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ABSTRACT

Modularity concepts have been recently explored in the context of industrial production
(manufacturing) systems such as chemical processes, energy systems, and infrastructures.
Standardization and size reduction brought by modular technologies enable mass off-site
fabrication, fast transportation, and deployment of equipment, which could ultimately
lead to technology cost reductions. Modular systems, contrasting with large and central-
ized systems that involve lengthy on-site construction phases and difficult transportation
(and are thus rarely relocated), also enable sequential investment strategies that provide
flexibility to mitigate market and regulatory risks. Therefore, a thorough study of modu-
larity concepts using computational frameworks and optimization tools is required.

We study modularity in the context of manufacturing systems and address the follow-
ing three questions: what is modularity (concepts), why should we consider modular de-
signs (benefits), and how can we incorporate modular concepts in actual designs (usage).
Specifically, we first propose a modularity measure that captures unique characteristics in
the context of manufacturing systems. Then, we study the spatial and temporal flexibil-
ity brought by modular construction (decentralization in electricity market and capacity
expansion planning). Finally, we propose a system-level design concept: spatial super-
structure, and based on this new concept, we derive a formulation that provides optimal
spatial modular design of a process or supply chain.

By providing a complete story on modularity in manufacturing and supply chain, we
seek to encourage incorporating modular concepts in future process and supply chain de-
signs. In this work, we provide necessary definitions and computational frameworks that

aid the modular process design and solve potential design problems such as scalability.

xii



INTRODUCTION

1.1 Traditional Centralized Chemical Plants

In the past century, two rules have defined and guided the process system design in
modern chemical engineering: the economy of scale and unit operations (Baldea et al.,
2017). First, economies of scale are the cost advantages that businesses obtain as a result
of their size of operations and can be described as the decrease in cost per unit of output
due to an increase in scale (Silvestre, 1987). In chemical engineering, constructions of
chemical plants can be more capital efficient by simply making them larger, reducing the
operational cost and products prices and thus improving the profits (Berthouex, 1972). A
prominent example of it in chemical engineering is the cost of pipes (openstax). The cost
of materials used to manufacture a pipe is proportional to the pipe’s circumference and
length. However, the cross-sectional area of a pipe determines the volume of chemicals
that may flow through it. Thus, a pipe which uses twice as much material to make
can carry four times the volume of chemicals because the cross-section area of the pipe
rises by a factor of four. Of course, the actual economies of scale for chemical plant
are far more complicated than what this example suggests, but process engineers and

designers have long used the so-called "six-tenths rule"(or "two-thirds rule"), a rule of



thumb which indicates that increasing the amount of product produced in a chemical
plant by a given percentage will only result in a six-tenth (or two-thirds) rise in overall
cost (Kerridge, 1982). Second, in the early 20th century, Warren K. Lewis, one of the
pioneers in chemical engineering, together with his several colleagues explained in their
book, The Principles of Chemical Engineering, that the variety of chemical industries have
processes that follow the same physical laws, and they concluded these similar processes
into unit operations to facilitate calculations in an era ruled by the slide rule rather than
by the digital computer (Walker et al., 1923; Cabe et al., 2018). While slide rules have
become obsolete nowadays, unit operations remained as a central piece in the design,
simulation and optimization of chemical processes.

In the past two decades, these two principals - economies of scale and unit opera-
tions - have undergone serious challenges as markets become more and more volatile
and fast-paced, and resources become more sparsely scattered (Gwehenberger and Naro-
doslawsky, 2008; Stevens, 2003; Charpentier, 2002). Based on the electricity price data for
more than 5000 locations in California throughout the year 2015 collected from California
Independent System Operator (CAISO), the average electricity price for real time market
(RTM) is 32.71 USD/MWh while the temporal volatility is 62.42 USD/MWh (Shao and
Zavala, 2019). And in one particular location, the price shifts from 50 USD/MWh to 600
USD/MWh and then back to 35 USD/MWHh in just 20 minutes. If a conventional ammo-
nia manufacturing plant which consumes the power at 50 MW was built at this location
(Egenhofer et al., 2017), the risk caused by electricity price fluctuation is enormous. What
is more, building a chemical plant of this size usually takes 5 to 7 years of on-site con-
struction (Rahman et al., 2014). During this period of time, if the initial demand forecast
becomes overly optimistic (especially when some unforeseen events such as COVID-19
happen) or a new type of technology or product appears to replace the old one, investors
are likely to lose billions of dollars due to this long project time-line (Roy and Eng, 2017).
Eventually, transporting raw materials to a centralized plant for processing might not be

possible for certain industries. For instance, many oil gathering companies have been



flaring and venting off natural gas in the Permian Basin of west Texas (Davis, 2016). Flar-
ing is a well-head technique used to dispose of excess natural gas that is produced along
with oil (Emam, 2015). According to the U.S. Energy Information Administration, a tril-
lion cubic feet of natural gas in the Permian Basin has been flared since 2013 and it is
responsible for 25 percent of today’s warming from human activities. It occurs because
the pipeline infrastructure could not carry the amount of natural gas, and burning it is
the most cost efficient way (Udok and Akpan, 2017; Soltanieh et al., 2016). Capturing or
processing the flare gas by building traditional centralized plant is not viable as the plant
will be abandoned when the oil well dries out. To solve the above mentioned challenges
that are specific to today’s markets and environmental concerns, new design concept such

as modular design (or modularization) has become prevalent (Roy and Eng, 2017).

1.2 Modular Design Concepts/Modularization

Modularization is a manufacturing trend that is being adopted in different industrial
sectors such as power generation, data centers, chemical processes, and supply chains
(Frivaldsky et al., 2018; Berthélemy and Rangel, 2015; Dong et al., 2009; Chakraborty
et al., 2009; R., 1999). For instance, decentralized power generation and storage systems
are becoming increasingly attractive as climate changes and adoption of renewable power
disrupt markets and space-time demand patterns (Heuberger et al., 2017; Liu et al., 2018;
Shao and Zavala, 2019). Modular manufacturing systems are typically built from small-
scale and standardized technologies (equipment units) that perform self-contained tasks
and that are coupled together using sparse interfaces. Small dimensions and sparse in-
terfaces facilitate system assembly/dis-assembly and reconfiguration (e.g., migration of
technologies to a different location and expansion of capacity). This logistical flexibility
helps systems adapt to fast-changing markets and other externalities (e.g., climate, re-
source availability, policy) (Jaikumar, 1986; Rajagopalan, 1993) and enables the recovery

of resources that are highly distributed and potentially short-lived (Allman and Zhang,



2020; Chen and Grossmann, 2019; Davis, 2016). In the context of chemical engineering,
a modular plant can be comprised of a single module that incorporate many unit op-
erations or of multiple modules that are shop-fabricated separately, transported to the
manufacturing site, and eventually connected to form a large process system (Bieringer
et al., 2013; Kockmann, 2016). The process equipment, valves, piping components, and
electrical wiring are installed within a structural steel framework known as a module and
each module is a self-contained process unit that is typically built off-site (Seifert et al.,
2012). The project start-up time for a modular plant is minimized since systems can be
fully assembled and tested before they ship, reducing the amount of on-site construction
time (Kockmann et al., 2017). Lower labor and operational costs are achieved due to a
shorter project time-line, efficient use of material, and a smaller field crew (Hady et al.,
2009). Also, off-site module construction does not interrupt or shut-down pre-existing op-
erations. All these advantages have made modular design a preferred choice that adapts
today’s market requirements and in fact, many pioneering companies have announced

their modular solutions for chemical engineering industries.

Figure 1.1: "Flarecatcher" by Pioneer Energy (Pionner Energy)

Pfaudler Group, a leading provider of technologies, systems and services for the

chemical and pharmaceutical industries, designs complete modular process systems with



all ancillary equipment, piping, and instruments included. Pfaudler is able to design and
construct a large Wiped Film Evaporator (WFE) system as two large modules within two
months and then complete the on-site construction of them within 24 hours. Pfaudler
leads the way in providing complete process systems as pre-assembled modules, which
provide lower project costs, shorter construction schedules, and improved quality (Pfaudler
Group). Another example that utilizes modular concepts is the "Flarecatchers" con-
structed by Pioneer Energy. At well sites or central processing facilities, "Flarecatchers"
extract Natural Gas Liquids (NGLs) from rich, associated and non-associated gas while
conditioning the remaining gas. The remaining gas is then conditioned to pipeline qual-
ity, making it ideal for on-site power generation, conversion to compressed or liquefied
natural gas, or injection into a lean gas pipeline. As shown in Figure 1.1, their systems are
skid-mounted, modular, autonomous units that are remotely monitored and controlled.
This enables flexibility in equipment deployment and superior up-time, while minimiz-
ing required capital and operating expenditures (Pionner Energy). The merits of modular
design concept are not only suitable in process system design, but also applicable in areas
such as supply chain design (Becker et al., 2021; Doran and Giannakis, 2011; Palys et al,,
2018), and many industrial companies are switching from traditional centralized plants
to this more efficient, flexible, and environmental friendly way of design and construction

(Epic Systems).

1.3 Research Questions on Modular Designs

The concept of modular design is not difficult to understand, and the benefits of it seem
to be obvious. However, the adaptation of the concept is slow, and many companies
still hesitate on the lack of quantitative analysis and mathematical backup of the idea.
Therefore, a thorough analysis and study using mathematical tools on modular process
and system design is needed. First, the definition of modularity or modularization is

ambiguous in the context of manufacturing. In graph theory, for a given organization,



the amount of internal module coupling relative to coupling between modules is referred
to as the degree of modularity (Newman, 2006; Brandes et al., 2007). While the notion of
modularity is pervasive in all areas of science and engineering (Langlois, 2002; Coltheart,
1999; Baldwin et al., 2000), there are no well-established mathematical (quantifiable) mea-
sures of modularity in manufacturing. The availability of such measures is key to enable
more systematic analysis and design of modular systems. Second, quantitative analysis
on the benefits of modular design is missing. We would like to provide a quantita-
tive view on the flexibility, cost saving, and risk minimizing effects brought by modular
design comparing to the traditional centralized design. This direct comparison would
provide tangible proofs and build mathematical foundations for the benefits of modular
design concept. As a final step, we would like to extend the modular concept to design
modular supply chains and propose a general computational framework that provides
tools to guide the synthesis of modular processes and supply chains. By providing a
complete story on modularity in manufacturing and supply chain, we seek to encourage
incorporating modular concepts in future process and supply chain design, and provide
necessary definitions and computational frameworks that aid the modular process design
and solve potential design problems such as scalability.

By identifying these issues, this work tries to provide insights to the following re-
search questions about quantifying modular design concept and providing modular de-

sign schemes:

1. What - What is modularity? How do we define a quantifiable measure for modu-

larity in manufacturing context?

2. Why - Why should we consider modular design? Can we use mathematical tools to

demonstrate the benefits of modular designs comparing to traditional ones?

3. How - How do we design a modular process or supply chain? Can we provide a

general framework to aid the synthesis of modular processes and supply chains?



1.4 Outline

This dissertation is structured as follows:

Chapter 2 — Modularity Measures: Concepts, Computation, and Applications to Manu-
facturing Systems. This chapter addresses the "What" question. It introduces a measure
to quantify the modularity of industrial production (manufacturing) systems and pro-
poses an optimization formulation to compute it. It provides a discussion on advantages
and disadvantages of alternative modularity measures used in different scientific and en-
gineering communities and the uniqueness of our proposed measure in manufacturing

context.

Chapter 3 — Benefits of Modular Design - Spatial Flexibility This chapter addresses the
tirst part of the "Why" question. In this chapter, we study the economic incentives for de-
ploying modular technologies created by space-time dynamics of day-ahead and real-time
electricity markets. We first formulate the electricity market clearing model and explore
the effects of modularization on social welfare and electricity prices. We then develop
an optimal technology placement formulation that seeks to identify optimal strategies to

maximize expected profit and minimize risk in the electricity markets.

Chapter 4 — Benefits of Modular Design - Temporal Flexibility This chapter addresses
the second part of the "Why" question. This chapter studies logistical investment flexibil-
ity provided by modular processing technologies for mitigating risk under the setting of
the capacity expansion problem. This capacity expansion problem is a stochastic, multi-
stage, and multi-objective optimization problem, and we study the trade-offs between
expected profit and risk for capacity expansion plans with different sizes of technologies
available. Case studies of different complexity are presented to illustrate the develop-

ments.



Chapter 5 — A Spatial Superstructure Approach to the Optimal Design of Modular Sys-
tems. This chapter addresses the "How" question. It first introduces a design concept,
Spatial Superstructure, that encodes spatial (geographical) context of all system compo-
nents. We then extends the design concept to include the modularity measure proposed
in previous section, which enables the simultaneous modular design of processes, facili-
ties, and of supply chains. Finally, we propose an optimization framework based on this

new design concept to facilitate the design of modular manufacturing systems.

Chapter 6 — Conclusions and Future Directions. This chapter provides a summary of
the major contributions of this dissertation. Specific areas for improvement for future

research are also identified.



MODULARITY MEASURES: CONCEPTS, COMPUTATION, AND
APPLICATIONS TO MANUFACTURING SYSTEMS

This chapter is published in Shao and Zavala (2020).

2.1 Introduction

Modularization is an organization strategy that is used in living, socio-economic, and
industrial systems to facilitate learning and evolution and to cope with complexity (Si-
mon, 1962; Langlois, 2002). For instance, biological networks and the human body exhibit
high modularity (Ravasz et al., 2002; Meunier et al., 2010; Newman, 2006; Meunier et al.,
2009). This organization structure facilitates specialization of components (e.g., organs
and metabolic cycles) and enables management of large numbers of functions. In a mod-
ular organization, fundamental components and associated functions are grouped into
clusters (modules). Modules have the distinctive feature that coupling between internal
components (intra-module) is significantly stronger than coupling across modules (inter-
module). Scientists have long argued that modular organization provides flexibility and
facilitates evolution because modules can adapt, mature, or disappear without signifi-

cantly disrupting the entire system. This arrangement also facilitates the management of



complexity because tasks and information are refined progressively. Herbert Simon, one
of the pioneers of computer and cognitive science, argued that it is rather natural that
human-made organizations (e.g., government institutions and enterprises) also exhibit
high degrees of modularity (Simon, 1962). This is because the human brain processes
information and makes decisions in a modular manner (Meunier et al., 2009). Modular-
ity provides an indication of the flexibility and maturity of an organization and of the
range of functions that it can perform (Langlois, 2002). Modularity has also been found
to facilitate the control of large networks (Constantino et al., 2019).

Modularity concepts have also been recently explored in the context of industrial pro-
duction (manufacturing) systems such as chemical processes, energy systems, and infras-
tructures. Industrial production systems can be built from small-scale and standardized
equipment modules that perform well-defined tasks and that are coupled together using
well-defined and sparse interfaces (Seifert et al., 2012; Bramsiepe et al., 2012; Baldea et al.,
2017). Standardization and size reduction enables mass off-site fabrication and fast trans-
portation and deployment of equipment, which accelerates experimentation and learning
and ultimately leads to technology cost reductions (Lier and Griinewald, 2011; Lier et al,,
2016; Rogers and Bottaci, 1997; Tatum, 1987; Roy and Eng, 2017; Hesler, 1990). A cele-
brated example of this principle is Henry Ford’s assembly line (Langlois, 2002). Modular
systems contrast with large and customized systems, which involve lengthy on-site con-
struction phases and difficult transportation (and are thus rarely relocated); this systems
also provide limited experimentation/testing opportunities (Wells, 1979). Modular sys-
tems also enable sequential investment strategies, which provide flexibility to mitigate
market and regulatory risk (Hagspiel et al., 2016). Small modular systems can also facili-
tate the processing of geographically dispersed resources that are deemed too expensive
to collect and centralize.

Modularization can accelerate investment in technologies such as small nuclear reac-
tors, distributed generators, power electronics, chemical processes, and battery storage

systems (Berthélemy and Rangel, 2015; Chakraborty et al., 2009; R., 1999; Rothwell, 2006;
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Dong et al., 2009). Specifically, large industrial facilities (reaching investments of billions
of U.S. dollars) might involve slow deployments and risks that few investors are willing
to tolerate. On the other hand, modularization provides flexibility in investment size and
enables faster deployments that ultimately result in reductions in time-to-market and fa-
cilitates financing. Moreover, expansion of production capacity in modular systems can
proceed sequentially, which provides a mechanism to hedge against the market and reg-
ulatory risk. We can interpret the ability to accelerate and stage investment (and thus
a hedge against risk) as a form of built-in logistical temporal flexibility. Modularity can
also provide logistical spatial flexibility in the sense that small modules can be easily
transported and relocated. This can enable the recovery of resources that are highly dis-
tributed and potentially short-lived. As a result, it has been argued that modularization
can enable more sustainable systems and circular economies (Seliger and Zettl, 2008).
For instance, modular systems can be used to harness natural gas resources that remain
stranded at oil production facilities due to limited gas pipeline infrastructure (Davis,
2016). Modular technologies can also be used to recover bio-gas from organic waste gen-
erated at animal farms, landfills, and waste-water treatment facilities. It has also been
recently observed that modular systems can be strategically placed to exploit space-time
electricity price dynamics and with this mitigate risk (Shao and Zavala, 2019). In this
context, module transportability is important from a relocation perspective. For instance,
unlike large central systems, modular systems might not be permanently placed at a sin-
gle location but might be disassembled, relocated, and re-assembled at different locations
throughout their lifetime based on changes in resource availability, policy, weather, and
infrastructure. For instance, a change in government regulations might render a given
facility location undesirable or obsolete. Small modules can also be transported back to
shops to perform maintenance and can be quickly replaced. As can be seen, space-time
logistical flexibility provided by modularity can allow organizations to diversify, mitigate
risk, and have a higher likelihood of surviving strong fluctuations of markets, govern-

ment regulations, and other externalities. On the downside, flexibility provided by small
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modular systems often comes at the expense of higher investments and reduced opera-
tional efficiency when comparing to large systems. Specifically, economies of scale benefit
large systems due to the favorable scaling of throughput with equipment size. Industrial
systems will thus likely evolve into a mixed state in which certain tasks are performed
in small dispersed modular systems while others are performed in large centralized fa-
cilities. This has the potential of inducing a re-organization of production facilities and
of entire supply chains. This is particularly the case in chemical processes and power
plants (Peters et al., 1968). This reasoning also indicates that large centralized facilities
are operationally efficient but logistically inefficient from an assembly and transportation
stand-point.

The concept of modularity is pervasive in science and engineering but, surprisingly,
there are few quantifiable measures of modularity. The availability of proper measures
is key to enable more systematic analysis, design, and comparison of modular systems.
In pioneering work, Newman proposed a modularity measure that quantifies the edge
density of a system (represented as a graph) relative to the expected edge density of a
random graph (Clauset et al., 2004; Newman, 2006). The argument behind this measure is
that modular organizations that arise in natural systems are non-random. This measure
is intuitive and has seen many interesting applications; for instance, this measure has
been shown to provide a flexible and powerful tool for the analysis and design of con-
trol architectures (Jogwar and Daoutidis, 2017; Moharir et al., 2019; Daoutidis et al., 2018;
Tang et al., 2018; Pourkargar et al., 2018, 2019) and for the decomposition of large-scale
optimization problems (Moharir et al., 2017; Allman et al., 2019). A powerful general-
ization of Newman’s measure has been proposed in (Reichardt and Bornholdt, 2006) and
here it was shown that systems of high modularity are extremum points of a Hamiltonian
function. Information-theoretical interpretations of modularity have also been proposed
in the literature (Rosvall and Bergstrom, 2008).

Unfortunately, the modularity measure proposed by Newman (and its generaliza-

tions) do not have an intuitive interpretation from a manufacturing perspective and fail
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to capture some desirable features arising in this context (e.g., module dimensions). In
order to define alternative modularity measures, it is important to highlight that: modu-
larity is not a classification but a measure (i.e., systems have different degrees of modular-
ity). Moreover, one should note that a system with fixed physical connectivity (topology)
can have different modular organizations with associated degrees of modularity and that
topology dictates the number of alternative modular organizations and their associated
modularity value. While these notions are clear from a conceptual point of view, there
is significant ambiguity associated with the definition of modularity in manufacturing.
In the metal processing industry, for instance, a module is defined as a technically and
organizationally limited area of a facility that fulfills a defined task in terms of company-
internal or -external salable goods and services (Wiendahl H.-P. and F,, 2005). In the
process industry, a module is defined as an unmodifiable element that provides a dedi-
cated function for the process and is reusable during the planning or realization of mod-
ular plants (Hohmann et al.,, 2017). In other words, a module is a standardized and
self-functioning unit. While these definitions are intuitive, they do not provide means
to quantify modularity. Specifically, under these definitions, any equipment unit or an
entire facility itself can be a module. Moreover, these definitions fail to capture aspects
such as transportability and dimensions.

In this chapter, we propose measures to quantify the modularity of manufacturing
systems and optimization formulations to compute them. We claim that, from a manu-
facturing perspective, a system is deemed modular if: i) the equipment units that compose
it form clusters (modules) of dense connectivity (i.e., difficult module construction is per-
formed off-site), ii) connectivity between modules is sparse (i.e., easy module assembly
is performed on-site), iii) the number of modules is small, and iv) the module dimen-
sions facilitate transportation. In the proposed framework, a facility has a topology that
is modeled as a graph. Here, the physical equipment units represent nodes that are cou-
pled together via edges. This representation allows us to borrow concepts and techniques

from graph theory. Specifically, from a graph-theoretical perspective, the partitioning of
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a graph induces a modular organization, as each partition (module) is composed of a set
of nodes. For a given organization, the amount of internal module coupling relative to
the coupling between modules is referred to as the modularity (Newman, 2006). In our
approach, the proposed measure is computed for a graph by finding the partition that
induces the maximum modularity (given a fixed number of modules). We show that this
measure can be computed by solving a convex mixed-integer quadratic program. Addi-
tionally, we show that the mixed-integer representation allows us to impose additional
features such as module dimensions and to identify multiple solutions that give the same
level of modularity. We compare the proposed measure against that of Newman (widely
used in other scientific communities) to highlight the advantages and disadvantages from
a manufacturing perspective. This analysis reveals that the mixed-integer programming
formulations proposed can also be used to compute the measure of Newman while han-
dling constraints and that they can be used to find multiple solutions. Moreover, the
proposed measure can be used within optimal design formulations and in other applica-
tions beyond manufacturing (e.g., design of control architectures and decomposition of

large sets of equations).

2.2 Measures of Modularity

In our framework, we assume that connectivity, number of modules, and dimensions are
key features that define the modularity of a system. Connectivity and number of modules
dictate the nature and complexity of off-site and on-site assembly tasks while dimensions
dictate whether modules are transportable (and thus off-site assembly is possible) and
dictate economies of scale. Module connectivity is related to the problem of community
detection in networks, which has been widely studied in graph theory (Fortunato, 2010).
Motivated by this, it seems natural to model a manufacturing system as a graph that is
composed of nodes (equipment units) and edges (that connect the units) and use graph

theoretical techniques to identify modular organizations. Current techniques available

14



15

include hierarchical clustering algorithms (Trevor Hastie and Friedman, 2009; Heo et al.,
2015), k-means clustering (Rattigan et al., 2007), spectral clustering (Donath and Hoffman,
1973), and techniques based on modularity maximization (Clauset et al., 2004, Newman,
2006). An excellent review on community detection techniques is provided in (Daoutidis
etal., 2019). In this work, we adopt a modularity maximization approach, as this provides

an intuitive approach to analyze and design modular manufacturing systems.
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Figure 2.1: United States federal regulations on transportation dimensions (Fed, 2017).

Transportation logistics is a key factor that is often overlooked in modularity stud-
ies and that is unique to manufacturing (compared to other scientific disciplines such
as neurology). In particular, a commercially-viable equipment module must be trans-
portable using available infrastructure (e.g., railway and trucks) (Haney et al.). As such,
module dimensions (length, width, and height) and weight must follow government reg-
ulations. For instance, according to the United States regulations for commercial motor
vehicles, the maximum width allowed in an interstate highway is 102-130 inches (2.6-3.3
meters), the maximum height allowed is 14-16 feet (4.3-4.9 meters), the maximum length
allowed is 75 feet (22.86 meters), and the maximum weight is 44,000 lbs (Haney et al.).
Consequently, any system that does not satisfy these limits must be partitioned in or-
der to enable transportation. For example, a distillation system with a diameter of more
than 120 inches and height of 100 feet (around 4o trays with 24 inches spacing) must be
partitioned to enable transportation and must be assembled on-site. As expected, the

larger the dimensions of the system the more partitions that will be needed and the more



complex the on-site assembly.

We observe that the different features desired for modular systems might be conflict-
ing. For instance, a small system might be the ideal modular system in that it can be
completely assembled off-site (i.e., minimizing on-site assembly tasks), packed in a single
module, and transported to its final destination. However, this small system might be
inefficient from the perspective of economies of scale. Consequently, one might be will-
ing to modularize only certain components of the system (thus increasing the number of
modules but increasing efficiency). As another example, note that one might intentionally
prefer a system with a larger number of modules in order to facilitate shop assembly of

different types of modules and at different locations.

2.2.1  Graph Theoretical Concepts

We model a system as an undirected graph G = (V, E) where V is its set of nodes (vertices)
and E is its set of edges. We define the number of nodes as n := |V| and the number
of edges as m := |E|. Connectivity of nodes in G is encoded in the adjacency matrix
A € R™" with entries A;;, i,j € V. We have that A;; = 1 if node i and node j are
connected by an edge or A;; = 0 otherwise. We also have that A is symmetric (i.e.,
Ajj = Aj;) and we assume that no self-connections are present (i.e., A;; = 0).

