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Abstract 

Recently, three-dimensional (3D) integration technology has enabled researchers and engineers 

to explore novel architectures. Due to the growing memory requirements of modern signal 

processing applications, such as multimedia processing, speech recognition, and face 

recognition, it was thought that digital signal processors (DSPs) could greatly benefit from 3D 

memory integration technology where high-density memories are placed below processing cores. 

Until recently, it was believed that this integration could lower main memory latencies by 45% to 

60%, which would reduce the average memory access time for these modern signal processing 

applications and improve performance while reducing energy consumption. Additionally, 3D 

memory integration technology also allowed a large increase in the main memory bus width by 

using small through silicon vias (TSVs) instead of off-chip metal wires. This large increase in the 

main memory bus width meant each main memory request could bring more data into the last-

level on-chip memory and improve the performance of streaming signal processing applications 

whose memory access behavior exhibits a large amount of spatial locality. 

My dissertation first provides a more accurate 3D main memory model that demonstrates that 

the latency reduction of going from conventional DDR2 DRAM to 3D memory technology 

(using the 65 nm technology node) is roughly 4% instead of the often quoted 45% to 60%. With 

this memory model, I re-evaluate the performance impact of 3D main memory on DSPs and find 

the performance benefits from the latency savings are very small.  

I next analyze current 3D main memory with Wide I/O, which can lower main memory 

latencies by 15.9% and greatly increase the main memory bus width. I demonstrate that the 

latency improvements of 3D main memory with Wide I/O and increasing the main memory bus 

width from 64 bits to 4,096 bits can improve the average performance of key signal processing 
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applications by 9.7% (and up to 23.3%), but also increases average energy consumption by 2.6% 

(and up to 8.9%). For energy-constraint DSPs that are often found in mobile devices such as 

cellphones, this energy increase may be unacceptable. 

To help mitigate this energy increase, my dissertation research proposes novel techniques to 

dynamically scale the effective main memory bus width of a DSP based on the program phases 

of an application. These bandwidth scaling algorithms increase the main memory bus width 

during memory intense program phases to improve performance and lower the bus width during 

compute intensive phases to improve I/O energy efficiency. These algorithms can improve 

average DSP performance by 6.6% (and up to 12.8%) while increasing average energy 

consumption by only 0.5%.  
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1  Introduction 

1.1 Dissertation Motivation 

Digital signal processors (DSPs) are playing an increasingly important role in modern computing 

systems ranging from consumer electronics to health care and security systems [1]. Over the past 

two decades, DSPs have become one of the most important drivers of the global semiconductor 

industry, with nearly 1.6 billion DSPs shipped in 2008. In 2013, it is expected that over 3.3 billion 

DSPs will be shipped, which represents an average growth rate of 16% per year [2]. The global 

DSP market is estimated to grow from $6.2 billion in 2011 to $9.6 billion in 2016 [3]. With 

significant growth in portable electronics such as smartphones, embedded DSPs have become a 

major area of design and research.  

Modern signal processing applications such as multimedia processing and speech recognition 

are becoming more compute and memory intense. However, delivering increased performance to 

meet these applications’ demands is becoming more difficult. In response to the memory-

intensive nature of signal processing applications, architects have been integrating more on-chip 

memory into DSPs, which traditionally have small on-chip memories. However, these solutions 

have not fully addressed the “memory wall” problem [4] for DSPs, in which the relative memory 

access latencies have been increasing with each new process generation.  

Recently, researchers have begun exploring three-dimensional (3D) integration technology, in 

which logic and memory dies are vertically stacked together and connected using die-to-die or 

through-silicon vias (TSVs) [5]. Since each 3D layer can utilize a different process technology 

[6], 3D integration allows unique processor designs, including designs in which high-density 

dynamic random access memory (DRAM) is stacked below DSP cores. By stacking main 
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memory below the processor in the same package, it was believed that main memory access 

latencies could be much shorter than traditional out-of-package memory latencies, which would 

help directly address the memory wall problem. Furthermore, stacked DRAM can also lead to 

higher main memory bandwidth by using a large number of TSVs, which can increase the 

performance of applications that have high spatial locality [7]. 

Although 3D integration technology has been studied before, the vast majority of work 

focuses on exploring the impact of 3D technology in high-performance, general-purpose 

microprocessors and little research have been done in the field of DSPs. In particular, DSPs are 

commonly found on mobile devices that have stringent energy requirements, which require 

designers to strongly consider energy consumption with any design decision. My dissertation 

research looks to expand 3D integration technology research to include DSPs while also 

considering energy consumption. 

1.2 Dissertation Contributions 

My dissertation research aims to directly address the growing memory requirements of modern 

signal processing applications through the integration of DSPs and 3D DRAM with Wide I/O. 

Although DSPs seem like excellent candidates for 3D DRAM due to their small on-chip 

memories, my work demonstrates that the latency claims of 3D main memory need re-evaluation 

and simply stacking memory dies below a DSP does not lead to a large enough latency reduction 

to significantly improve the performance of signal processing applications. I first re-evaluate the 

latency claims of 3D DRAM and find the often quoted 45% to 60% latency reduction to be 

incorrect. I conclude that the key performance advantage of 3D DRAM lies in the capability to 

significantly increase the main memory bus width with a large number of TSVs. 
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I also demonstrate that increasing the main memory bus width with TSVs and using the 

additional bandwidth to fetch adjacent L2 cache lines can lead to considerable performance 

improvements for streaming multimedia applications that exhibit a high degree of spatial 

locality. However, this performance improvement comes at the cost of higher DSP energy 

consumption and simply increasing the main memory bus width with 3D technology can 

sometimes lead to an inefficient usage of the wider bus. My research shows that signal 

processing applications have program phases where the wider bus does not benefit the 

application and simply consumes more I/O energy. Since DSPs are commonly found in energy-

constraint mobile devices, this energy increase may be unacceptable.  

To address the increase in energy consumption that comes with increasing the main memory 

bus width I propose novel dynamic bandwidth scaling algorithms that increase or decrease the 

main memory bus width based on the program phases of the application. My bandwidth scaling 

algorithms maintain most of the performance improvement of increasing main memory 

bandwidth while also addressing the increase in energy consumption. These bandwidth scaling 

algorithms can achieve the majority of the performance improvements from increasing main 

memory bandwidth, but only spend 25.2% of the execution time in the maximum bus width 

setting, leading to better I/O energy efficiency. My proposed bandwidth scaling algorithms lead 

to a reduction in DSP energy consumption while still addressing the growing memory 

requirements of modern signal processing applications. 

The key contributions of this dissertation include: 

1. The presentation of a more accurate 3D DRAM latency model that shows the often 

quoted 45% to 60% latency savings is inaccurate and that simply stacking memory dies 

below the processor will decrease DRAM latency by only 4.1% [8]. 
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2. A reevaluation of the performance benefits of 3D DRAM on DSPs with the updated 

latency model through cycle-accurate simulations. In these simulations, I find the 

performance benefits of 3D DRAM (without Wide I/O) are very small and that the key 

advantage of 3D DRAM is the ability to significantly increase the main memory bus 

width with additional TSVs [8] [9]. 

3. The presentation of a model for 3D DRAM with Wide I/O that not only significantly 

increases the main memory bus width, but also decreases main memory latency with two 

memory architecture changes [10].  

4. The demonstration, through cycle-accurate simulations, that 3D DRAM with Wide I/O 

and adjacent cache line prefetching can increase the performance of modern signal 

processing applications by an average of 9.7% (and up to 23.3%), but this performance 

increase comes with an increase in average DSP energy consumption (2.6%) [10]. 

5. The proposal of dynamic bandwidth scaling algorithms, which increase or decrease the 

main memory bus width based on the phase behavior of the application [10]. To the best 

of my knowledge, these dynamic bandwidth scaling algorithms are the first of their kind. 

6. The demonstration, through cycle-accurate simulations, that my dynamic bandwidth 

scaling algorithms maintain the majority of performance from increasing the main 

memory bus width while also reducing the increase in DSP energy consumption through 

better I/O efficiency [10].  

1.3 Dissertation Organization 

The remainder of this dissertation is organized as follows: Chapter 2 provides background 

information on 3D integration technology, modern DSP architectures, and main memory. 

Chapter 3 provides a survey of related work. Chapter 4 presents the experimental framework 
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used throughout this dissertation including an explanation of the simulation environment, a 

description of the baseline processor, and a summary of the benchmarks used for evaluation and 

comparison. Chapter 5 presents an accurate 3D DRAM model. Chapter 5 also re-evaluates the 

performance impact of 3D DRAM with this more accurate memory model for a modern DSP. 

Chapter 6 presents a model for 3D DRAM with Wide I/O. In this chapter, 3D DRAM with Wide 

I/O is also evaluated on a modern DSP and results for performance and energy are analyzed. 

Chapter 7 proposes dynamic bandwidth scaling and evaluates their performance and energy 

impact for a modern DSP. Chapter 8 summarizes my research and Chapter 9 describes some 

opportunities for futures research in this area. 
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2 Background 

This chapter provides background information on 3D integration technology including a short 

description of the three types of 3D technology. This chapter also includes background 

information on digital signal processors (DSPs) including how they differ from general-purpose 

processors, the types of applications they commonly run, and a description of the Texas 

Instrument Very Long Instruction Word (VLIW) C67x DSP that I used for this dissertation 

research. Lastly, this chapter gives a detailed explanation of main memory organization and an 

analysis of the steps involved in a main memory request.  

2.1 3D Integration Technology 

Three-dimensional (3D) integration technology is an emerging fabrication technology in which 

multiple integrated chips are vertically stacked. 3D integration technology offers a number of 

attractive features over traditional 2D integration technology, such as increased device density, 

greater routing flexibility and reduced wire lengths. A number of 3D integration technologies are 

currently being pursued and they can be divided into three categories:  

1. 3D packaging technology is a die-to-die technology that uses wire bonding for vertical 

interconnections [11]. 3D packaging technology is already used in many commercial 

products, such as cell phones, but has very low inter-die interconnect density compared to 

other 3D technologies, making it less attractive for memory-intensive applications.  

2. Transistor build-up 3D technology is a transistor-level integration technology that forms 

transistors inside on-chip interconnect layers [12], on poly-silicon films [13] or on single-

crystal silicon films [14]. Although a high vertical interconnect density can be achieved, 
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it is not compatible with existing fabrication processes. It is also subject to severe process 

temperature constraints that can dramatically degrade the circuit’s electrical performance.  

3. Monolithic, wafer-level, back-end-of-the-line (BEOL) compatible 3D technology is a 

wafer-to-wafer technology that uses through-silicon vias (TSVs) to form inter-die 

interconnections [15]. TSVs have the potential to offer the greatest interconnect density, 

but also have a high cost. Figure 2.1 (taken from [6] with permission from Gabriel Loh) 

illustrates the fabrication steps for this type of 3D integration technology, which are 

described below: 

1. Two wafers are separately fabricated and processed using standard fabrication 

techniques. 

2. To assist with the fusing of the two wafers, copper is deposited into the top metal 

layer. This is similar to building conventional vias between metal layers. 

3. The two wafers are arranged face-to-face and subjected to thermal compression. 

The heat and pressure fuses the two copper deposits together thereby fusing the 

two dies. 

 

 
Figure 2.1: Fabrication steps for wafer-level, back-end-of-the-line  

3D technology (from [6]). 
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4. Chemical-mechanical polishing (CMP) is used to thin one layer of the 3D stack to 

only 10 to 20 µm. 

5. The thinning allows the through-silicon vias (TSVs) that implement the external 

I/O and power and ground connections to be relatively short; this minimize 

voltage losses.  

For my dissertation research, I assume wafer-level BEOL-compatible 3D integration 

technology, since it appears to be the most promising option for high-volume production and 

offers a number of advantages including the ability to integrate different technologies (like 

CMOS logic and DRAM memories) and provide a massive amount of inter-die bandwidth via 

the TSVs. These two abilities allow performance-improving features, such as 3D main memory 

and larger capacity caches, to be implemented efficiently while also allowing designers to realize 

radically different system organizations.  

2.2 Digital Signal Processors (DSP) 

Digital signal processors (DSPs) are a type of specialized microprocessor optimized for signal 

processing applications. Many DSPs use a Very Long Instruction Word (VLIW) format to 

increase parallelism, and they are typically statically-scheduled. These features allow DSPs to 

reduce the hardware complexity of their design and have lower power consumption compared to 

general-purpose processors. This reduction in power consumption makes DSPs an attractive 

choice for embedded devices, which is why they are commonly found in popular smartphones 

and other multimedia devices. Digital signal processors differ from general-purpose 

microprocessors in a number of ways [16] [17] [18] [19]: 

1. Many signal processing applications are deadline-driven and require the processor to 

complete the operations within some fixed amount of time. 
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2. Some DSP memory architectures are designed for streaming data and make use of DMA 

and software-controlled memories, such as scratchpad memories.   

3. Although some DSPs use scratchpad memories, many still have traditional cache 

hierarchies. However, these caches are typically much smaller than those used in general-

purpose processors.  

4. Some DSPs use Very Long Instruction Word (VLIW) techniques for increased 

performance, lower power and deterministic program behavior. 

5. Although general-purpose microprocessors can execute signal processing applications, 

they are not well suited for use in devices such as mobile phones due to energy and 

thermal constraints. DSPs are more specialized for these types of devices. 

Since DSPs are commonly found in products such as portable electronics and multimedia 

devices, they often implement streaming applications, such as multimedia processing and 

wireless communications. These wireless communication applications are usually deadline-

driven and may require the DSP to finish a particular code segment within a specified time 

frame. However, multimedia applications (unlike wireless communication applications) have 

soft deadlines, for which the application can tolerate a missed deadline and may respond by 

decreasing the quality of service. For my dissertation research, all the applications evaluated are 

multimedia signal processing applications that fit this behavior.  

To address deadline-driven, streaming applications, many DSPs make use of software-

controlled memories, such as scratchpad memories [20]. Software-controlled memories refer to a 

type of memory in which the programmer has knowledge of the memory hierarchy and internal 

latencies and programs the application with these in mind (although some of this can be handled 

by modern compilers). Since these memories allow for deterministic program execution times, 
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they help ensure that applications meet their deadlines. Furthermore, scratchpad memories also 

provide an energy savings since these memories do not need to perform tag comparisons or 

possibly look for data in multiple locations. 3D memory integration technology offers DSPs the 

ability to either integrate software-controlled scratchpad memories or easily increase the size of 

such memories. For my dissertation research, I chose not to look at software-controlled 

scratchpad memories since the DSPs found in mobile computing devices such as smart phones 

usually have cache memories.  

However, although many DSPs use software-controlled scratchpad memories, a large number 

of DSPs (such as the Texas Instrument series of DSPs) still use memory hierarchies with L1 and 

L2 caches, similar to those found in general-purpose processors. However unlike general-

purpose processors, DSPs often have significantly smaller cache sizes since the devices DSPs are 

traditionally found in have much smaller area constraints. It is common for DSPs to have L1 

cache sizes as small as 4 KB. Although caches have probabilistic behavior, which does not 

address the deterministic requirement of many signal processing applications, they provide the 

advantages of a simpler programming model while also allowing flexibility when porting an 

application from one processor to another. With software-controlled memories, programmers 

may need to rewrite their programs for each new processor memory hierarchy.  

