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Abstract

Liquid sprays appear in a wide range of engineering systems, for example internal combustion en-

gines, irrigation sprays, printing, food processing and others. The spray formation process, i.e., the

process that converts the injected liquid into a cloud of fine droplets, is also known as atomization.

This process is a multi-dimensional, multi-scale, turbulent process, with complex topology of the

interface.

Fully resolved atomization computations are challenging and computationally expensive. There-

fore, most engineering studies, where this process is completely unresolved, depend on lower-order

models to describe relevant physics. In the present study, however, we leverage accurate numerical

methods along with high spatio-temporal resolution simulations to revisit atomization theory. High

fidelity simulations of atomization have only recently become feasible. We have access to spatially

resolved data about the liquid and gas distribution along with the velocity field. We are using

this data towards developing a better understanding of the atomization mechanisms. A better

understanding of the underlying physics ultimately leads to better engineering models.

We also investigate the numerical methods themselves, specifically the surface tension compu-

tation. Accurate representation of surface tension depends on the accurate computation of local

curvature. This continues to a weakness in the popular simulation methods. This work tries to

identify promising curvature schemes in the context of complex flow problems.

The current work is presented as three chapters of this document:

1. A closer look at linear stability theory in primary atomization modeling

In Chapter 1 we look at dominant breakup models. These models are based in the idea that

interfacial instability leads to the primary atomization. Here, the underlying assumptions in this

theory are outlined and the extent of their validity is established. It is then examined whether these

most violent perturbations are actually responsible for the fragmentation of the jet or if there is
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some other mechanism leading to the breakup.

A main finding from the work shows that while the most unstable modes are captured in the

simulations and agree with theoretical predictions which inform the present models, these modes

are not directly responsible for fragmenting the liquid core or causing primary atomization. Their

action is limited to breaking up the surface of the jet, while the liquid core of the jet remains intact

for another 20 jet diameters downstream.

2. Effect of internal nozzle flow on primary atomization

In Chapter 2 we study the physics of internal nozzle flow. The focus is the effect of nozzle asym-

metries and imperfections on primary atomization. This is done by adopting three representative

geometries, namely two scans of a real injector nozzle, and a canonical configuration with purely

external flow.

We find that primary atomization is sensitive to internal nozzle flow; small changes to the

nozzle geometry (O(1µm)) affect bulk atomization characteristics (O(1000µm)). Here we explore

the underlying mechanism for the same. We find that in spite of more pronounced atomization for

the rougher geometry, the magnitude of the turbulent liquid kinetic energy is roughly the same as

the smoother geometry. This highlights the important role of mean field quantities, in particular,

non-axial velocity components, in precipitating primary atomization.

3. Evaluating Surface Tension Schemes with Respect to High-Fidelity Atomization

Simulations

In complex multi-phase flows like atomization, surface tension is expected to play a vital role in some

of the dynamics. Accurate representation of the surface tension force is challenging as it directly

tied to the accuracy of the interface curvature calculation. In Chapter 3, we consider two aspects,

first we analyze three different curvature computation schemes for two phase flow simulations, and

then we evaluate the level of influence these differences in the numerical schemes have on problems
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of practical interest.

The differences in the accuracy of the three methods is first analyzed through simpler static

and dynamic test cases that are common in numerical methods literature. We find that the signed

distance based computation of curvature performs significantly better in these test problems. How-

ever, this difference plays a small role in more complex simulations like the retraction of a liquid

column. A key finding here is that increasing complexity of the curvature scheme may only lead to

marginally better performance in realistic flow problems.
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Chapter 1

Linear Stability Theory in Primary

Breakup Modeling

1.1 Background & Motivation

Primary atomization in sprays, defined as the complete fragmentation of a liquid jet, has been the

subject of a large number of research efforts [27, 41, 42] due in part to its practical relevance in

fuel injection [58]. Apart from some recent DNS-type studies [7, 21, 31, 39, 65–67] that resolve

and sharply capture the liquid-gas interface, atomization computations have relied on models to

describe relevant physics. Among the most widely used treatment of sprays is the Lagrangian-

Eulerian (LE) modeling approach, which is employed extensively in applications such as internal

combustion engines, environmental spraying, printing, food processing, and various others. Since

the atomization process is completely under-resolved in this approach, the near nozzle liquid field

is described using breakup models.

A common procedure for developing breakup models is based on the linear stability theory [10,

57]. Its combination with the LE approach has continued to dominate spray modeling for the

last 20-30 years [2, 14, 16, 36, 46, 68, 74, 77]. This is partly due to the ease of integration with
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other relevant models describing drop-drop collision, wall impingement, vaporization, and other

droplet phenomena. The popularity of linear-theory-based breakup models, simply referred to as

breakup models hereafter, has grown beyond academic research as they have been incorporated into

commercial engine CFD codes including converge cfd, star-cd, and avl-fire.

In the derivation of these breakup models, perturbations on the liquid jet are interpreted to

develop under the action of the Kelvin-Helmholtz (KH) instability. Growth of KH-unstable surface

waves is assumed to cause liquid to break off, and cause fragmentation of the liquid jet. Computa-

tionally, the liquid jet is initially treated as Lagrangian blobs. Formation of new drops and changes

in their diameter are determined through numerical solutions of linearized stability equations (KH

and/or Rayleigh-Taylor instabilities), along with modeling constants. Lin and Reitz [42] provide

qualitative commentary on the success and shortcomings of linear theory used in jet breakup de-

scriptions, and call attention to the significance of internal nozzle flow on surface instability. High

resolution (spatial and temporal) flow descriptions are required for studying these effects, which

were not computationally feasible until recently.

The present chapter is composed of three initiatives. First, we are interested in investigating the

extent of the validity of the underlying linear stability assumptions using highly-resolved simulations

based on an algebraic Volume of Fluid (VoF) [20] methodology. Explicitly, in a linearized analysis

of liquid injection, the velocity perturbations are assumed to be small, the base velocity is assumed

to be completely axial and fully developed, and the liquid surface is described by a superposition

of sinusoidal modes. To the best of our knowledge, no such quantitative analysis of the models’

assumptions has been conducted to date. The second initiative is estimating whether the most

unstable modes originating from the linear regime and calculated via Orr-Sommerfeld agree with

the more detailed VoF simulations. And for the third initiative, it is examined whether these

most violent perturbations are actually responsible for the fragmentation of the jet. This is a

more fundamental question, since depending on the results, it can confirm or call to question the

applicability of existing approaches for modeling breakup or atomization. To accurately capture the
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effects of nozzle imperfections and surface roughness, the Engine Combustion Network’s1 (ECN)

Spray A nozzle configuration is employed with a fine, boundary-fitted grid. This is in contrast to

external-only simulations [21, 39, 65–67] and simulations with idealistic inflow conditions [31].

The chapter is organized as follows. In Section 1.2, a description of the VoF methodology

employed is given. Section 1.3 describes the flow setup used in this work. The nozzle geometries

are examined in detail in Section 1.4. The computational methodology is validated in Section 1.5

against X-ray radiography measurements. In Section 1.6, the derivation of the linearized system

that forms the basis of the breakup models is summarized and the assumptions in the theory are

formally introduced. The results are then presented in Section 1.7 beginning with the analysis of

the extent of the linear region, the comparison of linear stability theory with VoF simulations, and

the implications for primary atomization. The findings of this part of the work and some concluding

thoughts are discussed in Section 1.8.

1.2 Numerical Method

The Volume-of-Fluid (VoF) simulations reported in this paper are performed with an algebraic

solver, interFoam, which is based on a compressive interface capturing methodology advanced

by Ubbink & Issa [70] and Rusche [59] with contributions from Henry Weller. interFoam is

part of a larger open-source distribution of computational mechanics solvers and C++ libraries

of OpenFOAM®2. The solver is based on a finite volume discretization on collocated grids for

the solution of two-phase incompressible flows. A thorough evaluation of solver performance with

respect to a broad range of two-phase flows is reported by Deshpande et al. [20]. The evaluation

was based on the performance with respect to kinematics of advection, dynamics in inertia domi-

nated regime, and dynamics in the surface tension dominated regime. An abbreviated description

is provided here; a more detailed explanation can be found in Ref. [20].

1https://ecn.sandia.gov/
2http://www.openfoam.com
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The first part of the solution consists of advancing the liquid fraction field, α, by solving the

following conservation equation,

∂α

∂t
+∇ · (Ũα) = 0, (1.1)

where Ũ is the velocity field. The liquid fraction represents the volume fraction of liquid occupying

a given computational cell, Ωi, i ∈ [1, Ncells]. The discrete version of this equation is

αn+1 − αn

∆t
+

1

|Ωi|
∑
f∈∂Ωi

(Fu + λMFc) = 0, (1.2)

where the fluxes are defined as

Fu = φnfα
n
f,upwind and Fc = φnfα

n
f + φnrfα

n
rf (1− αnrf )− Fu. (1.3)

Here n denotes time level, subscript f refers to a cell-face quantity, φnf = Ũn
f · Sf , and Sf is the

outward normal vector corresponding to a given cell (not normalized). Since velocity (as well as α)

are cell-centered quantities, Ũn
f is obtained by weighted-averaging from cells sharing the given face.

In the flux term, Fu, the upwind value for the liquid fraction is denoted by αnf,upwind. With respect to

Fc, α
n
f is determined from the second order vanLeer scheme [73]. The remaining quantities represent

the compressive flux, i.e. φnrfα
n
rf (1− αnrf ), where

φnrf = min
f ′∈Ωi

( |φnf ′|
|Sf ′ |

, Ũrf,max

)
(nf · Sf ), and Ũrf,max = max

f∈Ω

[ |φnf |
|Sf |

]
. (1.4)

This compressive flux is used to mitigate the effects of numerical diffusion that would occur as a

result of the sharp gradients in α in the interfacial region. Lastly, the variable αnrf is obtained using

the interfaceCompression scheme native to OpenFOAM [1, 20]. In numerical tests concerning

the advection of a discontinuous profile, such as the α-field, the treatment given above performs

noticeably better than TVD schemes with regards to the preservation of the sharpness of the
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discontinuity.

With respect to momentum, the following equation is solved

∂ρŨ

∂t
+∇ · (ρŨ⊗ Ũ) = −∇pd +

[
∇ · (µ∇Ũ) +∇Ũ · ∇µ

]
− g ·x∇ρ+

∫
Γ(t)

σκδ(x−xs)ndΓ(xs),

(1.5)

where the surface tension coefficient is given by σ, local curvature by κ, the gas-liquid interface by

Γ(t), the 3D Dirac Delta function by δ(x − xs), and xs is the integration variable over Γ(t). The

Continuum Surface Tension model [13] is employed, namely

∫
Γ∩Ωi

σκδ(x− xs)ndΓ(xs) =

∫
Ωi

σκ∇αdV. (1.6)

In the predictor step, the density and viscosity fields are regularized according to

ρ = ρlα + ρg(1− α) and µ = µlα + µg(1− α). (1.7)

The solution of the momentum equation is obtained via a PISO [29] iteration procedure. A

predictor velocity is first constructed and then corrected to ensure momentum balance and mass

continuity. Explicit formulation of the predictor velocity is a two step process, where first the

viscous, advective and temporal terms in the momentum equation are used to generate a cell

centered vector field, which is then projected to cell faces using a second order scheme. Contributions

from surface tension and gravity terms are then added, concluding the predictor formulation. This

procedure enforces a consistent discretization of surface tension and pressure gradient [20, 25].

Within the correction procedure, the pressure contribution is added to the flux of predictor

velocity, and mass conservation is invoked to yield a Poisson equation for pressure. The linear

system is then solved using a Preconditioned Conjugate Gradient method, with Diagonal Incomplete

Cholesky as the preconditioner. In the present work we have used three PISO steps to arrive at
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predictions for (Ũn+1, pdn+1).

1.3 Simulation Setup

An overview of the simulation setup, including the nozzle configurations, the external flow domain

and the flow conditions is provided here. Three configurations are described in this section, but

only the first configuration is used in this chapter, the other two configurations are employed in

Chapter 2. However, all three configurations are presented together here to avoid repetition later.

Three different spray configurations are being considered in this thesis as illustrated in Fig. 1.1.

The first two configurations (Fig. 1.1a and Fig. 1.1b) employ two variations of the ECN Spray A

(serial# 210675) nozzle. It is a single-hole, 90µm diameter injector nozzle. The two variations

of the nozzle are called ‘Unprocessed Spray A’ and ‘Educated Spray A’ through this study. The

difference between the two nozzle variations is minute, and hence not visible at the scale of Fig. 1.1;

the differences are discussed in depth in Section 1.4. The third configuration (Fig. 1.1c) is a

canonical setup where only external flow from a circular orifice is simulated. This external-only

flow configuration is frequently used in fundamental studies of spray atomization [65–67, 69].

In each of these setups the boundaries of the external flow domain (grey and green faces in

Fig. 1.1) are treated as being open to a larger atmosphere (inflow and outflow are allowed). The

nozzle walls, colored red in Fig. 1.1, are treated as no-slip walls, and the inlet faces, shown in blue

with the arrows, are prescribed a uniform and constant inlet velocity.

Details of the computational domain are shown in Fig. 1.2. For the internal flow region, the

grid boundaries coincide with the surface file for the nozzle and more importantly the surface

imperfections are included in the numerical grid. This implies that their effect is captured in the

simulations. For the internal flow region, a hexahedral, boundary-fitted grid is employed. The

surface of the internal nozzle grid is examined in detail in Section 1.4. The external flow region is

divided into two parts, near the spray axis (region highlighted in Fig. 1.2a) and away from the spray
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(a) (b)

(c)

Figure 1.1: Illustrations of the three spray configurations used in this study

axis. A cross section of the near-axis region is shown in Fig. 1.2b. All computational cells within

this region are hexahedral as this provides much better numerical performance than tetrahedral cells

for the algebraic VoF scheme used here [20]. Away from the spray axis unstructured tetrahedral

cells are used that grow larger in size as we move further away from the spray axis to reduce

computational cost.

