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COVER: Wisconsin Point 

In 1983, a demonstration project was initiated at Wisconsin Point on Lake 
Superior to evaluate the beach nourishment disposal option for “clean” harbor sedi- 
ments. Previously, the State of Wisconsin prohibited open-water disposal of harbor 
dredge materials because of concern about possible environmental degradation. This 

study reports the effectiveness of the project for disposing of dredged materials and 
reducing shoreline erosion, and the environmental soundness of using Great Lakes 
harbor sediments to nourish beaches. 

During the dredging and nourishment operations, changes in the physical beach, 
beach materials and benthos, and near shore water quality were monitored, and suit- 

ability of the dredged material for beach nourishment was measured. Deposition of 
dredged materials resulted in significantly increased beach materials. Although sam- 
ples of dredged materials showed some were not suitable for the intended purpose 
based on EPA guidelines, the beach substrate was not altered nor water quality mea- 
surably affected by the nourishment project. Surveys of the benthos population indi- 
cated no adverse impact on the community and no significant disruption of beach use 

by the public was observed. 
Although the demonstration project revealed no measurable detrimental impacts, 

beach nourishment has limited potential at this time because of the possible contami- 
nation levels in dredged materials. Proper classification of harbor sediments for safe 

use and/or disposal is an important issue for future study.
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To. protect the chemical quality, circulation patterns by spoil mounds; tential impacts of in-lake disposal of 

physical appearance, and biological __ redistribution of sediments; changes in dredged material. They concluded that 
productivity of its waters, Wisconsin the chemistry of sediments and overly- beach nourishment was a potentially 
has closely regulated the dumping of ing waters; and remobilization of con- beneficial use of dredged material (pre- 

any materials into its lakes or streams, taminants by resuspension and biologic § dominately coarse to medium sand) on 
including its boundary waters. Mate- uptake. eroding areas of Wisconsin Point. - 
rial dredged from lake and river bot- Relatively few beach nourishment However, Duluth-Superior harbor 

~ toms must be disposed of on land or in a projects have been done on the Great dredged material was found to vary 
containment facility. In 1979, the Wis- Lakes. The first projects simply com- considerably in quality, with some sed- | 
consin Coastal Management Program pensated for the impacts of navigation, iments containing potentially harmful 
estimated a backlog of dredging work and no evaluation of environmental amounts of trace metals, in particular 
of 400,000 yd°. But finding or building impacts were made. Later a more thor- mercury. 
a proper site for this disposal can be dif- ough evaluation of beach nourishment Concern over open water disposal of 
ficult and transporting dredged mate- was undertaken by Nester and Poe polluted dredge material led finally in 
rial is costly; therefore other possible (1982) on Lake Huron. Their study 1975 to the prohibition of such material 
alternatives have received considera- showed no changes in sediment particle in the Great Lakes boundary waters of 

tion. Beach nourishment—adding sand size distribution, water quality, or Wisconsin. 
to beaches—is one way of using some of populations of bottom-dwelling organ- Another major concern has been the 
the dredged material and reducing isms or fish that could be attributed to increase in shoreline erosion on Wiscon- 
disposal costs, while slowing shore ero- the nourishment project. sin Point, which has exposed old solid 
sion. On Lake Superior, the effects of waste placed by the City of Superior in 

In 1956, beach nourishment was rec- beach nourishment were less clear. The a dump on the land side of Wisconsin 
ognized as a potentially desirable form immediate local effects of near shore Point. 
of shore protection by the U.S. Army unconfined disposal in Lake Superior More information on disposal op- 
Corps of Engineers (COE), primarily were measured when material classified tions was needed, and agreement was 
on ocean beaches. The early 1970s saw _ by the U.S. Environmental Protection reached through the Wisconsin Coastal 
the first uses of dredged material for Agency (EPA) as “‘unpolluted” was Management Council to evaluate the 
beach nourishment, and between 1977 placed in 12 ft of water off Minnesota beach nourishment disposal option. 

and 1981 material from 25% of the Point, Duluth. Water quality de- The demonstration project reported 
Corps’ dredging projects was used for creased significantly, with several in- here was set up to determine if the use 
this purpose. In a comprehensive re- dicators exceeding Minnesota stan- of tributary sediments to nourish 
view of the effects of dredging and dards (Hotvet 1975). beaches is an effective and environmen- 
dredge spoil disposal in estuaries, Mor- Kiellor and Ragotzkie (1976) stud- tally sound means of disposing of 
ton (1976) found four types of impacts ied Lake Superior harbor and near dredged materials, and at the same 
of unconfined disposal: alteration of shore sediments and assessed the po- time reducing shoreline erosion. 3



Wisconsin Point, chosen as the site perior is noted for its extremely low cause further erosion). Small waves 
for the demonstration project, is lo- productivity. during late spring and summer months 
cated just outside of Duluth-Superior The littoral drift (lake bottom ma- move littoral drift back on the beach. 
harbor at the western tip of Lake Supe- terial in the surf zone) on the south The net direction of littoral drift in 
rior (Fig. 1). Together with Minnesota shore of Lake Superior and Wisconsin the west end of Lake Superior is to the 
Point, Wisconsin Point forms the long- Point is generally sands and gravels west. The littoral drift eventually stops 
est freshwater bay mouth sand bar in sorted out of the eroded bluff materials on the bay mouth bar which protects 
the world. The area is owned by the and sediments carried by streams into Superior-Duluth harbor. Most of this 
City of Superior, and is used by local Lake Superior. The fine materials (silts littoral drift comes from tributary 
residents for water-oriented recreation. and clays) are carried offshore into streams and bluff erosion on the south 

The only building on the point is the deep water. shore (Wisconsin shore), since the 
University of Wisconsin-Superior’s The largest waves of the south shore north shore (Minnesota shore) is very 
Lake Superior Study Center located at of Lake Superior come from the north- rocky. 
the tip of the point. There is a small east (because of the longer fetch). Fur- The Nemadji River is the most im- 
dock at the study center. Jetties and an thermore, most of the large waves oc- portant source of coarse sediments in 
arrowhead breakwater protect the Su- cur in the fall and the spring—when the Duluth-Superior harbor area, be- 
perior entry to the harbor. Four groins most large storms occur. Since Lake cause it is eroding former glacial 
and about 300 yards of large rock rip- Superior shoreline is ice covered from _lakebed. Other tributary streams do 
rap protect an area near the east end of January to April spring storm waves not contribute significant amounts of 
the point. The groin field and riprap usually don’t reach the south shore. coarse sediments to the littoral drift. 
were installed to protect the former Summer is relatively free of large Streams flowing into Lake Superior be- 
city landfill from continued lake ero- storms, so most littoral drift movement tween Bark Bay and Wisconsin Point 
sion into Lake Superior. and damage to beach and bank occur have smaller percentages of sand and 