A graph G = (V, E) admits multiple possible modular organizations. A given orga-
nization partitions the node set V into a set of modules C and we define the number
of modules as t := |C|. A module ¢ € C is a node collection V. C V and we have that
UcecVe=Vand V,N Vs =@, ¢, ¢’ € C (modules have non-overlapping elements). We use
notation c(i) € C,i € V to denote the module that node i € V belongs to. We define the
binary module membership matrix 6 € {0,1}"*" with entries:

1 ife(i) = c(j)

dij = ,jeV. (2.2.1)
0 otherwise

16



In other words, ¢;; = 1 if nodes i,j are in the same module or §;; = 0 otherwise. If all
nodes are in the same module we have that } ;cy ) ;cy dij = n - 1; on the other hand, if all
nodes are in separate modules, we have that ) ;.\ Yievoij=n because 6;; = 1 fori = j
and ¢;; = 0 for i # j (i.e., the membership matrix is the identity matrix). An important
property of the membership matrix is that rank(d) = t. In other words, the number of
modules equals the number of linearly independent columns (or rows) of J. As can be
seen, the membership matrix J encodes all relevant information associated with a given modular
organization.

To illustrate the relationship between the rank of the membership matrix and the
number of modules, suppose that we have a graph with four nodes V = {a,b,¢,d} and
C = {1,2} modules (and thus t = 2). Assume that nodes a and b are in the same module
and nodes c and d are in the another module. Therefore, we have é,, = J.4 = 1, and
0a4 = 6cp = 0. We define the columns of 6 corresponding to nodes a and c as ¢, and &,
and we would like to show that these columns are linearly independent. Equivalently, we

want to prove that the only solution to the linear system

5104 +S20.p =0 (2.2.2a)

51044+ 5204 =0 (2.2.2b)

is 51 = S = 0. Upon substitution of §; ; in the above equations we obtain that S; = S, = 0
and we thus have rank($) =t = 2.

The partitioning of the graph G = (V, E) into modules induces an organization with a
given connectivity inside modules (intra-modules) and between modules (inter-modules).
We measure modularity of an organization as the density of internal module edges rela-
tive to the total number of edges. This measure is known as the graph coverage and can be

computed as:

cov(®) = Y [EC)

ceC
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1
=— Z 0iiAij (2.2.3)
2m =, e
where |E(c)| denotes the number of edges in module ¢ € C. The factor 1/2 eliminates the
repeated counting of edges in the adjacency matrix A.

We define the modularity measure of system G as:

M; = m(sax cov(9) (2.2.4a)

s.t. rank(J) > t. (2.2.4b)

In other words, the modularity measure is computed by solving a rank-constrained op-
timization problem. We note that }; .y d; jA;; is at least zero and at most 2m and thus
cov(d) € [0,1]. The cov(d) = 1 case corresponds to }; icy 6ijA;; = 2m and occurs when
0ij =1foralli,j €V (all nodes are in one module and thus t = 1). The cov(d) = 0 case
corresponds to }; icy 6ijA;; = 0 and occurs when §;; = 0 for all i,j € V such that A, ; = 1.
For the maximum possible rank n = t = rank(d), this occurs when ¢;; = 1 and 4;; = 0
(the membership matrix is the identity matrix). In general, we have that cov(d) is large
when connectivity between modules is sparse (connectivity inside modules is dense) and
we have that cov(d) is small when the connectivity between modules is dense (inside
modules is sparse).

Consistent with the definition of graph coverage, the maximum possible value for
M; is achieved when all nodes are contained in one module (t = 1). Consequently, for
connected graphs, the value of M; is always one. In this case, the modularity measure
is given by the unconstrained problem M; = max; cov(d). Restricting the number of
modules to any value ¢t > 1 forces placement of edges outside modules and thus decreases
the modularity measure M;. In the limit when we restrict t = n, we obtain the minimum
modularity M, (corresponding to the case in which every node is in a different module).
The proposed modularity measure M; thus naturally captures trade-offs between graph

connectivity and number of modules.
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The proposed definition of modularity is intuitive from a manufacturing perspective
but alternative definitions exist in the literature (particularly in scientific applications).
In the supplementary material we provide a perspective on alternative definitions along

with their advantages and limitations.

2.2.2 Illustrative Example

5

Figure 2.2: Example graph G = (V, E) used to illustrate graph theoretical concepts.

: ®

Figure 2.3: Modular organizations for example graph with ¢ = 2 (left) and t = 5 (right).

We use a simple graph (see Figure 2.2) with n = 5 nodes and m = 6 edges to illustrate
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the concepts. The adjacency matrix A of this graph is:

011 0 1]
10100
A=1]1101 0
00101

10010

The membership matrices ¢ for two modular organizations with t = 2 and t = 5 (see

Figure 2.3) are:

111 1 0] (100 0 0
11110 01000
s=[1 1110 d={00100
11110 00010
000 0 1] 000 0 1

The matrix on the left has rank(d) = t = 2 and is a solution of problem (2.2.4) with t = 2
and modularity measure is M, = 4/6 (coverage cov(d) = 4/6). Because this is a solution
to (2.2.4), any alternative configuration with t = 2 must have M, < 4/6. Upon inspection,
one can indeed see that the number of internal module edges is four and the total number
of edges is m = 6. The identity matrix on the right indicates that each node belongs to
a module and thus rank(d) = t = 5 and is the solution of problem (2.2.4) with t = 5 and

M5 = 0 (coverage is cov(d) = 0).

2.2.3 Optimization Formulations for the Modularity Measure

We proceed to show that the proposed modularity measure can be formulated as a mixed-
integer quadratic program. To motivate our discussion, we define the binary variable

matrix x € {0,1}"*" with entries x;; := (1 — J;;). The unconstrained modularity measure
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can be computed by using the mixed-integer linear program (MILP):

max ﬁ %Ai,j(l — Xi;) (2.2.5a)
stoxij < xjx+xpj, j>104,j,keV (2.2.5b)
xii=0,ie€V (2.2.5¢)
Xij=Xji,i,]€V. (2.2.5d)

The first constraint enforces the logic that, if i and j are in the same module and i and k
are in the same module, then j and k must be in the same module. The second and third
constraints capture basic logic that follows from the definition of the membership matrix.
This formulation highlights intuitive connections between modularity and mixed-integer
formulations. Unfortunately, this MILP formulation does not offer direct control on the
number of modules (which is needed to compute measure M;).

To obtain direct control on the number of modules, we propose a mixed-integer
quadratic (MIQP) programming formulation. Here, we define a module (partition) set
C :={1,...,t} with dimension t < n. We define a binary variable matrix x € {0,1}"*!
with entries x;; = 1 if node i € V is in module k € C and x;; = 0 otherwise. Importantly,

under these definitions, we have that:

bij = Z XikXik, i,jEV. (2.2.6)
keC

Because of this, the modularity measure M; can be computed by using the MIQP:

1
max om Y Aij Y XXk (2.2.7a)
rooAm ey kec
st. ) xx=11i€V (2.2.7b)
keC
Y xig>1,keC (2.2.7¢)

eV
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The first constraint enforces the logic that a node can only belong to one module while the
second constraint ensures that at least one node is assigned to each module. The MIQP
formulation is expected to be more computationally intensive than the MILP formulation
but it captures the features needed (i.e., enforces the rank constraint). For simplicity

in the discussion, we transform the MIQP into a minimization problem with objective

1
5 Y.ijev Aij Lkec XikXjj-
2.2.4 Convexification of MIQP Formulation

We have found that the MIQP (in minimization form) can be cast as a convex MIQP,
which is solvable by modern solvers. To see this, we define the variable vector x; =

(X1,k, X2 ks - Xn ), k € C and note that we can rewrite the objective function as:

1 1
5 D Aij XXXk =5 ), ) XikAi Xk
ijev  keC keCijev

1 T
= — Z X Axy
2m keC

= %Vec(x) Hvec(x) (2.2.8)

where H is a block-diagonal matrix of the form:
H = (2.2.9)

and vec(x) = (x1, x2, ..., x;). We note that H is indefinite because the adjacency matrix A is
indefinite. However, we note that the entries of vec(x) are all binary at any feasible solu-
tion and thus vec(x)Te = vec(x)Tvec(x) holds (e is a vector of ones of the same dimension

as vec(x)). Consequently, we can write the objective function in the equivalent form:

1 T _ 1 T _ T
%Vec(x) Hvec(x) = %(Vec(x) (H + Ip)vec(x) — pvec(x)”e). (2.2.10)
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for any positive p € R, and where [ is the identity matrix. This equivalence follows from:

ﬁvec(x)THvec(x) = ﬁ(vec(x)T(H + Ip)vec(x) — pvec(x)Tlvec(x))
= ﬁ(vec(x)T(H + Ip)vec(x) — pvec(x)Te)
= ﬁ(vec(x)THvec(x) + pvec(x)Te — pvec(x)Te)

_ 1 T
= %VGC(X) Hvec(x). (2.2.11)

As a result, we can always make the coefficient matrix of the MIQP (H + Ip) positive
definite without affecting the solution and thus make the problem solvable using state-
of-the-art solvers. The most obvious choice for p would be to use the smallest eigenvalue

of H (the smallest eigenvalue of A).

2.2.5 Modeling Extensions and Other Applications

Mixed-integer programming formulations offer flexibility to impose requirements that
might be of interest from a manufacturing perspective. For instance, we consider the

extended formulation:

1
max 5 Z Aij Z Xi kX k (2.2.12a)
i,jeVv keC

s.t. Z xix=1 1€V (2.2.12b)

keC
Z xir>1, keC (2.2.120)

iev
D, < Z xixDi <Dy, keC (2.2.12d)

ey

Here, the last constraint imposes module feature constraints. The quantity D; € R,
denotes the feature of each node and D, D; € R, are lower and upper bounds for the
features. This constraint can be used to enforce different module features such as weight,

height, and number of nodes in a module. For instance, the number of nodes in a module
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can be controlled by using the constraint:

D, < Z xix <Dy, keC. (2.2.13)
icy
The proposed formulation can also be extended to impose logic constraints to force/pre-
vent nodes from being in the same modules and can be extended to identify multiple
organizations that lead to the same modularity measure (e.g., by using no-good cuts). In
fact, modern mixed-integer solvers can compute all solutions that give the same optimal
objective value.

We highlight that the proposed modularity measure and MIQP formulation can be
used in other applications that go beyond manufacturing. For instance, these tools can
be used to identify optimal configurations for control architectures and optimal decom-
position strategies for optimization problems (Daoutidis et al., 2019; Allman et al., 2019).
In this context, constraints on the number and size of modules can be used to create
balanced configurations (e.g., to handle computational load balancing issues).

It is important to emphasize that modularity is directly associated to the partitioning
of a graph and, as such, there is no analytical representation for such a measure. In other
words, one needs to specify the partition of the graph first and then compute the modu-
larity measure. Because of this, modularity needs to be expressed as an optimization that

implicitly finds a partition of maximum modularity.

2.2.6 Alternative Modularity Measures

Broadly speaking, modularity is a graph measure that captures the density of internal
edges in the modules relative to the total number of edges in a graph. From a mathemat-
ical standpoint, the measure can be defined in different forms and the actual selection is
driven by the application at hand (Fortunato, 2010). In this section, we discuss an alter-
native modularity measure that is widely used in network analysis (in order to highlight

advantages and disadvantages in the context of manufacturing).
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In pioneering work, Newman proposed to measure the modularity of the graph by
comparing the density of the internal module edges relative to those found in a random
graph with similar properties (Newman, 2006). The argument behind this definition is
that modularity originates naturally in real systems from non-random structures and thus
a graph with high modularity should be the one that deviates as much as possible from
a random graph.

To derive Newman’s modularity measure, we define a random graph that has the
same degree distribution as the system graph G = (V,E). The random graph is such
that the probability that a node is connected to another is uniform. Consequently, the
probability that an edge starts from or ends at node i € V is k;/2m. We define the
probability matrix P € R"*" with entries

bk
2m 2m  4Am2’

b= ,jeVv (2.2.14)

denoting the probability of finding a connection between node i and j. The expected
value of the number of edges between nodes i and j is given by

kikj  kik;
am?2 ~ 2m’

Fj=2m i,jevVv (2.2.15)

At the core of Newman’s measure is the modularity matrix B € R"*" with entries
Bij = Aij— Fij, i,j € V (the matrix is the difference of the graph adjacency matrix and
the adjacency matrix of the random graph). We can establish that the modularity matrix

is symmetric:

kik;
Bii =45~ o
kik;
A -
It om
=B, i,jeV. (2.2.16)

Moreover, we have that } ey B;; = Y;cy Bji = 0 for all j € V (the modularity matrix has
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normalized columns and rows). Newman noticed that this property induces desirable
properties of the eigenvalues and eigenvectors of the modularity matrix.

For a given organization (partition into set of modules C) we define the quality func-
tion Q € R that measures the density of internal edges inside modules relative to the

fraction induced by the associated random graph. In mathematical terms:

. . 2
Q=) <|ET(:)| - (leen‘zkz> )/ (2.2.17)

ceC

where |E(c)| is the number of intra-cluster edges in module ¢ (|E(c)|/m is the coverage)
and k; is the degree of node i. The quality can be expressed in terms of the membership

matrix 0 as:

i,jev
=2i (Aij = Fij) 0
m;iev
= Ai,]‘ - = 51‘,]‘. (2.2.18)
2m v 2m

Newman’s modularity measure is given by the modular organization that achieves the

maximum quality function:
M = méax Q) (2.2.19)

One can show that the quality function Q(J) can take any value in the range [-1/2,1] and
thus M € [-1/2,1].

The measure of Newman does not assume a number of modules (as the proposed
measure does). One can extend the definition to control the number of modules by using

the rank-constrained formulation:

M; = m(?x Q) (2.2.20)
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s.t. rank(d) > t. (2.2.21)

Diverse MILP and MIQP formulations have been proposed to compute the unconstrained
and rank-constrained variants of the modularity measure of Newman (Agarwal and
Kempe, 2008; Xu et al., 2007). Interestingly, we note that one can compute this measure
by using a MIQP that is similar to that proposed in our work. The MIQP formulation

takes the form:

1
max — B; ; X; kX 2.2.22a
p m E ij Z ikdjk ( )
i,jeVv keC
s.t. Z xixk=11€V (2.2.22b)
keC
Z xix > 1,keC. (2.2.22¢)
ieV

1
The objective function of this problem can also be expressed as ﬂvec(x)THvec(x) where

H is a block-diagonal matrix of the form:
H = (2.2.23)

The modularity matrix B is indefinite (Newman, 2006) (and thus H is indefinite) but we
can use the same convexification procedure outlined previously to reformulate the MIQP
into a concave QP. The proposed formulation is more intuitive and compact that the MIQP
formulations that exist in the literature (Xu et al., 2007). Bench-marking the computational
performance of different formulations is left as an interesting topic of future work.

The modularity measure of Newman can in principle be used to guide modular de-
signs in manufacturing. The interpretation of this measure, however, is less intuitive
from this perspective (e.g., it can take negative values and is a measure relative to a ran-

dom graph). Moreover, this measure is not monotonic in the number of modules (as the
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measure proposed in this work is). Because of this, the measure of Newman does not
naturally minimize the number of modules. As a result, using this measure to perform
comparisons between designs and systems is more complicated. We also highlight that
the measure of Newman is degenerate (many configurations can give the same measure)
and this can introduce significant ambiguity in the analysis. The proposed mixed-integer
programming formulations provide a mechanism to explore and mitigate this degener-
acy. Unfortunately, there are significant computational challenges to apply mixed-integer
techniques in the analysis of large graphs (the community detection problem is known to
be NP hard). A large number of heuristic techniques have been developed in the literature

to handle large graphs

2.3 Case Study

We use the proposed modularity measure and MIQP formulation to identify modular
configurations for a dimethyl-ethyl (DME) production process from methanol (Bhat-
tacharyya et al., 2012). Methanol is an intermediate product during the production of
DME from natural gas and thus small modular DME plants can provide a potential path-
way to help recover billions of cubic feet of natural gas that are currently stranded and
flared. The DME process is intuitively partitioned by practitioners into three functional
subsystems: the feed and reactor section, the DME purification section, and the methanol
separation and the recycle section. The process flow diagram (PFD) and the subsystems
are shown in Figure 2.4. We created a block and graph representation for the process. To
do so, we represent each equipment unit and junction as a node and each flow connection
as an edge. The block and graph representations are shown in Figure 2.5. We use node
dimension as a feature that affects the system modularity (i.e., this affects transportation).
Labels and dimensions for the nodes are presented in Table 2.1.

We first computed the unconstrained modularity measure while ignoring rank (num-

ber of modules) and dimension constraints. As expected, the solution of this problem
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Figure 2.4: Flow diagram and subsystems for dimethyl-ethyl (DME) process (adapted
from (Bhattacharyya et al., 2012)).

gives a modularity measure M; =1 (i.e., all nodes are assigned to one module). We then
computed the modularity measure by spanning the range t € [1,6]. The results are sum-
marized in Table 2.2 and a visualization of each configuration is presented in Figure 2.6.
We can see that, as the number of modules increases, the modularity measure decreases
from M; =1 to Mg = 0.875. We thus have that, for a configuration with t = 6, 87.5% of
the edges are inside the modules while 12.5% connect the modules (the configuration has
sparse intermodule coupling).

For every value of t, we computed all possible equivalent configurations (solutions
that give the maximum value of M;). We do this in order to highlight that multiple con-
figurations can give the same modularity measure. We found that the number of alter-
native solutions increases sharply with the increasing number of modules. This indicates

that degeneracy increases with the number of modules and highlights the combinato-
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Figure 2.5: Block diagram representation (top) and graph representation (bottom) for
DME process.

rial nature of the problem. This also indicates that there is significant flexibility to find
configurations that satisfy additional requirements (such as dimension constraints).

We computed the modularity measure by considering dimension constraints (but ig-



Table 2.1: Node labels and dimensions for each node in the DME process.

Node  Equipment Dimension Node Equipment Dimension

1 Feed 0 19 Valve 1
2 V-1001 5 20 Valve 1
3 P-1001A/B 2 21 Product 0
4 Flow Junction 0 22 Valve 1
5 Valve 1 23 T-1002 15
6 E-1001 2 24 E-1007 2
7 E-1002 8 25 V-1003 4
8 R-1001 20 26  P-1003A/B 2
9 Flow Junction 0 27 Valve 1
10 Valve 1 28 E-1006 2
11 Flow Junction 0 29 Valve 1
12 E-1003 2 30 E-1008 2
13 Valve 1 31 Product 0
14 T-1001 20 32 Valve 1
15 E-1004 2 33 Flow Junc 0
16 E-1005 2 34 Flow Junc 0
17 V-1002 4 35 Flow Junc 0
18 P-1002A/B 2

nore rank constraints). Here, we explore the impact of scaling-up the process and set the
minimum dimension of each module to D, = 20 and the maximum dimension D; = 40. A
visualization of the modular configuration is shown in Figure 2.7 and the associated node-
module membership is shown in Table 2.3. Here, we also report the module dimensions
Y.icy XxixD; for all k € C. We observe that the dimension constraints induce an organi-
zation with t = 3 modules and the associated modularity measure is Mz = 0.925 (only

7.5% of the edges connect modules). Interestingly, we can see that the resulting modu-
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Table 2.2: Modularity measures and number of alternative configurations for DME pro-
cess obtained with rank constraints (without dimension constraints).

Rank (t) Modularity Measure (M;) # of Configurations Solution Time (sec)

1 1 1 14.69
2 0.975 18 14.67
3 0.95 216 14.77
4 0.925 2016 15.68
5 0.9 15120 15.16
6 0.875 90720 15.10
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Figure 2.6: Sample modular configurations for DME process for ¢ € [1, 6].

lar organization is the same as the functional organization shown in Figure 2.4 (with the
exception of valves). In fact, we found that the modularity measure that result from the
functional organization of Figure 2.4 is 0.925 and is thus optimal. This highlights that
practitioners use natural logic to modularize systems and that the proposed modularity
measure is intuitive.

We explored the effect of scaling up and down on the modularity measure by scaling
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Figure 2.7: Modular configuration for baseline DME process obtained under dimension
constraints (adapted from (Bhattacharyya et al., 2012)). Graph representation (top) and
corresponding flowsheet (bottom).



Table 2.3: Modular configuration for DME process obtained under dimension constraints.

Module Nodes Module Dimension
1 [1,2,3,4,5 6,7,8,9, 10, 11, 32, 33] 40
2 [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 34] 36
3 [23, 24, 25, 26, 27, 28, 29, 30, 31, 35] 29

the equipment unit dimensions. Scaling results are summarized in Table 2.4. We recall
that the baseline measure value is M3 = 0.925. As expected, we observe that the number
of modules increases and the modularity measure decreases as we scale up the process.
By scaling the equipment units up by 20% the measure decreases to M, = 0.875. The
modularity measure achieves its ideal value of M; = 1 when the baseline process is scaled
down by 30%. This highlights that the modularity measure proposed is consistent and

that dimension constraints can also be used to implicitly control the number of modules.

Table 2.4: Effect of DME process scaling on modularity measure.

Scale Measure Rank Solution Time (sec) Solution Time (sec)
(My) (1) with Gurobi with Convexification
0.3 1.0 1 15.59 16.91
0.5 0.95 2 15.25 16.17
1 (Baseline) 0.925 3 15.36 17.67
1.2 0.875 4 15.80 16.48
15 0.775 5 15.37 16.73
1.9 0.75 6 16.05 17.01

The MIQPs were solved using Gurobi (version 0.6.0) and were implemented in the

Julia-based JuMP modeling framework. We use GraphPlot and LightGraphs for graph
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manipulation and visualization. All node needed to reproduce the results can be found in
https://github.com/zavalab/JuliaBox/tree/master/ModularityMeasures. We solved
the MIQP problems by convexifying them directly. To do so, the minimum eigenvalue
of the adjacency matrix A is -2.62 and thus we used p = 3. We highlight that Gurobi
can also automatically convexify the problem (convexification by the user is not needed).
We confirmed that both approaches give the same solutions (Gurobi gives slightly better
times). The solution times obtained are in the range of 14 to 17 seconds (these are reported

in Table 2.4).

Table 2.5: Comparison of the number of solutions for problems with and without dimen-
sion constraints (DCs).

Rank Measure (M;) # of Configurations Measure (M;) # of Configurations

(1) without DCs without DCs with DCs with DCs
3 0.950 216 0.925 78

4 0.925 2016 0.875 384

5 0.900 15120 0.775 1920

We computed the number of solutions for problems with dimension constraints for
t =3,t=4and t =5 and compared against the number of solutions obtained without
dimension constraints. The results are summarized in Table 2.5. We can see that for
all cases, the number of solutions are drastically reduced when dimensional constraints
are added. This highlights the importance of enforcing additional module features to
mitigate the natural degeneracy of modularity measures. In particular, other modularity
measures used in the scientific literature, such as that of Newman, are degenerate (i.e.,
different organizations give the same modularity measure) and this degeneracy can in-
troduce ambiguity in the analysis. Mixed-integer programming approaches allow us to

systematically explore the set of feasible solutions.

35


https://github.com/zavalab/JuliaBox/tree/master/ModularityMeasures

2.4 Conclusions and Future Work

In this chapter, we propose a measure to quantify the modularity of industrial production
(manufacturing) systems and optimization formulations to compute it. From a manufac-
turing perspective, we argue that a system is deemed modular if: i) the equipment units
that comprise it form clusters (modules) of dense connectivity (i.e., difficult module as-
sembly tasks are performed off-site), ii) connectivity between modules is sparse (i.e., easy
assembly tasks are performed on-site), iii) the number of modules is small, and iv) the
module dimensions facilitate transportation. We show that the measure proposed satis-
fies these requirements and that it can be computed by solving a convex mixed-integer
quadratic program. Moreover, this formulation allows us to capture logical constraints
associated with module dimensions and node-module membership restrictions. We pro-
vide a discussion on advantages and disadvantages of alternative modularity measures
used in different scientific and engineering communities. Our results seek to highlight
conceptual and computational challenges that arise from the need to define and quantify
modularity in a manufacturing context.

As part of future work, we are interested in using the proposed measure to guide the
synthesis of systems with desired modularity properties. To tackle scalability issues, we
are also interested in exploring computational strategies to analyze large-scale graphs.
Moreover, there exist interesting synergies of the modular design principles discussed
in this work with modular design principles of control architectures (Daoutidis et al.,
2019). This is because in both cases one is implicitly seeking to minimize the degree of
interaction between modules. Using the proposed measure to understand the interplay

between modular design and control is an interesting topic of future work.
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BENEFITS OF MODULAR DESIGN - SPATIAL FLEXIBILITY

This chapter talks about the spatial flexibility brought by deploying modular technologies,
and is published in Shao and Zavala (2019) titled "Space-Time Dynamics of Electricity

Markets Incentivize Technology Decentralization".