For all of the metrics being reported here, results from three different grid resolutions are consid-

ered for each of the three configurations to get an insight into the level of variation with respect to

changing grid sizes. Since the grids used here are not uniform due to the boundary fitted geometry,

there is a small level of spatial variation in the cell sizes for each of the simulations. The cell-size

distribution for the ‘Educated Spray A’ configuration is displayed in Fig. 1.3 and shows that the cell

sizes are closely distributed around their respective mean values. As a representative number for

each of the cases we report the average cell size in the near-spray region. The case matrix presented

in Table 1.3 shows this average ∆x value in the near field region for each of the cases.

In all calculations presented, the x coordinate is aligned with the jet axis as per ECN specifica-
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(a)

(b)

Figure 1.2: A visualization of the entire domain and grid is shown in (a) with the nozzle included on the
left. The plane coinciding with the nozzle orifice is shown in (b), clearly portraying the asymmetry of the
orifice.

tions and the origin is placed at the centroid of the orifice opening. The y axis is aligned with the

transverse direction and the z axis is aligned with the spanwise direction as depicted in Fig. 1.2.

In Fig. 1.4, a representative result from the simulation is displayed showing the first 40 diameters

from the injector nozzle. The nozzle is visible in the top-left corner, with the liquid jet coming out

and then disintegrating into ligaments and droplets towards the bottom-right.
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Figure 1.3: The near-field cell-size distribution for the ‘Educated Spray A’ configuration. Three different
grid resolutions are considered here.

Figure 1.4: Visualization of the jet atomization for a typical simulation using the Spray A geometry.

For this study, all simulations have been performed at experimental conditions reported by [34],

which adhere to the ECN specifications3. The ambient gas is N2 at 343 K, and the fuel is n-

dodecane at 303 K. Table 1.1 summarizes the fluid and flow properties used, and key non-dimensional

quantities are listed in Table 1.2. In the present simulations the inlet flow velocity (at the blue

inlet faces in Fig. 1.1) is specified such that the jet velocity at the orifice opening matches the

experimentally estimated value of 412 m/s [34].

3https://ecn.sandia.gov/diesel-spray-combustion/target-condition/spray-ab/
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Table 1.1: Fluid properties

ρl ρg νl νg σ Uinj
(kg/m3) (kg/m3) (m2/s) (m2/s) (N/m) (m/s)

715 22.8 1.007× 10−6 1.79× 10−5 0.021 412

Table 1.2: Values for relevant non-dimensional numbers

Rel Wel Ohl ρl/ρg

(Uinj.D/νl) (ρlU
2
inj.D/σ) (We

1/2
l /Rel) -

36, 822 5.2× 105 1.9× 10−2 31.36

1.4 Injector Nozzle Geometry

A single-hole, 90µm diameter, Bosch injector named Spray A by the Engine Combustion Net-

work4 (ECN) collaboration, is used for the present study as it has been characterized extensively

[34, 35], particularly in the near field. In the present work, the nozzle surface file5 for the ECN

Spray A nozzle (serial# 210675) has been used for generating the computational grid. The nozzle

geometry including details of its asymmetry and nozzle alignment are displayed in Fig. 1.5a. The

surface file reconstructed from X-ray tomography measurements, shown in Fig. 1.5a, clearly reveals

the offset of the nozzle hole from the sac centerline (dashed line). Additionally, the inlet turning

angles, for instance θ1 and θ2 are not the same [35]. Furthermore, the diameter of the nozzle hole

decreases along the streamwise direction.

In this section we examine the difference between the two Spray A nozzle geometries that are

used in the study. We quantify the surface roughness for both the geometries and examine the level

to which the simulation grids capture the surface features.

Kastengren et al. [35] point out that due to the manufacturing challenges associated with the

small dimensions of the nozzles the actual nozzle profiles deviate from the nominal specifications.

They present measurements for four different Spray A nozzles and note that the orifices in all the

4https://ecn.sandia.gov/
5https://ecn.sandia.gov/diesel-spray-combustion/computational-method/meshes/
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Table 1.3: Average cell size values for the different spray configurations and grid resolution levels.

Geometry Coarse Medium Fine

Spray A (Educated) 5.9µm 3.9µm 2.8µm
Spray A (Unprocessed) 5.8µm 4.5µm 2.9µm
Only External 5.4µm 4.4µm 3.1µm

(a) Asymmetries of the ECN SprayA nozzle are depicted.
The actual alignment of the orifice superimposed on the axi-
symmetric location is displayed. The dashed lined highlights
the offset between the sac and the nozzle conduit. The varia-
tion in internal turning angles is emphasized in the inset where
θ1 6≡ θ2.

(b) Details of the near-exit por-
tion of the Unprocessed Spray
A nozzle are presented here. A
comparison between the STL
data (red) and the VoF grid
(blue) employed for the study is
shown.

Figure 1.5: Details of the two Spray A nozzle variations are shown

nozzles have an offset with respect to the sac region, which creates an asymmetry. The offset and

hence the level of asymmetry varies nozzle-to-nozzle. Also, the holes are angled with respect to the

injector axis by 0.3◦ to 0.4◦. The measured value of the nozzle K-factor, which is a measure of the

taper of the orifice, vary from 1.3 to 1.8 as opposed to the nominal value of 1.56[35]. There is also

notable surface roughness in these nozzle geometries.

In the present study we attempt to incorporate the asymmetries and imperfections in the nozzle

gometries and study their effects. Therefore, surface stereolithography (STL) files based on scans

of a real nozzle are used here to generate the computational domains. As mentioned in Section 1.3,

two variations of the Spray A nozzle are used here. The corresponding STL files are both based on

6https://ecn.sandia.gov/diesel-spray-combustion/target-condition/spray-a-nozzle-geometry/
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reconstructions of raw X-ray tomography measurements that have been processed and converted

into usable STL files. The STL files used in this study come from two different sources and differ

in the way the raw data has been processed. These differences between the two geometries are

highlighted below.

(a) The first surface file, referred to as the ‘Educated Geometry’, has been provided by Georgia

Institute of Technology7. This surface file is a spline-reconstructed representation of a collec-

tion of multiple X-ray tomography measurements. While this processing is aimed at removing

artificial experimental artifacts, it also makes the surface finish smoother.

(b) The second surface file has been provided by CNRS France8. This is based on high-resolution

X-ray tomography data that was smoothed to create the STL file. This geometry is relatively

unprocessed and is simply referred to as ‘Unprocessed Spray A’ in this study.

Fig. 1.5b shows the near-orifice region for the two nozzle geometries. On the left is the educated

geometry and on the right is the unprocessed geometry. In both images, the STL geometry is shown

in red while the VoF grid is shown in blue. The difference between the surface finish of the two

geometries is evident through this image.

The surfaces for both nozzle surfaces exhibit deviations from a purely cylindrical geometry,

which are quantified by

εcyl(θi, xj) = |r(θi, xj)−R0|, (1.8)

where R0 (= D0/2 = 45µm) is the nominal radius of the Spray A nozzle, and (θi, xj) are discrete

azimuthal and axial coordinates, respectively. Each point in Fig. 1.6 represents a distinct value

for the aforementioned coordinates and are colored by the magnitude of εcyl(θi, xj). An average

7https://ecn.sandia.gov/diesel-spray-combustion/computational-method/meshes/
8https://ecn.sandia.gov/cvdata/targetCondition/CNRS675correct.stl
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deviation of the STL surface from the cylindrical shape is evaluated as,

εcyl =

∑nx,nθ
i,j ε(θi, xj)

nxnθ
. (1.9)

The values for εcyl are reported in Table 1.4. It is observed that the level of overall departure

from cylindrical shape is similar among Educated and the Unprocessed Spray A nozzle. However,

a closer inspection of Fig. 1.6 reveals that the variations along the streamwise (x) direction are

much smaller for the Educated Spray A geometry. Since the strongest component of the flow is its

x-component, we are particularly interest in surface roughness encountered along this coordinate.

To quantify this variation we first compute an axial average surface location, defined by,

r(θi) =

∑nx
j=1 r(θi, xj)

nx
. (1.10)

Fig. 1.6 shows nozzle surface profiles, r(θi, xj) at 6 different axial locations. The black curve

represents the mean profile, r(θi). As observed in Fig. 1.6, while the level of variation along θ is

comparable between the two geometries, the level of axial variation is significantly higher in the

Unprocessed geometry.

To quantity the degree of surface variation in the x-direction, the local deviation of the STL

surface from its axially average is evaluated as,

εx(θi, xj) = |r(θi, xj)− r(θj)|, (1.11)

which can be subsequently averaged yielding,

εx =

∑nx,nθ
i,j εx(θi, xj)

nxnθ
. (1.12)

The corresponding values are also reported in Table 1.4, where it is confirmed that the Unprocessed
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geometry is significantly rougher in the x-direction in comparison to the Educated geometry.

(a) (b)

Figure 1.6: The nozzle surface r is presented as a function of θ at 6 different axial locations for the two
geometries. The black curves represent r(θ) as given by Eq. (1.10).

The material up to this point has considered the axial and azimuthal surface variations of the

STL surface file; however, in the computations it is the computational or VoF grid that is employed,

not the STL surface. While the nodes of the VoF grid lie on the STL surface by construction, the

linear edges and the planar faces of the grid may not exactly coincide with the arbitrary STL

surface. Therefore, it is entirely possible that a small discrepancy exists between the VoF surface

and the STL surface. To quantify this discrepancy, the shortest distance between each of the STL

points and the VoF grid is computed

εgrid(θi, xj) = |rgrid(θi, xj)− rSTL(θi, xj)| (1.13)

and shown in Fig. 1.7. The mean value of this discrepancy between the STL points and the different

VoF grids corresponding to different levels of resolution are reported in Table 1.4. Clearly, for the

finest resolved cases the reported level of discrepancy is approximately two orders of magnitude

smaller than the departure from cylindrical shape, and significantly smaller than εx.

In summary, both Spray A nozzle geometries exhibit a noticeable departure from a perfectly

cylindrical nozzle, although the εcyl values are much smaller than the nominal nozzle diameter. The

level of surface variations along the azimuthal direction are comparable between the two geometries,



15

Figure 1.7: Evaluation of the degree of agreement between the STD surface data and the corresponding
VoF grid in the near-exit portion of the Unprocessed Spray A nozzle. The STL data are shown as dots and
the VoF grid as a blue surface with black edges. The colors shown in the color bar represent the distance
between the STL data and the VoF grid.

but the level of surface variations in the streamwise direction differ significantly between the two

nozzles with the Unprocessed geometry have much larger axial variation. As documented below

this level of increased εx leads to significant changes in both the mean and fluctuation velocity

components of the fluid emanating from the nozzle. With respect to the degree of fidelity of the

VoF grids in capturing the detailed surface features present in the STL files, the highest resolved

case is able to accurately represent these features. The only exception is perhaps the εx for the

Educated geometry, but this value is already minute, i.e. 61.1 nm.

1.5 Spray A validation

Deshpande et al. [20] have presented a thorough evaluation of interFOAM performance with respect

to kinematics of advection, dynamics in inertia dominated regime, and dynamics in the surface
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Table 1.4: Roughness values for the two Spray A geometries used here. Average clearance between the
VoF grids and the STL nozzle geometries for the different grid sizes.

STL Characterization Mean clearance between
Geometry εcyl εx STL data and VoF grid

(Eq. (1.9)) (Eq. (1.12)) Coarse Medium Fine

Educated Spray A 1.35 µm 61.1 nm 668.0 nm 198.5 nm 41.4 nm
Unprocessed Spray A 1.21 µm 393.3 nm 165.2 nm 128.1 nm 89.0 nm

tension dominated regime. Validation tests have also been previously presented for two-phase mixing

layers and co-flow atomization [21]. In this section results for the Educated Spray A configuration

are compared with results for the Unprocessed Spray A configuration.

The metric for comparison is the Projected Mass Density (PMD), which is denoted as Φ. PMD

is the line integrated liquid mass, and represents the projection of the 3D liquid mass distribution

on a 2D plane. PMD computed along the y and z axes is respectively given by

Φy(x, z) = ρl

∫ ∞
−∞
〈α(x, y, z)〉 dy, (1.14a)

Φz(x, y) = ρl

∫ ∞
−∞
〈α(x, y, z)〉 dz. (1.14b)

All computational data is reported in the form of temporally-averaged values, recognizing the

fact that beyond the initial transient the process is statistically stationary. The time integration

for α is given by,

〈α(x, y, z)〉 =
1

tf − ti

∫ tf

ti

α(x, y, z, t) dt, (1.15)

where ti = 25µs and tf = 50µs to ensure statistical convergence.

Quantitative comparisons of computed PMD against streamline centerline experimental [76] and

transverse [34] measurements are presented in Fig. 1.8. From the data in these plots, it is clear that
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the Educated Spray A results are closer to the experiments than the results from the Unprocessed

Spray A. The external-only data is the furthest away from the experiments and consistently over-

predicts the PMD. This is particularly the case for the centerline Φz profile. For both the Spray A

configurations shown here, there is a reasonable degree of numerical convergence with grid refine-

ment, which is examined in Section 2.2.5. The results also reveal a considerable measure of spray

asymmetry, particularly for the Unprocessed configuration. This feature has also been reported in

experimental findings by Kastengren et al. [34]. The asymmetry is the lowest in the external-only

configuration, as expected.

(a) Φz (b) Φy

Figure 1.8: The projected mass density, Φ, along the spray centerline for two different projection
axes: (a) projection along z direction, Φz, (b) projection along y direction, Φy.

