarity
judgments in our setting, despite successes in related settings (e.g., (Heim et al.,
2015)).

4.6 General Discussion

This article makes two contributions to research on perceptual representational
competencies. First, we show that we can assess perceptual representational com-
petencies without verbalization or the assumption of explicit attention. We applied
this method to two different types of visuals and were able to identify which fea-
tures drive students’ perception of visuals of chemical molecules. Our results show
that similarity learning methods can identify and rank the impact of visual features
on chemistry students’ perceptual learning processes when they engage with visu-
als. Hence, this method allowed us to examine the nature of the features that affect
perceptual processing. Both experiments showed that students’ perceptual process-
ing is affected by specific features that describe uncommon atoms and interactions
among common and uncommon atoms via bonding. This finding provides further
evidence for the interrelated nature of conceptual and perceptual representational
competencies. Given that students’ perception of similarity is affected by features
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that are conceptually meaningful because they describe chemical functional groups,
students have moved beyond being driven by broader features that novices may
be expected to attend to. Instead, their perceptual processing system seems to be
informed by top-down processes that reflect conceptual knowledge about chemical
molecules. In contrast to prior methods for assessing representational competen-
cies, we uncovered these top-down processes without asking students to verbally
explain, which could have falsely prompted conceptual knowledge.

Second, our findings suggest that comparing perceptual processing of different
visuals can provide insights into their relative difficulty. Experiment 2 showed
that chemistry students’ perceptual processing is affected by specific as well as
broad features of ball-and-stick models. The specific features align with those
from Experiment 1 in that they describe chemical functional groups that reflect
conceptual knowledge about molecules. Yet, compared to the Lewis structure
features, the ball-and-stick model features contained more common atoms. A
reason for this finding may be that Lewis structures more saliently represent atom
identity, which makes it easier for students to identify uncommon atoms, whereas
ball-and-stick models denote atom identity with colors that may make it more
difficult to identify atoms. Further, while none of the features that were drivers
of perceptions of Lewis structures were broader summary features, the important
features for ball-and-stick models included summary features. Again, the fact that
ball-and-stick models may be more difficult for students than Lewis structures
may explain this result. Ball-and-stick models make atom identity less salient and
students tend to have less experience with them. If students have less experience in
identifying atoms based on the ball-and-stick model color scheme, their perceptual
processing system may have to rely on broader features to judge the similarity of
visuals.

These two contributions should be interpreted in light of our procedure for cod-
ing the feature vectors. Our method assumes that the features that drive students’
similarity judgments are represented in the feature codes. While we are confident
that our feature vectors reflect objective characteristics of the visuals because coding
the features did not require any knowledge about the molecules or the visuals, we
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note that coding of complex stimuli always contains a degree of subjectivity. This
may particularly be true of the summary features that we created based on literature
suggesting that students attend to broader characteristics rather than features of
specific molecules. Our interpretation of this literature may be subjective and could
have led us to construct particular summary features that may not accurately reflect
how chemistry students in our sample perceive similarity among feature vectors.

Further, our research makes two contributions to machine learning. The first
contribution to machine learning is less optimistic. We had expected that active
sampling would improve the efficiency of the similarity learning method, thereby
allowing us to assess perceptual competencies with fewer samples; but, this was
not the case. The active learning method yielded lower accuracy than the random
sampling method for small samples (less than 1, 500 samples in the training set). A
positive side of this finding is that extant methods of random sampling, which are
easier to implement than active samplingmethods, yield superior results, especially
for small samples that are likely more prevalent in educational research.

A second contribution to machine learning is that we provide the first real-
world demonstration of a new mathematical theory for feature selection based on
metric learning based on the method by (Mason et al., 2017). This method is the
first to allow practitioners to both quantify the accuracy of the learned perceptual
embeddings and guarantee unique recovery of the kernel matrix, K. Therefore,
our ranking of features likewise is unique and optimal. Specifically, we applied
bounds on the accuracy of estimating low-dimensional metrics learned from small
numbers of comparative judgments. Further, we test the practical performance of
the empirical risk minimization framework outlined in our prior theoretical work
(Mason et al., 2017) and demonstrate its feasibility for problems with moderate
numbers of features and large numbers of samples. Specifically, we explored the
application of group Lasso regularizedmetric learning algorithms for automatically
selecting the most perceptually salient features by learning a low- dimensional
metric. Thus, our experiment empirically validates the low-dimensional metric
learning approach with similarity judgments of undergraduate chemistry students,
as well as new and provably accurate machine learning methods to assess how
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visual features predict or encode perceptual similarity judgments.

4.7 Limitations and Future Directions

A limitation of our research results from our choice of population. We focused
on chemistry students because they are a target population for perceptual fluency
trainings. But this choice also implies that students had prior exposure to the visuals
and likely had high motivation to learn about them. Hence, our conclusions that
students’ perceptual competencies have moved beyond those of novices because
the visual features align with chemical functional groups that we expect experts to
attend to is–although it is founded in the expert-novice literature on conceptual
and perceptual knowledge–to some extent speculative.

Further, a limitation of the similarity learning method is that it requires rela-
tively large samples. Ideally, cognitive models rely on assessments of individual
students’ competencies. Currently, our method can be used to assess perceptual
representational competencies for subpopulations (e.g., freshmen chemistry stu-
dents) but cannot be used to assess an individual’s competencies. Future research
will investigate whether using more images per query (e.g., quadruplets instead of
triplets) would increase the information value of each query without increasing the
difficulty of the task for participants. Further, it is possible that combining cohort
information (e.g., freshmen students tend to focus on...) with active sampling yields
efficiency gains that can assess individual students’ perceptual competencies.

A final limitation of our research results from its focus on visuals of chemical
molecules. While we consider the fact that we used realistic visuals a strength of our
research because it extends prior research on perceptual learning that often relies
on artificial visuals that have only one or two feature dimensions (e.g., (Fahle et al.,
2002)), the complexity of the visuals we considered may not be representative of all
realistic stimuli. Indeed, the complexity of the visuals we considered is evidenced
by the fact that they required 110 (Lewis structures) or 132 (ball-and-stick models)
features to describe their information content. This complexity may explain why
students’ similarity judgments were somewhat contradictory, which reduced the
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accuracy of our models. While many visuals in most STEM domains are complex
(e.g., drawings of cells in biology, circuit diagrams in physics), there are certainly
simpler visuals (e.g., line graphs in math), and future research should determine if
our findings generalize to these visuals.

4.8 Conclusion

To the best of our knowledge, the present experiments are the first to test a method
to assess students’ implicit perceptual competencies without requiring explicit
verbalization or explicit attention. In spite of its limitations, this method allowed
us to identify and quantify the impact of visual features on chemistry students’
perceptual processing of visuals.

Applying this method to two types of visuals that are common in chemistry al-
lowed us to examine how students’ perceptions of the visuals that reflect differences
in how saliently the visuals depict specific information about chemical molecules.
Further, the visual features revealed that students’ perception is informed top-down
by conceptual knowledge about the visuals, hence providing new evidence for the
interrelated nature of perceptual and conceptual processes. While future research
has to address limitations of this method, this research takes a significant step
towards the development of cognitive models that can assess students’ perceptual
competencies via implicit measures. This is important because most educational
technologies focus on conceptual competencies and fail to incorporate adaptive
supports for perceptual competencies–a limitation we attribute to lack of methods
to assess implicit knowledge. Thus, the present experiments may advance adaptive
instruction for implicit knowledge.
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5 learning nearest neighbor graphs from noisy
distance samples

5.1 Introduction

In modern machine learning applications, we frequently seek to learn proximity/
similarity relationships between a set of items given only noisy access to pairwise
distances. For instance, practitioners wishing to estimate internet topology fre-
quently collect one-way-delay measurements to estimate the distance between a
pair of hosts (Eriksson et al., 2010). Such measurements are affected by physical
constraints as well as server load, and are often noisy. Researchers studying move-
ment in hospitals from WiFi localization data likewise contend with noisy distance
measurements due to both temporal variability and varying signal strengths inside
the building (Booth et al., 2019). Additionally, human judgments are commonly
modeled as noisy distances (Shepard, 1962; Kruskal, 1964b). As an example, Ama-
zon Discover asks customers their preferences about different products and uses
this information to recommend new items it believes are similar based on this
feedback. We are often primarily interested in the closest or most similar item to a
given one– e.g., the closest server, the closest doctor, the most similar product. The
particular item of interest may not be known a priori. Internet traffic can fluctuate,
different patients may suddenly need attention, and customers may be looking
for different products. To handle this, we must learn the closest/ most similar
item for each item. This chapter introduces the problem of learning the Nearest
Neighbor Graph that connects each item to its nearest neighbor from noisy distance
measurements.
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Problem Statement: Consider a set of n pointsX = {x1, · · · , xn} in a metric space.
The metric is unknown, but we can query a stochastic oracle for an estimate of
any pairwise distance. In as few queries as possible, we seek to learn a nearest
neighbor graph of X that is correct with probability 1 − δ, where each xi is a
vertex and has a directed edge to its nearest neighbor xi∗ ∈ X \ {xi}.

5.1.1 Related work

Nearest neighbor problems (from noiseless measurements) are well studied and we
direct the reader to Bhatia et al. (2010) for a survey. Clarkson (1983); Vaidya (1989);
Sankaranarayanan et al. (2007) all provide theory and algorithms to learn the nearest
neighbor graph which apply in the noiseless regime. Note that the problem in the
noiseless setting is very different. If noise corruptsmeasurements, themethods from
the noiseless setting can suffer persistent errors. There has been recent interest in
introducing noise via subsampling for a variety of distance problems LeJeune et al.
(2019); Bagaria et al. (2017, 2018), though the noise here is not actually part of the
data but introduced for efficiency. In our algorithm, we use the triangle inequality
to get tighter estimates of noisy distances in a process equivalent to the classical
Floyd–Warshall Floyd (1962); Cormen et al. (2009). This has strong connections to
the metric repair literature (Brickell et al., 2008; Gilbert and Jain, 2017) where one
seeks to alter a set of noisy distance measurements as little as possible to learn a
metric satisfying the standard axioms. (Singla et al., 2016) similarly uses the triangle
inequality to bound unknown distances in a related but noiseless setting. In the
specific case of noisy distances corresponding to human judgments, a number of
algorithms have been proposed to handle related problems, most notably Euclidean
embedding techniques, e.g. (Jain et al., 2016b; Van Der Maaten and Weinberger,
2012; Kruskal, 1964b). To reduce the load on human subjects, several attempts at
an active method for learning Euclidean embeddings have been made but have
only seen limited success Jamieson et al. (2015). Among the culprits is the strict
and often unrealistic modeling assumption that the metric be Euclidean and low
dimensional.
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5.1.2 Main contributions

In this chapter, we introduce the problem of identifying the nearest neighbor graph
from noisy distance samples and propose ANNTri, an active algorithm, to solve
it for general metrics. We empirically and theoretically analyze its complexity to
show improved performance over a passive and an active baseline. In favorable
settings, such as when the data forms clusters, ANNTri needs only O(n log(n)/∆2)

queries, where∆ accounts for the effect of noise. Furthermore, we show that ANNTri
achieves superior performance compared to methods which require much stronger
assumptions. We highlight two such examples. In Fig. 5.2c, for an embedding
in R2, ANNTri outperforms the common technique of triangulation that works by
estimating each point’s distance to a set of anchors. In Fig. 5.3b, we show that ANNTri
likewise outperforms Euclidean embedding for predicting which images are most
similar from a set of similarity judgments collected on Amazon Mechanical Turk.
The rest of the chapter is organized as follows. In Section 7.2, we further setup
the problem. In Sections 5.3 and 5.4 we present the algorithm and analyze its
theoretical properties. In Section 5.5 we show ANNTri’s empirical performance on
both simulated and real data. In particular, we highlight its efficiency in learning
from human judgments.

5.2 Problem setup and summary of our approach

We denote distances as di,j where d : X × X → R>0 is a distance function satis-
fying the standard axioms and define xi∗ := arg minx∈X\{xi} d(xi, x). Though the
distances are unknown, we are able to draw independent samples of its true value
according to a stochastic distance oracle, i.e. querying

Q(i, j) yields a realization of di,j + η, (5.1)

where η is a zero-mean subGaussian random variable assumed to have scale pa-
rameter σ = 1. We let d̂i,j(t) denote the empirical mean of the values returned by
Q(i, j) queries made until time t. The number of Q(i, j) queries made until time
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t is denoted as Ti,j(t). A possible approach to obtain the nearest neighbor graph
is to repeatedly query all

(
n
2

)
pairs and report xi∗(t) = arg minj6=i d̂i,j(t) for all

i ∈ [n]. But since we only wish to learn xi∗∀i, if di,k � di,i∗ , we do not need to
query Q(i,k) as many times as Q(i, i∗). To improve our query efficiency, we could
instead adaptively sample to focus queries on distances that we estimate are smaller.
A simple adaptive method to find the nearest neighbor graph would be to iterate
over x1, x2, . . . , xn and use a best-arm identification algorithm to find xi∗ in the
ith round.1 However, this procedure treats each round independently, ignoring
properties of metric spaces that allow information to be shared between rounds.

• Due to symmetry, for any i < j the queries Q(i, j) and Q(j, i) follow the same
law, and we can reuse values of Q(i, j) collected in the ith round while finding
xj∗ in the jth round.

• Using concentration bounds on di,j and di,k from samples of Q(i, j) and Q(i,k)
collected in the ith round, we can bound dj,k via the triangle inequality. As a
result, we may be able to state xk 6= xj∗ without even querying Q(j,k).

Our proposed algorithm ANNTri uses all the above ideas to find the nearest neighbor
graph of X. For general X, the sample complexity of ANNTri contains a problem-
dependent term that involves the order in which the nearest neighbors are found.
For an X consisting of sufficiently well separated clusters, this order-dependence
for the sample complexity does not exist.

5.3 Algorithm

Our proposed algorithm (Algorithm 1) ANNTri finds the nearest neighbor graph of
Xwith probability 1− δ. It iterates over xj ∈ X in order of their subscript index and
finds xj∗ in the jth ‘round’. All bounds, counts of samples, and empirical means
are stored in n × n symmetric matrices in order to share information between

1We could also proceed in a non-iterative manner, by adaptively choosing which among
(
n
2
)

pairs to query next. However this has worse empirical performance and same theoretical guarantees
as the in-order approach.
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Algorithm 1 ANNTri

Require: n, procedure SETri, 2, confidence δ
1: Initialize d̂, T as n× nmatrices of zeros, U,U4 as n× nmatrices where each

entry is∞, L,L4 as n× nmatrices where each entry is −∞, NN as a length n
array

2: for j = 1 to n do
3: for [ dofind tightest triangle bounds]i = 1 to n
4: for all k 6= i do
5: Set U4[i,k], U4[k, i],← min`U4`i,k, see (5.7)
6: Set L4[i,k], L4[k, i]← max` L4`i,k, see (5.8)
7: end for
8: end for
9: NN[j] = SETri(j, d̂,U,U4,L,L4, T , ξ = δ/n)
10: end for
11: return The nearest neighbor graph adjacency list NN

different rounds. We use Python array/Matlab notation to indicate individual
entries in the matrices, for e.g., d̂[i, j] = d̂i,j(t). The number of Q(i, j) queries
made is queried is stored in the (i, j)th entry of T . Matrices U and L record upper
and lower confidence bounds on di,j. U4 and L4 record the associated triangle
inequality bounds. Symmetry is ensured by updating the (j, i)th entry at the same
time as the (i, j)th entry for each of the above matrices. In the jth round, ANNTri
finds the correct xj∗ with probability 1 − δ/n by calling SETri (Algorithm 2), a
modification of the successive elimination algorithm for best-arm identification. In
contrast to standard successive elimination, at each time step SETri only samples
those points in the active set that have the fewest number of samples.

5.3.1 Confidence bounds on the distances

Using the subGaussian assumption on the noise random process, we can use
Hoeffding’s inequality and a union bound over time to get the following confidence
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Algorithm 2 SETri

Require: index j, callable oracle Q(·, ·) (5.1), six n× nmatrices: d̂, U, U4, L, L4, T ,
confidence ξ

1: Initialize active set Aj ← {a 6= j : max{L[a, j],L4[a, j]} <

minkmin{U[j,k],U4[j,k]}}
2: while |Aj| > 1 do
3: for all i ∈ Aj such that T [i, j] = mink∈Aj T [i,k] (only query points with

fewest samples) do
4: Update d̂[i, j], d̂[j, i]← (d̂[i, j] · T [i, j] + Q(i, j))/(T [i, j] + 1)
5: Update T [i, j], T [j, i]← T [i, j] + 1
6: Update U[i, j], U[j, i]← d̂[i, j] + Cξ(T [i, j])
7: Update L[i, j], L[j, i]← d̂[i, j] − Cξ(T [i, j])
8: end for
9: Update Aj ← {a 6= j : max{L[a, j],L4[a, j]} < minkmin{U[j,k],U4[j,k]}}
10: end while
11: return The index i for which xi ∈ Aj

intervals on the distance dj,k:

|d̂j,k(t) − dj,k| 6

√
2log(4n2(Tj,k(t))2/δ)

Tj,k(t)
=: Cδ/n(Tj,k(t)), (5.2)

which hold for all points xk ∈ X \ {xj} at all times t with probability 1 − δ/n, i.e.

P(∀t ∈ N,∀i 6= j,di,j ∈ [Li,j(t),Ui,j(t)]) > 1 − δ/n, (5.3)

where Li,j(t) := d̂i,j(t)−Cδ/n(Ti,j(t)) andUi,j(t) := d̂i,j(t)+Cδ/n(Ti,j(t)). Even-Dar
et al. (2006) use the above procedure to derive the following upper bound for the
number of oracle queries used to find xj∗ :

O

(∑
k6=j

log(n2/(δ∆j,k))

∆2
j,k

)
, (5.4)
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where for any xk /∈ {xj, xj∗} the suboptimality gap ∆j,k := dj,k − dj,j∗ characterizes
how hard it is to rule out xk from being the nearest neighbor. We also set ∆j,j∗ :=
mink/∈{j,j∗}∆j,k. Note that one can use tighter confidence bounds as detailed in
Garivier (2013) and Jamieson and Nowak (2014) to obtain sharper bounds on the
sample complexity of this subroutine.

5.3.2 Computing the triangle bounds and active set Aj(t)

SinceAj(·) is only computed within SETri, we abuse notation and use its argument
t to indicate the time counter private to SETri. Thus, the initial active set computed
by SETri when called in the jth round is denoted Aj(0). During the jth round, the
active set Aj(t) contains all points that have not been eliminated from being the
nearest neighbor of xj at time t. We define xj’s active set at time t as

Aj(t) := {a 6= j : max{La,j(t),L4a,j(t)} < min
k

min{Uj,k(t),U4j,k(t)}}. (5.5)

Assuming L4a,j(t) and U
4
j,k(t) are valid lower and upper bounds on da,j,dj,k respec-

tively, (5.5) states that point xa is active if its lower bound is less than the minimum
upper bound for dj,k over all choices of xk 6= xj. Next, for any (j,k) we construct
triangle bounds L4,U4 on the distance dj,k. Intuitively, for some reals g,g ′,h,h ′,
if di,j ∈ [g,g ′] and di,k ∈ [h,h ′] then dj,k 6 g ′ + h ′, and

dj,k > |di,j − di,k| = max{di,j,di,k}− min{di,j,di,k} > (max{g,h}− min{g ′,h ′})+
(5.6)

where (s)+:=max{s, 0}. The lower bound can be seen as true by Fig. 5.B.1 in the
Appendix. Lemma 5.1 uses these ideas to formupper and lower bounds ondistances
by the triangle inequality.

Lemma 5.1. For all k 6= 1, set U41
1,k(t) = U

4
1,k(t) := U1,k(t). For any i < j define

U4ij,k(t) := min
max{i1,i2}<i

(min{Ui,j(t),U
4i1
i,j (t)}+ min{Ui,k(t),U

4i2
i,k (t)}). (5.7)
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For all k 6= 1, set L41
1,k(t) = L

4
1,k(t) := L1,k(t). For any i < j define

L4ij,k(t) := max
max{i1,i2,i3,i4}<i

(
max{Li,j(t),L

4i1
i,j (t),Li,k(t),L

4i2
i,k (t)}

− min{Ui,j(t),U
4i3
i,j (t),Ui,k(t),U

4i4
i,k (t)}

)
+

, (5.8)

where (s)+ := max{s, 0}. If all the bounds obtained by SETri in rounds i < j are correct
then

dj,k ∈
[
L4j,k(t),U

4
j,k(t)

]
, where L4j,k(t) := max

i<j
L4ij,k(t) and U4j,k(t) := min

i<j
U4ij,k(t).

The proof is in Appendix 5.B.1. ANNTri has access to two sources of bounds
on distances: concentration bounds and triangle inequality bounds, and as can
be seen in Lemma 5.1, the former affects the latter. Furthermore, triangle bounds
are computed from other triangle bounds, leading to the recursive definitions of
L4ij,k and U4ij,k . Because of these facts, triangle bounds are dependent on the order
in which ANNTri finds each nearest neighbor. These bounds can be computed
using dynamic programming and brute force search over all possible i1, i2, i3, i4 is
not necessary. We note that the above recursion is similar to the Floyd-Warshall
algorithm for finding shortest paths between all pairs of vertices in a weighted
graph Floyd (1962); Cormen et al. (2009). The results in Singla et al. (2016) show that
the triangle bounds obtained in this manner have the minimum L1 norm between
the upper and lower bound matrices.

5.4 Analysis

All omitted proofs of this section can be found in the Appendix Section 5.B.

Theorem 5.2. ANNTri finds the nearest neighbor for each point in X with probability 1−δ.
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5.4.1 A simplified algorithm

The following Lemma indicates which points must be eliminated initially in the jth

round.

Lemma 5.3. If ∃i : 2Ui,j < Li,k, then xk /∈ Aj(0) for ANNTri.
Proof. 2Ui,j < Li,k ⇐⇒ Ui,j < Li,k −Ui,j 6 L

4i
j,k

Next, we define ANNEasy, a simplified version of ANNTri that is more amenable to
analysis. Here, we say that xk is eliminated in the jth round of ANNEasy if i) k<j and
∃i : Ui,j < Lj,k (symmetry from past samples) or ii) ∃i : 2Ui,j < Li,k (Lemma 5.3).
Therefore, xj’s active set for ANNEasy is

Aj = {a 6=j : La,k 6 2Uj,k ∀k and La,j < min
k
Uj,k}. (5.9)

To define ANNEasy in code, we remove lines 3-8 of ANNTri (Algorithm 1), and call a
subroutine SEEasy in place of SETri. SEEasy matches SETri (Algorithm 2) except
that lines 1 and 9 are replacedwith (5.9) instead. Weprovide full pseudocode of both
ANNEasy and SEEasy in the Appendix 5.A.1.1. Though ANNEasy is a simplification
for analysis, we note that it empirically captures much of the same behavior of
ANNTri. In the Appendix 5.A.1.2 we provide an empirical comparison of the two.

5.4.2 Complexity of ANNEasy

We now turn our attention to account for the effect of the triangle inequality in
ANNEasy.

Lemma 5.4. For any xk ∈ X if the following conditions hold for some i < j, then xk /∈
Aj(0).

6Cδ/n(1) 6 di,k − 2di,j and {j,k} ∩ (∪m<i{` : 2dm,i < dm,`}) = ∅. (5.10)

The first condition characterizeswhich xk’smust satisfy the condition in Lemma5.3
for the jth round. The second guarantees that xk was sampled in the ith round, a
necessary condition for forming triangle bounds using xi.
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Theorem 5.5. Conditioned on the event that all confidence bounds are valid at all times,
ANNEasy learns the nearest neighbor graph of X in the following number of calls to the
distance oracle:

O

(
n∑
j=1

∑
k>j

1[Aj,k]Hj,k +
∑
k<j

1[Aj,k](Hj,k − 1[Ak,j]Hk,j)+

)
. (5.11)

In the above expression Hj,k :=
log(n2/(δ∆j,k))

∆2
j,k

and 1[Aj,k] := 1, if xk does not satisfy the
triangle inequality elimination conditions of (5.10) ∀i < j, and 0 otherwise.

In Theorem 5.13, in the Appendix, we state the sample complexity when triangle
inequality bounds are ignored by ANNTri, and this upper bounds (5.11). Whether a
point can be eliminated by the triangle inequality depends both on the underlying
distances and the order inwhich ANNTrifinds each nearest neighbor (c.f.Lemma 5.4).
In general, this dependence on the order is necessary to ensure that past samples
exist and may be used to form upper and lower bounds. Furthermore, it is worth
noting that even without noise the triangle inequality may not always help. A
simple example is any arrangement of points such that 0 < r 6 dj,k < 2r ∀j,k. To
see this, consider triangle bounds on any distance dj,k due to any xi, xi ′ ∈ X\{xj, xk}.
Then |di,j − di,k| 6 r < 2r 6 di ′,j + di ′,k ∀i, i ′ so L4i,j < U4j,k ∀i, j,k. Thus no
triangle upper bounds separate from triangle lower bounds so no elimination via
the triangle inequality occurs. In such cases, it is necessary to sample all O(n2)

distances. However, in more favorable settings where data may be split into clusters,
the sample complexity can be much lower by using triangle inequality.

5.4.3 Adaptive gains via the triangle inequality

Wehighlight two settingswhere ANNTri provably achieves sample complexity better
than O(n2) independent of the order of the rounds. Consider a dataset containing
c clusters of n/c points each as in Fig. 5.1a. Denote the mth cluster as Cm and
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C1

C2
C3

(a) Clustered data

C1

C2 C4
C3

C1 ∪ C2 C3 ∪ C4

(b) Hierarchical clusters

Figure 5.1: Example datasets where triangle inequalities lead to provable gains.

suppose the distances between the points are such that

{xk : di,k < 6Cδ/n(1) + 2di,j} ⊆ Cm ∀i, j ∈ Cm. (5.12)

The above condition is ensured if the distance between any two points belonging to
different clusters is at least a (δ,n)-dependent constant plus twice the diameter of
any cluster.

Theorem 5.6. Consider a dataset of
√
n clusters which satisfy the condition in (5.12).

Then ANNEasy learns the correct nearest neighbor graph of X with probability at least 1− δ
in

O
(
n3/2∆−2

)
(5.13)

queries where ∆−2 := 1
n3/2

∑√n
i=1
∑
j,k∈Ci log(n2/(δ∆j,k))∆

−2
j,k is the average number of

samples distances between points in the same cluster.

By contrast, random sampling requires O(n2∆−2
min) where

∆−2
min := min

j,k
log(n2/(δ∆j,k))∆

−2
j,k > ∆

−2.

In fact, the value in (5.11) be be even lower if unions of clusters also satisfy (5.12).
In this case, the triangle inequality can be used to separate groups of clusters. For
example, in Fig. 5.1b, if C1 ∪ C2 and C3 ∪ C4 satisfy (5.12) along with C1, · · · ,C4,
then the triangle inequality can separate C1 ∪ C2 and C3 ∪ C4. This process can be
generalized to consider a dataset that can be split recursively into into subclusters
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following a binary tree of k levels. At each level, the clusters are assumed to satisfy
(5.12). We refer to such a dataset as hierarchical in (5.12).

Theorem 5.7. Consider a dataset X = ∪n/νi=1 Ci of n/ν clusters of size ν = O(log(n)) that
is hierarchical in (5.12). Then ANNEasy learns the correct nearest neighbor graph of X with
probability at least 1 − δ in

O
(
n log(n)∆−2

)
(5.14)

queries where ∆−2 := 1
nν

∑n/ν
i=1
∑
j,k∈Ci log(n2/(δ∆j,k))∆

−2
j,k is the average number of

samples distances between points in the same cluster.

Expression (5.14) matches known lower bounds of O(n log(n)) on the sample
complexity for learning the nearest neighbor graph from noiseless samples (Vaidya,
1989), the additional penalty of ∆−2 is due to the effect of noise in the samples. In
Appendix 5.C, we state the sample complexity in the average case, as opposed to
the high probability statements above. The analog of the cluster condition (5.12)
there does not involve constants and is solely in terms of pairwise distances (c.f.
(5.33)).

5.5 Experiments

Here we evaluate the performance of ANNTri on simulated and real data. To con-
struct the tightest possible confidence bounds for SETri, we use the law of the
iterated logarithm as in Jamieson and Nowak (2014) with parameters ε = 0.7 and
δ = 0.1. Our analysis bounds the number of queries made to the oracle. We visual-
ize the performance by tracking the empirical error rate with the number of queries
made per point. For a given point xi, we say that a methodmakes an error at the tth

sample if it fails to return xi∗ as the nearest neighbor, that is, xi∗ 6= arg minj d̂[i, j].
Throughout, we will compare ANNTri against random sampling. Additionally, to
highlight the effect of the triangle inequality, we will compare our method against
the same active procedure, but ignoring triangle inequality bounds (referred to as
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(a) Example embedding (b) Error curves
(c) Comparison to triangula-
tion

Figure 5.2: Comparison of ANNTri to ANN and Random for 10 clusters of 10 points
separated by 10% of their diameter with σ = 0.1. ANNTri identifies clusters of
nearby points more easily.

ANN in plots). All baselines may reuse samples via symmetry as well. We plot all
curves with 95% confidence regions shaded.

5.5.1 Simulated Experiments

We test the effectiveness of our method, we generate an embedding of 10 clusters
of 10 points spread around a circle such that each cluster is separated by at least
10% of its diameter in R2 as in shown in Fig. 5.2a. We consider Gaussian noise with
σ = 0.1. In Fig. 5.2b, we present average error rates of ANNTri, ANN, and Random
plotted on a log scale. ANNTri quickly learns xi∗ and has lower error with 0 samples
due to initial elimination by the triangle inequality. The error curves are averaged
over 4000 repetitions. All rounds were capped at 105 samples for efficiency.

5.5.1.1 Comparison to triangulation

An alternative way a practitioner may use to obtain the nearest neighbor graph
might be to estimate distances with respect to a few anchor points and then tri-
angulate to learn the rest. Eriksson et al. (2010) provide a comprehensive exam-
ple, and we summarize in Appendix 5.A.2 for completeness. The triangulation
method is naïve for two reasons. First, it requires much stronger modeling assump-
tions than ANNTri— namely that the metric is Euclidean and the points are in a
low-dimensional of known dimension. Forcing Euclidean structure can lead to
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unpredictable errors if the underlying metric might not be Euclidean, such as in
data from human judgments. Second, this procedure may be more noise sensitive
because it estimates squared distances. In the example in Section 5.A.2, this leads
to the additive noise being sub-exponential rather than subGaussian. In Fig. 5.2c,
we show that even in a favorable setting where distances are truly sampled from a
low-dimensional Euclidean embedding and pairwise distances between anchors
are known exactly, triangulation still performs poorly compared to ANNTri. We
consider the same 2-dimensional embedding of points as in Fig. 5.2a for a noise
variance of σ = 1 and compare the ANNTri and triangulation for different numbers
of samples.

5.5.2 Human judgment experiments

5.5.2.1 Setup

Here we consider the problem of learning from human judgments. For this experi-
ment, we used a set X of 85 images of shoes drawn from the UT Zappos50k dataset
Yu and Grauman (2014, 2017) and seek to learn which shoes are most visually
similar. To do this, we consider queries of the form “between i, j, and k, which
two are most similar?”. We show example queries in Figs. 5.A.2a and 5.A.2b in
the Appendix. Each query maps to a pair of triplet judgments of the form “is j or
k more similar to i?”. For instance, if i and j are chosen, then we may imply the
judgments “i is more similar to j than to k” and “j is more similar to i than to k”. We
therefore construct these queries from a set of triplets collected from participants
on Mechanical Turk by Heim et al. (2015). The set contains multiple samples of all
85
(84

2

)
unique triples so that the probability of any triplet response can be estimated.

We expect that i∗ is most commonly selected as being more similar to i than any
third point k. We take distance to correspond to the fraction of times that two
images i, j are judged as being more similar to each other than a different pair in
a triplet query (i, j,k). Let Eji,k be the event that the pair i,k are chosen as most
similar amongst i, j, and k. Accordingly, we define the ‘distance’ between images i



144

(a) Sample complexity gains (b) Comparison to STE

Figure 5.3: Performance of ANNTri on the Zappos dataset. ANNTri achieves superior
performance over STE in identifying nearest neighbors and has 5 − 10x gains in
sample efficiency over random.

and j as
di,j := arg min

j6=i
Ek∼Unif(X\{i,j})E[1Eji,k |k]

where k is drawn uniformly from the remaining 83 images in X\{i, j}. For a fixed
value of k,

E[1
E
j
i,k
|k] = P(Eji,k) = P(“imore similar to j than to k”)P(“jmore similar to i than to k”).

where the probabilities are the empirical probabilities of the associated triplets in
the dataset. This distance is a quasi-metric on our dataset as it does not always
satisfy the triangle inequality; but satisfies it with a multiplicative constant: di,j 6
1.47(di,k + dj,k) ∀i, j,k. Relaxing metrics to quasi-metrics has a rich history in the
classical nearest neighbors literature Houle and Nett (2015); Tschopp et al. (2011);
Goyal et al. (2008), and ANNTri can be trivially modified to handle quasi-metrics.
However, we empirically note that < 1% of the distances violate the ordinary
triangle inequality here so we ignore this point in our evaluation.
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5.5.2.2 Results

When ANNTri or any baseline queries Q(i, j) from the oracle, we randomly sample
a third point k ∈ X\{i, j} and flip a coin with probability P(Eji,k). The resulting
sample is an unbiased estimate of the distance between i and j. In Fig. 5.3a, we
compare the error rate averaged over 1000 trials of ANNTri compared to Random and
STE. We also plot associated gains in sample complexity by ANNTri. In particular,
we see gains of 5 − 10x over random sampling, and gains up to 16x relative to
ordinal embedding. ANNTri also shows 2x gains over ANN in sample complexity (see
Fig. 5.A.3 in Appendix).

Additionally, a standard way of learning from triplet data is to perform ordinal
embedding. With a learned embedding, the nearest neighbor graph may easily be
computed. In Fig. 5.3b, we compare ANNTri against the state of the art STE algorithm
Van Der Maaten and Weinberger (2012) for estimating Euclidean embeddings from
triplets, and select the embedding dimension of d = 16 via cross validation. To
normalize the number of samples, we first perform ANNTri with a givenmax budget
of samples and record the total number needed. Then we select a random set of
triplets of the same size and learn an embedding in R16 via STE. We compare both
methods on the fraction of nearest neighbors predicted correctly. On the x axis,
we show the total number of triplets given to each method. For small dataset
sizes, there is little difference, however, for larger dataset sizes, ANNTri significantly
outperforms STE. Given that ANNTri is active, it is reasonable to wonder if STE
would perform better with an actively sampled dataset, such as (Tamuz et al., 2011).
Many of these methods are computationally intensive and lack empirical support
(Jamieson et al., 2015), but we can embed using the full set of triplets to mitigate the
effect of the subsampling procedure. Doing so, STE achieves 52% error, within the
confidence bounds of the largest subsample shown in Fig. 5.3b. In particular, more
data and more carefully selected datasets, may not correct for the bias induced by
forcing Euclidean structure.
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5.6 Conclusion

In this chapter, we solve the nearest neighbor graph problem by adaptively querying
distances. Our method makes no assumptions beyond standard metric properties
and is empirically shown to achieve sample complexity gains over passive sampling.
In the case of clustered data, we show provable gains and achieve optimal rates in
favorable settings.
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appendices

5.A Additional experimental results and details

5.A.1 Differences between ANNTri and ANNEasy

5.A.1.1 Pseudocode for ANNEasy and SEEasy

We begin by providing pseudocode for both ANNEasy and SEEasy as described in
Section 5.4.1 in Algorithms 3 and 4.

5.A.1.2 Empirical differences in performance for ANNTri and ANNEasy

In Figure 5.A.1 we compare the empirical performance of ANNTri and ANNEasy. We
compare their performance in the same setting as Figure 5.2a with 10 clusters of 10
points separated by their at least 10% of their diameter. The curves are averaged over
4000 independent trials and plotted with 95% confidence regions. As is indicated
in the plot, ANNEasy has similar behavior as ANNTri, but achieves slightly worse
performance.

5.A.2 Triangulation

In this section, we provide a brief review of triangulation to estimate Euclidean
embeddings, similar to the presentation in (Eriksson et al., 2010). The method
is summarized as follows. Let X be a set of n points in Euclidean d space and

Algorithm 3 ANNEasy

Require: n, procedure SEEasy, 4, confidence δ
1: Initialize d̂, T as n× nmatrices of zeros, U as n× nmatrix where each entry is∞, L as n× nmatrix where each entry is −∞, NN as a length n array
2: for j = 1 to n do
3: NN[j] = SEEasy(j, d̂,U,L, T , ξ = δ/n)
4: end for
5: return The nearest neighbor graph adjacency list NN
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Algorithm 4 SEEasy

Require: index j, callable oracle Q(·, ·) (5.1), 4 n×nmatrices: d̂,U, L, T , confidence
ξ

1: Initialize the active set Aj ← {a 6=j : L[a,k] 6 2U[j,k] ∀k and L[a, j] <
minkU[j,k]}

2: while |Aj| > 1 do
3: for all [ doonly query points with fewest samples]i ∈ Aj such that T [i, j] =

mink∈Aj T [i,k]
4: Update d̂[i, j], d̂[j, i]← (d̂[i, j] · T [i, j] + Q(i, j))/(T [i, j] + 1)
5: Update T [i, j], T [j, i]← T [i, j] + 1
6: Update U[i, j], U[j, i]← d̂[i, j] + Cξ(T [i, j])
7: Update L[i, j], L[j, i]← d̂[i, j] − Cξ(T [i, j])
8: end for
9: Update Aj ← {a 6=j : L[a,k] 6 2U[j,k] ∀k and L[a, j] < minkU[a,k]}
10: end while
11: return The index i for which xi ∈ Aj

Figure 5.A.1: Comparison of error in identifying xi∗ ANNTri and the ANNEasy for 10
clusters of 10 points separated by 10% of their diameter with σ = 0.1.

D be the associated Euclidean distance matrix where each entry is the square of
the associated Euclidean distance. Let A be a set of anchor points. Without loss
of generality, we take A := {x1, · · · , xd+2}. The +2 is to correct for the fact that
Euclidean distance matrices have rank d + 2. Let A := D[1 : d + 2, 1 : d + 2] and
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(a) An easy query (b) A harder query

Figure 5.A.2: Two example zappos queries.

L := D[1 : d+ 2, 1 : n]. Then it can easily be verified thatD = LA−1LT . To learn the
entries in L (as well asA), sample the distance from each of the n points to the d+2
anchors as many times as there is budget for and square the results. The empirical
mean is a plugin estimator of the associated entry in L andA, and we take L̂ and Â
to be their unbiased estimates. Therefore D̂ := L̂Â

−1
L̂
T
is an unbiased estimate of

D. With D̂, the nearest neighbor graph can easily be computed.

5.A.3 Additional experimental results for Zappos dataset

In Fig. 5.A.2 we show two example queries of the form “which pair are most similar
of these three?”. Some queries are more straightforward whereas some are more
subjective.

Additionally, in Fig. 5.A.3, we show the performance of ANNTri, ANN, and Random
in identifying nearest neighbors from the Zappos data. In this setting, there is
less of an advantage to using the triangle inequality due to the highly noisy and
subjective nature of human judgments. Despite this, we still see a slight advantage
to ANNTri over ANN. In particular, for moderate accuracy, there is a gain sample
complexity of around 2x.
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Figure 5.A.3: Error rates for nearest neighbor identification on Zappos Data

5.B Proofs and technical lemmas

5.B.1 Proof of Lemma 5.1

By symmetry for all i < j, we have existing samples of Q(i, j) and Q(i,k) and we use
bounds based on these samples as well as past triangle inequality upper bounds
on di,j and di,k due to i1 < i and i2 < i respectively. The upper bound is derived as
follows:

dj,k 6 di,j + di,k 6 min{Ui,j(t),U
4i1
i,j (t)}+ min{Ui,k(t),U

4i2
i,k (t)} =: U4ij,k

Since we may form bounds based on all i < j for which we have both samples
of Q(i, j) and Q(i,k), we may optimize over i to get the tightest possible triangle
inequality bounds on dj,k.

Lower bounds are derived similarly. Again, intuitively, wemay use past samples
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of both Q(i, j) and Q(i,k) and associated bounds to derive a lower bound on dj,k.
The form is slightly more complicated here since we have to worry about both upper
and lower bounds on di,j and di,k. These bounds may either be from concentration
bounds based on past samples directly or past triangle inequality upper and lower
bounds on these distances due to points i1 − i4 < i.

dj,k >|di,j − di,k|

=max{di,j,di,k}− min{di,j,di,k}

>(max{max{Li,j(t),L
4i1
i,j (t)}, max{Li,k(t),L

4i2
i,k (t)}}

− min{min{Ui,j(t),U
4i3
i,j (t)}, min{Ui,k(t),U

4i4
i,k (t)}})+

=(max{Li,j(t),L
4i1
i,j (t),Li,k(t),L

4i2
i,k (t)}

− min{Ui,j(t),U
4i3
i,j (t),Ui,k(t),U

4i4
i,k (t)})+

where (s)+ := max{s, 0} and i1, i2, i3, i4 < i, (not necessarily unique) are chosen to
optimize the bound. Similar to the upper bound, this holds with respect to any i < j
and we optimize over i. To ease presentation, let UB ′[i, j] := min{Ui,j, minl<iU4li,j }
and LB ′[i, j] := max{Li,j, maxl<i L4li,j } be the tightest upper and lower bounds for
di,j. For the lower bound, note that if the argument of (·)+ is negative, then any

s ∈ [max{LB ′[i, j], LB ′[i,k]}, min{UB ′[i, j], UB ′[i,k]}]

= [LB ′[i, j], UB ′[i, j]] ∩ [LB ′[i,k], UB ′[i,k]] 6= ∅

can be the value of both di,j and dj,k as it lies in both their confidence intervals.
Then points xj, xk can possibly be at the same location in the metric space, in which
case dj,k = 0. On the other hand if the RHS is positive, then xj and xk cannot be at
the same location as di,j 6= di,k. In fact, the smallest possible value for dj,k occurs
if xi, xj, xk are collinear. This can be seen to be true from Figure 5.B.1. We finish
with a quick lemma noting what can and cannot be eliminated via the triangle
inequality.

Lemma 5.8. Conditioned on the good event that all bounds are correct at all times, the
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B ′[i, k]

LB ′[i, k]

U
B
′ [i,
j]

LB
′ [i,
j]

θ

Figure 5.B.1: Pictorial justification for the lower bound in (5.6). True positions of
points i, j,k are shown along with the upper and lower bounds for di,j,di,k that
are known to the algorithm. If the angle θ between ~ı and ~ık is known, the blue
segment shows the lowest possible value for dj,k based on the bounds. The orange
segment is the value in the RHS of (5.6). Without any information about θ, the
three points could be collinear, in which case dj,k could equal the length of the
orange segment.

triangle inequality cannot be used to to separate the two closest points to any given third
point.

Proof. Consider finding xi∗ . Let di,i∗ 6 di,j 6 di,k∀k 6= i∗, j. By the triangle
inequality, di,i∗ 6 di,j + dj,i∗ Clearly, the RHS is no smaller than di,j. Since we are
conditioning on all bounds being correct at all times, no upper bound on di,i∗ from
the triangle inequality can ever be smaller that di,j. Rearranging the inequality,
we see that di,i∗ − dj,i∗ 6 di,j. The LHS is no larger than di,i∗ , and di,i∗ is the only
distance wrt xi that is smaller than di,j by assumption. Therefore, no lower bound
on di,j due to the triangle inequality is greater than di,i∗ < di,j.
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5.B.2 Helper Lemmas

Lemma 5.9. Let t ∈ N index the rounds of the procedure SETri in finding xi∗ . Suppose
all confidence intervals are valid, i.e., (5.3) is true. Then ∀j 6= i and all t,

Li,j(t) > di,j − 2Cδ/n(Ti,j(t)) and Ui,j(t) 6 di,j + 2Cδ/n(Ti,j(t)). (5.15)

Proof. If the good event (5.3) is true then for any pair (i, j) and time t we have

d̂i,j(t) < di,j+Cδ/n(Ti,j(t)) =⇒ Ui,j(t) := d̂i,j(t)+Cδ/n(Ti,j(t)) 6 di,j+2Cδ/n(Ti,j(t)).

A similar calculation can be done for Li,j(t) as well.

Lemma 5.10. Let j > i, and let tj be the time when xj is last sampled in the ith round and
equivalently for tk. Assume without loss of generality that di,j < di,k. If di,j and di,k are
such that

4Cδ/n(Ti,j(tj)) + 2Cδ/n(Ti,k(tk)) 6 di,k − 2di,j (5.16)

then SETri can eliminate dj,k without sampling it, i.e., xk /∈ Aj(0).

Proof. Focusing on the number of Q(i, j) queries, we have that

2Ui,j(tj) = 2(d̂i,j(tj) + Cδ/n(Ti,j(tj))) 6 2(di,j + 2Cδ/n(Ti,j(tj))), (5.17)

the inequality in (5.17) is due to Lemma 5.9, and using the number of Q(i,k) queries,

Li,k(tk) > d̂i,k(tk) − Cδ/n(Ti,k(tk)) > di,k − 2Cδ/n(Ti,k(tk)). (5.18)

The first inequality in (5.18) is because if k < j then there may have been more
Q(k, i) queries beyond the tk number of Q(i,k) queries made while finding xi∗ .
Rearranging the equation in the Lemma statement,

2di,j + 4Cδ/n(Ti,j(tj)) 6 di,k − 2Cδ/n(Ti,k(tk)),
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which implies that 2Ui,j 6 Li,k from (5.17), (5.18). Hence from Lemma 5.3 xk /∈
Aj(0).

Lemma 5.11. There exists a dataset P containing 2ν points such that for all xp ∈ P and
α > 0 the set of suboptimality gaps ∆p,p ′ is{

1 −

(
s− 1
ν− 1

)α
: s ∈ {1, 2, . . . ,ν− 1}

}
. (5.19)

Proof. Note that there are ν− 1 values given in (5.19) while there are 2ν− 2 points
in the cluster, excluding xp and xp∗ . Each value in (5.19) is the suboptimality gap
for two distinct points in P \ {xp, xp∗}. We can construct such a dataset P in the
following manner.

We index these points as p,p1,p2, . . . ,p2ν−1. Suppose the pairwise distance
values are such that

dp,p1 > dp,p2 > · · · > dp,pν−1 > dp,pν =: dp,p∗ , and dp,pν+1 < dp,pν+2 < · · · < dp,p2ν−1

such that

∀s ∈ {1, 2, . . . ,ν− 1}we have that dp,pν−s = dp,pν+s =⇒ dp,pi = dp,p2ν−i .
(5.20)

We can then construct a 2ν× 2ν distance matrix D in the following manner. The
first row of D is

D[0, :] :=
[
0 dp,p1 dp,p2 · · · dp,pν−1 dp,p∗ dp,pν+1 · · · dp,p2ν−2 dp,p2ν−1

]
.

The ith row ofD is obtained by carrying out i circular shifts on the initial rowD[0, :]
shown above. ThusD is a circulant matrix and we can seeD[i, j] andD[j, i] to be as
follows.

D[i, j] =

dp,pj−i if j > i

dp,p2ν−(i−j)
if j < i,

and D[j, i] =

dp,pi−j if i > j

dp,p2ν−(j−i)
if i < j.
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Then using (5.20) we have that D[i, j] = D[j, i] for all i 6= j and the diagonal entries
are all 0. Thus D is symmetric. In addition, the distance values of the points to
any point in the cluster take the same set of values. Suppose dp,p∗ =: r > 0 and
dp,p1 = 2r. Choose an α > 0 and let

dp,p2ν−i = dp,pi := r

(
2 −

(
s− 1
ν− 1

)α)
, ∀s ∈ {1, 2, . . . ,ν− 1}.

Then D[i, j] 6 D[i, k] + D[k, j] for any three distinct i, j,k as the sum of any two
elements is greater than 2r, which is the largest element in D. Thus the distance
values in D satisfy the triangle inequality, and D is a valid distance matrix. The
suboptimality gaps for any point in the cluster is ∆p,pi = dp,pi − dp,p∗ = r(1 −

((i−1)/(ν−1))α), choosing r = 1 finishes the required construction.

5.B.3 Proof of Theorem 5.2

Proof. ANNTri makes an error in finding the nearest neighbor for some point with
probability P(SETri is wrong for some xj, j ∈ {1, 2, . . . ,n}). We show that probabil-
ity is at most nξ = δ, where the confidence level ξ for each execution of SETri is
set to be δ/n. We use induction on s ∈ N to obtain that

P(∀j ∈ {1, 2, . . . , s},k 6= j, max{Lj,k(t),L4j,k(t)} 6 dj,k 6 min{Uj,k(t),U4j,k(t)}) > 1−sξ.
(5.21)

Consider the base case, i.e., point x1. From the initialization of ANNTri 1,

min{U1,k(t),U41,k(t)} = U1,k(t), min{L1,k(t),L41,k(t)} = L1,k(t)

for all k 6= 1. Using (5.3) we have L1,k(t) 6 d1,k 6 U1,k(t) with probability 1 − δ/n,
and since ξ is δ/n the base case is true. Assume the hypothesis (5.21) is true for
some s. We show that it is true for s+ 1 as well. We can bound the error event as
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follows.

P(∃j ∈ {1, . . . , s+ 1},k 6= j : dj,k /∈ [max{Lj,k(t),L4j,k(t)}, min{Uj,k(t),U4j,k(t)}])

(5.22)

= P(∃j ∈ {1, . . . , s},k 6= j : dj,k /∈ [max{Lj,k(t),L4j,k(t)}, min{Uj,k(t),U4j,k(t)}])

+ P
(
{k 6= s+ 1 : ds+1,k /∈ [max{Ls+1,k(t),L4s+1,k(t)}, min{Us+1,k(t),U4s+1,k(t)}]}

∩ {∀j ∈ {1, 2, . . . , s},k 6= j, max{Lj,k(t),L4j,k(t)} 6 dj,k 6 min{Uj,k(t),U4j,k(t)}}
)

From (5.21) the first summand in the RHS of (5.22) is at most sξ. In the event
corresponding to the second term, all the bounds used by SETri for dj,k, j 6 s,k 6= j
are correct. Since U4s+1,· and L

4
s+1,· are both deterministically obtained (see (5.7),

(5.8)) from them, they are correct as well. Thus

P(max{Ls+1,k(t),L4s+1,k(t)} 6 ds+1,k 6 min{Us+1,k(t),U4s+1,k(t)})

= P(Ls+1,k(t) 6 ds+1,k 6 Us+1,k(t)) > 1 − ξ.

Hence the second summand in the RHS of (5.22) is at most ξ. This proves (5.21) for
s+ 1 and completes the induction.

Thus with probability 1−nξ = 1− δ, the bounds obtained by SETri for finding
xj∗ , j ∈ {1, . . . ,n} are all correct. We show that ANNTri correctly finds all near-
est neighbors if the bounds are correct. For if not, suppose SETri returns the
wrong nearest neighbor of xj which happens only if xj∗ is not the last point in
the active set. xj∗ /∈ A because some other point xk ∈ A eliminates it. Then
dj,k < min{Uj,k,U4j,k} < max{Lj,j∗ ,L4j,j∗} < dj,j∗ , which contradicts the fact that j∗ is
the nearest neighbor.

5.B.4 Proof of Lemma 5.4

Proof. Consider a point xi, i < j which satisfies the first part of (5.10). If xj ∈ Ai(0)
and xk ∈ Ai(0), then neither xj and xk were eliminated without sampling when
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SEEasyi was called for xi and hence Ti,j > 1 and Ti,k > 1. Then we have that

4Cδ/n(Ti,j(tj)) + 2Cδ/n(Ti,k(tk)) 6 6Cδ/n(1) 6 di,k − 2di,j

and xk /∈ Aj(0) by Lemma 5.10. The second part of (5.10) ensures that {xj, xk} ⊆
Ai(0) as shown next. The points eliminated from being the nearest neighbor of
xi using triangle inequality are Ai(0){ = ∪m<i{` : 2Um,i < Lm,`}. If the bounds
obtained by SEEasy for allm < i are correct,

{` : 2Um,i < Lm,`} ⊆ {` : 2dm,i < dm,`} =⇒ Ai(0){ ⊆ ∪m<i{` : 2dm,i < dm,`}.

Hence if the second condition of (5.10) is satisfied, then {j,k} ⊆ Ai(0) and we are
done.

5.B.5 Proof of Theorem 5.5

Proof. Let xj be the point on which SEEasy is called. Consider the case j < k. If
1[Aj,k] = 0 then xk /∈ Aj(0) and no Q(j,k) queries are made. Otherwise, xk can be in
the active set and from (5.4) at most Hj,k samples of dj,k are taken. Now consider
the case k < j. Samples of dj,k are only queried if xk ∈ Aj(0). If xj /∈ Ak(0), i.e.,
xj was eliminated when SEEasy was called for xk then no Q(k, j) queries made at
that round. Again from (5.4) at mostHj,k samples of dj,k are taken by SEEasy while
finding xj∗ . If however 1[Ak,j] = 1, then Q(k, j) queries were made while finding xk∗
and let the number of those samples be #Q(k, j). Because of the sampling procedure
of SEEasy, at most (Hj,k − #Q(k, j))+ queries are made for dj,k. The total number of
Q(j,k) and Q(k, j) queries is max{Hj,k, #Q(k, j)}, and since #Q(k, j) 6 Hk,j, we get
the result.

5.B.6 Details for Section 5.4.3

In this section, we consider a case where ANNTri achieves complexity that scales like
O(n1.5) as well asO(n log(n)), the known optimal rate for the all nearest neighbors



158

problem for noiseless data. To do this, we first prove a lemma about the complexity
of learning with clustered data. In particular, we show that if the data comes from
two well separated clusters, then the complexity of learning the nearest neighbor
graph can be bounded as the complexity of learning the nearest neighbors of two
points looking at the full dataset and the complexity of learning the remaining
nearest neighbors graphs on each of the clusters.

Lemma 5.12. Consider X = C1 ∪ C2 where C1 and C2 both satisfy 5.12 for all i, j. Then
ANNEasy learns the nearest neighbor graph of X with probability at least 1 − δ in at most

O (|C1|+ |C2|+HC1 +HC2) (5.23)

samples independent of the order in which it finds nearest neighbors where HCi denotes the
complexity of learning the nearest neighbor graph of cluster Ci as bounded by 5.13.

The above lemma implies that for the first point explored in each cluster, it is
necessary to look at all other points in the dataset, but for all other points, it is only
necessary to search within that point’s respective cluster.

Proof. Choose a random order of points and fix it. Without loss of generality,
we assume that x1 ∈ C1.Let j2 be the first point visited in C2. Throughout, we
will ignore reused samples since they only contribute at most a factor of 2 to the
sample complexity as can be seen by Theorems 5.5 and 5.13 and we seek an upper
bound. Via standard analysis for successive elimination, x1∗ can be be found in
O
(∑n

j=2H1,j
)
= |C2|+O

(∑
j∈C1\{x1}

H1,j

)
samples with probability at least 1− δ/n.

For all i = 2, · · · , j2 − 1,

Ai(0)c ⊃ {A1(0) ∩ {k : di,k > 6di,j − 3d1,1∗}} ⊃ {X\{x1} ∩ C2} = C2

which implies that xi∗ ∈ C1. For xj2 wemay trivially say thatAj2(0)c ⊃ {j2} so xj∗2 can
be learned in O

(∑
l 6=j2 Hi,j

)
= |C1|+ O

(∑
j∈C2\{xj2}

Hj2,j

)
samples with probability

at least 1 − δ/n. We conclude by showing that for all remaining xi, if xi ∈ C1, then
Ai(0) ⊂ C1 and if xi ∈ C2, thenAi(0) ⊂ C2. Consider the case that x1 ∈ C1. Suppose
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that ∃xj ∈ Ai(0) ∩ C2. Then 2U1,i > L1,j.

Ui,1 = d̂1,i + Cδ/n(T1,i) 6 d1,i + 2Cδ/n(T1,i) = d1,i + 2Cδ/n(1)

where the first inequality holds by 5.9. Similarly,

L1,j = d̂1,j − Cδ/n(T1,j) > d1,j − 2Cδ/n(T1,j) > d1,j − 2Cδ/n(1)

Then 2(d1,i + 2Cδ/n(1)) > 2U1,i > L1,j > d1,j − 2Cδ/n(1) =⇒ d1,j < 2d1,i +

6Cδ/n(1) =⇒ j ∈ C1 which is a contradiction. A similar proof holds for xi ∈ C2. It
remains to argue that j2 can be any number between 2 (by assumption that x1 ∈ C1)
and |C1|+ 1 without affecting the bound on the complexity. By the assumption that
C1 and C2 satisfy 5.12, out of cluster points can be eliminated in a single sample.
Therefore, for any j2,

∑
l∈C1

Hj2,l = |C1|. Then we have that the total complexity is
O (|C1|+ |C2|+HC1 +HC2) ∀j2. Since we have considered general orders of finding
each nearest neighbor, we are done.

5.B.6.1 Proof of Theorem 5.6

Proof. By assumption, the dataset X = ∪ci=1Ci with each cluster satisfies Equa-
tion 5.12. Therefore, for all m, X = Cm ∪ (∪j6=mCi). By applying Lemma 5.12,
iteratively, we bound the complexity in terms of the the complexity of learning
the nearest neighbor graph of Cm, the complexity of learning the nearest neighbor
graph of ∪j6=mCi, and an additive penalty of n which accounts for the samples
taken between the two. Since X is a union of c clusters, this process may repeat c
times. Therefore the total complexity can be bounded as

O

(
cn+

c∑
i=1

∑
j,k∈Ci

Hj,k

)
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Taking c =
√
n, we see that the above sum is O

(
n1.5∆−2

)
where

∆−2 =
1

c ∗ n

c∑
i=1

∑
j,k∈Ci

Hj,k

is the average number of times intra-cluster distances are sampled. By contrast, the
complexity for random sampling is O(n2∆−2

min) where ∆−2
min := minj,kHj,k. Compar-

ing the two, we see that the latter is larger by at least a factor of O(
√
n).

5.B.6.2 Proof of Lemma 5.7

Next we use Lemma 5.12 to show that for datasets such that the clusters nest, we
can achieve complexity scaling in O(n log(n)∆−2). In particular, we will recursively
apply Lemma 5.12 to show that clusters can be broken into subclusters and initial
active sets shrink in diadic splits.

