

3D Stacked Memories for Digital Signal Processors

By

Daniel W. Chang

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering)

at the

UNIVERSITY OF WISCONIN-MADISON

2013

Date of final oral examination: 07/25/2013

The dissertation is approved by the following members of the Final Oral Committee:

Mark D. Hill, Gene M. Amdahl Professor, Computer Sciences

Nam Sung Kim, Associate Professor, Electrical and Computer Engineering

Mikko H. Lipasti, Philip Dunham Reed Professor, Electrical and Computer Engineering

Katherine Morrow, Associate Professor, Electrical and Computer Engineering

Michael J. Schulte, Adjunct Associate Professor, Electrical and Computer Engineering

i

Acknowledgements

There is a long list of people who have contributed, either directly or indirectly, towards this

dissertation. Without these people, I could not have succeeded at the University of Wisconsin.

First and foremost among those I would like to thank are my parents, Dr. Chun Chang and

Myeongheiu Chang for their unwavering support and encouragement throughout my life. They

encouraged me at an early age to pursue a career in science and it was through their support

(both financial and emotional) that I was able to receive my Electrical Engineering

undergraduate degree at the University of Illinois. While unhappy with my position at Advanced

Micro Devices (AMD), they also encouraged me to apply to Graduate School and “figure out

what I wanted to do with my life” because I was still young. They could have just as easily

talked me into staying with a stable, well-paying job, but they were right and now at the end of

my graduate career I can finally say I have found something I am passionate about and that is

teaching undergraduates.

I want to express my deepest gratitude to my advisers Dr. Michael Schulte and Dr. Nam

Sung Kim for their support throughout my graduate studies. Their knowledge, work ethic, and

guidance have been invaluable to me and I could not have done this without them. In particular,

both Dr. Schulte and Dr. Kim have very busy schedules and yet both continued to make time for

me whenever needed. I cannot express how appreciative I am of their efforts and I look forward

to future collaborations after I start my new job as an Assistant Professor at Rose-Hulman

Institute of Technology.

I would also like to thank Dr. Katherine Morrow and Dr. Mikko Lipasti. Throughout my

graduate studies, I had the opportunity to teach under both professors a number of times and it

was through their mentorship that I ultimately decided I wanted to become a professor at an

ii

undergraduate, teaching-focused University. In fact, I feel Professor Lipasti gave me a gentle

nudge towards this career when he nominated me for a teaching award two years ago. Both

Professors were also extremely helpful during my faculty job search and without their

mentorship and friendship; I would not be where I am today.

I would also like to thank Dr. Mark Hill for being a member of my dissertation committee.

He made time to meet with me in private and give me feedback and that feedback has helped

improve this dissertation considerably.

Lastly, I would like to thank the current and former colleagues in lab for their company and

support. Specifically Amin Farmahini-Farahani, Andy Nere, Arsalan Zulfiqar, Chris Jenkins,

Dan Seemuth, Dave Palframan, Felix Loh, Hamid Ghasemi, Hao Wang, Hsiang-Kuo Tang, Jake

Adriaens, Jungseob Lee, Kyle Rupnow, Mitch Hayenga, Paula Aguilera, Philip Garcia, Sean

Franey, Syed Gilani, Tony Gregerson, and Vignyan Reddy. Our discussions were not always

technical, but their company made the graduate school journey much more enjoyable.

iii

Abstract

Recently, three-dimensional (3D) integration technology has enabled researchers and engineers

to explore novel architectures. Due to the growing memory requirements of modern signal

processing applications, such as multimedia processing, speech recognition, and face

recognition, it was thought that digital signal processors (DSPs) could greatly benefit from 3D

memory integration technology where high-density memories are placed below processing cores.

Until recently, it was believed that this integration could lower main memory latencies by 45% to

60%, which would reduce the average memory access time for these modern signal processing

applications and improve performance while reducing energy consumption. Additionally, 3D

memory integration technology also allowed a large increase in the main memory bus width by

using small through silicon vias (TSVs) instead of off-chip metal wires. This large increase in the

main memory bus width meant each main memory request could bring more data into the last-

level on-chip memory and improve the performance of streaming signal processing applications

whose memory access behavior exhibits a large amount of spatial locality.

My dissertation first provides a more accurate 3D main memory model that demonstrates that

the latency reduction of going from conventional DDR2 DRAM to 3D memory technology

(using the 65 nm technology node) is roughly 4% instead of the often quoted 45% to 60%. With

this memory model, I re-evaluate the performance impact of 3D main memory on DSPs and find

the performance benefits from the latency savings are very small.

I next analyze current 3D main memory with Wide I/O, which can lower main memory

latencies by 15.9% and greatly increase the main memory bus width. I demonstrate that the

latency improvements of 3D main memory with Wide I/O and increasing the main memory bus

width from 64 bits to 4,096 bits can improve the average performance of key signal processing

iv

applications by 9.7% (and up to 23.3%), but also increases average energy consumption by 2.6%

(and up to 8.9%). For energy-constraint DSPs that are often found in mobile devices such as

cellphones, this energy increase may be unacceptable.

To help mitigate this energy increase, my dissertation research proposes novel techniques to

dynamically scale the effective main memory bus width of a DSP based on the program phases

of an application. These bandwidth scaling algorithms increase the main memory bus width

during memory intense program phases to improve performance and lower the bus width during

compute intensive phases to improve I/O energy efficiency. These algorithms can improve

average DSP performance by 6.6% (and up to 12.8%) while increasing average energy

consumption by only 0.5%.

v

Contents

Acknowledgements .. i

Abstract .. iii

Contents ... v

List of Tables .. viii

List of Figures .. ix

1 Introduction ... 1

1.1 Dissertation Motivation .. 1

1.2 Dissertation Contributions .. 2

1.3 Dissertation Organization ... 4

2 Background ... 6

2.1 3D Integration Technology ... 6

2.2 Digital Signal Processors (DSP) ... 8

2.3 Main Memory (DRAM) ... 12

3 Related Work... 15

3.1 3D Memory Design .. 15

3.2 3D Integration Technology in High Performance Processors .. 18

3.3 3D Integration Technology in Domain-Specific Processors .. 22

3.4 Memory Scheduling ... 24

vi

4 Experimental Framework .. 29

4.1 Simulation Environment ... 29

4.1.1 Trimaran .. 29

4.1.2 CACTI ... 32

4.1.3 DRAMSim2 .. 33

4.2 Baseline Processor .. 34

4.3 Benchmarks .. 36

5 Reevaluating 3D Main Memory .. 39

5.1 A Model for 3D Main Memory .. 39

5.2 Reevaluating 3D Main Memory on DSPs .. 43

5.2.1 Methodology ... 43

5.2.2 Results ... 44

5.3 Summary ... 46

6 Evaluating 3D Main Memory with Wide I/O ... 48

6.1 3D Main Memory with Wide I/O ... 48

6.2 Evaluating 3D Main Memory with Wide I/O on DSPs .. 51

6.2.1 Methodology ... 51

6.2.2 Results – Performance ... 53

6.2.3 Results – Energy Consumption ... 56

6.3 Summary ... 60

vii

7 Dynamic Bandwidth Scaling Algorithms for DSPs .. 62

7.1 Motivation .. 63

7.2 Dynamic Bandwidth Scaling Algorithms ... 65

7.2.1 Algorithm Design Methodology ... 67

7.2.2 Consecutive Adjacent L2 Line Miss Bandwidth Scaling Algorithm 68

7.2.3 IPC Moving Average Bandwidth Scaling Algorithm ... 70

7.2.4 Combined Bandwidth Scaling Algorithm ... 72

7.2.5 Oracle Scaling Algorithm.. 73

7.3 Evaluating Dynamic Bandwidth Scaling Algorithms .. 73

7.3.1 Methodology ... 74

7.3.2 Results - Performance ... 74

7.3.3 Results – Energy.. 77

7.4 Summary ... 80

8 Conclusions ... 82

9 Future Research ... 86

Bibliography .. 88

viii

List of Tables

Table 4.1: Texas Instrument C67x Configuration. .. 35

Table 5.1: 2D vs. 3D Channel Model Parameters. .. 41

Table 5.2: Transmitter, Receiver, and Channel Latencies. ... 42

Table 5.3: Texas Instrument C67x Simulation Parameters. .. 44

Table 6.1: 3D Main Memory with Wide I/O Simulation Parameters. .. 53

Table 7.1: Dynamic Bandwidth Scaling Simulation Parameters. ... 74

ix

List of Figures

Figure 2.1: Fabrication steps for wafer-level, back-end-of-the-line 3D technology (from [6]). 7

Figure 2.2: Organization of a DRAM memory array (from [22]). .. 12

Figure 2.3: Timing diagram for a DRAM access. ... 13

Figure 4.1: Block diagram of a Texas Instrument C67x DSP. .. 35

Figure 5.1: 2D and 3D main memory physical interconnect models. ... 40

Figure 5.2: Performance results of the six benchmarks on the baseline processor with 2D and 3D

main memory... 45

Figure 6.1: A timing breakdown of 2D Low Power DDR2 DRAM. .. 49

Figure 6.2: Address, command, and data pad placement. ... 50

Figure 6.3: Performance results of the six benchmarks on four different main memory and bus

width configurations. ... 54

Figure 6.4: Energy results of the six benchmarks on four different main memory and bus width

configurations. ... 56

Figure 7.1: IPC behavior of mser (face detection) at different main memory bus widths (BW). . 63

Figure 7.2: An example of the dynamic bandwidth scaling hardware. ... 66

Figure 7.3: Example of a main memory request pattern for 482.sphinx (speech recognition). 69

Figure 7.4: Flowchart for the consecutive adjacent L2 line miss algorithm. 70

Figure 7.5: Flowchart for the IPC moving average algorithm. ... 71

Figure 7.6: Performance results of my three bandwidth scaling algorithms on the six

benchmarks.. 75

Figure 7.7: DSP energy results of my three bandwidth scaling algorithms on the six benchmarks.

 ... 77

1

1 Introduction

1.1 Dissertation Motivation

Digital signal processors (DSPs) are playing an increasingly important role in modern computing

systems ranging from consumer electronics to health care and security systems [1]. Over the past

two decades, DSPs have become one of the most important drivers of the global semiconductor

industry, with nearly 1.6 billion DSPs shipped in 2008. In 2013, it is expected that over 3.3 billion

DSPs will be shipped, which represents an average growth rate of 16% per year [2]. The global

DSP market is estimated to grow from $6.2 billion in 2011 to $9.6 billion in 2016 [3]. With

significant growth in portable electronics such as smartphones, embedded DSPs have become a

major area of design and research.

Modern signal processing applications such as multimedia processing and speech recognition

are becoming more compute and memory intense. However, delivering increased performance to

meet these applications’ demands is becoming more difficult. In response to the memory-

intensive nature of signal processing applications, architects have been integrating more on-chip

memory into DSPs, which traditionally have small on-chip memories. However, these solutions

have not fully addressed the “memory wall” problem [4] for DSPs, in which the relative memory

access latencies have been increasing with each new process generation.

Recently, researchers have begun exploring three-dimensional (3D) integration technology, in

which logic and memory dies are vertically stacked together and connected using die-to-die or

through-silicon vias (TSVs) [5]. Since each 3D layer can utilize a different process technology

[6], 3D integration allows unique processor designs, including designs in which high-density

dynamic random access memory (DRAM) is stacked below DSP cores. By stacking main

2

memory below the processor in the same package, it was believed that main memory access

latencies could be much shorter than traditional out-of-package memory latencies, which would

help directly address the memory wall problem. Furthermore, stacked DRAM can also lead to

higher main memory bandwidth by using a large number of TSVs, which can increase the

performance of applications that have high spatial locality [7].

Although 3D integration technology has been studied before, the vast majority of work

focuses on exploring the impact of 3D technology in high-performance, general-purpose

microprocessors and little research have been done in the field of DSPs. In particular, DSPs are

commonly found on mobile devices that have stringent energy requirements, which require

designers to strongly consider energy consumption with any design decision. My dissertation

research looks to expand 3D integration technology research to include DSPs while also

considering energy consumption.

1.2 Dissertation Contributions

My dissertation research aims to directly address the growing memory requirements of modern

signal processing applications through the integration of DSPs and 3D DRAM with Wide I/O.

Although DSPs seem like excellent candidates for 3D DRAM due to their small on-chip

memories, my work demonstrates that the latency claims of 3D main memory need re-evaluation

and simply stacking memory dies below a DSP does not lead to a large enough latency reduction

to significantly improve the performance of signal processing applications. I first re-evaluate the

latency claims of 3D DRAM and find the often quoted 45% to 60% latency reduction to be

incorrect. I conclude that the key performance advantage of 3D DRAM lies in the capability to

significantly increase the main memory bus width with a large number of TSVs.

3

I also demonstrate that increasing the main memory bus width with TSVs and using the

additional bandwidth to fetch adjacent L2 cache lines can lead to considerable performance

improvements for streaming multimedia applications that exhibit a high degree of spatial

locality. However, this performance improvement comes at the cost of higher DSP energy

consumption and simply increasing the main memory bus width with 3D technology can

sometimes lead to an inefficient usage of the wider bus. My research shows that signal

processing applications have program phases where the wider bus does not benefit the

application and simply consumes more I/O energy. Since DSPs are commonly found in energy-

constraint mobile devices, this energy increase may be unacceptable.

To address the increase in energy consumption that comes with increasing the main memory

bus width I propose novel dynamic bandwidth scaling algorithms that increase or decrease the

main memory bus width based on the program phases of the application. My bandwidth scaling

algorithms maintain most of the performance improvement of increasing main memory

bandwidth while also addressing the increase in energy consumption. These bandwidth scaling

algorithms can achieve the majority of the performance improvements from increasing main

memory bandwidth, but only spend 25.2% of the execution time in the maximum bus width

setting, leading to better I/O energy efficiency. My proposed bandwidth scaling algorithms lead

to a reduction in DSP energy consumption while still addressing the growing memory

requirements of modern signal processing applications.

The key contributions of this dissertation include:

1. The presentation of a more accurate 3D DRAM latency model that shows the often

quoted 45% to 60% latency savings is inaccurate and that simply stacking memory dies

below the processor will decrease DRAM latency by only 4.1% [8].

4

2. A reevaluation of the performance benefits of 3D DRAM on DSPs with the updated

latency model through cycle-accurate simulations. In these simulations, I find the

performance benefits of 3D DRAM (without Wide I/O) are very small and that the key

advantage of 3D DRAM is the ability to significantly increase the main memory bus

width with additional TSVs [8] [9].

3. The presentation of a model for 3D DRAM with Wide I/O that not only significantly

increases the main memory bus width, but also decreases main memory latency with two

memory architecture changes [10].

4. The demonstration, through cycle-accurate simulations, that 3D DRAM with Wide I/O

and adjacent cache line prefetching can increase the performance of modern signal

processing applications by an average of 9.7% (and up to 23.3%), but this performance

increase comes with an increase in average DSP energy consumption (2.6%) [10].

5. The proposal of dynamic bandwidth scaling algorithms, which increase or decrease the

main memory bus width based on the phase behavior of the application [10]. To the best

of my knowledge, these dynamic bandwidth scaling algorithms are the first of their kind.

6. The demonstration, through cycle-accurate simulations, that my dynamic bandwidth

scaling algorithms maintain the majority of performance from increasing the main

memory bus width while also reducing the increase in DSP energy consumption through

better I/O efficiency [10].

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 provides background

information on 3D integration technology, modern DSP architectures, and main memory.

Chapter 3 provides a survey of related work. Chapter 4 presents the experimental framework

5

used throughout this dissertation including an explanation of the simulation environment, a

description of the baseline processor, and a summary of the benchmarks used for evaluation and

comparison. Chapter 5 presents an accurate 3D DRAM model. Chapter 5 also re-evaluates the

performance impact of 3D DRAM with this more accurate memory model for a modern DSP.

Chapter 6 presents a model for 3D DRAM with Wide I/O. In this chapter, 3D DRAM with Wide

I/O is also evaluated on a modern DSP and results for performance and energy are analyzed.

Chapter 7 proposes dynamic bandwidth scaling and evaluates their performance and energy

impact for a modern DSP. Chapter 8 summarizes my research and Chapter 9 describes some

opportunities for futures research in this area.

6

2 Background

This chapter provides background information on 3D integration technology including a short

description of the three types of 3D technology. This chapter also includes background

information on digital signal processors (DSPs) including how they differ from general-purpose

processors, the types of applications they commonly run, and a description of the Texas

Instrument Very Long Instruction Word (VLIW) C67x DSP that I used for this dissertation

research. Lastly, this chapter gives a detailed explanation of main memory organization and an

analysis of the steps involved in a main memory request.

2.1 3D Integration Technology

Three-dimensional (3D) integration technology is an emerging fabrication technology in which

multiple integrated chips are vertically stacked. 3D integration technology offers a number of

attractive features over traditional 2D integration technology, such as increased device density,

greater routing flexibility and reduced wire lengths. A number of 3D integration technologies are

currently being pursued and they can be divided into three categories:

1. 3D packaging technology is a die-to-die technology that uses wire bonding for vertical

interconnections [11]. 3D packaging technology is already used in many commercial

products, such as cell phones, but has very low inter-die interconnect density compared to

other 3D technologies, making it less attractive for memory-intensive applications.

2. Transistor build-up 3D technology is a transistor-level integration technology that forms

transistors inside on-chip interconnect layers [12], on poly-silicon films [13] or on single-

crystal silicon films [14]. Although a high vertical interconnect density can be achieved,

7

it is not compatible with existing fabrication processes. It is also subject to severe process

temperature constraints that can dramatically degrade the circuit’s electrical performance.

3. Monolithic, wafer-level, back-end-of-the-line (BEOL) compatible 3D technology is a

wafer-to-wafer technology that uses through-silicon vias (TSVs) to form inter-die

interconnections [15]. TSVs have the potential to offer the greatest interconnect density,

but also have a high cost. Figure 2.1 (taken from [6] with permission from Gabriel Loh)

illustrates the fabrication steps for this type of 3D integration technology, which are

described below:

1. Two wafers are separately fabricated and processed using standard fabrication

techniques.