To inspect the radial distribution of liquid mass at different axial locations, Fig. 1.9 and Fig. 1.10

include plots of Φz and Φy, respectively, for the 3 spray nozzle geometries. As noted in Section 1.4,

the spray axis is offset from the injector axis. The choice of the origin in the experimental setup

may not be exactly consistent with the origin in the simulations. To correct for this offset, the

experimental spray axis has been shifted by 0.018 mm to match with the measured peak at x =

0.1 mm in the comparisons shown. Moreover, the spray from the Unprocessed geometry is highly

asymmetrical and the orientation (i.e., orientation in terms of the direction of the y and z axes,
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see Fig. 1.5a) of the experimental setup cannot be expected to coincide with the orientation of

the STL data, which is used in the simulations. Predictions corresponding to increasing levels

of numerical refinement are included in the comparisons, and in line with the previous centerline

figures, the predictions from the coarse grid are substantially off from the higher refined cases and

also noticeably different from the measurements.

Beginning with Φz in Fig. 1.9, the computational results based on the Educated geometry match

relatively well the experimental data. The overall trend is one of a broadening of the Φz profile as

we move downstream. This is directly caused by the ongoing breakup and radial spreading of liquid

elements. The new results corresponding to the Unprocessed geometry show a noticeable degree of

discrepancy with measurements, which progressively becomes worse with increasing distance from

the nozzle orifice. For instance, the level of disparity at x = 6 mm is substantial. In the near field,

however, since the jet is largely intact, the three sets of predictions corresponding to the different

injection configurations agree well with the experiments.

For the Φy profiles, included in Fig. 1.10, the qualitative trends are essentially the same as those

for Φz. The notable difference is that the level of asymmetry of the results corresponding to the

Unprocessed geometry is even more pronounced. For instance, the peak of the profile at x =4 mm

is substantially removed from the centerline. At the farthest location reported, i.e., x = 6 mm, the

spray has spread significantly. We note that there are only two computational curves at x = 6 mm,

to reduce computational costs associated with running cases at the finest resolution this far from

the near-nozzle region.

To quantify the error in the numerical results, a mean relative error, EΦ, defined as

EΦ =
1

N

N∑
i=1

|Φnum,i − Φexp,i|
Φexp,x=0

, (1.16)

is reported in Table 1.5 for Φz and Table 1.6 for Φy. Here the subscript ‘num’ and ‘exp’ refers

to numerical and experimental values, respectively, and N is the total number of data points.
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(i) (j) (k) (l)

Figure 1.9: The projected mass density, Φz, across the spray at four axial locations: Educated
Spray A – (a) x = 0.1 mm, (b) x = 2 mm, (c) x = 4 mm and (d) x = 6 mm; Unprocessed Spray A
– (e) x = 0.1 mm, (f) x = 2 mm, (g) x = 4 mm and (h) x = 6 mm; External Only – (i) x = 0.1 mm,
(j) x = 2 mm, (k) x = 4 mm and (l) x = 6 mm.

Predictions employing the Educated geometry show a consistent level of numerical convergence with

the error being bounded by 6.5% for the medium and fine cases. For the Unprocessed configuration,

the predictions do show a significant decrease in error from the coarse grid to the medium and fine

grid calculations. However, the level of error is significantly larger than for the Educated geometry

as previously discussed. Although the uncertainty in the associated experimental data has not been

reported [34, 76], Kastengren et al. [33] indicate a standard deviation of up to 4% in their PMD

data for similar measurements. Hence, the degree of error in the Spray A numerical predictions is
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1.10: The projected mass density, Φy, across the spray at four axial locations: Educated
Spray A – (a) x = 0.1 mm, (b) x = 2 mm, (c) x = 4 mm and (d) x = 6 mm; Unprocessed Spray A
– (e) x = 0.1 mm, (f) x = 2 mm, (g) x = 4 mm and (h) x = 6 mm; External Only – (i) x = 0.1 mm,
(j) x = 2 mm, (k) x = 4 mm and (l) x = 6 mm.

on the same order as this standard deviation. For the External-only configuration, the PMD curves

do not vary much with respect to grid refinement, but they do not converge to the experimental

curve (as expected since the internal flow is not simulated). Therefore, the error values remain

consistent across the different grid levels.
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Table 1.5: Relative error values, EΦ, for the PMD curves in Fig. 1.8a and Fig. 1.9.

Centerline Transverse (Φz)
Configuration ∆x Φz x=0.1 mm x=2 mm x=4 mm x=6 mm

Coarse 10.7% 4.7% 7.7% 5.2% 1.7%
Educated Spray A Medium 4.4% 3.8% 3.7% 2.5% 1.1%

Fine 2.0% 3.9% 4.6% 4.0% −

Coarse 23.3% 6.0% 17.5% 7.4% 10.0%
Unprocessed Spray A Medium 15.2% 4.3% 10.7% 5.6% 8.0%

Fine 18.4% 4.6% 10.2% 5.0% −

Coarse 16.9% 5.2% 8.4% 6.7% 5.4%
Only External Medium 17.5% 5.2% 8.4% 6.8% 4.9%

Fine 19.5% 5.2% 7.8% 6.7% 6.4%

Table 1.6: Relative error values, EΦ, for the PMD curves in Fig. 1.8b and Fig. 1.10.

Centerline Transverse (Φy)
Configuration ∆x Φy x=0.1 mm x=2 mm x=4 mm x=6 mm

Coarse 7.3% 4.2% 4.5% 4.0% 3.7%
Educated Spray A Medium 3.5% 3.6% 6.5% 2.7% 3.0%

Fine 5.0% 3.8% 6.1% 3.4% -

Coarse 22.0% 4.8% 8.8% 14.4% 7.3%
Unprocessed Spray A Medium 8.7% 4.0% 5.7% 11.1% 3.9%

Fine 10.9% 4.3% 6.6% 9.4% -

Coarse 16.5% 5.2% 8.5% 6.8% 5.5%
Only External Medium 18.7% 5.2% 8.4% 6.8% 5.4%

Fine 17.0% 5.2% 7.5% 6.2% 6.0%
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1.6 Linear Stability Analysis – Underlying Assumptions

Most common breakup models are based on the KH framework. The theoretical underpinning of

this framework, or of the more general Orr-Sommerfeld (OS) approach, lies in a linearized momen-

tum equation. The most obvious departure from this treatment is the presence of the non-linear

advection term. But in fact, there are more subtle implications of the KH or OS framework that

also merit investigation. To see this more clearly we perform the typical base field (upper case) and

perturbation field (lower case) decomposition [63]. For velocity we have

Ũq(x, t) = Uq(x) + uq(x, t), (1.17)

and for pressure

P̃ q(x, t) = P q(x) + pq(x, t), (1.18)

where (Ũ, P̃ ) denote the instantaneous velocity and pressure fields, and the superscript q denotes

either the liquid (L) or gas phase (G); U = (U, V,W ); and u = (u, v, w). Furthermore, the velocity

fields can be rewritten in terms of axial terms, along the x coordinate, and a non-axial component

or orthogonal component, i.e. u = u⊥ + uex, and U = U⊥ + Uex (ex is the unit vector in the

x-direction).

Substituting the previous decomposition into the incompressible form of the Navier-Stokes equa-

tion and recognizing that the base flow field automatically satisfies this equation yields an expression

for the perturbed fields,

∂uq

∂t
+ U q∂xu

q + uq⊥ · ∇Uq︸ ︷︷ ︸
advection terms present
in the convential system

+

Non-Linear
Perturbation︷ ︸︸ ︷
uq · ∇uq +

Non-Axial
Velocity

(Eq. (1.22))︷ ︸︸ ︷
Uq
⊥ · ∇uq +

Axially Developing
Velocity

(Eq. (1.24))︷ ︸︸ ︷
uq∂xU

q︸ ︷︷ ︸
advection terms ignored in the conventional system

= − 1

ρq
∇pq + νq∇2uq, (1.19)
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where ν is the kinematic viscosity. This expression represents the full form of the governing equation

for (uq, pq). In the governing equation commonly seen in linear-stability analyses [23, 63] many of

the above terms are ignored (as indicated in Eq. (1.19)) resulting in the following reduced or

conventional form for the PDE governing the perturbed fields

∂uq

∂t
+ U q∂xu

q + uq⊥ · ∇Uq = − 1

ρq
∇pq + νq∇2uq. (1.20)

Elaborating on the omitted terms from Eq. (1.19) as well as other assumptions employed in

linear-stability analysis, we have the following:

A. Non-linear advection: The velocity perturbations are assumed to be small compared to

the base velocity (O(uq)� O(U q)). Therefore, the non-linear perturbation terms are ignored.

This is quantified in the present work with the following metric

βNL(x, t) =
|uq · ∇uq|

|U q∂xuq + uq⊥ · ∇Uq|
. (1.21)

B. Base velocity: In the conventional interface instability analysis, the base velocity is assumed

to be of the form Uq(x) = U q(y)ex. This implies that:

i. Non-axial components of the base velocity are zero, i.e. V q = W q = 0. Therefore, the

following part of the advection terms reduces to

V q ∂uq

∂y
+W q ∂uq

∂z
= Uq

⊥ · ∇uq = 0. (1.22)

To quantity how well these terms remain at zero the following metric is employed:

βNA(x, t) =
|Uq
⊥ · ∇uq|

|U q∂xuq + uq⊥ · ∇Uq|
. (1.23)
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ii. Similarly, Uq(x) is assumed to be fully developed along the jet axis (Uq(x) = Uq(y, z)).

This implies that,

uq
∂Uq

∂x
= 0. (1.24)

This assumption is also tested with

βNFD(x, t) =
|uq∂xUq|

|U q∂xuq + uq⊥ · ∇Uq|
. (1.25)

C. Interface shape: For linear stability analysis, the interface is assumed to be described by

the superposition of various modes having the following form [42]

ξ(x, t) =
∞∑

k=−∞

ξk exp(ωt+ ikx). (1.26)

This appearance is tested by inspection.

To evaluate the metrics defined above, uq and Uq are required. Noting from Eq. (1.17) that the

Ũq(x, t) field can be decomposed as

Ũq(x, t) = Uq(x) + uq(x, t), (1.27)

we perform an averaging operation, 〈. . . 〉, to yield

Uq(x) = 〈Ũq(x, t)〉. (1.28)

This expression along with Eq. (1.27) allows us to write

uq(x, t) = Ũq(x, t)− 〈Ũq(x, t)〉. (1.29)
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Together Eq. (1.21) through Eq. (1.25) provide for a pointwise determination of βNL, βNA,

and βNFD. To obtain a more global metric, these quantities are integrated and averaged over a

cross-sectional slice of the jet, namely,

βNL(x, t) =
1

|Ωq
β|

∫∫
Ωqβ

βNL(x, t) dydz, (1.30a)

βNA(x, t) =
1

|Ωq
β|

∫∫
Ωqβ

βNA(x, t) dydz, (1.30b)

βNFD(x, t) =
1

|Ωq
β|

∫∫
Ωqβ

βNFD(x, t)dydz, (1.30c)

where again q = [L,G]. The region ΩL
β is a subset of the y-z plane that extends 3∆x into the liquid

phase from the α = 0.5 isoline. Analogously, the ΩG
β also resides in y-z plane and extends 3∆x into

the gas phase from the α = 0.5 isoline. For the internal nozzle domain, ΩL
β extends three cells from

the wall.

Additionally, the metrics are time-averaged as,

〈βNL〉(x) =
1

tf − ti

∫ tf

ti

βNL(x, t) dt, (1.31a)

〈βNA〉(x) =
1

tf − ti

∫ tf

ti

βNA(x, t) dt, (1.31b)

〈βNFD〉(x) =
1

tf − ti

∫ tf

ti

βNFD(x, t) dt, (1.31c)

where tf and ti have the same values given in Section 1.5, namely ti = 25µs and tf = 50µs.
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1.7 Results

In the results presented in the following subsections, the quasi-steady or statistically stationary

portion of the injection event is exclusively considered. At the corresponding injection speeds

considered in the present study, the initial transient period occupies a small fraction of the total

injection duration; hence, most of the interesting injection processes, which occur within x/d0 . 50,

lie most of the time within the quasi-steady state.

1.7.1 Examining the Extent of Linear Theory Assumptions

We consider first the behavior of the underlying linear components of advection. These are presented

as a function of distance from the orifice exit in Fig. 1.11 both inside the nozzle (x < 0) and outside

the nozzle (x > 0) for the different grid resolution cases. Similar to the validation data presented in

Section 1.5, results for ∆x = 5.9µm are under-resolved and do not capture the dynamics recorded at

the finer grid resolutions. Hence, we focus our discussions on the two finer cases (∆x = 3.9µm and

2.8µm) for the evaluation of linear advection terms, βNL, βNA, and βNFD. Due to the development

of instabilities produced by the growing shear layer, the advection term is significantly affected. It

shows an exponential dependence that is given by |U q∂xu
q + uq⊥ · ∇Uq| ∼= C1e

m(x/d0), where C1 is a

constant and m = 0.89 for the finest grid.

With respect to growth of the non-linear term, Fig. 1.12 shows the axial profile of βNL (Eq. (1.21))

in both the liquid (Fig. 1.12a) and gas (Fig. 1.12b) phase. For the liquid phase, inside the nozzle

(x < 0) the terms are O(10−2) and thus the advection is dominated by the linear components. In

the external domain (x > 0), the relative magnitudes rapidly rise to O(10−1) by x = 4d0. As the

grid size is reduced, the trends show convergence. A similar behavior, but with higher magnitudes,

is observed in the gas phase. This indicates that the linearity assumption becomes questionable

beyond x = 4d0. It will be shown in Section 1.7.2, that in the vicinity of this region, the asso-

ciated growth of non-linearities is combined with the development of non-sinusoidal free surface
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Figure 1.11: Magnitude of the advection terms in the linearized equation, U∂xu + u⊥ · ∇U, corre-
sponding to the liquid phase.

disturbances.
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Figure 1.12: Magnitude of non-linear perturbation in the (a) liquid phase and (b) gas phase.

The trends of the non-axial velocity terms quantified by βNA are shown in Fig. 1.13 for the

liquid and gas phases. Inside the nozzle βNA is O(10−1) indicating that there is a notable non-axial

component to the base velocity. This non-axial velocity component is attributed directly to the

nozzle imperfections and asymmetries. At the orifice opening the βNA field is large enough that
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ignoring its presence in linear stability analysis is questionable. Non-axial base velocity at the orifice

leads to an asymmetric free surface disturbance, which consequently affects the spray formation.

