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ABSTRACT 

After September 11, 2001, numerous methods of vulnerability analysis have been developed 

to help the owners and operators of infrastructure systems protect such systems against 

possible terrorist attacks.  However, hardening a significant fraction of a large, complex 

infrastructure system is typically not cost-effective, and may even be infeasible. There is 

therefore an urgent need for methods of vulnerability analysis that take into account the 

ability of the system to respond to and recover from an attack (or, conversely, the 

vulnerability of the system to cascading failures and/or long restoration times). 

In particular, with cascading failures, even small attacks can have a large impact. Cascading 

failures have historically been considered a major unsolved problem for complex networks 

such as electricity systems, but recent developments in probabilistic analysis of cascading 

failure are making it possible to take cascading failures into account in methods of 

vulnerability assessment.   

Moreover, methods of vulnerability analysis can also be designed to highlight those 

vulnerabilities that are likely to lead to disproportionately long restoration times.  This 

approach provides a more comprehensive method for vulnerability analysis of electric power 

systems and potentially other capacity-constrained complex networks, which enables us to 

analyze how the attacker can exploit different weaknesses within the system, and as a result, 

how we can protect the system against such weaknesses. 



xvi 

 

Our game-theoretic model can be used to measure the effectiveness of different investment 

types against intelligent attacks on power networks. Specifically, our model provides a tool 

to simulate power flows within the network, the impact of a greedy attack strategy, the 

possibility of cascading failure, and the restoration of the system back to its normal operating 

conditions. The model will enable us to analyze different attack scenarios, such as 

adversaries who might seek to cause cascading failures or long restoration times. Our model 

can also be used to compare different types of investments to make system more resilient, 

such as hardening components, increasing the capacities of critical transmission lines, adding 

new transmission lines, and decreasing the restoration times of specific component types.
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1. Introduction 

Infrastructure systems are critical to the economy, security, safety and quality of life of a society. 

Ensuring the security of such systems can be quite challenging, especially in the face of 

intentional threats. 

September 11, 2001 was a turning point in the United States in recognition of the vulnerability of 

infrastructure systems, not only to natural disasters or technological failures, but more so to 

intelligent attacks, such as acts of terrorism, sabotage, or war. Infrastructure systems were 

generally not designed to resist malicious attacks (Apostolakis and Lemon, 2005), and protecting 

extensive infrastructure networks can be extremely costly or even impossible. Furthermore, an 

intelligent adversary may exploit the weaknesses of such systems (e.g., bottlenecks or capacity 

constraints in the network, aging components, etc.) so that the network will poorly respond to 

even one single attack. 

Electric power networks are especially complex and important systems (Amin, 2003; Dueñas-

Osorio and Vemuru, 2009), with large numbers of interacting components, complex responses to 

disturbances, and the possibility of high impact from even a small disruption. The complexity of 

these systems makes it nearly impossible to model all their interactions in detail; as a result, 

cascading failures have proven to be difficult to predict. 

The objective of most past vulnerability methods on electric power networks was to identify the 

most critical components to prioritize for protection (i.e., hardening). However, protection of 

massive and geographically dispersed systems, such as electric power networks, may not be 

effective or cost-effective. Moreover, most methods of vulnerability analysis do not take into 



2 

 

account the possibility of cascading failure, or the fact that some components (e.g., transformers) 

may have extremely long restoration times. Therefore, we develop a new vulnerability analysis 

method that makes it possible to study the resilience of a system, by addressing its ability to 

respond to, withstand, and recover from an attack. In particular, we develop a method for 

assessing the vulnerability of electric power systems to intentional threats, taking into account 

the vulnerability of the system to cascading failure in probabilistic manner, and the restoration 

times of components in the system. Moreover, our method is simple enough to be usable in 

practice, and capable of assessing the effectiveness and cost-effectiveness of possible defensive 

investments- not only of target hardening but also of other investments, such as increasing the 

capacity of the network (to reduce the potential for cascading failure), or decreasing restoration 

times (e.g., through stockpiling of spare components). 

We also hypothesize that the approach outlined in this thesis can be applied not only to electric 

power networks, but also to any highly capacity-constrained networks, in which failure of a 

heavily loaded line or component may cause intolerable increases of load in other parts of the 

network, eventually leading to cascading failure. Examples include transportation systems, 

structures (which can be viewed as networks of structural members), water systems, etc. 

However, such applications are beyond the scope of this research, and would need to be explored 

in future work 

In Chapter 2, we define resilience, and show its relationship with defensive measures. In Chapter 

3, we review the literature on vulnerability-analysis methods for electric power networks, 

including models of cascading failure, and restoration times. In Chapter 4, we introduce the 
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original model, and develop a methodology to include attacking any components and to model 

cascading failure and restoration times, and how we can use resilience to measure effectiveness 

of various defensive investments (including protection through hardening, increasing robustness 

through capacity investment or adding new transmission lines, and increasing the ability of the 

system to recover by decreasing restoration times of some critical components such as 

transformers). In Chapter 5, we show the result of extending the model to nodes as well as arcs 

(so that the attacker can attack components other than transmission lines). In Chapter 6, we show 

the results for modeling cascading failures. In Chapter 7, we show the results for modeling 

restoration model. Finally, in Chapter 8, we conclude with how we determine if our model is 

valid and useful, highlight some of the important findings, and discuss some possible future 

work.   



4 

 

2. Resilience in Electric Power Systems 

2.1. Definition of Resilience 

The U.S. Department of Homeland Security (DHS) defines resilience as the “ability to adapt to 

changing conditions and prepare for, withstand, and rapidly recover from disruption” (DHS, 

2010). This comprehensive definition embraces all the efforts in a timeline from preparation to 

recovery as part of resilience– i.e., “to resist, tolerate, absorb, recover from, prepare for, or adapt 

to an adverse occurrence.” The National Infrastructure Advisory Council (NIAC) focuses on the 

outcome of a resilient system, and defines resilience as the ability to “reduce the magnitude 

and/or duration” of disruptive events. The effectiveness of a resilient infrastructure or enterprise 

depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially 

disruptive event)” (NIAC, 2009). NIAC also distinguishes three key features of a resilient 

system: robustness; resourcefulness; and rapid recovery. 

In the literature, however, resilience is often used with a narrower meaning. For example, 

Haimes et al. (1998) considers resilience one of four strategies for hardening a system, together 

with security, redundancy, and robustness. He defines security as measures that limit entrance to 

a system, such as surveillance, fences, and guards. Redundancy is defined as the ability of a 

system to replace the function of a failed component or mechanism. Robustness describes how a 

system can continue its designed function despite an error or failure. Finally, Haimes et al. 

(1998) defines resilience as the ability of system to return to its optimal condition in a short 

period of time, given that an adverse event has taken place. This focus on recovery time is 
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narrower than the other definitions discussed above, and in particular ignores the magnitude or 

severity of the adverse event, as measured by cost, level of degradation, etc. 

Holmgren (2007) likewise distinguishes robustness and resilience, using robustness to imply that 

the system will remain (nearly) unchanged even in the face of disruption, and resilience to 

describe the ability of the system to return to a stable condition after a disruption. Hansson and 

Helgesson (2003) note that robustness can be considered a special case of resilience, in which the 

recovery time is zero.  

Rose and Liao (2005) define resilience as “the inherent ability and adaptive responses of systems 

that enable them to avoid potential losses.” Note that this definition does not explicitly include 

the ability of a system to recover after losses have already occurred, although many measures for 

avoiding or minimizing losses can still be taken after an adverse event has occurred. 

Bruneau et al. (2003) define resilience in terms of three stages: the ability of a system to reduce 

the probability of an adverse event, to absorb the shock if the adverse event occurs, and to 

quickly re-establish normal operating conditions. According to Bruneau et al., resilience thus 

encompasses the four characteristics of robustness, redundancy, resourcefulness, and rapidity. 

This is parallel to the DHS definition. By comparison, note that NIAC does not consider 

redundancy at all, and Haimes et al. (1998) consider redundancy and robustness to be distinct 

from resilience. Bruneau et al. (2003) view the “desired ends” of robustness and rapidity as key 

aspects of resilience. 
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According to Holling (1973), resilience “determines the persistence of relationships within a 

system” and is “a measure of the ability of these systems to absorb changes of state variables, 

driving variables, and parameters, and still persist.” In other words, Holling considers resilience 

to be an inherent feature of the system that reflects its ability to manage changes. On the other 

hand, Wildavsky (1988) considers resilience to be an acquired feature rather than an inherent 

one, defining resilience as “the capacity to cope with unanticipated dangers after they have 

become manifest, learning to bounce back.” 

Hollnagel (2006) defines resilience as “the intrinsic ability of an organisation (system) to 

maintain or regain a dynamically stable state, which allows it to continue operations after a 

major mishap and/or in the presence of a continuous stress.” Similarly, Woods (2006) defines 

resilience as “a system capability to create foresight, to recognize, to anticipate, and to defend 

against the changing shape of risk before adverse consequences occur.” According to Woods 

(2006), the concept of resilience should include some description of how a system adapts to 

disturbances, not just whether it adapts. Some aspects of this adaptation include buffering 

capacity (the sizes and types of disruptions that a system can absorb), flexibility versus stiffness 

(the ability of a system to restructure itself in response to external changes or pressures), margin 

(how close the system is operating relative to one or more performance boundaries), and 

tolerance (how a system behaves near a boundary – whether the system degrades gracefully as 

stress increases, or collapses quickly when pressures exceed its adaptive capacity). 

Tierney and Bruneau (2007) define resilience as the ability of a system to “respond to” and 

“recover from” a major event. Similarly, Haimes (2009) defines resilience as “the ability of the 
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system to withstand a major disruption within acceptable degradation parameters and to recover 

within an acceptable time and composite costs and risk.” According to Haimes, vulnerability has 

to do with protection of a system, while resilience addresses the system’s recovery; in other 

words, vulnerability measures a system’s capability to resist a threat, while resilience represents 

the capability of the system to recover within an acceptable time. Hence, according to Haimes 

(2009), resilience is both threat- and time-dependent. 

Finally, Vugrin et al. (2010) propose the following definition: “Given the occurrence of a 

particular disruptive event (or set of events), the resilience of a system to that event (or events) is 

the ability to efficiently reduce both the magnitude and duration of the deviation from targeted 

system performance levels.” Moreover, the authors define the resilience of a system as 

depending on the system’s “absorptive capacity”, “adaptive capacity”, and “restorative 

capacity.” For some other definitions of resilience, see Appendix A. 

One commonality in the literature is that resilience is considered meaningful only in the context 

of disruption or change. In other words, a resilient system is expected to perform well in the face 

of undesirable conditions. Using the comprehensive approach promoted by DHS, the term 

resilience can refer to any ability of the system to maintain or improve its performance in the 

face of disruption. Another commonality is that resilience generally refers to how the system 

responds to change over time. As noted above, some authors also consider robustness as a 

special case of resilience (Hansson and Helgesson, 2003). 

Definition: Resilience is performance of a system over time in response to adverse 

change. Let   be the overall performance of the system to adverse change,   be the time period 
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during which the system is needed, and     be the initiation time of the change, where    . 

Then,  ( ) describes the resilience of the system at time  . A highly resilient system returns to 

desirable levels of performance quickly, so that  ( ) rapidly approaches 100% even for small 

values of  . 

The disruption to which the system must respond can be a function of threat type, or the result of 

a specific scenario. Depending on the threat or scenario, the system may exhibit different 

reactions. Especially for complex dynamic systems, like electric power networks, with 

interdependencies to other systems, it may be quite challenging to estimate or predict the 

reaction prior to an event.  

Note that for some disruptions, it may not even be possible for the system to go back to its 

normal operating conditions, in which case resilience would be only partial, even after a long 

period of time. Also, the resilience of the system is not necessarily proportional to the area under 

the function  ( ), because the importance of the system may vary over time. In other words, 

going without the functions provided by a system may become either more difficult over time, or 

easier (due to user adaptation). 

2.2. Resilience and Time 

A resilient system has the inherent ability to respond appropriately to every stage of an adverse 

event, including preparedness before the event, robustness as the event unfolds, restoration 

immediately after the event, and eventually complete recovery. Looking at the entire spectrum in 
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this way is likely to be more practical, realistic, and cost-effective than focusing only on 

preventing electricity blackouts.  

According to Talukdar et al. (2003), most policy discussions with regard to blackouts focus on 

preventing blackouts or reducing their frequency. Measures for doing so include “increasing 

transmission capacity, improving regulations and coordination, training for human operators, 

better automatic control systems, more data collection, more data processing, load management, 

and more programs to promote conservation.” However, they argue that framing the problem 

only in terms of prevention is incomplete, and also difficult to solve. 

Resilience of a system may take different forms before, during, and after an event; see Figure 

2.1.  

 
Figure 2.1-Resilience over time 

Before an event, we can take measures to make the event less likely or less consequential. 

Resilience involves any inherent ability of system to prevent a disruption. Note that there are also 

measures that are independent of the system. During an event, the robustness of the system has 

two aspects: limiting the size of the blackout (such as by preventing cascading effects); and 

mitigating or preventing the impact of the blackout. The first measure can be simply simulated 
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by modeling system’s reaction including cascading failure. The second measure shows the 

importance of interdependencies among components. These interdependencies will be discussed 

in detail in the following chapters. After a blackout, some components of the system will 

typically have stopped working. Emergency restoration (energizing of substations, transformers, 

etc.) involves careful coordination of personnel and equipment, so restoration of the entire 

system may take a long time. Finally, some catastrophic events may damage components that 

would need to be replaced (e.g., by spare transformers) or repaired. 

Given the nature and objectives of the system, performance can be measured in different ways, 

such as production capacity, satisfied customer demand, etc., or combinations of these. By 

showing a system’s response to change as a function of time, we can illustrate how long the 

system resists before the system degrades (robustness), how much the system performance 

degrades initially, how well the system recovers, and how long it takes to return to normal. For 

example, see Figure 2.2.  

 

Figure 2.2-Resilience as performance of a system 
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This figure shows a system’s performance (as a percentage of normal or intended performance) 

as a function of given time. This system experiences an immediate degradation, followed by 

several stages of improvement. Note, however, that performance may not necessarily be 

monotonically increasing after an adverse event. Some possible reasons for decreased 

performance could be cascading effects, human error, etc. 

In some systems, performance can also increase continuously rather than discretely over time.  

However, it may be desirable to simplify such continuous functions; for example, in Figure 2.3, 

Tierney and Bruneau (2007) describe the “resilience triangle” as a simple way to capture the 

effectiveness of restoration and recovery efforts. The triangle shows both how much 

functionality is lost as a result of a catastrophic event after the initial impact and cascading 

failure, and how long it takes for the system to go back to pre-catastrophe levels of performance. 

 

Figure 2.3-Resilience triangle (Tierney and Bruneau, 2007) 

2.3. Relationship between Resilience and Protection, Robustness, and Recovery 

We define three types of defensive investments: protection; robustness; and recovery. Protection 

is defined as reducing the likelihood of damage, robustness reduces the extent of damage, and 

recovery reduces the duration of damage. Resilience encompasses the ability of the system to 
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protect itself from, respond robustly to, and recover from a disruption. In this study, we view 

protection, robustness, and rapid recovery as alternative means for achieving a more resilient 

system. Figure 2.4 illustrates the three types of defensive investments. 

 

Figure 2.4-Categorization of defensive investments 

Specifically, for protection, we consider hardening components. For robustness, we consider 

increasing the capacities of some components (to decrease the likelihood of cascading failure). 

Finally, for rapid recovery, we consider decreasing the restoration times of some components. 

Figure 2.5 shows the relationship between resilience and defensive investments to make the 

system more resilient before, during, and after an attack. (Note that some investments may 

contribute to multiple goals.) 
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Figure 2.5-Relationship between resilience and defensive investments 

We now demonstrate how we can represent our three types of defensive investments with an 

example. Figure 2.6 is a simple illustration of the impact of various investment types against 

intelligent attacks. 

Before During Immediately after After 

Measures to mitigate 

or prevent the impact 

of the blackout 

Measures to 

restore the 

functionality of 

the system itself 

quickly after the 

blackout 

Measures to 

repair the 

system so that it 

can operate at 

an acceptable 

level 

Measures to limit size 

of the blackout (by 

preventing cascading 

effects, etc.) 
Preventive 

measures that 

make blackouts 

less likely or 

less 

consequential 

Protection 
(by decreasing the 

likelihood of a 

successful costly attack 

through hardening) 

Robustness of the system 
(by increasing the ability of the system to respond 

efficiently through decreasing conditions for 

cascading failure such as adding redundancies, 

capacities, and alternatives) 

Rapid recovery 
(by decreasing the 

restoration times of the 

components) 

 

RESILIENCE 

Performance of the 

system to respond to 

disruption 



14 

 

 

Figure 2.6-Illustration of the impact of various investment types 

In the base case (the graph on the upper left corner), attacks cause 20% unmet power demand as 

an initial impact. Moreover, because of cascading failure, unmet demand doubles. Then, it takes 

20 days to fully recover the system (for simplicity, we show the restoration process as one step). 

In this scenario, the total energy loss is the area under the curve (which is 40% times 20 days, or 

800% of a day’s energy use, or 8 days of energy lost in overall). When we invest in hardening of 

the system (as shown in the upper right corner), the initial impact of an attack is expected to be 

less (10% instead of 20%). In this illustration, the impact of cascading failure stays the same as 
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the base case (20%); however, because of the complex nature of cascading failure, this impact 

could be lower (or conceivably even higher). Since the electric power networks are highly 

capacity-constrained, we can also increase the robustness of the system by making it less likely 

to cascade. If we make the system less vulnerable to cascading failure by increasing line 

capacities or adding new lines (as seen in the lower left corner), the initial impact of an attack 

remains unchanged in our illustration (although it may in fact be different, since the network will 

have changed as a result of the investment); however, the cascading impact drops by half (from 

20% to 10%), resulting in 6 days of energy lost in overall. Finally, we may want to help the 

system recover faster (as seen in the graph in the lower right corner), which would not change 

the initial impact or the impact of cascading failure, but would lead to less energy loss; for 

example, if the system recovers in half the time as in the base case, there would be 4 days of 

energy lost in overall. Thus, in our simple illustration, investing in the recovery process leads to 

the greatest saving in energy loss. 

2.4. Resilience in Electric Power Systems  

2.4.1. Why is resilience important in electric power systems? 

It is virtually impossible to protect an entire electricity system against all possible natural and 

intelligent threats. As a result, it may be more reasonable to increase the system’s capacity to 

recover quickly from catastrophic events, rather than trying to protect the system from such 

events (Farrell et al., 2002).   

Electric power systems are resistant to the failure of one or two random components. However, 

even a few overloaded components can sometimes cascade into larger failures. In a typical 
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blackout, it may take days to fix some transmission lines; replacing a transformer or repairing a 

failed generating station can take months. Generating stations are generally protected by fences 

and guards, as are main substations located within generating facilities. On the other hand, 

transformers or substations near load centers are often open targets for intelligent adversaries. 

According to Crane (1990), destroying a few well-selected substations can cause a serious 

blackout. Even though some power would be restored almost immediately, region could suffer 

rolling blackouts for many months, especially during peak demand periods such as hot summers 

or cold winters. 

The North American Electric Reliability Corporation (NERC) aims to ensure that the electric 

power system in North America is adequate, reliable, and secure. According to Blume (2007), 

some of the indicators of a stable and reliable interconnected electricity network are the “inertia” 

of the power grid, balanced electricity generation, and the grid’s ability to handle disturbances or 

faults. However, interconnectedness brings challenges, such as managerial complexity, increased 

reliance on supervisory control and data acquisition (SCADA) systems, scheduling problems, the 

possibility of cascading effects from other grids, etc. Amin (2003) notes that electric power 

systems are not only aging, but also increasingly complex and stressed, and remarks that it is 

unclear how long current systems will be able to support the ever-increasing demand for 

electricity. All of these issues make resilience in electric power networks an important goal. 

Interruption of power delivery can have severe impact on the society. Holmgren (2007) 

underlines the importance of disruption by its duration, size of power loss, and number of people 

affected. Note that resilience triangle as a performance measure of electric power systems 
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demonstrates the size of power loss as a function of time (duration), but lacks the ability to show 

the impact of the disruption to the society, such as area/magnitude of impact or number of people 

affected. Moreover, magnitude of an outage may be small in size and short in duration, but its 

impact can still be significant, such as computer problems and equipment jamming in 

commercial facilities after a few seconds of power disruption (Crane, 1990). See Appendix B for 

some major blackouts in North America. 

2.4.2. The multidimensional nature of resilience 

Bruneau et al. (2003) consider four types of resilience: technical; organizational; economic; and 

social. They note that different measures of resilience are needed to adequately address these 

different dimensions. For illustrative purposes, they present measures of seismic performance for 

electric power systems as shown in Table 2.1. 

Technical resilience concerns the ability of the system to function. Some measures of technical 

resilience for electric power systems are the percentage of demand met, the ratio of supply to 

demand, time to restoration, time to full recovery, etc. Organizational resilience concerns the 

ability of the organization(s) to manage the system. For example, measures of organizational 

resilience could include how well emergency units function, how quickly spare parts are 

replaced, how quickly repair crews are able to reach the affected components of a system, etc. 

Social resilience concerns how well society copes with the loss of services as a result of a 

blackout. For severe blackouts, social resilience can be the most critical dimension of resilience. 

Finally, economic resilience concerns the ability to reduce direct and indirect economic losses. 

Rose and Liao (2005) note that direct costs manifest themselves in four ways: lost sales; 
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equipment damage/restart costs; spoilage of variable inputs; and idle labor costs (in addition to 

the costs of measures to reduce potential losses, such as backup generators and capacity 

expansion). Indirect costs are multipliers that ripple through the economy, such as impacts on the 

customers and suppliers of a disrupted firm, decreased consumer spending, decreased 

investments in the disrupted firm, public-health problems (such as dysfunctional sewage 

treatment), and economic disorder (looting, etc.). They also note that some Crane (1990) argues 

that, while direct losses can be avoided by backup systems, indirect costs may be partially 

mitigated through contingency planning, improved communications, customer education, social 

programs, and other planning approaches. 

Table 2.1–Seismic performance measures for electric power systems (modified from 

Bruneau et al., 2003) 

Dimension/ 

Property 
Robustness Redundancy Resourcefulness Rapidity 

Technical 

Maximize availability of 

operational power supply 

(units) after EQ (e.g., % 

of pre-earthquake level 

following small 

earthquake) 

Replacement  

inventories (e.g., 

% available for 

small earthquake) 

Models to assess 

network vulnerability 

and damage (e.g., 

EPRI model) 

Maximize provision 

target power supply 

level (e.g., 

restoration to 95% 

of pre-earthquake 

level within 1 day) 

Organizational 

Emergency organization 

and infrastructure in 

place; critical functions 

identified 

Replacement 

inventories for 

critical equipment 

(e.g., transformers, 

bushings) 

Plans for mobilizing 

supplies and personnel 

(e.g., mutual aid 

agreements); 

identification of 

emergency work-

around strategies 

Maximum 

restoration of power 

supply 

Social 

% of all households with 

power immediately after 

EQ 

Alternative power 

supplies for all 

critical emergency 

facilities (e.g., 

hospitals) 

No form of rationing 

needed to meet 

minimum power needs 

Partial power 

restored to all 

households within 1 

hour 

Economical 

% of all businesses with 

power immediately after 

EQ 

Alternative power 

supplies (backup 

power) for all key 

businesses 

Voluntary power 

conservation program 

implemented 

Pre-EQ economic 

activities re-

established within 1 

day 
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Similarly, Bush et al. (2005) define six consequence categories, including sector-specific 

consequences, human health and safety, economic, environmental, socio-political, and national-

security consequences. However, some of these categories of consequences, such as social-

political effects, may be difficult to predict and measure. 