2. To assist with the fusing of the two wafers, copper is deposited into the top metal

layer. This is similar to building conventional vias between metal layers.

3. The two wafers are arranged face-to-face and subjected to thermal compression.

The heat and pressure fuses the two copper deposits together thereby fusing the

two dies.

Figure 2.1: Fabrication steps for wafer-level, back-end-of-the-line

3D technology (from [6]).

8

4. Chemical-mechanical polishing (CMP) is used to thin one layer of the 3D stack to

only 10 to 20 µm.

5. The thinning allows the through-silicon vias (TSVs) that implement the external

I/O and power and ground connections to be relatively short; this minimize

voltage losses.

For my dissertation research, I assume wafer-level BEOL-compatible 3D integration

technology, since it appears to be the most promising option for high-volume production and

offers a number of advantages including the ability to integrate different technologies (like

CMOS logic and DRAM memories) and provide a massive amount of inter-die bandwidth via

the TSVs. These two abilities allow performance-improving features, such as 3D main memory

and larger capacity caches, to be implemented efficiently while also allowing designers to realize

radically different system organizations.

2.2 Digital Signal Processors (DSP)

Digital signal processors (DSPs) are a type of specialized microprocessor optimized for signal

processing applications. Many DSPs use a Very Long Instruction Word (VLIW) format to

increase parallelism, and they are typically statically-scheduled. These features allow DSPs to

reduce the hardware complexity of their design and have lower power consumption compared to

general-purpose processors. This reduction in power consumption makes DSPs an attractive

choice for embedded devices, which is why they are commonly found in popular smartphones

and other multimedia devices. Digital signal processors differ from general-purpose

microprocessors in a number of ways [16] [17] [18] [19]:

1. Many signal processing applications are deadline-driven and require the processor to

complete the operations within some fixed amount of time.

9

2. Some DSP memory architectures are designed for streaming data and make use of DMA

and software-controlled memories, such as scratchpad memories.

3. Although some DSPs use scratchpad memories, many still have traditional cache

hierarchies. However, these caches are typically much smaller than those used in general-

purpose processors.

4. Some DSPs use Very Long Instruction Word (VLIW) techniques for increased

performance, lower power and deterministic program behavior.

5. Although general-purpose microprocessors can execute signal processing applications,

they are not well suited for use in devices such as mobile phones due to energy and

thermal constraints. DSPs are more specialized for these types of devices.

Since DSPs are commonly found in products such as portable electronics and multimedia

devices, they often implement streaming applications, such as multimedia processing and

wireless communications. These wireless communication applications are usually deadline-

driven and may require the DSP to finish a particular code segment within a specified time

frame. However, multimedia applications (unlike wireless communication applications) have

soft deadlines, for which the application can tolerate a missed deadline and may respond by

decreasing the quality of service. For my dissertation research, all the applications evaluated are

multimedia signal processing applications that fit this behavior.

To address deadline-driven, streaming applications, many DSPs make use of software-

controlled memories, such as scratchpad memories [20]. Software-controlled memories refer to a

type of memory in which the programmer has knowledge of the memory hierarchy and internal

latencies and programs the application with these in mind (although some of this can be handled

by modern compilers). Since these memories allow for deterministic program execution times,

10

they help ensure that applications meet their deadlines. Furthermore, scratchpad memories also

provide an energy savings since these memories do not need to perform tag comparisons or

possibly look for data in multiple locations. 3D memory integration technology offers DSPs the

ability to either integrate software-controlled scratchpad memories or easily increase the size of

such memories. For my dissertation research, I chose not to look at software-controlled

scratchpad memories since the DSPs found in mobile computing devices such as smart phones

usually have cache memories.

However, although many DSPs use software-controlled scratchpad memories, a large number

of DSPs (such as the Texas Instrument series of DSPs) still use memory hierarchies with L1 and

L2 caches, similar to those found in general-purpose processors. However unlike general-

purpose processors, DSPs often have significantly smaller cache sizes since the devices DSPs are

traditionally found in have much smaller area constraints. It is common for DSPs to have L1

cache sizes as small as 4 KB. Although caches have probabilistic behavior, which does not

address the deterministic requirement of many signal processing applications, they provide the

advantages of a simpler programming model while also allowing flexibility when porting an

application from one processor to another. With software-controlled memories, programmers

may need to rewrite their programs for each new processor memory hierarchy.

3D memory integration technology offers the opportunity to integrate main memory in the

same package as the processor and was believed to significantly decrease the memory latency,

which decreases the cache miss penalty and decreases energy consumption. As will be discussed

later in this document, we found the latency reduction claims for 3D memory to be overly

aggressive and the decrease in memory latency from 3D memory to be significantly less than the

often-quoted reductions.

11

Another architectural feature many DSP architectures take advantage of is using Very Long

Instruction Word (VLIW) techniques to increase parallelism. VLIW architectures exploit

instruction-level parallelism by allowing programmers or compilers to find independent

instructions, dispatch them in parallel and allow them to execute concurrently on multiple

execution units. Since many multimedia applications exhibit instruction-level parallelism and

data-level parallelism that can be transformed into instruction-level parallelism, VLIW

architectures take advantage of this to increase performance while keeping area and energy low

by avoiding complex hardware structures for register renaming, bypass logic, and branch

prediction found in many out-of-order superscalar processors. In addition, VLIW architectures

also address the deterministic execution time requirements of many signal processing

applications, since the programmer or compiler statically schedules instructions.

Lastly, although general-purpose processors can execute many signal processing

applications, they generally do not perform as well as DSPs on these applications and consume

too much energy and area to be effectively used in the types of devices that employ DSPs. In

contrast, DSPs can have specialized instruction set architectures for signal processing

applications and include hardware features such as an integer multiply accumulate (MAC). DSPs

implement these applications at high performance with low energy and area, thus making them

better candidate architectures for portable electronics and multimedia devices.

For my dissertation research, the baseline DSP chosen for evaluation is the Texas Instrument

C67x DSP [21]. The C67x is an eight-way VLIW DSP with a traditional cache hierarchy. Texas

Instrument DSPs can currently be found in Motorola Droid smartphones, Amazon Kindle E-

book readers, and tablets like the Samsung Galaxy Tab 2. The Texas Instrument C67x DSP is

described in further detail in Chapter 4.

12

2.3 Main Memory (DRAM)

Main memory or dynamic random-access memory (DRAM) is a type of memory, generally

found off-chip that uses a single transistor and capacitor pair for each bit. DRAM is referred to as

“dynamic” because the capacitors storing the bits of data leak their charge and so, to retain the

stored information, each capacitor in the DRAM must be periodically refreshed (i.e. read and

rewritten).

Each DRAM die contains one or more memory arrays, which contain a grid of storage cells

with each cell storing one bit of data. Each memory array is arranged in rows and columns. To

read or write to a specific location, the memory controller uses a row and column address to

identify the intersection of a row and column within a memory array [22]. Specifically once a

row is identified, an entire row of bit cells are brought into a row buffer. From the row buffer, the

memory controller uses the column address to strobe the appropriate column and access the

correct memory location. Figure 2.2 (taken from [22] with permission from Bruce Jacob) shows

the breakdown of one DRAM memory array.

Figure 2.2: Organization of a DRAM memory array (from [22]).

13

The performance of main memory can be specified by a combination of several main

memory parameters such as tRP, tRAS, tRCD, and tCL (or tCAS). The tRP is the row precharge

time and represents the number of cycles needed to terminate access to a row in memory and

open access to a different row. The tRAS is the number of cycles it takes to access a certain row

of data after sending the row address. The tCL (or tCAS) is the number of cycles it takes to

access a column of data after sending the column address. The tRCD (RAS to CAS delay)

represents the number of cycles between opening a row of memory (tRAS) and accessing the

columns (tCL or tCAS). Many times the tRCD delay can overlap with the tRAS delay. DRAM

access latencies can vary widely based on if the data needed is in an already open row (tCL) or if

the data resides in a different row and therefore must be opened and then read (tRCD + tCL,).

Figure 2.3 shows the read/write timing diagram for a DRAM access. To access memory, a

row must first be selected and loaded into the row buffer. Each bit line is connected to a sense

amplifier, which detects and amplifies the small voltage change of each bit line. The amplified

signal is then output through a DRAM bus into the row buffer. The row is then active and

columns are accessed for reading or writing. The dominant portion of the access time is

determined by the row and column activate times plus CAS latency (tRCD + tCL) to allow

Figure 2.3: Timing diagram for a DRAM access.

14

enough time for data to be streamed out [23] as shown in Figure 2.3. The term labeled “BL” in

Figure 2.3 is the burst length, which represents how many “bursts” of data are read or written.

For example, a BL value of 4 means that after the first column activation, an additional three

memory accesses are performed from adjacent locations in the DRAM memory array, which are

already in the row buffer. This memory access behavior improves the performance of

applications that exhibit a degree of spatial locality because subsequent memory references will

already be brought into the cache, which reduces the number of long latency main memory

accesses.

15

3 Related Work

This chapter provides a survey of previous work. It includes a discussion of previous research in

the areas of 3D memory design, 3D integration technology in high performance processors, 3D

integration technology in domain-specific processors, and memory scheduling.

3.1 3D Memory Design

A number of studies have investigated 3D memory design and implementation without analyzing

its impact on the full system [24] [25] [26] [27] [28] [29] [30].

Anigundi et al. [24] investigated different 3D DRAM design configurations that used wafer-

level BEOL-compatible 3D integration techniques and TSVs. To accommodate the potentially

significant pitch mismatch between DRAM word-lines/bit-lines and TSVs, they proposed two

coarse-grained partitioning strategies for 3D DRAM designs that reduced the number of TSVs

and relaxed fabrication constraints. Their proposed 3D partitioning design strategies reduced the

silicon area, access latency and energy consumption when compared with 3D packaging with

wire bonding and conventional 2D designs. To mitigate the yield loss of 3D integration,

Anigundi et al. also proposed an inter-die, inter-sub-array redundancy repair approach to

improve the success rate of memory repairs.

Tsai et al. [25] presented and validated a 3D cache delay and energy model called 3DCacti,

which allows designers to partition the cache across different 3D device layers at various levels

of granularity and explore different 3D options. Using their tool, the authors also explored a

variety of 3D cache partitioning options and compared the impact of the delay and energy

savings of different 3D cache partitioning strategies. They found that the savings in delay and

16

energy through 3D partitioning depends on the cache size, system requirements, the number of

3D device layers, and the technology node.

Wu et al. [26] proposed hybrid cache architectures composed of different memory

technologies. They proposed both inter- and intra-cache level hybrid cache designs that

combined SRAM, Embedded DRAM (EDRAM), Magnetic RAM (MRAM), and Phase-change

RAM (PRAM) technologies. The motivation behind this cache design came from observing that

caches made with different technologies offered dramatically different power and performance

characteristics compared to the traditional SRAM-based cache. For example, although SRAM

provided the shortest access latency, it consumed the most area and power while MRAM and

PRAM technologies provide longer access latencies, but consumed less area and power. To take

advantage of the best characteristics of each technology, they present a Hybrid Cache

Architecture (HCA) that combines the technologies. They found an inter-cache-layer HCA

design where individual levels in a cache hierarchy can be made of different memory

technologies provided a 7% IPC improvement when compared to a traditional three-level SRAM

cache design under the same area constraints. They also found that a more aggressive intra-

cache-layer HCA design where a single cache level could be partitioned into multiple regions,

each with a different memory technology, yielded a 12% IPC improvement over the baseline

while still consuming the same area. Lastly, the authors note that since 3D integration technology

enables the addition of more cache layers without increasing area, they present a two-layer 3D

hybrid cache design using 3D technology that achieves an 18% IPC improvement over the

baseline while reducing power by up to 70%.

Loh and Hill [27] [28] studied using 3D integration technology to make a multiple-layer, die-

stacked DRAM cache. Their motivation for this 3D cache is that for many systems, the capacity

17

of stacked DRAM would not be large enough for all of main memory so they instead

investigated a last-level DRAM cache. However, a 1 GB DRAM cache with 64-byte blocks

would require 96 MB of tag storage; placing these tags on-chip would be impractical and putting

them in the DRAM would be too slow. The authors reviewed multiple solutions including large

cache line sizes (larger than the traditional 64 byte block) and sub-blocking. However, the

authors noted that with large cache line sizes, there can be fragmentation problems where a small

subset of data is used in a large cache line, which leads to wasted transfers; sub-blocking, on the

other hand, increases the overhead of the tag array. To address these problems, the authors

proposed a 3D DRAM cache design where the cache tags are stored along with data in the cache.

They showed that scheduling the cache tag and data lookups as a combined operation makes this

design practical. They also proposed a MissMap structure that allowed them to compactly track a

very large amount of memory (i.e. 1 GB) using 2 MB of storage from the L3 cache reducing it

from 8 MB to 6 MB. After combining the two techniques, they achieved 92.9% of the

performance of an ideal 1 GB DRAM cache with an impractical 96 MB on-chip SRAM tag

array.

Kim et al. [29] fabricated a 1 GB 3D-stacked Wide I/O SDRAM with four channels and 512

data pins using TSVs and a 50 nm technology node. The authors validated the connectivity of the

TSVs through boundary scan tests and confirmed stable operation at 200 MHz using built-in self

test (BIST). They also found the TSVs in Wide I/O 3D-stacked DRAM consumed 11.2x less I/O

energy than off-chip metal wires.

Takaya et al. [30] presented a 3D test vehicle for wide I/O communication using TSVs. Their

three-layer 3D stack was composed of a logic chip, active silicon interposer, and SRAM memory

with a 4,096-bit data bus operating at 200 MHz. This test vehicle was fabricated with a

18

waveform capturer integrated on the silicon interposer to evaluate the signal integrity. The

authors found their 4,096 wide I/O data bus could achieve 100 GB/s of memory bandwidth using

a standard voltage supply of 1.2V.

Although my work also looks at 3D memory integration technology, I focus on analyzing the

benefits of the technology on both a DSP processor and the entire memory hierarchy, rather than

primarily studying main memory or the last level cache. The above works primarily focus on

memory organizations and designs that are enabled with 3D integration technology with some

works going so far as to fabricate their designs. Although one of my contributions (Chapter 6)

investigates latency improvements via memory organization, it is not the primary focus of my

dissertation. The primary contributions of my dissertation focus on the benefits of 3D technology

on digital signal processors and proposing novel memory bandwidth scaling algorithms that take

advantage of the increased main memory bandwidth that comes from using 3D DRAM with

Wide I/O. Philosophically, I found [26] to be the most similar to my dynamic bandwidth scaling

algorithms. Although they examined the memory hierarchy, their design approach of combining

both fast access latency memories with low power consuming memories is similar to my own

philosophy in proposing a dynamic bandwidth scaling algorithm that increases the main memory

bus width during memory-intense phases and lowers the bus width during compute-intense

phases to lower energy consumption.

3.2 3D Integration Technology in High Performance Processors

Prior studies have explored 3D integration technology for high-performance processors [31] [32]

[33] [35].

Black et al. [31] investigated the benefits of dividing an Intel® Core™ 2 Duo microprocessor

into two die and vertically stacking them atop each other to reduce the length and latency of the

19

wires between critical paths. They also studied increasing the size of the L2 through 3D

integration and converting the L2 cache to DRAM technology for increased storage. Their

vertical floor plan studies found that for a high-performance microprocessor, a 3D floor plan

could reduce power by 15% while increasing performance by 15% for a 14°C increase in peak

temperature. After voltage and frequency scaling, they found that the increase in temperature

could be neutralized while still giving an 8% improvement in performance and a 34% reduction

in power. Converting the cache to 3D stacked DRAM could also reduce the cycles per memory

access by an average of 13%.

Liu et al. [32] explored the performance benefits of moving main memory DRAM on-chip

and stacking it below a processor that is similar to an Alpha 21264. They reported that stacking

DRAM below the processor and using TSVs reduced the main memory access latency by 60%

and led to an average speedup of 13% for integer applications and 25% for floating-point

applications. The 60% reduction in main memory access latency was cited as the primary reason

for this performance improvement. They also explored the benefits of expanding the L2 cache

with additional 3D layers and found that the peak performance for integer programs was

achieved with an 8 MB L2 while floating-point program performance peaked with a 16 MB L2.

This was due to the trade-off between fitting larger working sets and the increased access latency

that comes with larger caches.

Similarly, Loh [33] investigated stacking 3D main memory DRAM below a high-

performance Intel® quad-core Penryn microprocessor and also analyzed the performance impact

of increasing main memory bandwidth by widening the data bus between main memory and the

L2. He also extended previous work by considering more aggressive memory options and

evaluated a “true 3D main memory” announced by the Tezzaron Corporation [34]. Loh argued

20

that previous studies did not fully exploit 3D stacking technology because the individual

structures were still inherently two-dimensional. He evaluated this “true 3D main memory”

where the individual bitcell arrays are stacked in 3D. This reduced the length of the internal

buses, wordlines, and bitlines, which in turn reduced main memory access latency. This

combination of optimizations provided an additional 32% improvement in main memory access

time that was additive with any previous latency benefits, such as using TSVs instead of off-chip

metal wires. His simulations showed that simply placing the DRAM on the same stack as the

processor increased performance by an average of 34.7% on memory-intensive workloads, while

expanding the bus of the 3D main memory architecture to 64 bytes further increased the average

performance benefit to 71.8% over the 2D baseline. Loh also found that the “true 3D main

memory” described above improved average performance by 116.8% over the 2D baseline. With

these significant performance improvements in mind, he found the L2 miss handling architecture

(MHA) was the new bottleneck and to address that, he proposed a new structure called a Vector

Bloom Filter. This structure enabled a scalable MHA that complemented the increased capacity

of the 3D-stacked memory system and provided an additional 17.8% performance improvement

over his proposed 3D-stacked memory architecture.