For the gas phase, the magnitude of βNA (Fig. 1.13b) is higher than that of the liquid phase. βNA

remains relatively small through the near-field indicating that non-axial terms are secondary to the

dominant growth of the non-linear terms.
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Figure 1.13: Magnitude of non-axial velocity terms in the (a) liquid phase and (b) gas phase.

Lastly, the results concerning the non-fully developed terms measured by βNFD are shown in

Fig. 1.14 for both liquid and gas phases. At the orifice opening βNFD is around O(10−1), especially

for the gas phase (Fig. 1.14b). The axial gradient discontinuity at x = 0 (at the orifice) can be

attributed to velocity profile relaxation. This relaxation is produced by a change from a no-slip to

a slip boundary condition corresponding to a change from an internal wall-bounded flow to a free

surface flow as the fluid travels out of the nozzle.

Downstream from the orifice opening βNFD appears to decrease to O(10−2) for both liquid

and gas phases. Similar to the non-axial terms, the axially developing terms are high enough at

the orifice opening that ignoring them is questionable. This behavior is caused by significant gas

entrainment in the near orifice region (x < 2d0). Entrainment leads to non-zero gas velocities and

velocity gradients. This is seen in the high magnitudes of the non-axial velocity terms, U
(g)
⊥ ·∇u(g),
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and axially developing velocity terms, u(g)∂xU
(g), in Fig. 1.13b and Fig. 1.14b, respectively. Beyond

the immediate nozzle region, the magnitudes of βNFD quickly relax to much lower values ∼ O(10−2)

indicating that from a linearly stability analysis perspective they can be neglected to a reasonable

approximation. It is actually the non-linear term, which grows quickly and is primarily responsible

for invalidating the assumptions employed in the stability analysis.
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Figure 1.14: Magnitude of axially-developing term in the (a) liquid phase and (b) gas phase.

1.7.2 Surface Disturbances

The conventional view of the spray formation process embodied in spray models [2, 14, 46, 68, 74,

77] consists of a liquid, which is initially perturbed by a multitude of infinitesimal axisymmetric

perturbations, and where the fastest growing mode (governed by linear stability analysis) emerges to

dominate the disturbances. This fastest and most violent mode grows beyond the initial sinusoidal

characterization and is then responsible for the breakup of the liquid jet, i.e. it produces primary

atomization. It is tacitly assumed that during this process of surface growth from sinusoidal to

highly erratic surface shape, the underlying flow field is similarly undergoing a transition into the

full non-linear regime.
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We contrast this view by observing the results of simulations as depicted in Fig. 1.15 over four dif-

ferent axial orientations. Over a distance of approximately 5 diameters from the orifice, the surface

disturbances are highly irregular with strong asymmetries, which are far from the expected axisym-

metric normal mode [57]. However, the magnitude of these disturbances is significantly smaller

than the jet diameter, and most of them are still single value functions of the radial coordinate (the

interface has not folded over itself).

Figure 1.15: Near field (up to x = 10d0) jet surface morphology from four different viewing orientations.
A view along the y axis is shown at the top followed by three other views (sequential rotations of 90◦ about
the x axis).

In the work of McCarthy and Molloy [45], it is discussed that as the flow exits the nozzle, thereby

losing the wall constraint, turbulent lateral motion of the fluid leads to surface disturbances. In

addition to the loss of the wall constraint, complex flow development inside the nozzle due to

surface irregularities and non-symmetrical orifice shape are likely to blame for the observed level of

interface irregularity. These near-nozzle irregularities have also been reported in recent experimental

visualization as well [17, 26, 32]. The images in Fig. 1.15 reveal that the surface is characterized

by the presence of disturbance streaks aligned along the streamwise direction. And that slightly

beyond x/d0 = 5.5, the surface show signs of developing lobes, which force the surface to fold over

itself and become a multivalued function of the radial coordinate.
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To visualize more clearly the evolving complexity of free surface disturbance within the range

4.5 < x/d0 < 8 in a cross-sectional x-y plane containing the centerline, the instantaneous free surface

is compared to a Fourier fit (8 modes) in Fig. 1.16. While the surface remains a single value function

of r at x/d0 < 5.5, it distinctly loses this quality at x/d0 ≈ 7.7. Similar lobe structures have also

been identified in the liquid jet and liquid sheet simulation work of Sirignano and co-workers [30, 78].

At x/d0 ' 5, Section 1.7.1 has already established that the non-linearities have developed beyond

10% of its linear counterpart. We see that this departure coincides with a significant level of surface

deformation, which is far more complex than the axi-symmetrical disturbances predicted by linear

theory.

Figure 1.16: A cross sectional view of the near field is presented at the bottom. The two insets display
the VoF interface at two axial locations along with a Fourier series fit (8 modes) through the interface
data suggested by the mathematical form given in Eq. (1.26). In the first inset the wave amplitudes are
small and the interface can be represented well by a sum of sinusoidal modes. As we move downstream
the interface is no longer represented by a single-valued function of r.

1.7.3 Comparison between VoF and Linear Stability

Close to the injector orifice, specifically for x/d0 ≤ 5, the non-linearities are small enough that a

comparison can be made between the VoF simulation results and those stemming from a linear

stability analysis. It should be kept in mind that the complexity of the flow emanating from the
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nozzle after its passage through its interior is significantly more complex from the standard base

flow fields presented in texts [23, 63] and subsequently analyzed via the Orr-Sommerfeld equation.

Hence, we should not expect to arrive at a perfectly consistent comparison; nevertheless, for the sake

of estimating the associated dominant wavelengths, it is instructive to perform this investigation.

The two-phase Orr-Sommerfeld solution is computed from a previously published procedure by

Deshpande et al. [21], where all dynamic and kinematic interfacial conditions are enforced. Addi-

tionally, the base liquid and gas phase boundary layers are obtained from the current simulations.

To allow for uncertainties between these boundary layer thickness values, different variations are

considered, and the corresponding wavelengths for the most violent modes are presented in Ta-

ble 1.7.

δL
7µm 10µm 15µm

7µm 40.8µm 57.1µm 81.6µm
δG 10µm 40.8µm 58.3µm 81.6µm

15µm 40.8µm 58.3µm 87.4µm

Table 1.7: Wavelenghts of most unstable modes from OS calculations.

To estimate the wavelengths of the surface disturbances from the VoF simulations, various

probes are placed within 4 < x/d0 < 5. As seen in Fig. 1.15 and documented in Section 1.7.1,

this region of the domain places the surface disturbances well within the linear regime. Time

history of the interface perturbation is presented in Fig. 1.17. The interface perturbation, denoted

as ξ(x = 4d0, z = 0) for instance, is the distance of the interface from its unperturbed location,

(x = 4d0, y = 45µm, z = 0). Similarly, ξ(x = 4d0, y = 0) is the distance of the interface from its

unperturbed location, (x = 4d0, y = 0, z = 45µm).

The ξ(x, z = 0, t) and ξ(x, y = 0, t) data is then analyzed in the frequency domain through a

Fast Fourier Transform. The underlying flow field predictions from VoF are interrogated revealing

that the surface disturbances are traveling at Uξ = 412 ms−1, and this velocity is largely constant

in time. Therefore, the wavelengths associated with the frequencies are obtained as λ = Uξ/f .
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Figure 1.17: Interface perturbation, ξ, is presented as a function of time in the x-y plane and x-z plane,
at two axial locations, x = 4d0 and x = 5d0.

The resulting wavelength spectra for the data is presented in Fig. 1.18. It is observed that the

most dominant modes, defined here as the modes with amplitudes within 20% of the maximum

amplitude, are in the range of λ = 40.4µm to λ = 71.0µm.

Figure 1.18: Frequency spectra for interface elevation data from z = 0 plane and y = 0 plane.

The Orr-Sommerfeld growth spectra, obtained as described in [21], are shown in Fig. 1.19.

Dominant modes from the VoF simulations are overlaid on the plot as a band. The fastest growing

modes from the OS calculation are in the range of 40.8µm to 87.4µm, and those from the VoF

simulations are in the range of 40.4µm to 71.0µm. A strong overlap between the OS prediction and

the simulation data indicates that linear stability theory predicts relatively well the wavelengths of

the most unstable modes in a realistic liquid injection setup.
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Figure 1.19: Orr-Sommerfeld growth spectra for 3 different velocity profiles, where δG and δL represent
the gas and liquid boundary layer thicknesses, respectively. From Table 1.7, the O-S predicts that the most
unstable modes lie between 40.8µm to 87.4µm. The most unstable modes detected in the VoF simulations
lie in the region highlighted in blue.

1.7.4 Implications for Primary Atomization

To provide an insightful perspective of the internal structure of the liquid jet, various cross-sectional

views of liquid fraction field (α) are displayed in Fig. 1.20. Each of these views corresponds to a

plane that intersects the jet centerline. The images reveal that while the surface of the jet begins to

display breakup at x/d0 ≈ 7, the underlying liquid core remains intact. Due to the asymmetric flow

emanating from the nozzle, the level of surface disintegration is not uniform along the azimuthal

coordinate with some sections of the jet showing more vigorous breakup than other sections at the

same axial location. However, by x/d0 ≈ 8, the surface is already breaking up all around the jet.

This relatively near nozzle location for breakup is much closer than the location where the entire

jet breakups, or by definition the location of primary atomization. In Chapter 2, Fig. 2.10 presents

a time history of the length of the intact liquid core for the different nozzle configurations, which

provides instantaneous information of the primary atomization region. For the nozzle considered

here, it lies approximately between x/d0 = 30 and x/d0 = 40, with a mean value of x/d0 = 37.8.

The fact that the flow has become highly non-linear and that the surface of the jet undergoes

breakup relatively close to the nozzle is in contrast with the fact that the liquid core remains intact
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Figure 1.20: Computational images of the near-field jet breakup corresponding to orientations along the
y-axis, z-axis, and midpoint point axis between the z and y axes. The images show surface breakup
beginning at x/d0 ≈ 7.

until much further downstream. This observation calls to question the conventional view of the

atomization process [41, 42, 58], inherited widely in spray models, where the most unstable mode

predicted by linear stability analysis is viewed as the responsible agent for completely fragmenting

the liquid jet.

The current simulations and analysis show that the most unstable modes do exist under the

present conditions, but that their action is limited to the breakup of the surface of the jet, not in

cutting it off completely. Hence, they are not directly associated with primary atomization. This is

also in agreement with previous observations presented for the case of an injected liquid sheet [21],

where it was reported that the most unstable OS modes have length scales that are two to three

orders of magnitude smaller than the sheet thickness and are thus responsible for atomizing the

surface of the sheet, but not the sheet itself. Similar findings have been reported by Marmottant and

Villermaux [43] and Rayana [11], albeit under significantly different configurations. Marmottant

and Villermaux employed a coaxial jet arrangement, and Rayana used an airblasted liquid sheet, but

both reported an initial instability followed by a secondary one responsible for primary atomization.
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Fig. 1.21 presents an illustration of the process.

Figure 1.21: Two instantaneous images of the jet breakup, with viewing directions oriented along the y
and the z axis, are presented here. The image highlights 3 distinct parts of the atomization process. Linear
modes of the surface disturbances exist initially up to x/d0 = 7. Further downstream, the dominant modes
grow and breakup the surface, but the liquid core remains unpreturbed. Finally primary atomization, or
the complete destruction of the liquid core is observed around x/d0 = 37.8.

1.8 Conclusions

After successfully comparing high-resolution simulation data to recent X-ray radiography measure-

ments [34, 76], the extent of the linearity treatment and accompanying assumptions in spray models

is investigated. It is found that non-axial flow and non-fully developed conditions are present right

at the orifice location, but that these do not show signs of significant growth (exponential). It is

actually, the non-linear flow development that exhibits the greatest and sustained growth, where it

is shown that at 4 diameters downstream, it is already approximately 10% of the linear advection

part. Similarly, the conventionally assumed sinusoidal surface disturbances are largely absent, and

the surface of the jet is irregularly distorted right from the start of the external domain. These

disturbances lead to interface folding over itself at x/d0 ≈ 7 and subsequent formation of small

ligaments and drops. Due to the real flow conditions emanating from the orifice, as opposed to

idealistic conditions of steady and spatially uniform flow, these characteristics are expected.

Comparing the wavelength of the most unstable modes between the OS linear stability predic-



37

tions and VoF simulations, the results show reasonably agreement being mindful of the fact that

the real base flow field is not the same as the conventional one adopted in OS analysis. Even

though these initial disturbance modes are clearly the most unstable, they are not sufficiently large

to completely rupture the jet. Their impact is limited to stripping off the surface of the liquid

jet, while the jet core remains unperturbed. This surface stripping is found to start somewhere

between x/d0 = 7 and x/d0 = 10, whereas the jet core undergoes complete atomization at a mean

value of x/d0 = 37.8, i.e. approximately 30 diameters downstream. A subsequent mode develops

once the flow has become fully-nonlinear, and it is this more violent process that leads to primary

atomization. Similar observations have been reported in the literature for liquid sheet undergo-

ing atomization [21] and for a liquid jet in a co-axial configuration exposed to a fast moving air

stream [43].

A key outcome from this chapter questions the validity of the common spray model assumptions

linking linear stability with primary atomization, at least for realistic cases such as the present

one using Spray A. A related question centers on the level of agreement typically reported between

spray model predictions and experiments concerning liquid penetration vs. time. This level of error

is usually well below 5%, which would tend to confirm the applicability of linear stability theory.

However, it should be kept in mind that the practical application of this theory is combined with

the introduction of a good number of modeling constants [58], and that these constants have been

fined-tuned over the years to match experimental data. Thus, the level of agreement reported is

not really a validation of linear stability theory, but rather a confirmation that the constants have

been appropriately optimized.