2.4.3. Threat and resilience 

As shown in Figure 2.3, a resilient electric system demonstrates the necessary responses over 

time. However, this reaction may depend on the nature of the threat. Threats may be intelligent, 

natural, or operational in nature. The effect of natural threats may vary; for example, earthquakes 

may affect any system equipment, whereas hurricanes mainly affect transmission and 

distribution systems (Crane, 1990). However, for natural threats (such as earthquakes, 

hurricanes, severe weather, fires, solar flares, etc.), we can often predict resilience ahead of time, 

based on previous experience with similar events. By contrast, an intelligent threat may observe 

our protective actions and develop unexpected and effective attack strategies. For such threats, 

the nature of the risk may be far from static over time. Moreover, the measures needed to reduce 

damage to a transformer from an earthquake may be completely different from the measures 

needed to deter trespassing (in order to prevent sabotage). As a result, we may need to talk about 

the ability of the system to respond to a specific type of event. 

Farrell et al. (2002) analyze 58 incidents of interruptions, unusual occurrences, demand or 

voltage reductions, and public appeals that took place in 2000. Nearly half of the events were due 
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to weather (mostly thunderstorms), one fifth due to operator and maintenance error, another one 

fifth due to faulty equipment, one tenth due to insufficient power to meet demand, and finally a 

couple of events due to forest fires. Natural and operational threats accounted for roughly equal 

numbers of events, whereas none of the events were due to intelligent threats. However, the 

circumstances and public perceptions in the United States with respect to terrorist threat changed 

dramatically after September 2001. Moreover, an intelligent threat can evolve more sophisticated 

technologies over time. For example, Lave et al. (2007) note that smaller, non-nuclear 

electromagnetic-pulse weapons might be used for local attacks on critical power-system 

components or networked computers and telecommunication systems, without actually 

penetrating a facility. 

In 2002, NERC developed Security Guidelines for the Electricity Sector (NERC, 2002). This 

document identifies a “spectrum of threats” ranging from simple trespassing to vandalism, civil 

disturbances, or dedicated acts of terror and sabotage, as well as natural disasters such as 

earthquakes, hurricanes, major floods, and ice storms. The security guidelines recommend that 

companies understand how to respond to the full spectrum of threats. However, these guidelines 

are generic, rather than tailored for different types of threats; for example, the guidelines simply 

consider a facility or combination of facilities to be critical if its damage or destruction would 

have significant impact for an extended period of time. 

For a specific threat scenario, we can estimate the resilience of each component in the electricity 

system; however, as noted above, these components may have differing levels of resilience for 

different failure types. Moreover, failures may have cascading effects, or be initiated by a 
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common cause. Finally, an intelligent adversary with knowledge of the system may seek optimal 

or near-optimal attack strategies, in which case the threat may become a function of the observed 

vulnerabilities and defenses of the system. 

Figure 2.7 illustrates interdependencies of an electric power system. The system requires inputs 

in order to function properly, such as fuel, staff, spare parts, etc.  In return, electricity is 

generated, transmitted, and distributed to users. Other infrastructure systems are among the users 

of electricity, but deserve special attention due to the interdependent nature of infrastructure 

systems. In the following sections, we will address what resilience means for each part of the 

system, some of the resilience measures that are commonly used, and options to improve 

resilience. 
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Figure 2.7-Interdependencies of an electric-power system 
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2.5. Resilience within Electric Power Systems 

Electric power systems primarily consist of generation, transmission, and distribution systems; 

for a simple diagram of a generic electric power system, see Figure 2.8. A resilient electric 

power system has a strong capability to respond to any disturbances that may take place. 

According to Blume (2007), limited generation capacity, coupled with inadequate transmission 

lines, can force utilities to work at or near full capacity, and lower their reserve margins over 

time.  This can be especially problematic in conditions of high demand, such as cold winters. 

 

Figure 2.8-A generic electric power system (Blume, 2007) 

Interconnectedness stems from the fact that electric grids are connected to each other, and use 

each other’s transmission systems to transfer electricity. The interconnectedness of the grid can 

reduce the cost of providing electricity, avoid voltage collapse, and reduce the chance of 

undesirable load shedding (Blume, 2007). However, this interconnectedness can also lead to 

longer outages, particularly when transmission is scarce. For example, in some states, electricity 

deregulation has meant less investment in new transmission capacity. The potential for cascading 

effects and regional blackouts also means that problems in one state or region can affect other 
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parts of the country. To reduce this dependence, Patterson (2007) recommends loosely 

interconnected and largely independent sub-networks, in which electricity may not need to be 

delivered over long distances, but of course, this would reduce or eliminate the economic 

benefits of interconnectedness. 

Cascading failures happen when an initial failure triggers other failures in a short period of time. 

Major blackouts often occur as a result of cascading failures. One way to avoid this type of 

failure is to design networks that are resilient to cascading failures, as proposed by Ash and 

Newth (2007). Lovins and Lovins (1982) list some desirable characteristics of resilient electric 

power networks, such as modular structure, early fault detection capability, redundancy and 

substitutability, selective coupling, diversity (to avoid common cause failures), diverse or remote 

location of key components, standardization (making it possible to plug in common replacement 

components), hierarchical embedding (to isolate faults on the level at which they occur), stability 

(to gain time to decouple a faulty component before it affects others), simplicity (to aid in 

identifying and tracking failure modes), and accessibility (to improve ease of maintenance). 

Ideally, one would like to minimize the negative impacts of interconnectedness, while still 

obtaining its benefits. One way to avoid negative impacts is to develop online alert systems that 

can provide short-term predictions or notifications of disturbances in other electric grids 

(Capodieci et al., 2010). Since utility companies are affected by cost considerations, a long-term 

solution is to develop incentives so that utilities would find it more beneficial to invest in 

transmission capacity. Large blackouts due to cascading failures may be particularly likely when 

transmission systems are operated near a critical point (Carreras et al., 2002). Zimmerman et al. 
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(2007) note that transmission systems are the most frequent disabled systems (60% of 

international outages due to terrorism and 90% of US-based non-terrorist events). They also note 

that the worst-case scenarios are those where transmission lines run along few corridors, with 

only a few power sources in the transmission system, and no urban power generation is 

available. 

In general, capacity limitations and low reliability are major obstacles to a resilient transmission 

system. According to Apt and Lave (2003), greater resilience can be achieved both by building 

more transmission lines, and also by improving the capacity and controllability of existing lines. 

These investments are in general quite costly, and under current regulatory conditions usually 

have a low rate of return. Despite their cost, however, some improvements in data acquisition 

and control can pay for themselves by decreasing the costs of operations, scheduling, and 

maintenance. Crane (1990) also advocates making transmission towers more resilient to natural 

disasters, such as high wind and earthquakes. 

NERC recognizes the need for reliability metrics for generation and transmission systems. As of 

today, there are seven approved metrics to measure reliability: 

1. Planning Reserve Margin 

2. Transmission Related Events Resulting in Loss of Load 

3. Average Percent Non-Recovery of Disturbance Control Standard (DCS) Events 

4. Disturbance Control Events Greater Than Most Severe Single Contingency 
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5. Percent of Automatic Outages caused by Failed Protection System Equipment 

6. Energy Emergency Alert 3 

7. Energy Emergency Alert 2 

NERC’s metrics are intended to measures a system’s ability to respond to unexpected changes. 

However, they assume access to the required inputs (personnel, fuel, etc.). Moreover, these 

metrics are intended for use primarily within a single region, rather than for comparison between 

regions. 

Planning Reserve Margin is the difference between the forecasted generation capacity and the 

projected peak demand, normalized by peak demand. Forecasts are based on median weather 

(such that the actual weather is equally likely to be either warmer or cooler). For example, Figure 

2.9 shows that in the winter peak in Canada in 2011, the planning reserve margin is expected to 

be 20%, which is higher than the goal of 10%. This measure shows how much flexibility the 

generation system has during its peak period to respond to adverse events such as extreme 

weather or unexpected outages.   However, since this measure is based on median weather, it is 

not directly comparable from one region to another. For example, worst-case summer weather in 

Hawaii may be only a few degrees warmer than median summer weather, while worst-case 

winter weather in Wisconsin or Canada could conceivably be thirty degrees colder than median 

winter weather. 
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Figure 2.9–NERC’s planning reserve margin for winter in Canada (NERC, 2010)*
1
 

Transmission Related Events Resulting in Loss of Load are defined as transmission failures due 

to equipment failure or misuse, causing significant loss of load greater than 200MW and/or 50% 

of demand (NERC, 2010). See Figure 2.10 for the number of significant transmission-related 

events between 2002 and 2009. NERC is also considering developing different metrics for 

different types of transmission outages, such as failed protection systems, human error, failed 

circuits, failed station or substation equipment, etc.  

 

Figure 2.10–Transmission-related significant events between 2002-2009 (NERC, 2010)* 

                                                           
* These images from the North American Electric Reliability Corporation’s website are the property of the North American 

Electric Reliability Corporation and are available at http://www.nerc.com/docs/pc/rmwg/RMWG_AnnualReport6.1.pdf. This 

content may not be reproduced in whole or any part without the prior express written permission of the North American Electric 

Reliability Corporation. 
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Average Percent Non-Recovery of Disturbance Control Standard (DCS) Events measures the 

ability of load-balancing authorities or reserve-sharing groups to compensate for any significant 

loss of supply with contingency reserves within a specified recovery period (e.g., 15 minutes). 

The goal is to return to the pre-disturbance level of electric generation (or at least to a situation 

where generation equals demand, if pre-disturbance generation was greater than demand) within 

a predetermined amount of time after a significant (reportable) disturbance. This metric is the 

arithmetic average of the calculated non-recovery percentages of all reportable disturbances in a 

given year, even for different sized outages. (Note that these numbers are again not directly 

comparable between regions, since factors such as the definition of a reportable disturbance and 

the length of the specified recovery period may vary.) 

Similarly, the other NERC metrics are also either numbers of events, or the percentage of events 

with a given characteristic. This makes the metrics straightforward to compute, but may hide 

some key characteristics, such as the cause, severity, and duration of events, which are likely to 

be highly related to the resilience of the system. For example, a system could have excellent 

performance on the NERC metric for a period of several years, but still suffer catastrophic failure 

due to a natural disaster or intentional attack that exceeds the system’s response capacity. 

Farrell et al. (2002) claim that large central generators and long transmission lines are inherently 

vulnerable, and propose a dispersed system with many small generators situated near large 

population centers. Similarly, Patterson (2007) claims that reliability and control are key drivers 

behind the move toward greater on-site generation. He believes that as small-scale generating 

technologies (e.g., microcogeneration, microturbines, fuel cells) become more mature, even 
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facilities with relatively small loads (such as office buildings, hospitals, airports, hotels, and 

schools) will become candidates for on-site generation, to the extent that facilities without access 

to on-site generation may be at a “severe disadvantage.” Makansi (2007) also advocates 

distributed power systems. 

Generation and transmission systems cause only a few outages every year, mainly due to weather 

and natural disasters, human errors, and equipment problems. Farrell et al. (2002) note that 

distribution systems are responsible for the majority of electricity outages, despite the limited 

impact of most distribution failures. In particular, distribution systems are more vulnerable to 

hurricanes, floods, and flying debris, since they tend to use low lines. However, Crane (1990) 

nevertheless recommends greater generating and transmission reserve margins, to reduce the 

impact of generation and transmission outages on customers. See Table 2 for some general 

investment strategies to prevent damage, limit consequences, speed recovery, and generally 

reduce the vulnerability of an electric-power network. Note, however, that the prevention 

measures in this table are generally focused on intelligent threats. 
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Table 2.2–Investments to increase resilience of electric power systems (Crane, 1990)

 

2.6. Resilient Inputs to Electric Power Systems 

Bush et al. (2005) highlight the dependence of electric power systems on the information and 

communication sector for operations of its supervisory control and data acquisition (SCADA) 

systems, on the transportation sector for the movement of spare parts and repair personnel, and 

on the government for the institution of electricity-conservation alerts or the event of shortages. 

To this list, we can also add fuel and other resources needed to generate and transmit electricity, 

and crew and spare parts to maintain and repair them.  

The most crucial input to an electric system is the fuel or energy source to run the generators; 

e.g., coal, natural gas, and uranium. Nuclear power plants require refueling only every year or 

two, while other technologies require frequent or even continuous fuel delivery. Utility 
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companies may be able to increase resilience by ensuring adequacy of supply or alternate 

supplies. For example, Lave et al. (2007) note that increasing use of natural gas increases the 

dependence of electric-power systems on gas transmission systems; however, gas transmission 

systems are relatively invulnerable because they are underground. Utility companies may want to 

look into availability of alternate fuel suppliers and/or alternate modes of transport (e.g., road 

rather than rail for delivery of coal in emergencies).  

It may also be critical to have sustainable energy resources that do not jeopardize the ecosystem. 

Thus, investing in renewable energy, such as solar and wind power sources, may make electricity 

systems more resilient to potential scarcity of current energy sources. 

The components of the electric-power network must also be maintained efficiently. While 

transmission lines are relatively easy to replace, generating plants often have redundant systems 

that enable them to maintain their operations in case of component failures. Crane (1990) 

recommends the use of spare transformers to speed recovery from transformer failures. Spares 

are often purchased for other key equipment, but transformers are expensive, so are often shared 

between multiple plants. Spare transformer programs can reduce the time to recover from a 

transformer failure from over a year to several months (Crane, 1990). One concern is delays in 

the manufacturing of replacement transformers, since they are manufactured in only a few 

countries. Farrell et al. (2004) also note that most utilities keep their spares at substations, so an 

attack on a facility may also cause damage to the spare transformer. 

According to Amin (2002), existing control systems were initially designed as stand-alone 

systems, and over time were connected to each other; however, the changes needed to make 
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these systems more secure were not immediately incorporated. In recent years, there have been 

increasing efforts to make the internet more secure, by limiting personnel authorization, training 

IT personnel, using data encryption,  and implementing advanced intrusion-detection systems 

through firewalls, multiple check points, and security procedures. There has also been an 

industry trend towards more decentralized and dedicated communication sources rather than the 

networked systems (Amin, 2002), which make events less likely to occur, and also less likely to 

cascade across multiple regions. 

SCADA systems are widely used today to monitor facility operations in real time. These 

software programs increase efficiency by making inspection, adjustment, and data collection 

easier and more convenient. On the other hand, these systems suffer from externalities common 

to the software industry. Anderson (2001) notes that, because of the high fixed costs and low 

marginal costs of IT products, and the difficulty of customers switching from one product or 

service to another, “time-to-market” is critical for survival in the software industry. As a result, 

the software industry is dominated by the few firms that manage to obtain first-mover (or early-

mover) advantage. One side effect of such rapid product development may be less concern for 

security in the initial development of IT products. Another problem is difficulty in getting 

competitors to coordinate their efforts, which may result in excessive vulnerability of SCADA 

systems. 

Utilities also invest heavily in continuity-of-operations planning to ensure that they can continue 

to function effectively in the event of natural disasters that damage their facilities, and/or 

pandemics that limit the availability of their work force. In order to achieve this end goal, 
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utilities invest in protection of essential facilities, training and backup for critical personnel, 

measures to decrease the probability of disruptions, data protection, management information 

systems, etc. 

2.7. Resilience to Loss of Electric Power 

Society is highly dependent on electricity. Fresh food, air conditioning, heating, 

telecommunications (cell phones, landlines, internet, and the media), security systems, hot water, 

and emergency energy (such as traffic lights and hospital equipment) are basic requirements of 

modern life (Makansi, 2007). In the absence of electricity, commercial facilities may not be able 

to maintain some necessary functions or services (e.g., air conditioning, refrigeration, secure 

money transfer). Moreover, industrial organizations may need to cut production levels, which 

can result in cancellations, scheduling problems, etc.  Outages can also cause spoilage of both 

raw material and finished and unfinished goods. Emergency-management organizations, law 

enforcement, firefighters, and the National Guard also depend on electricity to varying degrees. 

Talukdar et al. (2003) provide some examples of critical services that depend on electricity, such 

as pumps for water and sewer systems, urban mass transit, emergency-service systems, 

escalators and elevators, navigation aids for air traffic, and financial services.  

Crane (1990) lists some of the direct and indirect costs of the 1977 blackout in New York City. 

Some of the affected groups included businesses (food spoilage, banking, the need for 

emergency aid to the private sector), government (federal and state assistance programs), utility 

companies (restoration cost, overtime payments, new capital equipment), the insurance sector 

(federal crime insurance, fire insurance, private property insurance), public health (overtime in 
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emergency rooms), transportation (transportation losses, transportation-overtime costs, 

transportation vandalism, new transportation equipment), and other public services (fire-

department overtime, police-department overtime, state court overtime, etc.).  

Many infrastructure systems are heavily dependent on electric power, mainly due to functional 

dependencies and cascading effects. In a major blackout, within a short amount of time, cell 

phones and landlines typically go out of service, banking services (such as money-transfer 

facilities and ATMs) stop functioning, roads become congested (since traffic lights may stop 

working),  transit systems and airports may be forced to discontinue or delay services, computer 

servers may shut down (unless they have adequate backup power), gasoline pumps will stop 

working, transportation of other energy resources (natural gas, oil, etc.) may be delayed. Yet, it is 

a major challenge to measure how dependent all of these systems are on electric power. 

Federal and local governments and agencies are responsible for coordinating efforts in the case 

of power outages, despite the fact that they are also vulnerable to these outages. The Federal 

Emergency Management Agency (FEMA) is charged with coordinating responses to disasters, 

including major power outages. Emergency-response efforts become more challenging in power 

outages, because of the high dependency of other infrastructure systems on electricity. It is 

difficult to even simulate realistic blackout conditions, or to ensure well-coordinated emergency-

management efforts under all possible disaster scenarios, because of uncertainties about post-

event conditions. Power outages and their impacts may make coordination, transportation, and 

emergency operations more challenging. Therefore, FEMA attempts to increase citizen 
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awareness and knowledge, so that emergency-response efforts can be maintained and function as 

efficiently as possible.  

After any large blackout, federal and state governments initiate assistance programs. Hospitals, 

fire departments, and police departments may accrue additional emergency and overtime 

charges, and may have limited capacity. For example, backup generators in hospitals may 

provide limited support to emergency units, operating rooms, intensive care units, x-ray devices, 

air conditioning, refrigeration, elevators, etc. (Crane, 1990). In the 1998 ice storm in Canada, fire 

departments were busy dealing with downed live power lines (Scanlon, 1999). If a blackout also 

leads to social disturbances, then state courts and prosecution/correction authorities may need to 

work overtime. 

The banking system is also heavily dependent on electricity. After the northeast blackout in 

August 2003, the U.S. Treasury Department reported that the U.S. financial system had been 

extremely resilient, but this was in part because the power outage started after the markets had 

closed, and lasted only a few hours. In a longer blackout, the need for bank machines, credit 

cards, and electronic funds transfer will become more significant, since people will need money 

to pay their bills and buy essentials for survival. Chang et al. (2007) assessed the impact of the 

1998 ice storm in Canada, and documented problems with usability of ATMs, banks, and credit 

cards due to lack of power. 

Reliance on electricity for transportation (by car, truck, train, and especially transit) enhances the 

dependency of the transportation sector on electricity (Ibáñez, 2010). Transit systems use 

electricity to energize the main system, signaling devices, and essential telecommunication 
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systems, and to provide ingress and egress for transportation facilities (Bush et al., 2005). In 

addition, the economic impact of blackouts can cause lost revenue due to disruption in transit 

services, and overtime costs after system functionality is restored. Emergency backup systems, 

emergency preparedness and evacuation efforts, and the availability of alternative energy sources 

may increase the resilience of transit systems to blackouts. However, in the northeast blackout of 

2003, people leaving work shortly after the blackout created massive congestion in all available 

means of transportation within approximately 10 minutes (DOT, 2004).  

Lack of electricity may eventually affect other means of transportation as well, through 

dysfunctional pumps in gasoline stations, failed traffic signals, dysfunctional automated 

tollbooths, electrical tools needed for repairs, dysfunctional pumps to control flooding in tunnels 

and other low areas, lack of lighting, lack of emergency support (due to communication failures 

and staffing shortages), etc. For example, in the 2003 blackout, eight oil refineries in the U.S. 

and Canada were shut down, which threatened gasoline shortages (especially in the Detroit 

metropolitan area), and created a potential energy emergency; as a result, certain air-quality 

regulations were suspended (Electricity Consumers Resource Council, 2004). For more 

examples, see DOT (2004). 

 It is also important to note that the magnitude of the impact may depend on the concentration of 

traffic in the affected location at the time of the incident. For example, the New York region 

(with a large number of industrial, commercial, and residential users, and easily congested 

roadways) may be more affected by lack of electricity than some other areas (Zimmerman et al., 

2007).  
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However, Farrell et al. (2002) claim that simple solutions to maintain or restore essential services 

may sometimes be more cost-effective than trying to prevent blackouts. For example, they note 

that traffic signals could use low-power LED lights with uninterruptible power supplies, so that 

traffic flow could be maintained even after blackouts. Some other simple solutions that increased 

resilience after  the northeast blackout of 2003 were the use of portable stop signals on congested 

roads, requests for people to stay home after they got there, etc. (DOT, 2004). DOT also notes 

additional measures that could decrease the impact of future blackouts, such as telephones with 

separate power sources, voice-messaging systems with dial-up capability, redundant 

communication systems (for example, push-to-talk services or dialup network connections), fuel-

storage tanks for backup generators, and mutual-aid agreements with partner agencies and 

neighboring communities. 

Telecommunication systems are highly dependent on electricity. Businesses and public services 

(such as police, fire, etc.) all rely on timely flow of information. An extended outage may have a 

significant impact on telecommunication networks, since emergency-backup systems are 

generally both short-term and costly. As noted by Rabkin et al. (2004), communication systems 

are heavily used in emergencies, and as a result, the batteries for cell and satellite phones may be 

discharged quickly. One way to avoid this problem is to have multiple communication 

technologies, especially systems that use little or no electricity (for example, radios that rely on 

solar or mechanically generated power). Having spare batteries on hand will also extend the 

usability of cell and satellite phones. 
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Water systems depend on electricity for pumping, treating, and distributing water (Bush et al., 

2005). Hydraulic and solar pumps may decrease dependence on electricity, as can the availability 

of local water storage for drinking, irrigation, fire suppression, farming, food preparation, 

chemical manufacturing, etc. In particular, water towers can maintain the distribution of water 

even during power outages. Another option is to use solar water heating systems in warm 

climates. Electricity is also necessary for treatment and pumping of sewage. In an extended 

outage, backup systems may be exhausted; as a result, untreated sewage could flow directly into 

the environment, creating a potential public-health hazard (Crane, 1990). 