Lastly, Kgil et al. [35] looked at Tier 1 server architectures and investigated using 3D

integration technology to stack main memory DRAM below an eight-core system and found

multiple stacked DRAM dies would be sufficient for a primary memory. This would allow them

to remove the L2 cache and replace its area with an additional four cores (12 cores total). They

found that a voltage and frequency scaled 12-core CPU utilizing 3D DRAM, but containing no

L2 cache outperformed an eight-core CPU system with a large on-chip L2 and 3D DRAM by

about 14% while consuming 55% less power. They also found that their architecture performed

21

comparably to an Intel® Pentium 4-like machine while only consuming about 10% of the power

when running at a much lower voltage and frequency.

These studies demonstrated the potential performance and power benefits of 3D integration

in the field of high performance microprocessors. Loh [33] in particular made significant

contributions to the area. Although my dissertation also looks at the impact of 3D main memory

on microprocessors, those processors are embedded DSPS, which have significantly different

design constraints compared to the high-performance microprocessors described above.

Although energy consumption is important in high performance processors, it is much more

important on embedded DSPs that are usually found in mobile devices such as cell phones,

which have limited battery life. These unique design constraints required my dissertation to focus

on solutions that not only increased performance, but also targeted low energy consumption.

This led me to propose my dynamic bandwidth scaling algorithms, which are described in

Chapter 7. In addition to the underlying processor architecture being different, my work also

differs due to the applications I evaluated, which were primarily multimedia-based applications

commonly run on mobile computing devices. These applications are described in Chapter 4.

Lastly, some of the performance claims in the above works are contingent upon 3D stacked

memories and TSV interconnects providing a significant reduction in main memory access

latencies (as high as 60% as quoted in [32]). Using TSVs instead of off-chip metal wires is cited

as the primary reason for this latency reduction. These latency reduction claims are used in many

works and unfortunately, we disagree with this latency reduction claim. As described in Chapter

5, simply stacking 3D DRAM below the processor and using TSVs does not provide as large of a

latency savings. This finding reduces some of the performance benefits in the above studies.

However, my work does not refute the performance claims of the “true 3D main memory”

22

described in [33]. It instead looks at stacking 3D DRAM below the processor and using TSV

interconnects since that is the commonly studied case in 3D memory research.

3.3 3D Integration Technology in Domain-Specific Processors

There have also been a number of studies that investigated 3D integration technology in domain-

specific systems [36] [37] [38] [39] [40].

Al Masshri et al. [36] explored the benefits of using 3D stacked caches on GPUs, and

compared 3D stacked caches using MRAM (Magnetic Random Access Memory) and SRAM

technologies. Their results showed that by using 3D stacked caches, GPUs achieved a 53%

geometric mean speedup on 3D graphics and gaming benchmarks. They also found that

replacing the SRAM caches with MRAM technology yielded performance degradation, but

provided power benefits, making it more appealing for power-conscious applications.

Pan et al. [37] investigated 3D memory integration on VLIW DSPs. Their work is the most

similar to my dissertation work. They explored the benefits of stacking main memory DRAM

below a DSP and then converted the L2 from traditional SRAM technology to their own multi-

Vth DRAM design, which was much faster than traditional DRAM. They found that using 3D

integration technology to migrate main memory into the package yielded a 10% to 80% IPC

improvement over the baseline. They also found that by using their own multi-Vth DRAM

design for the L2 (instead of traditional SRAM technology), they could double the size of the L2

(without impacting area) and see an additional 10% improvement in IPC.

Sun et al. [38] proposed a 3D memory hierarchy where three SRAM layers could be stacked

below a multi-core DSP and configured as instruction or data caches for each DSP core. They

found that this memory architecture could improve the system performance of a single-channel

H.264 decoder by 30% and a multi-channel H.264 decoder by 54% compared to the 2D memory

23

baseline. They also found this memory architecture could increase the performance of a JPEG

decoder by six times by placing the data section (heap and stack structures) in the 3D SRAM

instead of the off-chip DDR2 memory.

Kim et al. [39] presented a reconfigurable heterogeneous multimedia processor for various

embedded applications on a handheld device. Their implemented processor included a custom-

designed I/O interface circuit with reconfigurable output drivers on a silicon-interposer channel

to achieve 8x higher memory bandwidth and found it achieved a 1.7x speedup in full augmented

reality processing.

Sampson et al. [40] implemented a system architecture and specialized accelerator unit for

low-power 3D ultrasound beam formation, which they call Sonic Milip3De. Since 3D ultrasound

offers unique challenges for computing due to its computational complexity and low power

requirements due to its close contact with human skin, the authors leveraged 3D die stacking

technology to split the analog components, analog-to-digital converters, SRAM storage, and a

1,024 unit beamsum accelerator array across three silicon layers for shorter wires and a compact

design. The authors also developed a new iterative delay calculation algorithm to exploit data

locality and lower power. With these optimizations, their 3D design was able to image a fully

sampled array within a 16W full-system power budget, which was over 400x less power than a

DSP-based solution. The authors estimate that with current scaling trends, their system will meet

the 5W target power budget for safe use on humans by the 11 nm technology node.

Although [37] and [38] are the most similar to my dissertation research, I conducted a more

thorough design space exploration by considering a wider range of 3D memory configurations. I

specifically targeted memory configurations that increased the main memory bus width, which

were not considered in [37] and [38]. Furthermore, some of the performance results in [37] and

24

[38] rely on the original latency claims of 3D main memory (45% to 60% latency savings), and

as will be explained in Chapter 5, I show this claim to be inaccurate. Therefore, I believe my

dissertation research to have more accurate performance results. Lastly, my dissertation research

also looks into dynamic bandwidth scaling algorithms, which none of the above works consider.

To the best of my knowledge, these topics have yet to be addressed or thoroughly studied for

DSP systems.

3.4 Memory Scheduling

There have been a number of studies on main memory scheduling algorithms, memory

controllers, and memory bandwidth [41] [42] [43] [44] [45] [46] [47].

Rixner et al. [41] analyzed the benefits of various algorithms for reordering memory accesses

for streaming applications. They describe a number of memory scheduling policies including in-

order, priority, open, closed, most pending, and fewest pending. The in-order scheduler takes the

oldest pending DRAM reference. A priority scheduler performs the pending memory reference

with highest priority. An open scheduler precharges a bank only if there is no pending references

to other rows in the bank and there are no pending references to the active row. This policy is

employed when there is significant row locality, making sure future references that target the

same row are serviced quickly. A closed scheduler precharges a bank as soon as there are no

more pending references to the active row. It should be employed if it is unlikely that future

references will target the same row as previous references. A most pending scheduler selects the

row or column access to the row with the most pending references; it can be used to prevent

starvation. Lastly, the fewest pending policy selects the column access to a row targeted by the

fewest pending references, which minimizes the time a row with little demand remains active.

Based on these observations, they proposed an in-order, first-ready access scheduler that

25

considers all pending references and schedules a memory operation for the oldest pending

reference. They found that the in-order, first ready access scheduler improved performance by an

average of 17% and improved bandwidth utilization by 40%. They also proposed an aggressive

reordering access scheduler increased locality and concurrency to improve performance by 30%

and bandwidth utilization by 93%. This work was one of the first to propose aggressive main

memory scheduling algorithms, which are now commonly used in modern memory systems.

Hur et al. [42] presented an adaptive history-based (AHB) scheduler that used the history of

recently scheduled memory operations to allow the scheduler to 1) better utilize the delays

associated with its scheduling decisions and 2) select operations that match the program’s

mixture of Reads and Writes to help alleviate bottlenecks within the memory controller. The

authors found their memory scheduler improved performance on an IBM Power5 by 15.6%,

9.9%, and 7.6% for the Stream, NAS, and commercial benchmarks, respectively and argue that

as memory traffic increases, the benefits of their AHB scheduler would also increase.

Ipek et al. [43] proposed a self-optimizing memory controller design that uses the principles

of reinforcement learning (RL) to make memory scheduling decisions. Their RL-based memory

controller’s goal was to learn the optimal memory scheduling policy and associate the system

state with long-term performance impact so as to schedule the memory operation that it

estimated will produce the highest long-term reward (performance). By continuously updating

the long-term reward values, the RL-based memory controller could adjust to changes in

workloads in real-time. The authors found their RL-based memory controller improved the

average performance of a four-core CMP by 19% and the DRAM bandwidth utilization by 22%

compared to a modern memory controller.

26

Leibowitz et al. [44] presented a mobile memory interface that utilized a globally

synchronous clock pause, which allowed the memory controller to synchronously pause the

entire memory interface to gate dynamic power consumption. This approach allowed the DRAM

to operate in a burst mode that could match the nature of the memory traffic while reducing

power consumption during idle periods. A test-chip was fabricated and achieved a peak memory

bandwidth of 4.3 GB/s at 3.3 mW/GB/s power efficiency, which could be scaled to 12.8 GB/s for

more aggressive memory and power demands.

David et al. [45] evaluated dynamic voltage and frequency scaling for memory bandwidth

scaling. They observed that in a typical server platform, memory consumed on average 19% of

the system power and that although increasing compute cores increases the demand on memory,

many workloads do not require maximum memory bandwidth. They found that reducing the

memory frequency incurred minimal performance degradation while reducing memory

frequency also allowed them to reduce the memory voltage. Based on these observations, the

authors proposed a dynamic voltage and frequency scaling algorithm that is based on memory

bandwidth utilization and found their algorithm reduced average memory power by 10.4% with a

performance degradation of only 0.17%.

Yoon et al. [46] proposed and evaluated an adaptive granularity memory system that

combined fine-grained and coarse-grained memory accesses. Modern memory systems use

coarse-grained memory accesses to bring an entire L2 cache line with multiple main memory

bursts. However, the authors noted that during code segments where spatial locality is low, this

coarse-grained approach was inefficient. The authors implemented an adaptive granularity

memory system with sector caches and sub-ranked main memory that could go between coarse-

grained and fine-grained memory accesses and found it could improve the performance of

27

memory-intensive applications by 61% without ECC (error correcting codes) and 44% with

ECC. They also found their adaptive granularity memory system could lower memory power

consumption by 29% without ECC and 14% with ECC.

Deng et al. [47] presented a main memory power management scheme called MemScale,

which applies dynamic voltage and frequency scaling (DVFS) to the memory controller and

dynamic frequency scaling (DFS) to the memory channels and DRAM devices to improve

memory energy consumption. MemScale was controlled by an operating system policy that

determined the DVFS/DFS settings for the memory system based on the memory bandwidth

needs, potential energy savings, and the performance degradation the applications could

withstand. Unlike traditional low-power memory states that require entire DRAM ranks to be

idle, MemScale’s modes are active and do not rely on memory idleness. Through simulation the

authors found MemScale could reduce memory energy consumption between 17% and 71% with

a maximum performance degradation of 10%.

These works demonstrated the performance and energy benefits of advanced memory

scheduling algorithms, memory controller optimizations, and dynamic voltage and frequency

scaling on main memory. Although one of the contributions of my dissertation is proposing

dynamic bandwidth scaling algorithms to lower DSP energy consumption, which was the goal of

[44], [45] and [47], my proposed algorithms do so through a different mechanism. My dynamic

bandwidth scaling algorithms vary the main memory bus width to lower main memory energy

consumption while the authors in [44], [45], and [47] use a global pause or dynamic voltage and

frequency scaling. Similarly, adaptive granularity memory accesses proposed in [46] is also

similar to my dynamic bandwidth scaling algorithms. The authors of this study also dynamically

change main memory accesses, but do so with changes to the main memory and cache

28

organizations. Furthermore, their coarse-grained granularity is no wider than typical main

memory accesses (one L2 cache line size) while my dynamic bandwidth scaling algorithms can

fetch up to three additional L2 cache lines through the use of TSVs, which is only possible when

utilizing 3D integration technology.

Additionally, while [42] and [43] use previous memory requests to make current memory

decisions and are similar to how I designed my algorithms (described in Chapter 7), one of my

algorithms considers DSP performance (IPC) to make its bandwidth scaling decisions. Both

studies also focused on improving performance and bandwidth utilization while my algorithms

focus on efficiently using memory bandwidth so as to reduce DSP energy consumption while

maintaining performance. Lastly, my dissertation research focuses on 3D memory technology

and specifically on a key advantage of 3D memory technology (increased main memory

bandwidth) as its motivation and none of the above studies considered 3D memory technology

and instead considered more traditional memory architectures. To the best of my knowledge, my

dissertation research is the first to propose dynamic bandwidth scaling algorithms for 3D

memory systems utilizing significantly increased main memory bus widths.

29

4 Experimental Framework

This chapter provides a detailed description of the simulation environment I used for DSP

performance and energy evaluation. It also includes a more detailed description of the baseline

DSP I used for comparison, which is similar to a Texas Instrument C67x DSP. Lastly, this

chapter concludes with a description of the six benchmarks I used for evaluation.

4.1 Simulation Environment

4.1.1 Trimaran

For performance evaluation, I used the Trimaran simulator [48] running within the EPIC-

explorer framework [49]. The Trimaran simulator is a cycle-accurate, highly parameterizable

integrated compilation and performance evaluation tool used to evaluate embedded and high-

performance VLIW architectures. Trimaran is comprised of the following:

1. A parameterized instruction-level parallelism (ILP) architecture called HPL-PD [50].

2. A machine description language for conveying HPL-PD architectures.

3. An easily modifiable optimizing compiler that employs an extensible IR (intermediate

program representation), which has both an internal and textual representation. The IR

supports modern compiler techniques such as representing data and control dependencies

and control flow.

4. A HPL-PD architecture simulator, which can be parameterized via a machine description.

This simulator provides run-time information on execution time that can be used for

profile-driven optimizations.

HPL-PD adopts a philosophy where the compiler is responsible for statically scheduling the

execution of a program and therefore the compiler needs exact information about the architecture

30

including the register file structure, included operations, resources in the architecture, resource

utilization patterns, and operation latencies. A machine-description (MDES) database specifies

these parameters, and the architectures are defined using a human-readable machine description

language, called HMDES [51].

The Trimaran simulator is comprised of three components: the OpenIMPACT compiler, the

Elcor compiler, and the Simu simulator. OpenIMPACT takes the application’s source code and

the description of the VLIW processor as inputs and performs compilation and static scheduling

of the operations. The Trimaran simulator uses the OpenIMPACT compiler to compile the

original source code into an assembly intermediate representation (IR) called Lcode that is

optimized for Instruction-Level Parallelism (ILP), but not targeted towards any specific

architecture. The Elcor compiler takes the Lcode and a machine-description that specifies the

machine and compiles the code for the target machine. During the Elcor step, the benchmark is

profiled and a binary is generated by linking with the emulation library (Emulib), which provides

the code needed to simulate each of the instructions scheduled by Elcor. The generated binary is

then simulated on the Simu simulator and execution statistics are captured. These statistics

portray the performance behavior of the benchmark on the target VLIW architecture.

Additionally, as noted earlier, the Trimaran simulator was run within the EPIC-explorer

framework. EPIC-explorer is a parameterized VLIW-based platform containing area and energy

estimation models and is primarily used for design exploration. For the processor, EPIC-

explorer’s energy estimation models are based on the Cai-Lim model [52] and adapted to VLIW

processors. This energy estimation model subdivides the processor into a set of functional blocks

called FBUs (Functional Block Units) and gives two measurements for each type of circuit:

active energy density and inactive energy density where the inactive energy density is set to 10%

31

of the active energy density. For the memory hierarchy, EPIC-explorer uses the analytical model

in CACTI [53], which includes energy components for the inputs, outputs, bitlines, and

wordlines. For the wider bus widths simulated in Chapter 6, this model does not take into

account the extra TSVs and their increase in leakage power. EPIC-explorer has been integrated

with Trimaran and takes the execution statistics and a configuration file obtained from the

Trimaran simulator and uses them to make energy estimations for each functional block.

Lastly, the version of the Trimaran simulator I used (version 4.0) provides an interface for

simulating the memory hierarchy through an optional simulator called M5elements. M5elements

is a cache simulator that allows the Simu simulator to use the memory subsystem of the M5

simulator [54] to gather detailed memory statistics.

For this dissertation, modifications were made to both Trimaran and EPIC-explorer including

the addition of an energy estimation model for the main memory bus. This energy estimation

model takes the energy per I/O transfer derived in [29] for both 2D metal wires and 3D TSVs,

the number of DRAM accesses, and bus width to calculate the energy consumed by the main

memory bus. Modifications were also made to Trimaran to support implementation of my

proposed bandwidth scaling algorithms and adjacent cache prefetching including the addition of

more main memory and cache statistics. Trimaran was chosen for my dissertation research

because, at the time, it was one of the only simulators for VLIW processors. Additional features

such as an integrated energy and area model from EPIC-explorer also made it an attractive

simulation platform. All of the processor and memory configurations as well as my bandwidth

scaling algorithms were simulated on the Trimaran simulator and all performance and energy

results reported in Chapters 5, 6, and 7 were generated using Trimaran, M5elements, and EPIC-

explorer.

32

4.1.2 CACTI

The CACTI memory simulator [53] was used to aid in the modeling of the timing and energy

consumption of traditional DRAM. CACTI provides an analytical model for cache and memory

access times, cycle times, area, leakage power, and dynamic power. By having area, timing, and

power models integrated together, CACTI allows users to weigh the benefits and tradeoffs of

their memory designs, which allows designers to have a better understanding of the impact of

different design choices. CACTI accepts a very detailed set of memory parameters, which allows

the user to explore a wide variety of memory configurations. CACTI has been rigorously

updated throughout the years including improvements in accuracy and support for smaller

technology nodes. The fifth major update to CACTI added the ability to model DRAM.