3.1 Introduction

Decentralization of technologies for power generation (e.g., power plants), consumption
(e.g., manufacturing facilities and data centers), and storage (e.g., batteries) is an ongoing
industrial trend (Stankiewicz et al., 2000; Ramshaw, 1999). From the perspective of an in-
dependent system operator (ISO) of the power grid, decentralization is desirable as it can
provide spatial flexibility to control network flows and to overcome limited transmission
infrastructure (Buchholz, 2010; Kim et al., 2017a). In addition, large centralized power
generation and consumption facilities can become liabilities during extreme weather or
cyber attacks (Lier and Griinewald, 2011). To give an idea of the risk that large central-
ized facilities pose to the power grid, consider the fact that the load of a conventional
ammonia manufacturing plant is around 64 MW (Egenhofer et al., 2017) and that the

load of a large data center reaches 50 MW (Avgerinou et al., 2017) (equivalent to the load
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of tens of thousands of homes). Similarly, the power supply of a large centralized power
plant such as the Hammond plant in Georgia is 800 MW (Georgia Power). The growing
demand from large data centers is of particular concern as it is projected that, within the
next decade, the loads from such facilities will represent over 20% of the total grid load
(Kim et al., 2017a). Another issue associated with centralized facilities is that they provide
limited investment flexibility to mitigate long-term risks in electricity prices and policy.
The need to mitigate investment risks is promoting the development and deployment of
smaller-scale (modular) technologies (Guo et al., 2009; Wu et al., 2009; Palys et al., 2018;
Kim et al., 2017b). On the other hand, it is well-known that large centralized systems
benefit from economies of scale and thus a strong trade-off exists between expected profit

and risk.

10-20 a.m. 10-:30 a.m. $/Mwh
kel Iz300

50

¥ <200

Figure 3.1: Electricity price fluctuation in the RTM on February 5, 2015 in CAISO.

Because electricity prices are a key driving factor in the revenue/cost of facilities,
space-time price fluctuations must be considered in investment and operating decisions.
For instance, power generation and consumption facilities often sell/purchase electricity
in the Day-Ahead Energy Market (DAM) as opposed to the Real-Time Energy Market
(RTM) to minimize risk, as the former is far less volatile (ISO New England; Dowling
et al., 2017; Conejo et al., 2005). The growing share of renewable power in the supply port-

folio is also introducing stronger market volatility and risk (Johnson and Oliver, 2016), as
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unpredictable weather events can disrupt these renewable technologies and thus cause in-
termittent and volatile electricity supply. This issue is exacerbated by the lack of sufficient
elastic (flexible) demand. The temporal and spatial volatility of electricity prices in RTM
is illustrated in Figure 3.1. Here, we show the nodal price change over 20 minutes for a
specific day in California. We see that, under a 20-minute period, the average electric-
ity price increases from 48.42 USD/MWh to 592.33 USD/MWh and then drops to 35.15
USD/MWh. Here, we also see that such fluctuations are less abrupt at some network
locations. Price volatility is less severe in day-ahead markets; in fact, day-ahead markets
are precisely designed to pre-allocate generation and loads in the network in order to
help participants mitigate profit risk (Zavala et al., 2017). On the other hand, the average
RTM price is typically lower than the average DAM price. Consequently, there exists a
premium to participate in the DAM (in order to avoid RTM volatility and associated risk).
This suggests that there exists an economic incentive to decentralize (diversify) generation
and load assets over multiple network locations in order to exploit spatial correlations in
DAM and RTM prices (and with this avoid large premia). Similarly, spatial variations in
DAM and RTM prices can be exploited by decentralized facilities to maximize profit. For
instance, large cloud computing providers are currently placing data centers strategically
in the network in order to avoid large electricity costs (Kim et al., 2017b). One could also
envision that small modular manufacturing facilities can be relocated to exploit more fa-
vorable prices. A challenge that arises in this context is that DAM and RTM prices exhibit
complex spatio-temporal dynamics and correlation patterns (Wang and Hobbs, 2014). As
a result, it is non-trivial to identify suitable degrees of asset decentralization and optimal
locations for such assets.

In this work, we propose a computational framework for analyzing economic incen-
tives created by space-time dynamics of electricity markets. Our framework is based
on an asset placement formulation that seeks to find optimal locations for generation
and load (consumption) assets in the network that minimize profit risk. We show that

an unconstrained version of this problem can be cast as an eigenvalue problem. Under
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this representation, optimal network allocations are eigenvectors of the space-time price
covariance matrix, while the eigenvalues are the profit variances that result from such
allocations. Consequently, risk analysis can be performed in a systematic and computa-
tionally efficient manner by using principal component analysis (PCA). We construct a
constrained placement problem that captures constraints on the types of assets and that
trade-offs risk and expected profit. Unfortunately, for the ISO-scale data sets of inter-
est, this problem is a large-scale mixed-integer quadratic programming (MIQP) problem
that cannot be solved with current solvers. We use the mean absolute deviation as an
alternative risk measure to obtain a more scalable (but still challenging) mixed-integer
linear program (MILP). Analysis using the California ISO (CAISO) market data for 2015
reveals that space-time market dynamics provide significant incentives for strategic di-
versification and asset placement but that complete mitigation of revenue risk is only
possible by simultaneous investment in decentralized generation and load assets (which
can also be achieved by using batteries or hybrid systems such as microgrids or other
prosumers). These results are of relevance given the recent interest in the deployment
of small-scale modular technologies. We highlight that our work focuses on the use of
real (but historical) data to conduct analysis; as such, the study is realistic but has limited
predicted power. Unfortunately, existing forecasting techniques for economic time-series
data focus on uni-dimensional data (Ledoit and Wolf, 2004), while the market data set
considered here is high-dimensional (reaching thousands of locations that are correlated
in space and time). As part of future work, we will investigate forecasting strategies for
such high-dimensional data sets.

In the following sections, we motivate our discussion by conducting a basic space-
time analysis of electricity markets in California. In section 3.2, we formulate the elec-
tricity market clearing model and explore the effect of modularization on social welfare
and electricity prices. In Section 3.3 we formulate the technology placement problem,
interpret it as an eigenvalue problem, and provide scalable constrained variants. A de-

tailed analysis of the California ISO data set using the placement problem formulations
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is provided in Section 3.4.

3.2 Electricity Market Clearing Model

In this section, we formulate the electricity market clearing model and use optimization

tools to find out the effect of modularization on social welfare and electricity prices.

3.2.1 Market Setting

We consider a deterministic market setting that comprises a set of nodes N/, transmission
lines that between each node F, power suppliers S, and power consumers D. Each node
n € N is associated with a power supplier, a power consumer and power flows in and out
of that node. At a single node, each power supplier i € S has its own capacity 5; € R, and
bidding price &{ € R,, and each power consumer j € D has its own capacity d; € R, and
bidding price Dé}i € R,. The transmission line ¢ € F has a two-directional flow f;, € R,
and satisfies 0 < f; < f;. A positive value of f; corresponds to a flow into the node, while
a negative value of f, corresponds to a flow out of the node. We also define a market
clearing price (i.e., locational marginal price) for each node n € N as 7,. A shorthand

notation s, d, f is used to refer to all supply, demand and flow in the electricity market.

3.2.2 Node Balance

Each node n € NV in the network should satisfy the following flow balance:

(Zsi_zd])"‘ Y fe— ), fi| =0, neN (3.2.1)

i€S, j€Dy Le Fout LeFin

The terms inside the first parenthesis are the supply and demand of electricity at each
node. The terms inside the second parenthesis are the total inflows and outflows of a

node. The difference in the supply and demand at each node is balanced by the net flow
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that comes in or flows out of the node.

3.2.3 Capacity Constraints

The supply, demand, and flows of each node are bounded by:

0<s,<535,iesS (3.2.2a)
0<d;<dj, jeD (3.2.2b)
0<fi<fy, LeF. (3.2.2¢)

The upper bounds of the supply and the demand are the amount of electricity that each
supplier and consumer report to the ISO before it clears the market. The flow constraints

are determined based on the quality of transmission lines.

3.2.4 Market Clearing Formulation

Every time the ISO clears the market, the goal is to maximize the social welfare, which
includes any gain or loss on the transmission lines and the difference between the benefit
of all the consumers and the overall cost of all the suppliers. The social welfare function
in a coordinated market that captures the supply, the demand, and the transmission lines

is:

p=Y aldi— Y ais;— Y a)f (3.2.3)

jeD ieS leF

Therefore, the optimization problem that the ISO faces is to maximize the social welfare

function. The market clearing problem becomes:

max ) “}'jd]' — ) aisi— ) ‘Xffé (3.2.4a)

jeD ieS leF
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s.t.<Zsi— zd].>+( Y - Y% fg) ~0, neN (3.2.4b)

€Sy j€Dn CeFou teFir
0<s,<5,ies (3.2.4¢)
0<d;<dj,jeD (3.2.4d)
0<fi<fy, L€F. (3.2.4€)

3.2.5 Electricity Price and Market Player Profits

The dual variable of the above optimization model represents the market clearing price

at node n for n € N as 7, and the profit of each market player is represented as follows:

¢;(mi,si) = (i —aj)s;, i € S (3.2.5)
¢i(j, d)) = (] — 7p)dj, j € D (3.2.5b)
‘P{(Aﬂe,fe) = (A — (X{)fe, teF. (3.2.5¢)

Equation 3.2.5a shows the profit of each supplier in the market. 7;s; is the revenue gained
by supplier i € S from selling electricity, and «}s; represents the cost of power production
by the same supplier. Similarly, Equation 3.2.5b shows the profit each consumer achieves
in the market. 77;d; is the cost of consumer j € D by paying the electricity, and zx;-idj is the
revenue gained by the consumer, which can be thought of as the price that the customer
values the electricity. Equation 3.2.5c shows the profit gathered by the transmission line
operators. Here, Ay represents the difference in the electricity price between the two
nodes that the transmission line connects. A7, f, represents the revenue gained and 1x£ fr

represents the cost of the transmission line.
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Figure 3.2: Scheme of system 1 with 2 settings

3.2.6 Case Study

Now that we have established the fundamentals of the electricity market, we use a simple
setting, in which observations can be made comparatively easily, to explore the effect of
modularization on social welfare and electricity prices. We seek to make a generalized
conclusion based on our observations, and prove certain properties mathematically in the
following sections.

Figure 3.2 shows the same electricity power grid with two different market settings
that we will use to demonstrate the idea of modularization. In the first setting, the system
has three nodes, each of which is associated with a supply and a demand. Each supply
and demand are deterministic, and they are independent of each other. Node 1 has a
supply capacity of 50 MWh and a demand capacity of o MWh. Node 2 has a supply
capacity of 25 MWh and a demand capacity of 150 MWh. Node 3 has a supply capacity
of 100 MWh and a demand capacity of o MWh. For all three nodes, the bid prices for
the suppliers, «?, are {10,1,20} $/MWh, while the bid prices for the consumers, (x’f, are

{1000,1000,10000} $/MWh. The electricity can flow from node 1 to node 2, and from node



Table 3.1: System 1. Comparison of quantities, prices and social welfare

settings  d; (MWh) s; (MWh) 7T ($) fe MWh) ¢ ($)

setting 1 {o0,150,0}  {25,25,50} {10,1000,20}  {25,-50} 98,650

Settlng 2 {50150150} {50/25/75} {20121120} {O/_25} 147/950

Table 3.2: System 1. Comparison of the profits

settings @7 (i, 5;) ($) gbf(nj, d;) (%) 4){ (A7ty, fo) (3) Total Profit ($)
setting 1 24,975 o} 73,675 98,650

setting 2 1,000 146,950 0 147,950

2 to node 3, both forward and backward but not from node 1 to node 3. The transmission
capacities of both lines are also deterministic, and set to {25,50} MWh. The costs of
transmission for both lines are set to be 1 $/MWh. In this setting, the electricity consumer
at node 2 represents one of the chemical plants or data centers mentioned previously,
which consumes a huge amount of electricity that may have a profound impact on power
transmissions and electricity prices at different locations.

In the second setting, we still have 3 nodes, and all the settings remain the same except
that now, the single demand at node 2 in setting 1 is replaced by 3 identical demand at all
3 nodes. That is, the demand capacity for node 1, 2 and 3 is all 50 MWh. In other words,
instead of a single centralized chemical plant or data center, now it is decentralized to
3 modular facilities that each has the same electricity consumption and adds up to the
amount that the centralized facility in setting 1 consumes. With the decentralized loads,
we expect that the tension in the transmission lines can be relaxed, and the electricity can
be transformed more freely among the three nodes. The described setups and the results
for both settings are summarized in Table 3.1 and 3.2.

We can see that when we decentralize the electricity consumption among all three
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nodes in setting 2, the social welfare improves by 50%, from 98,650% to 147,950$. Both
transmission lines changes from fully loaded in setting 1 to partially loaded or fully
relaxed in setting 2. In setting 1, only 100 MWh of 150 MWh electricity demand is
satisfied due to the limits of the transmission line. However, in setting 2, the relatively
small energy consumption at each node can first be satisfied by the electricity supply at its
own location, which relaxes the tension in the transmission lines, and creates the spatial
flexibility that allows the ISO to satisfy more electricity demand elsewhere. Another
characteristic of setting 2 is that the electricity prices at all 3 nodes are homogenized. In
setting 1, again because of the limits in the transmission line and the shortage of electricity,
the electricity price at node 2 is the same as the bid price for consumers, leaving no profits
for them in the electricity market. However, when the tension in the transmission lines is
relaxed, and all demands are satisfied in setting 2, the electricity market switches from a
seller’s market to a buyer’s market. The spatial flexibility allows the ISO to allocate the
electricity freely around the three nodes, homogenizing the prices at all locations. The
absurdly high price at node 2 disappears, and profits for electricity consumers increase.
Also shown in Table 3.2, the profits for the supplier and the transmission lines decrease,
while the profit for electricity consumers increases. Most importantly, the total profit
increases and the value matches the maximized social welfare. The profit change is mainly

the result of homogenized electricity prices.

3.3 Optimal Placement Problem

In this section, we derive different variants of the optimal placement problem that will

allow us to explore incentives provides by space-time dynamics of electricity markets.

3.3.1 Unconstrained Formulation

We capture the space-time price data in a matrix IT € R"*". Here, the number of columns

n is the number of spatial network locations (nodes) and the number of rows m is the
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number of time points. The matrix entry II;; is interpreted as price at time i and at
node j. We use p; := II;. € R",i = 1,...,m to denote all node prices at time i. We
denote the set of spatial locations as N := {1, ..., n} and the set of all time realizations as
M = {1,...,m}. All prices have units of USD/MWh and we construct separate matrices
for DAM and RTM.

Given the space-time price data, we seek to identify optimal locations for loads and
generators in the network that minimize the temporal profit variance (variance is used as
a standard measure of risk and can also be interpreted as profit volatility). We define a
node allocation vector w € R" and the profit function at time i as ¢(w, p;) := ¥jcp wjlli ;.
We interpret a positive node allocation w; > 0 as an injection of power (a generation
asset incurring revenue for a positive price) and a negative node allocation w; < 0 as a
withdrawal of power (a load asset incurring cost for a positive price). The node allocations
w; have units of MWh. If the prices are negative, a positive allocation incurs cost and a
negative allocation incurs a revenue. In other words, installing generators maximizes
revenue, but we will see that the simultaneous installation of generators and loads is
needed to minimize risk.

The temporal average of the profit is given by:

1
How) = — ), o(w, pi) (3-3-6)
ieM
and the temporal variance is
1 2
Sow) = —— Y (@(w, pi) — po(w)). (3-3.7)
m—1,5%

The optimal placement problem consists of finding the allocation vector w that minimizes

the profit risk. This problem is stated as:

min Ty (w). (3-3:8)
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We assume that the optimal allocation vector (denoted as wj) satisfies the constraint
|lws|l2= 1 (it is a vector of unit length), where ||-||> denotes the Euclidean norm. This
constraint is interpreted as the distribution of a finite amount of power among the net-
work nodes. We note that the placement problem is scale-invariant. In other words,
replacing w — yw for some 7y > 0 in the optimization problem yields the same optimal
allocations. This is because L,(yw) = y*w’ Sw (resulting in a linear scaling of the objec-
tive function). Consequently, imposing a constraint of the form ||w||,= 1/ will yield the
same optimal allocation obtained with the constraint ||w||>= 1. This formulation seeks to
exploit the space-time dynamics of the prices to identify node allocations for generation

or load that minimize risk. This is a large-scale and continuous quadratic program (QP).

3.3.2 Eigenvalue Interpretation

An interesting observation that we make is that, under the special case with no tempo-
ral price correlations, the optimal placement problem described above can be interpreted
as an eigenvalue problem. This connection reveals some interesting properties of the mar-
ket prices. In the absence of temporal price correlations, the price at the spatial loca-
tion (network node) j can be modeled as a random variable (denoted as P;) and we use
P ={Py,..., Py} to denote a random vector containing all node prices. Consequently, the
matrix entry I1; ; is interpreted as the i-th time realization of the price P; and we assume
that the probability of the realization is 1/m. In this case, p; denotes the i-th realiza-
tion of the spatial price vector P. Under this setting, the sample average of the profit

approximates the expected value of the profit:
Ho(w) ~ E[g(w, P)] (33.9)
and the sample variance approximates the variance:

Lp(w) = V]p(w, P)]. (3-3.10)
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Here, we recall that V[¢(w, P)] = E[¢(w, P)?] — E[¢(w, P)]*>. The key observation is that
the profit variance is related to the price covariance as V[¢(w, P)] = w!E[(P — E[P])(P —

E[P])T]w. This result can be from the following series of implications:

W[(p(w, P)] = E[G”(“’z P)z] - ]E[(P(w/ P)]Z

=Y Y wwEPP]— Y Y wwiE[P]E[P]

JEN keN JEN keN
= Z Z ijkCov(Pj, Pk)
JEN keN
= w"E[(P — E[P])(P — E[P])"]w. (3.3.11)

One can derive a similar relationship between the sample profit and covariance matrix to
establish ¥, (w) = w'Zw. Consequently, the optimal placement problem (3.3.8) can also

be written as:
min w Zw s.t. |w]|,=1. (3-3.12)
w

This reveals that the placement problem is an eigenvalue problem. Accordingly, the optimal
allocation vector wj is the eigenvector corresponding to the minimum eigenvalue A} of
the price covariance matrix X. Moreover, the minimum eigenvalue is the minimum profit
variance (A] = Zy(w7)). The eigenvalue problem is also a QP but this can also be solved
efficiently using standard techniques (e.g., QR or SVD).

The eigenvalue problem is the basis of principal component analysis (PCA). The
first principal component is given by (w})Tp;, i € N. In PCA, one extracts the entire
eigenvalue spectrum of the price matrix to obtain all the principal components. For in-
stance, to obtain the second smallest eigenvalue and corresponding eigenvector we add
the linear orthogonality constraint w’w; = 0 to the eigenvalue problem (3.3.12). The
solution of the new problem yields the eigenvector w; and corresponding eigenvalue

A5 = Zp(w3). Since adding the orthogonality constraint restricts the feasible space, we
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have that X,(w3) > Zy(w7). This procedure is repeated to obtain the entire set of eigen-
pairs w;, A7, j € N, where A} = X,(w}) is the maximum possible cost variance (obtained
with the loading allocation wj},). In our context, this procedure provides useful informa-
tion because it allows us to obtain a family of allocations w7, j € N and to rank them
according to their profit variance. The eigenvectors can also be used to form a matrix W
that can be used to project any price realization p; into the space of the principal compo-
nents as Wp;. The projection can be used to identify clusters and/or outliers in the price

data by analyzing only a subset of principal components.

3.3.3 Constrained Formulation

While mitigating profit variance is an important investment goal, obtaining a maximum
expected profit is also important. Moreover, one often has constraints on the nature and
capacity of assets that can be installed. We thus extend the placement problem (3.3.8) to
capture these features. We impose an /;-norm constraint on the allocation vector w so that
the total amount of power allocated adds up to one MWh and we add a condition that
only one type of asset is allowed to be built at one location (either generation or load).
Consequently, we can decompose the node allocation w; into a generation 0 < w;; <1
and a load component —1 < w;, < 0 (which are mutually exclusive). This gives the

following conflict resolution (multi-objective optimization) problem:

max {pp(w), —Xq(w)} (3:3.133)
st Y (Jwjl+lwiel) =1 (3.3.13b)
jen
0<wjg <zjg, jEN (33.13¢)
—zjp<wjy; <0,jeN (3.3.13d)
zj1+2jg<1,jEN (3.3.13€)

zj1,2j¢ €{0,1},j € N. (3.3.13f)
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where z;; and z; ; are binary variables that indicate if either a load or generation asset is
installed at a particular location j. The constraint z;; +z;, < 1 indicates that either a load
or a generator (but not both) can be installed at one location. Consequently, we have that
Yien (Jwjil+|wjgl) = Liealwjl= [wll1. This constraint is used to avoid degeneracy of the
solution (e.g., adding a load and a generator in a given node has the same net effect as
installing one generator or load). The objective function captures the trade-off between
expected profit and risk (which are often conflicting). The use of binary variables allows
us to enforce a sharp separation between loads and generators (a continuous formulation
does not allow for this). This facilitates interpretability of the solution. Specifically, we
aim to use the placement formulation to explore how space-time price dynamics provide
incentives to install decentralize facilities for loads and generators.

Unfortunately, the constrained placement problem is a large-scale mixed-integer QP.
This problem is intractable for the ISO-scale data sets considered in this work. Motivated
by this limitation, we consider the mean absolute deviation as a risk measure. This is

given by:

MD@) = - ¥ lp(@, pi) — o]~ Ellg(, P) — py@)l.  G:3.19)
ieM

This risk measure is used to formulate the placement problem:

max {py(w), ~MD(w)} (3.3.15a)
s.t. Z (Jwjil+|wjgl) =1 (3.3.15b)
jen
0<wj,<zjg jeEN (3.3.15¢)
—zjp<wjy <0, jeN (3.3.15d)
zj1+zjg<1,jEN (3.3.15€)

zj1,2js €{0,1},j €N (3.3.15f)

51



which can be cast as a mixed-integer linear program that is still large-scale scale but
tractable with existing tools. The constrained placement problem is also scale-invariant.
In other words, replacing w — 7w for some y > 0 yields the same optimal allocations.
This is because MD(yw) = yMD(w), and py(yw) = ypy(w) (resulting in a linear scaling
of the objective function). Consequently, imposing a constraint of the form |w|1=1/vy
will yield the same allocation obtained with the unit-length constraint ||w||;=1. The
constraints set capacity of load and generators, and the constraint on the binary variables
ensures that only one type of technology is allowed at each location. We can use the
above formulation to understand the impacts of installing only certain types of assets or
at certain locations. For instance, if we only wish to install generation assets, we set all

zj) to zero.

3.4 Results and Discussion

In this section we use conduct a basic statistical analysis for an electricity market data
set of CAISO and use the optimal placement formulation to analyze economic incentives

created by the DAM and RTM.

3.4.1 Volatility Analysis of Electricity Markets

In the DAM, electricity prices are updated hourly and market participants commit to
buy or sell power one day before real-time operation, thus avoiding price volatility. This
market produces one financial settlement per day. In the RTM market, prices are updated
every 5 minutes and participants commit to buy or sell electricity over the course of
the operating day. This market seeks to balance discrepancies between the day-ahead
commitments and the actual real-time generation and loads seen in the power grid (e.g.,
due to unexpected variations in renewable power supply, equipment failures, and so on)
. The DAM and RTM work together to produce a multi-settlement system that balances

power at different timescales and at thousands of network locations (Dowling et al., 2017).
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Usually, electricity prices in the DAM are usually less volatile but are on average higher
than RTM prices, and thus market participants can participate strategically in either or

both of these markets.

$/MWh

I 250

39

Figure 3.3: Temporal average price (at different spatial locations) for CAISO in the DAM
(left) and RTM (right).

We conducted a basic statistical analysis to compute space-time price averages and
standard deviations for the CAISO data set for the year of 2015. This dataset is open-
access and was collected from CAISO Open Access Same-time Information System (OA-
SIS) (AM and EC, 2014). The dataset includes complete electricity price profiles for the
year at 2,234 different network locations. The data set contains over 19,569,840 price
points for the DAM (one-hour time resolution) and 234,838,080 price points for the RTM
(5-minute time resolution). We use this data to construct a space-time covariance matrix
% form both the DAM and RTM.

The results are visualized in Figures 3.3, 3.4, and 3.5. Figure 3.3 illustrates that the
time-average price for both markets is in the range of 27-50 USD/MWh. The space-time
average RTM price is 32.71 USD/MWh, which is 2.62% lower than the corresponding
average DAM price of 33.59 USD/MWh. The differences illustrate that there is a premium
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Figure 3.4: Temporal average standard deviation (at different spatial locations) for the
DAM (left) and RTM (right).
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Figure 3.5: Spatial average standard deviation (at different temporal locations) for the
DAM (left) and RTM (right).

in the DAM. Spatial patterns for both markets are quite similar, indicating that prices
are dictated by the network topology. Figure 3.4 demonstrates temporal price volatility
(standard deviation) at all locations. The temporal volatility in the DAM is consistently
under 10 USD/MWh in most locations while the volatility in the RTM is in the range
of 60-70 USD/MWh and reaches levels of go USD/MWh in some locations. The spatial

average of the temporal volatilities was found to be 62.41 USD/MWh for the RTM, almost
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four times larger than in the DAM, which was only 12.93 USD/MWh. These results
clearly indicate that RTM possesses greater temporal volatility. Figure 3.5 presents spatial
volatility through time. We see that the DAM shows low spatial volatility (except in a few
instances in the summer months) while the RTM shows more frequent spikes in spatial
volatility. Based on this analysis we conclude that the RTM is more volatile than the DAM
in both time and space. We also found that the temporal average of the spatial volatility
was found to be 8.85 USD/MWHh for the RTM and 5.60 USD/MWh for the DAM. We
can thus see that, on average, spatial volatility is less significant than temporal volatility
(which are 12.93 USD/MWh for DAM and 62.42 USD/MWh for the RTM).
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Figure 3.6: Pearson Correlation Matrix for the DAM (left) and RTM (right).

