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Abstract

This thesis describes the development of a new type of spin-exchange pumped noble gas

comagnetometer. The comagnetometer is designed to suppress systematic uncertainty intro-

duced by longitudinal noble gas and alkali-metal polarizations while maintaining detection

bandwidth. To this end, 129Xe and 131Xe nuclei are simultaneously and continuously polarized

transverse to a pulsed bias field by modulation of spin-exchange collisions with transversely

optically pumped 85Rb atoms. In addition to polarizing the Xe nuclei, the polarized Rb

atoms also serve as an embedded magnetometer that detects the precession of both noble

gas isotopes simultaneously. Continuous comagnetometry is demonstrated via two different

modulation schemes: polarization modulation and bias pulse repetition rate modulation.

The theory of these implementations including a description of spin-exchange broadening

and noble gas polarizations are also described in detail. The field suppression, stability, and

detection channel fidelity of each implementation are also presented.
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Chapter 1

Introduction

What sort of science is that which enriches the understanding but robs the

imagination?

— Henry David Thoreau

This thesis describes the design and implementation of a novel quantum spin sensor.

Simultaneous measurement of the nuclear magnetic resonance (NMR) of two hyperpolarized

noble gases contained in the same volume is used to differentiate between magnetic and

non-magnetic phenomena. We introduce the concept of comagnetometry with polarized

nuclei, describe previously demonstrated comagnetometers and their application to mea-

suring non-magnetic spin-dependent interactions, describe known systematic uncertainties

inherent to spin-exchange pumped comagnetometers, and summarize the results of the novel

comagnetometer we developed.

1.1 Fundamentals

Perhaps the most simple quantum spin sensor is a polarized atom or nucleus. When

immersed in a magnetic field, the atom or nucleus will undergo Larmor precession about

the magnetic field. The rate of precession due to the magnetic field is determined by the
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Figure 1.1: Allan Deviation of measured precession frequencies of 131Xe, 129Xe, and the
computed rotation for one of the comagnetometer implimentations discussed in this thesis.

atom or nucleus’ gyromagnetic ratio. The rate of precession can also be influenced by

many non-magnetic spin-dependent interactions (NMSI) which one may or may not want to

measure. Comagnetometry is the simultaneous measurement of multiple co-located polarized

entities as they precess about a common magnetic field. As long as the gyromagnetic ratio of

each entity is well known, comagnetometry enables the suppression of magnetic noise, thereby

enabling enhanced sensitivity to NMSI. Figure 1.1 demonstrates the increased frequency

sensitivity to NMSI achieved through comagnetometry. The individual Larmor resonance

frequencies of 129Xe (black) and 131Xe (red) are dominated by stray magnetic field noise

in a three layer µ-metal magnetic shield. With knowledge of each isotope’s gyromagnetic

ratio however, the correlated magnetic field noise is subtracted (green) thereby enhancing

sensitivity to NMSI by more than two orders of magnitude.

The Heisenberg uncertainty relation for resolving the energy splitting ∆E of a single

atom with a coherence time T2 is ∆E ≥ ~/T2. The transition frequency uncertainty when



3

measuring N atoms once every T2 over a time t is then

∆f =
1

2πT2

√
T2

N t
. (1.1)

A 1 cm3 vapor cell filled with 50 Torr of enriched Xe has ∼ 2× 1018 Xe nuclei. Assuming

a modest T2 = 100 sec, ∆f ≈ 10 pHz/
√

Hz. The lowest noise resolved in a spin-exchange

pumped comagnetometer to date is x104 greater than this value (see Ch. 1.3). The promise

of such fantastically low noise is part of what continues to drive the development of new

quantum spin sensors.

Spin-exchange (SE) pumped comagnetometers consist of co-located ensembles of noble

gas nuclei and alkali-metal atoms which are spin polarized in the presence of a magnetic

field [Walker and Happer (1997)]. Suppose an ensemble of two spin-exchange optically

pumped (SEOP) noble gas species (a and b) are each subject to a common magnetic field

Bz and some NMSI Xz. The Larmor resonance frequency of each isotope obeys [Walker and

Larsen (2016); Limes et al. (2019); Terrano et al. (2019); Petrov et al. (2019)]

Ωa = γa(Bz + baSSz + babK
b
z) +Xa

z , (1.2a)

Ωb = γb(Bz + bbSSz + bbaK
a
z ) +Xb

z , (1.2b)

where γ is the gyromagnetic ratio, S and K are the respective alkali-metal and noble gas

polarizations, z subscripts refer to the longitudinal components (i.e., parallel to the bias field

direction), and bij is the SE coefficient [Schaefer et al. (1989)] characterizing the influence of

j’s polarization on i. Given a known ρ = γa/γb, Ωa and Ωb can be simultaneously measured

and correlated Bz fluctuations subtracted using [Chupp et al. (1988)],

ξ =
ρΩb − Ωa

1 + ρ
=
ρXb

z −Xa
z

1 + ρ
+

γa

1 + ρ
[(bbS − baS)Sz + bbaK

a
z − babKb

z ]. (1.3)
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We see that although Eq. 1.3 is independent of Bz, longitudinal polarizations Sz and Kz

remain and are indistinguishable from Xz [Bulatowicz et al. (2013); Limes et al. (2019);

Terrano et al. (2019)]. In the context of rotation sensing and for γa < 0, and γb > 0, we

set Xb
z = ωR and Xa

z = −ωR [Walker and Larsen (2016)] such that ξ becomes the rotation

frequency ωR. The main motivation of this thesis is the suppression of time averaged Sz and

Kz while maintaining the detection bandwidth of ξ.

The embedded alkali-metal atoms can be used for quantum non-demolition readout [Taka-

hashi et al. (1999); Katz et al. (2019)] of the noble gas precession. During atomic collisions,

a Fermi-contact interaction enhances the field experienced by the alkali-metal atoms due

to the polarized noble gas nuclei [Nahlawi et al. (2019)]. This enhancement factor directly

improves the signal-to-noise-ratio (SNR) as classical fields are not similarly enhanced. Using

the alkali-metal atoms also enables miniaturization by eliminating the need for an exterior

pick-up coil (such as a superconducting quantum interference device [Allmendinger et al.

(2019); Sachdeva et al. (2019)]).

1.2 Applications

Comagnetometers are uniquely qualified for some searches of exotic physics because of

their absolute sensitivity to small energy changes. For instance, although optical atomic

clocks exhibit exquisite fractional stability δν/ν ∼ 10−18 their absolute frequency (energy)

sensitivity is δν ∼ 100 µHz [Ludlow et al. (2015)]. Comagnetometers have less exquisite

instability δν/ν ∼ 10−9, but their absolute stability is δν ∼ 10 nHz or 104 times more

sensitive than optical atomic clocks. SE pumped comagnetometers have been used to place

upper bounds on spin-mass couplings [Bulatowicz et al. (2013); Lee et al. (2018)], nuclear

electric dipole moments [Rosenberry and Chupp (2001); Allmendinger et al. (2019); Sachdeva

et al. (2019)] as well as local Lorentz invariance violation [Bear et al. (2000); Gemmel et al.

(2010)]. These devices also show promise as miniaturized inertial sensors [Walker and Larsen
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1

GPS Denied:

Inertial navigation
• Small footprint
• Low power
• High stability

Exotic physics

Spin-mass coupling (dark matter)

Lorentz violations

Nuclear EDM
Autonomous vehicles

In Hole navigation

Warfare

Figure 1.2: Collage depicting applications of noble gas comagnetometers.

(2016); Kornack et al. (2005); Jiang et al. (2018); Karwacki (1980)]. In the paragraphs that

follow we outline the fundamental physics behind these NMSI.

Exotic Physics

Spin-mass couplings: There are various theories beyond the standard model that predict

new particles which are characterized by very weak couplings to ordinary matter and have

masses in the sub-ev range. One possibility is a new P -odd and T -odd interaction between

polarized and unpolarized nucleons proportional to K · re−r/λ, where K is the spin of the

polarized nucleon, r is the distance between polarized and un-polarized nucleons, and λ

is the interaction range. Laboratory searches for such an interaction have been pursued

by monitoring a comagnetometer’s signal dependence on the proximity of a non-magnetic

“source” mass.

Atomic electric dipole moments (EDM): An electric dipole moment in a nucleus would



6

manifest itself as a charge asymmetry along the axis of total angular momentum. Such an

asymmetry is odd for both time and parity reversal. Although the standard model allows for

simultaneous charge and parity conjugation violation, such violation is insufficient to explain

the size of the observed baryon asymmetry of the universe. By putting new upper bounds on

atomic EDMs by direct laboratory searches, theories beyond the standard model, which allow

for EDMs greater than the standard model, can be constrained. Comagnetometers have been

used to search for atomic EDMs by looking for correlations between the comagnetometer

signal and an applied electric field. For instance, if 129Xe had a permanent EDM of dF/F

where F is total angular momentum then the frequency shift between states with |∆mF
| = 1

would be ωd = ±d|E|/(~F ).

Local Lorentz invariance violation (LLIV): Lorentz invariance is the assumption that the

laws of physics are invariant under transformation between two coordinate frames moving at

constant velocity with respect to one another. The standard model does not allow for the

existence of a preferred reference frame i.e. violation of Lorentz invariance. Tests of LLIV of

spin and light are crucial for constraining standard model extensions. Comagnetometers have

been used to search for the isotropy of spin dependent interactions in space by looking for

comagnetometer signals which correlate with the device’s orientation within the laboratory

reference frame. In the presence of Lorentz violation from the photon sector, the Coulomb

potential of a point charge becomes anisotropic [Flambaum and Romalis (2017)]. A nuclei’s

sensitivity to this anisotropy depends on its nuclear electric quadrupole moment. Similar

to measurements of LLIV for spins, noble gas comagnetometers with one species with a

nuclear spin greater than 1/2, can be used to search for LLIV of the photon by searching for

correlations between the comagnetometer’s signal and its orientation in space.
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Inertial Rotation

The precession of a polarized gas about a constant bias field constitutes an inertial reference

frame, i.e. the nuclei (idealy) have no way of knowing whether or not their container is

rotating. If the precession of the noble gas is measured relative to the polarization of the

alkali-metal atoms which is itself determined by the polarization of its pump laser then

rotation of the pump laser about the bias field will change the measured rate of precession

of the polarized noble gas nuclei (if the rate of rotation of the pump laser about Bz is equal

to that of one of the noble gas species’ rate of precession then the SE field produced by

that isotope would always have the same orientation relative to the Rb polarization and

consequently not produce any tourque on the Rb).

Interest in novel navigation systems which operate in global positioning system (GPS)

denied environments has increased as of recent. To date, the United States, Russia, China,

and India have successfully demonstrated the capability of destroying their own satellites.

Such capability could be used in future conflict to remove GPS satellites. Other GPS

denied environments besides future war zones include subterranean and submarine travel.

An important obstacle to harnessing geothermal energy resources is the limited “in-hole”

navigation of horizontal drilling rigs. The future development of autonomous vehicles also

relies on robust navigation including in GPS denied environments.

The application of comagnetometers as inertial sensors is promising because of their

low intrinsic noise, miniaturize-ability, low power consumption, insensitivity to acceleration,

and a scaling from experimental observable to rotation that is independent of experimental

parameters. NMR-gyroscopes will likely first be used to provide long term correction to

another miniaturized gyro whose short term noise performance is superior but whose long

term drift is inferior to the NMR-gyroscope. A proof of concept experiment along these lines

was recently performed using a classical and quantum accelerometer [Cheiney et al. (2018)].

As this section has shown, the contribution of comagnetometers to the precision mea-
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surement community has been substantial. All measurements mentioned above were limited

by technical noise which is orders of magnitude greater than the quantum projection noise

limits. Consequently, all of the precision measurements listed above would benefit from new

comagnetometer schemes which limit technical noise.

1.3 Prior Art

SE pumped comagnetometers have been under development for more than 60 years. In the

section below we briefly summarize the schemes which constitute the present state of the

art in order to better place the performance of our novel sensor in perspective. In general,

comagnetometer performance is described in terms of measurement bandwidth: the fastest

NMSI which can be resolved, noise: the rate at which the sensitivity to NMSI interactions

increase with integration time, stability: the ultimate sensitivity achieved, and scale factor:

the conversion from observed signal to NMSI.

The noise is often characterized in terms of angle-random-walk (ARW) and is measured

in units of Hz/
√

Hz or in the inertial measurement community in units of deg/
√

Hr. The

conversion between these two units can be written as

1
Hz√
Hz

= 1
cycles

sec

√
sec

1

360 deg

cycle

3600 sec

Hr

√
Hr

3600 sec
= 21600

deg√
Hr
. (1.4)

Comagnetometers may be limited by other noise processes besides ARW. In such cases it is not

uncommon to report the ARW as an upper bound. Consequently, the most fair comparison

of comagnetometer performance is by comparing how the noise integrates over time using

devices such as the Allan deviation (see Ch. 2.5 for more details on the Allan deviation).

The ultimate stability is measured in Hz or in the inertial measurement community (where

it is referred to as bias instability) in units of deg/Hr. Similar to Eq. 1.4, 1 Hz = 1.3× 106

deg/Hr. Table 1.1 lists the required bias instability for various inertial measurement systems
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Bias Instability (deg/Hr) Systems applications
> 10 Automotive sensing

1 attitude heading, short flight devices
0.1 some aircraft
0.01 commercial airliners

< 0.001 ships, submarines, spacecraft

Table 1.1: Bias instability requirements for navigation applications.

applications [Donley and Kitching (2013)].

The scale factor and its stability are important characteristics as they determine how

the apparatus’ observables depend on NMSI. Indeed, a comagnetometer with fantastic noise

and stability but large scale-factor uncertainty is not necessarily more desirable than a

comagnetometer with poor noise and stability but exquisite scale-factor stability. We refer

to comagnetometers whose scale factor can be written in terms of fundamental constants as

having “physics” scale factors.

Northrop Grumman Corp. gyro

A schematic of the Northrop Grumman Corp. gyro (NGC-gyro) [Walker and Larsen (2016)] is

shown in Fig. 1.3. It consists of a 2 mm cubic vapor cell with 85Rb and enriched 129Xe-131Xe.

The Rb is optically pumped using D1 light propagating parallel to a DC bias field. SE

collisions between the polarized Rb and Xe atoms polarize the Xe nuclei parallel to the bias

field. Because of this configuration, the contribution of the Rb SE field to the Xe precession

is substantial (Sz >> 0). Xe isotopes were chosen in order to suppress the influence of the

Rb SE field on their comagnetometry (baS = 1.002 bbS[Bulatowicz et al. (2013); Petrov et al.

(2019)]). Because 131Xe has a nuclear spin of 3/2, the comagnetometer signal is sensitive to

varying electric field gradients near the cell walls [Wu et al. (1988)].

This device has demonstrated kHz level rotation sensing bandwidth limited only by the

lowest Larmor precession frequency of the two isotopes. The scale-factor is unity and is very
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Figure 1.3: Left: schematic of longitudinal comagnetometer configuration used in the
NGC-gryo. Right: schematic of transverse comagnetometer configuration described in this
thesis.

uniform across the entire sense bandwidth. We should note that it is the only NMR-gryo to

date whose scale factor stability has been measured. The short term noise is higher than

other methods purportedly from quantization noise. The best long term stability is on the

order of 10’s nHz. This is the most miniaturized and fieldable NMR-gyro demonstrated thus

far.

Self-compensating non-magnetometer

The self-compensating (SC) non-magnetometer utilizes the interaction between polarized

alkali atoms and noble gas nuclei to measure NMSI [Kornack and Romalis (2002); Kornack

(2005)]. It operates by applying a compensation field which largely cancels the nuclear

magnetization experienced by the alkali-metal atoms thereby allowing both alkali-metal

atoms and noble gas nuclei to be brought into resonance despite vastly different gyromagnetic
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ratios. The measured comagnetometer signal, under this “self-compensating” condition,

is proportional to the difference in field coupling to the two spin species. Since both spin

species occupy the same volume they experience the same classical magnetic field. Each spin

species’ sensitivity to NMSI is likely not the same. Hence, the signal from the device is first

order insensitive to magnetic fields while retaining sensitivity to NMSI. This device is not a

comagnetometer as defined in this chapter because it has only one observable.

The device was originally demonstrated using 3He-K [Kornack et al. (2005)] and has

demonstrated lower short term noise than SE pumped comagnetometers. The long term

stability is similar to other state of the art devices, roughly 10 nHz. The scale factor of this

device depends on how well the compensation field cancels the nuclear magnetization and

therefore requires calibration (non-physics scale factor). It has been used to put the most

stringent upper bounds on LLIV [Brown et al. (2010)] and anomalous spin-mass couplings

for Compton wavelengths greater than 1 cm [Vasilakis et al. (2009); Lee et al. (2018)].

Researchers have extended the SC non-magnetometer using modulation techniques to allow

for dual axis rotation sensing with excellent noise performance [Jiang et al. (2018)].

Pulsed FID comagnetometer

The first demonstration of a free induction decay (FID) SE pumped comagnetometer

was in 2013 using a 129Xe-131Xe comagnetometer [Bulatowicz et al. (2013)]. Again, these

isotope’s were chosen because of their similar SE enhancement factors. A new pulsed FID

comagnetometer was recently demonstrated using 3He-129Xe-87Rb [Limes et al. (2018)].

While the difference of the enhancement factors of these noble gas species (bXe
S = 110 bHe

S [Ma

et al. (2011)]) is much greater than for 129Xe-131Xe, the influence of time average Sz was

greatly suppressed by applying transverse magnetic field pulses in concert with polarization

modulation of the alkali-metal atoms. When the area of the transverse magnetic field pulses

produce π precession of the Rb atoms, the coupling between the Rb atoms and Xe nuclei



12

Group Bandwidth (Hz) ARW (deg/rt Hr) Bias (deg/Hr)
NGC1 300 0.005 <0.02
FID2 0.003 0.025 <0.01
SC3 10 0.006 0.05

This work 1 0.15 1

Table 1.2: Summary of performance of SE pumped comagnetometers. ARW is angle-random-
walk. All but the SC have physics scale factors. References: 1: Walker and Larsen (2016),
2: Limes et al. (2018), 3: Jiang et al. (2018)

due to SE fields is greatly suppressed. This scheme enabled comagnetometer stability similar

to that achieved with the SC non-magnetometer (∼10 nHz) while realizing a “physics” scale

factor. The sensitivity bandwidth of the device is very limited (< 0.01 Hz). In addition, the

rate at which the device averages noise is orders of magnitude slower than the observed SNR

suggests. This discrepancy could be due to non-linearity in the Rb magnetometer because of

the large noble gas spin-exchange fields it senses.

This scheme was used to make the first measurement of the through space J-coupling

between 3He and 129Xe [Limes et al. (2019)] and is currently being used to search for low

frequency dark matter. Some of the performance metrics which have been measured in all

three of the devices mentioned thus far are summarized in Table 1.2.

1.4 This work

The device demonstrated in this thesis, a schematic of which is shown in Fig. 1.3, is a SE

pumped 131Xe-129Xe comagnetometer which produces no first-order time-averaged Sz or Kz

such that the comagnetometer signal

ξ ≡ ρΩb − Ωa

1 + ρ
≈ ρXb

z −Xa
z

1 + ρ
(1.5)



13

is independent of magnetic fields and longitudinal SE fields, where the superscripts a

and b refer to 129Xe and 131Xe, respectively, and ρ = 3.373417(38) [Makulski (2015)].

Similar to the NGC-gryo, the bandwidth of the device is limited only by the lowest Larmor

frequency of the two isotopes. The scale factor between the Larmor resonance frequencies

and NMSI is determined predominantly by fundamental physical constants, namely the

gyromagnetic ratios. It is, to a good approximation [Brinkmann et al. (1962)], independent

of the details of our apparatus (such as temperature, gas pressures, etc.). This means that

comagnetometry can be performed without the need for calibration (in contrast with the SC

non-magnetometer).

Longitudinal alkali-metal atom and noble gas nuclear polarization are avoided by optically

pumping 85Rb atoms transverse to a low duty cycle pulsed bias field. The pulse area of

each bias field pulse is chosen such that the Rb spins precess 2π radians during each bias

pulse. The Xe isotopes precess only ∼ 2π/103 radians per pulse (owing to their much smaller

magnetic moments). As such, we can approximate the effective bias field experienced by the

Xe isotopes due to the pulses as a continuous function,

Bp(t) = ωp(t)/γ
S, (1.6)

where ωp(t) is the repetition rate of the 2π pulses and ~γS = 2µB/(2I + 1), where I = 5/2 is

the 85Rb nuclear spin and µB is the Bohr magneton. Because of the low duty cycle nature of

the pulses, the polarized atoms and nuclei are at zero field most of the time. This allows for

SE collisions to transfer angular momentum from the Rb to the Xe (thereby polarizing the

Xe nuclei) and for the Rb to precess due to each Xe isotope’s SE field (thereby sensing the

Xe nuclear precession). Both Xe resonances are simultaneously excited by either modulating

the polarization of Rb atoms at the Xe resonance frequencies or by modulating the repetition

rate of the bias field pulses at subharmonics of the Xe resonance frequencies. The results of

each excitation method are summarized in the sections below.
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Polarization Modulation

Modulating the handedness of polarization of the transversely oriented D1 pump laser pro-

duces a modulated transverse Rb polarization. Insofar as the pump polarization modulation

(PM) has Fourier coefficients near each Xe resonance (as determined by the average bias

pulse repetition rate and stray magnetic field) then transversely polarized Xe will be excited.

