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© I. INTRODUCTION ) 

This project was designed to integrate data from the study of rock core, downhole geophysical 
logging, in-situ hydraulic testing, and isotopic and geochemical analysis of porewater fromthe __ 
Maquoketa Formation at two sites in Waukesha County, Wisconsin, in order to investigate the 
hydraulic properties of this major regional confining unit. 

The period of the project was from July 1, 1997 to August 31, 1998. Funding was provided by 
the Wisconsin Department of Natural Resources. We would also like to acknowledge the 
assistance of many other staff members and student assistants of the Wisconsin Geological and 

Natural History Survey who participated in the drilling, collection of core and instrumentation of 

the coreholes. Use of the field sites was granted courtesy of the Waukesha County Parks and 
Planning Commission and the Wisconsin Department of Transportation. 

If, BACKGROUND/NEED | 

_ A. Importance of the aquitard for deep groundwater protection 

| The Maquoketa Formation, of Ordovician age, consists mostly of low-permeability shale and is | 
probably the most important aquitard in Wisconsin. The Maquoketa is present in eastern and | 
southeastern Wisconsin, where it acts as a confining unit between the upper Silurian dolomite 
aquifer and the lower Cambrian-Ordovician "sandstone" aquifer. Both these aquifers are heavily 

| used in southeastern Wisconsin. The Maquoketa has long been considered a major aquitard 
which limits the exchange of water between the two major aquifers. It also serves as a protective 

| cover for the sandstone aquifer, preventing or slowing the downward migration of surface 
| contaminants. | 

Hydraulic head in the underlying sandstone aquifer has historically been much higher than the 
base of the Maquoketa confining unit, and indeed before the beginning of this century, was | 
commonly above land surface, causing artesian conditions to occur when wells were first drilled __ 
into the deep sandstone (Drescher et al., 1953). At that time, hydraulic gradient would have been : 
upward through the overlying Maquoketa confining unit. Increasing pumpage in the twentieth  =»_—> 
century has caused water levels in the deep sandstone to decline to 450 ft below land surface by | 

mid-century, and approximately 480 below land surface at present in the vicinity of pumping : 

wells in eastern Waukesha County. This has caused a reversal of hydraulic gradient across the 

Maquoketa confining unit, and resulting leakage through the shale could affect water quality in 

the sandstone aquifer. 

__ B. Important component to understanding regional groundwater flow 

The Wisconsin Geological and Natural History Survey (WGNHS), with the cooperation and | 
financial support of the Southeastern Wisconsin Regional Planning Commission (SEWRPC), the | 
Wisconsin Department of Natural Resources (WDNR), and the U.S. Geological Survey (USGS), |



oe is currently (1998) undertaking a multi-year study of the hydrogeology of the SEWRPC area, 
with the goal of constructing a 3-dimensional groundwater flow model for use in water resources 

| planning, delineation of wellhead protection areas, and understanding the overall groundwater 
flow system in the area. This model will require hydraulic parameters of the Maquoketa 
(hydraulic conductivity, specific storage, thickness) in order to simulate the exchange of water 
between the Silurian aquifer and underlying sandstone aquifer. Quantification of this exchange 
is of immediate importance because a regional groundwater model could be very sensitive to the _ 
hydraulic properties of this confining unit. 

C. Lack of previous studies at this level of detail 

In spite of its importance as a regional aquitard in eastern Wisconsin, the hydrogeology of the 

Maquoketa has received little study in the past. According to Young (1992, p B45) "...Estimates 
of the vertical hydraulic conductivity K' of the Maquoketa confining unit are available only 

indirectly from flow-net analyses or digital models." Most estimates can be traced back to | : 
Walton (1960), who conducted a flow-net analysis of downward leakage to the Cambrian- : 
Ordovician aquifer in the Chicago area. In addition, prior to this study, the basic lithology and 

| stratigraphy of the Maquoketa in southeastern Wisconsin were known only from well cuttings, 

| and there were no core samples of this unit available south of Fond du Lac. In addition to shale, | 

the Maquoketa Formation is known to contain dolomitic and/or limestone facies which could | 
have significantly higher conductivity than the shaley facies, but the thickness and extent of 
these lithologies are uncertain. 

Il. OBJECTIVES - 

A. Obtain reliable estimates of hydraulic properties, flow rates and leakage 

7 Fieldwork for this project was designed to vertically isolate different intervals within the . 
approximately 180 ft-thick Maquoketa Formation in order to investigate hydraulic properties 
throughout the thickness of the formation. This is the first time to our knowledge that a detailed | 
view of the distribution of hydraulic conductivity within the Maquoketa Formation has been | 

obtained. Assuming reasonable anisotropy values, dependent on lithology, vertical hydraulic 
conductivity values were estimated for each interval, then combined to obtain an overall value of 
vertical permeability for the formation. | 

B. Characterize stratigraphy based on core study, downhole geophysical logging 

Detailed sedimentological study of the core recovered in conjunction with analysis of downhole 

geophysical logs taken of the coreholes enabled correlation of particular geologic facies with 
their geophysical signature. Since many geophysical logs exist of wells penetrating the 
Maquoketa Formation in southeastern Wisconsin, these facies should be recognizable throughout 
the region. Hydraulic properties were correlated to the geophysical logs and stratigraphy. | 
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oO C. Analyze porewater geochemistry, tritium and oxygen isotopic age dating for flow rates. 

Groundwater samples collected from the different isolated intervals in the coreholes were | 
analyzed for major ions, trittum, deutertum and oxygen-18. Major ion geochemistry was 
modeled using PHREEQC, equilibrium modeling software, to obtain charge balances and 
mineral saturation indices. Preliminary isotopic analysis was used to constrain residence times 
and groundwater ages. 

IV. METHODS | 

A. Selection of field sites | 

| We selected two field sites in Waukesha County (Figure 1) in an area within the cone of 

depression of the potentiometric surface of the deep sandstone aquifer, and where bedrock is 

close to the surface. The fieldsites are on land owned by the Wisconsin Department of , 
Transportation (DOT) and Minooka County Park within a mile or two of municipal pumping 

wells. The field site on DOT land 1s within the Village of Pewaukee, on land known as the Ryan 

Parcel, at NE,NE,SE,NE Section 16, T7N, RI9E. The field site in Minooka County Park is 

. southeast of the City of Waukesha, at SEINW,NE,NW Section 13, T6N, R19E. 