Lake Superior is the largest body of during the fall storms. gravel. In addition, most of their wa- 
fresh water in the Western Hemi- Large waves also cause the beach to tersheds are small. The St. Louis River, 
sphere. The lake is oligotrophic with erode offshore to form sand bars. The although it has a very large watershed, 
exceptionally high water quality. Its sand bars are important because they contributes almost no coarse sedi- 
small outflow means a very low flushing cause the waves to break offshore ments. 
rate (183 years). Biologically, Lake Su- rather than on the beach (which would 
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: i gathered 11-15 October 1982. Water lected at four different locations with a 
Nourishment Operation depth soundings were taken by ponar dredge (Fig. 1). Nemadji River 

handline and with sonar equipment. sediments and red clay bluff materials, 
The dredging and placement of ma- Site photographs were taken at least which are natural sources of sediment 

terials at Wisconsin Point took place monthly. to Superior harbor and Wisconsin 
between 14 September and 1 Novem- Pre- and post-operation surveys Point, were sampled at four locations 
ber 1983. Contract letting complica- were conducted and depth sounding shown in Figure 3. The samples were 
tions delayed the nourishment opera- data converted to a bathymetric map sent to the State Laboratory of Hy- 
tion to the fall storm season. The COK _ (Fig. 6) and near shore profile (Fig. 7). giene for chemical analysis and to the 
contractor, Durocher Dredge and The map shows 5-ft contours for com- Department of Transportation labora- 
Dock Company, used a clam shell parison of bathymetry before and after tory for particle size analysis. 
dredge to remove material from Supe- the operation. Near shore profiles are The dredged material was exten- 
rior harbor near the mouth of the cross sections of the study area. They sively sampled while dredging was in 
Nemadji River. The material was extend from the shoreline out into the progress. With the cooperation of the 
loaded onto barges and towed to the water to the 20-ft contour. The profiles dredging contractor, the dredging 
nourishment site (Fig. 1). A smaller were used for calculating the volume of crews collected a one-quart sample of 
clam shell crane on an anchored barge sediment movement. nearly every barge load of material 
was used to place the dredged material that was towed to the deposition site. 
in the lake. Original plans called for un- Each sample was therefore representa- 
loading 50-60,000 yd° of dredged mate- . | tive of about 250 cubic yards of mate- 
rial along a 2,600-ft reach in the near Harbor Sediments rial. The samples were stored in the re- 
shore area. However, the contract let frigeration unit on the tugboat until we 
by the COE limited disposal to a 1,300- . . . could pick them up and send them in 
ft stretch immediately lakeward of the Super lor har bor sediments used in for laboratory analysis. For chemical 
groin field. The material was unloaded the Wisconsin Point beach nour ish- and particle size analyses, the 191 indi- 
400-450 ft offshore in 5-6 ft of water. ment project were sampled twice prior = yi qua) barge load samples collected 

to the beginning of our study, in 1975- were composited (blended and subsam- 
. 76 and in 1982. Details on sampling pled) into 14 samples, each represent- 

Beach P hysical Changes procedures, handling methods, and an- ing 10-15 barge loads of dredged mate- alytical results and interpretations can rial. 
| be found in various EPA (1977) and 

The change in the near shore profile DNR (1983) documents. 
and the rate and volume of movement Approximately one month before Beach Material and Benthos 
of dredged material placed in the near dredging started, we also collected sedi- 
shore area were monitored. A survey ment samples in the Superior harbor, 
baseline, tied to known benchmarks, near the mouth of the Nemadji River All beach material and benthic in- 
was established in the fall of 1982 inside the area designated for dredging. vertebrate samples taken before, dur- 
(Fig. 2), and preoperational data were Surface sediment samples were col- ing, and after the nourishment opera- 
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6 FIGURE 2. Survey baselines established in the fall of 1982.
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FIGURE 3. Nemadji River and bluff sampling sites. 

tion were collected along five transects ee 
(Fig. 1). Sampling stations were estab- i git 

same sites were sampled during and af- OE Ns = RBI alll = 
ter the operation even though water a ee Oe lll | , 

depth changed at some locations. Not —— ee oe so See | bas 
° eee el ee Lo all sites were sampled on every sam- sig ASM aac -_ 

pling trip, because climatic conditions «se ae 
| forced changes in scheduled sampling ==, Fa oe 

unnecessary to sample some locations. ee eee ve O LS yo 4 Oe eRe 

Bottom samples were collected ex- = g te  iige 4 
terial for physical and chemical analy- ec ou wo 1 + . ee Oe er YS ee iv 

sis was prepared on-site according to oo eae Mtge a ae . 
pe rforming the analyses. In or der to de- - . 2 _ ‘ i . v s & ag 

termine sample variability, four sepa- oo wy > ee 
rate benthic samples were taken at the Ae ee Do | 

same location on several occasions. At Treacherous ice conditions prevented collection of some data 
the laboratory, benthic organisms were during the winter following the nourishment operation. 
concentrated with a 30-mesh sieve, 
sorted, and preserved in 70% ethanol 
for identification and counting. Chiro- 
nomidae and Amphipoda were identi- 
fied to genus and species, respectively, . 

and the remainder to the lowest possi- ples before, during, and after the treat- Laboratory Analyses 
ble taxonomic classification ment project. Measurements made in 

the field included temperature, pH, al- 
kalinity, conductivity, color, turbidity, Sediment analyses performed at the 

Water Quality Secchi, and chlorophyll a. Samples for State Laboratory of Hygiene included 
| analysis at the State Laboratory of Hy- total phosphorus, total kjeldahl nitro- 

giene were drawn from about one ft be- gen, chemical oxygen demand, oil and 
Water quality samples were col- low the water surface, and delivered to grease, arsenic, barium, cadmium, 

8 lected at the same sites as bottom sam- the laboratory within 24 hours. chromium, copper, iron, mercury,
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Near shore water quality measurements were made Benthic invertebrates and bottom material samples | 
e . 

along 5 transects before, during, and after the nour- were collected with a ponar dredge. 
e e 

ishment operation. 

manganese, nickel, lead, zinc, PCB, The Wisconsin Department of 
a e s 

percent volatile solids, and percent Transportation laboratory performed 
° e s 

moisture. The same set of tests were particle size analysis of dredged mate- 
e 

run on water samples, as well as soluble rial and beach material samples. Per- 
e es e 

phosphorus, ammonia, nitrate and ni- cent of gravel, coarse sand, fine sand, 
e e e e e 

trite, suspended solids, turbidity, cal- silt, and clay was determined for each 
e e e e 

cium, magnesium, potassium, sodium, sample as follows: gravel: pass 3-inch 
e e es s 

sulfate, and chloride. All analytical mesh sieve, retained in #10 sieve; 
procedures at the State Laboratory of coarse sand: pass #10, retained in #40; 

e e e 

Hygiene are EPA approved and a rigid fine sand: pass #40, retained in #200; 
e e e 

quality assurance program is followed. silt: pass #200, retained in 0.002 mm; 
eo oe e e 

Detailed information on operating pro- clay: pass 0.002 mm. 
e 

cedures at the State Laboratory is 
e 

available upon request.