Similar conclusions questioning the validity of the linear stability rooted in the KH analysis and

its adoption into breakup models have recently been presented by Kastengren et al. [32]. Their

reasoning revolved around the absence of nano-scale droplet population in their measurements,

which is predicted by KH. This extremely small droplet size distribution emanates from an infinitely

sharp boundary layer at the interface, i.e., a discontinuous velocity field. In fact, predictions from
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the more general OS [21], which includes viscosity effects, reveal that as the boundary layer is

thickened the length scale of the most unstable mode, and the associated droplets emanating from

them, grow noticeably in size. Hence, we can have droplets of much larger size than the KH

generated nano-droplets, but the dynamics can still be completely governed by the breakup of the

most unstable modes of linear stability theory. What the present work suggests is that even these

larger scales disturbances predicted by linear stability theory do not fracture the liquid core. Their

influence is restricted to the surface.
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Chapter 2

Effect of Internal Nozzle Flow on

Primary Atomization

2.1 Background and Motivation

In liquid spray applications, flow development inside the injector nozzle is crucial to the spray

dynamics, specifically to the breakup of the initially continuous liquid jet [45, 64]. However, the

internal flow and its effect on the liquid breakup are not well understood due to complexities arising

from nozzle geometry, needle motion, turbulence, and flow cavitation. Therefore, the study of nozzle

effects on spray formation remains an active area of research [9, 19, 22, 52, 62].

Capturing all the details of in-nozzle turbulence is computationally challenging. While much of

previous work has been done on tuning and evaluating the different turbulence models [12, 48, 62],

fewer studies focus on characterizing or analyzing the turbulence itself, owing to the computational

challenges. Among some recent studies, Jiao et al. [31] attempt to characterize and study the

effect of nozzle turbulence by obtaining turbulence data from DNS simulations of fully developed

pipe flow, and using the time-varying velocity data as input for their atomization simulations.

They report three different types of liquid structures, namely, long, flat and curly, separating from
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the liquid jet at different axial locations. Moon et al. [47] show the effect of the orifice inlet

geometry on the velocity gradients and the turbulence intensity inside the nozzle through X-ray-

imaging data. They also establish connections between the velocity gradients and the turbulence

intensity. They find that the spray deceleration is linked with the increase in turbulence intensity.

Salvador et al. [61] provide hydraulic characterization with respect to different levels of needle

lift through simulations of internal nozzle flow. They show how needle lift affects the turbulence

development within the nozzle which impacts the subsequent breakup. Chouak et al. [15] have

performed transient simulations and analysis with respect to continuous needle lift. They provide

an explanation for hysteresis with respect to needle motion and find that needle motion is one of

the most important factors that affects in-nozzle turbulence.

Among the studies that deal with in-nozzle cavitation, Lee & Reitz [40] show that fast closing

of the needle can result in cavitation and conclude that there is some optimal lift profile in the

needle movement through numerical investigation of injector nozzle flow. In their comparative

experimental study across different nozzle geometries, Payri et al. [52] find that convergent nozzles

do not present cavitation, and that the spray momentum is not affected by cavitation. Arienti &

Sussman [8, 9] demonstrate an effect similar to cavitation via computations. They find that the

ambient gas is ingested into the nozzle before the start of injection. This leads to a non-uniform

filling of liquid inside the nozzle and impacts atomization behavior.

Although much of the literature [22, 45, 64] has established that internal nozzle flow is critical to

the disturbance and subsequent breakup of the issuing liquid jet, very little work, if any, has reported

on the effect of nozzle asymmetries and surface imperfections on primary atomization. The present

work is aimed at addressing these open questions by first providing a quantitative characterization of

the nozzle surface geometry. This is followed by detailed Volume-of-Fluid (VoF) simulations where

the internal and external flow is fully-coupled. This is in contrast to the decoupled simulations

where internal nozzle flow is computed and provided as an inflow boundary condition to the spray

simulation [31]. The goal is to demonstrate the sensitivity of internal nozzle flow characteristics,
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near field liquid jet characteristics, and primary atomization behavior to differences in the nozzle

surface features. Our scope is within the quasi-steady period of injection, i.e., beyond the initial

transient. We additionally employ an incompressible strategy in simulating the fluid mechanics.

While this imposes some degree of inaccuracy in the simulations under the present conditions, our

present objective is to take an initial step in analyzing the fluid mechanics and atomization at

the current level of detail before embarking in more general approaches. An important discovery

from the present work concerns the significant role that the mean non-axial flow (inside the nozzle)

plays in the atomization characteristics. While some studies have tried to characterize the axial

flow profiles [12, 15, 62], no studies to the author’s knowledge investigate the non-axial velocity

components.

An important discovery from the present work is regarding the significant role the steady (non-

fluctuating) flow, specifically the steady non-axial flow, inside the nozzle plays in the atomization

characteristics. While some studies have tried to characterize the axial flow profiles [12, 15, 62],

no studies to the author’s knowledge investigate the non-axial velocity components. We find that

the steady non-axial velocity components are small in magnitude but have a significant impact on

atomization.

2.2 Results

The results are presented in five parts. Section 2.2.1 discusses the mean velocity profiles inside the

nozzle, and Section 2.2.2 examines the growth of disturbances on the liquid surface as the fluid

moves downstream from the nozzle orifice. The turbulent kinetic energy and the magnitude of the

transverse velocity is discussed in Section 2.2.3. In Section 2.2.4 we describe the bulk atomization

characteristics through a characterization of the liquid core fragmentation. Finally, in Section 2.2.5

we formally examine the grid convergence characteristics for the metrics provided in this chapter.
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2.2.1 Internal Flow

The instantaneous velocity can be decomposed into a mean velocity and a perturbation velocity

given respectively by u = 〈u〉 + u′ according to the standard Reynolds decomposition. While the

flow is predominantly along the nozzle axis, it is helpful to isolate the non-axial component, namely

u⊥ = u · (I− exex), (2.1)

where ex is a unit vector along the axial direction. Results for 〈u⊥〉 at the finest grid resolution are

presented in Fig. 2.1a and Fig. 2.1b at the orifice exit plane (x = 0) for the Spray A geometries.

There is a striking difference between the flow in the Educated and the Unprocessed Spray A;

higher magnitudes of 〈u⊥〉 are observed in the Unprocessed Spray A. These higher magnitudes are

concentrated near the nozzle walls mainly because the flow in this region is susceptible to small but

abrupt changes in direction. Due to the high-speed velocity in the axial direction, a non-negligible

change in the flow direction due to nozzle surface features leads to an appreciable non-axial velocity

component. Additionally, the flow asymmetry further accentuates this process.

Moreover, it is observed that there are discernible flow structures in the averaged velocity field.

It should be emphasized that these flow features represent converged temporal averages ; these are

not instantaneous structures. The implication is that regardless of the turbulent fluctuations, the

underlying velocity field itself departs significantly from the canonical symmetric profile in a purely

circular inlet. Persistent (time-invariant) and organized flow structures are set up inside the nozzle.

To illustrate the complexity of the flow, color maps of vorticity are also shown in Fig. 2.1c and

Fig. 2.1d to display the degree of structure that the internal flow has at the nozzle exit. This data

is also presented at the finest grid resolution.

As the jet exits the nozzle, the velocity component normal to the interface plays a direct role in

the subsequent atomization behavior. For canonical flows such as the external-only case considered,

that velocity component normal to the interface is zero. However, for more realistic flow cases,
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(a) 〈u⊥〉 for Educated
Spray A

(b) 〈u⊥〉 for Unprocessed Spray A

(c)
∣∣〈ω‖〉∣∣ for Educated

Spray A
(d)

∣∣〈ω‖〉∣∣ for Unprocessed Spray A

Figure 2.1: Contours of the time averaged, transverse velocity magnitude, 〈u⊥〉 and the time
averaged vorticity magnitude

∣∣〈ω‖〉∣∣ are presented at the orifice opening (x = 0) for the two Spray
A geometries. The color bars appear in SI units. The vector arrows represent the 〈u⊥〉 vectors.

such as the Unprocessed and Educated geometries this component is not zero and represents an

instantaneous protrusion of liquid, which directly influences atomization. The contributions from

this non-axial component can be approximated very well by the radial velocity, ur, since the orifice

opening is sufficiently close to circular for both the Educated and Unprocessed geometries.

To get a sense of the radial velocity characteristics, 〈ur〉, Fig. 2.2 plots the distribution of 〈ur〉

across the x = 0 plane, where ur = ur ·er. The Unprocessed Spray A nozzle has a wider distribution,

i.e., exhibits higher magnitude values of 〈ur〉 supporting the observations from Fig. 2.1.

Fig. 2.3 shows the 〈u⊥〉 contours inside the nozzle at different axial locations, along with the

liquid jet emerging from the nozzle. While the velocity field shown here is time-averaged, the
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(a) Educated Spray A (b) Unprocessed Spray A

Figure 2.2: The time averaged, radial velocity component, 〈ur〉, at the exit of the orifice is presented
as probability distributions for the two Spray A configurations at the finest resolution. The velocities
are shown in m/s units. Higher magnitudes of 〈ur〉 are observed in the Unprocessed Spray A
geometry.

liquid-gas interface presented is instantaneous for ease of interpretation (the time-averaged liquid

distribution is presented subsequently in Fig. 2.6). We find that this pattern of a larger magnitude

of the non-axial velocity in the Unprocessed Spray A nozzle holds further upstream as well, i.e., into

the nozzle. Concerning the liquid surface, apart from the surface fluctuations that grow along the

flow direction, an interesting feature is the presence of protrusions or striations along the liquid jet.

Production of these striations is most pronounced in the Unprocessed Spray A geometry followed

by the Educated Spray A geometry. The external-only flow has no non-axial velocity component

at the orifice opening, therefore, no such protrusions are recorded in this case, as expected.

To examine the connection between the mean internal flow and the liquid surface striations, we

consider two (Lagrangian) fluid particles located on the intersection of the nozzle exit plane and

the gas-liquid interface at precisely the source of two striations, respectively. This is illustrated in

Fig. 2.4. The motion of these fluid particles is described by,

dX(t)

dt
= u(XΓ(t), t), (2.2)

where the subscript, Γ, denotes interface location. Since we are interested in the protrusion of liquid
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(a) Unprocessed Spray A

(b) Educated Spray A

(c) External-only

Figure 2.3: Contours of the time averaged, non-axial velocity, 〈u⊥〉, are shown at different loca-
tions inside the nozzle orifice along with a part of the liquid jet surface. The differences between
the internal flow and the liquid surface shape between the configurations is evident. The higher
magnitudes of 〈u⊥〉 lead to prominent striations on the liquid jet surface.

at this location, the radial component is isolated from the previous expression giving

dR(t)

dt
= ur,Γ(X(t), t). (2.3)

The motion of two fluid particles, α1 and α2, is highlighted in Fig. 2.4. At t0 both particles start at

the orifice opening and their locations are shown at two subsequent times, t1 and t2. A dotted line is

added to the figure to indicate the respective particle paths. The motion of these particles normal to

the liquid surface, i.e., motion in the radial direction, leads to a displacement of the liquid surface.
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Further downstream, these striations appear to coalesce producing an even more pronounced radial

displacement. While fluctuations are present in the disruption of the liquid jet surface, the fact

that a significant part of this motion stems from an averaged flow field underscores the importance

that mean quantities have in creating liquid jet asymmetries and in the overall breakup behavior

as examined in the following sections.

Figure 2.4: An illustration of the formation of striations on the liquid jet surface. The passive
Lagrangian trackers are shown by the red dots and their trajectories are marked by the dotted
lines. The underlying velocity field is shown by the blue arrows. An initially circular liquid jet
deforms under the action of the non-axial velocity component and permanent striations appear on
the liquid surface.

2.2.2 Interface Displacement From Base Shape

Fig. 2.5 and Fig. 2.6 provide a visualization of the near field liquid distribution using the instanta-

neous liquid fraction (α) contours and the time-averaged liquid fraction (〈α〉) contours, respectively.

Inside the nozzle (x < 0) the mean values for the non-axial velocity, | 〈u⊥〉 | are presented in both

figures. The data is presented for the finest grid resolution cases. The smearing of the 〈α〉 contours

in Fig. 2.6 corresponds to the degree of fluctuation of the liquid surface. Significant differences are
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observed among the three configurations in both figures. More importantly, in Fig. 2.6 the more

disturbed flow field corresponding to the Unprocessed geometry shows a larger degree of liquid core

disintegration even as close as x/D0 = 8. The disturbance of the liquid core is also observed for the

Educated Spray A nozzle but to a lesser extent. This behavior is consistent with the striations on

the surface observed earlier. For the external-only flow, where u⊥ = 0 at the inlet plane, the liquid

mass distribution remains largely cylindrical.

(a) Unprocessed Spray A

(b) Educated Spray A

(c) External-only

Figure 2.5: Contours of the instantaneous, liquid volume fraction field α, are shown at different
locations in the external flow region (x > 0) and contours of the time averaged, non-axial velocity,
〈u⊥〉, are shown at different locations inside the nozzle orifice (x < 0). Significant differences are
observed in the liquid distribution among the three configurations.

To quantify the degree of surface perturbation, we define the radial location of the jet, R(θ, x, t),

as the distance between a point on the surface of the jet along a line of constant θ and the axis of

the jet at the same axial location x. At the base of the jet, i.e., x = 0, this radial location is not a
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(a) Unprocessed Spray A

(b) Educated Spray A

(c) External-only

Figure 2.6: Contours of the time averaged, liquid volume fraction field 〈α〉, are shown at different
locations in the external flow region (x > 0) and contours of the time averaged, non-axial velocity,
〈u⊥〉, are shown at different locations inside the nozzle orifice (x < 0). Significant differences are
observed in the liquid distribution among the three configurations.

function of time since the surface of the jet coincides directly with the nozzle orifice, and the flow

exiting is 100% liquid. We denote this base shape as Ro(θ), which can be subsequently employed

to calculate a surface displacement as

ξ(θ, x, t) = |R(θ, x, t)−Ro(θ)|. (2.4)

Some representative results are shown in Fig. 2.7 at t = 50µs, where the jet surface is colored by

|ξ(θi, xj, t = 50µs)|. The inset shows a single slice of this jet at x = 3.3D0. This image illustrates the

level of disturbance in the liquid surface as a function of the axial coordinate, x, and the azimuthal
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angle, θ. To calculate an overall rate of displacement from the base shape, we discretize the spatial

variables and compute the temporally and azimuthally averaged value as

〈ξ(xj)〉 =
1

nθ

nθ∑
i=1

〈ξ(xj, θi)〉 . (2.5)

In the case where more than one interfacial point is encountered along the constant θ line, the point

recorded in this calculation corresponds to the closest one to the jet axis.