Chapter 2 gives a detailed derivation of this process using the Bloch equation.

Chapter 3 provides a detailed description of the experimental apparatus and the various

diagnostic measurements we made to characterize the PM comagnetometer. We find that

PM suppresses time averaged Sz by at least 2500x while simultaneously realizing 1% and

0.1% transverse polarization for 129Xe and 131Xe, respectively. The effective SNR is roughly

5000
√

Hz and the bias instability is less than 1 µHz. The field suppression factor, defined

as ξ’s response to bias field modulation divided by 131Xe’s frequency response, was greater

than 100.

We found that our detection scheme for PM caused roughly 10% of 129Xe’s phase

information to show up in 131Xe phase’s detection channel and vice verse. This cross talk is

undesirable as it is subject to variation and changes the scale factor of the comagnetometer.

It was in pursuit of solving this cross talk issue that lead us to attempt exciting the Xe

isotopes without modulating the Rb pump polarization. Modulating the pump polarization

(as will be discussed extensively in Chapter 3) reverses the gain of the magnetometer and

produces optical pumping transients. These gain reversals plus transients complicate the

detection fidelity of the Xe phase of precession. Ideas developed in Ch. 4 should, if applied

to the PM comagnetometer, greatly reduce these effects.

Bias Pulse Density Modulation

The pulsed nature of the bias field we implement enables the novel ability to apply bias field

modulations which are experienced much more strongly by the Xe nuclei than by the Rb
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atoms. This is due to the 2π precession each pulse causes the Rb to undergo. In the low duty

cycle limit, the Rb would not be able to distinguish any change in pulse density. We use

this novel capability to excite both Xe isotope’s nuclei simultaneously without modulating

the polarization of the D1 pump laser light. Although abandoning PM compromises the

suppression of time averaged Sz, doing so allowed us to explore new detection schemes which

addressed the cross talk issue we discovered when performing PM. Chapter 2 provides a

detailed derivation using the Bloch equation reviewing how modulating the bias pulse density

produces transversely polarized Xe in a continuous fashion.

Chapter 4 provides a detailed description of the experimental apparatus and the various

diagnostic measurements we made to characterize the bias pulse density modulation (PDM)

comagnetometer. We measure an ARW of 7 µHz/
√

Hz and bias instability of roughly 1 µHz.

The field suppression was found to be 1800. We found that first order treatment of the

influence of magnetometer phase shifts due to stray magnetic fields (see Ch. 2) resulted in

order-of-magnitude improvements to the field suppression. This improvement should not

be unique to PDM comagnetometry and we expect applying similar methods to the PM

comagnetometer would similarly improve the field suppression. The cross talk was reduced

by an order of magnitude for both isotopes compared to PM. We attribute this improvement

to suppressed gain modulation.

The demonstrated performance of the PDM comagnetometer compared to other state of

the art comagnetometers is shown in Table 1.2. Both the noise and stability are limited by

unknown systematic errors. However, despite the excited Xe SE field being 30 times smaller

than the FID comagnetometer, the ARW is only 6x greater at 230 times the bandwidth. While

the ARW and bias instability of the comagnetometer is not more impressive than other state

of the art comagnetometers, the novel first order suppression of longitudinal SE fields makes

continued efforts to reduce limiting systematics a worthwhile venture. It is clear that the

chip-scale comagnetometers of the future will require reliable suppression of these longitudinal

SE fields. The comagnetometer described in this thesis is the only comagnetometer known
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to the author which suppresses longitudinal SE fields while maintaining sense bandwidth.

Chapter 5 describes possible future improvements to transverse comagnetometry including

discussion of the use of 3He-129Xe vapor cell and exciting the noble gases using a hybrid

technique including both PM and PDM. Chapter 5 also discusses how the demonstrated

stability should be sufficient to reduce the upper bound on spin-mass couplings by an order of

magnitude for Compton wavelengths less than 1 mm [Bulatowicz et al. (2013)]. In addition,

the through space J-coupling between 129Xe and 131Xe, which has yet to be measured, should

also be well resolved by this device.
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Chapter 2

Theory

When the facts change, I change my mind. What do you do sir?

— Lord John M. Keynes

This chapter demonstrates how we model the Rb and noble gas polarizations using Bloch

equations. Steady state solutions are found for two excitation methods: polarization modu-

lation and pulse density modulation. We show how the Rb SE field, if left uncompensated,

produces broadening of the NMR. We also show how the presence of stray Bz produces a

magnetometer phase shift which influence both the drive and detection of the Xe Larmor

resonance. We review the influence of photon shot noise on the comagnetometer and estimate

the photon shot noise limited rotation sensitivity.

2.1 The Bloch equation

Xe nucleus

The two dominant interactions which govern the precession of noble gas nuclei in the

pressence of polarized alkali-metal atoms are magnetic fields and spin-exchange collisions.

Of course, the many non-magnetic spin-dependent interactions mentioned in Chapter 1 will
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also contribute to noble gas precession. We will add these after establishing the dominant

interactions.

We begin by considering the influence of magnetic fields. Following [Walker and Larsen

(2016)], the Hamiltonian describing the energy of a nuclear spin K immersed in a magnetic

field B can be written as H = −~γB ·K. Applying Ehrenfests’s theorem we find

d〈K〉
dt

=
−i
~
〈[K, H]〉 = iγ〈[K, K ·B]〉 = −γB× 〈K〉, (2.1)

which is simply the equation for a magnet in a magnetic field and is often referred to as the

Bloch equation in NMR literature. For convenience we drop the 〈〉 notation. We find it useful

to describe the nuclear polarization in terms of components perpendicular and parallel to a

uniform bias field, K = Kz ẑ + K⊥. In addition, a phasor notation enables ease of describing

the amplitude and phase, defining K+ = Kx + iKy = K⊥e
−iφ where φ = γK

∫
Bzdt.

Spin-exchange between alkali-metal atoms and noble gas nuclei is mediated by the Fermi-

contact hyperfine interaction [Walker and Happer (1997)]. The energy of this interaction

can be written as

HSE = α(r)S ·K, (2.2)

where S is the alkali-metal polarization vector, α(r) is the coupling strength, and r the

inter-atomic separation between the two species. This coupling enables spin transfer from S

to K (and vice verse) through collisions between atom pairs and three-body collisions that

form weakly bound Rb-Xe van der Waals (vdW) molecules. This interaction also produces

effective magnetic fields hence forth referred to as SE fields. These fields are conventionally
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compared to the magnetic field produced by a fictional uniform magnetization as follows,

BK
S = −κXeRb

8πµB
3

nSS = bKS S, (2.3a)

BS
K = κRbXe

8πgKµN
3

nKK = bSKK. (2.3b)

Here, n is the respective atom density, µ is the respective magnetic moment, and κ is

the so called enhancement factor. The notation BK
S is read as “the SE field produced by

S as experienced by K”. An enhancement factor greater than one suggests a quantum

amplification of the experienced dipolar magnetic field. The enhancement factor for Rb-Xe

has been measured to be κRbXe = κXeRb = 518(8) [Nahlawi et al. (2019); Ma et al. (2011)].

Such a large enhancement factor stems from the high probability of finding the Rb valence

electron inside the Xe nucleus [Grover (1978); Schaefer et al. (1989)].

Similar to the Fermi-contact hyperfine interaction between alkali-metal atoms and noble

gas nuclei, there also exists a spin-spin coupling Ia·Ib between the two noble gas species [Limes

et al. (2019)]. This so called through-space J-coupling exists due to second order electron

interactions which take place in Xe-Xe vdW molecules and depends on the vapor cell

geometry. This interaction also produces an effective magnetic field which we write as

BK
K′ = bKK′(κXeXe)K

′. No measurement of κXeXe yet exists but it is calculated to be

−0.34 [Vaara and Romalis (2019)]. We discuss recent measurements of κXeHe in the

Princeton FID comagnetometer and motivate its geometric dependence in Ch. 5.

Taking into account the influence of SE collisions, the Bloch equation becomes

dK

dt
= −Ω×K− ΓK + ΓKS S, (2.4)

where Ω = γ(B + bKS S + bSKK′+ X), X represents non-magnetic spin-dependent interactions,

K′ represents a second nuclear spin species, Γ is the total relaxation rate of the noble gas

nuclei, and ΓKS is the SE pumping rate. The total relaxation rate Γ is dominated by SE
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collisions, cell wall interactions, and magnetic field gradients. Since our apparatus is in a

magnetic shield we presume magnetic field gradients to have a negligible contribution to

Γ. Furthermore, the largest magnetic field is the pulsed bias field whose orientation defines

ẑ. For both PM and PDM comagnetometry the time average of the Rb polarization is

orthogonal to the bias field so that S = S++̂. Finally we can write the Bloch equation as

two equations describing the transverse and longitudinal noble gas nuclear polarizations as

dK+

dt
= −(∓iΩ + Γ2)K+ + ΓKS S+ +∓iΩ+Kz, (2.5a)

dKz

dt
= ∓(ΩyKx − ΩxKy)− Γ1Kz, (2.5b)

where Γ1 is the longitudinal relaxation rate and Γ2 = 1/2πT2 is the transverse relaxation

rate. Since γa < 0 and γb > 0 we find it useful to write γ (and hence Ω) as a positive value.

The sign is written explicitly out front (top sign is for a, bottom sign is for b). We find this

useful when we solve for steady state solutions to the Bloch equation.

SE Broadening: Before moving on to describing the Bloch equation for the Rb atom, it

is important to note the influence of the iΩ+Kz term. The transverse field experienced by

the Xe can be written as Ω+ = γK(B+ + bKS S+). The term bKS S+ is of order 100 µG. This

substantial SE field can produce a torque on the Xe nuclei causing them to tip into ẑ and

consequently broaden the measured NMR linewidth. Such SE broadening can be suppressed

by applying a magnetic field B+ to cancel bKS S+ thereby restoring the NMR linewidth to the

Γ2 limit [Korver et al. (2015); Korver (2015)]. Because bKS S+ us much less than the magnetic

width of the magnetometer, the performance of the magnetometer is not degraded by the

presence of the compensation field. For the analysis which follow we begin by assuming that

B+ = bKS S+ so that we can ignore the term iΩ+Kz. We then explore B+ 6= bKS S+ for the

case of PDM excitation.
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Rb atom

The Rb atoms serve two primary purposes in our system: we use the DC transversely

polarized Rb S+ to polarize the Xe nuclei and the AC longitudinally polarized Rb Sz to

detect the Xe precession. For Ω << Γ′ the time-average solution to the Bloch equations for

the Rb polarization

S =
RΓ′ + Ω×R + Ω(Ω ·R)/Γ′

Γ′2 + Ω2
(2.6)

can be expanded as

S =
R

Γ′
+

Ω×R

Γ′2
+

Ω×Ω×R

Γ′3
+ ..., (2.7)

where R =
∫

Φ(ν)σ(ν)/A dν is the pumping rate, σ(ν) is the cross section of the atomic

transition,
∫

Φ(ν) dν = P/hν is the total photon flux for a beam of power P incident an area

A, Γ′ is the total relaxation rate (including pumping), and Ω = γSB where B = bSaKa+bSb Kb

is the magnetic field experienced by the Rb. Note how the bias field does not appear in the

field experienced by the Rb. This is because the bias field is applied as a sequence of low

duty cycle pulses, the area of which correspond to 2π precession of the Rb atom. These

equations assume negligible back polarization from the Xe to the Rb [Limes et al. (2018)],

and that K precesses slowly such that Sz responds adiabatically. Since we optically pump

along x̂ we have R = R(t)x̂, and

S+ =
R(t)

Γ′
+ i

R(t)Ωz

Γ′2
=
R(t)

Γ′
eiεz , (2.8a)

Sz = −R(t)

Γ′2
(Ωy −

Ωz

Γ′
Ωx) =

−R(t)

Γ′2
Im[γSbSKK+e

−iεz ], (2.8b)
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Figure 2.1: Cartoon depicting the influence of the stray field Bz on the phase of a rotating
B⊥ as measured by the Rb magnetometer.

where

εz = tan−1(
Sy
Sx

) ≡ tan−1(
Bz0

Bw

) << 1 (2.9)

is the magnetometer phase shift. Bw = Γ′/γS is the magnetic width of the magnetometer.

Figure 2.1 depicts how a stray Bz effectively rotates the quantization axis of the Rb

magnetometer thus causing a phase shift in the measurement of a rotating B⊥. We will

show in Ch. 2.5 that the derivative of this phase shift appears as a rotation. In Ch. 4.4 we

demonstrate that accounting for εz enables order of magnitude improvement in the field

suppression of the PDM comagnetometer.

Having motivated the Bloch equations describing the Rb atom and noble gas nuclear

polarizations we can consider PM and PDM excitation individually.

2.2 Polarization modulation

For PM excitation the Xe NMR are driven by modulating the transverse Rb polarization

near each isotopes resonance frequency while the average bias pulsing frequency is kept fixed.

Hence, we set S+(t) = eiεz
(∑

p spe
ipω1t +

∑
q sqe

iqω2t
)

and Bz = Bz0 +Bp where Bp = ωp/γ
S,
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Bz0 is the stray field inside our magnetic shields, and si is the Fourier coefficient of S+ at ωi.

With the substitution K+ = K⊥e
±i(ωdt+δ), where δ is the phase shift of the Xe relative to

the phase of S+ we find the real part of Eq. 2.5a to be

dK⊥
dt

= −Γ2K⊥ + ΓKS [sp cos((pω1 + ωd)t+ δ ± εz) + sq cos((qω1 + ωd)t+ δ ± εz)] (2.10)

where the summations over p and q are omitted for convenience and we have assumed that

Ω+ = 0. The steady state solution of this equation is K⊥ = ΓKS (sp + sq) /Γ2 when ωd is

chosen such that the resonance condition ωd + pω1 = qω2 +ωd ∼ 0 is satisfied and δ, εz << 1.

Similarly, the imaginary part of Eq. 2.5a (once again for δ, εz << 1) is

dδ

dt
= −∆− Γ2(δ ∓ εz), (2.11)

where ∆ = ωd − γBz. The sign in front of εz is isotope dependent because the Xe isotopes

precess in opposite directions. We can solve this equation in the Fourier domain and find

δ̃ = −∆̃± Γ2ε̃z
Γ2 + iω

, (2.12)

where the notation f̃ = f(ω) is utilized.

2.3 Pulse density modulation

For PDM excitation we excite the transverse Xe polarization by modulating the pulsed

bias field repetition rate ωp instead of S+. Hence, we set S+(t) = S⊥ =constant. The ẑ

component of the magnetic field experienced by the Xe nuclei is Bz = Bz0 +Bp(t), which

includes the stray field Bz0 and the bias field from the 2π pulses Bp(t) = Bp0 + Bm(t),

where Bm is the modulated part of the pulsed field. The Xe nuclei experience both Bz0

and Bp, but because the Rb atoms precess by 2π during each bias pulse, the Rb atoms
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experience predominantly Bz0. Although one could modulate Bz0 to excite the Xe NMR,

the modulation depth required to do so efficienty would compromise the Rb magnetometer.

We modulate ωp as

ωp(t) = ωp0(1 + b1 cos(ω1t) + b2 cos(ω2t)), (2.13)

where ω1, and ω2 determine the Xe drive frequencies, and b1 = B1/Bp0 and b2 = B2/Bp0 set

the depth of modulation.

We measure the difference δ = φ − α between the instantaneous Xe phase φ and a

reference phase α =
∫

(ωd + γBm)dt which is the phase the Xe would have if the only fields

present were the pulsing fields and if ∆ ≡ ωd−Ω0 = 0 with Ω0 = γ(Bz0 +Bp0) +Xz. We let

K+ = K⊥e
±i(α+δ). To first order in δ and εz, the real part of Eq. 2.5a is

dK⊥
dt

= −Γ2K⊥ + ΓKS S⊥[cos(α)− (δ ∓ εz) sin(α)]. (2.14)

To find the time averages of cos(α) and sin(α) (and thereby arrive at a steady-state solution

for K⊥), consider the time average of eiα for Bm = B1 cos(ω1t) + B2 cos(ω2t). Making

substitutions using the Jacobi-Anger expansion

eizsinθ =
∞∑

n=−∞

Jn(z)einθ, (2.15)

where Jn(z) is the n-th Bessel function of the first kind, and keeping only terms of the

sums that would mix to give a contribution at DC, we find the time averages cos(αK) =

J−pK (γ
KB1

ω1
)J−qK (γ

KB2

ω2
) ≡ jK and sin(αK) = 0. The steady-state solution for K⊥ is then

K⊥ =
ΓKS S⊥

Γ2

jK (2.16)

where pK and qK are chosen to satisfy the resonance condition ωKd = pKω1 + qKω2.
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The imaginary part of Eq. 2.5a is

dφ

dt
= Ω− ΓKS S⊥

K⊥
sin(φ∓ εz). (2.17)

To get an expression for δ, we make substitutions as given above and use the steady-state

solution for K⊥. To first order in δ and εz, we arrive at

dδ

dt
= −∆− Γ2(δ ∓ εz), (2.18)

which is the same as Eq. 2.11 from PM excitation.

Influence of transverse fields

The expressions derived above are only valid when the transverse fields experienced by the

noble gas are negligible. Here we demonstrate their influence on the PDM comagnetometer.

The transverse fields experienced by the Xe include both classical fields (such as those from

moving charges) and SE fields. We write B+ = Bx + iBy = (Bx0 + bKS Sx) + i(By0 + bKS Sy) =

B+0 + bKS S+ where B+0 are the classical fields and bKS S+ are the SE fields from polarized Rb

atoms. The steady state solution of Eq. 2.5b is

Kz =
jKγKK⊥

Γ1

(By +Bxδ
K). (2.19)

Note how Kz depends on the total (classical plus SE) average transverse magnetic fields.

Additionally, a DC By produces Kz but a DC Bx produces a Kz only when δK 6= 0. Using

the steady state solution for Kz we can solve for the imaginary part of Eq. 2.5a to first order

in δ and find,

dδK

dt
= −∆K − ΓK2 [ηKByBx ∓ εz]− Γ2 δ

K [1 + ηK(B
2

x +By0By)] (2.20)
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where ηK = (jKγK/ΓK2 )2. Note how this expression is equal to Eq. 2.18 when Bx = By = 0.

We see that the product BxBy = (Bx + bKS Sx)(By + bKS Sy) causes a phase shift of the noble

gas while B
2

x − By0By causes broadening of Γ2 [Korver et al. (2015)]. The results of this

derivation are applicable to PM excitation with the caveat that the PM comagnetometer is

only sensitive to transverse fields that are resonant (co-precess) with the Xe.

2.4 Performance Limits

In Ch. 1 we mentioned that an important motivation for developing a new type of noble gas

comagnetometer was because, to date, all demonstrated devices where limited by technical

noise sources. Any proposal for a new scheme which suppresses systematic error would only

be of interest if its fundamental noise remained similar to other schemes. In this section

we derive estimates for how the photon shot noise limits the performance of a SE pumped

comagnetometer.

Photon Shot Noise

We detect Sz via Faraday rotation. A linearly polarized diode laser, or probe laser, whose

frequency is tuned near the D2 line of Rb is directed along ẑ parallel to the bias field produced

by the pulsing coils. Linearly polarized light is a superposition of σ± components. These

components are absorbed/phase-shifted differently as they propagate through a spin-polarized

vapor effectively rotating the angle of linear polarization ΦF of the probe proportional to Sz.

We write,

ΦF = β0SzS∞
∆

W (1 + 4∆2/W 2)
≈ β0SzS∞

W

4∆
, (2.21)

where β0 = nSlσ0 is the optical depth at line center, σ0 = σmaxWraditation/Wpressure is the

cross section, nS is the alkali-metal atom number density, l is the probe’s path length through
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the cell, W is the width of the D2 resonance, ∆ is the detuning from resonance, and S∞

characterizes the degree of circular dichroism of a transition (J = (1/2,3/2), S∞ = (1, 1−/2)).