TERIAL 
CRAP ACTERISTIC. S finer samples contained traces of mer- While the bulk of the dredged mate- 

cury. No PCB’s were found in any of rial was relatively free of contami- 
the samples. Because of the collection nants, the first 25 barge loads con- 

Particle Size method (ponar dredge), these samples tained concentrations of mercury in 
contained only near-surface sediments. excess of 1 mg/kg. Under the EPA cri- 
The bulk of the material that was used teria, this material would have been 

Particle size analysis of the samples in the nourishment project was classified as polluted and unsuitable for 
taken on the barges showed consider- dredged from greater depths. unconfined disposal. About 5,000-6,000 
able variation in the material (Fig. 4). More representative data on the yd? or roughly 10% of the dredged ma- 
Most of the material was sand-gravel characteristics of the dredged material terial used in the operation was con- 
(67% average), but a significant were obtained from barge samples __ taminated. It contained an estimated 
amount was silt-clay (33% average). taken during the operation (Table 2). 23 lb of mercury. Because only trace 
While some of the barge loads were al- Although all but one of the composite amounts of mercury were detected in 
most entirely sand, others were made samples exceeded EPA’s unpolluted harbor sediments collected prior to 
up of nearly 50% fine particles. Use of category for at least one parameter, dredging, and samples collected on the 
material consisting of a high percent- most of the material could be consid- barges were not analyzed for several 
age of fine particles is generally not de- ered as satisfactorily ‘‘clean”’, based on weeks, use of the contaminated mate- 
sirable for beach nourishment because the ‘‘multiple factor’? assessment rial for this project could not have been 
(1) if contaminants are present in sedi- method used by EPA (U.S. EPA 1977). prevented. 

ments they are normally associated This judgment was based also on re- The origin of the mercury found in 
with the fine particles, (2) the fine silt- sults from the analysis of natural sedi- these materials is unknown. It can only 
clay particles are easily suspended and ments. Samples from the red clay bluff — be speculated upon. It was associated 
readily transported from the nourish- soils sloughing into the lake at the base §_ with materials that came from the up- 
ment site, and (3) fine materials are po- of Wisconsin Point, showed that levels per sediment layers made up of a higher 
tentially more detrimental to water of several metals were above EPA’sun- _ than average percentage of fine parti- 
quality and biota (Kiellor and polluted category guideline, as was the cles. The mercury was either contained 
Ragotzkie 1976, Ill. Geol. Serv. 1981). total phosphorus concentration (Table in some sediment layer not sampled 

° 3). One Nemadji River sediment sam- prior to dredging or was a very recent 
. .. ple, which was predominately silt-clay | and localized surface deposit. 

Chemical Composition material, also exceeded the unpolluted 
guideline for some parameters. These 

In the samples collected at the results support the widespread opinion BEACH SEDIMENTS 
dredging site on 9 August 1983 a that these guidelines are not realistic 

number of constituents exceeded the for some parameters. Brown and . 
EPA’s limits for unpolluted Great Klump (1984) also found “contamina- Materials Movement 
Lakes harbor sediments (Table 1). The tion levels’’ exceeding the current 
three samples with the highest silt-clay guidelines in natural sediments and er- Deposition of the dredged material 
fraction (DS 1, 2, and 3) had the high- oding bluff soils along the Lake Michi- within the designated 1,300-ft nourish- 

est levels of pollutants, while the sam- gan shoreline at Kewaunee. ment area took place at a rate faster 
ple which was composed of the coarser These new data will help in making than natural lake currents could move 
material (DS 4) was the cleanest. The necessary changes in the guidelines. it shoreward or lakeward. Asa result, a 
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temporary “island” of material built | temporary groin effect resulted from ment site. This estimate is based on the 

up off the groin field. Some of this is- this temporary offshore breakwater premise that the silt-clay fraction of | 

land of dredged material remained visi- and accumulated littoral drift. This the dredged material, or one third of 

ble to the end of the operation, and temporary effect caused new beach the total of 50,000-60,000 yds° depos- 

there were also large deposits notice- buildup updrift of the nourishment ited, was dispersed lakeward into deep 

able between it and the groins and _ area as deposition progressed. At the water. 
landfill. Thus, a temporary offshore completion of the project an estimated Shortly after completion of the 

breakwater was created which pro- 33,000-40,000 yd? of the dredged mate- project in early November, a violent | 

tected the shoreline and the landfill. A _—srial remained in place at the nourish- storm (17-year recurrence interval) oc- 

TABLE 1. Chemical analysis of sediments from the dredging site at the mouth of the Nemadjt River. 

EPA Classification of Great Lakes Analysis of Dredge Site Samples | 
Harbor Sediments Taken 9 August 1983 

Moderately Heavily 
Parameter) Unpolluted Polluted Polluted DS-1 DS-2 DS-3 DS-4 

Total phosphorus 420-650 650 boo bes 415 167 
Total Kjeldahl nitrogen —_—-1,000 1-2,000 2,000 896 838 634 177 

Lead (Pb) 40 40-60 60 <5 <5 <5 <5 

Zine (Zn) 90 90-200 200 5B SQ 8B 
Nickel NI O 20-50 50 Po a 14 <5 

Baran (Ba) 20-60 60 eS Age 2 

Manganese (Mn) RN 300-500 500 20 640 360. 170 

Mercury(Hg) sss None. — 1 0.02 0.08 0.02 <0.02 
Oil/grease 1,000 1-2,000 2,000 108 116 158 <30 

| COD 40,000 40-80,000 80,000 

PCB (mg/l) None — 10 <0.05 <0.05 <0.05 <0.05 

Volatile solids (%) 5 5-8 8 | 

| Particle size (%) 
Gravel — — 4 26 

Coarse sand 3 13 14 47 

Fine sand 19 24 34 15 

Silt 61 51 39 10 

Clay 17 12 9 2 
ee 

@ Shaded values indicate that sample exceeded EPA unpolluted classification. 

| b All measurements in mg/kg except as indicated. _ | - 

TABLE 2. Physical and chemical analysis of dredged material sampled from barge loads. 

Comp. Comp. Comp. Comp. Comp. 