Figure 2.7: The surface of the liquid spray for the Unprocessed Spray A configuration is shown to
the left. A slice of this surface at x/D0 = 3.3 is shown in the inset. The dashed line in the inset
represents the base surface, R(x = 0, θ), i.e. the shape of the orifice opening. ξ is the distance of
the surface points from this base surface. The liquid surface points are colored by the magnitude
of the disturbance, ξ.

The 〈ξ(xj)〉 trends for the different cases are shown in Fig. 2.8, which display a nearly linear

increase in the mean displacement with distance downstream. The values of 〈ξ(xj)〉 among the
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different grid levels for the same nozzle configuration are found to be close to each other indicating

that for this metric numerical convergence is largely achieved. Consistent with the larger non-axial

velocity observed for the Unprocessed Spray A nozzle flow, the corresponding interface displacement

follows the same trend. The mean displacement values for the Educated nozzle geometry are milder

and the external-only case is significantly lower than both nozzle cases.

Figure 2.8: The averaged disturbance values,
〈
ξ
〉
, are shown as a function of the axial location, x,

for the different spray configurations.

2.2.3 Turbulent Kinetic Energy and Transverse Velocity Magnitude

As the injected liquid is the primary source of momentum in the present study, the turbulent kinetic

energy (kL) of the liquid phase is considered here. This turbulent kinetic energy is obtained from

kL(x) =
1

2
〈α(u′ · u′)〉, (2.6)

where u′ = (u − 〈u〉) is the perturbation velocity, and kL is weighted by the local liquid volume

fraction, α, to isolate the liquid phase. This calculation of the TKE is directly based on the resolved
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velocity field and is free of turbulence modeling approaches. Its grid sensitivity is examined in

Section 2.2.5.

To gauge the progression of TKE as the liquid undergoes passage through the nozzle, exits the

internal domain, and is subsequently atomized, it is presented in terms of a planar average, namely

kL(x) =

∫ y=Ly/2

y=−Ly/2

∫ z=Lz/2
z=−Lz/2 kL(x, y, z)dydz∫ y=Ly/2

y=−Ly/2

∫ z=Lz/2
z=−Lz/2 〈α〉 dydz

. (2.7)

This quantity is normalized by the time-averaged amount of liquid in any cross-sectional plane at

some axial distance x from the nozzle exit.

The kL profiles are presented on a log-linear plot in Fig. 2.9 for the different injection configura-

tions. Similar to the earlier figures, curves pertaining to a given geometry are given the same color

and within each color different markers are employed for the various levels of numerical resolution.

The first observation regarding the results of Fig. 2.9 concern the much larger levels of turbulence

for both nozzle configurations in contrast to the external-only geometry. This level of turbulence

is caused mostly by the various asymmetries and imperfections of the nozzle surface features. It

should be noted that there is no kL at the inlet plane for both nozzle geometries. These inlet planes

displayed in Fig. 1.1 are assigned a steady and spatially uniform velocity (note, the inlet plane

location is x/D0 = −19.9, which is far from the range shown in Fig. 2.9). As the flow transitions

from wall-bounded flow to the external domain, there is a sharp change in the slope of kL. This is

a direct result of the interfacial instabilities and hydrodynamic breakup occurring in the external

domain. It is interesting to see that this level of growth, i.e., dkL/dx, is similar in all configurations,

even though kL it approximately two orders of magnitude lower for the external-only cases.

A second observation concerns the higher level of kL for the Unprocessed geometry inside the

nozzle. Having already observed a larger degree of non-axial velocity components for the mean

velocity field in conjunction with the much rougher nozzle surface, this is not surprising. How-

ever, beyond the confinement of the nozzle, the level of turbulence is remarkably similar for the
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Unprocessed and Educated geometry cases. This implies that the kL differences observed between

these two geometries inside the nozzle do not translate to much greater differences in the external

domain. In the work of Chouak et al. [15], the authors reached a similar conclusion with regards

to the effects of nozzle geometry on turbulence intensity.

-6 -4 -2 0 2 4 6
10-2

100

102

104

Figure 2.9: The mean liquid TKE, kL, is presented as a function of the axial distance.

To further illustrate the importance of the steady transverse velocity as compared to the tur-

bulent fluctuations, we compare the magnitude of the non-axial velocity component, |〈u⊥〉|, and

the perturbation velocity component, |u′|. We focus on a 5µm-thick band at the wall at the orifice

opening adjacent to the interface. As demonstrated in Section 2.2.1, the velocity profile in this

region is important as it directly impacts the liquid jet surface. The average values of the velocity

components are documented in Table 2.1. For the Unprocessed geometry the |〈u⊥〉| is higher than

|u′| by an order of magnitude. For the Educated geometry, however, these magnitudes are compa-

rable. This demonstrates that the effect of surface roughness is not confined to merely augmenting

turbulence. It also leads to the creation of a steady non-axial velocity component, |〈u⊥〉|.
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Table 2.1: The steady non-axial velocity component, |〈u⊥〉|, and the perturbation velocity com-
ponent, |u′|, are compared for the two Spray A configurations. The values reported have been
averaged over a 5µm-thick band near the wall at the orifice opening.

Geometry |〈u⊥〉| (m/s) |u′| (m/s)

Spray A (Unprocessed) 10.3 1.7
Spray A (Educated) 2.1 2.6

2.2.4 Length of Liquid Core

Having established the higher level of surface disturbance produced by flow in the Unprocessed

geometry, as well as the significant effect the internal flow has on the destabilizing the liquid in the

near field, the final comparison is made with regards to the length of the liquid that is topologically

connected to the nozzle, simply referred to as the intact liquid core. Time histories of this intact

liquid core are presented in Fig. 2.10. The instantaneous liquid length values are shown with lighter

lines in the figure. At the start of injection, the length of the liquid core increases linearly for all

the nozzle configurations. At some point in time (between 5µs to 17µs depending on the nozzle

configuration) hydrodynamic breakup begins, and the length of the liquid core fluctuates about a

mean value. The time series beyond the breakup point are included here to give a sense of the

magnitude of the liquid core fluctuations. Additionally, a moving average of the instantaneous data

starting at t = 20µs is presented by the darker lines with the markers. The averaged values quickly

converge to a specific value for each of the cases, which corresponds to the reported mean breakup

lengths documented in Table 2.2. For the same nozzle configuration, the values of the mean liquid

core length among the different grid levels are similar suggesting numerical convergence.

Table 2.2: Intact core lengths for the different spray configurations and grid resolution levels.

Geometry Coarse Medium Fine

Spray A (Educated) 35.7D0 37.8D0 35.7D0

Spray A (Unprocessed) 23.4D0 25.6D0 20.4D0

External-only 46.5D0 49.2D0 51.9D0
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Figure 2.10: The length of the intact liquid core as a function of time for the different configurations.
The instantaneous liquid length values are represented with the lighter lines and the moving average
of the data is represented by the darker lines with the markers.

There is a clear trend across the different nozzle configurations; the Unprocessed Spray A con-

figuration has the shortest liquid core length followed by the Educated Spray A configuration and

the longest core length is observed for the external-only flow configuration. Through reconstruc-

tions of ensemble-averaged X-ray radiography data, Pickett et al. [53] estimate the intact liquid

core length to be approximately 2.5 mm or 27.7D0. In the present simulations, there is an apparent

sensitivity of the breakup lengths to the nozzle surface features resulting in the experimentally es-

timated length being somewhere in between the lengths reported for the two Spray A nozzles. The

larger magnitudes for surface features corresponding to the Unprocessed geometry, which produce

similarly larger values for radial (non-axial) velocity components and larger surface displacements,

lead naturally to a shorter intact liquid core.

2.2.5 Grid Convergence

In this section we provide a detailed assessment of the numerical convergence of the data presented

in this chapter. While at the current flow conditions (ReL,WeL), we do not have access to sufficient
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resources such that numerical error can be shown to be approximately zero as ∆x → 0, we can

definitely quantify the degree of convergence for key metrics of the problem.

The central idea of the present analysis is to verify whether the error reduces progressively as

we refined the grid from the coarse level (∆x1), to the medium level (∆x2), and ultimately to the

fine level (∆x3). This is captured in the convergence ratio metric, C, which is defined as

C =
ε1
ε2

=
mean(|f∆x1 − f∆x2|)
mean(|f∆x2 − f∆x3|)

. (2.8)

where the ε values are computed as

ε1 = mean(|f∆x1 − f∆x2|)

=
1

nx

nx∑
i=1

|f∆x1(xi)− f∆x2(xi)|. (2.9)

Here nx is the number of discrete xi points on which the error is evaluated. If C > 1, then

the absolute difference between the medium and fine grid is smaller than the absolute difference

between the coarse and medium grids. Under these conditions, we interpret the results as indicating

convergence, since the difference between grid levels is decreasing as we reduce ∆x.

With respect to the key parameters characterizing this work, we chose the PMD (Φz and Φy)

since the prediction of mass distribution in the near-field region is a fundamental quantity character-

izing atomization characteristics. Additionally, we consider the departure from base shape, 〈ξ〉/R0,

since this is a key characteristics that quantifies the degree of atomization and how it changes

between the two nozzle configurations. A standard metric is also the TKE. Since it is the liquid

that dominates the source of energy owing to its larger density and higher velocity, we consider the

liquid TKE. Finally, the overall metric that quantifies breakup is the intact liquid core length, and

this is also considered.

The results are presented in Table 2.3, which show converging trends for the majority of met-
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rics. One notable exception corresponds to the external-only configuration, where for this geom-

etry all of the predictions are already relatively close to each other. For instance, mean|kL∆x2 −

kL∆x3 |/mean|kL∆x3| = 0.03. This implies that while convergence is not indicated by C, it is ex-

pected based on the small displacement between predictions corresponding to different grid levels.

This can be seen in Figures 1.8–1.10, 2.7, 2.9. As more powerful computational resources become

available, these calculations will be revisited at lower values for ∆x.

Table 2.3: Grid convergence metrics for data presented in Figures 1.8, 2.7, 2.9 and 2.10.

Φz Φy 〈ξ〉/R0 kL L/D0

Geometry Fig. 1.8a Fig. 1.8b Fig. 2.7 Fig. 2.9 Fig. 2.10

Spray A (Educated) 2.81 0.82 3.53 2.52 2.50
Spray A (Unprocessed) 4.51 3.76 1.27 0.20 0.43
External-only 0.69 0.59 0.48 0.51 1.38

2.3 Conclusions

The first conclusion from the present chapter concerns the large change in intact liquid core length

by O(1) mm in addition to substantial changes in gas-liquid interface disturbances as a result of

O(1)µm variations in internal nozzle surface features corresponding to a change from the Educated

geometry to the Unprocessed geometry. It is truly surprising to see this level of sensitivity to such

a small change in the internal nozzle surface morphology. Since the injection velocities are high in

the axial direction, small changes in this velocity direction caused by small nozzle surface features

lead to relatively high non-axial velocity magnitudes. These effects amplify the near-field surface

characteristics leading to an earlier fragmentation of the liquid core.

The second conclusion draws attention to the conditioning of the flow as a result of its passage

through the internal geometry. It is well established in the community that such an internal flow

inevitably augments the turbulence leading to more interfacial disturbances in the spray near-field

and more atomization. A new aspect introduced in the present chapter is that this flow conditioning



57

is not simply an augmentation in turbulence but also a creation of persistent and organized flow

structures in the internal nozzle flow. It is these structures that are significant contributors to the

disturbances occurring in the near-field, which eventually lead to accelerated atomization. In the

case of the Unprocessed Spray A, these flow structures are an order of magnitude larger than the

turbulent velocity fluctuations.
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Chapter 3

Evaluating Surface Tension Schemes

with Respect to High-Fidelity

Atomization Simulations

3.1 Background & Motivation

In high-speed liquid injection, as the atomization process happens, liquid away from the intact core

appears in the form of smaller ligaments and droplets, which move at relatively lower speeds. As a

result of the smaller sizes and speeds, surface tension force dominates the dynamics of these liquid

structures. Processes like breakup of ligaments, and motion and collision of droplets are surface

tension dominated. Accurately computing the surface tension force in the simulations is therefore

important.

The Volume of Fluid (VoF) method is a robust method well suited for atomization simulations,

especially because of its mass conserving properties [20]. Poor calculation of surface tension has

been the only major weakness of the method [20, 54, 55]. This arises because of the poor accuracy of

curvature calculations made based on second order derivates of the sharply varying volume fraction
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field. A variety of novel methods have tried to address this problem. Martinez et al. [44] proposed

an improved method to compute the curvature based on a piecewise linear interface construction

(PLIC). They report reduction in spurious currents through their method, but only simple 2D tests

have been presented. Popinet [54] presents an improvement on the height function method. This

results in better performance in the low-resolution limit, a major weakness of the standard height-

function method [18]. This method was tested in some 2D and 3D tests. In the standard height-

function method, the underlying grid is used to compute the height function. As an improvement

over this, Owkes and Desjardins [50] present a variation where the height function calculation is

decoupled from the underlying grid, it is instead computed on columns that are not aligned with the

grid. Up to second order convergence is reported for well-resolved interfaces in static 2D and 3D test

setups and approximately first order convergence is reported for a 2D capillary wave setup. Wenzel

and Garrick [75] evaluate finite particle methods for curvature and report an order of magnitude

improvement for static 3D sphere tests when a smoothed volume fraction field is used. Owkes et

al. [49] propose a polynomial fit to the VoF interface over an adjustable lengthscale. They present

2D tests like the standing capillary wave and a 2D oscillating droplet.