Proof. Before we prove the theorem, we begin by introducing some notation to
make this proof concise. Recall that we have assumed that X can be written as a
hierarchy of clusters and sub clusters that form a balanced tree. We will denote
the root of the tree with the full dataset as the 0th level and each split in that level
with be indexed by i = 1, · · · , 2` where ` = 0, · · · , log(n/ν) − 1 denotes the level.
For notational ease, we take C0,1 ≡ X. C`,i denotes the ith cluster at the `th level of
the tree which may be split into subclusters if ` < log(n/ν) − 1. The idea will be
to traverse the tree and split clusters into subclusters while keeping track of the
number of between cluster samples that were be necessary due to the bound in
Lemma 5.12. We letHC`,i denote complexity of learning the nearest neighbor graph
of C`,i.

Randomize the order and fix it. We will proceed by recursively applying
Lemma 5.12 to bound the complexity of learning the full nearest neighbor graph
of a cluster in terms of learning it for each subcluster plus an additive penalty. By
Lemma 5.12 the complexity of finding the nearest neighbor graph ofX can be upper
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bounded as

O
(
|C1,1|+ |C1,2|+HC1,1 +HC1,2

)
= O

(
n+HC1,1 +HC1,2

)
.

We may again apply Lemma 5.12 to C1,1 and C1,2. to bound their complexities as
O
(
n
2 +HC2,1 +HC2,2

)
and O

(
n
2 +HC2,3 +HC2,4

)
respectively where C1,1 = C2,1 ∪ C2,2

and C1,2 = C2,3 ∪C2,4. Therefore, similar to the above level, the total additive penalty
for samples between clusters is n for the level. We may continue this process of
splitting and paying the penalty of n/2` × 2` between cluster samples down to the
bottom level ` = log(n/ν) with clusters of size ν.

Therefore, we may write the complexity as

O

(
n log

(n
ν

)
+

n/ν∑
i=1

∑
j,k∈Clog(n/ν),i

Hj,k

)
. (5.24)

Ignoring logarithmic factors, each complexity term Hj,k is of the order O(∆−2
j,k).

Therefore the entire summation is of the order

O
(
n log

(n
ν

)
+ nν∆−2

)
where ∆−2 := 1

nν

∑n/ν
i=1
∑
j,k∈Ci log(n2/(δ∆j,k))∆

−2
j,k is the average complexity. Re-

calling that ν = O(log(n)), we are done.

5.B.7 Sample complexity without using triangle inequality

Theorem 5.13. With probability 1 − δ, the number of oracle queries made by ANNTri and
ANNEasy if all triangle bounds are ignored is at most

O

(∑
i<j

max
{

log(n2/(δ∆i,j))

∆2
i,j

, log(n2/(δ∆j,i))

∆2
j,i

})
. (5.25)

In the experiments, the process of using ANNTri and ignoring triangle inequality
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bounds is referred to as ANN.

Proof. In the case that triange bounds are ignored, ANNTri and ANNEasy are the
same. Consider the ith roundwhere we seek to identify xi∗ with probability 1−δ/n.
ANNTri has found x`∗ for all ` < i, in particular, it has evaluated d̂`,i,U`,i,L`,i. For
every xj 6= xi∗ , xj ∈ Ai(0), we can bound the number of Q(i, j) queries in the
following manner. Suppose j > i and i∗ > i, so that at the beginning of the ith

round we have that Ti,j = Ti,i∗ = 0. From (5.3), with probability 1 − δ/n, xi∗ is the
last point in the active set. The point xj is eliminated from the active set at time tj if
the following is true.

Ui,i∗(tj)
(a)
6 di,i∗ + 2Cδ/n(Ti∗(tj)) < di,j − 2Cδ/n(Tj(tj))

(b)
6 Li,j(tj),

=⇒ 4Cδ/n(tj) < di,j − di,i∗ = ∆i,j. (5.26)

Inequalities (a), (b) are due to Lemma 5.9, and the fact that if j is eliminated at time
tj, then Ti,j(tj) = tj. From the property of the Cδ/n(·) function, (5.26) is ensured
when the number of samples of di,j is

tj 6

⌈
κ

log(n2/(δ∆i,j/4))
(∆i,j/4)2

⌉
.

We now consider the cases when at least one of i∗, j are less than i.
i∗ > i, j < i: In this case, at the beginning of the ith round Ti,j is equal to the

number of Q(j, i) queries made (denoted as #Q(j, i)) while finding xj∗ :

#Q(j, i) 6
⌈
κ

log(n2/(δ∆j,i/4))
(∆j,i/4)2

⌉
.

If #Q(j, i) > tj, then no further Q(i, j) queries are made in the ith round, as argued
next. Because the sampling procedure of SETri queries all points who have the
minimum number of samples at current time, if a query Q(i, j) is made at time t+ 1,
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that implies Ti,i∗(t) = #Q(j, i). But then j is not in the active set at time t as

Ui,i∗(#Q(j, i)) < Ui,i∗(tj) < di,j − 2Cδ/n(tj) < di,j − 2Cδ/n(#Q(j, i)) = Li,j(#Q(j, i))

and hence Q(i, j) is not made. If #Q(j, i) < tj, then xj is eliminated when tj−#Q(j, i)
more samples of di,j have been queried. Thus the total number of samples of di,j is
at most max{tj, #Q(j, i)}.

The other two cases of 1) i∗ < i, j > i, and 2) i∗ < i, j < i can be handled
similarly.

5.C Average case performance of ANNEasy

We can obtain a different expression for the number of oracle queries if all the
random quantities during a run of the algorithm take their expected values. In
particular, Lemma 5.4 can be relaxed to the following.

Lemma 5.14. If all bounds obtained by SEEasy are correct and all the random quantities
take their expected values, then for some i < j such that xj 6= xi∗ 6= xk if we have that

di,k > 6di,j − 3di,i∗ , and {j,k} ∩ (∪m<i{` : 2dm,i < dm,`}) = ∅, (5.27)

then 2Ui,j < Li,k and hence xk /∈ Aj(0).

Proof. In the good event, the point xi∗ is the last element in the active set Ai and
points xj, xk have been eliminated from Ai at some prior times tj, tk respectively.
Both tj > 0 and tk > 0 as {xj, xk} ⊂ Ai(0) is ensured by the second part of the
condition, as shown in the proof of Lemma 5.4. At time tj, we have that

min
`
d̂i,` + Cδ/n(tj) 6 min

`
Ui,` 6 Li,j 6 d̂i,j − Cδ/n(tj). (5.28)

If all the random quantities take their expected values, then d̂i,` = di,`∀` 6= i and
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we have that

di,i∗ + Cδ/n(tj) 6 di,j − Cδ/n(tj) =⇒ Cδ/n(tj) 6 ∆i,j/2. (5.29)

Under the assumption, d̂i,j = di,j and using the definition of its upper and lower
confidence bounds, we get that E[Li,j] > di,j − ∆i,j/2 and E[Ui,j] 6 di,j + ∆i,j/2.
Similar bounds are true for xk. Then

di,k > 6di,j − 3di,i∗ =⇒ di,k −
di,k − di,i∗

2 di,k −
∆i,k

2

> 2
(
di,j +

di,j − di,i∗

2

)
= 2

(
di,j +

∆i,j

2

)
,

which implies that Li,k = E[Li,k] > 2E[Ui,j] = 2Ui,j and xk /∈ Aj(0).

If all the random quantities take their expected value, then using Lemma 5.14
and the elimination criterion of ANNEasy (Lemma 5.3), the complement of the initial
active setAj(0) (also called the elimination set) can be characterized in the following
manner.

Aj(0){ = ∪i<j:j∈Ai(0){Ai(0) ∩ {k : 2Ui,j < Li,k}}

⊇ ∪i<j:j∈Ai(0){Ai(0) ∩ {k : di,k > 6di,j − 3di,i∗}}. (5.30)

Replacing the indicator1[Aj,k] in Theorem5.5with an indicator for the non-membership
of point xk in the set (5.30) gives us an upper bound to the sample complexity of
ANNEasy that is valid when all random quantities take their expected values.

To gain an idea of the savings achieved by our algorithm in comparison to the
random sampling, we evaluate the sample complexity expressions for an example
dataset. The dataset we look at consists of c clusters, each cluster containingn/c > 1
points. The points are indexed such that themth cluster is Cm := {xm, x1+m, . . . , xm},
where

m := 1 + (m− 1)n/c (5.31)
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and

m := mn/c (5.32)

for allm ∈ [c]. Suppose the distances between the points are such that for any pair
{xi, xj} ⊆ Cm, the set of points

{xk : di,k < 6di,j − 3di,i∗} ⊆ Cm. (5.33)

The above condition is ensured if the smallest distance between two points belong-
ing to different clusters is at least six times the diameter of any cluster.

Lemma 5.15. Consider a dataset which satisfies the condition in (5.33). If all random
quantities take their expected values, ANNEasy uses O(

√
n) fewer oracle queries than the

random sampling baseline to learn the nearest neighbor graph.

Proof. In the following we assume that all random quantities take their expected
values. We can find the points that are definitely eliminated using the triangle
inequality when ANNEasy is called using (5.30). The elimination set A1(0){ = {x1}.
For a point xi ∈ C1 /∈ E1, from (5.30), (5.33) we get that

Ai(0){ ⊇ {A1(0) ∩ {k : d1,k > 6d1,i − 3d1,1∗}} ⊇ {(X \ {x1}) ∩ C{
1 } = C{

1 .

Thus Ai(0) ⊆ C1 for all xi ∈ C1. Point xm is the first point processed by ANNEasy in
themth cluster. Suppose there exists a point xj ∈ Cm ∩Am(0){, we show next that
leads to a contradiction. Since xj /∈ Am(0), there is a point xi ∈ Cm ′ with i < j,m ′ <
m such that 2Ui,m < Li,j. Let Diam(Cm) := maxx`,xk∈Cm d`,k be the diameter of
cluster Cm (similarly for Cm ′) and let D(Cm ′ ,Cm) := minx`∈Cm ′ ,xk∈Cm d`,k be the
minimum inter-cluster distance. Since the random quantities take their expected
values, we have that

Ui,m > di,m +
di,m − di,i∗

2 =⇒ 2Ui,m > 3D(Cm ′ ,Cm) −Diam(Cm ′),

Li,j 6 di,j −
di,j − di,i∗

2 =⇒ Li,j 6
Diam(Cm ′) +D(Cm ′ ,Cm) +Diam(Cm)

2 +
Diam(Cm ′)

2 .
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Using 2Ui,m < Li,j with the above inequalities implies that 2.5D(Cm ′ ,Cm) <
2D(Cm ′)+0.5D(Cm), which is a contradiction as from (5.33)we have thatD(Cm ′ ,Cm) >
max{3D(Cm ′), 3D(Cm)}. Thus we have that Cm ∩Am(0){ = ∅. For any xj ∈ Cm, j 6=
m we have that xj ∈ Am(0) and hence from (5.30),

Aj(0){ ⊇ {Am(0) ∩ {k : dm,k > 6dm,j − 3dm,m∗}} ⊇ C{
m.

Based on the above discussion, we have a lower bound on the number of points
present in the elimination set Aj(0){ for any xj ∈ Cm. By choosing the following
values for the indicator in (5.25)

1[Aj,k] =

0 if xj ∈ Cm \ {xm} and xk /∈ Cm,

1 otherwise,

we get the following upper bound to the number of oracle queries, where xm is the
last point in Cm.

O

(
c∑

m=1

(∑
k>m

Hm,k +
∑
k<m

Hm,k −

m−1∑
`=1

Hm,` +

m−1∑
`=1

(Hm,` −H`,m)+

+

m∑
p>m

m∑
q>p

max{Hp,q,Hq,p}

))
(5.34)

wherem andm are defined in (5.31) and are functions ofm. The number of terms
in the sum above is O(cn+ (n/c)2). A uniform sampling baseline approach would
have O(n2) terms in its sample complexity. Letting c =

√
n gives our result.

The above lemma ensures that we have O(
√
n) fewer terms in the sample com-

plexity expression for ANNEasy compared to random sampling if the dataset satisfies
(5.33). We can get a more precise characterization of the savings in query complex-
ity in terms of the ∆p,q values. For instance, using a single-parameter model for
the distribution of ∆p,q as done in Jamieson et al. (2013), we can directly use their
Corollary 1 in our context.
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Lemma 5.16. Consider a clustered dataset X = ∪cm=1Cm whose points satisfy (5.33).
Each cluster contains an even number 2ν := n/c of points. For anym ∈ [c] and xj ∈ Cm,
suppose the suboptimality gaps ∆j,k for all xk ∈ Cm take one of the following values,
parametrized by an α > 0:

1 −

(
s− 1
ν− 1

)α
, where s ∈ {1, 2, . . . ,ν− 1}. (5.35)

Note that there are ν− 1 values given in (5.35) while there are 2ν− 2 points in the cluster,
excluding xj and xj∗ . Each value in (5.35) is the suboptimality gap for two distinct points
in Cm. Ignoring log-factors, if α = 1 ANNTri finds all nearest neighbors with probability
1 − δ in O(n(ν2 + n)) calls to the oracle, while uniform sampling requires O(n2ν2) calls
for the same guarantee.

Proof. By putting the clusters far from each other, one can see that there exist X =

∪cm=1Cm whose points satisfy (5.33). Lemma 5.11 shows by explicit construction
that the condition on the suboptimality gaps within each cluster as stated in (5.35)
can also be satisfied. Note that (5.35) is the same parametrization as equation 3 in
Jamieson et al. (2013).

Consider the points in the mth cluster, i.e., points xm through xm. The elim-
ination set Am(0){ can be the singleton {xm}, but by Lemma 5.14 for all xp ∈
Cm \ {xm},Ap(0){ ⊇ C{

m. Finding xp∗ is a best arm identification problem among
points within the cluster Cm. The last term in (5.34) counts the total number
of oracle queries made by ANNEasy to identify the nearest neighbors of all xp ∈
Cm \ {xm}. Thus the number of oracle queries made by ANNEasy for identifying xp∗
is at most

∑
q6=pHp,q, while uniform sampling will make nHp,p ′ queries, where

p ′ := arg minq6=p∗ ∆p,q.
Ignoring log-factors, the sample complexity for finding xp∗ for an xp ∈ Cm by

ANNEasy is

Õ

2ν−1∑
i=1

∆−2
p,pi +

∑
x`/∈Cm

∆−2
p,`

 = Õ

(2ν−1∑
i=1

∆−2
p,pi + n− 2ν

)
.
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Corollary 1 of Jamieson et al. (2013) lists the value of that sum for different choices
of α, for e.g., if α = 1 then the sample complexity is Õ(ν2 + n− 2ν). On the other
hand, for finding xp∗ uniform sampling would make Õ(n∆−2

p,p ′), i.e., Õ(n(ν− 1)2)

queries. By construction of the dataset, finding the nearest neighbor of each point
in X is equally hard. Thus ANNTri would make Õ(n(ν2 + n − 2ν)) queries while
uniform sampling would take Õ(n2ν2) queries.

Note that our problem setting is inherently different from the noiseless setting
where all xi∗’s can trivially be learned in

(
n
2

)
samples. Due to the presence of

noise in our queries, many distances must be repeatedly queried so
(
n
2

)
samples is

insufficient.
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6 finding all ε-good arms in stochastic bandits

6.1 Introduction

We propose a new multi-armed bandit problem where the objective is to return all
arms that are ε-good relative to the best-arm. Concretely, if the arms have means
µ1, · · · ,µn, with µ1 = max16i6n µi, then the goal is to return the set {i : µi > µ1−ε}

in the additive case, and {i : µi > (1 − ε)µ1} in the multiplicative case. The all-ε
problem is a novel setting in the bandits literature, adjacent to two other methods
for finding many good arms: Top-k where the goal is to return the arms with the k
highest means, and threshold bandits where the goal is to identify all arms above a
fixed threshold. Building on a metaphor given by Locatelli et al. (2016), if Top-k
is a “contest” and thresholding bandits is an “exam”, all-ε organically decides
which arms are “above the bar” relative to the highest score. We argue that the
all-ε problem formulation is more appropriate in many applications, and we show
that it presents some unique challenges that make its solution distinct from Top-k
and threshold bandits.

A Natural and Robust Objective. A motivating example is drug discovery,
where pharmacologists want to identify a set of highly-potent drug candidates from
potentiallymillions of compounds using various in vitro and in silico assays, and only
the selected undergo more expansive testing Christmann-Franck et al. (2016). Since
performing the assays can be costly, one would like to use an adaptive, sequential
experiment design that requires fewer experiments than a fixed experiment design.
In sequential experiment design, it is important to fix the objective at the beginning
as that choice affects the experimentation process. Both the objectives of finding
the top-k performing drugs, or all drugs above a threshold can result in failure.
In Top-k, choosing k too small may miss potent compounds, and choosing k too
large may yield many ineffective compounds and require an excessively large
number of experiments. Setting a threshold suffers from the same issues - with
the additional concern that if it is set too high, potentially no drug discoveries are
made. In contrast, the all-ε objective of finding all arms whose potency is within
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20% of the best avoids these concerns by giving a robust and natural guarantee: no
significantly suboptimal arms will be returned and but every near-optimal arm will
be discovered.

A secondmotivating example is selecting crowd-workers for a specialized crowd-
sourcing task, such as labelling images of dogs by breed. In this case, expertise is
required to perform this task with high accuracy, and it is important that the data
collected from workers is accurate since it will be used for downstream applica-
tions such as training neural networks. In order to select crowd-workers to label a
dataset, it is reasonable for practitioners to first ask candidates some test questions
where the true label is known. As an incentive to answer test questions, it may be
necessary to pay per question asked. all-ε, efficiently finds every near-optimal
worker without needing to know how many good workers are available or what
performances they achieve.
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Figure 6.1: Mean ratings
from contests 627, 651, 690

We emphasize that unlike Top-k or thresholding
which require some prior knowledge about the dis-
tribution of arms to guarantee a good set of returned
arms, choosing the arms relative to the best is a nat-
ural, distribution-free metric for finding good arms.
As an example, we consider the NewYorker Cartoon
Caption Contest (NYCCC). Each week, contestants
submit thousands of supposedly funny captions for
a cartoon (see Appendix 6.A), which are rated from 1 (unfunny) to 3 (funny) through
a crowdsourcing process. The New Yorker editors select final winners from a set
with the highest average crowd-ratings (typically over 1 million ratings per contest).
The number of truly funny captions varies from week to week, and this makes
setting a choice of k or fixed threshold difficult. In Figure 6.1, we plot the distri-
bution of ratings from 3 different contests. Horizontal lines depict a reasonable
threshold of 0.8µ1 in each and vertical lines show the number of arms that exceed
this threshold. Both of these quantities vary over weeks and these differences can
be stark. In contest 627, only k = 27 arms are within 20% of µ1, but k = 748 are
in contest 651. Additionally, a fixed threshold of τ = 1.5, admits captions within

https://www.newyorker.com/cartoons/contest
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30% of the best in contest 627, but only those within 15% of the best in contest 651.
These examples show that it would be imprudent, and indeed, incorrect to choose
a value of k or a threshold based on past contests– the far more principled decision
is to optimize for the objective of finding the captions that are within a percentage
of the best every week.

Though the all-ε objective is natural and easy to state, it has not been studied
in the literature. As we will show, admitting arms relative to the best makes the
all-ε problem inherently more challenging than either Top-k or thresholding. In
particular, it is not easily possible to adapt Top-k or thresholding algorithms to
achieve the instance dependent lower bound for all-ε. In this work, we provide
a careful investigation of the all-ε problem including theoretical and empirical
guarantees.

6.1.1 Problem Statement and Notation

Fix ε > 0 and a failure probability δ > 0. Let ν := {ρ1, · · · , ρn} be an instance of n
distributions (or arms) with 1-sub-Gaussian distributions having unknownmeans
µ1 > · · · > µn. We now formally define our notions of additive and multiplicative
ε-good arms.

Definition 6.1 (additive ε-good). For a given ε > 0, arm i is additive ε-good if µi >
µ1 − ε.

Definition 6.2 (multiplicative ε-good). For a given ε > 0, arm i is multiplicative ε-good
if µi > (1 − ε)µ1.

Additionally, we define the sets

Gε(ν) := {i : µi > µ1 − ε} andMε(ν) := {i : µi > (1 − ε)µ1} (6.1)

to be the sets of additive and multiplicative ε-good arms respectively. Where clear,
we take Gε = Gε(ν) andMε = Mε(ν). Consider an algorithm that at each time
s selects an arm Is ∈ [n] based on the history Fs−1 = σ(I1,X1, · · · , Is−1,Xs−1), and
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observes a reward Xs
iid
∼ ρIs . The objective of the algorithm is to return Gε orMε

using as few total samples as possible.

Definition 6.3. (all-ε problem). An algorithm for the all-ε problem is δ-PAC if (a) the
algorithm has a finite stopping time τ with respect to Ft, (b) at time τ it recommends a set
Ĝ such that with probability at least 1 − δ, Ĝ = Gε in the additive case, or Ĝ =Mε in the
multiplicative case.

Notation: For any arm i ∈ [n], let µ̂i(t) denote the empirical mean after t
pulls. For all i ∈ [n], define the suboptimality gap ∆i := µ1 − µi. Without loss of
generality, we denote k = |Gε| (resp. k = |Mε|). Throughout, we will keep track of
the quantity αε := mini∈Gε µi − (µ1 − ε) which is the distance from the smallest
additive ε-good arm, denoted µk, to the threshold µ1 − ε. Additionally, if Gcε is
non-empty, we consider βε = mini∈Gcε(µ1 − ε) − µi, the distance of the largest arm
that is not additive ε-good, denoted µk+1, to the threshold. Equivalently, in the
case of returning multiplicative ε arms, we define α̃ε := mini∈Mε

µi − (1 − ε)µ1,
β̃ε := mini∈Mc

ε
(1− ε)µ1 −µi, µk, and µk+1 to be the smallest differences of arms in

Mε andMc
ε to (1 − ε)µ1 respectively. For our sample complexity results, we also

consider a relaxed version of the all-ε problem, where for a user-given slack γ > 0,
we allow our algorithm to return Ĝ that satisfies Gε ⊂ Ĝ ⊂ Gε+γ in the additive
case, orMε ⊂ Ĝ ⊂Mε+γ in the multiplicative case. As we will see, this prevents
large or potentially unbounded sample complexities when arms’ means are very
close to or equal µ1 − ε.

6.1.2 Contributions and Summary of Main Results

In this chapter we propose the new problem of finding all ε-good arms and give a
precise characterization of its complexity. Our contribution is threefold:

• Information-theoretic lower bounds for the all-ε problem.

• A novel algorithm, (ST)2, that is nearly optimal, is easy to implement, and has
excellent empirical performance on real-world data.
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• An instance optimal algorithm, FAREAST.

We now summarize our results in the additive setting (the multiplicative setting is
analogous).
Lower Bound and Algorithms. As a preview of our results, we highlight the
impact of three key quantities that affect the sample complexity: the user provided
ε and the instance dependent quantities αε and βε, (see Figure 6.2). In this case,
Theorem 6.4 implies that any δ-PAC algorithm requires an expected number of
samples exceeding

n∑
i=1

max
{

1
(µ1 − ε− µi)2 , 1

(µ1 + αε − µi)2

}
log
(

1
δ

)
. (6.2)
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Figure 6.2: An example in-
stance

We provide two algorithms, (ST)2 and FAREAST
for the all-ε problem. Our starting point, (ST)2 is
a novel combination of UCB Auer et al. (2002) and
LUCB Kalyanakrishnan et al. (2012) and is easier
to implement and has good empirical performance.
(ST)2 is nearly optimal, however in some instances
does not achieve the lower bound. To overcome
this gap, we provide an instance optimal algorithm
FAREAST which achieves the lower bound, however
suffers from larger constants and is not always better
in practical applications.

To highlight the difficulty of developing optimal algorithms for the all-ε prob-
lem, we quickly discuss a naive elimination approach that uniformly samples all
arms and eliminates arms once they are known to be above or below µ1 − ε and
not the best arm. Intuitively, such an algorithm would keep pulling arms until
µ1 −ε is estimated to an accuracy ofO(min(αε,βε)) to resolve the arms around the
threshold (see Figure 6.2). An elimination algorithm pays a high cost of exploration
- potentially over pulling arms close to µ1 compared to the lower bound until a time
when µ1 − ε is estimated sufficiently well. Our algorithm FAREAST provides a novel
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approach to overcome the issues with this approach. However, as we will show in
Section 6.4, in certain instances a dependence on

∑n
i=1(µ1 + βε − µi)

−2 is present
in moderate confidence, i.e., it is not multiplied by log(1/δ), unlike the lower bound
in equation (6.2) and becomes negligible compared to other terms as δ→ 0.
Empirical results. We demonstrate the empirical success of (ST)2 on a real world
dataset of 9250 captions from the NYCCC. In Fig. 6.4a, we compare (ST)2 to other
methods that have been used to run this contest. We show that (ST)2 is better able
to detect which arms have means within 10% of the best. The plot demonstrates
the sub-optimality of using existing sampling schemes such as UCB or LUCB with
an incorrect k for the all-ε problem, providing an additional empirical validation
for the study of this chapter.

6.1.3 Connections to prior Bandit art

Our problem is related to several prior pure-exploration settings in the multi-armed
bandit literature, including Top-k bandits, and threshold bandits.

Top-k. In the Top-k problem, the goal is to identify the set {µ1, · · · ,µk} with
probability greater than 1 − δ Kalyanakrishnan et al. (2012); Bubeck et al. (2013);
Kaufmann et al. (2016); Gabillon et al. (2012); Ren et al. (2019); Simchowitz et al.
(2017). The all-ε problem reduces to the setting of the Top-k problemwith k = |Gε|

when |Gε| is known. In particular, lower bounds for the Top-k problem apply to our
setting. A lower bound (with precise logarithmic factors) given in Simchowitz et al.
(2017) is

∑k
i=1(µi−µk+1)

−2 log((n−k)/δ)+
∑n
i=k+1(µi−µk)

−2 log(k/δ). In general,
this is smaller than our lower bound in Theorem 6.4 since µk > µ1 − ε > µk+1. A
particular case of this problem is best-arm identification when k = 1.

Approximate versions of the Top-k problemhave also been consideredwhere the
goal is to return a set of arms S with |S| = k and such that with probability greater
than 1 − δ, each i ∈ S satisfies µi > µk − ε Kalyanakrishnan et al. (2012); Karnin
et al. (2013). In the case where k = 1, this is also known as the problem of identi-
fying an (single) ε-good arm Mannor and Tsitsiklis (2004); Even-Dar et al. (2002);
Kalyanakrishnan et al. (2012); Even-Dar et al. (2006); Kalyanakrishnan and Stone
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(2010); Katz-Samuels and Jamieson (2020); Degenne and Koolen (2019); Gabillon
et al. (2012); Kaufmann andKalyanakrishnan (2013); Karnin et al. (2013); Simchowitz
et al. (2017) which has received a large amount of interest. If |Gε| = k, Kaufmann
et al. (2016), demonstrate a lower bound ofO((kε−2 +

∑n
i=k+1(µ1 −µi)

−2) log(1/δ))
samples in expectation to find such an arm and Karnin et al. (2013) provide an
algorithm that matches this to doubly logarithmic factors, though methods such as
Kalyanakrishnan et al. (2012); Simchowitz et al. (2017); Chaudhuri and Kalyanakr-
ishnan (2017, 2019) achieve better empirical performance. A particular instance of
interest is when it is known that one arm is at mean ε, and the rest are at mean zero.
In this setting, Mannor and Tsitsiklis (2004) show a lower bound on the sample
complexity of O(n/ε2 + 1/ε2 log(1/δ)) highlighting that the dependence on n only
occurs inmoderate confidence, i.e., for a fixed value of δ. They also provide amatching
upper bound that motivates our procedure in FAREAST. Finally Katz-Samuels and
Jamieson (2020) considers the unverifiable regime where there are potentially many
ε-good arms. In such cases, sample-efficient algorithms exist that return an ε-good
arm with high probability, but verifying it is ε-good requires far more samples.
Extending these ideas to the setting of all-ε is a goal of future work.

Threshold Bandits. In the threshold bandit problem, we are given a threshold τ
and the goal is to identify the set of armswhosemeans are greater than the threshold
Locatelli et al. (2016); Kano et al. (2019). If the value of µ1 were known, then all-ε
problem would reduce to a threshold bandit with τ = µ1 − ε. A naive sequential
sampling scheme that stops sampling an arm when its upper or lower confidence
bound clears the threshold has sample complexityO(

∑n
i=1(µi−τ)

−2 log(n/δ)). Up
to factors of log(n), this can be shown to be a lower bound for threshold bandits as
well, and as a result is bounded above by the result Theorem 6.4. Hence, all-ε is
intrinsically more difficult than threshold bandits. A naive approach to the all-ε
problem is to first identify the index and mean of the best arm using a best-arm
identification algorithm and then utilize it to build an estimate of the threshold
µ1 − ε. In general, this two-step procedure is sub-optimal if there are many arms
close to the best-arm in which case identifying the best-arm is both unnecessary and
expends unnecessary samples. In the fixed confidence setting, threshold bandits is
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closely related to that of multiple hypothesis testing, and recent work Jamieson and
Jain (2018) achieves tight upper and lower bounds for this problem including tighter
logarithmic factors similar to those for Top-k. If µ1 is known, then the additive all-ε
problem reduces to the FWER (family-wise error rate) and FWPD (family-wise
probability of detection) setting in Jamieson and Jain (2018). Finally, in the fixed
budget setting, Locatelli et al. (2016) proposes an optimal anytime method APT
whose sampling strategy we use as a comparison in Section 3.3.

6.2 Lower Bound

Theorem 6.4. (additive and multiplicative lower bounds) Fix δ, ε > 0. Consider n arms,
such that the ith is distributed according to N(µi, 1). Any δ-PAC algorithm for the additive
setting satisfies

E[τ] > 2
n∑
i=1

max
{

1
(µ1 − ε− µi)

2 , 1
(µ1 + αε − µi)2

}
log
(

1
2.4δ

)

and if µ1 > 0, any δ-PAC algorithm for the multiplicative algorithm satisfies,

E[τ] > 2
n∑
i=1

max
{

1
((1 − ε)µ1 − µi)

2 , 1
(µ1 +

α̃ε
1−ε − µi)2

}
log
(

1
2.4δ

)
.

The bounds are different but share a common interpretation. Consider the
additive case. First, every armmust be sampled inversely proportional to its squared
distance to µ1 − ε. In a manner similar to thresholding Locatelli et al. (2016), even
if µ1 − εwas known, these number of samples are necessary to decide if an arm’s
mean is above or below that quantity. This leads to the first term in the max{·, ·}.
The second term in the max{·, ·} states that every arm must be sampled inversely
proportional to its squared distance to µ1 +αε. Recall that αε = µk−(µ1 − ε) is the
margin by which arm k is good. Hence, to verify that k ∈ Gε, it is also necessary to
confirm that all means are below µ1 + αε, as µ1 + αε − ε > µk which would imply
that k is bad. This represents the necessity of estimating the threshold, and leads to
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the second term. For arms in Gcε, comparing against µ1 − ε is always more difficult,
but for arms in Gε, either constraint may be more challenging to ensure. We state
the bound for Gaussian distributions, but the same technique can be used to prove
equivalent results for other distributions. Lastly, we note that it is possible to prove
bounds with tighter logarithmic terms. For an instance where O(nφ) arms have
mean 2ε for φ ∈ (0, 1), and the remaining have mean 0, Theorem 1 of Malloy and
Nowak (2014) suggests thatΩ(n/ε2 log(n/δ)) samples are necessary, exceeding the
above bounds by a factor of log(n).

6.3 An Optimism Algorithm for all-ε

We propose algorithm 5 called (ST)2, (Sample the Threshold, Split the Threshold)
to return a set containing all ε-good arms and none worse than (ε+ γ)-good with
probability 1 − δ. Intuitively, (ST)2 runs UCB and LUCB1 in parallel. At all times,
(ST)2 pulls three arms. We pull the arm with the highest upper confidence bound,
similarly to the UCB algorithm, Auer et al. (2002), to refine an estimate of the
threshold using the highest empirical mean (Sample the Threshold). Using the
empirical estimate of the threshold, we pull an arm above it and an arm below it
whose confidence bounds cross it, similar to LUCB1, Kalyanakrishnan et al. (2012)
(Split the Threshold). Using these bounds, (ST)2 forms upper and lower bounds
on the true threshold, i.e. µ1 − ε (resp. (1 − ε)µ1) and terminates when it can
declare that all arms are either in Gε+γ or Gcε. To do so, (ST)2 maintains anytime
confidence widths, Cδ/n(t) such that for an empirical mean µ̂i(t) of t samples,
we have P(

⋃∞
t=1 |µ̂i(t) − µi| > Cδ/n(t)) 6 δ/n. For this work, we take Cδ(t) =√

cφ log(log2(2t)/δ)
t

for a constant cφ. It suffices to take cφ = 4, though tighter bounds
are known and should be used in practice, e.g. Jamieson et al. (2014); Kaufmann
et al. (2016); Howard et al. (2018).
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Algorithm 5 (ST)2: Sample the Threshold, Split the Threshold
Require: ε, δ > 0, γ > 0, instance ν
1: Pull each arm once, initialize Ti ← 1, update µ̂i for each i ∈ {1, 2, . . . ,n}
2: Empirically good arms: Ĝ = {i : µ̂i > maxj µ̂j − ε}, Ĝ = {i : µ̂i > (1 − ε)maxj µ̂j}
3: Ut = maxj µ̂j(Tj) + Cδ/n(Tj) − ε− γ and Lt = maxj µ̂j(Tj) − Cδ/n(Tj) − ε
4: Ut = (1 − ε− γ)

(
maxj µ̂j(t) + Cδ/n(Tj)

)
and Lt = (1 − ε)

(
maxj µ̂j(t) − Cδ/n(Tj)

)
5: Known arms: K = {i : µ̂i(Ti) + Cδ/n(Ti) < Lt or µ̂i(Ti) − Cδ/n(Ti) > Ut}
6: while K 6= [n] do
7: Pull arm i1(t) = arg min

i∈Ĝ\K
µ̂i(Ti) − Cδ/n(Ti), update Ti1 , µ̂i1

8: Pull arm i2(t) = arg max
i∈Ĝc\K µ̂i(Ti) + Cδ/n(Ti), update Ti2 , µ̂i2

9: Pull arm i∗(t) = arg maxi µ̂i(Ti) + Cδ/n(Ti), update Ti∗ , µ̂i∗
10: Update bounds Lt,Ut, sets Ĝ, K
11: end while
12: return The set of good arms {i : µ̂i(Ti) − Cδ/n(Ti) > Ut}

6.3.1 Theoretical guarantees

Next we present a pair of theorems on the sample complexity of (ST)2. For clarity,
we omit doubly logarithmic terms and defer such statements to Appendix 6.B.
Below we denote a∧ b := min{a,b}.

Theorem 6.5 (Additive Case). Fix ε > 0, 0 < δ 6 1/2, γ 6 16 and an instance ν such
that max(∆i, |ε − ∆i|) 6 8 for all i. With probability at least 1 − δ, there is a constant
c1 such that (ST)2 returns a set Ĝ such that Gε ⊂ Ĝ ⊂ G(ε+γ) in at most the following
number of samples.

c1 log
(n
δ

) n∑
i=1

max
{

1
(µ1 − ε− µi)2 , 1

(µ1 + αε − µi)2 , 1
(µ1 + βε − µi)2

}
∧

1
γ2

(6.3)

Given a positive slack γ, we are allowed to return an arm that is (ε+ γ)-good.
Thus a confidence width less than Ω(γ) on any arm is not needed, resulting in
the 1/γ2 term in Theorem 6.5. In particular this prevents unbounded sample
complexities if there is an arm at the threshold µ1 − ε. For γ = 0, the first two
terms inside the max are also present in the lower bound (Theorem 6.4). When αε
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is within a constant factor of βε, the second and third term in the max have the
same order, and the upper bound matches the lower bound up to a log(n) factor.

If βε � αε, (6.3) has a different scaling than the lower bound. In such restrictive
settings the upper bound above can be significantly larger than the lower bound.
In the next section, we provide an algorithm that overcomes these issues and is
optimal over all parameter regimes. The multiplicative case has different terms but
follows the same intuition.

Theorem 6.6 (Multiplicative Case). Fix ε ∈ (0, 1/2], γ ∈ [0, min(16/µ1, 1/2)] and
0 < δ 6 1/2 and an instance ν such that µ1 > 0 and max(∆i, |εµ1 − ∆i|) 6 2 for
all i. With probability at least 1 − δ, for a constant c1 (ST)2 returns a set G such that
Mε ⊂ G ⊂M(ε+γ) with sample complexity:

c1 log
(n
δ

) n∑
i=1

max
{

1
((1 − ε)µ1 − µi)

2 , 1
(µ1 +

α̃ε
1−ε − µi)2 , 1

(µ1 +
β̃ε

1−ε − µi)2

}
∧

1
γ2µ2

1
.

6.4 Surprising Complexity of Finding All ε-Good
arms

When αε and βε are not of the same order, (ST)2 is not optimal. In this section we
present an algorithm that is optimal for all parameter regimes. We focus on the
additive case here, and defer the multiplicative case to Appendix 6.F. We first state
an improved sample complexity lower bound for a family of problem instances
that makes explicit the moderate confidence terms.

Theorem 6.7. Fix δ 6 1/16, n > 2/δ, and ε > 0. Let ν be an instance of n arms such
that the ith is distributed as N(µi, 1), |G2βε | = 1, and βε < ε/2. Select a permutation
π : [n]→ [n] uniformly from the set ofn! permutations, and consider the permuted instance
π(ν). Any algorithm that returns Gε(π(ν)) on π(ν) correctly with probability at least
1− δ requires at least the following number of samples in expectation over randomness in ν
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and π for a universal constant c2.[
c2

n∑
i=1

max
{

1
(µ1 − ε− µi)

2 , 1
(µ1 + αε − µi)

2

}
log
(

1
2.4δ

)]
+ c2

n∑
i=1

1
(µ1 + βε − µi)2

(6.4)

Proof. (Sketch) To give a tight lower bound in the setting where |G2βε | = 1 and
βε < ε/2, we break our argument into pieces performing a series of reductions
that link the all-ε problem to a hypothesis test, and then the hypothesis test to
the problem of identifying the best-arm. We apply the Simulator technique from
Simchowitz et al. (2017) to compute precise moderate confidence bounds. Other
works that prove strong lower bounds in moderate confidence include Chen et al.
(2017). We extend the Simulator technique via a novel reduction to composite
hypothesis testing in order to connect to all-ε. In all cases, we consider sample
complexity in expectation with respect to the randomness in the outcomes and a
randomly chosen permutation of the means.

Step 1. Finding an isolated best arm: Consider the problem of finding the best
arm where µ1 = β > 0 and µ2, · · · ,µn 6 −β. This relates to the problem of finding
a β-good arm when µ1 is known, studied by Mannor and Tsitsiklis (2004). We
use the Simulator technique, Simchowitz et al. (2017), to show that any algorithm
requiresΩ

(∑n
i=2∆

−2
i

)
samples in expectation. This can be significantly larger than

the asymptotically optimal rate of O(β−2 log(1/δ)) (which was proven by Mannor
and Tsitsiklis (2004)) for non-asymptotic δ, e.g. δ = 0.05.

Step 2. Deciding if Any mean is positive: We then consider a composite hy-
pothesis test on n distributions where the null hypothesis, H0, is that the mean of
each distribution is less that−β and the alternate hypothesis,H1, is that there exists
a single distribution i∗ with mean β and the remainder have mean less than −β.
Importantly, an algorithm does not need to declare which arm is i∗, otherwise the
bound from step 1 applies immediately. Instead, to link this to step 1, we develop a
novel extension of the simulator technique and use this to show that if an algorithm
can solve this composite hypothesis test in fewer than o

(∑n
i=2∆

−2
i

)
samples, then
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one may design a method to solve the problem in step 1 in o
(∑n

i=2∆
−2
i

)
samples

which is a contradiction. Hence any algorithm for this hypothesis test requires
Ω
(∑n

i=2∆
−2
i

)
samples in expectation.

Step 3: Reducing all-ε to Step 2: Finally, we show that a generic algorithm for
all-ε can be used to solve the hypothesis test in step 2. Hence the lower bound
from step 2 applies to finding all ε-good arms as well. In the case of the instances
considered in the theorem statement, O

(∑n
i=2∆

−2
i

)
= O

(∑n
i=2(µ1 + βε − µi)

−2).
Combining this bound, which is independent of δwith the result from Theorem 6.4
gives the result.

Theorem 6.7 states that an additional Ω(
∑n
i=1(µ1 + βε − µi)

−2) samples are
necessary for instances where no arm is within 2βε of µ1 compared to the lower
bound Theorem 6.4. Somewhat surprisingly, these samples are necessary in moderate
confidence, independent of δ and negligible as δ → 0. For non-asymptotic values
of δ, such as the common choice of δ = .05 in scientific applications, this term
is present and can even dominate the sample complexity when βε � αε. As an
extreme example, if µ1 = β > 0, µ2 · · · ,µn−1 = −β,µn = −ε, the first term in 6.4
scales like ((n− 1)/ε2 + 1/β2) log(1/δ) but the second term scales like n/β2, which
is O(n) larger than the first term for small β and fixed δ. Furthermore, we point
out that Theorem 6.7 highlights that (ST)2 is optimal on these instances up to a
log factor! The algorithm we present next, FAREAST, improves (ST)2’s dependence
on δ and matches the lower bound in Theorem 6.7 for certain instances. Though
moderate confidence terms can dominate the sample complexity in practice, few
works have focused on understanding their effect.

6.4.1 FAREAST

We focus on the additive case with γ = 0 in Algorithm 6.4.1, FAREAST, and defer
the more general case (multiplicative and γ > 0) to Algorithm 6.F.1 in the supple-
mentary. FAREAST matches the instance dependent lower bound in Theorem 6.4 as
δ→ 0. At a high level, FAREAST (Fast Arm Removal Elimination Algorithm for a
Sampled Threshold) proceeds in rounds r and maintains sets Ĝr and B̂r of arms
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thus far declared to be good or bad. It sorts unknown arms into either set through
use of a good filter to detect arms in Gε and a bad filter to detect arms in Gcε.
Good Filter: The good filter is a simple elimination scheme. It maintains an up-
per bound Ut and lower bound Lt on µ1 − ε. If an arm’s upper bound drops
below Lt (line 20), the good filter eliminates that arm, otherwise, if an arm’s lower
bound rises above Ut (19), the good filter adds the arm to Ĝr, but only eliminates
this arm if its upper bound falls below the highest lower bound. This ensures
that µ1 is never eliminated and Ut and Lt are always valid bounds 1. As the sam-
pling is split across rounds, the good filter always samples the least sampled arm,
breaking ties arbitrarily. The number of samples given to the good filter in each
round is such that both filters receive identically many samples. This prevents the
good filter from over-sampling bad arms and vice versa. In our proof we show
that in an unknown round, Ĝr = Gε, ie all good arms have been found, having
used fewer than O

(∑n
i=1 max

{
(µ1−ε−µi)

−2, (µ1+αε−µi)
−2} log(n/δ)

)
samples,

matching the lower bound.
FAREAST cannot yet terminate, however, as it must also verify that any remaining

arms are in Gcε.
Bad Filter: The bad filter removes arms that are not ε-good. To show an arm i is in
Gcε, it suffices to find any j such that µj − µi > ε. To motivate the idea of lines 9-12,
consider the following procedure in the special casewhereβi = µ1−ε−µi is known.
In each round we first run Median-Elimination, Even-Dar et al. (2002), with failure
probability 1/16, to find an arm î that is βi/2-good in O(n/β2

i) samples2. We then
pull both i and î roughlyO(1/β2

i log(1/δ)) times and can check whether µî−µi > ε
with probability greater than 1 − δ. This procedure relies on Median-Elimination
succeeding, which happens with probability 15/16. In the case that it fails and we
declare µî − µi < ε, we merely repeat this process until it succeeds– on average
O(1) times. This gives an expected sample complexity of O(n/β2

i + 1/β2
i log(1/δ))

for any i ∈ Gcε. Of course, βi is unknown to the algorithm. Instead, in each round r,
1This scheme works as an independent algorithm, we analyze it in Appendix 6.F.5.
2Median-Elimination is used for ease of analysis. One can use LUCBKalyanakrishnan et al.

(2012) or another method instead.
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the bad filter guesses that βi > 2−r for all unknown arms i /∈ Ĝr ∪ B̂r and performs
the above procedure. The following theorem demonstrates that this algorithm
matches our lower bounds asymptotically as δ→ 0.

Theorem 6.8. Fix 0 < ε, 0 < δ < 1/8, and an instance ν ofn arms such thatmax(∆i, |ε−
∆i|) 6 8 for all i. There exists an event E such that P(E) > 1 − δ and on E, FAREAST

terminates and returns Gε. Letting T denote the number of samples taken, for a constant c3

E[1ET ] 6

[
c3

n∑
i=1

max
{

1
(µ1 − ε− µi)2 , 1

(µ1 + αε − µi)2

}
log
(n
δ

)]
+ c3

∑
i∈Gcε

c ′′n

(µ1 − ε− µi)2 .

Additionally for γ 6 16 FAREAST terminates on E and returns a set Ĝ such thatGε ⊂ Ĝ ⊂
Gε+γ in a number of samples no more than a constant times (6.3), the complexity of (ST)2.
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Algorithm 6.4.1: additive FAREAST with γ = 0
Input: ε, δ, instance ν
Let Ĝ0 = ∅ be the set of arms declared as good and B̂0 = ∅ the set of arms declared as bad.
Let A = [n] be the active set, Ni = 0 track the total number of samples of arm i by the Good Filter.
Let t = 0 denote the total number of times that line 16 is true in the Good Filter.
for r = 1, 2, · · ·

1

2

3

4

5

6

Let δr = δ/2r2, τr =
⌈
22r+3 log

(
8n
δr

)⌉
, Initialize Ĝr = Ĝr−1 and B̂r = B̂r−1

// Bad Filter: find bad arms in Gcε
Let ir = MedianElimination(ν, 2−r, 1/16), sample ir τr times and compute µ̂ir
for i /∈ Ĝr−1 ∪ B̂r−1:

7

8

9

10

Sample µi τr times and compute µ̂i
If µ̂ir − µ̂i > ε+ 2−r+1: Add i to B̂r // Bad arm detected

11

12

// Good Filter: find good arms in Gε
for s = 1, · · · ,HME(n, 2−r, 1/16) + (|(Ĝr−1 ∪ B̂r−1)

c|+ 1)τr:
13

14

Pull arm Is ∈ arg minj∈A{Nj} and set NIs ← NIs + 1.
if minj∈A{Nj} = maxj∈A{Nj}:

15

16

Update t = t+1. LetUt = maxj∈A µ̂i(t)+Cδ/2n(t)−ε and Lt = maxj∈A µ̂i(t)−Cδ/2n(t)−ε

for i ∈ A:
17

18

if µ̂i(t)−Cδ/2n(t) > Ut: Add i to Ĝr // Good arm detected

if µ̂i(t)+Cδ/2n(t) 6 Lt: Remove i fromA and add i to B̂r // Bad arms removed

if i ∈ Ĝr and µ̂i(t)+Cδ/2n(t) 6 maxj∈A µ̂(t)−Cδ/2n(t): // Good arms removed

19

20

21

Remove i from A22

if A ⊂ Ĝr or Ĝr ∪ B̂r = [n]: Return the set Ĝr23

6.5 Empirical Performance

We begin by comparing (ST)2 and FAREAST on simulated data. FAREAST is asymp-
totically optimal, but suffers worse constant factors compared to (ST)2 3. (ST)2 is
optimal except when βε � αε. We compare (ST)2 and FAREAST on two instances
in the additive case, shown in Figure 6.3. All arms are Gaussian with σ = 1. In
the first example on the left, δ = 0.1, αε = βε = 0.05. Both (ST)2 and FAREAST
are optimal in this setting; we show the scaling of their sample complexity as the
number of arms increases while keeping the threshold, αε, and βε constant. In the
second example, αε = ε = 0.99, and β = 0.01. When 1/β2

ε � n/ε2, Theorem 6.4
3Implementations of all algorithms and baselines used in this chapter are available on GitHub.

https://github.com/blakemas/all_epsilon
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(b) A more challenging setting

Figure 6.3: Comparison of (ST)2 and FAREAST averaged over 250 trials plotted with
3 standard errors.
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(a) NYCCC with ε = 0.1
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(b) Cancer drug discovery with ε = 0.8

Figure 6.4: F1 scores averaged over 600 trials with 95% confidence widths for each
dataset.

suggests that O(1/β2
ε log(1/δ)) samples are necessary, independent of n. Indeed,

in Figure 6.3, for δ = 0.01, the average complexity of FAREAST is constant, but (ST)2

scales linearly with n as Theorem 6.5 suggests. Finally, a naive uniform sampling
strategy performed very poorly - additional experiments including the uniform
sampling method and with γ > 0 are in the Appendix 6.A.

6.5.1 Finding all ε-good arms in real world data – fast

As discussed in the introduction, in many applications such as the New Yorker
Cartoon Caption Contest (NYCCC), the all-ε objective returns a set of good arms
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(b) Recall curves for ε = 0.1

Figure 6.5: Precision and recall averaged over 600 trials with 95% confidence widths
on NYCCC data.
which can then be screened further to choose a favorite. We considered Contest
651, which had 9250 captions whose means we estimated from a total of 2.2 million
ratings. We set ε = 0.1 and focus on the multiplicative setting, i.e., the objective
of recovering all captions within 10% of the funniest one. In this experiment, we
contrast (ST)2 with several other methods including two oracle methods (marked
with N): LUCB1 Kalyanakrishnan et al. (2012) with k set to the number of ε-good
arms (here it was 46), and a threshold-bandit, APT Locatelli et al. (2016) given the
value of 0.9µ1. We focus on a common practical requirement, each algorithm’s
ability to balance precision and recall as it samples. With every new sample, each
method recommends an empirical set of ε-good arms based on the empirical means,
and we consider the F1 score of this set4. We focus on the F1 score as it is practically
relevant and provides a continuousmeasure of performance of eachmethod. F1 = 1
indicates that an algorithm has found all ε-good arms. As can be seen in Figure 6.4a,
(ST)2 outperforms all baselines including the oracle APT, and almost matches the
performance of the Top-k oracle! We transition from a solid line to a dashed one at
2.2M pulls to mark the number of samples drawn in the real contest from which
we gather the data. To illustrate the importance of knowing the correct value of
k, we also plot LUCB1 given k = 46/2 = 23 and k = 46 × 2 = 92, settings where

4F1 is the harmonic mean of precision (fraction of captions returned that are actually good) and
recall (fraction of all good captions that are actually returned).
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the experimenter under or over estimates the number of ε good arms by as little
as a factor of 2. Both cases result in a poor performance. We have also included
UCB, currently being used for the contestTanczos et al. (2017); the plot shows that
UCB is not able to estimate the ε-good set. In Figure 6.5, we show precision and
recall curves for each method on the NYCCC data. (ST)2 achieves near-perfect
precision quickly, matched only by UCB. APT’s poor performance is a consequence
of having low-precision, shown in Figure 6.5a. (ST)2 achieves high recall more
slowly, but is still competitive with other methods. In practical experiments, high
precision early on may be more important than high recall, as it guarantees that
practitioners can trust the declarations that the algorithm has made, even if some
arms are yet to be found. In the Supplementary we show plots for more values of
ε. Additionally, motivated by drug discovery, we performed an experiment on a
dataset Drewry et al. (2017) of 189 inhibitors whose activities were tested against
ACVRL1, a kinase associated with cancer Bocci et al. (2019). In this experiment, we
use the multiplicative case of all-ε with ε = 0.8 and δ = 0.001, to promote high
precision. In this experiment as well, (ST)2 performs best (Figure 6.4b), with only
the oracle methods are competitive with it. We plot on a log-scale to emphasize the
early regime.

6.6 Broader Impacts

The application of machine learning (ML) in domains such as advertising, biology,
or medicine brings the possibility of utilizing large computational power and large
datasets to solve new problems. It is tempting to use powerful, if not fully under-
stood, ML tools tomaximize scientific discovery. However, at times the gap between
a tool’s theoretical guarantees and its practical performance can lead to sub-optimal
behavior. This is especially true in adaptive data collection where misspecifying
the model or desired output (e.g., “return the top k performing compounds” vs.
“return all compounds with a potency about a given threshold”) may bias data
collection and hinder post-hoc consideration of different objectives. In this chapter
we highlight several such instances in real-life data collection using multi-armed
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bandits where such a phenomenon occurs. We believe that the objective studied in
this work, that of returning all arms whose mean is quantifiably near-best, more
naturally aligns with practical objectives as diverse as finding funny captions to
performing medical tests. We point out that methods from adaptive data collection
and multi-armed bandits can also be used on content-recommendation platforms
such as social media or news aggregator sites. In these scenarios, time and again,
we have seen that recommendation systems can be greedy, attempting purely to
maximize clickthrough with a long term effect of a less informed public. Adjacent
to one of the main themes of this chapter, we recommend that practitioners not just
focus on the objective of recommendation for immediate profit maximization but
rather keep track of a more holistic set of metrics. We are excited to see our work
used in practical applications and believe it can have a major impact on driving the
process of scientific discovery.
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appendices

6.A Additional Experimental Results

Practical changemade to FAREAST for simulations: Wemake one change to FAREAST
that we recommend for practitioners wishing to use FAREAST that improve its em-
pirical performance. In particular, Median-Elimination may instead be replaced
by another method, such as LUCB1, Kalyanakrishnan et al. (2012), to find ε-good
arms. LUCB1, for instance, has better constant factors and enjoys improved empirical
performance versus Median-Elimination. The use of Median-Elimination in this
algorithm serves to ease both notation and analysis since it’s sample complexity is
deterministic. To modify the algorithm, simply track the number of samples given
to the bad filter in total, which can be a random variable, and give the good filter
the same number in that round. The proof then follows identically, with only the
moderate confidence term changing in the result.

Additional Simulations Results As mentioned in the Experiments, Section 6.5,
we omitted curves comparing against uniform sampling as they make the plots
hard to read with uniform performing much more poorly. For completeness, we
include them in Figure 6.A.1. Clearly, uniform sampling performs much more
poorly than either active method, as expected.

Additionally, we include experiments with γ > 0 here. For small γ, the only
valid solution is Gε (resp. Mε) itself. However, for larger γ, there are many valid
solutions. Indeed, any G such that Gε ⊂ G ⊂ Gε+γ is valid. To analyze the effect
of γ on both (ST)2 and FAREAST, we consider the same type of instances studied
in Figure 6.3b. Here, n − 1 arms have means equal to µ1, and a single arm is in
Gcε. Again, we take ε = 0.99 and βε = 0.01, and additionally, set n = 150 arms.
Recall that in this setting, FAREAST outperforms (ST)2, as shown in Figure 6.3b. As
we increase γ, the problem becomes easier. We increase γ on an exponential scale,
beginning with γ ≈ ε/100 and ending with γ ≈ ε/2. Indeed, for smaller values
of γ, FAREAST is superior as it finds the exact solution fastest. For larger γ, (ST)2 is
able to terminated more quickly. In Figure 6.A.2 we plot these results.
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(a) Plot in Figure 6.3a with uniform sam-
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Figure 6.A.1: Simulation results with uniform sampling included.
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Figure 6.A.2: (ST)2 and FAREAST with different values of γ

Metrics we consider for real data experiments: For all methods, we track their
precision, recall and F1 score with respect to the true set of ε-good arms. To
compute these metrics, at each time, the algorithm outputs a set that it guesses
are the ε-good arms based on the data it has gathered thus far. For UCB, Uniform,
and (ST)2, this is based directly on empirical means, i.e., Ĝ = {i : µ̂i > maxj µ̂j − ε}
or Ĝ = {i : µ̂i > maxj(1 − ε)µ̂j} in the multiplicative case. Oracle methods may
use their additional information to return the set. In particular, APT returns all
arms whose empirical means exceed (1 − ε)µ1 (using knowledge of µ1) and LUCB1
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returns the k largest empirical means (using knowledge that |Mε| = k. Let TP (true
positives) denote the number of arms that an algorithm declares as ε-good that
truly are. Let FN (false negatives denote) the number of arms that an algorithm
declares as not ε-good when in fact they are. Recall, r ∈ [0, 1], is computed as
r = TP

TP+FN
. Intuitively, recall is the total number of ε-good arms that the algorithm

detects. Precision, p ∈ [0, 1], by contrast is the the fraction of the arms that an
algorithm predicts as ε-good that truly are. It is computed as p = max(TP/|Ĝ|, 1)
where the max() is necessary to avoid the trivial case that Ĝ = ∅. Finally, the F1
is the harmonic mean of precision and recall: F1 = 2pr

p+r
. It balances how precise

an algorithm is with how many discoveries it makes. In many cases, F1 may a
more relevant metric than the others, as it avoids trivial edge cases. For instance,
an algorithm that always declare every arm as ε-good independent of the data,
achieves perfect recall because it has 0 false negatives. Similarly, an algorithm that
never declares any arms as ε-good, again independent of data, achieves perfect
precision. Both methods, despite seemingly good performance with respect to their
individual metrics, are undesirable in practice. In particular, both would achieve
low F1 scores.

The New Yorker Caption Contest: In this section we provide additional ex-
perimental results adjoining those in Section 6.5. The data can be downloaded at
https://github.com/nextml/caption-contest-data. We chose contest 651 for our
experiments, but hundreds of others are available. Captions are rated on a scale of 1
to 3 (“unfunny”, “somewhat funny”, or “funny”). It is desirable to find all captions
that are nearly as good as the best. However, setting a fixed number of captions or
fraction of captions to accept is undesirable as the number of truly funny captions
varies from week to week and represents a small fraction of the submissions. For
instance, in the contest that ran the week of 3/14/16, only 8 captions were rated
within 20% of the funniest caption. In the following week, by contrast, 187 captions
were. Similarly, a choosing a fixed threshold of what it means for a caption to be
funny is unrealistic. In the same two contests, first week saw 3% of captions be rated
at least 1.5 out of 3 whereas the second saw < 0.1%. For this reason, finding all
ε-good arms is more natural. We consider finding all multiplicative ε-good arms

https://github.com/nextml/caption-contest-data
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Figure 6.A.3: The user interface for the caption contest with the caption for contest
651. “Unfunny” = 1, “Somewhat funny” = 2, “Funny” = 3

with ε = 0.1, 0.15, 0.2. To keep the comparison fair, all methods use the same confi-
dence widths from Howard et al. (2018). In Figure 6.A.4b we plot the average rating
of each caption in sorted order with horizontal lines corresponding to (1 − 0.2)µ1,
(1− 0.15)µ1, and (1− 0.1)µ1. The arms with means above this line are 0.2, 0.15, and
0.1 ε-good. The oracle methods tend to achieve high recall, but low precision, and
this is especially true for the threshold oracle, APT. In Figures 6.A.5, 6.A.6, 6.A.7
we plot F1, Precision, and Recall curves for all methods tested on ε = 0.2, 0.15, 0.1
respectively. As before, all curves are averaged over 600 independent repetitions
and plotted with 95% confidence intervals. It is evident from these curves, that
(ST)2 performs especially well with regard to precision, though it achieves lower
recall than some other baselines.