Comp. 1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp. 9 10 11 12 13 14 

Parameter@ (1-10) (11-25) (26-42) (43-58) (59-76) (77-93) (94-107) (108-123) (124-139) (140-154) (155-166) (167-181) (182-194) (195-205) 

Total P 510 430 400 340 360 300 300 150 220 460 350 320 440 410 

TKN 570 660 590 480 470 400 390 88 200 770 420 460 660 620 
Cd <1 <1 <1 <1 <1 <1 <1 <l <1 <1 <1 <1 <1 <1 
Cr 19 19 14 19 20 9 9 <5 <5 23 9 10 14 14 
Pb <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 
an 38 42 39 30 31 21 17 8 14 47 28 27 39 32 
Cu 16 17 15 12 13 9 8 3 6 19 10 12 16 15 
Ni 10 14 9 10 15 <5 9 <5 <5 14 <5 <5 14 9 
Ba 60 60 60 40 50 40 30 <20 30 70 40 50 60 50 
Fe 16,000 15,000 15,000 12,000 13,000 8,800 5,000 6,400 7,100 19,000 9,400 11,000 15,000 14,000 
Mn 310 310 320 230 230 160 56 52 120 360 210 250 380 310 
Hg 1.91 1.43 < 0.02 <0.02 < 0.02 < 0.02 <0.02 <0.02 < 0.02 < 0.02 < 0.02 <0.02 0.03 0.03 
As 4.0 4.1 4.3 3.8 4.6 4.2 3.9 2.6 3.2 6.9 3.9 3.6 4.9 5.0 
Oil/grease 140 98 150 120 140 140 78 < 60 67 170 85 110 120 100 
COD 29,000 28,000 27,000 21,000 22,000 $22,000 21,000 9,000 9,000 27,000 16,000 20,000 24,000 26,000 
PCB (ug/g) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <005 <0.05 <0.05 <0.05 
Vol. sol.(%) 2.9 2.7 2.5 2.2 2.2 1.9 1.8 1.2 1.1 2.9 1.9 2.0 2.6 2.3 

Part. size (%) 

Boulders — _ — — — — — — — — — — — — 

Gravel — — 3 — — — — — — — — — — 5 
Coarse sand 5 6 3 1 1 3 4 10 7 4 9 7 12 16 
Fine sand 52 49 54 66 69 71 75 88 78 40 67 59 39 35 
Silt 33 35 34 26 25 20 16 1 10 41 17 25 36 33 
Clay 10 7 9 7 5 6 5 1 5 15 7 9 13 11 

2 All measurements in mg/kg except as indicated. 
b Numbers in parentheses are the load numbers from which each composite was made. 1 1



TABLE 3. Physical and chemical characteristics of Nemadji River curred on Lake Superior that had con- 

sediments and Wisconson Point Bluff materials.4 siderable impact on the beach and near 
——— shore area. Waves were said to overtop 

Parameter? Bluff #1 Bluff #2 Nem. R#2 Nem. R#2 _ portions of Wisconsin Point, and sig- 
ToalP OO 640 4 220 nificant amounts of material were 
a ra ” ote “ redistributed. This storm, occurring so 

ne j ‘: soon after completion of the project, 
ee os oe ” " ut prevented measurement of dispersal of 

Zn 54 64 40 17 the material under normal conditions. 

Cm ae 20 1 Comparison of bathymetric surveys 
NO ch 36 19 6 taken before the operation and imme- 

SS Om 9 a7 diately after the storm indicates that 
Fe ss 20,000 = 88,000 = 17,000 9,300 the beach and near shore area con- 
SS rr”——C=EES 700 400 210 tained an additional 64,375 yd? of ma- 
ke eee sume ge 2 a _ terial between stations 0+ 00 and 

[oo ee 1 aL & 83+00 (Fig. 5), 43,000 yds® of which 
Vol. solids (%) a9 32 no os was in front of the landfill. About half 

Particle size (%) of this increase in material can be at- 
Boulders ~ ~ — ~ tributed to the blocking of shore sedi- 
Coarse sand 2 1 _ or ments, moved during the November 
Fine aad 9 3 30 47 storm, by the temporary offshore 

Silt 68 29 rel 20 breakwater. Therefore, the dredged 
Clay 21 67 59 6 material breakwater exaggerated the 

ST intended beach nourishment objec- 
a shaded values above EPA guideline for “unpolluted” harbor tives. 
sediments. . 

b All measurements in mg/kg except as indicated. in ae ee 

still about 37,000 yd? more material in 
the beach and near shore area between 
stations 0+ 00 and 33+ 00 than existed 

wk a eg eee prior to the operation. In June 1984 
etre ocd ue oe a a hae there was 27,000 yd* more material 

“Eales ues 2 oe protecting the landfill than was there 
eT r——“=E8nN“™—s'=; SC = =~ _SCsiprrir to the nourishment operation. 

Oe ee Les The bathymetric map showing 
pe |... changes in near shore bottom contours 

- 2 : before and after the project indicates 

: (ees that those beach materials moved off- 
air et illite any S | _—_sSore during the winter and onshore in 

ipod it aii ii “ " ae a summer (Figs. 6, 7). It appears there 

at eerie x - was an unusual seasonal gain/loss in 
: ? - : the vicinity of the groins-nourishment 

: me area (Fig. 5). In all other places along 
2 : ii en > the baseline, the gains/losses are minor, 

The dredged material placed in front of the old landfill caused thus indicating that the beach was sta- 
waves to break further offshore, expending erosion energy that ble. . 
otherwise would have been brought to bear on the shoreline. Severe bank erosion took place west 

of the riprap shoreline at Pts. 9 and 10 
(Fig. 8) after completion of the project. 

The November storm and the dredged 

I, setnccresion cca. Asurvey 
wel EUUR TEC eee PALS as May 1984 showed an estimated loss of 

Hue ta uae bal en RE Ret eka) 3200! 1,400 yd? of bank material due 
Pee tse nematic BIO F: Dee es Vere era Beds to the erosion the previous fall. At Pt. 
Ceeu ee em e -.__ 8, approximately 1,000 ft west of the 
hay fea Pd UI eae 8 ao ee BaP : CEVA “ end a the riprap, little bank erosion oc- 
MEF LMP EREVAN DL NER eo a ee fe : OT AMOS TIAA 08 ih eS Te GER eng OS 

OSS CLAN SU HONE. cm , ae a ag . . 
OU ER awe Particle Size 

REA Ley Parle EL) RL CI TITAS RENTAL Ere nee a 
PEPE EEE PUAN ANA O YLANG) Do ie eat 
et AY fi ERS, ia ns aati The nourishment project had no ap- 