The food sector deserves special attention, because extended and large-scale outages could create 

severe social impacts if food becomes scarce. Electricity is needed for incubation, milking, 

refrigeration, heating, and air conditioning (Crane, 1990). Due to previous large blackouts, the 

food and agriculture industries increasingly rely on backup generators. Residential customers can 

also decrease the impact of extended outages by stocking food and drinking water. In the 1998 

ice storm in Canada, three million people lost electric power from periods of several hours to as 

much as a month in some areas. A generator group was organized within an hour after 

declaration of emergency to find and allocate limited generators to the locations where power is 

urgently needed, such as nursing homes, fire departments, and individuals with serious health 

conditions. Similarly, a firewood team was established to alleviate heating problems (Scanlon, 

1999). Dairy farmers were particularly affected by the power loss, because of heavy dependence 

on milking machines. Farms could not milk their cows, which made them vulnerable to mastitis. 
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Moreover, with no ventilation and low temperatures in the barns, many cows developed 

infectious diseases such as pneumonia (Kerry et al., 1999). 

Social resilience to the interruption of electricity can also be increased by providing practical 

knowledge of what people should do in case of emergency, reducing reliance on electric systems, 

recommending the use of manually charged flashlights in emergency toolkits, etc. Clarke (2002) 

notes that widespread fear, panic, and disorder are rare following major disasters. Rapid 

information flow on the nature of the outage may also help to maintain order and increase social 

resilience (Lave et al., 2007), but attention may need to be paid to achieving rapid information 

flow at times when many communications technologies may not be working. 

2.8. Conclusion 

Resilience is performance of a system against an undesired event over time. This performance is 

negatively correlated to the consequences of that event. We can use resilience to gauge the 

effectiveness of our defensive measures, i.e. protection, robustness, and rapid recovery.  

Electric-power systems are critical to society, and closely linked to many other critical 

infrastructure systems and essential services. Electric-power systems require inputs and services 

from other infrastructure systems, interact with each other through the grid, and provide power to 

critical infrastructure systems and other end users. A systematic approach to analyzing and 

enhancing the resilience of electric power systems requires considering not only the resilience of 

the electricity system itself (e.g., ensuring adequate reserve margin and minimizing equipment 

outages), but also ensuring the resilience of needed inputs (fuel transportation, etc.) and reducing 

the dependence of key sectors on electricity. Considering electricity resilience from a broader 
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perspective in this manner may make it possible to achieve resilience more cost-effectively, since 

it is implausible to assume that all electricity outages can be prevented. 

In Chapter 3, we will take a look at the literature to examine different methods of vulnerability 

analysis on electric power networks, and how they address protection (through hardening), 

robustness (through cascading failure), and rapid recovery (through restoration times). We will 

also analyze how our model may fill a gap in literature. 
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3. Literature Review 

Prior to the terrorist attacks of September 11, 2001, the term “vulnerability assessment” was 

often used in relation to risk and system safety (Einarsson and Rausand, 1998). Following 

September 11, however, there was an increased emphasis on vulnerability to security threats 

from intelligent adversaries.  

The U.S. created the Office of Homeland Security and the Homeland Security Council in 2001, 

which later led to the creation of the U.S. Department of Homeland Security (DHS) in 2002. The 

first strategic document on homeland security, The National Strategy for Homeland Security 

(Bush, 2002), defined three strategic objectives: to prevent terrorist attacks against homeland 

targets; to reduce vulnerability to terrorism; and to minimize damage and recover from attacks. 

These three objectives roughly correspond to threat, vulnerability, and consequence.  

In 2004, DHS published The National Strategy for the Physical Protection of Critical 

Infrastructures and Key Assets (DHS, 2003), a guide to the protection of critical infrastructures 

(e.g., water, energy) and key assets (e.g., national icons, nuclear power plants). This document 

highlights the importance of protection, response, and recovery, and specifies the roles of the 

federal government and the states in identifying and securing the critical infrastructures and key 

assets under their control. 

More recently, the National Infrastructure Protection Plan was written to provide additional 

guidance on how to make the nation’s infrastructure safer, more secure, and more resilient (DHS, 

2009). In particular, the plan requires implementation of a “long-term risk management 
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program” that includes: hardening, distributing, diversifying, and increasing the resilience of 

infrastructure against threats and hazards; interdicting potential attacks; and planning for rapid 

response to disruptions and rapid recovery.  

DHS defines vulnerability as a “physical feature or operational attribute that renders an entity, 

asset, system, network, or geographic area open to exploitation or susceptible to a given hazard” 

(DHS, 2010). In this definition, vulnerability could include any weakness that a terrorist could 

exploit, or that makes the system more susceptible to either natural or manmade hazards. Other 

organizations use a narrower definition of vulnerability. For example, the U.S. Coast Guard 

(USCG, 2003) defines vulnerability as “the conditional probability of success given a threat 

scenario occurs.” 

In this work, we adopt a broader definition of vulnerability, which also includes the short-term 

response of the system to an attack (in the form of cascading failures), and also the long-term 

resilience or recovery of the system (i.e. restoration time). Note that this is also consistent with 

the recent recommendation of NRC that DHS’s vulnerability analyses should ideally address 

issues of system capacity and long-term adaptation (2010). Therefore, after discussing 

vulnerability assessment methods of electric power networks, we move on to discuss models of 

cascading failure and restoration times.  

3.1. Vulnerability-Analysis Methods 

Methods for vulnerability analysis include rating-based methods, risk-based methods, and game-

theoretic methods. We discuss all three of these approaches below. 
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Note also that many risk-based and game-theoretic methods attempt to represent the physical 

system being analyzed in one of two different ways, using either topological models or flow-

based models. Flow-based models aim to represent how a system actually functions. By contrast, 

topological models consider only the network structure. Thus, topological models can identify 

redundancies, potential bottlenecks, etc., but cannot take into account factors such as capacity 

constraints (e.g., whether a particular line has sufficient capacity to serve all needed loads when 

other parts of the system have been degraded). We discuss rating-based methods, risk-based 

methods, and game-theoretic methods in turn below. 

3.1.1. Rating-Based Methods 

Rating-based methods assign scores to various attributes of the system being analyzed. They are 

not specific to electric power networks, and can generally be applied to a wide variety of 

systems, facilities, or networks. One such method is the Criticality, Accessibility, Recuperability, 

Vulnerability, Effect and Recognizability (CARVER) method, originally developed by U.S. 

Special Operations Forces to help prioritize targets during the Vietnam War. DHS uses 

CARVER to prioritize critical components and assets as part of the Buffer Zone Protection Plan 

(Bennett, 2007). In this method, each potential target is scored on the attributes of criticality, 

accessibility, recuperability, vulnerability, effect, and recognizability; the resulting numbers are 

simply added to find a final score for each target, effectively assigning the same weight to each 

attribute.  By contrast, Ezell (2007) uses an additive preference model in which different weights 

are assigned to the various vulnerability attributes to quantify the importance of vulnerabilities. 
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A similar rating-based method is the Enhanced Critical Infrastructure Protection (ECIP) 

program, developed by Argonne National Laboratory for DHS (Fisher and Norman, 2010). In 

this model, facilities score their vulnerabilities in areas such as physical site security, security 

management, etc. using a questionnaire. The weights corresponding to the various areas were 

assessed using expert elicitation, and are hardwired into the program. The program is intended 

for use by facility owners and operators to prioritize protective measures for a facility, and 

compare its risk-management features (fences, cameras, etc.) with those of other facilities in the 

same sector.  

Rating-based methods are easy to implement, are applicable to virtually any type of 

infrastructure system, and can provide useful insights to decision-makers. However, they are 

perhaps best utilized for qualitative tasks, such as identifying threat scenarios or screening 

critical components, since they generally do not include a realistic representation of the physical 

system being analyzed, and hence cannot account for factors such as flows within the system, 

dependencies among components, etc. This weakness is especially limiting when applying 

rating-based methods important to complex networks such as electric power systems (as opposed 

to simple facilities, such as factories, that can be modeled as single entities), because the network 

topologies and dynamic behaviors of complex systems cannot be completely captured by rating 

the individual components of the system. Moreover, in most rating-based models, threat is not 

considered explicitly. 
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3.1.2. Risk-Based Methods 

Probabilistic risk assessment has been used to analyze the vulnerabilities of infrastructure 

systems since the mid-1970s (Rasmussen, 1975). Many risk-based vulnerability-assessment 

methods were originally developed for assessing system safety and reliability, and are well 

accepted for that purpose; by contrast, application of risk-based methods to intentional security 

threats is newer and somewhat more controversial. 

Risk-based models attempt to answer three fundamental questions (Kaplan, 1997):  

(1) What can go wrong?  

(2) How likely is it?  

(3) What are the consequences?  

The resulting estimate of risk is generally expressed in the form: 

      (                                ) 

Most commonly, risk-based models compute risk as the product of threat, vulnerability, and 

consequence. Some of the most prominent risk-based vulnerability models are discussed below. 

There are numerous government-sponsored vulnerability-assessment methods based on risk. For 

example, Risk Analysis and Management for Critical Assets Protection (RAMCAP, 2006), 

developed by the American Society of Mechanical Engineers under sponsorship by DHS, models 

vulnerabilities using event trees. Moreover, threat is estimated as a function of both target 
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attractiveness, and adversary capability and intent. Risk is then estimated as the product of threat, 

vulnerability, and consequence. 

Similarly, the Transit Risk Assessment Methodology (TRAM), developed by the Port Authority 

of New York and New Jersey in 2002, also uses event trees to assess vulnerability (TRAM, 

2007). While TRAM was originally designed to prioritize surface-transportation assets for 

protection from possible threat scenarios, similar models can also be applied to other types of 

infrastructure networks. One such example is the Maritime Security Risk Analysis 

Model, developed by the U.S. Coast Guard in 2006 to help prioritize the risks of terrorist attacks 

on ports and waterways (Parfomak and Frittelli, 2007).  

Some government models are specific to a particular type of threat, such as DHS’s Bioterrorism 

Risk Assessment model (DHS, 2006). This model uses event trees to prioritize bioterrorism 

threats based on subjective estimates of their probabilities and consequences. Similarly, DHS 

also developed the Chemical Terrorism Risk Assessment model and an Integrated Chemical, 

Biological, Radiological, Nuclear Assessment model (NRC, 2010). 

Other government vulnerability-assessment tools and programs are designed for specific sectors. 

Examples include: the Aviation Domain Risk Assessment; the Dams Sector Analysis Tool; the 

Emergency Services Self-Assessment Tool; the National Transportation Sector Risk Assessment; 

the Ports and Waterways Safety Assessment; the Risk Assessment Methodology for Water 

Utilities; and the Water Infrastructure Simulation Environment. These are all briefly described in 

the DHS Risk Lexicon (DHS, 2010). 
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Risk-based models have also been discussed frequently in the academic literature. For example, 

Ezell et al. (2000) propose a risk-based model to identify the vulnerable components of an 

infrastructure. The model first identifies vulnerabilities and threats, and ranks both of them. 

Vulnerability is modeled as a function of access and exposure. Event trees are used to determine 

sequence of events for various threat scenarios that lead to consequences; for each scenario, risk 

is then calculated as expected loss (i.e., probability of vulnerability times consequence).  

Apostolakis and Lemon (2005) develop a risk-based approach to analyze the vulnerabilities of 

water, natural-gas, and electric-power distribution networks in the face of relatively minor 

terrorist attacks. The authors focus on the topological structures of the networks, and also 

geographic locations of the components. For example, they note that electrical-service ducts are 

often collocated with (or geographically in proximity to) natural-gas and water networks, 

creating critical points that are highly vulnerable. The model identifies all possible combinations 

of failures that may result from a single attack somewhere in the system, but without any 

assessment of their likelihood. Instead, using expert judgment, the authors estimate the 

accessibility of each critical point.  The screening methodology then identifies and ranks the 

failure combinations (i.e., minimal cut sets) based on their susceptibility to attack and the value 

of each target to the decision maker (as calculated using multi-attribute utility theory). For 

extensions of this work, see Koonce et al. (2008) and Patterson and Apostolakis (2008). 

Donde et al. (2005) use a graph-partitioning algorithm to identify critical power lines whose 

failure may cause severe system disruptions. Similarly, Lesieutre et al. (2006) use graph theory 

to identify subgraphs that are at risk for unmet demand in the case of extreme events. Bienstock 
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and Mattia (2007) develop a graph-theoretic network model to explore how the robustness of the 

network can be improved at minimum cost. They consider two types of investments: adding 

more capacity to an arc; and adding more arcs in parallel. Oliviera et al. (2004) also study 

transmission-expansion planning, and calculate the improvements needed to avoid possible 

disruptions. He et al. (2005) analyze voltage stability to identify weak components, while 

Vulkanovski et al. (2009) generate fault trees for each load in a system, and identify the most 

important elements in those fault trees using risk-importance measures. 

In their flow-based model, Bienstock and Verma (2009) use mixed integer and nonlinear models 

to identify if there is any small number of arcs whose removal will cause a blackout. Similarly, 

Pinar et al. (2010) use a bilevel integer program to identify small groups of lines in a network 

whose removal would be anticipated to cause a severe disruption. By using a special structure in 

their formulation, they avoid the nonlinearity in the original bilevel-mixed integer nonlinear 

problem, and approximate the problem as a mixed-integer linear problem. In the outer loop of 

their optimization, they identify the critical lines, while in the inner loop they measure blackout 

severity by solving the load-shedding problem that minimally decreases load given an assumed 

loss of the identified critical lines. Once the critical components that lead to a blackout have been 

identified, the authors then find the minimum change in generation required to avoid the 

blackout. 

In general, many risk-based models are simple and practical to use; Ezell et al. (2010) argue that 

the required inputs to risk-based models can be readily obtained through expert elicitation, and 

note that PRA has been successfully applied to a number of large complex systems. However, 
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Cox (2008) describes some of the limitations of risk-based models when applied to intentional 

threats. In particular, he notes that threat probabilities may not be well-defined constants, since 

an adversary might respond to any observed defenses; he also raises similar concerns about the 

possible ambiguity of vulnerability and consequence. Brown and Cox (2011) similarly warn that 

risk-based methods may result in misleading recommendations regarding protective actions, 

since the attack probabilities assumed in such methods may not reflect the attacker’s ability to 

learn from the defender’s analysis and/or the observed defenses. 

The National Research Council (NRC, 2010), in a recent review of DHS’s approach to risk 

analysis, has stated that the basic idea of representing risk as a function of threat, vulnerability, 

and consequence is sound, but recommends improvements to the validity and reliability of such 

models. For that reason, the NRC recommends that DHS incorporate game theory into its 

vulnerability-analysis methods. 

3.1.3. Game-Theoretic and Quasi-Game-Theoretic Methods 

Unlike risk-based methods, game-theoretic vulnerability-assessment methods focus on the 

behavior of a strategic adversary. In particular, many game-theoretic vulnerability-assessment 

methods for networks are based on interdiction models. These games aim to determine how the 

attacker can “interdict” various components of the network in order to best achieve an objective. 

Then, the defender determines how best to operate the remaining network. In optimization 

terminology, these types of games (which are special cases of sequential or Stackelberg games) 

are often represented as mixed-integer bilevel programs; see Wood (1993) for an overview of 

interdiction models. Most interdiction models in the literature are deterministic. However, see 
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Cormican et al. (1998) for an overview of stochastic interdiction models. In addition, Janjarassuk 

and Linderoth (2008) reformulate of stochastic network-interdiction problems as deterministic 

mixed-integer programs, and Morton et al. (2007) apply stochastic interdiction to the problem of 

nuclear smuggling. 

Interdiction models have been extensively applied to transportation, nuclear smuggling, border 

patrol, etc. Because this field is so broad, we limit the remainder of our discussion in this session 

to models that are either applied or potentially applicable to electric-power networks. 

In addition to truly game-theoretic models, however, we also address here models with 

conversational games, which “consists of advice, suggestions, and council about how to think 

strategically” (Smith and von Winderfeldt, 2004), and models with worst-case assumptions 

regarding threat scenarios. These quasi-game-theoretic models typically do not include any 

consideration of optimal defenses, and may not even have been intended as models of adversary 

behavior. However, they go beyond simple risk-based models, since their use of worst-case 

assumptions in selecting which threat scenarios to consider can still help shed light on possible 

attacker behavior. 

We begin by studying topological models. Albert et al. (2004) develop a topological model to 

study the structural vulnerability of the North American power grid. They compare the impact of 

various interdiction strategies, such as removing transmission substations at random, removing 

those nodes with the highest number of arcs into and out of them (i.e., the nodes of highest 

“degree”), or removing nodes in decreasing order of estimated load (where load is estimated by 

the number of paths through each node: i.e., “node betweenness”). They find that even the 
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removal of a single transmission node can cause significant connectivity losses, and that load-

based or degree-based removal typically has much greater impact than removal of nodes at 

random. 

In their topological model, Al-Mannai and Lewis (2008) use a game-theoretic approach, in 

which the defender minimizes the total network risk, calculated as the sum of risk (vulnerability 

multiplied by consequence) of each component. Vulnerability is then shown as a combined 

vulnerability function of the attacker and the defender, both of which are dependent on how 

much resources they allocate. Similar to Albert et al. (2004), Lewis (2009) attempts to correlate 

the vulnerability of a network with its topology by considering the degree of each node in the 

network, speculating that networks will generally be more vulnerable to removal of higher 

degree-nodes. Based on the model of Al-Mannai and Lewis (2008), Lewis recommends that the 

defender allocate its resources to the most critical components, but notes that the attacker’s 

optimal strategy may therefore be to attack less critical but undefended components. 

Holmgren et al. (2007) use a topological model to analyze effective strategies for defending 

electric-power networks against intelligent attackers. In their model, the defender can either 

harden components, or decrease their recovery times. They conclude that the optimal tradeoff 

between these two measures depends on both the defender’s total level of resources and the 

nature of the attack scenario. For example, in the case of severe attack scenarios that are likely to 

cause large consequences,  they find that for their assumed parameter values, most of the 

available defensive resources should be allocated to recovery rather than hardening. 
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However, some scholars and almost all power systems engineers have pointed out the drawbacks 

of using topological models to analyze network vulnerabilities. In particular, Hines et al. (2010) 

find that power grids are generally more vulnerable to flow-based attacks that consider actual 

flows within the network than to attacks that consider only the topology of the network (such as 

the degree of each node).  Therefore, we now consider flow-based models. 

Salmeron et al. (2004) develop a flow-based interdiction model to protect against worst-case 

attacks on electric-transmission systems. The model is solved as a sequential game, in which the 

attacker selects an interdiction plan to maximize the cost of operating the network (including the 

cost of any lost loads), while the defender then operates the remaining parts of the network so as 

to minimize that cost. The authors solve the resulting optimization problem by a decomposition-

based heuristic algorithm. Salmeron et al. (2009) improve on that algorithm, with the result that 

they can generate faster and better solutions for considerably larger electric-power grids.  

Arroyo and Galiani (2005) reformulate the model in Salmeron et al. (2004) as a general 

nonlinear mixed-integer bilevel-programming problem, making it possible for the attacker and 

the defender to have different objective functions. Instead of the decomposition-based heuristic 

used by Salmeron et al. (2004, 2009), Motto et al. (2005) transform Salmeron’s mixed-integer 

bilevel program into a mixed-integer nonlinear program using the duality theorem, and then 

convert this new problem into a mixed-integer linear program. Using a flow-based model, Yao et 

al. (2007) extend Salmeron’s problem to a tri-level sequential game (i.e., a defender-attacker-

defender game) in which the defender is able to anticipate the optimal attack strategy for any 
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given network structure, and design the network accordingly. They also propose a solution 

procedure for the resulting game. 

Bier et al. (2007) use a simple flow-based heuristic interdiction model, in which a greedy 

attacker interdicts the components with the maximum flow. In this model, there are three nested 

algorithms. First, the power flow in the network is simulated using a DC load-flow algorithm 

(Carreras et al., 2002) that minimizes the cost of operating the system. A greedy interdiction 

algorithm then identifies the most heavily loaded line, and sets its flow to zero (representing a 

hypothetical attack); the resulting flows in the rest of the network are then computed. Finally, a 

hardening algorithm identifies a set of potentially-interdicted lines to be protected, as a way of 

assessing the effectiveness of protection against a greedy attacker. Bier et al. (2007) obtain 

results similar to those of Salmeron et al. (2004), but note that hardening even a significant 

fraction of the transmission lines in a network may not be sufficient to dramatically diminish the 

unmet demand resulting from a greedy attack, concluding that hardening of components is 

unlikely to be cost effective.  

Finally, in their flow-based model, Romero et al. (2012) study the problem of allocating fixed 

budget to minimize the consequences of an intelligent attack. In order to find an optimal defense 

strategy, they use Tabu search with an embedded greedy algorithm to simulate the attacker. 

Game-theoretic models incorporate the intelligent nature of the terrorist threat, reflecting the fact 

that attackers can observe and investigate the potential vulnerabilities of a network. Moreover, 

flow-based game theoretic models enable the attacker to consider the traffic on the network when 

planning an attack. 
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However, game-theoretic models also have some drawbacks. For example, it may be unrealistic 

to assume that attackers are perfectly rational, and have unlimited computational ability.  

Another concern is the conservatism of game-theoretic models in assuming the attacker will 

maximize the consequences of an attack (Ezell et al., 2010), which will result in defending 

against only the most-severe attacks, and may therefore leave the defender vulnerable to less 

severe attacks.  

Moreover, with the exception of Hines et al. (2010), existing game-theoretic and quasi-game-

theoretic models also do not address the impact of cascading failures. In fact, the only model we 

have identified that addresses both cascading failures and restoration times is Anghel et al. 

(2007), which does not include game-theoretic representation of attacker behavior. In the 

following sections, we review models of cascading failures and restoration times respectively. 

3.2. Modeling Cascading Failures in Electric Power Networks 

Even small attacks can have a catastrophic impact on a system if there is a potential for 

cascading failure. Mili et al. (2004) define the events in a cascading failure as follows: 

The triggering event is a short-circuit that occurs on one of the transmission lines of the 

system.  ...the short-circuit current is sensed by a certain number of relays located within 

the region of influence of the fault.  …each of these relays may unnecessarily open an 

unfaulted line if it suffers from a hidden failure.  …Consequently, the power that used to 

pass through the tripped lines finds its way through other links in the network, which in 

turn may overload some of them. …this sequence of line tripping followed by line 

overloading may propagate throughout the network until either the line overloading 

vanishes or the stability limits or voltage collapse limits are reached. 