We also computed the spatial correlation matrix based on the covariance matrix and
it is visualized in Figure 3.6. Our results show that, in the DAM, the average correla-
tion is 0.67, that 99% of the total number of locations are positively correlated, and that
the minimum correlation is -0.22. In the RTM, the average correlation is 0.82 and the
minimum correlation is 0.00083. We conclude that a strong positive correlation exists in
both electricity markets (prices at different locations tend to move in the same direction).
This indicates that there is tight physical network coupling. As we will see next, strong
positive correlation indicates that it is impossible to eliminate investment risk by simply
investing in either generation or loads (a combination of both is needed). This would not

be the case if we had a strong negative correlation in the market.
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3.4.2 Eigenvalue Analysis of Space-Time Covariance Matrix

Solving the basic placement formulation is equivalent to solving an eigenvalue problem.
In Table 3.3 and Figure 3.7, we summarize the eigenvalue spectrum in ascending order
for both the DAM and RTM price covariance matrices (recall that the eigenvalues are the
variances of the profit). Recall that both the DAM and RTM matrices have a total of 2,234
eigenvalues. The first 1,180 eigenvalues of the DAM price covariance are close to zero.
For the RTM, the first 1,454 eigenvalues are close to zero (below a threshold value of
O(1072)). This indicates that many eigenvectors (allocations) give zero variance, meaning
that many combinations of asset locations (given by the corresponding eigenvectors) can
eliminate profit variance. An optimal strategy to eliminate risk is to place combinations
of loads and generators at neighboring nodes (those with similar temporal price profiles).
This can be visualized in Figure 3.8, where we show the optimal placement of assets (the
eigenvectors) corresponding to the minimum eigenvalues. As can be seen, allocations of

generation and load always appear in pairs next to each other and are of equal magnitude.

Table 3.3: Eigenvalues for DAM and RTM covariance matrices.
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Eigenvalue DAM RTM
M —425x10712 —459 x 10~
Mo —2.09x1071* 190 x 10712
Moo —2.86 x1071¢ 574 x 1071°
As00 291 x10718® 580 x 10~
Aooo 5.78 x 1074 4.68 x 1075
A1500 0.24 0.016
A2000 5.87 9.20
A2100 18.35 74.15
A2200 300.62 2806.04
A234 2.54 x 10° 7.31 x 10°
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Figure 3.7: Cumulative eigenvalue spectrum for the DAM (left) and the RTM (right)
covariances.

The largest eigenvalue (the maximum possible profit variance) is O(10°) for the DAM
and O(10°) for the RTM, indicating that there is more volatility in the RTM (reinforcing the
observations made with basic statistical analysis). In Figure 3.9, we present the optimal
allocations corresponding to the maximum variance. The strategy here is to place the
same asset type (in this case power generation) at all nodes. The maps also reveal areas the
are strongly positively correlated (so the strategy to maximize variance is to allocate more
generation at such locations). Obviously, this strategy is not optimal from an investment

standpoint but highlights some interesting properties of the behavior of electricity prices.

3.4.3 Risk vs. Mean Profit Trade-off for the DAM

We used the placement formulation to analyze trade-offs between risk and expected
profit. In Table 3.4 and Figure 3.10 we present the optimal trade-off solutions (Pareto op-
timal solutions) for the DAM. The Pareto solutions were identified using an e-constrained
approach. From these results we can make a number of interesting observations. First, it
is clear that to maximize expected profit it is optimal to centralize facilities (these facilities
are simply installed at locations with large mean price). In this case, obviously, the type
of asset to install is generation and the expected profit is 52.76 $/MWh. This strategy,

however, results in a large risk (an MD value of 24.03 $/MWh). We can also see that the
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Gen.

Figure 3.9: Optimal placement leading to maximum risk for the DAM (left) and RTM
(right).

mean deviation is significant, representing half of the expected profit, which is due to the
high temporal volatility of the prices. The trade-off trends also indicate that installation
of a larger number of smaller power generators (diversifying generation among multi-
ple locations) can substantially decrease risk. For instance, by increasing the number of

generators to five, we see that the risk is decreased by 50% and this only decreases the

58



expected profit by 15%. This illustrates that there is a strong nonlinear trade-off between
expected profit and risk. The mean absolute deviation gives linear penalties for large and
small deviations (compared to the standard deviation, which attributes quadratic penal-
ties). In Table 3.4 we present the standard deviation values for each placement problem
solved. Note that the trend of standard deviation agrees with that of the mean absolute
deviation. Therefore, choosing the mean absolute deviation as the risk measure for the
optimal placement problem is consistent. In other words, one can recover elements of
the Pareto frontier corresponding to the standard deviation by using the mean absolute
deviation (there is a one-to-one corresponding between the risk measures).

From Table 3.4 and Figure 3.10 we see that further reductions in risk require the instal-
lation of both generation and loads. In particular, elimination of risk cannot be achieved
through the use of either just generation or just loads (due to the positive correlation
of prices). In the hypothetical case in which market prices were negatively correlated,
installing the same asset type would be sufficient to fully mitigate risk. Consequently,
the limiting value of risk for single asset type is an indicator of the degree of positive
correlation in the market. Figure 3.11 shows optimal placement locations for low-risk and
high-risk cases. We see that high-risk is achieved by placing only generation assets while
low-risk is achieved by diversifying loads and generation.

An interesting trade-off point that we see in Table 3.4 is that in which we obtain a
risk of MD = 5.06 USD/MWh and expected profit of u, = 31.85 USD/MWh (this is
the solution for minimum possible risk achieved with only generation assets). In this
solution, seven generation locations achieve a mean absolute deviation of 5.06 MWh and
an expected profit of 31.85 MW (78.94% of the risk is reduced while 39.63% of the profit
is sacrificed). In Table 3.5 we show the power allocation to each of the seven locations. We
see that two locations share 9o% of the total generation (these seek to maximize expected
profit) while 10% of the generation is split in small generators (these seek to minimize
risk). From Table 3.4, we see that the use of just two generators incurs a large risk.

Consequently, investing in smaller generators is key to mitigate risk. From these results
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Table 3.4: Risk vs. expected profit trade-off for DAM.

Risk Std. dew. Expected Profit  # of # of
(USD/MWh) (USD/MWh) (USD/MWh) Loads Generators
24.03 46.66 52.76 0 2
18.15 33.78 49.15 0 3
12.19 19.52 44.22 0 5
8.31 11.64 39.24 0 12
5.75 7.85 34.16 0 8
5.06 7.00 31.85 0 7
4.25 5.53 28.15 3 9
3.15 4.08 22.13 13 9
1.33 1.75 10.63 29 12
0.16 0.23 1.92 142 112
0.055 0.011 0.80 287 254
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Figure 3.10: Risk vs. expected profit trade-off for the DAM.

we also conclude that further diversification of generation does not provide significant

benefits in risk mitigation.
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Figure 3.11: Optimal placement for low risk (left) and high risk (right) in the DAM.

Table 3.5: Optimal allocation for case with MD = 5.06 USD/MWh and —p, = 31.85
USD/MWh in the DAM.

Location w; (MWh)
NEORBLF_7_B1 0.60
JBBLACK1_7_B1 0.31

DELNORTE_LNODEDso  0.037

HMBUNIT2_7_GNo1o 0.023
HMBLTBY_6_Noo3 0.017
TOPAZC1_7_No21 0.010

BAFCOG12_7_B1 0.00090

3.4.4 Risk vs. Expected Profit Trade-off for the RTM

Trade-off analysis for the RTM was performed by using price data with a time resolu-
tion of 20 minutes. The reason is that the placement problem is intractable at higher
resolutions. The Pareto analysis results are summarized in Table 3.6 and Figure 3.12.

Here, we report standard deviation values in order to highlight how the mean and stan-



dard deviation follow the same trend. The results for RTM have similar trends to those
found in the DAM. In contrast with the DAM results, however, the risk for RTM is higher
(which is consistent with the results obtained using the eigenvalue analysis). Compared
to the DAM, more diversification of generation is needed to decrease the risk by the same
amount (due to the higher volatility in RTM). We also observe that a combination of loads
and generators is needed to fully eliminate risk and that the expected profit obtained with
the RTM and DAM are similar.

Figure 3.13 shows high-risk and low-risk allocations. High-risk allocations with large
expected profit favor centralization of assets while low-risk ones favor decentralization of
assets. Moreover, this indicates that assets capable of providing simultaneous provision
of generation and load (e.g., microgrids or batteries) can be used to mitigate risk. Our
analysis also indicates that electricity markets provide significant incentives to modular-
ize power-intensive assets (e.g., manufacturing facilities and data centers). For instance,
decentralization of ammonia systems can help mitigate risk associated with the high con-
sumption of electricity in refrigeration systems.

The risk estimated with the 20-minute formulation underestimates that of the 5-
minute counterpart. We can see, however, that the 20-minute resolution data already
reveals that much higher risk is observed in RTM relative to DAM. This observation is
also confirmed using the eigenvalue analysis (which was performed using the 5-minute
resolution data). Moreover, we expect similar trade-off trends by using higher time reso-

lutions.

3.4.5 Computational Considerations

The unconstrained placement problem is an eigenvalue problem that can be readily
solved for both the DAM and the RTM data (even at 5 minute resolutions). The con-
strained placement formulation (3.3.15), on the other hand, is a large-scale mixed-integer

linear program. The RTM problem (with 20-min resolution) contains 85,544 constraints
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Table 3.6: Risk vs. expected profit trade-off for the RTM.

Risk Std. dew. Expected Profit  # of # of
(USD/MWh) (USD/MWh) (USD/MWh) Loads Generators
36.85 94.55 51.59 0 1
29 79-96 47.03 0 3
24 68.47 43.75 Y 4
19 5779 40.22 Y 4
16 54.11 37.70 0 6
13 44.04 33.98 0 13
10 31.08 29.46 0 22
8 20.86 25.43 0 21
6 14.53 19.71 6 18
4 9.87 13.44 21 22
2 4.98 6.88 45 47
1 2.55 3.53 71 62
0.6 1.56 2.17 87 84
0.4 1.06 1.49 103 99
0.2 0.54 0.76 130 157

and 61,496 variables (4,468 binary) while the DAM problem contains 32,985 constraints,

21,989 continuous variable (4,468 binary). The problems were solved using Gurobi with

default relative MIP gap of 0.01% and solution times range from 1.5 hours to 5 hours

(on a standard personal computer). The long times are due to significant symmetries in

the problem (i.e., many allocation combinations achieve the same optimal objective). This

degeneracy was revealed by the eigenvalue analysis (which indicates that the price covari-

ance has a large number of zero eigenvalues). The RTM problem is intractable with time

resolutions below 20 minutes. We are currently investigating strategies to decompose the

placement problem in order to be able to scale to higher time resolutions. In particular,
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Figure 3.13: Optimal placement for low risk (left) and high risk (right) in the RTM.

this problem has the interesting property that it only has a single coupling constraint.
Consequently, one can develop specialized Lagrangian decomposition (Fisher, 2004; Held

and Karp, 1971) schemes that achieve high parallel execution efficiency.



3.5 Conclusions and Future Work

This work examines economic incentives created by space-time dynamics of day-ahead
and real-time electricity markets. We first formulate the electricity market clearing model
and explore the effect of modularization on social welfare and electricity prices. We
then develop an optimal technology placement formulation that seeks to identify optimal
strategies to maximize expected profit and minimize risk. We have shown that a pure risk
minimization formulation can be cast as an eigenvalue problem. We also develop more
sophisticated formulations that capture different technology asset types (e.g., generation
or loads) and risk measures using mixed-integer programming techniques. Our analysis
for the CAISO market reveals that significantly more temporal (as opposed to spatial)
volatility is observed in both DAM and RTM markets (the RTM also has more volatility
in general). Our analysis also reveals that both markets exhibit positive spatial correla-
tion in prices, indicating that it is impossible to fully eliminate risk by using only either
generators or loads. Consequently, decentralizing technologies of the same type has sig-
nificant but limited impacts on risk mitigation. Full risk mitigation can only be achieved
by combinations of generation and load assets (which can be achieved with microgrids,
prosumers, or batteries). Our analysis also indicates that electricity markets provide sig-
nificant incentives to modularize power-intensive technologies (e.g., manufacturing and
data centers). This is of particular relevance due to recent interest in the deployment of
small-scale modular technologies.

Our analysis is retroactive in nature (uses historical data) and thus lacks predictive
capabilities. Enabling predictability requires us to develop advanced forecasting meth-
ods that capture simultaneous spatial and temporal correlations. Specifically, we are in-
terested in investigating recently-developed dynamic principal component analysis and
dynamic mode decomposition techniques to conduct space-time analysis and forecasting
of market data (Vanhatalo et al., 2017, Dong and Qin, 2018). Such techniques exploit

space-time correlations to identify dominant modes in the data.
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As time points in RTM exceed 100 thousands, current state-of-art solvers could not re-
solve the placement problem under reasonable CPU time. Methods to shrink the problem
size such as grouping the time points and reducing the number of redundant locations
could be explored. Also, our model currently assumes that electricity price at each time
point is independent, and therefore no temporal correlation of the electricity prices are
considered. It is necessary to extend the placement formulations to analyze effects of
temporal flexibility. In particular, our current formulation assumes that technologies pro-
vide a fixed capacity all the time, while new technologies can provide ramping capacity
to account for uncertainty due to demand and renewable forecasting errors. Besides this,
electricity storage facilities could potentially help to reduce risk in the volatile market.
Therefore, we are interested in developing advanced formulations that can capture tech-
nologies that can shift load/generation in time. These formulations are intractable with
off-the-shelf tools (due to a dramatic increase in the number of decision variables) and
we will thus investigate decomposition algorithms for their solution. Specifically, such
formulations reach tens to hundreds of millions of variables but note that the placement
formulation exhibits sparse coupling (the total installed capacity constraint). As a result,
one can envision using Lagrangian dual decomposition techniques to tackle this prob-
lem. We are also interested in including nonlinear effects of economy of scales in the

placement, which can be done by using piece-wise linear approximations.
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BENEFITS OF MODULAR DESIGN - TEMPORAL FLEXIBILITY

This chapter talks about the temporal flexibility brought by modular technologies, and is
published in Shao et al. (2021) titled "Mitigating Investment Risk Using Modular Tech-

nologies".

4.1 Introduction

Decentralized power generation and storage systems are becoming increasingly attractive
as climate change and adoption of renewable power disrupts markets and space-time de-
mand patterns (Heuberger et al., 2017; Liu et al., 2018; Shao and Zavala, 2019). Modular
technologies can be easily transported to different geographical locations to exploit chang-
ing market patterns and to enable the recovery of resources that are highly distributed
and potentially short-lived (Allman and Zhang, 2020; Chen and Grossmann, 2019; Davis,
2016). We can interpret this ability as a form of spatial-shifting flexibility. This decentral-
ized approach contrasts with the more traditional monolithic approach in which a large
processing system is installed at a fixed location over its entire lifetime (Zhao et al., 2018).
This centralized approach involves investments that can reach billions of US dollars and

face significant risk due to changing markets and climate, shortages of resources at a spe-
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cific location (e.g., water), and changes in the policy landscape (e.g., carbon emissions).
As such, large central systems can face significant economic fallouts that investors might
not be willing to tolerate. For instance, large ammonia production systems in the US have
shut down due to low-cost supply from China, and large coal power plants are shutting
down due to decreasing costs of renewable power and policy changes. Moreover, the
mass deployment of small modular units facilitates experimentation, learning, and shar-
ing of best practices that can reduce operational costs (compared to large facilities, in
which experimentation is more difficult). On the downside, the flexibility provided by
small modular systems often comes at the expense of increased investment and opera-
tional costs (Rajagopalan, 1993). Specifically, economies of scale benefit large systems due
to the favorable scaling of throughput with equipment size (Peters et al., 1968). Due to
complex trade-offs between costs and flexibility, industrial systems will likely evolve into
a mixed state in which certain processing tasks are performed in small modular systems
while others are performed in large centralized systems. Identifying optimal investment
strategies in such settings is complicated due to complex product interdependencies and
uncertainties.

A key observation driving this work is that modular systems provide logistical flex-
ibility in investment size and timing that can be strategically exploited to mitigate risk.
Specifically, expansion of production capacity in modular systems can proceed sequen-
tially, which provides a mechanism to hedge against risk (we can interpret this as temporal-
shifting flexibility). To give an example, the deployment of new power generators and
transmission lines is subject to significant short-term and long-term uncertainties. Specif-
ically, short-term fluctuations in demand and wind/solar supply can affect an optimal
generation mix, and changes in fuel prices and policy can render entire technologies un-
economical (Liu et al., 2018). Therefore, the progressive expansion of capacity using both
large and small processing systems can help make and correct decisions and to better
balance cost and risk.

In this work, we investigate investment flexibility provided by modular technologies;
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to do so, we propose a multi-product capacity expansion (CE) problem that exploits
the availability of technologies of different types and sizes to mitigate risk. Variants
of the CE problem have been studied in different applications such as power generation,
semiconductor manufacturing, railroad networks, and waste-to-energy systems (Cardin
and Hu, 2015; Sun and Schonfeld, 2015; SHIINA et al., 2018; Geng et al., 2009). A cost-
minimization CE problem that considers a single-product deterministic setting with in-
stallation decisions of a fixed-capacity facility was formulated in (Luss, 1979). This for-
mulation was extended to incorporate facilities with multiple capacities in (Luss, 1983,
1986). Uncertainty in demand for a single-product cost-minimization CE problem was
addressed by using a stochastic programming (SP) model in (FH. Murphy and Soyster,
1982; DapkLus and Bowe, 1984; Shiina and Birge, 2003). A stochastic CE formulation
for planning investments in electricity generation, storage, and transmission investments
over a long planning horizon was proposed in (Liu et al., 2018). These CE problem formu-
lations use expected cost as an investment metric and thus do not control investment risk.
Recently, a CE problem formulation that trades-off expected cost and risk was proposed
in(Zhao et al., 2019). Here, the conditional value-at-risk (CVaR) was used as a risk metric
that is minimized at each stage. All the aforementioned formulations consider facilities
that produce a single product; in a chemical process, however, multi-product dependen-
cies need to be captured. Specifically, a chemical manufacturing facility might involve
processes that produce intermediate or final products and demands for such products
might face different levels of uncertainty. Making investment decisions in a multi-product
setting is a non-trivial problem. Capturing risk in time-dependent decision-making set-
tings (such as CE) is also an active topic of research. For instance, time-consistency of
per-stage risk minimization is an issue of concern. In the context of CE, time consis-
tency indicates that, if an alternative A is riskier than alternative B at some time, then A
should also be considered riskier than B at every prior time (Boda and Filar, 2006). Unfor-
tunately, deriving SP formulations that achieve time-consistency is not straightforward.

Moreover, per-stage risk minimization is not necessarily a decision-making strategy that
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investors might follow; specifically, investors are typically concerned with assessing risk
of cumulative metrics such as the net present value (NPV).

In this work, we propose a multi-product CE formulation to investigate flexibility
brought by modularization for mitigating investment risk. Our framework is a multi-
stage and multi-objective SP problem that captures demand product uncertainty and
trade-offs between expected value and risk of the NPV. We provide case studies of dif-
ferent complexity to illustrate the developments. Our analysis reveals that the Pareto
frontier of a flexible setting (allowing for deployment of units of various sizes) dominates
the Pareto frontier of an inflexible setting (allowing only for deployment of large units).
Our formulation also avoids difficulties associated with time-consistency issues of stage-
wise risk-minimization formulations and we argue that is more compatible with more

traditional investment strategies.

4.2 Problem Formulations

In this section, we present CE formulations of different complexity (single-product/multi-
product and deterministic/stochastic) in order to highlight different aspects of the prob-
lem. We begin our discussion by posing a couple of illustrative examples; this will help
us introduce some key concepts that are essential in developing more complex CE formu-

lations.

4.2.1 Problem Setting

Consider the following deterministic CE setting: a decision-maker (investor) wants to
progressively add capacity to a production system by installing technologies of different
sizes (capacities). The resulting assembled system seeks to generate sufficient product
to satisfy a time-dependent demand over a given planning horizon. At each planning
stage, the investor decides how many technologies (and associated capacities) it should

install; if a technology is added at one stage, this will generate a product to satisfy the
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demand at the next stage (there is a deployment delay of one stage). Demand satisfaction
generates revenue. We assume that an installed technology has to operate at full capacity;
if the system production exceeds demand at a given time, the investor can decide to either
store the excess product at a cost (and carry the product over to the next stage) or it can
dispose of excess product at a cost. At the final stage, the system disposes of leftover
excess product. The goal is to make an optimal CE plan over the horizon that maximizes
NPV (accumulated cash flows over the horizon); in doing so, the investor is constrained
by the capacities of the technologies available. For simplicity, in this example, we assume
that NPV is simply determined by the excess product (waste) at the end of the planning

horizon and that there is no interest rate.

Capacity
Case 1 100
Capacity
100
Case 2
50

Figure 4.1: Illustrative example of the single-product deterministic capacity expansion
setting.

We illustrate this decision-making setting in Figure 4.1; here, we would like to make
decisions on how much capacity to install at Stage 1 and Stage 2 to minimize waste at
Stage 3. In Case 1, only large technologies are available (with a capacity of 100 units); to
satisfy future demands, it is decided to install 2 units of this large technology at Stage
1. Since the demand at Stage 2 is 150, it is required to shift excess production to Stage

3. Moreover, since the demand at Stage 3 is 200, it is necessary to dispose of 50 units of
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Installation

Capacity Case 1 100
Case 2 50 Stage 1
Case 1 100
Case 1 100
Case 2 100+50 Stage 2
Capacity
100 200
Stage 3
Case 2
50 Case 10 Case 1 75 Case 1 50 Case 1 125

Waste Case 2 0 Case 2 75 Case 2 0 Case 2 25

Figure 4.2: Illustrative example of the single-product stochastic capacity expansion set-
ting.

excess product. In Case 2, a large technology and a small technology are available; this
opens the possibility of an investment strategy in which we install a large unit (size 100)
and a small unit (size 50) at Stage 1 and add a small unit at Stage 2. This strategy prevents
wasting material at Stage 3 and highlights the flexibility provided by the availability of
small technologies. Note that, in this setting, the demands are time-dependent but are
assumed to be known at the moment of decision (deterministic setting).

The CE setting can be extended to account for uncertainty in the demands (stochastic
setting). Here, demand uncertainty is represented in the form of possible scenarios. An
illustrative example of this setting is shown in Figure 4.2. We would like to make instal-
lation decisions at each stage and scenario (here, we consider two possible scenarios per
stage). Stages and scenarios are represented as a decision tree and each node is associ-
ated with a different demand scenario. Installation decisions are shown next to the node
and wasted amounts are shown exiting the nodes at the last stage. In Case 1 (only large
technologies are available), we decide to install a large technology in Stage 1; in Stage 2,
we can decide to install a large technology in scenario 1 (high demand) or no technology
in Scenario 2 (low demand). This investment strategy results in four scenarios of waste

product in Stage 3 (10,75,50,125). Assuming that these scenarios have equal probability
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(1/4), the expected value of the waste is 65 and the standard deviation (typical measure
of risk) is 48. In Case 2 (large and small technologies available), we install a small unit in
Stage 1; in Scenario 1 in Stage 2 we install a large technology (to satisfy the large demand)
and in Scenario 2 we install another small technology (to satisfy the small demand). This
investment strategy results in four scenarios of waste excess product in Stage 3 (0,75,0,25).
This gives a mean waste of 25 and a risk of 35. We can thus see that adding the possibility

of installing small units reduces expected waste and risk.

Risk can be measured in different ways; in the previous setting, we computed the
risk at Stage 3 (last stage) but we could have also computed the risk at Stage 2 and we
could have added this to the risk of Stage 3 (add risks for all stages) to determine the
best strategy. This highlights issues that one may encounter when measuring risk in a
multi-stage decision-making setting. Specifically, risk can vary over time and one might
or might not be interested in shaping risk over time. This is similar in spirit to how in-
vestors think about cash flows; typically, investors are not necessarily interested in the
temporal behavior of cash flows but want to aggregate cash flows in a single metric (e.g.,
NPV). Following this reasoning, in this work, we will compute NPV for every branch in

the tree and compute the associated risk.

The CE problem can be further extended to a multi-product setting in which a sys-
tem can produce multiple intermediate or final products. Intermediate products generate
interdependencies between possible technologies (i.e., technology can take intermediate
products obtained from another technology as raw materials). Multi-product dependen-
cies make the problem significantly more complicated and we will see that, in such a
setting, investment flexibility provided by small units becomes particularly relevant. We
now proceed to formulate single-product deterministic and stochastic CE problems and

we then proceed to extend this to a multi-product setting.
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Stage 1 Stage 2 Stage 3
Installation 1 To 3
Product produced X; =0 Xo=x1+ X4 X3 =29+ X9
Demand dl d2 d3

Figure 4.3: Tree representation of planning horizon in deterministic case

4.2.2 Single-Product, Deterministic Setting

Consider the decision-making setting shown in Figure 4.3. We consider a planning hori-
zon comprising a set of stages 7 = {1,2,..., T} with cardinality |7|:= T. The time-
dependent product demand is given by d;,t € 7. Investment decisions are made at
stages t € {1,2,..., T — 1} and we thus define the decision stages D = {1,2,...,T — 1}
with cardinality |D|:= T — 1. In a deterministic setting, the planning horizon is a linear
graph (a tree) in which each node represents a stage. As such, for each node t, we define
a parent node a; € T (in this case we have a; = t — 1). The root node t = 1 does not have

a parent node and thus a; = @.