Hot eed " \ ae : preciable effect on particle size of beach 
ae re ; materials within the treatment zone. 

s 6 o ‘ Along Transect A, composition of sedi- 

a “ ments was predominantly fine sand 
A before, during, and after the nourish- 

Littoral drift accumulated in front of the groins following the ment operation (Fig. 9). The material 
deposition of sediments. at the 3- and 6-ft depths along Transect 

12 A (and also Control Transects B and
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FIGURE 5. Beach material gained or lost between the shoreline and the 20 ft depth. | 

Noe ar a 
eh es 

| eA a) s 
C) was slightly coarser during and after oes cell fee eee. Ce elitist ibe 

treatment than before. A shift toward = $$« ##$$§. gf —_———— = oe 
more fine particles in the sediment dur- ll rr Sayeee Mee 

| been expected because about one-third Qe MMMM 0 7) |: ggeigee | ia one _ 
of the dredged material was silt-clay. [Xs Wie gg Me ek 
However, the fine material apparently 4S . a ho beans 08 ee ge 

came part of the near shore sediment. #058") 5 8 0500 7 ae | 
Normal winnowing processes seemed |) ese 2 
to have taken place, resulting in rapid (Fe tet el ee 

24-ft depths on all transects always [Re aes | Glee Gc eu gg 
the fine particles in the dredged mate- a cc Boag 

rial could have been deposited at these Beach berm erosion at the downdrift end of the riprap (May 1985). 

depths. 

Chemical Composition heavy metals were present only at low WATER QUALITY 
levels or in undetectable amounts. 

The dredged material might have 
Chemical analyses of beach materi- been expected to contain some oil and As a basis for determining impacts 

als (Fig. 10) showed no changes in grease, due to shipping traffic or the of the demonstration project on water 
chemical composition as a result of the dredging operation itself; however, oil quality, naturally occurring water 
project. Levels of all measured constit- and grease concentrations were low in quality conditions off Wisconsin Point 
uents were the same before, during, and the dredged material and below detec- | were documented before the project be- 
after treatment. Although a relatively tion limits in beach sediments. Because gan. In general, water quality in the 
small amount of dredged material used no PCB’s were found in any samples of __ near shore zone did not vary much dur- 
in the nourishment operation was dredged material before it was depos- _ ing the year prior to treatment (Table 
found to contain mercury, no mercury ited, no PCB samples were collected at 4), except for water clarity, which 
was detected in any beach samples col- the project site after the operational § showed considerable variation (Fig. 
lected during or after the project. Other § phase. 11). The before-treatment ranges in 13
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values for turbidity, suspended solids, : 
color, and Secchi disc reading demon- | 
strate the great differences in water | 

\ clarity that occurred within the project | 
\ area. Dramatic and often rapid | 
\ STATION 9+72 changes in water clarity are a well ree- | 
\ PROFILES ognized natural phenomenon along the 2 
‘ : Lake Superior shoreline. Weather con- | 

z \ ditions are the determining factor. : 
= \ During periods of calm or offshore i 
< 600 \ winds, the water is usually very clear, | 
My \ but during storms or periods of strong | 
MI ~“\ onshore wind, bluff erosion and resus- | 

\ pension of bottom sediments causes the : 
turbidity and “‘red clay”’ color charac- | 

\ ~ JUNE (988 teristic of the Lake Superior shoreline. | 
u \ / Since the Superior harbor sediments 

used in this project were 33% silt-clay, | 
\ the potential for creating turbidity was 
\ quite high but not unlike natural situa- 
\ tions. Data collected on three different | 

SEPTEMBER 1983 \ . dates, 2 during and 1 after the nourish- | 
\ ye \ ment operation show that water clarity ! 
\ / \ was always within the normal range as | 

| NU \ established in 1982 (Fig. 11). On 26 | 
OFFSHORE ‘. September, about two weeks after | 

treatment began, water clarity was ! 
) somewhat lower along Transect A, in 

— the treatment zone, and Transect C im- 
FIGURE 7. Near shore profile (below water surface) at station 9+ 72. mediately downdrift from the treat- 
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TABLE 4. Analysis of water quality near shore at the nourishment site on Wisconsin Point, before, during, and after the dredge disposal operation. eee nae eee ee Oe ONE EEE PTE 

Transect A Transect B Transect C 
Treatment Zone —_______South Gontrol North Control 

Parameter Before During After Before During After Before During After aaramererp_ tore During After Before During After Before During After 
Total alk. 39-49(19)> 42-51(6) 46-49(3) 40-48(19) 43-51(6) 44-46(3) 40-45(9) 43-48(6) 45-48(3) ph (SU) 71-1.5(19) 7.2-7.4(6) 7.2-7.3(3) 7.1-1.6(19) 71.2-1.3(6) 7.2-1.3(3) 7.1-7.5(9) 7.2-1.3(6) 7.2-1.3(3) 
Cond. (MHos) 90-115(19)  90-130(6) 105-110(3) 87-110(19) 85-115(6) 90-105(3) 90-110(9) 83-110(6) 95(3) 
Chi. A (ug/L) 1.9-13.5(19) __1.6-9.9(6) 4.1-5.8(3) 2.5-9.1(19) 1.1-6.9(6) 3.6-4.3(3) 2.3-6.1(9) 1.3-6.6(6) 3.5-4.1(3) 
Tot. phosphorus 0.005-.054(19) 0.006-0.013(6) 0.024-0.034(3) 0.005-0.061(19) 0.004-0.009(3) 0.027-0.042(2) 0.008-0.028(9) 0.005-0.001(3) 0.028-0.034(2) 
Sol. phosphorus DLC-012(19) DL(4) 0.006-0.007(3) DL-0.011(19) DL(3) 0.006-0.008(2) DL-0.005(9) DL(3) 0.006-0.007(2) 
Tot. nitrogen 0.42-0.94(19) 0.48(3) 0.47-0.48(3) _0.43-0.78(19) _0.47-0.48(3) —0.47-0.48(2)_—_(0.41-0.64(9) 0.48(3) 0.47-0.56(2) 
Org. nitrogen 0.2-0.5(19) 0.2(3) 0.2(3) DL-0.4(19) 0.2(3) 0.2(2) 0.2-0.4(9) 0.2(3) 0.2-0.3(2) 
Ammonia nitrogen DL-0.10(13) — DL(3) DL-0.02(13) — DL(2) DL(3) — DL(2) 

Nitrate & 0.20-0.29(19) 0.28(3) 0.27-0.28(3) —0.21-0.32(17) _0.27-0.28(3) 0.27(1) 0.21-0.24(9) 0.28(3) 0.26-0.27(2) 
nitrite nitrogen 