The approximation holds for ∆ >> W . The following logic approximates the photon shot

noise limit of the magnetometer noise good to a factor of two or so. For a more careful

calculation see [Romalis (2013)]. If we assume the maximum value of ΦF is of order unity

(call it 1/4 for convenience) then the ∆ which produces this ΦF is ∆ = W
√
β0. Operating at

this ∆ for the D2 transition (S∞ = −1/2) implies ΦF = −
√
β0Sz/8. The measurement of ΦF

is (ideally) limited by shot noise due to the particle nature of photons so that δΦF = 1/2
√

Φ

where Φ is the photon flux. Finally, from Eq. 2.7 we write Sz = −γSBySx/Γ
′ = −SxBy/Bw.

So the uncertainty in the measurement of By using Faraday rotation is

δBy =
4Bw

Sx
√

Φβ0

. (2.22)

We normally use 1 mW of detected probe photons so that Φ = 1 mJ
sec

1 eV
1.6×10−19 J

photons
1.6 eV

=

3× 1015 photons
sec

. Our vapor cells have sufficient Xe and N2 buffer gas to pressure broaden the

D2 transition width at room temperature from Wradiation = 6 MHz to Wpressure ≈ 6 GHz such

that σ0 = 2× 10−9 cm2 6 MHz
6 GHz

= 1× 10−12 cm2. The cell is heated such that nS ≈ 1013 cm−3.

With a l = 1 cm path length these criterion produce an effective optical depth at line center

of β0 ≈ 30. The pump detunings and pump power are chosen to balance the time average

of the AC stark effect [Korver (2015)] while producing Sx ≈ 1/2. In practice we measure

Bw ≈ 3 mG (Γ′ ≈ 50000 sec−1) which is similar to what we predict using data from the

literature (see App. A ). Evaluating Eq. 2.22 with these numbers lead to δBy ≈ 80 pG/
√

Hz

or 8 fT/
√

Hz. Although δBy can be reduced by increasing the probe power, a realisitic

probe laser has some circular polarization which produces relaxation thereby increasing Bw.

Hence, the probe laser’s power can not be increased ad infinitum without degraded noise

performance.
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2.5 Comagnetometry

In App. A we estimate ΓKS and find that for PM and PDM excitation schemes the expected

transverse SE field experienced by the Rb due the noble gas polarizations is roughly

BK ≈ 100µG. In Sec. 2.4 we described how the photon shot noise limits the detection noise

of the Faraday rotation measurement of Sz and how quantum projection noise places a lower

bound on δ. In this section we derive expressions relating these fundamental noise processes

to the comagnetometer’s sensitivity to non-magnetic spin-dependent interactions.

Faraday detection allows us to measure δ. However, we desire to perform comagnetometry

using the precession frequencies. One can either convert the measured phase to frequency

using Eq. 2.12 or by creating a feedback loop which corrects ωd to keep the measured phase

δ ± εz ≡ 0. The latter is desirable as Eq. 2.12 contains Γ2 which is subject to change. The

feedback to correct ωd can be written as

ω̃d = G̃(δ̃ ± εz + ñ) (2.23)

where G is frequency dependent gain (in units of 1/sec) and n = (SNR)−1 = bSKK⊥/δBy is

due to finite detection noise (such as photon shot noise). After correcting for finite gain, the

drive frequencies become

ω̃∗d = ω̃dG̃
−1(iω + Γ2 + G̃) = Ω̃0 ± iωε̃z + (iω + Γ2)ñ. (2.24)

We see that ω̃∗d is not merely equal to the Larmor resonance of the noble gas but also depends

on the SNR and derivative of the magnetometer phase shift.

The comagnetometer signal is constructed so as to cancel precession which is correlated

according to each isotopes gyromagnetic ratio, hence

ω̃co = ρω̃b∗d − ω̃da∗ = ρX̃b
z − X̃a

z + iωε̃z(1 + ρ) + ñbρ(iω + Γb2)− ña(iω + Γa2). (2.25)
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Figure 2.2: Influence of finite SNR on rotation sensitivity. Top panel is amplitude spectral
density of R̃. Solid curve is for ε̃z = 0 whereas the dashed curve is for ε̃z = 10 µrad/

√
Hz.

Bottom shows ADEV and MDEV of solid curve from top panel assuming fc = 10 Hz and
τ0 = 1 s.

We see that the influence of finite SNR is minimized if ρñb = ña, such that if the detection

noise is the same for both isotopes then bSKK
b
⊥ = ρ bSKK

a
⊥.

For the special case of detecting rotations X̃a
z = −R̃z and X̃b

z = +R̃ such that R̃ =

ω̃co/(1 + ρ). Figure 2.2 shows the anticipated rotation noise (amplitude spectral density)

R̃ assuming the detected SE field is 100 µG for each isotope, the detection noise is 100

pG/
√

Hz (so that ña = ñb = 10−6 rad/
√

Hz), and Γa2 = Γb2 = 10 mHz. The solid curve is

for ε̃z = 0 whereas the dashed curve is for ε̃z = 10 µrad/
√

Hz. We see that the finite SNR

produces white noise of frequency (Sy = h0, where Sy is power spectrum in units of Hz2/Hz)

for frequencies from 0 to Γ2 and then white noise of phase (Sy(f) = h2f
2) for frequencies
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Sy(f) σ2 σ2
M

h2f
2 3h2fc

8πτ2
3h2fcτ0
8π2τ3

h0
h0
2τ

h0
4τ

Table 2.1: Influence of ADEV and MDEV on white noise of phase (top) and flicker noise of
phase (bottom). fc is the cut off frequency of anti-aliasing (low pass) filter. τ0 is the smallest
integration time. The ADEV result assumes 2πfcτ >> 1.

greater than Γ2, where h2 = (ρñ
b+ña

1+ρ
+ ε̃z)

2 and h0 = (
ρñbΓb

2+ñaΓa
2

1+ρ
)2.

A common technique for characterizing frequency stability is the Allan standard deviation

(ADEV) [Vanier and Audoin (1989)]. Also known as the “second difference”, this computation

was developed to converge for flicker noise of frequency and random walk of frequency as

the simple variance does not. The second difference is computed by dividing a time series of

length T composed of frequency fluctuations y(t) relative to a reference (with no dead time)

into n = T/τ segments where τ is the averaging time. For each τ , the average fluctuation

of each segment ȳ(t) is computed and the square of the difference between two consecutive

segments is summed together. We write

σ2 =
1

2(n− 1)

n−1∑
i=0

(ȳi+1 − ȳi)2. (2.26)

The influence of the ADEV on white noise of phase and white noise of frequency is shown in

Table 2.1.

The modified Allan deviation (MDEV) [Allan and Barnes (1981)] was later developed to

enable the distinction between white noise of phase and flicker noise of phase, which both

trend as τ−1 for ADEV. It is an extension of the ADEV where the square of the difference

of non-adjacent segment averages are also computed. We write

σ2
M =

1

2(n− 1)

n−1∑
i=0

i∑
k=1

(ȳi+k − ȳi)2. (2.27)
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The effect of this additional averaging is to distinguish white noise of phase from flicker noise

of phase while minimally influencing the scaling of the other noise processes all at the cost

of increased computation time. Table 2.1 shows the influence of MDEV on white noise of

phase and white noise of frequency. Fig. 2.2 shows both the ADEV and the MDEV of R̃.

We see that the MDEV averages the white noise of phase more quickly than the ADEV. For

long integration times the ADEV and MDEV are both limited by white frequency noise.

In this section we have discussed how to use feedback to observe the noble gas Larmor

resonance frequencies in real time. We have demonstrated how the magnetometer phase shift

contributes to the measured resonance frequency. We have also described the comagnetometer

signal and specifically addressed how finite SNR contributes to the noise and stability for

measurements of non-magnetic spin-dependent interactions. For the case of photon shot noise

limited comagnetometry, we find that the estimated rotation sensitivity is very promising

compared to other state-of-the-art comagnetometers (see Ch. 1.3). A rotation frequency

uncertainty of 10 nHz is reached in less than 100 s of integration, while maintaining 1 Hz

measurement bandwidth.

2.6 Systematic noise sources

Before closing this chapter we would like to summarize some of the many sources of systematic

error which can prevent the comagnetometer performance from being photon shot noise

limited. Although this list is not exhaustive, it provides an excellent starting place for

debugging poor performance. It also serves as an introduction to the topics explored in

Chapters 3 and 4.

Longitudinal SE fields: we have already written at length about the influence of these

fields. Kz is produced if both ∆ 6= 0 and the Rb SE field is not well compensated (both x̂

and ŷ directions). The Rb SE field itself depends on the pumping rate (pump power and

detuning) and the number of Rb atoms (cell temperature).



32

Faraday rotation noise: Balanced polarimetry is an excellent experimental technique

for realizing photon shot noise limited detection of Rb atom precession because probe laser

amplitude fluctuations are suppressed to first order. The amount of suppression depends

non-linearly on the time average of the photodiode balance (poor balance leads to poor

amplitude noise rejection). We use two photodiodes tied anode to cathode to subtract the

measured photo currents (also referred to as hard-wired subtraction). Thus, this balance

must be set by hand. This balance is subject to drift due to: temperature dependent vapor

cell quarter wave retardance, and stray By drifts producing Sz. There do exist so called

auto-balancing circuits but they should be approached with caution as they can be difficult

to optimize.

DAQ noise: The Faraday rotation difference current is sent to a current to voltage

converter (with finite SNR) and the output voltage is digit ized using a 16 bit DAQ. The

SNR of this DAQ is optimized when the full range ±10 V is filled with signal. The gain of

the current to voltage converter may not be turned up until the DAQ is filled because of

the large junction capacitance of the large area photodiodes (turning up the gain too high

effectively rolls off the response of the photodiodes). As such, we have a voltage amplifying

stage after the current to voltage converter. The gain of this voltage amplifier is chosen so

the digitized signal fills the DAQ.

pulsing noise: If the pulse area of the bias pulses fluctuate then we expect the white

noise floor of the magnetometer to be degraded. Additionally we expect these fluctuations

to produce noise on ε̃z. Since the PDM comagnetometer uses the bias pulses to excite the

Xe, pulse area fluctations and pulse timing errors serve to limit the effective drive-to-noise

ratio. Pulse timing errors only appear on the magnetometer and ε̃z if the pulse area is not

equal to 2π.

pump pointing: If the pump beam is oriented somewhat along ẑ then we expect any noise

due to optical pumping (from pump amplitude or detuning fluctuations) to appear on Sz,

thereby degrading the effective noise floor of the magnetometer.
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AC stark balance: The D1 pump photons produce an effective magnetic field which

is experienced by the Rb atoms but not by the Xe nuclei and which depends on pump

parameters. We suppress or balance the AC stark effect by pumping from with both red

and blue detuned photons (the AC stark effect produces a magnetic field parallel to the

handedness of polarization and dispersively dependent on the detuning of the pump photons).

Poor AC Stark balance causes the Rb to experience a Bx which increases the magnetometer’s

sensitivity to Bz. This could increase the influence of bias pulsing noise on the magnetometer

noise performance.

Drive to noise ratio: The Xe are effectively damped driven oscillators. If they are driven

with a noisy source their precession will exhibit the same noise. Hence, the SNR of the

detected Xe precession is bounded by the drive to noise ratio of the excitation method

(whether that be PM or PDM).

Temperature drifts: When the temperature drifts many things change including; Rb den-

sity (and hence the ideal transverse compensation field and magnetometer gain), quadrupole

frequency shifts, and Γ2. According to Eq. 2.11, drifts in Γ2 only lead to frequency drifts if

the isotopes are driven off resonance.

2.7 Chapter Summary

In this chapter we have derived expression from the Bloch equation which describe the time

dependence of the Xe and Rb polarizations. We find that purely transversely polarized Xe

can be excited by either modulating the transverse Rb polarization or by modulating the

bias field. We discussed how photon shot noise limits the SNR of the comagnetometer and

estimated the resulting rotation sensitivity.
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Chapter 3

Polarization Modulation Excitation

Thad: How many data points do you have?

Me: Four.

Thad: How many free parameters in your fit funciton?

Me: Three.

Thad: So... we aren’t drowning in statistics...got it!

— Thad G. Walker

Compared to pulse density modulation (PDM) excitation, polarization modulation (PM)

excitation has several advantages. PM excitation AC couples Sz thereby reducing its time

average even more so compared to PDM excitation. From an experimental perspective,

modulating the transverse polarization is readily achieved using off the shelf electro-optic

modulators. This is in contrast to the PDM comagnetometer which requires a carefully

designed pulsing circuit to produce high fidelity PDM.

In this chapter we demonstrate continuous comagnetometry by exciting the NMR of each

Xe isotope by modulating only the handedness of light polarization between two states: σ+

and σ−. The excited SE field bSKK⊥, and transfer function from phase to frequency for each

isotope are in agreement with estimations (see App. A). The short term noise is measured
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to be 16 µHz/
√

Hz, within a factor of 3 of the measured T2 divided by the measured SNR.

What limits the detection noise is uncertain. We have confirmed that the noise is not limited

by the probe laser or detection electronics. The noise may stem from the dual frequency PM

waveform itself. We find that correcting the bias field to keep the phase measured for isotope

a equal to zero stabilized ωb to 1 µHz under ideal conditions. The field suppression factor is

greater than 100. We discovered that imperfect rectification of the dual frequency square

wave PM waveform enables a few percent of the phase information from isotope a to show

up in isotope b’s detection channel and vice verse. This cross talk effectively changes the

scale factor of the comagnetometer. The imperfection in rectification stems from not taking

the optical pumping transients (due to PM itself) and frequency dependent phase shifts

(due to high pass filtering Sz prior to rectification) into account. Implementing a sample and

hold algorithm greatly suppressed the cross talk produced by optical pumping transients.

Although removing the HPF improved the cross talk, it degraded the SNR by an order of

magnitude because rectification maps 1/f noise to the Xe carrier (detection) frequencies.

In a desire to reduce the cross talk without sacrificing SNR we investigate sinusoidal

PM using two different detection schemes dubbed 2f and Smod. We find that producing

reliable purely sinusoidal PM in our optically thick vapor cell to be extremely difficult. We

find that non-linearities (modulate at ω and see its harmonics) depended not only on the

state of polarization of the pump light but also other pump and probe settings. These

non-linearities produced cross talk similar to that demonstrated with square PM. While the

cross talk is reduced via sine PM, the superior performance difficult to maintain on a daily

basis. Furthermore, the SNR of square PM was never reliably reproduced with sine PM.

Table 3.1 summarizes results of the three schemes discussed in this chapter.

Much of the content of this chapter remains unpublished although it has been presented

at various conferences the world over. The reason for our embargo is that there were many

short comings of the PM comagnetometer which we were unable to resolve. The PDM

comagnetometer demonstrated in Chapter 4 sheds much light on many of these issues. At



36

Scheme Signal (µG) C.T. (%) ARW (µHz/
√

Hz) Bias instability (µHz)
Sq., Rect., 1f 70 3 16 0.8

Sine, 2f 45 < 1 44 < 4
Sine, Smod 40 < 1 44 < 4

Table 3.1: Summary of PM performance. The Bias instability listed is the minimum of the
MDEV of ω̃b when the bias field is corrected to keep the measured phase of isotope a equal
to 0. C.T. stands for cross talk. The greatest cross talk (either from a onto b or vice verse) is
listed. The Sine PM cross talk numbers are approximated by comparing Figs. 3.18 and 3.24

the time of writing, we are confident that, armed with the new knowledge from Chapter 4,

we can overcome many of the issues presented in this Chapter.

We begin by reviewing the conclusions of Ch. 2 concerning PM. We then describe the

PM comagnetometer apparatus and what we learned as we optimized each of its components.

We then describe its performance as a comagnetometer giving special attention to anomalous

cross channel signal leakage and its ramifications.

3.1 PM general principles

In Ch. 2 we showed that by modulating the transverse Rb polarization S+ at two frequencies

ω1 and ω2 the steady state transverse polarization of a single Xe isotope can be written as

K⊥ = ΓKS (sp+sq)/Γ2 as long as ωd+pω1 = qω2 +ωd ∼ 0, where si is the Fourier coefficient of

S+ at ωi. We choose (pa, qa) = (1, 0) and (pb, qb) = (0, 1) such that the resonance condition

for each isotope is ω1 = ωa and ω2 = ωb.

From Eq. 2.8 we find that the detected longitudinal Rb polarization Sz is

Sz = −R(t)

Γ′2
[bSaK

a
⊥ sin(δa + αa − εz) + bSbK

b
⊥ sin(δb + αb + εz)], (3.1)

where δ = φ− α is the difference between the drive phase α and the Xe precession phase φ,

εz is the magnetometer phase, and R ∼ S+ is the optical pumping rate of the Rb. Although
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lock-in detection can be accomplished on Sz as it appears in Eq. 3.1, the phase sensitivity is

diminished due to the presence of R(t) which effectively mixes some phase information to

DC. A more effective approach is to ”rectify” the Sz signal such that R(t) is removed.

3.2 Apparatus

Cell Mount

An 8 mm cubic Pyrex cell filled with 68 Torr enriched Xe and 85 Torr N2 with a hydride

coating [Kwon et al. (1981)] is mounted in a ceramic housing with holes for laser light to

enter the cell. The ceramic housing has 4 symmetric faces which fit together like a jig

saw puzzle. On each face is printed conductive traces through which AC at ∼ 150 kHz is

passed to heat the ceramic. The conductive traces are arranged to produce minimal stray

magnetic fields including gradient magnetic fields. The ∼ 1 mm gap between the vapor

cell and ceramic heating jig is shimmed with a 1.5 mm thermally conductive and slightly

compressible gap fill (model: TG 977, manufacturer: T-global Technology, see Fig. 3.1). The

ceramic is wrapped with aerogel (a high temperature insulating material) and secured with

Kapton tape and then fitted into a 3D printed (high temperature Nylon) cartridge with

holes to allow laser light to enter the cell. The compressible nature of the aerogel produces a

friction fit keeping the ceramic jig structure fixed within the cartridge. The cartridge itself

is mounted in a 3-D printed (ABS plastic) rig. This rig has support arms which extend

out three of the magnetic shield portholes. These support arms are secured directly to the

optical table. The purpose of the rig is to secure the cell in the middle of (i) a set of 3

orthogonal square Helmholtz magnetic shim coils, (ii) the bias pulsing coils, and (iii) the

shield. The rig was further designed to allow for the placement of the cell within the shield

to be faithfully reproduced after swapping cells. Figure 3.1 shows photographs of the jig

heaters and cartridge and Fig. 3.2 shows a drawing of the coil rig.
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a)

b)

c)

d)
e)

Figure 3.1: Vapor cell heater and cartridge mount photographs. a) four ceramic jig heater
sides with aerogel pillows attached to outer faces. AC power enters via MMCX connectors at
the bottom of each jig heater. b) 1 cm3 vapor cell with stem tucked into fiberglass insulation.
The RTD sits between the insulation and outer cell wall. c) cartridge with cell installed. d)
gap fill shim on one jig heater face. e) view looking into the jig heater with the cell installed.
Note the four pieces of gap fill between each outer cell wall and the jig heater inner faces.
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Figure 3.2: Sketches of the rig containing the shim and pulsing coil sets. The cell cartridge
sits in the middle. A: view along the ẑ-axis. B: view down the ŷ-axis. C: view through
x̂-axis.

Magnetic Fields

The three layer µ-magnetic shield we use (see Fig. 3.3) was originally designed for performing

gradiometry. It is cylindrical with eight access ports (two along the axis of symmetry and

six oriented tangentially). Since the pump laser light must enter through the ports we must

place our cell such that it is not equidistant from the endcaps. The asymmetry in distance to

endcaps informs the design of our bias pulsing coil set. In order to minimize coupling to the

shield end caps and maximize uniformity across the volume of the cell, the pulsing coil set

consists of two pairs of square coils with differing side lengths wound in series with opposite
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Figure 3.3: Model of magnetic shields. The
end caps are not shown.

Figure 3.4: Picture of coil rig with cell in-
stalled in magnetic shield without the end
caps in place. The probe travels through the
black pipe oriented towards the viewer.

polarity. The purpose of the ancillary counter wound coils is to suppress the field produced

by the coil set at the nearest end cap. See [Korver (2015)] for specific design details. Figure

3.4 depicts the coil rig mounted in the magnetic shields without the end caps installed.

The bias field requires short pulses (< 5 µsec) of ≈ 1 Ampere peak current. The circuit

used to drive the pulsing coil was custom-made and is described in [Korver (2015)]. The

circuit used to drive the shim coils was also custom-made and is described in [Wyllie (2012)].

Optics

To perform optical pumping of the Rb, the outputs of two distributed feedback laser diodes

tuned near the Rb D1 transition (one on either side of resonance) are overlapped (see

Fig. 3.5). This is accomplished by polarizing pump A so that it is mostly transmitted by a

polarizing beam splitter (PBS) and pump B so that it is mostly reflected by the same PBS.