Protein Kinase Inhibitors for Cancer Drug Discovery: Additionally, we con-
sider a second, medically focused experiment. In 2013, researchers at GlaxoSmithK-
line published a dataset of protein kinase inhibitors different kinases (PKIS1),
primarily from humans Dranchak et al. (2013). Kinases are a family of enzymes
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Figure 6.A.5: F1, Precision, and Recall scores on the New Yorker Caption Contest
with ε = 0.2
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Figure 6.A.6: F1, Precision, and Recall scores on the New Yorker Caption Contest
with ε = 0.15
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Figure 6.A.7: F1, Precision, and Recall scores on the New Yorker Caption Contest
with ε = 0.1

present in many cells and researchers are interested in developing targeted kinase
inhibitors to as a new way to treat cancer Christmann-Franck et al. (2016). The
dataset contains numerous measures of how strongly each inhibitor reacts with
each kinase. A second, larger dataset (PKIS2) was expanded on by Drewry et al.
(2017)5. For the purpose of our experiment, we selected a single Kinase in the
dataset, ACVRL1, which researchers have linked to numerous types of cancer, most
prominently bladder and prostate cancers Bocci et al. (2019). PKIS2 contains 641
different compounds that were tested as being potential kinase inhibitors, though
not every compound was tested against every kinase. In particular, 189 were tested
against ACVRL1. For each compound, there is an associated average “percent
inhibition” that is reported. All numbers are between 0 and 1 and averaged across
multiple trials in a single assay. We subtract each number from 1 to compute the
percent control, representing how effective any method is relative to a control, an
important metric for estimating how effective that compound is against the target,
ACRVL1. A meta-analysis, done by Christmann-Franck et al. (2016), reported that
these values have log-normal distributions with variance less than 1. Therefore, we
compute the log of each percent control andmay sample from a normal distribution
with that mean and variance 1. As before, we plot F1, precision, and recall for all
methods. To simulate being in a medical research regime where a higher level of

5The dataset can be downloaded at the following link:
https://doi.org/10.1371/journal.pone.0181585.s004.

https://doi.org/10.1371/journal.pone.0181585.s004
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Figure 6.A.8: Precision and Recall curves for the PKIS2 cancer drug discovery
experiment with ε = 0.8

precision is often desired, we take δ = 0.001. We test each method on returning all
multiplicative ε-good arms with ε = 0.8 and plot the results in Figure 6.A.8. Note
that these curves are plotted on a log-scale to emphasize the early regime of this
experiment. It is likewise true here that the oracle baselines perform better on recall
than they do on precision. (ST)2 again performs well with respect to precision,
and is more competitive with respect to recall in this experiment. Finally, (ST)2 is
competitive versus oracle methods on F1 score and greatly outperforms UCB and
uniform sampling.
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6.B (ST)2, An optimism based algorithm for all-ε

Algorithm 6 The (ST)2 Algorithm
Require: Instance ν, ε > 0, δ ∈ (0, 1/2], γ > 0 (ε ∈ (0, 1/2], and γ ∈

[0, min(16/µ1, 1/2)])
1: Pull each arm once, initialize Ti ← 1, update µ̂i for each i ∈ {1, 2, . . . ,n}
2: Empirically good arms: Ĝ = {i : µ̂i > maxj µ̂j − ε} or Ĝ = {i : µ̂i > (1 −
ε)maxj µ̂j}

3: Ut = maxj µ̂j(Tj)+Cδ/n(Tj)−ε−γ orUt = (1−ε−γ)
(
maxj µ̂j(t) + Cδ/n(Tj)

)
4: Lt = maxj µ̂j(Tj) − Cδ/n(Tj) − ε or Lt = (1 − ε)

(
maxj µ̂j(t) − Cδ/n(Tj)

)
5: Known arms: K = {i : µ̂i(Ti) + Cδ/n(Ti) < Lt or µ̂i(Ti) − Cδ/n(Ti) > Ut}
6: while K 6= [n] do
7: Pull arm i1(t) = arg mini∈Ĝ\K µ̂i(Ti) − Cδ/n(Ti), update Ti1 , µ̂i1
8: Pull arm i2(t) = arg maxi∈Ĝcε\K µ̂i(Ti) + Cδ/n(Ti), update Ti2 , µ̂i2
9: Pull arm i∗(t) = arg maxi µ̂i(Ti) + Cδ/n(Ti), update Ti∗ , µ̂i∗
10: Update bounds Lt,Ut, sets Ĝ, K
11: end whilereturn The set of good arms {i : µ̂i(Ti) − Cδ/n(Ti) > Ut}

6.B.1 Optimism with additive γ

Theorem 6.9. Fix ε > 0, 0 < δ 6 1/2, γ ∈ [0, 16] and an instance ν such that
max(∆i, |ε − ∆i|) 6 8 for all i. In the case that Gε = [n], let αε = min(αε,βε). With
probability at least 1 − δ, (ST)2 correctly returns a set G such that Gε ⊂ G ⊂ Gε+γ in at
most

12
n∑
i=1

min
{

max
{

1024
(µ1 − ε− µi)2 log

(
2n
δ

log2

(
3072n

δ(µ1 − ε− µi)2

))
,

4096
(µ1 + αε − µi)2 log

(
2n
δ

log2

(
12288n

δ(µ1 + αε − µi)2

))
,

4096
(µ1 + βε − µi)2 log

(
2n
δ

log2

(
12288n

δ(µ1 + βε − µi)2

))}
,

1
γ2 log

(
2n
δ

log2

(
3072n
δγ2

))}
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samples.

Proof. Throughout the proof, recall that ∆i = µ1 − µi for all i, αε = mini∈Gε µi −
(µ1 − ε), and βε = mini∈Gcε(µ1 − ε) − µi. Additionally, at any time t, we will take
Tj(t) to denote the number of samples of arm j up to time t.

Define the event

E =

 ⋂
i∈[n]

⋂
t∈N

|µ̂i(t) − µi| 6 Cδ/n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=√
4 log(log2(2t)/δ)

t
, we have

P(Ec) = P

 ⋃
i∈[n]

⋃
t∈N

|µ̂i − µi| > Cδ/n(t)


6

n∑
i=1

P

(⋃
t∈N

|µ̂i − µi| > Cδ/n(t)

)
6

n∑
i=1

δ

n
= δ

Hence, P (E) > 1 − δ. Throughout, we will make use of a function h(x, δ) such that
if t > h(x, δ), then Cδ(t) 6 |x|. We bound h(·, ·) in Lemma 6.32. h(·, ·) is assumed to
decrease monotonically in both arguments and is symmetric in its first argument.

6.B.1.1 Step 0: Correctness

We begin by showing that on E, if (ST)2 terminates, it returns a set G such that
Gε ⊂ G ⊂ Gε+γ. Since P (E) > 1 − δ, this implies that (ST)2 is correct with high
probability.

Claim 0: On Event E, at all times t, Ut > µ1 − ε− γ.
Proof.

Ut = max
j
µ̂j(Tj(t)) + Cδ/n(Tj(t)) − ε− γ > µ̂1(T1(t)) + Cδ/n(T1(t)) − ε− γ
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E

> µ1 − ε− γ

Claim 1: On Event E, at all times t, Lt 6 µ1 − ε.
Proof.

Lt = max
j
µ̂j(Tj(t)) − Cδ/n(Tj(t)) − ε

E

6 max
j
µj − ε = µ1 − ε

Claim 2: On event E, if there is a time t such that µ̂i(Ti(t)) − Cδ/n(Ti(t)) > Ut,
then i ∈ Gε+γ.

Proof. Assume for some t, µ̂i(Ti(t)) − Cδ/n(Ti(t)) > Ut. Then

µi
E

> µ̂i(Ti(t)) − Cδ/n(Ti(t)) > Ut
Claim 0
> µ1 − ε− γ

which implies i ∈ Gε+γ
Claim 3: On event E, if there is a time t such that µ̂i(Ti(t)) + Cδ/n(Ti(t)) < Lt,

then i ∈ Gcε.
Proof. Assume that is a t for which µ̂i(Ti(t)) + Cδ/n(Ti(t)) < Lt. Then

µi
E

6 µ̂i(Ti(t)) + Cδ/n(Ti(t)) 6 Lt
Claim 1
6 µ1 − ε

which implies i ∈ Gcε.
(ST)2 terminates at any time t such that simultaneously for all arms i, either

µ̂i(Ti(t)) + Cδ/n(Ti(t)) > Ut or µ̂i(Ti(t)) − Cδ/n(Ti(t)) < Lt. On E, by Claim
3, Gε ⊂ {i : µ̂i(Ti(t)) + Cδ/n(Ti(t)) > Ut}. On E, by Claim 2, {i : µ̂i(Ti(t)) +

Cδ/n(Ti(t)) > Ut} ⊂ Gε+γ. Hence, on the event E. (ST)2 returns a set G such that
Gε ⊂ G ⊂ Gε+γ.
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6.B.1.2 Step 1: Complexity of estimating the threshold, µ1 − ε

Let STOPdenote the termination event that for all arms i, either µ̂i(Ti(t))+Cδ/n(Ti(t)) >
Ut or µ̂i(Ti(t)) − Cδ/n(Ti(t)) < Lt. Letω denote the quantity

ω := max{γ, min(αε,βε)}.

Let T denote the random variable of the total number of rounds before (ST)2 ter-
minates. At most 3 samples are drawn in any round. Hence, the total sample
complexity is bounded by 3T . We may write T as

T := |{t : ¬STOP}| = |{t : ¬STOP and i∗ /∈ Gω}|+ |{t : ¬STOP and i∗ ∈ Gω}|

Next, we bound the first event in this decomposition.
Claim 0: On E,
|{t : ¬STOP and i∗ /∈ Gω}| 6

∑
i∈Gcω min

{
h
(
γ
2 , δ
n

)
, min

[
h
(
∆i
2 , δ
n

)
,h
(

min(αε,βε)
2 , δ

n

)]}
.

Proof. If for each i ∈ Gcω, µi+ 2Cδ/n(Ti(t)) < µ1 is true, which is ensured when
Ti(t) > h

(
∆i/2, δ

n

)
for all i ∈ Gcω, then

µ̂i(Ti(t)) + Cδ/n(Ti(t))
E

6 µi + 2Cδ/n(Ti(t)) < µ1
E

6 µ̂1(T1(t)) + Cδ/n(T1(t))

which implies that i 6= i∗. Additionally, since i ∈ Gcω by assumption, we have that
µ1 −ω − µi > 0, which reduces to ∆i > ω. Since ω = max(γ, min(αε,βε)), it is
likewise true that

h

(
∆i

2 , δ
n

)
= min

[
h

(
γ

2 , δ
n

)
, min

{
h

(
∆i

2 , δ
n

)
,h
(

min(αε,βε)
2 , δ

n

)]}
.

Summing over all i ∈ Gcω achieves the result.
We may decompose the set {t : ¬STOP and i∗ ∈ Gω} as{

t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) >
ω

16

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16

}
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Claim 1:
∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) > ω

16

}∣∣
6
∑
i∈Gω min

{
h
(
γ
16 , δ

n

)
, min

[
h
(
∆i
8 , δ
n

)
,h
(

min(αε,βε)
16 , δ

n

)]}
Proof. Cδ/n(Ti(t)) 6 ω

16 is true when Ti(t) > h
(
ω
16 , δ

n

)
. Since i∗ ∈ Gω, µi−(µ1−

ω) > 0, which implies ∆i 6 ω. By definition,ω = min(γ, min(αε,βε)). Hence, by
monotonicity of h(·, ·),

h

(
ω

16, δ
n

)
= min

[
h

(
∆i

16 , δ
n

)
,h
(
ω

16, δ
n

)]
= min

{
h

(
γ

16, δ
n

)
, min

[
h

(
∆i

16 , δ
n

)
,h
(

min(αε,βε)
16 , δ

n

)]}
Summing over all i ∈ Gω achieves the desired result.

6.B.1.3 Step 2: Controlling “crossing” events

Recall that we sample i1(t) ∈ Ĝ and i2(t) ∈ Ĝc. In this section, we control the
number of times that i1(t) ∈ Gcε+γ

2
and i2(t) ∈ Gε+γ

2
.

To do so, wefirst decompose the set
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6 ω

16

}
as {

t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6
ω

16 and i1(t) ∈ Gcε+γ
2

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gε+γ
2

}
Claim0:

∣∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6 ω
16 and i1(t) ∈ Gcε+γ

2

}∣∣∣ 6∑
i∈Gc

ε+
γ
2

min
[
h
(
∆i−ε

8 , δ
n

)
,h
(
γ
8 , δ
n

)]
.

Proof. Recall that Ĝ is the set of all arms whose empirical means exceed
maxi µ̂i(Ti(t)) − ε, and i1(t) ∈ Ĝ by definition. Note that maxi µ̂i(Ti(t)) − ε >
maxi µ̂i(Ti(t)) − Cδ/n(Ti(t)) − ε = Lt. Hence, if an arm’s upper bound is be-
low Lt, then the arm cannot be in Ĝ and thus not be i1(t). By the above event,
Cδ/n(Ti∗(t)) 6 ω

16 . Hence,

µ∗i +
ω

8 > µ
∗
i + 2Cδ/n(Ti∗(t))

E

> µ̂∗i (Ti∗(t)) + Cδ/n(Ti∗(t)) > µ̂1(T1(t)) + Cδ/n(T1(t))
E

> µ1.
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Therefore, µi∗ > µ1 −
ω
8 or equivalently, i∗ ∈ Gω/8. Using this,

Lt = max
i
µ̂i(Ti(t)) − Cδ/n(Ti(t)) − ε > µ̂i∗(Ti∗(t)) − Cδ/n(Ti∗(t)) − ε

E

> µi∗ − 2Cδ/n(Ti∗(t)) − ε
E

> µi∗ −
ω

8 − ε

> µ1 −
ω

4 − ε

Next, we bound the number of times an arm i ∈ Gc
ε+γ

2
is sampled before its upper

bound is below µ1−
ω
4 −ε. Note that Cδ/n(Ti(t)) < 1

2

(
µ1 −

ω
4 − ε− µi

)
, true when

Ti(t) > h
(1

2

(
µ1 −

ω
4 − ε− µi

)
, δ
n

)
implies that

µ̂i(Ti(t)) + Cδ/n(Ti(t))
E

6 µi + 2Cδ/n(Ti(t)) < µ1 −
ω

4 − ε 6 Lt.

Finally, we turn our attention to the difference µ1 −
ω
4 − ε − µi. Recall that ω =

max(γ, min(αε,βε)).

µ1 −
ω

4 − ε− µi = (µ1 − ε) − µi −
1
4ω

= (µ1 − ε) − µi −
1
4 max(γ, min(αε,βε)).

By definition, βε = mini∈Gcε(µ1 − ε) − µi. Hence, min(αε,βε) 6 (µ1 − ε) − µi

for all i ∈ Gc
ε+γ

2
. Similarly, since i ∈ Gc

ε+γ
2
by assumption, (µ1 − ε −

γ
2 ) − µi > 0,

which rearranges to γ
2 6 (µ1 − ε) − µi. Therefore,

(µ1 − ε) − µi −
1
4 max(γ, min(αε,βε)) >

1
2
((µ1 − ε) − µi) =

∆i − ε

2 .
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Hence, by monotonicity of h(·, ·),

h

(
1
2

(
µ1 −

ω

4 − ε− µi

)
, δ
n

)
6 h

(
∆i − ε

4 , δ
n

)
.

Lastly, as above, since i ∈ Gc
ε+γ

2
, we have that ∆i − ε = (µ1 − ε) − µi > 1

2γ. Hence,

h

(
∆i − ε

4 , δ
n

)
6 min

[
h

(
∆i − ε

8 , δ
n

)
,h
(
γ

8 , δ
n

)]
.

Putting this together, if Ti(t) > min
[
h
(
∆i−ε

8 , δ
n

)
,h
(
γ
8 , δ
n

)]
, then i 6= i1(t) for all

i ∈ Gc
ε+γ

2
. Summing over all such i bounds the size of set stated in the claim.

We decompose the remaining event{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gε+γ
2

}
as {

t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6
ω

16 and i1(t) ∈ Gε+γ
2
and i2(t) ∈ Gε+γ

2

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gε+γ
2
and i2(t) ∈ Gcε+γ

2

}
.

We proceed by bounding the size of the first set.
Claim 1:∣∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gε+γ
2
and i2(t) ∈ Gε+γ

2

}∣∣∣
6
∑

i∈G
ε+
γ
2

min
[
h

(
ε∆i

8 , δ
n

)
,h
(
γ

8 , δ
n

)]

Proof. Recall thatK = {i : µ̂(Ti(t))+Cδ/n(Ti(t)) < Lt or µ̂(Ti(t))−Cδ/n(Ti(t)) >
Lt} and i2 is sampled from the set Ĝc\K, ie all arms in Ĝc who have not been
declared as above Ut or below Lt. Hence, if an arm’s lower bound exceeds Ut =
maxi µ̂(Ti(t)) + Cδ/n(Ti(t)) − ε − γ, it must be in K an thus cannot be i2. Recall
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that i∗(t) = arg max µ̂i(Ti(t)) + Cδ/n(Ti(t)). By the above event, i∗(t) ∈ Gω and
Cδ/n(Ti∗(t)) 6 ω

16 . Hence,

Ut = max
i
µ̂i(Ti(t)) + Cδ/n(Ti(t)) − ε− γ = µ̂i∗(t)(Ti∗(t)(t)) + Cδ/n(Ti∗(t)(t)) − ε− γ

E

6 µi∗(t) + 2Cδ/n(Ti∗(t)(t)) − ε− γ

6 µi∗(t) +
ω

8 − ε− γ

6 µ1 +
ω

8 − ε− γ

Next, we bound the number of times an arm i ∈ Gε+γ
2
is sampled before its lower

bound is above µ1 +
ω
8 − ε− γ. Note that Cδ/n(Ti(t)) < 1

2

(
µi − (µ1 +

ω
8 − ε− γ)

)
,

true when Ti(t) > h
(1

2

(
µi − (µ1 +

ω
8 − ε− γ)

)
, δ
n

)
implies that

µ̂i(Ti(t)) − Cδ/n(Ti(t))
E

> µi − 2Cδ/n(Ti(t)) > µ1 +
ω

8 − ε− γ.

Finally, we turn our attention to the difference µi − (µ1 +
ω
8 − ε− γ). Recall that

ω = max(γ, min(αε,βε)).

µi −
(
µ1 +

ω

8 − ε− γ
)
= µi − (µ1 − ε) + γ−

1
8ω

Case 1a,ω = min(αε,βε) and i ∈ Gε:.
By definition, αε = mini∈Gε µi − (µ1 − ε) . Hence, min(αε,βε) 6 µi − (µ1 − ε)

for all i ∈ Gε. Therefore,

µi − (µ1 − ε) + γ−
1
8ω = µi − (µ1 − ε) + γ−

1
8 min(αε,βε)

> max
(
µi − (µ1 − ε) −

1
8 min(αε,βε),γ

)
> max

(
7
8(µi − (µ1 − ε)),γ

)
Case 1b,ω = min(αε,βε) and i ∈ Gcε ∩Gε+γ

2

Since ω = max(γ, min(αε,βε)), if ω = min(αε,βε), then 1
2γ < min(αε,βε).
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Since min(αε,βε) = min |µi − (µ1 − ε)|, the set Gcε ∩ Gε+γ
2
is empty and there is

nothing to prove.
Case 2a,ω = γ and i ∈ Gε:

µi − (µ1 − ε) + γ−
1
8ω = µi − (µ1 − ε) +

7
8γ > max

(
µi − (µ1 − ε),

7
8γ
)

Case 2b,ω = γ and i ∈ Gcε ∩Gε+γ
2
:

For i ∈ Gcε∩Gε+γ
2
, we have that µi−(µ1−ε−γ/2) > 0. Hence µi−(µ1−ε) >

−γ
2 .

Therefore,

µi − (µ1 − ε) + γ−
1
8ω >

3
8γ = max

(
3
8((µ1 − ε) − µi),

3
8γ
)

.

Applying the above cases and using monotonicity of h(·, ·), we see that for
i ∈ Gε+γ

2
,

h

(
1
2

(
µi −

(
µ1 +

ω

8 − ε
))

, δ
n

)
6 min

[
h

(
ε− ∆i

8 , δ
n

)
,h
(
γ

8 , δ
n

)]
.

Hence, if any i ∈ Gε+γ
2
has received this many samples, then its lower bound

exceeds Ut and thus the arm must be in Ĝ. Putting this together, if Ti(t) >
min

[
h
(
ε−∆i

8 , δ
n

)
,h
(
γ
8 , δ
n

)]
, then i 6= i2(t) for all i ∈ Gε+γ

2
. Summing over all

such i bounds the size of set stated in the claim.

6.B.1.4 Step 3: Controlling the complexity until stopping occurs

In this step, we turn our attention to the final event to control:

S :=
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gε+γ
2
and i2(t) ∈ Gcε+γ

2

}
.

For brevity, we will refer to this set as S for this step. The objective will be to bound
the time before each arms lower bound either clears Ut or its upper bound clears
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Lt which implies the stopping condition. To do so, we introduce, two events:

E1(t) := {µ̂i1(t)(Ti1(t)(t)) − Cδ/n(Ti1(t)(t)) > Ut} (6.5)

and
E2(t) := {µ̂i2(t)(Ti2(t)(t)) + Cδ/n(Ti2(t)(t)) < Lt}. (6.6)

If E1(t) is true, then µ̂i(Ti) − Cδ/n(Ti(t)) > Lt for all i ∈ Ĝ. If E2(t) is true, then
µ̂i(Ti) + Cδ/n(Ti(t)) < Ut for all i ∈ Ĝc. Hence, by line 6 of (ST)2, if both E1(t) and
E2(t) are true, then (ST)2 terminates.

Claim 0: |S ∩ {t : ¬E1(t)}| 6
∑
i∈G

ε+
γ
2

min
[
h
(
ε−∆i

8 , δ
n

)
,h
(
γ
8 , δ
n

)]
.

Proof. Recall that by the set S, we have that i1(t) ∈ Gε+γ
2
. Furthermore, by the

set S, we have that i∗(t) ∈ Gω and Cδ/n(Ti∗(t)) 6 ω/16. Hence,

Ut = max
i
µ̂i(Ti(t)) + Cδ/n(Ti(t)) − ε− γ

= µ̂i∗(t)(Ti∗(t)(t)) + Cδ/n(Ti∗(t)(t)) − ε− γ

E

6 µi∗(t) + 2Cδ/n(Ti∗(t)(t)) − ε− γ

6 µi∗(t) +
ω

8 − ε− γ

6 µ1 +
ω

8 − ε− γ

If Cδ/n(Ti) 6 1
2

(
µi −

(
µ1 +

ω
8 − ε− γ

))
which is true when

Ti > h
(1

2

(
µi −

(
µ1 +

ω
8 − ε− γ

))
, δ
n

)
, then

µ̂i(Ti) − Cδ/n(Ti) > µi − 2Cδ/n(Ti) > µ1 +
ω

8 − ε− γ > Ut.

The remainder of the proof of this claim focuses on controlling the difference:
µi −

(
µ1 +

ω
8 − ε− γ

)
in the case that ω = min(αε,βε) and ω = γ. Recall that

ω = max(γ, min(αε,βε)). Hence, if any possible i ∈ Gε+γ
2
has received sufficiently

many samples, since i1(t) ∈ Gε+γ
2
, this implies E1(t).

Case 1a,ω = min(αε,βε) and i ∈ Gε
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We focus on the difference µi −
(
µ1 +

ω
8 − ε− γ

)
.

µi −
(
µ1 +

ω

8 − ε− γ
)
= µi −

(
µ1 +

min(αε,βε)
8 − ε− γ

)
= µi − (µ1 − ε) + γ−

1
8 min(αε,βε)

(γ>0)
>

1
2(µi − (µ1 − ε)) =

ε− ∆i
2

where the final step follows since min(αε,βε) 6 αε 6 µi − (µ1 − ε) by definition
for all i ∈ Gε. Then by monotonicity of h(·, ·),

h

(
1
2

(
µi −

(
µ1 +

ω

8 − ε− γ
))

, δ
n

)
6 h

(
ε− ∆i

4 , δ
n

)
.

Lastly, in this setting, γ 6 min(αε,βε) 6 ε− ∆i sinceω = min(αε,βε). Hence, it
is trivially true that

h

(
ε− ∆i

4 , δ
n

)
= min

[
h

(
ε− ∆i

4 , δ
n

)
,h
(
γ

4 , δ
n

)]
Case 1b,ω = min(αε,βε) and i ∈ Gcε ∩Gε+γ

2

Since ω = max(γ, min(αε,βε)), if ω = min(αε,βε), then 1
2γ < min(αε,βε).

Since min(αε,βε) = min |µi − (µ1 − ε)|, the set Gcε ∩ Gε+γ
2
is empty and there is

nothing to prove.
Case 2a,ω = γ and i ∈ Gε
Again, we bound the difference µi −

(
µ1 +

ω
4 − ε− γ

)
.

µi −
(
µ1 +

ω

8 − ε− γ
)
= µi − (µ1 − ε) +

7
8γ

Since i ∈ Gε, µi − (µ1 − ε) > 0. Hence,

µi − (µ1 − ε) +
7
8γ > max

(
µi − (µ1 − ε),

7
8γ
)
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>
1
2 max (ε− ∆i,γ)

Therefore, we have that

h

(
1
2

(
µi −

(
µ1 +

ω

8 − ε− γ
))

, δ
n

)
6 h

(
ε− ∆i

4 , δ
n

)
and

h

(
1
2

(
µi −

(
µ1 +

ω

8 − ε− γ
))

, δ
n

)
6 h

(
γ

4 , δ
n

)
.

Hence,

h

(
1
2

(
µi −

(
µ1 +

ω

4 − ε− γ
))

, δ
n

)
6 min

[
h

(
ε− ∆i

4 , δ
n

)
,h
(
γ

4 , δ
n

)]
.

Case 2b,ω = γ and i ∈ Gcε ∩Gε+γ
2

As before,

µi −
(
µ1 +

ω

8 − ε− γ
)
= µi − (µ1 − ε) +

7
8γ

Since i ∈ Gcε ∩Gε+γ
2
, we have that µi − (µ1 − ε−

γ
2 ) > 0. Rearranging implies that

µi − (µ1 − ε) > −1
2 γ. Hence,

µi − (µ1 − ε) +
7
8γ >

3
8γ.

Hence,

h

(
1
2

(
µi −

(
µ1 +

ω

8 − ε− γ
))

, δ
n

)
6 h

(
γ

8 , δ
n

)
.

Additionally, as above, if i ∈ Gcε ∩Gε+γ
2
, we have that µi − (µ1 − ε−

γ
2 ) > 0 which

implies that (µ1 − ε) − µi 6 γ. Hence

h

(
γ

8 , δ
n

)
= min

[
h

(
∆i − ε

8 , δ
n

)
,h
(
γ

8 , δ
n

)]
.
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Therefore, if Ti exceeds the above, then E1(t) is true for an i1 ∈ Gcε ∩Gε+γ
2
. Com-

bining all cases, and noting that h(x, δ) > h(x/2, δ) ∀x, we see that for i1 ∈ Gε+γ
2
,

if
Ti1(t)(t) > min

[
h

(
ε− ∆i

8 , δ
n

)
,h
(
γ

8 , δ
n

)]
,

Then E1(t) is true. Summing over all possible i1 ∈ Gε+γ
2
proves the claim.

Claim 1: |S ∩ {t : E1(t)} ∩ {t : ¬E2(t)}| 6
∑
i∈Gc

ε+
γ
2

min
[
h
(
ε−∆i

8 , δ
n

)
,h
(
γ
8 , δ
n

)]
.

Proof. By the events in set S, Cδ/n(Ti∗(t)) 6 ω
16 . Hence,

µ∗i +
ω

8 > µ
∗
i + 2Cδ/n(Ti∗(t))

E

> µ̂∗i (Ti∗(t)) + Cδ/n(Ti∗(t)) > µ̂1(T1(t)) + Cδ/n(T1(t))
E

> µ1.

Therefore, µi∗ > µ1 −
ω
8 or equivalently, i∗ ∈ Gω/8. Using this,

Lt = max
i
µ̂i(Ti(t)) − Cδ/n(Ti(t)) − ε > µ̂i∗(Ti∗(t)) − Cδ/n(Ti∗(t)) − ε

E

> µi∗ − 2Cδ/n(Ti∗(t)) − ε
E

> µi∗ −
ω

8 − ε

> µ1 −
ω

4 − ε

For i ∈ Gc
ε+γ

2
, if Cδ/n(Ti) 6 1

2

((
µ1 −

ω
4 − ε

)
− µi

)
, true when

Ti > h
(1

2

((
µ1 −

ω
4 − ε

)
− µi

)
, δ
n

)
, then

µ̂i(Ti) + Cδ/n(Ti) 6 µi + 2Cδ/n(Ti) 6 µ1 −
ω

4 − ε 6 Lt.

As before, we seek a lower bound for the difference
(
µ1 −

ω
4 − ε

)
− µi.

Case 1: ω = min(αε,βε)(
µ1 −

ω

4 − ε
)
− µi = (µ1 − ε) − µi −

1
4 min(αε,βε)

>
1
2
((µ1 − ε) − µi)
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since (µ1 − ε) − µi > min(αε,βε). Therefore, we have that

h

(
1
2

((
µ1 −

ω

4 − ε
)
− µi

)
, δ
n

)
6 h

(
∆i − ε

4 , δ
n

)
.

Lastly, in this setting, γ 6 min(αε,βε) 6 ε− ∆i sinceω = min(αε,βε). Hence, it
is trivially true that

h

(
∆i − ε

4 , δ
n

)
= min

[
h

(
∆i − ε

4 , δ
n

)
,h
(
γ

4 , δ
n

)]
.

Case 2: ω = γ

Assume that γ > min(αε,βε), as equality is covered by the previous case.
Hence, (

µ1 −
ω

4 − ε
)
− µi = (µ1 − ε) − µi −

1
4γ

Recall that we seek to control i2 ∈ Gcε+γ
2
. For any i ∈ Gc

ε+γ
2
, we have that µ1 − ε−

γ
2 − µi > 0. Rearranging, we see that (µ1 − ε) − µi > 1

2γwhich implies that

(µ1 − ε) − µi −
1
4γ >

1
2((µ1 − ε) − µi).

Therefore, we have that

h

(
1
2

((
µ1 −

ω

4 − ε
)
− µi

)
, δ
n

)
6 h

(
∆i − ε

4 , δ
n

)
is this setting as well. Similarly, since ∆i − ε > 1

2γ, we likewise have that

h

(
∆i − ε

4 , δ
n

)
6 min

[
h

(
∆i − ε

8 , δ
n

)
,h
(
γ

8 , δ
n

)]
.

Hence, if Ti exceeds the right-hand side of the preceding inequality, then for any
i ∈ Gc

ε+γ
2
, its upper bound is below Lt. Hence for i2(t) ∈ Gcε+γ

2
, this implies event

E2(t). Summing over all possible values of i2(t) ∈ Gcε+γ
2
proves the claim.
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Claim2: The cardinality of S is bounded as |S| 6
∑n
i=1 min

[
h
(
∆i−ε

8 , δ
n

)
,h
(
γ
8 , δ
n

)]
.

Proof. First, S may be decomposed as

|S| = |S ∩ {t : ¬E1(t)}|+ |S ∩ {t : E1(t)} ∩ {t : ¬E2(t)}|+ |S ∩ {t : E1(t)} ∩ {t : E2(t)}|

Note that |S ∩ {t : E1(t)} ∩ {t : E2(t)}| = 0 because we have assumed in set S
that (ST)2 has not stopped, and {t : E1(t)} ∩ {t : E2(t)} implies termination. By
Claim 0, |S ∩ {t : ¬E1(t)}| 6

∑
i∈G

ε+
γ
2

min
[
h
(
ε−∆i

4 , δ
n

)
,h
(
γ
4 , δ
n

)]
. By Claim 1,

|S ∩ {t : E1(t)} ∩ {t : ¬E2(t)}| 6
∑
i∈Gc

ε+
γ
2

min
[
h
(
ε−∆i

8 , δ
n

)
,h
(
γ
8 , δ
n

)]
. Recalling that

h is assumed to be symmetric in its first argument proves the claim.

6.B.1.5 Step 4: Putting it all together

Recall that the total number of rounds T that (ST)2 runs for is given by T = |{t :

¬STOP}|. To bound this quantity, we have decomposed the set {t : ¬STOP} into
many subsets. Below, we show this decomposition.

{t : ¬STOP} =

{t : ¬STOP and i∗ /∈ Gω}

∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) >

ω

16

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gcε+γ
2

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gε+γ
2
and i2(t) ∈ Gε+γ

2

}
∪
{
t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gε+γ
2
and i2(t) ∈ Gcε+γ

2

}
.

Hence, by a union bound and plugging in the results of the above steps,

|{t : ¬STOP}| 6

|{t : ¬STOP and i∗ /∈ Gω}|

+
∣∣∣{t : ¬STOP and i∗ ∈ Gω and ∃i ∈ Gω : Cδ/n(Ti∗(t)) >

ω

16

}∣∣∣
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+
∣∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gcε+γ
2

}∣∣∣
+
∣∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gε+γ
2
and i2(t) ∈ Gε+γ

2

}∣∣∣
+
∣∣∣{t : ¬STOP and i∗ ∈ Gω and Cδ/n(Ti∗(t)) 6

ω

16 and i1(t) ∈ Gε+γ
2
and i2(t) ∈ Gcε+γ

2

}∣∣∣
6
∑
i∈Gcω

min
{
h

(
γ

2 , δ
n

)
, min

[
h

(
∆i

2 , δ
n

)
,h
(

min(αε,βε)
2 , δ

n

)]}
+
∑
i∈Gω

min
{
h

(
γ

16, δ
n

)
, min

[
h

(
∆i

16 , δ
n

)
,h
(

min(αε,βε)
16 , δ

n

)]}
+
∑

i∈Gc
ε+
γ
2

min
[
h

(
∆i − ε

8 , δ
n

)
,h
(
γ

8 , δ
n

)]

+
∑

i∈G
ε+
γ
2

min
[
h

(
ε− ∆i

8 , δ
n

)
,h
(
γ

8 , δ
n

)]

+

n∑
i=1

min
[
h

(
∆i − ε

8 , δ
n

)
,h
(
γ

8 , δ
n

)]
(ε61/2)
6

n∑
i=1

min
{
h

(
γ

16, δ
n

)
, min

[
h

(
∆i

16 , δ
n

)
,h
(

min(αε,βε)
16 , δ

n

)]}

+ 2
n∑
i=1

min
[
h

(
∆i − ε

8 , δ
n

)
,h
(
γ

8 , δ
n

)]

6 4
n∑
i=1

min
{

max
{
h

(
∆i − ε

16 , δ
n

)
, min

[
h

(
∆i

16 , δ
n

)
,h
(

min(αε,βε)
16 , δ

n

)]}
,

h

(
γ

16, δ
n

)}
Next, by Lemma 6.33, we may bound the minimum of h(·, ·) functions.

4
n∑
i=1

min
{

max
{
h

(
∆i − ε

16 , δ
n

)
, min

[
h

(
∆i

16 , δ
n

)
,h
(

min(αε,βε)
16 , δ

n

)]}
,

h

(
γ

16, δ
n

)}
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= 4
n∑
i=1

min
{

max
{
h

(
∆i − ε

16 , δ
n

)
,

min
[
h

(
∆i

16 , δ
n

)
, max

[
h

(
αε

16 , δ
n

)
,h
(
βε

16 , δ
n

)]]}
,

h

(
γ

16, δ
n

)}
6 4

n∑
i=1

min
{

max
{
h

(
∆i − ε

16 , δ
n

)
,

max
[
h

(
∆i + αε

32 , δ
n

)
,h
(
∆i + βε

32 , δ
n

)]}
,

h

(
γ

16, δ
n

)}
= 4

n∑
i=1

min
{

max
{
h

(
∆i − ε

16 , δ
n

)
,h
(
∆i + αε

32 , δ
n

)
,h
(
∆i + βε

32 , δ
n

)}
,

h

(
γ

16, δ
n

)}
Finally, we use Lemma 6.32 to bound the function h(·, ·). Since δ 6 1/2, δ/n 6

2e−e/2. Further, |ε − ∆i| 6 8 for all i and ε 6 1/2 implies that 1
8 |ε − ∆i| 6 2 and

1
8 min(αε,βε) 6 2. ∆i 6 16 for all i, gives 0.125∆i 6 2. Lastly, γ 6 16 implies that
γ
8 6 2. Therefore,

4
n∑
i=1

min
{

max
{
h

(
∆i − ε

16 , δ
n

)
,h
(
∆i + αε

32 , δ
n

)
,h
(
∆i + βε

32 , δ
n

)}
,

h

(
γ

16, δ
n

)}
6 4

n∑
i=1

min
{

max
{

1024
(ε− ∆i)2 log

(
2n
δ

log2

(
3072n

δ(ε− ∆i)2

))
,

4096
(∆i + αε)2 log

(
2n
δ

log2

(
12288n

δ(∆i + αε)2

))
,

4096
(∆i + βε)2 log

(
2n
δ

log2

(
12288n

δ(∆i + βε)2

))}
,
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1
γ2 log

(
2n
δ

log2

(
3072n
δγ2

))}
= 4

n∑
i=1

min
{

max
{

1024
(µ1 − ε− µi)2 log

(
2n
δ

log2

(
3072n

δ(µ1 − ε− µi)2

))
,

4096
(µ1 + αε − µi)2 log

(
2n
δ

log2

(
12288n

δ(µ1 + αε − µi)2

))
,

4096
(µ1 + βε − µi)2 log

(
2n
δ

log2

(
12288n

δ(µ1 + βε − µi)2

))}
,

1
γ2 log

(
2n
δ

log2

(
3072n
δγ2

))}
.

The above bounds the number of rounds T . Therefore, the total number of samples
is at most 3T .

6.B.2 Optimism with multiplicative γ

Theorem 6.10. Fix ε ∈ (0, 1/2], 0 < δ 6 1/2, γ ∈ [0, min(16/µ1, 1/2)] and an
instance ν such that max(∆i, |εµ1 − ∆i|) 6 8 for all i. In the case thatMε = [n], let
α̃ε = min(α̃ε, β̃ε). With probability at least 1 − δ, (ST)2 correctly returns a set G such
thatMε ⊂ G ⊂Mε+γ in at most

12
n∑
i=1

min
{

max
{

1024
((1 − ε)µ1 − µi)2 log

(
2n
δ

log2

(
3072n

δ((1 − ε)µ1 − µi)2

))
,

4096
(µ1 +

α̃ε
1−ε − µi)2 log

(
2n
δ

log2

(
12288n

δ(µ1 +
α̃ε

1−ε)
2

))
,

4096
(µ1 +

β̃ε
1−ε − µi)2

log
(

2n
δ

log2

(
12288n

δ(µ1 +
β̃ε

1−ε − µi)2

))}
,

1024
γ2µ2

1
log
(

2n
δ

log2

(
3072n
δγ2µ2

1

))}
samples.

Proof. Throughout the proof, recall that ∆i = µ1 − µi for all i, α̃ε = mini∈Mε
µi −
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(1 − ε)µ1, and β̃ε = mini∈Mc
ε
(1 − ε)µ1 − µi. Additionally, at any time t, we will

take Tj(t) to denote the number of samples of arm j up to time t.
Define the event

E =

 ⋂
i∈[n]

⋂
t∈N

|µ̂i(t) − µi| 6 Cδ/n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=√
4 log(log2(2t)/δ)

t
, we have

P(Ec) = P

 ⋃
i∈[n]

⋃
t∈N

|µ̂i − µi| > Cδ/n(t)


6

n∑
i=1

P

(⋃
t∈N

|µ̂i − µi| > Cδ/n(t)

)
6

n∑
i=1

δ

n
= δ

Hence, P (E) > 1 − δ. Throughout, we will make use of a function h(x, δ) such that
if t > h(x, δ), then Cδ(t) 6 |x|. We bound h(·, ·) in Lemma 6.32. h(·, ·) is assumed to
decrease monotonically in both arguments and is symmetric in its first argument.

6.B.2.1 Step 0: Correctness

We begin by showing that on E, if (ST)2 terminates, it returns a set G such that
Mε ⊂ G ⊂M(ε+γ). Since P (E) > 1 − δ, this implies that (ST)2 is correct with high
probability.

Claim 0: On Event E, at all times t, Ut > (1 − ε− γ)µ1.
Proof.

Ut = (1 − ε− γ)(max
j
µ̂j(Tj(t)) + Cδ/n(Tj(t))) > (1 − ε− γ)(µ̂1(T1(t)) + Cδ/n(T1(t)))

E

> (1 − ε− γ)µ1
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Claim 1: On Event E, at all times t, Lt 6 (1 − ε)µ1.
Proof.

Lt = (1 − ε)

(
max
j
µ̂j(Tj(t)) − Cδ/n(Tj(t))

)
E

6 (1 − ε)max
j
µj = (1 − ε)µ1

Claim 2: On event E, if there is a time t such that µ̂i(Ti(t)) − Cδ/n(Ti(t)) > Ut,
then i ∈Mε+γ.

Proof. Assume for some t, µ̂i(Ti(t)) − Cδ/n(Ti(t)) > Ut. Then

µi
E

> µ̂i(Ti(t)) − Cδ/n(Ti(t)) > Ut
Claim 0
> (1 − ε− γ)µ1

which implies i ∈Mε+γ

Claim 3: On event E, if there is a time t such that µ̂i(Ti(t)) + Cδ/n(Ti(t)) < Lt,
then i ∈Mc

ε.
Proof. Assume that is a t for which µ̂i(Ti(t)) + Cδ/n(Ti(t)) < Lt. Then

µi
E

6 µ̂i(Ti(t)) + Cδ/n(Ti(t)) 6 Lt
Claim 1
6 (1 − ε)µ1

which implies i ∈Mc
ε.

(ST)2 terminates at any time t such that simultaneously for all arms i, either
µ̂i(Ti(t)) + Cδ/n(Ti(t)) > Ut or µ̂i(Ti(t)) − Cδ/n(Ti(t)) < Lt. On E, by Claim
3, Mε ⊂ {i : µ̂i(Ti(t)) + Cδ/n(Ti(t)) > Ut}. On E, by Claim 2, {i : µ̂i(Ti(t)) +

Cδ/n(Ti(t)) > Ut} ⊂Mε+γ. Hence, on the event E. (ST)2 returns a set G such that
Mε ⊂ G ⊂Mε+γ.

6.B.2.2 Step 1: Complexity of estimating the threshold, (1 − ε)µ1

Let STOPdenote the termination event that for all arms i, either µ̂i(Ti(t))+Cδ/n(Ti(t)) >
Ut or µ̂i(Ti(t)) − Cδ/n(Ti(t)) < Lt. Letω denote the quantity

ω := max{γµ1, min(α̃ε, β̃ε)}.
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Let T denote the random variable of the total number of rounds before (ST)2 ter-
minates. At most 3 samples are drawn in any round. Hence, the total sample
complexity is bounded by 3T . We may write T as

T ≡ |{t : ¬STOP}| = |{t : ¬STOP and i∗ /∈Mω/µ1}|+ |{t : ¬STOP and i∗ ∈Mω/µ1}|

Next, we bound the first event in this decomposition.
Claim 0: On E, |{t : ¬STOP and i∗ /∈Mω/µ1}| 6∑
i∈Mc

ω/µ1
min
{
h
(
γµ1

2 , δ
n

)
, min

[
h
(
∆i
2 , δ
n

)
,h
(

min(α̃ε,β̃ε)
2 , δ

n

)]}
.

Proof. For each i ∈Mc
ω/µ1

,µi+2Cδ/n(Ti(t)) < µ1, truewhen Ti(t) > h
(
∆i/2, δ

n

)
implies that

µ̂i(Ti(t)) + Cδ/n(Ti(t))
E

6 µi + 2Cδ/n(Ti(t)) < µ1
E

6 µ̂1(T1(t)) + Cδ/n(T1(t))

which implies that i 6= i∗. Additionally, since i ∈Mc
ω/µ1

by assumption, we have
that (1−ω/µ1)µ1−µi > 0, which reduces to∆i > ω. Sinceω = max(γµ1, min(α̃ε, β̃ε)),
it is likewise true that

h

(
∆i

2 , δ
n

)
= min

[
h

(
γµ1

2 , δ
n

)
, min

{
h

(
∆i

2 , δ
n

)
,h
(

min(α̃ε, β̃ε)
2 , δ

n

)]}
.

Summing over all i ∈Mc
ω/µ1

achieves the result.
We may decompose the event {t : ¬STOP and i∗ ∈Mω/µ1} as{
t : ¬STOP and i∗ ∈Mω/µ1 and ∃i ∈Mω/µ1 : Cδ/n(Ti∗(t)) >

ω

16(1 − ε)

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6

ω

16(1 − ε)

}

Claim 1:
∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) > ω

16(1−ε)

}∣∣∣
6
∑
i∈Mω/µ1

min
{
h
(
γµ1
16 , δ

n

)
, min

[
h
(
∆i
16 , δ

n

)
,h
(

min(α̃ε,β̃ε)
16(1−ε) , δ

n

)]}
Proof. Cδ/n(Ti(t)) 6 ω

16(1−ε) is true when Ti(t) > h
(

ω
16(1−ε) ,

δ
n

)
. Since i∗ ∈

Mω/µ1 , µi − (1 − ω/µ1)µ1 > 0, which implies ∆i 6 ω. By definition, ω =
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min(γµ1, min(α̃ε, β̃ε)). Hence, by monotonicity of h(·, ·),

h

(
ω

16(1 − ε)
, δ
n

)
= min

[
h

(
∆i

16(1 − ε)
, δ
n

)
,h
(

ω

16(1 − ε)
, δ
n

)]
= min

{
h

(
γµ1

16(1 − ε)
, δ
n

)
, min

[
h

(
∆i

16(1 − ε)
, δ
n

)
,h
(

min(α̃ε, β̃ε)
16(1 − ε)

, δ
n

)]}
6 min

{
h

(
γµ1

16 , δ
n

)
, min

[
h

(
∆i

16 , δ
n

)
,h
(

min(α̃ε, β̃ε)
16(1 − ε)

, δ
n

)]}
.

Summing over all i ∈Mω/µ1 achieves the desired result.

6.B.2.3 Step 2: Controlling “crossing” events

Recall that we sample i1(t) ∈ Ĝ and i2(t) ∈ Ĝc. In this section, we control the
number of times that i1(t) ∈Mc

ε+γ
2
and i2(t) ∈Mε+γ

2
.

To do so, wefirst decompose the set
{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6 ω

16(1−ε)

}
as{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6

ω

16(1 − ε)
and i1(t) ∈Mc

ε+γ
2

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6

ω

16(1 − ε)
and i1(t) ∈Mε+γ

2

}

Claim0:
∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6 ω

16(1−ε) and i1(t) ∈M
c
ε+γ

2

}∣∣∣ 6∑
i∈Mc

ε+
γ
2

min
[
h
(
∆i−εµ1

16 , δ
n

)
,h
(
γµ1
16 , δ

n

)]
.

Proof. Recall that Ĝ is the set of all arms whose empirical means exceed (1 −

ε)maxi µ̂i(Ti(t)), and i1(t) ∈ Ĝ by definition. Note that (1 − ε)maxi µ̂i(Ti(t)) >
(1 − ε)

(
maxi µ̂i(Ti(t)) − Cδ/n(Ti(t))

)
= Lt. Hence, if an arm’s upper bound is

below Lt, then the arm cannot be in Ĝ and thus not be i1(t). By the above event,
Cδ/n(Ti∗(t)) 6 ω

16(1−ε) . Therefore,

µi∗ +
ω

8(1 − ε)
> µi∗ + 2Cδ/n(Ti∗(t))

E

> µ̂i∗(Ti∗(t)) + Cδ/n(Ti∗(t)) > µ̂1(T1(t)) + Cδ/n(T1(t))
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E

> µ1.

Hence, µi∗ > µ1 −
ω

8(1−ε) . Rearranging this, we see that µi∗ −
(

1 − ω
8µ1(1−ε)

)
µ1 > 0

which implies that i∗ ∈M ω
8µ1(1−ε)

. Hence,

Lt = (1 − ε)
(

max
i
µ̂i(Ti(t)) − Cδ/n(Ti(t))

)
(1 − ε)

(
µ̂i∗(Ti∗(t)) − Cδ/n(Ti∗(t))

)
E

> (1 − ε)
(
µi∗ − 2Cδ/n(Ti∗(t))

)
> (1 − ε)

(
µi∗ −

ω

8(1 − ε)

)
> (1 − ε)

(
µ1 −

ω

4(1 − ε)

)
Next, we bound the number of times an arm i ∈Mc

ε+γ
2
is sampled before its upper

bound is below (1−ε)
(
µ1 −

ω
4(1−ε)

)
. Note thatCδ/n(Ti(t)) < 1

2

(
(1 − ε)

(
µ1 −

ω
4(1−ε)

)
− µi

)
,

true when Ti(t) > h
(

1
2

(
(1 − ε)

(
µ1 −

ω
4(1−ε)

)
− µi

)
, δ
n

)
implies that

µ̂i(Ti(t)) + Cδ/n(Ti(t))
E

6 µi + 2Cδ/n(Ti(t)) < (1 − ε)

(
µ1 −

ω

4(1 − ε)

)
6 Lt.

Finally, we turn our attention to the difference (1 − ε)
(
µ1 −

ω
4(1−ε)

)
− µi. Recall

thatω = max(γµ1, min(α̃ε, β̃ε)).

(1 − ε)

(
µ1 −

ω

4(1 − ε)

)
− µi = (1 − ε)µ1 − µi −

1
4ω

= (1 − ε)µ1 − µi −
1
4 max(γµ1, min(α̃ε, β̃ε)).

By definition, β̃ε = mini∈Mc
ε
(1−ε)µ1−µi. Hence, min(α̃ε, β̃ε) 6 (1−ε)µ1−µi

for all i ∈Mc
ε+γ

2
. Similarly, since i ∈Mc

ε+γ
2
by assumption, (1 − ε− γ

2 )µ1 − µi > 0,
which rearranges to γµ1

2 6 (1 − ε)µ1 − µi. Therefore,

(1 − ε)µ1 − µi −
1
4 max(γµ1, min(α̃ε, β̃ε)) >

1
2
((1 − ε)µ1 − µi) =

∆i − εµ1

2 .



219

Hence, by monotonicity of h(·, ·),

h

(
1
2

(
(1 − ε)

(
µ1 −

ω

4(1 − ε)

)
− µi

)
, δ
n

)
6 h

(
∆i − εµ1

4 , δ
n

)
.

Lastly, as above, since i ∈Mc
ε+γ

2
, we have that ∆i − εµ1 = (1 − ε)µ1 − µi > 1

2γµ1.
Hence,

h

(
∆i − εµ1

4 , δ
n

)
6 min

[
h

(
∆i − εµ1

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]
.

Putting this together, if Ti(t) > min
[
h
(
∆i−εµ1

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]
, then i 6= i1(t) for all

i ∈Mc
ε+γ

2
. Summing over all such i bounds the size of set stated in the claim.

We decompose the remaining event{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6

ω

16(1 − ε)
and i1(t) ∈Mε+γ

2

}
as {

t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6
ω

16(1 − ε)
and i1(t) ∈Mε+γ

2

and i2(t) ∈Mε+γ
2

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6

ω

16(1 − ε)
and i1(t) ∈Mε+γ

2

and i2(t) ∈Mc
ε+γ

2

}
.

We proceed by bounding the cardinality of the first set.
Claim 1:∣∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6

ω

16(1 − ε)
and i1(t) ∈Mε+γ

2

and i2(t) ∈Mε+γ
2

}∣∣∣
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6
∑

i∈M
ε+
γ
2

min
[
h

(
εµ1 − ∆i

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]

Proof. Recall thatK = {i : µ̂i(Ti(t))+Cδ/n(Ti(t)) < Lt or µ̂i(Ti(t))−Cδ/n(Ti(t)) >
Ut} is the set of known arms and i2 is sampled from Ĝc\K. Hence, if an arm’s
lower bound exceeds Ut, it must be in K and therefore cannot be i2. Recall that
i∗(t) = arg max µ̂i(Ti(t)) + Cδ/n(Ti(t)). By the above event, i∗(t) ∈ Mω/µ1 and
Cδ/n(Ti∗(t)) 6 ω

16(1−ε) . Hence,

Ut = (1 − ε− γ)
(

max
i
µ̂i(Ti(t)) + Cδ/n(Ti(t))

)
= (1 − ε− γ)

(
µ̂i∗(t)(Ti∗(t)(t)) + Cδ/n(Ti∗(t)(t))

)
E

6 (1 − ε− γ)
(
µi∗(t) + 2Cδ/n(Ti∗(t)(t))

)
6 (1 − ε− γ)

(
µi∗(t) +

ω

8(1 − ε)

)
6 (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

)
Next, we bound the number of times an arm i ∈Mε+γ

2
is sampled before its lower

bound is above (1 − ε− γ)
(
µ1 +

ω
8(1−ε)

)
. Note that Cδ/n(Ti(t)) <

1
2

(
µi − (1 − ε− γ)

(
µ1 +

ω
8(1−ε)

))
, true when Ti(t) >

h
(

1
2

(
µi − (1 − ε− γ)

(
µ1 +

ω
8(1−ε)

))
, δ
n

)
implies that

µ̂i(Ti(t)) − Cδ/n(Ti(t))
E

> µi − 2Cδ/n(Ti(t)) > (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

)
> Ut.

Finally, we turn our attention to the difference µi − (1 − ε)
(
µ1 +

ω
8

)
. Recall that

ω = max(γµ1, min(α̃ε, β̃ε)). Additionally, recall ε+ γ 6 1.

µi − (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

)
= µi − (1 − ε)µ1 + γµ1 −

1
8

(
1 − ε− γ

1 − ε

)
ω

> µi − (1 − ε)µ1 + γµ1 −
1
8ω
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Case 1a,ω = min(α̃ε, β̃ε) and i ∈Mε:
By definition, α̃ε = mini∈Mε

µi−(1−ε)µ1. Hence, min(α̃ε, β̃ε) 6 µi−(1−ε)µ1

for all i ∈Mε. Therefore,

µi − (1 − ε)µ1 + γµ1 −
1
8ω = µi − (1 − ε)µ1 + γµ1 −

1
8 min(α̃ε, β̃ε)

> max
(
µi − (1 − ε)µ1 −

1
8 min(α̃ε, β̃ε),γµ1

)
> max

(
7
8(µi − (1 − ε)µ1),γµ1

)
Case 1b,ω = min(α̃ε, β̃ε) and i ∈Mc

ε ∩Mε+γ
2

Sinceω = max(γµ1, min(α̃ε, β̃ε)), ifω = min(α̃ε, β̃ε), then 1
2γµ1 < min(α̃ε, β̃ε).

Since min(α̃ε, β̃ε) = min |µi − (1 − ε)µ1|, the setMc
ε ∩Mε+γ

2
is empty and there is

nothing to prove.
Case 2a,ω = γµ1 and i ∈Mε

µi − (1 − ε)µ1 + γµ1 −
1
8ω = µi − (1 − ε)µ1 +

7
8γµ1 > max

(
µi − (1 − ε)µ1,

7
8γµ1

)
.

Case 2b,ω = γµ1 and i ∈Mc
ε ∩Mε+γ

2

For i ∈ Mc
ε ∩Mε+γ

2
, µi − (1 − ε − γ

2 )µ1 > 0. Hence, µi − (1 − ε)µ1 >
−γµ1

2 .
Therefore,

µi − (1 − ε)µ1 + γµ1 −
1
8ω = µi − (1 − ε)µ1 +

7
8γµ1 >

3
8γµ1 > max

(
1
4γµ1,

(1 − ε)µ1 − µi
4

)
.

Combining all cases, by monotonicity of h(·, ·) and symmetry in its first argu-
ment, we see that

h

(
1
2

(
µi − (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

))
, δ
n

)
6 min

[
h

(
γµ1

8 , δ
n

)
,h
(
εµ1 − ∆i

8 , δ
n

)]
.

Putting this together, if Ti(t) > min
[
h
(
εµ1−∆i

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]
, then i 6= i2(t) for all

i ∈Mε+γ
2
. Summing over all such i bounds the size of set stated in the claim.
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6.B.2.4 Step 3: Controlling the complexity until stopping occurs

In this step, we turn our attention to the final event to control:

S :=

{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6

ω

16(1 − ε)
(6.7)

and i1(t) ∈Mε+γ
2
and i2(t) ∈Mc

ε+γ
2

}
.

For brevity, we will refer to this set as S for this step. The objective will be to bound
the time before each arms lower bound either clears Ut or its upper bound clears
Lt which implies the stopping condition. To do so, we introduce, two events:

E1(t) := {µ̂i1(t)(Ti1(t)(t)) − Cδ/n(Ti1(t)(t)) > Ut} (6.8)

and
E2(t) := {µ̂i2(t)(Ti2(t)(t)) + Cδ/n(Ti2(t)(t)) < Lt}. (6.9)

If E1(t) is true, then µ̂i(Ti) − Cδ/n(Ti(t)) > Lt for all i ∈ Ĝ. If E2(t) is true, then
µ̂i(Ti) + Cδ/n(Ti(t)) < Ut for all i ∈ Ĝc. Hence, by line 6 of (ST)2, if both E1(t) and
E2(t) are true, then (ST)2 terminates.

Claim 0: |S ∩ {t : ¬E1(t)}| 6
∑
i∈M

ε+
γ
2

min
[
h
(
εµ1−∆i

4 , δ
n

)
,h
(
γµ1

4 , δ
n

)]
.