Calcium 13-17(19) 13(3) 13-15(3) 13-19(8) 13(1) 15(2) 13-18(4) 13(1) 14-15(2) Manganese 3-4(10) 3(3) 4(3) 3-5(8) 3(1) 4(2) 3-4(4) 3(1) 4(2) 
Potassium DL-3(10) 1(3) 1-2(3) DL-1.4(8) 4(1) 1-2(2) DL-1(4) 1(1) 1-2(2) 

Sodium 2(10) 2(3) 2(3) 1.8-2.3(8) 2(1) 2(2) 2(4) 2(1) 2(2) Sulfate 3.6-4.1(10) -3.3-4.3(3) 3.9-4.1(3) 3.3-4.2(8) 3.3-4.2(3) 3.9-4.0(2) 3.5-3.9(4) 3.4(1) 4.1-4.2(2) Chlorine 1.7-2.6(10) 1.9-2.1(3) 2.5-2.8(3) 1.7-2.6(8) 1.8(1) 2,3-2.8(2) 1.9-2.4(4) 2.0(1) 2.8(2) 
Cadmium DL(6) DL(3) DL(3) DL-(4) DL) DL-0.2(2) DL(4) DL() DL(2) Cr, ug/L —_ DL(3) DL(3) DL-34(4) DL) DL(2) DL-19(4) DL(1) DL(2) Pb, ug/L DL(6) DL(3) DL(3) DL(4) DL(1) DL(2) DL(4) DL) DL(2) Zn, ug/L DL(6) DL(3) DL(3) DL(4) DL(1) DL-20(2) DL(4) DL(1) DL-20(2) 
Cu, ug/L DL(6) DL(3) DL(3) DL(4) DL(1) DL-5(2) DL-24(4) DL(1) DL(2) Ni, ug/L DL(6) DL(3) DL(3) DL(4) DL(1) DL(2) DL(4) DL(1) DL(2) Ba, ug/L DL-0.9(6) DL(3) DL(3) DL(4) DL(1) DL(2) DL(4) DL(1) DL(2) 
Fe DL(6) 0.1-0.3(3) DL(3) 0.1-2.1(4) DL(1) 0.2-2(2) 0.2-1(4) DL(1) 1.4-1.7(2) 
Mn, ug/L DL(6) DL(8) 1.0-1.7(3) DL(4) DL) DL(1) DL(4) DL(1) DL(2) Hg, ug/L DL(6) DL(3) DL(3) DL(2) DL(1) DL(1) DL(2) DL) DL(1);0.5(1) 
As, ug/L. DL(6) DL(3) DL(3) DL(2) DL(1) DL(2) DL(2) DL(1) DL(2) Oil+ grease DL-2.6(6) DL(3) DL(3) DL(2) DL(1) DL(2) DL(2) DL(1) DL(2) CoD DL-12(6) 13) DL(3) DL-6(2) % DL(2) DL-6(2) 1 DL-9(2) 
PCB, ug/L. DL(6) —- DL-8(3) DL(2) —. — DL(2) ——. —— I a 
@ All measurements in mg/L except as indicated. 

b Range of values and, in parentheses, number of samples. 
¢ DL - less than laboratory analytical detection limit. 
Sampling dates: Before - 13 Oct 82, 23 Nov 82, 11 May 83, 14 Jun 83, 12 Jul 83, 17 Aug 88, 24 Aug 83 

During - 26 Sep 83, 10 Oct 83 
After - 14 Nov 83 

ment zone, than along the other control BENTHIC 
transect (B). Deposition operations INVERTEBRATES 
were underway when the samples were ‘ 
taken. As expected, the data indicate .? 
some localized turbidity. The 10 Octo- Sparse populations of benthic or- . 
ber 1983 data show water clarity was ganisms characteristic of oligotrophic 
very poor along Transects A, B, and C, lakes are generally found in the western a : 
similar to the previous fall (1982). The end of the Lake Superior basin in loca- ° 
same holds true for the samples col- _ tions where pollution from cities and 5 roe 
lected on 14 November, two weeks af- industries have not been an influence 
ter operations ceased. Water clarity | (Winter 1971). Sampling prior to the “=” AN 
was poor at all locations, most likely _ nourishment operation along the tran- ~ : a 
due to stormy fall weather. sects off Wisconsin Point, which for the pay . 

Aside from water clarity, there was most part appears to be isolated from np ~ 
no measurable change in any water direct impact of the Duluth-Superior ho 
quality indicator before, during, or af- _ ports, reaffirmed that few organisms . “Sh 8 ite 
ter the demonstration project. Al- were inhabiting the near shore zone ne eae eo 
though some of the sediments depos- _ (Fig. 12). Se fie alae. 
ited at the site were found to contain In addition to being naturally aitherch . FO 8 
mercury, only a trace amount was de- sparse, benthic populations on high-en- me aes, aie bs 
tected in one water sample. None ofthe ergy Great Lakes beaches are known to ne jag 
other contaminants found at low levels change dramatically with seasons of ee ee ny 
in the dredged material were detected the year. Our Wisconsin Point sam- 2 ie ee Be 
in the water during or after the materi- pling showed a reduction in the number LE ag me Pee 
als were deposited. In total, the project of invertebrates and number of taxa a 2 siacemaaac 
had little or no effect on lake water found in the near shore zone during Unloading operations created some 
quality. winter and early spring (Figs. 13, 14). temporary turbidity. 19
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| Barton and Hynes (1978) found that 
4 . macroinvertebrate communities which 

h developed along the Canadian shore of 
. 7a . Lake Erie in the 0-2 zone during sum- 

| j A mer, were eliminated by storms and 
ip bottom scouring in fall and spring. 

0° | \ They speculated that most species 
$ i j \ probably overwintered offshore and re- 
> 8 Pope AY . entered the wave zone by drifting. 
Zz /\é ’ / AN / Because Wisconsin Point benthic 
2. iA “eo CANN, i populations are naturally sparse and 

i ow MOON le subject to dynamic changes, major or 
Al i “aN fro permanent impacts due to the nourish- 

4 i SL Kf ™ ON i ty ment project were not documented. 
tH ] mS Ne, A a A Figures 13 and 14 do suggest there were 

24 4 So A ost lower numbers, fewer taxa, and less di- 
| NK — . versity (Shannon Index) along Tran- 

0 YONI sect A, in the treatment zone, than 
| MAY 83 IJUL83  —«ISEP 83 INOV83 | JAN 84 IMAR84 ~—s« | MAY84 | JUL 84 along control transects in October 1983 

when nourishment operations were 
LEGEND: TRANSECT AB mm DE nearing completion. However, it ap- 

FIGURE 12. Average number of organisms at each transect by date. pears that by summer 1984, there was 
no important difference between 
benthic communities inside and outside 