The combined beam is then sent through a quarter wave plate and then separated into two

beams using a PBS once again. The angle of the quarter wave plate is chosen such that both

pump A and pump B have half their power in each output beam. The resulting beams are
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Figure 3.5: Experimental setup for PM excitation. DM: dichroic mirror, Pol: polarizer, HWP:
half wave plate, QWP: quarter wave plate, PBS: polarizing beam splitter, WP: Wallaston
prism, PD: photodiode, EOM: electro-optic modulator, TS: two axis translation stage. The
three axis magnetic shim and pulsing coils are not shown. The setup fits on a four foot
square optical table.

then individually expanded (so that twice their beam waist is equal to the aperture of the

ceramic heater) and coupled into individual EOMs using a one-to-one telescope. Prior to

each EOM is a polarizer and half wave plate. The polarizer ensures that the light incident to

the EOM crystal is purely linear. The half wave plate is used to align the light polarization

relative to the EOM crystal axis. The maximum and minimum voltage of the EOM drive

waveform is chosen to produce ±λ/2 retardance. The quarter wave plate at the output of

the EOM converts the EOM output at Vmax(Vmin) to be σ+(σ−). The collimated output of

each EOM is coupled into the vapor cell from opposing directions. Fine tuning of each pump

beam’s pointing is controlled using long focal length lenses mounted on two axis translation

stages just outside the magnetic shield. The position of each steering lens is chosen to

optimize the magnetometer gain. The power and detuning of each pump laser is chosen
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to cancel the AC Stark effect. Optical pumping from both directions is desirable because

doing so increases uniformity of Rb polarization across the optically thick cell. See [Kornack

(2005)] for a detailed treatment of how optical thickness influences the optical pumping of

alkali-metal atoms as a function of cell depth for single sided pumping.

To detect Sz, approximately one mW of linearly polarized light from the output of a

third distributed feedback laser diode, tuned near the Rb D2 line, is directed through the

center of the cell and parallel to ẑ. Over filling the cell (like the pump lasers) is undesirable

because probe light which does not interact with the atoms is wasted. Under filling the cell

too much is undesirable because then only a small portion of the Rb atoms are being probed

by the laser light. This can be especially detrimental if the optical thickness is high and

(despite dual sided pumping) there exist transverse Rb polarization gradients. Under such

conditions and with a small probe beam waist the Faraday signal could be highly sensitive

to probe beam pointing. For these reasons we set the probe beam waist to be roughly 1/4

the cell width. We find that a pair of crossed polarizers enables control of both the probe

power and polarization orientation incident to the vapor cell. A quarter wave plate just

before the magnetic shield allows for fine tuning of the probe beam’s circular polarization.

This is necessary because the vapor cell introduces some quarter wave retardance to the

probe laser before interacting with the Rb atoms. Since optical pumping the Rb vapor

along ẑ is undesirable we compensate for the circular polarization introduced by the hot cell

using the quarter wave plate. The polarization of the transmitted probe light is analyzed

via a balanced polarimeter consisting of a half wave plate and Wollaston prism. We are

careful to have minimal optics between the back of the vapor cell and the detection photo

diodes as any loss of photons leads to reduced detection sensitivity. We find the Wollaston

prism advantageous compared to polarizing beam splitter cubes because of their excellent

extinction ratio, temperature stability, and minimal optical interference. The half wave plate

is used to “balance” the polarimeter such that the difference current of the detected photo

diodes is small. We use large area photo diodes to prevent probe laser light from missing the
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photo diodes. Although one could focus the probe light onto the PD one must be careful to

not saturate the power per unit area of the PD. Additionally, we find that the polarimeter is

sensitive to fluctuations in beam pointing. Focusing more tightly increases this sensitivity.

We attribute this to lack of uniformity in response across the photo diode active area.

We originally used liquid crystal variable retarders (LCVR) to modulated the pump

photon polarization. We chose these because of their large acceptance aperture compared

to elecro-optic modulators (EOM). The LCVR accept collimated beams with a 10 mm

beam waist. The EOMs however require careful coupling into the few cm long crystal

with apertures of only a few mm. Despite the convenience of coupling into the LCVRs

we eventually found that the fidelity of modulation they produce is far inferior to EOMs.

We proved this by modulating the pump polarization with either EOMs or LCVRs and

measuring the noise on Sz at the PM frequency as a function of DC By. Recall from Ch. 2

that Sz can be written as

Sz ∼
ΩyRx

Γ′2
scos(ωt+ φ), (3.2)

where we have assumed By >> Bz, Bx, Ωy = γSBy << Γ′, and scos() = sign(cos()) which

comes from the PM. If we demodulate Sz with sin(ωt) we find

VQ = 〈Sz sin(ωt)〉 ∼ −ΩyRx

Γ′2
sin(φ) + δVQ, (3.3)

VI = 〈Sz cos(ωt)〉 ∼ −ΩyRx

Γ′2
cos(φ) + δVI , (3.4)

where VQ and VI are the quadrature and in-phase components respectively, and the δV s

represent measurement noise inherent to each component. The ratio VI/VQ is equal to

cot(φ) ≡ DNR in the large Ωy limit.

Figure 3.6 shows VI/VQ (i.e. SNR) vs DC By using either the EOMs or LCVRs. For

large By, VI/VQ saturates at more than 104
√

Hz when the EOM is used to modulate the
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Figure 3.6: Comparison of measured LCVR and EOM DNRs. Filled circles are measured
data. Lines are fits to the data using the ratio of Eqs. 3.3 and 3.4. The DNR and its
uncertainty from the fit for each modulator are listed in the legend.

light polarization. When the LCVR is used to modulate the light polarization, the VI/VQ

saturates at less than 103
√

Hz.

We also found that the LCVR required daily optimization of the voltage set points where

as the EOMs did not. The added one time inconvenience of coupling light into the EOMs

was more than offset by their performance improvement. All the data presented in this

thesis was taken with EOMs. Recall from Ch. 2 that our target photon shot noise limited

SNR is 1 ppm which is 100x superior to the DNR measured using the EOMs. Hence, for

the case of PM excitation we do not expect to be photon shot noise limited because of the

limited DNR of the EOMs. One idea we have had to modulate the polarization with better

fidelity than the EOMs is to use a fiber coupled micro-electromechanical system (MEMS)

switch. Instead of actively modulating the polarization of the pump beam along a fixed

beam path, this scheme would modulate the path the beam travels through fixed waveplates.

For σ+ polarization it would travel one direction and for σ− it would travel another. The
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Figure 3.7: Schematic of software operations. Atomic clock (AC), Low-pass filter (LPF),
analog output (AO), digital transfer protocall (DTP), central processing unit (CPU), Bx

represents the x̂-shim driver.

two beam paths are combined on a polarizing beam splitter followed by a 1/4 wave plate.

We think that modulating the direction of propagation is easier to do with high fidelity than

modulating the polarization itself. We have yet to implement this new scheme but fiber

coupled MEMS switches with 1 msec rise times are commercially available for less than the

cost of an EOM and its driver. From a practical point of view, MEMS switches are more

compact, require less sophisticated electronics, and consume less power.
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Software

The software which runs the experiment must complete the following tasks:

1. Synthesize control voltage for the EOM electronics to produce S+(t).

2. Synthesize the control for x̂-magnetic shim driver which compensates (cancels) the

transverse Rb SE experienced by the Xe nuclei.

3. Digitize the Sz signal from the photo diode pre-amp.

4. Rectify the digitized Sz signal.

5. Demodulate the rectified Sz signal at ωa and ωb.

6. Transfer the phase difference δ to the control computer.

7. Save the transferred δ data to the computer memory for post processing

Nearly all of these tasks are accomplished on a field programmable gate array (FPGA)

because of its reliable timing and low latency. The timing of the FPGA is referenced to a

commercial atomic clock. In essence, the FPGA enables us to compare the measured phase

of precession of each isotope to the phase of the atomic clock. One can transfer the phase

stability of a reference oscillator to another much lower frequency through a process known

as direct digital synthesis (DDS). App. B provides an overview of DDS and how to implement

it in LabVIEW FPGA. We use DDS to compute a drive phase θ for each isotope. The drive

phases of each isotope are then combined to construct the signal S+(t). The details on how

to combine θa and θb to construct S+(t) depends on the desired excitation waveform (the

next section discusses two different excitation waveforms we have implemented). The FPGA

we use has an integrated 16-bit DAQ which samples Sz at a constant rate. The digitized data

are rectified by multiplying by ±1 depending on a trigger which has the same phase as S+(t).

These rectified data are then demodulated by multiplying by cos(θa + αa) or cos(θb + αb)
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where α is the lock-in phase. The two data streams from the individual multiplications are

then individually low-pass filtered and saved for future reference.

We would like to point out that lock-in detection or demodulation is best suited for

measuring small signals relative to a noisy background. The signals produced by the

comagnetometer are large compared to the background noise. The data that follows utilizes

lock-in detection. Given the chance to repeat these measurements however we would replace

lock-in detection with a real-time fitting algorithm (See Ch. 4.5).

In order to excite both isotope’s a and b simultaneously we need merely modulate the

Rb polarization such that it has large Fourier coefficients near each isotope’s resonance

frequency (see Ch. 2). Additionally, the modulation waveform should have minimal power at

frequencies besides each isotope’s resonance. Ideally the modulation would avoid producing

any linear polarization as such ruins the Rb magnetometer. In the sections that follow we

compare the comagnetometer performance for square and sinusoidal modulation.

3.3 Square Modulation

Excitation

We developed two modulation waveforms which produce large Fourier amplitudes at the Xe

resonances while avoiding linear polarization. They can be written as,

S1
+(t) = S0 sign[cos(

ωa + ωb

2
t+ 2 cos(

ωa − ωb

2
t))], (3.5a)

S2
+(t) = S0 sign[cos(

ωa + ωb

2
t)] sign[cos(

ωa − ωb

2
t)]. (3.5b)

Figure 3.8 shows the simulated time dependence and power spectrum of each modulation

waveform assuming ωa = 27 Hz and ωb = 8 Hz. Both waveforms have maximum Fourier

coefficients at ωa and ωb, with the amplitudes of S2
+ slightly larger than S1

+. Their power
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Figure 3.8: Comparison of simulated PM waveforms. Top-left: Linear scale of amplitude
spectral density. Top-right: Log vertical scale of amplitude spectral density. Bottom-left:
time series of S2

+(t). Bottom-right: Time series of S1
+(t).

spectra also contain (many) other peaks at the same frequencies. In general the Fourier

amplitudes of these spurious peaks are larger for S1
+ (see log plot). In particular, S1

+ has

substantial spectral content at a sideband which is less than 1 Hz. The white noise floor for

S2
+ is slightly higher than that of S1

+. Looking at their respective time series we see that S1
+

has a minimum separation between transitions whereas S1
+ does not. In general we have

found no difference in performance between these two waveforms. In practice S2
+ requires

less logic to synthesize on the FPGA.

Detection

Figure 3.9 shows the measured (un-rectified) Faraday rotation noise. We see that the probe

noise (green) is greater than the electronic noise (blue) for all frequencies. This suggests that
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Figure 3.9: Measured Faraday rotation amplitude spectral density. Blue: pump and probe
lasers blocked, Green: pump lasers blocked, Red: dual species Xe excitation (all lasers
unblocked). Left: full spectrum, Right: zoom in from 10 to 12 Hz. The DC magnetic
response for this data was 85 rad/G with a bandwidth of several hundred Hz.

the probe power is sufficiently high (if the electronic noise is equal to the probe noise then

you should increase the probe power). For frequencies > 10 Hz the probe noise is dominated

by white noise. This white noise level is within a factor of 2 of the computed photon shot

noise. For frequencies < 10 Hz the probe noise is dominated by 1/f detection noise. We

believe this detection noise stems from beam pointing fluctuations due to air turbulence.

The structure at multiples of ∼ 7 Hz may be due to optical table vibrations (the table the

experiment is mounted on is not floated). The detected un-rectified Xe (red) exhibits many

discrete peaks as well as white noise. This signal is only probe noise limited for frequencies

<< 1 Hz. The source of the white noise is not well understood. We find that the white noise

is greatly improved when S+(t) ∼ scos(ωt) instead of S1,2
+ (see Fig. 3.10). We originally

attributed this reduction in noise to pump pointing which was altered between the green

and red trace. The Sz white noise has also exhibited linear dependence on the number of 2π
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precessions each bias pulse causes the Rb to precess by (see Fig. 4.10). The mechanism for

this remains unknown.

Another subtlety regarding detection is the pointing of the pump laser. Recall from the

static solution to the Bloch equation that Sz ∼ Rz. The direction of ẑ in the lab frame

is dictated by the propagation direction of the probe laser. If the pump has a non-zero

projection along ẑ then Rz 6= 0. Since we modulated the pump polarization, Rz produces an

AC Sz just like a DC By. One could inadvertently compensate for a pump beam which is

not orthogonal to the probe beam by applying a By. Since Rz can be a source of noise and

we desire to operate at zero field, proper pump pointing is important. We found that the

optical pumping transients are an excellent indicator of the orthogonality between the pump

and probe. When the optical pumping transients are minimized, the pump is orthogonal to

the probe. Figure 3.10 shows how the time series of Sz is altered by optimizing the pump
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Figure 3.11: Measured square wave PM signals. Top: S1
+(t). Middle: Sz(t). Bottom:

Rectified Sz(t). The plot on the right shows the amplitude spectral density with (red) and
without (blue) rectification.

pointing and By to minimize optical pumping transients. Please note that for the purple

trace S+(t) = S1
+ while for the purple trace S+(t) ∼scos(ωt).

Figure 3.11 shows the time series of the measured Sz with and without rectification when

we drive both isotopes near resonance simultaneously using S1
+. We see that rectification

reveals the sinusoidal precession of each isotope. The outlying data on the rectified signal,

which occur when the polarization is reversed, are due to the optical pumping transients of

the Rb magnetometer. Although rectification collects the many Xe signal sidebands into the

two Xe carrier frequencies (see power spectrum on right), it also maps 1/f detection noise

Sz0 to the carrier frequencies as well. The mapping of Sz0 noise to the carrier frequencies

can be prevented by high pass filtering (HPF) Sz with a 1 Hz corner prior to rectification.

Figure 3.12 shows the NMR for each isotope. These data were acquired by driving one

isotope on resonance while varying the other isotope’s drive frequency and recording its Kx

and Ky derived using demodulation. We see that the lineshapes are nearly Lorentzian with
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Figure 3.12: Measured NMR of each species. Filled circles are Ky, open circles are Kx, and
lines are Lorentzian fits.

linewidths (half-width at half-max) of ∼ 15 mHz and amplitudes of approximately 60 µG.

The on resonance amplitudes are in agreement with estimates (see App. A). The implied T2s

from the fits are in good agreement with independent measurements of each isotope’s T1.

The 15 mHz linewidths are only possible because of two elements; (i) the use of a Rb hydrid

cell coating (without which T b2 would be substantially shorter and T a2 much longer), and (ii)

the application of a magnetic compensation field Bx that cancels the Rb SE field experienced

by the Xe. Figure 3.13 shows how the measured line width of each isotope depends on the

respective amplitude of compensation field Bx(t) = Ba sin(ωat) + Bb sin(ωbt). The size of

the compensation field required to narrow both isotopes linewidths is in good agreement

with the estimated Rb SE field. As long as the phase of the compensation field is carefully

chosen, the on resonance amplitude is normally within a few percent of the uncompensated

on resonance amplitude.

Figure 3.14 demonstrates the amplitude spectral density of the phase noise measured for

each isotope under simultaneous resonant excitation conditions. We see that for frequencies

less than 1 Hz the spectra are dominated by 1/f noise which is ∼ ρ greater for isotope

a (black traces) than for isotope b (red traces) suggesting their source is magnetic in
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nature. Also shown is the phase noise measured when the Xe isotopes are off resonance

(not excited) and a so called “fake” Xe signal is applied along By. The amplitudes of this

signal Aa sin(ωat) + Ab sin(ωbt) are chosen to produce the same size magnetometer signal as

real Xe. We note that this fake Xe signal is planar unlike the real Xe signal which rotates.

The fake signal allows us to measure the SNR of the Rb magnetometer. These signals do

not show 1/f dependence because, unlike the real Xe phase, the SNR of the magnetometer

does not depend on the bias magnetic field to first order. The phase noise of each fake Xe

measurement is uncorrelated and limits the possible field suppression when constructing R̃.

The SNR for each isotope is ∼ 5000
√

Hz. This limit is too small to be from finite DNR from

the EOMs (see Fig. 3.6) but is likely due to the unexplained white noise present on Sz (see

Fig. 3.9).
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Comagnetometry

We perform comagnetometry by subtracting magnetic field correlations between the two

isotope’s frequencies of precession. Since our device measures phase, we need to know or

measure the transfer function from phase to frequency. In Ch. 2 we calculated the transfer

function to be (see Eq. 2.12)

δ̃ = −∆̃± Γ2ε̃z
Γ2 + iω

, (3.6)

where Γ2 = 1/2πT2. We measured the transfer function of each isotope by recording the

response of the measured phase δ to sinusoidal modulation of Bz. Figure 3.15 shows the

measured transfer function for isotope a. We use a chirp waveform to modulate the bias

field Bmod
z (t) = B0 sin(2π[et/T2 − 1− t/T2]), the time series of which is shown in the inset of

Fig. 3.15. This modulation waveform allows us to measure the transfer function from 0.02

to 0.1 Hz with good SNR in a single data acquisition. The transfer function is the ratio

γKB̃mod
z /δ̃. We fit the data according to Eq. 2.12 and find excellent agreement with the

linewidth derived from the NMR.

Although conversion from phase to frequency for the measured Xe phases is possible

using a measured transfer function, feedback is desirable because (in the high gain limit) the

conversion from phase to frequency becomes insensitive to changes in the transfer function.

For the PM comagnetometer we used the measured precession phase of isotope a to stabilize

the bias field and the measured transfer function of isotope b to convert its measured

phase noise to frequency noise. Under such conditions the frequency noise of isotope b is

proportional to rotation. We write

B̃z = G̃(δ̃a − ε̃z)→
1

γa
[ω̃R + iωε̃z], (3.7)

where the arrow implies the high gain limit G̃ → ∞. The measured phase of isotope b
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converted to frequency is

ω̃b = (δ̃b + ε̃z)(Γ
b
2 + iω) = (ρ−1 + 1)(ωR + iωεz) (3.8)

We see that in the high gain limit, when correcting the bias field to keep the measured phase

of isotope a equal to zero, the rotation is simply ω̃R = ρ ω̃b/(1 + ρ) assuming ε̃z is negligible.

The best performance we observed with bias field feedback activated is shown in Fig. 3.16.

The feedback consisted of two analog inverted zero gain stages. The influence of bias field

feedback is dramatic from 0.1 to 200 mHz. The servo suppresses ω̃a to below 1 µHz/
√

Hz

at long times which is nearly 104x less than the open loop noise. Because magnetic noise

dominates each isotope’s precession, servoing the measured phase of isotope a also greatly

suppresses ω̃b. We observe at least 100x improvement in ω̃b due to feedback. The modified

Allan deviation suggests a rotation ARW sensitivity of
√

2 15µHz/
√

Hz ρ
1+ρ
∼ 16 µHz/

√
Hz

and a bias instability of 1 µHz ρ
1+ρ
∼ 800 nHz. The size of ARW is within a factor of 3 of the

ratio of the measured linewidths divided by the SNRs (shown in Fig. 3.14). The peaks in the
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Allan deviation at 15 and 100 s of integration are due to low frequency narrow band large

amplitude noise peaks in ω̃b which we attribute to the PM waveform. The bias instability is

limited by τ 1/2 trending noise of unknown origin. We find that feedback causes the measured

phase of isotope b to trend linearly in time. The source of this frequency bias is uncertain.

Although the trend is very stable over the course of a data run, the trend is not consistent

between data runs. The bias instability demonstrated in Fig. 3.16 was difficult to reproduce.

Typically the bias instability we measured was several µHz.

Cross Talk

Once we had measured the stability of the PM comagnetometer we desired to know if

the detection channel designed for measuring isotope a’s phase wasn’t really measuring a

linear combination of isotope a and b’s phases. If such cross talk were present then the

scale factor (or how we convert the measured precession frequencies to rotation) would

change. Suppose there exists cross talk in both channels such that ωa = γaBz +βωb−R and

ωb = γbBz + β′ωa +R where β and β′ represent the cross talk between detection channels.