Pure topological models inherently cannot deal with cascading failure, because cascading failure 

depends on links or nodes being overloaded beyond their capacity, not just on the topology of the 
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network. Thus, there are two ways to represent cascading failure in a network. One is to try to 

infer which components might experience high flows from their topological position in the 

network, while the alternative approach is to model the flows explicitly.  As a result, we classify 

the cascading models in the literature into two broad categories: topological models (generally 

with inaccurate hypotheses of how flow works); and more rigorous flow-based models.  

Moreover, models of cascading failure can also be categorized as deterministic (where failure of 

an overloaded component is assumed to occur based on a deterministic condition, such as load 

exceeding capacity by a given percentage), or probabilistic (where failure of an overloaded 

component is assumed to occur at random). In either case, failure of overloaded nodes or arcs has 

the potential to result in cascading failures by causing other system components to become 

overloaded. We first review deterministic models of cascading failure, and then consider 

probabilistic models of cascading failure. 

3.2.1. Deterministic Models of Cascading Failure 

In their topological model, Albert et al. (2004) simulate cascading failures deterministically by 

removing the ten nodes with the highest loads, recalculating the estimated loads, and repeating 

the process until the load shed is at least 60%.  They note that removal of only 5% of the nodes 

in a system using this algorithm can result in failure of almost the entire system. Moreover, they 

find much greater losses using this cascading-failure algorithm than using simpler load-based or 

degree-based algorithms that remove nodes based on their initial characteristics, without 

recalculation of loads. 
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Crucitti et al. (2004) develop a topological model that uses “the total number of most efficient 

paths” through a node as an indicator for the load served by that node. Cascading failure is 

assumed to occur when the load served by a given node is more than its predefined capacity, 

leading to recalculation of the loads at each remaining node, which could cause even more 

overloaded nodes. The authors find that under some circumstances, failure of even a single node 

can lead to a total blackout, especially if the original failed node had a high estimated load. 

Zhao et al. (2004) develop a topological model to analyze the vulnerability and tolerance of 

complex networks to cascading failures. In their model, the load carried by each node is 

approximated by the number of shortest paths passing through that node. The capacity of the 

node is in turn assumed to be proportional to the original load (for example, 20% more than the 

original load). The node with the largest number of arcs (i.e. the highest degree node) is assumed 

to be attacked, leading to a new set of shortest paths. At that point, the node with the highest 

number of shortest paths is assumed to fail if it exceeds its capacity, with this failing repeated a 

predetermined number of times. Like Crucitti et al. (2004), Zhao et al. note that disabling one or 

a few nodes can result in a complete blackout through cascading failure, even if the nodes of the 

network have relatively high capacities. 

Kinney et al. (2005) model the power grid as a weighted graph. In their model, cascading failures 

are represented dynamically. As in Zhao et al. (2004), the number of paths through each non-

disabled node (i.e., the node-betweenness) increases as breakdowns occur (since other nodes are 

no longer usable), until the capacity of a node is exceeded, resulting in its failure. The authors 

assume that after a cascading failure, a previously overloaded component has the possibility of 
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working again if the load goes below the capacity of the node. This study highlights the potential 

severity of small attacks targeted at nodes with either high node-betweenness or high degree, and 

finds that losing even a single transmission station may reduce the capacity of a network by up to 

25%. 

Wang and Rong (2009) develop a topological model to analyze the robustness of the U.S. power 

grid to two different types of attacks: attacks on the nodes with the highest loads; and attacks on 

the nodes with the lowest loads. They also develop a new method to measure and redistribute the 

load levels rather than the commonly used node-betweenness measure. According to this 

method, each node is assigned a predetermined load level, and these load levels are not 

necessarily the same. If a node is attacked, its load is distributed to its neighboring nodes 

proportional to their loads. In particular, Wang and Rong try removing loads in both ascending 

and descending order of load. Surprisingly, they find that when the initial load on the system is 

small enough, attacks on the least heavily loaded nodes can actually be more harmful. 

Dueñas-Osorio and Vemuru (2009) use a node-betweenness measure to estimate the load flows 

in a network, and analyze the impact of the initial network design on the potential for cascading 

failure. They conclude that increasing the capacity of the network does not always increase its 

robustness to cascading failures, and that other types of design changes (such as reducing 

congestion, making the network more decentralized, or increasing the number of alternative 

routes between any given origin and destination) can be more useful. 

Buldyrev et al. (2009) develop a topological model to analyze the impact of cascading failure in 

two interdependent networks, such as an electric-power network and a communication network 
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that depends on it. The model randomly removes a fraction of nodes in one network, and 

assumes cascading failure of the corresponding nodes in the other network (together with the 

edges that connect the failed nodes in the two networks), which can in turn cause new failures in 

the original network, and so on. The process continues until there are either no more edges to 

remove or no more nodes to fail. The authors then examine how much of the supporting network 

must be protected so that the disabled nodes constitute only a small portion of both networks. 

The authors find that networks with a more variable degree distribution (i.e., with some high-

degree nodes and some low-degree nodes) are generally less robust to random attacks, because 

failure of high-degree nodes can cause more damage. 

As noted above, topological models estimate the flows in a network based on the inherent 

structure of the network. However, an electric-power system may experience different loads at 

different times depending on the system characteristics. Therefore, rigorous flow-based models 

have been developed to simulate how flows within the system change after some components 

have been disabled. 

The Critical Infrastructure Protection Decision Support System (CIP/DSS) includes a sub-model 

specifically for electricity systems. Jointly developed by Argonne National Laboratory, Los 

Alamos National Laboratory, and Sandia National Laboratories (Bush, 2005) for use by 

government and industry, CIP/DSS represents the functional dependencies within and among 

various infrastructure systems as flows, and then simulates the dynamics resulting from these 

dependencies. However, it is extremely detailed and computation-intensive, and therefore may 

not be practical for industrial use. 
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Similarly, the Critical Infrastructure Modeling System (CIMS) was developed by Idaho National 

Laboratory in 2005 to identify interdependencies among various infrastructure sectors. CIMS 

uses discrete-event simulation to help visualize cascading failures, and to explore the possible 

consequences of infrastructure interdependencies. Its main purpose is to conduct “what-if” 

analysis to understand the vulnerabilities of infrastructure systems (Dudenhoeffer et al., 2006).  

Other models are specifically designed to simulate flows in power networks. Ni et al. (2003) 

develop an online flow-based model for use by operators to decide when to alleviate stresses on a 

transmission network. The model deterministically removes circuits if they pass the emergency-

overload limit a specified number of times (e.g., once or twice), and then recalculates all flows. 

Transmission Reliability Evaluation of Large-Scale Systems is a risk-based model that simulates 

cascading process as based on some predetermined initial events, in order to identify and rank 

critical cascading scenarios based on their severity and likelihood. The methodology has been 

used in transmission-system enhancement projects as a prioritization tool (Hardiman et al., 

2003). 

In their flow-based model, Zima and Andersson (2004) calculate the impact of line outages on 

the flows in the remaining lines, and cascade any overloaded lines deterministically after each 

calculation. The authors also calculate the minimal changes and/or load shedding needed to 

mitigate cascading failure.  

Hines et al. (2010) develop a flow-based model to calculate the impact of cascading failures on 

blackout size. In this model, after an initial failure, each neighboring component is assumed to be 
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removed from service if its flow exceeds 50% of its capacity for more than five seconds; power 

flows are then recalculated. To our knowledge, this is the only flow-based model addressing 

adversarial threats that are explicitly designed to cause cascading failures, although other models 

could also be used for this purpose. 

Despite the development of many deterministic models of cascading failures, cascading failures 

have historically been considered a major unsolved problem in complex networks such as 

electricity systems, since it has proven difficult to determine exactly where and when cascading 

failures will occur. In particular, deterministic flow-based models are incapable of considering 

the hidden unidentified failures that may lead to cascading failure, since by definition such latent 

failures are unobservable. Therefore, we now consider the probabilistic models of cascading 

failure. 

3.2.2. Probabilistic Models of Cascading Failure 

Since attempts to replicate the physics of what goes on in a network have not been particularly 

successful, some authors  have proposed using probabilistic approaches to account for the 

difficulty of predicting cascading failures. For example, in their topological model, Liao et al. 

(2004) compute the probability that a random outage will produce a cascading failure of a certain 

size, conditional on an assumed set of hidden failures and network stress levels.  

Based on historical data, Mili et al. (2004) estimate the likelihood of cascading failure for a given 

type of relay based on the percentage of relays of that type involved in past cascading failures. 
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They then use the resulting likelihoods to calculate the probability of system failure using event 

trees. 

In their flow-based model, Chen et al. (2005) assume that an overloaded line is more likely to 

fail in its first exposure to overload than in subsequent exposures. This is consistent with the idea 

that cascading failures result from preexisting hidden faults. 

Dobson et al. (2001), Carreras et al. (2004), Dobson et al. (2007), and Newman et al. (2011) 

propose a probabilistic flow-based model in which cascading failure occurs with some 

probability when one or more lines are at or near their maximum capacities. Their model has two 

intrinsic dynamics, slow and fast. The slow dynamics represent load growth and response to 

blackouts on a scale of days, months, or years. On each day of the simulation, the loads of the 

network are assumed to change by a factor of    where   is a uniform random number between 

               with mean value  ̅ larger than one. Transmission-line capacity is also assumed to 

increase in response to blackouts. 

The fast dynamics represent the possibility of cascading failures on a scale of seconds to 

minutes. The assumption is that even though disruptions can happen at any time, they are more 

likely to happen at or near times of peak load, when lines are highly stressed. Each overloaded 

line is assumed to fail with a specified probability p, after which loads are recomputed, with the 

process continuing until there are no more overloaded lines. 

In order to model how the transmission lines cascade and predict the total number of line 

failures, Dobson et al. (2005) and Dobson and Carreras (2010) propose using a probabilistic 
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branching process, the parameters of which are generated through observed transmission-line 

failures in the past. Dobson et al. (2011) test the closeness of their predicted distribution 

(obtained through their branching-process model) with the empirical distribution of the number 

of transmission-line failures of their OPA model for 118- and 300-bus systems, and obtain close 

results in most of the cases. Moreover, Dobson (forthcoming 2012) shows that line outages 

predicted by his branching process match well with 12 years of transmission-line outage data 

from a North American utility company.  

Inspired by Dobson et al. (2001), Anghel et al. (2007) develop a probabilistic flow-based model 

that represents both cascading failure and the system operator’s response to disruptions. The 

authors analyze the optimal tradeoff between the risk of cascading failure and the losses due to 

intentional load shedding by the operator. 

3.3. Modeling Restoration Times 

Most of the models discussed above represent the estimated impact of a disruption in a static 

manner, as a snapshot of the system. However, system owners and operators also care about how 

long it will take for a system to return to normal operating conditions; likewise, intelligent 

adversaries may consider the likely durations of the disturbances they cause in deciding which 

components to target. Thus, models that consider the restoration times of failed components can 

give a more realistic portrayal of system risks. We again begin with topological models, and then 

move on to flow-based models. 

In their risk-based model, Apostolakis and Lemon (2005) use restoration times as part of their 

consequence analysis. However, they limit their analysis to minor attacks that would involve 
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only minimal restoration times (e.g., less than a week), so their model may not be relevant to 

more serious threats. In particular, they note that coordinated attacks on several locations (which 

would require more time to repair) may also require more complicated minimal cut sets, and 

therefore may not be computationally feasible to analyze in their model. 

Holmgren (2006) analyzes the topological characteristics of two power-grid networks, and 

proposes three strategies to decrease their vulnerability to both natural hazards and planned 

attacks: increasing the robustness of the network to cascading failures (by adding two 

underground power cables); increasing the ability of the network for rapid recovery (by a 15% 

reduction in restoration times); and increasing both robustness and rapid recovery (with one new 

underground cable and a 10% reduction in restoration times). He concludes that the combined 

strategy would yield roughly twice as much reduction in vulnerability as could be expected from 

either of the individual strategies. However, he also notes that a more realistic consequence 

analysis would require the use of a flow-based model. 

Therefore, we now consider flow-based models involving restoration times. CIP/DSS simulates 

the impact of disruption over time using system dynamics (Bush, 2005), and can be used to 

analyze how quickly a system would recover based on various recovery scenarios (e.g., with two 

repair crews versus three). 

Salmeron et al. (2004) weight the importance of each component in their model by the average 

time required for repair or replacement of that type of component, and use this information in 

anticipating which components would be most attractive to attackers. However, they do not 
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explicitly simulate changes in system performance over time as a result of restoration efforts 

after an attack. 

Anghel et al. (2007) model the restoration time of a transmission line as being equal to a 

minimum constant, plus an exponentially distributed additional delay time. The authors simulate 

the resulting behavior of the system over time, and analyze the optimal level of load shedding 

during the period before system restoration. 

The flow-based model of Romero et al. (2012) simulates restoration process in four stages: (1) 

all components (and those close to attacked components) have no flow; (2) all lines are repaired 

except for the ones that are connected to substations (3 days); (3) all substations are repaired 

except for damaged transformers (15 days); and (4) damaged transformers are replaced by the 

spare ones (32 days). 

3.4. The Summary 

Overall, we prefer game-theoretic methods of vulnerability analysis to rating-based or risk-based 

methods, since game-theoretic methods aim to represent the behavior of a strategic threat. In 

particular, such models can represent threat as a function of the vulnerability of the network to an 

attack, and the possible consequences of a successful attack. 

In addition, while pure topological models may provide some insights into the structural changes 

necessary to achieve a less vulnerable system, modeling the flows within the network is critical 

to understanding what happens in the case of a disruption. Flow-based models are therefore 

realistic. 
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Cascading failures can be critical to understanding the response of complex systems that operate 

at or near their capacity. Hence, representing the possibility of cascading failure in electric power 

networks can help in identifying the most critical components. Exact modeling of the dynamics 

of cascading failure is not achievable at present; however, recent probabilistic approaches to 

modeling of cascading failure may provide a practical solution to this problem. Finally, we 

believe it is useful to incorporate restoration times into models of vulnerability, to fully represent 

the overall impact of an attack; and more importantly, we can capture the attacker’s strategies in 

case they consider the restoration times of the components in their objective function. 

Table 3.1 summarizes the literature on vulnerability analysis of electric power networks. We 

classify the models based on the vulnerability method they adopt, the model they use for 

modeling of cascading failure (if any), and whether they incorporate restoration times. 

As can be seen from the Table, most models only satisfy one or two of our criteria. Anghel et al. 

(2007) develop a risk-based flow model that represents cascading failure probabilistically and 

includes restoration times, but, they do not consider the behavior of a strategic adversary. 

Salmeron et al. (2004, 2009) and Holmgren et al. (2007) use game-theoretic models with 

restoration times, but do not consider cascading failure. Hines et al. (2010) use a quasi-game-

theoretic approach and model cascading failure; however they do not consider restoration times. 

Finally, Dobson et al. (2001), Carreras et al. (2004), Dobson et al. (2007), and Newman et al. 

(2011) use flow-based models to model cascading failure probabilistically, but do not consider 

threat scenarios or restoration times. 
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In the following chapter, we design a game-theoretic, flow-based vulnerability-assessment model 

that includes both the immediate impact of an attack (in terms of cascading failure), and the 

long-term impact of the attack (as represented by the restoration times of components). To our 

knowledge, no model in literature satisfies all of these criteria. 

We also hope that our model is practical enough for real-world use. Therefore, we use a simple 

heuristic approach, instead of a full game-theoretic analysis. We realize that heuristic methods 

have their pitfalls, and can give misleading results. However, not all facility owners and 

operators will be able to justify spending significant resources on a vulnerability assessment; 

operators of relatively small electric-power systems, or systems that serve cities of secondary 

importance, may feel that the threat of intentional attack is too small to justify a time-consuming 

analysis. Therefore, we develop a method that is practical enough that any good systems 

engineer could use it to analyze system risks and evaluate possible defensive investments to 

protect against intelligent threats. The use of a relatively simple heuristic method also makes it 

possible to add complexities (such as cascading failure) without compromising the 

computational tractability of the method.



66 

 

Table 3.1–Comparison of vulnerability models in the literature 

No Literature 

Vulnerability Methods Models of Cascading Failure Models 

of 

Restor-

ation 

Times 

Score-

Based 

Models 

Risk-Based 

Models 
Game-Theoretic 

Models 

Deterministic 

Models 
Probabilistic 

Models 

Topo-

logical 

Flow-

Based 

Topo-

logical 
Flow-

Based 

Topo-

logical 

Flow-

Based 

Topo-

logical 
Flow-

Based 

1 Anghel et al. (2007)   +      + + 

2 Albert et al. (2004)    +  +     

3 
Apostolakis and Lemon 

(2005) 
 +         

4 
Arroyo and Galiani 

(2005) 
    +      

5 
Bienstock and Mattia 

(2007) 
 +         

6 Bier et al. (2007)     +      

7 Buldryrev et al. (2009)      +     

8 CARVER (Bennett, 2007) +          

9 
CIMS (Dudenhoeffer et 

al., 2009) 
      +   + 

10 CIP/DSS (Bush, 2005)       +   + 

11 Crucitti et al. (2004)      +     

12 Donde et al. (2005)  +         

13 
Dueñas-Osorio and 

Vemuru (2009) 
     +     

14 
ECIP (Fisher and 

Norman, 2010) 
+          

15 Ezell et al. (2000)  +         

16 Ezell (2007) +          

17 He et al. (2005)  +         

18 Hines et al. (2010)    + + + +    

19 Holmgren (2006)    +      + 

20 Holmgren et al. (2007)    +      + 

21 Kinney et al. (2005)      +     

22 Lewis (2009)    +       

23 Lesieutre et al. (2005)  +      +   

24 Motto et al. (2005)     +      

25 

OPA (Dobson et al, 2001, 

2007; Carreras et al., 

2005; Newman et al., 

2011) 

        +  

26 Pinar et al. (2010)     +      

27 RAMCAP (2006)  +         

28 Romero et al. (2012)     +     + 

29 
Salmeron et al. (2004, 

2009) 
    +     + 

30 TRAM (2002)  +         

31 TRELSS (2003)   +        

32 Vulkanovski et al. (2009)  +      + +  

33 Yao et al. (2007)     +      

34 Our model     +    + + 
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4. Methodology 

In this chapter, we will describe the methodology used in our model for the resilience of an 

electric power system against an intelligent adversary. Particularly, we describe how we simulate 

the network flows, cascading failure, and recovery of the system. We first go over the original 

model that was developed to identify which transmission lines might be targeted by a greedy 

attacker. Then, we will explain each extension to the original model; i.e. including components 

other than transmission lines, modeling both cascading failure and restoration times, and finally 

using the model to assess the effectiveness of various defensive investments. 

4.1. Original Model 

Bier et al. (2007) present a heuristic method for modeling intentional attacks on electric 

transmission systems. The model uses a greedy heuristic to identify transmission lines that may 

be attacked, and then assesses the effect of hardening those lines on the vulnerability of the 

system. The model is based on three nested algorithms: (a) a load-flow algorithm to determine 

how loads are distributed through the network; (b) a greedy algorithm to identify the lines 

assumed to be interdicted by the attacker at each iteration (the Max Line interdiction algorithm); 

and (c) a hardening algorithm. 

The notation for the model is as follows: 

 

Sets: 

B  set of nodes in the network, indexed by i 

F  set of transmission lines in the network, indexed by k 
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Parameters: 

Gi  generation at node i 

 Li  load supply at node i 

Li, demand   load demand at node i 

Li (t)  load supply at node i after iteration t of the Max Line algorithm 

Fk  negative or positive power flow on line k (to reflect bi-directional flow) 

Fk, max    maximum power flow permitted on line k (in absolute value) 

F  vector of Fk for all k є F 

Pi   total power at node i (given by Gi - Li) 

P  vector of Pi for all i є B 

Wgen, i  cost of generation at node i 

Wshed, i  cost of load shedding at node i 

M  DC load flow matrix relating line flows F to power levels P 

k*(t) index of the line with the highest absolute value of power flow at iteration t of the 

Max Line algorithm 

Decision variables: 

K(t) set of lines attacked in iteration t of the Max Line algorithm 

A ordered set of (sets of) attacked lines K(t) 

A(s) ordered set of (sets of) attacked lines after iteration s of the hardening algorithm  

H  set of hardened lines 

The load-flow algorithm to calculate optimal DC power-flow dispatch for electrical networks 

solves the following problem: 
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∑ (GiWgen, i – Li Wshed, i) (1) 

subject to the following constraints: 

0≤ Gi ≤ Gi, max  (2) 

-Li, demand  ≤ -Li  ≤ 0  (3) 

− Fk, max  ≤ Fk  ≤ Fk, max (4) 

  F = MP   (5) 

In the original model, the cost of generation (Wgen, i) is set to 1 for all nodes, whereas the cost of 

load shedding (Wshed, i) is set to 100, so that the load-flow algorithm prioritizes minimizing load 

shedding. The greedy interdiction algorithm identifies the transmission line(s) carrying the most 

load in the optimal solution to the load-flow algorithm. Note that in order to calculate line flows, 

Bier et al. (2007) use line admittance and voltage angles. As a result, they simulate line 

interdiction by setting the corresponding line admittance zero (impedance to infinity). We follow 

the same approach; i.e., setting the admittance zero to simulate line removal. Finally, the 

hardening algorithm simulates a network upgrade. 

At each iteration, the method involves: (a) running the load-flow algorithm; (b) using the greedy 

algorithm to identify the most loaded transmission line; and (c) hypothetically interdicting or 

disabling that component. This process is then repeated for a specified number of times to 

simulate interdiction of a specified number of transmission lines. The hardening algorithm is also 

applied iteratively, by removing batches of hardened components from the set of candidates for 

interdiction and then rerunning the interdiction algorithm (either to determine the next set of 

components to harden, or to evaluate the effectiveness of the hardening). For a general schematic 

of this model, see Figure 4.1. 
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Figure 4.1-The original model of Bier et al. (2007) 

In order to test the efficiency of their algorithms, Bier et al. (2007) use two simple test cases, the 

IEEE One Area RTS-96 (24-bus system), and the IEEE Two Area RTS-96 (48-bus system, 

composed of two separate areas connected through three interconnections). 24-bus system is 

composed of 24 nodes and 38 arcs, while 48-bus system has 48 nodes and 79 arcs. In these test 

cases, the nodes represent either generators or load points, whereas the arcs represent 

transmission lines (which may also include substations and transformers). 

Similar to the model of Salmeron et al. (2004), the model uses a nested optimization approach, 

but solves the attacker’s outer optimization problem using a greedy heuristic. This approach 

overcomes some of the computational difficulties stemming from the bi-level optimization 

approach of Salmeron, and yields surprisingly comparable results. Salmeron et al. develop two 

interdiction plans for the 24-bus system: one that involves substations (Plan 1); and one 
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involving transmission lines only (Plan 2). Since the model of Bier et al. does not include 

interdiction of substations, we compare the Max Line interdiction algorithm to Plan 2 of 

Salmeron et al., as seen in Figure 4.2. Salmeron et al. do not provide results on the amount of 

load shed for differing numbers of interdicted components, but the result of Salmeron’s model 

for six interdicted components is remarkably close to the result of Bier et al. 