B. Drilling, collection of core, and borehole development. 

ee A private well-drilling firm was contracted with to install 4-inch casing down to Silurian 
bedrock, which was encountered at approximately 50 ft depth at both field sites. We began 
coring with the WGNHS wireline coring rig but ran into problems with the upper fractured and 

weathered bedrock both at the DOT site and subsequently at the Minooka Park site. Both holes 

were stabilized by cementing, then drilling resumed at the Minooka Park site. | | 

At the Minooka County Park site, the Maquoketa Formation was encountered at approximately | 
230 ft below the surface. Some clayey intervals of the shale caused delays but we encountered 
the underlying Sinnipee Formation at about 410 ft below the surface by the third week in 

October, 1997. Nearly 100% core recovery was achieved throughout the corehole, which was 
finished at 438 ft depth. The core was boxed and transported back to WGNHS and subsequently 

to the UW-Madison Department of Geology and Geophysics for detailed study. The corehole at | 
the DOT site was completed in April, 1998 to a depth of 399 ft below the surface, and the top 

and bottom of the Maquoketa were encountered at depths of 175 and 342 ft below the surface, 

approximately 50 ft shallower than in the Minooka Park corehole. 

| In order to facilitate the installation of the multi-level packer and monitoring equipment, and to 

_ Temove excess cuttings and drilling water, we developed both coreholes by pumping. Atthe _ 
Minooka Park corehole we lowered 0.5 inch diameter PVC tubing into the corehole and pumped : 

4 GPM for about 5 hours from a depth of 425 ft below the surface. Over 5 bore volumes were 
pumped, causing the water level to drop briefly between 3 and 4 ft. At the DOT site, we | 

© | | 3 oo



improved our pumping technique by using a submersible pump positioned within the Maquoketa 
© at about 300 ft depth, and partially blocked water entering the corehole from the overlying. 

_ Silurian aquifer. We pumped between 4 and 5 bore volumes at several different flow rates from 
the DOT corehole. | | 

C. Core study 

The Maquoketa section of the core recovered from the Minooka Park corehole was transported 
to the Sedimentology Lab of the UW-Madison Dept. of Geology and Geophysics for detailed 

study. Samples of the core was distributed to cooperating researchers and the lithology was. 
carefully described. Core from the DOT corehole was transported to the WGNHS, but time did 

not permit detailed study of the second core within the scope of this project, although the 
lithology appeared quite similar to that of the Minooka Park core. | 

D. Instrumentation of corehole(s) | | 

In order to design appropriate packer and monitoring systems for the two coreholes, full suites of 

downhole geophysical logs were collected at each site, including gamma, resistivity, caliper, 

spontaneous potential, temperature, electrical conductivity and borehole flow. Plots of these | 
logs are shown in Figures 2, 3, and 4 (Minooka Park site) and 5, 6, and 7 (DOT site); and 

interpretation of these logs is discussed in Section V below. Most logs indicated very similar 

lithologies in the two coreholes. The only significant difference was two major horizontal 
fracture flow features in the Minooka Park hole, which dominated the flow system within the | 

open corehole. | 

_A six packer system was designed for the Minooka Park corehole to isolate lithologies and 

fracture features assumed to have different hydraulic properties. Dedicated double-valve | 

nitrogen-driven pumps and vibrating wire pressure transducers were installed at portsinthe => 
lower six intervals of the corehole between the nitrogen-inflated packers (Figure 8). Installation 

_ of this system at Minooka County Park was completed in late December, 1997. Over the next | 

few months, as the heads equilibrated in each of the intervals, data from the transducers was | 
| continuously recorded to an on-site CR10 datalogger. 

In late spring 1998, a similar system was anticipated for the DOT corehole. However, given the | 

ease with which the packer system was installed at Minooka County Park, a temporary movable : | 
straddle packer system was designed to conduct hydraulic tests at closer intervals in the DOT 

| corehole. Data was collected from the bottom 75 ft of the corehole before the packer system 
became jammed in the corehole at the DOT site. Work is ongoing on methods to remove the 
packer system from the corehole but we were not able to monitor heads or collect porewater 

samples at the DOT site due to this setback. | 

E. Monitoring of heads at different intervals in corehole | 

Heads in the different intervals in the corehole at Minooka County Park stabilized withina week 

© ) 4 -



oO or two, with one exception, at significantly different values, indicating that the packers were 
effective in hydraulically isolating the intervals. We discovered that the packers lost pressure 

over time, probably due to nitrogen diffusing through the rubber. Weekly visits were necessary 
to reinflate the packers in order to maintain isolating pressures of between 150 and 200 psi. 

The corehole extended down into the the Sinnipee Group dolomite, the aquifer underlying the 
Maquoketa confining unit, and the lowest interval (Port 1) is open to this aquifer (Figure 8). 
Head in this interval dropped over eighty feet in the first week, and continued to decline over the 
next six months until it stabilized at a level over 250 ft below the heads in the Maquoketa. 

F. Hydraulic testing of different intervals in corehole 

Drawdown and recovery were recorded at one minute intervals during porewater sample 
collection using the CR10 datalogger at the Minooka Park site, and recovery rates varied 

considerably among intervals. Heads in the lower intervals in the corehole were drawn down | 

between 100 and 300 ft, and recovered over a week or two, whereas heads in other intervals | 

were drawn down less than 10 feet and recovered in an hour or less. Heads in two intervals 

: recovered in less than one minute, and recovery was recorded manually. The data were analyzed 
using standard slug testing methods (Bouwer and Rice, 1976; Cooper et al., 1967; Hvorslev, 

1951). 