For my dissertation research, CACTI was used to model a 512-MB 2D DRAM with a page

size of 8,192 bytes and one read-write port in 65-nm technology, which is a common main

memory configuration for mobile phones. This configuration had a random access latency of 56

ns, which is very close to the latency found in Micron’s DDR2 specification sheet [23] for a

memory with the same configuration. However as noted in Chapter 2, not all DRAM accesses

are random and many of them do not require a row activation time (tRAS) and simply need a

column strobe time (tCAS) since the memory request is already in the row buffer. This leads to

faster access latencies for many DRAM requests. For that reason, CACTI was primarily used to

generate DRAM timing parameters such as row activation time (tRAS), column strobe (tCAS or

tCL), precharge time (tRP), etc., which was then used in the trace-based memory simulator to

generate a more accurate DRAM access latency. This trace-based memory simulator is described

in the next section.

33

4.1.3 DRAMSim2

To obtain more accurate main memory access latencies, DRAMSim2 [55] was used.

DRAMSim2 is a cycle-accurate DDR2/3 DRAM simulator that models a detailed and accurate

memory controller that issues commands to a set of DRAM devices attached via a traditional

memory bus. DRAMSim2 fills the void in cycle-accurate memory simulators. In particular,

many CPU simulators significantly underestimate the effects of the memory system by using

overly simplistic models of the memory system. These simple memory models fail to take into

account highly complex behaviors of modern memory systems such as request reordering and

open and closed page policies, which DRAMSim2 models. To validate its accuracy,

DRAMSim2 includes Verilog timing models for Micron DDR2/3 DRAM parts. Whenever

DRAMSim2’s memory controller issues a command, this command is first executed on the

Micron Verilog model with the same timing parameters. This is done to determine if the

DRAMSim2 memory controller has violated any timing requirements.

DRAMSim2 includes an accurate memory controller model and issues individual memory

requests, unlike CACTI’s analytical model. It is a trace-based memory simulator that takes a

trace of memory requests from an application and accurately models each individual memory

request and its interaction with other memory requests in the memory transaction queue (i.e.

memory request reordering). Once the trace has been analyzed, results are reported, which

include the average latency of requests within a timing window, how many requests went to each

DRAM bank, etc.

For my dissertation research, I modified DRAMSim2 to output more fine-grain timing

information for each memory request. I then modified the system.ini file with the timing

parameters obtained in CACTI and discussed in Section 4.1.2. These parameter modifications to

34

the system.ini file ensured that DRAMSim2 would simulate the same DRAM as the one modeled

in CACTI. I then modified the Trimaran simulator to gather and output each individual main

memory request, which I then parsed into the format required for a DRAMSim2 memory trace.

Once the memory traces for each of my applications (described in Section 4.3) were generated,

each memory trace was run on DRAMSim2 and its timing information collected.

As expected, each application had a faster average latency than the random access latency

reported in CACTI in Section 4.1.2 (56 ns). As discussed earlier, this was because the memory

behavior of these applications was not random and the applications exhibited some spatial

locality. This meant in an open page main memory policy, some of the memory requests did not

need a row activation (tRAS) and only needed a column strobe (tCAS or tCL), which would

lower the memory request’s access latency. For our six applications, we found the average main

memory latencies to be between 38 and 40 ns. These were the main memory latencies used in my

Trimaran simulations with a 2D DRAM memory system.

4.2 Baseline Processor

For my dissertation research, the baseline DSP architecture I used for evaluation is similar to a

Texas Instrument C67x series floating-point processor [21]. The C67x is designed to be a low-

power application DSP. It is a dual-core VLIW processor running at 1 GHz and has separate L1

caches for data and instruction and a shared L2 cache. The C67x DSP has two paths that can

issue four instructions each for a total of eight instructions per cycle. All integer execution units

are 32-bits wide, and operations are statically scheduled by the compiler and executed. Figure

4.1 shows a block diagram of the Texas Instrument C67x DSP. Table 4.1 summarizes the Texas

Instrument C67x configuration.

35

Table 4.1: Texas Instrument C67x Configuration.

Parameter Setting

Frequency 1 GHz

L1 data cache 32-KB, 2-way, 512-bit lines, 1 cycle

L1 instruction cache 32-KB, 1-way, 256-bit lines, 1 cycle

Unified L2 cache 256-KB, 4-way, 1,024-bit lines, 7 cycles

of ALUs 6

of multiply units 2

of memory units 1

Main memory size 512-MB

Main Memory bus width 64 bits

2D main memory latency 38 to 40 ns

Figure 4.1: Block diagram of a Texas Instrument C67x DSP.

36

4.3 Benchmarks

To evaluate memory configurations and bandwidth scaling algorithms, I used applications from

the MediaBench benchmark suite [56], the SPEC CPU2006 benchmark suite [57], and the San

Diego Vision Benchmark Suite [58]. The chosen applications are commonly run on handheld

mobile devices and encompass a variety of signal processing application types including

multimedia processing, 3D graphics, and speech recognition. The six benchmarks I used for my

evaluations were:

1. Unepic is an experimental image decompression utility (EPIC) found in the MediaBench

benchmark suite. It is a lossy image decompression algorithm, meaning that the output

image is not exactly identical to the input image. Unepic has been designed with filters to

allow for fast decoding without floating-point hardware. Unepic was specifically chosen

for evaluation since image decompression is a common task done on mobile phones

when rendering webpages.

2. 482.sphinx3 is a speech recognition system developed at Carnegie Mellon University

[59] and is part of the floating-point portion of SPEC CPU2006. Speech recognition

converts spoken words from audio to text by reading the input (audio) and then

repeatedly processing it with different “beams,” which are the probabilities used to prune

the set of active hypotheses during each recognition step. Speech recognition was chosen

for evaluation because it is a complex application that is becoming an important portion

of popular consumer applications such as personal assistants like Siri found on Apple’s

iPhone [60].

3. Disparity is a 3D reconstruction application in the San Diego Vision Benchmark suite

that is based on Stereopsis [61], also known as Depth Perception. Disparity takes a pair of

37

stereo images, taken at slightly different positions and computes the depth information of

the objects represented in both pictures. The depth information of a scene gives the

relative position of the objects, which vision systems can then use for cruise control,

pedestrian tracking, and collision detection. Although originally intended for robot vision

systems found in cars and unmanned aerial vehicles (UAVs), computer vision is

important for smart phones as complex Augmented Reality (AR) applications become

more popular among consumers. For these reasons, Disparity was chosen as one of

benchmarks for evaluation.

4. Mser is an object detection application that takes a digital image and determines the

location and size of human faces (i.e. face detection). The San Diego Vision

implementation of this application is based on the Viola Jones Face Detection algorithm

[62]. The granularity of the algorithm’s operations occurs at the pixel-level and the

computations performed are complex. Face detection is found in biometrics, video

surveillance, human computer interface (HCI), and image data management. Like the

other SD-VBS applications, it was chosen for evaluation because of its wide-spread

usage in consumer mobile devices.

5. Stitch is an image or photo stitching application found in the San Diego Vision

Benchmark suite. The implementation of the Stitch benchmark is based on [63] and uses

the RANSAC algorithm [64] for image matching. Stitch combines multiple photographic

images with overlapping fields of view into either a segmented panorama or high-

resolution image. Image stitching is found in photography and movie making applications

and was chosen for evaluation due to its use in camera applications found in mobile

phones.

38

6. Tracking is a feature tracking application used to extract motion information from a

sequence of images. This is done with feature extraction [65] and a linear solver that

calculates the movement of the extracted features. This San Diego Vision benchmark

implements the Kanada Lucas Tomasi (KLT) algorithm [66] for feature tracking, which

is comprised of three major computation steps: image processing, feature extraction, and

feature tracking. Image processing is done at a pixel level granularity while feature

extraction and tracking, the core of the algorithm, operates at a coarse grained level based

on what features are identified. This application has uses in the automotive industry,

robotic vision, and video surveillance, but is also finding uses in consumer electronics

such as Microsoft’s gaming peripheral Kinect [67] and object detection in cameras.

As noted above, these applications were chosen since they were representative of the types of

applications commonly run on modern handheld mobile devices such as smartphones. Some of

the applications such as image compression are relatively simple and have been in use for years,

but many of them such as face and speech recognition are becoming more essential towards the

end-user experience on consumer mobile devices. These types of applications are not only

compute intense, but also memory intense making them well-suited for the 3D memory research

detailed in this dissertation. It is my belief that future mobile computing applications will

continue this trend and become more complex and as such, the chosen benchmarks are

representative of the types of applications that will be run on future DSP systems.

39

5 Reevaluating 3D Main Memory

In this chapter, I present a new model for 3D main memory latency and show through accurate

circuit-level simulations that the original claim that 3D main memory reduces access latency

45% to 60% is inaccurate. With this model, the latency reduction is no more than 2.4 ns (or

4.1%)1. This is a significant finding since many of the performance improvements found in 3D

memory studies were contingent upon this memory access latency reduction. In this chapter, I

also re-evaluate the performance benefits of 3D main memory with this new model and find that

the one of the advantages of 3D main memory needs to be re-examined.

5.1 A Model for 3D Main Memory

As described in Chapter 3, there have been a number of studies using the claim that going to 3D

main memory and using TSVs instead of off-chip metal wires results in a 45% to 60% reduction

in main memory access latency, which increases the performance of applications with high L2

miss rates that access main memory often. However, regardless of 2D or 3D technology, the

DRAM bank organization remains the same as described in Section 2.3. Both 2D and 3D DRAM

arrays are composed of rows and columns requiring the same timing parameters such as tRAS

and tCL.

Therefore, if the DRAM bank organization and data output pipelining architectures remain

the same, which is likely due to the strong desire for low cost per bit by the DRAM industry, the

key difference in 2D and 3D DRAM memory access time is the difference in interconnect

latency between the 2D and 3D buses for clocks, data and commands; specifically the latency

difference between off-chip metal wires and TSVs. Figure 5.1 illustrates our 2D and 3D physical

1 This new model for 3D main memory was developed by collaborating with Professor Gyung-Su Byun at West
Virginia University.

40

interconnect models for the memory I/O bus with the 2D physical model on the top and the 3D

physical model below it. As can be seen in the figure, both models are composed of three key

components: 1) a transmitter (TX), 2) a receiver (RX), and 3) a transmission medium or channel

(metal wires for the 2D case and TSVs for the 3D case). The transmitted signal is degraded by

the frequency dependent attenuation of a band-limited channel. For our 65nm CMOS 2D and 3D

physical bus models, a push-pull transmitter and single-ended differential amplifier receiver are

used because they provide the most general transceiver architecture [68].

To obtain highly accurate latency results for 2D and 3D transmission medium, 2D FR-4 and

3D TSV channels [69] were modeled using the 3D full-wave electromagnetic field simulator,

HFSS (High Frequency Structure Simulator) [70]. The parameters for the 2D and 3D channel

models are listed in Table 5.1. The 2D memory channel model included a printed circuit board

(PCB) channel of 10 or 20 cm long in FR-4 substrate, a standard FCBGA package for the

Figure 5.1: 2D and 3D main memory physical interconnect models.

41

memory controller, a 4mm-long Chip Scale Package (CSP) wire bond package for the memory

devices, solder balls, capacitive loadings for electrostatic discharge (ESD), as well as device

capacitance and terminations from the transmitters and receivers. However, the 3D channel

included only short, vertical TSV wires between tiers [71] that are 0.8mm in the worst case and

sometimes can be reduced from 0.8 mm to 0.1 mm by thinning each die [69].

 In general, DRAM access latency includes the time to request data from the DRAM core

(memory controller latency), the time to retrieve the data from the DRAM core, and the

interconnect delay through the bus interface unit. In Table 5.1 the 2D column represents

traditional off-chip metal wires, the 3D column is the same as the 2D column except the

interconnects are replaced with TSVs, and the 3D–Aggr column is the case where we

aggressively removed transmitters from the memory controller and receivers from memory

devices to further reduce the core access time for the 3D channel due to very short TSV

interconnect (no delays for long 2D traces, packaging, ESD components and much less

capacitive loading). Therefore, 3D-Aggr includes only address multiplexing due to on-chip TSV

interconnects.

Table 5.1: 2D vs. 3D Channel Model Parameters.

Parameters 2D [71] 3D [69] 3D-Aggr [69]

Traces length
200 mm

(Microstripe)
0.8 mm

(short TSV)
0.8 mm

(short TSV)

Capacitive Loading (/w
ESD components)

1 pF
0.01 pF

(TXRX Cgate)
0 pF

(TXRX removed)

FC-BGA Solder balls 650 um No solder balls No solder balls

CSP Wirebonds 4 mm No Wirebonds No wirebonds

Transmitter and Receiver 304 ps 289 ps 0 ps

Impedance of channel 50 ohm 50 ohm 50 ohm

Terminations 50 ohm 50 ohm 50 ohm

Interconnect Latency 1,522 ps 310 ps 21 ps

42

In prior works, the off-chip channel (i.e. metal wires) latency was assumed to be 10 ns in 2D

DDR SDRAM [72]. However, as can be seen in Table 5.1, if the architecture of the DRAM

internal core, address multiplexing and data I/O transceiver does not change, the latency decrease

between 2D and 3D-Aggr (transceivers of the MC and memory devices are removed) is only 1.5

ns. We validated these latency differences via simulation with the Spectre circuit simulator [73].

Table 5.2 shows the latency results from those simulations, which are based on accurate circuit

and physical models including a 2D package (wire-bonding), ESD components, and standard I/O

pad parasitic components.

Table 5.2: Transmitter, Receiver, and Channel Latencies.

Component 2D T-line (10 cm) 2D T-line (20 cm) 3D TSV

td (TX) 69 ps 70 ps 69 ps

td (channel) 620 ps 1,210 ps 21 ps

td (RX) 235 ps 242 ps 220 ps

Interconnect Latency 924 ps 1,522 ps 310 ps

When taking into account the DRAM access time, these models show the reduction in total

access latency (DRAM access latency plus interconnect latency) going from 2D to 3D is as little

as 0.6 ns (0.9 ns to 0.3 ns) and no more than 1.2 ns (1.5 ns to 0.3 ns). When this value is doubled

to account for each access going to and back from the memory, the savings is as little as 1.2 ns

and no more than 2.4 ns. For example, the total 2D access latency for a random access is 59.0 ns,

where 56.0 ns comes from the random access latency for a DDR2 DRAM [23] and 3.0 ns (1.5 ×

2) comes from the off-chip channel latency. Similarly, the total 3D access latency for a random

3D memory access is 56.6 ns (56.0 ns + 0.3 ns + 0.3 ns), which corresponds to a reduction of

about 4.1% (2.4 ns / 59 ns). However, since our baseline processor does not implement critical

word first, the processor must wait for the entire L2 cache line to be filled. Since the L2 cache

has 1,024-bit lines this means the first 64 bits take 56 ns and the 15 additional bursts (of 64 bits)

43

are used to fill the rest of the cache line. Since each additional burst requires 1 cycle (or 1 ns)

[23], this makes the total latency 71 ns (56 ns + 15 ns). For this scenario, TSVs reduce the access

latency by 3.4% (2.4 ns / 71 ns). As indicated earlier, if the DRAM bank organization is

reorganized, as shown in [33], the reductions would be larger. However, it is widely cited that

simply going to 3D and using TSVs instead of off-chip metal wires causes a 45% to 60%

reduction in overall latency. Yet, through simulations it was found that the latency improvement

from using TSVs is incorrect, which justifies a reexamination of some of the results that have

been published in the area of 3D memory integration.

5.2 Reevaluating 3D Main Memory on DSPs

In this section, the details of my experimental methodology are explained and then a

performance analysis of our proposed 3D main memory model is presented. This performance

analysis re-examines the potential performance benefits of 3D memory integration on embedded

DSPs.

5.2.1 Methodology

I began by simulating the baseline C67x-like DSP detailed in Table 4.1 to establish the

performance of the baseline DSP using traditional 2D main memory. I then simulated the baseline

DSP and reduced the main memory latencies to 21 and 22 ns (depending on the application) using

the original, more aggressive 3D main memory latency reduction claim (45%). These two

simulations allowed me to quantify the potential performance benefits for the original 3D main

memory latency reduction claims in isolation. I then simulated the same baseline architecture with

the more accurate 3D latency savings calculated in Section 5.1 and instead reduce the main

44

memory latencies from 38 and 40 ns to 36 and 38 ns, respectively, to show the actual performance

benefits. Table 5.3 summarizes our simulation parameters.

Table 5.3: Texas Instrument C67x Simulation Parameters.

Parameter Setting

Frequency 1 GHz

L1 data cache 32-KB, 2-way, 512-bit lines, 1 cycle

L1 instruction cache 32-KB, 1-way, 256-bit lines, 1 cycle

Unified L2 cache 256-KB, 4-way, 1,024-bit lines, 7 cycles

of ALUs 6

of multiply units 2

of memory units 1

Main memory size 512-MB

Main Memory bus width 64 bits

2D main memory latency 38 to 40 ns

Original 3D DRAM latency 21 and 22 ns

Accurate 3D DRAM latency 36 to 38 ns

5.2.2 Results

As described above, we begin by comparing the baseline configuration with 2D and 3D main

memory. Figure 5.2 shows the performance of each benchmark, with all results normalized to the

baseline 2D configuration. With 3D main memory having latencies of 21 and 22 ns (Baseline

(3D)), we observe a performance improvement of 6.5% (using the geometric mean) over the

baseline. The unepic, sphinx, disparity, mser, and tracking benchmarks exhibit the largest

improvements (3.3% to 15.1%). These performance improvements can be attributed to these

benchmark’s higher L2 miss rates (10.0% to 52.2%). Since these benchmarks access the main

memory more frequently, they benefit more from the lower main memory access latency.

However, as demonstrated in Section 5.1, this lower main memory access latency claim is

45

inaccurate. Since this claim is the basis for many 3D memory-based studies, however, this set of

experiments was designed to quantify the performance benefit that could be realized if this claim

were accurate.

Figure 5.2 also shows the performance results for our baseline system with a 3D memory

system using the latency reduction of 2.4 ns calculated in Section 5.1 (Baseline (Accurate 3D)).