The investor has a list of of possible technology choices that can be installed at each
stage. Each choice has a different capacity and associated installation cost (which capture
economies of scale). We define the set of capacities as B = {By,By,...,Bn} € ZY and
the set of associated costs as C = {C1,Cy,...,Cn} € RY, both with same cardinality
|B|=|C|:= N. For convenience, we also define a set of choice indexes F = {1,2,...,N}.

To capture economies of scale, it is typical to assume that costs follow a 2/3 rule and thus:

3
By _ Cr \? /
(ka) = (Q«) , kK eF (4.2.1)

where By, B € B are the k' and ¥’ th capacity choices and Ci, Cy € C are the installation
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costs.

Product storage comes at a cost p; € IR+ and we define a maximum storage capacity
§ € Z.. Disposal of excess product comes at a cost p,,. We define a variables; € Z,,t € T
to capture the amount of storage at stage t. We set s; = 0 and s, = 0 (any excess product
is regarded as waste at the final stage). We define the integer variable w; € Z,,t € T
to represent the waste generated at each stage. We assume w; = 0 (waste is generated at
the end of each stage). The investor has a choice to deal with any excess product; either
to dispose of the product or to store it (shift it to the next stage). To capture installation
delays, we assume that capacity installed at stage t generate production, storage, disposal

and sales of products at stage t + 1.

We define integer variables u;, € Z,,t € D,k € F; here, u;) is the number of
technologies of type k € B installed at stage t € D. The total capacity installed at time ¢
is thus:

Xt = Z u By, t€D (4.2.2)
keF

and the total installation cost at time ¢ is:

ye=Y uC, teD (4.2.3)
keF

We define variable X;,t € 7T to represent the total amount of product generated at stage

t; Xy is the cumulative installed capacity up to stage t and follows the dynamic evolution:
Xi=Xg +%, t€T (4.2.4)

We set the initial production as X; = 0 and recall that a; = t — 1. In the proposed setting,
we can install more than one technology at each time but we limit the total final installed

capacity Xt by using the upper bound x € Z,.
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We use the following constraint to ensure that demand is satisfies at each stage:

0<sg+Xi—si—wy<d;, teT (4.2.5)

We define a production cost as p, € R, and selling price as 77, € R;. Under these

definitions, the cost at stage t (denoted as g; € R) can be expressed as:

Gt = Yt + pp Xt + 055t + Py, tE€T. (4.2.6a)

and the revenue at stage t (denoted as r; € IR) is expressed as:

Ty = 7Tp(Xt +Sg — St — '(/Ut), teT. (427)

Note that sg, X1,51, w1 = 0 and thus 1 = 0.

We consider a CE formulation that maximizes the NPV of the project; to do so, we
define an interest rate ¢ € [0, 1] that is used to discount any future cash flow and we
define the discount factor B; = 1/(1+)'~!. We define the discounted profit (cash flow)
achieved at stage t as v; and the cumulative profit upto stage t as V;. These quantities are

computed as:

vp=P-(re—qi), t€T (4.2.8a)

Vi=V,+v, teT. (4.2.8b)

With this, the NPV is given by Vr = 3,7 0;.
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In summary, the CE problem is a mixed-integer linear program (MILP) of the form:

mu%x Vr (4.2.9a)
s.t. x; = Z ui By, t€D (4.2.9b)
keF
ye=Y uCy, teD (4.2.90)
keF
Xi=Xg +%q, teT (4.2.9d)
qr = Yi + pp Xt + psSt + ppwr, t €T (4.2.9€)
re=mp(Xe+8q, —sp —wy), t€T (4.2.9f)
vr=PBt-(re—qr), t€T (4-2.98)
Vi=Vy+o, t€T (4.2.9h)
0<sp+Xs—st—wy <dy, teT (4.2.91)
0<s<s5 teD (4.2.9))
Xr<x (4.2.9k)
up €2y, teD,keF (4.2.91)
s;eZ,., teT. (4.2.9m)

The NPV metric accumulates all the cash flows v, t € T to the initial stage ¢ = 1 and this
accounts for time value of money. If we set v = 0, we obtain ; = 1 and the CE problem
maximizes the cumulative cash flows over the planning horizon (the total profit). As we
discuss next, the NPV is a convenient metric that allows us to summarize random cash

flows that arise in settings that face uncertainty.

4.2.3 Single-Product, Stochastic Setting

We now extend the CE problem to a stochastic setting; this formulation allows us to

explore trade-offs between expected profit and risk. The stochastic setting is illustrated
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U1,1,k

d1,1,p1,1

Stage 1 S = {1}

U2.2 k

Stage 2 Sy = {1,2} d2,1,p2,1 d2,2,D2,2

a21 =0a22 = {1, 1}

U3.4,k
Stage 3 S3 ={1,2,3,4}
ds,1,P3,1 d32,p32 d33,D33 d3.4,p3,4

asy = azz = {2,1} asz3 = asy = {2,2}

Figure 4.4: Tree representation of planning horizon in stochastic case

in Figure 4.4. We define the set of scenarios at each stage t € T as S; = {1,2,...5;} with
cardinality |S;|:= S;. Each scenario is represented as a node in a tree; the number of levels
in the tree is given by the number of stages. We define parent node a;,t € T,j € S; as
the parent stage and scenario that node {¢,j} emanates from. For example, if scenario
{t,j1} is generated from scenario j at stage ¢ — 1, then the parent node is a,; = {t — 1, j}
(see Figure 4.5). The scenario set of the root node is a singleton &; = {1} and the parent
of the root node is empty and thus a1 = @.

The demand is a discrete random variable; the realization of this variable at time
t and scenario j is denoted as d;;,t € T,j € &;. The probability of realization d;; is
represented as p;; € [0,1]. For each stage t € T, these probabilities satisty } cs, p1,; = 1.
It is important to highlight that these are joint probabilities that capture the history of
events leading to node {t,j}. In other words, joint probabilities are node probabilities
(conditional probabilities are arc/edge probabilities and marginal probabilities ignore

history). For example, in Figure 4.4, p31 is the probability of node {3,1} corresponding
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Stage t-1 Stage t

- J1,J2 € Sy

Figure 4.5: Schematic of parent-node notation. Here, node {t —1,j} is the ancestor of
{t—1,j1} and {t —1,j} and thus a; ;, = a,;, = {t = 1,j}.

to the demand event sequence d;1,d>1 and d3 1 and thus:

ps1 =P({1,1},{2,1},{3,1}) (4.2.10a)
=P({3,1}{1,1},{2,1}) - P({1,1},{2,1}) (4.2.10b)
=P({3,1}[{1,1},{2,1}) - p21 (4.2.100)
=P({3,1}[{1,1},{2,1}) - P({2, 1} {1, 1}) - p11. (4.2.10d)

where P({3,1}[{1,1}, {2,1}) is the conditional probability of event {3,1} given that {1,1}
and {2,1} have been realized. We thus have that probability p;; carries information of its

ancestor nodes (i.e., p31 carries information of p,1 and p11).

We define an integer variable ujx € Z+,t€D,jE St k € F to represent the number
of technologies of type k € B installed at stage t € 7 and at scenario j € S;. The total

capacity installed at time t and scenario j is:

Xtj = Z uijkBr, t€D,j€ Sy, (4.2.11)
keF



and total installation cost at time f and scenario j is:

yt’j = Z ut/jrkck’ t E D’ ] E St (4.2.12)
keF

We use the integer variable s;; € Z,,t € T,j € & to denote the amount of storage at
stage t in scenario j. Similar to the deterministic case, the storage for the first and last
stage are assumed to be zero. We define the waste variable as wyj € Z.,teT,je S and

we assume that the waste for the first stage zero.

We define a variable X;,t € T,j € S as the total amount of product produced at
stage t and scenario j. Here, X;; is interpreted as the cumulative installed capacity up to
stage and scenario 4;, expressed in (4.2.13). The total installed capacity at stage one is

X1,;=0,j € &1
Xij=Xa,; + %, t€T,jES (4.2.13)

With the above definitions, we can define the undiscounted cost at stage t for scenario j

as q;,j, and is given by:
qtj = Yuj+PpXej+ pssej+ pwtorj, t € T\{T},j € S (4.2.14a)
The undiscounted revenue at stage f scenario j is denoted as r; ; and can be expressed as
11 = T0p(Xpj+Sa,; —Stj—wj), tE€ET,jE S (4.2.15a)

Our goal is to maximize the expected NPV and to minimize its risk. To model these
quantities, we introduce variable v;;,t € T,j € S that denotes the cash flow (profit)
achieved in stage t and scenario j. We also define the cumulative variable Vt,j, teT,je S

to denote the cumulative profit up to stage t and scenario j. Using the notation proposed,
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these quantities can be computed using a form that is analogous to the deterministic case:

Oj=Pr-(rj—qy), t€T,jES (4.2.16a)

Vij=Va,+v1j, t€T,jES (4.2.16b)

The NPV is the total accumulated cash flow and is given by Vg, j € St. We note that
this is a random quantity and that each realization correspond to a branch of the scenario
tree connecting the root node {1,1} to the final nodes {T,j} with j € St. The NPV thus
summarizes information of the entire project and captures probabilities of the different
paths that the project can take. When the interest rate is zero, the NPV of a given path is

the total profit of the project for such path.

The expected NPV is given by:

&= Z rr,;iVr,, (4.2.17)
jGST

and its risk is measured by using the mean deviation:

R=)Y prjlvrj—€| (4.2.18)
jEST

Alternative risk metrics can be used; here, we provide the mean deviation as this is a

coherent risk measure that is easy to interpret.

The CE problem can be cast as the following stochastic, multistage, multi-objective

optimization (SMMO) problem:

max {€,-R} (4.2.19a)
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s.t. xpj = Z upjxBr, t€D,je S (4.2.19b)
keF
yij= ) ujxCr, teD, jES (4.2.19¢)
keF
Xij=Xaj+Xa,;, tE€ T,jeS (4.2.19d)
t,j =Yt + PpXej+0sStj+puWrj, tET,jES (4.2.19€)
r1j = Tp(Xtj+Sa,;, —Stj—Wej), tET,jES (4.2.19f)
o= Bi(rej —qij), t€T,jES (4.2.198)
Vij=Va, +opj, tE T,je St (4.2.19h)
£=) pr;Vr, (4-2.19i)
j€ST
R=)Y prjlVrj—£| (4-2.19))
j€ST
0<sg +Xpj—sj—wyj<dj t€ETjES (4.2.19Kk)
0<s5,;<5 teD,jes (4.2.191)
Xrj <% j€ST (4.2.19m)
uyjx € Zs, t€D,jESL,kEF (4.2.19n)
sij €2y, t€T,j€S (4.2.190)

The Pareto solutions of this problem are found by using an e-constrained method. It is
important to highlight that the SMMO problem does not seek to optimize the conditional
expectation and risk at every time (as in traditional multi-stage SP formulations). Instead,
the SMMO problem optimizes the joint expectation and risk (over the entire planning
time). This formulation thus avoids ambiguity issues associated with time consistency of
conditional risk evaluation encountered in traditional formulations. Another way to think
about this difference is that our formulation first determines the accumulated cash flow
over all stages and then optimizes its risk, while a traditional formulation determines the

risk of the cash flow at each stage and then optimizes the accumulated risk over all stages.
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4.2.4 Multi-Product, Stochastic Setting

We can conveniently extend the previous formulation to a multi-product setting. Assume
that the investor now has a choice of producing multiple products Z = {iy,ip,...,i;}. We
use «; ,1,i’ € T to represent the inter-dependencies between product i and i’. Specifically,
w; » denotes the units of product i’ required to produce i. Note that w;; = 0,i € Z. For each
product i € Z, we define a set of technologies that can produce it; these technologies have
capacities B! and installation costs C'. Also, for each product i € Z, we define a storage
cost, waste disposal cost, operational cost, and selling price as pi, pi,, p;, and ﬂ;,. We also
define a capacity limit for product i as ¥,i € Z, and storage limit for product i as §,i € Z.
We define the demand for product i at stage t and scenario j as d;j,t €eT,je S,iel
Our decision variables are the number of technologies with capacity B to be installed

from the capacities list at stage t and scenario j for product i and these are modeled using

the integer variables “i,j,k €Z.,teD,jec S ke Fiiel.

The total capacity installed at stage t and scenario j for product i is denoted as x! it €
D,j € &, i € L. The total installation cost at stage t and scenario j for product i is denoted

as yilj,t € D,j € &, i € I. These quantities are computed as:

xi,j =) ”i,j,kBlir teD,jesS,iel (4.2.20a)
keFi

vij=Y ulCl teD,jeS,iel (4.2.20b)
ke Fi

The amount of storage at stage t and scenario j for product i is defined as Si,j € Z,,te
T,j € S, i€ Z, and the amount of product disposed at stage t and scenario j for product
iis wi,j € Z,,t € T,j € 8,1 € Z. The total production at stage ¢t and scenario j for
product i is denoted as Xi,j,t € D,j € §,i € Z. We also incorporate the cumulative

installation cost occurred along the path to time t and scenario j for product i and denote
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this as Yti j,t € D,j € &,i € 1. These quantities are computed as:

X;] = Xéw + xit,j/ teT,jeS,iel (4.2.21a)

Yti,j = Yét,], +yi,j/ teD,jesS,iel (4.2.21b)
The cost incurred at stage ¢ and scenario j, is g, ] € St and is computed as:

qtj = Z]/;,j +0,X}j+ 058+ pwy;, tET,jE S (4.2.22)
i€eZ

The profit incurred at stage t and scenario jis7;;,t € D,j € §; and is computed as:

Ttj = ZI‘,N;(X?]' + S;t,j - Si,j - wi,]' - g X;‘,j“i/,i), teT,je Sk (4.2.23)
1€ i'e

Under these definitions, we can define the rest of the quantities for cash flow, cumulative

cash flow, and NPV in the same way that we did for the single-product case. This gives

the SMMO problem:
max (&, ~R} (42.242)
st.xi;= ) up B, teD,jeS,icl (4.2.24D)
keFi
yi,j =) ”i,j,kclir teD,jesS,iel (4.2.24¢)
keFi
Xj;=X; +xb,, t€T,jES, €T (4.2.24d)
Yti,j = Yéf,,- +yi,j/ teD,jes,iel (4.2.24€)
qj = Zyi,j +P§9X§,j +Pési,]’ +p§uw§,jr teD,jes (4.2.24f)
iel
=) ”?(X?]’ + Sizm - Si,f - wi,]. - Xiij’xi’,i)' teT,jes (4.2.248)
i€Z i'eT

O = Pe(rj —4quy), tET,j €S (4.2.24h)



Vij=Va,+vj, teT,jes; (4.2.24i)

E=) priVr; (4.2.24j)
JEST

R=) prlVrj— €| (4.2.24k)
JEST

0< szf,]- + Xﬁj - Si,j — wi,j -) Xi:]-zxi/,i < di,j, teT,jeS,ii'el (4.2.241)

ieT

uci,i/Xil]- < sfllw_ + X,f:]-, teD,jeS,ii' el (4.2.24m)
0< s’;,j <3 te D,jeS,iel (4.2.24n)
XZT] <z, jeSriel (4.2.240)
Y. Yi; <y jEST (4-2:24p)
i€

Uy €Zy, i€D,jeS ke Ficl (4.2.24q)
Si,j €Z, teT,jesS,icl (4.2.247)

We highlight that the proposed formulation can be extended in a number of ways to add
different investment logic (e.g., account for limited investment budgets). Here, we present
a formulation that contains enough features to highlight benefits of modular technologies

in mitigating risk.

4.3 Case Studies

In this section, we present different case studies to illustrate how modularization can help
mitigate risk. The first case study involves a single-product setting with 3 stages and has
a structure of a binary tree. We then present a more complex and realistic case study that
includes interdependent products and more stages and scenarios. The optimization prob-
lems were solved using Gurobi (version 0.7.6) with a default MIP Gap of 0.01% and were
implemented in the JuMP modeling framework. The scripts to reproduce all results can

be found in https://github.com/zavalab/JuliaBox/tree/master/ModularPlanning.
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Stage 1 S = {1}

dyq = 12100

P21 = §
Stage 2 Sy = {1,2}

Stage 3 S3 = {1,2,3,4}
dz,1 = 1600  dzo = 1000 d33 = 600 ds.4 = 200
1 1 1 1

P31 = 4_1 P32 = 1 P33 = 1 P34 = 1

Figure 4.6: Tree representation for single-product stochastic case over 3 stages.

4.3.1 Single-Product Problem

Table 4.1: Data for single-product problem

Parameters Values

Capacities (tons), B {100, 500, 1000, 1500}

Installation Cost ($), C {247, 721, 1145, 1500}

Capacity Limit (tons), ¥ 1500
Installation Cost Limit ($), 2000
Storage Cost ($), ps 30
Storage Limit (tons), 5 400
Waste Cost ($), pw 30
Operational Cost ($), o 50
Selling Price ($), 77, 140
Discount rate, y 0.06

Figure 4.6 shows the stages, scenarios, and their corresponding demand and proba-

bilities. The number inside each node represents the scenarios at each stage and the other



number next to the node indicates the demand for each scenario in tons. Each parent
node has two children nodes and we assume that each outcome has equal probability. All
other required data is summarized in Table 4.1. All the capacity-related quantities have

the units of metric tons and price-related quantities have units of US dollars.

In this problem, we are seeking to make investment decisions at stage 1 and 2 that
can help minimize NPV risk while achieving a constant level of expected NPV. To see
the effect of that modular units have on flexibility, we solved this problem under three
different capacity options (we call them Cases 1,2,3). In Case 1, we only allow the investor
to choose between large capacities of 1500 tons and 1000 tons. In Case 2, we add medium
capacity unit (500 tons ) to the list to provide more flexibility. In Case 3, we allow the
investor to choose from the complete capacity list (which includes smaller modular units).
The three cases are solved for the undiscounted and discounted NPV problem (to see the

impact of time value of money).

le5 le5

1.0 1.0
0.9 1 0.9
0.8 1 0.8
3 4
So7| gl ot 5071 S U <L
S So6
= 0.6 1 = 0.
g g 2.7%x10*
5 0.5 - 0.5
i i
9 0.4 g 0.4
aQ oY
35 0.3 X 0.3
0.21 — casel 0.2 1 — casel
0.11 — case 2 0.1 — case 2
— case 3 — case 3
0.0 T T T T 0.0 T T T T
0.00 0.22 0.44 0.66 0.88 1.10 0.00 0.22 0.44 0.66 0.88 1.10
Risk($) 1les Risk($) 1les

Figure 4.7: Pareto frontiers under undiscounted NPV (left) and discounted NPV (right)
settings.

The Pareto frontiers for both problems are shown in Figure 4.7. Examples of invest-
ment plans obtained with these formulations are shown in Table 4.2. We can see that
the shape of the Pareto frontiers for the discounted and undiscounted problems is simi-

lar. We can thus see that the discounting factor does not influence the decisions made at
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each stage since the number of stages is small. As we will see in the next case study, the
effect of discounting can be quite pronounced for problems that involve long planning
horizons. The Pareto frontiers highlight that that a strong trade-off exists between the
expected value and risk of the NPV (higher expected NPV results in higher risk). This
trade-off arises from economies of scale and flexibility (it is less expensive but more risky
to install large units). It is clear that the Pareto frontier for cases 2 and 3 (under which
small units are available) dominate the frontier of case 1 (under which only large units
are available). Importantly, this occurs even if the installation costs of the large units have
better economies of scale. At the same level for the expected NPV, Cases 2 and 3 achieve a
significantly lower risk (reduction by a factor of 3). Similarly, at the same risk level, Cases
2 and 3 achieve a much higher expected NPV (increase by a factor of 2). We can also see
that Case 2 and 3 achieve levels of expected NPV that are not achievable in Case 1. Note
that since we used e-constrained method to obtain the Pareto solutions, the smoothness
of the curve largely depends on the resolution of € that was chosen. As different capacity
plans result in discrete risk and expected value combinations, gaps (flat region of the line)

may appear on the Pareto frontier.

In Table 4.2, the installation column shows installation decisions made for the undis-
counted problem. These decisions are also visualized in Figures 4.8, 4.9, and 4.10. We
can see that, with only larger capacity options (Case 1), we have no choice but to install
the large unit at stage 1. In Case 2, we install a medium-sized unit in stage 1 and an-
other medium-sized unit in stage 2; this achieves the same expected NPV but the risk is
drastically reduced. For Case 3, we installed four small-sized units in the first stage and
one medium-sized unit in the second stage. This achieves the same expected NPV but
further decreases the risk. We thus conclude that the different capacity choices enable

higher investment flexibility and reduced risk.
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Installation x1,1 = 1000
Product produced X1,1 =0

Stage 1
Stage 2
Stage 3
X371 =1000 X35 =1000 Xs3=1000  Xj, = 1000
Cumulative profit V3 ; = 166335 V3o = 163955 V53 = 8855 V34 = —59145

Figure 4.8: Investment strategy under Case 1 (undiscounted NPV setting).

Installation 21,1 = 500
Product produced X111 =0

Stage 1

Stage 2

Stage 3

X371 - 1000 X372 = 1000 X373 = 500 X374 = 500
Cumulative profit V3 ; = 118638 V30 = 70018 Vi3 ="70069 V3,4 = 21279

Figure 4.9: Investment strategy under Case 2 (undiscounted NPV setting).



Table 4.2: Investment strategy and associated risks (undiscounted NPV setting).

Cases Technology Sizes (tons) Risk ($) Expected Value ($)

Case 1 {1000, 0, 0} 93149 7.0 x 10*
Case 2 {500, 500, 0} 24361 7.0 x 10*
Case 3 {100x 4, 500, 0} 16495 7.0 x 10*

Installation x1,1 = 400
Product produced Xi1 =0

Stage 1

Stage 2

Stage 3

X31 = 900 X30=900 Xs5=400 X34 =400
Cumulative profit ~ Vi; = 102651 Vi = 70181 Vig=70162 Vi, = 37012

Figure 4.10: Investment strategy under Case 3 (undiscounted NPV setting).

4.3.2 Multi-Product Problem

Biogas is a methane-rich gas mixture that can be produced from anaerobic digestion of
organic waste (such as cow manure). The biogas (in metric tons) can be sold directly or
can be used as raw material to produce electricity (in MWh) and liquefied biomethane (in
gallons). These products are represented as iy, i, and i3 respectively (Krich et al., 2005;
Sampat et al., 2018). The process under study is visualized in Figure 4.11. The available
technology capacities, investment cost, operation cost and other required information are

summarized in Table 4.3 (Hu et al., 2018; Beddoes et al., 2007; Patel, 2019). The capital
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Table 4.3: Data for biogas capacity expansion problem.

Parameters Notation Values
B (tons) [400, 800, 1200]
Capacities List B2 (MWh) [500, 1000, 2000]
B (gallons) [60000, 180000, 300000]
Ch (272844, 374693, 457138]
Installation Cost ($) Ch [172219, 234688, 347021]
Ch [577269, 1930312, 2935611]
%1 (tons) 6000
Capacity Limit x2 (MWh) 6000
x> (gallons) 1500000
ol ($ per tons) 0
Storage Cost p? ($ per MWh) 150000
p? ($ per gallon) 0.2
5 (tons) 800
Storage Limit 52 (MWh) 1000
5% (gallons) 180000
pi}, ($ per ton) 0
Waste Disposal Cost pé%, ($ per MWh) 0
piﬁ ($ per gallon) 2
o} ($ per ton) 34
Operational Cost Py ($ per MWh) 40
p? ($ per gallon) 0.56
7'[;,1 ($ per ton) 100
Selling Price 7y (3 per MWh) 130
3 ($ per gallon) 2.5
Interdependency Yz 068
Ky iy 0.0046
Total Installation Cost Limit ($) ] 1 x 107
Interest Rate 0% 0.06




Biogas
Electricity Generation Electricity
Manure Anaerobic Digestion
= / =
C'O3 Removal and Liquefaction Biomethane
\ ‘

Figure 4.11: Process for the production of biogas and its byproducts

cost for these technologies roughly follows the 2/3 rule. The products are interdepen-
dent: producing 1 MWh of i, requires 0.68 tons of i; and producing 1 gallon of i3 requires
0.0046 tons of i;. The planning stages have a duration of one year; as such, all capacities

and production levels are expressed on a per-year basis.

The stochastic multistage setting is illustrated in Figure 4.12. Here, we have a planning
horizon with 10 stages. From stage 1 to stage 6, each parent node has two children nodes
(which capture variability in market demands); after stage 6, the market is assumed to
stay constant and thus each parent node only has one children node. The demand for
selected nodes is shown next to the node. For the first six stages, the children nodes of

each parent node represent an optimistic market and a pessimistic market.

We consider 3 possible cases; for Case 1, the unit for producing i; has a capacity of
1200 tons, the unit producing i, has a capacity of 2000 MWh, and the unit for producing

i3 has the capacity of 300000 gallons. In Case 2, we add a unit with a capacity of 8oo tons
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Stage 1 P15, =1

dj , = [1800, 3600, 324000] b, = [1200, 2400, 216000]
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Figure 4.12: Tree representation of planning stages and scenarios of biogas case study.



for producing i;, we add a unit with a capacity of 1000 MWh for the choices for i, and
a capacity of 180,000 gallons for i3. For Case 3, we further expand the capacity choices
for product i; to include 400 tons, expand choices for i, to include 500 MWh, and expand
choices for 73 to include 60,000 gallons. To provide some context on the size of these units,
an annual capacity of 500 MWh corresponds to a power capacity of 500/8760=0.057 MW
(57 kW). As such, the small capacities for the power generators correspond to those of

small modular systems.