3D memory integration technology offers the opportunity to integrate main memory in the 

same package as the processor and was believed to significantly decrease the memory latency, 

which decreases the cache miss penalty and decreases energy consumption. As will be discussed 

later in this document, we found the latency reduction claims for 3D memory to be overly 

aggressive and the decrease in memory latency from 3D memory to be significantly less than the 

often-quoted reductions. 
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Another architectural feature many DSP architectures take advantage of is using Very Long 

Instruction Word (VLIW) techniques to increase parallelism. VLIW architectures exploit 

instruction-level parallelism by allowing programmers or compilers to find independent 

instructions, dispatch them in parallel and allow them to execute concurrently on multiple 

execution units. Since many multimedia applications exhibit instruction-level parallelism and 

data-level parallelism that can be transformed into instruction-level parallelism, VLIW 

architectures take advantage of this to increase performance while keeping area and energy low 

by avoiding complex hardware structures for register renaming, bypass logic, and branch 

prediction found in many out-of-order superscalar processors. In addition, VLIW architectures 

also address the deterministic execution time requirements of many signal processing 

applications, since the programmer or compiler statically schedules instructions.  

Lastly, although general-purpose processors can execute many signal processing 

applications, they generally do not perform as well as DSPs on these applications and consume 

too much energy and area to be effectively used in the types of devices that employ DSPs. In 

contrast, DSPs can have specialized instruction set architectures for signal processing 

applications and include hardware features such as an integer multiply accumulate (MAC). DSPs 

implement these applications at high performance with low energy and area, thus making them 

better candidate architectures for portable electronics and multimedia devices.  

For my dissertation research, the baseline DSP chosen for evaluation is the Texas Instrument 

C67x DSP [21]. The C67x is an eight-way VLIW DSP with a traditional cache hierarchy. Texas 

Instrument DSPs can currently be found in Motorola Droid smartphones, Amazon Kindle E-

book readers, and tablets like the Samsung Galaxy Tab 2. The Texas Instrument C67x DSP is 

described in further detail in Chapter 4.  
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2.3  Main Memory (DRAM) 

Main memory or dynamic random-access memory (DRAM) is a type of memory, generally 

found off-chip that uses a single transistor and capacitor pair for each bit. DRAM is referred to as 

“dynamic” because the capacitors storing the bits of data leak their charge and so, to retain the 

stored information, each capacitor in the DRAM must be periodically refreshed (i.e. read and 

rewritten).  

Each DRAM die contains one or more memory arrays, which contain a grid of storage cells 

with each cell storing one bit of data. Each memory array is arranged in rows and columns. To 

read or write to a specific location, the memory controller uses a row and column address to 

identify the intersection of a row and column within a memory array [22]. Specifically once a 

row is identified, an entire row of bit cells are brought into a row buffer. From the row buffer, the 

memory controller uses the column address to strobe the appropriate column and access the 

correct memory location. Figure 2.2 (taken from [22] with permission from Bruce Jacob) shows 

the breakdown of one DRAM memory array.  

Figure 2.2: Organization of a DRAM memory array (from [22]). 
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The performance of main memory can be specified by a combination of several main 

memory parameters such as tRP, tRAS, tRCD, and tCL (or tCAS). The tRP is the row precharge 

time and represents the number of cycles needed to terminate access to a row in memory and 

open access to a different row. The tRAS is the number of cycles it takes to access a certain row 

of data after sending the row address. The tCL (or tCAS) is the number of cycles it takes to 

access a column of data after sending the column address. The tRCD (RAS to CAS delay) 

represents the number of cycles between opening a row of memory (tRAS) and accessing the 

columns (tCL or tCAS). Many times the tRCD delay can overlap with the tRAS delay. DRAM 

access latencies can vary widely based on if the data needed is in an already open row (tCL) or if 

the data resides in a different row and therefore must be opened and then read (tRCD + tCL,).  

Figure 2.3 shows the read/write timing diagram for a DRAM access. To access memory, a 

row must first be selected and loaded into the row buffer. Each bit line is connected to a sense 

amplifier, which detects and amplifies the small voltage change of each bit line. The amplified 

signal is then output through a DRAM bus into the row buffer. The row is then active and 

columns are accessed for reading or writing. The dominant portion of the access time is 

determined by the row and column activate times plus CAS latency (tRCD + tCL) to allow 

Figure 2.3: Timing diagram for a DRAM access. 
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enough time for data to be streamed out [23] as shown in Figure 2.3. The term labeled “BL” in 

Figure 2.3 is the burst length, which represents how many “bursts” of data are read or written. 

For example, a BL value of 4 means that after the first column activation, an additional three 

memory accesses are performed from adjacent locations in the DRAM memory array, which are 

already in the row buffer. This memory access behavior improves the performance of 

applications that exhibit a degree of spatial locality because subsequent memory references will 

already be brought into the cache, which reduces the number of long latency main memory 

accesses.    
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3 Related Work 

This chapter provides a survey of previous work. It includes a discussion of previous research in 

the areas of 3D memory design, 3D integration technology in high performance processors, 3D 

integration technology in domain-specific processors, and memory scheduling.   

3.1 3D Memory Design 

A number of studies have investigated 3D memory design and implementation without analyzing 

its impact on the full system [24] [25] [26] [27] [28] [29] [30].  

Anigundi et al. [24] investigated different 3D DRAM design configurations that used wafer-

level BEOL-compatible 3D integration techniques and TSVs. To accommodate the potentially 

significant pitch mismatch between DRAM word-lines/bit-lines and TSVs, they proposed two 

coarse-grained partitioning strategies for 3D DRAM designs that reduced the number of TSVs 

and relaxed fabrication constraints. Their proposed 3D partitioning design strategies reduced the 

silicon area, access latency and energy consumption when compared with 3D packaging with 

wire bonding and conventional 2D designs. To mitigate the yield loss of 3D integration, 

Anigundi et al. also proposed an inter-die, inter-sub-array redundancy repair approach to 

improve the success rate of memory repairs.  

Tsai et al. [25] presented and validated a 3D cache delay and energy model called 3DCacti, 

which allows designers to partition the cache across different 3D device layers at various levels 

of granularity and explore different 3D options. Using their tool, the authors also explored a 

variety of 3D cache partitioning options and compared the impact of the delay and energy 

savings of different 3D cache partitioning strategies. They found that the savings in delay and 
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energy through 3D partitioning depends on the cache size, system requirements, the number of 

3D device layers, and the technology node. 

Wu et al. [26] proposed hybrid cache architectures composed of different memory 

technologies. They proposed both inter- and intra-cache level hybrid cache designs that 

combined SRAM, Embedded DRAM (EDRAM), Magnetic RAM (MRAM), and Phase-change 

RAM (PRAM) technologies. The motivation behind this cache design came from observing that 

caches made with different technologies offered dramatically different power and performance 

characteristics compared to the traditional SRAM-based cache. For example, although SRAM 

provided the shortest access latency, it consumed the most area and power while MRAM and 

PRAM technologies provide longer access latencies, but consumed less area and power. To take 

advantage of the best characteristics of each technology, they present a Hybrid Cache 

Architecture (HCA) that combines the technologies. They found an inter-cache-layer HCA 

design where individual levels in a cache hierarchy can be made of different memory 

technologies provided a 7% IPC improvement when compared to a traditional three-level SRAM 

cache design under the same area constraints. They also found that a more aggressive intra-

cache-layer HCA design where a single cache level could be partitioned into multiple regions, 

each with a different memory technology, yielded a 12% IPC improvement over the baseline 

while still consuming the same area. Lastly, the authors note that since 3D integration technology 

enables the addition of more cache layers without increasing area, they present a two-layer 3D 

hybrid cache design using 3D technology that achieves an 18% IPC improvement over the 

baseline while reducing power by up to 70%.  

Loh and Hill [27] [28] studied using 3D integration technology to make a multiple-layer, die-

stacked DRAM cache. Their motivation for this 3D cache is that for many systems, the capacity 
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of stacked DRAM would not be large enough for all of main memory so they instead 

investigated a last-level DRAM cache. However, a 1 GB DRAM cache with 64-byte blocks 

would require 96 MB of tag storage; placing these tags on-chip would be impractical and putting 

them in the DRAM would be too slow. The authors reviewed multiple solutions including large 

cache line sizes (larger than the traditional 64 byte block) and sub-blocking. However, the 

authors noted that with large cache line sizes, there can be fragmentation problems where a small 

subset of data is used in a large cache line, which leads to wasted transfers; sub-blocking, on the 

other hand, increases the overhead of the tag array. To address these problems, the authors 

proposed a 3D DRAM cache design where the cache tags are stored along with data in the cache. 

They showed that scheduling the cache tag and data lookups as a combined operation makes this 

design practical. They also proposed a MissMap structure that allowed them to compactly track a 

very large amount of memory (i.e. 1 GB) using 2 MB of storage from the L3 cache reducing it 

from 8 MB to 6 MB. After combining the two techniques, they achieved 92.9% of the 

performance of an ideal 1 GB DRAM cache with an impractical 96 MB on-chip SRAM tag 

array. 

Kim et al. [29] fabricated a 1 GB 3D-stacked Wide I/O SDRAM with four channels and 512 

data pins using TSVs and a 50 nm technology node. The authors validated the connectivity of the 

TSVs through boundary scan tests and confirmed stable operation at 200 MHz using built-in self 

test (BIST). They also found the TSVs in Wide I/O 3D-stacked DRAM consumed 11.2x less I/O 

energy than off-chip metal wires.   

Takaya et al. [30] presented a 3D test vehicle for wide I/O communication using TSVs. Their 

three-layer 3D stack was composed of a logic chip, active silicon interposer, and SRAM memory 

with a 4,096-bit data bus operating at 200 MHz. This test vehicle was fabricated with a 
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waveform capturer integrated on the silicon interposer to evaluate the signal integrity. The 

authors found their 4,096 wide I/O data bus could achieve 100 GB/s of memory bandwidth using 

a standard voltage supply of 1.2V. 

Although my work also looks at 3D memory integration technology, I focus on analyzing the 

benefits of the technology on both a DSP processor and the entire memory hierarchy, rather than 

primarily studying main memory or the last level cache. The above works primarily focus on 

memory organizations and designs that are enabled with 3D integration technology with some 

works going so far as to fabricate their designs. Although one of my contributions (Chapter 6) 

investigates latency improvements via memory organization, it is not the primary focus of my 

dissertation. The primary contributions of my dissertation focus on the benefits of 3D technology 

on digital signal processors and proposing novel memory bandwidth scaling algorithms that take 

advantage of the increased main memory bandwidth that comes from using 3D DRAM with 

Wide I/O. Philosophically, I found [26] to be the most similar to my dynamic bandwidth scaling 

algorithms. Although they examined the memory hierarchy, their design approach of combining 

both fast access latency memories with low power consuming memories is similar to my own 

philosophy in proposing a dynamic bandwidth scaling algorithm that increases the main memory 

bus width during memory-intense phases and lowers the bus width during compute-intense 

phases to lower energy consumption. 

3.2 3D Integration Technology in High Performance Processors 

Prior studies have explored 3D integration technology for high-performance processors [31] [32] 

[33] [35].  

Black et al. [31] investigated the benefits of dividing an Intel® Core™ 2 Duo microprocessor 

into two die and vertically stacking them atop each other to reduce the length and latency of the 
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wires between critical paths. They also studied increasing the size of the L2 through 3D 

integration and converting the L2 cache to DRAM technology for increased storage. Their 

vertical floor plan studies found that for a high-performance microprocessor, a 3D floor plan 

could reduce power by 15% while increasing performance by 15% for a 14°C increase in peak 

temperature. After voltage and frequency scaling, they found that the increase in temperature 

could be neutralized while still giving an 8% improvement in performance and a 34% reduction 

in power. Converting the cache to 3D stacked DRAM could also reduce the cycles per memory 

access by an average of 13%.  

Liu et al. [32] explored the performance benefits of moving main memory DRAM on-chip 

and stacking it below a processor that is similar to an Alpha 21264. They reported that stacking 

DRAM below the processor and using TSVs reduced the main memory access latency by 60% 

and led to an average speedup of 13% for integer applications and 25% for floating-point 

applications. The 60% reduction in main memory access latency was cited as the primary reason 

for this performance improvement. They also explored the benefits of expanding the L2 cache 

with additional 3D layers and found that the peak performance for integer programs was 

achieved with an 8 MB L2 while floating-point program performance peaked with a 16 MB L2. 

This was due to the trade-off between fitting larger working sets and the increased access latency 

that comes with larger caches.  

Similarly, Loh [33] investigated stacking 3D main memory DRAM below a high-

performance Intel® quad-core Penryn microprocessor and also analyzed the performance impact 

of increasing main memory bandwidth by widening the data bus between main memory and the 

L2. He also extended previous work by considering more aggressive memory options and 

evaluated a “true 3D main memory” announced by the Tezzaron Corporation [34]. Loh argued 



20 
 

that previous studies did not fully exploit 3D stacking technology because the individual 

structures were still inherently two-dimensional. He evaluated this “true 3D main memory” 

where the individual bitcell arrays are stacked in 3D. This reduced the length of the internal 

buses, wordlines, and bitlines, which in turn reduced main memory access latency. This 

combination of optimizations provided an additional 32% improvement in main memory access 

time that was additive with any previous latency benefits, such as using TSVs instead of off-chip 

metal wires. His simulations showed that simply placing the DRAM on the same stack as the 

processor increased performance by an average of 34.7% on memory-intensive workloads, while 

expanding the bus of the 3D main memory architecture to 64 bytes further increased the average 

performance benefit to 71.8% over the 2D baseline. Loh also found that the “true 3D main 

memory” described above improved average performance by 116.8% over the 2D baseline. With 

these significant performance improvements in mind, he found the L2 miss handling architecture 

(MHA) was the new bottleneck and to address that, he proposed a new structure called a Vector 

Bloom Filter. This structure enabled a scalable MHA that complemented the increased capacity 

of the 3D-stacked memory system and provided an additional 17.8% performance improvement 

over his proposed 3D-stacked memory architecture.  

Lastly, Kgil et al. [35] looked at Tier 1 server architectures and investigated using 3D 

integration technology to stack main memory DRAM below an eight-core system and found 

multiple stacked DRAM dies would be sufficient for a primary memory. This would allow them 

to remove the L2 cache and replace its area with an additional four cores (12 cores total). They 

found that a voltage and frequency scaled 12-core CPU utilizing 3D DRAM, but containing no 

L2 cache outperformed an eight-core CPU system with a large on-chip L2 and 3D DRAM by 

about 14% while consuming 55% less power. They also found that their architecture performed 
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comparably to an Intel® Pentium 4-like machine while only consuming about 10% of the power 

when running at a much lower voltage and frequency.  

These studies demonstrated the potential performance and power benefits of 3D integration 

in the field of high performance microprocessors. Loh [33] in particular made significant 

contributions to the area. Although my dissertation also looks at the impact of 3D main memory 

on microprocessors, those processors are embedded DSPS, which have significantly different 

design constraints compared to the high-performance microprocessors described above. 

Although energy consumption is important in high performance processors, it is much more 

important on embedded DSPs that are usually found in mobile devices such as cell phones, 

which have limited battery life. These unique design constraints required my dissertation to focus 

on solutions that not only increased performance, but also targeted low energy consumption. 

This led me to propose my dynamic bandwidth scaling algorithms, which are described in 

Chapter 7. In addition to the underlying processor architecture being different, my work also 

differs due to the applications I evaluated, which were primarily multimedia-based applications 

commonly run on mobile computing devices. These applications are described in Chapter 4.  