As expected, such a small reduction in main memory latency results in the benchmarks

performance being nearly the same as the baseline 2D configuration. With the accurate 3D main

memory latencies, we observe a performance improvement of only 0.7% (using the geometric

mean) over the baseline. Three benchmarks (sphinx, disparity and mser) exhibit a small increase

in performance, but this improvement is less than 2%.

Figure 5.2: Performance results of the six benchmarks on the

baseline processor with 2D and 3D main memory.

46

These results show that the small latency reductions of 3D main memory through the use of

TSVs leads to almost no performance benefit for our C67x-like DSP and that one of the key

benefits of 3D main memory needs to be re-evaluated in other types of systems. However, this

study does not dismiss another key benefit of 3D main memory, which is the capability to greatly

increase the main memory bus width by adding additional TSVs to the memory bus. The benefits

of increasing the main memory bus width with 3D memory technology are discussed in Chapter

6.

5.3 Summary

In this chapter, I presented a new, more accurate 3D main memory model that shows the latency

reduction going from off-chip metal wires to 3D TSVs is as little as 2.4 ns (or 4.1%) and not the

often-quoted 45% to 60% savings. The key reason for this is that the only difference between 2D

and 3D main memory is the interconnect latency (off-chip metal wires for 2D and TSVs for 3D)

and our circuit simulations show the latency difference between these two technologies to be

very small. This is a significant finding because it significantly diminishes one of the key

benefits of 3D main memory; significantly faster access to main memory.

As noted in Chapter 1, DSPs traditionally have small caches and with signal processing

applications having larger working sets this can lead to high L2 miss rates while traditional 2D

main memory has become relatively slower compared to logic (the Memory Wall problem). It

was believed that the significant reduction in main memory access latency from 3D main

memory would directly address this by allowing caches to quickly fill their lines after a cache

miss, but unfortunately that is not the case. Upon re-evaluating the performance benefits of this

new 3D main memory latency model, I found that my baseline DSP running the six multimedia

47

benchmarks showed very little performance improvement. These results indicated that another

benefit must be leveraged for 3D main memory to be useful in modern DSPs.

Fortunately, another key benefit of 3D main memory is the capability to significantly

increase the main memory bus width through the use of TSVs. Since TSVs take up very little

area and do not contribute to the external chip pin count [33], designers can easily increase the

main memory bus width by adding more TSVs. With this in mind, Chapter 6 explores the

benefits and limitations of increasing the main memory bus width on DSPs with 3D-stacked

DRAM and Wide I/O.

My dissertation work described in this chapter was published in the Proceedings of the 2011

International Conference on Embedded Computer Systems (SAMOS) [9]2 and the Proceedings

of the 18th Asia and South Pacific Design Automation Conference (ASP-DAC) [8].

2 My SAMOS paper evaluated the performance impact of 3D DRAM on DSPs and was done prior to the latency
findings outlined in this chapter. The results labeled “Baseline (3D)” are from that paper.

48

6 Evaluating 3D Main Memory with Wide I/O

This chapter takes the conclusions from the previous chapter (i.e. 3D main memory does not

lower main memory latencies by a large amount) and analyzes another key benefit of 3D main

memory, which is the ability to increase the main memory bus width with additional TSVs. As

noted in the Section 5.3, since TSVs take up very little area, designers can significantly increase

the main memory bandwidth (i.e., I/O bus width) without being limited by the package pin

constraints. In this chapter, I present a standardized 3D main memory organization called 3D

main memory with Wide I/O [74] that takes advantage of TSVs to greatly increase the main

memory bus width while also reducing main memory latencies by 9.4 ns (or 15.9%) through

main memory architecture optimizations3.

I also show in this chapter that 3D main memory with Wide I/O can increase the geometric

mean performance of a C67x-like DSP by 9.7% (and up to 23.3% on some benchmarks).

However, this 3D memory organization can increase average DSP energy consumption by 2.6%

(and up to 8.9%), which may be unacceptable for embedded processors found in mobile devices

that have stringent energy requirements. Based on these findings, I conclude that if embedded

DSPs are to use 3D main memory with Wide I/O, a solution should be found to lower the energy

consumption while maintaining the performance benefits.

6.1 3D Main Memory with Wide I/O

Figure 6.1 gives a breakdown of the timing for a low power DDR2 DRAM. For the traditional

2D main memory with the default (i.e. 64-bit) I/O bus, data from the DRAM travels down global

and inter-bank datalines, through a 4:1 serializer and then through a serialized dataline. The data

3 The latency reduction opportunities of 3D main memory with Wide I/O were analyzed in collaboration with
Younghoon Son and Professor Jung Ho Ahn at Seoul National University in South Korea.

49

must then travel through the DRAM package, printed circuit board (PCB), and active package

(AP) before arriving at the memory controller (MC). At the MC interface, the data is

synchronized with the MC and then synchronized with the processor frequency. Based on the

previous chapter, going to 3D integration technology and using TSVs instead of metal

interconnects allows the removal of the timing components labeled t5 through t9. Based on this

finding, this latency savings was only 1.2 ns (or 2.4 ns roundtrip), which corresponds to 4.1% of

the total latency (59 ns).

However, current Wide I/O 3D main memories have two additional reorganizations: 1)

removing the DRAM to memory controller synchronizers and 2) placing the address, command,

and data pads closer to the DRAM banks. For the first latency savings, DRAM designers remove

the component labeled with time t10. This component is responsible for both synchronization of

the DRAM to the memory controller and rate conversion. The synchronizer also compensates for

jitter. Further, since the data transfer rate per pin of Wide I/O 3D main memory is lower (~200

Mbps) than that of low-power DDR2 (~800 Mbps), the synchronizer design for the 3D main

Figure 6.1: A timing breakdown of 2D Low Power DDR2 DRAM.

50

memory with Wide I/O can be simpler, leading to a latency savings. We modified CACTI to

model the component that adjusts the difference in transfer rates between an internal and external

datapaths and found that it would take one cycle. For a low-power DDR2 DRAM running at 400

MHz, this is 2.5 ns.

The second latency savings for 3D main memory with Wide I/O comes from placing the

address, command, and data pads closer to the DRAM banks. Figure 6.2 (a) shows the

organization of a traditional low-power DDR2 main memory with 16 DRAM banks. This figure

is based on die photos. As can be seen in the figure, a DRAM request coming from the address

and command pads on the right side of the figure must traverse both up and across the entire

DRAM module before reaching the data pad. Figure 6.2 (b) illustrates the organization for Wide

I/O 3D DRAM architectures with TSV interconnects. In this main memory organization, placing

the TSVs for the address, command, and data near the center of the DRAM banks translates into

each main memory request traveling a shorter total distance. The wire delay was modeled using

Figure 6.2: Address, command, and data pad placement.

51

the SPICE circuit simulator [75] and the 22 nm low power predictive technology model (PTM)

[76] and found that the latency savings was 4.5 ns.

When the latency savings from the previous chapter (2.4 ns) is added to the latency savings

of the two DRAM reorganizations described above (2.5 ns and 4.5 ns), the total latency savings

is 9.4 ns (2.4 + 2.5 + 4.5), which corresponds to 15.9% for our baseline DRAM (9.4 ns / 59 ns).

6.2 Evaluating 3D Main Memory with Wide I/O on DSPs

In this section, I first detail my experimental methodology and then present a performance

analysis of 3D main memory with Wide I/O on an embedded DSP similar to a Texas Instrument

C67x. I then present a performance analysis of 3D main memory with Wide I/O where the bus

width is increased up to 2,048 (or 4,096) bits, which allows the memory controller to use

adjacent cache line prefetching [77] to bring in two (or four) cache lines of data into the L2 cache

with a single transfer. This should increase the performance of multimedia applications that

traditionally exhibit a high level of spatial locality. For my dissertation work, I did not examine

adjacent cache line prefetching without the wider main memory bus (i.e. prefetching one or three

1,024-bit cache lines with a 1,024-bit bus). This should be examined in future work. All wider

bus width simulations included adjacent cache line prefetching. Lastly, I analyze the DSP energy

consumption of these 3D main memory organizations.

6.2.1 Methodology

I began by simulating the baseline C67x-like DSP detailed in Table 4.1 with traditional 2D main

memory and the 3D main memory with Wide I/O described in Section 6.1. Since 3D main

memory with Wide I/O is implemented with a wider I/O bus, these wide I/O simulations were

done with a main memory bus width of 1,024 bits. 1,024 bits was chosen because, as described

52

in Section 2.3, during one main memory transaction the memory controller requests the entire L2

cache line to be filled. In a traditional 2D organization the memory controller sends additional

column strobes, which result in multiple main memory transactions that eventually fill an entire

line in the L2 cache. However, for 3D main memory with Wide I/O, the additional TSVs are

used to increase the main memory bus width. Instead of sending multiple 64-bit transactions, the

main memory’s row buffer can send the entire L2 cache line (1,024 bits in our configuration) in

one transaction. These simulations were done to demonstrate the performance benefits of 3D

main memory with Wide I/O

Next, I simulated the baseline DSP with Wide I/O 3D DRAM, but increased main memory

bus width to 2,048 bits and used adjacent cache line prefetching to fetch an additional 1,024-bit

L2 cache line with the additional main memory data lines. This would allow the memory

controller to fill two L2 cache lines from one main memory request. Since many multimedia

applications have linear access patterns that exhibit high spatial locality, prefetching the next L2

cache line should increase overall DSP performance since the next data to be processed is

already in the cache.

Lastly, I again increased the main memory bus width from 2,048 bits to 4,096 bits and again

used adjacent cache line prefetching to fetch a total of four 1,024-bit L2 cache lines with the

additional main memory data lines. This would allow the memory controller to fill four L2 cache

lines from one main memory request. These two configurations were simulated to quantify the

performance and energy impact of increasing the main memory bus width and using adjacent

cache line prefetching. My simulation parameters are summarized in Table 6.1.

53

Table 6.1: 3D Main Memory with Wide I/O Simulation Parameters.

Parameter Setting

Frequency 1 GHz

L1 data cache 32-KB, 2-way, 512-bit lines, 1 cycle

L1 instruction cache 32-KB, 1-way, 256-bit lines, 1 cycle

Unified L2 cache 256-KB, 4-way, 1,024-bit lines, 7 cycles

of ALUs 6

of multiply units 2

of memory units 1

Main memory size 512-MB

Main Memory bus widths 64 bits, 1,024 bits, 2,048 bits, 4,096 bits

2D main memory latency 38 to 40 ns

3D main memory with Wide I/O Latency 29 to 31 ns

6.2.2 Results – Performance

Figure 6.3 shows performance results of the six benchmarks for four different main memory and

bus width configurations. The second bar per benchmark in Figure 6.3 shows the performance

benefits of Wide I/O 3D main memory described in Section 6.1 with all results normalized to the

baseline configuration with 2D main memory (the leftmost bar). Compared to the baseline

configuration with 2D main memory, the benchmarks achieve a geometric mean speedup of

3.8%. The 482.sphinx, disparity, and mser benchmarks show the largest improvements (5.9%,

8.8%, and 3.4% respectively), which can be attributed to their higher L2 miss rates (39.0%,

44.8%, and 52.2% respectively) and high number of main memory accesses. Although the 15.9%

latency reduction is not as high as the often quoted 45% to 60%, it is a large enough latency

reduction to improve the performance of each main memory transaction and therefore, the three

54

applications with the most main memory transactions benefited significantly. The remaining

benchmarks demonstrate speedups of 0.6% to 2.5%.

The third bar per benchmark in Figure 6.3 shows the performance benefits of Wide I/O 3D

main memory, increasing the main memory bus width to 2,048 bits, and adjacent cache line

prefetching of one additional line with all results normalized to the baseline configuration with

2D main memory. Compared to the baseline with 2D main memory and the default main

memory bus width, the benchmarks achieve a geometric mean speedup of 7.5%. The unepic,

482.sphinx, and disparity benchmarks demonstrate the largest improvements (5.1%, 16.5%, and

16.0%, respectively), which can be attributed to their L2 and L1 miss rates decreasing. The

remaining benchmarks show speedups of 1.4% to 3.6%. The average L2 miss rate (using the

geometric mean) of the six benchmarks went from 22.4% (the baseline) down to 16.7%. Since

each main memory transaction is now bringing in two adjacent L2 cache lines instead of one,

Figure 6.3: Performance results of the six benchmarks on four different

main memory and bus width configurations.

55

applications that exhibit a high level of spatial locality will hit more often in the L2 cache

leading to fewer main memory transactions and increased performance.

The rightmost bar per benchmark in Figure 6.3 shows the performance benefits of 3D main

memory with Wide I/O, increasing the main memory bus width to 4,096 bits, and adjacent cache

line prefetching of three additional lines with all results normalized to the baseline configuration

with 2D main memory. Compared to the baseline configuration with 2D main memory and the

default bus width, the six benchmarks achieve a geometric mean speedup of 9.7%. The unepic,

482.sphinx, disparity, and mser benchmarks show the largest improvements (6.7%, 23.3%,

18.8%, and 5.3%, respectively), which again can be attributed to a decrease in the L2 miss rate.

The remaining benchmarks demonstrate speedups ranging from 1.8% to 4.1%. The average L2

miss rate (using the geometric mean) of the six benchmarks went from 22.4% (the baseline)

down to 13.0%. Similar to the previous paragraph, since each main memory transaction is now

filling four adjacent L2 cache lines instead of one, applications that exhibit a high level of spatial

locality will hit more often in the L2 leading to a lower L2 miss rate and higher performance.

These results show that 3D main memory with Wide I/O and prefetching adjacent cache lines

can increase DSP performance by an average of 9.7% and up to 23.3%. Although a portion of the

speedup for each Wide I/O configurations can be attributed to the reduced main memory latency

from the main memory organization described Section 6.1, the majority comes from the

increased main memory bus width and adjacent L2 cache line prefetching. This indicates that the

benchmarks show a high amount of spatial locality and can take advantage of the increased

memory bus width between the L2 and main memory. This high level of spatial locality is not

surprising since all six of our benchmarks are streaming multimedia applications, which are

commonly run on mobile devices and have fairly linear memory access patterns.

56

6.2.3 Results – Energy Consumption

Figure 6.4 shows the relative energy results for the six benchmarks on the four main memory and

bus width configurations with all results normalized to the baseline with 2D main memory (the

leftmost bar per benchmark). The second bar per benchmark in Figure 6.4 shows that going to

3D main memory with Wide I/O has a slight increase in DSP energy consumption. We observe,

on average, a 0.2% increase in energy with many applications actually seeing a small reduction

in energy consumption. However, 482.sphinx yields a 3.7% increase in DSP energy

consumption, which skews the average and is explained below.

The decrease in DSP energy consumption for five of the benchmarks can be partially

attributed to the 3D main memory’s use of TSVs, which consume 11.2x less I/O energy than off-

Figure 6.4: Energy results of the six benchmarks on four different

main memory and bus width configurations.

57

chip metal interconnects [29]. However, all five benchmarks actually show a slight increase in

I/O energy since the main memory bus width was increased beyond the 11.2x energy savings

(1,024 bits was a 16x increase). Yet, the performance improvements of 3D main memory with

Wide I/O yields energy decreases in the decoding unit, integer unit, etc. Since I/O energy is only

a fraction of total DSP energy consumption, an increase in one area (I/O energy) does not always

yield a net increase in energy as long as other components see energy improvements.

However, as 482.sphinx demonstrates, increasing the main memory bus width beyond 11.2x

(1,024 bits was a 16x increase) can lead to not only an increase in I/O energy, but also an

increase in overall DSP energy consumption. Compared to the other five benchmarks,

482.sphinx had slightly more main memory transactions per instruction meaning this benchmark

generated more main memory transactions throughout its execution. This means 482.sphinx’s

I/O energy represents a higher portion of the total DSP energy. Although all six benchmarks had

an increase in I/O energy because they increased the main memory bus width beyond 11.2x,

482.sphinx’s increase was larger, which resulted in a net increase in DSP energy consumption.

As will be shown in the next set of results, continuing to increase the main memory bus width

and increasing I/O energy can eventually lead to energy inefficiency for not only 482.sphinx, but

most of the benchmarks.

The third bar per benchmark in Figure 6.4 shows that increasing main memory bus width to

2,048 bits and adjacent cache line prefetching of one additional line results in an increase in

energy consumption when compared to the baseline with 2D main memory. The configuration

with the increased bus width and adjacent cache line prefetching consumes, on average, 0.9%

more energy than the baseline configuration with 2D main memory. This can be attributed to the

58

main memory bus width being increased by 32x and adjacent cache line prefetching evicting

valid L2 cache entries leading to an increase in energy consumed by the L2 cache.

Although 3D main memory provides an 11.2x reduction in I/O energy per bit transfer,

increasing the main memory bus width by 32x means the I/Os will consume more energy than

the default 64-bit bus. However this increase in I/O energy only partially explains the increase in

energy. The processor now brings in 2,048 bits (two L2 cache lines) instead of 64 bits per

transaction due to the wider I/O bus width and adjacent cache line prefetching. Many times,

bringing in a larger amount of data and replacing the L2 cache lines leads to evicting a large

number of valid entries. This leads to I/O energy inefficiency where the L2 cache needs to send

additional main memory requests to undo the evictions. Although 3D main memory provides an

energy decrease per bit, if the memory transactions are inefficient, there is energy wasted on a

non-useful transaction. For example, if the main memory bus width was the default setting this

would lead to fewer L2 cache lines being evicted. Many times, the lower bus width setting may

be better for a particular program phase that does not have many main memory accesses that

exhibit spatial locality. This was the case for 482.sphinx whose L2 cache energy consumption

increased by a factor of two. However, since the L2 cache and main memory are only a fraction

of the total energy consumed by the DSP, the total energy increase is still relatively small.

482.sphinx and disparity show the largest increases in relative energy (6.3% and 1.2%,

respectively).