Proof. Recall that by the set S, we have that i1(t) ∈Mε+γ
2
. Furthermore, by the

set S, we have that i∗(t) ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6 ω/16(1 − ε). Hence,

Ut = (1 − ε− γ)
(

max
i
µ̂i(Ti(t)) + Cδ/n(Ti(t))

)
= (1 − ε− γ)

(
µ̂i∗(t)(Ti∗(t)(t)) + Cδ/n(Ti∗(t)(t))

)
E

6 (1 − ε− γ)
(
µi∗(t) + 2Cδ/n(Ti∗(t)(t))

)
6 (1 − ε− γ)

(
µi∗(t) +

ω

8(1 − ε)

)
6 (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

)
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If Cδ/n(Ti) 6 1
2

(
µi − (1 − ε− γ)

(
µ1 +

ω
8(1−ε)

))
,

true when Ti > h
(

1
2

(
µi − (1 − ε− γ)

(
µ1 +

ω
8(1−ε)

))
, δ
n

)
, then

µ̂i(Ti) − Cδ/n(Ti) > µi − 2Cδ/n(Ti) > (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

)
> Ut.

The remainder of the proof of this claim focuses on controlling the difference:
µi−(1−ε−γ)

(
µ1 +

ω
8(1−ε)

)
in the case thatω = min(α̃ε, β̃ε) andω = γµ1. Recall

that ω = max(γµ1, min(α̃ε, β̃ε)). Hence, if any possible i ∈ Mε+γ
2
has received

sufficiently many samples, since i1(t) ∈Mε+γ
2
, this implies E1(t).

Case 1a,ω = min(α̃ε, β̃ε) and i ∈Mε

We focus on the difference µi − (1 − ε− γ)
(
µ1 +

ω
8(1−ε)

)
. Recall that ε+ γ 6 1.

µi − (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

)
= µi − (1 − ε− γ)

(
µ1 +

min(α̃ε, β̃ε)
8(1 − ε)

)
= µi − (1 − ε)µ1 + γµ1 −

1
8

(
1 − ε− γ

1 − ε

)
min(α̃ε, β̃ε)

γ>0 and ε+γ61
> µi − (1 − ε)µ1 −

1
8 min(α̃ε, β̃ε)

>
1
2(µi − (1 − ε)µ1) =

εµ1 − ∆i
2

where the final step follows since min(α̃ε, β̃ε) 6 α̃ε 6 µi − (1 − ε)µ1 by definition
for all i ∈Mε. Then by monotonicity of h(·, ·),

h

(
1
2

(
µi − (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

))
, δ
n

)
6 h

(
εµ1 − ∆i

4 , δ
n

)
.

Lastly, in this setting, γµ1 6 min(α̃ε, β̃ε) 6 εµ1−∆i sinceω = min(α̃ε, β̃ε). Hence,
it is trivially true that

h

(
εµ1 − ∆i

4 , δ
n

)
= min

[
h

(
εµ1 − ∆i

4 , δ
n

)
,h
(
γµ1

4 , δ
n

)]
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Case 1b,ω = min(α̃ε, β̃ε) and i ∈Mc
ε ∩Mε+γ

2

Sinceω = max(γµ1, min(α̃ε, β̃ε)), ifω = min(α̃ε, β̃ε), then 1
2γµ1 < min(α̃ε, β̃ε).

Since min(α̃ε, β̃ε) = min |µi − (1 − ε)µ1|, the setMc
ε ∩Mε+γ

2
is empty and there is

nothing to prove.
Case 2a,ω = γµ1 and i ∈Mε

Next, we bound the difference µi − (1 − ε− γ)
(
µ1 +

ω
4(1−ε)

)
.

µi − (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

)
= µi − (1 − ε)µ1 + γµ1 −

1
8

(
1 − ε− γ

1 − ε

)
γµ1

> µi − (1 − ε)µ1 + γµ1

(
1 −

1
8

(
1 − ε− γ

1 − ε

))
Since i ∈Mε, µi−(1−ε)µ1 > 0. Using this and the fact that ε,γ > 0 and ε+γ 6 1,

µi − (1 − ε)µ1 + γµ1

(
1 −

1
8

(
1 − ε− γ

1 − ε

))
> µi − (1 − ε)µ1 +

7
8γµ1

> max
(
µi − (1 − ε)µ1,

7
8γµ1

)
>

1
2 max (εµ1 − ∆i,γµ1)

Therefore, we have that

h

(
1
2

(
µi − (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

))
, δ
n

)
6 h

(
εµ1 − ∆i

4 , δ
n

)
and

h

(
1
2

(
µi − (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

))
, δ
n

)
6 h

(
γµ1

4 , δ
n

)
.

Hence,

h

(
1
2

(
µi − (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

))
, δ
n

)
6 min

[
h

(
εµ1 − ∆i

4 , δ
n

)
,h
(
γµ1

4 , δ
n

)]
.

Case 2b,ω = γµ1 and i ∈Mc
ε ∩Mε+γ

2
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As before,

µi − (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

)
= µi − (1 − ε)µ1 + γµ1 −

1
8

(
1 − ε− γ

1 − ε

)
γµ1

Since i ∈Mc
ε ∩Mε+γ

2
, we have that µi − (1 − ε − γ

2 )µ1 > 0. Rearranging implies
that µi − (1 − ε)µ1 > −1

2 γµ1. Hence,

µi − (1 − ε)µ1 + γµ1 −
1
8

(
1 − ε− γ

1 − ε

)
γµ1 >

1
2γµ1 −

1
8

(
1 − ε− γ

1 − ε

)
γµ1 >

3
8γµ1.

Hence,

h

(
1
2

(
µi − (1 − ε− γ)

(
µ1 +

ω

8(1 − ε)

))
, δ
n

)
6 h

(
3γµ1

8 , δ
n

)
.

Additionally, as above, if i ∈ Mc
ε ∩Mε+γ

2
, we have that µi − (1 − ε − γ

2 )µ1 > 0
which implies that (1 − ε)µ1 − µi 6 1

2γµ1. Hence

h

(
3γµ1

8 , δ
n

)
6 min

[
h

(
∆i − εµ1

4 , δ
n

)
,h
(
γµ1

4 , δ
n

)]
.

Therefore, if Ti exceeds the above, then E1(t) is true for an i1 ∈Mc
ε ∩Mε+γ

2
. Com-

bining all cases, we see that for i1 ∈Mε+γ
2
, if

Ti1(t)(t) > min
[
h

(
εµ1 − ∆i

4 , δ
n

)
,h
(
γµ1

4 , δ
n

)]
,

Then E1(t) is true. Summing over all possible i1 ∈Mε+γ
2
proves the claim.

Claim 1: |S∩{t : E1(t)}∩{t : ¬E2(t)}| 6
∑
i∈Mc

ε+
γ
2

min
[
h
(
εµ1−∆i

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]
.

Proof. By the events in set S, Cδ/n(Ti∗(t)) 6 ω
16(1−ε) . Therefore,

µi∗ +
ω

8(1 − ε)
> µi∗ + 2Cδ/n(Ti∗(t))

E

> µ̂i∗(Ti∗(t)) + Cδ/n(Ti∗(t)) > µ̂1(T1(t)) + Cδ/n(T1(t))

E

> µ1.
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Hence, µi∗ > µ1 −
ω

8(1−ε) . Rearranging this, we see that µi∗ −
(

1 − ω
8µ1(1−ε)

)
µ1 > 0

which implies that i∗ ∈M ω
8µ1(1−ε)

. Hence,

Lt = (1 − ε)
(

max
i
µ̂i(Ti(t)) − Cδ/n(Ti(t))

)
(1 − ε)

(
µ̂i∗(Ti∗(t)) − Cδ/n(Ti∗(t))

)
E

> (1 − ε)
(
µi∗ − 2Cδ/n(Ti∗(t))

)
> (1 − ε)

(
µi∗ −

ω

8(1 − ε)

)
> (1 − ε)

(
µ1 −

ω

4(1 − ε)

)

As before, we seek a lower bound for the difference (1 − ε)
(
µ1 −

ω
4(1−ε)

)
− µi.

Case 1: ω = min(α̃ε, β̃ε)

(1 − ε)

(
µ1 −

ω

4(1 − ε)

)
− µi = (1 − ε)µ1 − µi −

1
4 min(α̃ε, β̃ε)

>
1
2
((1 − ε)µ1 − µi)

since (1 − ε)µ1 − µi > min(α̃ε, β̃ε). Therefore, we have that

h

(
1
2

(
(1 − ε)

(
µ1 −

ω

4(1 − ε)

)
− µi

)
, δ
n

)
6 h

(
∆i − εµ1

4 , δ
n

)
.

Lastly, in this setting, γµ1 6 min(α̃ε, β̃ε) 6 εµ1−∆i sinceω = min(α̃ε, β̃ε). Hence,
it is trivially true that

h

(
∆i − εµ1

4 , δ
n

)
= min

[
h

(
∆i − εµ1

4 , δ
n

)
,h
(
γµ1

4 , δ
n

)]
.

Case 2: ω = γµ1

Assume that γµ1 > min(α̃ε, β̃ε), as equality is covered by the previous case.
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Hence,

(1 − ε)

(
µ1 −

ω

4(1 − ε)

)
− µi = (1 − ε)µ1 − µi −

1
4γµ1

Recall that we seek to control i2 ∈Mc
ε+γ

2
. For any i ∈Mc

ε+γ
2
, we have that (1 − ε−

γ
2 )µ1 − µi > 0. Rearranging, we see that (1 − ε)µ1 − µi > 1

2γµ1 which implies that

(1 − ε)µ1 − µi −
1
4γµ1 >

1
2((1 − ε)µ1 − µi).

Therefore, we have that

h

(
1
2

(
(1 − ε)

(
µ1 −

ω

4(1 − ε)

)
− µi

)
, δ
n

)
6 h

(
∆i − εµ1

4 , δ
n

)
is this setting as well. Similarly, since ∆i − εµ1 > 1

2γµ1, we likewise have that

h

(
∆i − εµ1

4 , δ
n

)
6 min

[
h

(
∆i − εµ1

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]
.

Hence, if Ti exceeds the right-hand side of the preceding inequality, then for any
i ∈Mc

ε+γ
2
, its upper bound is below Lt. Hence, for i2(t) ∈Mc

ε+γ
2
, this implies event

E2(t). Summing over all possible values of i2(t) ∈Mc
ε+γ

2
proves the claim.

Claim2: The cardinality of S is bounded as |S| 6
∑n
i=1 min

[
h
(
∆i−εµ1

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]
.

Proof. First, S may be decomposed as

|S| = |S ∩ {t : ¬E1(t)}|+ |S ∩ {t : E1(t)} ∩ {t : ¬E2(t)}|+ |S ∩ {t : E1(t)} ∩ {t : E2(t)}|

Note that |S ∩ {t : E1(t)} ∩ {t : E2(t)}| = 0 because we have assumed in set S
that (ST)2 has not stopped, and {t : E1(t)} ∩ {t : E2(t)} implies termination. By
Claim 0, |S ∩ {t : ¬E1(t)}| 6

∑
i∈M

ε+
γ
2

min
[
h
(
εµ1−∆i

4 , δ
n

)
,h
(
γµ1

4 , δ
n

)]
. By Claim 1,

|S ∩ {t : E1(t)} ∩ {t : ¬E2(t)}| 6
∑
i∈Mc

ε+
γ
2

min
[
h
(
εµ1−∆i

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]
. Recalling

that h is assumed to be symmetric in its first argument and summing the two terms
proves the claim.
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6.B.2.5 Step 4: Putting it all together

Recall that the total number of rounds T that (ST)2 runs for is given by T = |{t :

¬STOP}|. To bound this quantity, we have decomposed the set {t : ¬STOP} into
many subsets. Below, we show this decomposition.

{t : ¬STOP} =

{t : ¬STOP and i∗ /∈Mω/µ1}

∪
{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) >

ω

16(1 − ε)

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6

ω

16(1 − ε)
and i1(t) ∈Mc

ε+γ
2

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6

ω

16(1 − ε)
and i1(t) ∈Mε+γ

2

and i2(t) ∈Mε+γ
2

}
∪
{
t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6

ω

16(1 − ε)
and i1(t) ∈Mε+γ

2

and i2(t) ∈Mc
ε+γ

2

}
.

Hence, by a union bound and plugging in the results of the above steps,

|{t : ¬STOP}| 6∣∣{t : ¬STOP and i∗ /∈Mω/µ1}
∣∣

+

∣∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1 and ∃i ∈Mω/µ1 : Cδ/n(Ti(t)) >
ω

8(1 − ε)

}∣∣∣∣
+

∣∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6
ω

16(1 − ε)
and i1(t) ∈Mc

ε+γ
2

}∣∣∣∣
+

∣∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6
ω

16(1 − ε)
and i1(t) ∈Mε+γ

2

and i2(t) ∈Mε+γ
2

}∣∣∣
+

∣∣∣∣{t : ¬STOP and i∗ ∈Mω/µ1 and Cδ/n(Ti∗(t)) 6
ω

16(1 − ε)
and i1(t) ∈Mε+γ

2
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and i2(t) ∈Mc
ε+γ

2

}∣∣∣
6
∑

i∈Mc
ω/µ1

min
{
h

(
γµ1

2 , δ
n

)
, min

[
h

(
∆i

2 , δ
n

)
,h
(

min(α̃ε, β̃ε)
2 , δ

n

)]}

+
∑

i∈Mω/µ1

min
{
h

(
γµ1

16 , δ
n

)
, min

[
h

(
∆i

16 , δ
n

)
,h
(

min(α̃ε, β̃ε)
16(1 − ε)

, δ
n

)]}

+
∑

i∈Mc
ε+
γ
2

min
[
h

(
∆i − εµ1

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]

+
∑

i∈M
ε+
γ
2

min
[
h

(
εµ1 − ∆i

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]

+

n∑
i=1

min
[
h

(
∆i − εµ1

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]
(ε61/2)
6

n∑
i=1

min
{
h

(
γµ1

16 , δ
n

)
, min

[
h

(
∆i

16 , δ
n

)
,h
(

min(α̃ε, β̃ε)
16(1 − ε)

, δ
n

)]}

+ 2
n∑
i=1

min
[
h

(
∆i − εµ1

8 , δ
n

)
,h
(
γµ1

8 , δ
n

)]

6 4
n∑
i=1

min
{

max
{
h

(
∆i − εµ1

16 , δ
n

)
, min

[
h

(
∆i

16 , δ
n

)
,h
(

min(α̃ε, β̃ε))
16(1 − ε)

, δ
n

)]}
,

h

(
γµ1

16 , δ
n

)}
Next, by Lemma 6.33, we may bound the minimum of h(·, ·) functions.

4
n∑
i=1

min
{

max
{
h

(
∆i − εµ1

16 , δ
n

)
, min

[
h

(
∆i

16 , δ
n

)
,h
(

min(α̃ε, β̃ε)
16(1 − ε)

, δ
n

)]}
,

h

(
γµ1

16 , δ
n

)}
= 4

n∑
i=1

min
{

max
{
h

(
∆i − εµi

16 , δ
n

)
,
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min
[
h

(
∆i

16 , δ
n

)
, max

[
h

(
α̃ε

16(1 − ε)
, δ
n

)
,h
(

β̃ε

16(1 − ε)
, δ
n

)]]}
,

h

(
γµi

16 , δ
n

)}
6 4

n∑
i=1

min
{

max
{
h

(
∆i − εµi

16 , δ
n

)
,

max
[
h

(
∆i +

α̃ε
1−ε

32 , δ
n

)
,h
(
∆i +

β̃ε
1−ε

32 , δ
n

)]}
,

h

(
γµi

16 , δ
n

)}
= 4

n∑
i=1

min
{

max
{
h

(
∆i − εµi

16 , δ
n

)
,h
(
∆i +

α̃ε
1−ε

32 , δ
n

)
,h
(
∆i +

β̃ε
1−ε

32 , δ
n

)}
,

h

(
γµi

16 , δ
n

)}
Finally, we use Lemma 6.32 to bound the function h(·, ·). Since δ 6 1/2, δ/n 6

2e−e/2. Further, |εµ1 −∆i| 6 8 for all i and ε 6 1/2 implies that 1
8(1−ε) |εµ1 −∆i| 6 2

and 1
8(1−ε) min(α̃ε, β̃ε) 6 2. ∆i 6 16 for all i, gives 0.125∆i 6 2. Lastly, γ 6 16/µ1

implies that γµ1
8 6 2. Therefore,

4
n∑
i=1

min
{

max
{
h

(
∆i − εµi

16 , δ
n

)
,h
(
∆i +

α̃ε
1−ε

32 , δ
n

)
,h
(
∆i +

β̃ε
1−ε

32 , δ
n

)}
,

h

(
γµi

16 , δ
n

)}
6 4

n∑
i=1

min
{

max
{

1024
(εµ1 − ∆i)2 log

(
2n
δ

log2

(
3072n

δ(εµ1 − ∆i)2

))
,

4096
(∆i +

α̃ε
1−ε)

2 log
(

2n
δ

log2

(
12288n

δ(∆i +
α̃ε

1−ε)
2

))
,

4096
(∆i +

β̃ε
1−ε)

2
log
(

2n
δ

log2

(
12288n

δ(∆i +
β̃ε

1−ε)
2

))}
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1024
γ2µ2

1
log
(

2n
δ

log2

(
3072n
δγ2µ2

1

))}
= 4

n∑
i=1

min
{

max
{

1024
((1 − ε)µ1 − µi)2 log

(
2n
δ

log2

(
3072n

δ((1 − ε)µ1 − µi)2

))
,

4096
(µ1 +

α̃ε
1−ε − µi)2 log

(
2n
δ

log2

(
12288n

δ(µ1 +
α̃ε

1−ε)
2

))
,

4096
(µ1 +

β̃ε
1−ε − µi)2

log
(

2n
δ

log2

(
12288n

δ(µ1 +
β̃ε

1−ε − µi)2

))}
,

1024
γ2µ2

1
log
(

2n
δ

log2

(
3072n
δγ2µ2

1

))}
.

The above bounds the number of rounds T . Therefore, the total number of
samples is at most 3T .

6.C Proof of instance dependent lower bounds,
Theorem 6.4

First we restate and prove the lower bound.

Theorem 6.11. (additive and multiplicative lower bound) Fix δ, ε > 0. Consider n arms,
such that the ith is distributed according to N(µi, 1). Any δ-PAC algorithm for the additive
setting satisfies

E[τ] > 2
n∑
i=1

max
{

1
(µ1 − ε− µi)

2 , 1
(µ1 + αε − µi)2

}
log
(

1
2.4δ

)

and if µ1 > 0 any δ-PAC algorithm for the multiplicative algorithm satisfies,

E[τ] > 2
n∑
i=1

max
{

1
((1 − ε)µ1 − µi)

2 , 1
(µ1 +

α̃ε
1−ε − µi)2

}
log
(

1
2.4δ

)

Proof of Theorem 6.4 in the additive case. Recall that ν denotes the given instance, and
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without loss of generality we have assumed that µ1 > µ2 > · · · > µn. Then
Gε(ν) = {1, · · · ,k}. Consider the event E that an algorithm returns {1, · · · ,k}. For
any δ-PAC algorithm, E occurs with probability at least 1 − δ. For each arm i ∈ [n]

we consider two alternative instances

ν ′i = {µ1, · · · ,µ ′i, · · · ,µn}

and
ν ′′i = {µ1, · · · ,µ ′′i , · · · ,µn}

such that only the mean of arm i differs compared to ν but Gε(ν) 6= Gε(ν
′
i) and

Gε(ν) 6= Gε(ν ′′i ). Therefore, on these alternate instances, E occurs with probability
at most δ.

For ν ′i, if i 6 k, let µ ′i = µ1 − ε− η. Then i ∈ Gε(ν) but i /∈ Gε(ν ′i). If k < n and
i > k+ 1, let µ ′i = µ1 − ε+ η. Then i /∈ Gε(ν) but i ∈ Gε(ν ′i).

More subtly, for ν ′′i , for any i ∈ [n]\{k}, let µ ′′i = µk + ε+ η. In particular, arm i

is now the best arm. Under this definition, µ ′′i − ε > µk. Therefore, k /∈ Gε(ν ′′i ) but
k ∈ Gε(ν).

The above holds for all η > 0. LetNi denote the random variable of the number
of samples of arm i and Eν denote expectation with respect to instance ν. Using
the fact that we have assumed the distributions are Gaussian, considering ν ′i, by
Lemma 1 of Kaufmann et al. (2016), taking η → 0 we have that for any δ-PAC
algorithm,

Eν[Ni] >
2 log(1/2.4δ)

(µi − (µ1 − ε))2 .

Furthermore, considering ν ′′i , and again taking η→ 0, we have by the same lemma
that for i 6= k

Eν[Ni] >
2 log(1/2.4δ)
(µk + ε− µi)

2 =
2 log(1/2.4δ)

(µ1 + αε − µi)
2 ,

where the later equality holds since µk + ε = µ1 +αε by definition of αε. For i = k,
note that 1

(µk−(µ1−ε))
= 1
α2
ε
> 1
ε2 = 1

(µk−µk−ε)2 since αε = mini∈Gε µi − (µ1 − ε) =
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mini∈Gε ε− ∆i. Putting these pieces together, we see that for any i,

Eν[Ni] > max
(

1
(µi − (µ1 − ε))

2 , 1
(µk + ε− µi)

2

)
2 log(1/2.4δ).

Summing over all i establishes a lower bound in the additive case.

Proof of Theorem 6.4 in the multiplicative case. Recall thatνdenotes the given instance,
and without loss of generality we have assumed that µ1 > µ2 > · · · > µn. Let
Mε(ν) = {1, · · · ,k}. Consider the event E that an algorithm returns {1, · · · ,k}. For
any δ-PAC algorithm, E occurs with probability at least 1 − δ. For each arm i ∈ [n]

we consider two alternative instances

ν ′i = {µ1, · · · ,µ ′i, · · · ,µn}

and
ν ′′i = {µ1, · · · ,µ ′′i , · · · ,µn}

such that only the mean of arm i differs compared to ν butMε(ν) 6=Mε(ν
′
i) and

Mε(ν) 6=Mε(ν
′′
i ). Therefore, E occurs with probability at most δ on these alternate

instances.
For ν ′i, if i 6 k, let µ ′i = (1 − ε− η)µ1. Then i ∈Mε(ν) but i /∈Mε(ν

′
i). If k < n

and i > k+ 1, let µ ′i = (1 − ε+ η)µ1. Then i /∈Mε(ν) but i ∈Mε(ν
′
i).

More subtly, for ν ′′i , for any i ∈ [n]\{k}, let µ ′′i = µk
1−ε−η . In particular, arm i is

now the best arm. Under this definition, µ ′′i − ε > µk. Therefore, k /∈Mε(ν
′′
i ) but

k ∈Mε(ν).
The above holds for all η > 0. LetNi denote the random variable of the number

of samples of arm i and Eν denote expectation with respect to instance ν. Using
the fact that we have assumed the distributions are Gaussian, considering ν ′i, by
Lemma 1 of Kaufmann et al. (2016), taking η → 0, we have that for any δ-PAC
algorithm,

Eν[Ni] >
2 log(1/2.4δ)

(µi − (1 − ε)µ1)2 =
2 log(1/2.4δ)
(εµ1 − ∆i)2 .
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Additionally, by the same Lemma, considering ν ′′i and again taking η→ 0 we have
that for i 6= k

Eν[Ni] >
2 log(1/2.4δ)(
µi −

µk
1−ε

)2 =
2 log(1/2.4δ)(
µ1 +

α̃ε
1−ε − µi

)2 ,

where the later equality holds since µk
1−ε = µ1 +

α̃ε
1−ε by definition of α̃ε. Next recall

that α̃ε := mini∈Mε
µi−(1−ε)µ1 = µk−(1−ε)µ1, we have that µk = α̃ε+(1−ε)µ1.

Hence, µk1−ε = µ1 +
α̃ε

1−ε . Then, for i = k

1(
µk

1−ε − µk
)2 6

1
(µk − (1 − ε)µ1)2 =

1
α̃2
ε

⇐⇒ α̃ε 6
µk

1 − ε
− µk =

α̃ε

1 − ε
+ µ1 − µk =

α̃ε

1 − ε
+ ∆k

(∆k>0)⇐= α̃ε 6
α̃ε

1 − ε

which is always true since ε > 0. Therefore,

1
(µk − (1 − ε)µ1)2 = max

(
1

(µk − (1 − ε)µ1)2 , 1(
µk

1−ε − µk
)2

)
.

Hence, for all arms i,

Eν[Ni] > 2 max
(

1
(µi − (1 − ε)µ1)2 , 1(

µ1 +
α̃ε

1−ε − µi
)2

)
log(1/2.4δ).

Summing over all i gives a lower bound for this problem in the multiplicative
case.

6.D Theorem 6.7: Lower bounds in the moderate
confidence regime

In this section, we prove a tighter lower bound that includes moderate confidence
terms independent of the value of δ similar to those that appear in the upper bound
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on the sample complexity of FAREAST, Theorem 6.8.
Outline. To give a tight lower bound in the isolated setting, we break our

argument into pieces performing a series of reductions that link the all-ε problem
to a hypothesis test, and then the hypothesis test to the problem of identifying the
best-arm.

Step 1. Finding an isolated arm. We first consider the following problem.
Imagine that you are given an isolated instance, depicted in Figure 6.D.1b where
there are n distributions, with one of them at mean β and the rest with mean −β.
Theorem 6.15, captures the sample complexity of any algorithm that can return i∗

with probability greater than 1 − δ.
Step 2. Deciding if an instance is isolated. We then consider a composite

hypothesis test on n distributions where the null hypothesis, H0, is that the mean
of each distribution is less that −β and the alternate hypothesis, H1, is that there
exists single distribution i∗ with mean β and the remainder have mean less than
−β (i.e. the instance is isolated). In Figure 6.D.1, we show a picture of an instance
where the null is true and where the alternate is true. In Theorem 6.19 we lower
bound the complexity of performing this test. To link this to Step 1, we show that if
you can solve this composite hypothesis test then you can find i∗, hence the lower
bound of step 1 is a lower bound for the hypothesis test.

Step 3: Reducing all-ε to Step 2 Finally in step 3 we link this to the all-ε
problem. Using the above, we lower bound the complexity of all-ε in Theorem 6.7
when |G2βε | = 1. The key insight of our proof is that any algorithm that can solve
the all-ε problem can be used to solve the hypothesis test in Step 2.

6.D.1 Step 1: Finding an Isolated Arm

Fix n ∈ N, 0 < β, and δ > 0. We refer to a β-isolated instance ν = {ρ1, · · · , ρn}, as a
collection of n, Gaussian distributions with variance one satisfying two properties.
Firstly, there exists a single arm i∗ ∈ [n]with ρi∗ = N(β, 1). We refer to this as the
isolated arm. Secondly, for i 6= i∗, ρi = N(µi, 1) ∀ i ∈ [n]\{i∗} have means µi 6 −β.
We introduce the additional notation ∆i,j = µi − µj.
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Arm
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y = 
y = 0
y = -

(a) A non-isolated instance (H0 is true)

Arm

m
ea

n

y = 
y = 0
y = -

(b) An isolated instance (H0 is true)

Figure 6.D.1: Example of an isolated and non-isolated instance

Lemma 6.12. Fix n, 0 < β and consider a set ν of n Gaussian random variables such that
for a uniformly random chosen i∗ ∈ [n], ρi∗ = N(β, 1) and ρi = N(µi, 1) for µi 6 −β for
all i 6= i∗. Any algorithm that correctly returns i∗ with probability at least 1− δ, pulls arm
i∗ at least

1
2β2 log(1/2.4δ)

times in expectation.

Proof. Consider the oracle setting where the value of i∗ is known and the algorithm
only seeks to confirm that µi∗ > −β. Lemma 1 of Kaufmann et al. (2016) implies that
any δ-PAC algorithm requires at least 1

2β2 log(1/2.4δ) samples in expectation.

The above bound controls the number of samples that any algorithm must
gather from i∗, and is independent of n. The proof considered an oracle setting
where the value of i∗ is known, and one only wishes to confirm that µi∗ > −β

with probability at least 1 − δ. To lower bound the number of samples drawn
from [n]\{i∗}, we need significantly more powerful tools. In particular, to rule out
trivial algorithms that always output a fixed index, we consider a permutation
model, as in Mannor and Tsitsiklis (2004); Simchowitz et al. (2017); Katz-Samuels
and Jamieson (2020); Chen et al. (2017). Informally, we consider an additional
expectation in the lower bound over a random permutation π of the arms where π
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is sampled uniformly from the set of all permutations. In particular, we with use
a Simulator argument, as in Simchowitz et al. (2017); Katz-Samuels and Jamieson
(2020). In what follows, we will let π : [n] → [n] denote a permutation selected
uniformly at random from the set of n! permutations. For instance ν, let π(ν)
denote the permuted instance such that the ith distribution is mapped to π(i), by a
slight overloading of the definition of π(·). In what follows, we proceed similarly to
the proof of Theorem 1 in Katz-Samuels and Jamieson (2020).

Theorem 6.13. Fix n, 0 < β, and δ < 1/16 and consider a set ν of n Gaussian random
variables with variance 1 such that for i∗ ∈ [n], ρi∗ = N(β, 1) and ρi = N(µi, 1) for
µi 6 −β for all i 6= i∗. Let π be a uniformly chosen permutation of [n] and π(ν) be the
permutation applied to instance ν. Let T be the random variable denoting the total number
of samples at termination by an algorithm. Any δ-PAC algorithm to detect π(i∗) on π(ν)
requires

EπEπ(ν) [T ] >
1
16
∑
k6=i∗

1
∆2
i∗,k

samples in expectation from arms in [n]\{i∗}.

Proof. Fix a permutation π. Let π(ν) be the permutation applied to ν and π(i) be the
index of i under the permuted instance, π(ν). Let A be any algorithm that detects
and returns π(i∗) on π(ν)with probability at least 1 − δ. We will take PA and EA

to denote probability and expectation with respect any internal randomness in A.
Throughout, we will take ρi = N(µi, 1) to denote the ith distribution of ν. µi∗ > 0
and µi < 0 for all i 6= i∗. Additionally, let ∆ij = µi − µj

Fix k 6= i∗. To bound the necessary number of samples for arm k, we turn to
the Simulator Simchowitz et al. (2017). We begin by defining an alternate instance
ν ′k = {ρ ′1, · · · , ρ ′n} as

ρ ′j =


ρj, j 6= i∗

ρk, j = i∗

ρi∗ , j = k

Note that ν ′k is identical to ν except that the distributions of i∗ and k are swapped.
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Let E be the event that A returns π(i∗). We may bound the total variation
distance between the joint distribution on A× π(ν) and A× π(ν ′k) as

TV(PA×π(ν),PA×π(ν ′k)) = sup
A

∣∣PA×π(ν)(A) − PA×π(ν ′k)(A)
∣∣

>
∣∣PA×π(ν)(E) − PA×π(ν ′k)(E)

∣∣
> 1 − 2δ.

LetΩt denote the multiset of the transcript of samples up to time t.

Ωt = {is ∈ [n] for 1 6 s 6 t}

and define the events

Wj(Ωt) :=

{ ∑
it∈Ωt

1(it = j) 6 τ

}

for a τ to be defined later. With the definitions ofWj(Ωt), we define a simulator
Sim(ν,Ωt) with respect to ν. Let Sim(ν,Ωt)i denote the distribution of arm i on
Sim(ν,Ωt).

Sim(ν,Ωt)j =


ρj, if j /∈ {i∗,k}

ρj, if j ∈ {i∗,k} andWi∗(Ωt) ∩Wk(Ωt)

ρi∗ , if j ∈ {i∗,k} and (Wi∗(Ωt) ∩Wk(Ωt))
c

Furthermore, we define Sim(ν ′k,Ωt) with respect to ν ′k as

Sim(ν ′k,Ωt)j =


ρ ′j, if j /∈ {i∗,k}

ρ ′j, if j ∈ {i∗,k} andWi∗(Ωt) ∩Wk(Ωt)

ρi∗ , if j ∈ {i∗,k} and (Wi∗(Ωt) ∩Wk(Ωt))
c

For ease of notation, let Sim(π(ν),Ωt) be the same simulator defined on π(ν) and
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with respect to eventsWπ(i∗)(Ωt) andWπ(k)(Ωt). Note that in the simulator of ν ′k,
if (Wi∗(Ωt) ∩Wk(Ωt))

c is true, then i∗ and k draw samples according to instance
ν not ν ′k.

Definition 6.14. (Truthfulness of an eventW, Katz-Samuels and Jamieson (2020)) For
an algorithm A, we say that an eventW is truthful on a simulator Sim(η) with respect to
an instance η if for all events E in the filtration FT generated by playing algorithm A on
instance η

Pη(E ∩W) = PSim(η)(E ∩W)

By our definition of both simulators, if (Wi∗(Ωt) ∩ Wk(Ωt))
c is true, then

Sim(ν,Ωt)i = Sim(ν ′k,Ωt)i ∀i ∈ [n]. Contrarily, if Wi∗(Ωt) ∩ Wk(Ωt) is true,
then Sim(ν,Ωt) = ν and Sim(ν ′k,Ωt) = ν ′k. Similarly, onWπ(i∗)(Ωt) ∩Wπ(k)(Ωt),
Sim(π(ν),Ωt) = π(ν) and Sim(π(ν ′k),Ωt) = π(ν ′k). Therefore, by the proof of Theo-
rem 1 of Katz-Samuels and Jamieson (2020),Wπ(k)(Ωt) is truthful on Sim(π(ν),Ωt)
andWπ(i∗)(Ωt) is truthful on Sim(π(ν ′k),Ωt).

Let it be the arm queried at time t ∈ N by A. Following the proof of Theorem 1
of Katz-Samuels and Jamieson (2020), we may bound the KL-Divergence between
Sim(π(ν),Ωt) and Sim(π(ν ′k),Ωt) as

max
i1,··· ,iT

T∑
t=1

KL
(
Sim(π(ν), {is}ts=1), Sim(π(ν ′k), {is}ts=1

)
6 τKL(π(ν)π(i∗),π(ν ′k)π(i∗)) + τKL(π(ν)π(k),π(ν ′k)π(k))

= τ
∆2
i∗,k

2 + τ
∆2
i∗,k

2
= τ∆2

i∗,k.

For any instance η, an algorithm A is defined to be symmetric if

PA,η((i1, · · · , iT ) = (I1, · · · , IT )) = PA,π(η)((π(i1), · · · ,π(iT )) = (π(I1), · · · ,π(IT ))).

Semantically, this implies that the proportion of times A pulls any arm i on the
non-permuted instance η is the same as the proportion of times it pulls π(i) on the
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permuted instance, π(η).
In particular, the expected complexity of a symmetric algorithm is independent

of the permutation π. By Lemma 1 of Simchowitz et al. (2017), if any algorithm
B (not necessarily symmetric) achieves an expected stopping time τ where the
expectation is taken over all the randomness in the permutation and in the instance,
then there is a symmetric algorithm that achieves the same expected stopping time.
Hence, we may assume that A is symmetric and capture the same set of possible
stopping times. If A is not symmetric, we may form an algorithm A ′ by permuting
the input, passing it to A, getting the output of A on the permuted input, and then
undoing the permutation before return an answer.

SinceWπ(k)(Ωt) andWπ(i∗)(Ωt) are truthful on Sim(π(ν),Ωt) and Sim(π(ν ′k),Ωt)
respectively, by Lemma 2 of Simchowitz et al. (2017), we have that

PA,π(ν)(Wπ(k)(Ωt)) + PA,π(ν ′k)(Wπ(i∗)(Ωt))

> TV(PA,π(ν),PA,π(ν ′k)) −Q (KL(Sim(π(ν),Ωt), Sim(π(ν ′k),Ωt)))

for Q(x) = min{1 − 1/2e−x,
√
x/2}. Since A is symmetric, for any permutation π,

we have that
PA,π(ν)(Wπ(k)(Ωt)) + PA,π(ν ′k)(Wπ(i∗)(Ωt))

= PA,ν(Wk(Ωt)) + PA,ν ′k(Wi∗(Ωt)) = 2PA,ν(Wk(Ωt)).

The first equality holds since eventWi depend only on the number of times that
arm i is pulled. Since A is symmetric, the probability that A pulls arm i at most τ
times on instance ν is equal to the probability that A pulls π(i) at most τ times on
instance π(ν). The second equality is true using symmetry as well since instances
ν and ν ′k are themselves equal up to a permutation.

Combining the above with the previous bounds on the total variation and KL
divergence, we have that
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PA×ν(Nk > τ) = PA×ν(Wk(Ωt)) >
1
2

1 − 2δ−

√
τ∆2

i∗,k

2


Plugging in τ = 1/(2∆2

i∗,k), we see that PA×ν(Nk > 1/(2∆2
i∗,k)) > 1/2(1/2 − 2δ).

Since kwas arbitrary, wemay repeat this argument for each k in [n]\{i∗}. Combining
this with Markov’s inequality, we see that

EA×ν

[∑
k6=i∗

Nk

]
>

1
4(1/2 − 2δ)

∑
k6=i∗

1
∆2
i∗,k

>
1
16
∑
k6=i∗

1
∆2
i∗,k

where the final inequality follows from δ < 1/16. The above holds for any δ-PAC
algorithm A.

We now state our strong lower bound on the expected number of samples for
any algorithm that can find an isolated arm.

Theorem 6.15. Fix n, 0 < β, and δ < 1/16 and consider a set ν of n Gaussian random
variables with variance 1 such that for a uniformly random chosen i∗ ∈ [n], ρi∗ = N(β, 1)
and ρi = N(µi, 1) for µi 6 −β for all i 6= i∗. Let π be a uniformly chosen permutation
of [n] and π(ν) be the permutation applied to instance ν. Any δ-PAC algorithm to detect
π(i∗) on π(ν) requires

1
16
∑
k6=i∗

1
∆2
i∗,k

+
1

2β2 log(1/2.4δ)

samples in expectation, where the expectation is taken both over the randomness in the
permutation, the randomness in π(ν), and any internal randomness to the algorithm.

Proof. By Lemma 6.12, arm i∗ must be sampled 1
2β2 log(1/2.4δ) times. By Theo-

rem 6.13, arms in [n]\{i∗}must collectively be sampled 1
16
∑
k6=i∗

1
∆2
i∗ ,k

times. Joining
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these two results gives the stated result.

6.D.2 Step 2. Deciding if an instance is isolated

Next, we consider a composite hypothesis test that is related to the question of
finding an isolated arm. As we will show, this test has the interesting property that
the alternate hypothesis may be declared in significantly fewer samples than the
null.

Definition 6.16 (β-Isolated Hypothesis Test). Fix 0 < ε and 0 < β. Consider an
instance ν = {ρ1, · · · , ρn} where ρi = N(µi, 1). By sampling individual distributions ρi,
one wishes to perform the following composite hypothesis test:

Null Hypothesis H0: µi < −β for all i ∈ [n].
Alternate Composite Hypothesis H1: ∃i∗ : µi∗ = β > 0 and µi 6 −β for all

i 6= i∗.

For any instance ν, we say “H1 is true on ν” if ∃i∗ : µi∗ = β > 0 and otherwise
we say “H0 is true on ν.” Next, we bound the sample complexity of any algorithm
to perform the β-isolated hypothesis test with probability at least 1 − δ in the case
that H0 is true.

Figure 6.2 shows an two example instance. One whereH0 is true and one where
H1 is true.

Lemma 6.17. Fix n, β, and δ and consider a set ν of n standard normal random variables
where H0 is true. Any algorithm to correctly declare H0 in the β-isolated hypothesis test
problem with probability at least 1 − δ requires

n∑
i=1

2
(β− µi)2 log

(
1

2.4δ

)

samples in expectation.

Proof. Notice that for each i ∈ [n], we may construct an alternate instance νi by
changing the distribution of ρi to be N(β, 1) and leaving others unchanged. On
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νi, H1 is instead true. To distinguish between ν and νi, necessary to declare H0

versus H1, by Lemma 1 of Kaufmann et al. (2016), any δ-PAC algorithm requires
Eν[Ni] > 2

(β−µi)2 log(1/2.4δ) where Eν denotes expectation with respect to the
instance ν andNi denotes the number of samples of arm i. Repeating this argument
for each i ∈ [n] gives the desired result.

To lower bound the expected sample complexity of any algorithm to perform the
β-isolated hypothesis test in the setting where H1 is true, we consider a reduction
to the problem studied in Step 1, Section 6.D.1. For the reduction to an algorithm
that can find an isolated arm, we show that if there is an algorithm to declare H1

in fewer than O
(∑n

i=1
1

∆2
i∗ ,k

)
samples, then one can design an algorithm akin to

binary search that returns i∗ in fewer than O
(∑n

i=1
1

∆2
i∗ ,k

)
samples, contradicting

Lemma 6.13.

Lemma 6.18. Fix n, β, and δ < 1/16. Let π be a random permutation. Consider an
instance ν where H1 is true. In this setting, any algorithm to correctly declare H1 in the
β-Isolated Hypothesis Testing problem on π(ν) with probability at least 1 − δ requires
1
32
∑
j6=i∗ ∆

−2
i∗,k samples in expectation.

Proof. Fix δ > 0 and let i∗ denote the single distribution such that ρi∗ = N(β, 1)
where β > 0. In particular, only i∗ has a positive mean. Assume for contradiction
that there is an algorithm A(π(ν), δ,β) that correctly declares H1 on π(ν) in at
most 1

32
∑
k6=i∗ ∆

−2
i∗,k samples in expectation with probability at least 1 − δ on any

instance π(ν) of n distributions if H1 is true. Otherwise, if H0 is true, assume that
A correctly declares H0 in an arbitrary number of samples in expectation, NH0(ν)

lower bounded by Lemma 6.17. As in the proof of Theorem 6.13, if any algorithm
B (not necessarily symmetric) achieves an expected stopping time τ where the
expectation is taken over all the randomness in the permutation and in the instance,
by Lemma 1 of Simchowitz et al. (2017), there is a symmetric algorithm that achieves
the same expected stopping time. Hence, we may assume that A is symmetric and
capture the same set of possible stopping times. For the remainder of this proof,
we assume A is symmetric. Therefore, its expected complexity is independent of
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the permutation π. Without loss of generality, assume that n = 2k for some k ∈ N.
Otherwise, we may hallucinate (2dlog2(n)e − n) normal distributions, N(−β, 1), and
form an instance ν ′ comprised of these additional distribution and those in ν. If
so, anytime A requests a sample from a distribution in ν ′\ν, draw a sample from
N(−β, 1) and pass it to A, only tracking the number of samples drawn from ν.

Step a). In what follows, we use A to develop a method for isolated-arm identi-
fication. To do so, we show that one may use A to perform binary search for the
distribution i∗ such that ρi∗ = N(β, 1) and this leads to a contradiction of Theo-
rem 6.13. For ease of exposition, for a set S ⊂ [n], let ν(S) := {i ∈ S : ρi}, the subset
of instance ν of distributions whose indices are in S.

If H1 is true on ν(S), by assumption, with probability at least 1 − δ, A correctly
declares H1 on ν(S) in at most 1

32
∑
i∈S\{i∗}∆

−2
i∗,k samples in expectation. Similarly,

if H0 is true on ν(S), the sample complexity is NH0(ν(S)) in expectation.

Algorithm 7 Binary search for Isolated Arm Identification
Require: δ > 0, β > 0, instance ν such that H1 is true, algorithm A

1: Let Low = 1 and High = n
2: for i = 1, · · · , log2(n) do
3: 1) Choose sets S1, S2 uniformly at random such that S1 ∪ S2 = S, S1 ∩ S2 = ∅,

and P(i ∈ S1) = P(i ∈ S2) for all i ∈ S

4: 2) In parallel, run A1 = A(ν(S1),β, δ/2 log2(n)) and A2 =
A(ν(S2),β, δ/2 log2(n))

5: 3) If either terminates, terminate the other
6: if A1 declares H1 or A2 declares H0 then
7: S = S1
8: else
9: S = S2

10: end if
11: end forreturn i∗ ∈ S (note: |S| = 1 at this point)

In step 1, we choose 2 random subsets of S, S1 and S2 that partition S such that
each arm is assigned with equal probability to either S1 or S2 independently.

In step 2) if the loop, we separately run A in parallel on ν(S1) and ν(S2), each
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with failure probability δ/2 log(n). We alternate between passing a sample to A1

and to A2.
In Step 3), we terminate A1 if A2 terminates and vice versa. If, for instance, A1

terminates and declares H0, we may infer H1 on S2. Alternately, if A1 declares H1

on S1, we may infer H0 on S2 as there is a single positive mean, µi∗ . This process
continues until |S1| = |S2| = 1, when there is a single distribution remaining in each.
At this point, if A1 declares H1, then the single arm i ∈ S1 is the positive mean i∗.
Otherwise, the single arm j ∈ S2 is.

First, we show that this algorithm is correct with probability at least 1 − δ. The
algorithm errs if and only if in any round i, either A1 or A2 errs, each with occurs
with probability at most δ/2 log2(n). Union bounding over the log2(n) rounds, we
see that the algorithm errs with probability at most δ. For the remainder of the
proof, we will assume that in no round does either A1 or A2 incorrectly declare H0

or H1 if the reverse is true for the given instances ν(S1) and ν(S2).
Now we introduce some notation for the remainder of this proof. As the set

S, S1, and S2 change in each round, let S(r), S1(r), and S2(r) denote their values in
round r for r = 1, · · · , log2(n). Define A1(r) and A2(r) similarly. We stop A1(r) if
A2(r) terminates and vice versa.

Let Tr denote the random variable of the total number of samples of drawn in
round r. Let Tr,1 be the number of samples drawn by A1(r), and Tr,2 be the number
of samples drawn by A2(r).

Next, define S∗(r) be the set in {S1(r), S2(r)} that contains i∗, i.e. let S∗(r) denote
S1(r) if i∗ ∈ S1(r) and S2(r) otherwise for all r. Similarly, let A∗(r) denote A1(r) if
i∗ ∈ S1(r) and A2(r) otherwise. Define Tr,A∗ to be the random number of samples
given to A∗(r). Hence, Tr,A∗ = Tr,1 or Tr,A∗ = Tr,2.

By Step 2,A1(r) andA2(r) are run in parallel. Hence, Tr,1 = Tr,2 deterministically.
Furthermore, Tr = Tr,1 + Tr,2 deterministically. Therefore,

Tr,A∗ =
Tr,1 + Tr,2

2 =
Tr

2 .

Therefore, the expected number of samples in round r, taken over the random-



246

ness in the set S∗(r), the randomness in the instance ν(S∗(r)), and any randomness
in A∗(r) is

ES∗(1),··· ,S∗(r),ν(S∗(r))[Tr] = 2ES∗(1),··· ,S∗(r),ν(S∗(r)) [Tr,A∗]

= 2ES∗(1),··· ,S∗(r)
[
Eν(S∗(r)) [Tr,A∗ |S∗(r)]

]
= 2ES∗(1),··· ,S∗(r)

min

 1
32

∑
j∈S∗(r)\{i∗}

1
∆2
i∗,j

, NH0(ν(S
∗(r)c))


6 2ES∗(1),··· ,S∗(r)

 1
32

∑
j∈S∗(r)\{i∗}

1
∆2
i∗,j


= 2ES∗(1),··· ,S∗(r−1)

[
ES∗(r)

[
1
32
∑
j6=i∗

1[j ∈ S∗(r)]
1
∆2
i∗,j

∣∣∣∣S∗(r− 1)
]]

= 2ES∗(1),··· ,S∗(r−1)

[
1
32 ·

(
1
2

)∑
j6=i∗

1[j ∈ S∗(r− 1)] 1
∆2
i∗,j

]
...

= 2ES∗(1)

[
1
32 ·

(
1
2

)r−1∑
j6=i∗

1[j ∈ S∗(1)] 1
∆2
i∗,j

]

=
1
16 ·

(
1
2

)r∑
j6=i∗

1
∆2
i∗,j

.

Therefore, wemay bound the expected total number of samples for the above binary
search algorithm to return i∗ as

E

log2(n)∑
r=1

Tr

 =

log2(n)∑
r=1

E [Tr] 6
1
16
∑
j6=i∗

1
∆2
i∗,j

log2(n)∑
r=1

(
1
2

)r
6

1
16
∑
j6=i∗

1
∆2
i∗,j

.

However, this contradicts Theorem 6.13 for δ < 1/16. Hence no such algorithm A

exists and any algorithm to declare H1 on instance ν requires at least 1
32
∑
j6=i∗

1
∆2
i∗ ,j

samples in expectation.
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Theorem 6.19. Fix n, β, and δ < 1/16 and consider an instance ν. If H0 is true on ν,
any algorithm requires at least

n∑
j=1

2
(β− µj)2 log

(
1

2.4δ

)

samples in expectation to perform the β-isolated Hypothesis Test. If H1 is true on ν, any
algorithm requires at least

1
4β2 log

(
1

2.4δ

)
+

1
64
∑
j6=i∗

1
∆2
i∗,j

samples in expectation to perform the β-isolated Hypothesis Test.

Proof. If H0 is true for ν, the result follows immediately from Lemma 6.17. Oth-
erwise, assume H1 is true for ν and let i∗ be the single distribution such that
ρi∗ = N(β, 1). Similar to the proof of Lemma 6.12, one may consider an alternate
instance ν ′ where ρi∗ = N(−β, 1) and all other distributions are unchanged. There-
fore, on ν ′, H0 is true and any algorithm that is correct with probability at least
1 − δ must be able to distinguish between these two instances. By Lemma 1 of
Kaufmann et al. (2016), any algorithm that is correct with probability at least 1 − δ

must therefore sample i∗ 1
2β2 log

( 1
2.4δ

)
times in expectation. Combining this with

the result of Lemma 6.18, any algorithm that is correct with probability at least
1 − δmust collect at least

max
{

1
32
∑
j6=i∗

1
∆2
i∗,j

, 1
2β2 log

(
1

2.4δ

)}
>

1
4β2 log

(
1

2.4δ

)
+

1
64
∑
j6=i∗

1
∆2
i∗,j

samples in expectation.

6.D.3 Step 3: Reducing all-ε to isolated instance detection

In this section, we prove that for any instance ν for all-ε such that |Gβε(ν)| = 1
requires at leastO

(∑n
2=1

1
∆2
i

)
samples in expectation. To do so, we prove a reduction
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from finding all ε-good arms to the β-Isolated Hypothesis Testing. In particular,
we show that if one has a generic method to find all ε-good arms (with slack γ = 0),
then one may use this to develop a method to perform the β-Isolated Hypothesis
Test. Therefore, lower bounds on the this test apply to the problem of finding all
ε-good arms as well.

Lemma 6.20. Fix δ 6 1/16, n > 2/δ, ε > 0, β ∈ (0, ε/2). Let ν be an instance of n
arms such that the ith is distributed as N(µi, 1), |G2βε | = 1, and there exists an arm in Gcε
such that µ1 − ε− µi = β. Select a permutation π : [n]→ [n] uniformly from the set of
n! permutations, and consider the permuted instance π(ν). Any algorithm that returns
Gε(π(ν)) on π(ν) with correctly probability at least 1 − δ requires at least

1
64

n∑
i=2

1
∆2
i

+
1

4β2
ε

log
(

1
2.4δ

)

samples in expectation taken jointly over the randomness in ν and π.

Proof. Fix 0 < δ < 1/16, n > 2/δ, ε > 0, 0 < β < ε/2, and an arbitrary constant
c ∈ R. Consider a given instance ν = {ρ1, · · · , ρn} such that µ1 ∈ {−β,β}, and
µ2, · · · ,µn < −β. We wish to perform the β-isolated hypothesis test on π(ν).
Assume for contradiction that there exists a generic algorithm A(ν ′, ε, δ) such
that if given a generic instance ν ′ where |G2βε(ν

′)| = 1, it returns Gε(ν ′) with
probability at least 1− δ in at most 1

64
∑n
i=2

1
∆2
i

samples where µ ′1 is the largest mean
in ν ′. Algorithm 8 uses A to perform the hypothesis test.

Note that asn > 2/δ, P(î = π(1)) 6 δ/2. Themethod replaces ρîwithN(c−ε, 1).
All other means µi are shifted up by c. The test then runs A on this new instance ν ′

with failure probability δ/2. If H0 is true on π(ν), all distributions have means less
than −β, and î therefore is ε-good on instance ν ′. IfH1 is true on π(ν), then ρπ(1) =

N(β, 1) and î is not ε-good on instance ν ′. This method correctly performs the test
if î 6= π(1) and A does not fail, the joint event of which occurs with probability at
most 2δ. Therefore, this test is correct with probability at least 1 − δ.

Let TA(ν
′) denote the random variable of the number of samples drawn by A

on instance ν ′ and let T denote the random variable of the total number of samples
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Algorithm 8 Using All-ε for β-isolated hypothesis test
Require: δ > 0, ε > 0, 0 < β, instance π(ν), constant c, and algorithm A

1: Step 1: Choose an index î ∈ [n] uniformly
2: Step 2: Let ν ′ be the instance

ν ′ =

{
ρπ(i) + c if i 6= î
N(c− ε, 1) if i = î

3: Step 3: G = A(ν ′, ε, δ/2)
4: if î ∈ G then:
5: Declare H0 and terminate
6: else
7: Declare H1 and terminate
8: end if

drawn by this procedure before it terminates and declaresH0 orH1 on ν ′. Therefore,
Eπ,ν[T ] = Eπ,ν[TA(ν

′)].
By Lemma 1 of Simchowitz et al. (2017), averaging over all permutations is

equivalent to first permuting the instance ν and then passing it toA and undoing the
permutation when returning the answer. We therefore assume that A is symmetric
in that its expected sample complexity of A is invariant to the permutation π.
Otherwise, we may use A to form a symmetric algorithm. Therefore, Eπ,ν[T ] =

Eπ,ν[TA(ν
′)] = Eν[TA(ν

′)]. By Theorem 6.19, if H1 is true,

Eπ,ν[T ] >
1
64

n∑
i=2

1
∆2
i

+
1

4β2 log
(

1
2.4δ

)
.

Hence,

Eν[TA(ν
′)] >

1
64

n∑
i=2

1
∆2
i

+
1

4β2 log
(

1
2.4δ

)
.

Lastly, as the constant c was chosen arbitrarily, and β is an number in (0, ε/2) this
argument applies to any all-ε instance ν ′ such that βε ∈ (0, ε/2) and |G2βε | = 1
for n appropriate choice of c.
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With the above proof, we restate the followingmoderate confidence lower bound
on the sample complexity of returning all ε-good stated in Section 6.4. In particular,
this bound highlightsmoderate confidence terms that are independent of δ. Moderate
confidence terms have been studied in works such as Simchowitz et al. (2017); Chen
et al. (2017). Despite being independent of δ, these terms can have important effects
in real world scenarios. The following bound demonstrates that there are instances
for which moderate confidence terms are necessary for finding all ε-good arms.
Moderate confidence terms likewise appear in the upper bound of the complexity
of FAREAST, Theorem 6.8.

Theorem 6.21. Fix δ 6 1/16, n > 2/δ, and ε > 0. Let ν be an instance of n arms such
that the ith is distributed as N(µi, 1), |G2βε | = 1, and βε < ε/2. Select a permutation
π : [n]→ [n] uniformly from the set ofn! permutations, and consider the permuted instance
π(ν). Any algorithm that returns Gε(π(ν)) on π(ν) with correctly probability at least
1 − δ requires at least

c2

n∑
i=1

max
(

1
(µ1 − ε− µi)

2 , 1
(µ1 + αε − µi)

2

)
log
(

1
2.4δ

)
+ c2

n∑
i=1

1
(µ1 + βε − µi)2

samples in expectation over the randomness in ν and π for a universal constant c2.

Proof. Wemay equivalently consider the same instance with all means shifted down
by ε− 2β since a method for that instance could be used to return all ε good arms
in the stated instance. By Lemma 6.20, c2

n
β2 samples are necessary in expectation.

By Theorem 6.4,

2
n∑
i=1

max
(

1
(µ1 − ε− µi)

2 , 1
(µ1 + αε − µi)

2

)
log
(

1
2.4δ

)

samples are necessary in expectation. By Lemma 6.20,

1
64

n∑
i=2

1
∆2
i

+
1

4β2
ε

log
(

1
2.4δ

)
>

1
64

n∑
i=2

1
(µ1 + βε − µi)2 +

1
4β2
ε

log
(

1
2.4δ

)
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>
1
64

n∑
i=1

1
(µ1 + βε − µi)2

samples are necessary in expectation taken over the randomness in the permutation
and in the instance. In particular, the maximum and therefore the average is a valid
bound. Therefore, any algorithm requires

n∑
i=1

max
(

1
(µ1 − ε− µi)

2 , 1
(µ1 + αε − µi)

2

)
log
(

1
2.4δ

)
+

1
128

n∑
i=1

1
(µ1 + βε − µi)2

samples in expectation.

6.E Sample Complexity of finding positive means

Algorithm 6.F.1 builds on a more general idea of finding arms with positive means
quickly. This is the core idea of FAREAST. To show that any arm j 6∈ Gε, it is sufficient
to find any arm i such thatµi−µj > ε in the additive case and similarly (1−ε)µi > µj
in the multiplicative case. Focussing on the additive case, this is equivalent to
finding any i such that µi − µj − ε > 0. Not that neither of these conditions require
i to be in Gε. If we fix j, we can consider all difference distributions with respect
to any arm i shifted down by ε: ρi − ρj − ε and try to quickly find one with a
positive mean. As we show in this section, this can be done in relative few samples
in expectation since we have an easy way to verify if any guess that we make does in
fact have a positive mean. Below we state an algorithm, FindPos, 9, and a theorem
bounding its complexity. The algorithm proceeds in rounds, each consisting of and
explore step and a verify step similar to Karnin (2016); Mannor and Tsitsiklis (2004).
In the explore step, we make a guess that is correct with constant probability at a
β-good distribution. In the verify step, sufficiently many samples are drawn from
the this distribution to form a β/2 confidence width with high probability. If the
lower bound exceeds 0, the algorithm terminates. Otherwise, the process repeats.
To account for the fact that β is unknown, we make dyadically decreasing guesses
at β. In particular, in the kth round, we guess that β > 2−k. Similar tools have been
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employed in for pure-exploration the infinite armed bandit literature Jamieson et al.
(2016); Li et al. (2017). It relies on a generic subroutine called ε-GOOD which given
n subGaussian arms, and ε, κ > 0, returns a single ε-good arm with probability
at least 1 − κ. Examples of such a routine include LUCB and Median-Elimination
Kalyanakrishnan et al. (2012); Even-Dar et al. (2002).

Algorithm 9 The FindPos algorithm
Require: 0 < δ < 1/8, 0 < κ < 1/16
1: for k = 1, 2 · · · do
2: Guess: βk = 2−k

3: ik ← ε-GOOD(βk, κ) . Explore step
4: Sample ik

⌈
4β−2
k log(4k2/δ)

⌉
times and compute µ̂ik . Verify step

5: if µ̂ik > 1
2βk then return ik

6: end if
7: end for

Theorem 6.22. Fix 0 < δ < 1/8 and 0 < κ < 1/16 and consider an instance of n
1-subGaussian arms such that the largest mean is β > 0, unknown to the algorithm. Let
ε-GOOD be performed by Median-Elimination. With probability at least 1− δ, FindPos

returns a distribution with positive mean in at most.