At the DOT site, the bottom 75 ft of the corehole, including the Sinnipee Group dolomite and 20 
_ ft of the overlying Maquoketa confining unit were tested at 5 ft intervals using the movable | 

| straddle packer setup. A standard 5 ft long PVC slug was dropped into the water column open to 
| the packed-off interval, and head change was monitored and recorded using a PST slug test 

transducer and datalogger system. , | 

| G. Porewater sampling , | 

We collected water samples from the Minooka Park site in late April, 1998. The collection | 
methodology utilized individual, down-hole, gas-driven sampling pumps installed adjacent to | 
each of the six sampling ports. These pumps delivered water to the surface through closed 
polyethylene sampling lines under positive pressure. A seventh sample was obtained from water — 
in the well annulus above the top packer; this sample was obtained using a peristaltic pump. All 
samples were field-filtered through 0.45 um membrane filters, with the exception of those from : 
Port 5, which were so silty they had to be filtered through a glass fiber filter. We measured 
temperature, pH, Eh, dissolved oxygen, and electrical conductivity in the field. Samples were 
placed into polyethylene containers on ice in the field for delivery to the Wisconsin State 

Laboratory of Hygiene, where they were analyzed for major ions and trace metals. Standard 

analytical techniques were used. Samples were also sent to the University of Waterloo (Ontario) 
isotope laboratory for isotopic analysis. | 

Sample acquisition proved to be difficult and time-consuming due to the depth of the sampling 
ports, the limited volume of water in the hole, the small diameter of the sampling lines, and the | 
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© low yield of the Maquoketa Formation. The three deepest ports (Ports 1, 2,and 3, at depths of 
422, 403, and 358 feet) did not yield enough water for complete analyses during the April 
sampling activities; these ports were resampled at a later date. 

V. RESULTS AND DISCUSSION 

A. Downhole geophysical logs and interpretation 

Downhole geophysical logs for each corehole are shown in Figures 2-7. Logs of natural gamma 
radiation (Figs. 2 and 5) from the two sites are remarkably similar and provide the best signature 
for detailed stratigraphic and sedimentologic correlation. Natural gamma radiation is usually 
associated with clay and feldspar minerals in the subsurface, and is measured in counts per 

second (cps) using a scintillation detector. In general, increasing radiation (increasing cps) is 

associated with increasing clay content. The elevation of the top of the Maquoketa is about 30 ft 
| lower at the Minooka Park site than at the DOT site. This offset is probably due to a : 

combination of the Minooka Park site being several miles downdip from the DOT site and 
downthrow on the Waukesha Fault, which passes between the two sites. 

Features common to the gamma logs at each site include the distinctive abrupt decrease in cps at | 
the boundary between the Maquoketa Formation and the underlying Sinnipee dolomite; the 

consistently high gamma readings (150 cps) in the lower part of the formation, indicating greater 

shale composition; the plateau (75 cps) about 1/3 of the way from the top; and some of the 
_ transitions between low and high readings. 

The caliper logs (Figures 2,5) measure borehole diameter, and can also indicate places where 

fractures intersect the boreholes. The logs from both holes show two zones of multiple openings, | 

probably fractures, in the upper half of the formation, which at the Minooka Park site appeared 
to be important horizontal groundwater flow features identified by heat-pulse flowmeter logging. 

At the DOT site, these zones appear to be areas where the corehole is noticably larger in | 
diameter, perhaps due to washing out of material during drilling. | : 

| Spontaneous potential (SP) and resistivity logs respond to the electrical properties of the oe 
formation, and like the gamma logs, can help distinguish lithologies in the subsurface. In | 

| general, pure dolomite has higher electrical resistivity than clay or shale. On both the SP and | 
| Resistivity logs, the Maquoketa appears much more uniform than the dolomite aquifers above 

and below. Noticable deviations occur at approximately the same stratigraphic level at both sites 
: where the gamma log shows low readings, which corresponds to more dolomitic intervals in the 

Maquoketa. | 

The temperature and fluid resistivity logs (Figures 3,6) have a fairly uniform gradient with depth 
at the DOT site, but show distinctive inflections at the Minooka Park site. The stratigraphic | 

level of the inflection (Figure 3) corresponds to the lower of the two fracture features at 320 ft 

depth, and suggests that significantly different water was present in the corehole above and | 

o | 6



oO below this elevation. 

Heat pulse flowmeter logging (Figures 4,7) measures vertical borehole flow at discrete 

elevations in the corehole. Hence, a change in direction of flow (upwards or downwards) 

indicates that significant inflow or outflow exists between measured elevations (horizontal bars). 
The Minooka Park log (Figure 4: no hydraulic stress) shows changes from slight upward flow to 

significant downward flow at about 270 ft and from significant downward to slight upward flow 

at 320 ft. These correspond.to the fracture features identified in the caliper log. We infer that 

significant flow into the open corehole occurred from the upper fracture and drained out into the | 
rock at the lower fracture. This explains the kink in the temperature and fluid resistivity logs 

because water in the corehole below 320 ft would be relatively stagnant compared to that above, 

and shows the effect of the geothermal gradient. Changes in flow rate and direction are apparent 

above 125 ft depth in the corehole, which is open to the Silurian aquifer. Flowmeter logging 
after pumping the corehole (Figure 4: pumping recovery) shows dominant inflow from the 

Silurian, as expected. 

Heat pulse flowmeter logging at the DOT site (Figure 7) shows considerably less variability. An 

increase in flow upward at about 70 ft depth and reversal of flow direction at about 130 ft depth 

' are the major features of this log. Below 210 ft, no flow features were detected. Our | 
interpretation is that inflow occurs at about 130 ft., corresponding to a significant fracture on the | 
caliper log, which is within the Silurian aquifer just above the Maquoketa Formation. From this 
point, there is both upward and downward flow in the corehole, the upward flow disappearing 

into a fracture between 60 and 70 ft, and the downward flow dissipating into a series of fractures 
between 170 and 200 ft deep in the upper part of the Maquoketa Formation. Minor inflectionsin ssw 
the temperature and fluid resistivity logs (Figure 6) correspond to this analysis. 