Lastly, some of the performance claims in the above works are contingent upon 3D stacked 

memories and TSV interconnects providing a significant reduction in main memory access 

latencies (as high as 60% as quoted in [32]). Using TSVs instead of off-chip metal wires is cited 

as the primary reason for this latency reduction. These latency reduction claims are used in many 

works and unfortunately, we disagree with this latency reduction claim. As described in Chapter 

5, simply stacking 3D DRAM below the processor and using TSVs does not provide as large of a 

latency savings. This finding reduces some of the performance benefits in the above studies. 

However, my work does not refute the performance claims of the “true 3D main memory” 
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described in [33]. It instead looks at stacking 3D DRAM below the processor and using TSV 

interconnects since that is the commonly studied case in 3D memory research.  

3.3 3D Integration Technology in Domain-Specific Processors 

There have also been a number of studies that investigated 3D integration technology in domain-

specific systems [36] [37] [38] [39] [40].  

Al Masshri et al. [36] explored the benefits of using 3D stacked caches on GPUs, and 

compared 3D stacked caches using MRAM (Magnetic Random Access Memory) and SRAM 

technologies. Their results showed that by using 3D stacked caches, GPUs achieved a 53% 

geometric mean speedup on 3D graphics and gaming benchmarks. They also found that 

replacing the SRAM caches with MRAM technology yielded performance degradation, but 

provided power benefits, making it more appealing for power-conscious applications.     

Pan et al. [37] investigated 3D memory integration on VLIW DSPs. Their work is the most 

similar to my dissertation work. They explored the benefits of stacking main memory DRAM 

below a DSP and then converted the L2 from traditional SRAM technology to their own multi-

Vth DRAM design, which was much faster than traditional DRAM. They found that using 3D 

integration technology to migrate main memory into the package yielded a 10% to 80% IPC 

improvement over the baseline. They also found that by using their own multi-Vth DRAM 

design for the L2 (instead of traditional SRAM technology), they could double the size of the L2 

(without impacting area) and see an additional 10% improvement in IPC.  

Sun et al. [38] proposed a 3D memory hierarchy where three SRAM layers could be stacked 

below a multi-core DSP and configured as instruction or data caches for each DSP core. They 

found that this memory architecture could improve the system performance of a single-channel 

H.264 decoder by 30% and a multi-channel H.264 decoder by 54% compared to the 2D memory 
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baseline. They also found this memory architecture could increase the performance of a JPEG 

decoder by six times by placing the data section (heap and stack structures) in the 3D SRAM 

instead of the off-chip DDR2 memory.   

Kim et al. [39] presented a reconfigurable heterogeneous multimedia processor for various 

embedded applications on a handheld device. Their implemented processor included a custom-

designed I/O interface circuit with reconfigurable output drivers on a silicon-interposer channel 

to achieve 8x higher memory bandwidth and found it achieved a 1.7x speedup in full augmented 

reality processing.  

Sampson et al. [40] implemented a system architecture and specialized accelerator unit for 

low-power 3D ultrasound beam formation, which they call Sonic Milip3De. Since 3D ultrasound 

offers unique challenges for computing due to its computational complexity and low power 

requirements due to its close contact with human skin, the authors leveraged 3D die stacking 

technology to split the analog components, analog-to-digital converters, SRAM storage, and a 

1,024 unit beamsum accelerator array across three silicon layers for shorter wires and a compact 

design. The authors also developed a new iterative delay calculation algorithm to exploit data 

locality and lower power. With these optimizations, their 3D design was able to image a fully 

sampled array within a 16W full-system power budget, which was over 400x less power than a 

DSP-based solution. The authors estimate that with current scaling trends, their system will meet 

the 5W target power budget for safe use on humans by the 11 nm technology node. 

Although [37] and [38] are the most similar to my dissertation research, I conducted a more 

thorough design space exploration by considering a wider range of 3D memory configurations. I 

specifically targeted memory configurations that increased the main memory bus width, which 

were not considered in [37] and [38]. Furthermore, some of the performance results in [37] and 
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[38] rely on the original latency claims of 3D main memory (45% to 60% latency savings), and 

as will be explained in Chapter 5, I show this claim to be inaccurate. Therefore, I believe my 

dissertation research to have more accurate performance results. Lastly, my dissertation research 

also looks into dynamic bandwidth scaling algorithms, which none of the above works consider. 

To the best of my knowledge, these topics have yet to be addressed or thoroughly studied for 

DSP systems.  

3.4 Memory Scheduling 

There have been a number of studies on main memory scheduling algorithms, memory 

controllers, and memory bandwidth [41] [42] [43] [44] [45] [46] [47].  

Rixner et al. [41] analyzed the benefits of various algorithms for reordering memory accesses 

for streaming applications. They describe a number of memory scheduling policies including in-

order, priority, open, closed, most pending, and fewest pending. The in-order scheduler takes the 

oldest pending DRAM reference. A priority scheduler performs the pending memory reference 

with highest priority. An open scheduler precharges a bank only if there is no pending references 

to other rows in the bank and there are no pending references to the active row. This policy is 

employed when there is significant row locality, making sure future references that target the 

same row are serviced quickly. A closed scheduler precharges a bank as soon as there are no 

more pending references to the active row. It should be employed if it is unlikely that future 

references will target the same row as previous references. A most pending scheduler selects the 

row or column access to the row with the most pending references; it can be used to prevent 

starvation. Lastly, the fewest pending policy selects the column access to a row targeted by the 

fewest pending references, which minimizes the time a row with little demand remains active. 

Based on these observations, they proposed an in-order, first-ready access scheduler that 



25 
 

considers all pending references and schedules a memory operation for the oldest pending 

reference. They found that the in-order, first ready access scheduler improved performance by an 

average of 17% and improved bandwidth utilization by 40%. They also proposed an aggressive 

reordering access scheduler increased locality and concurrency to improve performance by 30% 

and bandwidth utilization by 93%. This work was one of the first to propose aggressive main 

memory scheduling algorithms, which are now commonly used in modern memory systems. 

Hur et al. [42] presented an adaptive history-based (AHB) scheduler that used the history of 

recently scheduled memory operations to allow the scheduler to 1) better utilize the delays 

associated with its scheduling decisions and 2) select operations that match the program’s 

mixture of Reads and Writes to help alleviate bottlenecks within the memory controller. The 

authors found their memory scheduler improved performance on an IBM Power5 by 15.6%, 

9.9%, and 7.6% for the Stream, NAS, and commercial benchmarks, respectively and argue that 

as memory traffic increases, the benefits of their AHB scheduler would also increase.  

Ipek et al. [43] proposed a self-optimizing memory controller design that uses the principles 

of reinforcement learning (RL) to make memory scheduling decisions. Their RL-based memory 

controller’s goal was to learn the optimal memory scheduling policy and associate the system 

state with long-term performance impact so as to schedule the memory operation that it 

estimated will produce the highest long-term reward (performance). By continuously updating 

the long-term reward values, the RL-based memory controller could adjust to changes in 

workloads in real-time. The authors found their RL-based memory controller improved the 

average performance of a four-core CMP by 19% and the DRAM bandwidth utilization by 22% 

compared to a modern memory controller.  



26 
 

Leibowitz et al. [44] presented a mobile memory interface that utilized a globally 

synchronous clock pause, which allowed the memory controller to synchronously pause the 

entire memory interface to gate dynamic power consumption. This approach allowed the DRAM 

to operate in a burst mode that could match the nature of the memory traffic while reducing 

power consumption during idle periods. A test-chip was fabricated and achieved a peak memory 

bandwidth of 4.3 GB/s at 3.3 mW/GB/s power efficiency, which could be scaled to 12.8 GB/s for 

more aggressive memory and power demands.  

David et al. [45] evaluated dynamic voltage and frequency scaling for memory bandwidth 

scaling. They observed that in a typical server platform, memory consumed on average 19% of 

the system power and that although increasing compute cores increases the demand on memory, 

many workloads do not require maximum memory bandwidth. They found that reducing the 

memory frequency incurred minimal performance degradation while reducing memory 

frequency also allowed them to reduce the memory voltage. Based on these observations, the 

authors proposed a dynamic voltage and frequency scaling algorithm that is based on memory 

bandwidth utilization and found their algorithm reduced average memory power by 10.4% with a 

performance degradation of only 0.17%.  

Yoon et al. [46] proposed and evaluated an adaptive granularity memory system that 

combined fine-grained and coarse-grained memory accesses. Modern memory systems use 

coarse-grained memory accesses to bring an entire L2 cache line with multiple main memory 

bursts. However, the authors noted that during code segments where spatial locality is low, this 

coarse-grained approach was inefficient. The authors implemented an adaptive granularity 

memory system with sector caches and sub-ranked main memory that could go between coarse-

grained and fine-grained memory accesses and found it could improve the performance of 
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memory-intensive applications by 61% without ECC (error correcting codes) and 44% with 

ECC. They also found their adaptive granularity memory system could lower memory power 

consumption by 29% without ECC and 14% with ECC.  

Deng et al. [47] presented a main memory power management scheme called MemScale, 

which applies dynamic voltage and frequency scaling (DVFS) to the memory controller and 

dynamic frequency scaling (DFS) to the memory channels and DRAM devices to improve 

memory energy consumption. MemScale was controlled by an operating system policy that 

determined the DVFS/DFS settings for the memory system based on the memory bandwidth 

needs, potential energy savings, and the performance degradation the applications could 

withstand. Unlike traditional low-power memory states that require entire DRAM ranks to be 

idle, MemScale’s modes are active and do not rely on memory idleness. Through simulation the 

authors found MemScale could reduce memory energy consumption between 17% and 71% with 

a maximum performance degradation of 10%.   

These works demonstrated the performance and energy benefits of advanced memory 

scheduling algorithms, memory controller optimizations, and dynamic voltage and frequency 

scaling on main memory. Although one of the contributions of my dissertation is proposing 

dynamic bandwidth scaling algorithms to lower DSP energy consumption, which was the goal of 

[44], [45] and [47], my proposed algorithms do so through a different mechanism. My dynamic 

bandwidth scaling algorithms vary the main memory bus width to lower main memory energy 

consumption while the authors in [44], [45], and [47] use a global pause or dynamic voltage and 

frequency scaling. Similarly, adaptive granularity memory accesses proposed in [46] is also 

similar to my dynamic bandwidth scaling algorithms. The authors of this study also dynamically 

change main memory accesses, but do so with changes to the main memory and cache 
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organizations. Furthermore, their coarse-grained granularity is no wider than typical main 

memory accesses (one L2 cache line size) while my dynamic bandwidth scaling algorithms can 

fetch up to three additional L2 cache lines through the use of TSVs, which is only possible when 

utilizing 3D integration technology.  

Additionally, while [42] and [43] use previous memory requests to make current memory 

decisions and are similar to how I designed my algorithms (described in Chapter 7), one of my 

algorithms considers DSP performance (IPC) to make its bandwidth scaling decisions. Both 

studies also focused on improving performance and bandwidth utilization while my algorithms 

focus on efficiently using memory bandwidth so as to reduce DSP energy consumption while 

maintaining performance. Lastly, my dissertation research focuses on 3D memory technology 

and specifically on a key advantage of 3D memory technology (increased main memory 

bandwidth) as its motivation and none of the above studies considered 3D memory technology 

and instead considered more traditional memory architectures. To the best of my knowledge, my 

dissertation research is the first to propose dynamic bandwidth scaling algorithms for 3D 

memory systems utilizing significantly increased main memory bus widths.  
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4 Experimental Framework 

This chapter provides a detailed description of the simulation environment I used for DSP 

performance and energy evaluation. It also includes a more detailed description of the baseline 

DSP I used for comparison, which is similar to a Texas Instrument C67x DSP. Lastly, this 

chapter concludes with a description of the six benchmarks I used for evaluation. 

4.1 Simulation Environment 

4.1.1 Trimaran 

For performance evaluation, I used the Trimaran simulator [48] running within the EPIC-

explorer framework [49]. The Trimaran simulator is a cycle-accurate, highly parameterizable 

integrated compilation and performance evaluation tool used to evaluate embedded and high-

performance VLIW architectures. Trimaran is comprised of the following: 

1. A parameterized instruction-level parallelism (ILP) architecture called HPL-PD [50]. 

2. A machine description language for conveying HPL-PD architectures. 

3. An easily modifiable optimizing compiler that employs an extensible IR (intermediate 

program representation), which has both an internal and textual representation. The IR 

supports modern compiler techniques such as representing data and control dependencies 

and control flow.  

4. A HPL-PD architecture simulator, which can be parameterized via a machine description. 

This simulator provides run-time information on execution time that can be used for 

profile-driven optimizations. 

HPL-PD adopts a philosophy where the compiler is responsible for statically scheduling the 

execution of a program and therefore the compiler needs exact information about the architecture 
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including the register file structure, included operations, resources in the architecture, resource 

utilization patterns, and operation latencies. A machine-description (MDES) database specifies 

these parameters, and the architectures are defined using a human-readable machine description 

language, called HMDES [51].  

The Trimaran simulator is comprised of three components: the OpenIMPACT compiler, the 

Elcor compiler, and the Simu simulator. OpenIMPACT takes the application’s source code and 

the description of the VLIW processor as inputs and performs compilation and static scheduling 

of the operations. The Trimaran simulator uses the OpenIMPACT compiler to compile the 

original source code into an assembly intermediate representation (IR) called Lcode that is 

optimized for Instruction-Level Parallelism (ILP), but not targeted towards any specific 

architecture. The Elcor compiler takes the Lcode and a machine-description that specifies the 

machine and compiles the code for the target machine. During the Elcor step, the benchmark is 

profiled and a binary is generated by linking with the emulation library (Emulib), which provides 

the code needed to simulate each of the instructions scheduled by Elcor. The generated binary is 

then simulated on the Simu simulator and execution statistics are captured. These statistics 

portray the performance behavior of the benchmark on the target VLIW architecture. 

Additionally, as noted earlier, the Trimaran simulator was run within the EPIC-explorer 

framework. EPIC-explorer is a parameterized VLIW-based platform containing area and energy 

estimation models and is primarily used for design exploration. For the processor, EPIC-

explorer’s energy estimation models are based on the Cai-Lim model [52] and adapted to VLIW 

processors. This energy estimation model subdivides the processor into a set of functional blocks 

called FBUs (Functional Block Units) and gives two measurements for each type of circuit: 

active energy density and inactive energy density where the inactive energy density is set to 10% 
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of the active energy density. For the memory hierarchy, EPIC-explorer uses the analytical model 

in CACTI [53], which includes energy components for the inputs, outputs, bitlines, and 

wordlines. For the wider bus widths simulated in Chapter 6, this model does not take into 

account the extra TSVs and their increase in leakage power. EPIC-explorer has been integrated 

with Trimaran and takes the execution statistics and a configuration file obtained from the 

Trimaran simulator and uses them to make energy estimations for each functional block.  

Lastly, the version of the Trimaran simulator I used (version 4.0) provides an interface for 

simulating the memory hierarchy through an optional simulator called M5elements. M5elements 

is a cache simulator that allows the Simu simulator to use the memory subsystem of the M5 

simulator [54]  to gather detailed memory statistics.  