O

(
n

β2 +
1
β2 log

(
log2(2/β)

δ

))
samples in expectation.

To appreciate, the above result, consider an oracle that knows all means, and
merely wishes to prove that any arm has a positive mean with probability at least
1−δ. If this armhasmeanβ, the oracle can simply sample that armO(1/β2 log(1/δ))
times to do so. Naturally such a method is unrealistic, since a practical algorithm
needs to also find an arm with positive mean as well as verify this fact. The above
result states that roughly O(n/β2) samples are necessary to find an arm with
positive mean. In particular, this term exists in moderate confidence, as it vanishes
as δ → 0. Hence, asymptotically, FindPos achieves the same complexity as an
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oracle that knows all means! Furthermore, we may also recover the spike detection
problem studied in Appendix 6.D.1. In that setting, exactly 1 arm has mean β and
all others have mean 0. A lower bound for that problem, given in Theorem 6.13
indicates that the result of Theorem 6.22 is optimal up to a doubly logarithmic
factor for that problem.

6.E.1 Proof of Theorem 6.22

Now we bound the expected sample complexity of FindPos sample complexity
of. Let µ1, · · · ,µn denote the means of the n arms and µ1 = max{µ1, · · · ,µn} = β.
Throughout, for any k ∈ N consider the indicator random variable Yk that FindPos
does not terminate in round k or before it. Namely,

Yk =

k⋂
r=1

(µ̂ir(τr) 6 βr)

Additionally, we let τk =
⌈
4β−2
k log(4k2/δ)

⌉
for βk = 2−k. Let µi(t) denote the

empirical mean of arm i after t iid pulls. Let HME(n, ε, κ) = dc ′ n
ε2 log(1/κ)e be the

complexity of Median-Elimination.

6.E.1.1 Step 0: Correctness

First, we show that with probability 1 − δ, FindPos returns an arm with a positive
mean. Since ik is sampled τk times, by Hoedffding’s inequality

P(|µ̂j(τk) − µj| > 2−k+1|ik = j) 6
δ

2k2

Next,

P(|µ̂j(τk) − µj| > 2−k+1) =

n∑
i=1

P(|µ̂j(τk) − µj| > 2−k+1|ik = j)P(ik = j)

6
δ

2k2

n∑
i=1

P(ik = j)
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=
δ

2k2

Therefore, union bounding over rounds k ∈ N,

P

( ∞⋃
t=1

|µ̂ik(τk) − µik | > 2−(k+1)

)
6

∞∑
k=1

δ

2k2 = δ

FindPos errs if and only if in any round k µik < 0 but µ̂ik(τk) > 1
2βk = 2−(k+1). By

the above, this occurs with probability δ.

6.E.1.2 Step 1: Bounding E[Yk]

Next, we bound the probability that FindPos proceeds to round k.
Claim 1: For k >

⌈
log2

(
2
β

)⌉
, E [Yk] 6

(1
8

)k−dlog2( 2
β)e

Proof. Condition on Yk−1 = 1, the event that FindPos does not terminate
through round k − 1. By Hoeffding’s inequality an a union bound over possible
values of ik, with probability at least 1 − δ

2k2 , |µ̂ik − µik | 6 2−(k+1) and therefore,
µ̂ik > µik − 2−(k+1). If Median-Elimination also succeeds, the joint event of which
occurs with probability 15

16(1 − δ
2k2 ), µik > β− 2−k. Hence, µ̂ik > β− 2−k − 2−(k+1).

Then for k >
⌈
log2

(
2
β

)⌉
, 2−k 6 β/2. Hence, µ̂ik > β/4 > 0 and FindPos terminates

and returns ik. In particular, then E[Yk|Yk−1 = 1] > 15
16(1−

δ
2k2 ). Note that if FindPos

terminates in round k, and Yk = 0 for all k ′ > k. Since Yk is an indicator random
variable and E[Yk|Yk−1 = 0] = 0 deterministically by definition of Yk,

E[Yk] = E[Yk|Yk−1 = 0]P(Yk−1 = 0) + E[Yk|Yk−1 = 1]P(Yk−1 = 1)

= E[Yk|Yk−1 = 1]P(Yk−1 = 1)

= E[Yk|Yk−1 = 1]P(Yk−1)

= E[Yk|Yk−1 = 1]E[Yk−1]

6

(
1
16 +

δ

4k2

)
E [1(Yk−1 = 0)] .
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For k <
⌈
log2

(
2
β

)⌉
, trivially, E [Yk] 6 1. Recall δ 6 1/8. For k >

⌈
log2

(
2
β

)⌉
,

E [Yk] 6
k∏

s=dlog2( 2
β)e

(
1
16 +

δ

2s2

)
6

(
1
8

)k−dlog2( 2
β)e

.

6.E.1.3 Bounding the total number of samples drawn by FindPos

Let T denote the random variable of the total number of samples drawn by FindPos.
Claim: E[T ] 6 c n

β2 +
c
β2 log

(
log2

(
2
β

)
/δ
)
for a constant c.

Proof. We may write T as

T =

∞∑
k=1

Yk−1

(
HME

(
n, 2−k, 1

16

)
+ τk

)

and E[T ] as

E[T ] =
∞∑
k=1

E[Yk−1]

(
HME

(
n, 2−k, 1

16

)
+ τk

)
since HME and τk are deterministic quantities. We will show that the right side
of the above equation is finite. Hence, the equality is true by the Fubini-Tonelli
Theorem.

This sum decomposes into two terms.

∞∑
k=1

E [Yk]
(
τk +HME(n, 2−k, 1/16)

)

=

blog2( 2
β)c∑

k=1

E [Yk−1]

(
HME(n, 2−k, 1/16) +

⌈
22k+2 log

(
4k2

δ

)⌉)

+

∞∑
k=dlog2( 2

β)e
E [Yk−1]

(
HME(n, 2−k, 1/16) +

⌈
22k+2 log

(
4k2

δ

)⌉)
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We begin by bounding the first term.

blog2( 2
β)c∑

k=1

E [Yk−1]

(
HME(n, 2−k, 1/16) +

⌈
22k+2 log

(
4k2

δ

)⌉)

6

blog2( 2
β)c∑

k=1

(
HME(n, 2−k, 1/16) +

⌈
22k+2 log

(
4k2

δ

)⌉)

6

blog2( 2
β)c∑

k=1

(
c ′n22k log(16) + 1 + 22k+2 log

(
4k2

δ

))

6 log2

(
2
β

)
+

(
c ′n log(16) + 4 log

(
4
δ

)) blog2( 2
β)c∑

k=1

22k

+ 8
blog2( 2

β)c∑
k=1

22k log (k)

6 log2

(
2
β

)
+

(
c ′n log(16) + 4 log

(
4
δ

)
+ log log2

(
2
β

)) blog2( 2
β)c∑

k=1

22k

6 log2

(
2
β

)
+

(
c ′n log(16) + 4 log

(
4
δ

log2

(
2
β

)))
2 · 22 log2( 2

β)

6 log2

(
2
β

)
+

8
β2

(
c ′n log(16) + 4 log

(
4
δ

log2

(
2
β

)))
Next, we plug in the bound from claim 1 controlling E[Yk].
Using Claim 1, we bound the second sum as follows:

∞∑
r=dlog2( 2

β)e
E [Yk−1]

(
HME(n, 2−k, 1/16) +

⌈
22k+2 log

(
4k2

δ

)⌉)

6
∞∑

k=dlog2( 2
β)e

(
1
8

)k−dlog2( 2
β)e−1(

c ′n22k log(16) + 1 + 22k+2 log
(

4k2

δ

))
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= c ′n log(16)
∞∑
i=1

(
1
8

)i−1

22(i+dlog2( 2
β)e) +

∞∑
i=1

(
1
8

)i−1

+ 4
∞∑
i=1

(
1
8

)i−1

22(i+dlog2( 2
β)e) log

4
(
i+
⌈
log2

(
2
β

)⌉)2

δ


6 2 + c ′n log(16)

∞∑
i=1

2−3i+322(i+log2( 2
β)+1)

+ 4
∞∑
i=1

2−3i+322(i+log2( 2
β)+1) log

4
(
i+
⌈
log2

(
2
β

)⌉)2

δ


= 2 +

(
27c ′n log(16)

β2 +
211

β2 log
(

4
δ

)) ∞∑
i=1

2−i

+
211

β2

∞∑
i=1

2−i log
((

i+

⌈
log2

(
2
β

)⌉)2
)

6 2 +
27c ′n log(16)

β2 +
211

β2 log
(

4
δ

)
+

212

β2

∞∑
i=1

2−i log
(
i+

⌈
log2

(
2
β

)⌉)
= (∗∗)

We may bound the final summand,
∑∞
i=1 2−i log

(
i+
⌈
log2

(
2
β

)⌉)
as follows:

∞∑
i=1

2−i log
(
i+

⌈
log2

(
2
β

)⌉)
6 log

(
e

2 log2

(
128
β2

))

Plugging this back into (∗∗), we have that

(∗∗) 6 3 +
27cn log(16)

β2 +
212

β2 log
(

4
δ

)
+

212

β2 log
(
e

2 log2

(
128
β2

))
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Combining the above with the bound on the first sum, we have that

∞∑
k=1

E [Yk−1]
(
τk +HME(n, 2−k, 1/16)

)
6
c ′′n

β2 + c ′′
1
β2 log

(
1
δ

log2

(
2
β

))

for a sufficiently large, universal constant c ′′.

6.F An optimal method for finding all additive and
multiplicative ε-good arms

6.F.1 The FAREAST Algorithm

Below, we present an algorithm called FAREAST (Fast Arm Removal Elimination
Algorithm for a Sampled Threshold) that achieves the lower bound when γ = 0.
Similar to (ST)2, it relies on anytime-correct confidencewidths,Cδ(t) :=

√
4 log(log2(2t)/δ)

t
.

The algorithm proceeds in rounds, and creates a filter for good arms and a filter
for bad arms. The good filter detects arms in Gε ofMε and adds them to a set Gk.
Similarly, the bad filter detects arms in Gcε orMc

ε and adds them to a set Bk. At any
given time, we may represent the set of arms that have not been declared as either
in Gε/Mε or Gcε/Mc

ε as (Gk ∪ Bk)c. In either the additive or multiplicative case,
the algorithm terminates when it can certify that Gε ⊂ Gk and Gk ∩Gcε+γ = ∅ or
Mε ⊂ Gk and Gk ∩Mc

ε+γ = ∅, respectively– i.e., when Gk contains all additive or
multiplicative ε-good arms and none worse than (ε+ γ)-good.

In each round, the bad filter uses MedianElimination Even-Dar et al. (2002)
which given an instance ν, a value of ε, and a failure probability κ, returns an ε-good
arm with probability at least 1 − κ. In the kth round, for an arm i in (Gk ∪ Bk)c, the
bad filter uses MedianElimination to find a 2−k good arm ikwith failure probability
κ = O(1) and then samples both arms i and ik Õ(22k log(1/δ)) times. Let µ̂i and µ̂ik
denote the empiricalmeans. For instance, in the additive case, if µ̂ik−µ̂i > ε+2−k+1,
we may declare that i ∈ Gcε, and the bad filter adds i to the set Bk. This allows the
bad filter to commit to a single arm and sample it sufficiently to remove arms in Gcε.
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The good filter is a simple elimination scheme. It maintains an upper bound
Ut and lower bound Lt on µ1 − ε. If an arm’s upper bound drops below Lt (line
20), the good filter eliminates that arm, otherwise, if an arm’s lower bound rises
above Ut (19), the good filter adds the arm to Gk, but only eliminates this arm
if its upper bound falls below the highest lower bound. This ensures that µ1 is
never eliminated and Ut and Lt are always valid bounds This scheme works as an
independent algorithm and achieves the sample complexity as (ST)2, though worse
empirical performance. We analyze this method in Appendix 6.F.5. Indeed, this
gives an additional high probability guarantee on the number of samples drawn by
FAREAST in both the additive and multiplicative regimes. As the sampling is split
across rounds, the good filter always samples the least sampled arm, breaking ties
arbitrarily. The number of samples given to the good filter in each round is such that
both filters receive identically many samples. Note that this is a random quantity
since the number of arms in (Gk∪Bk)c in round k is random. Despite this, we prove
a lower bound on the number of samples drawn per round which ensures the Good
Filter always receives a positive number of samples in each round. Note that by
design elimination only occurs when all arms in the active set have received equal
numbers of samples. This is crucial as it prevents the good filter from over-sampling
bad arms and vice versa. In our proof, we show that in some round, unknown to the
algorithm, Gk = Gε, ie all good arms have been found, and this takes no more than
O
(∑n

i=1 max
{
(µ1 − ε− µi)

−2, (µ1 + αε − µi)
−2} log(n/δ)

)
samples, matching the

lower bound.
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FAREAST
Input: ε, δ, Instance ν, slack γ > 0. If multiplicative, ε ∈ (0, 1/2]
Let G0 = ∅ be the set of arms declared as good and B0 = ∅ the set of arms declared as bad.
Let A = [n] be the active set, Ni = 0 track the total number of samples of arm i by the Good Filter.
Let t = 0 denote the total number of times that line 19 is true in the Good Filter.
Let Cδ/2n(t) be an anytime δ/2n-correct confidence width on t samples.
Let HME(n, ε, κ) = dc ′ n

ε2 log(1/κ)e be the complexity of MedianElimination.
for k = 1, 2, · · ·

1

2

3

4

5

6

7

8

Let δk = δ/2k2, τk =
⌈
22k+3 log

(
8n
δk

)⌉
, Initialize Gk = Gk−1 and Bk = Bk−1

// Bad Filter: find bad arms in Gcε orMc
ε

Let ik = MedianElimination(ν, 2−k, 1/16), sample ik τk times, and compute µ̂ik
for i /∈ Gk−1 ∪ Bk−1:

9

10

11

12

Sample µi τk times and compute µ̂i
If µ̂ik − µ̂i > ε+ 2−k+1 or (1 − ε)µ̂ik − µ̂i > 2−(k+1)(2 − ε):

13

14

Add i to Bk15

// Good Filter: find good arms in Gε orMε

for s = 1, · · · ,HME(n, 2−k, 1/16) + τk · (|(Gk−1 ∪ Bk−1)
c|+ 1):

16

17

Pull arm Is ∈ arg minj∈A{Nj} and set NIs ← NIs + 1.
if minj∈A{Nj} = maxj∈A{Nj}:

18

19

t = t+ 1
For i ∈ A denote µ̂i(t) the average of the first t samples of arm i.
Let Ut = maxj∈A µ̂i(t) + Cδ/2n(t) − ε or Ut = (1 − ε)

(
maxj∈A µ̂i(t) + Cδ/2n(t)

)
Let Lt = maxj∈A µ̂i(t) − Cδ/2n(t) − ε or Lt = (1 − ε)

(
maxj∈A µ̂i(t) − Cδ/2n(t)

)
for i ∈ A:

20

21

22

23

24

if µ̂i(t) − Cδ/2n(t) > Ut:25

Add i to Gk26

if µ̂i(t) + Cδ/2n(t) 6 Lt: // Bad arms are removed from A27

Remove i from A28

if i ∈ Gk and µ̂i(t)+Cδ/2n(t) 6 maxj∈A µ̂(t)−Cδ/2n(t): //Good arms removed29

Remove i from A30

If A ⊂ Gk or Gk ∪ Bk = [n]:31

Output: the set Gk // Stopping condition for returning Gε exactly.32

If Ut − Lt < 1
2γ or Ut − Lt < γ

2−εLt:33

Output: the set A ∪Gk // Stopping condition for γ > 0.34

The algorithm stops on either of three conditions. First, if Gk ∪ Bk = [n], every
arm has been declared as either in Gε or Gcε (orMε orMc

ε). Second, if A ⊂ Gk, the
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Good Filter has found every arm inGε and FAREAST can terminate. This is the same
stopping condition as EAST itself. In either case, FAREAST returns the set Gk = Gε

exactly. The third condition allows for γ slack. The good filter maintains upper
and lower boundsUt and Lt on the threshold in both the additive an multiplicative
cases. In the additive case, ifUt−Lt < γ/2, then all arms inGcε+γ have been added
to Bk, and FAREAST may return Gk ∪A. The condition for the multiplicative case
is similar, though slightly more complicated. Throughout, we will use red text to
denote pieces specific to the additive case and blue text to denote pieces specific to
the multiplicative case.

Remark 6.23. Note that the active set A defined in line 4 of FAREAST is only used and
updated internally by the Good Filter. In particular, it is not necessarily true that (Gk ∪
Bk)

c = A. Furthermore, a bad arm i ∈ Gcε maybe removed from A even though it is not in
Bk and vice versa as the Good Filter only seeks to detect good arms in Gε and the Bad Filter
only seeks to detect arms in Gcε. The same is true in the multiplicative case.

Remark 6.24. It is possible that when the loop in line 17 finishes in any given round,
some arms in A have received more samples than others. Because Is ∈ arg minj∈A{Nj} in
line 18, this difference is no more than 1, and the arms with fewer samples are the first to
be sampled in the next round. The condition on line 19 ensures that all arms have equal
numbers of samples by the Good Filter (e.g., the Ni’s) when the Good Filter identifies
good arms or eliminates arms from A.

Now, we restate Theorem 6.8 for reference.

Theorem 6.25. Fix 0 < ε, 0 < δ < 1/8, slack γ ∈ [0, 8] and an instance ν of n arms such
that max(∆i, |ε− ∆i|) 6 8 for all i. There exists an event E such that P(E) > 1 − δ, and
on E, FAREAST terminates and returns G such that Gε ⊂ G ⊂ Gε+γ in at most

c4

n∑
i=1

min
{

max
{

1
(µ1 − ε− µi)2 log

(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))
,

1
(µ1 + αε − µi)2 log

(
n

δ
log2

(
n

δ(µ1 + αε − µi)2

))
,
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1
(µ1 + βε − µi)2 log

(
n

δ
log2

(
n

δ(µ1 + βε − µi)2

))}
,

1
γ2 log

(
n

δ
log2

(
n

δγ2

))}
samples for a constant c4. Furthermore

E[1ET ] 6 c3
∑
i∈Gε

max
{

1
(µ1 − ε− µi)2 log

(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))
,

1
(µ1 + αε − µi)2 log

(
n

δ
log2

(
n

δ(µ1 + αε − µi)2

))}
+ c3

∑
i∈Gcε

n

(µ1 − ε− µi)2 +
1

(µ1 − ε− µi)2 log
(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))

for a sufficiently large constant c3 where T denotes the number of samples.

Next, we present a theorem bounding the sample complexity of FAREAST for
returning multiplicative ε-good arms. Recall that α̃ε := mini∈Mε

µi − (1 − ε)µ1

and β̃ε := mini∈Mc
ε
(1 − ε)µ1 − µi, the distance for the smallest good arm and best

arm that is not good to the threshold (1 − ε)µ1.

Theorem 6.26. Fix ε ∈ (0, 1/2], γ ∈ [0, min(1, 6/µ1)), 0 < δ < 1/8 and an instance ν of
n arms such that max(∆i, |εµ1 −∆i|) 6 6. Assume that the highest mean is non-negative,
i.e., µ1 > 0. There exists an event E such that P(E) > 1−δ, and on E, FAREAST terminates
and returns G such thatMε ⊂ G ⊂Mε+γ in at most

c5

n∑
i=1

min
{

max
{

1
((1 − ε)µ1 − µi)2 log

(
n

δ
log2

(
n

δ((1 − ε)µ1 − µi)2

))
,

(µ1 +
α̃ε

1−ε − µi)2 log
(
n

δ
log2

(
n

δ(µ1 +
α̃ε

1−ε)
2

))
,

1
(µ1 +

β̃ε
1−ε − µi)2

log
(
n

δ
log2

(
n

δ(µ1 +
β̃ε

1−ε − µi)2

))}
,

(1 − ε+ γ)2

γ2µ2
1

log
(
n

δ
log2

(
(1 − ε+ γ)2n

δγ2µ2
1

))}
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samples for a sufficiently large constant c5. Furthermore

E[1ET ] 6c6

n∑
i=1

max
{

1
((1 − ε)µ1 − µi)2 log

(
n

δ
log2

(
n

δ((1 − ε)µ1 − µi)2

))
,

1(
µ1 +

α̃ε
1−ε − µi

)2 log
(
n

δ
log2

(
n

δ
(
µ1 +

α̃ε
1−ε − µi

)2

))}
+ c6

∑
i∈Mc

ε

n

((1 − ε)µ1 − µi)2

for a sufficiently large constant c6, where T denotes the number of samples.

6.F.2 Key ideas of the proof

The proof revolves around a central idea: there is an event in unknown round KGood

in which the final arm fromGε orMε is added toGk. Wemay split the total number
of samples drawn as the number taken through round KGood and the number taken
from KGood + 1 until termination if the algorithm does not terminate in round KGood.
Note that the Good filter and Bad filter are given the same number of samples
in each round. The proof of FAREAST in the multiplicative regime is similar and
deferred to Appendix 6.F.4.

We begin by bounding the number of samples given to the Good filter when this
event occurs thatGk = Gε. Next, since this happens at a random time within round
KGood, we bound the total number of additional samples in this round. Collectively,
this gives us control over the number of samples drawn through round KGood.

Next, we bound the number of samples from KGood + 1 until termination. To
do so, we analyze the expected number of samples drawn by the Bad filter before
all arms in Gcε have been added to Bk. The total number of samples from KGood + 1
until termination is no worse than twice this value. The proof is split into 12 steps
and logically are organized as follows:

1. Step 0: We show that Gk ⊂ Gε and Bk ⊂ Gcε. In particular, this is implies that
Gk ∪ Bk = [n] =⇒ Gk = Gε so FAREAST terminates correctly.
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2. Step 1: We split the total number of samples drawn by FAREAST into two sums
that we will control individually.

3. Steps 2-4: We control the number of samples given to the Good filter before
Gk = Gε.

4. Steps 5-6: Using the result of steps 2-4, we bound the total number of samples
through round KGood

5. Steps 7-8: We use the result of step 6 to bound the total expected number of
samples drawn by FAREAST, simplifying slightly in the process.

6. Step 9: We bound the number of samples that the Bad filter draws in adding
a single bad arm to Bk.

7. Step 10: Repeating the argument in step 9, for every i ∈ Gcε, we bound the
total number of samples from round KGood + 1 until termination. We finish
by combining the bound on the number of samples drawn through KGood

with the bound from KGood + 1 until termination. This controls the expected
sample complexity of FAREAST.

8. Step 11: We provide a high probability bound on the sample complexity of
FAREAST.

6.F.3 Proof of Theorem 6.8, FAREAST in the additive regime

Proof. Notation for the proof: Throughout, recall∆i = µ1−µi. Recall that t counts
the number of times the conditional in line 19 is true. By Line 19 of FAREAST, all
arms in A have received t samples when the loop in line 23 is executed for the tth

time. Within any round k, let A(t) and Gk(t) denote the sets A and Gk at this time
since both sets can change in lines 27 and 29 and 25 respectively. Let tk denote the
maximum value of t in round k. By Lines 18 and 19 of FAREAST, the total number
of samples given to the good filter when the conditional in line 19 is true for the tth

time is
∑t
s=1 |A(s)|.
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For i ∈ Gε, let Ti denote the random variable of the number of times arm i

is sampled by the good filter before it is added to Gk in Line 25. For i ∈ Gcε, let
Ti denote the random variable of the number of times arm i is sampled by the
good filter before it is removed from A in Line 27. For any arm i, let T ′i denote
the random variable of the of the number of times i is sampled by the good filter
before µ̂i(t) + Cδ/2n(t) 6 maxj∈A µ̂j(t) − Cδ/2n(t). Lastly, let Tγ denote the ran-
dom variable of the number of times any arm is sampled by the good filter before
Ut − Lt < γ/2.

Define the event

E1 =

 ⋂
i∈[n]

⋂
t∈N

|µ̂i(t) − µi| 6 Cδ/2n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=√
4 log(log2(2t)/δ)

t
, we have

P(Ec1) = P

 ⋃
i∈[n]

⋃
t∈N

|µ̂i − µi| > Cδ/2n(t)


6

n∑
i=1

P

(⋃
t∈N

|µ̂i − µi| > Cδ/2n(t)

)
6

n∑
i=1

δ

2n =
δ

2

Next, recall that µ̂i(t) denotes the empirical average of t samples of ρi. Consider
the event,

E2 =
⋂
i∈Gε

⋂
k∈N

|(µ̂ik (τk) − µ̂i (τk)) − (µik − µi)| 6 2−k

By Hoeffding’s inequality,

P
(
|(µ̂j (τk) − µ̂i (τk)) − (µj − µi)| > 2−k

∣∣ik = j
)
6

δ

4nk2 .
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Then

P
(
|(µ̂j (τk) − µ̂i (τk)) − (µj − µi)| > 2−k

)
=

n∑
j=1

P
(
|(µ̂j (τk) − µ̂i (τk)) − (µj − µi)| > 2−k

∣∣ik = j
)
P(ik = j)

6
δ

4nk2

n∑
j=1

P(ik = j)

=
δ

4nk2

Therefore, union bounding over the rounds k ∈ N, P(Ec2) 6
∑
i∈Gε

∑∞
k=1

δ
4nk2 6

δ
2 . Hence, P (E1 ∩ E2) > 1 − δ.

6.F.3.1 Step 0: Correctness.

On E1∩E2, first we prove that if there exists a random round k at whichGk∪Bk = [n]

then Gk = Gε. Additionally, we prove that on E1 ∩ E2, if A ⊂ Gk, then Gk = Gε.
Therefore, for either stopping condition for FAREAST in line 31, on the event E1 ∩ E2,
FAREAST correctly returns the set Gε.

Claim 0: On E1 ∩ E2, for all k ∈ N, Gk ⊂ Gε.
Proof. Firstly we show 1 ∈ A for all t ∈ N, namely the best arm is never removed
from A. Note for any i

µ̂1 + Cδ/2n(t) > µ1 > µi > µ̂i(t) − Cδ/2n(t) > µ̂i(t) − Cδ/2n(t) − ε.

In particular this shows, µ̂1 + Cδ/2n(t) > maxi∈A µ̂i(t) − Cδ/2n(t) − ε = Lt and
µ̂1 +Cδ/2n(t) > maxi∈A µ̂i(t) −Cδ/2n(t) showing that 1 will never exit A in line 28.

Secondly, we show that at all times t, µ1 − ε ∈ [Lt,Ut]. By the above, since µ1

never leaves A,

Ut = max
i∈A

µ̂i(t) + Cδ/2n(t) − ε > µ̂1(t) + Cδ/2n(t) − ε > µ1 − ε
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and for any i,
µ1 − ε > µi − ε > µ̂i(t) − Cδ/2n(t) − ε

Hence µ1 − ε > maxi µ̂i(t) − Cδ/2n(t) − ε = Lt.
Next, we show that Gk ⊂ Gε for all k > 1, t > 1. Suppose not. Then ∃,k, t ∈ N

and ∃i ∈ Gcε ∩Gk(t) such that,

µi > µ̂i(t) − Cδ/2n(t) > Ut > µ1 − ε > µi,

with the last inequality following from the previous assertion, giving a contradiction.

Claim 1: On E1 ∩ E2, for all k ∈ N, Bk ⊂ Gcε.
Proof. Next, we show Bk ⊂ Gcε. Suppose not. Either a good arm was added to

the bad set by the bad filter or by the good filter. First, consider the case, that the
bad filter added an arm inGε to Bk for some k. By definition, B0 = ∅ and Bk−1 ⊂ Bk
for all k. Then there must exist k ∈ N and an i ∈ Gε such that i ∈ Bk and i /∈ Bk−1.
Following line 14 of the algorithm, this occurs if and only if

µ̂ik − µ̂i > ε+ 2−k+1.

On the event E2, the above implies

µik − µi + 2−k > ε+ 2−k+1,

and simplifying, we see that ε + 2−k 6 µik − µi 6 µ1 − µi which contradicts the
assertion that i ∈ Gε.

Next, consider the case that the good filter incorrectly adds a good arm i ∈ Gε
to Bk in some round k. Then there must be a t ∈ N such that.

µi
E1
6 µ̂i + Cδ/2n(t) < Lt

E1
6 µ1 − ε

which contradicts i ∈ Gε. Hence, in both cases Bk ⊂ Gcε for all k.
Combining the above claims, we see that E1∩E2 implies (Gk∪Bk = [n]) and Gk∩
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Bk = ∅ =⇒ Gk = Gε. Since P(E1 ∩ E2) > 1 − δ, if FAREAST terminates, with
probability at least 1 − δ, it correctly returns the set Gε.

Claim 2: Next, we show that on E1, Gε ⊂ A(t) ∪G(t) for all t ∈ N.
In particular this implies that if A ⊂ G, then Gε ⊂ G. Combining this with

the previous claim gives G ⊂ Gε ⊂ G, hence G = Gε. On this condition, FAREAST
terminates by line 33 and returns the set A ∪ G = G. Note that by definition,
Gε ⊂ G(ε+γ) for all γ > 0. Therefore FAREAST terminates correctly on this condition.

Proof. Suppose for contradiction that there exists i ∈ Gε such that i /∈ A(t) ∪
G(t). This occurs only if i is eliminated in line 28. Hence, there exists a t ′ 6 t such
that µ̂i(t ′) + Cδ/n(t ′) < Lt ′ . Therefore, on the event E1,

µ1 − ε
E1
> Lt ′ = max

j∈A
µ̂j(t

′) − Cδ/n(t
′) − ε > µ̂i(t

′) + Cδ/n(t
′)

E1
> µi

which contradicts i ∈ Gε.
Claim 3: Finally, we show that on E1, if Ut − Lt 6 γ/2, then A ∪G ⊂ G(ε+γ).
CombiningwithClaim 3 thatGε ⊂ A∪G, if FAREAST terminates on this condition

by line 33, it does so correctly and returns all arms in Gε.
Proof. Assume Ut − Lt 6 γ/2. Since all arms in A(t) have received exactly t

samples, this implies that

( max
i∈A(t)

µ̂i(t) + Cδ/n(t) − ε) − ( max
i∈A(t)

µ̂i(t) − Cδ/n(t) − ε) = 2Cδ/n(t) 6 γ/2.

Suppose for contradiction that there exists i ∈ Gc(ε+γ) such that i ∈ A ∪ G. Since
Gε ∩Gc(ε+γ) = ∅ and we have previously shown than G(t) ⊂ Gε for all t, we have
that i ∈ A\G. Therefore, by the condition in line 27, µ̂i(t) + Cδ/n(t) > Lt. Hence,

µi + 2Cδ/n(t)
E1
> µ̂i(t) + Cδ/n(t) > Lt. By assumption, we have that Ut − γ/2 6 Lt,

and the event E1 implies that Ut > µ1 − ε. Therefore, µi + 2Cδ/n(t) > Ut − γ/2 >
µ1 − ε− γ/2. Combining this with the inequality 2Cδ/n 6 γ/2, we have that

γ > 2Cδ/n(t) + γ/2 > µ1 − ε− µi
i∈Gc(ε+γ)
> γ
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which is a contradiction.

6.F.3.2 Step 1: An expression for the total number of samples drawn and
introducing several helper random variables

Next, we write an expression for the total number of samples drawn by FAREAST. In
particular, we introduce two sums that we will spend the remainder of the proof
controlling. Additionally, we show that the conditional in line 19 in the good filter
is true at least once in each round. Based on this, we more precisely define the
random variables Ti and T ′i introduces in the notation section in subsection 6.F.3.
Additionally, we introduce the time Tγ at which Ut − Lt < 1

2γ.
Recall that the largest value of t in round k is denoted tk. Let Eγk be the event

that Ut − Lt > γ/2 for all t in round k:

Eγk := {Ut − Lt > γ/2 : t ∈ (tk−1, tk]}.

Note that if Eγk−1 is false, then FAREAST terminates in round k − 1 by line 33. We
may write the total number of samples drawn by the algorithm as

T =

∞∑
k=1

21
[
A 6⊂ Gk−1 and Gk−1 ∪ Bk−1 6= [n] and Eγk−1

]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

Deterministically, 1
[
A 6⊂ Gk−1 and Gk−1 ∪ Bk−1 6= [n] and Eγk−1

]
6 1 [Gk−1 ∪ Bk−1 6= [n]]

Applying this,

T 6
∞∑
k=1

21 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

=

∞∑
k=1

21 [Gk−1 6= Gε]1 [Gk−1 ∪ Bk−1 6= [n]](
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

(6.10)
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+

∞∑
k=1

21 [Gk−1 = Gε]1 [Gk−1 ∪ Bk−1 6= [n]](
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

(6.11)

In round k, line 18 of the Good Filter, whereby an arm is sampled, is evaluated

(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)
>
(
HME(n, 2−k, 1/16) + 2τk

)
> n

times since HME(n, 2−k, 1/16)) > n for all k and |(Gk−1 ∪Bk−1)
c| > 1 unless Gk−1 ∪

Bk−1 = [n] which implies termination in round k − 1. Each time line 18 is called,
NIs ← NIs + 1. Since | arg minj∈A{Nj}| 6 |A| 6 n, line 18 is called at most n times
before minj∈A{Nj} = maxj∈A{Nj}. When this occurs, the conditional in line 19 is
true and t← t+ 1.

If mini∈A(t){Ni} = maxi∈A(t){Ni}, then Ni = t for any i ∈ A(t). By Step 0, only
arms in Gε are added to Gk. Therefore, Ti is defined as

Ti = min
{
t :
i ∈ Gk(t+ 1) if i ∈ Gε
i /∈ A(t+ 1) if i ∈ Gcε

}
E1= min

t : µ̂i − Cδ/2n(t) > Ut if i ∈ Gε

µ̂i + Cδ/2n(t) 6 Lt if i ∈ Gcε


(6.12)

Define Ti =∞ if this never occurs. Note that this may happen if FAREAST terminates
due to the conditition in line 32 that Ut − Lt < γ/2. Similarly, recall T ′i denotes the
random variable of the of the number of times i is sampled before µ̂i(t)+Cδ/2n(t) 6

maxj∈A µ̂j(t) − Cδ/2n(t). Hence,

T ′i = min
{
t : µ̂i(t) + Cδ/2n(t) 6 max

j∈A(t)
µ̂j(t) − Cδ/2n(t)

}
(6.13)

Define T ′i =∞ if this never occurs. Note that this may happen if FAREAST terminates
due to the conditition in line 32 that Ut − Lt < γ/2. Finally, we define the time Tγ
such that Ut − Lt < 1

2γ.

Tγ = min
{
t : Ut − Lt <

1
2γ
}

(6.14)
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By design, no arm is sampled more that Tγ times by the good filter, controlling the
cases that Ti or T ′i are infinite.

6.F.3.3 Step 2: Bounding Ti and T ′i for i ∈ Gε

Step 2a: For i ∈ Gε, we have that Ti 6 h(0.25(ε− ∆i), δ/2n).
Proof. Note that, 4Cδ/2n(t) 6 µi − (µ1 − ε), true when t > h

(
0.25(ε− ∆i), δ2n

)
,

implies that for all j,

µ̂i(t) − Cδ/2n(t)
E1
> µi − 2Cδ/2n(t)

> µ1 + 2Cδ/2n(t) − ε

> µj + 2Cδ/2n(t) − ε

E1
> µ̂j(t) + Cδ/2n(t) − ε

so in particular, µ̂i(t) − Cδ/2n(t) > maxj∈A µ̂j(t) + Cδ/2n(t) − ε = Ut.
Additionally, we define a time Tmax when all good arms have entered Gk.

Step 2b: Defining Tmax := min{t : Gk(t) = Gε} = maxi∈Gε Ti, we also have that
Tmax 6 h(0.25αε, δ/2n) (in other words, if t > h(0.25αε, δ/2n) (i.e. line 23 has been
run t times), then we have that Gk(t) = Gε).
Proof. Recall that αε = mini∈Gε µi − µ1 + ε = mini∈Gε ε − ∆i. By Step 1a,
Ti 6 h

(
0.25(ε− ∆i), δ2n

)
. Furthermore, h(·, ·) is monotonic in its first argument,

such that if 0 < x ′ < x, then h(x ′, δ) > h(x, δ) for any δ > 0. Therefore Tmax =

maxi∈Gε Ti 6 maxi∈Gε h
(
0.25(ε− ∆i), δ2n

)
= h

(
0.25αε, δ2n

)
.

Step 2c: For i ∈ Gε, we have that T ′i 6 h(0.25∆i, δ/2n).
Proof. Note that 4Cδ/2n(t) 6 µ1 − µi, true when t > h

(
0.25∆i, δ2n

)
, implies that

µ̂i(t) + Cδ/2n(t)
E1
6 µi + 2Cδ/2n(t)

6 µ1 − 2Cδ/2n(t)

E1
6 µ̂1(t) − Cδ/2n(t).
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As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) 6 maxi∈A(t) µ̂i(t).
Hence, µ̂i(t) + Cδ/2n(t) 6 maxj∈A(t) µ̂j(t) − Cδ/2n(t).

6.F.3.4 Step 3: Bounding Ti for i ∈ Gcε

Next, we bound Ti for i ∈ Gcε. i ∈ Gcε is eliminated from A if it has received at least
Ti samples.

Claim: Ti 6 h
(
0.25(ε− ∆i), δ2n

)
for i ∈ Gcε

Proof. Note that, 4Cδ/2n(t) 6 µ1 − ε − µi, true when t > h
(
0.25(ε− ∆i), δ2n

)
,

implies that

µ̂i(t) + Cδ/2n(t)
E1
6 µi + 2Cδ/2n(t)

6 µ1 − 2Cδ/2n(t) − ε

E1
6 µ̂1(t) − Cδ/2n(t) − ε

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) 6 maxi∈A(t) µ̂i(t).
Therefore µ̂i(t) + Cδ/2n(t) 6 maxj∈A µ̂j(t) − Cδ/2n(t) − ε = Lt.

6.F.3.5 Step 4: bounding the total number of samples given to the good filter
at time t = Tmax

Note that for a time t = T , the total number of samples given to the good filter is∑T
s=1 |A(s)|. Therefore, the total number of samples up to time Tmax is

∑Tmax
t=1 |A(t)|.

Let Si = min{t : i 6∈ A(t+ 1)}. Hence,

Tmax∑
t=1

|A(t)| =

Tmax∑
t=1

n∑
i=1

1[i ∈ A(t)] =

n∑
i=1

Tmax∑
t=1

1[i ∈ A(t)] =

n∑
i=1

min {Tmax,Si}

For arms i ∈ Gcε, Si = Ti by definition. For i ∈ Gε, Si = max(Ti, T ′i ) by line 28 of
the algorithm. Then
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n∑
i=1

min {Tmax,Si} =
∑
i∈Gε

min {Tmax, max(Ti, T ′i )}+
∑
i∈Gcε

min {Tmax, Ti}

6
∑
i∈Gε

min {Tmax, max(Ti, T ′i )}+ |Gcε ∩Gε+αε |Tmax +
∑

i∈Gcε+αε

Ti

=
∑
i∈Gε

max {Ti, min(T ′i , Tmax)}+ |Gcε ∩Gε+αε |Tmax +
∑

i∈Gcε+αε

Ti

(a)

6
∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25αε,
δ

2n

)]}
+
∑

i∈Gcε+αε

h

(
0.25(ε− ∆i),

δ

2n

)
+ |Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)
.

Equality (a) follows from Tmax 6 h
(
0.25αε, δ2n

)
by Step 1b, Ti 6 h

(
0.25(ε− ∆i), δ2n

)
in Steps 2a and 3, and T ′i 6 h

(
0.25∆i, δ2n

)
in Step 2c.

6.F.3.6 Step 5: Bounding the number of samples in round k versus k− 1

Now we show that the total number of samples taken in round k is no more than 9
times the number taken in the previous round.

Claim: For k > 1

(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

6 9
(
HME(n, 2−k+1, 1/16) + τk−1 + τk−1|(Gk−2 ∪ Bk−2)

c|
)

Proof. In round k,
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)
samples are drawn.

SinceGk−1 ⊂ Gk and Bk−1 ⊂ Bk ∀k deterministically, we see that |(Gk−1∪Bk−1)
c| >

|(Gk ∪ Bk)c| ∀k. By definition,
HME(n, 2−k−1, 1/16) = 4HME(n, 2−k, 1/16).
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Next, recall τk =
⌈
22k+3 log

(
8
δk

)⌉
. We bound τk/τk−1 as

τk

τk−1
=

⌈
22k+3 log

(
8
δk

)⌉
⌈
22k+1 log

(
8
δk−1

)⌉ =

⌈
22k+3 log

(
16nk2

δ

)⌉
⌈
22k+1 log

(
16n(k−1)2

δ

)⌉
6

22k+3 log
(

16nk2

δ

)
+ 1

22k+1 log
(

16n(k−1)2

δ

) 6 4 log
(

16nk2

δ

)
log
(

16n(k−1)2

δ

) + 1

6 4
log
(16n
δ

)
+ 2 log(k)

log
(16n
δ

)
+ 2 log(k− 1)

+ 1 = (∗)

If k = 2, (∗) 6 1 + 4 ∗ log(32)/ log(8) 6 9. Otherwise,

(∗) =
4(log

(16n
δ

)
+ 2 log(k))

log
(16n
δ

)
+ 2 log(k− 1)

+ 1

6
4 log(k)

log(k− 1) + 1

6 4 · 2 + 1 = 9

Putting these pieces together,

(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

6
(
4HME(n, 2−k+1, 1/16) + 9τk−1 + 9τk−1|(Gk−2 ∪ Bk−2)

c|
)

6 9
(
HME(n, 2−k+1, 1/16) + τk−1 + τk−1|(Gk−2 ∪ Bk−2)

c|
)

6.F.3.7 Step 6: Bounding Equation (6.10)

Here, we introduce the round KGood, when GKGood = Gε at some point within the
round. Using the result of the previous step, we may bound the total number of
samples taken though this round, controlling Equation (6.10).
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With the result of Step 5, we prove the following inequality.
Claim:

∞∑
k=1

21 [Gk−1 6= Gε]1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

(6.15)

6 c
∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25αε,
δ

2n

)]}
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)
+ c

∑
i∈Gcε+αε

h

(
0.25(ε− ∆i),

δ

2n

)

for a constant c.
Proof. Recall tk = max{t : t ∈ k} denotes the maximum value of t in round k
and Tmax = max∈Gε Ti denotes the minimum t such that Gk(t) = Gε. Define the
random round

KGood := min{k : Gk = Gε} = min{k : tk > Tmax}

By definition of KGood,

∞∑
k=1

21[Gk−1 6= Gε]1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

=

KGood∑
k=1

21 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

.

Next, applying Step 5, if KGood > 1,

KGood∑
k=1

21 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

6 18
KGood−1∑
k=1

1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

.
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Observe that by lines 17 and 20 of FAREAST, for any round r and for any t > tr−1,

r−1∑
k=1

1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)
6

t∑
s=1

|A(s)|.

By definition, for the round KGood − 1, we see that t(KGood−1) < Tmax. Applying the
above inequality with the inequality proven in Step 4,

18
KGood−1∑
k=1

1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)
6 18

Tmax∑
s=1

|A(s)|

6 18
∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25αε,
δ

2n

)]}
+ 18

∑
i∈Gcε+αε

h

(
0.25(ε− ∆i),

δ

2n

)
+ 18|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)
.

Otherwise, ifKGood = 1, exactly 4c ′n log(16)+32n log(16n/δ) samples are given
to the good filter in round 1. Onemay use Lemma 6.32 to invert h(·, ·) and show that
the summation on the right had side of the above inequality is within a constant
of this and the claim holds in this case as well for a different constant, potentially
larger than 18.

6.F.3.8 Step 7: Bounding Equation (6.11)

Next, we bound

∞∑
k=1

21 [Gk−1 = Gε]1 [Gk−1 ∪ Bk−1 6= [n]](
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

.

∞∑
k=1

21 [Gk−1 = Gε]1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)
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=

∞∑
k=1

21 [Gk−1 = Gε]1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gε ∪ Bk−1)

c|
)

=

∞∑
k=1

21 [Gk−1 = Gε]1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|Gcε\Bk−1|

)
=

∞∑
k=KGood+1

21 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|Gcε\Bk−1|

)
E1,E2=

∞∑
k=KGood+1

21 [Bk−1 6= Gcε]
(
HME(n, 2−k, 1/16) + τk + τk|Gcε\Bk−1|

)
=

∞∑
k=KGood+1

21 [Bk−1 6= Gcε]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

21 [Bk−1 6= Gcε] (τk|Gcε\Bk−1|)

=

∞∑
k=KGood+1

21 [Bk−1 6= Gcε]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

2τk|Gcε\Bk−1|

=

∞∑
k=KGood+1

21 [Bk−1 6= Gcε]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Gcε

2τk1[i /∈ Bk−1]

6
∞∑

k=KGood+1

2|Gcε\Bk−1|
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Gcε

2τk1[i /∈ Bk−1]

=

∞∑
k=KGood+1

∑
i∈Gcε

21[i /∈ Bk−1]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Gcε

2τk1[i /∈ Bk−1]

=

∞∑
k=KGood+1

∑
i∈Gcε

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
=
∑
i∈Gcε

∞∑
k=KGood+1

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
6
∑
i∈Gcε

∞∑
k=1

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
(6.16)
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6.F.3.9 Step 8: Bounding the expected total number of samples drawn by
FAREAST

Now we take expectations over the number of samples drawn. These expectations
are conditional on the high probability event E1 ∩ E2. The bound in step 5 holds
deterministically conditioned on this event.

Note τk and HME(n, 2−k, 1/16) are deterministic constants for any k. Let all
expectations are be jointly over the random instance ν and the randomness in
FAREAST.

E[T |1[E1 ∩ E2] = 1] 6∞∑
k=1

2E
[
1[Gk ∪ Bk 6= [n]]

∣∣1[E1 ∩ E2] = 1
] (
τk +HME(n, 2−k, 1/16) + τk

∣∣(Gk−1 ∪ Bk−1)
c
∣∣)

=

∞∑
k=1

2E
[
1 [Gk−1 6= Gε]1[Gk−1 ∪ Bk−1 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
τk +HME(n, 2−k, 1/16) + τk

∣∣(Gk−1 ∪ Bk−1)
c
∣∣)

+

∞∑
k=1

2E
[
1 [Gk−1 = Gε]1[Gk−1 ∪ Bk−1 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
τk +HME(n, 2−k, 1/16) + τk

∣∣(Gk−1 ∪ Bk−1)
c
∣∣)

Step 6
6 c

∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25αε,
δ

2n

)]}
+ c

∑
i∈Gcε+αε

h

(
0.25(ε− ∆i),

δ

2n

)
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)

+

∞∑
k=1

2E
[
1 [Gk−1 = Gε]1[Gk−1 ∪ Bk−1 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
τk +HME(n, 2−k, 1/16) + τk

∣∣(Gk−1 ∪ Bk−1)
c
∣∣)

Step 7
6 c

∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25αε,
δ

2n

)]}
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+ c
∑

i∈Gcε+αε

h

(
0.25(ε− ∆i),

δ

2n

)
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)

+
∑
i∈Gcε

∞∑
k=1

2Eν
[
1[i /∈ Bk−1]

∣∣1[E1 ∩ E2] = 1
] (

2τk +HME(n, 2−k, 1/16)
)

(a)
= c

∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25αε,
δ

2n

)]}
+ c

∑
i∈Gcε+αε

h

(
0.25(ε− ∆i),

δ

2n

)
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)

+
∑
i∈Gcε

∞∑
k=1

2Eν
[
1[i /∈ Bk−1]

∣∣E1
] (

2τk +HME(n, 2−k, 1/16)
)

where (a) follows from Eν
[
1[i /∈ Bk−1]

∣∣E1 ∩ E2
]
= Eν

[
1[i /∈ Bk−1]

∣∣E1
]
for i ∈ Gcε,

since the event {i ∈ Bk−1} is independent of E2 for all i ∈ Gcε. This can be observed
since E2 deals only with independent samples taken of arms in Gε.

6.F.3.10 Step 9: Bounding the expectation remaining from step 8.

Next, we bound
∑∞
k=1 Eν

[
1[i /∈ Bk−1]

∣∣E1
] (

2τk +HME(n, 2−k, 1/16)
)
for i ∈ Gcε, the

expectation remaining from step 8. In particular, this is the number of samples
drawn by the bad filter to add arm i ∈ Gcε to Bk.

First, we bound the probability that for a given i ∈ Gcε and a given k i /∈ Bk.
Note that by Borel-Cantelli, this implies that the probability that i is never added
to any Bk is 0.

Claim 1: For i ∈ Gcε, k >
⌈
log2

(
4

∆i−ε

)⌉
=⇒ Eν

[
1[i /∈ Bk]

∣∣E1
]
6
(1

8

)k−⌈log2

(
4

∆i−ε

)⌉
Proof. i ∈ Bk if either the good filter or the bad filter added it. Note that the

behavior of the bad filter is independent of the event E1. Hence,

Eν
[
1[i /∈ Bk]

∣∣E1
]
= Eν

[
1[µ̂i + Cδ/2n(tk) > Ltk ]1[µ̂ik − µ̂i < ε+ 2−k+1]

∣∣E1
]

6 Eν
[
1[µ̂ik − µ̂i < ε+ 2−k+1]

∣∣E1
]

= Eν
[
1[µ̂ik − µ̂i < ε+ 2−k+1]

]
.
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Intuitively, the time at which an arm in Gcε enters Bk, which occurs if either the
good filter adds it or the bad filter does, in expectation is at most the time at which
the bad filter does on its own in expectation.

If i ∈ Bk−1 then i ∈ Bk by definition. Otherwise, if i /∈ Bk−1, by Hoeffding’s
Inequality conditional on the value of ik and a sum over conditional probabilities
as in step 0, with probability at least 1 − δ

4nk2

|(µ̂ik − µ̂i) − (µik − µi)| 6 2−k

If MedianElimination also succeeds, the joint event of which occurs with probabil-
ity 15

16

(
1 − δ

4nk2

)
by independence6,

µ̂ik − µ̂i > µik − µi − 2−k > µ1 − µi − 2−k+1 = ∆i − 2−k+1.

Then for k >
⌈
log2

(
4

∆i−ε

)⌉
,

µ̂ik − µ̂i > ∆i − 2−k+1 >
1
2(∆i + ε) > ε+ 2−k+1,

which implies that i ∈ Bk by line 15 of FAREAST. In particular,

E
[
1[µ̂ik − µ̂i > ε+ 2−k+1]

∣∣i /∈ Bk−1
]
>

15
16

(
1 −

δ

4nk2

)
.

Furthermore, i /∈ B0 by definition. Additionally, recall that 1[µ̂ik − µ̂i < ε+ 2−k+1]

is independent of E1. Then for k >
⌈
log2

(
4

∆i−ε

)⌉
,

E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]

]
= E

[
1[µ̂ik − µ̂i < ε+ 2−k+1](1[i /∈ Bk−1] + 1[i ∈ Bk−1])

∣∣E1
]

= E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]

∣∣E1
]

+ E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i ∈ Bk−1]

∣∣E1
]

6Note that the success of MedianElimination and the concentration of (µ̂ik − µ̂i) around (µik −
µi) are independent of the events E1 and E2 conditioned on in Step 8.
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Deterministically, 1[i /∈ Bk]1[i ∈ Bk−1] = 0. Therefore,

E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]

∣∣E1
]

+ E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i ∈ Bk−1]

∣∣E1
]

= E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]

∣∣E1
]

= E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]|i /∈ Bk−1E1

]
P(i /∈ Bk−1

∣∣E1)

+ E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]

∣∣i ∈ Bk−1,E1
]
P(i ∈ Bk−1

∣∣E1)

= E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]1[i /∈ Bk−1]|i /∈ Bk−1,E1

]
P(i /∈ Bk−1

∣∣E1)

= E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]

∣∣i /∈ Bk−1,E1
]
E
[
1[i /∈ Bk−1]

∣∣E1
]

= E
[
1[µ̂ik − µ̂i < ε+ 2−k+1]

∣∣i /∈ Bk−1
]
E
[
1[i /∈ Bk−1]

∣∣E1
]

6

(
1
16 +

δ

4nk2

)
E
[
1[i /∈ Bk−1]

∣∣E1
]

6

(
1
16 +

δ

4nk2

)
E
[
1[µ̂ik − µ̂i < ε+ 2−k+2]

]
where the final inequality follows by the same argument upper boundingE

[
1[i /∈ Bk]

∣∣E1
]
.

For k <
⌈
log2

(
4

∆i−ε

)⌉
, trivially, E [1[i /∈ Bk]] 6 1. Recall δ 6 1/8. For k >⌈

log2

(
4

∆i−ε

)⌉
,

E
[
1[i /∈ Bk]

∣∣E1
]
6

k∏
s=
⌈
log2

(
4

∆i−ε

)⌉
(

1
16 +

δ

2ns2

)
6

(
1
8

)k−⌈log2

(
4

∆i−ε

)⌉
.

Claim2: For j ∈ Gcε,
∑∞
k=1 2Eν

[
1[i /∈ Bk−1]

∣∣E1
] (

2τk +HME(n, 2−k, 1/16)
)
6 c ′′ n

(∆i−ε)2+

c ′′h
(
0.25(∆i − ε), δ2n

)
Proof. This sum decomposes into two terms.

∞∑
k=1

Eν
[
1[i /∈ Bk−1]

∣∣E1
] (

2τk +HME(n, 2−k, 1/16)
)
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=

⌊
log2

(
4

∆i−ε

)⌋∑
k=1

Eν
[
1[i /∈ Bk−1]

∣∣E1
](
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

+

∞∑
k=
⌈
log2

(
4

∆i−ε

)⌉Eν
[
1[i /∈ Bk−1]

∣∣E1
](
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

We begin by bounding the first term.

⌊
log2

(
4

∆i−ε

)⌋∑
k=1

Eν [1[i /∈ Bk−1]]

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

6

⌊
log2

(
4

∆i−ε

)⌋∑
k=1

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

6

⌊
log2

(
4

∆i−ε

)⌋∑
k=1

(
c ′n22k log(16) + 2 + 22k+4 log

(
16nk2

δ

))

6 2 log2

(
4

∆i − ε

)
+

(
c ′n log(16) + 16 log

(
16n
δ

)) ⌊
log2

(
4

∆i−ε

)⌋∑
k=1

22k

+ 32

⌊
log2

(
4

∆i−ε

)⌋∑
k=1

22k log (k)

6 2 log2

(
4

∆i − ε

)

+

(
c ′n log(16) + 16 log

(
16n
δ

)
+ 32 log log2

(
4

∆i − ε

)) ⌊
log2

(
4

∆i−ε

)⌋∑
k=1

22k

6 2 log2

(
4

∆i − ε

)
+

16
(∆i − ε)2

(
c ′n log(16) + 32 log

(
16n
δ

log2

(
4

∆i − ε

)))
Next, we plug in the bound from claim 1 controlling the probability that i /∈ Bk.
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Using Claim 1, we bound the second sum as follows:

∞∑
r=
⌈
log2

(
4

∆i−ε

)⌉Eν
[
1[i /∈ Bk−1]

∣∣E1
](
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

6
∞∑

k=
⌈
log2

(
4

∆i−ε

)⌉
(

1
8

)k−⌈log2

(
4

∆i−ε

)⌉
−1(

c ′n22k log(16) + 2 + 22k+4 log
(

16nk2

δ

))

= c ′n log(16)
∞∑
k=1

(
1
8

)k−1

22
(
k+
⌈
log2

(
4

∆i−ε

)⌉)
+ 2

∞∑
k=1

(
1
8

)k−1

+ 16
∞∑
k=1

(
1
8

)k−1

22
(
k+
⌈
log2

(
4

∆i−ε

)⌉)
log

16n
(
k+

⌈
log2

(
4

∆i−ε

)⌉)2

δ


6 3 + c ′n log(16)

∞∑
k=1

2−3k+322
(
k+log2

(
4

∆i−ε

)
+1
)

+ 16
∞∑
k=1

2−3k+322
(
k+log2

(
4

∆i−ε

)
+1
)

log

16n
(
k+

⌈
log2

(
4

∆i−ε

)⌉)2

δ


= 3 +

(
29c ′n log(16)
(∆i − ε)2 +

213

(∆i − ε)2 log
(

16n
δ

)) ∞∑
k=1

2−k

+
213

(∆i − ε)2

∞∑
k=1

2−k log
((

k+

⌈
log2

(
4

∆i − ε

)⌉)2
)

6 3 +
29c ′n log(16)
(∆i − ε)2 +

213

(∆i − ε)2 log
(

16n
δ

)
+

214

(∆i − ε)2

∞∑
k=1

2−k log
(
k+

⌈
log2

(
4

∆i − ε

)⌉)
= (∗∗)
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We may bound the final summand,
∑∞
k=1 2−k log

(
k+

⌈
log2

(
4

∆i−ε

)⌉)
as follows:

∞∑
k=1

2−k log
(
k+

⌈
log2

(
4

∆i − ε

)⌉)
6 log

(
e

2 log2

(
256

(∆i − ε)2

))

Plugging this back into (∗∗), we have that

(∗∗) 6 3 +
29cn log(16)
(∆i − ε)2 +

213

(∆i − ε)2 log
(

16n
δ

)
+

214

(∆i − ε)2 log
(
e

2 log2

(
256

(∆i − ε)2

))
Combining the above with the bound on the first sum, we have that

∞∑
k=1

Eν
[
1[i /∈ Bk−1]

∣∣E1
] (

2τk +HME(n, 2−k, 1/16)
)

6 c ′′
(

n

(∆i − ε)2 +
c

(∆i − ε)2 log
(

2n
δ

log2

(
4

(∆i − ε)2

)))
=

c ′′n

(∆i − ε)2 + c ′′h

(
0.25(∆i − ε),

δ

2n

)
for a sufficiently large, universal constant c ′′ and c from the definition of h(·, ·).

6.F.3.11 Step 10: Applying the result of Step 9 to the result of Step 8

We may repeat the result of step 9 for every i ∈ Gcε and plug this into the result of
Step 8. From this point, we simplify to return the final result.

By Step 8, the total number of samples T drawn by FAREAST is bounded in
expectation by

E[T |E1 ∩ E2] 6 c
∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25αε,
δ

2n

)]}
+ c

∑
i∈Gcε+αε

h

(
0.25(ε− ∆i),

δ

2n

)
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)



285

+ 2
∑
i∈Gcε

∞∑
k=1

Eν
[
1[i /∈ Bk−1]

∣∣E1
] (

2τk +HME(n, 2−k, 1/16)
)

.