6 the nourished area. The taxa found pre- 
and post-treatment are shown in Table 

; | 6 (Append.). 
5 | Comparisons of communities found 

in May and June before and after treat- 
ment on the five sampling transects us- 

4 / ing Morisita’s index of community sim- 
< Pe . i ilarity, as described by Nester and Poe 
x i >, if (1982), showed all communities were 
ro 3 Pfr IRONS E- similar or highly similar (Table 5). 
< / og , NN po This indicated that the project had no 

: 3 / x Tf “NN fe “i long-term impact on invertebrate com- 
J feet Moy fm. /i munities. 
Ff x. fF i Because beach substrate and near 

if \ Rohs (nv shore lake water quality did not show 
NT Feces measurable change as a result of the 

‘ project, it was predictable that the 
0 : same benthic populations that existed 

| MAY 83 | JUL 83 | SEP 83 | NOV 83 | JAN 84 1 MAR 84. I MAY 84 | JUL 84 before treatment would become 

LEGEND: TRANSECT ——=A 9 -----B oem 0 DE quickly re-established after completion 
of the project. Brown and Klump 

FIGURE 13. Average number of taxa at each transect (1984) have also reported that the re- 
by date (Chironomid families separately identified). cently completed Kewaunee beach 

nourishment project had no significant 
impact on the biological community of 

| the near shore area, and Nester and 
I's Poe’s Lake Huron study (1982) showed 
1.2 no changes in water quality and 

O benthic organisms. 

10 

Bos /\ OX / 
>~ O8 ‘ Ags ‘. Pose “ 

ui | a reread’ 2 YK ; me! / TABLE 5. Morisita s index of similarity 
B o¢ / ? / \. \ \ i _ fF values comparing benthic communities before 
S TX | \e SOYA iho $—. and after beach nourishment (Chironomid 
E 0.5 ee ONTO \ i / ‘ i families pooled ).4 
Hoal "7 s ‘ ‘ i i OOOO 

oa | aN j | al May June 

| wN i a Transect ____—'1983-1984 1983-1984 
024 , SN f A 0.5455 0.9137 
od Nf fa B 0.5037 0.9511 

’ [i C 0.9824 0.8960 
00 D 0.7807 0.9596 

| MAY 83 [JUL83 SEP 83 INOV83  IJAN84  IMAR84 ~~ IMAY84 ~~ |JUL84 E 0.7774 0.9789 

LEGEND: TRANSECT ==—-A = -----B seremeeewe C ——D +E 4< 0.500 indicate communities dissimilar, 
20 0.500-0.749 indicate communities similar, 

FIGURE 14. Average Shannon diversity at each transect by date 0.750-0.99 indicate communities highly 
(Chironomid families separately identified ). similar.



ECONOMIC EVALUATION rately reflect the relative costs of the 1.00/yd* greater. Further, if bottom- 
| two operations, because the beach dumping barges could have been used 

nourishment project probably could in the unloading operation, approxi- 

The Corps of Engineers contracted have been done less expensively, while mately $1.50/yd*? would have been 
for the Wisconsin Point demonstration the polluted material dredging and saved on the Wisconsin Point project. 
project with Durocher Dredge and disposal operation would have been Bottom-dumping barges require 10-12 
Dock Co. of Cheboygan, Michigan at a much more expensive if the costs of the ft of water for unloading; therefore, the 
cost of $326,000. With between 50,000- CDF were included. In 1974, the COE dredged material was off loaded using a 
60,000 yd> of material handled in the estimated costs of CDF disposal were barge-mounted crane in this operation 
operation, the per-yd cost was $5.40- 3-5 times greater than in-lake disposal because shallower water (5-6 ft) deposi- 

6.50. During the same period the COE _ (Keillor and Ragotzkie 1976). tion was specified. This concentrated 
contracted for removal of polluted ma- According to the COE (Court Muel- unloading method created an offshore 
terial from the Duluth-Superior harbor ler, pers. comm.), if the Superior har- island and a tombolo developed from 

and deposition in a confined disposal bor “‘clean” material had been put ina — westward drift. 
facility (CDF) at a cost of $3.75/yd>. CDF instead of used for beach nourish- 
However, these figures do not accu- ment, the cost would have been $0.50- 

Deposition of dredged material in loads contained higher than allowable lation indicated no detectable adverse 
the near shore area resulted in a signifi- amounts of mercury. However, since impact on the community in the near 

| cant gain of material in the beach and _laboratory analytical results were not shore area. Fish habitat was not 
near shore area, which lasted at least | immediately available, there was no changed by the project; therefore, fish - 
until studies were discontinued (7 way that the use of these materials populations appear not to have been af- 
months). During the post-nourishment could have been prevented. fected in the study area. 
period, wave height appeared to be re- Beach substrate was not altered by Although there was no evidence to 
duced by nourishment fill and waves the nourishment project. Particle size show detrimental impacts resulting 
broke farther offshore than along con- analysis showed the composition of the from this demonstration project, beach 
trol areas of the beach. This buildup af- bottom remained virtually unchanged nourishment has limited potential at 
fected near shore processes and appar- during and after the treatment. It is ev- this time as a viable alternative for 
ently caused additional deposition of ident that the silts and clays do not disposal of significant quantities of 
material in adjacent beach areas. Hun- nourish the beach because the wave en- dredged sediment from Wisconsin 
dreds of thousands of cubic yards of ergy moves them offshore into deeper harbors. ‘‘Contamination’’ problems 
new beach material built up to the east waters. Chemical composition of the are currently very difficult to define; 
of the project site after the project was —_ beach material also did not change asa therefore, only very limited amounts of 
completed, far exceeding the amountof __ result of the operation. No mercury dredge material can now be classified as 
material used in the treatment. This was found in the beach sediments dur- truly ‘‘clean’”’ and suitable for beach 
was caused for the most part by the off- ‘ing or after the dredged material was nourishment. 
shore breakwater effect created by the deposited. Since the mercury that was An important result of this project 
deposited dredge spoil. detected in early barge loads of dredged was realizing the need to properly clas- 

Significant bank erosion took place §_ material was associated with fine parti- sify harbor sediments for safe use and/ 
west of the groin field after dredge spoil cles (silt-clay fraction), and the sorting or disposal. More extensive testing and 
was placed. Bank erosion was observed of the finer grain particles occurred rap- analysis of sediments is necessary, and 
prior to, during, and right after a 17- idly in the unloading operation, there the current EPA guidelines need to be 
year storm that buffeted the shoreline probably was no significant deposition re-examined and revised to more realis- 
about 2 weeks after the nourishment of mercury on the Wisconsin Point tically describe and categorize them. 
operation was completed. beach. We recommend continued investiga- 

Thorough sampling of the materials In terms of near shore water qual- tion into these difficult procedural and 
used for nourishment showed that ity, aside from some short-term turbid- classification problems in order that 
some of them were not suitable for the ity associated with the unloading activ- Great Lakes harbor sediments can be 
purpose intended. Some materials were ities, there were no measurable adverse used or disposed of in the best and most 
too fine grained, and the first 25 barge § impacts. Surveys of the benthic popu- _ efficient ways possible. 21



TABLE 6. Taxa found pre- and post-treatment, Wisconsin Point. 