B. Lithologic and stratigraphic interpretation of core | | = 

Only the core collected from the Minooka County Park site was described in detail for this study 

due to time constraints. The core from the DOT site is quite similar. Six major facies, or __ | 

lithologic types, were identified in the stratigraphy of the Maquoketa Formation at the Minooka _—/ 

Park site (Figure 9), and the three members of the formation were recognized (Ostrom, 1967; 

Kolata and Graese, 1983). : 

I) Upper cyclic packstone-mudstone | : oe 

This unit extends from the bottom of Silurian dolomite at 230 ft depth down to.272 ft. It consists | 
° of alternating beds of greenish-gray soft fossiliferous mudstone and clayey to crystalline light 

olive gray vuggy dolomite. Occasional copper sulfide minerals (probably calcopyrite and pyrite) 
occur, and the greenish-gray mudstone increasingly dominates toward the base of the unit. 

2) Brown-banded silty dolomite | 
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[o) This unit extends from 272 ft down to 314 ft depth. It consists of harder interbedded olive gray 
to light olive gray to yellowish brown occasionally laminated silty dolomite. Some carbonate 
horizons, chert nodules, large concretions and evidence of soft sediment deformation can be 

found. Fine calcite-filled fractures are present in a porous-looking siltier matrix toward the 
- bottom. 

| 3) Carbon and sulfide (C&S) rich grainstone-packstone | 

This very coarse, silicified, and fossiliferous dolomitic unit, from 314 ft to 318.5 ft depth, | 

apparently only occurs in the core from the Minooka Park site. It is characterized by an 
| abundance of dark copper sulfide mineralization and a globule of viscous tar encountered in a | 

fracture at about 315 ft depth. Because of its position in the approximate center of the | 

Maquoketa Formation, the tar is probably naturally occurring. 

4) Burrowed brownish-gray dololutite 

This 1s a much finer-grained light olive to brownish gray clayey dolomite extending from 318.5 
ft to 334 ft depth. It is characterized by abundant bioturbation, occasional small fossils and two 
soft, unlithified clay seams, one of which corresponds to gamma and caliper responses at about | 
320 to 325 ft. | | 

5) Lower cyclic packstone-mudstone 

This unit extends from 334 ft to 357.5 ft depth, and it has a very similar lithology to the unit at 

| the top of the formation. It consists of interbedded olive to brownish gray mudstone with 
. . intervals of mottled brownish to light gray fossiliferous dolomite. These dolomitic beds can be 

| seen as low cps pulses on the gamma log, the largest of which is at 350 ft, corresponding to the a 
thickest bed. | | a 

6) Fissile greenish-gray mudshale | 

The lowermost unit in the Maquoketa Formation, from 357.5 ft to 409 ft depth, underlain by the 
Sinnipee Group dolomite, is a very uniform fine-grained, soft greenish-gray shale, which a 
disintegrates when wet. It contains fossils, mostly brachiopods, occasional fine silty pyrite-rich 
laminae, and one soft unlithified plastic clay seam at approximately 379 ft, which is apparent on | | 
the caliper log. 

| C. Vertical distribution of hydraulic head 

The hydraulic gradient across the Maquoketa Formation is not uniformly downward as might be 
assumed given the difference in hydraulic heads between the overlying Silurian aquifer and the 

: underlying Cambrian-Ordovician aquifer. According to head measurements before pumping at 

the vertically spaced ports throughout the thickness of the formation, gradients range between 
0.823 ft/ft to 90.61 ft/ft across packers (Table 2), and the gradients in the upper part of the | 
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formation are directed downward while the gradients in the lower part of the formation are 7 
© directed upward (Figure 8). | 

The immediate interpretation of these opposing gradients within the Maquoketa Formation is 
that the hydrostatic pressure field within the unit has not yet equilibrated with the boundary 
conditions in the overlying and underlying aquifers. These boundary conditions changed with 

the reversal in gradient at the turn of the century, and it is unclear how long is needed before the 
system comes to equilibrium, 1.e. a uniform downward gradient. Pressure adjustment times to 
boundary condition changes across a 1500 ft thick low permeability shale unit in Alberta have 
been calculated to be in the millions of years (Toth, 1995). 

However, an alternate explanation of the nonequilibrium gradients might be that during the few . 
months before the packers were installed, the horizontal fractures, particularly the one at 320 ft 
depth, acted as a drain for the system, causing gradients to converge toward it from above and | 

below. Approximately three months elapsed between when the packers were inflated (Day 0), 
| and when the intervals were pumped (Day 107) for groundwater sampling. This may not have 

been long enough for this transient drainage effect to dissipate, and in fact, head in the lower two 
ports (3 and 2) still seems to be declining during that period (Figure 8). 

A combination of these long-term and short-term transient conditions may be the explanation for 

the observed head distribution. This implies that, at least locally, the horizontal fracture in the 
interval corresponding to Port 4 dominates the flow system, an analysis which is supported by 
the groundwater chemistry results (Section G below). Overall, the largest head drop (>250 ft) 

: _ and largest downward gradient occurs across the bottom packer, which corresponds to the 
lithological contact between the Maquoketa Formation and the Sinnipee Group dolomite (Figure 
8). This is significant because it emphasizes the difference in hydraulic properties between the | 

two formations and their relative roles as regional confining units. | | 

D. Vertical distribution of hydraulic conductivity | 

Horizontal hydraulic conductivities calculated from the analysis of recovery data after pumping 

each port range over 5 orders of magnitude, from 1.7E-9 ft/s to 8.5E-5 ft/s (Figure 10). There is | 
little variation in the results using three commonly used analysis methods. Testing of Port 6 | 
gave hydraulic conductivity values of approximately 3E-7 ft/s, whereas Ports 5 and 4 gave 

higher values from 4.3E-6 ft/s to 8.5E-5 ft/s. Ports 3 and 2 gave considerably lower values | 
ranging from 1.3E-9 ft/s to 4.8E-9 ft/s. The observed vertical distribution in hydraulic 
conductivity in the Maquoketa Formation is related to differences in lithology and fracturing of 
the rock. No analysis was possible from pumping Port 1, because no recovery occurred after 

pumping. However, slug testing of the lower part of the corehole at the DOT site resulted in 
values of 9E-7 ft/s to 7E-7 ft/s for the underlying Sinnipee Group dolomite. 