Applying the bound from Step 9 to each i ∈ Gcε, we have that

E[T |E1 ∩ E2] 6 c
∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25αε,
δ

2n

)]}
+ c

∑
i∈Gcε+αε

h

(
0.25(ε− ∆i),

δ

2n

)
+ c|Gcε ∩Gε+αε |h

(
0.25αε,

δ

2n

)

+ 2c ′′
∑
i∈Gcε

n

(∆i − ε)2 + h

(
0.25(∆i − ε),

δ

2n

)
.

For i ∈ Gcε ∩ Gε+αε , αε = minj∈Gε ε − ∆j > ∆i − ε. By monotonicity of h(·, ·),
h
(
0.25αε, δ2n

)
6 c ′′n

(∆i−ε)2 + c
′′h
(
∆i − ε, δ2n

)
. Therefore,

E[T |E1 ∩ E2] 6 c
∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25αε,
δ

2n

)]}
+ (2c ′′ + c)

∑
i∈Gcε

n

(∆i − ε)2 + h

(
0.25(∆i − ε),

δ

2n

)
.

Next, we use Lemma 6.33 to bound the minimum of h(·, · · · ) functions.

c
∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25αε,
δ

2n

)]}
+ (2c ′′ + c)

∑
i∈Gcε

n

(∆i − ε)2 + h

(
0.25(∆i − ε),

δ

2n

)
6 c
∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
,h
(
∆i + αε

8 , δ2n

)}
+ (2c ′′ + c)

∑
i∈Gcε

n

(∆i − ε)2 + h

(
0.25(∆i − ε),

δ

2n

)

Finally, we use Lemma 6.32 to bound the function h(·, ·). Since δ 6 1/2, δ/n 6
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2e−e/2. Further, max(∆i, |ε−∆i|) 6 8 for all i, we have that 0.25∆i 6 2, 0.25|ε−∆i| 6
2, and 0.25 min(αε,βε) 6 2. Therefore,

E[T |E1 ∩ E2] 6 c
∑
i∈Gε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
,h
(
∆i + αε

8 , δ2n

)}
+ (2c ′′ + c)

∑
i∈Gcε

n

(∆i − ε)2 + h

(
0.25(∆i − ε),

δ

2n

)
6 c
∑
i∈Gε

max
{

64
(ε− ∆i)2 log

(
4n
δ

log2

(
384n

δ(ε− ∆i)2

))
,

256
(∆i + αε)2 log

(
4n
δ

log2

(
768n

δ(∆i + αε)2

))}
+ (2c ′′ + c)

∑
i∈Gcε

n

(∆i − ε)2 +
64

(ε− ∆i)2 log
(

4n
δ

log2

(
384n

δ(ε− ∆i)2

))
6 c3

∑
i∈Gε

max
{

1
(ε− ∆i)2 log

(
n

δ
log2

(
n

δ(ε− ∆i)2

))
,

1
(∆i + αε)2 log

(
n

δ
log2

(
n

δ(∆i + αε)2

))}
+ c3

∑
i∈Gcε

n

(∆i − ε)2 +
1

(ε− ∆i)2 log
(
n

δ
log2

(
n

δ(ε− ∆i)2

))
= c3

∑
i∈Gε

max
{

1
(µ1 − ε− µi)2 log

(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))
,

1
(µ1 + αε − µi)2 log

(
n

δ
log2

(
n

δ(µ1 + αε − µi)2

))}
+ c3

∑
i∈Gcε

n

(µ1 − ε− µi)2 +
1

(µ1 − ε− µi)2 log
(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))

for a sufficiently large constant c4.

6.F.3.12 Step 11: High probability sample complexity bound

Finally, the Good Filter is equivalent to EAST, Algorithm 10, except split across
rounds. Note that the Good Filter is union bounded over 2n events whereas the
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bounds in EAST are union bounded over n events. The Good Filter and Bad Filter
are given the same number of samples in each round, and the Good Filter can
terminate within a round, conditioned on E1 ∩ E2. Therefore, we can bound the
complexity of FAREAST in terms of that of EAST run at failure probability δ/2. If
FAREAST terminates in the second round or later, the arguments in Steps 4 and 5 can
be used to show that FAREAST draws no more than a factor of 18 more samples than
EAST, though this estimate is highly pessimistic. If FAREAST terminates in round 1
(when gaps are large), we may still show that this is within a constant factor of the
complexity of EAST, but the story is more complicated. In the first round, the bad
filter draws at most c ′n log(16) + 32n log(8n/δ) samples where c ′ is the constant
from Median Elimination. Since we have assumed that max(∆i, |ε − ∆i|) 6 8,
this sum is likewise within a constant factor of the complexity of EAST. Hence, by
Theorem 6.27,

T 6 c4

n∑
i=1

min
{

max
{

1
(µ1 − ε− µi)2 log

(
n

δ
log2

(
n

δ(µ1 − ε− µi)2

))
,

1
(µ1 + αε − µi)2 log

(
n

δ
log2

(
n

δ(µ1 + αε − µi)2

))
,

1
(µ1 + βε − µi)2 log

(
n

δ
log2

(
n

δ(µ1 + βε − µi)2

))}
1
γ2 log

(
n

δ
log2

(
n

δγ2

))}
samples.

6.F.4 Proof of Theorem 6.26, FAREAST in the multiplicative
regime

Proof. Notation for the proof: Throughout, recall∆i = µ1−µi. Recall that t counts
the number of times the conditional in line 19 is true. By Line 19 of FAREAST, all
arms in A have received t samples when the loop in line 23 is executed for the tth

time. Within any round k, let A(t) and Gk(t) denote the sets A and Gk at this time
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since both sets can change in lines 27 and 29 and 25 respectively. Let tk denote the
maximum value of t in round k. By Lines 18 and 19 of FAREAST, the total number
of samples given to the good filter when the conditional in line 19 is true for the tth

time is
∑t
s=1 |A(s)|.

For i ∈Mε, let Ti denote the random variable of the number of times arm i is
sampled before it is added to Gk in Line 25. For i ∈Mc

ε, let Ti denote the random
variable of the number of times arm i is sampled before it is removed from A in
Line 27. For any arm i, let T ′i denote the random variable of the of the number of
times i is sampled before µ̂i(t) + Cδ/2n(t) 6 maxj∈A µ̂j(t) − Cδ/2n(t).

Define the event

E1 =

 ⋂
i∈[n]

⋂
t∈N

|µ̂i(t) − µi| 6 Cδ/2n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=√
4 log(log2(2t)/δ)

t
, we have

P(Ec1) = P

 ⋃
i∈[n]

⋃
t∈N

|µ̂i − µi| > Cδ/2n(t)


6

n∑
i=1

P

(⋃
t∈N

|µ̂i − µi| > Cδ/2n(t)

)
6

n∑
i=1

δ

2n =
δ

2

Next, recall that µ̂i(t) denotes the empirical average of t samples of ρi. Consider
the event,

E2 =
⋂
i∈Mε

⋂
k∈N

|((1 − ε)µ̂ik (τk) − µ̂i (τk)) − ((1 − ε)µik − µi)| 6 2−(k+1)(2 − ε)
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By Hoeffding’s inequality,

P
(
|((1 − ε)µ̂ik (τk) − µ̂i (τk)) − ((1 − ε)µik − µi)| 6 2−(k+1)(2 − ε)

∣∣ik = j
)
6

δ

4nk2 .

Then

P
(
|((1 − ε)µ̂ik (τk) − µ̂i (τk)) − ((1 − ε)µik − µi)| 6 2−(k+1)(2 − ε)

)
=

n∑
j=1

P
(
|((1 − ε)µ̂ik (τk) − µ̂i (τk)) − ((1 − ε)µik − µi)| 6 2−(k+1)(2 − ε)

∣∣ik = j
)
P(ik = j)

6
δ

4nk2

n∑
j=1

P(ik = j)

=
δ

4nk2

Therefore, union bounding over the rounds k ∈ N, P(Ec2) 6
∑
i∈Mε

∑∞
k=1

δ
4nk2 6

δ
2 . Hence, P (E1 ∩ E2) > 1 − δ.

6.F.4.1 Step 0: Correctness.

On E1∩E2, first we prove that if there exists a random round k at whichGk∪Bk = [n]

then Gk =Mε. Additionally, we prove that on E1 ∩ E2, if A ⊂ Gk, then Gk =Mε.
Therefore, for either stopping condition for FAREAST in line 31, on the event E1 ∩ E2,
FAREAST correctly returns the setMε.

Claim 0: On E1 ∩ E2, for all k ∈ N, Gk ⊂Mε.
Proof. Firstly we show 1 ∈ A for all t ∈ N, namely the best arm is never removed
from A. Note for any i such that µ̂i(t) − Cδ/2n(t) > 0,

µ̂1 + Cδ/2n(t) > µ1 > µi > µ̂i(t) − Cδ/2n(t) > (1 − ε)(µ̂i(t) − Cδ/2n(t)).

For i such that µ̂i(t) − Cδ/2n(t) < 0, if µ̂1 + Cδ/2n(t) > 0, then

µ̂1 + Cδ/2n(t) > 0 > (1 − ε)(µ̂i(t) − Cδ/2n(t)).
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Note that µ̂1 + Cδ/2n(t) < 0 implies on the event E1 that µ1 < 0, which con-
tradicts the assumption that µ1 > 0 made in the theorem. In particular this
shows, µ̂1 +Cδ/2n(t) > (1− ε)(maxi∈A µ̂i(t) −Cδ/2n(t)) = Lt and µ̂1 +Cδ/2n(t) >

maxi∈A µ̂i(t) − Cδ/2n(t) showing that 1 will never exit A in line 28.
Secondly, we show that at all times t, (1− ε)µ1 ∈ [Lt,Ut]. By the above, since µ1

never leaves A,

Ut = (1 − ε)(max
i∈A

µ̂i(t) + Cδ/2n(t)) > (1 − ε)(µ̂1(t) + Cδ/2n(t)) > (1 − ε)µ1

and for any i,

(1 − ε)µ1 > (1 − ε)µi > (1 − ε)(µ̂i(t) − Cδ/2n(t))

Hence (1 − ε)µ1 > (1 − ε)(maxi µ̂i(t) − Cδ/2n(t)) = Lt.
Next, we show that Gk ⊂Mε for all k > 1, t > 1. Suppose not. Then ∃,k, t ∈ N

and ∃i ∈Mc
ε ∩Gk(t) such that,

µi > µ̂i(t) − Cδ/2n(t) > Ut > (1 − ε)µ1 > µi,

with the last inequality following from the previous assertion, giving a contradiction.

Claim 1: On E1 ∩ E2, for all k ∈ N, Bk ⊂Mc
ε.

Proof. Next, we show Bk ⊂Mc
ε. Suppose not. Then either the good filter or

the bad filter added an arm inMε to Bk. Take i ∈Mε. In the former, this implies
that

µi
E1
6 µ̂i(t) + Cδ/2n(t) < Lt

E1
6 (1 − ε)µ1

which contradicts i ∈ Mε. Consider the alternate case that the bad filter adds i
to Bk for some k. By definition, B0 = ∅ and Bk−1 ⊂ Bk for all k. Then there must
exist k ∈ N and an i ∈Mε such that i ∈ Bk and i /∈ Bk−1. Following line 14 of the
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algorithm, this occurs if and only if

(1 − ε)µ̂ik − µ̂i > 2−(k+1)(2 − ε).

On the event E2, the above implies

(1 − ε)µik − µi + 2−(k+1)(2 − ε) > 2−(k+1)(2 − ε),

and simplifying, we see that 0 < (1− ε)µik −µi 6 (1− ε)µ1 −µi which contradicts
the assertion that i ∈Mε. Combining the above claims, we see that E1 ∩ E2 implies
(Gk ∪ Bk = [n]) and Gk ∩ Bk = ∅ =⇒ Gk = Mε. Since P(E1 ∩ E2) > 1 − δ,
if FAREAST terminates, with probability at least 1 − δ, it correctly returns the set
Mε.

Claim 2: Next, we show that on E1,Mε ⊂ A(t) ∪G(t) for all t ∈ N.
In particular this implies that if A ⊂ G, thenMε ⊂ G. Combining this with

the previous claim gives G ⊂Mε ⊂ G, hence G =Mε. On this condition, FAREAST
terminates by line 33 and returns the set A ∪G = G. Note that by definition,Mε ⊂
M(ε+γ) for all γ > 0. Therefore FAREAST terminates correctly on this condition.

Proof. Suppose for contradiction that there exists i ∈ Mε such that i /∈
A(t)∪G(t). This occurs only if i is eliminated in line 28. Hence, there exists a t ′ 6 t
such that µ̂i(t ′) + Cδ/n(t ′) < Lt ′ . Therefore, on the event E1,

(1 − ε)µ1
E1
> Lt ′ = (1 − ε)

(
max
j∈A

µ̂j(t
′) − Cδ/n(t

′)

)
> µ̂i(t

′) + Cδ/n(t
′)

E1
> µi

which contradicts i ∈Mε.
Claim 3: Finally, we show that on E1, if Ut − Lt 6 γ

2−εLt, then A ∪G ⊂M(ε+γ).
Combining with Claim 3 that Mε ⊂ A ∪ G, if FAREAST terminates on this

condition by line 33, it does so correctly and returns all arms inMε and none in
Mc

(ε+γ).
Proof. By Claim 0, G ⊂ Mε ⊂ Mε+γ. Hence, G ∩Mc

(ε+γ) = ∅. Therefore, we
wish to show that A ∩Mc

(ε+γ) = ∅ which implies that G ∩ A ⊂ Mε+γ. Assume
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Ut − Lt <
γ

2−εLt. Recall that

Ut = (1 − ε)

(
max
i∈A

µ̂i(t) + Cδ/2n(t)

)
and

Lt = (1 − ε)

(
max
i∈A

µ̂i(t) − Cδ/2n(t)

)
All arms inA(t) have received exactly t samples. Hence,Ut−Lt = 2(1−ε)Cδ/2n(t).
On E1, Lt 6 (1 − ε)µ1 This implies that

2(1 − ε)Cδ/2n(t) <
γ

2 − ε
Lt 6

1 − ε

2 − ε
γµ1,

and in particular,
2Cδ/2n(t) <

γµ1

2 − ε
.

Therefore, we wish to show that when the above is true, then for any i ∈ Mc
ε+γ,

Lt − (µ̂i(t) + Cδ/n(t)) > 0, implying that i /∈ A.

Lt − (µ̂i(t) + Cδ/n(t)) = (1 − ε)

(
max
j∈A

µ̂j − Cδ/n(t)

)
− (µ̂i(t) + Cδ/n(t))

> (1 − ε)

(
max
j∈A

µj − 2Cδ/n(t)
)
− (µi + 2Cδ/n(t))

(a)

> (1 − ε)
(
µ1 − 2Cδ/n(t)

)
− ((1 − ε− γ)µ1 + 2Cδ/n(t))

= γµ1 − 2(2 − ε)Cδ/n(t)

> γµ1 − (2 − ε)
γµ1

2 − ε
= 0

which implies that i /∈ A. Inequality (a) follows jointly from the fact that 1 ∈ A and
the fact that all arms in A have received t samples implies maxj∈A µj − 2Cδ/n(t) =
µ1 − 2Cδ/n(t). Additionally, inequality (a) follows from µi 6 (1 − ε− γ)µ1 since
i ∈Mc

ε+γ.
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6.F.4.2 Step 1: An expression for the total number of samples drawn and
introducing several helper random variables

Next, we write an expression for the total number of samples drawn by FAREAST. In
particular, we introduce two sums that we will spend the remainder of the proof
controlling. Additionally, we show that the conditional in line 19 in the good filter is
true at least once in each round. Based on this, wemore precisely define the random
variables Ti and T ′i introduced in the notation section in section 6.F.4. Additionally,
we introduce the time Tγ at which Ut − Lt < γ

2−εLt.
Recall that the largest value of t in round k is denoted tk. Let Eγk be the event

that Ut − Lt > γ
2−εLt for all t in round k:

Eγk :=

{
Ut − Lt >

γ

2 − ε
Lt : t ∈ (tk−1, tk]

}
.

Note that if Eγk−1 is false, then FAREAST terminates in round k − 1 by line 33. We
may write the total number of samples drawn by the algorithm as

T =

∞∑
k=1

21
[
A 6⊂ Gk−1 and Gk−1 ∪ Bk−1 6= [n] and Eγk−1

]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

Deterministically,

1
[
A 6⊂ Gk−1 and Gk−1 ∪ Bk−1 6= [n] and Eγk−1

]
6 1 [Gk−1 ∪ Bk−1 6= [n]] .

Applying this,

T 6
∞∑
k=1

21 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

=

∞∑
k=1

21 [Gk−1 6=Mε]1 [Gk−1 ∪ Bk−1 6= [n]](
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

(6.17)
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+

∞∑
k=1

21 [Gk−1 =Mε]1 [Gk−1 ∪ Bk−1 6= [n]](
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

(6.18)

In round k, line 18 of the Good Filter, whereby an arm is sampled, is evaluated

(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)
> (2τk +HME(n, 2−k, 1/16)) > n

times since HME(n, 2−k, 1/16)) > n for all k and |(Gk−1 ∪ Bk−1)
c| > 1 unless

Gk−1 ∪ Bk−1 = [n] which implies termination in round k − 1. Each time line
18 is called, NIs ← NIs + 1. Since | arg minj∈A{Nj}| 6 |A| 6 n, line 18 is called at
most n times before minj∈A{Nj} = maxj∈A{Nj}. When this occurs, the conditional
in line 19 is true and t← t+ 1.

If mini∈A(t){Ni} = maxi∈A(t){Ni}, then Ni = t for any i ∈ A(t). By Step 0, only
arms inMε are added to Gk. Therefore, Ti is defined as

Ti = min
{
t :
i ∈ Gk(t+ 1) if i ∈Mε

i /∈ A(t+ 1) if i ∈Mc
ε

}
E1= min

t : µ̂i − Cδ/2n(t) > Ut if i ∈Mε

µ̂i + Cδ/2n(t) 6 Lt if i ∈Mc
ε


(6.19)

Define Ti =∞ if this never occurs. Note that this may happen if FAREAST terminates
due to the conditition in line 32 thatUt−Lt < γ

2−εLt. Similarly, recall T ′i denotes the
random variable of the of the number of times i is sampled before µ̂i(t)+Cδ/2n(t) 6

maxj∈A µ̂j(t) − Cδ/2n(t). Hence,

T ′i = min
{
t : µ̂i(t) + Cδ/2n(t) 6 max

j∈A(t)
µ̂j(t) − Cδ/2n(t)

}
(6.20)

Define T ′i =∞ if this never occurs. Note that this may happen if FAREAST terminates
due to the conditition in line 32 that Ut − Lt < γ

2−εLt. Finally, we define the time
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Tγ such that Ut − Lt < γ
2−εLt.

Tγ = min
{
t : Ut − Lt <

γ

2 − ε
Lt

}
(6.21)

By design, no arm is sampled more that Tγ times by the good filter, controlling the
cases that Ti or T ′i are infinite.

6.F.4.3 Step 2: Bounding Ti and T ′i for i ∈Mε

Step 2a: For i ∈Mε, we have that Ti 6 h
(
εµ1−∆i

4−2ε , δ2n
)
.

Proof. Note that µi − 2Cδ/2n(t) > (1 − ε)(µ1 + 2Cδ/2n(t)) may be rearranged as
(4−2ε)Cδ/2n(t) 6 εµ1−∆i, and this is truewhen t > h

(
εµ1−∆i

4−2ε , δ2n
)
. This condition

implies that for all j,

µ̂i(t) − Cδ/2n(t)
E1
> µi − 2Cδ/2n(t)

> (1 − ε)(µ1 + 2Cδ/2n(t))

> (1 − ε)(µj + 2Cδ/2n(t))

E1
> (1 − ε)(µ̂j(t) + Cδ/2n(t))

so in particular, µ̂i(t) − Cδ/2n(t) > (1 − ε)(maxj∈A µ̂j(t) + Cδ/2n(t)) = Ut.
Additionally, we define a time Tmax when all good arms have entered Gk.

Step 2b: Defining Tmax := min{t : Gk(t) = Mε} = maxi∈Mε
Ti, we also have that

Tmax 6 h(α̃ε/(4 − 2ε), δ/2n) (in other words, if t > h(α̃ε/(4 − 2ε), δ/2n) (i.e. line
23 has been run t times, then we have that Gk(t) =Mε).
Proof. Recall that α̃ε = mini∈Mε

µi − µ1 + ε = mini∈Mε
εµ1 − ∆i. By Step 1a,

Ti 6 h
(
εµ1−∆i

4−2ε , δ2n
)
. Furthermore, h(·, ·) is monotonic in its first argument, such that

if 0 < x ′ < x, then h(x ′, δ) > h(x, δ) for any δ > 0. Therefore Tmax = maxi∈Mε
Ti 6

maxi∈Mε
h
(
εµ1−∆i

4−2ε , δ2n
)
= h

(
α̃ε/(4 − 2ε), δ2n

)
.

Step 2c: For i ∈Mε, we have that T ′i 6 h(0.25∆i, δ/2n).
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Proof. Note that 4Cδ/2n(t) 6 µ1 − µi, true when t > h
(
0.25∆i, δ2n

)
, implies that

µ̂i(t) + Cδ/2n(t)
E1
6 µi + 2Cδ/2n(t)

6 µ1 − 2Cδ/2n(t)

E1
6 µ̂1(t) − Cδ/2n(t).

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) 6 maxi∈A(t) µ̂i(t).
Hence, µ̂i(t) + Cδ/2n(t) 6 maxj∈A(t) µ̂j(t) − Cδ/2n(t).

6.F.4.4 Step 3: Bounding Ti for i ∈Mc
ε

Next, we bound Ti for i ∈ Mc
ε. i ∈ Mc

ε is eliminated from A if it has received at
least Ti samples.

Claim: Ti 6 h
(
∆i−εµ1

4−2ε , δ2n
)
for i ∈Mc

ε

Proof. Note that µi + 2Cδ/2n(t) 6 (1 − ε)(µ1 − 2Cδ/2n(t)) may be rearranged as
(4−2ε)Cδ/2n(t) 6 ∆i−εµ1, and this is truewhen t > h

(
εµ1−∆i

4−2ε , δ2n
)
. This condition

implies that

µ̂i(t) + Cδ/2n(t)
E1
6 µi + 2Cδ/2n(t)

6 (1 − ε)(µ1 − 2Cδ/2n(t))

E1
6 (1 − ε)(µ̂1(t) − Cδ/2n(t))

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) 6 maxi∈A(t) µ̂i(t).
Therefore µ̂i(t) + Cδ/2n(t) 6 (1 − ε)(maxj∈A µ̂j(t) − Cδ/2n(t)) = Lt.
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6.F.4.5 Step 4: bounding the total number of samples given to the good filter
at time t = Tmax

Note that for a time t = T , the total number of samples given to the good filter is∑T
s=1 |A(s)|. Therefore, the total number of samples up to time Tmax is

∑Tmax
t=1 |A(t)|.

Let Si = min{t : i 6∈ A(t+ 1)}. Hence,

Tmax∑
t=1

|A(t)| =

Tmax∑
t=1

n∑
i=1

1[i ∈ A(t)] =

n∑
i=1

Tmax∑
t=1

1[i ∈ A(t)] =

n∑
i=1

min {Tmax,Si}

For arms i ∈Mc
ε, Si = Ti by definition. For i ∈Mε, Si = max(Ti, T ′i ) by line 28 of

the algorithm. Then

n∑
i=1

min {Tmax,Si} =
∑
i∈Mε

min {Tmax, max(Ti, T ′i )}+
∑
i∈Mc

ε

min {Tmax, Ti}

6
∑
i∈Mε

min {Tmax, max(Ti, T ′i )}+ |Mc
ε ∩Mε+α̃ε |Tmax +

∑
i∈Mc

ε+α̃ε

Ti

=
∑
i∈Mε

max {Ti, min(T ′i , Tmax)}+ |Mc
ε ∩Mε+α̃ε/µ1 |Tmax +

∑
i∈Mc

ε+α̃ε/µ1

Ti

(a)

6
∑
i∈Mε

max
{
h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

α̃ε

4 − 2ε , δ2n

)]}
+

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
+ |Mc

ε ∩Mε+α̃ε/µ1 |h

(
α̃ε

4 − 2ε , δ2n

)
.

Equality (a) follows from Tmax 6 h
(
α̃ε

4−2ε , δ2n
)
by Step 1b, Ti 6 h

(
εµ1−∆i

4−2ε , δ2n
)
in

Steps 2a and 3, and T ′i 6 h
(
0.25∆i, δ2n

)
in Step 2c.

6.F.4.6 Step 5: Bounding the number of samples in round k versus k− 1

Now we show that the total number of samples taken in round k is no more than 9
times the number taken in the previous round.
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Claim: For k > 1

(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

6 9
(
HME(n, 2−k+1, 1/16) + τk−1 + τk−1|(Gk−2 ∪ Bk−2)

c|
)

Proof. In round k,
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)
samples are drawn.

SinceGk−1 ⊂ Gk and Bk−1 ⊂ Bk ∀k deterministically, we see that |(Gk−1∪Bk−1)
c| >

|(Gk ∪ Bk)c| ∀k. By definition,
HME(n, 2−k−1, 1/16) = 4HME(n, 2−k, 1/16).

Next, recall τk =
⌈
22k+3 log

(
8
δk

)⌉
. We bound τk/τk−1 as

τk

τk−1
=

⌈
22k+3 log

(
8
δk

)⌉
⌈
22k+1 log

(
8
δk−1

)⌉ =

⌈
22k+3 log

(
16nk2

δ

)⌉
⌈
22k+1 log

(
16n(k−1)2

δ

)⌉
6

22k+3 log
(

16nk2

δ

)
+ 1

22k+1 log
(

16n(k−1)2

δ

) 6 4 log
(

16nk2

δ

)
log
(

16n(k−1)2

δ

) + 1

6 4
log
(16n
δ

)
+ 2 log(k)

log
(16n
δ

)
+ 2 log(k− 1)

+ 1 = (∗)

If k = 2, (∗) 6 1 + 4 ∗ log(32)/ log(8) 6 9. Otherwise,

(∗) =
4(log

(16n
δ

)
+ 2 log(k))

log
(16n
δ

)
+ 2 log(k− 1)

+ 1

6
4 log(k)

log(k− 1) + 1

6 4 · 2 + 1 = 9

Putting these pieces together,

(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

6
(
4HME(n, 2−k+1, 1/16) + 9τk−1 + 9τk−1|(Gk−2 ∪ Bk−2)

c|
)
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6 9
(
HME(n, 2−k+1, 1/16) + τk−1 + τk−1|(Gk−2 ∪ Bk−2)

c|
)

6.F.4.7 Step 6: Bounding Equation (6.17)

Here, we introduce the round KGood, when GKGood =Mε at some point within the
round. Using the result of the previous step, we may bound the total number of
samples taken though this round, controlling Equation (6.17). With the result of
Step 5, we prove the following inequality.

Claim:

∞∑
k=1

21 [Gk−1 6=Mε]1[Gk−1 ∪ Bk−1 6= [n]](
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

(6.22)

6 c
∑
i∈Mε

max
{
h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

0.25 α̃ε

4 − 2ε , δ2n

)]}
+ c|Mc

ε ∩Mε+α̃ε/µ1 |h

(
α̃ε

4 − 2ε , δ2n

)
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 − ∆i
4 − 2ε , δ2n

)

Proof. Recall tk = max{t : t ∈ k} denotes the maximum value of t in round k
and Tmax = max∈Mε

Ti denotes the minimum t such that Gk(t) =Mε. Define the
random round

KGood := min{k : Gk =Mε} = min{k : tk > Tmax}

By definition of KGood,

∞∑
k=1

21[Gk−1 6=Mε]1[Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

=

KGood∑
k=1

21[Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

.
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Next, applying Step 5, if KGood > 1

KGood∑
k=1

21[Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

6 18
KGood−1∑
k=1

1[Gk−2 ∪ Bk−2 6= [n]](
HME(n, 2−k+1, 1/16) + τk−1 + τk−1|(Gk−2 ∪ Bk−2)

c|
)

.

Observe that by lines 17 and 20 of FAREAST, for any round r and for any t > tr−1,

r−1∑
k=1

1[Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)
6

t∑
s=1

|A(s)|.

By definition, for the round KGood − 1, we see that t(KGood−1) < Tmax. Applying the
above inequality with the inequality proven in Step 4,

18
KGood−1∑
k=1

|(Gk−1 ∪ Bk−1)
c|
(
2τk +HME(n, 2−k, 1/16)

)
6 18

Tmax∑
s=1

|A(s)|

6 18
∑
i∈Mε

max
{
h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

α̃ε

4 − 2ε , δ2n

)]}
+ 18

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
+ 18|Mc

ε ∩Mε+α̃ε/µ1 |h

(
α̃ε

4 − 2ε , δ2n

)
.

Otherwise, if KGood = 1, exactly 4c ′n log(16) + 32n log(16n/δ) samples are given to
the good filter in round 1. One may use Lemma 6.32 to invert h(·, ·) and show that
the summation on the right had side of the above inequality is within a constant
of this and the claim holds in this case as well for a different constant, potentially
larger than 18.
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6.F.4.8 Step 7: Bounding Equation (6.18)

Next, we bound

∞∑
k=1

21 [Gk−1 =Mε]1 [Gk−1 ∪ Bk−1 6= [n]](
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

.

∞∑
k=1

21 [Gk−1 =Mε]1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Gk−1 ∪ Bk−1)

c|
)

=

∞∑
k=1

21 [Gk−1 =Mε]1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|(Mε ∪ Bk−1)

c|
)

=

∞∑
k=1

21 [Gk−1 =Mε]1 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|Mc

ε\Bk−1|
)

=

∞∑
k=KGood+1

21 [Gk−1 ∪ Bk−1 6= [n]]
(
HME(n, 2−k, 1/16) + τk + τk|Mc

ε\Bk−1|
)

E1,E2=

∞∑
k=KGood+1

21 [Bk−1 6=Mc
ε]
(
HME(n, 2−k, 1/16) + τk + τk|Mc

ε\Bk−1|
)

=

∞∑
k=KGood+1

21 [Bk−1 6=Mc
ε]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

21 [Bk−1 6=Mc
ε] (τk|M

c
ε\Bk−1|)

=

∞∑
k=KGood+1

21 [Bk−1 6=Mc
ε]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

2τk|Mc
ε\Bk−1|

=

∞∑
k=KGood+1

21 [Bk−1 6=Mc
ε]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Mc

ε

2τk1[i /∈ Bk−1]

6
∞∑

k=KGood+1

2|Mc
ε\Bk−1|

(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Mc

ε

2τk1[i /∈ Bk−1]
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=

∞∑
k=KGood+1

∑
i∈Mc

ε

21[i /∈ Bk−1]
(
HME(n, 2−k, 1/16) + τk

)
+

∞∑
k=KGood+1

∑
i∈Mc

ε

2τk1[i /∈ Bk−1]

=

∞∑
k=KGood+1

∑
i∈Mc

ε

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
=
∑
i∈Mc

ε

∞∑
k=KGood+1

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
6
∑
i∈Mc

ε

∞∑
k=1

21[i /∈ Bk−1]
(
2τk +HME(n, 2−k, 1/16)

)
(6.23)

6.F.4.9 Step 8: Bounding the expected total number of samples drawn by
FAREAST

Now we take expectations over the number of samples drawn. These expectations
are conditional on the high probability event E1 ∩ E2. The bound in step 5 holds
deterministically conditioned on this event.

Note τk and HME(n, 2−k, 1/16) are deterministic constants for any k. Let all
expectations are be jointly over the random instance ν and the randomness in
FAREAST.

E[T |1[E1 ∩ E2] = 1] =∞∑
k=1

2E
[
1[Gk ∪ Bk 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
HME(n, 2−k, 1/16) + τk + τk

∣∣(Gk−1 ∪ Bk−1)
c
∣∣)

=

∞∑
k=1

2E
[
1 [Gk−1 6=Mε]1[Gk ∪ Bk 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
HME(n, 2−k, 1/16) + τk + τk

∣∣(Gk−1 ∪ Bk−1)
c
∣∣)

+

∞∑
k=1

2E
[
1 [Gk−1 =Mε]1[Gk ∪ Bk 6= [n]]

∣∣1[E1 ∩ E2] = 1
]
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(
HME(n, 2−k, 1/16) + τk + τk

∣∣(Gk−1 ∪ Bk−1)
c
∣∣)

Step 6
6 c

∑
i∈Mε

max
{
h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

α̃ε

4 − 2ε , δ2n

)]}
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
+ c|Mc

ε ∩Mε+α̃ε/µ1 |h

(
α̃ε

4 − 2ε , δ2n

)

+

∞∑
k=1

2E
[
1 [Gk−1 =Mε]1[Gk ∪ Bk 6= [n]]

∣∣1[E1 ∩ E2] = 1
]

(
HME(n, 2−k, 1/16) + τk + τk

∣∣(Gk−1 ∪ Bk−1)
c
∣∣)

Step 7
6 c

∑
i∈Mε

max
{
h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

α̃ε

4 − 2ε , δ2n

)]}
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
+ c|Mc

ε ∩Mε+α̃ε/µ1 |h

(
α̃ε

4 − 2ε , δ2n

)

+
∑
i∈Mc

ε

∞∑
k=1

2Eν
[
1[i /∈ Bk−1]

∣∣1[E1 ∩ E2] = 1
] (

2τk +HME(n, 2−k, 1/16)
)

(a)
= c

∑
i∈Mε

max
{
h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

α̃ε

4 − 2ε , δ2n

)]}
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
+ c|Mc

ε ∩Mε+α̃ε |h

(
α̃ε/µ1

4 − 2ε , δ2n

)

+
∑
i∈Mc

ε

∞∑
k=1

2Eν [1[i /∈ Bk−1]|1[E1]]
(
2τk +HME(n, 2−k, 1/16)

)
where (a) follows from Eν

[
1[i /∈ Bk−1]

∣∣1[E1 ∩ E2]
]
= Eν

[
1[i /∈ Bk−1]

∣∣1[E1]
]
for i ∈

Mc
ε, since the event {i ∈ Bk−1} is independent of E2 for all i ∈ Mc

ε. This can be
observed since E2 deals only with independent samples taken of arms inMε.

6.F.4.10 Step 9: Bounding the expectation remaining from step 8

Next, we bound
∑∞
k=1 Eν [1[i /∈ Bk−1]|1[E1]]

(
2τk +HME(n, 2−k, 1/16)

)
for i ∈Mc

ε,
the expectation remaining from step 8. In particular, this is the number of samples
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drawn by the bad filter to add arm i ∈Mc
ε to Bk.

First, we bound the probability that for a given i ∈ Mc
ε and a given k i /∈ Bk.

Note that by Borel-Cantelli, this implies that the probability that i is never added
to any Bk is 0.

Claim1: For i ∈Mc
ε, k >

⌈
log2

(
2−ε

∆i−εµ1

)⌉
=⇒ Eν [1[i /∈ Bk]|1[E1]] 6

(1
8

)k−⌈log2

(
2−ε

∆i−εµ1

)⌉
Proof. If i ∈ Bk, either the good or the bad filter may have added it. The

behavior of the bad filter on arms innMc
ε is independent of E1. Hence.

Eν [1[i /∈ Bk]|1[E1]] = Eν
[
1[µ̂i + Cδ/2n(t) > Ltk ]1[µ̂ik − µ̂i 6 2−(k+1)(2 − ε)]|1[E1]

]
6 Eν

[
1[µ̂ik − µ̂i 6 2−(k+1)(2 − ε)]|1[E1]

]
= Eν

[
1[µ̂ik − µ̂i 6 2−(k+1)(2 − ε)]

]
If i ∈ Bk−1 then i ∈ Bk by definition. Otherwise, if i /∈ Bk−1, by Hoeffding’s

Inequality conditional on the value of ik and a sum over conditional probabilities
as in step 0, with probability at least 1 − δ

4nk2

|((1 − ε)µ̂ik − µ̂i) − ((1 − ε)µik − µi)| 6 2−(k+1)

If MedianElimination also succeeds, the joint event of which occurs with probabil-
ity 15

16

(
1 − δ

4nk2

)
by independence7,

(1 − ε)µ̂ik − µ̂i > (1 − ε)µik − µi − 2−(k+1)

> (1 − ε)µ1 − µi − 2−(k+1)(2 − ε)

= ∆i − εµ1 − 2−(k+1)(2 − ε).

Then for k >
⌈
log2

(
2−ε

∆i−εµ1

)⌉
,

(1 − ε)µ̂ik − µ̂i > ∆i − εµ1 − 2−(k+1)(2 − ε) > 2−(k+1)(2 − ε),

7Note that the success of MedianElimination and the concentration of (µ̂ik − µ̂i) around (µik −
µi) are independent of the events E1 and E2 conditioned on in Step 8.
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which implies that i ∈ Bk by line 15 of FAREAST. In particular,

E
[
1[i ∈ Bk]

∣∣i /∈ Bk−11[E1]
]
> E

[
µ̂ik − µ̂i > 2−(k+1)(2 − ε)

∣∣i /∈ Bk−1,1[E1]
]

>
15
16

(
1 −

δ

4nk2

)
.

Furthermore, i /∈ B0 by definition. Then for k >
⌈
log2

(
2−ε

∆i−εµ1

)⌉
,

E [1[i /∈ Bk]|1[E1]] = E [1[i /∈ Bk](1[i /∈ Bk−1] + 1[i ∈ Bk−1])|1[E1]]

= E [1[i /∈ Bk]1[i /∈ Bk−1]|1[E1]] + E [1[i /∈ Bk]1[i ∈ Bk−1]|1[E1]]

Deterministically, 1[i /∈ Bk]1[i ∈ Bk−1] = 0. Therefore,

E [1[i /∈ Bk]1[i /∈ Bk−1]|1[E1]] + E [1[i /∈ Bk]1[i ∈ Bk−1]|1[E1]]

= E [1[i /∈ Bk]1[i /∈ Bk−1]|1[E1]]

= E [1[i /∈ Bk]1[i /∈ Bk−1]|i /∈ Bk−1,1[E1]]P(i /∈ Bk−1|1[E1])

+ E
[
1[i /∈ Bk]1[i /∈ Bk−1]

∣∣i ∈ Bk−1,1[E1]
]
P(i ∈ Bk−1|1[E1])

= E [1[i /∈ Bk]1[i /∈ Bk−1]|i /∈ Bk−1,1[E1]]P(i /∈ Bk−1|1[E1])

= E
[
1[i /∈ Bk]

∣∣i /∈ Bk−1,1[E1]
]
E [1[i /∈ Bk−1]|1[E1]]

6

(
1
16 +

δ

4nk2

)
E [1[i /∈ Bk−1]|1[E1]] .

For k <
⌈
log2

(
2−ε

∆i−εµ1

)⌉
, trivially, E [1[i /∈ Bk]|1[E1]] 6 1. Recall δ 6 1/8. For

k >
⌈
log2

(
2−ε

∆i−εµ1

)⌉
,

E [1[i /∈ Bk]|1[E1]] 6
k∏

s=
⌈
log2

(
2−ε

∆i−εµ1

)⌉
(

1
16 +

δ

2ns2

)
6

(
1
8

)k−⌈log2

(
2−ε

∆i−εµ1

)⌉
.

Claim 2: For j ∈ Mc
ε,
∑∞
k=1 2Eν [1[i /∈ Bk−1]|1[E1]]

(
2τk +HME(n, 2−k, 1/16)

)
6
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c ′′
4n(2−ε)2

(∆i−εµ1)2 + c
′′h
(
∆i−εµ1

4−2ε , δ2n
)

Proof. This sum decomposes into two terms.

∞∑
k=1

Eν [1[i /∈ Bk−1]|1[E1]]
(
2τk +HME(n, 2−k, 1/16)

)

=

⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

Eν [1[i /∈ Bk−1]|1[E1]]

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

+

∞∑
k=
⌈
log2

(
2−ε

∆i−εµ1

)⌉Eν [1[i /∈ Bk−1]|1[E1]]

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

We begin by bounding the first term.

⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

Eν [1[i /∈ Bk−1]|1[E1]]

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

6

⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

6

⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

(
c ′n22k log(16) + 2 + 22k+4 log

(
16nk2

δ

))

6 2 log2

(
2 − ε

∆i − εµ1

)
+

(
c ′n log(16) + 16 log

(
16n
δ

)) ⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

22k

+ 32

⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

22k log (k)

6 2 log2

(
2 − ε

∆i − εµ1

)

+

(
c ′n log(16) + 16 log

(
16n
δ

)
+ 32 log log2

(
2 − ε

∆i − εµ1

)) ⌊
log2

(
2−ε

∆i−εµ1

)⌋∑
k=1

22k
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6 2 log2

(
2 − ε

∆i − εµ1

)
+

(2 − ε)2

(∆i − εµ1)2

(
c ′n log(16) + 32 log

(
16n
δ

log2

(
2 − ε

∆i − εµ1

)))
Next, we plug in the bound from claim 1 controlling the probability that i /∈ Bk.
Using Claim 1, we bound the second sum as follows:

∞∑
r=
⌈
log2

(
2−ε

∆i−εµ1

)⌉Eν [1[i /∈ Bk−1]|1[E1]]

(
HME(n, 2−k, 1/16) + 2

⌈
22k+3 log

(
16nk2

δ

)⌉)

6
∞∑

k=
⌈
log2

(
2−ε

∆i−εµ1

)⌉
(

1
8

)k−⌈log2

(
2−ε

∆i−εµ1

)⌉
−1(

c ′n22k log(16) + 2 + 22k+4 log
(

16nk2

δ

))

= c ′n log(16)
∞∑
k=1

(
1
8

)k−1

22
(
k+
⌈
log2

(
2−ε

∆i−εµ1

)⌉)
+ 2

∞∑
k=1

(
1
8

)k−1

+ 16
∞∑
k=1

(
1
8

)k−1

22
(
k+
⌈
log2

(
2−ε

∆i−εµ1

)⌉)
log

16n
(
k+

⌈
log2

(
2−ε

∆i−εµ1

)⌉)2

δ


+ 16

∞∑
k=1

2−3k+322
(
k+log2

(
2−ε

∆i−εµ1

)
+1
)

log

16n
(
k+

⌈
log2

(
2−ε

∆i−εµ1

)⌉)2

δ


= 3 +

(
c ′n log(16) 25(2 − ε)2

(∆i − εµ1)2 +
29(2 − ε)2

(∆i − εµ1)2 log
(

16n
δ

)) ∞∑
k=1

2−k

+
29(2 − ε)2

(∆i − εµ1)2

∞∑
k=1

2−k log
((

k+

⌈
log2

(
2 − ε

∆i − εµ1

)⌉)2
)

6 3 + c ′n log(16) 25(2 − ε)2

(∆i − εµ1)2 +
29(2 − ε)2

(∆i − εµ1)2 log
(

16n
δ

)
+

210(2 − ε)2

(∆i − εµ1)2

∞∑
k=1

2−k log
(
k+

⌈
log2

(
2 − ε

∆i − εµ1

)⌉)
= (∗∗)
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Wemay bound the final summand,
∑∞
k=1 2−k log

(
k+

⌈
log2

(
2−ε

∆i−εµ1

)⌉)
as follows:

∞∑
k=1

2−k log
(
k+

⌈
log2

(
2 − ε

∆i − εµ1

)⌉)
6 log

(
e

2 log2

(
16(2 − ε)2

(∆i − εµ1)2

))

Plugging this back into (∗∗), we have that

(∗∗) 6 3 + c ′n log(16) 25(2 − ε)2

(∆i − εµ1)2 +
29(2 − ε)2

(∆i − εµ1)2 log
(

16n
δ

)
+

210(2 − ε)2

(∆i − εµ1)2 log
(
e

2 log2

(
16(2 − ε)2

(∆i − εµ1)2

))
Combining the above with the bound on the first sum, we have that

∞∑
k=1

Eν [1[i /∈ Bk−1]1[E1]]
(
2τk +HME(n, 2−k, 1/16)

)
6 c ′′

(
4n(2 − ε)2

(∆i − εµ1)2 +
4c(2 − ε)2

(∆i − εµ1)2 log
(

2n
δ

log2

(
4 − 2ε

(∆i − εµ1)2

)))
=

4c ′′n(2 − ε)2

(∆i − εµ1)2 + c ′′h

(
∆i − εµ1

4 − 2ε , δ2n

)
for a sufficiently large, universal constant c ′′ and c from the definition of h(·, ·).

6.F.4.11 Step 10: Applying the result of Step 9 to the result of Step 8

We may repeat the result of step 9 for every i ∈Mc
ε and plug this into the result of

Step 8. From this point, we simplify to return the final result.
By Step 8, the total number of samples T drawn by FAREAST is bounded in

expectation by

E[T |E1 ∩ E2] 6 c
∑
i∈Mε

max
{
h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(
α̃ε/µ1

4 − 2ε , δ2n

)]}
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
εµ1 − ∆i
4 − 2ε , δ2n

)
+ c|Mc

ε ∩Mε+α̃ε |h

(
α̃ε

4 − 2ε , δ2n

)
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+ 2
∑
i∈Mc

ε

∞∑
k=1

Eν [1[i /∈ Bk−1]|1[E1]]
(
2τk +HME(n, 2−k, 1/16)

)
.

Applying the bound from Step 9 to each i ∈Mc
ε, we have that

E[T |E1 ∩ E2] 6 c
∑
i∈Mε

max
{
h

(
0.25(ε− ∆i),

δ

2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

α̃ε

4 − 2ε , δ2n

)]}
+ c

∑
i∈Mc

ε+α̃ε/µ1

h

(
0.25(ε− ∆i),

δ

2n

)
+ c|Mc

ε ∩Mε+α̃ε/µ1 |h

(
α̃ε

4 − 2ε , δ2n

)

+ 2c ′′
∑
i∈Mc

ε

4n(2 − ε)2

(∆i − εµ1)2 + h

(
∆i − εµ1

4 − 2ε , δ2n

)
.

For i ∈ Mc
ε ∩Mε+α̃ε/µ1 , α̃ε = minj∈Mε

εµ1 − ∆j > ∆i − εµ1. By monotonicity of
h(·, ·), h

(
α̃ε

4−2ε , δ2n
)
6 c ′′n(4−2ε)

(∆i−εµ1)2 + c ′′h
(
∆i−εµ1

4−2ε , δ2n
)
. Therefore,

E[T |E1 ∩ E2] 6 c
∑
i∈Mε

max
{
h

(
∆i − εµ1

4 − 2ε , δ2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

α̃ε

4 − 2ε , δ2n

)]}
+ (2c ′′ + c)

∑
i∈Mc

ε

n(4 − 2ε)
(∆i − εµ1)2 + h

(
∆i − εµ1

4 − 2ε , δ2n

)
.

Lastly, note that 1
3(1−x) 6

1
2−x for x 6 1/2. By monotonicity of h, we may lower

bound the denominators 1
4−2ε and

1
2(2−ε+γ) as

1
6(1−ε) and

1
6(1−ε+γ) respectively. Since

ε ∈ (0, 1/2], 1
4−2ε 6 1/4. Plugging this in, we see that

E[T |E1 ∩ E2] 6 c
∑
i∈Mε

max
{
h

(
∆i − εµ1

4 , δ2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

α̃ε

6(1 − ε)
, δ2n

)]}
+ (2c ′′ + c)

∑
i∈Mc

ε

4n
(∆i − εµ1)2 + h

(
∆i − εµ1

4 , δ2n

)
.
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Next, we use Lemma 6.33 to bound the minimum of h(·, ·) functions.

c
∑
i∈Mε

max
{
h

(
∆i − εµ1

4 , δ2n

)
, min

[
h

(
0.25∆i,

δ

2n

)
,h
(

α̃ε

6(1 − ε)
, δ2n

)]}
+ (2c ′′ + c)

∑
i∈Mc

ε

4n
(∆i − εµ1)2 + h

(
∆i − εµ1

4 , δ2n

)

= c
∑
i∈Mε

max
{
h

(
∆i − εµ1

4 , δ2n

)
,h
(
∆i +

α̃ε
1−ε

12 , δ2n

)}

+ (2c ′′ + c)
∑
i∈Mc

ε

4n
(∆i − εµ1)2 + h

(
∆i − εµ1

4 , δ2n

)

Finally, we use Lemma 6.32 to bound the function h(·, ·). Since δ 6 1/2, δ/n 6
2e−e/2. Further, |εµ1 −∆i| 6 6 for all i and ε 6 1/2 implies that 1

6(1−ε) |εµ1 −∆i| 6 2
and 1

6(1−ε) min(α̃ε, β̃ε) 6 2. ∆i 6 8 for all i, gives 0.25∆i 6 2. Lastly, γ 6 6/µ1

implies that γµ1
6(1−ε+γ) 6 2. Therefore,

E[T |E1 ∩ E2] 6 c
∑
i∈Mε

max
{
h

(
∆i − εµ1

4 , δ2n

)
,h
(
∆i +

α̃ε
1−ε

12 , δ2n

)}

+ (2c ′′ + c)
∑
i∈Mc

ε

4n
(∆i − εµ1)2 + h

(
∆i − εµ1

4 , δ2n

)
6 c

∑
i∈Mε

max
{

64
(εµ1 − ∆i)2 log

(
4n
δ

log2

(
384n

δ(εµ1 − ∆i)2

))
,

576(
∆i +

α̃ε
1−ε

)2 log
(

4n
δ

log2

(
1728n

δ
(
∆i +

α̃ε
1−ε

)2

))}

+ (2c ′′ + c)
∑
i∈Mc

ε

4n
(∆i − εµ1)2 +

64
(εµ1 − ∆i)2 log

(
4n
δ

log2

(
384n

δ(εµ1 − ∆i)2

))

6 c6

n∑
i=1

max
{

1
(εµ1 − ∆i)2 log

(
n

δ
log2

(
n

δ(εµ1 − ∆i)2

))
,

1(
∆i +

α̃ε
1−ε

)2 log
(
n

δ
log2

(
n

δ
(
∆i +

α̃ε
1−ε

)2

))}
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+ c6
∑
i∈Mc

ε

n

(∆i − εµ1)2

= c6

n∑
i=1

max
{

1
((1 − ε)µ1 − µi)2 log

(
n

δ
log2

(
n

δ((1 − ε)µ1 − µi)2

))
,

1(
µ1 +

α̃ε
1−ε − µi

)2 log
(
n

δ
log2

(
n

δ
(
µ1 +

α̃ε
1−ε − µi

)2

))}
+ c6

∑
i∈Mc

ε

n

((1 − ε)µ1 − µi)2

for a sufficiently large constant c6.

6.F.4.12 Step 11: High probability sample complexity bound

Finally, the Good Filter is equivalent to EAST, Algorithm 10, except split across
rounds. EAST is an elimination algorithm. Note that the Good Filter is union
bounded over 2n events whereas the bounds in EAST are union bounded over n
events. The Good Filter and Bad Filter are given the same number of samples in
each round, and the Good Filter can terminate within a round, conditioned on
E1∩E2. Therefore, we can bound the complexity of FAREAST in terms of that of EAST
run at failure probability δ/2. If FAREAST terminates in the second round or later, the
arguments in Steps 4 and 5 can be used to show that FAREAST draws no more than
a factor of 18 more samples than EAST, though this estimate is highly pessimistic. If
FAREAST terminates in round 1 (when gaps are large), we may still show that this is
within a constant factor of the complexity of EAST, but the story is more complicated.
In the first round, the bad filter draws at most c ′n log(16) + 16(n + 1) log(8n/δ)
sampleswhere c ′ is the constant from Median Elimination. Sincewe have assumed
that max(∆i, |εµ1 −∆i|) 6 6(1−ε) 6 6, this sum is likewise within a constant factor
of the complexity of EAST. Hence with probability at least 1 − δ, by Theorem 6.28,

T 6 c5

n∑
i=1

min
{

max
{

1
((1 − ε)µ1 − µi)2 log

(
n

δ
log2

(
n

δ((1 − ε)µ1 − µi)2

))
,
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(µ1 +
α̃ε

1−ε − µi)2 log
(
n

δ
log2

(
n

δ(µ1 +
α̃ε

1−ε)
2

))
,

1
(µ1 +

β̃ε
1−ε − µi)2

log
(
n

δ
log2

(
n

δ(µ1 +
β̃ε

1−ε − µi)2

))}
,

(1 − ε+ γ)2

γ2µ2
1

log
(
n

δ
log2

(
(1 − ε+ γ)2n

δγ2µ2
1

))}
samples for a sufficiently large constant c5.

6.F.5 An elimination algorithm for all ε

First, we state an elimination algorithm EAST (Elimination Algorithm for a Sampled
Threshold) and bound its sample complexity. EAST is equivalent to the good filter
in FAREAST. At all times, EAST maintains an active setA and samples all arms i ∈ A,
progressively eliminating arms fromA until termination occurs. Additionally, EAST
maintains upper and lower bounds, denotedUt and Lt, on the the threshold, µ1 −ε

in the additive case and (1− ε)µ1 in the multiplicative case. If µ̂i(t) +Cδ/n(t) < Lt,
EAST may infer that i /∈ Gε (resp. i /∈ Mε) and accordingly removes i from A.
If µ̂i(t) − Cδ/n(t) > Ut, EAST may infer that i ∈ Gε (resp. i ∈ Mε) and adds i
to a set G of good arms it has found so far. However, a good arm i ∈ G is only
removed from A, if EAST can also certify that it is not the best arm, namely if
µ̂i(t) + Cδ/n(t) < maxj µ̂j(t) − Cδ/n(t). This ensures that µ1 − ε ∈ [Lt,Ut] at all
times in the additive case, and similarly, (1 − ε)µ1 ∈ [Lt,Ut] in the multiplicative
case. If A ⊂ G, EAST may declare that G = Gε (resp. G = Mε) and terminates.
Otherwise, the algorithm terminates when Ut − Lt < γ/2 and returns A ∪G in the
additive case or when Ut − Lt < γ

2−εLt in the multiplicative case. This limits the
number of samples of any arm and ensures that no arm worse than (ε+ γ)-good
is returned. We give pseudocode for EAST in Algorithm 10. Pieces specific to the
additive case are shown in red, and pieces specific to the multiplicative case are
shown in blue.
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Algorithm 10 EAST : Elimination Algorithm for a Sampled Threshold
Require: ε, δ > 0, slack γ > 0, (if multiplicative, 0 < ε 6 1/2)
1: Let A← [n] be the active set, and G← ∅ be the set of ε-good arms found so far,

Let t← 0
2: while A 6⊂ G and Ut − Lt > γ/2 or Ut − Lt > γ

2−εLt do
3: Pull each arm i ∈ A and update its empirical mean µ̂i(t) , Update t← t+ 1
4: Update Ut ← maxj µ̂j(t) + Cδ/n(t) − ε or Ut ← (1 −
ε)
(
maxj µ̂j(t) + Cδ/n(t)

)
5: Update Lt ← maxj µ̂j(t)−Cδ/n(t)−ε or Lt ← (1−ε)

(
maxj µ̂j(t) − Cδ/n(t)

)
6: for i ∈ A do
7: if µ̂i(t) − Cδ/n(t) > Ut then
8: add i to G . Arm i is good
9: end if
10: if µ̂i(t) + Cδ/n(t) < Lt then
11: Remove i from A . Arms in Gcε orMc

ε are removed
12: end if
13: if i ∈ G and µ̂i(t) + Cδ/n(t) < maxj µ̂j(t) − Cδ/n(t) then
14: Remove i from A . Arms in Gε orMε are removed
15: end if
16: end for
17: end whilereturn G ∪A

Theorem 6.27. Fix ε > 0, 0 < δ 6 1/2, γ ∈ [0, 8] and an instance ν such that
max(∆i, |ε − ∆i|) 6 8 for all i. In the case that Gε = [n], let αε = min(αε,βε). With
probability at least 1 − δ, EAST returns a set G such that Gε ⊂ G ⊂ G(ε+γ) in at most

n∑
i=1

min
{

max
{

64
(µ1 − ε− µi)2 log

(
2n
δ

log2

(
768n

δ(µ1 − ε− µi)2

))
,

256
(µ1 + αε − µi)2 log

(
2n
δ

log2

(
768n

δ(µ1 + αε − µi)2

))
,

256
(µ1 + βε − µi)2 log

(
2n
δ

log2

(
768n

δ(µ1 + βε − µi)2

))}
,

64
γ2 log

(
2n
δ

log2

(
192n
δγ2

))}
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samples.

Next, we a theorem bounding the complexity of EAST in the multiplicative
regime.

Theorem 6.28. Fix ε, δ ∈ (0, 1/2], γ ∈ [0, min(1, 6/µ1)) and an instance ν such that
max(∆i, |εµ1 − ∆i|) 6 6 for all i. Assume that µ1 > 0. In the case that Mε = [n],
let α̃ε = min(α̃ε, β̃ε). With probability at least 1 − δ, EAST returns a set G such that
Mε ⊂ G ⊂M(ε+γ) in at most

n∑
i=1

min
{

max
{

64
((1 − ε)µ1 − µi)2 log

(
2n
δ

log2

(
192n

δ((1 − ε)µ1 − µi)2

))
,

576
(µ1 +

α̃ε
1−ε − µi)2 log

(
2n
δ

log2

(
1728n

δ(µ1 +
α̃ε

1−ε)
2

))
,

576
(µ1 +

β̃ε
1−ε − µi)2

log
(

2n
δ

log2

(
1728n

δ(µ1 +
β̃ε

1−ε − µi)2

))}
,

144(1 − ε+ γ)

γ2µ2
1

log
(

2n
δ

log2

(
432(1 − ε+ γ)n

δγ2µ2
1

))}
samples.

6.F.6 Proof of Theorem 6.27 EAST in the additive regime

Proof. Notation for the proof: Throughout, recall∆i = µ1−µi. Recall that t counts
the number of times each arm inA has been sampled and thus the number of times
that the conditionals in Lines 6.H.2 and 6.H.2 have been evaluated. Let A(t) denote
the state A at this time before the arms have been eliminated from A in lines 6.H.2
and 6.H.2. Let G(t) be defined similarly. Therefore, the total number of samples
drawn by EAST up to time t is

∑t
s=1 |A(s)|.

For i ∈ Gε, let Ti denote the random variable of the number of times arm i is
sampled before it is added to G in Line 8. For i ∈ Gcε, let Ti denote the random
variable of the number of times arm i is sampled before it is removed from A in
Line 6.H.2. For any arm i, let T ′i denote the random variable of the of the number
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of times i is sampled before µ̂i(t) + Cδ/n(t) 6 maxj∈A µ̂j(t) − Cδ/n(t).

Define the event

E =

 ⋂
i∈[n]

⋂
t∈N

|µ̂i(t) − µi| 6 Cδ/n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=√
4 log(log2(2t)/δ)

t
, we have

P(Ec) = P

 ⋃
i∈[n]

⋃
t∈N

|µ̂i − µi| > Cδ/n(t)


6

n∑
i=1

P

(⋃
t∈N

|µ̂i − µi| > Cδ/n(t)

)
6

n∑
i=1

δ

n
= δ

Hence, P (E) > 1 − δ.