Note, however, that there are some small differences in assumptions between the two models, so 

the comparison is not a perfect one. In particular, Salmeron et al. use different weights for the 

each component type to provide higher incentives for attacks on components other than 

transmission lines and generators. Using the same weights for each component, as done by Bier 

et al., the model of Salmeron et al. might perform better than the Max Line interdiction 

algorithm. However, Salmeron et al. state that the weights were chosen specifically to increase 

the impact of their interdiction algorithm, so it seems unlikely that other weights would perform 

significantly better. 
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Figure 4.2-Comparison of the Max Line Algorithm to Plan 2 of Salmeron et al. (2004) 

Salmeron et al. also develop an interdiction plan for 48-bus system (Plan 3). Again, the results of 

the Max Line algorithm and Plan 3 of Salmeron et al. are quite close; see Figure 4.3.  

 

Figure 4.3-Comparison of the Max Line Algorithm to Plan 3 of Salmeron et al. (2004) 
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In the following sections, we will explain the methodology to expand the original model to 

include (1) interdicting any components (such as generators, loads, transmission lines, or 

transformers) rather than just transmission lines (Section 4.2); (2) modeling cascading failures as 

well as an modeling an attacker with or without cascading knowledge (Section 4.3); (3) 

modeling restoration times as well as an attacker who considers restoration times (Section 4.4). 

Then, we will present the complete model in Section 4.5. In addition to the original hardening 

algorithm, we will also consider investments that make cascading less likely or less 

consequential, such as adding capacities to transmission lines, or adding new transmission lines 

to the network, or decreasing the restoration times of critical components such as transformers. 

Note that, in our model, we will follow the same greedy approach used in the original model of 

Bier et al. (2007). 

We will use the IEEE 24-bus system and 48-bus system, as well as the larger IEEE 118-bus and 

300-bus systems. The 118-bus test system represents a portion of the electric power system in the 

Midwestern U.S. as of December 1962. This system has 118 nodes (including 99 load-serving 

nodes) and 186 transmission lines. The 300-bus system was designed by the IEEE Test Systems 

Task Force in 1993 as a standard test case, and has 300 nodes and 411 transmission lines.  

4.2. Modeling Attacking Nodes as well as Arcs 

Our first extension of the method in Bier et al. (2007) is to allow the attacker to interdict nodes as 

well as arcs, i.e. transmission lines. In particular, transmission lines are inexpensive to attack 

(unless underground) and difficult to protect, but also easy to repair. Thus, allowing the attacker 

to disable other components (generators, loads, or transformers) as well as transmission lines will 
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not only increase the realism of the model, but will also make it possible to model attack 

scenarios with longer restoration times. 

As can be seen from Figure 4-1, the interdiction algorithm in the original model allows the 

interdiction of transmission lines only. Transformers were effectively ignored (or, more 

precisely, treated in tandem with the transmission lines with which they were associated). Note 

that if transmission line is associated with a transformer, the two must have the same flow at 

every iteration. Moreover, generators and loads were not considered as part of the attacker’s 

interdiction problem, hence not considered for protection. To facilitate analysis of components 

other than transmission lines, we now define the following notation (with changes from the 

previous notation shown in italics): 

T  set of transformers in the network,     

Tk(t)  power flow through transformer k at iteration t 

Fk(t)  power flow through transmission line k at iteration t 

G  set of generators in the network, indexed by i,     

Gi(t)   power generated by generator i at iteration t 

L  set of loads in the network, indexed by i,     

Z  set of all possible components to interdict,             

Zx(t)  power flow through component x at iteration t  

x*(t) index of the component with the highest absolute value of power flow at iteration 

t of the interdiction algorithm  

X(t) set of components attacked in iteration t of the interdiction algorithm 
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A ordered set of (sets of) attacked components X(t), |A|/|Z| being the percentage of 

components attacked 

A(s) ordered set of (sets of) attacked components after iteration s of the hardening 

algorithm 

n  number of components hardened at each iteration of the hardening algorithm  

H set of hardened components, |H|/|Z| being the percentage of components hardened  

a specified proportion of components to be attacked 

h specified proportion of components to be hardened 

Note that if transmission line k is associated with a transformer, the two must have the same flow 

at every iteration: 

  ( )    ( )         (6) 

We assume that when the attacker attacks a transformer, the line on which the transformer is 

located is also disabled until the transformer is restored. Similarly, any attack on a transmission 

line disables the transformer until the line is restored. However, we allow transmission lines and 

transformers to have different restoration times. 

As before, flows through the network are calculated using the optimal DC power-flow dispatch 

algorithm. However, since we are now modeling a larger number of component types, we can 

represent more types of attacker behavior. For example, the attacker could: (1) restrict attention 

to a particular type of component (transmission lines, generators, loads, or transformers), and 

attack the component of that type with the most flow; (2) simply choose the component with the 

most flow (regardless of type); etc. 



76 

 

The resulting interdiction algorithm can be summarized as follows: 

0.  Set H= . 

1. Set t=1, A= , and X(t)=    . 

2. The DC load-flow algorithm is run with the constraint that   ( ) 0  k      . Optimal power 

flows on transmission lines, Fk(t), and through transformers, Tj(t), are calculated. The unmet 

demand on the various buses, Li,demand-Li(t), and the generation at the various generating 

nodes, Gi(t), are also calculated. Zx(t) is formed using Gi(t), Li(t), Fk(t), and Tj(t). 

3. The component x*(t) to be interdicted is identified according to the assumed attacker 

strategy. Two options for attacker strategies are considered here: 

a. Attacking the component x*(t) with the highest absolute flow, regardless of type:   

  ( )         
 

   (   ( )  )        

Note that the set     is defined as including elements of Z that are not in H. If the 

component chosen is a transmission line that also has an associated transformer, we 

assumed that the attack is against transformer, since transformers have longer 

restoration times. As before, in the case of equality, the algorithm chooses the 

component with the lowest index. 

b. Attacking the component x*(t) of a specific type with the highest flow: 

  ( )         
 

      ( )       )     
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  ( )         
 

      ( )       )     

  ( )         
 

      ( )       )     

  ( )         
 

      ( )       )   

4. The selected x*(t) is added to X(t). Any components in close geographical proximity to 

x*(t) (e.g., parallel lines in the same geographic location) are also added to X(t). 

The selected components in X(t) are added to the attacked components in the network by 

making their flows zero for all x     . A is set to   X(t). 

5. If |A|/|Z| < a, then the index t is incremented by 1 and the algorithm returns to Step 2. 

Otherwise, rerun the load-flow algorithm to show the impact of the final attack. 

The hardening algorithm can then be run to determine which components to harden and analyze 

the effectiveness of hardening: 

1. The system is initialized at iteration s=1 with the set H empty. The set of attacked 

components, A(s), is empty. 

2. The set of components attacked at iteration t of the interdiction algorithm,  ( )    is 

empty. The interdiction algorithm is run starting from Step 1 until the number of 

iterations exceeds a|Z|, and the interdicted component at each iteration, x*(t), are added to 

A(s). 
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3. If |H|/|Z| < h, then the first n components of A(s), x*(1) through x*(n), are added to the 

set H of components selected for hardening. The index s is incremented by 1, and the 

algorithm returns to Step 2 of the hardening algorithm. Otherwise, the algorithm ends. 

As in the original model, we assume that the attacker can observe all defensive investments, and, 

as a result, will avoid attacking hardened components. 

We will present the results with respect to first extension in Chapter 5. We will first analyze 

effectiveness of various attacker preferences for component types including generators, loads, 

transformers, and all components. This will enable us to compare our all component attacks with 

the original transmission lines only attacks. We will also explore the change of attacker 

preferences based on the cost of an attack. Then, we will compare our greedy heuristic with other 

attack strategies, such as degree-based and random. To measure effectiveness of our greedy 

hardening strategy, we will first gauge it against a static hardening strategy in which the 

components to be hardened are determined based on their initial flows. Then, we analyze the 

effectiveness of our hardening strategy against different types of greedy attackers or degree-

based attacker. Finally, we will explore if hardening certain percentage of critical components 

(such as 2%, 5%, 10% or 30%) against a greedy attacker is effective.  

4.3. Cascading Failure 

In this section, we incorporate cascading failure into our model. For this purpose, we will use a 

probabilistic modeling approach to model cascading impact. Then, we describe how we plan to 

model greedy attacker on the risk of cascading failures. In particular, we consider three 
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assumptions regarding the attacker’s level of knowledge about cascading failure. An attacker 

with no cascading knowledge will preplan their attacks based on the initial flows. On the other 

hand, an attacker with cascading knowledge will be either a static attacker who preplans the 

attack with the knowledge of cascading algorithm (but not the real world), and a dynamic 

attacker who greedily attacks as the results of the previous attack unfolds, similar to the models 

of Salmeron et al. (2004 and 2008) and Bier et al. (2007).  

4.3.1. Motivation 

Electric-power networks are highly capacity-constrained systems (Amin, 2002). As a result, even 

small attacks can have a catastrophic impact if there is a potential for cascading failure, since 

some components may be overloaded in the aftermath of an attack; failure of even a subset of 

those overloaded components may lead to more overloaded components, and so on. To illustrate 

this, see Figure 4.4. Although this figure does not actually show the effects of cascading failure, 

it does illustrate that after even a small percentage of components has been successfully attacked, 

more than 10% of the transmission lines would be overloaded and potentially susceptible to 

cascading failure; moreover, the number of overloaded components increases as the percentage 

of components attacked increases. This figure shows the results for the IEEE 300-bus system, but 

qualitatively similar results have been obtained for the 24, 48, and 118-bus systems. 
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Figure 4.4-Overloaded lines as a function of the percentage of components attacked  

Since cascading failure can have a significant impact, any model that aims to represent the 

failure behavior of electric-power networks should be capable of simulating possible cascading 

failures after an attack. However, most models of cascading failure are not designed to simulate 

the behavior of an intelligent adversary. Therefore, we hope to show the impact of an intelligent 

attack on the potential for cascading failure. This will also enable us to evaluate options for 

reducing the likelihood of cascading failure (e.g., by increasing the capacity of selected 

components). 

4.3.2. Modeling Cascading Failure 

In the literature, there are two main approaches to representing the effects of cascading failure on 

system vulnerability. In particular, the models of cascading failure can be either deterministic 

(where failure of an overloaded component is assumed to occur based on a deterministic 



81 

 

condition, such as load exceeding capacity by a given percentage), or probabilistic (where failure 

of an overloaded component is assumed to occur with some probability). We choose to model 

cascading failure probabilistically, since deterministic models have not yet proven capable of 

adequately representing the hidden or unidentified failures that may lead to cascading failure. As 

a result, we believe that the deterministic models in the literature are not likely to perform well in 

our model. By contrast, the probabilistic model of Dobson et al. (2007) appears to be remarkably 

realistic, as illustrated by the comparison of model results with NERC blackout data (Dobson et 

al., 2007) and Western Electricity Coordinating Council data (Carreras et al., forthcoming 2013). 

In the OPA model documented in Dobson et al. (2001), Carreras et al. (2004), Dobson et al. 

(2007), and Newman et al. (2011), cascading failure is assumed to occur with some probability 

when one or more lines are at or near their maximum capacities. As discussed before, the OPA 

model has two intrinsic dynamics, slow and fast. We will ignore the slow dynamics of the 

system, since we do not intend to model long-term changes in supply and demand as well as the 

changes to the network. Instead, our goal is simply to assess the vulnerability of the system in its 

current form.  

Also, note that the OPA model was designed for random initial outages. Random outages can 

occur every day, and most of these outages are addressed by operators before they can lead to 

cascading failure. Hence, the original OPA model requires a minimum number of lines to be 

overloaded before cascading failure is assumed to initiate. By contrast, our vulnerability model is 

extended to predict the effect of carefully targeted attacks that are designed to cause maximum 
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damage. As a result, we will assume that cascading failure can occur as the result of a successful 

attack on even a single carefully chosen component. 

In our cascading algorithm, there are three loops. Since our algorithm is probabilistic, the outer 

loop consists of Monte Carlo simulation to ensure that we have a statistically reliable 

representation of system behavior. The middle loop determines which component is targeted in 

each iteration of an attack (up to a predetermined percentage of components). After each 

iteration of the attack algorithm, the inner loop is then run as often as necessary to identify all 

cascading failures caused by that attack, and to compute the resulting loads on the remaining 

(unfailed) components in the system. 

We now introduce the following notation: 

  the percentage of the unused flow of component at which it would become a potential 

candidate for cascading failure 

  the failure probability of an overloaded component 

M minimum number of replications to be performed in the simulation 

Cc(t) set of overloaded components at the c
th

 iteration of the cascading algorithm in the t
th

 

iteration of the attack algorithm 

C(t) set of failed components due to cascading at iteration t of the interdiction algorithm 

C set of all failed components due to cascading 
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Our modified version of the OPA algorithm proceeds as follows: 

0. Set the replication index to m=1.  

1. Set the attack iteration index to t=1. Also set A, Cc(t) and          to empty. 

2. Identify the component to be interdicted, x*(t), based on the attacker’s assumed strategy. 

Add x*(t) to     . In the case of equality, choose the component with the lowest index. 

Any components in close geographical proximity to x*(t) (e.g., parallel lines in the same 

geographic location) are also added to     . 

The selected components in      are removed from the network by setting the absolute 

values of their flows to zero for all x     . A is set to    X(t). Also set the cascading 

index c=1. 

3. Determine the set       of overloaded transmission line according to  

            ( )  ( - )        

4. If the set       is not empty, then for  k        set   ( ) 0 with probability    

(independently). If no flows   ( ) are set to zero, go to Step 5. Otherwise, for all 

k         , if   ( ) 0, then add k to     . The set       is also added to the set of all 

cascaded components,  . Set the cascading index c to c+1, run the load-flow algorithm 

with the additional constraint that   ( ) 0  k             , and return to Step 3. 

5. If |A|/|Z| < a, then the index t is incremented by 1 and the algorithm returns to Step 2. 
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6. Increment the replication index m by 1. If m<M, return to Step 1. 

In our analysis, we will execute 20 simulation runs, and increase the number of replications, M, 

by 10 until the standard error of the mean for the load loss is less than 3%.  

To model the attacker’s knowledge of cascading failure, we will consider three possible 

assumptions: (1) the attacker has no knowledge of cascading failure (static attacker with no 

cascading knowledge); (2) the attacker has knowledge of the cascading-failure algorithm, and 

preplans his attacks accordingly (static attacker with cascading knowledge); or (3) the attacker 

can observe the results of his attacks, and at each iteration attacks the component that is the most 

heavily loaded after any cascading failure observed in previous iterations (dynamic attacker).  

The first assumption (static attacker with no cascading knowledge) corresponds to a naïve 

attacker who does not take cascading failure into account, and is therefore non-conservative. In 

this case, the attacker preplans which component to interdict at each iteration by choosing the 

component that would be anticipated to have the maximum load: 

       
   

     ( )  

The second assumption (static attacker with cascading knowledge) will demonstrate how an 

adversary might be able to take advantage of detailed knowledge about cascading failure. In this 

case, the attacker is assumed to preplan the attack by prioritizing the component to be attacked in 

each iteration to maximize expected flow loss, which is defined to be the sum of the flow on the 

interdicted component and the expected load loss in the resulting first round of cascade (iteration 
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c=1). This is somewhat conservative, but may be plausible, especially if the attacker has inside 

information. In other words, for each iteration t, the interdicted component is selected based on 

       
 

   (   ( )   ∑    ( ) 

    ( )

) (   ( )   ∑    ( ) 

    ( )

)  

(   ( )   ∑    ( ) 

    ( )

) (   ( )   ∑    ( ) )

    ( )

  

Finally, the third assumption (dynamic attacker) simulates a worst-case scenario given that the 

attacker is greedy. It corresponds to an attacker who plans and implements the various stages of 

an attack in a sequential manner, after observing the system’s reaction to any earlier stages. The 

attacker begins by attacking the most heavily loaded component, observes how any cascade 

unfolds, then attacks the next most heavily loaded component, and so on. Thus, instead of 

choosing all components to be interdicted before beginning an attack, the attacker chooses the 

next component to interdict after observing the impact of any previous interdiction. As a result, 

this assumption will enable us to compare our results with the original work of Bier et al. (2007) 

and our findings with no cascading failure in Chapter 5. While perhaps not realistic, we include 

this assumption for reasons of conservatism. 

We will present our results for modeling cascading failure in Chapter 6. For each of attacker 

assumptions about cascading failure, we plan to analyze the impact of modeling cascading 

failure. We will also investigate what happens if the attacker chooses different component types 

for each of the attacker assumptions about cascading failure. Similar to our analysis in Chapter 5, 

we will also investigate whether defensive investments decrease the unmet demand. However, 



86 

 

this time in addition to just various levels of hardening components (such as 2%, 5%, 10%, or 

30% of the components), we will consider investments that are likely to decrease the likelihood 

or the impact of cascading failure. For this purpose, we will identify the components that are 

likely to cascade and either double their capacities or add new identical lines. 

Doubling the capacities will enable the components to double the maximum load flows allowed. 

On the other hand, adding new identical lines will change the network structure. We assume that 

the new added lines are located away from their identical lines. As a result, when one line is 

attacked, the other one will not be damaged.  

As noted above, the cascading algorithm uses two parameters,   and  . In our base case,   is set 

to 0.01, since the original OPA model considers this value to be a reasonable estimate. Similarly, 

following the original OPA model, we set   to 0.3. We will evaluate the sensitivity of system 

performance to the parameters of cascading failure,   and  . For each of these parameters, we 

will analyze how the extent of unmet demand changes for each of the four systems and three 

cascading assumptions‒but considering only one attack strategy (namely, attacking the most 

heavily loaded component, regardless of cost), and 0% hardening.  These values are chosen 

based on the discussions with graduate students working with Professors Ian Dobson and Jeff 

Linderoth. 

Finally, we will also compare the results of our model to those of similar vulnerability models 

that account for cascading failure. To our knowledge, Hines et al. (2010) is the only other model 

that accounts for both cascading failure and an intelligent adversary. Their model uses various 
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topological and flow-based interdiction algorithms for the 300-bus system (such as maximum 

flow, minimum flow, highest node-betweenness, and highest degree), but simulates cascading 

failure deterministically. Therefore, we will compare the results of our algorithm for the 300-bus 

system with the results of Hines et al. 

4.4. Restoration Times 

In this section, we will describe how we plan to model component restoration times, so that we 

can analyze not only the immediate impact of an attack, but the subsequent consequences until 

the system is fully restored. This will also enable the attacker to consider restoration times as part 

of their interdiction problem. 

4.4.1. Motivation 

Of course, the actual damage due to an attack depends on not only its size but also its duration, 

which can in principle vary from a few minutes to a few months. An intelligent adversary may 

consider this long-term impact, and target components with long restoration times. So far, only a 

few models in the literature have considered this as part of the attacker’s decision problem; for 

an example, see Salmeron et al. (2004).  

In Figure 4.5, we demonstrate the effect of the attacker’s preferences for long restoration times 

on the defender’s optimal strategy for a 300-bus system. (Similar results are found for the other 

three sample systems.) In this analysis, we allow generators and transformers to have longer 

restoration times than transmission lines and loads. As the attacker places more emphasis on 

components with long restoration times, the attack pattern changes to involve more attacks on 
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generators and transformers. From a game-theoretic perspective, the protective strategy of the 

defender must then adapt accordingly by protecting more generators and transformers.  

 

Figure 4.5- Attacker considering restoration times (300-bus system) 

4.4.2. Modeling Restoration Times 

In our model, we consider restoration times in two places: (1) as part of the attacker’s 

interdiction problem; and (2) to model the system as it returns to normal operating conditions. 

As part of the attacker’s interdiction problem, we assume that the attacker weights components 

by the product of their restoration times and their loads. We now define the following new 

notation: 

sj restoration time for component type  ,      

Assuming that the attacker picks the component x with the largest product of load and restoration 

time, the index of the selected component will be given by 

       
 

      ( )       ( )       ( )       ( )     
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Note that if the attacker’s strategy is to attack any component and chooses to attack a 

transmission line that is associated with a transformer, it is assumed that the restoration time is 

equal to that of transformer.  

To model the process of recovery, we introduce the following notation: 

s(i) ordered set of component restoration times 

ti duration of system state i, where ti= s(i)- s(i-1)  

yi percentage of unmet demand in state i 

Y percentage of energy loss  

The system is assumed to remain in steady state until a particular component type is restored. 

Once a component type is restored, the load-flow algorithm is rerun to calculate the new optimal 

flow. Then, the system is again assumed to be stable until a new component type is restored; see 

Figure 4.6. 

 

Figure 4.6-Restoration function 
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Unmet demand occurs when generators cannot meet some of the demand, either because the 

generators have inadequate capacity or because some system components are out of service as a 

result of an outage. We can use percentage of unmet demand as a performance metric to measure 

the impact of a blackout. This metric enables us to measure the immediate impact of a disruption, 

but not what happens after the initial impact. For this purpose, we will utilize the concept of 

energy lost (or energy unserved). We assume that the energy lost in a particular system state 

equals the product of unmet demand in that state and the duration of that state. Then we can 

calculate the total energy loss of the system as the sum of the energy lost in each state: 

∑        

           

   

 

Note that this measure of energy lost is in units of time-weighted percentage loss. As a result, the 

total energy lost is calculated as equivalent days lost. 

By default, we assume transmission lines that fail due to cascading failure have the shortest 

restoration times (one day), loads and transmission lines that fail due to direct attacks on those 

lines have longer restoration times (three days), generators take even longer to restore (15 days), 

and finally transformers have the highest restoration times (32 days), although other assumptions 

could also be used (including, for example, different restoration times for individual 

components.) Our restoration durations are based on Reliability Test System (RTS)-96 (IEEE, 

1999) and Salmeron et al. (2004). For example, in RTS-96, the outage duration of transmission 

lines is 10-11 hours, whereas Salmeron et al. use three days for attacked transmission lines. As a 

result, we use three days if the transmission line is attacked, but only one day if the line fails due 
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to cascading. For loads, we assume one day of restoration time, the same as transmission lines. 

Salmeron et al. (2004) and Romero et al. (2012) use 32 days for the restoration time of 

transformers based on RTS-96; we also use 32 days for transformers. Finally, RTS-96 provides 

no data for generators. However, Salmeron et al. (2004) and Romero et al. (2012) use 15 days 

(almost half the 32 days of outage assumed for transformers). 

We will show the results of adding restoration times to the model in Chapter 7. We will first 

analyze the impact of an attacker who considers restoration times for each of the three cascading 

assumptions about the attacker. We will also compare the attacker who considers restoration 

times with various attacker types including attacker who attacks generators or transformers first 

(but do not consider restoration times), and a degree based attacker. Finally, we will compare the 

change in total energy loss for various levels and types of investments, including decreasing 

restoration times of all transformers by 50%. 