Solving for R we find

R =
ωb(ρ+ β′)− ωa(ρβ + 1)

1 + ρ
, (3.9)

where if β = β′ = 0 we return to the expression for rotation derived previously. Non-zero

cross talk is undesirable because the accuracy with which it is known (or measured) limits

the accuracy of conversion from measured precession frequencies to rotation (or any other

non-magnetic spin-dependent interactions). A measurement of cross talk is vital since an

important alleged feature of our comagnetometer is having a scale factor which is determined

solely by ρ.

We measure cross talk between detection channels by starting with both isotopes excited

on resonance. The phases of each demodulation detection channel are carefully chosen such
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Scheme fake a fake b
Ch. A, Ch. B Ch. A, Ch. B

Ideal 1, 0 0, 1
Rect. 1, 0.03 0.04, 1

Rect., HPF 1, 0.2 0.07, 1

Table 3.2: Cross talk measurements. The HPF increases the cross talk.

Figure 3.17: Simulated Amplitude spectral density of S1
+ modulation with sidebands labeled

in terms of ωa and ωb.

that NMR scans produce purely dispersive lineshapes in the detected quadrature of each

channel. Without activating feedback, the average bias pulse repetition rate is then changed

so that neither isotope is excited on resonance. A fake Xe signal is applied to mimic the

signal produced by an individual isotope. The magnitude detected by each channel is then

recorded. If there were no cross talk then the application of a fake isotope a signal should

only produce signal on channel A and vice verse. Table 3.2 lists the measured cross talk

when fake Xe signals are applied. We find that the cross talk is a few percent when the

HPF is omitted. We attribute this to the finite response of the magnetometer which is not

accounted for in the rectification. The addition of the HPF increases the cross talk. We

attribute this to phase shifts introduced by the HPF which are not accounted for in the

rectification.



59

The source of cross talk can be attributed to the higher order harmonics of the PM

waveform. Recall that Sz ∝ SxK⊥. Figure 3.17 shows a simulated amplitude spectral

density of S1
+ where its higher order peaks are labeled. For the case of 2f detection without

rectification,

S2a
z ∝ SaxK

a
⊥ + S2a+b

x Kb
⊥ + ..., (3.10)

where we use the short-hand a = ωa. We see that the non-zero Fourier amplitude of Sx at

2ωa +ωb mixes the phase information of Kb
⊥ into Ka

⊥’s detection channel. Rectification of Sz

should prevent cross talk. However, we find that the rectification we employ is insufficient

to suppress the cross talk completely. This is likely due to the finite response time of

the magnetometer and the phase shifts introduced by the HPF which our demonstrated

rectification does not account for.

We further characterized the cross talk introduced by square PM by detuning one isotope’s

drive frequency by ∼ 300 mHz and then scanning the average pulsing frequency. The 300

mHz detuning ensures that both isotopes are not simultaneously on resonance for a given bias

pulse repetition rate. The magnitude of each isotope’s detection channels’ are normalized and

plotted vs their respective equivalent drive frequency ωK = ω2πγ
K/γS. Cross talk is manifest

as deviations of the measured magnitude from a Lorentzian line shape. Discrepancies due

to cross talk are most pronounced when one isotope is very near resonance and the other

is not. Figure 3.18 shows measurements of cross talk for 2f (without rectification) and

1f (with rectification) detection schemes. The 2f scheme exhibits the most severe cross

talk. When isotope a is excited and isotope b is not, isotope b’s detection channel exhibits

non-zero signal and vice verse. We attribute this to the lack of rectification which provides

first order correction for the mixing caused by the high order sidebands. A phase sensitive

measurement with 1f detection reveals cross talk despite the rectification. The signal leaked

into the other isotope’s detection channel is curiously dispersive in nature. We estimate
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Figure 3.19: Influence of sample and hold during optical pumping transients and HPF-ing
on the rectified Sz. This data was acquired when no Xe excited and single frequency square
wave PM. The even harmonics depend on both the sample and hold and the HPF.

β = Qb
pp/Q

a
pp = 0.17 (when isotope a is on resonance) and β′ = Qa

pp/Q
b
pp = 0.07 (when

isotope b is on resonance), where QK
pp is the peak-to-peak quadrature signal of isotope K

In order to test how important the finite response time of the magnetometer was in

contributing to cross talk we built a sample/hold functionality into the FPGA acquisition

software which allowed us to greatly suppress the optical pumping transients. Figure 3.19

shows the influence of the sample and hold on the time series and amplitude spectral density

of the rectified Sz. Also shown is the influence of the HPF. This data was acquired by setting

S+(t) = sign[cos(ωt)] where ω = 2π × 10 Hz was not equal to either Xe resonance. The

presence of even harmonics after rectification with this drive scheme implies the presence of

cross talk after rectifying the dual frequency PM waveform. The power in the even harmonic

sidebands is minimized when the sample and hold is engaged and the HPF removed.

Since we demonstrated that the HPF adds considerable cross talk we desired to know how
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Figure 3.20: Histogram of sum of two sine waves.

much the SNR is degraded if the HPF is removed. We found that the 1 Hz HPF improves

the SNR of each isotope by 10x. This is not surprising as the 1/f noise of the detection is

substantial. We note in passing that we were able to suppress the 1/f noise of the Faraday

rotation by installing a photo-elastic modulator after the cell which allowed us to AC couple

the detection [Seltzer (2008)]. The idea is that probe polarization fluctuations (signal) are

scattered to a higher frequency whereas systematic noise sources (such as probe pointing)

which appear as 1/f polarization noise are not similarly scattered to high frequency. The

performance of the PEM was unreliable however so the PEM was removed.

3.4 Sine Modulation

In pursuit of minimizing cross talk without sacrificing SNR we chose to explore sinusoidal

PM. Sine wave modulation should not have any higher order sidebands to produce cross

talk. Consequently, one could detect at 2f without rectification at the cost of some signal.

The implementation of sine wave modulation is very similar to square wave modulation.

The only difference is S+(t) = S0 [sin(ωat) + sin(ωbt)]/2. Since the retardance of the EOM

goes as sin(Veom) the time dependence Veom(t) = sin−1(sin(ωt)) produces S+(t) = sin(ωt).
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So an arc-sin look up table was programmed into the FPGA. We originally chose to avoid

sine wave modulation because the superposition of two sine waves is most frequently near

zero (see Fig. 3.20). Hence, the pump light would spend a considerable amount of time

linearly polarized which is maximally bad for optically pumping the Rb. However, after

associating cross talk with imperfectly rectified higher order modulation sidebands, we

decided to attempt sine wave modulation anyways.

Optics: Because the polarization is continuously varied from σ+ to σ− the optics which

influence the state of polarization (SOP) must be much more carefully considered (and

maintained) then for square PM. For instance, the sin−1 transfer function of the EOM is

extremely forgiving near V±π/2, the voltage which causes ±π/2 retardance, which is where

the EOM spends nearly all of the time for square PM. Near zero volts, which is where the

EOM spends a disproportionate amount of time for sine PM, the SOP is maximally sensitive

to Veom. Additionally, the reflectance of di-electric mirrors (DM) depends on the incident

angle and SOP of incident light. For square PM the influence of DM is easily compensated

because there are only two SOPs. For sine PM however, the influence of DM mirrors is very

difficult to compensate for all SOPs. As a result, the DM can produce amplitude modulation

at the PM frequencies. For these reasons we replaced the DM with un-coated gold mirrors.

Another subtlety we discovered was the spatial overlap between pump A and pump B in

the EOMs. Since the voltage required to produce a particular retardance depends on the

SOP before entering the crystal and the interaction length of the laser light in the EOM

crystal we found that proper spatial overlap of the two pump beams was crucial to having

any chance of achieving satisfactory sine PM. Perhaps the best way to ensure that the spatial

overlap is optimal is to launch both pumps into a single mode fiber before coupling into each

EOM. We did not end up implementing such a scheme.

We optimized the SOP by applying a triangle modulation waveform to the EOMs and a

DC By to the magnetometer. Using a lock-in we detect the power on Sz at the 2nd and 3rd

harmonics of the triangle modulation carrier frequency. We found that the 2nd harmonic is
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Figure 3.21: Sine polarization modulation non-linearity. a) 1f and 2f sideband power vs
detected probe photo current. b) ratio of 2f/1f vs orientation of probe polarization. Zero is
parallel to the optical table. c) ratio 2f/1f vs average pump laser detuning. d) sideband
power vs pump pointing vertical (inset: horizontal) lens translation when applying a third
modulation to the pump polarization at several hundered Hz.

mostly dependent on the Veom’s offset voltage. Since applying a DC voltage to the EOM

crystal can cause dielectric breakdown, we instead vary the quarter wave-plate following the

EOM, which has the same influence on the SOP. The quarter wave retardance effectively

changes the SOP for Veom = 0. If the SOP (experienced by the Rb atoms in the vapor

cell) for Veom = 0 is not purely linear then the PM will no longer be an odd function. We

found that non-zero power at the third harmonic was a good indicator of incorrect triangle

modulation amplitude. If the retardance > ±π/2 then the crest of the sine wave develops an

inward facing cusp. If the retardance < ±π/2 then the sine wave looks more like a triangle

wave.
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Pump and Probe Settings: Even after careful optimization of the SOP of the pump

laser light incident to the cell we found that other probe and pump laser characteristics had

profound influence on the sidebands produced by sine PM. The total pump power incident

on the cell is ∼ 40 mW with an e−2 beam diamter of about 8 mm such that the intensity

is 5 mW/cm2. The maximum power of the probe is 10 mW and its e2 diameter is 5 mm

such that its maximum intensity is 3 mW/cm2. Although the probe is linearly polarized,

it is good practice to keep the intensity 10x less than the pump such that any influence of

residual circular polarization of the probe is negligible. Figure 3.21 shows how the power in

the 1f and 2f sidebands of Sz depend on probe power. Once again the polarization was

modulated sinusoidally at a single frequency and DC By applied to produce non-zero Sz.

We see that the power at 1f depends non-linearly on probe power for probe power greater

than roughly a mW. The power at 2f also depends non-linearly on the probe power. Besides

the probe power, we also noticed that the orientation of the probe polarization relative to

the optical table influenced the ratio of 2f/1f (see Fig. 3.21).

Also shown in Fig. 3.21 is the influence of pump detuning and pointing on the sidebands.

As the pump detuning increases, the ratio 2f/1f decreases exponentially. This suggests that

optical thickness effects may be present. The pointing angle of the pump lasers transverse

to the optical table influenced the power at the sideband more than the pointing angle

parallel to the optical table. We believe this behavior is due to the AC Stark shift. Recall

that Sz ∼ ΩxRy − ΩyRx. When we vary the vertical pointing of the pump we change Ry.

An AC stark shift produces a magnetic field experienced by the Rb parallel to the pump

polarization. If R is modulated at 1f and the AC stark shift is not balanced such that Ωx

also has 1f , then Sz will have a 2f component. There is not a similar coupling for horizontal

beam pointing (Rx). Also recall that Sz ∼ Ωz(Ω ·R). The product Ω ·R gives rise to 2f

modulation on Sz for Ωz 6= 0. Consequently, the 2f sideband is very sensitive to bias pulse

area.

Figure 3.22 shows the spectrum of Sz for dual frequency sine PM after careful optimization
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Figure 3.22: Measurement of Sz with DC By applied for dual frequency sine PM (no Xe
excited). The black trace represents the Faraday rotation noise floor. Inset depicts linear
scale of same data.

of the EOMs, magnetic fields, as well as pump and probe settings. The higher order harmonics

are barely visible above the Faraday rotation noise. The Faraday detection noise is white

noise limited for f > 200 Hz. Daily tuning of the pump SOP and magnetic fields was

required to maintain such high fidelity sine PM. We believe the dominant source of day to

day drift in the pump SOP is the EOM temperature.

Detection

We utilized two schemes dubbed 2f and Smod to detect the Xe precession continuously and

simultaneously. Neither detection scheme utilizes rectification. Consequently, the signal sizes

are reduced compared to square PM with rectification, but there is no chance of 1/f detection

noise being mapped to the Xe demodulation frequencies. The 2f detection scheme has been

described above. Simply stated, since the Xe precesses at 1f and the gain of the magnetometer

is modulated at 1f , the magnetometer signal will have Xe phase information at 2f and DC.



67

8
910

-4

2

3

4

5

6
7
8
910

-3

P
ha

se
 n

oi
se

 (
ra

d 
/ r

t H
z)

1210864
Symmetric Pump Detuning (GHz)

100

80

60

40

20

0

X
e 131 F

ield (uG
)

sine
 phase noise
 field

square 
 phase noise
 field
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The RTD read 130 C for this data.

The phase information at DC is ignored because of the 1/f detection noise and the fact

that both isotopes’ phase information is present. For Smod detection, we add an additional

sinusoidal modulation to the pump PM such that S+(t) = [sin(ωat) + sin(ωbt) + sin(ω3t)]/3.

The idea is for the ω3 term to scatter signal up to higher frequency where the detection

noise is lower. Detection takes place at ω3 ± ωK . Figure 3.22 shows that the detection noise

(black trace) at 300 Hz is nearly 10x lower than at 20 Hz. Adding a third modulation does

reduce the detected signal by roughly 2x compared to 2f detection. This is because the

amplitude of modulation which drives the Xe is reduced from 1/2 to 1/3. The modulation

which scatters signal is also similarly reduced from 1/2 to 1/3.

Figure 3.23 shows how the SNR and excited NMR field of isotope b depends on average

pump detuning. For this data S+(t) = sin(ωbt) so that only isotope b was excited. The

phase noise reported is for 2f detection. We see that the best phase noise is achieved for a

detuning of 7 GHz. The excited Xe SE field depends very weakly on the pump detuning.

Whatever noise is limiting the phase noise is strongly dependent on the pump detuning. Also

included is a single measurement of the phase noise and excited Xe SE field for square wave

PM (also 2f detection). We see that the increase in excited NMR amplitude is insufficient
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Figure 3.24: Sine PDM cross talk measurement. Top: 2f detection, bottom: Smod detection.
The limited deviation from the Lorentzian guides to the eye (solid lines) indicates low cross
talk. The skewed 131Xe NMR for Smod comes from an interfering background signal.

to explain the improved SNR for square PM as compared to sine PM. For some reason sine

PM has a lower SNR than square PM.

Cross Talk

Figure 3.24 shows the cross talk measured for 2f and Smod detection schemes. We find little

evidence of cross talk for either isotope in both detection schemes despite not rectifying.

We attribute such low cross talk to the reduced amplitude of the PM sidebands. The Smod

detection scheme demodulation of isotope b is skewed because of an interfering background

signal. The source of the interfering background was never completely understood. We

found that the background depended on many of the same parameters which optimized the

sine PM.
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Comagnetometry

Figure 3.25 shows the Allan deviations of the calculated ωb for each detection scheme. Both

detection schemes exhibit similar ARW of
√

2 40 µHz/
√

Hz ρ
1+ρ
∼ 44 µHz/

√
Hz which is 3x

greater than the ARW demonstrated with square PM. If the ARW were detection noise

limited, then we would expect the ARW of Smod to be better than 2f detection by a factor of

3 or more (see Fig. 3.22). The similar ARW between the two detection schemes suggests that

their is some noise source inherent to sine PM which is absent in square PM and independent

of detection noise. This conclusion is supported by the factor of 3 higher SNR found when

implementing square PM as compared to sine PM (see Fig. 3.23).
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Chapter 4

Pulse Density Modulation Excitation

The process of discovering that one’s former beliefs are wrong...is what makes

the pursuit of science so engrossing. The world would be a far better place for

all of us if this joy in exposing one’s own misconceptions were more common in

other areas of human endeavor.

— N. David Mermin

Our motivation for pursuing a PDM comagnetometer has both esoteric and practical

components. From an esoteric perspective, applying the bias field as a sequence of pulses

enables the novel capability of producing bias field modulations which are experienced

much more strongly by the noble gas nuclei than by the alkali-metal atoms. The PDM

comagnetometer fully leverages this unique capability. From a practical point of view, as

is outlined in Chapter 3, the PM comagnetometer detection scheme failed to detect the

precession phase of each isotope individually with high fidelity. Since we attributed this

shortcoming to PM itself we desired to excite the Xe without PM and hence solve the cross

talk issue. This chapter demonstrates successful suppression of cross talk while maintaining

the SNR and stability demonstrated with the PM comagnetometer. This progress was

realized by developing a novel detection scheme which uses the unique response of each
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isotope to the bias field modulation to detect their individual phases.

In this chapter the Xe NMR are excited by modulating the density (repetition rate) of

bias pulses. We demonstrate a pulse driving circuit whose average area is at least 200x

less sensitive to pulse density compared to the previously implemented pulsing circuit. The

drive-to-noise ratio (DNR) of the PDM produced using the circuit is measured to be ∼ 3500
√

Hz. Using expressions from Ch. 2 we compare the efficiency with which each Xe isotope

is excited for two different driving schemes. We demonstrate how gating the bias pulses

enables rejection of gain modulation inherent to varying the pulse density while keeping

the pulse width fixed. We excite bSKK⊥ ∼ 20 µG for each Xe isotope simultaneously in

a purely transverse fashion and show that the linewidth broadening caused by BK
S S⊥ is

well compensated with DC transverse fields enabling NMR linewidths of ∼ 15 mHz. We

demonstrate the influence of εz on the phase of Xe precession as measured by the Rb atoms.

We measure the cross talk of our unique demodulation scheme and find β = −0.016 and

β′ < 0.002 (see Eq. 3.9). We demonstrate real time feedback of each isotope’s NMR making

them effective oscillators. We demonstrate comagnetometry sufficient to resolve an ARW

of ∼ 10 µHz/
√

Hz and a bias instability < 1 µHz. The ARW is similar to the measured

linewidths divided by the DNR and within a factor of 2 of the measured linewidths divided

by the measured detection noise floor, suggesting that both DNR and detection noise floor

need to be improved to reduce the ARW. The field suppression is measured to be 1800

when the influence of εz is accounted for which we estimate is sufficient to resolve a bias

instability of ∼ 200 nHz if the device were limited by bias field fluctuations. We show

evidence suggesting the dominant sources of drift that limit the bias instability to greater

than this value are 1/f transverse fields, and pump laser detunings.

We begin by reviewing the conclusions of Ch. 2 regarding PDM. We then describe

modifications to the PM apparatus necessary to realize a PDM comagnetometer. We discuss

what we learned as we optimized the apparatus. We demonstrate PDM comagnetometry

and discuss measurements of various systematics. We conclude the chapter with a discussion
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of ongoing studies and future paths of inquiry. Unlike Chapter 3, many of the contents of

this chapter have been published [Thrasher et al. (2019)].

4.1 PDM general principles

Figure 4.1 shows the schematic for PDM excitation. In contrast to PM excitation, the

polarization of the pump lasers is constant in time so the EOMs are no longer present. The

repetition rate of the bias pulses is modulated to excite both Xe isotope’s NMR simultaneously

(depicted in green).
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A B
ωad = 3ω1 + ω2 ω2

ωbd = ω1 ω1

Table 4.1: PDM drive scheme comparison.

Excitation

As derived in Ch. 2, the time average of the transverse Xe polarization of isotope K for

PDM excitation is

K⊥ =
ΓKS S⊥

Γ2

jK , (4.1)

jK = J−p(
γKB1

ω1

)J−q(
γKB2

ω2

) (4.2)

where p and q are chosen to satisfy the resonance condition ωd + pω1 + qω2 ∼ 0. In Ch. 2

we also showed that the influence of finite SNR on rotation is minimized when Kb
⊥ = ρKa

⊥.

The size of modulations B1 and B2 which achieve this ratio of K⊥ depends on the resonance

condition, i.e. choice of p and q. Figure 4.2 depicts jK vs B1/B0 for two resonance conditions

(summarized in Table 5.1) assuming B2 = B0 − B1. The B1 that satisfies Kb
⊥ = ρKa

⊥ for

pumping scheme A produces a Ka
⊥ roughly twice that produced at the B1 that satisfies

Kb
⊥ = ρKa

⊥ for pumping scheme B. For this reason we find pumping scheme A superior to

pumping scheme B. The rest of the data presented in this chapter is acquired using pumping

scheme A unless noted otherwise.

Detection

From Eq. 2.8 and Eq. 2.16, the magnetometer signal Sz can be written as

Sz = Aa⊥ sin(δa + αa − εz) + Ab⊥ sin(δb + αb + εz), (4.3)
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γB1
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)J−q(
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) vs b1 = B1/B0 for two different pumping

schemes with B2 = B0 −B1. Blue traces are for isotope a and orange traces are for isotope
b. Dashed lines are for pumping scheme A: pa = 3, qa = 1, pb = 1, qb = 0. Solid lines are for
pumping scheme B: pa = 0, qa = 1, pb = 1, qb = 0.

where A⊥ = −γSbSKK⊥R/Γ′2. Note that the Rb precession phase includes both the Xe

precession phase shift δ and the magnetometer phase shift εz. In contrast to PM excitation,

Eq. 4.3 does not need to be rectified before lock-in detection.