For this dissertation, modifications were made to both Trimaran and EPIC-explorer including 

the addition of an energy estimation model for the main memory bus. This energy estimation 

model takes the energy per I/O transfer derived in [29] for both 2D metal wires and 3D TSVs, 

the number of DRAM accesses, and bus width to calculate the energy consumed by the main 

memory bus. Modifications were also made to Trimaran to support implementation of my 

proposed bandwidth scaling algorithms and adjacent cache prefetching including the addition of 

more main memory and cache statistics. Trimaran was chosen for my dissertation research 

because, at the time, it was one of the only simulators for VLIW processors. Additional features 

such as an integrated energy and area model from EPIC-explorer also made it an attractive 

simulation platform. All of the processor and memory configurations as well as my bandwidth 

scaling algorithms were simulated on the Trimaran simulator and all performance and energy 

results reported in Chapters 5, 6, and 7 were generated using Trimaran, M5elements, and EPIC-

explorer.   
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4.1.2 CACTI 

The CACTI memory simulator [53] was used to aid in the modeling of the timing and energy 

consumption of traditional DRAM. CACTI provides an analytical model for cache and memory 

access times, cycle times, area, leakage power, and dynamic power. By having area, timing, and 

power models integrated together, CACTI allows users to weigh the benefits and tradeoffs of 

their memory designs, which allows designers to have a better understanding of the impact of 

different design choices. CACTI accepts a very detailed set of memory parameters, which allows 

the user to explore a wide variety of memory configurations. CACTI has been rigorously 

updated throughout the years including improvements in accuracy and support for smaller 

technology nodes. The fifth major update to CACTI added the ability to model DRAM.  

For my dissertation research, CACTI was used to model a 512-MB 2D DRAM with a page 

size of 8,192 bytes and one read-write port in 65-nm technology, which is a common main 

memory configuration for mobile phones. This configuration had a random access latency of 56 

ns, which is very close to the latency found in Micron’s DDR2 specification sheet [23] for a 

memory with the same configuration. However as noted in Chapter 2, not all DRAM accesses 

are random and many of them do not require a row activation time (tRAS) and simply need a 

column strobe time (tCAS) since the memory request is already in the row buffer. This leads to 

faster access latencies for many DRAM requests. For that reason, CACTI was primarily used to 

generate DRAM timing parameters such as row activation time (tRAS), column strobe (tCAS or 

tCL), precharge time (tRP), etc., which was then used in the trace-based memory simulator to 

generate a more accurate DRAM access latency. This trace-based memory simulator is described 

in the next section.  
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4.1.3 DRAMSim2 

To obtain more accurate main memory access latencies, DRAMSim2 [55] was used. 

DRAMSim2 is a cycle-accurate DDR2/3 DRAM simulator that models a detailed and accurate 

memory controller that issues commands to a set of DRAM devices attached via a traditional 

memory bus. DRAMSim2 fills the void in cycle-accurate memory simulators. In particular, 

many CPU simulators significantly underestimate the effects of the memory system by using 

overly simplistic models of the memory system. These simple memory models fail to take into 

account highly complex behaviors of modern memory systems such as request reordering and 

open and closed page policies, which DRAMSim2 models. To validate its accuracy, 

DRAMSim2 includes Verilog timing models for Micron DDR2/3 DRAM parts. Whenever 

DRAMSim2’s memory controller issues a command, this command is first executed on the 

Micron Verilog model with the same timing parameters. This is done to determine if the 

DRAMSim2 memory controller has violated any timing requirements.  

DRAMSim2 includes an accurate memory controller model and issues individual memory 

requests, unlike CACTI’s analytical model. It is a trace-based memory simulator that takes a 

trace of memory requests from an application and accurately models each individual memory 

request and its interaction with other memory requests in the memory transaction queue (i.e. 

memory request reordering). Once the trace has been analyzed, results are reported, which 

include the average latency of requests within a timing window, how many requests went to each 

DRAM bank, etc.  

For my dissertation research, I modified DRAMSim2 to output more fine-grain timing 

information for each memory request. I then modified the system.ini file with the timing 

parameters obtained in CACTI and discussed in Section 4.1.2. These parameter modifications to 
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the system.ini file ensured that DRAMSim2 would simulate the same DRAM as the one modeled 

in CACTI. I then modified the Trimaran simulator to gather and output each individual main 

memory request, which I then parsed into the format required for a DRAMSim2 memory trace. 

Once the memory traces for each of my applications (described in Section 4.3) were generated, 

each memory trace was run on DRAMSim2 and its timing information collected.  

As expected, each application had a faster average latency than the random access latency 

reported in CACTI in Section 4.1.2 (56 ns). As discussed earlier, this was because the memory 

behavior of these applications was not random and the applications exhibited some spatial 

locality. This meant in an open page main memory policy, some of the memory requests did not 

need a row activation (tRAS) and only needed a column strobe (tCAS or tCL), which would 

lower the memory request’s access latency. For our six applications, we found the average main 

memory latencies to be between 38 and 40 ns. These were the main memory latencies used in my 

Trimaran simulations with a 2D DRAM memory system. 

4.2 Baseline Processor 

For my dissertation research, the baseline DSP architecture I used for evaluation is similar to a 

Texas Instrument C67x series floating-point processor [21]. The C67x is designed to be a low-

power application DSP. It is a dual-core VLIW processor running at 1 GHz and has separate L1 

caches for data and instruction and a shared L2 cache. The C67x DSP has two paths that can 

issue four instructions each for a total of eight instructions per cycle. All integer execution units 

are 32-bits wide, and operations are statically scheduled by the compiler and executed. Figure 

4.1 shows a block diagram of the Texas Instrument C67x DSP. Table 4.1 summarizes the Texas 

Instrument C67x configuration. 
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Table 4.1: Texas Instrument C67x Configuration.  

Parameter Setting 

Frequency 1 GHz 

L1 data cache 32-KB, 2-way, 512-bit lines, 1 cycle 

L1 instruction cache 32-KB, 1-way, 256-bit lines, 1 cycle 

Unified L2 cache 256-KB, 4-way, 1,024-bit lines, 7 cycles 

# of ALUs 6 

# of multiply units 2 

# of memory units 1 

Main memory size 512-MB 

Main Memory bus width 64 bits 

2D main memory latency 38 to 40 ns 

 

Figure 4.1: Block diagram of a Texas Instrument C67x DSP. 
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4.3 Benchmarks 

To evaluate memory configurations and bandwidth scaling algorithms, I used applications from 

the MediaBench benchmark suite [56], the SPEC CPU2006 benchmark suite [57], and the San 

Diego Vision Benchmark Suite [58]. The chosen applications are commonly run on handheld 

mobile devices and encompass a variety of signal processing application types including 

multimedia processing, 3D graphics, and speech recognition. The six benchmarks I used for my 

evaluations were: 

1. Unepic is an experimental image decompression utility (EPIC) found in the MediaBench 

benchmark suite. It is a lossy image decompression algorithm, meaning that the output 

image is not exactly identical to the input image. Unepic has been designed with filters to 

allow for fast decoding without floating-point hardware. Unepic was specifically chosen 

for evaluation since image decompression is a common task done on mobile phones 

when rendering webpages.  

2. 482.sphinx3 is a speech recognition system developed at Carnegie Mellon University 

[59] and is part of the floating-point portion of SPEC CPU2006. Speech recognition 

converts spoken words from audio to text by reading the input (audio) and then 

repeatedly processing it with different “beams,” which are the probabilities used to prune 

the set of active hypotheses during each recognition step. Speech recognition was chosen 

for evaluation because it is a complex application that is becoming an important portion 

of popular consumer applications such as personal assistants like Siri found on Apple’s 

iPhone [60].   

3. Disparity is a 3D reconstruction application in the San Diego Vision Benchmark suite 

that is based on Stereopsis [61], also known as Depth Perception. Disparity takes a pair of 
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stereo images, taken at slightly different positions and computes the depth information of 

the objects represented in both pictures. The depth information of a scene gives the 

relative position of the objects, which vision systems can then use for cruise control, 

pedestrian tracking, and collision detection. Although originally intended for robot vision 

systems found in cars and unmanned aerial vehicles (UAVs), computer vision is 

important for smart phones as complex Augmented Reality (AR) applications become 

more popular among consumers. For these reasons, Disparity was chosen as one of 

benchmarks for evaluation. 

4. Mser is an object detection application that takes a digital image and determines the 

location and size of human faces (i.e. face detection). The San Diego Vision 

implementation of this application is based on the Viola Jones Face Detection algorithm 

[62]. The granularity of the algorithm’s operations occurs at the pixel-level and the 

computations performed are complex. Face detection is found in biometrics, video 

surveillance, human computer interface (HCI), and image data management. Like the 

other SD-VBS applications, it was chosen for evaluation because of its wide-spread 

usage in consumer mobile devices.  

5. Stitch is an image or photo stitching application found in the San Diego Vision 

Benchmark suite. The implementation of the Stitch benchmark is based on [63] and uses 

the RANSAC algorithm [64] for image matching. Stitch combines multiple photographic 

images with overlapping fields of view into either a segmented panorama or high-

resolution image. Image stitching is found in photography and movie making applications 

and was chosen for evaluation due to its use in camera applications found in mobile 

phones.  
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6. Tracking is a feature tracking application used to extract motion information from a 

sequence of images. This is done with feature extraction [65] and a linear solver that 

calculates the movement of the extracted features. This San Diego Vision benchmark 

implements the Kanada Lucas Tomasi (KLT) algorithm [66] for feature tracking, which 

is comprised of three major computation steps: image processing, feature extraction, and 

feature tracking. Image processing is done at a pixel level granularity while feature 

extraction and tracking, the core of the algorithm, operates at a coarse grained level based 

on what features are identified. This application has uses in the automotive industry, 

robotic vision, and video surveillance, but is also finding uses in consumer electronics 

such as Microsoft’s gaming peripheral Kinect [67] and object detection in cameras.  

As noted above, these applications were chosen since they were representative of the types of 

applications commonly run on modern handheld mobile devices such as smartphones. Some of 

the applications such as image compression are relatively simple and have been in use for years, 

but many of them such as face and speech recognition are becoming more essential towards the 

end-user experience on consumer mobile devices. These types of applications are not only 

compute intense, but also memory intense making them well-suited for the 3D memory research 

detailed in this dissertation. It is my belief that future mobile computing applications will 

continue this trend and become more complex and as such, the chosen benchmarks are 

representative of the types of applications that will be run on future DSP systems.  
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5 Reevaluating 3D Main Memory  

In this chapter, I present a new model for 3D main memory latency and show through accurate 

circuit-level simulations that the original claim that 3D main memory reduces access latency 

45% to 60% is inaccurate. With this model, the latency reduction is no more than 2.4 ns (or 

4.1%)1. This is a significant finding since many of the performance improvements found in 3D 

memory studies were contingent upon this memory access latency reduction. In this chapter, I 

also re-evaluate the performance benefits of 3D main memory with this new model and find that 

the one of the advantages of 3D main memory needs to be re-examined. 

5.1 A Model for 3D Main Memory 

As described in Chapter 3, there have been a number of studies using the claim that going to 3D 

main memory and using TSVs instead of off-chip metal wires results in a 45% to 60% reduction 

in main memory access latency, which increases the performance of applications with high L2 

miss rates that access main memory often. However, regardless of 2D or 3D technology, the 

DRAM bank organization remains the same as described in Section 2.3. Both 2D and 3D DRAM 

arrays are composed of rows and columns requiring the same timing parameters such as tRAS 

and tCL. 

Therefore, if the DRAM bank organization and data output pipelining architectures remain 

the same, which is likely due to the strong desire for low cost per bit by the DRAM industry, the 

key difference in 2D and 3D DRAM memory access time is the difference in interconnect 

latency between the 2D and 3D buses for clocks, data and commands; specifically the latency 

difference between off-chip metal wires and TSVs. Figure 5.1 illustrates our 2D and 3D physical 

                                                 
1 This new model for 3D main memory was developed by collaborating with Professor Gyung-Su Byun at West 
Virginia University. 
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interconnect models for the memory I/O bus with the 2D physical model on the top and the 3D 

physical model below it. As can be seen in the figure, both models are composed of three key 

components: 1) a transmitter (TX), 2) a receiver (RX), and 3) a transmission medium or channel 

(metal wires for the 2D case and TSVs for the 3D case). The transmitted signal is degraded by 

the frequency dependent attenuation of a band-limited channel. For our 65nm CMOS 2D and 3D 

physical bus models, a push-pull transmitter and single-ended differential amplifier receiver are 

used because they provide the most general transceiver architecture [68].  

To obtain highly accurate latency results for 2D and 3D transmission medium, 2D FR-4 and 

3D TSV channels [69] were modeled using the 3D full-wave electromagnetic field simulator, 

HFSS (High Frequency Structure Simulator) [70]. The parameters for the 2D and 3D channel 

models are listed in Table 5.1. The 2D memory channel model included a printed circuit board 

(PCB) channel of 10 or 20 cm long in FR-4 substrate, a standard FCBGA package for the 

Figure 5.1: 2D and 3D main memory physical interconnect models. 
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memory controller, a 4mm-long Chip Scale Package (CSP) wire bond package for the memory 

devices, solder balls, capacitive loadings for electrostatic discharge (ESD), as well as device 

capacitance and terminations from the transmitters and receivers.  However, the 3D channel 

included only short, vertical TSV wires between tiers [71] that are 0.8mm in the worst case and 

sometimes can be reduced from 0.8 mm to 0.1 mm by thinning each die [69]. 

     In general, DRAM access latency includes the time to request data from the DRAM core 

(memory controller latency), the time to retrieve the data from the DRAM core, and the 

interconnect delay through the bus interface unit. In Table 5.1 the 2D column represents 

traditional off-chip metal wires, the 3D column is the same as the 2D column except the 

interconnects are replaced with TSVs, and the 3D–Aggr column is the case where we 

aggressively removed transmitters from the memory controller and receivers from memory 

devices to further reduce the core access time for the 3D channel due to very short TSV 

interconnect (no delays for long 2D traces, packaging, ESD components and much less 

capacitive loading). Therefore, 3D-Aggr includes only address multiplexing due to on-chip TSV 

interconnects.  

Table 5.1: 2D vs. 3D Channel Model Parameters. 

Parameters 2D [71] 3D [69] 3D-Aggr [69] 

Traces length 
200 mm 

(Microstripe) 
0.8 mm 

(short TSV) 
0.8 mm 

(short TSV) 

Capacitive Loading (/w 
ESD components) 

1 pF 
0.01 pF 

(TXRX Cgate) 
0 pF 

(TXRX removed) 

FC-BGA Solder balls 650 um No solder balls No solder balls 

CSP Wirebonds 4 mm No Wirebonds No wirebonds 

Transmitter and Receiver 304 ps 289 ps 0 ps 

Impedance of channel 50 ohm 50 ohm 50 ohm 

Terminations 50 ohm 50 ohm 50 ohm 

Interconnect Latency 1,522 ps 310 ps 21 ps 

 

 



42 
 

In prior works, the off-chip channel (i.e. metal wires) latency was assumed to be 10 ns in 2D 

DDR SDRAM [72]. However, as can be seen in Table 5.1, if the architecture of the DRAM 

internal core, address multiplexing and data I/O transceiver does not change, the latency decrease 

between 2D and 3D-Aggr (transceivers of the MC and memory devices are removed) is only 1.5 

ns. We validated these latency differences via simulation with the Spectre circuit simulator [73]. 

Table 5.2 shows the latency results from those simulations, which are based on accurate circuit 

and physical models including a 2D package (wire-bonding), ESD components, and standard I/O 

pad parasitic components.  