Popinet [55] summarizes the recent developments in surface tension modeling and note the

marked improvement in the methods over the last 20 years. He points out the need for stanardized,

non-trivial test cases. Cummins et al. [18] compare the curvature computation performance for

a convolved-VoF based method, a distance function based method and a height function method.

They have presented static, canonical test cases. Vachaparambil and Einarsrud [72] compare three

different surface tension models – continuum surface force, smoothed continuum surface force and

sharp surface force, but their tests are also limited to simple 2D problems.

A common trend is that new methods in general add complexity to the curvature calculation in

order to improve the accuracy. Two questions, however, arise through these developments. The first

is regarding the applicability of the methods for realistic flow problems. As summarized above, the

tests presented with every new method are limited to simple, canonical test problems that do not



60

always represent realistic, atomization-elevant flow situations. The second is regarding the extent

to which the improvements in surface tension computations matter in atomization type simulations

with multiple, complex phenomena occurring simultaneously.

In the present work we address these two questions. The interFoam solver, based on the VoF

framework has been employed here. This solver is robust and fairly accurate, has been characterized

in detail [20], and has been used in several atomization studies [3, 4, 21, 69]. As pointed out earlier,

a shortcoming of the solver, and the VoF method in general, is the curvature calculation. There is a

need for an improved surface tension computation in the solver. Here we investigate three potential

methods towards this. The first is a standard calculation based on the liquid volume fraction field,

the second is based on a diffused volume fraction field and the third is based on a signed distance

function. The basic motivation for the second and third methods is to base the curvature calculation

on a smoothly varying and more spread out function, instead of the sharply varying liquid fraction

field which is used in the standard calculation.

The present chapter is a first step towards assessing the effect of curvature schemes in full

atomization simulations. The contents are organized as follows. Section 3.2 describes the three

numerical schemes and their implementation. We introduce a novel method to compute the signed

distance function from the underlying volume fraction field. Section 3.3 focuses on systematic

testing and analysis of the methods using increasingly complex tests – starting from a canonical 2D

droplet test and building up to more complex 3D cases like Rayleigh breakup of a liquid column

and up to full atomization cases.

3.2 Numerical Methods

Similar to the earlier chapters, the Volume-of-Fluid (VoF) simulations reported in this chapter are

performed with an algebraic solver, interFoam. The interFoam solver forms a part of a larger

open-source distribution of computational mechanics solvers and C++ libraries of OpenFOAM,
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which is designed for finite volume discretization on collocated grids for the solution of two-phase

incompressible flows and is benefited from various discretization strategies. A brief description of

the solver was provided in Section 1.2. Here we only describe the surface tension computation in

the solver.

The liquid volume fraction, α, represents the volume fraction of liquid occupying a given compu-

tational cell. The volume of fluid method relies on the advection of the α-field to keep track of the

liquid-gas distribution. Based on the α-field the thermophysical properties (ρ, µ) are determined in

the domain and the momentum equation is solved, thus updating the velocity and pressure fields.

The surface tension force typically appears in the momentum equation as a boundary force.

In the present formulation the boundary force is converted to a volume force by employing the

Continuum Surface Force method [13]. Namely, the surface integral over the interface is expressed

as a volume integral as,

∫
Γ∩Ωi

σκδ(x− xs)ndΓ(xs) =

∫
Ωi

σκ∇αdV, (3.1)

where the local curvature is given by κ, the surface tension coefficient by σ, the gas-liquid interface

by Γ(t), the 3D Dirac Delta function by δ(x − xs), xs is the integration variable over Γ(t) and Ωi

denotes a cell in the domain.

The focus of the present work is calculation of the κ. The three schemes used to compute the

curvature are briefly described in the following subsections.
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3.2.1 Standard Calculation (α-based)

The local curvature is the divergence of the normal vectors to the interface. The simplest way to

compute κ is therefore given as

κ = ∇ · ∇α
|∇α|

, (3.2)

since the interface normal is given by n̂ = ∇α
|∇α| .

In the present finite volume framework this is computed by interpolating the cell-centered normal

vectors to the faces, n̂ → n̂f , and then performing the divergence operation within each cell, i.e.,

κ = ∇ · n̂f .

3.2.2 Diffused α-Based Calculation (α̃-based)

The α-field is sharply varying at the interface, therefore, the numerical derivatives have high error

magnitudes. One way to mitigate this is to base the curvature calculations on a smoother α-field,

represented as α̃ here. This also reduces the high-frequency noise from the α-field. In the present

method the α̃ is computed using a diffusion operation on α.

α̃ is initialized as α̃ = α and then updated through an unsteady diffusion operation as,

∂α̃

∂τ
= D∇2α̃, (3.3)

where τ is the pseudo time, and D is the diffusion constant (D = 1 here). This is solved for a set

number of ∆τ steps to reach a desired diffusion length scale. Here, we pick the diffusion length

scale to be 1∆x. The curvature is then calculated as,

κ = ∇ · ∇α̃
|∇α̃|

. (3.4)
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The numerical implementation of Eq. (3.4) is the same as the one described for the standard

calculation.

3.2.3 Distance-Based Calculation (φ-based)

Signed-distance functions are routinely used in level-set methods to represent the interface [5, 6].

The zero level-set of the function represents the interface. The signed-distance function, φ, repre-

sents the shortest distance from the interface, and φ is set to be positive in liquid and negative in gas.

By definition, φ varies linearly as we move normal to the interface. This leads to a smoothly varying

gradient field which can be advantageous in curvature computations. Therefore, in this method,

the curvature is computed from the φ-field. The challenge however is to obtain an accurate φ based

on the discrete α-field.

Here we propose a novel method to construct the φ-field. The construction is done in two steps,

initialization and propagation, as outlined here:

A. Initialization - handled geometrically

In this step, a piecewise-linear interface is constructed in the interfacial cells, and for these

cells the distance is computed geometrically from the cell center to the interface center. This

is described briefly here. More details can be found in [60].

i. The cell-based α values are interpolated to cell vertices using linear interpolation.

ii. Interface points, xe,j, defined as locations where α = 0.5, are identified along the cell

edges. Linear interpolation is used for this step. The subscript e signifies that these

points are on the edges, and the subscript j is the index of the points.

iii. If a cell has at least 3 interfacial points then it is tagged as an interfacial cell (since in

3D a plane needs at least 3 points).

iv. Construct interface plane, i.e., identify interface center, xc, and interface area vector A
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- Set one interface point, say xe,1 as the origin. Sort points xe,j in cyclical order using

the shoelace formula [60]

- Compute interface center as,

xc =

Np∑
j=1

xe,j (3.5)

- Compute area vector as,

A =

Np∑
j=1

1

2
((xe,j − xe,1)× (xe,j+1 − xe,1)) (3.6)

To ensure that the area vector points from the liquid to the gas in all cells,

if ∇α ·A > 0, then A is set to−A (3.7)

v. Compute perpendicular distance, d⊥, from cell center to interface as,

d⊥ = r · n̂ =
r ·A
|A|

, (3.8)

where r = xc − xcell cent., and n̂ is the interface normal. This expression is simply a

projection of the r vector along the interface normal.

vi. For the interfacial cells, φ is initialized as φ = d⊥. The non-interfacial cells are initialized

as φ = (α − 0.5)∆x, i.e., φ = ∆x/2 in liquid cells and −∆x/2 in gas cells.

B. Propagation - handled algebraically

In the first step, φ values were assigned to interfacial cells, but the rest of the cells the φ

values are not yet assigned. To correctly assign these values we rely on the Hamilton-Jacobi
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equation, which is commonly used for reinitializing level-set functions [5],

∂φ

∂τ
= S(φ0) (1− |∇φ|) , (3.9)

where S() denotes a sign-function. This equation is solved using an explicit time-stepping

and an upwind discretization of ∇φ. To identify the upwinding velocity, Eq. (3.9) can be

expressed in like an advection equation as,

∂φ

∂τ
+

[
S(φ0)

∇φ
|∇φ|

]
︸ ︷︷ ︸

vp

·∇φ = S(φ0), (3.10)

where vp is the velocity at which the solution propagates, i.e., the upwinding velocity.

As per the CSF formulation the surface tension force is active only in cells where |∇α| 6= 0,

i.e., a few cells around the interface. So the κ (and φ) values are needed in a few cells around

the interface. In the solution of Eq. (3.9), the final stopping pseudo-time determines the extent

of propagation of the φ solution. Here we propagate the φ solution to 4 cells away from the

interface, in both, gas and liquid, i.e., a 9-cell band around the interface. The pseudo-time

step, ∆τ is set as 0.2∆x and the solution is evaluated up to 20 pseudo-time steps.

At this point we have a signed distance field, φ. Now, the curvature is computed as,

κ = ∇ · ∇φ
|∇φ|

. (3.11)

Once again, the numerical implementation of Eq. (3.11) is the same as the one described for the

standard calculation.
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3.3 Results

In this section we present 5 test cases, starting with a simple 2D circular droplet and building up

to a full atomization case. We present results from the three methods across a range of numerical

resolutions, and flow parameters.

3.3.1 2D Circular Droplet

A commonly used test problem is the 2D circular droplet test. Here a circular liquid droplet in

gas is used to test the performance of the different schemes against analytical values. The setup

is shown in Fig. 3.1. Analytical values of the curvature and the pressure jump across the interface

are available for this simple setup. The curvature in 2D is given simply by κ = 1/r, where r is the

local radius of curvature. In this setup we have R = 1/4m, therefore the analytical curvature value

at the interface is κ0 = 4 m−1. Numerically obtained curvature values are presented for three grid

levels in Fig. 3.2.

Figure 3.1: An illustration of the 2D circular droplet setup test. The liquid-gas interface is shown
along with the initial discrete α-field.

The mean error in the κ values in a 6-cell wide band around the interface are presented in

Fig. 3.3 along with a c∆x reference line. The error is very different for the three methods. The

φ-based method weakly follows a first order convergence and the standard α-based method appears

to diverge. The α̃-based results are in between the two.
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Figure 3.2: The κ values near the interface are demonstrated for three different grid resolutions,
∆ x = 1/10, 1/20 and 1/40.

The curvature affects the surface tension force contribution which leads to the pressure jump in

this setup. A higher pressure is expected inside the liquid droplet as compared to the outside. The

pressure jump is given by the Young-Laplace equation as ∆p = σκ = 4. Here, the fluid properties

are ρl = ρg = 104, µl = µg = 1 and σ = 1. The computations are run up to t = 125 consistent with

previous studies in literature [20, 28]. The pressure data obtained along the centerline of the setup

is shown in Fig. 3.4 for the three different schemes. Along with data for the three grid levels, the

analytically expected pressure curve is also shown in the plots.

The pressure data from the standard computation is shown in Fig. 3.4a. It can be seen that

upon refinement the pressure inside the liquid converges to a value lower than the analytical value.

This is a direct result of the poorer curvature values. The pressure values improve for the other two

methods as seen in Fig. 3.4b and 3.4c. For the α̃ computation, the coarse case performs relatively

poorly as seen in Fig. 3.4b. Upon refining the grid the pressure values converge to the analytical

values. We observe a similar trend for the φ-based computation where the values converge to the

analytical value upon grid refinement.

The error in the pressure jump across the interface is presented in Fig. 3.5 as a function of

∆x for the three different methods on a log-linear scale. Two reference lines corresponding to first

and second order convergence are included as well. There is clear second order convergence in
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Figure 3.3: The mean error in the κ-field is presented for the different methods with respect to
varying grid resolutions on a log-linear scale. The dotted line represents a c∆x-trend line.
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Figure 3.4: Pressure distribution along the centerline is presented for the three different schemes at
four different grid resolutions each. The dotted line in the figures represents the analytical pressure
value.

the data from the φ-based method. The diffused α-based method exhibits mixed results, where

the convergence trend is unclear but the error magnitudes are smaller than those from the α-

based method. The error from the α-based method appears to saturate and does not reduce upon

refinement.
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Figure 3.5: Mean error in the pressure jump is presented here on a log-log plot for the three methods
for four different grid levels.

3.3.2 3D Oscillating Droplet

In this test an initially spherical droplet is perturbed with a small perturbation and the oscillation

is observed. The motion of the droplet is driven by surface tension and inertia. The oscillations are

eventually damped out by viscosity.

The initial shape of the perturbed droplet is given as,

R = R0 [1 + ηP2 (cosθ)] , (3.12)

where R0 = 1m is the unperturbed radius, η is the magnitude of perturbation, set as 0.04, P2

represents the Legendre polynomial of second order, and θ is the polar angle. This is set up in a

[4R0 × 4R0 × 4R0] domain with no-slip boundaries. The physical properties of the liquid and gas

are as follows: density ρl = 1, ρg = 0.01 kg m−3; viscosity µl = 0.01, µg = 0.0001 Pa· s and surface

tension σ = 1 Nm−1. This setup is the same as the one used by Patel et al. [51].



70

For this setup Lamb [38] has given the analytical expression for the motion of the interface as,

r(t) = η exp

(
−t 5µl
ρlR2

0

)
cos

(
t

√
24σ

R3
0[3ρl + 2ρg]

)
. (3.13)

We compare our simulation data against this expression. Fig. 3.6 shows the location of the top

point of the droplet for the three different schemes. In each of the plots we show data for three

different grid resolutions. The analytical result from Eq. (3.13) is provided for comparison.

(a) Standard α computation (b) α̃-based computation (c) φ-based computation

Figure 3.6: The position of the topmost point of the droplet is presented as a function of time along
with the analytically expected trend. Three different grid resolutions are presented for each of the
methods.

It can be seen that for all the three methods the results move closer to the analytical expression

upon refinement of the grid. The results from the φ-based method (Fig. 3.6c) appear to outperform

the other methods.