Surprisingly two benchmarks (unepic and stitch) demonstrate a decrease in energy

consumption (1.5% and 0.6%, respectively). Although both benchmark’s I/O energy

consumption was higher (as described above), their L2 cache energy consumption decreased

59

significantly (34.4% and 36.0%, respectively), which overall leads to the DSP consuming less

energy.

The rightmost bar per benchmark in Figure 6.4 shows the relative energy results of the six

benchmarks with Wide I/O 3D main memory, the main memory bus width increased to 4,096

bits, and adjacent cache line prefetching of three additional lines. The configuration with the

increased bus width and adjacent cache line prefetching consumes, on average, 2.6% more

energy than the baseline configuration with 2D main memory. This again can be attributed to the

main memory bus width being increased beyond 11x (64x in this case) and this leading to some

of the main memory transactions being energy inefficient and evicting valid L2 cache entries.

482.sphinx and disparity demonstrate the largest increases in relative energy (7.8% and 8.9%,

respectively).

The unepic and stitch benchmarks again achieve a decrease in energy consumption (1.9%

and 0.9%, respectively), which again can be attributed to a decrease in both benchmark’s L2

cache energy consumption (49.5% and 51.8%, respectively). Four of the six benchmarks

(excluding 482.sphinx and disparity) show a decrease in L2 cache energy consumption, but for

mser and tracking, the increase in I/O energy consumption due to the wider bus width canceled

this out.

Although the current implementation of 3D main memory with Wide I/O can improve

performance by prefetching adjacent L2 cache lines in advance, these results show that it can

sometimes lead to I/O inefficiency due to incorrectly evicting correct L2 entries. These results

lead to an interesting dilemma where designers can either choose 3D main memory with Wide

I/O to increase DSP performance and increase energy consumption or choose slower 2D main

60

memory since it does not impact DSP energy consumption. This particular scenario motivated

me towards designing my dynamic bandwidth scaling algorithms, which is detailed in Chapter 7.

6.3 Summary

In this chapter, I presented a model for 3D main memory called 3D main memory with Wide

I/O. 3D main memory with Wide I/O take advantage of TSVs consuming less area than off-chip

metal interconnects and uses this benefit to greatly increase the bus width between main memory

and the L2 cache. 3D main memory with Wide I/O also offers two main memory

reorganizations: 1) removing the DRAM to memory controller synchronizer and 2) placing the

address, command, and data pad TSVs closer to the DRAM bank edges. These two changes can

yield a 7.0 ns savings in main memory latency, which when combined with the 2.4 ns savings of

going from off-chip metal interconnects to TSVs described in Chapter 5, leads to a total main

memory latency reduction of 9.4 ns (or 15.9%). Although not as high as the original latency

saving claim for 3D main memory, when this 9.4 ns latency savings is combined with increasing

the main memory bus width and adjacent cache line prefetching, 3D main memory with Wide

I/O can lead to a 9.7% average performance improvement on the six multimedia benchmarks

running on a C67x-like DSP (and up to 23.3% on some benchmarks).

However, although 3D main memory with Wide I/O can significantly improve performance,

I also show that increasing the main memory bus width beyond a factor of 11.2x can also

increase I/O energy. Although many times, the increased main memory bus width can improve

performance during memory intense phases, it can also evict valid L2 entries, leading to I/O

inefficiency. Upon evaluation, I found that increasing the main memory bus width to 4,096 bits

can lead to an increase in DSP energy consumption by an average of 2.6% and up to 8.9% for

some applications. Although DSPs have growing memory requirements that 3D main memory

61

with Wide I/O addresses, this increase in energy consumption may be unacceptable since many

of these DSPs are found on devices such as smart phones that require low energy usage.

These findings motivated me towards designing a solution that would allow DSPs to take

advantage of the performance benefits of 3D main memory with Wide I/O while also minimizing

the I/O energy to keep the DSP energy consumption closer to the baseline. In Chapter 7, I detail

my dynamic bandwidth scaling algorithms, which solves this problem by dynamically increasing

the main memory bus width during memory-intense program phases to improve DSP

performance, but also decreases the bus width when it is no longer needed. With these

algorithms, the processor is no longer in the increased the bus width settings with cache line

prefetching for the entire execution, which leads to more efficient usage of the wider I/O bus

width.

My dissertation work described in this chapter has been accepted for publication at the

IEEE/ACM 2013 International Conference on Computer-Aided Design (ICCAD) [10].

62

7 Dynamic Bandwidth Scaling Algorithms for DSPs

In this chapter, I first demonstrate that an application can have very different performance

characteristics based on its program phases and the main memory bus width setting it is in. I then

show that this observation could be harnessed to address the problems highlighted in the

previous chapter (i.e. although the current implementation of 3D main memory with Wide I/O

can significantly increase DSP performance, it also increases DSP energy consumption). This

leads me to propose novel algorithms for dynamic bandwidth scaling. My dynamic bandwidth

scaling algorithms can dynamically increase and decrease the main memory bus width of the

DSP based on the program phases of the application. In memory-intense phases, more TSVs are

activated and the main memory bus width is increased to improve performance while during

compute-intense phases with little memory traffic, the bus width is decreased to reduce I/O

energy consumption. This is in contrast to the current methodology where processors with 3D

main memories and Wide I/O stay in the higher bus width setting for the entire execution of a

program, which as demonstrated in Chapter 6, can waste I/O energy.

Later in this chapter, I propose three different algorithms to dynamically determine the main

memory bus width and show they can improve average performance by 6.6% while increasing

DSP energy consumption by only 0.5% (compared to the 2.6% quoted in Chapter 6). Based on

these results, I conclude that my dynamic bandwidth scaling algorithms offer a solution to the

growing memory requirements of modern signal processing applications while still meeting the

strict energy requirements of mobile devices such as smart phones.

63

7.1 Motivation

As demonstrated in Chapter 6, Wide I/O 3D DRAM can show large performance improvements

on some of our benchmarks (up to 23.3%). However, although the TSVs used in 3D DRAM

consume 11.2x less I/O energy than off-chip metal interconnects, this energy savings disappears

when the main memory bus width is increased by a large factor. Since the main memory bus

width was increased up to 4,096 bits, running this bus width configurations yielded an increase

in DSP energy consumption by an average of 2.6% (and as high as 8.9%). For embedded DSPs

that have stringent energy constraints, this energy increase can lead to lower battery life on

mobile computing devices.

To illustrate the behavior described in the previous chapter regarding inefficient main

memory usage at high bus width settings, Figure 7.1 shows the instructions per cycle (IPC) of a

Figure 7.1: IPC behavior of mser (face detection) at different

main memory bus widths (BW).

64

60 million instruction segment of the mser (face detection) benchmark at three main memory bus

width settings (1,024, 2,048, and 4,096 bits). This segment was tens of millions of instructions

into the execution with the entire benchmark taking over two billion cycles to complete. This

segment was specifically chosen since it shows the different program phases of a typical

multimedia application. For the first 10 million instructions, the 1,024 bus width setting has the

best performance (0.36 compared to 0.18 for the maximum bus width setting) indicating that

during this program segment increasing the main memory bus width actually degrades

performance while also consuming more energy.

However, for the next 40 million instructions, both higher main memory bus width settings

have better performance with the maximum bus width setting achieving the best performance (an

average IPC of 1.19 compared to 1.09 for the baseline) indicating that the face detection

benchmark is in a memory-intense phase requiring a large amount of main memory bandwidth.

During this 40 million instruction segment, increasing the main memory bus width would

improve the performance of this application.

Finally, for the last 10 million instructions all three bandwidth settings have the same

performance. This indicates that the benchmark is in a compute-intense phase with very few

main memory transactions and again, the lowest main memory bus width setting would be the

most energy efficient. This program segment illustrates that being in the maximum main memory

bus width configuration does not always translate into better performance. Based on the energy

results in the previous chapter, this can lead to energy inefficiency since the higher bus width

settings will send larger amounts of data to fill more L2 lines, which evicts more L2 entries.

These observations led me to design dynamic bandwidth scaling algorithms, which are described

in the next section.

65

7.2 Dynamic Bandwidth Scaling Algorithms

As described at the beginning of this chapter, my dynamic bandwidth scaling algorithms can

dynamically increase the main memory bus width and fetch adjacent L2 cache lines during

memory intensive phases of a program. As shown in the previous chapter, since many modern

signal processing applications are multimedia-based and have predictable, linear access patterns,

preemptively fetching additional L2 cache lines can reduce the number of main memory accesses

and greatly increase DSP performance. However, unlike the static main memory bus width

settings analyzed in Chapter 6, my dynamic bandwidth scaling algorithms can also decrease the

main memory bus width when it is no longer needed so as to more efficiently use the increased

main memory bandwidth and decrease I/O energy consumption. Unlike the Wide I/O

configurations in Chapter 6, my dynamic bandwidth scaling algorithms are not in the maximum

bus width configurations for the entire execution, which leads to better I/O energy efficiency

while still improving performance.

My dynamic bandwidth scaling algorithms can be implemented with the use of memory

controller signals and adding multiplexers between the interbank datalines and the buffers

connected to the I/O pads. The multiplexer select bits are controlled by the memory controller

and operating system, which would run one of the scaling algorithms described in the next

section. Figure 7.2 shows a potential implementation for a simplified configuration, where each

memory bank outputs at most four bits.

For this example, to scale the bus width down by a factor of four, the three leftmost I/O pads

would be disabled and using the multiplexer select bits on the rightmost 4:1 multiplexer, the

correct bit would be selected and go through to the rightmost I/O pad. Similarly, to scale down

the bandwidth by a factor of two, the two leftmost I/O pads would be disabled and the 2:1 and

66

4:1 multiplexers on the right would be used to select the correct two bits. With this configuration

the correct data should come out regardless of what bus width configuration is chosen since all

four bits are available to the 4:1 multiplexer and two of the four bits are available to the 2:1

multiplexer. Similarly, all four I/O pads can be enabled to provide the maximum main memory

bandwidth. The 2:1 and 4:1 multiplexers were simulated in Synopsys [78] and for a 4,096-bit bus

width they were found to consume 1.9 nJ and 3.8 nJ, respectively, which is not a large increase

relative to the total energy consumption of our benchmarks.

In the following sections, I first describe the methodology used in designing my dynamic

bandwidth scaling algorithms. I then describe three different dynamic bandwidth scaling

algorithms and lastly I analyze their performance and energy results.

Figure 7.2: An example of the dynamic bandwidth scaling hardware.

67

7.2.1 Algorithm Design Methodology

I modified the Trimaran simulator code to profile the six benchmarks and generated two sets of

profile data, which were taken every one million instructions: 1) the average instructions per

cycle (IPC) and 2) the percentage of consecutive L2 misses that map to adjacent L2 cache lines.

The IPC data allowed me to look for execution phases as well as the upward or downward trends

in performance. The percentage of consecutive L2 misses that map to adjacent L2 cache lines

tracked whether the addresses of the current L2 miss and previous L2 miss mapped to adjacent

cache lines. This percentage included both directions (i.e. increasing and decreasing addresses).

This statistic implied that the program was in a streaming part of the code and increasing the

main memory bus width would increase performance by allowing the program to fetch an

additional, adjacent L2 cache line and reduce the L2 miss rate.

The percentage of consecutive L2 misses that map to an adjacent L2 cache line could be

tracked by adding a comparator that compares the current and previous main memory addresses

and then increments a performance counter if the two addresses are adjacent to each other. The

IPC data could be obtained by storing the execution cycles in a performance counter and then

resetting the counter after every one million instructions. Lastly, as noted in Section 7.2, my

dynamic bandwidth scaling algorithms would be executed by the memory controller and could

be programmed into the operating system.

After collecting all of the profile data, I analyzed the two statistics and found that the

benchmarks had program phases where IPC increases or decreases dramatically based on which

static bus width configuration (1,024, 2048, or 4,095 bits) they were in, which was illustrated in

Section 7.1. I also parsed the percentage of consecutive adjacent L2 line misses and analyzed the

memory access patterns for each benchmark looking for program segments with a high amount

68

of consecutive L2 misses that map to an adjacent L2 cache line. After identifying these program

segments, I tested a variety of percentages from 1.0% to 50.0% to see at what percentage

increasing the main memory bus width would benefit the application. I found that when the

benchmarks had a consecutive adjacent L2 line miss percentage greater than 3.0%, they usually

benefited from having a larger main memory bus width. Although the applications had many

program segments where the consecutive adjacent L2 line miss percentage was greater than 3.0%

(some as high as 50.0%), I found that this low threshold still offered opportunities to improve the

performance of the DSP. With these findings in mind, I developed three bandwidth scaling

algorithms, which are described below.

I chose to have my algorithms make a bus width decision every five million instructions.

This granularity was chosen after simulating a variety of other settings such as every one million

instructions, ten million instructions, etc. One million was not chosen since it meant the

algorithm would change the bus width too frequently and ten million was not chosen because if

the algorithm made an incorrect bus width decision, the benchmark would run in that setting for

too long.

7.2.2 Consecutive Adjacent L2 Line Miss Bandwidth Scaling Algorithm

Figure 7.3 shows a small portion of the 482.sphinx benchmark’s main memory requests with the

main memory addresses highlighted on the left in blue. This segment shows that the main

memory requests for 482.sphinx have a very linear pattern where the address is continually

incremented by offsets of 0x80 (in hexadecimal), where 0x80 is 128 bytes (or 1,024 bits), which

is also the L2 line size for our C67x-like DSP.

With this observation in mind, the consecutive adjacent L2 line miss bandwidth scaling

algorithm was designed under the assumption that if the consecutive adjacent L2 line miss

69

percentage is greater than or equal to 3.0%, the benchmark may be in a streaming section. If a

program is continuously missing adjacent L2 cache lines, fetching them in advance should

decrease the L2 miss rate and improve DSP performance. Therefore, this algorithm only uses the

percentage of consecutive L2 misses that map to an adjacent L2 cache line to make a main

memory bus width decision. Figure 7.4 illustrates the algorithm, which is described below.

The algorithm begins in the lowest main memory bus width setting (1,024 bits). If the

percentage of consecutive adjacent L2 line misses exceeds the threshold (3.0%) three or more

times in the last five intervals (an interval is one million instructions), the main memory bus

width is increased to the next higher setting (2,048 bits or 4,096 bits) for the next five million

instructions. If the percentage of consecutive adjacent L2 line misses is less than 3.0% for three

or more intervals, the main memory bus width is decreased to the next lower setting (2,048 bits

or 1.024 bits) since this profile data suggests that the program is not in a streaming section. If the

algorithm reaches the maximum setting and the next bus width decision is to increase the bus

Figure 7.3: Example of a main memory request pattern

for 482.sphinx (speech recognition).

70

width, it remains in the maximum setting. Similarly, if the algorithm reaches the minimum

setting and the next decision is to decrease the bus width, it remains in the minimum setting.

The three out every five intervals criteria was also chosen after testing a variety of other

configurations such as five out of every ten, etc. However, since I did not test every permutation

of this, it is quite possible better criteria exist.

7.2.3 IPC Moving Average Bandwidth Scaling Algorithm

The IPC moving average bandwidth scaling algorithm assumes that if the IPC trend of the last

five intervals is downward, the degradation of the benchmark’s performance may be due to a

lack of main memory bandwidth. It is possible that degradation in IPC is unrelated to the main

Figure 7.4: Flowchart for the consecutive adjacent L2 line miss algorithm.

71

memory bandwidth (e.g. a program phase with many branches). This bandwidth scaling

algorithm uses the IPC data of the previous five million instructions to calculate the IPC average

before making a bus width decision. Figure 7.5 illustrates the algorithm, which is described

below.

The algorithm begins by starting in the lowest main memory bus width setting (1,024 bits)

and executing for five million instructions to establish the average IPC for one interval. The bus

width is then increased by a factor of two to 2,048 bits for the next five million instructions to

establish what impact increasing the bus width has on the IPC trend. If the average IPC

Figure 7.5: Flowchart for the IPC moving average algorithm.

72

decreased when going from the 1,024-bit setting to the 2,048-bit setting, the main memory bus

width is decreased back to the default bus width setting (1,024 bits) since it is possible fetching

additional L2 cache lines is the reason for the decrease in performance. If the average IPC in the

2,048-bit setting increased when going from the 1,024-bit setting, the bus width is again

increased since the previous increase in bus width may be the reason for the increase in IPC.

In general, if the algorithm’s previous decision was to increase the bus width and the IPC

trend for the next interval is upward, it increases the bus width again. However, if the

algorithm’s previous decision was to increase the bus width and the IPC trend for the next

interval is downward, it decreases the bus width. Similarly, if the algorithm’s previous decision

was to decrease the bus width and the IPC trend for the next interval is downward, it increases

the bus width. However, if the algorithm’s previous decision was to decrease the bus width and

the average IPC increases, the algorithm decreases the bus width again.

This is done at each setting, where based on the IPC trend of the last interval and what the

previous bus width decision was (increase or decrease in bus width), the algorithm makes a bus

width decision. If the maximum setting (4,096 bits) is reached and the average IPC trend is still

increasing, the DSP remains in this setting since a higher setting does not exist. If the minimum

setting (1,024 bits) is reached and the average IPC trend is still increasing, the DSP remains in

this setting.

7.2.4 Combined Bandwidth Scaling Algorithm

The combined bandwidth scaling algorithm is a combination of the above two algorithms. The

combined bandwidth scaling algorithm increases the main memory bus width if at least one of

following the three criteria is met: 1) the percentage of consecutive adjacent L2 line misses is

greater than 3.0% for three of the last five intervals, 2) the previous decision was to increase the

73

bus width and the average IPC increased, or 3) the previous decision was to decrease the bus

width and the average IPC went down. The combined bandwidth scaling algorithm decreases the

main memory bus width if at least one of following the three criteria is met: 1) the percentage of

adjacent L2 line misses is less than 3.0% for three of the last five intervals, 2) the previous

decision was to decrease the bus width and the average IPC increased, or 3) the previous

decision was to increase the bus width and the average IPC decreased.