4.5. Summary of the Comprehensive Model 

Figure 4.7 illustrates our new model that combines an analysis cascading failure, restoration 

times, and different defensive measures. In this model, there are five algorithms: load-flow; 

greedy interdiction; cascading failure; restoration; and defense (including but not limited to 

hardening).  Before running the model, we must specify the attacker’s assumed interdiction 

strategy, and the attacker’s level of knowledge about the cascading algorithm. The stages of the 

model are as follows: 

1. Run the optimal load-flow algorithm. 
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2. Identify the interdicted components based on attacker’s attack strategy and level of 

knowledge about cascading failure. 

a. If the attacker has full knowledge about the cascading algorithm, run one round of 

cascading algorithm. 

b. Interdict the component based on attacker’s assumed strategy (e.g., highest loss of 

load by (1) not including cascading failure or restoration time; (2) including 

cascading failure; (3) including restoration time; or (4) including both cascading 

failure and restoration time).  

3. For each proposed set of defensive improvements (hardening, improving robustness, 

decreasing restoration times, or combinations of these), if any, implement the recommended 

improvements (based on the attack strategy) until the desired protection level h is achieved, 

and go to Step 1. 

4. Simulate cascading failures, and run the load-flow algorithm. Repeat the cascading algorithm 

until there are no more overloaded components left to cascade. Go to Step 2 if interdicted 

components are less than a|Z|. 

5. Restore components in order of their restoration times. After each restoration, rerun the load-

flow algorithm. Continue the process until all components have been restored. Calculate the 

total unmet energy. 

6. Repeat the simulation a specified number of times (or until a specified degree of accuracy 

has been obtained). 
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Figure 4.7 - Our vulnerability model with cascading failure and restoration times 

4.6. Analyzing Effectiveness of Defensive Investments and Impact of Cascading Failure 

The metric of energy lost enables us to measure the total impact of an attack including the initial 

impact of an attack, the impact of cascading failure immediately after the attack, and the long 

term impact until the system fully recovers, as demonstrated in Figure 4.8. As a result, the impact 

of any change in attack or defense strategies can be observed using this metric. Moreover, since 

the original model of Bier et al. (2007) did not include cascading failure, we can also measure 

the impact of cascading failure, which may be impossible to measure in real life. This idea also 

makes it possible to compare different investment types, including hardening components (to 

improve protection) versus decreasing the restoration times of particular components or reducing 

the impact of cascading failure through adding capacities or new transmission lines. 
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Figure 4.8 - Measuring the total impact of an attack 

The base case (with cascading failure) involves no defensive investments, cascading parameters, 

  = 0.01 and   = 0.3, and restoration times for component types will also be default.  In order to 

identify critical transmission lines that are likely to cascade, we will simulate the system for 100 

times for a small (1% of the components) and a large (10% of the components) attack for three of 

the cascading assumptions for the attacker, and rank the components based on the number of 

time they cascade. 

In order to improve robustness of transmission lines, we will increase the maximum capacity of 

transmission lines that are most likely to cascade (Fk, max ) by 100%. We will also add new 

identical lines for the transmission lines that are most likely to cascade, and compare this 

investment with the investment of adding new capacities.  

To improve the recovery time of the system, we plan to model a decrease in the restoration time 

of transformers, the component type with the longest restoration time. Li et al. (1999) argue that 
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spare transformers should be considered. In 2006, federal energy regulators approved the Spare 

Transformers Equipment Program (STEP), which requires any participating electric utility to 

acquire (if necessary) and maintain a certain number of transformers so that transformers can be 

replaced quickly in case of a terrorist attack (FERC, 2006). Since then, many utility companies 

have joined the program; however, to our knowledge, there is no study on the expected reduction 

in restoration times when STEP is implemented. Romero et al. (2012) use 15 days for 

transformer replacement when a spare is available, and 32 days for repairable transformer 

failures with no spare. As a result, we assume that it is reasonable to decrease the restoration 

time of transformers by 50% through STEP, and use a 50% reduction in restoration times as an 

achievable level of improvement. 

4.7. Conclusion 

Extending our model to nodes as well as arcs will allow us to consider various types of attacker 

and defender strategies. For example, the attacker may take into account the cost of an attack, or 

restrict his attention to a specific component type. Moreover, capacity-constrained networks such 

as electric power systems are prone to cascading failures, so that even small attacks can cause 

significant damage; increasing the capacity of some components may reduce the potential for 

cascading failure. Similarly, different component types have different restoration times, and the 

attacker may take this into account in choosing which components to target; decreasing recovery 

times could reduce the impact of an attack. Modeling these factors more realistically will enable 

us to consider defensive strategies other than hardening. 
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The methodology presented in this chapter demonstrates the feasibility of addressing these 

issues. In the following chapters, we will explore how we can utilize our model and analyze 

some of the results.  



97 

 

5. Results for Attacking Nodes as well as Arcs 

In this chapter, we will show how we can use our first extension of the model to analyze 

different attack strategies. We will also explore effectiveness of our hardening strategy. 

In Section 5.1, we explore why we should include nodes as well as arcs. First, we do a 

comparison of the results of the previous model (which only allows the attacker to attack 

transmission lines) with our extended model. We then analyze the impact of attacking different 

component types. Later, we demonstrate how we can utilize cost of an attack. Finally, we 

compare our greedy dynamic attacker with degree-based and random attackers. In Section 5.2, 

we explore and compare the change in unmet demand for different types of hardening strategies 

(static versus dynamic; and degree-based versus dynamic) and hardening levels (2% to 30%). 

5.1. Testing the Model for Different Attack Strategies 

We test the effectiveness of the extended model for three different attack strategies. We first 

consider the case in which at each iteration the attacker attacks the components with the highest 

load, regardless of type. Figure 5.1 compares the amount of unmet demand associated with 

attacking the most heavily loaded components versus transmission lines only for the 24-, 48-, 

118-, and 300-bus systems. Compared to attacking transmission lines only (as in the original 

model of Bier et al.), allowing the attacker to attack any type of component generally results in 

more unmet demand (except for some clearly non-optimal results for the 24-bus system, as 

shown in the upper left-hand portion of Figure 5.1). However, the results suggest that attacking 

transmission lines only does almost as well as attacking components regardless of type.
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Figure 5.1–Attacking the most heavily loaded components (regardless of type) versus transmission lines only 
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Of course, the attacker may choose to target some other type of component, instead of 

transmission lines. Figure 5.2 compares five different attack strategies (any components 

regardless of type, generators first, transmission lines only, loads only, or transformers first) for 

the 24-, 48-, 118- and 300- bus systems. Note that in all but the 300-bus system, fewer than 10% 

of all components is transformers; thus, once all transformers have been attacked, the attacker is 

allowed to choose any component type. Similarly, the number of generators for 118- and 300- 

bus systems is less than 10%; hence the attacker chooses other components once all generators 

are attacked. In Figure 5.2, those attacks are separated from attacks on transformers/generators 

by a vertical bar,  . 

In general, the results suggest that limiting attention to generators first is approximately as good 

as attacking the most heavily loaded components regardless of type. Restricting attention to 

transformers first generally does less well than the other strategies; however, attacking large 

numbers of transformers can still cause substantial unmet demand. 

Of course, the attacker can also take the cost of an attack into consideration. For example, the 

attacker could target the component with the highest ratio of flow to attack cost given by: 

  ( )         
 

      ( )            

where    is the cost of attacking component x. 

Figure 5.3 and 5.4, respectively, show how the cost of attacking generators affects the attacker’s 

preference for which types of components to attack, and the total unmet demand. 
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Figure 5.2– Effect of component type attacked 
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Figure 5.3-Attacker preference as a function of attacking 

generators 

 

Figure 5.4-Unmet demand as a function of the cost of 

attacking generators  
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As can be seen from Figure 5.3, the results predict significant numbers of attacks on generators 

when those attacks are not too costly, with such attacks being deterred when attacks on 

generators are several times more costly than attacks on other component types. However, the 

results for unmet demand in Figure 5.4 suggest that deterring attacks on generators is likely to 

have only a negligible effect on how damaging an attack of a given size will be. Note that, in this 

study, we will not further analyze cost of an attacker’s preferences. 

To evaluate the effectiveness of our heuristic attack strategy, we now compare that strategy with 

other possible heuristics. In particular, Lewis (2009) suggests that heavily connected nodes may 

be especially important to system operability. However, this idea has been criticized by others as 

a poor heuristic that may be far from optimal. Figure 5.5 compares our greedy heuristic attack 

algorithm with both a degree-based heuristic algorithm and a random attack strategy for 24-, 48-, 

118-, and 300- bus systems. (Note that results for the random attack strategy were computed 

using sufficient simulation replications to achieve estimates of the average unmet demand that 

are accurate to within 3%). 

Our heuristic algorithm does dramatically better than interdicting the highest-degree nodes. In 

fact, the degree-based heuristic is sometimes not even significantly better than a random attack, 

especially for small attacks. Thus, while our greedy heuristic is clearly not optimal (as shown, for 

example, in Figure 5.5), it is demonstrably much more effective than either a degree-based 

heuristic or a purely random attack strategy. 
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Figure 5.5-Comparison of various attack strategies
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5.2. Effectiveness of Hardening 

We now explore the effects of hardening components (i.e., making them invulnerable to attack). 

We first explore the effectiveness of our basic hardening strategy, in which we harden 

components regardless of type. 

Figure 5.6 demonstrates the responses of the 24-, 48-, 118-, and 300-bus systems to various 

levels of dynamic hardening, ranging from no hardening to hardening 30% of the components. 

Note that as our base value for dynamic hardening, we set n=10 (as in the original model). As 

can be seen from that figure, hardening is typically of little benefit unless a large fraction of the 

network is hardened. Moreover, attacks can still cause significant unmet demand even after 30% 

of the components have been hardened. Note also that hardening a larger fraction of components 

does not always lead to less unmet demand, which again shows clearly that our algorithm for 

selecting which component to harden is not optimal. Overall, though, if our results are at least 

reasonably close to optimal, it seems that hardening even a significant percentage of components 

is unlikely to dramatically diminish the load shed from an attack, implying that hardening may 

not be cost effective. 

Now, we will compare dynamic hardening strategy with some alternative hardening strategies, 

including static hardening (in which the defender hardens the components with the highest initial 

flows in iteration 1 of the interdiction algorithm, rather than finding the component x
*
(t) with the 

highest flow in each of the first n iterations), hardening the components of highest degree (as 

suggested by Lewis), and hardening components of a specific type (such as generators). 
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Figure 5.6-Effectiveness of dynamic hardening
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First, we compare static hardening with dynamic hardening strategy. Figure 5.7 compares the 

effects of static and dynamic hardening for 24-, 48-, 118- and 300-bus systems, respectively, for 

an attack strategy that interdicts 10% of the components for 24- and 48-bus systems, and 4% of 

components for 118- and 300-bus systems. Note that in order to observe the effect of both 

hardening types, we use a smaller attack strategy for larger systems. As can be seen from those 

graphs, our dynamic hardening algorithm is generally much more effective than static hardening. 

We now compare our all-component dynamic hardening strategy with other heuristic hardening 

strategies, including degree-based hardening and hardening of only a specific type of component 

(such as generators first, or transmission lines only). Figures 5.8 through 5.10 compare our all-

component dynamic hardening strategy with other heuristic strategies when 2%, 5%, and 10% of 

the components are hardened, respectively. Note that similar to attacking a specific type of 

component scenario (in which there was no hardening), when the attacker has no more 

generators or transformers to attack, the attacker can choose to attack any other types of 

components, which is separated by a vertical bar,  . 

As can be seen from the figures, virtually no hardening strategy has significant effect against 

small attacks. For large attacks, dynamic hardening (especially, hardening of all components) is 

more effective, and sometimes dramatically decreases the unmet demand.  

Figures 5.11 through 5.13 demonstrate the difference between our dynamic hardening and 

degree-based hardening strategies when 2%, 5%, and 10% of the components are hardened, 

respectively; degree-based hardening often offers less improvement than our dynamic hardening. 
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Figure 5.7-Comparison of static and dynamic hardening 
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Figure 5.8- Comparison of various dynamic hardening strategies (2% hardened) 
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Figure 5.9- Comparison of various dynamic hardening strategies (5% hardened) 
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Figure 5.10- Comparison of various dynamic hardening strategies (10% hardened) 
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Figure 5.11 –Our dynamic hardening vs. degree-based hardening (2% hardened) 
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Figure 5.12 –Our dynamic hardening vs. degree-based hardening (5% hardened) 
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Figure 5.13 –Our dynamic hardening vs. degree-based hardening (10% hardened) 
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5.3. Conclusion 

In this chapter, we analyzed some results given the attacker can attack any components. We are 

able to analyze various types of attacker and defender strategies. For example, the attacker may 

take into account the cost of an attack, or restrict the attention of the attacker to a specific 

component type. The results of the analyses presented in this chapter suggest that defending a 

complex system (such as an electric-power network) against an attacker with even a modest 

(greedy or myopic) degree of intelligence may not be highly effective. Therefore, it seems worth 

exploring other types of defenses beyond hardening.  

In Chapter 6, we will explore the impact of cascading failure and an attacker with cascading 

knowledge. We will also investigate whether adding capacities or new transmission lines 

improve network’s ability against cascading failure.
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6. Results for Modeling Cascading Failure 

In this chapter, we will explore how the possibility of cascading failure can affect both the 

behavior and the resulting level of unmet demand. In the first section, we will assume no 

defensive investments, and demonstrate the impact of cascading failure for different attacker 

types or strategies. In particular, we will first compare the results with and without cascading 

failure for three greedy attacker assumptions: a static attacker with no knowledge of cascading 

failure; a static attacker with knowledge of cascading failure; and a dynamic attacker who is able 

to observe cascading failures as they occur. Later, we will explore the changes in unmet demand 

when the attacker aims for a specific component type. Then, we will compare our greedy 

attacker with two other attacker types (degree-based and random attacker strategies). 

In the second section, we analyze the sensitivity of the cascading model its parameters: the 

percentage of transmission capacity at which cascading failure occurs ( ); and the failure 

probability of an overloaded transmission line ( ). In the third section, we compare hardening to 

measures intended to decrease the impact of cascading failure: adding capacity to transmission 

lines, and adding new transmission lines. In the final section, we will compare the results of our 

cascading model with the cascading model of Hines et al. (2010). 

Since our cascading model is probabilistic, we use Monte Carlo simulation in our analysis. For 

each scenario, we run 20 simulations. IF the observed standard error of the mean is higher than 

3%, then we increase the number of simulations by 10 until we reach less than 3% standard error 

of the mean. 
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6.1. Impact of Cascading Failure 

In order to analyze the impact of cascading failure, we first assume that the attacker has no 

knowledge of cascading failure. In particular, we assume a static attacker with no knowledge of 

cascading failure (an attacker who attacks the highest flow component based on their initial 

flows), and that the same components are attacked in both the cascade and no-cascade cases. 

This enables us to measure the impact of cascading failure on unmet demand. Figure 6.1 

illustrates the impact of cascading failure for the 24-, 48-, 118-, and 300-bus systems. 

As can be seen from the figures, cascading failure has a significant impact, especially for the 

118- and 300-bus systems. For example, in the 118-bus system, the first attack causes an average 

of 24.8% unmet demand when cascading is included, but only 10.5% without cascading failure. 

Thus, the larger systems seem more susceptible to cascading failure perhaps due to their tight 

capacity constraints. 

Now, we analyze how the unmet demand can change if the attacker has knowledge of cascading 

failure. A dynamic attacker with cascading knowledge is assumed to recalculate the system flows 

after each attack (taking into account any cascading failures that occurred). By contrast, a static 

attacker with cascading knowledge is assumed to preplan the attack by selecting which 

component to attack at each iteration to maximize the expected flow loss (including in the first 

round of cascade). Thus, a static attacker with cascading knowledge is able to exploit cascading 

failure to some degree, but is not assumed to anticipate all possible cascading failures. By 

contrast, a static attacker with no cascading knowledge is assumed to preplan its attacks based 

only on the initial flows in the system. Figures 6.2 and 6.3 illustrate the impact of cascading 

failure for a static attacker and dynamic attacker, respectively, with knowledge of cascading 

failure. 
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Figure 6.1–Impact of cascading failure for a static attacker with no cascading knowledge 
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Figure 6.2–Impact of cascading failure for a static attacker with cascading knowledge 
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Figure 6.3–Impact of cascading failure for a dynamic attacker with cascading knowledge 
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Figure 6.4 illustrates the difference between these three assumptions. The dynamic attacker is 

significantly more effective than either of the static attacker types, at least for significant 

numbers of attacks. We will use the dynamic attacker with cascading knowledge as our 

conservative case. By contrast, the two static attacker types achieve similar levels of unmet 

demand, even though they attack different components. Thus, realistic levels of knowledge about 

cascading failure apparently cannot be effectively exploited to achieve more damaging attacks, 

unless the attacker is actually able to observe which components have failed. 

Figure 6.5 compares five different attack strategies (any component regardless of type, 

generators first, transmission lines only, loads only, or transformers first) for a dynamic attacker. 

Note that in all but the 300-bus system, fewer than 10% of all components is transformers; thus, 

once all transformers have been attacked, the attacker is allowed to choose any component type. 

Similarly, the number of generators for 118- and 300- bus systems is less than 10%; hence the 

attacker chooses other components once all generators are attacked. In Figure 6.5, those attacks 

are separated from attacks on transformers/generators by a vertical bar,  . 

As can be seen from the graphs in Figure 6.5, attacks on all component types and attacks on 

generators create the most unmet demand. Thus, as in Chapter 5, attacks on generators may be 

preferred if not too costly. By contrast, attacks on loads, transmission lines, or transformers are 

significantly less effective. The results for a static attacker, with or without cascading 

knowledge, are quite similar (i.e., still showing greater impact for attacks on all component types 

or on generators); see Appendix C.
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Figure 6.4–Attackers with and without cascading knowledge 
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Figure 6.5–A dynamic attacker choosing different component types
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In Figure 6.6, we compare our greedy attacker with degree-based and random attacker types for 

each of our three assumptions about attacker’s cascading knowledge. The degree-based attacker 

generally does less well than even our static attacker types, except in the 118-bus system. As in 

Chapter 5, the degree-based heuristic is sometimes not even significantly better than a random 

attacker, especially for small attacks. This confirms the observation from Chapter 5 that a 

degree-based heuristic is not a conservative representation of the impact of an intelligent 

adversary. 

6.2. Sensitivity Analysis of the Cascading Model 

In this section, we will explore the sensitivity of our cascading model to the fraction of 

transmission capacity at which cascading failure occurs ( ), and the failure probability of an 

overloaded transmission line ( ). Since transmission lines are much more vulnerable to 

cascading failure when operating close to their capacities (Crucitti et al., 2004; Zhao et al., 2004; 

Kinney et al., 2005), we assume that once a transmission line reaches its critical level of flow  , 

it becomes a candidate for cascading failure. If that line fails due to cascading (which happens 

with probability  ), the flow on that line is redistributed through the electric-power system 

according to the DC power dispatch algorithm. This process continues until all components have 

failed, or no additional components have exceeded a fraction   of their capacities, or those 

components that have exceeded their critical flow levels have been determined not to fail.  

Figure 6.7 analyzes the impact of cascading failure as a function of the fraction   above which 

components become candidates for cascading failure; assuming a dynamic attacker. The default 

value is 0.99, but we vary this value from 0.9 to 0.999. As can be seen from Figure 6.7, the 

percentage of unmet demand is, perhaps surprisingly, not particularly sensitive to the threshold 
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 . Figure 6.8 shows again that the level of unmet demand is not particularly sensitive to  , the 

failure probability of overloaded lines. In fact, higher failure probabilities   are not always 

associated with higher levels of unmet demand. Since sufficient simulations have been done to 

ensure accurate results, this does not appear to be due to simulation noise, but perhaps instead to 

the non-optimal nature of our assumed attack strategy. 

The results in Figures 6.7 and 6.8 are for the case of a dynamic attacker, who observes any 

cascading failures resulting from one attack before choosing which component to target next. 

Appendix D presents results for both static attacker types. Results are similar to those in Figures 

6.7 and 6.8, in the sense that they are not highly sensitive to   and  . 
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Figure 6.6–Greedy attacker versus degree-based and random attackers 
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Figure 6.7–Sensitivity of the cascading model to the fraction of transmission capacity above which cascading failure occurs   

for a dynamic attacker 
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Figure 6.8–Sensitivity of the cascading model to the failure probability of an overloaded component for a dynamic attacker
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6.3. Defensive Measures in the Face of Cascading Failure 

In this section, we compare the effectiveness of different types of defensive investments. We 

consider three main investment types; hardening a certain percentage of components (as done in 

Chapter 5.2 for a system without cascading failure); doubling the capacity of a certain percentage 

of transmission lines that are the most likely to cascade; and adding new (identical) transmission 

lines parallel to those transmission lines that are most likely to cascade (but not collocated with 

them). Note that the last two investment strategies are intended specifically to make the system 

more robust by decreasing the impact of cascading failure. 

6.3.1. Hardening  

In Figures 6.9 through 6.11, we analyze the effectiveness of different levels of hardening for a 

static attacker with no cascading knowledge, a static attacker with cascading knowledge, and 

finally a dynamic attacker, respectively. For all three attacker types, the level of unmet demand 

generally decreases as the level of hardening increases, especially for the dynamic attacker. 

However, as in previous chapters, we still occasionally observe cases where increasing the 

fraction of hardened components leads to more unmet demand, which again demonstrates that 

our algorithm for selecting which components to harden is not optimal. Likewise, as in previous 

chapters, we again observe that significant numbers of components (as many as 30%) must 

sometimes be hardened in order to achieve much improvement in the level of unmet demand 

caused by a greedy attacker.  

Now, we compare the effectiveness of different hardening strategies (including hardening any 

component type, generators first, transmission lines only, and transformers first) against a 

dynamic attacker under three different scenarios: small hardening investment (2%); medium 
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hardening investment (5%); and large hardening investment (10%), shown in Figures 6.12 

through 6.14, respectively. As the percentage of components attacked gets larger, the superiority 

of hardening generators first or all component types (compared to other hardening strategies) 

becomes significant. For similar analyses of a static attacker with and without cascading 

knowledge, see Appendix E. 

Figures 6.15 through 6.17 compare dynamic hardening with degree-based hardening for small 

(2%), medium (5%), and (10%) large hardening investments, respectively (note that dynamic 

hardening implies hardening the components that would be attacked by a dynamic attacker). For 

a small hardening investment (2%), degree-based hardening actually does better than greedy 

hardening in the 118-bus system. For the same bus system, degree-based hardening is still 

comparable to greedy hardening, especially for large attacks. In general, however, greedy 

hardening performs better than degree-based hardening for most attack sizes and levels of 

investment. In particular, in the 24- and 48-bus systems, degree-based hardening is comparable 

to greedy hardening for only large attack sizes; and greedy hardening always performs better 

than degree-based hardening in 300-bus system. (For the corresponding analyses for a static 

attacker with and without cascading knowledge, see Appendix F. As for the case of a dynamic 

attacker, degree-based hardening performs better for some attack sizes and levels of investment.) 

Overall, hardening even a significant percentage of components is not predicted to dramatically 

diminish the load shed from an attack. This implies that hardening may not be cost effective. 