Table 5.2: Transmitter, Receiver, and Channel Latencies. 

Component 2D T-line (10 cm) 2D T-line (20 cm) 3D TSV 

td (TX) 69 ps 70 ps 69 ps 

td (channel) 620 ps 1,210 ps 21 ps 

td (RX) 235 ps 242 ps 220 ps 

Interconnect Latency 924 ps 1,522 ps 310 ps 

 

When taking into account the DRAM access time, these models show the reduction in total 

access latency (DRAM access latency plus interconnect latency) going from 2D to 3D is as little 

as 0.6 ns (0.9 ns to 0.3 ns) and no more than 1.2 ns (1.5 ns to 0.3 ns). When this value is doubled 

to account for each access going to and back from the memory, the savings is as little as 1.2 ns 

and no more than 2.4 ns. For example, the total 2D access latency for a random access is 59.0 ns, 

where 56.0 ns comes from the random access latency for a DDR2 DRAM [23] and 3.0 ns (1.5 × 

2) comes from the off-chip channel latency. Similarly, the total 3D access latency for a random 

3D memory access is 56.6 ns (56.0 ns + 0.3 ns + 0.3 ns), which corresponds to a reduction of 

about 4.1% (2.4 ns / 59 ns). However, since our baseline processor does not implement critical 

word first, the processor must wait for the entire L2 cache line to be filled. Since the L2 cache 

has 1,024-bit lines this means the first 64 bits take 56 ns and the 15 additional bursts (of 64 bits) 
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are used to fill the rest of the cache line. Since each additional burst requires 1 cycle (or 1 ns) 

[23], this makes the total latency 71 ns (56 ns + 15 ns). For this scenario, TSVs reduce the access 

latency by 3.4% (2.4 ns / 71 ns). As indicated earlier, if the DRAM bank organization is 

reorganized, as shown in [33], the reductions would be larger. However, it is widely cited that 

simply going to 3D and using TSVs instead of off-chip metal wires causes a 45% to 60% 

reduction in overall latency. Yet, through simulations it was found that the latency improvement 

from using TSVs is incorrect, which justifies a reexamination of some of the results that have 

been published in the area of 3D memory integration. 

5.2 Reevaluating 3D Main Memory on DSPs 

In this section, the details of my experimental methodology are explained and then a 

performance analysis of our proposed 3D main memory model is presented. This performance 

analysis re-examines the potential performance benefits of 3D memory integration on embedded 

DSPs. 

5.2.1 Methodology 

I began by simulating the baseline C67x-like DSP detailed in Table 4.1 to establish the 

performance of the baseline DSP using traditional 2D main memory. I then simulated the baseline 

DSP and reduced the main memory latencies to 21 and 22 ns (depending on the application) using 

the original, more aggressive 3D main memory latency reduction claim (45%). These two 

simulations allowed me to quantify the potential performance benefits for the original 3D main 

memory latency reduction claims in isolation. I then simulated the same baseline architecture with 

the more accurate 3D latency savings calculated in Section 5.1 and instead reduce the main 
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memory latencies from 38 and 40 ns to 36 and 38 ns, respectively, to show the actual performance 

benefits. Table 5.3 summarizes our simulation parameters. 

Table 5.3: Texas Instrument C67x Simulation Parameters. 

Parameter Setting 

Frequency 1 GHz 

L1 data cache 32-KB, 2-way, 512-bit lines, 1 cycle 

L1 instruction cache 32-KB, 1-way, 256-bit lines, 1 cycle 

Unified L2 cache 256-KB, 4-way, 1,024-bit lines, 7 cycles 

# of ALUs 6 

# of multiply units 2 

# of memory units 1 

Main memory size 512-MB 

Main Memory bus width 64 bits 

2D main memory latency 38 to 40 ns 

Original 3D DRAM latency 21 and 22 ns 

Accurate 3D DRAM latency 36 to 38 ns 

 

5.2.2 Results 

As described above, we begin by comparing the baseline configuration with 2D and 3D main 

memory. Figure 5.2 shows the performance of each benchmark, with all results normalized to the 

baseline 2D configuration. With 3D main memory having latencies of 21 and 22 ns (Baseline 

(3D)), we observe a performance improvement of 6.5% (using the geometric mean) over the 

baseline. The unepic, sphinx, disparity, mser, and tracking benchmarks exhibit the largest 

improvements (3.3% to 15.1%). These performance improvements can be attributed to these 

benchmark’s higher L2 miss rates (10.0% to 52.2%). Since these benchmarks access the main 

memory more frequently, they benefit more from the lower main memory access latency. 

However, as demonstrated in Section 5.1, this lower main memory access latency claim is 
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inaccurate. Since this claim is the basis for many 3D memory-based studies, however, this set of 

experiments was designed to quantify the performance benefit that could be realized if this claim 

were accurate. 

Figure 5.2 also shows the performance results for our baseline system with a 3D memory 

system using the latency reduction of 2.4 ns calculated in Section 5.1 (Baseline (Accurate 3D)). 

As expected, such a small reduction in main memory latency results in the benchmarks 

performance being nearly the same as the baseline 2D configuration. With the accurate 3D main 

memory latencies, we observe a performance improvement of only 0.7% (using the geometric 

mean) over the baseline. Three benchmarks (sphinx, disparity and mser) exhibit a small increase 

in performance, but this improvement is less than 2%.  

Figure 5.2: Performance results of the six benchmarks on the  

baseline processor with 2D and 3D main memory. 
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These results show that the small latency reductions of 3D main memory through the use of 

TSVs leads to almost no performance benefit for our C67x-like DSP and that one of the key 

benefits of 3D main memory needs to be re-evaluated in other types of systems. However, this 

study does not dismiss another key benefit of 3D main memory, which is the capability to greatly 

increase the main memory bus width by adding additional TSVs to the memory bus. The benefits 

of increasing the main memory bus width with 3D memory technology are discussed in Chapter 

6. 

5.3 Summary 

In this chapter, I presented a new, more accurate 3D main memory model that shows the latency 

reduction going from off-chip metal wires to 3D TSVs is as little as 2.4 ns (or 4.1%) and not the 

often-quoted 45% to 60% savings. The key reason for this is that the only difference between 2D 

and 3D main memory is the interconnect latency (off-chip metal wires for 2D and TSVs for 3D) 

and our circuit simulations show the latency difference between these two technologies to be 

very small. This is a significant finding because it significantly diminishes one of the key 

benefits of 3D main memory; significantly faster access to main memory.  

As noted in Chapter 1, DSPs traditionally have small caches and with signal processing 

applications having larger working sets this can lead to high L2 miss rates while traditional 2D 

main memory has become relatively slower compared to logic (the Memory Wall problem). It 

was believed that the significant reduction in main memory access latency from 3D main 

memory would directly address this by allowing caches to quickly fill their lines after a cache 

miss, but unfortunately that is not the case. Upon re-evaluating the performance benefits of this 

new 3D main memory latency model, I found that my baseline DSP running the six multimedia 



47 
 

benchmarks showed very little performance improvement. These results indicated that another 

benefit must be leveraged for 3D main memory to be useful in modern DSPs.   

Fortunately, another key benefit of 3D main memory is the capability to significantly 

increase the main memory bus width through the use of TSVs. Since TSVs take up very little 

area and do not contribute to the external chip pin count [33], designers can easily increase the 

main memory bus width by adding more TSVs. With this in mind, Chapter 6 explores the 

benefits and limitations of increasing the main memory bus width on DSPs with 3D-stacked 

DRAM and Wide I/O. 

My dissertation work described in this chapter was published in the Proceedings of the 2011 

International Conference on Embedded Computer Systems (SAMOS) [9]2 and the Proceedings 

of the 18th Asia and South Pacific Design Automation Conference (ASP-DAC) [8].  

                                                 
2 My SAMOS paper evaluated the performance impact of 3D DRAM on DSPs and was done prior to the latency 
findings outlined in this chapter. The results labeled “Baseline (3D)” are from that paper.  
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6 Evaluating 3D Main Memory with Wide I/O  

This chapter takes the conclusions from the previous chapter (i.e. 3D main memory does not 

lower main memory latencies by a large amount) and analyzes another key benefit of 3D main 

memory, which is the ability to increase the main memory bus width with additional TSVs. As 

noted in the Section 5.3, since TSVs take up very little area, designers can significantly increase 

the main memory bandwidth (i.e., I/O bus width) without being limited by the package pin 

constraints. In this chapter, I present a standardized 3D main memory organization called 3D 

main memory with Wide I/O [74] that takes advantage of TSVs to greatly increase the main 

memory bus width while also reducing main memory latencies by 9.4 ns (or 15.9%) through 

main memory architecture optimizations3.  

I also show in this chapter that 3D main memory with Wide I/O can increase the geometric 

mean performance of a C67x-like DSP by 9.7% (and up to 23.3% on some benchmarks). 

However, this 3D memory organization can increase average DSP energy consumption by 2.6% 

(and up to 8.9%), which may be unacceptable for embedded processors found in mobile devices 

that have stringent energy requirements. Based on these findings, I conclude that if embedded 

DSPs are to use 3D main memory with Wide I/O, a solution should be found to lower the energy 

consumption while maintaining the performance benefits.  

6.1 3D Main Memory with Wide I/O 

Figure 6.1 gives a breakdown of the timing for a low power DDR2 DRAM. For the traditional 

2D main memory with the default (i.e. 64-bit) I/O bus, data from the DRAM travels down global 

and inter-bank datalines, through a 4:1 serializer and then through a serialized dataline. The data 

                                                 
3 The latency reduction opportunities of 3D main memory with Wide I/O were analyzed in collaboration with 
Younghoon Son and Professor Jung Ho Ahn at Seoul National University in South Korea. 
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must then travel through the DRAM package, printed circuit board (PCB), and active package 

(AP) before arriving at the memory controller (MC). At the MC interface, the data is 

synchronized with the MC and then synchronized with the processor frequency. Based on the 

previous chapter, going to 3D integration technology and using TSVs instead of metal 

interconnects allows the removal of the timing components labeled t5 through t9. Based on this 

finding, this latency savings was only 1.2 ns (or 2.4 ns roundtrip), which corresponds to 4.1% of 

the total latency (59 ns).  

However, current Wide I/O 3D main memories have two additional reorganizations: 1) 

removing the DRAM to memory controller synchronizers and 2) placing the address, command, 

and data pads closer to the DRAM banks. For the first latency savings, DRAM designers remove 

the component labeled with time t10. This component is responsible for both synchronization of 

the DRAM to the memory controller and rate conversion. The synchronizer also compensates for 

jitter. Further, since the data transfer rate per pin of Wide I/O 3D main memory is lower (~200 

Mbps) than that of low-power DDR2 (~800 Mbps), the synchronizer design for the 3D main 

Figure 6.1: A timing breakdown of 2D Low Power DDR2 DRAM. 
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memory with Wide I/O can be simpler, leading to a latency savings. We modified CACTI to 

model the component that adjusts the difference in transfer rates between an internal and external 

datapaths and found that it would take one cycle. For a low-power DDR2 DRAM running at 400 

MHz, this is 2.5 ns. 

The second latency savings for 3D main memory with Wide I/O comes from placing the 

address, command, and data pads closer to the DRAM banks. Figure 6.2 (a) shows the 

organization of a traditional low-power DDR2 main memory with 16 DRAM banks. This figure 

is based on die photos. As can be seen in the figure, a DRAM request coming from the address 

and command pads on the right side of the figure must traverse both up and across the entire 

DRAM module before reaching the data pad. Figure 6.2 (b) illustrates the organization for Wide 

I/O 3D DRAM architectures with TSV interconnects. In this main memory organization, placing 

the TSVs for the address, command, and data near the center of the DRAM banks translates into 

each main memory request traveling a shorter total distance. The wire delay was modeled using 

Figure 6.2: Address, command, and data pad placement. 
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the SPICE circuit simulator [75] and the 22 nm low power predictive technology model (PTM) 

[76] and found that the latency savings was 4.5 ns.  

When the latency savings from the previous chapter (2.4 ns) is added to the latency savings 

of the two DRAM reorganizations described above (2.5 ns and 4.5 ns), the total latency savings 

is 9.4 ns (2.4 + 2.5 + 4.5), which corresponds to 15.9% for our baseline DRAM (9.4 ns / 59 ns). 

6.2 Evaluating 3D Main Memory with Wide I/O on DSPs 

In this section, I first detail my experimental methodology and then present a performance 

analysis of 3D main memory with Wide I/O on an embedded DSP similar to a Texas Instrument 

C67x. I then present a performance analysis of 3D main memory with Wide I/O where the bus 

width is increased up to 2,048 (or 4,096) bits, which allows the memory controller to use 

adjacent cache line prefetching [77] to bring in two (or four) cache lines of data into the L2 cache 

with a single transfer. This should increase the performance of multimedia applications that 

traditionally exhibit a high level of spatial locality. For my dissertation work, I did not examine 

adjacent cache line prefetching without the wider main memory bus (i.e. prefetching one or three 

1,024-bit cache lines with a 1,024-bit bus). This should be examined in future work. All wider 

bus width simulations included adjacent cache line prefetching. Lastly, I analyze the DSP energy 

consumption of these 3D main memory organizations.   

6.2.1 Methodology 

I began by simulating the baseline C67x-like DSP detailed in Table 4.1 with traditional 2D main 

memory and the 3D main memory with Wide I/O described in Section 6.1. Since 3D main 

memory with Wide I/O is implemented with a wider I/O bus, these wide I/O simulations were 

done with a main memory bus width of 1,024 bits. 1,024 bits was chosen because, as described 
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in Section 2.3, during one main memory transaction the memory controller requests the entire L2 

cache line to be filled. In a traditional 2D organization the memory controller sends additional 

column strobes, which result in multiple main memory transactions that eventually fill an entire 

line in the L2 cache. However, for 3D main memory with Wide I/O, the additional TSVs are 

used to increase the main memory bus width. Instead of sending multiple 64-bit transactions, the 

main memory’s row buffer can send the entire L2 cache line (1,024 bits in our configuration) in 

one transaction. These simulations were done to demonstrate the performance benefits of 3D 

main memory with Wide I/O 

Next, I simulated the baseline DSP with Wide I/O 3D DRAM, but increased main memory 

bus width to 2,048 bits and used adjacent cache line prefetching to fetch an additional 1,024-bit 

L2 cache line with the additional main memory data lines. This would allow the memory 

controller to fill two L2 cache lines from one main memory request. Since many multimedia 

applications have linear access patterns that exhibit high spatial locality, prefetching the next L2 

cache line should increase overall DSP performance since the next data to be processed is 

already in the cache.  

Lastly, I again increased the main memory bus width from 2,048 bits to 4,096 bits and again 

used adjacent cache line prefetching to fetch a total of four 1,024-bit L2 cache lines with the 

additional main memory data lines. This would allow the memory controller to fill four L2 cache 

lines from one main memory request. These two configurations were simulated to quantify the 

performance and energy impact of increasing the main memory bus width and using adjacent 

cache line prefetching. My simulation parameters are summarized in Table 6.1. 
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Table 6.1: 3D Main Memory with Wide I/O Simulation Parameters. 