_ Log drawdown versus time plots of data for Ports 6 and 4 are notable for the dual slope aspect of ) 

the recovery curve, whereas plots of data for other ports are straight or gently curving. It is 
significant that major fracture flow features identified in caliper (Figure 2) and heat pulse | 
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oO flowmeter logging (Figure 4) for the Minooka Park corehole are located within the intervals 
tested by Ports 6 and 4. The dual slopes indicate a dual permeability hydraulic response in each 
interval which is probably dominated by rapid inflow at first from the corresponding fracture 
feature, followed by slower inflow from the rock matrix at later times. 

, We were able to analyze two sets of recovery data for Ports 3 and 4 because of the extremely 
different recovery times in different intervals. Head in Port 3, like that in Port 2, recovered 

slowly over several weeks and a test on data for about 1 week (Figure 10: solid symbols) shows 

only slightly lower values than a test on data for 3 weeks (open symbols). This is probably due 
to a scale effect of a larger volume of rock contributing porewater to the corehole over the longer 
interval. 

Recovery of hydraulic head after pumping in Ports 4, and especially Port 5, was extremely rapid, 
ranging from a few minutes to less than one minute. Initial testing of Port 4 using one minute 

, head recording intervals produced a somewhat scattered dual-slope data plot, and results (Figure 

| 10: solid symbols) are about one order of magnitude less than for analysis of data recorded at 7 
seven-second intervals (open symbols). This corroborates the aforementioned dual permeability 

response, where the rapid response data results (every seven seconds) correspond to the higher 
fracture permeability only, whereas the longer interval data results correspond partly to rock 

-- matrix permeability. | | | 

| E. Correlation of geophysical signature, lithology and hydraulic properties 

The geophysical signature of the corehole at the Minooka Park site can be closely correlated to 

| the variations in lithology and hydraulic properties. The gamma log is most informative 

| regarding lithology, being very sensitive to the clay content of the rock, but the SP and resistivity 

" ———- Jogs are also useful. High cps gamma peaks correspond to more argillaceous siltstones or shales, sy 

| which in turn have very low hydraulic conductivities, for instance the interval between 357.5 ft | 
and 409 ft. below the surface (Figures 2,9,10). The SP and resistivity curves tend to be very 

| smooth except for noticeable deviations at intervals with more carbonate lithologies, such as at | 
250 ft, 292 ft, 315 ft, and 350 ft below the surface (Figure 2). | 

More resistant purer carbonate beds can also be identified by low cps gamma deviations, a 
particularly in the two cyclic packstone-mudstone facies and the carbon and sulfide-rich _ 
grainstone-packstone (Figure 9). Since the hydraulic testing occurred over intervals spanning | 

these cyclic lithologies, resulting values represent a composite hydraulic conductivity of the 
| mixed lithologies. For instance, values resulting from testing Port 3 represent a composite 

hydraulic conductivity of the lower cyclic packstone-mudstone and the burrowed brownish-gray 

dololutite facies (Figures 9,10). These values are quite low, similar to those of the fissile 
greenish-gray mudshale facies, tested in Port 2 (Figure 10). In contrast, similar cyclic | 
packstone-mudstone facies at the top of the section, tested at Port 6, has hydraulic conductivity 
values two orders of magnitude higher. This difference may be due to the slightly more | 

abundant carbonate facies in the upper cyclic facies, but is more likely a consequence of greater __ 
fracturing in that interval compared to the lower cyclic facies (Figure 2). | 
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~ Hydraulic conductivity of the brown-banded silty dolomite facies was tested in PortS andis 
© surprisingly high, at the upper end of all values obtained (Figures 9,10). No prominent fractures 

or flow features were observed in that interval (Figures 2,4), so the rock matrix must be 
relatively permeable. Indeed, relatively low gamma readings, particularly in the lower part of 

the facies, between about 290 ft and 310 ft below the surface, indicate less argillaceous 
mineralogy and correspond to observations of apparently more porous lithology in the core. 

F. Estimates of vertical hydraulic conductivity and travel time 

Calculated values of hydraulic conductivity, presented above, represent hydraulic properties of 

the rock in a horizontal direction, perpendicular to the corehole. Estimating vertical hydraulic 
conductivity, and flow or leakage through the Maquoketa Formation, requires consideration of 
anisotropy or the directional nature of rock structure. Most sedimentary sequences present . 
layered heterogeneity, or greater variations in lithology in the vertical direction than the 

horizontal direction. This is apparent in the case of the Maquoketa Formation, as can be seen in 
the stratigraphic log of the core (Figure 9) and the similarity of the downhole geophysical logs at 7 

the two field sites (Figures 2,4), to which the stratigraphy has been correlated. An additional 

factor in this case is the horizontal fracturing in certain intervals in the corehole. 

Layered heterogeneity causes hydraulic conductivity to be considerably lower in the vertical 
direction (Kz) than in the horizontal direction (Kx). The ratio of Kx to Kz is known as the 
anisotropy ratio, and varies from 1 to 1000 according to lithology or bedding (Domenico and 
Schwartz, 1990). Most anisotropy ratios are derived from groundwater modeling and laboratory 

; testing, and relatively little work has been done on deriving anisotropy from lithology 

CO descriptions. A method for calculating anisotropy ratios has been applied to glacial sediments 
(Anderson, 1989), but relies on estimates of relative magnitude of hydraulic conductivity, which 

| may vary over a significant range. Neuzil (1994) states that stratification of argillaceous | 

sediments, such as shales, may cause permeability anisotropy of up to three orders of magnitude. _ 
Estimates of anisotropy for each of the facies types described in the core from the Minooka Park 
site are shown in Table 1. | 

_ Assuming that no significant vertical fracturing is present in the Maquoketa Formation, 

horizontal hydraulic conductivity values calculated for intervals with significant horizontal : 
fracturing were not considered representative of matrix hydraulic conductivity for those | 

lithologies, and not used in Table 1. Fortunately, in the case of the cyclic packstone-mudstone | 

facies (Figure 9), the lower interval tested was not fractured, and provides reasonable values for 

| estimating vertical hydraulic conductivity. 