6.F.6.1 Step 0: Correctness

Claim 0: On E, first we prove that G(t) ⊂ Gε for all t ∈ N.
In particular, this shows that EAST never incorrectly add arms in Gcε to the set G.

Proof. We begin by showing that on E the best arm is never removed from A for all
t. Note for any i

µ̂1 + Cδ/n(t) > µ1 > µi > µ̂i(t) − Cδ/n(t) > µ̂i(t) − Cδ/n(t) − ε.

In particular this shows, µ̂1 + Cδ/n(t) > maxi∈A µ̂i(t) − Cδ/n(t) − ε = L∗t and
µ̂1 + Cδ/n(t) > maxi∈A µ̂i(t) − Cδ/n(t) showing that 1 will never exit A in line
6.H.2.

Secondly, we show that at all times t, µ1 − ε ∈ [Lt,Ut]. By the above, since µ1
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never leaves A,

Ut = max
i∈A

µ̂i(t) + Cδ/n(t) − ε > µ̂1(t) + Cδ/n(t) − ε > µ1 − ε

and for any i,
µ1 − ε > µi − ε > µ̂i(t) − Cδ/n(t) − ε

Hence µ1 − ε > maxi µ̂i(t) − Cδ/n(t) − ε = Lt.
Next, we show that G(t) ⊂ Gε for all t > 1. Suppose not. Then ∃, t ∈ N and

∃i ∈ Gcε ∩G(t) such that,

µi > µ̂i(t) − Cδ/n(t) > Ut > µ1 − ε > µi,

with the last inequality following from the previous assertion, giving a contradiction.

Claim 1: Next, we show that on E, Gε ⊂ A(t) ∪G(t) for all t ∈ N.
In particular this implies that if A ⊂ G, then Gε ⊂ G. Combining this with

the previous claim gives G ⊂ Gε ⊂ G, hence G = Gε. On this condition, EAST
terminates by line 2 and returns the set A ∪ G = G. Note that by definition,
Gε ⊂ G(ε+γ) for all γ > 0. Therefore EAST terminates correctly on this condition.

Proof. Suppose for contradiction that there exists i ∈ Gε such that i /∈ A(t) ∪
G(t). This occurs only if i is eliminated in line 6.H.2. Hence, there exists a t ′ 6 t
such that µ̂i(t ′) + Cδ/n(t ′) < Lt ′ . Therefore, on the event E,

µ1 − ε
E

> Lt ′ = max
j∈A

µ̂j(t
′) − Cδ/n(t

′) − ε > µ̂i(t
′) + Cδ/n(t

′)
E

> µi

which contradicts i ∈ Gε.
Claim 2: Finally, we show that if Ut − Lt 6 γ/2, then A ∪G ⊂ G(ε+γ).
Combining with the previous that Gε ⊂ A ∪ G, if EAST terminates on this

condition by line 2, it does so correctly.
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Proof. Assume Ut − Lt 6 γ/2. This implies that

( max
i∈A(t)

µ̂i(t) + Cδ/n(t) − ε) − ( max
i∈A(t)

µ̂i(t) − Cδ/n(t) − ε) = 2Cδ/n(t) 6 γ/2.

Suppose for contradiction that there exists i ∈ Gc(ε+γ) such that i ∈ A ∪ G. Since
Gε ∩Gc(ε+γ) = ∅ and we have previously shown than G(t) ⊂ Gε for all t, we have
that i ∈ A\G. Therefore, by the condition in line 6.H.2, µ̂i(t)+Cδ/n(t) > Lt. Hence,

µi + 2Cδ/n(t)
E

> µ̂i(t) + Cδ/n(t) > Lt. By assumption, we have that Ut − γ/2 6 Lt,
and the event E implies that Ut > µ1 − ε. Therefore, µi + 2Cδ/n(t) > Ut − γ/2 >
µ1 − ε− γ/2. Combining this with the inequality 2Cδ/n 6 γ/2, we have that

γ > 2Cδ/n(t) + γ/2 > µ1 − ε− µi
i∈Gc(ε+γ)
> γ

which is a contradiction.
Therefore, on the event E, if EAST terminates due to either condition in line 2, it

returns A∪G such that Gε ⊂ A∪G ⊂ G(ε+γ). Since P(E) > 1− δ, EAST terminates
correctly with probability at least 1 − δ.

6.F.6.2 Step 1: Controlling the total number of samples given by EAST to arms
in Gε

To keep track of the number of samples that arms are given by EAST, we introduce
random variables Ti and T ′i for all i ∈ [n]. When arm i has been given max(Ti, T ′i )
samples it is removed from A in line 6.H.2.

By Step 0, only arms in Gε are added to G. Therefore, Ti is defined as

Ti = min
{
t :
i ∈ Gk(t+ 1) if i ∈ Gε
i /∈ A(t+ 1) if i ∈ Gcε

}
E
= min

t : µ̂i − Cδ/n(t) > Ut if i ∈ Gε

µ̂i + Cδ/n(t) 6 Lt if i ∈ Gcε


(6.24)

Similarly, recall T ′i denotes the random variable of the of the number of times i is
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sampled before µ̂i(t) + Cδ/n(t) 6 maxj∈A µ̂j(t) − Cδ/n(t). Hence,

T ′i = min
{
t : µ̂i(t) + Cδ/n(t) 6 max

j∈A(t)
µ̂j(t) − Cδ/n(t)

}
(6.25)

Claim 0: For i ∈ Gε, we have that Ti 6 h(0.25(ε− ∆i), δ/n).
Proof. Note that, 4Cδ/n(t) 6 µi − (µ1 − ε), true when t > h

(
0.25(ε− ∆i), δn

)
,

implies that for all j,

µ̂i(t) − Cδ/n(t)
E

> µi − 2Cδ/n(t)

> µ1 + 2Cδ/n(t) − ε

> µj + 2Cδ/n(t) − ε
E

> µ̂j(t) + Cδ/n(t) − ε

so in particular, µ̂i(t) − Cδ/n(t) > maxj∈A µ̂j(t) + Cδ/n(t) − ε = Ut.
Claim 1: For i ∈ Gε, we have that T ′i 6 h(0.25∆i, δ/n).
Proof. Note that 4Cδ/n(t) 6 µ1 − µi, true when t > h

(
0.25∆i, δn

)
, implies that

µ̂i(t) + Cδ/n(t)
E

6 µi + 2Cδ/n(t)

6 µ1 − 2Cδ/n(t)
E

6 µ̂1(t) − Cδ/n(t).

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) 6 maxi∈A(t) µ̂i(t).
Hence, µ̂i(t) + Cδ/n(t) 6 maxj∈A(t) µ̂j(t) − Cδ/n(t).

6.F.6.3 Step 2: Controlling the total number of samples given by EAST to arms
in Gcε

Claim: Next, we show that Ti 6 h
(
0.25(ε− ∆i), δn

)
for i ∈ Gcε

Proof. Note that, 4Cδ/n(t) 6 µ1−ε−µi, true when t > h
(
0.25(ε− ∆i), δn

)
, implies
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that

µ̂i(t) + Cδ/n(t)
E

6 µi + 2Cδ/n(t)

6 µ1 − 2Cδ/n(t) − ε
E

6 µ̂1(t) − Cδ/n(t) − ε

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) 6 maxi∈A(t) µ̂i(t).
Therefore µ̂i(t) + Cδ/n(t) 6 maxj∈A µ̂j(t) − Cδ/n(t) − ε = Lt.

6.F.6.4 Step 3: Bounding the total number of samples drawn by EAST

With the results of Steps 1 and 2, wemay bound the total sample complexity of EAST.
Note that independently of the event E, EAST terminates if Ut − Lt 6 γ/2. Let the
random variable of the maximum number of samples given to any arm before this
occurs be Tγ. Additionally, EAST may terminate if A ⊂ G. Let the random variable
of maximum number of samples given to any arm before this occurs be Tαεβε . Note
that due to the sampling procedure, the total number of samples drawn by EAST at
termination may be written as

∑min(Tγ,Tαεβε)
t=1 |A(t)|.

Now we bound
∑min(Tγ,Tαεβε)
t=1 |A(t)|. Let Si = min{t : i 6∈ A(t+ 1)}. Hence,

min(Tγ,Tαεβε)∑
t=1

|A(t)| =

min(Tγ,Tαεβε)∑
t=1

n∑
i=1

1[i ∈ A(t)] =

n∑
i=1

min(Tγ,Tαεβε)∑
t=1

1[i ∈ A(t)]

=

n∑
i=1

min {Tγ, Tαεβε ,Si}

For arms i ∈ Gcε, Si = Ti by definition. For i ∈ Gε, Si = max(Ti, T ′i ) by line 6.H.2 of
the algorithm. Then

n∑
i=1

min {Tγ, Tαεβε ,Si} =
∑
i∈Gε

min {Tγ, Tαεβε , max(Ti, T ′i )}+
∑
i∈Gcε

min {Tγ, Tαεβε , Ti}

=
∑
i∈Gε

min {Tγ, min {Tαεβε , max(Ti, T ′i )}}+
∑
i∈Gcε

min {Tγ, Tαεβε , Ti}
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=
∑
i∈Gε

min {Tγ, max {Ti, min(T ′i , Tαεβε)}}+
∑
i∈Gcε

min {Tγ, Tαεβε , Ti}

We may define Tγ := min{t : Ut − Lt 6 γ/2}. Note that 4Cδ/n(t) 6 γ, true when
t > h(0.25γ, δ/n) implies that

Ut−Lt = ( max
i∈A(t)

µ̂i(t)+Cδ/n(t)−ε)−( max
i∈A(t)

µ̂i(t)−Cδ/n(t)−ε) = 2Cδ/n(t) 6 γ/2.

Therefore, we have that Tγ 6 h(0.25γ, δ/n).
Next, we may define Tαεβε = min{t : A(t) ⊂ Gε}. By step 0, on the event E,

A ⊂ G implies that G = Gε. Therefore, Tαεβε may be equivalently defined as
Tαεβε = min{t : G(t) = Gε and Gcε ∩A = ∅}. Recalling the definition of Ti, we see
that Tαεβε = maxi(Ti).

Recall that by steps 1 and 2, Ti 6 h
(
0.25(ε− ∆i), δn

)
and T ′i 6 h

(
0.25∆i, δn

)
. Fur-

thermore, bymonotonicity ofh(·, ·), this implies that Tαεβε = h(0.25 min(αε,βε), δ/n).
Plugging this in, we see that∑

i∈Gε

min {Tγ, max {Ti, min(T ′i , Tαεβε)}}+
∑
i∈Gcε

min {Tγ, Tαεβε , Ti}

=
∑
i∈Gε

min {Tγ, max {Ti, min(T ′i , Tαεβε)}}+
∑
i∈Gcε

min {Tγ, Ti}

6
∑
i∈Gε

min
{

max
{
h

(
0.25(ε− ∆i),

δ

n

)
,

min
[
h

(
0.25∆i,

δ

n

)
,h
(

0.25 min(αε,βε),
δ

n

)]}
,

h

(
0.25γ, δ

n

)}
+
∑
i∈Gcε

min
{
h

(
0.25(ε− ∆i),

δ

n

)
,h
(

0.25 min(αε,βε),
δ

n

)}

=

n∑
i=1

min
{

max
{
h

(
0.25(ε− ∆i),

δ

n

)
,



321

min
[
h

(
0.25∆i,

δ

n

)
,h
(

0.25 min(αε,βε),
δ

n

)]}
,

h

(
0.25γ, δ

n

)}
where the final equality holds by definition for arms in Gε. Next, by Lemma 6.33,
we may bound the minimum of h(·, ·) functions.

n∑
i=1

min
{

max
{
h

(
∆i − ε

4 , δ
n

)
, min

[
h

(
∆i

4 , δ
n

)
,h
(

min(αε,βε)
4 , δ

n

)]}
,

h

(
γ

4 , δ
n

)}
=

n∑
i=1

min
{

max
{
h

(
∆i − ε

4 , δ
n

)
,

min
[
h

(
∆i

4 , δ
n

)
, max

[
h

(
αε

4 , δ
n

)
,h
(
βε

4 , δ
n

)]]}
,

h

(
γ

4 , δ
n

)}
6

n∑
i=1

min
{

max
{
h

(
∆i − ε

4 , δ
n

)
,

max
[
h

(
∆i + αε

8 , δ
n

)
,h
(
∆i + βε

8 , δ
n

)]}
,

h

(
γ

4 , δ
n

)}
=

n∑
i=1

min
{

max
{
h

(
∆i − ε

4 , δ
n

)
,h
(
∆i + αε

8 , δ
n

)
,h
(
∆i + βε

8 , δ
n

)}
,

h

(
γ

4 , δ
n

)}
Finally, we use Lemma 6.32 to bound the function h(·, ·). Since δ 6 1/2, δ/n 6

2e−e/2. Further, max(∆i, |ε−∆i|) 6 8 for all i, we have that 0.25∆i 6 2, 0.25|ε−∆i| 6
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2, and 0.25 min(αε,βε) 6 2. Therefore,

n∑
i=1

min
{

max
{
h

(
∆i − ε

4 , δ
n

)
,h
(
∆i + αε

8 , δ
n

)
,h
(
∆i + βε

8 , δ
n

)}
,

h

(
γ

4 , δ
n

)}
6

n∑
i=1

min
{

max
{

64
(ε− ∆i)2 log

(
2n
δ

log2

(
192n

δ(ε− ∆i)2

))
,

256
(∆i + αε)2 log

(
2n
δ

log2

(
768n

δ(∆i + αε)2

))
,

256
(∆i + βε)2 log

(
2n
δ

log2

(
768n

δ(∆i + βε)2

))}
,

64
γ2 log

(
2n
δ

log2

(
192n
δγ2

))}
=

n∑
i=1

min
{

max
{

64
(µ1 − ε− µi)2 log

(
2n
δ

log2

(
768n

δ(µ1 − ε− µi)2

))
,

256
(µ1 + αε − µi)2 log

(
2n
δ

log2

(
768n

δ(µ1 + αε − µi)2

))
,

256
(µ1 + βε − µi)2 log

(
2n
δ

log2

(
768n

δ(µ1 + βε − µi)2

))}
,

64
γ2 log

(
2n
δ

log2

(
192n
δγ2

))}
.

6.F.7 Proof of Theorem 6.28, EAST in the multiplicative regime

Proof. Notation for the proof: Throughout, recall∆i = µ1−µi. Recall that t counts
the number of times each arm inA has been sampled and thus the number of times
that the conditionals in Lines 6.H.2 and 6.H.2 have been evaluated. Let A(t) denote
the state A at this time before the arms have been eliminated from A in lines 6.H.2
and 6.H.2. Let G(t) be defined similarly. Therefore, the total number of samples
drawn by EAST up to time t is

∑t
s=1 |A(s)|.
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For i ∈Mε, let Ti denote the random variable of the number of times arm i is
sampled before it is added to G in Line 8. For i ∈ Mc

ε, let Ti denote the random
variable of the number of times arm i is sampled before it is removed from A in
Line 6.H.2. For any arm i, let T ′i denote the random variable of the of the number
of times i is sampled before µ̂i(t) + Cδ/n(t) 6 maxj∈A µ̂j(t) − Cδ/n(t).

Define the event

E =

 ⋂
i∈[n]

⋂
t∈N

|µ̂i(t) − µi| 6 Cδ/n(t)

 .

Using standard anytime confidence bound results, and recalling that that Cδ(t) :=√
4 log(log2(2t)/δ)

t
, we have

P(Ec) = P

 ⋃
i∈[n]

⋃
t∈N

|µ̂i − µi| > Cδ/n(t)


6

n∑
i=1

P

(⋃
t∈N

|µ̂i − µi| > Cδ/n(t)

)
6

n∑
i=1

δ

n
= δ

Hence, P (E) > 1 − δ.

6.F.7.1 Step 0: Correctness

Claim 0: On E, first we prove that G(t) ⊂Mε for all t ∈ N.
In particular, this shows that EAST never incorrectly add arms inMc

ε to the set
G.
Proof. Firstly we show 1 ∈ A for all t ∈ N, namely the best arm is never removed
from A. Note for any i such that µ̂i(t) − Cδ/n(t) > 0,

µ̂1 + Cδ/n(t) > µ1 > µi > µ̂i(t) − Cδ/n(t) > (1 − ε)(µ̂i(t) − Cδ/n(t)).
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For i such that µ̂i(t) − Cδ/n(t) < 0, if µ̂1 + Cδ/n(t) > 0, then

µ̂1 + Cδ/n(t) > 0 > (1 − ε)(µ̂i(t) − Cδ/n(t)).

Note that µ̂1 + Cδ/n(t) < 0 implies on the event E that µ1 < 0, which contradicts
the assumption that µ1 > 0 made in the theorem. In particular this shows, µ̂1 +

Cδ/n(t) > (1−ε)(maxi∈A µ̂i(t)−Cδ/n(t)) = Lt and µ̂1+Cδ/n(t) > maxi∈A µ̂i(t)−
Cδ/n(t) showing that 1 will never exit A in line 28.

Secondly, we show that at all times t, (1− ε)µ1 ∈ [Lt,Ut]. By the above, since µ1

never leaves A,

Ut = (1 − ε)(max
i∈A

µ̂i(t) + Cδ/n(t)) > (1 − ε)(µ̂1(t) + Cδ/n(t)) > (1 − ε)µ1

and for any i,

(1 − ε)µ1 > (1 − ε)µi > (1 − ε)(µ̂i(t) − Cδ/n(t))

Hence (1 − ε)µ1 > (1 − ε)(maxi µ̂i(t) − Cδ/n(t)) = Lt.
Next, we show that G ⊂Mε for all k > 1, t > 1. Suppose not. Then ∃,k, t ∈ N

and ∃i ∈Mc
ε ∩G(t) such that,

µi > µ̂i(t) − Cδ/n(t) > Ut > (1 − ε)µ1 > µi,

with the last inequality following from the previous assertion, giving a contradiction.

Claim 1: Next, we show that on E,Mε ⊂ A(t) ∪G(t) for all t ∈ N.
In particular this implies that if A ⊂ G, thenMε ⊂ G. Combining this with

the previous claim gives G ⊂ Mε ⊂ G, hence G = Mε. On this condition, EAST
terminates and returns the set A ∪G = G. Note that by definition,Mε ⊂M(ε+γ)

for all γ > 0. Therefore EAST terminates correctly on this condition.
Proof. Suppose for contradiction that there exists i ∈ Mε such that i /∈

A(t) ∪G(t). This occurs only if i is eliminated in line 6.H.2. Hence, there exists a
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t ′ 6 t such that µ̂i(t ′) + Cδ/n(t ′) < Lt ′ . Therefore, on the event E,

(1 − ε)µ1
E

> Lt ′ = (1 − ε)

(
max
j∈A

µ̂j(t
′) − Cδ/n(t

′)

)
> µ̂i(t

′) + Cδ/n(t
′)

E

> µi

which contradicts i ∈Mε.
Claim 2: Finally, we show that on E, if Ut − Lt 6 γ

2−εLt, then A ∪G ⊂M(ε+γ).
Combining with Claim 1 thatMε ⊂ A∪G, if EAST terminates on this condition,

it does so correctly and returns all arms inMε and none inMc
(ε+γ).

Proof. By Claim 0, G ⊂ Mε ⊂ Mε+γ. Hence, G ∩Mc
(ε+γ) = ∅. Therefore, we

wish to show that A ∩Mc
(ε+γ) = ∅ which implies that G ∩ A ⊂ Mε+γ. Assume

Ut − Lt <
γ

2−εLt. Recall that

Ut = (1 − ε)

(
max
i∈A

µ̂i(t) + Cδ/n(t)

)
and

Lt = (1 − ε)

(
max
i∈A

µ̂i(t) − Cδ/n(t)

)
All arms inA(t) have received exactly t samples. Hence, Ut−Lt = 2(1− ε)Cδ/n(t).
On E, Lt 6 (1 − ε)µ1 This implies that

2(1 − ε)Cδ/n(t) <
γ

2 − ε
Lt 6

1 − ε

2 − ε
γµ1,

and in particular,
2Cδ/n(t) <

γµ1

2 − ε
.

Therefore, we wish to show that when the above is true, then for any i ∈ Mc
ε+γ,

Lt − (µ̂i(t) + Cδ/n(t)) > 0, implying that i /∈ A.

Lt − (µ̂i(t) + Cδ/n(t)) = (1 − ε)

(
max
j∈A

µ̂j − Cδ/n(t)

)
− (µ̂i(t) + Cδ/n(t))

> (1 − ε)

(
max
j∈A

µj − 2Cδ/n(t)
)
− (µi + 2Cδ/n(t))
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(a)

> (1 − ε)
(
µ1 − 2Cδ/n(t)

)
− ((1 − ε− γ)µ1 + 2Cδ/n(t))

= γµ1 − 2(2 − ε)Cδ/n(t)

> γµ1 − (2 − ε)
γµ1

2 − ε

= 0

which implies that i /∈ A. Inequality (a) follows jointly from the fact that 1 ∈ A and
the fact that all arms in A have received t samples implies maxj∈A µj − 2Cδ/n(t) =
µ1 − 2Cδ/n(t). Additionally, inequality (a) follows from µi 6 (1 − ε− γ)µ1 since
i ∈Mc

ε+γ.
Therefore, on the event E, if EAST terminates due to either condition in line 2, it

returnsA∪G such thatMε ⊂ A∪G ⊂M(ε+γ). Since P(E) > 1−δ, EAST terminates
correctly with probability at least 1 − δ.

6.F.7.2 Step 1: Controlling the total number of samples given by EAST to arms
inMε

To keep track of the number of samples that arms are given by EAST, we introduce
random variables Ti and T ′i for all i ∈ [n]. When arm i has been given max(Ti, T ′i )
samples it is removed from A in line 6.H.2.

By Step 0, only arms inMε are added to G. Therefore, Ti is defined as

Ti = min
{
t :
i ∈ G(t+ 1) if i ∈Mε

i /∈ A(t+ 1) if i ∈Mc
ε

}
E
= min

t : µ̂i − Cδ/n(t) > Ut if i ∈Mε

µ̂i + Cδ/n(t) 6 Lt if i ∈Mc
ε


(6.26)

Similarly, recall T ′i denotes the random variable of the of the number of times i is
sampled before µ̂i(t) + Cδ/n(t) 6 maxj∈A µ̂j(t) − Cδ/n(t). Hence,

T ′i = min
{
t : µ̂i(t) + Cδ/n(t) 6 max

j∈A(t)
µ̂j(t) − Cδ/n(t)

}
(6.27)

Claim 0: For i ∈Mε, we have that Ti 6 h
(
εµ1−∆i

4−2ε , δ
n

)
.
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Proof. Note that µi − 2Cδ/n(t) > (1 − ε)(µ1 + 2Cδ/n(t)) may be rearranged as
(4− 2ε)Cδ/n(t) 6 εµ1 −∆i, and this is true when t > h

(
εµ1−∆i

4−2ε , δ
n

)
. This condition

implies that for all j,

µ̂i(t) − Cδ/n(t)
E

> µi − 2Cδ/n(t)

> (1 − ε)(µ1 + 2Cδ/n(t))

> (1 − ε)(µj + 2Cδ/n(t))
E

> (1 − ε)(µ̂j(t) + Cδ/n(t))

so in particular, µ̂i(t) − Cδ/n(t) > (1 − ε)(maxj∈A µ̂j(t) + Cδ/n(t)) = Ut.
Claim 1: For i ∈Mε, we have that T ′i 6 h(0.25∆i, δ/n).
Proof. Note that 4Cδ/n(t) 6 µ1 − µi, true when t > h

(
0.25∆i, δn

)
, implies that

µ̂i(t) + Cδ/n(t)
E

6 µi + 2Cδ/n(t)

6 µ1 − 2Cδ/n(t)
E

6 µ̂1(t) − Cδ/n(t).

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) 6 maxi∈A(t) µ̂i(t).
Hence, µ̂i(t) + Cδ/n(t) 6 maxj∈A(t) µ̂j(t) − Cδ/n(t).

6.F.7.3 Step 2: Controlling the total number of samples given by EAST to arms
inMc

ε

Next, we bound Ti for i ∈ Mc
ε. i ∈ Mc

ε is eliminated from A if it has received at
least Ti samples.

Claim: Ti 6 h
(
∆i−εµ1

4−2ε , δ
n

)
for i ∈Mc

ε

Proof. Note that µi + 2Cδ/n(t) 6 (1 − ε)(µ1 − 2Cδ/n(t)) may be rearranged as
(4− 2ε)Cδ/n(t) 6 ∆i− εµ1, and this is true when t > h

(
∆i−εµ1

4−2ε , δ
n

)
. This condition
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implies that

µ̂i(t) + Cδ/n(t)
E

6 µi + 2Cδ/n(t)

6 (1 − ε)(µ1 − 2Cδ/n(t))
E

6 (1 − ε)(µ̂1(t) − Cδ/n(t))

As shown in Step 0, 1 ∈ A(t) for all t ∈ N, and in particular µ̂1(t) 6 maxi∈A(t) µ̂i(t).
Therefore µ̂i(t) + Cδ/n(t) 6 (1 − ε)(maxj∈A µ̂j(t) − Cδ/n(t)) = Lt.

6.F.7.4 Step 3: Bounding the total number of samples drawn by EAST

With the results of Steps 1 and 2, wemay bound the total sample complexity of EAST.
Note that independently of the event E, EAST terminates if Ut− Lt 6 γ

2−εLt. Let the
random variable of the maximum number of samples given to any arm before this
occurs be Tγ := min{t : Ut−Lt 6 γ

2−εLt}. Additionally, EASTmay terminate ifA ⊂ G.
Let the random variable of maximum number of samples given to any arm before
this occurs be Tα̃εβ̃ε . Note that due to the sampling procedure, the total number of
samples drawn by EAST at termination may be written as

∑min(Tγ,Tα̃εβ̃ε)
t=1 |A(t)|.

Now we bound
∑min(Tγ,Tα̃εβ̃ε)
t=1 |A(t)|. Let Si = min{t : i 6∈ A(t+ 1)}. Hence,

min(Tγ,Tα̃εβ̃ε)∑
t=1

|A(t)| =

min(Tγ,Tα̃εβ̃ε)∑
t=1

n∑
i=1

1[i ∈ A(t)] =

n∑
i=1

min(Tγ,Tα̃εβ̃ε)∑
t=1

1[i ∈ A(t)]

=

n∑
i=1

min
{
Tγ, Tα̃εβ̃ε ,Si

}
For arms i ∈Mc

ε, Si = Ti by definition. For i ∈Mε, Si = max(Ti, T ′i ) by line 6.H.2
of the algorithm. Then

n∑
i=1

min
{
Tγ, Tα̃εβ̃ε ,Si

}
=
∑
i∈Mε

min
{
Tγ, Tα̃εβ̃ε , max(Ti, T ′i )

}
+
∑
i∈Mc

ε

min
{
Tγ, Tα̃εβ̃ε , Ti

}
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=
∑
i∈Mε

min
{
Tγ, min

{
Tα̃εβ̃ε , max(Ti, T ′i )

}}
+
∑
i∈Mc

ε

min
{
Tγ, Tα̃εβ̃ε , Ti

}
=
∑
i∈Mε

min
{
Tγ, max

{
Ti, min(T ′i , Tα̃εβ̃ε)

}}
+
∑
i∈Mc

ε

min
{
Tγ, Tα̃εβ̃ε , Ti

}
Next we bound Tγ.

Claim: On E, Tγ 6 h
(

γµ1
2(2−ε+γ) ,

δ
n

)
.

Proof: Cδ/n(t) < γµ1
2(2−ε+γ) is true when t > h

(
γµ1

2(2−ε+γ) ,
δ
n

)
. Note that

Cδ/n(t) <
γµ1

2(2 − ε+ γ)
⇐⇒ 2Cδ/n(t) <

γ

2 − ε

(
µ1 − 2Cδ/n(t)

)
.

This implies that

Ut − Lt = 2(1 − ε)Cδ/n(t)

< 21 − ε

2 − ε
γ
(
µ1 − 2Cδ/n(t)

)
6

1 − ε

2 − ε
γ
(
µ̂1(t) − Cδ/n(t)

)
6

1 − ε

2 − ε
γ

(
max
i∈A

µ̂i − Cδ/n(t)

)
=

γ

2 − ε
Lt

Next, we may define Tα̃εβ̃ε = min{t : A(t) ⊂ Mε}. By step 0, on the event E,
A ⊂ G implies that G = Mε. Therefore, Tα̃εβ̃ε may be equivalently defined as
Tα̃εβ̃ε = min{t : G(t) =Mε andMc

ε ∩A = ∅}. Recalling the definition of Ti, we see
that Tα̃εβ̃ε = maxi(Ti).

Recall that by steps 1 and 2, Ti 6 h
(
εµ1−∆i

4−2ε , δ
n

)
and T ′i 6 h

(
0.25∆i, δn

)
. Fur-

thermore, by monotonicity of h(·, ·), this implies that Tα̃εβ̃ε = h
(

min(α̃ε,β̃ε)
4−2ε , δ

n

)
.

Plugging this in, we see that∑
i∈Mε

min
{
Tγ, max

{
Ti, min(T ′i , Tα̃εβ̃ε)

}}
+
∑
i∈Mc

ε

min
{
Tγ, Tα̃εβ̃ε , Ti

}
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=
∑
i∈Mε

min
{
Tγ, max

{
Ti, min(T ′i , Tα̃εβ̃ε)

}}
+
∑
i∈Mc

ε

min {Tγ, Ti}

6
∑
i∈Mε

min
{

max
{
h

(
εµ1 − ∆i
4 − 2ε , δ

n

)
, min

[
h

(
0.25∆i,

δ

n

)
,h
(

min(α̃ε, β̃ε)
4 − 2ε , δ

n

)]}
,

h

(
γµ1

2(2 − ε+ γ)
, δ
n

)}
+
∑
i∈Mc

ε

min
{
h

(
εµ1 − ∆i
4 − 2ε , δ

n

)
,h
(

γµ1

2(2 − ε+ γ)
, δ
n

)}

=

n∑
i=1

min
{

max
{
h

(
εµ1 − ∆i
4 − 2ε , δ

n

)
, min

[
h

(
0.25∆i,

δ

n

)
,h
(

min(α̃ε, β̃ε)
4 − 2ε , δ

n

)]}
,

h

(
γµ1

2(2 − ε+ γ)
, δ
n

)}
where the final equality holds by definition for arms inMε. Lastly, note that 1

3(1−x) 6
1

2−x for x 6 1/2. By monotonicity of h, we may lower bound the denominators
1

4−2ε and 1
2(2−ε+γ) as

1
6(1−ε) and

1
6(1−ε+γ) respectively. Since ε ∈ (0, 1/2], we may

likewise lower bound 1
4−2ε as 1/4. Plugging this in, we see that

n∑
i=1

min
{

max
{
h

(
εµ1 − ∆i
4 − 2ε , δ

n

)
, min

[
h

(
0.25∆i,

δ

n

)
,h
(

min(α̃ε, β̃ε)
4 − 2ε , δ

n

)]}
,

h

(
γµ1

2(2 − ε+ γ)
, δ
n

)}
6

n∑
i=1

min
{

max
{
h

(
εµ1 − ∆i

4 , δ
n

)
, min

[
h

(
0.25∆i,

δ

n

)
,h
(

min(α̃ε, β̃ε)
6(1 − ε)

, δ
n

)]}
,

h

(
γµ1

6(1 − ε+ γ)
, δ
n

)}
Next, by Lemma 6.33, we may bound the minimum of h(·, ·) functions.

n∑
i=1

min
{

max
{
h

(
∆i − εµ1

4 , δ
n

)
, min

[
h

(
∆i

4 , δ
n

)
,h
(

min(α̃ε, β̃ε)
6(1 − ε)

, δ
n

)]}
,
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h

(
γµ1

6(1 − ε+ γ)
, δ
n

)}
=

n∑
i=1

min
{

max
{
h

(
∆i − εµi

4 , δ
n

)
,

min
[
h

(
∆i

4 , δ
n

)
, max

[
h

(
α̃ε

6(1 − ε)
, δ
n

)
,h
(

β̃ε

6(1 − ε)
, δ
n

)]]}
,

h

(
γµi

6(1 − ε+ γ)
, δ
n

)}
6

n∑
i=1

min
{

max
{
h

(
∆i − εµi

4 , δ
n

)
,

max
[
h

(
∆i +

α̃ε
1−ε

12 , δ
n

)
,h
(
∆i +

β̃ε
1−ε

12 , δ
n

)]}
,

h

(
γµi

6(1 − ε+ γ)
, δ
n

)}
=

n∑
i=1

min
{

max
{
h

(
∆i − εµi

4 , δ
n

)
,h
(
∆i +

α̃ε
1−ε

12 , δ
n

)
,h
(
∆i +

β̃ε
1−ε

12 , δ
n

)}
,

h

(
γµi

6(1 − ε+ γ)
, δ
n

)}
Finally, we use Lemma 6.32 to bound the function h(·, ·). Since δ 6 1/2, δ/n 6

2e−e/2. Further, |εµ1 −∆i| 6 6 for all i and ε 6 1/2 implies that 1
6(1−ε) |εµ1 −∆i| 6 2

and 1
6(1−ε) min(α̃ε, β̃ε) 6 2. ∆i 6 8 for all i, gives 0.25∆i 6 2. Lastly, γ 6 6/µ1

implies that γµ1
6(1−ε+γ) 6 2. Therefore,

n∑
i=1

min
{

max
{
h

(
∆i − εµi

4 , δ
n

)
,h
(
∆i +

α̃ε
1−ε

12 , δ
n

)
,h
(
∆i +

β̃ε
1−ε

12 , δ
n

)}
,

h

(
γµi

6(1 − ε+ γ)
, δ
n

)}
6

n∑
i=1

min
{

max
{

64
(εµ1 − ∆i)2 log

(
2n
δ

log2

(
192n

δ(εµ1 − ∆i)2

))
,
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576
(∆i +

α̃ε
1−ε)

2 log
(

2n
δ

log2

(
1728n

δ(∆i +
α̃ε

1−ε)
2

))
,

576
(∆i +

β̃ε
1−ε)

2
log
(

2n
δ

log2

(
1728n

δ(∆i +
β̃ε

1−ε)
2

))}
,

144(1 − ε+ γ)2

γ2µ2
1

log
(

2n
δ

log2

(
432(1 − ε+ γ)2n

δγ2µ2
1

))}
=

n∑
i=1

min
{

max
{

64
((1 − ε)µ1 − µi)2 log

(
2n
δ

log2

(
192n

δ((1 − ε)µ1 − µi)2

))
,

576
(µ1 +

α̃ε
1−ε − µi)2 log

(
2n
δ

log2

(
1728n

δ(µ1 +
α̃ε

1−ε)
2

))
,

576
(µ1 +

β̃ε
1−ε − µi)2

log
(

2n
δ

log2

(
1728n

δ(µ1 +
β̃ε

1−ε − µi)2

))}
,

144(1 − ε+ γ)2

γ2µ2
1

log
(

2n
δ

log2

(
432(1 − ε+ γ)2n

δγ2µ2
1

))}
.

6.G Comparison to top k

In the comparison to the complexity of a thresholding algorithm given the value
of µ1 − ε or (1 − ε)µ1 is more transparent and can be read off of the upper and
lower bound for all-ε directly. As we comment throughout and test in our experi-
ments, the equivalent Top-k problem would be if |Gε| were know to the algorithm.
Furthermore, we note that (ST)2 is similar in its sampling strategy to LUCB1 by
Kalyanakrishnan et al. (2012). In fact, we show in our experiments, that (ST)2

achieves similar performance as LUCB1 given the value of |Gε|. In this section we
compare the complexity of (ST)2 to the complexity of LUCB1 given the value of |Gε|
and show that they are within a constant factor. We focus on the additive case
with a particular choice of ε but the idea is more general. As long as ε is such that
αε ≈ βε which is true except in pathological cases the same intuition is true for a
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different constant. This equivalence is true despite LUCB1 having more information
about the instance than (ST)2! In all cases for this section, let γ = 0 for clarity.

In the case of Top-k, gaps are defined as:

∆ki =

µi − µk+1, if 1 6 i 6 k

µk − µi, if k+ 1 6 i 6 n

Further, define c = µk+µk+1
2 . Kalyanakrishnan et al. (2012) show that

∆ki /2 6 |µi − c| 6 ∆
k
i .

Hence, we may compare to µk+µk+1
2 as opposed to µk or µk+1 and pay only a

constant factor. We are interested in the setting where Gε = µk. Let

ε = µ1 −
µk + µk+1

2 .

Then
µ1 − ε =

µk + µk+1

2 .

Furthermore,
αε = βε = µk −

µk + µk+1

2 =
µk − µk+1

2 .

For arms in Gcε (arms k+ 1, · · · ,n),

1
(µ1 − ε− µi)2 =

1(
µk+µk+1

2 − µi
)2 ,

matching their contribution to the complexity of returning the top-k arms up to a
constant, given in Theorem 6 of Kalyanakrishnan et al. (2012), the upper bound on
the complexity of LUCB.

For arms in Gε, Theorem 6.5, their contribution to the sample complexity is

max
{

1(
µk+µk+1

2 − µi
)2 , 1

(µ1 + αε − µi)
2 , 1
(µ1 + βε − µi)

2

}
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= max
{

1(
µk+µk+1

2 − µi
)2 , 1(

µ1 +
µk−µk+1

2 − µi
)2

}

For i such that µi 6 µ1+µk
2

max
{

1(
µk+µk+1

2 − µi
)2 , 1(

µ1 +
µk−µk+1

2 − µi
)2

}
=

1(
µk+µk+1

2 − µi
)2 ,

equal to that arm’s contribution to the top-k bound. For i such that µi > µ1+µk
2 ,

µ1 +
µk − µk+1

2 − µi > µ1 +
µk − µk+1

2 −
µ1 + µk

2
=

2µ1 − µ1 − µk + µk − µk+1

2
=
µ1 − µk+1

2

>
1
2

(
µ1 −

µk + µk+1

2

)
.

Hence, their contribution to all-ε is at most 4

(µ1−
µk+µk+1

2 )
2 . Note that

µi −
µk + µk+1

2 6 µ1 −
µk + µk+1

2

Hence, for such arms, their contribution to the bound in top-k is at least

1(
µ1 −

µk+µk+1
2

)2 .

Combining all pieces, we see that the complexity of (ST)2 when ε = µ1−
µk+µk+1

2

is within a constant factor of that of LUCB1.
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6.H An elimination algorithm for general Lipschitz
functions of the best arm

6.H.1 More general subsets of arms

EAST can be modified to find subsets of arms that satisfy a more general threshold
condition. For a given Γ : R → R, say we want to find the set GΓ (ν) of all arms
whose means are at least Γ(µ1), i.e.,

GΓ (ν) := {i : µi > Γ(µ1)}. (6.28)

An example of the above good set is finding all multiplicative ε-good arms, which
corresponds to Γ(x) = (1 − ε)x. Other choices that could be of interest depending
on application are polynomials, exponential etc. The original good subset of arms
in (6.1) is the case when Γ(x) = x − ε. To obtain GΓ (ν) correctly with probability
1 − δ, we modify line 4 in EAST to be the following.

Update Ut ← max
x∈[a,b]

Γ(x) and Lt ← min
x∈[a,b]

Γ(x), (6.29)

where a := max
j∈A

µ̂j − Cδ/n(t),b := max
j∈A

µ̂j + Cδ/n(t). (6.30)

If parameter γ > 0 is used, line 2 of EAST is modified to be the following.

while A 6⊂ G and max{2Cδ/n(t),Ut − Lt} > γ/2 do

Then the returned G ∪A satisfies GΓ (ν) ⊆ G ∪A ⊆ {i : µi > Γ(µ1) − γ}.

Theorem 6.29. For any instance ν, any choice of δ > 0, and any threshold function Γ(·)
the modified EAST algorithm returns a set G ∪ A that with probability 1 − δ, contains
all arms in the good set GΓ (ν) defined in (6.28), and no arms with mean values less than
Γ(µ1) − γ.

Proof Sketch. The main step is to show that in the good event {µi ∈ [µ̂i −

Cδ/n(t), µ̂i + Cδ/n(t)]∀i ∈ At,∀t ∈ N} the threshold value Γ(µ1) ∈ [Lt,Ut] at all
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times t, because

a := max
j∈At

µ̂j − Cδ/n(t)
(i)
6 µarg maxj∈At µ̂j

(ii)
6 µ1

(iii)
6 u1

(iv)
6 max

j∈At
µ̂j + Cδ/n(t) =: b,

where (i), (iii) are valid because the bounds for all arms are correct in the good
event, (ii) is because µ1 is the largest mean, and (iv) is because in the good event
arm 1 ∈ At at all t. Thus µ1 ∈ [a,b] and from (4), Γ(µ1) ∈ [Lt,Ut] at all times. So
we can correctly eliminate arms using Lt and Ut.

For Lipschitz-continuous Γ(·), modified EAST has a sample complexity similar
in form to EAST itself, Theorem 6.27.

Theorem 6.30. Fix δ ∈ (0, 1/2]. Let Γ : R → R be Lipschitz-continuous with constant
L > 0, i.e., |Γ(x + y) − Γ(x)| 6 L|y| for all x,y ∈ R. Define ∆ ′i := Γ(µ1) − µi ∀i 6= 1.
Fix γ ∈ [0, 8 max(1,L)) and an instance ν, such that max{∆i4 , ∆ ′i

2+2L } 6 2 for all i. With
probability at least 1−δ, the modified EAST algorithm returns the setG∪A which satisfies
GΓ (ν) ⊂ G ∪A ⊂ {i : µi > Γ(µ1) − γ} after the following number of samples:

n∑
i=1

min
{

max
{

8(1 + L)2

∆ ′2i
log
(

2n
δ

log2

(
24(1 + L)n

δ∆ ′2i

))
,

min
[

64
∆2
i

log
(

2n
δ

log2

(
192n
δ∆2
i

))
,

8(1 + L)2

min(α ′ε,β ′ε)2 log
(

2n
δ

log2

(
24(1 + L)n

δmin(α ′ε,β ′ε)2

))]}
,

64 max(1,L)
γ2 log

(
2n
δ

log2

(
192 max(1,L)n

δγ2

))}
(6.31)

where α ′ε := µk−Γ(µ1), and β ′ε := Γ(µ1)−µk+1 if GcΓ 6= ∅ and∞ otherwise.

As expected, plugging Γ(x) = x−ε,L = 1 in (6.31) gives us the same expression
as in Theorem 6.27.
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6.H.2 Proof of Theorem 6.29

We first show that arm 1 is always present in A. For if not, at the earliest time t
when arm 1 is not in A, we have that either

µ̂1 + Cδ/n(t) < Lt, (6.32)

or µ̂1 + Cδ/n(t) < a. (6.33)

Inequality (6.32), if satisfied, would remove arm 1 from A at step of EAST , while
inequality (6.33) would remove it at step . We show next that neither of these can
be true in the good event Ewhen all the bounds are correct. If (6.32) is true, then

µ1 < Lt = min
x∈[a,b]

Γ(x) =⇒ µ1 /∈ [a,b].

Denoting j∗ := arg maxj∈A(t) µ̂j, since µ1 < b, the above inequality implies that
µ1 < µj∗ , which is a contradiction. Inequality (6.33) implies that µ1 /∈ [a,b], which
leads to a contradiction in the same manner as above.

In the good event E, the threshold value Γ(µ1) ∈ [Lt,Ut] at all times t, because

a := max
j∈At

µ̂j − Cδ/n(t)
(i)
6 µarg maxj∈At µ̂j

(ii)
6 µ1

(iii)
6 u1

(iv)
6 max

j∈At
µ̂j + Cδ/n(t) =: b,

where (i), (iii) are valid because the bounds for all arms are correct in the good
event, (ii) is because µ1 is the largest mean, and (iv) is because in the good event
arm 1 ∈ At at all t. Thus µ1 ∈ [a,b] and from (4), Γ(µ1) ∈ [Lt,Ut] at all times. This
allows us to show G(t) ⊆ GΓ at all t, for if not, there is an arm i ∈ GcΓ ∩G(t) such
that

µi > µ̂i(t) − Cδ/n(t) > Ut > Γ(µ1) > µi,

where the last inequality is because i ∈ GcΓ and yields a contradiction. Next we
show GΓ ⊆ A(t) ∪G(t). For if not, suppose arm i ∈ GΓ is eliminated at time t ′. On
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the event E that implies

µi 6 µ̂i(t
′) + Cδ/n(t

′) 6 Lt ′ 6 Γ(µ1),

which contradicts that i ∈ GΓ . Finally, we show that if max{2Cδ/n(t),Ut−Lt} 6 γ/2,
then A(t) ∪G(t) ⊂ {i : µi > Γ(µ1) − γ}. Suppose not, then there is an arm i whose
µi < Γ(µ1) − γ and it is present in A(t) \G(t), so that from lines 8 and 11

Ut > µ̂i − Cδ/n(t) and µ̂i + Cδ/n(t) > Lt.

Then using max{2Cδ/n(t),Ut − Lt} 6 γ/2, we have that

max(Ut, µ̂i + Cδ/n(t)) − min(Lt, µ̂i − Cδ/n(t)) 6 Ut − Lt + 2Cδ/n(t) 6 γ,

which under event E implies µi > Γ(µ1) − γ giving a contradiction.

6.H.3 Proof of Theorem 6.30

The proof proceeds in a manner similar to the proof of Theorem 6.27by first obtain-
ing bounds on Ti. For arm i ∈ GcΓ , we show Ti 6 h(∆ ′i/(2 + 2L), δ/n) by arguing
that in the good event E, for all t > h(∆ ′i/(2+ 2L), δ/n) the arm i is not in A(t). Let
j∗ := arg maxj∈A(t) µ̂j. Then,

µ̂i + Cδ/n(t) < Lt = min
x∈[µ̂j∗−Cδ/n(t),µ̂j∗+Cδ/n(t)]

Γ(x)

< min
x∈[µ̂1−Cδ/n(t),µ̂j∗+Cδ/n(t)]

Γ(x),

E⇐ µi + 2Cδ/n(t) < min
x∈[µ1−2Cδ/n(t),µj∗+2Cδ/n(t)]

Γ(x) < min
x∈[µ1−2Cδ/n(t),µ1+2Cδ/n(t)]

Γ(x)

< Γ(µ1) − 2LCδ/n(t),

⇔ (2 + 2L)Cδ/n(t) < Γ(µ1) − µi =: ∆ ′i ⇐ t > h(∆ ′i/(2 + 2L), δ/n).

The chain of inequalities above are true as we are increasing the domain of the min-
imization at each step. The reverse implication is true under E. We can argue about
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Ti for i ∈ GΓ in a similar manner. Furthermore, for i ∈ GΓ , T ′i 6 h(0.25∆i, δ/n) is
true in exactly the same way as before. To obtain the final sample complexity, we
use Tβ and Tγ. As before, Tβ = maxi{Ti} = h(min(α ′ε,β ′ε)/(2 + 2L), δ/n). The only
difference is in the expression for Tγ, which because of the stopping condition in
modified EAST, is defined as

Tγ := min{t : max(2Cδ/n(t),Ut − Lt) 6 γ/2}.

2Cδ/n(t) 6 γ/2 is ensured when t > h(0.25γ, δ/n). For the other part, we have that

Ut − Lt = max
x∈[µ̂j∗−Cδ/n(t),µ̂j∗+Cδ/n(t)]

Γ(x) − min
x∈[µ̂j∗−Cδ/n(t),µ̂j∗+Cδ/n(t)]

Γ(x) 6 2LCδ/n(t).

Thus Ut − Lt 6 γ/2 is ensured when 2LCδ/n(t) 6 γ/2, which occurs when t >
h(0.25γ/L, δ/n). Thus Tγ = h(0.25γ/max(1,L), δ/n). Plugging in the expressions
we obtain the final sample complexity as

n∑
i=1

min
{

max
{
h

(
∆ ′i

2 + 2L , δ
n

)
, min

[
h

(
0.25∆i,

δ

n

)
,h
(

1
2 + 2L min(α ′ε,β ′ε),

δ

n

)]}
,

h

(
0.25γ

max(1,L) , δ
n

)}
Finally, we use Lemma 6.32 to bound the function h(·, ·). Since δ 6 1/2, δ/n 6

2e−e/2. Further, recall that we have assumed max{∆i4 , ∆ ′i
2+2L } 6 2 for all i. Likewise,

this implies that minα ′ε,β ′ε
2+2L 6 2. Lastly, γ 6 8 max(1,L) implies that 0.25

max(1,L)
6 2.

Therefore,

n∑
i=1

min
{

max
{
h

(
∆ ′i

2 + 2L , δ
n

)
, min

[
h

(
0.25∆i,

δ

n

)
,h
(

min(α ′ε,β ′ε)
2 + 2L , δ

n

)]}
,

h

(
0.25γ

max(1,L) , δ
n

)}
6

n∑
i=1

min
{

max
{

8(1 + L)2

∆ ′2i
log
(

2n
δ

log2

(
24(1 + L)n

δ∆ ′2i

))
,
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min
[

64
∆2
i

log
(

2n
δ

log2

(
192n
δ∆2
i

))
,

8(1 + L)2

min(α ′ε,β ′ε)2 log
(

2n
δ

log2

(
24(1 + L)n

δmin(α ′ε,β ′ε)2

))]}
,

64 max(1,L)
γ2 log

(
2n
δ

log2

(
192 max(1,L)n

δγ2

))}

6.I Technical Lemmas

Lemma 6.31. If a > 1, b > e, and t > max(a log(2b log(ab)), e), then a log(b log(t))
t

6

1

Proof. Step 1: Plug in t = a log(2b log(ab)) to the expression a log(b log(t))
t

.

a log(b log(a log(2b log(ab)))
a log(2b log(ab)) =

log(b log(a log(2b log(ab)))
log(2b log(ab))

Since log(·) increasesmonotonically, the above is less than 1 ifb log(a log(2b log(ab)) 6
2b log(ab).

b log(a log(2b log(ab))) 6 2b log(ab)
(b>0)⇐⇒ log(a log(2b log(ab))) 6 2 log(ab)

⇐⇒ a log(2b log(ab)) 6 (ab)2

⇐⇒ log(2b log(ab)) 6 ab2

⇐⇒ 2b log(ab) 6 eab2

which is true if a,b > 1.
Step 2: Next, for t > a log(2b log(ab)), we wish to show that the inequality

a log(b log(t))
t

6 1 still holds. To do so, it suffices to show that f(t) = a log(b log(t))
t

is
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decreasing for t > a log(2b log(ab)). To see this, take the derivative.

f ′(t) =
a

t2 log(t) −
a log(b log(t))

t2
=
a

t2

(
1

log(t) − log(b(log(t))
)

This is negative when 1
log(t) < log(b(log(t)). Let u = b log(t). The previous is

equivalent to the condition b < u log(u). For t > e, u > b and b > e. Hence
b < u log(u) completing the proof.

Lemma 6.32. For δ < 2e−e/2, ∆ 6 2,

t >
4
∆2 log

(
2
δ

log2

(
12
δ∆2

))
=⇒ Cδ(t) =

√
4 log(log2(2t)/δ)

t
6 ∆.

Proof.

√
4 log(log2(2t)/δ)

t
6 ∆ ⇐⇒

4 8
∆2 log

(
1

δ log(2) log(2t)
)

t
6 1.

If ∆ 6 2, then 8/∆2 > 2 > 1. Similarly, if δ < 2e−e/2 < 1
e log(2) , then

1
δ log(2) > e.

Hence, by Lemma 6.31, setting a = 8
∆2 and b = 1

δ log(2) , the above is true if

2t > max
(

8
∆2 log

(
2

δ log(2) log
(

8
δ∆2 log(2)

))
, e
)

.

Trivially, δ log(2) < 2. Hence, δ < 2e−e/2 and ∆ 6 2 implies

8
∆2 log

(
2

δ log(2) log
(

8
δ∆2 log(2)

))
> 2 log

(
2
δ

log2

(
2

δ log(2)

))
> 2 log(2/δ) > e.

Therefore, we may simplify the maximum as

t >
4
∆2 log

(
2
δ

log2

(
12
δ∆2

))
>

4
∆2 log

(
2
δ

log2

(
8

δ∆2 log(2)

))
which implies the desired result.
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Lemma 6.33. For any function h(·, ·) : R+ × R+ → R+ that decreases monotonically in
its first argument, we have that for any a,b, c, δ ∈ R+

min (h(a, δ),h(b, δ)) 6 h
(
a+ b

2 , δ
)

and

min{h(a, δ), max[h(b, δ),h(c, δ)]} 6 max
{
h

(
a+ b

2 , δ
)

,h
(
a+ c

2 , δ
)}

.

Proof. First, we bound the expression min (h(a, c),h(b, c)).

min (h(a, δ),h(b, δ)) = h (max(a,d), δ) 6 h ((a+ b)/2, δ)

Next, we bound, expressions of the form min{h(a, δ), max[h(b, δ),h(c, δ)]} using
the above inequality.

min{h(a, δ), max[h(b, δ),h(c, δ)]} = max {min [h(a, δ),h(b, δ)] , min [h(a, δ),h(c, δ)]}

6 max {h ((a+ b)/2, δ) ,h ((a+ c)/2, δ)} .
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7 finding nearest neighbors from a noisy distance
oracle

7.1 Introduction

In Chapter 5, we presented a method to efficiently learn the nearest neighbor graph
of a set of points from noisy distancemeasurements. It employed triangle inequality
bounds to more efficiently find nearest neighbors and built this into an active
sampling algorithm. An advantage to only employing the triangle inequality is that
the method automatically can be used in any metric space, regardless of the form of
the metric. Furthermore, it used these bounds to achieve the optimal O(n log(n))
rate for finding a nearest neighbor graph of n points while only assuming noisy
distance estimates– the only algorithm to do so. Nearest neighbor graphs give
O(1) access to a query point’s nearest neighbor among a set of n− 1 other points.
A downside, however is that if one wishes to identify the nearest neighbor of a
query point that is not one of the n nodes of the graph, this requires O(n) samples.
Furthermore, in the worst case, adding or removing a node in the graph requires
recomputing the entire nearest neighbor graph. Hence, though nearest neighbor
graph methods can be powerful, the can also be brittle.

In this chapter, we take an alternate approach. Instead, our goal is to find a data
structure that can efficiently answer nearest neighbor queries for any query point.
In adding flexibility to which points may be queried, we will slightly sacrifice on
the complexity of answering nearest neighbor queries. While Chapter 5 presents
a method that answered queries for a restricted set in O(1) complexity, we will
instead present a method than can answer queries in O(log(n)) time for any query
point. In particular, this is still an exponential improvement over naive search
which would require O(n) complexity. Precisely, consider the following problem:
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Problem Statement: Consider a set of n points X = {x1, · · · , xn} in a metric
space (M,d). The metric is unknown, but we can query a stochastic oracle for
an estimate of any pairwise distance. Build a data structure such that for any
query point q unknown a priori to the algorithm, it returns its nearest neighbor
xq := minxi∈X d(q, xi) with probability at least 1 − δ in as few oracle queries as
possible.
The performance of algorithms for this problem is measured along several axes.

1. Query time: Given X and a new query point q, how many samples does an
algorithm require to return the nearest neighbor in X, xq?

2. Build time: All non-trivial algorithms for this problem build a data structure
to answer the queries. How many initial, burn-in samples are needed to
compute this data structure?

3. Sub-linear insertion time: If a data structure to answer nearest neighbor
queries on X has already been computed, how many samples are needed to
insert x ′ such that the data structure can now answer nearest neighbor queries
to the set X ∪ {x ′}?

4. Sub-linear removal time: If a data structure to answer nearest neighbor
queries on X has already been computed, how many samples are needed to
remove x ′ ∈ X such that the data structure can now answer nearest neighbor
queries to the set X\{x ′}?

5. Memory footprint: Howmuchmemory is needed to store the data structure?

6. Accuracy: What is the probability that a method correctly returns xq?

Before proceeding with our discussion for answering nearest neighbor queries
with noisy data, it is helpful to set expectations for what is optimal performance in
the noiseless regime. Establishing general lower bounds for this problem is chal-
lenging as different algorithms assume different query models and different metric
spaces. In general, jointly requiring only O(log(n)) samples to answer queries and
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O(n log(n)) build time is considered optimal. O(n) memory complexity is also
state of the art for non-trivial algorithms that build a data structure and do not
perform linear search over X to answer new queries. Optimal accuracy is 100%,
though some algorithms trade accuracy for speed. Insertion and removal time
varies for different methods, but at minimum, well performing algorithms should
be able to insert of remove points without fully recomputing the data structure.
O(log(n)) insertion and removal time is state of the art.

7.1.1 Related work

Classical methods to answer nearest neighbor queries include kd trees (Bentley,
1975) which achieve O(n log(n)) build time, O(log(n)) query time, and are known
to be computationally efficient. The core drawback to kd trees is that they lack a
uniform accuracy guarantee. While kd trees perform well for some query points,
they do not for others, and it is not computationally feasible to known which points
are likely to succeed and which are not (Dasgupta and Sinha, 2013). Many methods
have tried to achieve similar build and query time performance while achieving
higher accuracy. Twomajor approaches to achieve this are to either add randomness
in the build phase to achieve a uniform accuracy guarantee or to exploit measures
of dimensionality and structure of metric spaces to give accuracy guarantees. Das-
gupta and Sinha (2013) provide several algorithms in the first category that are
similar in spirit to kd trees and achieve high accuracy. Krauthgamer and Lee
(2004) and Beygelzimer et al. (2006) provide algorithms in the second category
which achieve perfect accuracy for any query point. Haghiri et al. (2017) provide a
method that answers nearest neighbor queries from triplet comparisons directly
and can be seen as a combination of both approaches to achieve higher accuracy.
In general, nearest neighbor problems (from noiseless measurements) are well
studied and we direct the reader to Bhatia et al. (2010) for a general survey. Addi-
tionally, a parallel line of work has considered the approximate nearest neighbor
problem where for a query point q and ε > 0 one wishes to find any point in the
set {x ∈ X : d(q, x) 6 (1 + ε)minz∈X d(q, z)}. We refer the reader to Wang and
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Banerjee (2014); Andoni et al. (2018) for a survey of methods. Of particular interest
to this chapter will be the Cover Tree algorithm presented in Beygelzimer et al.
(2006). In this chapter, we extend this method to deal with noisy queries.