NEMATODA . Chironomidae 
Unknown spp. Ablabesmyia 

Chaetocladius 
OLIGOCHAETA Chernovskiia 

Unknown spp. Chironomus 

OSTRACODA Cricotopus 
Unknown spp. Demicryptochironomus 

Endochironomus 
COPEPODA Heterotrissocladius 
Epischura lacustris Microtendipes 
Mesocyclops edax Monodiarresa 

Orthocladius 
CLAD OCERA Paralauterborniella 
Daphnia galeata mendotae Polypedilum 

ISOPODA Prociadius 
Asellus intermedius Saetheria 

Stictochironomus 
AMPHIPODA Tanytarsus 

Ponioporeia affinis Unknown spp. 

INSECTA - ARACHNOIDEA 
Ephemeroptera Hydracarina 
Hexagenia sp. 

Trichoptera MOLLUSCA 
Unknown spp. Gastropoda g 

Coleoptera AKNOWN opp. 
Unknown spp. veceypoda 

Diptera NknOwn spp. 
Ceratopogonidae Empididae pupae 
Chaoboridae 
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TECHNICAL BULLETINS (1982-86) 
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No. 128 Habitat development for bobwhite No. 145 Duck breeding ecology and har- Be $ e 

quail on private lands in Wiscon- vest characteristics on Grand a2 2 
sin. (1982) Robert T. Dumke River Marsh Wildlife Area. (1984) ag <8 

William E. Wheeler, Ronald C. Ei 
No. 129 Status and management of black Gatti, and Gerald A. Bartelt 

bears in Wisconsin. (1982) Bruce 
E. Kohn No. 146 Impacts of a floodwater-retarding lala 

‘ aoe structure on year class strength 
No. 130 Spawning and early life history of and production by wild brown 

yellow perch in the Lake Winne- trout ina Wisconsin coulee stream. 
bago system. (1982) John J. Weber (1984) Oscar M. Brynildson and 

and Betty L. Les Clifford L. Brynildson 

No. 131 Hypothetical effects of fishing reg- No. 147 Distribution and relative abun- 
ulations in Murphy Flowage, Wis- dance of fishes in Wisconsin: IV. 
consin. (1982) Howard E. Snow Root, Milwaukee, Des Plaines, 

No. 132 Using a biotic index to evaluate and Fox River basins. (1984) Don 
water quality in streams. (1982) Fago 

William L. Hilsenhoff No. 148 An 8-inch length limit on small- 

No. 133 Alternative methods of estimating mouth bass: effects on the sport 
pollutant loads in flowing water. fishery and population of small- 
(1982) Ken Baun mouth bass and yellow perch in 

Nebish Lake, Wisconsin. (1984) 
No. 134 Movement of carp in the Lake Steven L. Serns 

Winnebago system determined by u 
radio telemetry. (1982) Keith J. No. 149 Food habits of adult yellow perch 
Otis and John J. Weber and smallmouth bass in Nebish 

Lake, Wisconsin. (1984) Steven L. 
No. 135 Evaluation of waterfowl produc- Serns and Michael Hoff 

tion areas in Wisconsin. (1982) Le- : 4 ge i" 
Roy R. Petersen, Mark A. Martin, No. 150 Aquatic organisms in acidic envi- 

John M. Cole, James R. March, ronments: a literature review. 

and Charles M. Pils (1984) Joseph M. Eilers, Gregory 
J. Lien, and Richard G. Berg . ache ge gt lati e : : 

No. 136 Distribution anda ae No. 151 Ruffed grouse habitat relation- 

Greater Rock river basin. (1982) ships in aspen and oak forest of 

Don Fago central Wisconsin. (1984) John F. 

Kubisiak 

No:.137 Set ee No. 152 Distribution and relative abun- 

with special reference to beaver dance of fishes in Wisconsin. 
and trout. (1983) Ed Avery V. Grant & Platte, Coon & Bad 

Axe, and LaCrosse River basins. 
No. 138 Limnological characterstices of (1985) Don Fago 

Wiscanein Bees ae No. 153 Phosphorus reduction via meta- 
7 ‘ limnetic injection in Bullhead 

No. 139 A survey of the mussel densities in Lake, Wisconsin. (1985) Richard 
Pool 10 of the Upper Mississippi P. Narf 

River (102) ee Le: Punean No. 154 Sexual maturity and fecundity of 
z brown trout in central and north- 

No. 140 Distribution and relative abun- ern streams. (1985) Ed L. Avery 

Gance ocd ad were No. 155 Distribution and relative abun- 
iver basi . dance of fishes in Wisconsin. VI. river basins. (1983) Don Fago Sheboygan, Manitowoe, and Twin 

No. 141 Population dynamics of wild trout river basins. (1985) Don Fago 
and associated sport fisheries in , hee! a 
two northern Wisconsin streams. No. 156 Aquatic community interactions 
(1983) Ed L. Avery of submerged macrophytes. (1985) 

. Sandy Engel 8 2 
° = 

No. 142 Assessment of a daily limit of two No. 157 An evaluation of beach nourish- 5 3 
trout on the sport fishery at Mc- ment on the Lake Superior shore. o KS S ie 
Gee Lake, Wisconsin. (1984) Rob- (1985) John W. Mason, Melvin H. o o Oa 
ert L. Hunt Albers, and Edmund M. Brick es & = 

oO wo oc 
° 

No. 143 Distribution and relative abun- No. 158 Distribution and movement of 5 ie 3 ° 
dance of fishes in Wisconsin. III. Canada geese in reponse to man- = 2 o_ 
Red Cedar river basin. (1984) Don agement changes in east-central = S 5 ° 
Fago Wisconsin, 1975-81. (1986) Scott ° D oz 

R. Craven, Gerald A. Bartelt, = = 00 
No. 144 Population ecology of woodcock in Donald H. Rusch, and Robert E. Oe ga 

Wisconsin. (1984) Larry Gregg Trost i. 8 8 3 

en as35 < 
Copies of the above publications and a complete list of all technical bulletins in the series are a 2 a s 
available from the Bureau of Research, Department of Natural Resources, Box 7921, Madi- 
son, WI 53707.
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