Both the cyclic packstone-mudstone and the burrowed brownish-gray dololutite facies were 
included in the same hydraulic conductivity group (1) because the interval that was tested (Port 

3) contained both. These are more prominently bedded than the brown-banded silty dolomite 

facies, but less than the fissile greenish-gray mudshale, and were assumed to have a moderate ) 

anisotropy ratio of 100. 
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Oo The brown-banded silty dolomite was assigned an anisotropy ratio of 10 because of its relative 
homogeneity, and combined in hydraulic conductivity group 2 with the C & S rich grainstone- 

| packstone because of the coarseness of the latter lithology. Finally, the fissile greenish-gray 
mudshale facies (hydraulic conductivity group 3) was assigned an anisotropy ratio of 1000 
because of its numerous fine bedding planes. | 

_ Using these values of estimated vertical hydraulic conductivity for each lithology, an overall 

equivalent vertical hydraulic conductivity can be calculated for the Maquoketa Formation as a 

whole. The equivalent vertical hydraulic conductivity can be expressed as: 

Du m; | 
K, a 

di (mjK,) . 

where K; and m, are the respective vertical hydraulic conductivities and thicknesses in a layered : 
system (Freeze and Cherry, 1979; Domenico and Schwartz, 1990). The resulting values of 

equivalent vertical hydraulic conductivity range from 4.9E-12 ft/s to 9.5E-12 ft/s, which are 

: similar to previously published values (Young, 1992). | 

Assuming an effective porosity of 0.02, reasonable for carbonates and shales (Domenico and 

Schwartz, 1990), a rough overall pore velocity can be calculated for flow through the Maquoketa 
_ shale using Darcy's Law: | 

: v = Q/n,A = (K/n,)(dh/dl) 

where K, is the composite vertical hydraulic conductivity, n, is the effective porosity, and dh/dl , 

is the vertical gradient across the formation, which is about 1.7 ft/ft. Resulting values range ts | 
from 4.2E-10 ft/s to 8. 1E-10 ft/s, which correspond to 0.01 ft/yr to 0.03 ft/yr. In other words, at | 
these rates, water infiltrating down from the Silurian aquifer would take from 6000 to 18000 
years on average to seep through the thickness of the Maquoketa Formation. , 

G. Groundwater geochemistry | a 

I) Major ions and indicator parameters | | | 

The geochemistry of groundwater in the Maquoketa Formation at the Minooka Park site differs 

significantly from the geochemistry of water in the overlying Silurian dolomite. Table 3 
summarizes the geochemical results by sampling port and elevation; Port 7 samples water from 
the overlying Silurian rocks, while Ports 2 to 6 sample water from the Maquoketa Formation and 
Port 1 samples water from the underlying Sinnipee rocks. Figure 11 shows bar graphs of the 
equivalents per million (EPM) electrical balance between anions and cations for each sample. | 

| The cation/anion balances in all samples have less than 10% error. The figure illustrates the 
geochemical difference between water in the Silurian aquifer and water in the Maquoketa | 
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Oo Formation. Water in the Silurian (Port 7) is dominated by magnesium and bicarbonate, as 

expected in a dolomitic formation. Water in the Maquoketa contains significantly more calcium, 
sodium, and bicarbonate. The Maquoketa water also contains elevated strontium, at 
concentrations ranging from 1.7 to 2.7 mg/l. While strontium is usually not considered a 
significant constituent in potable groundwater (Hem, 1992), Nichols and McNall (1957) reported 

strontium levels greater than 1 mg/l in many wells in eastern Wisconsin. 

Plots of indicator parameters and major ions with depth (Figure 12) show systematic 

geochemical changes with depth through the Maquoketa Formation. Temperature and pH both 
increase systematically with depth in the shale. Two curves are shown for temperature, one 

measured at the surface while sampling, and one by in-situ transducers. Concentrations of other 

parameters (electrical conductivity, Ca, Mg, Na, K, SO,, Cl) vary with depth, and the most 
significant variations seem to occur between sampling ports 4 and 5. Ports 4 and 5 bracket a 

major fracture apparent on geophysical logs and the significance of this fracture is discussed | 
below. 

. 2) Trace constituents | 

The Minooka Park samples were tested for nitrate, sulfide, iron, manganese, copper, arsenic, and 
zinc, all of which usually occur only as trace constituents in Wisconsin groundwater, but which 

sometimes can occur at elevated levels. Nitrate and copper were not present above the analytical 
limit of detection (LOD) in any samples. Sulfide, iron, manganese, arsenic, bromide, and zinc 
were each detected at trace quantities in one or more samples (Table 3) but none of these 
detections exceeded Wisconsin drinking-water standards listed in Chapter NR 809.09 of the | 

: Wisconsin Administrative Code. 

3) Saturation indices | 

Groundwater in the Maquoketa Formation 1s near equilibrium with respect to calcite and 
dolomite, but is undersaturated with respect to gypsum and the strontium-bearing minerals a 

celestite and strontianite. We used the geochemical speciation program PHREEQC (Parkhurst, 
1995) to calculate the speciation of ions in the water, to determine saturation indices with respect 
to major mineral phases expected to be present, and to calculate the partial pressure ofcarbon = 
dioxide (pCO,) in the water. Table 4 shows the speciation results. Positive saturation indices | 

_ Indicate oversaturation with respect to a particular mineral phase, while negative saturation | 
| indices indicate undersaturation with respect to a particular mineral phase. A saturation index of 

_ O indicates perfect equilibrium between the water and the mineral phase. As shown in Figure 
13b, the calcium and dolomite saturation indices differ significantly between Port 7, sampling 

the Silurian dolomite, and Ports 2-6, sampling the Maquoketa Formation. The difference is 

probably due to the higher pCO, in the Maquoketa, which increases the ability of the water to | 

dissolve mineral phases. The pCO, in the Silurian rocks is -3.57 bars, in near equilibrium with 
atmospheric pCO, (-3.5 bars). Water in the Maquoketa is highly oversaturated with CO, | 
compared to the atmosphere (Figure 13a). The change in pCO, at Port 3 may not be significant 
because alkalinity was not measured for Port 3. | 
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Q | 4) Isotopes of oxygen and hydrogen oe 

Oxygen-18 ("*O) and deuterium (*H) are naturally-occurring stable isotopes of hydrogen and 
oxygen present in small amounts in the atmosphere and in groundwater. These isotopes are 

often used as conservative groundwater tracers. Isotopic compositions are expressed as del (6) 
permil (0/oo, or parts per thousand) relative to the composition of ocean water, where negative 

numbers indicate that the proportion of the given isotope in the sample is less than the proportion 
of the isotope in ocean water. At a given site, the '*O composition of groundwater can often be 
related to variations in recharge temperature (Freeze and Cherry, 1979). Analysis results from 
the Minooka Park site are shown in Table 5. 