Achievable only in case 3

8 le5 5 le4
1 — casel case 1
71 I — case 2 —— case 2
— case 3 44 — case 3
— 61 ! -
©w 1 s N
% 5 1 39x10 % 5
= 1 e 3 3
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Risk($) 1e6 Risk($) le>

Figure 4.13: Pareto frontiers for undiscounted NPV (left) and discounted NPV (right)
settings.

We would like to determine the number of planning stages that it takes for the in-
vestment to be profitable. As such, we gradually increase the planning horizon of the
CE problem until the profit is positive. We found that, for both discounted and undis-
counted problems, the expected NPV remains zero for any planning horizon with less
than 8 stages. In other words, the investment is only profitable if the project lifetime is at
least 8 years. We can thus see that the length of the planning horizon plays an important
role in making investment decisions. We assume that the planning horizon is 10 years (as
shown in Figure 4.12). Again, we would like to determine an optimal investment strategy
that maximizes expected NPV and minimizes its risk. The Pareto frontiers are shown

in Figure 4.13 and we compare risks obtained under the different cases in Table 4.4 and

Table 4.6.
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Table 4.4: Investment strategy for undiscounted NPV problem with £ = 3.0 x 10°

. Expected _ # of # of Variables
Cases Installation Risk ($)
Value ($) Constraints  (Cont.+Int.)
X1, = 1200 x 2 tons
Case 1 ‘] 3.0x10° 3.26 x 10° 4355 2225+1623
x2, = 2000 MWh
x}!; = 1200 tons
x, = 1000 MWh
x5, = 1200 tons
x?l = 180000 gallons
Case 2 . 3.0x10° 2.43 x 10° 4355 2225+2100
x3, = 1200 tons
x2, = 2000 MWh
x2, = 1000 MWh
x2¢ = 2000 MWh
x?’l = 800 tons
X, = 60000 gallons 5 5
Case 3 ’ 3.0x10° 1.02 x 10 4355 222542577

x4} =1200 x 2 tons
x5 = 60000 x 2 gallons

We again find that the Pareto frontier of Case 3 (considering small technologies) dom-
inates. Looking horizontally (for the same expected NPV) cases with more capacity op-
tions reduce risk. Looking vertically (for the same risk) we can see that modularity allows
us to reach higher expected NPVs. For the discounted NPV problem we see that adding
smaller capacity options (Case 2) reduces risk, further reducing the capacity (Case 3) can
achieve higher expected profits but does not help to mitigate the risk. This is because
of complex interplays between discounting and economies of scale. As we discount the
future cash flow, the effect of installing small capacities at future stages reduces, and
together with the effect of economies of scale, the advantages brought by modular tech-
nologies become less obvious. This indicates that reducing technology sizes aids flexibil-

ity (but there is a limit to such flexibility). From Table 4.4 and Table 4.5 we can see that,
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Table 4.5: Investment strategy for discounted NPV problem with R = 3.9 x 10°

Cases Installation

Expected Value($)

Risk ($)

x%l =1200 x 2 tons
x| = 2000 MWh

Case 1 2.64 x 10°

3.90 x 10°

x{'; = 1200 tons
xj; =1200 x 2 tons
X2, =2000 MWh
xé?’,l = 180000 gallons
x%, = 1000 MWh
X254 = 1000 MWh

Case 2 3.72 x 10°

3.90 x 10°

x§1,1 = 1200 tons
x| = 60000 x 2 gallons
Case3  xj; =1200 x 2 tons 6.50 x 10°
X%, = 2000 MWh

x5 = 60000 tons

3.90 x 10°

Table 4.6: Investment strategy for discounted NPV problem with £ = 1.5 x 10*

Cases Installation Expected Value($) Risk ($)
Case1  x}; = 1200 tons 1.5 x 10* 3.06 x 10°
x§1,1 = 1200 tons
x2, = 1000 MWh
Case 2 i 1.5 x 10* 2.41 x 10°
x2,, = 1000 MWh
X216 = 1000 MWh
xlfll = 1200 tons
x2, = 1000 MWh
Case 3 ’ 1.5 x 10* 2.41 x 10°

x2,, = 1000 MWh
X216 = 1000 MWh
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for the undiscounted problem, most of the investment occurs at the early stages. Here, we
can also see that modular technologies are used extensively to reduce risk (risk is reduced

by a factor of three) and increase profit (profit is increased by a factor of three).

4.4 Conclusion and Future Work

We study logistical investment flexibility provided by modular processing technologies
for mitigating risk. Specifically, we propose a capacity expansion problem that aims to
determine optimal investment strategies over a given planning horizon. This expansion
problem is a stochastic, multi-stage, and multi-objective optimization problem. The for-
mulation accounts for multi-product dependencies between small/large units and for
trade-offs between expected profit and risk. The formulation uses a cumulative risk mea-
sure to avoid time-consistency issues of traditional, per-stage risk-minimization formula-
tions and we argue that this approach is more compatible with typical investment metrics
such as the net present value. Case studies of different complexity are presented to il-
lustrate the developments. Our studies reveal that the Pareto frontier of a flexible setting
(allowing for deployment of small units) dominates the Pareto frontier of an inflexible set-
ting (allowing only for deployment of large units). Notably, this dominance is prevalent
despite benefits arising from economies of scale of large processing units. Small technolo-
gies provide flexibility that translates into tangible reductions of risk (despite the fact that
they are not benefited by economies of scale). However, we also find that flexibility pro-
vided by capacity reductions has limits that result from the complex interplay between
economies of scale and discounting.

As part of future work, we are interested in exploring the use of decomposition strate-
gies to address tractability issues (e.g., by using stochastic dual dynamic programming
techniques). In this work we ignored engineering costs associated with different types of
technologies (which can be reduced using modularization). We will use more detailed

cost representations and case studies in future work.

97



A SPATIAL SUPERSTRUCTURE APPROACH TO THE OPTIMAL
DESIGN OF MODULAR SYSTEMS

This article is submitted to Computers and Chemical Engineering and is currently under

review.

5.1 Introduction

Modularity is a design principle that aims to provide flexibility for spatio-temporal assem-
bly, disassembly, and reconfiguration of systems. This design principle can be applied to
multi-scale manufacturing systems that connect equipment units/technologies, processes
(collections of units/technologies), facilities (collections of processes), and entire supply
chains (collections of facilities). Modularity principles have been recently explored in di-
verse industrial sectors such as power generation, data centers, and chemical processes
(Frivaldsky et al., 2018; Berthélemy and Rangel, 2015; Dong et al., 2009; Chakraborty et al.,
2009; R., 1999). It is a design principle that can be applied at different levels of an orga-
nization; for instance, processes that compose a facility (collection of processes at a given
geographical location) can be interpreted as modules and products exchanged between

such modules give rise to a facility. The connectivity induced from products exchanged
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between processes and from product transformation in such processes induces a degree
of modularity of the facility. For instance, facilities that have dense product interdepen-
dencies are less modular than those that have sparse interdependencies. The degree of
product interdependency affects flexibility, as facilities that are tightly coupled are typi-
cally more difficult to reconfigure. Similarly, at a higher organization level, facilities that
compose a supply chain can be interpreted as modules that exchange products across ge-
ographical locations (e.g., via long-distance transport). This indicates that a supply chain
can be seen as a distributed network of processes (a distributed facility with processes
placed at different geographical locations), while a typical facility can be seen as a cen-
tralized network of processes (all processes are placed at the same geographical location).
As in the case of a facility, the modularity of a supply chain is affected by the connectivity
induced from product transport across components, from product transformation in its
components, and from its ability to be reconfigured (e.g., movable processes). For in-
stance, a supply chain composed of small processes (easier to move reconfigure) is more
flexible than one composed of large processes (difficult to move and reconfigure) (Zhao
et al., 2018). Similarly, a supply chain with sparse product connectivity will be more
modular than that with dense product connectivity. This is because, when a process fails
in a densely connected supply chain, it can trigger a collapse of the entire system.
Modular design studies reported in the literature have focused mostly on single pro-
cesses and thus do not assess how modularization can help mitigate system-wide (i.e.,
at facilities and supply chain levels). Recent work in power grid and natural gas net-
works has revealed that deploying distributed data centers, batteries, vehicle charging
stations, gas-fired power plants, and manufacturing facilities can add flexibility, relieve
network congestion, and enhance system-wide performance (Kim et al., 2017b; Sioshansi
et al., 2009; Chiang and Zavala, 2016). This flexibility can be used to absorb fluctuations
of wind and solar power and can help withstand externalities (e.g., extreme weather
events, policy, equipment failures). One could thus argue that widespread deployment of

small modular systems can, in principle, provide network flexibility to mitigate system-
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wide risks (e.g., climate change). Modular supply chain design that considers demand
uncertainty to manage risk has recently been explored. A mixed integer stochastic pro-
gramming problem is formulated to determine the number of modules, the locations of
facilities and the flow of materials to minimize the downside risk and the overall profit
at the same time (Bhosekar et al., 2021). However, this work considers modularity only at
the facility level, instead of at the system level that involves the entire supply chain.

Maximal p-graph structures and superstructures are system representations that have
been widely used for the design of chemical processes and of mass/energy recovery net-
works for single facilities (F Friedler and Fan, 1992; Christodoulos A Floudas and Gross-
mann, 1986). A maximal p-graph structure encodes all possible feasible paths between
primary products, processing tasks, and intermediate and final products (Yeomans and
Grossmann, 1999). A superstructure encodes all possible configurations of equipment
units and product flows that perform tasks defined by the maximal p-graph (i.e., multi-
ple units might perform the same task) (El-Halwagi and Manousiouthakis, 1989; Isafiade
and Fraser, 2009). While these representations provide a powerful framework to investi-
gate systems at a process level, they do not encode spatial information, which is necessary
to capture how design affects flexibility at higher organization levels (facilities and supply
chains).

In this work, we propose an optimization framework to facilitate the design of mod-
ular processes, facilities, and supply chains. Central to our approach is the concept a
spatial superstructure, which is a graph that encodes all possible dependencies between
components. We show that the spatial superstructure is a generalization of the super-
structure and p-graph used for process design in that it encodes spatial (geographical)
context. Moreover, we show that this generalization enables the simultaneous design of
processes, facilities, and of supply chains in a unified manner. Specifically, a spatial su-
perstructure is a superstructure under which technologies and flows encode positional
(geographical) context and that encodes product dependencies that arise from transfor-

mation (as in a p-graph). This allows us to represent standard centralized processes and
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facilities (under which technologies are placed at the same geographical location) and
a spatially-distributed process (under which technologies are distributed over multiple
geographical locations) by using the same graph topology. The graph representation re-
veals that a key distinction between a spatial superstructure and other representations is
in how product transportation is accounted for. For instance, short-range transport (in-
side a process or facility) might use pipelines while long-range transport might use truck
hauling or railways.

The proposed approach leverages the graph representation of the spatial superstruc-
ture to identify topologies that minimize system design cost and that maximize design
modularity. We show that this design problem can be cast as a mixed-integer, multi-
objective optimization formulation and allows us to capture interdependencies between
primary products (raw materials), intermediate products, and final products that arise
from product transformation and transport across components. We also leverage the
topology of the spatial superstructure to accelerate the optimal design search by restrict-
ing such search along feasible paths that obtain desired products from primary prod-
ucts. This approach contrasts with standard superstructure optimization approaches that
search over individual technologies/units. We demonstrate the capabilities for the design

of a plastic waste upcycling supply chain.

5.2 Concepts and Graph Representations

In this section, we revisit the concept of a p-graph, maximal p-graph, and superstructure
and provide a unifying graph-theoretic perspective. We use these concepts to propose a

spatial superstructure that will be used to guide the design of modular systems.

5.2.1 P-graph and Maximal p-graph

In the context of chemical processes, graphs have been used to analyze interdependencies

between products and technologies (unit operations) in a process and with this unravel a
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number of fundamental systems properties such as topological feasibility (e.g., ability to
reach a set of products from a set of primary products).

A process can be represented/modeled as a p-graph (short for process graph). In a
p-graph, nodes represent technologies (processing tasks or unit operations) and products
(primary products as well as intermediate and final products) while edges represent de-
pendencies between products and technologies. Here, the concept of product is general
in that it can capture general resources such as energy (e.g., electricity). In addition, we
note that technologies induce complex interdependencies because they conduct transfor-
mation of products into other products (e.g., a chemical reactor or a separation unit).
Under the p-graph abstraction, it is possible to derive a maximal p-graph (max p-graph
for short) that encodes all possible technologies and required primary products and in-
termediate products that can be used to obtain reach a desired set of final products. This
representation is powerful and insightful because any possible process configuration that
connects primary products, technologies, and intermediate/final products is embedded
in the maximal p-graph. A specific process realization is derived by selection of specific
nodes and edges (which form a path between primary products (i.e., primary products),
intermediate products, and final products desired). As we will see, superstructure repre-
sentations inherit the topology of max p-graphs.

Suppose that a process involves a set of intermediate/final products P and a set of
primary products R from which intermediate/final products are derived (via technolo-
gies). Furthermore, we define a set of all products involved in the process as Z. A product
can potentially be generated by different types of technologies (techs for short), and we
define a set of possible techs as 7.

Associated with each tech t € T, there is a set of output products ; € P, a set
of input products K; € Z, and a tech type 6;. For convenience, we categorize techs by
products and types using the subsets 7;y ; C T with T; ;i := {t|i € Oy, i’ € K4, 0; = j}.

We model the max p-graph as a directed graph G = (N7; EP) where N7 is its set of

nodes (vertices) and £7 is its set of edges. The set of nodes include product nodes and tech
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nodes. We define the set of nodes representing the supplies/sources of primary product
as SP C NP). Associated with each node s € S? there is a type of primary product
Qs € R. For convenience, we categorize suppliers as S/ C S? with S = {s|Q)s = i}.
Similarly, we define the set of nodes representing demands/sinks of final products as
DF C N'P. Associated with each d € D?, there is a type of product C; € P; we categorize
demand nodes as D! C D? with D! := {d|K, = i}.

We define the set of nodes representing the techs as U C N'P. For each node u € U?,
there is a tech 7, € T associated with it, and we classify tech nodes as L{tp C UP with
U! := {u|t, = t}. Because each tech t is also associated with an product sets Q;, Kt and a
type 0;, we have that each node u € U7 is associated with a set of products ), € P that
the tech generates, a set of products K, € 7 that enter the tech, and a type of tech 0.
For convenience, we use the short-hand notation O, IC,,, and 6,,. We define the subsets
L{fi,/j ={uli € O,,i" € Ky, 0, =j}. We highlight that, in the max p-graph representation,
the tech node set U7 contains only attributes of tech t € T, so they are defined similarly.
In other words, node U/ = L{i’,7 i corresponds to the tech t = 7;; ;. Finally, the set of all

nodes is:
NP =8P UDPUUP. (5.2.1)

Figure 5.1 provides an illustration of a max p-graph and showcases how complex in-
terdependencies between products and techs arise. In this example, the set P contains
products i3 and i5, set R contains primary products iy, ip, i3, iy and i5, and the set 7
contains the final product is. The intermediate product i3 and final product i5 are also
included in the primary products because we consider the possibility of satisfying the
demand by purchasing it from an external market. The set 7 contains a couple of tech
types producing product i3 from either iy or i; and i, and 2 types of techs producing
product is from either i3 or i3 and iy, represented as {7, iy j,, Ti, (i1 in}jor Tis {in,is}jns Tisissja |-

Nodes representing supplies of primary products are on the left, shown as nodes Sip1 , SZ ,
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SZ, SZ , and SZ) in set S”; nodes representing technologies are in the middle, shown as

node U’ u’ u’ and U’

iinii Uis giniot i Wis dinish is i jp I\ set UF; nodes representing the demand

are on the right, shown as node DZ in set D?. Nodes and edges are highlighted based
on the associated product; for example, node SZ and the edge that carries the product
i4 to technology Lli’; Lissishjn have the same color. The product hierarchy of the process is
also displayed in this max p-graph representation; looking from top to bottom, we can
see that products or techs that are involved in the early stage of the process are on the
top and those that are involved later in the process are on the bottom. Moreover, the max
p-graph tells us that primary products iy, i, and i4 can only be purchased but not pro-
duced. Product 73 is an intermediate product that can be produced by either type of tech

or purchased from the external market; this product is also fed to the techs that produce

product i5 (which is the final product).
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Figure 5.1: Illustration of a max p-graph showing dependencies between products and
technologies.
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Figure 5.2: Illustration of a superstructure (associated with max p-graph in Figure 5.1)
showing dependencies between products and technologies.



5.2.2 Superstructure

A superstructure is a system representation that inherits properties of a max p-graph
(product-tech connectivity) but also accounts for the possibility of having multiple unit-
s/copies of techs and also account for additional attributes of techs (e.g., capacities). It is
thus important to highlight that a superstructure can be derived from the topology of a
max p-graph. The key difference is that, in a max p-graph, techs are interpreted as unit
operations while, in a superstructure, techs represent equipment units.

A superstructure can also be represented as a graph; specifically, it can be represented
as a directed graph G° = (N*;£°), where N° is its set of nodes (vertices) and &£° is its
set of edges. As in the p-graph, primary products are defined as R; intermediate/final
products are defined as P; and all products are defined as Z; techs are defined as 7 with
the same attributes categories as in the max-p graph. Nodes representing supplies and
demands are defined as &° and D°, and the set of nodes U/° that represents techs. In
this representation, each tech u € U/° has an additional attribute that represents the unit
number 77,,.

We categorize the nodes U° as U;h = Z/{f:i,,]-’h C U® with L{f’h = {ult, =t,n, = h} and
Llf,l-/,].,h = {uli € O, 7" € Ky,0, = j,nu = h}. In the case of a superstructure, the set U*
adds another layer of information on top of the set 7 to indicate that multiple copies of
the same tech might be available. In other words, node Z/{f’, n= L{i i corresponds to the h
unit/copy of tech 7; s ;. The set N* for all nodes in the superstructure is N* = S UD* UU®.

Using the same example shown in Figure 5.1, we illustrate a superstructure represen-
tation of this system in Figure 5.2. Here, we labeled the set U}, := {uli € Q,i’ € Ky} on
the side and labeled the attribute {6,,7,} on the node for each u € U*. Comparing to the
max p-graph representation, only the notation for nodes representing techs has changed.
For instance, the notation U7 ; . ; denotes the first unit/copy of tech Tisin,jy that is used
to obtain the intermediate product i3. Multiple units/copies of this tech are available to

satisfy the demand of final product i5 and the same applied for other techs. We can also
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observe that the product-tech connectivity of the max p-graph is inherited by the super-
structure. Moreover, we see that the superstructure graph is much denser than that of the

max p-graph (due to the availability of multiple tech units).

5.2.3 Spatial Superstructure

We now proceed to generalize the notion of a max p-graph and of a superstructure to
capture spatial context. Capturing spatial context is necessary to represent flexibility pro-
vided by modularity at different scales (process, facilities, supply chains). The key obser-
vation is that a supply chain can be seen as a distributed facility that exchanges products
between processes (placed at different geographical locations). Similarly, a centralized
facility can be seen as a supply chain with a single geographical location. This unifying
view of a system will reveal interesting insights that can be exploited to derive a general
graph-theoretic framework that explains how modularity emerges in a system design.
Specifically, we will see that the topology of the spatial superstructure directly inherits
the topology of a superstructure, which in turn inherits the product-tech topology of a
max p-graph. Exploiting this topological dependencies is key in building superstructures
and in identifying feasible system designs. Our final aim will be to derive optimization
formulations identify a subgraph from the spatial superstructure (a design) to obtain a
supply chain (composed of processes and facilities of different sizes and at potentially
multiple locations) that minimizes system-wide cost and that maximizes modularity.

A spatial superstructure is a superstructure under which techs and connections en-
code positional context. This allows us to represent a standard single-site process/fa-
cility (under which equipment units are located at the same geographical location) and
a spatially-distributed process/facility (under which units are distributed over multiple
geographical locations) by using the same graph topology. The spatial superstructure
allows us to capture transportation modes for the products and associated constraints

and costs; for instance, short-range transport (inside a location) might use pipelines while
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long-range transport (across locations) might use trucks or railways.

The graph representation of the spatial superstructure is inherited from that of the
superstructure. We model the spatial superstructure as a directed graph G7 = (N7;E7)
where N is its set of nodes (vertices) and &7 is its set of edges. We define a set of
potential spatial locations for placing technologies as G;, a set of potential locations for
suppliers as G;, and a set of potential locations for demands as G;. We then define a set
of all locations as G = G; U G, U G,.

As in the max p-graph representation, primary products are defined as R; intermedi-
ate and final products are defined as P; all products are defined as Z; techs are defined
as 7 with the same attributes and nested representation. Nodes representing supplies
are defined as &7, and for nodes s € S, there is a new attribute ¢; € G, representing
the location of the supplies/sources of primary products. We define subsets to catego-
rize suppliers by location and product as SZ ¢ € S! C 81 with SZ g = {slQs =i,¢s = g}
and 8! := {s|Q = i}. Nodes representing demands are defined as DY, and for node
d € D1, there is a new location attribute ¢; € G;. We define the categorization as subsets
Df,’g C D} C D7 with D?,’g ={d|Ks=1,¢4 =g} and D} := {d|K4 =i'}.

For each tech node u € U7 there is a new location attribute ¢, € G;, and the subsets

are written as Z/{Zh,g = L{gi,/j/h/g C U7 with L{Zh,g ={u|lty =t 4, =h,¢, =g} and L{gi,/jlh/g =
{uli € Qu,i' € Ky, 0, =j,7u = h, ¢, = g}. Specifically, node Z/{Zh,g = Ugi,,].’h,g corresponds

to the i copy of tech 7;; ; that is located at location g. The set of all nodes is N7 =
STuDIUUI.

Using the same example shown in Figure 5.2 and a couple of potential locations A
and B, we illustrate the spatial superstructure in Figure 5.3. Here, we labeled the set

U!, for the nodes on the side while labeled the attribute {6, 1., ¢,} on the nodes. We

ii'
note that there might be multiple locations for suppliers and demands. We also note that

edges that connect nodes at the same locations or across different locations have different

meaning. For example, we can choose to install the first copy of tech 7; that produces

3,011

i3 at location A (represented as node UZ iji1,a) and the first copy of tech T ;, ;, that
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produces i5 at location B (represented as node I,qu5 is,jo,1,B)7 and the edge connecting them

represents the transportation of product i3 from location A to location B. If these techs
are both placed at location A, an edge connecting them represents short-range (on-site)
transport. We observe that the topology of the spatial superstructure is inherited from
that of the superstructure, which in turn inherits the product-tech connectivity from the
max p-graph. We also note that the spatial superstructure is much larger and denser than
the superstructure and can becomes difficult (if not impossible) to express and visualize,
due to the potential need to capture many geographical locations and tech units at such
locations. Therefore, deriving an automatic approach that generates and analyzes the

connectivity of the spatial superstructure is necessary.

5.2.4 Feasible Paths

A feasible path is a collection of nodes and edges that enables reaching final products
from primary products. A feasible path can be derived by a reduction of nodes and
edges of a max p-graph or superstructure by leveraging graph-theoretic concepts. For
example, a feasible path is a subgraph G/ = (N, £f) of the superstructure graph G* (i.e.,
G/ C G°) where N/ is a subset of N'* and £/ is a subset of £°. We present a feasible path
obtained from an example max p-graph and superstructure in Figure 5.4. Compared
to the number of possible paths derived from a max p-graph, the number of feasible
paths from a superstructure is much larger because we now consider multiple copies of
technologies (which enables more combinations). It is also important to highlight that,
any feasible path in a superstructure (and spatial superstructure), has to be a feasible path
for the max p-graph (because the superstructure inherits the product-tech connectivity).
This observation is key in building superstructures that avoid spurious (infeasible) paths.

We can similarly derive any feasible paths from a spatial superstructure between pri-
mary products, techs, and final products as shown in Figure 5.5. Here, a couple of copies

of the same technology 7;,, ; that produces product i3 is located at location B (nodes
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Figure 5.3: Illustration of a spatial superstructure (associated with max p-graph of Fig-
ure 5.1 and superstructure of Figure 5.2) showing dependencies between products and
technologies across geographical locations.

q q
Ui i juap and Uy ;5o

p), and two other technologies 7;

s Ainia} e

(node U7 1 4) and

is {ivi2} o,

Tis{is)ia} j» (MOde le.qsl (issia} o], ) that produces i3 and final product is are located at loca-
tion B. As we add spatial information to the superstructure, combinations of techs across
different locations are now possible and thus the number of possible feasible paths be-
comes even larger. Among all the feasible paths, an optimal design is a feasible path that
takes into account tech and transport costs and modularity. As we consider complicated

interdependencies between products and different capital and transportation cost due to

potential locations, finding an optimal design is not immediately obvious from the spa-
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Figure 5.4: Example of a feasible path obtained from a max p-graph (left) and from a

superstructure (right).

tial superstructure. Therefore, one needs to rely on optimization techniques to identify

optimal paths, as we describe next.

5.3 Optimization Formulation for Finding Optimal System De-

signs

In this section, we derive an optimization formulation that aims to identify the hierar-

chy of products in the system. This step is essential for computing the amount of each

product and the number of technologies required. This information is in turn required

to generate superstructures and spatial superstructures. We then proceed to introduce an

optimization formulation to obtain an optimal system design.
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Figure 5.5: Example of a feasible path obtained from a spatial superstructure.