Parameter Setting 

Frequency 1 GHz 

L1 data cache 32-KB, 2-way, 512-bit lines, 1 cycle 

L1 instruction cache 32-KB, 1-way, 256-bit lines, 1 cycle 

Unified L2 cache 256-KB, 4-way, 1,024-bit lines, 7 cycles 

# of ALUs 6 

# of multiply units 2 

# of memory units 1 

Main memory size 512-MB 

Main Memory bus widths 64 bits, 1,024 bits, 2,048 bits, 4,096 bits 

2D main memory latency 38 to 40 ns 

3D main memory with Wide I/O Latency 29 to 31 ns 

 

6.2.2 Results – Performance 

Figure 6.3 shows performance results of the six benchmarks for four different main memory and 

bus width configurations. The second bar per benchmark in Figure 6.3 shows the performance 

benefits of Wide I/O 3D main memory described in Section 6.1 with all results normalized to the 

baseline configuration with 2D main memory (the leftmost bar). Compared to the baseline 

configuration with 2D main memory, the benchmarks achieve a geometric mean speedup of 

3.8%. The 482.sphinx, disparity, and mser benchmarks show the largest improvements (5.9%, 

8.8%, and 3.4% respectively), which can be attributed to their higher L2 miss rates (39.0%, 

44.8%, and 52.2% respectively) and high number of main memory accesses. Although the 15.9% 

latency reduction is not as high as the often quoted 45% to 60%, it is a large enough latency 

reduction to improve the performance of each main memory transaction and therefore, the three 
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applications with the most main memory transactions benefited significantly. The remaining 

benchmarks demonstrate speedups of 0.6% to 2.5%.  

The third bar per benchmark in Figure 6.3 shows the performance benefits of Wide I/O 3D 

main memory, increasing the main memory bus width to 2,048 bits, and adjacent cache line 

prefetching of one additional line with all results normalized to the baseline configuration with 

2D main memory. Compared to the baseline with 2D main memory and the default main 

memory bus width, the benchmarks achieve a geometric mean speedup of 7.5%. The unepic, 

482.sphinx, and disparity benchmarks demonstrate the largest improvements (5.1%, 16.5%, and 

16.0%, respectively), which can be attributed to their L2 and L1 miss rates decreasing. The 

remaining benchmarks show speedups of 1.4% to 3.6%. The average L2 miss rate (using the 

geometric mean) of the six benchmarks went from 22.4% (the baseline) down to 16.7%. Since 

each main memory transaction is now bringing in two adjacent L2 cache lines instead of one, 

Figure 6.3: Performance results of the six benchmarks on four different  

main memory and bus width configurations. 
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applications that exhibit a high level of spatial locality will hit more often in the L2 cache 

leading to fewer main memory transactions and increased performance.  

The rightmost bar per benchmark in Figure 6.3 shows the performance benefits of 3D main 

memory with Wide I/O, increasing the main memory bus width to 4,096 bits, and adjacent cache 

line prefetching of three additional lines with all results normalized to the baseline configuration 

with 2D main memory. Compared to the baseline configuration with 2D main memory and the 

default bus width, the six benchmarks achieve a geometric mean speedup of 9.7%. The unepic, 

482.sphinx, disparity, and mser benchmarks show the largest improvements (6.7%, 23.3%, 

18.8%, and 5.3%, respectively), which again can be attributed to a decrease in the L2 miss rate. 

The remaining benchmarks demonstrate speedups ranging from 1.8% to 4.1%. The average L2 

miss rate (using the geometric mean) of the six benchmarks went from 22.4% (the baseline) 

down to 13.0%. Similar to the previous paragraph, since each main memory transaction is now 

filling four adjacent L2 cache lines instead of one, applications that exhibit a high level of spatial 

locality will hit more often in the L2 leading to a lower L2 miss rate and higher performance.  

These results show that 3D main memory with Wide I/O and prefetching adjacent cache lines 

can increase DSP performance by an average of 9.7% and up to 23.3%. Although a portion of the 

speedup for each Wide I/O configurations can be attributed to the reduced main memory latency 

from the main memory organization described Section 6.1, the majority comes from the 

increased main memory bus width and adjacent L2 cache line prefetching. This indicates that the 

benchmarks show a high amount of spatial locality and can take advantage of the increased 

memory bus width between the L2 and main memory. This high level of spatial locality is not 

surprising since all six of our benchmarks are streaming multimedia applications, which are 

commonly run on mobile devices and have fairly linear memory access patterns.  
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6.2.3 Results – Energy Consumption 

Figure 6.4 shows the relative energy results for the six benchmarks on the four main memory and 

bus width configurations with all results normalized to the baseline with 2D main memory (the 

leftmost bar per benchmark). The second bar per benchmark in Figure 6.4 shows that going to 

3D main memory with Wide I/O has a slight increase in DSP energy consumption. We observe, 

on average, a 0.2% increase in energy with many applications actually seeing a small reduction 

in energy consumption. However, 482.sphinx yields a 3.7% increase in DSP energy 

consumption, which skews the average and is explained below. 

The decrease in DSP energy consumption for five of the benchmarks can be partially 

attributed to the 3D main memory’s use of TSVs, which consume 11.2x less I/O energy than off-

Figure 6.4: Energy results of the six benchmarks on four different  

main memory and bus width configurations. 
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chip metal interconnects [29]. However, all five benchmarks actually show a slight increase in 

I/O energy since the main memory bus width was increased beyond the 11.2x energy savings 

(1,024 bits was a 16x increase). Yet, the performance improvements of 3D main memory with 

Wide I/O yields energy decreases in the decoding unit, integer unit, etc. Since I/O energy is only 

a fraction of total DSP energy consumption, an increase in one area (I/O energy) does not always 

yield a net increase in energy as long as other components see energy improvements.  

However, as 482.sphinx demonstrates, increasing the main memory bus width beyond 11.2x 

(1,024 bits was a 16x increase) can lead to not only an increase in I/O energy, but also an 

increase in overall DSP energy consumption. Compared to the other five benchmarks, 

482.sphinx had slightly more main memory transactions per instruction meaning this benchmark 

generated more main memory transactions throughout its execution. This means 482.sphinx’s 

I/O energy represents a higher portion of the total DSP energy. Although all six benchmarks had 

an increase in I/O energy because they increased the main memory bus width beyond 11.2x, 

482.sphinx’s increase was larger, which resulted in a net increase in DSP energy consumption. 

As will be shown in the next set of results, continuing to increase the main memory bus width 

and increasing I/O energy can eventually lead to energy inefficiency for not only 482.sphinx, but 

most of the benchmarks.  

The third bar per benchmark in Figure 6.4 shows that increasing main memory bus width to 

2,048 bits and adjacent cache line prefetching of one additional line results in an increase in 

energy consumption when compared to the baseline with 2D main memory. The configuration 

with the increased bus width and adjacent cache line prefetching consumes, on average, 0.9% 

more energy than the baseline configuration with 2D main memory. This can be attributed to the 
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main memory bus width being increased by 32x and adjacent cache line prefetching evicting 

valid L2 cache entries leading to an increase in energy consumed by the L2 cache. 

Although 3D main memory provides an 11.2x reduction in I/O energy per bit transfer, 

increasing the main memory bus width by 32x means the I/Os will consume more energy than 

the default 64-bit bus. However this increase in I/O energy only partially explains the increase in 

energy. The processor now brings in 2,048 bits (two L2 cache lines) instead of 64 bits per 

transaction due to the wider I/O bus width and adjacent cache line prefetching. Many times, 

bringing in a larger amount of data and replacing the L2 cache lines leads to evicting a large 

number of valid entries. This leads to I/O energy inefficiency where the L2 cache needs to send 

additional main memory requests to undo the evictions. Although 3D main memory provides an 

energy decrease per bit, if the memory transactions are inefficient, there is energy wasted on a 

non-useful transaction. For example, if the main memory bus width was the default setting this 

would lead to fewer L2 cache lines being evicted. Many times, the lower bus width setting may 

be better for a particular program phase that does not have many main memory accesses that 

exhibit spatial locality. This was the case for 482.sphinx whose L2 cache energy consumption 

increased by a factor of two. However, since the L2 cache and main memory are only a fraction 

of the total energy consumed by the DSP, the total energy increase is still relatively small. 

482.sphinx and disparity show the largest increases in relative energy (6.3% and 1.2%, 

respectively).  

Surprisingly two benchmarks (unepic and stitch) demonstrate a decrease in energy 

consumption (1.5% and 0.6%, respectively). Although both benchmark’s I/O energy 

consumption was higher (as described above), their L2 cache energy consumption decreased 
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significantly (34.4% and 36.0%, respectively), which overall leads to the DSP consuming less 

energy.  

The rightmost bar per benchmark in Figure 6.4 shows the relative energy results of the six 

benchmarks with Wide I/O 3D main memory, the main memory bus width increased to 4,096 

bits, and adjacent cache line prefetching of three additional lines. The configuration with the 

increased bus width and adjacent cache line prefetching consumes, on average, 2.6% more 

energy than the baseline configuration with 2D main memory. This again can be attributed to the 

main memory bus width being increased beyond 11x (64x in this case) and this leading to some 

of the main memory transactions being energy inefficient and evicting valid L2 cache entries. 

482.sphinx and disparity demonstrate the largest increases in relative energy (7.8% and 8.9%, 

respectively).  

The unepic and stitch benchmarks again achieve a decrease in energy consumption (1.9% 

and 0.9%, respectively), which again can be attributed to a decrease in both benchmark’s L2 

cache energy consumption (49.5% and 51.8%, respectively). Four of the six benchmarks 

(excluding 482.sphinx and disparity) show a decrease in L2 cache energy consumption, but for 

mser and tracking, the increase in I/O energy consumption due to the wider bus width canceled 

this out. 

Although the current implementation of 3D main memory with Wide I/O can improve 

performance by prefetching adjacent L2 cache lines in advance, these results show that it can 

sometimes lead to I/O inefficiency due to incorrectly evicting correct L2 entries. These results 

lead to an interesting dilemma where designers can either choose 3D main memory with Wide 

I/O to increase DSP performance and increase energy consumption or choose slower 2D main 
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memory since it does not impact DSP energy consumption. This particular scenario motivated 

me towards designing my dynamic bandwidth scaling algorithms, which is detailed in Chapter 7. 

6.3 Summary 

In this chapter, I presented a model for 3D main memory called 3D main memory with Wide 

I/O. 3D main memory with Wide I/O take advantage of TSVs consuming less area than off-chip 

metal interconnects and uses this benefit to greatly increase the bus width between main memory 

and the L2 cache. 3D main memory with Wide I/O also offers two main memory 

reorganizations: 1) removing the DRAM to memory controller synchronizer and 2) placing the 

address, command, and data pad TSVs closer to the DRAM bank edges. These two changes can 

yield a 7.0 ns savings in main memory latency, which when combined with the 2.4 ns savings of 

going from off-chip metal interconnects to TSVs described in Chapter 5, leads to a total main 

memory latency reduction of 9.4 ns (or 15.9%). Although not as high as the original latency 

saving claim for 3D main memory, when this 9.4 ns latency savings is combined with increasing 

the main memory bus width and adjacent cache line prefetching, 3D main memory with Wide 

I/O can lead to a 9.7% average performance improvement on the six multimedia benchmarks 

running on a C67x-like DSP (and up to 23.3% on some benchmarks). 

However, although 3D main memory with Wide I/O can significantly improve performance, 

I also show that increasing the main memory bus width beyond a factor of 11.2x can also 

increase I/O energy. Although many times, the increased main memory bus width can improve 

performance during memory intense phases, it can also evict valid L2 entries, leading to I/O 

inefficiency. Upon evaluation, I found that increasing the main memory bus width to 4,096 bits 

can lead to an increase in DSP energy consumption by an average of 2.6% and up to 8.9% for 

some applications. Although DSPs have growing memory requirements that 3D main memory 
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with Wide I/O addresses, this increase in energy consumption may be unacceptable since many 

of these DSPs are found on devices such as smart phones that require low energy usage. 

These findings motivated me towards designing a solution that would allow DSPs to take 

advantage of the performance benefits of 3D main memory with Wide I/O while also minimizing 

the I/O energy to keep the DSP energy consumption closer to the baseline. In Chapter 7, I detail 

my dynamic bandwidth scaling algorithms, which solves this problem by dynamically increasing 

the main memory bus width during memory-intense program phases to improve DSP 

performance, but also decreases the bus width when it is no longer needed. With these 

algorithms, the processor is no longer in the increased the bus width settings with cache line 

prefetching for the entire execution, which leads to more efficient usage of the wider I/O bus 

width. 

My dissertation work described in this chapter has been accepted for publication at the 

IEEE/ACM 2013 International Conference on Computer-Aided Design (ICCAD) [10].  
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7 Dynamic Bandwidth Scaling Algorithms for DSPs 

In this chapter, I first demonstrate that an application can have very different performance 

characteristics based on its program phases and the main memory bus width setting it is in. I then 

show that this observation could be harnessed to address the problems highlighted in the 

previous chapter (i.e. although the current implementation of 3D main memory with Wide I/O 

can significantly increase DSP performance, it also increases DSP energy consumption). This 

leads me to propose novel algorithms for dynamic bandwidth scaling. My dynamic bandwidth 

scaling algorithms can dynamically increase and decrease the main memory bus width of the 

DSP based on the program phases of the application. In memory-intense phases, more TSVs are 

activated and the main memory bus width is increased to improve performance while during 

compute-intense phases with little memory traffic, the bus width is decreased to reduce I/O 

energy consumption. This is in contrast to the current methodology where processors with 3D 

main memories and Wide I/O stay in the higher bus width setting for the entire execution of a 

program, which as demonstrated in Chapter 6, can waste I/O energy.  

Later in this chapter, I propose three different algorithms to dynamically determine the main 

memory bus width and show they can improve average performance by 6.6% while increasing 

DSP energy consumption by only 0.5% (compared to the 2.6% quoted in Chapter 6). Based on 

these results, I conclude that my dynamic bandwidth scaling algorithms offer a solution to the 

growing memory requirements of modern signal processing applications while still meeting the 

strict energy requirements of mobile devices such as smart phones.  
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7.1 Motivation 

As demonstrated in Chapter 6, Wide I/O 3D DRAM can show large performance improvements 

on some of our benchmarks (up to 23.3%). However, although the TSVs used in 3D DRAM 

consume 11.2x less I/O energy than off-chip metal interconnects, this energy savings disappears 

when the main memory bus width is increased by a large factor. Since the main memory bus 

width was increased up to 4,096 bits, running this bus width configurations yielded an increase 

in DSP energy consumption by an average of 2.6% (and as high as 8.9%). For embedded DSPs 

that have stringent energy constraints, this energy increase can lead to lower battery life on 

mobile computing devices. 

To illustrate the behavior described in the previous chapter regarding inefficient main 

memory usage at high bus width settings, Figure 7.1 shows the instructions per cycle (IPC) of a 

Figure 7.1: IPC behavior of mser (face detection) at different  

main memory bus widths (BW). 
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60 million instruction segment of the mser (face detection) benchmark at three main memory bus 

width settings (1,024, 2,048, and 4,096 bits). This segment was tens of millions of instructions 

into the execution with the entire benchmark taking over two billion cycles to complete. This 

segment was specifically chosen since it shows the different program phases of a typical 

multimedia application. For the first 10 million instructions, the 1,024 bus width setting has the 

best performance (0.36 compared to 0.18 for the maximum bus width setting) indicating that 

during this program segment increasing the main memory bus width actually degrades 

performance while also consuming more energy.  