Groundwater originating as recharge on the land surface should have an isotopic composition 

similar to the composition of modern precipitation. This precipitation, in turn, should have a 

composition close to that predicted by the meteoric water line, a worldwide statistical 
relationship between '*O and *H (Freeze and Cherry, 1979). Figure 14 shows the '*0 :?H 7 
relationship for the Minooka Park site, along with a meteoric water line for southeastern 

Wisconsin presented by Simpkins (1989). The four Minooka Park samples are consistent with 
the regression line, suggesting that the water has not been fractionated by lake evaporation, | 

biological activity, or hydrothermal activity. Therefore, any shift in groundwater '*O signature | 
with depth is interpreted as resulting from temperature variations in the recharge area. _ 

The '*O profile at the Minooka Park site (Figure 13c) shows a negative shift of about 2o/oo in the 
upper part of the formation (between Ports 5 and 6), followed by an positive shift in the vicinity 
of Port 4. (Although sampled, analytical results from Ports 1, 2, and 3 were not yet available at 

| the time of this report). Our preliminary interpretation of these data is that the negative shift at | 

: Port 5 represents water that recharged in a much cooler climate than found at the site today. If | 

so, the groundwater at Port 5 must be several thousand years old. | 

Qualitative analysis of the profile of preliminary tritium (?H) results (Figure 13d) shows that | | 

water in the Maquoketa is much older than that in the Silurian aquifer because tritium , 
concentrations (TU) are much lower. Concentrations of less than 2 TU indicate groundwater 

_ which recharged prior to the peak of atmospheric tritium in the mid-1960s caused by atomic oo 
bomb testing, and perhaps considerably earlier. Tritium levels in Ports 5 and 6 were below the | 

detection limit of 0.8 TU. Concentrations of groundwater tritium between 2-10 TU indicate | | 

younger groundwater (Hendry, 1988). These results support the oxygen isotope data analysis 
| above. 

| 5) Discussion | 

The geochemical and isotopic results for the Minooka Park site are consistent with a conceptual 

model of slow, downward groundwater movement through the upper part of the Maquoketa | 
Formation This model is also consistent with the downward vertical hydraulic gradient measured 
between Ports 5 and 6. However, the downward profiles are interrupted between Ports 4 and 5, | 
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Oo and Port 4 is within the interval where a permeable near-horizontal fracture intersects the core 

hole. Geophysical logs show that this fracture carries significant groundwater flow. 

Based on the data currently available, we believe the horizontal fracture at elevation about 580 ft 
- moves groundwater laterally through the Maquoketa Formation, possibly from the Maquoketa 

subcrop several miles to the west. Such lateral movement would explain the geochemical 
changes observed at this elevation and might introduce younger groundwater into the formation, 
which would be consistent with the del '*O value measured just below the fracture at Port 4. 
Although confirmation of this hypothesis must await further analytical data and modeling, this is 
the first time to our knowledge that preferential flow paths through the Maquoketa Formation 

have been identified. 

| VI. CONCLUSIONS/IMPLICATIONS/RECOMMENDATIONS | 

| This study has advanced our knowledge of the Maquoketa confining unit in southeastern , 

Wisconsin and its hydraulic, sedimentologic and geochemical characteristics. Detailed 

information has been obtained using downhole geophysics, and by study of continuous core 
which traversed the formation, the only such core available south of Fond du Lac. Hydraulic © | 
testing, monitoring and porewater sampling were accomplished at several levels vertically within | 
the formation. This is the first fieldwork to study the hydraulic properties of the Maquoketa, the 
most important regional confining unit in Wisconsin. 

| Downhole geophysical logging at two field sites shows that the Maquoketa Formation is 

lithologically remarkably similar over a distance of 15 miles or less. Important horizontal 
: fracturing occurs at two levels in the upper half of the formation, but these fractures are 

significant flow features at only one of the sites. The vertical lithology consists of soft fine 7 
greenish gray fissile mudshale in the lower third of the formation, which probably corresponds to _ | 
the Scales Member (Ostrom, 1967; Kolata and Graese, 1983). This is overlain by interbedded | | 
packstone-mudstone, and finer dololutite, up through a coarse sulfide-rich grainstone, which 

likely constitute the Fort Atkinson Member, and the overlying silty dolomite and interbedded —s 
packstone and mudstone would be the Brainard Member. 

The vertical distribution of heads, and particularly the greater than 250 ft contrast in head across | 

the Maquoketa-Sinnipee Group contact, indicate that the Maquoketa has much greater confining | 
properties than the underlying dolomite at this site, which is significant since the combined 
Maquoketa-Sinnipee Group have previously been considered as a single confining unit (Young, 

1992). The large range in hydraulic conductivity (5 orders of magnitude) measured at different 
levels in the Maquoketa, although partly due to horizontal fracture permeability, shows that this : 

3 formation 1s hydraulically very heterogeneous, and that preferential fracture flowpaths may be 

locally important. Estimated composite vertical permeability ranges from 4.9E-12 ft/s to 9.5E- 
12 ft/s, and resulting pore velocity calculations suggest pore-water residence times of 6000 to | 

—— 18000 years. Variable direction hydraulic gradients with depth in the Maquoketa indicate 

complex internal flow patterns. 7 | 
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oO Geochemical and isotopic results are consistent with slow downward flow through the upper part 

of the Maquoketa Formation and saturation indices indicate porewater with a long residence 
time, perhaps a few thousand years. Significant deviations in major ion concentrations and field — 
parameters with depth at the level of a prominent horizontal fracture imply younger lateral 
groundwater flow, possibly from the Maquoketa subcrop a few miles to the west. Additional 
isotopic and geochemical results, not available for this report, will provide further details of age 
dating. 