The precession phase of each isotope can be extracted from Sz by demodulation with

cos(α). We refer to this demodulation method as “α-space” demodulation. For example,

∫
dαb0Sz cos(αb0) =

∫
dt
dαb0
dt

Sz cos(αb0) = Ab⊥ sin(δb + εz) + res., (4.4)

where αK0 = αKoff +pKθ1 +qKθ2 +γK0
∫
dtBz(t) is the reference phase generated on the FPGA.

Our chosen drive scheme (see discussion above) means θ1 =
∫
ωbddt and θ2 =

∫ (
ωad − 3ωbd

)
dt

such that the only free parameters in the expression for αK0 are γK0 and αKoff . The parameter

αKoff is chosen such that the quadrature is purely dispersive vs δ. We simply choose

γa0 = 1177.69 Hz/G and γb0 = 349.1 Hz/G. The exact value used is superfluous however

because Bz(t) is AC coupled (see cross talk discussion below for more details). We sample

evenly in time for experimental convenience, necessitating the dα
dt

in the demodulation.
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4.2 Apparatus

The apparatus used for the data described in this chapter is similar to that described in

Ch. 3. Cell M was used for all the data in this chapter. The only significant change to

the apparatus was the circuit used for driving the pulsing coils. The pulsing circuit was

modified to reduce pulse area dependence on repetition rate. Such an improvement was

necessary because the magnetometer gain would be modulated at the PDM frequencies if

the pulse area does not produce precisely 2π precession of the Rb atoms. Modulation of the

magnetometer gain at the PDM frequencies is undesirable because it could lead to cross talk

(see discussion below).

A schematic of the new pulsing circuit developed by Mike Bulatowicz and Susan Sorensen

is shown in Fig. 4.3. The circuit is based on a bipolar H-bridge design and is capable of

producing both positive and negative pulses. The research presented in this chapter only
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utilized pulsing with a single polarity. When a pulse is desired, a TTL trigger from the

FPGA activates the A MOSFETs so that current from the capacitor flows from A to A’

through the bias pulse coils. After a few microseconds the A MOSFETs are opened such that

a recovery current flows through the Zener diodes parallel to the B MOSFETs. Finally, gate

Ca is closed so that ringing due to parasitic capacitance of the Zener diode and MOSFETs

is snubbed.

We measured how the voltage required to produce 2π pulses varied with pulsing frequency

f2π by first nulling the magnetometer response to AC Bx and Bz fields while the pulses were

not triggered. We were careful to cancel the AC stark effect. Next, we triggered the bias

pulses at a constant f2π of our choosing and increased the voltage across the pulsing circuit’s

capacitor (thereby changing the magnetic pulse’s area) until the second voltage the Rb

showed minimal response to an AC Bx (the first dip in response occurs when the pulse area

corresponds to π Rb rotation). This process was then repeated for various f2π. The resolution

with which we can vary V2π was limited to 15 mV by the power supply we used. Figure 4.3

depicts a linear fit to the data. The measurement is clearly limited by the resolution of

the power supply. The upper bound on the slope is 2× 10−4 V/kHz, roughly 200x smaller

than the slope measured using the old pulsing circuit [Korver (2015)]. We believe a key

ingredient to the improved performance of this circuit compared to the old circuit was the

use of low recovery diodes which exhibit very weak dependence on temperature. When the

pulse density increases, the average power dissipated by the diode also increases. If the diode

is sensitive to temperature then variations in pulse density can cause changes to the bias

pulse area.

Besides exhibiting minimal dependence of V2π on the bias repetition rate, we also desire

the circuit to produce bias repetition rate modulations with high fidelity. Since for PDM

excitation we drive the Xe NMR using the bias pulse repetition rate, the fidelity with which

we modulate the pulses limits the DNR of the Xe isotopes. The Xe precession phase is

sensitive to both the timing jitter of the 2π pulses as well as variations in pulse area (the Rb
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is sensitive to pulse area fluctuations but first order insensitive to timing fluctuations).

We measure the PDM DNR in a way which is similar to the measurement of the DNR

of the EOMs mentioned in Ch. 3. Whereas the phase noise from the EOMs produces Sz

fluctuations, phase noise from the PDM appears as Bz noise. Since Sz is not first order

sensitive to Bz we utilize a parametric modulation technique [Li et al. (2006)]. We apply an

AC Bx at ωpm = 900 Hz and Bpm ∼ 1 mG. The Sz signal at ωp (which we isolate using a

lock-in amplifier) is proportional to [Korver et al. (2015)],

Sz(ωpm) ∼ γSBpmSx
Γ′2

Bz. (4.5)

To measure the DNR we modulate our pulse density according to ωp(t) = ωp0+b1 sin(ω1t+φ1).

If the pulse area is not 2π then this modulation will appear as a Bz experienced by the Rb

such that Bz = Bz0 + βωp(t)/γ
S, where Bz0 is the stray magnetic noise inside the shield,

and β is the discrepancy of the pulse area from 2π. We isolate the contribution to Sz(ωpm)

from φ1 by using a second lock-in amplifier referenced to ω1. The outputs of this second

lock-in are,

VQ = 〈Sz(ωpm) cos(ω1t)〉 ∼ η β sin(φ1) + δVQ, (4.6)

VI = 〈Sz(ωpm) sin(ω1t)〉 ∼ η β cos(φ1) + δVI , (4.7)

where VQ and VI are the quadrature and in-phase components respectively, η = b1BpmSx/Γ
′2,

and the δV s represent measurement noise inherent to each component. The ratio VI/VQ is

equal to cot(φ1) ≡ DNR in the large β limit.

Figure 4.4 shows three separate measurements of VI/VQ vs bias pulse width (which is

proportional to β) for ω1 = 5, 50, and 100 Hz. We fit the data for each ω1 using the ratio of

Eqs. 4.6 and 4.7. Figure 4.4 shows the resulting δφ1 and its uncertainty from the fit for each

ω1. The DNR shows a weak dependence on ω1 and is approximately 6000
√

Hz. This is more
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than 100x less than the SNR limit due to photon shot noise (see Ch. 2). We should note

that when both Xe isotopes are excited the pulse density modulation is bi-periodic, unlike

the experiment described here. This fact may limit the applicability of this data. What

limits the DNR of the PDM is uncertain. One possible albeit unlikely source is timing jitter

on the pulsing trigger. The FPGA is used to synthesize the bias pusle trigger. The finite

update rate of the FPGA DDS calculation (10 MHz) will cause timing jitter on the pulse

triggers. Another source of finite DNR may be the pulsing circuit. Perhaps temperature

drifts influence the pulse area produced by the circuit.

4.3 Detection optimization

Although we managed to construct a pulsing circuit whose V2π is independent of the PDM

frequency, the finite duty cycle of the pulses means that the magnetometer gain will still

be modulated at the PDM frequencies. Any SE collisions that occur during a bias pulse

will contribute to relaxation. Hence, the magnetometer gain will be increasingly degraded
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as pulses are applied more frequently with constant pulse width. For the ωp modulation

presented in this work, the observed magnetometer gain varied up to a factor of two due to

this effect.

We suppress the influence of gain modulation on the detection by gating the 2π pulses.

After the pulses are gated off, we wait for the magnetometer gain to recover before recording

the Faraday signal (see Fig. 4.5). If we do not gate the pulses, we see a background on

the recorded Faraday signal which corresponds to harmonics of the pulsing modulation

frequencies. We find that waiting twice the 1/e recovery time of the Rb magnetometer

before recording the Faraday signal suppresses this background. We modulate the 2π pulse

repetition rate (depicted in Fig. 4.6) as

ωp(t) = ωp0 g(t)(1 + b1 cos(ω1t) + b2 cos(ω2t)), (4.8)

where g(t) = [sign(cos(ω3t)) + 1] is the time dependence of the gating, ω1 = ωb and

ω2 = ωa − 3ωb, and b1 and b2 set the depth of modulation. We note in passing that we

originally tried square wave modulation (replace cos in the equation above with sign(cos))

but saw interference between ω3 and higher harmonics of PDM frequencies. Interference

between these two frequencies appeared as narrow peaks in the measured Xe phases at

frequencies < 1 Hz.

Figure 4.7 depicts the measured NMR lineshapes deduced using α-space demodulation.

The data were acquired with one isotope driven on resonance while the other isotope’s

detuning was varied. Similar to PM, the linewidths demonstrated are only possible due to

cancellation of the Rb SE experienced by the Xe nuclei. Since the Rb polarization is not

modulated, the Rb SE field is at DC. Hence, we apply a DC Bx to cancel the Rb SE field.

Figure 4.7 also shows the measured linewidths for isotope b as Bx is varied.

The field modulation parameters were, ω3 = 2π × 200 Hz, b1 = 0.73 and b2 = 0.15, and

ωp0 ≈ 2π × 13.2 kHz, resulting in average precession frequencies of ≈ 33.3 Hz and ≈ 9.9
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Figure 4.5: Influence of bias pulse gating on
Rb magnetometry. (Top) Time dependence
of the few percent duty cycle bias pulses.
(Bottom) Measured time dependence of raw
Sz signal from polarimeter. Red data are
averaged together to measure the Xe pre-
cession at an effective sampling rate of ω3.
The ≈ 3kHz oscillation present when puls-
ing comes from interference between the AC
heater drive and the pulses.

Figure 4.6: Time dependence of bias pulse
repetition rate (top) and normalized Sz sam-
pled at ω3 (middle) for ∆a = ∆b = 0. Corre-
sponding pulse number dependence of nor-
malized Sz (bottom). Filled circles are mea-
sured data. Lines are theory fits to the data.
Inset depicts gating of the bias pulses.
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Hz for 129Xe and 131Xe, respectively. Under these conditions, the amplitude of Bm was

approximately 10 Bw. Only the modulation of 2π pulses allows for the Xe to experience

such a large modulation while preserving the fidelity of the Rb magnetometer. Limiting

b1 + b2 < 0.9 avoids producing Xe precessions near the 1/f detection noise without requiring

reversals of the pulsing direction. For our choice of ωp0, b1 + b2 = 0.88 ensures that the

instantaneous precession frequency of the 131Xe never goes below 1 Hz. We use a moving

average filter to perform the integration over time from Eq. 4.4. The moving average filter

most strongly attenuates frequency content at integer multiples of ω3/N . Since ρ was within

0.05% of 27/8, we used the moving average filter to suppress residuals of the demodulation

at ωad , ω1 = ωbd, and ω2 by setting ωad = ω3/6 (at the start of measurements) and fixed

N = 27× ω3/ω
a
d = 162. For 131Xe we measure bSbK

b
⊥ ≈ 30 µG or 0.1% polarization and a

linewidth of 21.2(3) mHz. For 129Xe we measure bSaK
a
⊥ ≈ 10 µG or 0.3% polarization and a

linewidth of 15.6(3) mHz. The measured Xe polarizations and SE fields are in agreement

with estimates (see App. A).

The influence of varying the average pump detunings on the excited Xe field size is

depicted in Fig. 4.8. This data was acquired by choosing the detunings of one of the pump
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lasers and then picking the other pump laser’s detuning to roughly cancel the average AC

stark shift. The average of the two pump lasers detunings was recorded and then NMR of

each isotope under simultaneous excitation conditions were scanned. The excited Xe fields of

both isotopes are reduced for small detunings as the Rb density is increased. We attribute

such behavior to running out of pump photons due to the Rb’s increasing optical thickness.

We also see evidence of a temperature dependent wall relaxation mechanism for isotope

a: as the Rb density increases, isotope a’s amplitude hardly changes at large detunings.

The amplitude of isotope b however shows more of a linear trend with Rb density at large

detunings. The comagnetometry data presented in this chapter is acquired with average

pump detunings of 12 GHz unless otherwise noted. We chose to operate at 12 GHz because

it is the smallest pump detuning where balancing the AC Stark effect to less than 10 µG

equivalent By is readily achievable when the Rb density is 1013 cm−3.

noise

The gate frequency ω3 is limited by the response of the magnetometer. The average pulsing

frequency should be chosen such that the maximum instantaneous precession frequency of

isotope a is less than ω3/2 to satisfy Nyquist’s criterion. The pre-amplifier that converts

the difference photo current (from the balanced polarimeter) to a voltage is programmed to

have a 12 dB/octave low pass filter with a corner at fLPF = 10 kHz. The DAQ acquires

M = 128 data points at a rate of fDAQs = 100 kHz every 1/f3 = 5 msec. These data are

then averaged together to produce a single measurement of Sz at f3. These parameters

were carefully selected to minimize the amount of gain modulation and avoid aliasing white

noise onto Sz. An inequality that describes how each of these parameters are related is

2fLPF < Mf3 < fDAQs /2.

Figure 4.9 demonstrates the influence of gating on the Faraday detection noise. All the

traces shown were acquired with f3 = 200 Hz, M = 128, f1 = 5.1 Hz, B1/B0 = 0.74, and
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Figure 4.9: Influence of gating on detection noise. Left: amplitude spectral density of Faraday
rotation. See text for details. Right: Average Faraday rotation noise vs. miss-balance
voltage. The pre-amplifier gain was 20 µA/V.

B2/B0 = 0. No Xe is excited in this measurement. We apply an 18 Hz AC By so that we can

measure gain modulations. Gain modulation appears as f1 = 5.1 Hz sidebands on the AC

By carrier frequency (see the blue arrows). For the black trace, data are acquired while the

magnetometer gain responds to the gating of the bias pulse frequency. The noise spectrum

is similar to that acquired without gating. The green trace however, depicts data acquired

only when the pulses have been gated off for 2.5 msec (similar to the red data in Fig. 4.5).

Avoiding recording the Faraday rotation signal while the magnetometer gain responds to

the bias pulse frequency change reduces the white noise level down to nearly the probe noise

limit and also reduces the content at 18± 5.1 Hz by two orders of magnitude. We found

that the white noise of the green trace did not change when we switched to dual frequency

PDM. This is in contrast to PM where dual frequency modulation resulted in substantial

increase to the white noise of Sz (see Fig. 3.10). We note that if we reduce f3 to 100 Hz

the sidebands due to gain modulation can be suppressed down to the white noise floor. We

did not choose to operate at f3 = 100 Hz despite the improved rejection of gain modulation

because it would require we reduce the average bias field making us more susceptible to 1/f

detection noise (especially for detecting isotope b).
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The probe noise (red trace, acquired by blocking the pump lasers) is roughly an order of

magnitude greater than the photon shot noise (blue line) calculated from the total average

detected photo current (0.8 mA for this data). Increasing the probe power did not reduce the

probe white noise but it did reduce the electronic noise (not shown) which was less than the

probe noise. We found that the average Faraday rotation noise from 20 to 100 Hz (pumps

unblocked) showed a power law dependence (dashed red line) on miss-balance (Idiff ) of the

polarimeter (see Fig. 4.9). The average value of Idiff over a measurement period determines

how well the device rejects common mode noise (such as probe power fluctuations) between

the two photo diodes. This data suggests that in order to reach the photon shot noise we

need to stabilize the average photo current difference to ∼200 pA. This can be achieved

using an auto-balancing circuits [Hobbs (1997)]. We did not employ such a circuit during

my tenure because, as we will see below, the Xe SNR is not limited by the detection noise.

Besides average Idiff , we also found that the white noise of Sz depended on n, the number

of 2π precessions the Rb undergo per pulse. Figure 4.10 depicts the magnetic noise (Faraday

rotation noise scaled by the magnetometer gain) recorded when only isotope b is driven

(b1 = 0.74, b2 = 0). The white noise is reduced as the Xe is driven off resonance (compare
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Figure 4.11: Xe sideband collection.

green and black traces). The average white noise from 24.5 to 25.8 Hz (measured while

isotope b is resonantly excited) exhibits a linear dependence on n. The source of this white

noise is uncertain. The fact that it is proportional to the excited Xe amplitude suggests its

source is the Xe. The fact that it is proportional to n suggests it may be due to discrete Xe

precession, i.e. the fact that the Xe precesses for only the duration of the bias pulses and

not continuously. If such were the case then we expect the dependence of average magnetic

noise per n measured when only isotope a is excited to be ρ greater than when only isotope

b is excited. We have yet to measure how n influences the magnetic noise when only isotope

a is excited. This white noise could possibly really be signal. Our detection of the Xe phase

assumes continuous Xe precession. We assumed such because each pulse produces only a

few mrad of precession per pulse.

In order to further characterize the validity of our α-space detection scheme we analyzed

our signals in terms of pulse number. When the Xe isotopes are on resonance, the complicated

precession in time is merely a superposition of sine waves in pulse number (see Fig. 4.6). We

record both the pulse number and Sz signal at a constant rate in time. We then plot Sz vs

pulse number. Since the pulse repetition rate is constantly varying, the number of pulses
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between Sz samples is not fixed. We interpolate the Sz data so that there is one sample of

Sz per pulse. We then convert pulse number to an effective time by dividing by the average

pulsing frequency. Figure 4.11 depicts the amplitude spectral density of Sz vs frequency (red)

and effective frequency (black). We see that the interpolated effective frequency increases

the spectral content at the Xe resonance frequencies especially at ωa which increases an

order of magnitude. The sideband collection is not perfect as there is substantial content

at other frequencies. A possible source of these spurious sidebands are errors in the linear

interpolation. After all, there are times when isotope a is precessing sufficiently fast such

that it is only sampled three times in a cycle. Another possible explanation is that there

exists Xe precession which is not due to the pulses.

confirmation of εz

The influence of εz is readily observed by comparing the phase of response to an AC Bz of

each isotope as measured by the Rb. We write,

Arg(δ̃a − ε̃z)− Arg(δ̃b + ε̃z)

≈ tan−1

(
ω(Bwγ

a − Γa2)

−ω2 −BwγaΓa2

)
− tan−1

(
ω(Bwγ

b + Γb2)

ω2 −BwγbΓb2

)
, (4.9)

where we have taken ∆̃ ≈ γB̃z0 and ε̃z ≈ B̃z0/Bw. With both isotopes simultaneously excited

on resonance but open loop (no frequency correction), an ancillary AC Bz is applied at

frequency f . The phase of oscillation as measured by the Rb (δ ± εz) at frequency f relative

to the ancillary Bz is recorded for each isotope. The difference of the phase of responses vs

f is shown in Figure 4.12. If there were no magnetometer phase shift (i.e., if ε̃z = 0) the

phase difference would approach zero with increasing frequency (see dashed line in Fig. 4.12).

Instead, we see the phase difference increase with f , consistent with ε̃z 6= 0. The solid line

is a fit to the data. The fit suggests a Bw = 3.5 ± 0.3 mG, in agreement with the Bw we
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√
τHz.

measure by recording the magnetometer response vs applied By of 3.1± 0.1 mG.

A second confirmation of our model for εz is long term drift of the phase of a rotating

fake Xe signal as measured by the Rb. For real Xe, our detection scheme measures δ ∓ εz.

For a rotating fake Xe however δ = 0. Hence, any drift we observe in each isotope’s phase

detection channel when fake Xe signals are applied attributed to εz. Figure 4.12 depicts

the phase noise measured when fake Xe signals for each isotope are simultaneously applied
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to the magnetometer. We see the presence of distinct 1/f noise. We prove that this drift

stems from εz by making an in situ independent measurement of εz and then subtracting

its drift from each isotope’s demodulation phase. In this way, εz noise is “eaten” via feed

forward. We measure εz in real time by measuring the magnetometer’s phase of response

to an ancillary rotating B⊥. The variation of this phase measurement is then added or

subtracted (depending on the sign of each isotope’s γ) to the demodulation phase of each

isotope. The influence of this feed foward is also shown in Fig. 4.12. Feed forward reduces

the 1/f noise on the fake Xe phase measurement down to the white SNR limit. There

are some spurious peaks which appear on the demodulated Xe phase when feed forward is

activated. These peaks stem from interference between the frequency modulated fake Xe

signals and the constant frequency of the ancillary B⊥. Presumably these peaks could be

avoided by applying B⊥ as an α-periodic waveform such that any nearby sidebands from

the Xe precession would always be more than 1 Hz away. The standard Allan deviation of

the rotation computed using the measured fake Xe phases with and without εz feed forward

are shown in Fig. 4.12. With feed forward activated the detection noise supports an ARW of
√

2 10 µHz/
√

Hz.

We note that, as was shown in Ch. 2, δ itself depends on εz (see Eq. 2.12). This is what

causes the derivative of εz to appear on the measured Larmor resonance frequencies. So

although utilizing feed forward to suppress εz’s influence on the detected phase noise of a

fake Xe signal is clearly helpful, the same is not necessarily true for detecting real Xe signals.