Therefore, in the following sections, we explore alternative types of defensive investments: 

doubling the capacity of transmission lines; and adding new transmission lines. 
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Figure 6.9–The effects of different levels of hardening for static attacker with no cascading knowledge 
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Figure 6.10–The effects of different levels of hardening for static attacker with cascading knowledge 
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Figure 6.11– The effects of different levels of hardening for a dynamic attacker with cascading knowledge 
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Figure 6.12–Various 2% hardening strategies against a dynamic attacker 
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Figure 6.13–Various 5% hardening strategies against a dynamic attacker 
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Figure 6.14–Various 10% hardening strategies against a dynamic attacker
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Figure 6.15–Dynamic hardening versus degree-based hardening with cascading failure (2% hardening scenario) 
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Figure 6.16–Dynamic hardening versus degree-based hardening with cascading failure (5% hardening scenario) 
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Figure 6.17–Dynamic hardening versus degree-based hardening with cascading failure (10% hardening scenario) 
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6.3.2. Doubling the Capacity of Transmission Lines  

In this section, we double the capacity of a certain percentage of transmission lines that are most 

likely to cascade. Our goal is to make the system less prone to cascading due to capacity 

constraints, thus decreasing the amount of unmet demand. In order to identify the critical 

transmission lines, we assume two scenarios: small attacks (1% of the components); and large 

attacks (10% of the components). In order to identify the critical transmission lines, we run 100 

simulations and rank the transmission lines based on the number of times they cascade. We 

compare three investment sizes; doubling the capacity of small (2%), medium (5%), and large 

(10%) numbers of transmission lines. 

Figures 6.18 and 6.19 demonstrate the level of unmet demand for various levels of capacity 

investments in the components that are mostly likely to cascade given small and large dynamic 

attacks, respectively (Ideally, we would like to confine our investments to the lines that are 

unlikely to be attacked, but likely to cascade). For comparison purposes, the figures also show 

the level of unmet demand if the cascading impact has been mitigated completely (no cascade). 

This enables us to measure the percentage improvement in unmet demand considering cascading 

failure, from no change in unmet demand (the 0% investment case) to 100% improvement (the 

no-cascade case).  
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Figure 6.18– Various levels of investments in doubling capacities of the transmission lines that are mostly likely to cascade      

in a small attack (dynamic attacker) 
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Figure 6.19– Various levels of investments in doubling capacities of the transmission lines that are mostly likely to cascade      

in a large attack (dynamic attacker)
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As discussed in Section 6.1, for reasons of conservatism, we present results only for a dynamic 

attacker (who can observe the cascading failure resulting from earlier attacks before choosing 

which components to attack next). With a dynamic attacker, the special cases of 0% investment 

and no cascade are not actually upper and lower bounds on the achievable improvement (unlike 

in the case of a static attacker); for example, increasing the capacity on some lines could change 

the flows in the system in such a way that attacking the highest-flow component in the new 

system could actually do more damage. However, the special cases of 0% investment and no 

cascade are still presented for comparison purposes.  

For the dynamic attacker, it is also possible to have more than 100% (or less than 0%) 

improvement, since increasing the capacity on some lines changes the flows in the system, which 

may change the components to be attacked. By contrast, since the static attacker predetermines 

which components to attack, increasing capacity on some lines cannot make the system better 

than the no-cascade case. 

As can be observed from Figures 6.18 and 6.19, the system improvement as a result of 10% 

capacity investment against a small attack (1%) is non-negligible. For example, in Figure 6.16, 

when 1% of the components are attacked, the percentage improvement due to capacity increases 

ranges from 100% for the 24-bus system to about 27% for the 300-bus system. However, the 

improvement due to increased capacity is much smaller when a larger percentage of components 

are attacked. In both Figures 6.18 and 6.19, the improvements are quite small for large attacks. 

Moreover, assuming small or large attack scenarios may result in improving the capacity of 

different transmission lines, but yield similar improvements in unmet demand. (Results are 

similar for the static attacker, either with or without cascading knowledge; see Appendix G.) 



143 

 

As a result, we can conclude that for our model large capacity investments can improve the 

system’s ability to withstand small attacks. However, the unmet demand anticipated to occur 

from small attacks is modest, so even a significant reduction in unmet demand may not be 

enough to justify capacity improvements. 

6.3.3. Adding New Transmission Lines  

As an alternative, we could add new transmission lines parallel to the transmission lines that are 

likely to cascade. These critical transmission lines are determined as in Section 6.2.2. Note that 

the added lines are assumed to be not collocated with the original lines; hence, if one of the 

parallel transmission lines is attacked; the other one is assumed not to be damaged. These 

additional transmission lines increase the network size, but also provide alternative flow paths.  

Figures 6.20 and 6.21 demonstrate the level of unmet demand for various levels of investments 

in adding new parallel lines to the transmission lines that are mostly likely to cascade given small 

and large attacks, respectively. As in Section 6.2.3, we compare various levels of investments in 

new transmission lines with the case when cascading impact is fully eliminated (no cascade). 

The results are similar to the results for increasing the capacity of some lines. In particular, we 

observe little improvement for large attacks, and modest improvement for small attacks. 

However, as discussed before, the unmet demand anticipated to occur from small attacks is 

relatively small, so even a significant reduction in unmet demand may not be enough to justify 

adding new transmission lines. Note also that, in some cases, adding new lines can create a 

negative impact on the network; for example, see 48-bus system in Figures 6.20 and 6.21. 
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Figure 6.20– Various levels of investments in adding new parallel lines to the transmission lines that are mostly likely to 

cascade in a small attack (dynamic attacker) 
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Figure 6.21– Various levels of investments in adding new parallel lines to the transmission lines that are mostly likely to 

cascade in a large attack (dynamic attacker)
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Negative impact can occur for two possible reasons. First, if one of the two parallel lines fails, it 

is likely that the other line will become heavily loaded, making it a candidate for both attack and 

cascading failure. Second, since the total capacity of the overall route has now doubled (as there 

are now two lines) the flow on other lines leading into or out of the region with the new line 

might increase (i.e., lack of coordination between both ends of line), creating a risk of cascading 

failure if some of these lines have lower capacities. Overall, however, the effect tends to be small 

in our examples, and the impact of adding new transmission lines is usually favorable. (Results 

are similar for the static attacker with or without cascading knowledge, see Appendix H.) 

6.3.4. Comparing Three Defensive Investments  

In this section, we will compare hardening, increasing capacity, and adding new lines. See 

Figures 22-24 for small (2%), medium (5%), and large (10%) investments, respectively (Note 

that the new lines to be added are the ones to protect against a large attack). In most cases, 

hardening does significantly better than the other investment types. For a small investment, 

improvements other than hardening have negligible benefit. For medium and large investments, 

adding new lines does slightly better than increasing capacity, but hardening components still 

yields significantly greater improvement. (For the case of a static attacker with or without 

cascading knowledge, see Appendix J.) Note, however, that hardening is possible for all 

components, whereas capacity improvements and adding new components are considered only 

for transmission lines. As you might recall from Section 6.3.1, hardening transmission lines only 

does not create a significant benefit even when 10% of the transmission lines are hardened. As a 

result, the superiority of hardening over other investment strategies appears to be because 

transmission lines are not typically the most vulnerable parts of the system studied here.
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Figure 6.22–Comparing defensive investments against a dynamic attacker (2% investment)
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Figure 6.23–Comparing defensive investments against a dynamic attacker (5% investment)
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Figure 6.24– Comparing defensive investments against a dynamic attacker (10% investment)
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6.4. Comparing Results in the Literature 

As discussed in Chapter 3, there are few models in the literature that consider both cascading 

failure and an intelligent adversary. To our knowledge, Hines et al. (2010) is the only model that 

provides comparable results to ours. 

In their paper, Hines et al. investigate the effectiveness of topological models by comparing their 

flow-based attack strategy with some topological attack strategies, such as degree-based attacks 

and attacks against the nodes that are included in the largest number of shortest paths 

(betweenness-based attacks). Using random failures as their base case, they measure how much 

the unmet demand as a result of an intentional attack deviates from the average unmet demand 

due to a comparable number of random failures. As in our model, their flow-based model uses 

DC-power dispatch, a linearized version of the nonlinear power equations. However, their flow-

based attacks are simultaneous rather than sequential, with cascading failures being determined 

only after all attacks have occurred (unlike in our model, where cascading failure can occur after 

each individual component is attacked). 

The cascading-failure model used by Hines et al. has some other differences from our model. 

One fundamental difference is that they model cascading failure deterministically rather than 

probabilistically. In particular, once a component exceeds its rated flow by 50% for at least five 

seconds, it is assumed to fail irreversibly. In addition, greater the magnitude of an overload, the 

faster the component is assumed to fail; moreover, any component that exceeds its rated limit for 

long enough will eventually fail, even if the overload is extremely small (Hines, personal 

communication, May 2012). Hines also indicated that in his model, components fail one at a 

time, because of the central role of time in determining which components will experience 
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cascading failure, whereas in our model, multiple components can fail simultaneously in each 

round of cascading failure if they are all operating close to their capacities. Finally, the model of 

Hines et al. does not assume any knowledge of cascading failure on the part of the attacker, and 

in that regard is similar to our static attacker with no cascading knowledge. 

Note also that, the results in Hines et al. (2010) are presented as percent deviations from the 

average unmet demand due to random failures. However, because of the above modeling 

differences in their treatment of cascading failure, even the effects of random failure may differ 

significantly between their model and ours. Therefore, in order to do a fair comparison, we 

obtained the absolute values of unmet demand for their flow-based attack strategies (Hines, 

personal communication, May 2012). Figure 6.25 compares the absolute values of unmet 

demand achieved by the flow-based attacker of Hines et al. with the results of our model for both 

300-bus systems. 

 

Figure 6.25– Comparison of our results with the flow-based results of Hines et al. (2010) 



152 

 

As can be seen from Figure 6.25, our results are roughly similar to those found by Hines et al. 

However, there is a significant difference between the unmet demands if the attacker attacks one 

component only, which mainly could be due to our multiple rounds of cascading assumption. 

Moreover, the model of Hines et al. generally predicts less unmet demand than our model, 

providing a rough validation of our model. Overall, the results of the two models are of the same 

order of magnitude. 

6.5. Conclusion 

The simplicity of our modeling approach makes it feasible to model cascading failure; something 

that is not done in many other models. Our results suggest that the impact of cascading failure is 

non-negligible, especially if the network is highly capacity-constrained (such as in the 118- and 

300-bus systems). Moreover, it is fortuitous that our model is not overly sensitive to the values of 

its parameters, so accurate estimates of   and   (which might be difficult to obtain) are not 

critical. 

Thus, our model provides a tool to analyze how an intelligent adversary might seek to take 

advantage of cascading failure. We discuss three possible assumptions about attacker knowledge 

of cascading failure; a static attacker without knowledge of the cascading failure, a static attacker 

with knowledge of the cascading failure, and a dynamic attacker who is able to observe 

cascading failures as they occur. 

In this chapter, we also compared different investment strategies for decreasing the unmet 

demand from an attack. As in past work (Bier et al., 2007), we found that electric-power 

networks generally require substantial levels of investment to obtain any significant 
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improvement in unmet demand. Moreover, hardening of components generally seems to provide 

greater improvement than investment strategies focused specifically on reducing cascading 

failure, such as increasing capacity or adding new transmission lines. In fact, due to the 

complexities of electric-power systems, we found that adding new lines sometimes actually 

increased the load lost due to cascading failure.  

Thus, modeling cascading failure helped us to more realistically analyze the immediate impacts 

of an attack. However, intelligent attackers could also consider the long-term impact of an attack. 

Therefore, in the next chapter, we explicitly model restoration times, and compare various 

defensive investments in terms of total energy lost over time (rather than just the immediate level 

of unmet demand). 
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7. Results for Modeling Restoration Times 

In Chapter 6, we modeled cascading failure and analyzed the immediate impact of an attack, 

given differing levels of knowledge about cascading failure on the part of the attacker. However, 

an attacker may also wish to create an impact that lasts for a long time. In our model, we allow 

attackers to choose which components to target not only based on their loads, but also based on 

the product of load and restoration time, as a measure of energy rather than capacity. 

In this chapter, we first explore the impact of attack strategies that explicitly take restoration 

times into account (to cause large energy losses). Then, we compare this greedy attacker to a 

degree-based attacker. In the final section, we compare our earlier categories of improvement 

(hardening, increasing the capacity of transmission lines, and adding new transmission lines) 

with investment to reduce the restoration times of specific types of components (transformers). 

As in Chapter 6, we do 20 simulation runs for each scenario, as long as the standard error of the 

mean (in this case, energy loss) is less than 3%; otherwise, we increase the number of 

simulations by 10 until we obtain a standard error less than 3%. Note, however, that the 

simulation is needed only to estimate the impact of cascading failure; our model of restoration 

times is entirely deterministic. As discussed in Chapter 4, we assume a restoration time of one 

day for transmission lines that fail due to cascading failure, three days for loads and for 

transmission lines that fail due to direct attacks on those lines, 15 days for generators, and 32 

days for transformers. 
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7.1. Impact of Considering Restoration Times 

In this section, we analyze what happens if the attacker takes the restoration times of components 

into account in choosing which components to target. To show the impact of restoration times, 

we first analyze the 118-bus system in detail, and then present the results for other systems. 

Figure 7.1 demonstrates the impact achieved by an attacker who considers restoration times for 

the 118-bus system. In particular, we consider a dynamic attacker with cascading knowledge, in 

order to observe how the attacker behavior changes in our most conservative case.  

The graph in the upper right corner demonstrates the restoration of the system after 10% of its 

components have been attacked. Even though the initial impact of the attack was similar in both 

cases (as can be seen from the graph on the upper left corner), when the attacker considers 

restoration times, the long-term impact of an attack is higher. In fact, as can be seen from the 

graph in the lower right corner, the total energy loss (the area under the curve in the upper right 

corner) is much higher than when the attacker does not consider restoration times. This example 

clearly demonstrates why considering restoration times might be important to an attacker, and 

therefore also to the defender. 

The graph in the lower left corner demonstrates the percentage of attacked components that are 

of each type for a scenario in which 10% of components are attacked. In this example, while the 

attacker who does not consider restoration times does not attack any transformers to attack, for 

the attacker who does consider restoration times, more than 20% of the components attacked are 

transformers. 
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Figures 7.2 and 7.3 show comparable results for static attackers with and without cascading 

knowledge, respectively, also for the 118-bus system. Results are roughly similar (more 

emphasis on attacks against generators and transformers, but less total energy loss). Therefore, in 

the rest of this chapter, we will present results only for a dynamic attacker with cascading 

knowledge. [Results for the other attacker types are given in the appendices.] Also note that for 

the 118-bus system, static attacks chosen with consideration of restoration times actually cause 

slightly more initial unmet demand than attacks chosen without regard to restoration times, 

simply illustrating that static attack strategies do not always yield good performance. For 

completeness, Figures 7.4 through 7.6 show similar results to those in Figure 7.1 for the 24-bus, 

48-bus, and 300-bus systems, respectively. As in the 118-bus system, the components attacked 

tend to shift from lines and loads to generators and transformers. While the initial impact stays 

roughly similar when the attacker considers restoration times, the total energy loss increases 

significantly. [See Appendix J for 24-, 48-, and 300-bus systems with a static attacker, and 

Appendix K for a comparison of dynamic and static attack strategies. The total energy loss for 

static attack strategies is comparable to the energy loss for the dynamic attack strategies, even 

though the mix of components attacked is often different.] 

Previous figures have shown that when the attacker considers restoration times, generators and 

transformers are more frequently attacked. Therefore, it seems sensible to compare how the total 

energy loss from an attacker who considers restoration times differs from the energy loss that can 

be achieved by targeting just generators or just transformers. In Figures 7.7 through 7.10, we 

compare these candidate attack strategies for 24-, 48-, 118-, and 300-bus systems, respectively, 

for the case of a dynamic attacker with cascading knowledge. Similar to the comparisons in the 
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previous chapters, the number of transformers (except for the 300-bus system), and the number 

of generators for 118- and 300- bus systems is less than 10%; hence the attacker chooses other 

components once all transformers on generators are attacked. In Figures 7.7 through 7.10, those 

attacks are separated from attacks on transformers/generators by a vertical bar,  . 

As can be seen from Figures 7.7 through 7.10, attack strategies that consider restoration times do 

about as well as targeting generators first for the 24-bus and 48-bus systems, and about as well as 

targeting transformers first for the 118-bus and 300-bus systems. [See Appendix L for a similar 

comparison for static instead of dynamic attackers; results are similar.] 

Finally, we compare a dynamic attacker who considers restoration times with a degree-based 

attacker. In particular, we will compare the degree-based attacker with two types of attack 

strategies (both considering restoration times); a static attacker with no cascading knowledge 

(our least conservative attack strategy), and a dynamic attacker with cascading knowledge (our 

most conservative attack strategy). See Figures 7.11 through 7.14 for the 24-bus, 48-bus, 118-

bus, and 300-bus systems, respectively. As can be seen from these figures, in all circumstances, 

even our static attacker with no cascading knowledge does significantly better than a degree-

based attacker in both the initial attack phase and the long run.
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Figure 7.1-Impact of considering restoration times against a dynamic attacker with cascading knowledge (118-bus system) 
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Figure 7.2-Impact of considering restoration times against a static attacker with cascading knowledge (118-bus system) 
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Figure 7.3-Impact of considering restoration times against a static attacker with no cascading knowledge (118-bus system) 
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Figure 7.4-Impact of considering restoration times against a dynamic attacker with cascading knowledge (24-bus system) 
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Figure 7.5-Impact of considering restoration times against a dynamic attacker with cascading knowledge (48-bus system) 
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Figure 7.6-Impact of considering restoration times against a dynamic attacker with cascading knowledge (300-bus system) 
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Figure 7.7–Comparison of an attacker attacking generators first or transformers first, and an attacker considering restoration 

times for a dynamic attacker (24-bus system) 
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Figure 7.8–Comparison of an attacker attacking generators first or transformers first, and an attacker considering restoration 

times for a dynamic attacker (48-bus system) 
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Figure 7.9–Comparison of an attacker attacking generators first or transformers first, and an attacker considering restoration 

times for a dynamic attacker (118-bus system) 
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Figure 7.10–Comparison of an attacker attacking generators first or transformers first, and an attacker considering 

restoration times for a dynamic attacker (300-bus system) 
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Figure 7.11–Comparison of a degree-based attacker with static attacker with no cascading knowledge and a dynamic attacker 

with cascading knowledge both considering restoration times (24-bus system) 
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Figure 7.12– Comparison of a degree-based attacker with static attacker with no cascading knowledge and a dynamic attacker 

with cascading knowledge both considering restoration times (48-bus system) 
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Figure 7.13– Comparison of a degree-based attacker with static attacker with no cascading knowledge and a dynamic attacker 

with cascading knowledge both considering restoration times (118-bus system) 



 

 

1
7
1
 

 

Figure 7.14– Comparison of a degree-based attacker with static attacker with no cascading knowledge and a dynamic attacker 

with cascading knowledge both considering restoration times (300-bus system)
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7.2. Comparison of Defensive Measures in Overall 

In this section, we will incorporate the total energy loss in comparing defensive measures. In 

addition to the previous investments (i.e., hardening, increasing the capacity of transmission 

lines, and adding new transmission lines), we can also invest in decreasing the restoration times 

of components. Total energy loss is a metric that captures the tradeoff between initial impact and 

long term impact, and will thereby enable us to compare improvement in restoration time with 

other types of investments. 

Transformers are critical in terms of their restoration times, so we consider decreasing the 

restoration times of transformers by 50%. Such investment may simulate a spare transformer 

program, etc. We then compare this investment type with our base case (no investment) and our 

earlier candidate improvements. 

First, we will look at the case in which a dynamic attacker considers restoration times. In this 

comparison, we will compare no investment to two other investment types: hardening 2% of 

components (the best strategy found previously); and decreasing the restoration time of 

transformers by 50%; see Figure 7.15. For a dynamic attacker, even a small hardening 

investment (such as 2% of the components) yields more improvement in total energy loss than 

decreasing the restoration time of all transformers by 50% (except for the 300-bus system).  

Now, we will do the previous comparison for a dynamic attacker who does not consider 

restoration times; see those results in Figure 7.16 and comparison of a dynamic attacker who 

does or does not consider restoration times in Table 7.1. 
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Figure 7.15–Comparison of total energy loss for hardening 2% of the components versus decreasing restoration times             

of all transformers against a dynamic attacker who considers restoration times 
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Figure 7.16–Comparison of total energy loss for hardening 2% of the components versus decreasing restoration times             

of all transformers against a dynamic attacker who does not consider restoration times
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Table 7.1-Percentage improvement in total energy loss for an attacker who does or does not 

consider restoration times 

 

Of course, reducing restoration times is even less effective when the attacker does not consider 

restoration times in their choice of component. The effectiveness of investment in transformers 

may be limited, since the attacker does not attack as many transformers when the attacker does 

not consider restoration times. 

Table 7.1 demonstrates that reducing restoration time of transformers by 50% is more effective 

against a dynamic attacker who does consider restoration times than against a dynamic attacker 

who does not consider restoration times. However, even hardening 2% of the components still 

does significantly better than decreasing the restoration time of all transformers by 50% (except 

for 300-bus system). Therefore, investment in hardening seems reasonable [For a detailed 

analysis of impact of considering restoration times for various sizes of investments against an 

attacker with different cascading knowledge, see Appendix M; hardening does better than 

improving restoration times in almost all of those scenarios.] 

Now, we compare increasing the capacity of transmission lines or adding new transmission lines 

investments with investment in decreasing restoration times. As you might recall from Chapter 6, 

2% Hardening

Decrease 

restoration time 

of transformers 

by 50%

2% Hardening

Decrease 

restoration 

time of 

transformers 

by 50%

2% Hardening

Decrease 

restoration time 

of transformers 

by 50%

2% Hardening

Decrease 

restoration 

time of 

transformers 

by 50%

Attacker who 

considers 

restoration times

71 19 52 13 42 22 6 31

Attacker who does 

not consider 

restoration times

35 14 43 0 43 8 15 16

Type of attacker

24-Bus 48-Bus 118-Bus 300-Bus
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adding capacity or new transmission lines did less well than hardening. So, we will compare 

investment in transformers only against large investments (rather than the 2% and 5% investment 

considered in Chapter 6) in capacity or adding new transmission lines (i.e., investing in 10% of 

the transmission lines that are likely to cascade). In Figure 7.17, we compare large capacity and 

adding new transmission lines investments with decreasing restoration times for a dynamic 

attacker who considers restoration times for 24-bus, 48-bus, 118-bus, and 300-bus systems, 

respectively. 