5.3.1 Computing a Product Hierarchy

Generating a superstructure and a spatial superstructure requires that we compute the
number of all possible pathways based on their product-tech connectivity encoded in
the max p-graph. Here, we assume that there are no cycles in the dependencies in the
underlying max p-graph. For instance, if producing product i; requires some ip, pro-
ducing i, cannot require product i1. With this, we can define a product hierarchy that
moves from primary products to intermediate products and to final products. We use
i‘it' i"€Z,ie Oy, teT torepresent that producing a unit of product i € () requires /Sft
units of product /’. These quantities can be interpreted as technology yield/transforma-
tion factors.
Taking the example form the previous section, we consider the product-tech depen-
dencies of a system that involves supplies of i1 and i, and produces the intermediate

and 7.

i3, {i1,i2},j

product i3 using techs ;.

S and a system that involves supplies of i3 and
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Table 5.1: Example of product dependencies in technologies.

i3 i5
Tis v ju 7;3,{1‘1,1‘2}/1‘2 7;5,{1‘3,1‘4},]‘1 Tis i o
11 2 1 0 0
in 0 1.5 0 0
i3 0] 0 0.8 1
ig 0] 0 1 o

ig and produces the final product is using techs 7 ;. i1 i and T, i, j,- The product de-
pendencies are shown in Table 5.1. Rows in this table represent input products while the
columns represent output products. Specifically, producing i3 requires 2 units of i; using
Tisin jn (.32,,

and ,BZ Tt 1.5), and it is represented in entries 2 and 1 in the first row (i; as the
7 Vig iy}

= 2) or 1 unit of 71 and 1.5 unit of i using Ty, g, 1,1, ( g T

. P . - 4
i3 iz}l

7?3:1'1/]'1

feed)and first two columns (i3 as the product) in the table. Producing is requires 0.8 unit

= 0.8 and ,Bi‘* T = 1) or 1 unit of

. . . ) i3
of i3 and 1 unit of iy using Ty, (1,1}, (B is,Tj i, Tis {i ig in

513,14 }.j1
. ) i
I3 using 7?5,i3,j2 (51‘5,77

= 1), and it is represented in entries 0.8 and 1 in the third row
i5,13,]1

(i3 as the feed) and last columns (i5 as the product) of the table. Here, i1, i and i4 can be
seen as a primary product, i3 can be seen as an intermediate product and i5 can be treated
as a product. In this case, i3 has a higher hierarchy than i; and i; because producing it
depends on these products. Product i5 has the highest hierarchy since no other products
depend on it. Because there are no dependencies between products iy, i, and i4, the hier-
archy among them can be arbitrary. Therefore, a possible hierarchy of these five products
is {i1 :3,i:3,i3: 2,14 : 3,i5 : 1}. Obtaining the product hierarchy allows us to estimate
the amount of each product and the number of techs needed for the system to satisfy
a set of demands; this information is necessary for generating the superstructure and
spatial superstructure. Unfortunately, when the product-tech dependency becomes com-

plicated, such product hierarchical order is not easy to observe; therefore, we formulate
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an optimization problem that determines the hierarchical level of each product.
We define a positive integer variable x;,i € Z that represents the hierarchy of each

product i. The optimization formulation that computes the product hierarchy is:

min in (5.3.2a)

Yoier
st.x; <xy—1,teT,icQyi €k, (5.3.2b)
x;, >1,iel, (5.3.2¢)

Minimizing the objective (5.3.2a) ensures that the hierarchies for all products are consec-
utive numbers. Constraint (5.3.2b) indicates that, if producing product i requires product
i’, the hierarchy of i should be higher than the hierarchy of i’. The final constraint makes
sure that the highest hierarchy starts with a value of one. This computation of the hier-
archical level for each product aids the computation of the number of each techs possibly
required, which is necessary information for generating the superstructures. Then, with-
out further computations, we are able to derive a connectivity matrix (adjacency matrix)
for all the nodes (products and techs) based on the information of products involved and
their interdependencies, and thus build the graph representation of the superstructures.
We define the adjacency matrix for the superstructure and spatial superstructure as
Mk, k' € N° and pyp, k k' € N, respectively. The adjacency matrix is a fundamental

quantity that encodes the topology of the superstructures.

5.3.2 Computing Optimal Designs from Superstructures

We first derive an optimization formulation to identify an optimal design from a super-
structure that minimizes cost and maximizes modularity; this will generate a modular
process design, as a superstructure does not encode locational context. We will then
extend the formulation to identify an optimal design for a supply chain from a spatial

superstructure.
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Cost-Minimizing Optimal Design

A feasible path (a process design) is obtained by extracting a subgraph (nodes and edges)
from the superstructure graph. Our goal is that this feasible path minimizes cost and
maximizes modularity). The graph representation of the superstructure will allow us to
derive an intuitive (and computable) measure for modularity, this measure will implicitly
capture logistical flexibility (e.g., by capturing module sizes and connectivity).

We consider the overall system cost is the net present value for the annualized capital
and operational cost. Associated with each tech t € 7, we define the installation cost
oc(f and we define the capacity of tech t that produces product i € () as ;;. For each
node u € U® and its associated tech 7,, we define the capital cost, operational cost, and
capacity as IX%, a% , and ¢, o, and we use the short-hand notation o, af,and ¢, ;,1 € QO
(the capital cost is annualized with factor €,). The unit cost of each material is defined
as «f,i € R and the required amount of final product i is &;,i € P. For simplicity, we
assume that the cost for every connection/transport, denoted as &/, is the same regardless
of the product and scales linearly with the amount of product that it carries. The disposal
cost of any excess product is denoted as a?,i € Z; this disposal cost allows us to capture
potential environmental impacts (e.g., carbon emissions).

We define a collection of continuous variables fj v, k, k" € N* representing the flow of
product from node k to node k'. We define a continuous variable v;,i € R that represents
the amount of each primary product purchased from suppliers. We define a binary vari-
able y,, u € U° such that y, = 1 if node u (a unit) is selected as part of the design, and
yu = 0 otherwise.

Under these definitions, the total annualized cost is:

C= Z(Gu-ﬂég+a‘;)-yu+ Z ‘xip'vi"' Z “f'fk,k’

ucs €88, ieQ) kK eNs

+ Z (Cu* Yu — Z fu,k) : a;‘i-

uels,ieQ), keNsif ie Ky

(5-3-3)
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The total cost captures installation cost, the cost of purchasing primary products, the
cost of transport, and the cost of waste disposal. The installation cost implicitly captures
economies of scale (as it captures technology cost based on size/capacity).

There are a couple of constraint sets that contribute to the formulation. The first set of
constraints ensures that the feasible path is derived from the superstructure and can be
expressed as:

fix <M - g,k k' € N (5.3-4)

where M is a sufficiently large coefficient; this constraint reduces the feasible region of

the problem. The second set of constraints are the product balances at the graph nodes:

Y fox<viseS8ieQ (5.3-52)
keNs
Z fu,k’ S gu,i “Yu, U S us,i S Qu (5'3'5b)
k'eNs
Y- fou = Gui Bim, - yuu €U, € Kuji € O (5:3.50)
keNs
Z fk,d =0y,d € D?, i’ € K. (535d)
keNs

Constraint (5.3.5a) is the product balance for supplier nodes, (5.3.5b) and (5.3.5¢) ensure
the inlet and outlet balance for tech nodes, and constraint (5.3.5¢) is the balance for the
demand node.

To illustrate the definition of the variables and constraints in the optimization formu-
lation, we will use the same example discussed in the previous section. Consider that
an optimal design is derived from a superstructure as shown in Figure 5.6. Nodes in the
design on the right are marked from k; through ks, where k; and k; are suppliers, k3, k4
and ks are technologies and k¢ is demand. If nodes k3 and k4 (copies of the same technol-
ogy) take 400 units of primary product i1 and 200 units of i, and produces 200 units of
i3. Product streams i3 are then fed into node ks that produces 300 units of final product is

that is required by the market. The non-zero entries for each decision variables f, v, and
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Figure 5.6: Illustration of notation for optimal design from superstructure.

With these definitions and constraints, we formulate the optimal design problem:

min € (5.3-6a)

st fix < M- g,k k' € N* (5.3.6b)

Y fox<vis€SicQy (5.3.6¢)
keNs

k NZf) . fup < Eui Y u €U, i € QY (5.3.6d)

"eNFifieKy

k2N feuw=Cuir Blo ~Yuu €U, i € Kui €Qy (5.3.6€)
=,

ZA:/ fra=06n,deDi" € Ky (5.3.6f)
keNs

fex >0,k k' € N° (5.3.68)

This formulation uses the superstructure connectivity to reduce the feasible space of the
problem and is concise to read and easy to understand. We will now expand this formu-

lation by incorporating a modularity measure as a trade-off of cost.



Cost-Minimizing Optimal Modular Design

The modularity measure that we adopt is a modified version of that presented in (Shao
and Zavala, 2020). This measure is directly derived from graph-theoretical principles,
can be computed using mixed-integer optimization techniques, and captures aspects of
relevance in the context of manufacturing systems and supply chains. Specifically, the
measure captures dimension (size) of modules, which enables capturing the fact that such
modules should be transportable. The modularity measure proposed is computationally
more suitable for system design.

The modularity measure is ccomputed using concept of graph coverage; this is done
by formulating a mixed integer optimization problem that minimizes the number of inter-
modular edges relative to the total number of edges (intra- and inter-modular). In other
words, the measure aims to capture the ability of assembling/disassembling a system.
The measure is defined as M, with n being the predefined number of modules. The
measure M, has a range has a range of [0,1]; M, = 1 being the most modular system
possible and M,, = 0 represents the least modular system possible.

In addition to the previous attributes of tech t € 7, we define a dimension (physical
size) of the tech represented as ;. Similarly, for each node u € {/* and its associated tech
t = 1,, the dimension is represented as <y, abbreviated as 7,. The set of modules is de-
fined as £ = {1,2,...,n} and | £|= n (the number of modules). We impose dimensionality
constraints for each module by defining D and D as upper and lower limits.

To compute the modularity measure of a given feasible path (a potential design), we
define the collection of binary parameters a,, ,/, 1, u’ € U®, which represent the adjacency
matrix of the subgraph associated to the feasible path. We define the collection of binary
variables al”f,u,,,, u,u’ € U%,1 € L; here, ab"f,u,,, = 1 indicates that nodes u, u’ are connected
and they are both in module /. We define the binary variable vy, ;, u € U°,] € L such that
yu, = 1 if node (unit) u exists in the design and appears in module /.

The measure that we propose is computed by minimizing the following function for
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a pre-defined number of modules n:

Z ”T,u',z

uu' eUs leL (5 3 7)
Z Ay,

u,u' eUs

Mn:

We note that this modularity measure is different from that reported in (Shao and Zavala,

2020), which is:

Z T Au,u!

u,u' €US

Z P (5.3.8)

u,u’ eUs

Mn:

where 7 is the membership variable matrix. Here, we have that the entry m, , is 1 if
node u and u’ are in the same module. We highlight that, in the work of (Shao and
Zavala, 2020), the adjacency a,,, is a fixed parameter and ), ,/cyss ay,r = 2m, where m
is the number of edges in the graph. However, in the design context discussed here,
the adjacency a,, is a variable (affected by the design selection). As such, the second
modularity measure would be computationally difficult to implement. This motivates our
desire to use the first modularity measure (we will see that this is easier to implement).
We now proceed to show that the modularity measures are equivalent; we establish

this result by showing that:

Yol = T G (5.3.9)
lel

In other words, we aim show that the numerators of both modularity measures are equiv-
alent. Specifically, we would like to show that both numerators are binary and that, when
the numerator on the left takes a value of 1, the numerator on the right also takes a value
of 1.

The right numerator is binary because both terms are binary and thus their product

is binary. For the left numerator we have that, by definition, there are no overlapping
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modules (each node can exist only in one module). For a module I’ € £ we thus have

that:
aff,u,,l, =1 < Z aum,u,,, =1 (5.3.10)
leL
and
Y oay,, <1 (5.3.11)
leL

Because the variable a™ is also binary, we have that it can only take values of o and 1.
We then have that, by definition, the term 4], takes a value of 1 if and only if node u

connects to node u’' and they are both in module I. Therefore, for a module I’ € £, we

have:

@y p=1<=a,, =1and m,,» = 1. (5.3.12)
Combining these expressions:
Y al,, =1<=a,,=1and m,, =1. (5.3.13)

lel

Therefore, we can rewrite the above expression as:

Z aZiu’,l = Ay T (5314)
lel

which establishes the equivalence.
Note that the new modularity measure proposed is nonlinear (fractional) and would
make the design formulation intractable if this is added directly as an objective function.

Interestingly, however, when the measure is used as a constraint, this can be reformulated
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in linear form as:

Z ﬂZl’u/,l Z EM E au,u’/ (5315)

uu' eUs,leL uu' €Us

where €y is a desired threshold value for the modularity measure. This observation is
relevant because the design formulation is multi-objective (minimize cost and maximize
modularity). Using an e-constrained method to compute the Pareto frontier thus provides
a natural approach to deal with the modularity measure.

In addition to the modularity constraint and the constraints in formulation (5.3.6),
new constraints are added the impact of the assignment of nodes into modules on process
variables. The logic between continuous flow variables and the binary adjacency variables

is:

fik < M-agp, kK € N° (5.3.16)

A < frw kK € N°. (5.3-17)

The logic for variable y (a node can only exist in one module), variable 2, and a (a node
u connects to any node u’ and they all belong to a module ! only if node u and u’ both

exist) are:

Yy <lLueus (5.3.18)
leL

Yooal+ Y an <My ,uel,lel (5.3.19)
u'elUs u'eUs

Yoay < agw,uu €U (5.3.20)
leL

The constraint that governs the upper and lower bound for the dimensionality of each

module is:

D < Z Yl vu < D,l € L. (5.3.21)

uels
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Figure 5.7 presents an example to demonstrate the definitions of variables and constraints.
Here, we show a modular division of the optimal design where k3 and ks are in module
l; and k4 is in module /5. It this worth noticing is that only one entry of variable a” is 1

since only the edge that connects node k3 and ks is counted as the edge within modules.

Th1,ks = 400
il fkhkz; =400
Vi, = 800 Ak kg = 1
Suppliers Vi, = 400 )
@ D@ N T e
S Technologies ko i i : 3
f2 SN Ui fins | ¥ s :
N s’ fk%k3 = 200 3 i Ul:;,(ll,'h}}
i i i
000 @ Nl
@ —_— Opy ks = 1 | b Sk ks = 200
Gk =1 | ik =200
i i Qs ks = 1
. s i Us . !
is Ui tisiar Us b s ke
o Module 1 fk‘5 ke — 300
.z» -1 lg
Demands Cks kg =

m —
Oy ks,ly = 1
Ykg,ly = Ykaly = Yks,la = 1

Figure 5.7: Illustration of notation for optimal design (left) obtained from superstructure
(right).

The optimization formulation to select the cost-optimal design given a modularity

threshold € is:

; Z?;uurr}l , C (5.3.22a)
st fip < M- pgp, kK € N* (5.3.22b)
Y. fox<vi,seS8,icy (5.3.22C)
keNs
Z fupr < Cuji - Zyu,z,u eU’,ieQy (5.3.22d)
k'eNs leL
Y fiu=Cui ﬁifu Y yupu Ui € KyieQy (5.3.22€)
keNs leL
Y fra=0n,deDi' €Ky (5.3.22f)
keNs

fk,k’ <M- ak,k/,k, K e N* (5322g)
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agp < fiw kK € N* (5.3.22h)
Y v <lLuel’ (5.3.22i)
lel

Y. anwit Y ap SMoyucllel (5.3.22j)
u'el® u'eUs

Z Ay < Ay, 1 € U (5.3.22k)
lel
Q < Z Yu,i " Yu < D,l eL (5-3'221)

uelys
Z a’::,u/,l > €M Z Ay (5.3.2211’1)

uu' eUs,leL u,u' €U
fip >0,k K € N* (5.3.22n)

Incorporating the modularity measure in the design formulation increases the number of
variables and constraints, which are required for the calculation of intra-modular edges.
However, this formulation gives us interesting insights on connectivity, decentralization,
and transportability of the process design. Formulation (5.3.6) and (5.3.22) find the opti-
mal modular design based on the superstructure graph (that does not account for spatial
information). We will now introduce formulations that find the optimal feasible path
with spatial information, and we would like to show that with the concept of spatial

superstructure, these formulations are similar to formulations (5.3.6) and (5.3.22).

5.3.3 Computing Optimal Designs from Spatial Superstructures

We then consider the situation that we not only assign technologies to modules, but
also put them at different locations. Here, we consider two potential factors that might
change the geological preference for different technologies. First, the installation cost may
be different for the same technology at different locations due to the different cost of land.
Second, the transportation cost from one location to another may be different for the same
product. Specifically, if technologies connected to each other are installed at the same

location, the short-range transport of product can be achieved using pipelines or other



simple methods. If they are placed at different locations, trucks or trains may be utilized
to long-range transport of the product. Alternative for short- and long-range transport
options are directly captured by our formulation. Also, the primary products are usually
supplied at some certain locations and the final products are usually transported to the
location of demand. We further assume that technologies within the same module should
be placed together in the same location and multiple modules can be placed at the same
location. We first formulate the problem that solves for the cost-minimizing optimal
spatial feasible path and then incorporate the modularity measure for an optimal modular

design.

Cost-Minimizing Optimal Design with Spatial Information

The graph-theoretic representation of the spatial superstructure makes the notation of the
optimization formulation directly analogous to that of the superstructure. As such, we
briefly discuss all the necessary definitions for the formulation.

The capacity associated with technology t = 7, for node u € U7 are abbreviated as
¢u. The installation cost associated with each technology ¢t € 7 at location ¢ € G is
defined as agg. For the node u € U7 associated with techt,, the installation cost can be

¢

7. The unit cost of each product is af

represented as oc%,%, abbreviated similarly as a ;
and the demand of the market for each product i € P is defined as J;, and the cost of
disposal for each product is defined as af. We redefine the cost for connection/flow of
product i from location g to location ¢’ which stands for the cost of transportation as
(xif, 2, g,,i €7,9,9 € G. Note that if g = g/, we obtain the short-term transport cost (as in a
typical process).

The variables defined for the spatial superstructure problem have a similar interpre-
tation as those of the superstructure but we can now attribute locational context. Specif-
ically, we define a continuous variable fix, k, k' € N1 representing the flow of product

from node k at location ¢ to node k’ at location ¢. We also define a continuous variable

for the purchase of each primary product as v;,7 € R. We define a binary variable matrix
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Figure 5.8: Illustration of notation for optimal design (right) obtained from spatial super-
structure (left).

Yu,u € U7 such that y, = 1 if node u is selected as part of the design located at location
¢u, and y, = 0 otherwise. Therefore, the total annualized cost of the system can be written

as:

C= Y (e-afy+ad)-yu+ Y of v+ ) a{d)wk,-fk,k,

uclfl s€87,ie) i€y, keN kK eNd
(5.3.23)
d
+ Z (Cu-Yu— Z fup) - o
ueli,ieQ), keNTifkeky

The only difference in this cost function is that we can now capture transport cost. An
illustration of the problem variables is provided in Figure 5.8.
The formulation to obtain a cost-minimizing design from the spatial superstructure

is:

min C (5.3.24a)

froy
st fip < M- pgp, kK € N9 (5.3.24b)
Y fix<vi,se8lieQy (5.3.24¢)

keN
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. /\/qu: ; fup < Gui-yu,u €U T €Qy (5.3.24d)
"ENTifieKy
kzj\:/fl fou=Cur Bl yuu €U € Kyi € (5.3.24€)
S
;/ fra=06n,d €D, € Ky (5.3.24f)
keN1
ek >0,k K € N (5:3.248)

The spatial superstructure is encoded py , k, k' € N1. This optimization formulation is
directly analogous to that in (5.3.6) but can be computationally more challenging to solve

because one can account for multiple possible locations for techs, suppliers, and demands.

Cost-Minimizing Optimal Modular Design with Spatial Information

The modularity measure is directly analogous to the one defined previously but we need
to specify additional information to account for location of modules. The dimension
associated with technology t = 7, for node u € U7 are abbreviated as 7,. We use set
L£={1,2,...,n} for the set of modules, and D and D to represent the upper and lower lim-
its of the dimensionality requirements. We use the binary variable matrix ay y, k, k' € N1

to represent the adjacency matrix of the feasible path (subgraph of the spatial superstruc-

m

ture). The binary variable 4]’ , ;,

u,u’ € U1,1 € L represents the relationship between
node u, u' and module /. We define the binary variable y,;,, u € U9, € L such that
Yy = 1 if node u belongs to module / at location ¢, and y,,; = 0 otherwise. Finally, we
define the binary variable collection zllg,l € L,g € G; such that if module [ is placed at
location g, z;, = 1 and z; ¢, = 0 otherwise.
The modularity measure with predefined number of modules n modules is:

@y |

uu'eUilel

Y : (5-3-25)
u,u’

u,u' el

an

A couple of additional constrains (compared to formulation (5.3.22)) are added due to



the newly defined variable z. The first ensures that one module can only be placed at
one location, and the second one ensures the logic between variable y and z (a node u
that exists in module / only if the module [ exists at location of node u), and they are

expressed as:

Yz, <LleL (5.3.26)
8€Gt
Yug <z, u €U L E L. (5.3-27)

An illustration of the defined variables is shown in Figure 5.9; note that a couple of entries
for the newly defined variable z are o, as module /; exists at location A and module I,

exists at location B.
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Figure 5.9: Illustration of notation for optimal modular design from spatial superstructure

With the previous definitions, the optimization formulation is:

min C (5.3.28a)

foaamyz
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s.t. fk,k’ <M- ﬂk,k’rk/ K e N1 (5.3.28b)
Y fix<vise8ieQ (5.3.28¢)
keNd
Yo fuk S Cuic Y yupucllicy (5.3.28d)
ke leL
Y few=Cui B Y yupu €Ul i € Kyji €Qy (5.3.28¢)
keN1 lel
Y. fra=67,deDi € Ky (5.3.28f)
keNd
fiw <M -agp, kK € N (5.3.28¢)
g < frw kK € N¥ (5.3.28h)
Y v <Luell (5.3.281)
lel
Z My )+ Z Ay oy S M-y ,u el € L (5.3.28j)
' el uw' el
Z aﬁu’,l < Ay U u' eU" (5.3.28k)
lel
D<) yu-1u<DleL (5.3.281)
uelli
Z arun,u’,l >€- 2 Ay (5.3.281‘1’1)
uu' €Ul leL u,u' €Ul
fierw =0,k K € N1 (5.3-28n)
Y zg<1llel (5.3.280)
3€G;
Yui < zip,u €U T EL (5.3.28p)

This formulation is more comprehensive that the one based on a superstructure in that
it delivers an optimal system design that not only captures techs needed but also their
geographical location. In other words, this formulation simultaneously designs a supply

chain and associated processes.
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5.4 Case Study

We present a case study to illustrate how our optimization formulations can help auto-
mate the generation of superstructures and spatial superstructures and to identify optimal
system designs with desired modularity. The study tries to identify an optimal supply
chain design for plastic waste upcycling that takes municipal solid waste (MSW) as the
input and produces ethylene, propylene and hydrogen as final products. The MILPs
were solved using Gurobi (version 9.0.3) and were implemented in the Julia-based JuMP
modeling framework. We use Gephi for graph manipulation and visualization. All op-
timization formulations are solved using a commercial laptop and the solving time is
referred to the wall clock time. All code needed to reproduce the results can be found in

https://github.com/zavalab/JuliaBox/tree/master/ModularDesign.

Municipal Solid Waste
(MSW)

House Holds
Material Recovery Facility Reprocessing Facility
Plastic Flake |
Ethylene
——
Pyrolysis Gas
Propylene Pyrolysis Oil
—
Hydrogen

Pyrolysis plant

Steam Cracking Unit

Figure 5.10: High-level view of processing tasks involved in plastic waste upcycling.

5.4.1 Problem Setup and Material Hierarchy of the Process

A high-level view of the processing tasks involved in plastic waste upcycling is provided

in Figure 5.10. Here, MSW (denoted as i1) collected from households is fed into a product


https://github.com/zavalab/JuliaBox/tree/master/ModularDesign

recovery facility (MRF) that obtains a plastic bale (i), the plastic bale goes through a
reprocessing facility (RF) that cleans the bale and converts it into plastic flakes (i3), a
pyrolysis process (PP) takes the plastic flakes and converts these into pyrolysis gas (i)
and pyrolysis oil (i5), a steam cracking (SC) process obtains the final products, given
by ethylene (is), propylene (i7), and hydrogen (ig). For this system, techs that produce
the same products have the same interdependencies between products and they only
differ in their capacities. Therefore, we eliminate the attribute of techs and the product
dependencies between the different techs is shown in Table 5.2. Producing 1 unit of i,
requires 7.69 unit of i;; producing 1 unit of i3 requires 1 unit of iy; producing 1 unit of
i5 requires 1.29 unit of 73; finally, 1 unit of ig, iy or ig requires 3.81, 6.16 or 125 unit of is
respectively. Note that intermediate product 74 is not used in the following process and is

therefore considered a waste. Additional information is summarized in Table 5.3.

Table 5.2: Product interdependencies between technologies.

in i3 is ie iy ig
i 7.69 o} 0 0 0 0
in 0 1 o] 0 o] o]
i3 0 o} 1.29 0 o} o
is 0 0 0 3.81  6.16 125

Each installation cost, operating cost tech dimension and tech capacity is associ-
ated with each technology in the above row respectively. For example, for technology
T(iyisy isjr- its installation cost is $ 0.46 x 108, operating cost is $ 14 per unit of input i,
dimension is 2, and capacities for producing product i4 and is5 are 169,000 tons and 39,000
tons, respectively. We assume that the operating cost for techs producing the same prod-
ucts but of different sizes/kinds is the same. It is worth emphasizing that, to capture
economies of scale, the estimation of the installation cost is based on the so-called “2/3
rule" that is prevalent in cost estimation. Specifically, the rule that applies to the different

technologies producing product i, can be expressed as:
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Table 5.3: Data for plastic upcycling system.