However, for the next 40 million instructions, both higher main memory bus width settings 

have better performance with the maximum bus width setting achieving the best performance (an 

average IPC of 1.19 compared to 1.09 for the baseline) indicating that the face detection 

benchmark is in a memory-intense phase requiring a large amount of main memory bandwidth. 

During this 40 million instruction segment, increasing the main memory bus width would 

improve the performance of this application. 

Finally, for the last 10 million instructions all three bandwidth settings have the same 

performance. This indicates that the benchmark is in a compute-intense phase with very few 

main memory transactions and again, the lowest main memory bus width setting would be the 

most energy efficient. This program segment illustrates that being in the maximum main memory 

bus width configuration does not always translate into better performance. Based on the energy 

results in the previous chapter, this can lead to energy inefficiency since the higher bus width 

settings will send larger amounts of data to fill more L2 lines, which evicts more L2 entries. 

These observations led me to design dynamic bandwidth scaling algorithms, which are described 

in the next section.  
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7.2 Dynamic Bandwidth Scaling Algorithms 

As described at the beginning of this chapter, my dynamic bandwidth scaling algorithms can 

dynamically increase the main memory bus width and fetch adjacent L2 cache lines during 

memory intensive phases of a program. As shown in the previous chapter, since many modern 

signal processing applications are multimedia-based and have predictable, linear access patterns, 

preemptively fetching additional L2 cache lines can reduce the number of main memory accesses 

and greatly increase DSP performance. However, unlike the static main memory bus width 

settings analyzed in Chapter 6, my dynamic bandwidth scaling algorithms can also decrease the 

main memory bus width when it is no longer needed so as to more efficiently use the increased 

main memory bandwidth and decrease I/O energy consumption. Unlike the Wide I/O 

configurations in Chapter 6, my dynamic bandwidth scaling algorithms are not in the maximum 

bus width configurations for the entire execution, which leads to better I/O energy efficiency 

while still improving performance. 

My dynamic bandwidth scaling algorithms can be implemented with the use of memory 

controller signals and adding multiplexers between the interbank datalines and the buffers 

connected to the I/O pads. The multiplexer select bits are controlled by the memory controller 

and operating system, which would run one of the scaling algorithms described in the next 

section. Figure 7.2 shows a potential implementation for a simplified configuration, where each 

memory bank outputs at most four bits. 

For this example, to scale the bus width down by a factor of four, the three leftmost I/O pads 

would be disabled and using the multiplexer select bits on the rightmost 4:1 multiplexer, the 

correct bit would be selected and go through to the rightmost I/O pad. Similarly, to scale down 

the bandwidth by a factor of two, the two leftmost I/O pads would be disabled and the 2:1 and 
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4:1 multiplexers on the right would be used to select the correct two bits. With this configuration 

the correct data should come out regardless of what bus width configuration is chosen since all 

four bits are available to the 4:1 multiplexer and two of the four bits are available to the 2:1 

multiplexer. Similarly, all four I/O pads can be enabled to provide the maximum main memory 

bandwidth. The 2:1 and 4:1 multiplexers were simulated in Synopsys [78] and for a 4,096-bit bus 

width they were found to consume 1.9 nJ and 3.8 nJ, respectively, which is not a large increase 

relative to the total energy consumption of our benchmarks.  

In the following sections, I first describe the methodology used in designing my dynamic 

bandwidth scaling algorithms. I then describe three different dynamic bandwidth scaling 

algorithms and lastly I analyze their performance and energy results.  

Figure 7.2: An example of the dynamic bandwidth scaling hardware. 
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7.2.1 Algorithm Design Methodology 

I modified the Trimaran simulator code to profile the six benchmarks and generated two sets of 

profile data, which were taken every one million instructions: 1) the average instructions per 

cycle (IPC) and 2) the percentage of consecutive L2 misses that map to adjacent L2 cache lines. 

The IPC data allowed me to look for execution phases as well as the upward or downward trends 

in performance. The percentage of consecutive L2 misses that map to adjacent L2 cache lines 

tracked whether the addresses of the current L2 miss and previous L2 miss mapped to adjacent 

cache lines. This percentage included both directions (i.e. increasing and decreasing addresses). 

This statistic implied that the program was in a streaming part of the code and increasing the 

main memory bus width would increase performance by allowing the program to fetch an 

additional, adjacent L2 cache line and reduce the L2 miss rate.  

The percentage of consecutive L2 misses that map to an adjacent L2 cache line could be 

tracked by adding a comparator that compares the current and previous main memory addresses 

and then increments a performance counter if the two addresses are adjacent to each other. The 

IPC data could be obtained by storing the execution cycles in a performance counter and then 

resetting the counter after every one million instructions. Lastly, as noted in Section 7.2, my 

dynamic bandwidth scaling algorithms would be executed by the memory controller and could 

be programmed into the operating system.  

After collecting all of the profile data, I analyzed the two statistics and found that the 

benchmarks had program phases where IPC increases or decreases dramatically based on which 

static bus width configuration (1,024, 2048, or 4,095 bits) they were in, which was illustrated in 

Section 7.1. I also parsed the percentage of consecutive adjacent L2 line misses and analyzed the 

memory access patterns for each benchmark looking for program segments with a high amount 
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of consecutive L2 misses that map to an adjacent L2 cache line. After identifying these program 

segments, I tested a variety of percentages from 1.0% to 50.0% to see at what percentage 

increasing the main memory bus width would benefit the application. I found that when the 

benchmarks had a consecutive adjacent L2 line miss percentage greater than 3.0%, they usually 

benefited from having a larger main memory bus width. Although the applications had many 

program segments where the consecutive adjacent L2 line miss percentage was greater than 3.0% 

(some as high as 50.0%), I found that this low threshold still offered opportunities to improve the 

performance of the DSP.  With these findings in mind, I developed three bandwidth scaling 

algorithms, which are described below.  

I chose to have my algorithms make a bus width decision every five million instructions. 

This granularity was chosen after simulating a variety of other settings such as every one million 

instructions, ten million instructions, etc. One million was not chosen since it meant the 

algorithm would change the bus width too frequently and ten million was not chosen because if 

the algorithm made an incorrect bus width decision, the benchmark would run in that setting for 

too long.  

7.2.2 Consecutive Adjacent L2 Line Miss Bandwidth Scaling Algorithm 

Figure 7.3 shows a small portion of the 482.sphinx benchmark’s main memory requests with the 

main memory addresses highlighted on the left in blue. This segment shows that the main 

memory requests for 482.sphinx have a very linear pattern where the address is continually 

incremented by offsets of 0x80 (in hexadecimal), where 0x80 is 128 bytes (or 1,024 bits), which 

is also the L2 line size for our C67x-like DSP.  

With this observation in mind, the consecutive adjacent L2 line miss bandwidth scaling 

algorithm was designed under the assumption that if the consecutive adjacent L2 line miss 
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percentage is greater than or equal to 3.0%, the benchmark may be in a streaming section. If a 

program is continuously missing adjacent L2 cache lines, fetching them in advance should 

decrease the L2 miss rate and improve DSP performance. Therefore, this algorithm only uses the 

percentage of consecutive L2 misses that map to an adjacent L2 cache line to make a main 

memory bus width decision. Figure 7.4 illustrates the algorithm, which is described below.  

The algorithm begins in the lowest main memory bus width setting (1,024 bits). If the 

percentage of consecutive adjacent L2 line misses exceeds the threshold (3.0%) three or more 

times in the last five intervals (an interval is one million instructions), the main memory bus 

width is increased to the next higher setting (2,048 bits or 4,096 bits) for the next five million 

instructions. If the percentage of consecutive adjacent L2 line misses is less than 3.0% for three 

or more intervals, the main memory bus width is decreased to the next lower setting (2,048 bits 

or 1.024 bits) since this profile data suggests that the program is not in a streaming section. If the 

algorithm reaches the maximum setting and the next bus width decision is to increase the bus 

Figure 7.3: Example of a main memory request pattern  

for 482.sphinx (speech recognition). 
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width, it remains in the maximum setting. Similarly, if the algorithm reaches the minimum 

setting and the next decision is to decrease the bus width, it remains in the minimum setting. 

The three out every five intervals criteria was also chosen after testing a variety of other 

configurations such as five out of every ten, etc. However, since I did not test every permutation 

of this, it is quite possible better criteria exist.  

7.2.3 IPC Moving Average Bandwidth Scaling Algorithm 

The IPC moving average bandwidth scaling algorithm assumes that if the IPC trend of the last 

five intervals is downward, the degradation of the benchmark’s performance may be due to a 

lack of main memory bandwidth. It is possible that degradation in IPC is unrelated to the main 

Figure 7.4: Flowchart for the consecutive adjacent L2 line miss algorithm. 
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memory bandwidth (e.g. a program phase with many branches). This bandwidth scaling 

algorithm uses the IPC data of the previous five million instructions to calculate the IPC average 

before making a bus width decision. Figure 7.5 illustrates the algorithm, which is described 

below. 

The algorithm begins by starting in the lowest main memory bus width setting (1,024 bits) 

and executing for five million instructions to establish the average IPC for one interval. The bus 

width is then increased by a factor of two to 2,048 bits for the next five million instructions to 

establish what impact increasing the bus width has on the IPC trend. If the average IPC 

Figure 7.5: Flowchart for the IPC moving average algorithm. 
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decreased when going from the 1,024-bit setting to the 2,048-bit setting, the main memory bus 

width is decreased back to the default bus width setting (1,024 bits) since it is possible fetching 

additional L2 cache lines is the reason for the decrease in performance. If the average IPC in the 

2,048-bit setting increased when going from the 1,024-bit setting, the bus width is again 

increased since the previous increase in bus width may be the reason for the increase in IPC.  

In general, if the algorithm’s previous decision was to increase the bus width and the IPC 

trend for the next interval is upward, it increases the bus width again. However, if the 

algorithm’s previous decision was to increase the bus width and the IPC trend for the next 

interval is downward, it decreases the bus width. Similarly, if the algorithm’s previous decision 

was to decrease the bus width and the IPC trend for the next interval is downward, it increases 

the bus width. However, if the algorithm’s previous decision was to decrease the bus width and 

the average IPC increases, the algorithm decreases the bus width again.  

This is done at each setting, where based on the IPC trend of the last interval and what the 

previous bus width decision was (increase or decrease in bus width), the algorithm makes a bus 

width decision. If the maximum setting (4,096 bits) is reached and the average IPC trend is still 

increasing, the DSP remains in this setting since a higher setting does not exist. If the minimum 

setting (1,024 bits) is reached and the average IPC trend is still increasing, the DSP remains in 

this setting. 

7.2.4 Combined Bandwidth Scaling Algorithm 

The combined bandwidth scaling algorithm is a combination of the above two algorithms. The 

combined bandwidth scaling algorithm increases the main memory bus width if at least one of 

following the three criteria is met: 1) the percentage of consecutive adjacent L2 line misses is 

greater than 3.0% for three of the last five intervals, 2) the previous decision was to increase the 
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bus width and the average IPC increased, or 3) the previous decision was to decrease the bus 

width and the average IPC went down. The combined bandwidth scaling algorithm decreases the 

main memory bus width if at least one of following the three criteria is met: 1) the percentage of 

adjacent L2 line misses is less than 3.0% for three of the last five intervals, 2) the previous 

decision was to decrease the bus width and the average IPC increased, or 3) the previous 

decision was to increase the bus width and the average IPC decreased.  

7.2.5 Oracle Scaling Algorithm 

An oracle bandwidth scaling algorithm was also implemented to determine how close my 

algorithms were to the maximum attainable performance. The oracle scaling algorithm takes all 

the profiling data described in Section 7.2.1 and chooses the main memory bus width 

configuration that maximizes the IPC at each interval. The performance results of my algorithms 

were compared to the oracle algorithm’s results to determine how effective they were. 

7.3 Evaluating Dynamic Bandwidth Scaling Algorithms 

In this section, I first detail my experimental methodology and then present a performance 

analysis of my three dynamic bandwidth scaling algorithms running on an embedded DSP 

similar to a Texas Instrument C67x. I then present an energy analysis of each of my algorithms 

and conclude that my dynamic bandwidth scaling algorithms not only improve the performance 

of the baseline DSP, but do so while consuming less energy than statically scheduling the 

maximum main memory bus width configuration for the entire execution duration of an 

application. 
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7.3.1 Methodology 

The three dynamic bandwidth scaling algorithms described above were all implemented and then 

run on a C67x-like DSP within the Trimaran simulator. My simulation parameters are 

summarized in Table 7.1. 

Table 7.1: Dynamic Bandwidth Scaling Simulation Parameters. 

Parameter Setting 

Frequency 1 GHz 

L1 data cache 32-KB, 2-way, 512-bit lines, 1 cycle 

L1 instruction cache 32-KB, 1-way, 256-bit lines, 1 cycle 

Unified L2 cache 256-KB, 4-way, 1,024-bit lines, 7 cycles 

# of ALUs 6 

# of multiply units 2 

# of memory units 1 

Main memory size 512-MB 

Main Memory bus width settings 1,024 bits, 2,048 bits, 4,096 bits 

3D main memory with Wide I/O Latency 29 to 31 ns 

Bandwidth Scaling Algorithms Tested Consecutive, Moving Average, Combined 

 

The performance and energy results of each of the three dynamic bandwidth scaling 

algorithm were then compared to the original baseline DSP with traditional 2D main memory 

and the oracle bandwidth scaling algorithm. This was done to not only show their improvement 

over the original 2D baseline, but to also show how close my algorithms were to the oracle 

bandwidth scaling algorithm’s performance. 

7.3.2 Results - Performance 

Figure 7.6 shows the performance of my three dynamic bandwidth scaling algorithms, a static 

bus width of 4,096 bits, and the oracle scaling algorithm all with 3D memory and Wide I/O with 
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all results normalized to the baseline processor with 2D main memory and the default bus width 

(the leftmost bar per benchmark). The rightmost bar per benchmark shows that the oracle 

algorithm has an average (geometric mean) performance improvement of 10.6% when compared 

to the baseline with 2D main memory and the default bus width. The 482.sphinx, disparity, and 

mser benchmarks showed the largest improvements (24.5%, 19.3%, and 8.2%, respectively). The 

oracle algorithm provides a ceiling for the maximum performance improvement that any 

bandwidth scaling algorithm can attain. 

The second bar per benchmark in Figure 7.6 shows the performance of the consecutive 

adjacent L2 line miss bandwidth scaling algorithm on the six benchmarks. The consecutive 

adjacent L2 line miss algorithm achieves an average (geometric mean) speedup of 6.6% when 

compared to the baseline with 2D main memory and the default bus width. The 482.sphinx, 

Figure 7.6: Performance results of my three bandwidth scaling  

algorithms on the six benchmarks. 
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disparity, and mser benchmarks saw the largest speedups (11.6%, 12.8%, and 6.5%, 

respectively) since speech recognition, 3D reconstruction, and face recognition are all memory 

intense streaming applications with high L2 miss rates. The 482.sphinx, disparity, and mser 

benchmarks originally had L2 miss rates of 39.0%, 44.8%, and 52.2%, respectively. 

The third bar per benchmark in Figure 7.6 shows the performance of the IPC moving average 

bandwidth scaling algorithm on our six benchmarks. The IPC moving average algorithm 

achieves an average (geometric mean) speedup of 6.9% when compared to the baseline with 2D 

main memory and the default bus width. The unepic, 482.sphinx, and disparity benchmarks 

showed the largest speedups (5.2%, 14.8%, and 14.3%, respectively). 