As can be seen from the figure, even large investments in increasing capacity or adding new 

transmission lines did not lead to significant improvements in total energy loss compared to the 

no-investment case (in part, because the transmission lines are so quick to restore), and 

decreasing restoration times of transformers sometimes but not always performs significantly 

better. As expected, the difference between restoration investment and investments in capacity 

and new transmission lines is usually smaller when the attacker does not consider restoration 

times, see Figure 7.18. [For a detailed analysis of impact of considering restoration times for 

various sizes of investments against an attacker with different cascading knowledge, see 

Appendix N for increasing the capacities of transmission lines, and Appendix O for adding new 

transmission lines. The improvement in total energy loss achieved by adding capacity or new 

transmission lines is even smaller against a static attacker than a dynamic attacker.] 
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Figure 7.17–Increasing capacity or adding new transmission lines of 10% of the components versus decreasing restoration 

times of transformers by 50% (an attacker who considers restoration times) 
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Figure 7.18–Increasing capacity or adding new transmission lines of 10% of the components versus decreasing restoration 

times of transformers by 50% (an attacker who does not consider restoration times) 
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7.3. Conclusion 

Similar to modeling of cascading failure, the simplicity of our modeling approach makes it 

feasible to model restoration times, something that is not done in many other models. Modeling 

restoration times enables us to observe the long term impact of an attack, and how an attacker 

can take advantage of long restoration times of some components. We use total energy loss as a 

measure to summarize the overall impact of an attack. This metric integrates both the initial 

impact of an attack (including any immediate impact due to cascading failure) and the restoration 

process after the attack, and allows us to analyze the effectiveness of reductions in restoration 

times. 

Our results suggest that when the attacker considers restoration times, the overall impact of an 

attack is significantly higher than when the attacker does not consider restoration times. This 

difference emphasizes the point that models of intelligent adversaries may need to consider the 

recovery process and how it might be exploited. In terms of total energy loss, even a dynamic 

attacker who does not consider restoration times provides comparable results to preferentially 

attacking generators or transformers, and does significantly better than a degree-based attacker. 

Finally, we compared various defensive investments including decreasing the restoration time of 

transformers (the component type with the longest recovery period) by 50%. Our results suggest 

that even though in some cases decreasing restoration times of transformers is comparable to 

hardening 2% of all components, hardening is generally more effective in decreasing the overall 

impact of an intelligent attack. Moreover, capacity investment or adding new lines does not 

provide a comparable improvement in total energy loss. 
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8. Conclusion and Future Work 

In this research, we developed a novel heuristic game-theoretic model that can simulate the 

entire impact of a disruption to a realistically complex electricity system, from the beginning of 

an attack, through cascading failure, until the system is fully recovered. It is novel in the sense 

that it is capable of addressing the issues of an intelligent adversary, cascading failure, and 

restoration times, all in the same model. Therefore, the model can facilitate the identification of 

effective defensive investments, by enabling consideration of a broader range of options. 

Since our approach uses a greedy heuristic to solve the attacker’s optimization problem, rather 

than solving it as an integer problem in a bilevel optimization program (as is done by Salmeron 

et al., 2004), the basic model is not optimal, but is simple enough that we can easily add 

complexities like cascading failure. Moreover, it is simple enough that it can easily be used and 

understood by practitioners. 

In order to determine whether our methodology is accurate enough to be useful, we investigated 

a few questions: the validity of our model; how sensitive it is to its assumptions; and the 

consistency of our findings with those of similar models in the literature. We have unfortunately 

not been successful in obtaining detailed results of more rigorous models, so it is not feasible to 

assess how far our results are from optimal. However, our greedy heuristic algorithm was clearly 

more effective than less rigorous attack and hardening strategies, such as degree-based or 

random strategies. Moreover, we validated that the model behaves in a realistic manner. For 

example, when we harden more components, reduce restoration times, or decrease susceptibility 

to cascading failure, the impact of an attack is generally less. Furthermore, we showed that the 

results of our model are suitably sensitive to the assumptions. For example, when we increase the 
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failure probability of an overloaded component, the system generally becomes more vulnerable. 

Conversely, the more the attacker knows about cascading failure, the greater the damage is in 

general.  

We have also been able to demonstrate that the level of unmet demand is not overly sensitive to 

the parameters of our model for cascading failure. This supports the usefulness of our model, 

because there is no need for precise estimation of parameters that are difficult to estimate. 

In order to test the consistency of our results with other models in the literature, we compared 

our findings with those of Hines et al. (2010), since, to our knowledge, the model of Hines et al. 

is the only model in the literature that includes both an intelligent adversary and cascading 

failure. Our results are generally close to the results of Hines et al. (2010), and, in our opinion, 

more realistic, since the flow-based attack strategy in the model of Hines et al. sometimes does 

worse when additional components are attacked. Overall, therefore, we conclude that our greedy 

algorithm may be a practical and feasible alternative for attacker-defender problems in electric 

power networks. 

With regard to defenses, we found that investing in defensive resources generally leads to 

improved resilience, which shows the realism of our model. Our results indicated that in order to 

obtain a substantial improvement, the defender may need to harden a large portion of the 

network, which may not be cost-effective. (Of course, this may be due to the greedy heuristic 

used to identify components for improvement investments; it may be possible to generate greater 

improvement with a better coordinated investment strategy – e.g., a group of components that 

could together provide increased capability in a certain part of the network, rather than choosing 
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components individually.) Overall, however, hardening was generally found to be more effective 

than investments in increasing capacity, adding new transmission lines, or reducing the 

restoration times of components (although reducing restoration times sometimes provided 

comparable results to hardening when we consider the long-term impact of an attack). Moreover, 

we found that adding new lines can sometimes make the system more vulnerable to attacks. 

Close examination of our results may lead to interesting speculations about why different 

systems or different attack strategies lead to different results. Since our results are based on only 

four sample systems, it is important not to put too much weight on observations that may turn out 

to be merely artifacts of a particular system design. However, such speculations might be a 

source of interesting hypotheses to be tested more rigorously using detailed analysis of realistic 

networks and/or historical data.  

For future work, we plan to implement cost functions for both the attacker and the defender. Our 

goal is to identify how attack and defense strategies may change in the face of budget 

constraints. This approach will enable us to identify cost-effective (rather than merely effective) 

defensive investments, which is often a challenge in security studies. 

We also plan to compare our dynamic heuristic attack algorithm with other alternative heuristic 

methods, including genetic algorithms and capacity-based (rather than load-based) attack 

strategies. We will continue to develop and explore the use of realistic (rather than optimal) 

attack strategies that are efficient and simple enough to cause substantial damage to electricity 

systems over time, and study how to protect against them. 
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We anticipate that our model could also be applied to other capacity-constrained networks, 

including transportation systems and structural systems. Moreover, we believe that with some 

changes, our general approach could be used even for networks that are not highly capacity 

constrained, such as cyber networks.  
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Appendix A. Definitions of resilience in the literature 

Resilience is “the capacity to cope with unanticipated dangers after they have become manifest, 

learning to bounce back.’’ (Wildavsky 1991, p. 77)   

Resilience is “the ability of a system to withstand stresses of ‘environmental loading’... [it is] a 

fundamental quality found in individuals, groups, organizations, and systems as a whole.” 

(Horne and Orr 1998, p. 31)   

Resilience is “the capacity to adapt existing resources and skills to new situations and operating 

conditions.’’ (Comfort 1999, p. 21)   

Resilience is “both the inherent strength and ability to be flexible and adaptable after 

environmental shocks and disruptive events.” (Tierney and Bruneau 2007, p. 17)   

Resiliency is “the capability of an asset, system, or network to maintain its function during or to 

recover from a terrorist attack or other incident.” (DHS, 2006)   

Resilience is the “ability to resist, absorb, recover from or successfully adapt to adversity or a 

change in conditions.” (DHS, 2008) 

Resilience is the “ability of systems, infrastructures, government, business, and citizenry to 

resist, absorb, recover from, or adapt to an adverse occurrence that may cause harm, destruction, 

or loss of national significance.” (DHS, 2008)  

Resilience is the “capacity of an organization to recognize threats and hazards and make 

adjustments that will improve future protection efforts and risk reduction measures.” (DHS, 

2008)  
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Resiliency is “defined as the capability of a system to maintain its functions and structure in the 

face of internal and external change and to degrade gracefully when it must.” (Allenby and Fink, 

2005)  

“Regional economic resilience is the inherent ability and adaptive response that enables firms 

and regions to avoid maximum potential losses.” (Rose and Liao, 2005)  

“Engineering resilience […] is the speed of return to the steady state following a perturbation 

[…] ecological resilience […] is measured by the magnitude of disturbance that can be absorbed 

before the system is restructured….” (Gunderson et al., 2002)  

Social resilience as the ability of groups or communities to cope with external stresses and 

disturbances as a result of social, political, and environmental change (Adger, 2000).  

Resilience is “the essence of sustainability […] the ability to resist disorder.” (Fiksel, 2003)  

“Local resiliency with regard to disasters means that a locale is able to withstand an extreme 

natural event without suffering devastating losses, damage, diminished productivity, or quality of 

life and without a large amount of assistance from outside the community.” (Mileti, 1999) 
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Appendix B. Some major blackouts in North America 

Date of 

initiation 
Region Duration 

 

People affected 

(more than 

million) 

Reason Source 

11.09.1965 

Northeast  

(80 thousand 

square miles) 

2.5 hours 30 

Human error, and 

cascading relay  

operations and line 

outages 

FPC (1965); Risley 

and Roberts (2003) 

06.05.1967 

PJM 

(15 thousand 

square miles) 

Several 

hours 
4 

Scheduled switching 

not performed, line 

overload 

Apt et al. (2004) 

05.17.1977 

Miami 

(15 thousand 

square miles) 

Several 

hours 
1 Unknown cause 

Burnham (1995); 

Amin (2003); Apt et 

al. (2004) 

07.13.1977 NYC 25 hours 8 
Lightning on a 

substation 

FERC (1978); 

Crane (1990) 

01.01.1981 
Idaho, Utah, 

Wyoming 
7 hours 1.5 

Human error, and series 

of utility breakdowns 

Amin (2003); Apt et 

al. (2004) 

03.27.1982 Oregon 1.5 hours 0.9 
High-voltage line 

failure 
Amin (2003) 

03.13.1989 Quebec 9 hours 6 Geomagnetic storm 
Kappernman and 

Albertson (1990) 

12.14.1994 

Arizona to 

Washington 

state 

Several 

hours 
2 

Relays/controllers 

coordination 

Brooks et al.; 

(2002); Amin (2003) 

07.02.1996 
14 Western 

states 
1-2 hours 2 

A high-voltage line 

touched a tree branch 
Amin (2003) 

08.10.1996 

11 Western 

states and 2 

Canada 

provinces 

6 hours  7 

Two high-voltage lines 

fell in Oregon and 

caused cascading 

outages 

Amin (2003) 

01.05.1998 

New York, New 

England, 

Canada 

Several 

days 
2.2 Ice storms 

Lecomte et al. 

(1998); Amin (2003) 

12.08.1998 

San Francisco. 

California Bay 

area 

8 hours 0.5 Human error Amin (2003) 

07.06.1999 NYC 19 hours 0.3 
Heat related failure of 

feeder cables 

Amin (2003); 

Holmgren (2007) 

08.14.2003 
Great Lakes- 

NYC 
2 days 50 

Cascading outage as a 

result of a combination 

of electrical, computer 

and human failures 

Andersson et al. 

(2005); Holmgren 

(2007) 

http://blackout.gmu.edu/archive/pdf/fpc_65.pdf
http://www.issues.org/20.4/apt.html
http://blackout.gmu.edu/archive/pdf/usdept001_050.pdf
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Appendix C. A static attacker choosing different component types 

(a static attacker with no cascading knowledge) 

 



 

 

1
9
8
 

Appendix C. A static attacker choosing different component types  

(a static attacker with cascading knowledge) 
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Appendix D. Sensitivity of the cascading model 

(to the fraction of transmission capacity above which cascading failure occurs for a static attacker with cascading knowledge) 
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Appendix D. Sensitivity of the cascading model  

(to the failure probability of an overloaded component for a static attacker with cascading knowledge) 
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Appendix D. Sensitivity of the cascading model  

(to the fraction of transmission capacity above which cascading failure occurs for a static attacker with no cascading 

knowledge) 
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Appendix D. Sensitivity of the cascading model  

(to the failure probability of an overloaded component for a static attacker with no cascading knowledge) 
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Appendix E. Various hardening strategies 

(2% hardening against a static attacker with no cascading knowledge) 
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Appendix E. Various hardening strategies  

(5% hardening against a static attacker with cascading knowledge) 
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Appendix E. Various hardening strategies  

(10% hardening against a static attacker with cascading knowledge) 
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Appendix E. Various hardening strategies  

(2% hardening against a static attacker with cascading knowledge) 
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Appendix E. Various hardening strategies  

(5% hardening against a static attacker with cascading knowledge) 
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Appendix E. Various hardening strategies  

(10% hardening against a static attacker with cascading knowledge) 
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Appendix F. Static hardening versus degree-based hardening 

(static attacker with no cascading knowledge, 2% hardening scenario) 
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Appendix F. Static hardening versus degree-based hardening 

(static attacker with cascading knowledge, 2% hardening scenario) 
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Appendix F. Static hardening versus degree-based hardening 

(static attacker with no cascading knowledge, 5% hardening scenario) 
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Appendix F. Static hardening versus degree-based hardening 

(static attacker with cascading knowledge, 5% hardening scenario) 
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Appendix F. Static hardening versus degree-based hardening 

(static attacker with no cascading knowledge, 10% hardening scenario) 
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Appendix F. Static hardening versus degree-based hardening 

(static attacker with cascading knowledge, 10% hardening scenario) 
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Appendix G. Various levels of investments in doubling capacities of the transmission lines that are mostly likely to cascade 

in a small attack (static attacker with no cascading knowledge) 
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Appendix G. Various levels of investments in doubling capacities of the transmission lines that are mostly likely to cascade  

in a large attack (static attacker with no cascading knowledge) 
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Appendix G. Various levels of investments in doubling capacities of the transmission lines that are mostly likely to cascade in a 

small attack (static attacker with cascading knowledge). 
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Appendix G. Various levels of investments in doubling capacities of the transmission lines that are mostly likely to cascade  

in a large attack (static attacker with cascading knowledge) 
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Appendix H. Various levels of investments in adding new parallel lines to the transmission lines that are mostly likely to 

cascade in a small attack (static attacker with no cascading knowledge) 
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Appendix H. Various levels of investments in adding new parallel lines to the transmission lines that are mostly likely to 

cascade in a large attack (static attacker with no cascading knowledge) 
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Appendix H. Various levels of investments in adding new parallel lines to the transmission lines that are mostly likely to 

cascade in a small attack (static attacker with cascading knowledge) 
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Appendix H. Various levels of investments in adding new parallel lines to the transmission lines that are mostly likely to 

cascade in a large attack (static attacker with cascading knowledge) 
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Appendix I. Comparing defensive investments against a static attacker 

(static attacker with no cascading knowledge (2% investment scenario) 
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Appendix I. Comparing defensive investments against a static attacker  

(static attacker with no cascading knowledge, 5% investment scenario) 
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Appendix I. Comparing defensive investments against a static attacker  

(static attacker with no cascading knowledge, 10 % investment scenario) 
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Appendix I. Comparing defensive investments against a static attacker  

(static attacker with cascading knowledge, 2% investment scenario). 
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Appendix I. Comparing defensive investments against a static attacker  

(static attacker with cascading knowledge, 5% investment scenario). 
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Appendix I. Comparing defensive investments against a static attacker  

(static attacker with cascading knowledge (10% investment scenario). 
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Appendix J. Impact of considering restoration times against a static attacker 

(static attacker with no cascading knowledge, 24-bus system) 
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Appendix J. Impact of considering restoration times against a static attacker 

 (static attacker with no cascading knowledge, 48-bus system) 
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Appendix J. Impact of considering restoration times against a static attacker 

 (static attacker with no cascading knowledge, 118-bus system) 
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Appendix J. Impact of considering restoration times against a static attacker 

 (static attacker with no cascading knowledge, 300-bus system) 
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Appendix J. Impact of considering restoration times against a static attacker 

 (static attacker with cascading knowledge, 24-bus system) 
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Appendix J. Impact of considering restoration times against a static attacker 

 (static attacker with cascading knowledge, 48-bus system) 
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Appendix J. Impact of considering restoration times against a static attacker 

(static attacker with cascading knowledge, 118-bus system) 
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Appendix J. Impact of considering restoration times  

(static attacker with cascading knowledge, 300-bus system) 
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Appendix K. Comparison of three attacker assumptions with cascading knowledge when they consider restoration times 

 (24-bus system) 
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Appendix K. Comparison of three attacker assumptions with cascading knowledge when they consider restoration times        

(48-bus system) 
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Appendix K. Comparison of three attacker assumptions with cascading knowledge when they consider restoration times        

(118-bus system) 
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Appendix K. Comparison of three attacker assumptions with cascading knowledge when they consider restoration times        

(300-bus system) 

 



 

 

2
4
1
 

Appendix L. Comparison of an attacker attacking generators/transformers first, or an attacker considering restoration times 

(static attacker with no cascading knowledge, 24-bus system) 
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Appendix L. Comparison of an attacker attacking generators/transformers first, or an attacker considering restoration times 

 (static attacker with no cascading knowledge, 48-bus system) 
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Appendix L. Comparison of an attacker attacking generators/transformers first, or an attacker considering restoration times 

 (static attacker with no cascading knowledge, 118-bus system) 
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Appendix L. Comparison of an attacker attacking generators/transformers first, or an attacker considering restoration times 

 (static attacker with no cascading knowledge, 300-bus system) 
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Appendix L. Comparison of an attacker attacking generators/transformers first, or an attacker considering restoration times 

 (static attacker with cascading knowledge, 24-bus system) 
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Appendix L. Comparison of an attacker attacking generators/transformers first, or an attacker considering restoration times 

 (static attacker with cascading knowledge, 48-bus system) 
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Appendix L. Comparison of an attacker attacking generators/transformers first, or an attacker considering restoration times 

 (static attacker with cascading knowledge, 118-bus system) 
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Appendix L. Comparison of an attacker attacking generators/transformers first, or an attacker considering restoration times 

 (static attacker with cascading knowledge, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 2% of the components against a dynamic attacker who does not consider restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 2% of the components against a dynamic attacker who does not consider restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 2% of the components against a dynamic attacker who does not consider restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 2% of the components against a dynamic attacker who does not consider restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 5% of the components against a dynamic attacker who does not consider restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 5% of the components against a dynamic attacker who does not consider restoration times, 48-bus system) 

 



 

 

2
5
5
 

Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 5% of the components against a dynamic attacker who does not consider restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 5% of the components against a dynamic attacker who does not consider restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 10% of the components against a dynamic attacker who does not consider restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 10% of the components against a dynamic attacker who does not consider restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 10% of the components against a dynamic attacker who does not consider restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 10% of the components against a dynamic attacker who does not consider restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 2% of the components against a dynamic attacker who considers restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 2% of the components against a dynamic attacker who considers restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 2% of the components against a dynamic attacker who considers restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 2% of the components against a dynamic attacker who considers restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 5% of the components against a dynamic attacker who considers restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 5% of the components against a dynamic attacker who considers restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 5% of the components against a dynamic attacker who considers restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 5% of the components against a dynamic attacker who considers restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 10% of the components against a dynamic attacker who considers restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 10% of the components against a dynamic attacker who considers restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 10% of the components against a dynamic attacker who considers restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers 

(hardening 10% of the components against a dynamic attacker who considers restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with no cascading knowledge and not considering restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with cascading knowledge and not considering restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with no cascading knowledge and considering restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with no cascading knowledge and considering restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with no cascading knowledge and considering restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with no cascading knowledge and considering restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with no cascading knowledge and considering restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with no cascading knowledge and considering restoration times, 300-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 

static attacker with cascading knowledge and considering restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 2% of the components against a 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 

static attacker with cascading knowledge and considering restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 

static attacker with cascading knowledge and considering restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 5% of the components against a 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with cascading knowledge and considering restoration times, 24-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with cascading knowledge and considering restoration times, 48-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with cascading knowledge and considering restoration times, 118-bus system) 
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Appendix M. Hardening versus decreasing restoration times of transformers (hardening 10% of the components against a 

static attacker with cascading knowledge and considering restoration times, 300-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a dynamic attacker, 24-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a dynamic attacker, 48-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a dynamic attacker, 118-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a dynamic attacker, 300-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a dynamic attacker, 24-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a dynamic attacker, 48-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a dynamic attacker, 118-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a dynamic attacker, 300-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 10% of the components against a dynamic attacker, 24-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 10% of the components against a dynamic attacker, 48-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 10% of the components against a dynamic attacker, 118-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 10% of the components against a dynamic attacker, 300-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a static attacker with no cascading knowledge, 24-bus system) 

 
 



 

 

3
3
4
 

Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a static attacker with no cascading knowledge, 48-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a static attacker with no cascading knowledge, 300-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a static attacker with no cascading knowledge, 24-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a static attacker with no cascading knowledge, 48-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a static attacker with no cascading knowledge, 300-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 10% of the components against a static attacker with no cascading knowledge, 24-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 10% of the components against a static attacker with no cascading knowledge, 48-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 10% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 10% of the components against a static attacker with no cascading knowledge, 300-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a static attacker with no cascading knowledge, 24-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a static attacker with no cascading knowledge, 48-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 2% of the components against a static attacker with no cascading knowledge, 300-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a static attacker with no cascading knowledge, 24-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 5% of the components against a static attacker with no cascading knowledge, 300-bus system) 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 
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Appendix N. Increasing capacity versus decreasing restoration times of transformers 

(increasing capacity of the 10% of the components against a static attacker with no cascading knowledge, 300-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 2% of the components against a dynamic attacker, 24-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 2% of the components against a dynamic attacker, 48-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 2% of the components against a dynamic attacker, 118-bus system) 

 
 



 

 

3
6
0
 

Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 5% of the components against a dynamic attacker, 24-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 5% of the components against a dynamic attacker, 48-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 5% of the components against a dynamic attacker, 118-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 10% of the components against a dynamic attacker, 300-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 2% of the components against a static attacker with no cascading knowledge, 24-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 2% of the components against a static attacker with no cascading knowledge, 48-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 2% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 5% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 5% of the components against a static attacker with no cascading knowledge, 300-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 10% of the components against a static attacker with no cascading knowledge, 24-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 10% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 10% of the components against a static attacker with no cascading knowledge, 300-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 2% of the components against a static attacker with no cascading knowledge, 24-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 2% of the components against a static attacker with no cascading knowledge, 48-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 2% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 2% of the components against a static attacker with no cascading knowledge, 300-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 5% of the components against a static attacker with no cascading knowledge, 24-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 5% of the components against a static attacker with no cascading knowledge, 48-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 5% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 5% of the components against a static attacker with no cascading knowledge, 300-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 10% of the components against a static attacker with no cascading knowledge, 24-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 10% of the components against a static attacker with no cascading knowledge, 48-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 10% of the components against a static attacker with no cascading knowledge, 118-bus system) 
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Appendix O. Adding new transmission lines versus decreasing restoration times of transformers 

(adding new lines of the 10% of the components against a static attacker with no cascading knowledge, 300-bus system) 

 