This study provides important data which will enable further investigation of confining 
| properties of the Maquoketa Formation using groundwater flow modeling and solute transport 

modeling. The two field sites can be used for further investigations of the hydraulic relations | 

between the Maquoketa and underlying Sinnipee Group dolomite. The complex internal flow 

patterns indicated by the variable hydraulic gradient directions and magnitudes warrant further 
investigation. In addition, cooperating researchers are working on other aspects of the lithology 

of the recovered core, its geochemistry and rock mechanical properties, which willaddto our 
knowledge of the sedimentology and hydraulic properties of this very important regional : 

confining unit. | 
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Table 1 : Estimated Anisotropy and Vertical Hydraulic Conductivity for Maquoketa lithologies 

Hydro | Facies type/lithology | Calculated Estimated | Estimated 
Group Horizontal Anisotropy | Vertical 

| Conductivity Ratio Conductivity 

(Kx) (Kx/Kz) _| (Kv) 
| Unfractured cyclic 

1 packstone-mudstone, | 1.3E-9 ft/s 100 1.3E-11 ft/s 
Burrowed brownish- © to 4.8E-9 ft/s _ to 4.8E-11 ft/s 

| gray dololutite 

Brown-banded | | 
silty dolomite 6.8E-5 ft/s 10 6.8E-6 ft/s | 

2 (unfract. C&S-rich to 8.5E-5 ft/s to 8.5E-6 ft/s 

grainst./packstone) | | 

| Fissile greenish-gray | 1.7E-9 ft/s | 1.7E-12 ft/s 
3 mudshale to 3.0E-9 ft/s 1000 to 3.0E-12 ft/s 

_ Table 2: Calculation of vertical hydraulic gradients across packers, Day 107, Minooka Park site | 

Elevation of top Head above packer Head below packer Vertical gradient | | 
of 3 ft packer (ft above msl) (ft above msl) (ft/ft) 
(ft above msl) | | - down, + up 

666.5 895.55 848.72, -15.61 | 

626.5 a 848.72 841.36 - 

590.5 841.36 844.89 

844.89 854,99 
540.5 854.99 857.46 +0.823 | 

05746 585.63 9061 

© . is
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all results in mg/l except as indicated 

| Portnumber | 7] | CCT SCT 

elevation ft __——s—900.-—S—ifSCCsf00—=STs—#$“sCsitSCi‘iON’”:~—C‘dT FCC“‘SCSQQCDSC 

Diss. Oxygen,ppm (2,2 Sst Sf 
, 

| 
Mg 4 es 

| 
KOC Ts 
Feo ft Sf fot foes foo fos 
Mn ———=*t.0087__fo.0047__|0.004__—fo.0096 __|o.oos__fo.0035__—fo.o0s9__— 
[As —if0.0007__fo.0007_IND** _—fo.o00s__—fo.o00s_—ND** Ss [ND** 
Bro Sf foots foe fos fot ST 
Sr ifs fn. 768 fn. 232.9274 
Zo IND IND** [0.009 IND¥* —IND** IND*®—IND** 

NO, ND **IND**ND** IND** ND IND IND #e 
Sulfide ft ft Sift Sf | 
Cu ND **IND** Dee new TIN ND 
Notes: alkalinity for port 3 was estimated from EPM balance | [ 

** ND denotes concentration below analytic limit of detection. Detection limits were 0.0006 mg/l. 
(As), 0.022 mg/1 (NO,), 0.008 mg/l (Zn), and 0.003 mg/I (Cu). 

| ***HCO, calculated using PHREEQC speciation model | 

o |. r
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[ror foegh lei ine es” fect foto lest onianie Port |Depth elev jdate  |bars _ calcite |dolomite celestite |strontianite 

| 6 (271.5 |628.5|4/30/98]-1.84 |o.04_ 0.09 4263 [2.21 |o71 | 
| 5 [307.0 _|593.0|4/30/98|-1.87__|o.00_ 0.25 |-4.39 [3.78 [oss | 

below del *O, | del 7H, . 
Port surface, jelevation,; sample | permil | permil 

number ft ft date SMOW | SMOW 

4322.5] 577.5] 5/1/98] -9.69|__—-71.66 oe 

| 2402.5} 497.5] 72e/s] | | | 
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. Figure 2: Gamma, caliper, SP and resistivity logs at Minooka Park field site. 
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. Figure 3: Fluid temperature and fluid resistivity logs at Minooka Park field site. / 
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. Figure 4: Heat-pulse flowmeter logs at Minooka Park field site. 
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: Figure 5: Gamma, caliper, SP and resistivity logs at DOT field site. 
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Figure 6: Fluid temperature and fluid resistivity logs at DOT field site. 
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Casing: 48 ft (determined by geophysics) 
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Figure 7: Heat-pulse flowmeter log at DOT field site. . 
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Figure 8: Multi-level packer and monitoring system after packer inflation, . 
and resulting vertical hydraulic gradients at Minooka Park field site. 
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Figure 9: Gamma log and lithology from core description at Minooka Park field site. 
(for Hydro group number, see Table 1) 
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, Figure 10: Distribution of measured horizontal hydraulic conductivity, 
Maquoketa formation, Minooka Park field site 
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Figure 11: Charge balance for porewater geochemistry at different levels, 
ei Minooka Park field site. 

Milliequivalents per liter of water 
o- N OW RF HO DN DO © CO 

0 a 
TN |i 

[isa] 

Constituent 

Mca 
(+ Mg 

. 100 KSS5 
Wl 

£ Hy co3 

~~ [aa] er 

Ss so4 
Qa 
® 
To 

Ss 200 
¢ 
© 

t Te ee ee 
° a rrsr—~—“‘COO—Os—sO—s—s—CSCSC—sSS 

2 : ~ A 

F300 
“”) 5 ee 

400 5 ee 
4 a) | Sinnipee, | 

-



. Figure 12: Field parameters and analyte distributions at different levels, 
Minooka Park field site. 
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Figure 13: A: Partial Pressures CO2(g), B: Saturation Indices, C: Oxygen isotopes data 
and D. Tritium, at different levels, Minooka Park field site . 
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Figure 14: Oxygen-18/Deuterium isotopes relationship, Minooka Park field site 
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