Parameters Values
Supplied Materials, R [i1, P2, 13, i5]
Products, P [iz, i3, 14, i5, 16, i7, 18]
All Materials, 7 [i1, 12, i3, 14, 15, 16, i, ig]

Technologies , T

[Tiz,il/]'l’ Tiz,illfz’ Tl'z,l'h]'a]
[Tis,iz/]'l’ Tl’sfiz/]'z’ Tl'3,l'2/]'3]

(Ttis sy innr Thinsishisjar Tisis}ia,jo]
T{ie,

(Tiinis }isyjs» Tisyin,is}is,jor Lissizsis s ja)

Installation Cost, % (x10% $)

[0.27, 0.46, 0.70]
[0.13, 0.30, 0.56]
[0.46, 0.79, 1.20]
[6.05, 9.17 13.90]

Operating Cost, a* ($ / unit of input)

8.87
44-19
14
71.8

Technology Dimension, y

(3,5, 8]
(3, 5, 8]
(2, 4, 8]
[3, 5, 8]

Technology Capacity, ¢ ( x10* tons)

[24.2, 60.5, 120.9]
[20.8, 52, 104]
[[16.9, 3.9], [42.3, 9.8], [112.8, 26.3]]
[[13.1, 8.1, 0.4], [26.1, 16.2, 0.80], [52.3, 32.3, 1.6]]

Purchasing Unit Cost, af ,1 € R, ($/unit)

[0, 250, 1300, 1100]

Disposal Cost, Dé?,i €7, ($/ton)

[50, 40, 40, 400, 800, 0, 0, O]

Required Production, é;,i € Z, (tons)

[0, 0, 0, 0, 0, 150000, 100000, 5000]

Project Duration, t, (yrs) 20
Discount Rate, r 0.06
Annualization Factor, €, 0.087
Module Dimension Limits, [D, D] [2, 12]
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In order to generate the superstructures of the system, we first use the formulation
(5.3.2) to solve for the hierarchy of all products based on their interdependencies. The
result shows that iy, i, i7, and ig have the highest hierarchy followed by is, i3, i and i;
respectively. This makes sense because products ig, i7, and ig are the final product of the
process, and for intermediate product iy, even though it is the product of an intermediate
process, it is the waste of the process that no other products depend on. Therefore, it
has the highest hierarchy but it is not a required product in the process. Then, with the
hierarchy of each product, we can compute the total amount of each product needed for
the system and the number of all possible techs needed for the process. The information
is summarized in Table 5.4.

With above information, we are now ready to generate the superstructures of the
system and then identify an optimal feasible path. We first consider the design using su-
perstructure without spatial information and solve the problem using formulation (5.3.6)

and (5.3.22). Then, we solve for the spatial optimal design using formulation (5.3.24) and

(5.3.28).
5.4.2 Optimal System Design without Spatial Information

The superstructure of this system is shown in Figure 5.11. Looking from top to bottom,
we have the product hierarchy of the system, which takes MSW as the input, generates
plastic bale/flakes and pyrolysis gas/oil as intermediate products, and generates ethy-
lene, propylene and hydrogen as final outputs. Looking from left to right, we have four
nodes representing the supplies of the four primary products, and in the middle nodes

with different sizes represent techs of different capacities. The number of copies of each
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Table 5.4: Results for hierarchy of products, quantity of products, and number of tech-

nologies.
Materials  Hierarchy = Required Amount (tons) Number of Technologies
i 5 6.22 x 10° -
Tiivjis 4
in 4 8.09 x 10° Tiz,i1j2: 2
Tl'z/illjs: 1
Tiinji: 4
i3 3 8.09 x 105 Ti3,i2,j2: 2
Tia,izfjs: 1
Tiiyisyisn’ 4
is 2 6.25 x 10° T{i4,i5}/i3/fz: 2
Tigis)is s 1
i4 1 0 /
ic 1 1.5 x 10° Tig iz i} is s 2
i7 1 1 X 105 T{i6,i7,i8},i5/j2: 1
i 1 5 x 10° Ti iz isdis,js- 1

techs coincides with the number shown in Table 5.4. Finally, the three nodes on the right
represent the demands. As expected, the superstructure is dense due to the large number
of possible techs.

We assume that the connectivity cost af is $ 0.01 per unit of product that an edge
carries. First, we used formulation (5.3.6) to solve for the cost-minimizing optimal supply
chain design and the result is shown in Figure 5.12 . The design problem contains 1028
continuous variables and 25 binary variables, and contains 1111 constraints. This problem
takes less than 0.01 second to solve. The result shows that the optimal design design
contains 7 tech units and achieves an annualized cost of $ 6.56 x 10%. We can see that it

chooses the tech with largest capacity for processes MRF, RF and PP as they are the most

cost efficient units to satisfy the required amount of products.
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Figure 5.11: Superstructure for plastic upcycling system (no spatial information).

We then use optimization formulation (5.3.22) to solve for the cost-minimizing design
that also achieves a certain degree of modularity. This problem has 1028 continuous vari-
ables, 3624 integer variables, and 3918 constraints. A couple of designs that correspond to
different levels of modularity are shown in Figure 5.13. Module division in both cases are
grouped by red dashed rectangles and nodes within 4 modules for each case are summa-
rized in Table 5.5. Note that the optimal design shown on the left in Figure 5.13 contains
identical techs as in Figure 5.12. This means that the cost-minimizing design without
considering modularity achieves a modularity measure of 0.3. This is the maximum level
of modularity that a valid system design can achieve, while achieving the minimum level
of the cost (and we see that this value is quite low). We can also see that, as we require
a higher degree of modularity, medium- and small-sized technologies start to be consid-

ered in the design. We summarize the results for different combinations of modularity
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Figure 5.12: Cost-minimizing optimal design of plastic upcycling system (no spatial in-
formation).
measure and cost in Table 5.6.

Table 5.5: Module details for optimal system designs with different degrees of modular-

ity.

Modularity =~ Annualized
Measure, My  Cost, C ($)

Module 1 Module 2 Module 3 Module 4

us . . us . . us . .
3 i2i1,j1,1 i2i1,j3,1 i3,i2,j1,2 s
03 656 x10 s U us {i,i7,i8} i5,j1,1
i3,i2,]3,1 i3,i2,]1,1 {ia,i5},i3,j3,1
s s . 5., S
i,i1,j1,1 ulzfll,]1,3 ulz,u,]z,l u{l4,l5},13,]2,1
] s ] s
0.6 6.95 x10° Ui 2 Uiijia  Wiishinpn  Wiginishis
s us. ... .
i3,2,j1,1 {ia,i5},13,j2,2
]

i31i2rj112
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Figure 5.13: Cost-minimizing optimal modular designs with M > 0.3 (left) and My > 0.6
(right)

We can see that, as we increase the required degree of modularity, the cost increases
and the number of techs installed also increases. This demonstrates that, to achieve a
higher modularity measure, smaller techs need to be installed and there exists a trade-off
between cost and the degree of modularity of the system. In addition, we observe that,
we increase the level of modularity measure from o to 0.6, the cost increase is relatively
small (~2% for 0.1 increase in modularity). However, as we further increase the modular-
ity (from 0.6 and above), the cost increases sharply in order to achieve the same amount
of modularity increase (~10% for o.1 increase in modularity). This means that there ex-
ists a threshold for the process design when increasing modularity measure becomes too
expensive and makes no economic sense; as such, decision-makers should choose any
optimal design within that threshold to achieve a balanced trade-off between cost and

modularity. As we increase the modularity measure, the solution time generally becomes
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longer since the smaller technologies become relevant here, increasing the possible num-
ber of designs and therefore harder for the solver to find an optimal solution. When we
are at a high modularity measure (0.8 in this case), the design requirements become too
strict, and therefore reduce the number of possible designs available. This explains the

reduction on the solution time for the case when the modularity measure is 0.8.

Table 5.6: Trade-offs between system cost and modularity for optimal designs (no spatial
information).

Modularity Measure = Cost ($)  # of Technology  Solving Time (s)

o 6.56 x 108 7 0.27
0.3 6.56 x 10% 7 1.42
0.4 6.71 x 108 9 22.33
0.5 6.83 x 10% 10 16.99
0.6 6.95 x 108 11 22.52
0.7 7.65 x 108 11 48.51
0.8 8.38 x 10% 12 17.71

5.4.3 Optimal System Design with Spatial Information

When we extend the problem to include spatial information, all the case settings defined
in Table 5.2 and Table 5.3 remain valid. We define the additional spatial information such
as potential locations to install techs and the transportation cost across different locations
in Table 5.7.

Here, a couple of potential locations (B and D) are available to install technologies.
Locations for suppliers and demands corresponds to the sequences of product i in set
R and P as shown in Table 5.3. For example, supply of product i; is at location B
and demand of product i is at location C. Installation costs for location B and D are
represented as a scale times the cost defined in Table 5.3. For instance, installation costs
for tech t € T;, (technologies T; T;

and T, ;, ;,) at locations B equals to the scale

201,17 Lizi1,j27 2,11,]3
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Table 5.7: Spatial information for plastic upcycling system.

Parameters Values
Potential Locations to Install Technologies, G; [B, D]
Locations for Suppliers of Materials, gé,i ER [B, C, B, D]
Locations for Demand of Materials, Qzl,i ep [C, D, B, C, B, B]
Set of All Locations, G [B, C, D]
T;,: [0.9, 1.1]
Scale of Total Cost at [B, D] Tigs (1, 2]

Tiiyisy: [1.1, 1]
Tyig iy, is): [0:9, 1.1]
Transportation Cost, “{,B,g//i €Z,8 € G ($/unit) [0.01, 0.1, 0.14]

Transportation Cost, uc{ c, g,,i €7,¢ €3G ($/unit) [0.14, 0.01, 0.12]

Transportation Cost, tx{ D, g,,i €7,9' € G ($/unit) [0.14, 0.11, 0.01]

0.9 times their original installation costs [0.19,0.45,0.89] as defined in Table 5.3, and the
costs at location D equals to the scale 1.1 times their original costs. Finally, we assume that
transport costs for different products are the same but they are different across different
locations. For example, transportation cost for any product from location B to D is 0.14
and from location C to D is 0.12. Note that transportation costs at the same location (from
location B to B) are much smaller than those across different locations.

The spatial superstructure of the system is shown in Figure 5.14. Nodes on the top
represent potential technologies at location B while nodes on the bottom represent their
installation at location D. This spatial superstructure is much denser than the superstruc-
ture in Figure 5.11; therefore, we have a much larger optimization problem.

We first use formulation (5.3.24) to solve for the cost-minimizing spatial design and
the result is shown in Figure 5.15 . This problem has 3253 continuous variables, 50 binary
variables, and 3416 constraints, and required 0.16 seconds to solve. The result shows
that the optimal design contains 7 techs, with 6 of them being placed at location B while

the only pyrolysis plant is placed at location D. This configuration makes sense, as the
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Figure 5.14: Spatial superstructure for plastic waste upcycling system. Technologies on
the top are for location B and technologies on the bottom are for location D.
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Figure 5.15: Cost-minimizing optimal spatial system design.



optimal design tries to put technologies at locations with less installation cost, which is
the major cost of the process. This cost-minimizing design achieves an annualized cost
of $ 6.30 x 10® and similarly, it selects the technology with largest capacity for processes
MRE, RE and PP as they are the most cost-efficient units to satisfy the required amount of
products. We then use optimization formulation (5.3.28) to solve for the cost-minimizing
design with spatial information that also achieves a certain level of modularity.

The optimal designs that correspond to two different levels of modularity are shown
in Figure 5.16.

Technologies Technologies

5 © ,

@ AN @

Demands

Propylene
‘: Demands

Technology Node Sets

910

T4 q

e v, ® Ui intia
q

e U, @ Uliinistis

Figure 5.16: Cost-minimizing optimal modular system design (with spatial information)
for modularity My > 0.4 (left) and My > 0.6 (right)

Module divisions in both cases are grouped by red dashed rectangles and nodes
within four modules for each case are summarized in Table 5.8. We can see that, when
requirement for modularity is low, the large pyrolysis plant in purple takes the advantage
of low installation costs at location D and is grouped with a small reprocessing facility in
blue. The module (facility) that these units form is placed at location D, while all other
units and modules are placed at a facility in location B. On the right we can see that, as
we require a higher degree of modularity, all units and modules are placed at location

B. Here, a low installation cost is outweighed by the high transportation cost due to in-
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Table 5.8: Details for a couple of modular designs.

Modularity ~ Annualized
Module 1 Module 2 Module 3 Module 4
Measure, My Cost, C ($)

q q q q
il Ui p2 Ui i i1 Ui i i 2
0. 6.46 x108 1 T 1 1.
4 4 u13f12112'1 uls'lz/]ﬂ U13,12,]1,1 u{l4,15},13,J3,1
q
{ig,i7,i8},i5,j2,1
q 7 T 1.
ia,i1,j1,1 ulzllll]lﬁ ulz,ll,jz,l u{14,z5},13,]2,2
q q q q
0.6 6.74 %108 ui2,i1,]'1,2 ui3,i2,fll3 ul's,l'z,]'z,l u{i6/i7/i8}/i5/j2/1
q q
i3,2,j1,1 u{i4,i5},i3,j2,1
1
i3,12,j1,2

creased connectivity across locations and therefore no units are placed at location D. We
can also see that smaller techs are utilized in the optimal design with higher modularity.
We also summarize the results for different combinations of modularity measure and cost
in Table 5.9. A similar trend can be observed in Table 5.6; specifically, a threshold exists
around a modularity measure of 0.6 where further increasing the measure causes the cost
of design to rise sharply, and the solving time increases dramatically as we increase the
requirement for modularity measure initially, and eventually drops when the requirement

is too high.

5.5 Conclusions and Future Work

In this work, we propose an optimization framework to facilitate the design of modular
manufacturing systems. Central to our approach is the concept of a spatial superstructure,
which is a graph that captures all possible system configurations and interdependencies
between components. The spatial superstructure is a generalization of the notion of a
superstructure and of a p-graph used in process design, in that it encodes spatial (geo-

graphical) context of the system components. We show that this generalization enables
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Table 5.9: Trade-off between cost and modularity for optimal system design (with spacial
information).

Modularity Measure  Cost ($) # of Technologies Solving Time (s)

0 6.30 x 10% 7 0.92
0.3 6.32 x 108 7 4.89
0.4 6.46 x 108 9 287.51
0.5 6.61 x 10% 10 708.48
0.6 6.74 x 108 11 719.71
0.7 7.44 x 108 11 3074.36
0.8 8.17 x 10% 12 1312.20

the simultaneous design of processes, facilities, and of supply chains. Our framework
aims to select the system topology from the spatial superstructure that minimizes design
cost and that maximizes design modularity. We show that this design problem can be
cast as a mixed-integer, multi-objective optimization formulation. We demonstrate these
capabilities using a case study arising in the design of a plastic waste upcycling supply
chain. As part of future work, we are interested in exploring the use of strategies to ad-
dress computational tractability issues and to capture higher fidelity in the design (e.g.,

detailed physical models).



CONCLUSIONS, CONTRIBUTIONS, AND FUTURE DIRECTIONS

6.1 Contributions

The main contributions of this work are to answer the three questions mentioned in

Chapter 1:

1. What - What is modularity? How do we define a quantifiable measure for modu-

larity in manufacturing context?

2. Why - Why should we consider modular design? Can we use mathematical tools to

demonstrate the benefits of modular designs comparing to traditional ones?

3. How - How do we design a modular process or supply chain? Can we provide a

general framework to aid the synthesis of modular processes and supply chains?

Specifically, they include the development of a quantifiable modularity measure that fits
in the manufacturing context, the verification from a mathematical and optimization point
of view on the spatial and temporal flexibility brought by modular technologies, and the
development of a design scheme that facilitates modular process and supply chain de-
sign using computational and analytical tools such as exploratory data analysis, Pareto

trade-off analysis, and conflict resolution methodologies. Each newly proposed concept
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is accompanied with illustrative visualizations and realistic case studies, and any math-
ematical demonstrations and optimization formulations are under careful considerations

and rigorous derivations.

Quantifiable Modularity Measure in Manufacturing Context

In Chapter 2, we propose a measure to quantify the modularity of industrial pro-
duction (manufacturing) systems with optimization formulations to compute it. From a
manufacturing perspective, we argue that a system is deemed modular if: i) the equip-
ment units that comprise it form clusters (modules) of dense connectivity (i.e., difficult
module assembly tasks are performed off-site), ii) connectivity between modules is sparse
(i.e., easy assembly tasks are performed on-site), iii) the number of modules is small, and
iv) the module dimensions facilitate transportation. We show that the measure proposed
satisfies these requirements and that it can be computed by solving a convex mixed-
integer quadratic program. We provide a discussion on advantages and disadvantages
of alternative modularity measures used in different scientific and engineering commu-
nities. Our results seek to highlight conceptual and computational challenges that arise
from the need to define and quantify modularity in a manufacturing context. This chapter
addresses the "What" question by clarifying the definition of modularity and identifying

some unique characteristics of modularity in manufacturing.

Benefits of Modular Design - Spatial Flexibility

In Chapter 3, we talk about the spatial flexibility via technology decentralization in
electricity markets. Specifically. We study economic incentives provided by space-time
dynamics of day-ahead and real-time electricity markets. We seek to analyze to what
extent such dynamics promote decentralization of technologies for generation, consump-
tion, and storage (which is essential to obtain a more flexible power grid). Incentives
for decentralization are also of relevance given recent interest in the deployment of small-

scale modular technologies (e.g., modular ammonia and biogas production systems). Our
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analysis is based on an asset placement problem that seeks to find optimal locations for
generators and loads in the network that minimize profit risk. We show that an uncon-
strained version of this problem can be cast as an eigenvalue problem. Under this repre-
sentation, optimal network allocations are eigenvectors of the space-time price covariance
matrix while the eigenvalues are the associated profit variances. We also construct a more
sophisticated placement formulation that captures different risk metrics and constraints
on types of technologies to systematically analyze trade-offs in expected profit and risk.
Our analysis reveals that space-time market dynamics provide significant incentives for
decentralization and strategic asset placement but that full mitigation of risk is only pos-
sible through simultaneous investment in generation and loads (which can be achieved

using batteries or microgrids).

Benefits of Modular Design - Temporal Flexibility

In Chapter 4, we talk about the temporal flexibility by modular technologies under
the setting of a capacity expansion problem. Specifically, we study logistical investment
flexibility provided by modular processing technologies for mitigating risk. We propose a
multi-stage stochastic programming formulation that determines optimal capacity expan-
sion plans that mitigate demand uncertainty. The formulation accounts for multi-product
dependencies between small/large units and for trade-offs between expected profit and
risk. The formulation uses a cumulative risk measure to avoid time-consistency issues
of traditional, per-stage risk-minimization formulations and we argue that this approach
is more compatible with typical investment metrics such as the net present value. Case
studies of different complexity are presented to illustrate the developments. Our stud-
ies reveal that the Pareto frontier of a flexible setting (allowing for deployment of small
units) dominates the Pareto frontier of an inflexible setting (allowing only for deploy-
ment of large units). Notably, this dominance is prevalent despite benefits arising from
economies of scale of large processing units. Both Chapter 3 and Chapter 4 address the

"Why" question.
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A Spatial Superstructure Approach to the Optimal Design of Modular Systems
Chapter 5 addresses the "How" question by proposing an optimization framework to
facilitate the design of modular manufacturing systems. Central to our approach is the
concept of a spatial superstructure, which is a graph that captures all possible system
configurations and interdependencies between components. The spatial superstructure is
a generalization of the notion of a superstructure and of a p-graph used in process design,
in that it encodes spatial (geographical) context of the system components. We show that
this generalization enables the simultaneous design of processes, facilities, and of supply
chains. Our framework aims to select the system topology from the spatial superstructure
that minimizes design cost and that maximizes design modularity. We show that this
design problem can be cast as a mixed-integer, multi-objective optimization formulation.
We demonstrate these capabilities using a case study arising in the design of a plastic

waste upcycling supply chain.

6.2 Future Research Directions

The future research directions are mainly motivated by three aspects of the modularity
related problem that our work does not cover, but can be good additions to further un-
derstand and extend the modularity concept. First, the complexity of modularity related
optimization formulations can grow exponentially with increased resolution, and proper
solution approximation methodology should be developed and implemented. Second,
the economical assumptions we make about modular technologies need further consider-
ation, and universally acceptable simulation framework for modeling modular technolo-
gies need to be established. And finally, the concept of modularity is closely related to
that of process intensification, and therefore can be combined with it to further facilitate

the design of modular and intensified processes.
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Complexity in Modularity Related Formulations

The work in this dissertation includes various chemical process and supply chain
case studies under certain assumptions, and they are solved by state-of-art commercial
solvers, such as Gurobi. We still observe that some of those models cannot be solved to
optimality within reasonable CPU time. This is because the model size explodes exponen-
tially as the resolution (for instance, time resolution can only be 20 minutes in real time
electricity markets, and number of locations and potential technologies can not be too
large) increases. Furthermore, the mixed-integer formulations of the related optimization
models involve the decision of binary variables, which introduces additional difficulty in
problem-solving.

While chemical processes and supply chains with limited choice of technologies and
locations can be tackled properly, an optimal solution may not be obtainable if we expand
the decision set of the problem or increase the model resolution. Therefore, it is neces-
sary to develop methodologies to provide good solutions for large-scale, high-resolution
decision-making models. In our models, we realize that binary variables are usually
sparse, with limited number of non-zero entries. This characteristics of the model fits into
some well-developed decomposition or relaxation methods that can largely help with the
problem size. For instance, column generation (Desaulniers et al., 2006; Liibbecke, 2010)
and branch-and-price (Barnhart et al., 1998; Savelsbergh, 1997) are popular tools for large-
scale integer problems. There are studies on using Dantzig-Wolfe decomposition which is
based on the delayed column generation methods for solving multistage stochastic plan-
ning problems (Singh et al., 2009), and using Benders decomposition and Lagrangian re-
laxation as decomposition methods for network design has also been explored (Gendron,
2011; Panconesi and Srinivasan, 1996). As we consider chemical processes and supply
chains using a network representation, these methods are well-suited in our case. In pure
graph theory, similar problems such as community detection and correlation clustering,
have long been studied, and algorithms such as polynomial-time approximation scheme

(PTAS) Arora (1998) could also be investigated and applied in our case. In addition, new
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methodologies are proposed in recent years that aim to solve similar problems. For in-
stance, semi-definite relaxation methods have been explored to solve large-scale binary
quadratic optimization problems that are suitable in solving the modularity measure in
our case (Wang et al., 2016), and using unsupervised neural network to solve large-scale
multiobjective optimization problem with sparse solutions has also been proposed (Tian
et al., 2020). We also note that since there is a trade-off between the model resolution
and complexity, methods in selecting optimal resolution for decision-making should be

developed and validated.

Assumptions in Modeling Modular Technologies and Processes

For the case studies that performed in this work, modular technologies are usually
modeled as ones with smaller capacity with a trade-off of more expensive per unit cost
based on the economy of scale. To make things simple, the capital cost of a modular
technology is assumed to be based on the "six-tenth" rule (or similarly "two-thirds" rule).
However, the differences between modular technology and conventional facility are much
more profound, and sometimes cannot be evaluated economically. For instance, modular
technologies are usually shop fabricated that are not delayed by weather conditions. This
makes the project length much more manageable, and can potentially save on construc-
tion cost. Also, as multiple copies of the same modular technologies are often needed
to expand the capacity, the workers become sophisticated during the process which can
also reduce the project length and save on the building cost. As modular technologies
are usually built with movability, the cost of transporting, assembling, and disassembling
modules should also be accurately estimated and included. From another perspective, a
smaller construction crew and the indoor building environment can potentially reduce
the carbon footprint of the project. As more and more companies are now making bold
declarations about their carbon neutral plans, this advantage of modular technologies,
even though not measurable directly by money, are even more important nowadays com-

paring to some percentage cost savings. As going modular is still a relatively new concept
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in the industry, there are currently no broadly accepted rules of thumbs like the "six-tenth"
rule on estimating the cost factors of modular technologies. Researchers have looked into
estimating the fixed capital investment for modular production plants, and a net present
value analysis has been done on modular chemical plants (Lier and Griinewald, 2011;
Sievers et al., 2017). However, there is still a lack of contributions in this research field,
and as one of the fundamental assumptions that my work depends on, establishing a rule

for modeling modular technologies can be an important and interesting future direction.

Connections with Process Intensification

Process intensification is another popular concept that tends to make dramatic reduc-
tions in the size of a chemical plant (Stankiewicz and Moulijn, 2002; Stankiewicz et al.,
2000; Van Gerven and Stankiewicz, 2009). The concepts of modular technologies and pro-
cess intensification are usually mentioned together in literature (Bielenberg and Palou-
Rivera, 2019; Kim et al., 2017b), but unlike modular technologies which can achieve size
reduction simply by scaling down of a process, process intensification requires combina-
tions of multiple unit operations to achieve size reduction and usually involves develop-
ment of new technologies and operating equipment such as membrane reactors (Becht
et al., 2009; Drioli et al.,, 2011). Therefore, an intensified process is generally harder to
design and can vary for different chemical processes. However, performing modular
analysis for a conventional process can help identify unit operations that are closely tied
together and therefore more likely to be intensified. In general, modular technology and
intensified process are closely related, and investigating how to combine these two con-
cepts such as using modular analysis to help identify potentially "intensifiable" operations

is an interesting future direction.
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