The fourth bar per benchmark in Figure 7.6 shows the performance of the combined 

bandwidth scaling algorithm. This combined algorithm achieves an average (geometric mean) 

speedup of 6.4% over the baseline with 2D main memory and the default bus width. The unepic, 

482.sphinx, and disparity benchmarks saw the largest speedups (4.5%, 12.9%, and 13.5%, 

respectively).  

Lastly, the fifth bar per benchmark in Figure 7.6 shows the performance of a static bus width 

of 4,096 bits that was presented in Section 6.2.2. A static bus width of 4,096 bits achieves an 

average (geometric mean) speedup of 9.7% and is shown to compare my algorithms to the 

current methodology for using 3D main memory with Wide I/Os where the bus width remains in 

the highest bus width setting for the entire execution duration. Although the current methodology 

achieves better performance, as was demonstrated in Section 6.2.3, it comes with an increase an 

average energy increase of 2.6% (and up to 8.9%). 

Based on these performance results, the IPC moving average bandwidth scaling algorithm 

has the best performance when compared to the oracle algorithm. The IPC moving average 
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bandwidth scaling algorithm’s 6.9% average speedup encompasses the majority of the speedup 

of both the static bus width setting (9.7%) and the oracle algorithm (10.6%).  However, the main 

motivations for developing my dynamic bandwidth scaling algorithms was not only to increase 

DSP performance, but also lower the increase in energy consumption by reducing the amount of 

execution time spent in the maximum main memory bus width setting.  

7.3.3 Results – Energy 

Figure 7.7 shows the relative energy results of my three dynamic bandwidth scaling algorithms, 

the static 4,096 bit bus width, and the oracle algorithm with all results normalized to the baseline 

processor with 2D main memory. The rightmost bar per benchmark shows that the oracle 

algorithm increases average DSP energy consumption by 2.4%. Although the oracle algorithm 

Figure 7.7: DSP energy results of my three bandwidth scaling  

algorithms on the six benchmarks. 
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has the best DSP performance (10.6%), it achieves this by having the applications spend an 

average of 71.8% of their execution time in the maximum bus width setting.  

The second bar per benchmark in Figure 7.7 shows the relative energy of the consecutive 

adjacent L2 line miss bandwidth scaling algorithm. On average, the consecutive adjacent L2 line 

miss algorithm increases DSP energy consumption by only 0.5% relative to the baseline DSP 

with traditional 2D DRAM. The consecutive adjacent L2 line miss algorithm achieves this by 

spending an average of only 25.2% of the execution time in the maximum bus width setting. This 

leads to better I/O energy efficiency. However, this also explains why it does not achieve the 

highest speedup of the three bandwidth scaling algorithms (an average performance 

improvement of 6.6% compared to 6.9% for the IPC moving average algorithm). Lastly, 

although this algorithm still increases average DSP energy consumption, this is a significant 

reduction over the static 4,096-bit bus width configuration (fifth bar per benchmark), which 

increases average DSP energy consumption by 2.6%. 

The third bar per benchmark in Figure 7.7 shows the relative energy of the IPC moving 

average bandwidth scaling algorithm. The IPC moving average algorithm increases DSP energy 

consumption by an average of 1.3% when compared to the baseline configuration. The IPC 

moving average algorithm spends an average of 32.1% of the execution time in the maximum 

bus width configuration, which improves I/O energy efficiency, but still results in a small 

increase in energy consumption compared to the baseline and consecutive adjacent L2 line miss 

algorithm, which spends less time in the maximum bus width setting (25.2%). However, the time 

spent in the higher bus width settings explains why this algorithm achieves the best performance 

out of the three bandwidth scaling algorithms (an average performance improvement of 6.9%). 

Although this algorithm also increases average DSP energy consumption, it is still lower than the 
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static 4,096-bit bus width configuration (fifth bar per benchmark) while retaining most of the 

performance benefits.  

The fourth bar per benchmark in Figure 7.7 shows the relative energy of the combined 

bandwidth scaling algorithm. The combined algorithm increases energy consumption by an 

average of 1.2% when compared to the baseline configuration with 2D main memory. The 

combined algorithm spends 37.1% of its execution time in the maximum bus width 

configuration, which explains the small increase in DSP energy consumption. However, although 

it increases energy consumption by a similar amount as the IPC moving average bandwidth 

scaling algorithm, it achieves a smaller average speedup of 6.4%. 

Based on the energy results, we conclude that of my three dynamic bandwidth scaling 

algorithms, the consecutive adjacent L2 line miss algorithm is the best algorithm for DSP energy 

consumption. With 3D main memory with Wide I/O and the consecutive adjacent L2 line miss 

algorithm, DSP energy consumption increases by only 0.5% (compared to 2.6% for the static 

4,096-bit bus width) while still increasing average DSP performance by 6.6%. However, if DSP 

performance is more important, one could conclude that the IPC moving average algorithm is the 

better dynamic bandwidth scaling algorithm for our processor configuration and benchmarks 

since it achieves the highest average speedup (6.9%) while increasing DSP energy consumption 

by 1.3%. If we consider both DSP performance and energy equally in our design and use an 

energy-delay product, we find the consecutive adjacent L2 line miss algorithm performs better 

by 0.5%.  

Regardless of what algorithm is chosen for our C67x-like DSP utilizing 3D main memory 

with Wide I/O, it will perform better on the six multimedia benchmarks than the baseline DSP 

with traditional 2D DRAM while consuming less energy than a configuration where the bus 
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width statically remains in the widest setting. This is because my algorithms more efficiently 

scale the effective main memory bus width based on the benchmark’s memory needs, which 

leads to better energy efficiency. 

7.4 Summary 

In this chapter, I presented a novel contribution, algorithms that can dynamically increase or 

decrease the main memory bus width of DSPs utilizing 3D main memory with Wide I/O. My 

dynamic bandwidth scaling algorithms can increase the performance of these DSPs while also 

addressing the increase in energy that comes from statically remaining in a higher bus width 

setting for the entire duration of a program, which is what current 3D main memory with Wide 

I/O does. My algorithms achieve these benefits by dynamically increasing the main memory bus 

width during memory-intense phases of a program where the wider bus width can be used to 

fetch adjacent L2 cache lines in advance, but also decreasing bus width during program phases 

where the wider bus width is not required and would only increase I/O energy. My dynamic 

bandwidth scaling algorithms can be implemented by adding multiplexers between the interbank 

datalines and the buffers connected to the I/O pads and the use of memory controller signals to 

control the multiplexers.  

Three dynamic bandwidth scaling algorithms were presented and described including 

consecutive adjacent L2 line miss, IPC moving average, and an algorithm that combines the 

previous two approaches. These algorithms use real-time profile data to make their main memory 

bus width decisions and I found all three could achieve the majority of an oracle scaling 

algorithm’s performance benefit while increasing energy consumption by a small amount 

compared to the baseline DSP with 2D main memory. The consecutive adjacent L2 line miss 

algorithm increases average DSP performance by 6.6% (and up to 12.8%) compared to the 
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baseline DSP with 2D main memory while increasing DSP energy consumption by only 0.5%. 

The IPC moving average algorithm increases average DSP performance by 6.9% (and up to 

14.8%) compared to the baseline DSP with 2D main memory while increasing DSP energy 

consumption by 1.3%. These results show that my dynamic bandwidth scaling algorithms can be 

used with 3D main memory with Wide I/O to not only address the growing memory 

requirements of modern signal processing applications typically run on mobile devices, but can 

do so without greatly impacting the DSP energy consumption.  

As will be described in Chapter 9 (Future Research), I believe more advanced dynamic 

bandwidth scaling algorithms could be developed using technologies such as neural networks. I 

also believe the idea could be expanded beyond DSPs and be used to divide the main memory 

bus among multiple compute resources that are part of the same system (i.e. smart phone) based 

on the changing memory needs of each compute resource.  

The dissertation work described in this chapter was accepted for publication at the 

IEEE/ACM 2013 International Conference on Computer-Aided Design (ICCAD) [10].  
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8 Conclusions 

3D main memory has been a popular topic of research for the last several years. It was believed 

that 3D main memory could address the “memory wall” problem by bringing main memory in-

package to lower main memory latencies by 45% to 60% and increasing main memory 

bandwidth with the use of thousands of TSVs. These advantages made 3D main memory an 

attractive solution for modern embedded DSPs whose multimedia applications are becoming 

more memory-intensive.  

Unfortunately, through my dissertation research it was found that the latency reduction from 

3D main memory was much less than previously predicted. The key reason for this was because 

2D and 3D main memory systems still had the same DRAM bank organizations and both still 

retained the same organization of rows and columns. Therefore, the only difference between 2D 

and 3D main memory was the different interconnections between the DRAM banks and the 

processor; specifically the latency differences between off-chip metal wires (2D) and TSVs (3D). 

Through accurate simulations using the Spectre circuit simulator, we found that 3D TSVs 

reduces main memory access latencies by only 2.4 ns (or 4.1% for our chosen DRAM 

technology). With these new main memory latencies, I re-evaluated the performance benefits of 

3D main memory on a C67x-like DSP and found it to have very little benefit. Based on this 

finding, I concluded that the key advantage of 3D main memory is the ability to increase main 

memory bandwidth with the use of additional TSVs. Presenting and re-evaluating this new and 

more accurate model for 3D main memory latency were the first two contributions of my 

dissertation research.  

The next contribution of my dissertation research was to analyze the current implementation 

of 3D main memory with Wide I/O, which greatly increases the main memory bus width through 
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the use of TSVs, but also decrease main memory latencies with two main memory optimizations. 

Current 3D main memory with Wide I/O has two design modifications that can reduce main 

memory accesses: 1) removing the DRAM to memory controller synchronizers and 2) placing 

the address, command, and data pads closer to the DRAM banks. It was found that these two 

optimizations could decrease main memory latencies by 7.0 ns (or 11.8%)  and with the latency 

savings from going to TSVs, 3D main memory with Wide I/O could reduce main memory 

latencies by a total of 9.4 ns (or 15.9%). Through system simulation, it was found the current 

implementation of 3D main memory with Wide I/O improves the performance of a C67x-like 

DSP by an average of 3.8% (and up to 8.8%) and that further increasing the main memory bus 

width to 4,096 bits and using adjacent cache-line prefetching increases the performance 

improvement to an average of 9.7% (and up to 23.3%). Using the increased main memory bus 

width to fetch additional L2 cache lines greatly benefited the chosen applications because all of 

the benchmarks were multimedia applications, which have fairly linear main memory access 

patterns and a high-degree of spatial locality.  

Although 3D main memory with Wide I/O improves the performance of embedded DSPs, 

my dissertation research also found that DSP energy consumption increases by an average of 

2.6% (and up to 8.9%). This was because the chosen applications had program phases where the 

increased bus width and adjacent cache line prefetching were evicting valid L2 cache entries 

leading to I/O inefficiency. Although 3D main memory with Wide I/O addresses the growing 

memory requirements of modern signal processing applications, this increase in energy 

consumption may be unacceptable since embedded DSPs are generally found in mobile devices 

such as smart phones that have limited battery life and low energy requirements. These results 
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and observations motivated me towards developing a solution that allowed DSPs to utilize 3D 

main memory with Wide I/O while keeping energy consumption low.  

The final contribution of my dissertation research was proposing algorithms for dynamic 

bandwidth scaling that dynamically increases the main memory bus width during memory-

intense phases in a program, but also decreases the bus width during compute-intense phases to 

lower I/O energy consumption. Three dynamic bandwidth scaling algorithms were proposed 

(consecutive adjacent L2 line miss, IPC moving average, and combined) and it was found that 

the consecutive adjacent L2 line miss algorithm achieves an average DSP performance 

improvement of 6.6% while increasing energy consumption by only 0.5% and the IPC moving 

average algorithm achieves an average DSP performance improvement of 6.9% while increasing 

energy consumption by 1.3%. This is in contrast to the current methodology where the main 

memory bus width is made wider and kept in this setting, which increases average DSP 

performance by 9.7%, but increases energy consumption by 2.6%. My dynamic bandwidth 

scaling algorithm allow DSPs to take advantage of the performance benefits of 3D main memory 

with Wide I/O, but also reduces the energy impact through better I/O efficiency. It can be 

implemented by adding multiplexers between the interbank datalines and the buffers connected 

to the I/O pads and using memory controller signals to control the multiplexers. 

As a whole, the models and ideas that I have presented in this dissertation document allow 

embedded DSPs to take advantage of 3D main memory with Wide I/O to address the memory-

intense nature of modern signal processing application, but also meet the stringent energy 

requirements of mobile computing devices. Previously it was thought the latency reduction and 

increase in main memory bandwidth were the key advantages of 3D main memory. Although my 

dissertation research did not disprove the latter, it was shown that increasing the main memory 
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bus width can also increase DSP energy consumption. Not only do my dynamic bandwidth 

scaling algorithms allow DSPs to take advantage of the performance benefits of 3D main 

memory with Wide I/O, but they do so without greatly impacting the DSP energy consumption. 

These advantages make my dynamic bandwidth scaling algorithms an attractive solution for 

integrating 3D main memory with Wide I/O and future embedded DSPs found in popular mobile 

devices.  
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9 Future Research 

My dissertation research proposed several dynamic bandwidth scaling algorithms to improve 

DSP performance and I/O energy efficiency. However, a number of avenues remain open for 

future research.  

I developed my dynamic bandwidth scaling algorithms through the use of dynamic profile 

data from the processor taken at intervals of one million instructions. One potential area for 

future work is in developing more advanced dynamic bandwidth scaling algorithms. For 

example, additional processor profile data such as ALU usage, load/store queue usage, etc. could 

be used to design an even more accurate dynamic bandwidth scaling algorithm. Furthermore, an 

artificial neural network or other form of machine learning could be implemented and after 

observing the performance changes associated with different main memory bus width settings, in 

theory, the artificial neural network could learn the behavior of the program and dynamically 

scale the bus width with even better efficiency than any human designed algorithm using profile 

data. 

Another avenue for future research is implementing a dynamic bandwidth scaling algorithm 

that uses the program counter (PC) to look for execution patterns. Signal processing applications 

typically have repetitive execution patterns where the same loops or subroutines are run multiple 

times across a set of data. For example, image decompression applications typically run the same 

subroutines across an input image pixel-by-pixel where the pixels are read from the cache using 

a linear or stride-based access pattern. Therefore, if a dynamic bandwidth scaling algorithm 

could determine that the application was executing the same subroutines, it could increase the 

main memory bus width and fetch adjacent L2 cache lines in advance so that the image data 

would be available in advance leading to an increase in performance.  
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Lastly, my dissertation research implemented and evaluated dynamic bandwidth scaling 

algorithms at the single processor-level (DSPs), but many mobile devices are complex systems 

composed of multiple processors such as general-purpose processors, DSPs, GPUs (graphic 

processing unit), and ASICs (application-specific integrated circuit). Based on this, another area 

for future research is investigating the impact of 3D stacked memory and implementing dynamic 

bandwidth scaling algorithms at the system-level. Since each of the compute resources on a 

system has vastly different memory requirements, it may be more difficult to develop a dynamic 

bandwidth scaling algorithm that avoids memory starvation for one or more of the compute 

resources during the memory-intense phase of one or more of the other compute resources. 

However, with multiple compute resources to share the main memory bus between, there should 

be more opportunities for performance and energy benefits making this a promising area for 

future work.  
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