In the comagnetometry section below we demonstrate how proper treatment of εz enables

order of magnitude improvement in the field suppression of the computed rotation. Feed

forward is not used in any other data presented in this chapter unless specifically stated

otherwise.
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Cross Talk

Figure 4.13 depicts the cross talk measured for PDM excitation with the gating detection

system optimized. These data were acquired using the same procedure described in Ch. 3.3.

When isotope b is near resonance and isotope a is far from resonance, we see the quadrature

component of isotope b appear on the Ka
x detection channel (see inset). The quadrature

of isotope a does not appear on the Kb
x detection channel. The data are consistent with

β = 0.016 and β′ < 0.002 (see Eq. 3.9), which are found by dividing the peak to peak value

of the cross talk signal divided by the peak to peak value of the original quadrature signal.

Only an upper bound can be placed on β′ as the cross talk signal is unresolved.

We believe that finite suppression of gain modulation can contribute to cross talk. For
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instance, the input to isotope b’s LPF is (see Eq. 4.4),

Ib = [Aa⊥ sin(αa + δa) + Ab⊥ sin(αb + δb)] cos(αb0)
dαb0
dt

, (4.10)

where we have assumed that εz = 0 for the purpose of this discussion. We can rewrite this

expression above in terms of a sum of sines such that

Ib =
1

2

dαb0
dt

[Aa⊥[sin(αb0 + αa + δa) + sin(αb0 − αa − δa)] (4.11)

+Ab⊥[sin(αb0 + αb + δb) + sin(αb0 − αb − δb)]] (4.12)

where αb0 ± αa = (γb0 ± γa)
∫
dtBz(t) and αb0 ± αb = (γb0 ± γb)

∫
dtBz(t). Insofar as γb0 = γb

we find

Ib =
1

2

dαb0
dt

[Aa⊥[sin(γ−B + δa) + sin(γ+B− δa)] (4.13)

Ab⊥[sin(2γbB + δb) + sin(−δb)]] (4.14)

where γ± = γb ± γa and B =
∫
dtBz(t). Recall that Bz(t) = B0 +B1 cos(ω1t) +B2 cos(ω2t).

Insofar as the A⊥’s are DC, low pass filtering Ib will result in a signal only proportional to δb.

However, gain modulation causes the A⊥’s to oscillate at integer multiples of ω1 and ω2 such

that Ib acquires a DC component proportional to δa. This model suggests that increasing

the gain modulation should make the cross talk more obvious. We have yet to demonstrate

that such is the case.

Feedback

In Ch. 2 we learned how the Larmor resonance frequencies of each isotope can be measured

in real time by correcting ωd using the measured phase of precession (δ ± εz). We streamed

the demodulated signals (Kx and Ky) of each isotope from the FPGA to a computer at a
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Figure 4.14: Top: Simulated Bode plots of inverted-zero (red trace, ω0 = 0.1 Hz and P = 1)
and lead compensator (black trace, ω1 = 0.1 Hz, and a = 20.). Bottom: Simulated Bode
plots of L(s) with (blue trace, ω0 = ω1 = 2 Hz, a = 20, and P = 0.01) and without (orange
trace, ω0 = 0.021 Hz, P = 0.2) lead compensator. Both traces assume Γ2 = 21 mHz.

rate of 200 samples per second per channel. We then compute the phase of precession of

each isotope by calculating atan(Ky/Kx). The calculated phase of each isotope was then

sent through a digital filter whose transfer function (in Laplace space, s = iω) is

K(s) = P (1 + s0/s)

(
1 + as/s1

1 + s/s1

)
. (4.15)

The first portion in parentheses of this control law is known as an inverted-zero and the

second is a lead compensator. Figure 4.14 depicts the magnitude and phase vs. frequency

for each of these individual gain stages. In order for a control loop to be stable, the

round-trip gain L(s) = G(s)K(s), where G(s) is the open loop gain, must have the following

properties [Bechhoefer (2005)]: (i) high gain at low frequency, (ii) low gain at high frequencies,
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(iii) phase lag smaller than 180 deg for frequencies where the gain is greater than 1, (iv)

gain trend as 1/iω at the frequency of unity gain. If G(s) were simply the Xe transfer

function then the inverted-zero gain stage would suffice. At high frequencies however, the

phase shifts from the second order Butterworth and moving average filters utilized in the

α-space demodulation dominate. These phase shifts are partially compensated for by the

lead compensator, allowing us to increase the gain of the control law before oscillations

ensue. The open loop Xe transfer function is

G(s) =

(
1

s+ ΓK2

)(
1

(s/sa)2/+
√

2s/sa + 1

)(
e−sπN/fssinc(−sπN/fs)

)
, (4.16)

where the first portion in parenthesis is due to the Xe, the second is due to the second-order

Butterworth LPF (sa is the filter corner), and the third is due to the moving average (N

number of samples, fs sample rate). Figure 4.14 depicts the magnitude and phase of L(s)

vs. frequency. In order to satisfy criterion (iv) without the lead compensator, we must set

ω0 = Γ2. The gain P is then increased until the Gain=1 at the frequency where the phase=-π.

Adding the lead compensator allows us to let ω0 >> Γ2 without violating criterion (iv) so

long as ω1 ∼ ω0. We see that adding the lead compensator enables a factor of 5 increase

in gain from 1 to 100 mHz. We find that the results from this simulation are in agreement

with experiments. We note in passing that the control law implemented here is a specialized

type of proportional-integral-derivative gain, where the proportional and integral gain are

related to one another (inverted-zero) and the derivative gain is truncated (in contrast to

purely derivative gain which increase with f monotonically).

The servoed error signals (δωKd ) are used to adjust the drive frequency of each isotope.

We chose to implement the software such that we calculate ω1 = ωbd + δωbd and ω2 =

ωad + δωad − 3(ωbd + δωbd). Figure 4.15 depicts the measured phase noise of each isotope when

feedback is activated. Feedback suppresses the low frequency phase noise of each isotope.

Residual low frequency phase noise persists despite feedback, suggesting that compensation
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Figure 4.15: Influence of feedback on Xe phase and amplitude. Left: measured phase noise
of each isotope with feedback engaged. Right: magnitude of detected Xe signals vs time.
The feedback for this data did not include the lead compensator.

for finite gain (as discussed in Ch. 2) may be necessary. We also found that the amplitudes

of each isotope, especially isotope a, drift over hour length time scales when feedback is

engaged (also shown in Fig. 4.15). The rate of drift was found to be proportional to the

gain at high frequency (with the lead compensator installed isotope a’s amplitude would

drop to zero after 10 ks), and variable from data set to data set. If the servo is dis-engaged,

the amplitudes largely return to their original state suggesting that the demodulation phase

αa0 has an error which accumulates over time.

We believe that this drift stems from rounding errors which occur when the servoed

error signals, which are double precision (DBL) numbers, are rounded to 64 bit integers

and then sent to the FPGA. In App. B we show that the integer increment ∆n of a counter

composed of X bits whose update rate is fup produces a periodic waveform of frequency

f0 according to ∆n = f0β where β = 2X/fup. The increment for θ1’s phase register is

∆n1 = ∆n0
1 + βRound[G(δb + εz)] where ∆n0

1 is the drive frequency determined under open

loop conditions. The Round notation denotes rounding. The increment for θ2’s phase register

is ∆n2 = ∆n0
2 + βRound[G(δa − εz)− 3G(δb + εz)]. Recall αa = 3θ1 + θ2 +

∫
dtBm. We can
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rewrite the first two terms as

3θ1 + θ2 ∼
∫

(3∆n1 + ∆n2)dt = 3∆n0
1 + ∆n0

2+

3βRound[G(δb + εz)] + βRound[G(δa − εz)− 3G(δb + εz)]]. (4.17)

We see that if the Round functions were discarded then the terms with δb + εz cancel. The

rounding allows for isotope b’s correction frequency to influence αa0! This model explains why

isotope a’s magnitude drifts substantially more than isotope b’s magnitude. Possible solutions

are to change the θ1 and θ2 phase registers to φa and φb registers so that the subtraction of

two rounded numbers is avoided. Alternatively, one can change driving schemes such that

ω1 = ωbd and ω2 = ωad (drive scheme B mentioned previously, see Ch. 4.5 for preliminary

results). The rest of the data presented in this chapter suffers from this rounding issue unless

otherwise noted.

4.4 Comagnetometry

With frequency feedback implemented so that we can measure each isotope’s Larmor

resonance frequency continuously and in real time we are prepared to evaluate the degree to

which magnetic fields produce correlations between the two measured resonance frequencies.

Each isotope is phase locked to line center with an accuracy of ±0.3 mHz. The drive

frequency of each isotope then tracks the resonance as defined by the phase of precession as

measured by the Rb.

Stability

Figure 4.16 depicts the measured resonance frequencies plotted on separate linear scales over

10 hours of continuous measurement. We see that the two resonance frequencies are highly
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correlated over short (see 200 sec inset) and long time scales. The amplitude spectral density

of the resonance frequencies show clear 1/f noise which is approximately ρ larger for isotope

a than isotope b suggesting the noise is of magnetic origin. We calculate the rotation using

(1 + ρ) ωR = ρωb − ωa where ρ = ω̄a/ω̄b = 3.37322, and the bar denotes averaging over the

length of the data set. We note that this data was not corrected for finite gain. We found

that correcting for finite gain only influenced the field suppression when an ancillary Bz was

applied. The expected ρ from the literature is ρ0 = 3.373417(38) [Makulski (2015)]. If we

assume that isotope b is responsible for the entirety of this discrepancy (due to quadrupole

frequency shifts due to electric field gradients on the cell walls for instance) then we write,

ρ =
ρ0ω

b

ωb + δωb
→ δωb =

ρ0 − ρ
ρ

ωb ∼ 0.5 mHz. (4.18)

The amplitude spectral density of ωR exhibits white noise of frequency from 0.1 to 20

mHz. From 20 to 80 mHz the noise goes as f (white phase noise). Both the white frequency

noise and white phase noise are due to finite SNR of the comagnetometer. The white phase

noise does not continue for frequencies greater than 80 mHz because of the LPF used in

conjunction with α-space demodulation (see discussion above).

The standard Allan deviations of the time series of measured Larmor resonance and

computed ωR are also depicted in Fig. 4.16. We see that each isotope trends as τ 1/2 indicative

of 1/f magnetic noise. We find that the Allan deviation of ωR (σR) depends on the amount

of data (length of time) used for its computation. If we compute σR for the first 3 ks, the

σR trends as τ−1 from 10 to 100 s due to white phase noise and then trends as τ−1/2 from

100 to 600 s suggesting an effective SNR of ∼ 1500
√
Hz. The confidence in the final data

points is insufficient to know whether the increase in σR at 1 ks is an artifact of finite sample

number or bias instability. In subsequent data sets (not shown here but see [Thrasher et al.

(2019)]) we improved the ARW by a factor of two by changing from 4π pulses to 2π pulses

(see discussion concerning Fig. 4.10). The measured SNRs were 3200 and 5300
√

Hz for
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isotopes a and b respectively. The SNR of isotope b is very similar to the measured DNR of

the PDM (see Fig. 4.4). Because of our drive scheme we expect SNRb ∼ ρ SNRa. The fact

that we observe SNRb < 2 SNRa suggests that SNRb is limited by the PDM DNR.

Continuing our discussion of Fig. 4.16, if we compute σR for the first 10 ks of data, the

τ−1/2 trend is never resolved due to a τ 1/2 trend. The dominance of the τ 1/2 trend increases

when we compute σR using the full 10 hr data set. These observations lead us to believe that

there exists a systematic frequency drift in the measured phase of one of the isotopes, the

influence of which on σR increases with time. This data belongs to the same data set as was

used to produce Fig. 4.14. We believe that the drift of the measured magnitude of isotope a

is likely related to the influence of data set length on σR. The minimum σR calculated over 3

ks is 550 nHz. Although we have two other data sets whose bias instability was ∼ 300 nHz,

we found that measuring a bias instability < 1 µHz was difficult to repeat. In the following

sections we discuss measurements we made to better understand what noise sources may

limit the bias instability.

Study of systematics

In this section we summarize our exploration of how various experimental parameters

influence ωR. For experimental convenience we often make a change to some experimental

parameter X and then watch how ρ responds over time. Plotting ρ vs. X we find ∂ρ/∂X.

By measuring the fluctuations of X we can then estimate the noise of ρ as

δρ =
∂ρ

∂X
δX. (4.19)

The noise of ρ is then cast in terms of rotation as

δωR = δρ
ωb0

1 + ρ
, (4.20)
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Small dashed line depicts εz correction with Bw = 2 mG. Right: influence of real-time bias
field stabilization using the sum of the two Larmor resonance frequencies on ωbd and ωR.

where ωb0 is the average resonance frequency of isotope b.

Field Suppression: Since the goal of a comagnetometer is to sense non-magnetic

spin-dependent interactions, we characterize how well the device rejects bias magnetic field

perturbations. Finite magnetic field suppression will lead to bias instability if the magnetic

drift is severe enough. In order to characterize the field suppression factor (FSF) of the

comagnetometer, we record the drive frequencies while applying an ancillary 5 mHz 4.3 µG

Bz. We define the FSF to be ω̃bd/ω̃
R at the frequency of the ancillary Bz. We define the

FSF in this way because if one only had a single isotope with which to sense non-magnetic

phenomena one would naturally choose the isotope with the smallest γ, which in our case is

isotope b. Hence, the frequency stability of isotope b is used as a metric for the frequency

stability of the computed rotation. The drive frequencies used for computations mentioned

below were corrected for finite gain (as discusses in Ch. 2) in post processing.

Recall from Ch. 2 that the computation of ωR does not cancel all of the magnetic field

dependence of the measured Larmor resonance frequencies due to the influence of εz which
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is proportional to Bz. As such, we expect that ignoring the influence of εz will degrade the

FSF. If we ignore εz we measure an FSF of 75 (see Fig. 4.17). We can correct for εz by

subtracting the time derivative of Bz fluctuations normalized by Bw and measured in-situ

by the sum of the Xe isotope’s Larmor resonance frequencies. We write,

ωRc =
ρX̃b

z − X̃a
z

1 + ρ
+ iωε̃z − iω tan−1

(
1

Bw

ω̃ad + ω̃bd
γa + γb

)
(4.21)

Computing ωR in this way requires knowledge of Bw. If we compute ωR using the average

of the two independent measurements of Bw mentioned previously in this chapter (Bw = 3.4

mG) we find an FSF of 470. However, the maximum value of FSF occurs for Bw = 2.0 mG

and is 2300. Clearly, εz introduces substantial phase shifts to the comagnetometer signal.

This is not surprising when one considers that it is the derivative of εz that is added to

ωR. Since the ancillary Bz modulation is sinusoidal, εz contributes a 90 deg phase shifted

oscillation at the same frequency to ωR.

In order to prevent uncertainty in Bw from influencing the FSF, we built an additional

feedback loop which corrected Bz0 such that the sum ωad + ωbd was kept fixed. Assuming that

Bz0 is the dominant contribution to εz, this will stabilize the magnetometer phase shift. The

gain of this feedback loop was sufficient to suppress ω̃bd by a factor of 15 at 5 mHz compared

to when the sum ωad + ωbd was not stabilized, as shown in Fig. 4.17. The FSF was 1800 (not

shown) with this additional feedback loop (taking into account the factor of 15 suppression

of ω̃bd). Similar to finite gain corrections, stabilizing the bias field using the sum frequency

did not improve the noise or stability of the computed rotation. This is strong evidence that

finite FSF is not responsible for the bias instability we observe.

We can estimate what the bias instability would be if it were limited by the FSF by finding

the τ at which the σ0 due to ARW equals the σ−2 due to suppressed 1/f magnetic noise.

Figure 4.16 shows that σ0 = 10−5Hz/
√

Hzτ−1/2. The scaled sum frequency amplitude spectral

density (not shown) exhibits clear 1/f dependence with a slope of
√
A−2 = 10 nG Hz/

√
Hz.
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Hence, the expected 1/f magnetic noise contribution to rotation is
√
h−2 = γb

√
A−2/FSF.

The standard Allan deviation’s dependence on h−2 is σ2
−2 = π2h−2τ2/3 [Vanier and Audoin

(1989)]. Setting σ0 = σ−2 with FSF = 1800 we find τ = 2 ks. Hence, the FSF-limited bias

instability is estimated to be ∼ 200 nHz.

Transverse Fields: Here we describe how changing the DC transverse fields (Bx and

By) influences the comagnetometer. The first experiment we performed was to measure

the Allan deviation for various ancillary Bx and By fields. Figure 4.18 shows the resulting

data. We find that the average ρ depends linearly on Bx and By. We also find that the

bias instability of ωR is quadratically sensitive to both Bx and By. The bias instability is

more sensitive to By then Bx. The bias instability has a lower minimum when By is scanned

because Bx was already optimized when By was scanned. We have found that if the bias

instability is poor then the DC transverse fields are likely sub-optimal.

In Ch. 2 we derived how transverse fields produce noble gas phase shifts (see Eq. 2.19-2.20).
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In the high gain limit such that δK = ∓εz and to first order in εz we find

ρ =
γaB0 − Γa2 η

a [BxBy − εz(B2
x −By0By)]

γbB0 − Γb2 η
b [BxBy − εz(B2

x −By0By)]
(4.22)

where B0 =
√
B2
z +B2

x +B2
y (the Xe precession frequency depends on the magnitude of the

magnetic field in the vapor cell), ηK = (jKγK/ΓK2 )2, and Bi = Bi0 + bKS Si are time averaged

classical and SE fields. This function has the feature that for δK = ∓εz = 0

∂ρ

∂Bx

∣∣∣∣
By>0.1 µG

=
∂ρ

∂By

∣∣∣∣
Bx>0.1 µG

. (4.23)

We fit the ρ vs. Bx,y data separately using Eq. 4.22 assuming εz = 0. We also assume that

bKS Sx = 175 µG as this is the same Bx which minimizes the bias instability. Likewise we

assume bKS Sx = −10 µG. We also fix γa = 1177.69 Hz/G, Γa2 = 15 and Γb2 = 20 mHz, and

ja = jb = 0.2 (the data were acquired with pumping scheme B and b1 = b2 = 0.4). Fitting

the ρ vs. Bx data we find γb = 349.1598(6) Hz/G and By = 15.4(7) µG. Fitting the ρ vs

By data we find γb = 349.1664(3) Hz/G and Bx = 14.2(5) µG. Apparently the measured

behavior of ρ vs Bx,y can be accounted for by cancellation of bKS Sx,y to no better than 15

µG. These realistic fit parameter results suggest that our model may accurately account for

ρ’s behavior.

Using Eq. 4.20 and our measured slope ∂ρ/∂Bx,y = 4 G−1 we find ∂ωR/∂Bx,y = 9 Hz/G.

If we assume that the 1/f noise of Bx,y is the same as Bz (10 nG Hz/
√

Hz) then we expect

σωR = 233 nHz
√

Hz
√
τ , which at 100 s equals ∼ 2 µHz. This is very similar to the bias

instability we most often observe after carefully optimizing Bx and By. It is unclear why we

are unable to optimize the transverse fields such that Bx,y < 10 µG (as suggested from our

data fit above) and therefore further reduce ∂ωR/∂Bx,y. One possible explanation is (again)

the drift of the transverse fields. The standard Allan deviation of the transverse fields (again

assuming that the 1/f noise is the same as the measured Bz 1/f noise) is σBz = 25 nG
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√
Hz
√
τ . Hence, if at t = 0 we set Bx,y = 0 the drift of the transverse fields would cause

σBx,y ∼ 1 µG after 100 s.

It is interesting to consider how transverse fields influence ωR. Assuming the isotopes are

frequency locked on resonance and only experience frequency shifts due to classical magnetic

fields we write

ωR =
BxBy

1 + ρ
(ρΓb2η

b − Γa2η
a). (4.24)

We normally choose the modulation depths such that jb ∼ ρja. Under such conditions we

find ρΓb2η
b − Γa2η

a = (jaγa)2[ρ/Γb − 1/Γa] ∼ 107 G−2. One could consider instead choosing

the modulation depths such that ρΓb2η
b − Γa2η

a = 0→ jb/ja =
√
ρ Γa/Γb ∼ 1.6. In this way

the sensitivity of ωR to Bx and By should be suppressed.

Pump Laser Detuning: The SE field bKS S⊥ depends on the alkali pumping rate R

which itself depends on the pump laser detunings. Since we have seen that transverse fields

influence ωR it behooves us to study how pump laser detuning influences ωR as well. The

pump detunings also influence the AC Stark effect as well as εz (since εz = Sy/Sx, Sx ∼ R).

Similar to the temperature studies mentioned above, we measured ρ vs. time after we made

discrete changes to the pump detuning(s). Figure 4.19 depicts the average ρ for each pump

detuning. These data were acquired without bias field stabilization, correction for finite gain,

or correction for εz. We find that ρ depends linearly on each pump laser’s detuning such

that (see Eq. 4.20) ∂ωR/∂∆pump ∼ 77 µHz/GHz for pump A and 43 µHz/GHz for pump B.