The mean error in this data is shown in Fig. 3.7. Error data for the three methods is presented

as a function of the grid resolution and a first order reference line (c∆x) is provided. It can clearly

be seen that the φ-based method has a lower error magnitude as compared to the other methods.

However, the rate of convergence of the errors is the same across the three methods. The data

roughly follows a 1st order convergence for the three methods.
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Figure 3.7: The mean error in the positions presented in Fig. 3.6 is presented here along with a
c∆x reference line.

3.3.3 Rayleigh Breakup of Liquid Column

In this test we consider the classic Rayleigh breakup of a laminar liquid jet [56]. This is a surface

tension-driven flow pertinent to liquid breakup simulations. Here we begin with a liquid column with

a varicose sinusoidal perturbation imposed on its surface as seen in Fig. 3.8a. This perturbation

grows and eventually disintegrates the liquid column, as seen in Fig. 3.8b and Fig. 3.8c. The

breakup usually leads to the formation of two structures, a large ‘main’ droplet at the boundary

of the domain and a smaller ‘satellite’ droplet near the middle. These droplets are labelled in Fig.

3.8c. The periodic nature of the simulation domain means that the main droplet is continuous

across the top and the bottom faces of the domain.

Lafrance [37] provides a detailed analysis, accounting for non-linear effects, and predictions for

the sizes of the resulting droplets. Their experiments are in agreement with these predictions. In

this section we compare the present results against these theoretical predictions.

All simulations are performed on a water jet of R0 = 17.5 × 10−6 m with ρ = 1000 kg m−3,

µ = 10−3N s m−2 and σ = 0.073 N m−1. ∆x = 1.3µm in the region surrounding the liquid jet. Away

from the jet a coarser grid is employed. The initial perturbation is given by r = R0 +A cos
(
k z
R0

)
,
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(a) Initial setup (b) Growth of perturbation (c) After disintegration

Figure 3.8: The evolution of the Rayleigh breakup of a liquid column is illustrated here through three
different time snapshots. The final configuration has two droplets - the main droplet is continuous
across the periodic boundary condition on the top and bottom faces.

where A = 0.15R0 and k is the perturbation wavenumber. Simulations with k = 0.5, 0.6 and 0.75

are performed for each of the three curvature methods.

The radii of the resulting droplets are presented in Fig. 3.9 along with the theoretical predic-

tions [37]. Data in red represents the main droplet size and data in blue represents the satellite

droplet size. The theoretical predictions are shown using dotted lines, and the simulation results are

shown with the different markers. Overall, the agreement with the theoretical predictions is good

for the three methods. The error in the satellite droplet sizes is higher than the error in the main

droplet sizes. The main droplet sizes for the three methods are close enough to each other that the

markers in the plot appear to overlap. The differences are more apparent in the satellite droplet

data. Among the three methods, the φ-based computation leads to the best droplet sizes. This

is especially evident for k = 0.5. The droplet sizes predicted by the standard α and the α̃-based

methods are close to each other and it cannot be said which method performs better than the other.

However, we observe that the satellite droplet from the α̃-based simulation breaks up into smaller

droplets. So while the droplet sizes are relatively accurate, the dynamics of the resulting droplets

are not predicted well by the α̃-based computation.
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Figure 3.9: The radii of the two droplets after the breakup of the liquid column are presented here
for the three different schemes at three different perturbation wavenumbers. Theoretically expected
radii are represented using the dashed lines. The data in red represents the main droplet and the
data in blue represents the satellite droplet.

3.3.4 Shear Layer: Growth of Interfacial Instability

In this test the growth of the instability on a two-phase shear layer setup is examined. The setup

is illustrated in Fig. 3.10. There is gas on top and liquid on the bottom. The gas is moving to

the right, and the liquid is moving to the left. This interface is unstable. In this setup this flow is

perturbed initially and the perturbation is allowed to grow.

The fluid properties are as follows: ρl = 1, ρg = 0.1 kg m−3, µl = 5.05 × 10−5, µg = 5 ×

10−5N s m−2. Two values of σ are used here, σ = 0.01 N m−1 and σ = 0.1 N m−1. These corre-

spond to two different Weber numbers, We = ρLU
σ

. A lower We implies a stronger contribution of

the surface tension force. The ∆x is set to 0.011 m to ensure that the small initial perturbation is

sufficiently resolved.

The perturbation kinetic energy, KEpert., is tracked to track the growth rate of the instability.
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Figure 3.10: An illustration of the shear layer setup. The two phases are shown separated by the
interface which has an initial sinusoidal perturbation on it.

The total KEpert. is computed as,

KEpert. =

∫
ρ

2
(U− 〈U〉) · (U− 〈U〉) dV, (3.14)

where 〈U〉 is the base velocity and U is the instantaneous velocity.

As an example, the growth of KEpert. as a function of time is presented in Fig. 3.11 on a log-

linear plot for the φ-based method. Here, we test 5 different wave numbers, specified by α. For

α < π the growth is clearly exponential.

The KEpert. is expected to grow as KEpert. = A exp(2ωt). Based on this, the growth rate, ω,

is extracted from the KEpert. data and presented in Fig. 3.12. The two subplots correspond to

the two different Weber numbers. In these plots we present the growth rates for the five different

wavenumbers for the three methods along with the analytically expected growth rate curve. The

theoretical solution has been described by Deshpande et al. [21]. The code for this semi-analytical

solution has been provided by Suraj Deshpande.

Overall we see very good agreement between the simulation results and the theoretical pred-

ication across the three methods. From the two plots we can also see that the growth rates are
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Figure 3.11: The perturbation kinetic energy, KEpert., as a function of time is presented for the
φ-based method as an example of typical KEpert. growth. The 5 different curves correspond to 5
different wavenumbers, α.

(a) We = 100 (b) We = 10

Figure 3.12: The growth rate of the shear-layer instability is presented for the different methods
and cases along with analytically expected results.

lower for the lower We cases. This is to be expected as the surface tension is a stabilizing force

here. Upon closer examination, it appears that the φ-based method slightly outperforms the other

methods when the We is reduced to 10 (see Fig. 3.12b). This is especially seen when the growth

rates are lower, for example at α = 2π/3.
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3.3.5 Retraction of Liquid Column

In this test a perfectly cylindrical liquid column, which is initially stationary, is allowed to retract

under the action of surface tension. This test has been performed by Umemura [71] and Deshpande

et al. [20].

The liquid is SF6 (ρl = 1460kg m−3, µl = 1.1×10−3 N s m−2) and the gas is pressurized nitrogen

(ρg = 79.1 kg m−3, µg = 1.76 × 10−5 N s m−2). The surface tension constant here is 1.605 ×

10−3 N m−1. The simulations are performed on a uniform mesh with the finest resolution being

∆x = 7.8µm with 32 grid cells across the jet diameter. The time-step size is constant at ∆t = 2µs.

The non-dimensionalized time, t∗, is given by t∗ = t 1
R

√
σ
ρlR

, where R is the radius of the cylinder.

Fig. 3.13 shows the evolution of the column at three different times for the three methods. The

perfectly cylindrical liquid column at t∗ = 0 starts retracting and a bulb and a neck are formed

at the end of the column as seen in Fig. 3.14a. The contraction further continues as the surface

tension tries to reduce the overall surface area and at t∗ = 18.9 the bulb appears much larger. At

this point subtle differences in the shapes of the columns across the three methods start emerging.

The bulb for the α̃ implementation appears flatter than the one from standard α. This evolution

continues and at t∗ = 30 a difference in the length of the liquid column also emerges.

The lengths of the columns are presented as a function of time in Fig. 3.14. Three figures are

presented for the three methods. In each of the plots data for three different grid resolutions is

presented. The strong overlap of the data as the grid is refined means that the grid is sufficiently

resolved. The lengths follow the same pattern in all of the cases. At first the length is constant -

this is when the liquid is still connected to the face on the right. The shape of the liquid cylinder

starts to deform but the length remains equal to the length of the domain. At some point the liquid

snaps off from the right face and the column starts retracting. The length varies linearly with time,

implying that the retraction speed is constant.

Fig. 3.15 shows the length data for the finest cases of the three methods together. The lengths
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(a) t∗ = 7.8 (b) t∗ = 18.9

(c) t∗ = 30.0

Figure 3.13: The evolution of the retracting liquid column for the three curvature schemes is
illustrated through three time snapshots.

(a) α-based (b) α̂-based (c) φ-based

Figure 3.14: The length of the liquid column is presented as a function of time for the different
methods. In each of the plots data from three different grid resolutions is presented. All data is in
SI units.

from the diffused-α based method and the φ-based method are almost identical, and are slightly

different from the α-based computation. This is evident from Fig. 3.13 as well.
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Figure 3.15: The time evolution of the column lengths for the finest cases from all three methods
are presented. All data is in SI units.

For this test we do not have any quantitative experimental or theoretical benchmarking data.

Here, we only compare the results from the three methods against each other. While subtle dif-

ferences emerge in the shapes of the bulbs and the lengths of the liquid columns from the three

methods, the differences in the overall dynamics appear minor. An improved curvature scheme does

not impact the results in a significant way.

3.3.6 Co-Flow Atomization

Here we look at a full atomization problem. The physical setup consists of a water jet injected

through a cylindrical nozzle of diameter D, surrounded by a co-flowing streaming of air. This test

has been discussed in experimental [24] and computational [21, 69] work in literature.

The speed of the liquid is set at Ul = 1.4ms−1, and the gas speed is varied to give varying relative

speeds Urel. = Ug −Ul. The key non-dimensional number here is the Weber number, We = ρlDUrel.
σ

.

Here we consider four cases with We = 26, 50, 100 and 126. In all these cases D/∆x = 28 is used

in the near field of the liquid jet to allow sufficient grid convergence.
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In this test we consider the length of the intact liquid core, similar to the tests seen earlier in

Section 2.2.4. The intact liquid core lengths are presented in Fig. 3.16 as a function of time for the

cases considered here.

(a) α-based (b) α̂-based (c) φ-based

Figure 3.16: The length of the intact liquid core is presented as a function of time for the co-flow
atomization cases. All data is in SI units.

For all the cases a few common observations can be made. First, the lengths of the liquid core

increases linearly at first and then the lengths start fluctuating once atomization commences. The

other observation is that as the We increases, the intact liquid length reduces. The simulations are

run till the length data is statistically steady, i.e., the moving average of the data becomes constant.

For some of the cases here with low We values, i.e., longer intact liquid lengths, the simulations are

run for a longer time duration to ensure this convergence.

The mean length values for the three methods are presented in Fig. 3.17 along with some

other benchmarking data. The experimental fit of Eroglu et al. [24] is presented with a dotted

line. Computational data by Deshpande et al.[21] and Trujillo et al.[69], that employs the α-based

method is also presented.

Broadly, the present computational results from the three methods agree fairly well with the

experimental and computational results from literature, especially for the higher We cases. For the

lower We cases, the differences in the data start appearing with the α-based method outperforming

the other methods. The results from the diffused α-based method and the φ-based method are in

close agreement throughout.



80

Figure 3.17: The mean value of the liquid core lengths as a function of We for the three methods
along with computational and experimental benchmarking data. The legend entry ECF1991 refers
to the experimental fit of Eroglu et al. [24], PoF15 refers to computational data by Deshpande et
al. [21] and AAS18 refers to data by Trujillo et al. [69].

3.4 Conclusions

The work in this chapter is a first step towards evaluating different curvature schemes for realistic

atomization-relevant problems, and assessing the importance of curvature schemes in atomization-

type problems. In the first part we describe three viable curvature schemes and their implementation

in the interFoam solver. A novel method for constructing a signed distance function for an arbitrary

interface in the Volume-of-Fluid framework was also presented.

The results from the test cases are summarized in Table 3.1. In the 2D droplet test case

a clear difference in the performance of the different schemes was noted. We observe a strong

O(∆x2) convergence for the φ-based scheme, a weaker convergence trend for the α̃ scheme and no

convergence for the standard α-based scheme. In the 3D oscillating droplet test, we find that all the

methods show a O(∆x1) convergence, but the error magnitude from the φ-based scheme is lower. In

the Rayleigh breakup of the liquid column all the three methods perform fairly well with respect to

the droplet sizes. The φ-based scheme, however, slightly outperforms the other two. In the shear-



81

Table 3.1: Summary of the curvature tests presented in Section 3.3

2D Circle
(Section 3.3.1)

Very different performance across 3 methods: φ-based - 2nd order, α - no
convergence

3D Oscillating
Droplet (Sec-
tion 3.3.2)

φ-based clearly outperforms other methods; 1st order performance across
the 3 methods

Rayleigh Breakup
(Section 3.3.3)

φ-based slightly outperforms other methods

Shear Layer (Sec-
tion 3.3.4)

φ-based slightly outperforms other methods in some cases, rest of cases have
similar performance

Liquid Column
Retraction (Sec-
tion 3.3.5)

Similar performance. Some qualitative differences in shape of bulb.

Co-Flow Atomiza-
tion (Section 3.3.6)

Similar performance across methods for a range of We

layer test, the φ-based method slightly outperforms the other methods in some of the cases. The

methods exhibit almost identical performance in most cases. In the liquid column retraction test,

the performance is similar across the methods with some small qualitative differences in the shape

of the resulting ligament and bulb. In the final atomization test, we find that results are identical

across the methods for the high We cases, and in the small We cases, the standard α-based method

shows a slightly better result as compared to the other schemes.

Overall, we see that in canonical test cases, which are completely surface tension dominated the

performance of the methods is starkly different. However, as we add complexity in the tests in the

form of complex interfaces, and forces like inertia and viscosity the differences in dynamics across

the schemes become quite minor. A takeaway from the current work is that adding significant

complexity in the curvature schemes may not lead to meaningful improvements in realistic flow

simulations.

A potential next step in the work is to make the implementation of the schemes even more

robust to be able to accommodate irregular cell shapes, and continue testing the schemes in more
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extreme flows like engine-relevant sprays.
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