7.2.5 Oracle Scaling Algorithm

An oracle bandwidth scaling algorithm was also implemented to determine how close my

algorithms were to the maximum attainable performance. The oracle scaling algorithm takes all

the profiling data described in Section 7.2.1 and chooses the main memory bus width

configuration that maximizes the IPC at each interval. The performance results of my algorithms

were compared to the oracle algorithm’s results to determine how effective they were.

7.3 Evaluating Dynamic Bandwidth Scaling Algorithms

In this section, I first detail my experimental methodology and then present a performance

analysis of my three dynamic bandwidth scaling algorithms running on an embedded DSP

similar to a Texas Instrument C67x. I then present an energy analysis of each of my algorithms

and conclude that my dynamic bandwidth scaling algorithms not only improve the performance

of the baseline DSP, but do so while consuming less energy than statically scheduling the

maximum main memory bus width configuration for the entire execution duration of an

application.

74

7.3.1 Methodology

The three dynamic bandwidth scaling algorithms described above were all implemented and then

run on a C67x-like DSP within the Trimaran simulator. My simulation parameters are

summarized in Table 7.1.

Table 7.1: Dynamic Bandwidth Scaling Simulation Parameters.

Parameter Setting

Frequency 1 GHz

L1 data cache 32-KB, 2-way, 512-bit lines, 1 cycle

L1 instruction cache 32-KB, 1-way, 256-bit lines, 1 cycle

Unified L2 cache 256-KB, 4-way, 1,024-bit lines, 7 cycles

of ALUs 6

of multiply units 2

of memory units 1

Main memory size 512-MB

Main Memory bus width settings 1,024 bits, 2,048 bits, 4,096 bits

3D main memory with Wide I/O Latency 29 to 31 ns

Bandwidth Scaling Algorithms Tested Consecutive, Moving Average, Combined

The performance and energy results of each of the three dynamic bandwidth scaling

algorithm were then compared to the original baseline DSP with traditional 2D main memory

and the oracle bandwidth scaling algorithm. This was done to not only show their improvement

over the original 2D baseline, but to also show how close my algorithms were to the oracle

bandwidth scaling algorithm’s performance.

7.3.2 Results - Performance

Figure 7.6 shows the performance of my three dynamic bandwidth scaling algorithms, a static

bus width of 4,096 bits, and the oracle scaling algorithm all with 3D memory and Wide I/O with

75

all results normalized to the baseline processor with 2D main memory and the default bus width

(the leftmost bar per benchmark). The rightmost bar per benchmark shows that the oracle

algorithm has an average (geometric mean) performance improvement of 10.6% when compared

to the baseline with 2D main memory and the default bus width. The 482.sphinx, disparity, and

mser benchmarks showed the largest improvements (24.5%, 19.3%, and 8.2%, respectively). The

oracle algorithm provides a ceiling for the maximum performance improvement that any

bandwidth scaling algorithm can attain.

The second bar per benchmark in Figure 7.6 shows the performance of the consecutive

adjacent L2 line miss bandwidth scaling algorithm on the six benchmarks. The consecutive

adjacent L2 line miss algorithm achieves an average (geometric mean) speedup of 6.6% when

compared to the baseline with 2D main memory and the default bus width. The 482.sphinx,

Figure 7.6: Performance results of my three bandwidth scaling

algorithms on the six benchmarks.

76

disparity, and mser benchmarks saw the largest speedups (11.6%, 12.8%, and 6.5%,

respectively) since speech recognition, 3D reconstruction, and face recognition are all memory

intense streaming applications with high L2 miss rates. The 482.sphinx, disparity, and mser

benchmarks originally had L2 miss rates of 39.0%, 44.8%, and 52.2%, respectively.

The third bar per benchmark in Figure 7.6 shows the performance of the IPC moving average

bandwidth scaling algorithm on our six benchmarks. The IPC moving average algorithm

achieves an average (geometric mean) speedup of 6.9% when compared to the baseline with 2D

main memory and the default bus width. The unepic, 482.sphinx, and disparity benchmarks

showed the largest speedups (5.2%, 14.8%, and 14.3%, respectively).

The fourth bar per benchmark in Figure 7.6 shows the performance of the combined

bandwidth scaling algorithm. This combined algorithm achieves an average (geometric mean)

speedup of 6.4% over the baseline with 2D main memory and the default bus width. The unepic,

482.sphinx, and disparity benchmarks saw the largest speedups (4.5%, 12.9%, and 13.5%,

respectively).

Lastly, the fifth bar per benchmark in Figure 7.6 shows the performance of a static bus width

of 4,096 bits that was presented in Section 6.2.2. A static bus width of 4,096 bits achieves an

average (geometric mean) speedup of 9.7% and is shown to compare my algorithms to the

current methodology for using 3D main memory with Wide I/Os where the bus width remains in

the highest bus width setting for the entire execution duration. Although the current methodology

achieves better performance, as was demonstrated in Section 6.2.3, it comes with an increase an

average energy increase of 2.6% (and up to 8.9%).

Based on these performance results, the IPC moving average bandwidth scaling algorithm

has the best performance when compared to the oracle algorithm. The IPC moving average

77

bandwidth scaling algorithm’s 6.9% average speedup encompasses the majority of the speedup

of both the static bus width setting (9.7%) and the oracle algorithm (10.6%). However, the main

motivations for developing my dynamic bandwidth scaling algorithms was not only to increase

DSP performance, but also lower the increase in energy consumption by reducing the amount of

execution time spent in the maximum main memory bus width setting.

7.3.3 Results – Energy

Figure 7.7 shows the relative energy results of my three dynamic bandwidth scaling algorithms,

the static 4,096 bit bus width, and the oracle algorithm with all results normalized to the baseline

processor with 2D main memory. The rightmost bar per benchmark shows that the oracle

algorithm increases average DSP energy consumption by 2.4%. Although the oracle algorithm

Figure 7.7: DSP energy results of my three bandwidth scaling

algorithms on the six benchmarks.

78

has the best DSP performance (10.6%), it achieves this by having the applications spend an

average of 71.8% of their execution time in the maximum bus width setting.

The second bar per benchmark in Figure 7.7 shows the relative energy of the consecutive

adjacent L2 line miss bandwidth scaling algorithm. On average, the consecutive adjacent L2 line

miss algorithm increases DSP energy consumption by only 0.5% relative to the baseline DSP

with traditional 2D DRAM. The consecutive adjacent L2 line miss algorithm achieves this by

spending an average of only 25.2% of the execution time in the maximum bus width setting. This

leads to better I/O energy efficiency. However, this also explains why it does not achieve the

highest speedup of the three bandwidth scaling algorithms (an average performance

improvement of 6.6% compared to 6.9% for the IPC moving average algorithm). Lastly,

although this algorithm still increases average DSP energy consumption, this is a significant

reduction over the static 4,096-bit bus width configuration (fifth bar per benchmark), which

increases average DSP energy consumption by 2.6%.

The third bar per benchmark in Figure 7.7 shows the relative energy of the IPC moving

average bandwidth scaling algorithm. The IPC moving average algorithm increases DSP energy

consumption by an average of 1.3% when compared to the baseline configuration. The IPC

moving average algorithm spends an average of 32.1% of the execution time in the maximum

bus width configuration, which improves I/O energy efficiency, but still results in a small

increase in energy consumption compared to the baseline and consecutive adjacent L2 line miss

algorithm, which spends less time in the maximum bus width setting (25.2%). However, the time

spent in the higher bus width settings explains why this algorithm achieves the best performance

out of the three bandwidth scaling algorithms (an average performance improvement of 6.9%).

Although this algorithm also increases average DSP energy consumption, it is still lower than the

79

static 4,096-bit bus width configuration (fifth bar per benchmark) while retaining most of the

performance benefits.

The fourth bar per benchmark in Figure 7.7 shows the relative energy of the combined

bandwidth scaling algorithm. The combined algorithm increases energy consumption by an

average of 1.2% when compared to the baseline configuration with 2D main memory. The

combined algorithm spends 37.1% of its execution time in the maximum bus width

configuration, which explains the small increase in DSP energy consumption. However, although

it increases energy consumption by a similar amount as the IPC moving average bandwidth

scaling algorithm, it achieves a smaller average speedup of 6.4%.

Based on the energy results, we conclude that of my three dynamic bandwidth scaling

algorithms, the consecutive adjacent L2 line miss algorithm is the best algorithm for DSP energy

consumption. With 3D main memory with Wide I/O and the consecutive adjacent L2 line miss

algorithm, DSP energy consumption increases by only 0.5% (compared to 2.6% for the static

4,096-bit bus width) while still increasing average DSP performance by 6.6%. However, if DSP

performance is more important, one could conclude that the IPC moving average algorithm is the

better dynamic bandwidth scaling algorithm for our processor configuration and benchmarks

since it achieves the highest average speedup (6.9%) while increasing DSP energy consumption

by 1.3%. If we consider both DSP performance and energy equally in our design and use an

energy-delay product, we find the consecutive adjacent L2 line miss algorithm performs better

by 0.5%.

Regardless of what algorithm is chosen for our C67x-like DSP utilizing 3D main memory

with Wide I/O, it will perform better on the six multimedia benchmarks than the baseline DSP

with traditional 2D DRAM while consuming less energy than a configuration where the bus

80

width statically remains in the widest setting. This is because my algorithms more efficiently

scale the effective main memory bus width based on the benchmark’s memory needs, which

leads to better energy efficiency.

7.4 Summary

In this chapter, I presented a novel contribution, algorithms that can dynamically increase or

decrease the main memory bus width of DSPs utilizing 3D main memory with Wide I/O. My

dynamic bandwidth scaling algorithms can increase the performance of these DSPs while also

addressing the increase in energy that comes from statically remaining in a higher bus width

setting for the entire duration of a program, which is what current 3D main memory with Wide

I/O does. My algorithms achieve these benefits by dynamically increasing the main memory bus

width during memory-intense phases of a program where the wider bus width can be used to

fetch adjacent L2 cache lines in advance, but also decreasing bus width during program phases

where the wider bus width is not required and would only increase I/O energy. My dynamic

bandwidth scaling algorithms can be implemented by adding multiplexers between the interbank

datalines and the buffers connected to the I/O pads and the use of memory controller signals to

control the multiplexers.

Three dynamic bandwidth scaling algorithms were presented and described including

consecutive adjacent L2 line miss, IPC moving average, and an algorithm that combines the

previous two approaches. These algorithms use real-time profile data to make their main memory

bus width decisions and I found all three could achieve the majority of an oracle scaling

algorithm’s performance benefit while increasing energy consumption by a small amount

compared to the baseline DSP with 2D main memory. The consecutive adjacent L2 line miss

algorithm increases average DSP performance by 6.6% (and up to 12.8%) compared to the

81

baseline DSP with 2D main memory while increasing DSP energy consumption by only 0.5%.

The IPC moving average algorithm increases average DSP performance by 6.9% (and up to

14.8%) compared to the baseline DSP with 2D main memory while increasing DSP energy

consumption by 1.3%. These results show that my dynamic bandwidth scaling algorithms can be

used with 3D main memory with Wide I/O to not only address the growing memory

requirements of modern signal processing applications typically run on mobile devices, but can

do so without greatly impacting the DSP energy consumption.

As will be described in Chapter 9 (Future Research), I believe more advanced dynamic

bandwidth scaling algorithms could be developed using technologies such as neural networks. I

also believe the idea could be expanded beyond DSPs and be used to divide the main memory

bus among multiple compute resources that are part of the same system (i.e. smart phone) based

on the changing memory needs of each compute resource.

The dissertation work described in this chapter was accepted for publication at the

IEEE/ACM 2013 International Conference on Computer-Aided Design (ICCAD) [10].

82

8 Conclusions

3D main memory has been a popular topic of research for the last several years. It was believed

that 3D main memory could address the “memory wall” problem by bringing main memory in-

package to lower main memory latencies by 45% to 60% and increasing main memory

bandwidth with the use of thousands of TSVs. These advantages made 3D main memory an

attractive solution for modern embedded DSPs whose multimedia applications are becoming

more memory-intensive.

Unfortunately, through my dissertation research it was found that the latency reduction from

3D main memory was much less than previously predicted. The key reason for this was because

2D and 3D main memory systems still had the same DRAM bank organizations and both still

retained the same organization of rows and columns. Therefore, the only difference between 2D

and 3D main memory was the different interconnections between the DRAM banks and the

processor; specifically the latency differences between off-chip metal wires (2D) and TSVs (3D).

Through accurate simulations using the Spectre circuit simulator, we found that 3D TSVs

reduces main memory access latencies by only 2.4 ns (or 4.1% for our chosen DRAM

technology). With these new main memory latencies, I re-evaluated the performance benefits of

3D main memory on a C67x-like DSP and found it to have very little benefit. Based on this

finding, I concluded that the key advantage of 3D main memory is the ability to increase main

memory bandwidth with the use of additional TSVs. Presenting and re-evaluating this new and

more accurate model for 3D main memory latency were the first two contributions of my

dissertation research.

The next contribution of my dissertation research was to analyze the current implementation

of 3D main memory with Wide I/O, which greatly increases the main memory bus width through

83

the use of TSVs, but also decrease main memory latencies with two main memory optimizations.

Current 3D main memory with Wide I/O has two design modifications that can reduce main

memory accesses: 1) removing the DRAM to memory controller synchronizers and 2) placing

the address, command, and data pads closer to the DRAM banks. It was found that these two

optimizations could decrease main memory latencies by 7.0 ns (or 11.8%) and with the latency

savings from going to TSVs, 3D main memory with Wide I/O could reduce main memory

latencies by a total of 9.4 ns (or 15.9%). Through system simulation, it was found the current

implementation of 3D main memory with Wide I/O improves the performance of a C67x-like

DSP by an average of 3.8% (and up to 8.8%) and that further increasing the main memory bus

width to 4,096 bits and using adjacent cache-line prefetching increases the performance

improvement to an average of 9.7% (and up to 23.3%). Using the increased main memory bus

width to fetch additional L2 cache lines greatly benefited the chosen applications because all of

the benchmarks were multimedia applications, which have fairly linear main memory access

patterns and a high-degree of spatial locality.

Although 3D main memory with Wide I/O improves the performance of embedded DSPs,

my dissertation research also found that DSP energy consumption increases by an average of

2.6% (and up to 8.9%). This was because the chosen applications had program phases where the

increased bus width and adjacent cache line prefetching were evicting valid L2 cache entries

leading to I/O inefficiency. Although 3D main memory with Wide I/O addresses the growing

memory requirements of modern signal processing applications, this increase in energy

consumption may be unacceptable since embedded DSPs are generally found in mobile devices

such as smart phones that have limited battery life and low energy requirements. These results

84

and observations motivated me towards developing a solution that allowed DSPs to utilize 3D

main memory with Wide I/O while keeping energy consumption low.

The final contribution of my dissertation research was proposing algorithms for dynamic

bandwidth scaling that dynamically increases the main memory bus width during memory-

intense phases in a program, but also decreases the bus width during compute-intense phases to

lower I/O energy consumption. Three dynamic bandwidth scaling algorithms were proposed

(consecutive adjacent L2 line miss, IPC moving average, and combined) and it was found that

the consecutive adjacent L2 line miss algorithm achieves an average DSP performance

improvement of 6.6% while increasing energy consumption by only 0.5% and the IPC moving

average algorithm achieves an average DSP performance improvement of 6.9% while increasing

energy consumption by 1.3%. This is in contrast to the current methodology where the main

memory bus width is made wider and kept in this setting, which increases average DSP

performance by 9.7%, but increases energy consumption by 2.6%. My dynamic bandwidth

scaling algorithm allow DSPs to take advantage of the performance benefits of 3D main memory

with Wide I/O, but also reduces the energy impact through better I/O efficiency. It can be

implemented by adding multiplexers between the interbank datalines and the buffers connected

to the I/O pads and using memory controller signals to control the multiplexers.

As a whole, the models and ideas that I have presented in this dissertation document allow

embedded DSPs to take advantage of 3D main memory with Wide I/O to address the memory-

intense nature of modern signal processing application, but also meet the stringent energy

requirements of mobile computing devices. Previously it was thought the latency reduction and

increase in main memory bandwidth were the key advantages of 3D main memory. Although my

dissertation research did not disprove the latter, it was shown that increasing the main memory

85

bus width can also increase DSP energy consumption. Not only do my dynamic bandwidth

scaling algorithms allow DSPs to take advantage of the performance benefits of 3D main

memory with Wide I/O, but they do so without greatly impacting the DSP energy consumption.

These advantages make my dynamic bandwidth scaling algorithms an attractive solution for

integrating 3D main memory with Wide I/O and future embedded DSPs found in popular mobile

devices.

86

9 Future Research

My dissertation research proposed several dynamic bandwidth scaling algorithms to improve

DSP performance and I/O energy efficiency. However, a number of avenues remain open for

future research.

I developed my dynamic bandwidth scaling algorithms through the use of dynamic profile

data from the processor taken at intervals of one million instructions. One potential area for

future work is in developing more advanced dynamic bandwidth scaling algorithms. For

example, additional processor profile data such as ALU usage, load/store queue usage, etc. could

be used to design an even more accurate dynamic bandwidth scaling algorithm. Furthermore, an

artificial neural network or other form of machine learning could be implemented and after

observing the performance changes associated with different main memory bus width settings, in

theory, the artificial neural network could learn the behavior of the program and dynamically

scale the bus width with even better efficiency than any human designed algorithm using profile

data.

Another avenue for future research is implementing a dynamic bandwidth scaling algorithm

that uses the program counter (PC) to look for execution patterns. Signal processing applications

typically have repetitive execution patterns where the same loops or subroutines are run multiple

times across a set of data. For example, image decompression applications typically run the same

subroutines across an input image pixel-by-pixel where the pixels are read from the cache using

a linear or stride-based access pattern. Therefore, if a dynamic bandwidth scaling algorithm

could determine that the application was executing the same subroutines, it could increase the

main memory bus width and fetch adjacent L2 cache lines in advance so that the image data

would be available in advance leading to an increase in performance.