7.1.2 The Curse of Dimensionality for Nearest Neighbor Search

The “curse of dimensionality” greatly impacts the performance of nearest neighbor
algorithms. In particular, there exist worst case arrangements of data where any
algorithm either needsΩ(n) samples to find a query point q’s nearest neighbor or
suffers low accuracy. These examples occur for high dimensional data in particular.
As an example, consider the following construction. Let X ′ be the set of the n
vertices of the simplex in Rn−1. Form X by applying a random ε-perturbation to
each vertex independently. Let q = [1/n, · · · , 1/n]T ∈ Rn be the geometric center
of the simplex. By design, its distance to every point in X is nearly equal. One
can show that in this setting, any algorithm requiresΩ(n) samples to return q’s
nearest neighbor. Intuitively, this means that any algorithmmust check the distance
from q to each vertex. To see this, consider xi ∈ X. Suppose one wishes to bound
d(q, xi)without explicitly measuring this distanced. This is important, because if
sufficiently tight bounds exist, then an algorithm may be able to declare that xi is
not q’s nearest neighbor without querying the distance. Indeed, this was the core
idea behind the ANNTri algorithm proposed in Chapter 5 to efficiently estimate the
nearest neighbor graph ofX from noisy distancemeasurements. Without additional
assumptions, the only method to do this is the triangle inequality which for another
xj ∈ X guarantees

|d(q, xj) − d(xi, xj)| 6 d(q, xi) 6 d(q, xj) + d(xi, xj).

Because all distances are nearly 1 by construction, the lower bound is near 0
and the upper bound is near 2. Hence, all bounds are vacuous. Intuitively then,
algorithms cannot cleverly use the triangle inequality to reduce the set of possible
nearest neighbors and must query the distance to each point in X.

In general, if the data is not in Euclidean space, a notion of dimension may
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be poorly defined or ill-suited to quantify the performance of nearest neighbor
algorithms. Instead, algorithms consider several measures of dimension that help
quantify their performance. As a general rule, performance improves with low
dimensional data. In this chapter, we will make use of the expansion constant as in
(Haghiri et al., 2017; Krauthgamer and Lee, 2004; Beygelzimer et al., 2006).

Definition 7.1. The expansion constant of a set of points S is the smallest c > 2 such that
|B(x, 2r)| 6 c|b(x, r)| for any x ∈ S and any r > 0 where B(x, r) is the ball of radius r > 0
centered at x according to the distance measure associated with the ambient metric space.

As an example, for a set of points in arranged uniformly on a surface in Rd have
an expansion constant of at most 2d Beygelzimer et al. (2006).

7.2 Problem setup and summary of our approach

We denote distances as di,j where d : X×X→ R>0 is a distance function satisfying
the standard axioms and for a query point q define xq := arg minx∈X} d(xi,q). For
a query point q and xi ∈ X, let dq,i denote d(q, xi). For a set Q, let d(q,Q) :=

mini∈Q dp,i. Though the distances are unknown, we are able to draw independent
samples of its true value according to a stochastic distance oracle, i.e. querying

Q(i, j) yields a realization of di,j + η, (7.1)

where η is a zero-mean subGaussian random variable assumed to have scale param-
eter σ = 1. We let d̂i,j(s) denote the empirical mean of the s queries of the distance
oracle, Q(i, j). The number of Q(i, j) queries made until time t is denoted as Ti,j(t).
A possible approach to obtain theq’s nearest neighbor is to repeatedly query Q(q, i)
for each i and report arg minx∈X d̂q,i(t). To improve our query efficiency, we could
instead adaptively sample to focus queries on distances that we estimate are smaller.
However, this would still require O(n) samples to learn xq as we would query the
distance of each of n points to q. Instead, we modify the Cover Tree algorithm of
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Beygelzimer et al. (2006) to handle noisy inputs instead. Two core innovations that
make this possible are

• Casting the problem of learning a cover as finding all ε-good arms in multi-
armed bandits and using (ST)2 presented in Chapter 6 to develop a method
to learn covers.

• Using thresholding bandits, such as Jamieson and Jain (2018), to compute the
approximate distance from a query point to a set.

Our proposed algorithm Bandit Cover Tree (BCT) uses the above ideas to build a
data structure to efficiently answer nearest neighbor queries from noisy distance
measurements with high probability.

7.3 Cover Trees

Before presenting our method and associated results, we review core intuition
behind the Cover Tree algorithm from Beygelzimer et al. (2006) in the noiseless
setting (η = 0 with probability 1). As the name suggests, a cover tree is a tree-based
data structure where each level of the tree forms a cover of X. Each level is indexed
by an integer i which decreases as one descends the tree. To avoid additional
notation, we will represent the top of the tree as level∞ and the bottom as −∞
though in practice one would record integers itop and ibottom denoting the top and
bottom level of the tree and need only explicitly store the tree at levels between
itop and ibottom. Each node in the tree corresponds to a point in X, but points in X

may correspond to multiple nodes in the tree. Reviewing Beygelzimer et al. (2006),
let Ci denote the set of nodes at level i, referred to as the ith cover. The cover tree
algorithm is designed so that each level of the tree i obeys three invariants:

1. (nesting) Ci ⊂ Ci−1. Hence, the points corresponding to nodes at level i are
also correspond to nodes in all lower levels.

2. (covering tree) For ever p ∈ Ci−1, there exists a q ∈ Ci such that d(p,q) 6 2i,
and the child node in level i− 1 is connected to its parent in level i.
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3. (Separation) For any p,q ∈ Ci with p 6= q, d(p,q) > 2i.

These invariances are originally derived from Krauthgamer and Lee (2004).
Beygelzimer et al. (2006) show that there routines obey these invariants, and we
will make use of them in our proofs and to build intuition. The core idea of this
method is that the ith level of the tree (with i decreasing as one descends the tree)
is a cover of resolution 2i. When navigating the tree for a query point q at level i,
one identifies all possible ancestor nodes of xq at that level. When descending the
tree, this set is refined until only a single parent is possible, xq itself. The nesting
invariance allows one to easily traverse the tree from parent to child. The covering
tree invariance connects xq to its parents and ancestors so that one may traverse the
tree with query point q and end at xq. Lastly, the separation invariance ensures that
there is a single parent to each node, avoiding redundant paths traversing the tree.
This aids in reducing the memory necessary to store cover trees.

7.4 The Bandit Cover Tree Algorithm

The Bandit Cover Tree algorithm is comprised of threemethods. Noisy-Find-Nearest
finds nearest neighbors given a computed cover tree. Noisy-Insert allows one to
insert points into a tree and can be used to construct a new tree. Noisy-Remove can
be used to remove points from the tree.

7.4.1 Finding Nearest Neighbors with a Cover Tree

We begin by discussing how to identify the nearest neighbor of a query point q if
the tree has already been constructed. This is to provide intuition for how cover
trees work and the impact that noise has on tree traversal. After, we will show
how to build a cover tree from a set of n points, X and how to insert and remove
points to the tree when one only has access to a noisy oracle. Throughout, we
take T to denote the cover tree. The nodes of each level i forms a cover Ci, and
we may identify T by the covers at each level: T := {C∞, · · · ,Ci,Ci−1, · · · ,C−∞}.
Assume that we are given a fixed query point q, and the expansion constant of
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the set X ∪ {q} is bounded by c. The algorithm proceeds by keeping track of a
set Qi at each level i of all possible ancestors of xq, q’s nearest neighbor. This
is summarized in Algorithm 11 and adapted from Beygelzimer et al. (2006). The
algorithm proceeds by exploring descending from level i to level i−1 and exploring
all children of the nodes in Qi. From this, the algorithm recomputes possible
parents of xq to formQi−1. The algorithm terminates when it reaches a level ibottom.
Throughout, we will represent the children of any node p ∈ T as children(p). For
simplicity, we assume that the nearest neighbor of q is unique. If this does not
hold, one may instead modify what the algorithm returns to return any element of
Q−∞. We make use of a novel subroutine to build cover sets from noisy distance
measurements, based on finding all ε-good arms in stochastic bandits. This is
given in Algorithm 12. Similar to (ST)2, the routine maintains anytime confidence
widths, Cδ(t) such that for an empirical mean of the distance dq,i: d̂q,i(t) of t
samples, we have P(

⋃∞
t=1 |d̂q,i(t) − dq,i| > Cδ(t)) 6 δ. For this work, we take

Cδ(t) =

√
cφ log(log2(2t)/δ)

t
for a constant cφ. It suffices to take cφ = 4, though

tighter bounds are known and should be used in practice, e.g. Jamieson et al.
(2014); Kaufmann et al. (2016); Howard et al. (2018). Where clear, we will drop the
dependence on t and Ti(t).

Given the set Qi ⊂ Ci of xq’s ancestors in level i, to proceed to level i − 1,
the algorithm first computes all children of nodes in Qi given by the set Q ⊂
Ci−1. It then uses Algorithm 12 to identify the subset of Q denoted Qi−1 that
contains all ancestors of xq in level i− 1. Precisely, this is the set {i ∈ Q : d(q, i) 6
minj∈Q d(q, j)+ 2i−1}. In particular, this can be represented as the set of all 2i-good
arms (in the additive sense) in the set Q with the key distinction that we want the
smallest distances not the largest. This can be achieved by multiplying each distance
estimate by −1 and finding the 2i-good arms.

Remark 7.2. This method can be altered so that a point p ∈ X that corresponds to a node
in Ci at level i of the cover tree T is defined to always be contained in children(p), even
if a node corresponding to point p is not present in Ci−1 (the next level down) explicitly.
Traversal is identical since this is baked into the definition of the children(·) function, but
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Algorithm 11 Noisy-Find-Nearest

Require: Cover tree T, failure probability δ, expansion constant c if known, query
point q, callable distance oracle Q(·, ·), subroutine Identify-Cover.

1: Let Q∞ = C∞
2: for i =∞ down to i = −∞ do
3: Let Q =

⋃
p∈Qi children(p)

4: if c is known: then
5: Let α = min

{⌈
log(n)

log(1+1/c2)
+ 1
⌉

,n
}

6: else
7: let α = n
8: end if
9: \\ Identify the set: {i ∈ Q : d(q, i) 6 minj∈Q d(q, j) + 2i−1}

10: Compute Qi−1 = Identify-Cover (Q, δ/α, Q(·, ·),q, i)
11: end for
12: return Q−∞, a singleton set containing xq.

this can save on the memory needed to store T.

7.4.1.1 Approximate Nearest Neighbors

These methods can also easily be adapted to return an ε-approximate nearest
neighbor though we will not analyze this setting theoretically. An ε-approximate
nearest neighbor is defined as any point in the set {i : d(q, i) 6 (1 + ε)minj d(q, j)}.
To find approximate nearest neighbors, add an additional line that exits the for
loop if d(q,Qi) > 2i+1(1 + 1/ε)where the distance from xq to the setQi is defined
as minj∈Qi d(q, j). This requires an additional bandit routine. One could modify
FindPos which finds positive means from Chapter 6 to perform this computation.
In particular, we seek any point j ∈ Qi, such that 2i+1(1 + 1/ε) − d(q, j) > 0.
Importantly however, FindPos would need to be modified so that if no such point
exists, the algorithm does not run forever. This can trivially be achieved by adding
a line after line 6 in FindPos such that if µ̂ik < −βk, arm ik is removed from all
future rounds and adding an additional termination condition that the algorithm
terminates if no points remain. If this occurs, the algorithm may declare that
d(q,Qi) < 2i+1(1 + 1/ε). Finally, after exiting the ‘For’ loop, since Qi may not be
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Algorithm 12 Identify-Cover

Require: Failure probability δ, query point q, Oracle Q(·, ·), and set Q, Cover
resolution i

1: Query oracle once for each point in Q
2: Initialize Ti ← 1, update d̂q,i for each i ∈ {1, 2, . . . , |Q|}

3: Empirical cover set: Ĝ = {i : d̂q,i 6 maxj d̂q,j + 2i}
4: Ut = minj d̂q,j(Tj) − Cδ/|Q|(Tj) + 2i and Lt = maxj d̂q,j(Tj) + Cδ/|Q|(Tj) + 2i
5: Known points: K = {i : d̂q,i(Ti) − Cδ/|Q|(Ti) > Lt or d̂q,i(Ti) + Cδ/|Q|(Ti) < Ut}
6: while K 6= Q do
7: Call oracle Q(q, i1) for i1(t) = arg mini∈Ĝ\K d̂q,i(Ti) + Cδ/|Q|(Ti), update
Ti1 , d̂q,i1

8: Call oracle Q(q, i2) for i2(t) = arg maxi∈Ĝc\K d̂q,i(Ti) − Cδ/|Q|(Ti), update
Ti2 , d̂q,i2

9: Call oracle Q(q, i∗) for i∗(t) = arg mini d̂q,i(Ti)−Cδ/|Q|(Ti), update Ti∗ , d̂q,i∗

10: Update bounds Lt,Ut, sets Ĝ, K
11: end while
12: return The set cover set with resolution 2i: {i : d̂q,i(Ti) − Cδ/|Q|(Ti) < Ut}

singleton, the algorithm should be modified to return the closest point in Qi to
q. This can simply be achieved via any best-arm identification algorithm such as
lil’UCB Jamieson et al. (2014) applied to the negatives of the distance estimates
(since we want the smallest distance possible, not the largest).

7.4.2 Building and Altering a Cover Tree

In this section we demonstrate how to construct a cover tree, insert new points, and
remove points. We begin by discussing insertion since constructing the full tree
from n points can trivially be achieved by inserting each point one at a time to an
empty tree.

7.4.2.1 Insertion

Suppose we have access to a cover tree T on a set S. If S = ∅, T is empty at all levels.
We wish to insert a point p into T such that we now have a cover tree on the set
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S ∪ {p}. Intuitively, the insertion algorithm can be thought of as beginning at the
highest resolution cover, at level −∞ and climbing back up the tree, inserting p in
each cover set Ci for all i until it reaches a level ip such thatminj∈Cipd(p, j) 6 2ip

where a suitable parent node exists. The algorithm then assigns any p ′ ∈ Cip such
that d(p,p ′) 6 2ip and terminates. As trees are traditionally traversed via their
roots not their leaves, we state this algorithm recursively beginning at the i =∞
level at the top.

We provide pseudocode in Algorithm 13. The algorithm is similar to Insert
from Beygelzimer et al. (2006) but includes additional logic to handle a noisy oracle.
In particular, lines 2-8 implement a simple thresholding bandit similar to Algorithm
1 of Jamieson and Jain (2018) in the familiy-wise probability of detection – family-
wise probability of error setting. In particular, it identifies all points within 2i

of the nearest in the set Q. This must be done for every candidate level i that
p might be inserted into until a suitable parent node is found at level ip. Each
time we perform this comparison, there is a probability of error. This presents a
challenge for the algorithm. Noisy-Insert is recursive and performs a thresholding
bandit at each level. Hence, if it makes an error on any recursive call, the algorithm
may fail. Thus, we must ensure that the probability of Noisy-Insert making an
error in any recursive call is at most δ. Since the level ip where p is added is
unknown and depends on the query point p, the number of recursive calls before
success is unknown to the algorithm. Therefore, it is not a priori obvious how to
perform the appropriate Bonferroni correction to ensure the probability of an error
in any recursive call is bounded by δ. A seemingly attractive approach is to use
a summable sequence of δi depending on the level i such that

∑
levelsi δi = δ. For

instance, δi = 2−i would be suitable if the root of T is at level 1. However, this
would lead to higher sample complexity when summing the complexity of many
individual bandit problems with decreasing error probabilities.

Instead, Noisy-Insert shares samples between rounds, similar to the technique
used by ANNTri to find nearest neighbor graphs. By the nesting invariance of cover
trees, we have that Ci ⊂ Ci−1. Therefore, when we descend the tree from level i
to i− 1, we already have samples of the distance of some points in Ci−1 to p. We
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Algorithm 13 Noisy-Insert

Require: Cover tree T on n points, cover set Qi, failure probability δ, point p to be
inserted, callable distance oracle Q(·, ·), level i

Require: Empirical estimates of d̂p,i and Ti for all i ∈ Ci \\ let both be 0 if no
samples have been colllected

1: Let Q =
⋃
j∈Qi children(j)

2: Query oracle once for each point in Q ∩ {j : Tj = 0}
3: Initialize Ti ← 1, update d̂p,i for each j ∈ Q ∩ {j : Tj = 0}
4: \\ compute the set {j ∈ Q : d(p, j) 6 2i}
5: Known points: K = {j : d̂p,j(Tj) + Cδ/n(Tj) 6 2i or d̂p,j(Ti) − Cδ/n(Tj) > 2i}
6: while |K| 6= |Q| do
7: Call oracle Q(p, i∗) for i∗(t) = arg minj6∈K d̂p,j(Tj) − Cδ/n(Tj)

8: Update Ti∗ , d̂p,i∗

9: Update set K
10: end while
11: \\ If d(p,Q) > 2i
12: if {j ∈ Q : d̂p,j(Tj) + Cδ/n(Tj) 6 2i} = ∅ then
13: Return:“no parent found”
14: else
15: Define Qi−1 = {j ∈ Q : d̂p,j(Tj) + Cδ/n(Tj) 6 2i}
16: if Qi ∩ Qi−1 6= ∅ and Noisy-Insert(p,T,Qi−1, i − 1, δ, Q(·, ·), {j ∈ Q :

d̂p,j(Tj)}, {j ∈ Q : Tj}) = “no parent found” then
17: Choose any p ′ ∈ Qi ∩Qi−1
18: Insert p in children(p ′) \\ modify the tree and insert p bc parent found
19: Return:“parent found”
20: else
21: Return:“no parent found”
22: end if
23: end if

simply reuse these samples and share them from round to round. Furthermore,
since T is assumed to be a cover tree on n points, we trivially union bound each
confidence width to hold with probability 1 − δ/n such that all bounds for all
recursive calls holds with probability at least 1−δ. Note that it is possible to use the
depth bound from Lemma 4.3 of Beygelzimer et al. (2006) to instead union bound by
1 −O(δ/c2 log(n)) if cwere known. This trick was used for Noisy-Find-Nearest.
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However, as Noisy-Insert is used for construction of the tree and adding new
points to the dataset, it is unlikely that c is known to the experimenter before any
data has been collected. Hence, we use the simple union bound of 1− δ/nwhich is
always true independent of c.

7.4.2.2 Removal

Next we show how to remove a point p from level i of a cover tree T. The process
of removal is similar to insertion but slightly more complicated as we must find
new parents for all of p’s children in T. We provide pseudocode in Algorithm 14
which is adapted from Beygelzimer et al. (2006) to handle noisy estimates.

Note that when we compute the distance to the setQi ′ in lines 13 and 20, due to
the nesting invariance of cover trees and the fact that samples are reused between
rounds, Ti > 0 for all i ∈ Qi ′ . Hence, it is unnecessary to collect any initial samples.
Note that Noisy-Remove not only queries distances to the point p to be removed
but also to p’s children in order to find them new parents. Because of this, we
index samples as Ti,j denoting the number of calls to the distance oracle Q(i, j).
Furthermore, we union bound with δ/n2 instead of δ/nwhere the additional factor
of n derives from a trivial bound that p has at most n − 1 children nodes. If the
expansion rate is known, it is possible to union bound as δ/c4n since Lemma 4.1
of Beygelzimer et al. (2006) bounds the number of children as c4 for any node p.
However, as the other factor of n remains unchanged by this, the improvement
from log(n2/δ) to log(c4n/δ) only impacts constant factors in the sample complexity.
Hence, we ignore this. It is technically possible to use a depth bound on T from
Lemma 4.3 of Beygelzimer et al. (2006) to achieve a dependence of log(c6 log(n)/δ).
In particular, this reduces the n dependence due to the union bound to be only
doubly logarithmic. As the expansion constant is traditionally not known, we avoid
the added complexity.
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Algorithm 14 Noisy-Remove

Require: Cover tree T on n points, past cover sets {Qi, · · · ,Q∞}, failure probability
δ, point p to be removed, callable distance oracle Q(·, ·), level i

Require: Empirical estimates of d̂p,i and Ti for all i ∈ Ci \\ let both be 0 if no
samples have been collected

1: Let Q =
⋃
p∈Qi children(p)

2: \\ Remove from lower levels first
3: T, {i, j : d̂i,j(Tj)}, {i, j : Ti,j} ← Noisy-Remove(T, {Qi−1, · · · ,Q∞}, δ,p, Q(·, ·), i −

1, {i, j : d̂i,j(Ti,j)}, {i, j : Ti,j})
4: if p ∈ Q then
5: Remove p from Ci−1 and children(parent(p))
6: for q ∈ children(p) do
7: i ′ ← i− 1
8: \\ compute the set {j ∈ Qi ′ : d(q, j) 6 2i ′}
9: Query oracle once for each point in Q ∩ {j : Tq,j = 0}
10: Initialize Tq,j ← 1, update d̂q,j for each j ∈ Q ∩ {j : Tq,j = 0}
11: Known points: K = {j : d̂q,j(Tq,j) + Cδ/n2(Tq,j) 6 2i ′ or d̂q,j(Tq,j) −

Cδ/n2(Tq,j) > 2i ′}
12: while |K| 6= |Qi ′ | do
13: Call oracle Q(q, i∗) for i∗(t) = arg minj6∈K d̂q,j(Tq,j) − Cδ/n2(Tq,j)

14: Update Tq,i∗ , d̂q,i∗

15: Update set K
16: end while
17: while {j ∈ Qi ′ : d̂q,j(Tq,j) + Cδ/n2(Tq,j) 6 2i ′} = ∅ do
18: Add q to the sets Ci ′ and Qi ′ . Increment i ′.
19: \\ for the incremented i ′, recompute the set {j ∈ Qi ′ : d(q, j) 6 2i ′}
20: Known points: K = {j : d̂q,j(Tq,j) + Cδ/n2(Tq,j) 6 2i ′ or d̂q,j(Tq,j) −

Cδ/n2(Tq,j) > 2i ′}
21: while |K| 6= |Qi ′ | do
22: Call oracle Q(q, i∗) for i∗(t) = arg minj6∈K d̂q,j(Tj) − Cδ/n2(Tj)

23: Update Tq,i∗ , d̂q,i∗

24: Update set K
25: end while
26: end while
27: Choose any q ′ ∈ {j ∈ Qi ′ : d̂q,j(Tj) + Cδ/n(Tj) 6 2i ′}
28: make q ′ = parent(q)
29: end for
30: end if
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7.5 Theoretical Guarantees of Bandit Cover Tree

We wish to provide guarantees for the performance measures described in the
introduction: query time, build time, insertion time, removal time, memory foot-
print, and accuracy. In this section, we show that BCT’s achieve state of the art
performance on these metrics despite only having access to noisy data. All proofs
are deferred to Section 7.7. As BCT is adapted from cover trees directly, it inherits
many properties and theoretical guarantees proven in Beygelzimer et al. (2006).
The core challenge becomes proving correctness for the additions we have made to
make the algorithm robust to noise and accounting for the number of extra calls
to the distance oracle by the algorithm. The algorithms were stated for clarity as
having a root at level∞ and descending to level∞. All analysis will be conducted
with respect to a tree with root at itop and ibottom however, as a real tree cannot be
infinitely tall.

7.5.1 Memory

We begin by showing that a cover tree can efficiently be stored. Naively, a cover
tree T on X can be stored using O(n(itop − ibottom)) memory where n = |X| and
itop − ibottom is the height of the tree. This follows from each level having at most
n nodes trivially and there being itop − ibottom levels. For a well balanced tree, we
expect that itop − ibottom = O(log(n)) leading to an overall memory complexity of
O(n log(n)). In fact, it is possible to do better.

Lemma 7.3. A bandit cover tree requires O(n) space to be stored.

O(n) memory is possible due to the nesting and covering tree invariants. By
the nesting invariant, if a point p is present in the ith cover Ci, then it is present
in the cover sets of all lower levels. By the covering tree invariant, each point has
a unique parent in the tree. Therefore, to store a cover tree, one need only store
1) which level of the tree each point first appears in 2) each point’s parent node
in the level above where it appears. After a node first appears in the tree, it may
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be represented implicitly in all lower levels by defining p ∈ children(p) for the
children(·) function.

7.5.2 Accuracy

Next, we show that BCT is accurate with high probability. This requires three
guarantees:

1. Search accuracy: Given a correctly constructed cover tree T on set X and
query point q, we must show that Noisy-Find-Nearest correctly identifies
q’s nearest neighbor with high probability.

2. Insertion accuracy: Given a correctly constructed cover tree T and a point p
to be inserted, we must show that Noisy-Insert returns a valid cover tree
that includes p neighbor with high probability. This will ensure accuracy
in constructing a cover tree from scratch since Noisy-Insert can be called
repeatedly to build a cover tree on a set X.

3. Removal accuracy: Given a correctly constructed cover tree T and a point p to
be removed, we must show that Noisy-Remove returns a valid cover tree that
without p neighbor with high probability.

7.5.2.1 Search Accuracy

We begin by showing search accuracy. Noisy-Find-Nearest is an extension of the
Find-Nearest algorithm from Beygelzimer et al. (2006). It follows the same logic as
Find-Nearest but with an additional routine– Identify-Cover– to compute cover
sets with from noisy data. By Theorem 2 of Beygelzimer et al. (2006), Find-Nearest
succeeds with probability 1. If Identify-Cover correctly returns the cover set
each time that it is called in Noisy-Find-Nearest, then Noisy-Find-Nearest will
correctly return xq. Hence, the following guarantee is derived by showing that the
probability of that Identify-Cover makes an error is small.
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Lemma 7.4. Fix any δ 6 1/2 and a query point q. Let T be a cover tree on a set X.
Noisy-Find-Nearest returns xq ∈ X with probability at least 1 − δ.

7.5.2.2 Insertion Accuracy

Next, we verify insertion accuracy with high probability. Similarly, Noisy-Insert
is based on the Insert method of Beygelzimer et al. (2006) and inherits theoretical
some of its properties. To handle noisy data, it makes use of a simple thresholding
bandit to compute the set {i ∈ Q : d(p, i) 6 2i}, the subset of the set of children
Q that are within 2i of the point p to be inserted. From this set, it can check if
d(p,Q) > 2i and can compute a new cover set Qi−1. The following lemma ensures
that Noisy-Insert succeeds with high probability.

Lemma 7.5. Fix any δ > 0. Let T be a cover tree on a set X and p be a point to insert.
Noisy-Insert correctly returns a cover tree on X ∪ {p} with probability at least 1 − δ.

7.5.2.3 Removal Accuracy

Finally, we verify removal accuracy with high probability. Noisy-Remove is based
on the Remove method of Beygelzimer et al. (2006) and inherits theoretical some of
its properties as well. Throughout, assume that we have access to a completed tree
T on the set X and we wish to remove a point p ∈ X from T to produce a new T ′

on X\{p}. To handle noisy data, it makes use of a simple thresholding bandit to
compute the set {j ∈ Q : d(p, j) 6 2i} similar to Noisy-Insert except for multiple
values of i and for children of p as well. From this set, it can check if d(p,Q) > 2i

and can compute and reassign parents to p’s children nodes. The following lemma
ensures that Noisy-Remove succeeds with high probability.

Lemma 7.6. Fix any δ > 0. Let T be a cover tree on a set X and p ∈ X be a point to remove.
Noisy-Remove correctly returns a cover tree on X\{p} with probability at least 1 − δ.
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7.5.3 Query Time Complexity

In the previous section, we proved that the algorithm succeeds with probability
1 − δ for all routines: search, insertion, and removal. In this section we begin to
answer the question of how many calls to the distance oracle it requires to perform
these operations. We begin by analyzing the query time complexity of Bandit
Cover Tree: the number of calls to the distance oracle made when answering a
nearest neighbor query. To do so, we will make use of the expansion constant, a
data-dependent measure of dimensionality. In particular, for a query point q. We
assume that the setX∪{q} has an expansion constant of c as defined inDefinition 7.1.
Note that this quantity is for analysis purposes only and is not required by the
algorithm. Noisy-Find-Nearest can take in the expansion constant or a bound on
it if it is known, but this is not required by the algorithm, and the algorithm can
run without it.

To bound query time, we appeal to the concept of explicit and implicit nodes as
discussed in 7.5.1. Each point in Xmay correspond to multiple nodes in the tree.
The first time a point appears as a node at the highest level where it is present, we
say that it is explicitly represented. Therefore, the algorithm saves in memory that the
new point has entered the tree. Using the nesting invariant of cover trees, if a node’s
direct parent is corresponds to the same point in X as does the node itself, we say
that the node is implicitly represented. In particular, the cover tree need not store
this node in subsequent levels and merely records its presence when traversing
the tree. Recall that the set of nodes at each level i of the cover tree is denoted Ci.
Noisy-Find-Nearest proceeds by computing a cover set Qi ⊂ Ci at each level of
the tree. Extending the concept of explicit and implicit representations of nodes,
we say that a cover setQi is implicitly represented if it only contains nodes that are
implicitly represented. This plays an important role in our computation of query
time. We may use the size of the last explicitly represented cover in combination
with a bound on the height of the tree to control the overall complexity.

Theorem 7.7. Fix δ < 1/2, a cover tree T on set X, and a query point q. Let |X| = n

and assume that the expansion rate of X ∪ {q} is c (unknown to the algorithm). If
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Noisy-Find-Nearest succeeds, which occurswith probability 1−δ, then Noisy-Find-Nearest

returns q’s nearest neighbor in at most

O
(
c7 log(n) log

(n
δ

)
κ
)

the total number of calls to the noisy distance oracle where parameter κ is defined in the
proof and depends on X and q.

Remark 7.8. The term κ captures the average effect of noise on this problem. It is similar
to the term ∆−2 in Theorems 5.6 and 5.7. As the noise variance goes to 0, this term becomes
1, and Noisy-Find-Nearest converges to the behavior of Find-Nearest in Beygelzimer
et al. (2006).

Corollary 7.9. Under the same conditions as Theorem 7.7, if c is known to the algorithm,
the number of queries to the distance oracle is at most

O

(
c7 log(n) log

(
c2 log(n)

δ

)
κ

)
7.5.4 Insertion Time and Build Time Complexity

Next we bound the number of calls to the distance oracle necessary to insert a new
point p into a cover tree T. We analyze the case that pmust be inserted within the
tree. If p instead is a new root of the tree, the same bound applies, though it is
possible to prove a tighter bound for this special case.

Theorem 7.10. Fix δ > 0, a cover tree T on set X, and a point to insert p. Let |X| = n and
assume that the expansion rate of X∪ {p} is c. Run Noisy-Insert with failure probability
1− δ and pass it the root level cover set: Citop and level i = itop. If Noisy-Insert succeeds,
which occurs with probability 1 − δ, then it returns a cover tree on X ∪ {p} in at most

O
(
c7 log(n) log

(n
δ

)
κp

)
calls to the noisy distance oracle where parameter κp is defined in the proof and depends on
X and p.
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Remark 7.11. As in the statement of Theorem 7.7, the term κp captures the average
effect of noise on this problem, and as the noise variance goes to 0, this term becomes 1.
Noisy-Insert converges to the behavior of Insert in Beygelzimer et al. (2006).

As discussed in Section 7.4.2.1, to construct a cover tree from scratch, one need
only call Noisy-Insert on each point in X and add them the tree one at a time. The
following theorem bounds the complexity of this process.

Theorem 7.12. Fix δ > 0 and set n points X. Assume that the expansion rate of X is
c. Calling Noisy-Insert with failure probability δ/n on each point in X one at a time,
returns a cover tree T on X correctly with probability at least 1 − δ in at most

O

(
c7n log(n) log

(
n2

δ

)
κ̃

)
calls to the noisy distance oracle where κ̃ := 1

n

∑
i∈X κi for κi defined in the proof of

Theorem 7.10.

Remark 7.13. Note that the value of κ̃ depends on the order in which points are inserted into
the tree T. It is possible that some insertion orders are more efficient than others. However,
knowing the optimal order to insert points would require knowledge of the exact distances
themselves, which is not available in this problem. Absent this knowledge, we assume that
points are inserted in lexicographic order, with x1 first and xn last.

7.5.5 Removal Time Complexity

Next we bound the number of calls to the distance oracle necessary to insert a new
point p into a cover tree T. We analyze the case that pmust be inserted within the
tree. If p instead is a new root of the tree, the same bound applies, though it is
possible to prove a tighter bound for this special case.

Theorem 7.14. Fix δ > 0, a cover tree T on set X, and a point p ∈ X to remove. Let
|X| = n and assume that the expansion rate of X is c. Run Noisy-Remove with failure
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probability 1−δ and pass it the root level cover set: Citop . If Noisy-Remove succeeds, which
occurs with probability 1 − δ, then it returns a cover tree on X\{p} in at most

O

(
c11 log2(n) log

(
n2

δ

)
κ̂p

)
calls to the noisy distance oracle where parameter κ̂p is defined in the proof and depends on
X and p.

Remark 7.15. As in the statement of Theorem 7.7, the term κ̂p captures the average
effect of noise on this problem, and as the noise variance goes to 0, this term becomes 1.
Noisy-Remove converges to the behavior of Remove in Beygelzimer et al. (2006).

Remark 7.16. The proof of the Remove algorithm in Beygelzimer et al. (2006) follows a
somewhat different logic owing to the separation invariance combined with exact knowledge
of distance. It is not immediately clear if the same trick which leads to a tighter result can
work in this case because distances cannot be computed exactly. We employ a somewhat
more approach result to control the complexity for this bound.

7.6 Conclusion

In this chapter, we introduced the Bandit Cover Tree framework. BCT builds on
top of the Cover Tree algorithm by Beygelzimer et al. (2006). In particular, we
extend three methods in that work, Find-Nearest, Insert, and Remove to handle a
noisy oracle instead of the noiseless oracle assumed by the authors. Furthermore, as
the noise level decreases, the performance of Noisy-Find-Nearest, Noisy-Insert,
and Noisy-Remove converges to their noiseless counterparts. We bound the ac-
curacy, memory footprint, build complexity, insertion and removal complexities,
and query complexities for BCT. In particular, we show a query complexity that is
O(log(n)), insertion complexity is O(log2(n)), removal complexities is O(log3(n))

and a construction complexity of O(n log2(n)). The query complexity matches the
state of the art n dependence for the (noiseless) nearest neighbor search problem
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with additional terms accounting for the noise in this problem. The insertion, con-
struction, and removal complexities are also near state of the art. Lastly a memory
footprint of O(n) and accuracy of 1 − δ are both optimal in this problem. In par-
ticular, a tree with n leaves requiresΩ(n)memory to store and taking δ→ 0, we
match the optimal accuracy of 100%.

Note that the theoretical results in this work are subtly different than those of
Beygelzimer et al. (2006) beyond the obvious difference between the noisy and
noiseless settings. Beygelzimer et al. (2006) bound computational complexity and
assume that calls to the distance oracle require O(1) computation. In our case, we
directly bound the number of calls to the distance oracle with less regard for the
computational overhead incurred. Some operations such as set intersections or
passing vectors of empirical estimates of distances to recursive calls could lead to
additional computational overhead than is present in the noiseless setting. It is an
open question for future work how to bound the computational complexity in the
noisy regime and if better methods exist.

Furthermore, the results depend heavily on the expansion rate, c. For Euclidean
data, cmay be as large as 2d for uniformly spread out points in Rd. Hence, for mod-
erate values of n and larger values of d, dependences such as c11 in Theorem 7.14
may dominate the complexity instead of the n dependence as is traditionally as-
sumed. Some works such as Haghiri et al. (2017); Dasgupta and Sinha (2013) trade
accuracy for improved dependence on c or other measures of dimension for metric
spaces. Instead, these algorithms guarantee that the correct nearest neighbor for
any query point is returnwith probability at least 1−δc,n independent of the chosen
query point. δ is tunable but depends on c, n, and often other parameters. Though
it can be tuned up or down, δc,n usually depends on parameters unknown to the
practitioner and cannot be known precisely. These methods often achieve good
empirical performance, however. In may be interesting to modify an algorithm in
this regime to the noisy data setting. One especially promising approach in this
vein is to modify the Spill Tree algorithm from Dasgupta and Sinha (2013). A
generic method to do Top-k identification in multi-armed bandits such as LUCB
from Kalyanakrishnan et al. (2012) could be used as a subroutine to handle all calls
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to the distance oracle.
Lastly, we note that Bandit Cover Tree can be used to solve the nearest neigh-

bor graph problem presented in Chapter 5. In particular, given a set of points X,
first build a cover tree T on X. This can be done in O(n log(n)) calls to the distance
oracle. Next, modify Noisy-Find-Nearest to find 2-nearest neighbors as discussed
in Beygelzimer et al. (2006). For each p ∈ X, pwill be its own nearest neighbor in
T since p is contained in the graph, but p∗ = arg minj∈X\{p} dp,j will be its second
nearest neighbor. From this, we may connect p to p∗ in the nearest neighbor graph.
This process can be repeated for each p ∈ X. Each 2-nearest neighbor query will
require O(log(n)) calls to the distance oracle. Summing this over the n points in X

with theO(n log(n)) build complexity gives an overall complexity ofO(n log(n)) to
learn a nearest neighbor graph. This matches the optimal rate given in Theorem 5.7
bounding the complexity of ANNTri but under far more general conditions on the set
X.

7.7 Proofs

7.7.1 Memory and accuracy proofs

First, we prove Lemma 7.3 which bounds the memory necessary to build, store, or
search a Bandit Cover Tree

Proof of Lemma 7.3. By Theorem 1 of Beygelzimer et al. (2006), ordinary cover trees
can be stored in O(n) space. Hence, we must only show that any addition to
any algorithm has not added more than O(n) additional memory needed. In
Identify-Cover, we trivially have that |Q| 6 n. In Noisy-Insert and Noisy-Remove,
empirical estimates of distances and associated confidence widths are shared by
all recursive calls to the algorithm. There are at most n distance estimates and n
confidence widths, contributing 2n to the space requirement. By passing these
values by reference rather than value for different recursive calls of each algorithm,
the same 2n numbers may be shared for all recursive calls. The only other stored
values, the indices for itop and ibottom contribute O(1) space. Thus the total memory
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overhead for handling noisy estimates is O(n) and the total memory requirement
is O(n) as well.

Next we prove several Lemmas that guarantee that the Noisy-Find-Nearest,
Noisy-Insert, and Noisy-Remove methods all succeed with high probability. We
begin with search accuracy.

Proof of Lemma 7.4. By Theorem 2 of Beygelzimer et al. (2006), Find-Nearest suc-
ceedswith probability 1. Noisy-Find-Nearest is adapteddirectly from Find-Nearest
except that it uses Identify-Cover to identify individual cover sets at it descends
the tree. Hence, wewish to show that the probability of Identify-Cover making an
error in any call is at most δ. Identify-Cover is equivalent to (ST)2 from Chapter 6
except that it finds the smallest distances not the largest arms. It is equal to (ST)2

given the negative of all rewards. Thus, by Theorem 6.5, Identify-Cover given a
failure probability of δ/α succeeds with probability 1 − δ/α.

By definition, α = min
{⌈

log(n)
log(1+1/c2)

+ 1
⌉

,n
}
. By Lemma 4.3 of Beygelzimer

et al. (2006), itop − ibottom 6 α. Hence, Identify-Cover is called at most α times
(once per level during traversal). A union bound implies that the probability of an
error in any call is at most δ, completing the proof.

Next, we show that Noisy-Insert succeeds with high probability.

Proof of Lemma 7.5. To show correctness, we begin by verifying that the thresholding
bandit routine in lines 2 − 9 does not fail in any recursive call of Noisy-Insert.
Define the event

E :=
⋂
k∈[n]

∞⋂
t=1

{
|d̂p,k(t) − dp,k| 6 Cδ/n(t)

}
By definition of Cδ(t), we have that P(Ec) 6 δ where we have used the assumption
that |X| = n so there are only n different points explicitly represented in T. For
the remainder of the proof, we assume that E occurs and show that it leads to
correctness in the thresholding bandit routine.
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Let µ > 0 denote any threshold. On E, we have that

{k : dp,k < µ} ⊃
{
k : d̂p,k + Cδ/n(Tk(t)) < µ

}
for any set of values {k : Tk(t)} at any time t. Similarly, we have that

{k : dp,k > µ} ⊃
{
k : d̂p,k − Cδ/n(Tk(t)) > µ

}
.

Therefore, if the algorithm stops sampling when either

d̂p,k + Cδ/n(Tk(t)) < µ

or
d̂p,k − Cδ/n(Tk(t)) > µ

for every point k and any value of µ, then on event E, we have identified the sets
{k : dp,k < µ} and {k : dp,k > µ} correctly. In particular, the above superset relation
holds with equality.

Applying this to µ = 2i for different values of i in the algorithm we see that at
all times the thresholding bandit implemented in lines 2 − 9 succeeds. Since these
bounds are shared between recursive calls of the algorithm, the routine succeeds
in every recursive call.

We conclude by showing that if these sets have been computed correctly, which
occurs when E occurs, then the algorithm correctly computes all quantities needed
for the Insert algorithm in Beygelzimer et al. (2006).

First, note that after the thresholding bandit terminates

{i ∈ Q : d̂p,i(Ti) + Cδ/n(Ti) 6 2i} = ∅ =⇒ d(p,Q) > 2i.

Next, note that when the thresholding bandit routine terminates at line 8, we
have that

{
k ∈ Q : d̂p,k + Cδ/n(Tk(t)) 6 2i

}
=
{
k ∈ Q : dp,k 6 2i

}
= Qi−1
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where the last equality holds by definition in the Insert algorithm.
Finally, by the nesting invariance of cover trees and the definition of children in

a tree, we have that Qi ⊂ Q. Hence Qi ∩Qi−1 6= ∅ is equivalent to the condition
that d(p,Qi) 6 2i. Therefore, applying Theorem 3 of Beygelzimer et al. (2006)
completes the proof.

Finally, we show that Noisy-Remove succeeds with high probability.

Proof of Lemma 7.6. Similar to the proof for Noisy-Insert, we begin by showing
correctness of the thresholding bandit in lines 9 − 16. Again, we must verify that it
does not fail in any recursive call of Noisy-Remove. Define the event

E :=
⋂

j,k∈[n]

∞⋂
t=1

{
|d̂j,k(t) − dj,k| 6 Cδ/n2(t)

}
By definition of Cδ(t), we have that P(Ec) 6 δ where we have used the assumption
that |X| = n so there are only n different points explicitly represented in T and
there are at most

(
n
2

)
pairs of distances. Note that especially for higher levels i of

the tree it is possible that |Qi| < n. Hence a weaker union bound is possible. As
|Qi| is unknown a priori, we take the naive bound that |Qi| 6 n for any round i,
though it is possible to instead alter the union bound in different recursive calls to
Noisy-Remove.

For the remainder of the proof, we assume that E occurs and show that it leads
to correctness in the thresholding bandit routine. Let µ > 0 denote any threshold.
On E, we have that for any point q (in particular any child of node p)

{k : dq,k < µ} ⊃
{
k : d̂q,k(Tq,k(t)) + Cδ/n2(Tq,k(t)) < µ

}
for any set of values {k : Tq,k(t)} at any time t. Similarly, we have that

{k : dp,k > µ} ⊃
{
k : d̂q,k(Tq,k(t)) − Cδ/n2(Tq,k(t)) > µ

}
.
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Therefore, if the algorithm stops sampling when either

d̂q,k(Tq,k(t)) + Cδ/n2(Tq,k(t)) < µ

or
d̂q,k(Tq,k(t)) − Cδ/n2(Tq,k(t)) > µ

for every point k and any value of µ, then on event E, we have identified the sets
{k : dp,k < µ} and {k : dp,k > µ} correctly. In particular, the above superset relation
holds with equality.

Applying this to µ = 2i ′ for different values of i ′ in the algorithm we see that at
all times, the thresholding bandit implemented in lines 9− 16 succeeds. Since these
bounds are shared between recursive calls of the algorithm, the routine succeeds
in every recursive call.

We conclude by showing that if these sets have been computed correctly, which
occurs when E occurs, then the algorithm correctly computes all quantities needed
for the Insert algorithm in Beygelzimer et al. (2006).

First, note that when the thresholding bandit routine terminates

{i ∈ Q : d̂q,i(Ti) + Cδ/n2(Tq,i) 6 2i ′} = ∅ =⇒ d(q,Q) > 2i ′ .

Second, note that if the set

{i ∈ Qi ′ : d̂q,i(Tq,i) + Cδ/n2(Ti) 6 2i ′}

is nonempty, then for any q ′ contained in it, we have that dq,q ′ 6 2i ′ . Therefore, on
E, Noisy-Remove computes the same quantities as Remove. Applying Theorem 4 of
Beygelzimer et al. (2006) completes the proof.

7.7.2 Query Time Complexity

Now we turn our attention to the number of calls to the distance oracle needed by
Bandit Cover Tree. We begin by proving a bound on the number of oracle calls
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made by Noisy-Find-Nearest.

Proof of Theorem 7.7. Assume that Noisy-Find-Nearest succeeds, which occurswith
probability 1− δ. Let itop and ibottom represent the top and bottom of T. We begin by
bounding the number of oracle calls drawn in an arbitrary round. Calls to the oracle
only occur within the Identify-Cover routine. Suppose Identify-Cover is called
on set Q and run with failure probability δ/n since δ/α > δ/n deterministically.
Since Identify-Cover is equivalent to (ST)2, Algorithm 5, with parameters γ = 0
and ε = 2i−1, Theorem 6.5 implies that the number of calls to the distance oracle
made by Identify-Cover is bounded by

c1 log
(n
δ

)∑
j∈Q

max
{

1
(dmin + 2i−1 − dq,j)2 , 1

(dq,j + κi − dmin)2

}
(7.2)

where c1 includes constants and doubly logarithmic terms, dmin = minj∈Q dq,j, and
κi = min |dmin + 2i−1 − dq,j|. κi combines the αε and βε terms in Theorem 6.5.

Define κavgi to be the arithmetic means of the summands in Equation 7.2. Recall
that for the cover set Qi at level i, Q is defined as Q =

⋃
p∈Qi children(p) in the

Noisy-Find-Nearest algorithm. Hence, we may compactly write Equation 7.2 as

c1 log
(n
δ

) ∣∣∣∣∣ ⋃
p∈Qi

children(p)

∣∣∣∣∣κavgi .

Applying this, we may sum over all levels of the tree T and bound the total
number of oracle calls as

c1 log
(n
δ

) ibottom∑
i=itop

∣∣∣∣∣ ⋃
p∈Qi

children(p)

∣∣∣∣∣κavgi
wherewe havewritten the outer sum index in order of descending i since itop > ibottom.
This is done to reflect to the process of descending tree T and counting the number
of oracle calls taken at each level. We proceed by bounding

∣∣⋃
p∈Qi children(p)

∣∣ .
By the nesting invariance, p ∈ children(p) for any node p. Let Q∗ be the final
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explicit Q. That is Q∗ = Qi∗ where i∗ is the lowest level such that an explicit node
exists in the cover set Qi∗ . For all levels i such that i > i∗ (levels above i∗), explicit
nodes have yet to be added. Hence

∣∣∣∣∣ ⋃
p∈Qi

children(p)

∣∣∣∣∣ 6
∣∣∣∣∣∣
⋃
p∈Qi∗

children(p)

∣∣∣∣∣∣ .
For all levels below i∗, by definition, no new nodes are added as all remaining
nodes are implicit. Therefore, for i < i∗ (lower levels of the tree),

∣∣∣∣∣ ⋃
p∈Qi

children(p)

∣∣∣∣∣ 6
∣∣∣∣∣∣
⋃
p∈Qi∗

children(p)

∣∣∣∣∣∣ .
In particular, Qi∗ maximizes

∣∣⋃
p∈Qi children(p)

∣∣. Following the proof of Theorem
5 in Beygelzimer et al. (2006), we have that

∣∣∣⋃p∈Qi∗ children(p)∣∣∣ 6 c5.
Next, for clarity, define

κ :=
1

itop − ibottom

ibottom∑
i=itop

κ
avg
i ,

the average of the κavgi terms that appears in each level. Plugging in both above
pieces, we have that

c1 log
(n
δ

) ibottom∑
i=itop

∣∣∣∣∣ ⋃
p∈Qi

children(p)

∣∣∣∣∣κavgi 6 c1c
5 log

(n
δ

)
(itop − ibottom)κ

ByLemma4.3 of Beygelzimer et al. (2006), we have that itop−ibottom = O(c2 log(n)).
Plugging this in we have that the total number of oracle calls is bounded by

O
(
c7 log(n) log

(n
δ

)
κ
)

completing the proof.
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Proof of Corollary 7.9. The proof follows identically, except that we may plug in

α =

⌈
log(n)

log(1 + 1/c2)
+ 1
⌉
= O(c2 log(n)).

Hence the term from the union bound becomes O
(

log
(
c2 log(n)

δ

))
instead of

log
(
n
δ

)
.

7.7.3 Insertion Time Complexity

Next, we bound the number of oracle calls made by Noisy-Insert.

Proof of Theorem 7.10. We begin by analyzing the complexity of the thresholding
bandit subroutine in lines 2 − 9 of Noisy-Insert. Assume the same event E from
the proof of Lemma 7.5 that holds with probability 1 − δ. We proceed by bounding
the number of rounds any point j in the set Qmay be i∗(t) before it must enter the
set K. Summing up the complexity for all points in Q bounds the complexity of
this routine.

Suppose we wish to insert p into level i. Assume for point j ∈ Ci that dp,j 6 2i.
Assume that

Tj >
c ′

(dp,j − 2i)2 log
(
n

δ
log
(

n

δ(dp,j − 2i)2

))
for a sufficiently large constant c ′. Then

d̂p,j(Tj) + Cδ/n(Tj)
E

6 dp,j + 2Cδ/n(Tj)
(a)
< dp,j + 2i − dp,j = 2i,

implying that jmust be in the set K. Inequality (a) follows from Lemma 6.32 and
bounds on c ′ are given by the same Lemma. This argument may be repeated for
j ∈ Ci such that dp,j > 2i by instead considering the lower confidence bound on
d̂p,j(Tj).
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Summing over all j in the set Q, no more than

∑
j∈Q

c ′

(dp,j − 2i)2 log
(
n

δ
log
(

n

δ(dp,j − 2i)2

))
6 c1|Q| log

(n
δ

)
κ
avg
i

calls to the oracle are made between lines 2 and 8 for a problem independent
constant c1. Similar to the proof of Theorem 7.7, we define κavgi to be average of the
summands including doubly logarithmic terms for brevity and clarity.

By definition, in level i Q =
⋃
j∈Qi children(j). In the worst case, p is added at

the leaf level, ibottom. Noisy-Insert descends down the tree via recursive calls. This
happens at most itop − tbottom times. Summing over all levels, the total number of
calls to the oracle is bounded by

c1 log
(n
δ

) ibottom∑
i=itop

∣∣∣∣∣ ⋃
j∈Qi

children(j)

∣∣∣∣∣κavgi
where the sum is indexed from the largest i to the smallest to reflect descending
the tree. As in the proof of Theorem 7.7, there exists a level i∗ which maximizes∣∣⋃
j∈Qi children(j)

∣∣ and we have that
∣∣∣⋃j∈Qi∗ children(j)∣∣∣ 6 c5. Define

κp =
1

itop − ibottom

ibottom∑
i=itop

κ
avg
i

Plugging this in,

c1 log
(n
δ

) ibottom∑
i=itop

∣∣∣∣∣ ⋃
j∈Qi

children(j)

∣∣∣∣∣κavgi 6 c1c
5 log

(n
δ

)
(itop − tbottom)κp

6 O
(
c7 log(n) log

(n
δ

)
κp

)
.

where the inequality follows from Lemma 4.3 in Beygelzimer et al. (2006).
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Proof of Theorem 7.12. Begin with an empty tree. Noisy-Insert can trivially place
x1 as a root and replace the root as necessary. We run Noisy-Insert with failure
probability δ/n. Since placing the first node at the root is trivial, make the inductive
hypothesis that we have a correct tree T built on a strict subset S ( X and wish
to insert a point p ∈ X\S to T using Noisy-Insert. By Lemma 7.5, this process
succeeds with probability 1 − δ/n. By Theorem 7.10, this requires no more than

O
(
c7 log(n) log

(n
δ

)
κp

)
calls to the noisy distance oracle.

A union bound over inserting the n points in X implies correctness. Summing
the above expression for every point p ∈ X bounds the total sample complexity
necessary for construction, stated in the Theorem. In particular, κ̃ is the arithmetic
mean of the individual κps.

7.7.4 Removal Time Complexity

Finally, we bound the number of oracle calls needed by Noisy-Remove

Proof of Theorem 7.14. We begin by analyzing the complexity of the Thresholding
bandit subroutine in lines 9 − 16 of Noisy-Remove. Assume the same event E
from the proof of Lemma 7.6 that holds with probability 1 − δ. Fix an arbitrary
q ∈ children(p). We proceed by bounding the number of rounds any point j in the
set Qi ′ may be i∗(t) before it must enter the set K. Summing up the complexity for
all points in Q bounds the complexity of this routine.

Assume for point j ∈ Ci ′ that dq,j 6 2i ′ . Assume that

Tq,j >
c ′

(dq,j − 2i ′)2 log
(
n2

δ
log
(

n2

δ(dq,j − 2i ′)2

))
for a sufficiently large constant c ′. Then

d̂q,j(Tq,j) + Cδ/n2(Tq,j)
E

6 dq,j + 2Cδ/n2(Tq,j)
(a)
< dq,j + 2i ′ − dp,j = 2i ′ ,
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implying that jmust be in the set K. Inequality (a) follows from Lemma 6.32 and
bounds on c ′ are given by the same Lemma. This argument may be repeated for
j ∈ Ci such that dq,j > 2i ′ by instead considering the lower confidence bound on
d̂q,j(Tq,j).

Summing over all j in the set Qi ′ , no more than

∑
j∈Qi ′

c ′

(dq,j − 2i ′)2 log
(
n2

δ
log
(

n2

δ(dq,j − 2i ′)2

))
6 c1|Qi ′ | log

(
n2

δ

)
κ
avg
q,i ′

calls to the oracle are made between lines 9 and 16 for a problem independent
constant c1. Similar to the proof of Theorem 7.7, we define κavgq,i ′ to be average of the
summands including doubly logarithmic terms for brevity and clarity.

If
{j ∈ Qi ′ : d̂q,j(Tq,j) + Cδ/n2(Tq,j) 6 2i ′} = ∅,

i ′ is reset to i ′ + 1 and the algorithm proceeds to the next level up the tree. An
identical computation is performed as in lines 9 − 16 and a similar bound applies
as the above. The only difference is that since the Thresholding bandit is now
comparing to a threshold of 2i ′+1 (or alternatively 2i ′ for the incremented value of
i ′) we incur a dependence on κavgq,i ′+1 instead. In particular, the number of oracle
queries drawn between lines 20 and 25 is at most

∑
j∈Qi ′+1

c ′

(dq,j − 2i ′+1)2 log
(
n2

δ
log
(

n2

δ(dq,j − 2i ′+1)2

))
6 c1|Qi ′+1| log

(
n2

δ

)
κ
avg
q,i ′+1.

This process repeats until the conditional in the while loop is no longer satisfied.
Naively, this happens at most itop − i + 1 times as i ′ is initialized as i − 1 and
is incremented until potentially it reaches the top level of T, itop. Summing this
quantity over all levels of the tree, we may bound the total number of oracle calls as

i−1∑
i ′=itop

c1|Qi ′ | log
(
n2

δ

)
κ
avg
q,i ′ .
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As in the proof of Theorem7.7, there exists a level i∗whichmaximizes
∣∣⋃
j∈Qi children(j)

∣∣
and we have that

∣∣∣⋃j∈Qi∗ children(j)∣∣∣ 6 c5. As Qi ⊂
⋃
j∈Qi children(j) by the nest-

ing invariance, c5 likewise bounds Qi for all i. Define

κavgq (i) =
1

itop − i+ 1

i−1∑
i=itop

κ
avg
q,i

Plugging this in, we may bound the total number of oracle calls (for the distance of
any point to q) by

i−1∑
i ′=itop

c1|Qi ′ | log
(
n2

δ

)
κ
avg
q,i ′ 6 c1c

5(itop − i+ 1) log
(
n2

δ

)
κavgq (i)

6 c1c
5(itop − ibottom) log

(
n2

δ

)
κavgq (i).

Next, we use Lemma 4.3 of Beygelzimer et al. (2006) to bound itop − ibottom =

O(c2 log(n)). Therefore,

c1c
5(itop − ibottom) log

(
n2

δ

)
κavgq (i) 6 O

(
c7 log(n) log

(
n2

δ

)
κavgq (i)

)
The above bounds the number of calls to the distance oracle needed for any child q
of p, the point to be removed. Due to the ‘For’ loop in line 6, this process is repeated
for all q ∈ children(p). By Lemma 4.1 of Beygelzimer et al. (2006), the number of
children of any node p ∈ T is at most c4. Define

κp(i) :=
1

|children(p)|
∑

q∈children(p)

κavgq (i)

where the superscript p and the parenthetical i denote that this quantity depends
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on all children of p and level i of the tree. Then

∑
q∈children(p)

κavgq (i) = |children(p)| 1
|children(p)|

∑
q∈children(p)

κavgq (i)

6 c4 1
|children(p)|

∑
q∈children(p)

κavgq (i)

= c4κp(i)

Therefore, summing over all q ∈ children(p), we can bound the total number of
calls to the distance oracle drawn in lines 6 to 29 of Noisy-Remove by

O

(
c9 log(n) log

(
n2

δ

)
κp(i)

)
.

As Noisy-Remove is recursive, it remains to sum the complexity of all recursive
calls. The above bound depends on the level i on which Noisy-Remove is called
only through the term κp(i). In the worst case, p is present in every level and the
‘If’ condition in line 4 is true for every recursive call. Hence, we sum the above
expression over every level i. Define

κ̂p :=
1

itop − ibottom

ibottom∑
i=itop

κp(i).

The total number of oracle calls is bounded as

bottom∑
i=itop

O

(
c9 log(n) log

(
n2

δ

)
κp(i)

)
= O

(
c9(itop − ibottom) log(n) log

(
n2

δ

)
κ̂p

)

= O

(
c11 log2(n) log

(
n2

δ

)
κ̂p

)
completing the proof.
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Especially in my early years in Wisconsin, I felt somewhat out of place in a
Ph.D. program. I will be eternally grateful for those lab mates who welcomed
me and accepted me as one of their own. They were my northern star and my
horizon line. I wrote this small poem in my third year after most of them had gradu-
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If I could have them all back

just for an evening together:
Drink gin gimlets at Lalit’s
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with way too much vermouth.
Daniel playing Beethoven on Rudy’s upright
and football muted on the big TV.
Coffee on the stove and bread in the oven.
Rising from the couch to fill a glass
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Those were the days of excess.
Those were the days
when family was tangible.
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mixing with the cold, winter air.
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with chili oil, still buzzing
and cracked into wide smiles.

For my lab mates
Blake Mason, April 24, 2018
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