87

Lastly, my dissertation research implemented and evaluated dynamic bandwidth scaling

algorithms at the single processor-level (DSPs), but many mobile devices are complex systems

composed of multiple processors such as general-purpose processors, DSPs, GPUs (graphic

processing unit), and ASICs (application-specific integrated circuit). Based on this, another area

for future research is investigating the impact of 3D stacked memory and implementing dynamic

bandwidth scaling algorithms at the system-level. Since each of the compute resources on a

system has vastly different memory requirements, it may be more difficult to develop a dynamic

bandwidth scaling algorithm that avoids memory starvation for one or more of the compute

resources during the memory-intense phase of one or more of the other compute resources.

However, with multiple compute resources to share the main memory bus between, there should

be more opportunities for performance and energy benefits making this a promising area for

future work.

88

Bibliography

[1] W. Strauss, “The real DSP chip market,” IEEE Signal Process. Mag., vol. 20, pg. 83,

2003.

[2] Electronics Industry Market Research and Knowledge Network, DSP Market Report,

2008.

[3] Digital Signal Processors (DSP) Market is Growing at a CAGR of 9.09% & Expected to

Reach 9.58 Billion by 2016, 2013. [Online] Available:

http://www.prweb.com/releases/digital-signal-processors/market/prweb10563497.htm.

[4] W.A. Wulf and S.A. McKee, “Hitting the memory wall: Implications of the obvious,”

ACM SIGARCH Computer Architecture #ews, vol. 23, pp. 20-24, 1995.

[5] W.R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A.M. Sule, M. Steer, and P.D.

Franzon, “Demystifying 3D ICs: The pros and cons of going vertical,” IEEE Design &

Test of Computers, vol. 22, pp. 498-510, 2005.

[6] G.H. Loh, Y. Xie, and B. Black, “Processor design in 3D die-stacking technologies,“

IEEE Micro, vol. 27, pp. 31-48, 2007.

[7] P.J. Denning and S.C. Schwartz, “Properties of the working-set model,” Communications

of the ACM, vol. 15, issue 3, pp. 191-198, 1972.

[8] D.W. Chang, G.-S. Byun, H. Kim, M. Ahn, S. Ryu, N.S. Kim, and M. Schulte,

“Reevaluating the Latency Claims of 3D Stacked Memories,” Asia and South Pacific

Design Automation Conference, pp. 657-662, 2013.

[9] D.W. Chang, N.S. Kim, and M. Schulte, “Analyzing the performance and energy impact

of 3D memory integration on embedded DSPs,” 2011 International Conference on

Embedded Computer Systems, pp. 303-310, 2011.

89

[10] D.W. Chang, Y.H Son, J.H. Ahn, H. Kim, M. Ahn, M. Schulte, and N.S. Kim, “Dynamic

Bandwidth Scaling for Embedded DSPs with 3D-Stacked DRAM and Wide I/O,”

IEEE/ACM 2013 International Conference on Computer-Aided Design, 2013.

[11] T. Claasen, "An industry perspective on current and future state of the art in system-on-

chip (SoC) technology," Proceedings of the IEEE, vol. 94, pp. 1121-1137, 2006.

[12] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, "3-D ICs: A novel chip design for

improving deep-submicrometer interconnect performance and systems-on-chip

integration," Proceedings of the IEEE, vol. 89, pp. 602-633, 2002.

[13] M. Crowley, A. Al-Shamma, D. Bosch, M. Farmwald, L. Fasoli, A. Ilkbahar, M. Johnson,

B. Kleveland, T. Lee, and T. Liu, "512 mb PROM with 8 layers of antifuse/diode cells,"

IEEE International Solid-State Circuits Conference, pp. 284-493, 2003.

[14] S.M. Jung, J. Jang, W. Cho, J. Moon, K. Kwak, B. Choi, B. Hwang, H. Lim, J. Jeong, and

J. Kim, "The revolutionary and truly 3-dimensional 25F2 SRAM technology with the

smallest S3 (stacked single-crystal si) cell, 0.16 um2, and SSTFT (stacked single-crystal

thin film transistor) for ultra high density SRAM," Symposium on VLSI Technology, pp.

228-229, 2004.

[15] J. Lu, T. Cale, and R. Gutmann, "Wafer-level three-dimensional hyper-integration

technology using dielectric adhesive wafer bonding," Materials for Information

Technology, pp. 405-417, 2005.

[16] BDTI – GPP: Processor Characteristics Relevant to DSP, 2010. [Online] Available:

http://www.bdti.com/products/reports_gppproc.htm.

90

[17] J. Glossner, J. Moreno, M. Moudgill, J. Derby, E. Hokenek, D. Meltzer, U. Shvadron, and

M. Ware, "Trends in compilable DSP architecture," IEEE Workshop on Signal Processing

Systems, pp. 181-199, 2000.

[18] J. Glossner, D. Iancu, M. Moudgill, G. Nacer, S. Jinturkar, S. Stanley, and M. Schulte,

"The Sandbridge SB3011 Platform," EURASIP Journal on Embedded Systems, vol. 2007,

pp. 16, 2007.

[19] J.A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW Approach to

Architecture, Compilers, and Tools, Morgan Kaufmann, 2005.

[20] R. Banakar, S. Steinke, B.S. Lee, M. Balakrishnan, and P. Marwedel, “Scratchpad

Memory: A Design Alternative for Cache On-chip memory in Embedded Systems,”

Proceedings of the 10
th
 International Symposium on Hardware/Software codesign, pp. 73-

78, 2002.

[21] Texas Instruments C67x Specification, 2011. [Online] Available:

http://www.ti.com/lit/ds/symlink/tms320c6746.pdf.

[22] B. Jacob, S.W. Ng, and D.T. Wang, “Overview of DRAMs,” Memory Systems: Cache,

DRAM, Disk, Morgan Kaufmann, pp. 316-317, 2007.

[23] Micron. 512 MB: x4, x8, x16 DDR2 SDRAM Features, 2004. [Online] Available:

http://download.micron.com/pdf/datasheets/dram/ddr2/512MbDDR2.pdf

[24] R. Anigundi, H. Sun, J.Q. Lu, K. Rose, and T. Zhang, “Architecture design exploration of

three-dimensional (3D) integrated DRAM,” Proceedings of the 2009 10th International

Symposium on Quality of Electronic Design, pp. 86-90, 2009.

91

[25] Y.F. Tsai, Y. Xie, N. Vijaykrishnan, and M.J. Irwin, “Three-dimensional cache design

exploration using 3DCacti,” IEEE International Conference on Computer Design, pp.

519-524, 2005.

[26] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hybrid Cache Architecture

with Disparate Memory Technologies,” Proceedings of the 36th International Symposium

on Computer Architecture, pp. 34-45, 2009.

[27] G.H. Loh and M.D. Hill, “Efficiently Enabling Conventional Block Sizes for Very Large

Die-stacked DRAM Caches,” Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 454-464, 2011.

[28] G.H. Loh and M.D. Hill, “Supporting Very Large DRAM Caches with Compound-Access

Scheduling and MissMap,” IEEE Micro, vol. 32, no. 3, pp. 70-78, 2012.

[29] J.S. Kim, C.S. Oh, H. Lee, D. Lee, H.R. Hwang, S. Hwang, B. Na, J. Moon, J.G. Kim, H.

Park, J.W. Ryu, K. Park, S.K. Kang, S.Y. Kim, H. Kim, J.M. Bang, H. Cho, M. Jang, C.

Han, J.B. Lee, J.S. Choi, and Y.H. Jun, "A 1.2 V 12.8 GB/s 2Gb mobile wide-I/O DRAM

with 4× 128 I/Os using TSV-based stacking," IEEE Journal of Solid-State Circuits, vol.

47, no. 1, pp. 107-116, 2012.

[30] S. Takaya, M. Nagata, A. Sakai, T. Kariya, S. Uchiyama, H. Kobayashi, and H. Ikeda, “A

100GB/s Wide I/O with 4096b TSVs Through an Active Silicon Interposer with In-Place

Waveform Capturing,” 2013 IEE International Solid-State Circuits Conference, pp. 434-

435, 2013.

[31] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G.H. Loh, D. McCaule, P.

Morrow, D.W. Nelson, and D. Pantuso, “Die stacking (3d) microarchitecture,”

92

Proceedings of the 39
th
 Annual IEEE/ACM International Symposium on

Microarchitecture, pp. 469-479, 2006.

[32] C.C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the processor-memory

performance gap with 3D IC technology,“ IEEE Design & Test of Computers, vol. 22, pp.

556-564, 2005.

[33] G.H. Loh, “3d-stacked memory architectures for multi-core processors,” Proceedings of

the 35
th
 International Symposium on Computer Architecture, pp. 453-464, 2008.

[34] Tezzaron Unveils 3D SRAM, 2005. [Online] Available:

http://www.tezzaron.com/about/Press/0501_3d_sram.html.

[35] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinksi, S. Reinhardt, K. Flautner, and T.

Mudge, “PicoServer: Using 3D stacking technology to enable a compact energy efficient

chip multiprocessor,” Proceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems, pp. 117-128, 2006.

[36] A. Al Maashri, G. Sun, X. Dong, V. Narayanan, and Y. Xie, “3D GPU architecture using

cache stacking: Performance, cost, power and thermal analysis,” Proceedings of the 2009

IEEE International Conference on Computer Design, pp. 254-259, 2009.

[37] Y. Pan and T. Zhang, “Improving VLIW processor performance using three-dimensional

(3D) DRAM stacking,” Proceedings of the 20th IEEE International Conference on

Application-Specific Systems, Architectures and Processors, pp. 38-45, 2009.

[38] Y.F. Sun, C.N. Liu, T.M. Chen, H.C. Hsieh, J.C. Yeh, and Y.C. Chang, “Improvement of

Multimedia Performance based on 3-D Stacking Memory Architecture and Software

Refinement,” 2012 IEEE International Conference on High Performance Computing and

Communication, pp. 1618-1623, 2012.

93

[39] H.E. Kim, J.S. Yoon, K.D. Hwang, Y.J Kim, J.S. Park, and L.S. Kim, “A Reconfigurable

Heterogeneous Multimedia Processor for IC-Stacking on Si-Interposer,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 22, no. 4, pp. 589-604,

2012.

[40] R. Sampson, M. Ying, S. Wei, C. Chakrabarti, and T.F. Wenisch, “Sonic Milip3De: A

Massively Parallel 3D-Stacked Accelerator for 3D Ultrasound,” IEEE 19th International

Symposium on High Performance Computer Architecture, pp. 318-329, 2013.

[41] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, and J.D. Owens, “Memory access

scheduling,” Proceedings of the 27th International Symposium on Comptuer

Architeccture, pp. 128-138, 2000.

[42] I. Hur and C. Lin, “Memory Scheduling for Modern Microprocessors,” ACM Transactions

on Computer System, vol. 25 no. 4, pp. 1-36, 2007.

[43] E. Ipek, O. Mutlu, J.F. Martinez, and R. Caruana, “Self-Optimizing Memory Controllers:

A Reinforcement Learning Approach,” Proceedings of the 35th International Symposium

on Computer Architecture, pp. 39-50, 2008.

[44] B. Leibowitz, R. Palmer, J. Poulton, Y. Frans, S. Li, J. Wilson, M. Bucher, A.M. Fuller, J.

Eyles, M. Aleksic, T. Greer, and N.M. Nguyen, “A 4.3 GB/s Mobile Memory Interface

with Power-Efficient Bandwidth Scaling,” IEEE Journal of Solid-State Circuits, vol. 45,

no. 4, pp. 889-898, 2010.

[45] H. David, C. Fallin, E. Gorbatov, U.R. Hanebutte, and O. Mutl., “Memory Power

management via Dynamic Voltage/Frequency Scaling,” Proceedings of the 8th ACM

International Conference on Autonomic Computing, pp. 31- 40, 2011.

94

[46] D.H. Yoon, M.K. Jeong, and M. Erez, “Adaptive Granularity Memory Systems: A

tradeoff between storage efficiency and throughput,” Proceedings of the 38th International

Symposium on Computer Architecture, pp. 295-306, 2011.

[47] Q. Deng, D. Meisner, L. Ramos, T.F. Wenisch, and R. Bianchini, “MemScale: Active

Low-Power modes for Main Memory,” Proceedings of the 16th International Conference

on Architectural Support for Programming Languages and Operating Systems, pp. 225-

238, 2011.

[48] L.N. Chakrapani, J. Gyllenhaal, W. Hwu, S.A. Mahlke, K.V. Palem, and R.M. Rabbah,

“Trimaran: An infrastructure for research in instruction-level parallelism,” Languages and

Compilers for High Performance Computing, pp. 32-41, 2005.

[49] G. Ascia, V. Catania, M. Palesi, and D. Patti, "EPIC-explorer: A parameterized VLIW-

based platform framework for design space exploration," First Workshop on Embedded

Systems for Real-Time Multimedia, pp. 65-72, 2003.

[50] V. Kathail, M. Schlansker, and B.R. Rau, “HPL-PD architecture specification: Version

1.1,” Technical Report HPL-9380 (R.1), 2000.

[51] J. Gyllenhaal, W. Hwu, and B.R. Rau, “Hmdes version 2.0 specification,” Technical

Report Impact-96-3, 1996.

[52] G. Cai and C.H. Lim, “Architectural level power/performance optimization and dynamic

power estimation,” Proceedings of the Cool Chips Tutorial: An Industrial Perspective on

Low Power Processor Design in conjunction with MICRO-32, 1999.

[53] S. Thoziyoor, N. Muralimanohar, J.H. Ahn, and N.P. Jouppi, “CACTI 5.3,” HP

Laboratories Technical Report, 2008.

95

[54] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K. Reinhardt, "The

M5 simulator: Modeling networked systems," IEEE Micro, vol. 26, pp. 52-60, 2006.

[55] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle Accurate Memory

System Simulator,” IEEE Computer Archicture Letters, pp. 16-19, 2011.

[56] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, "MediaBench: A tool for evaluating

and synthesizing multimedia and communicatons systems," Proceedings of the 30th

Annual ACM/IEEE International Symposium on Microarchitecture, pp. 330-335, 1997.

[57] J.L. Henning, "SPEC CPU2006 benchmark descriptions," ACM SIGARCH Computer

Architecture #ews, vol. 34, pp. 17, 2006.

[58] S.K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M.B.

Taylor, “SD-VBS: The San Diego Vision Benchmark Suite,” Proceddings of the 2009

IEEE International. Symposium on Workload Characterization, pp. 55-64, 2009.

[59] Speech at CMU, 2007. [Online] Available: http://www.speech.cs.cmu.edu/.

[60] Apple – iPhone, 2013. [Online] Available: http://www.apple.com/iphone/.

[61] D. Marr and T. Poggio, “Cooperative computation of stereo disparity,” Science, vol. 194,

pp. 283-287, 1976.

[62] P. Viola and M.J. Jones, “Robust real-time face detection,” International Journal of

Computer Vision, vol. 57, pp. 137-154, 2004.

[63] R. Szeliski, “Image alignment and stitching: a tutorial,” Foundational Trends in Computer

Graphics and Vision, vol. 2, no. 1, pp. 1-104, 2006.

[64] M.A. Fischler and R.C. Bolles, “Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography,” Communications of the

ACM, vol. 24, no. 6, pp. 381-395, 1981.

96

[65] J. Shi and C. Tomasi, “Good features to track,” IEEE Conference on Computer Vision and

Pattern Recognition, pp. 593-600, 1994.

[66] B.D. Lucas and T. Kanada, “An Iterative Image Registration Technique with an

Application to Stereo Vision,” Proceedings of the International Joint Conference on

Artificial Intelligence, pp. 674-679, 1981.

[67] Microsoft Corp. Redmond WA. Kinect for Xbox 360.

[68] G.-S. Byun, Y. Kim, J. Kim, S.-W. Tam, and M..-C. Chang, "An Energy-Efficient and

High-Speed Mobile Memory I/O Interface Using Simultaneous Bi-Directional Dual

(Base+RF)-Band Signaling," IEEE Journal of Solid-State Circuits, vol 47, no. 1, pp. 117-

130, 2012.

[69] Tezzaron Semiconductor. Fastack stacking (3D-ICs) technology, 2009.

[70] Ansoft’s 3D full-wave EM filed HFSS Simulator. [Online] Available:

http://www.ansys.com/Products/Simulation+Technology/Electromagnetics/High-

Performance+Electronic+Design/ANSYS+HFSS.

[71] W.T. Beyene, C. Madden, J.-H. Chun, H. Lee, Y. Frans, B. Leibowitz, K. Chang, N. Kim,

T. Wu, G. Yip, and R. Perego, "Advanced modeling and accurate characterization of a 16

Gb/s memory interface," IEEE Transacations on Advanced Packaging , vol. 32, pp. 306-

327, 2009.

[72] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, "A performance comparison of

contemporary DRAM architectures," ACM SIGARCH Computer Architecture #ews, pp.

222-233, 1999.

[73] Cadence Virtuoso Spectre Circuit Simulator. [Online] Available:

http://www.cadence.com/products/rf/spectre_circuit/pages/default.aspx.

97

[74] Wide I/O Single Data Rate (Wide I/O SDR). [Online] Available:

http://www.jedec.org/standards-documents/docs/jesd229.

[75] The Spice Circuit Simulator. [Online] Available:

http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/.

[76] 22nm Low Power PTM Model Site. [Online]. Available:

http://ptm.asu.edu/modelcard/LP/22nm_LP.pm.

[77] N.P. Jouppi, “Improving direct-mapped cache performance by the addition of a small

fully-associative cache prefetch buffers,” Proceedings of the 17th International Symposium

on Computer Architecture, pp. 364-373, 1990.

[78] Synopsys Software and Tools. [Online] Available:

http://www.synopsys.com/Tools/Pages/default.aspx.