We measure the pump laser detuning noise using the transmission through our hot

vapor cell at zero field. We record the amplitude fluctuations of the light transmitted

through the vapor cell and convert to detuning noise by measuring ∂IPD/∂∆pump where

IPD is the photo current detected by a single photodiode. Figure 4.19 depicts the standard

Allan deviation of each pump laser’s detuning noise scaled to rotation frequency using the

respective ∂ωR/∂∆pump. We see that the implied rotation noise from pump A is 800 nHz at
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100 s of integration, very near to the observed rotation noise of ∼ 1 µHz. Pump B’s implied

rotation noise is 3x less than pump A’s rotation noise. This is likely due, at least in part, to

the fact that pump A is normally operated at a smaller detuning than pump B in order to

cancel the average AC stark. This data suggests stabilizing one or both pump detunings

may improve the rotation frequency bias instability. Stabilizing the pump laser detuning at

a detuning of ∼ 10 GHz is difficult using standard atomic spectroscopy techniques such as a

dichroic atomic vapor laser lock. An alternative would be to make corrections to the pump

detuning to keep the magnetometer response to an ancillary rotating B⊥ constant. This has

not yet been attempted.

Temperature: Cell temperature can influence the measured Larmor resonance frequen-

cies in several ways. If the Xe is not driven exactly on resonance then the temperature

dependence of Γa2 is expected to be larger than the temperature dependence of Γb2 due to

an anomalous temperature dependent wall relaxation mechanism. Another possibility is

through εz = Sy/Sx as Sx will exhibit temperature dependence in an optically thick (photon

starved) vapor cell. A third possibility is quadrupole frequency shifts of isotope b having a
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Figure 4.20: Temperature dependence of ρ. Left: ρ vs time where the heater voltage is
changed in step like fashion at t = 0. Inset shows steady state ρ vs Vh with a linear fit
(dashed line). Right: standard Allan deviation of cell temperature as measured by the RTD
and converted to rotation frequency under normal operating conditions. Inset shows the
time series of the cell temperature as measured by the RTD.

temperature dependence.

We tested how cell temperature fluctuations relate to rotation instability by recording

the Larmor resonance frequencies of each isotope as the power (via heater voltage Vh) to the

cell heaters is changed. Figure 4.20 shows ρ = ωa/ωb (not corrected for finite gain) vs time.

At t = 0 the power to the cell heaters is changed in step like fashion. The several hundred

second response time of the cell temperature to the change in heater power is clearly visible

in ρ. We measure ∂ρ/∂Vh = 8(2)× 10−4 1/V. We can convert this rate to ∂ρ/∂T as follows

∂ρ

∂T
=

∂ρ

∂Vh

∂Vh
∂n

∂n

∂T
, (4.25)

where ∂Vh/∂n comes from spectroscopic measurements of n (Rb density) at various Vh

and ∂n/∂T comes from the Rb vapor pressure curve. We find that ∂ρ/∂T = 8 × 10−6

degC−1. Using Eq. 4.20 with ρ = 3.3734 and ωb0 = 10 Hz we find ∂ωR/∂T = 18 µHz/degC.

We measured the cell temperature fluctuations using the RTD in contact with the vapor
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cell. Figure 4.20 depicts the cell temperature vs. time derived from the measured RTD’s

resistance. The standard Allan deviation of the measured temperature fluctutions scaled by

∂ωR/∂T is also shown. At 100 s, σ is only 200 nHz suggesting that the temperature stability

of this particular data set fails to account for the 1 µHz bias we normally encounter after

100 s of integration. One possible issue with this logic is that ∂ωR/∂T is likely frequency

dependent. We have assumed that large temperature changes over short periods of time

influence ρ the same amount as small temperature changes over long periods of time, which

is likely not the case.

We also studied how δb influenced ∂ρ/∂T . We did so by recording the steady state of ρ

at various cell temperatures with different δb. Figure 4.21 shows ∂ρ/∂T vs. δb0. Resonance is

located at/near δb0=0. We see a linear relation between ∂ρ/∂T and δb0 which goes through

zero when δb0=0. Temperature dependence of quadrupole frequency shifts and/or Γb2 could

account for this behavior. We note that the best performance of the NGC gyro was achieved

by carefully choosing δb such that the temperature dependence of ωR becomes non-linear

[Walker and Larsen (2016)]. We have yet to study how the temperature dependence of ωR

changes with δa.
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Other: We also investigated how varying the pulse area and pump beam pointing

influenced ρ. Neither made a measurable impact on the steady state value of ρ.

DC voltage into DAQ: We found that the DC voltage digitized by the DAQ influenced

the measured ρ. We measured ∂ρ/∂Vdiff = 8 × 10−6 V −1
diff(see Fig. 4.22). In order to

estimate the noise of Vdiff we simply recorded Vdiff overnight while Xe was not excited.

The standard Allan deviation of the measured Vdiff noise scaled to rotation frequency is

depicted in Fig. 4.22. We see that at 100 s of integration the rotation frequency noise due to

photodiode balance drift is 30 nHz, significantly less than the observed bias instability of 1

µHz. Although the photodiode balance drift does not appear to limit the performance of the

comagnetometer we were surprised by its existence. We have determined that ρ’s dependence

on photodiode balance stems from our implementation of α-space demodulation. Simply put,

our demodulation waveforms have non-zero overlap with DC. This can be seen by letting

Sz = Sz0 (the part of Sz at DC such as 1/f detection noise) and evaluating Eq. 4.4.
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4.5 Ongoing Studies

generalized matrix inverse

We have started using a real time fitting algorithm based on generalized matrix inversion

(MI). We make n samples of Sz spaced evenly in time. We compute the value of α at each

measurement time. We can write Eq. 4.3 with respect to our multiple measurements as

S =



S1

S2

...

Sn


=



cos(αa1), sin(αa1), cos(αb1), sin(αb1), 1

cos(αa2), sin(αa2), cos(αb2), sin(αb2), 1

...

cos(αan), sin(αan), cos(αbn), sin(αbn), 1





Aa sin(δa)

Aa cos(δa)

Ab sin(δb)

Ab cos(δb)

Sz0


= B.V, (4.26)

where we have included the 1/f detection noise in the term Sz0. We can solve for V using

the generalized inverse V = (BTB)−1BTS, which is guaranteed to exist as BTB is a square

matrix of real values. This scheme is only sensitive to changes in δ which are slow compared

to the measurement time of n samples and works best when α makes large (but less than 2π)

changes between subsequent samples. In contrast to α-space demodulation, this scheme’s

measure of δ has no over lap with DC. We implimented the scheme on a computer using

LabVIEW. The demonstrated bandwidth is 10 Hz.

In Fig. 4.23 we show a time series of the phase deduced using the old and new (MI)

demodulation methods for each isotope. For these data the output of the MI outputs were

passed through a ten point moving average filter. The transients are concurrent with changes

in the photo diode balance or Sz0. We see that, transients aside, the phase deduced using

the matrix inverse is independent of Sz0. The phase deduced using the old method however

acquires an offset proportional to Sz0. The measured phase noise of each method, which is

dominated by 1/f magnetic noise, are in agreement with one another (see Fig. 4.23). Besides
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Figure 4.23: Matrix Inverse deduction of Xe phases. Top: amplitude spectral density of
isotope b (left) and isotope a (right) using the old (red) and matrix inverse (black) methods.
Bottom: Time series of deduced phases.

suppressing the influence of Sz0, the MI scheme’s performance is independent of the bias

field. For the old scheme, as the bias field drifts, the ideal number of data points that the

moving average should average together such that high frequency residuals are suppressed

changes proportionally. This is not ideal.

We have found that utilizing the MI does not impact the drift of the Xe magnitudes when

the detected Xe phases are locked. It also deos not influence the SNR or bias instability of

the comagnetometer. Despite such observations, the MI is clearly a superior scheme and will

be implemented exclusively in the future.
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Figure 4.24: New drive scheme preliminary results. Left: measured amplitude of isotope a
(black) and b (red) vs. time. The inset shows the same data plotted on individual vertical
axes for each isotope. Right: modified Allan deviation of ωR after scanning By and Bx.
Fig. 4.18 depicts the bias instability vs Bx and By for this data set.

new drive scheme

In addition to implementing the MI fitting algorithm we have also begun exploring drive

scheme B (spoken of earlier in the chapter), where ω1 = ωb and ω2 = ωa. The purpose of the

change was to see if the stability of the excited Xe amplitude improved. Figure 4.24 shows the

resulting Xe field amplitudes and modified Allan deviation of ωR for b1 = b2 = 0.4. Indeed, the

drift of the Xe amplitudes (especially isotope a) demonstrate drastic improvement compared

to those measured with drive scheme A (see Fig 4.15). We attribute this improvement to

the lack of rounding error inherent to drive scheme B (see discussion near Fig 4.15). With

the drift due to rounding error resolved, we now see excellent correlation of the magnitudes

of the two Xe isotopes (see insert of Fig. 4.24). We attribute these common fluctuations to

magnetometer gain drifts which likely stem from pump detuning fluctuations. The modified

Allan deviation appears limited by a constant-with-τ noise source at 1 µHz. The ARW is

roughly a factor of 2 larger than the ARW demonstrated with drive scheme A as expected

due to reduced K⊥ (see Ch. 4.1). Future work will include reprogramming the FPGA so

that drive scheme A can be implemented while avoiding error due to rounding.
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4.6 Outlook

The detection SNR of isotope a appears to be limited by the DNR of the PDM. The

demonstrated ARW is within a factor of 2 of the drive to noise ratio of the pulsing circuit

and is similar to the measured detection noise which itself is two orders of magnitude greater

than the photon shot noise. The source of limiting noise is uncertain but appears to stem

from the bias pulses. One possibility to improve the noise regardless of its source would be

to stabilize εz at high frequency. This could be accomplished by applying an ancillary B⊥ at

say 1 kHz and measuring the phase fluctuations (εz) of the magnetometer’s response with a

bandwidth of 100 Hz. By making corrections to Bz to keep εz fixed from DC to 100 Hz the

DNR should be improved insofar as the SNR of the measurement of εz is greater than the

pulsing circuits’ DNR. Once the ARW is probe (technical) noise limited it may be necessary

to implement an auto balancing detection circuit in order to reach the photon shot noise.

Our measurements suggest that the bias instability should reach 200 nHz if: the sum

frequency is used to stabilize Bz (thereby enabling an FSF of 1800), the transverse fields

are carefully tuned such that B+0 + bKS S+ < 1 µG and stabilized to have a 1/f noise of

∼ 1 nG Hz/
√

Hz, and the pump detuning stability is improved by an order of magnitude.

Stabilizing the cell temperature in conjunction with the pump detunings should make the

transverse fields which minimize the bias instability the same from day to day. If the bias

instability does reach the field suppression limit (200 nHz) then either the field suppression

or Bz noise will need to be improved. It is possible that the 10 nG Hz/
√

Hz Bz noise we

measure is limited by our three layer magnetic shield. If so, upgrading to four layer shield

should be pursued. Another possible source of low frequency Bz noise is the pulsing circuit.

One could imagine stabilizing the 1/f noise from the pulsing circuit by measuring the time

average of the voltage sent to the pulsing coil to feedback for correction to the bias field

pulse amplitude.
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Chapter 5

Future

Discovery is seeing what everyone else has seen, and thinking what nobody else

has thought.

— Albert Szent-Gyorgi

Chapters 3 and 4 described the ease with which purely transversely polarized alkali-metal

atoms and noble gas nuclei can be produced. The crux of this project is how to detect the

noble gas precession via Rb polarization with high SNR and no cross talk. Although the

PDM comagnetometer greatly suppressed cross talk while maintaining SNR, the SNR is

still orders of magnitude less than the photon shot noise. Furthermore, there exists some

source of low frequency drift that limits the bias instability of both devices. The following

sections describe options for future inquiry as well as an analysis of how the demonstrated

performance could contribute to the precision measurements community.

5.1 Other gas mixtures

We choose to work with vapor cells containing 131Xe and 129Xe because of their similar

enhancement factors (which give first order suppression of time averaged Sz) and convenience

as our collaborators at NGC share vapor cells with us. There are other advantages to using
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these Xe isotopes. Because their masses are similar, their Larmor resonance frequencies

are expected to be less dependent on the combined presence of first order magnetic field

gradients and temperature gradients [Sheng et al. (2014)]. In addition, their abnormally

large enhancement factors contribute directly to the SNR of their detection using the Rb

magnetometer. This large signal per unit polarization is advantageous because higher

order interactions such as back polarization [Limes et al. (2018)] and through space-J

coupling [Limes et al. (2019)] depend on polarization not SE field size.

All of that said, there may be advantages to changing the noble gas pair. The performance

of transverse comagnetometry applied to 3He-129Xe cells looks very promising. Compared

to 131Xe-129Xe, a 3He-129Xe cell should enable roughly 10 times the T2 and 10 times the

signal [Gentile et al. (2017); Limes et al. (2018)]. If the modest magnetic sensitivity remained

the same as our current cell then the anticipated ARW would be 100 nHz/
√

Hz, an order of

magnitude less than what was reported in [Limes et al. (2018)]. Although the improvement

in SNR should be dramatic, the sensitivity to longitudinal Rb fields will be much larger

(baS = 110 bHe
S [Ma et al. (2011)] versus baS = 1.002 bbS[Bulatowicz et al. (2013); Petrov et al.

(2019)]), as will the sensitivity to first-order temperature gradients [Sheng et al. (2014)] and

back polarization [Limes et al. (2018)].

5.2 Hybrid excitation

Both the PM and PDM comagnetometers have strengths and weaknesses. The strengths

of the PM comagnetometer include its insensitivity to 1/f transverse magnetic field noise

and the fact that it AC couples Sz. The weaknesses of PM are finite SNR due to the dual

frequency PM waveform and cross talk due to optical pumping transients and low pass

filtering (to prevent 1/f detection noise from showing up on the Xe detection channels).

One of the strengths of the PDM comagnetometer is its minimal cross talk (likely limited

by finite suppression of gain modulation). Its weakness is its sensitivity to 1/f transverse
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magnetic fields. If one could use both PM and PDM in concert to excite the Xe then all of

the weaknesses listed here would be eliminated. In this section we briefly sketched out how

such “hybrid” excitation might look. We discuss several possible hybrid drive schemes and

calculate the efficiency with which the noble gas isotopes can be excited. We also discuss

some finer details salient to Xe phase detection which should mitigate cross talk.

Bloch equation

We find the steady state solution to the Bloch equation describing the Xe nuclei for the case

of hybrid excitation where S+ =
∑

p spe
ipω1teiεz , and Bp(t) = Bp0 +B1 cos(ω2t). Assuming

the transverse fields are well nulled we solve Eq. 2.5a by letting K+ = K⊥e
±i(α+δ), α =∫

(ωKd + γKB1 cos(ω2t))dt and find the real and imaginary parts to be

dK⊥
dt

= −Γ2K⊥ + ΓsspJq(
γKB1

ω2

) cos(δ ∓ εz)→ K⊥ =
ΓsspJq

Γ2

(5.1)

δK

dt
= −∆K − ΓsspJq

K⊥
sin(δK ∓ εz) (5.2)

where we have assumed ωKd is chosen to satisfy the resonance condition ωKd +pKω1+qKω2 ∼ 0.

There are many possible drive schemes whereby the Xe can be excited. We plot the product

jK = spJq(γ
KB1/ω2) for each isotope and several drive schemes (described in Table 5.1) in

Fig. 5.1. For this data we assume square wave modulation such that sp = 2/(πp). Note: the

argument of the Bessel function can be conveniently rewritten as ωKb1/ω2 where b1 = B1/B0.

Drive scheme A minimizes ω2 but ja < 0.12 for all b1. Drive scheme B minimizes ω1 and

produces ja, jb > 0.2 but requires a large b1. Minimizing ω1 may be advantageous because

doing so reduces the rate of optical pumping transients which can produce cross talk (see

next section). Drive scheme C makes ω1 ∼ ω2 but produces jb < 0.15 for b1 < 1. Drive

scheme D produces the most ja + jb for b1 < 1. Although b1 > 1 is possible, it will require

the ability to apply opposite polarity bias pulses (e.g. ±2π). These calculations suggest



114

0 0.4 0.8 1.2
0

0.2

0.4

0.6

b1

jK

0 0.4 0.8 1.2
0

0.2

0.4

0.6

b1

jK
0 0.4 0.8 1.2

0

0.2

0.4

0.6

b1

jK

0 0.4 0.8 1.2
0

0.2

0.4

0.6

b1

jK

Figure 5.1: Efficiency of excitation for hybrid pumping of isotope a (orange) and isotope b
(blue) vs b1 for various drive schemes. Top: scheme A (left) and scheme B (right). Bottom:
scheme C (left) and scheme D (right). See Table 5.2 for drive scheme specifics.

A B C D
ωad = 3ω1 + ω2 3ω1 + ω2 ω1 ω1 + ω2

ωbd = ω1 − ω2 -ω1 + ω2 ω1 − ω2 ω1 − ω2

ω1/2π ∼ 11 1 30 20
ω2/2π ∼ 1 44 20 10

Table 5.1: Four hybrid excitation schemes. The rows of ω1 and ω2 are approximations
rounded to the nearest Hz assuming ωb0/2π = 10 Hz. See Fig 5.1 for corresponding ja, jb vs
b1 curves.

that the transverse Xe SE field excited by a hybrid excitation scheme will be similar to that

produced by PM and PDM, roughly 10’s of µG.
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Detection

As Ch.3-4 demonstrate, exciting Xe is much less than half the battle. Here we discuss how to

detect the Xe phase of precession while avoiding cross talk for the hybrid comagnetometer.

We showed in Ch. 4 that utilizing a detection scheme which takes into account the modulation

of the bias field suppresses cross talk between detection channels of the noble gas precession

phases. The matrix inverse fitting algorithm (discussed at the end of Ch. 4) can be used for

the detection of the hybrid driven Xe signals as well. The fit used to deduce the Xe phases

should have the gain reversals due to PM “baked” into it. Possible sources of cross talk

include optical pumping transients due to polarization modulation (see Ch. 3), not taking

into account asymmetric gain between σ+ and σ− pump polarizations, and gain modulation

due to PDM (see Ch. 4). Optical pumping transients can be avoided by not sampling Sz

during the optical pumping transients. This can be guaranteed by choosing ω3 = n ω1,

where ω3 is the bias pulse gating frequency and n is an integer. Gating the bias pulses and

detecting Sz when the magnetometer gain has stabilized not only avoids sampling during

optical pumping transients but also avoids gain modulation due to PDM. Asymmetric gain

between σ+ and σ− pump polarizations can be accounted for in the fit function at the cost of

roughly doubling the number of fit parameters. Note: the number of Sz samples per fit batch

must be larger than the number of free parameters. Additionally, since ω3 is the effective

sampling rate of Sz and acquiring data at anything but a constant rate is inconvenient, one

is inclined to fix ω1 thereby necessitating feedback to Bz and ω2 to maintain resonance of

each isotope (if one fed back to ω1 then ω3 would wander around with the bias field!). By

following the admonitions found in this paragraph the hybrid comagnetometer should exhibit

minimal cross talk.
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5.3 Separate vapor cells

In this section I explore the ramifications of separating the two noble gas species into separate

vapor cells. Having a single vapor cell with two noble gas species has several advantages.

First and foremost is the great prospect for miniaturization to chip-scale. Such a set-up

requires only two lasers. The fact that both species sample the same volume also helps

alleviate NMR frequency shifts due to bias field inhomogeneities. But these advantages come

at a cost. Exciting and detecting both species with the same alkali vapor inevitably reduces

the realized T2 compared to a single species vapor cell and enables cross talk. Additionally,

any measure of longitudinal noble gas polarization using the alkali atoms is sensitive to

the sum of each isotope’s longitudinal polarization. Without knowledge of which isotope

is generating Kz one can not make proper corrections to suppress the same. Finally, the

co-location of noble gas nuclei enable frequency shifts due to through space J-coupling (see

discussion below) directly between the two nuclei.

These disadvantages are all overcome by simply separating the noble gas species into

two vapor cells with different alkali species. Doing so would increase the required number of

lasers from two to four (a pump and probe laser for each alkali species) as well as double the

volume occupied by the noble gases. Comagnetometry would be much more sensitive to the

bias field uniformity and the noble gas species would still be sensitive to each other’s dipolar

field. But there would be marked improvement in each noble gas species T2 and hence SNR

while avoiding the possibility of cross talk all together. The Kz produced by each noble

gas species would also be readily obtainable enabling suppression of such. Surprisingly, this

separate vapor cell concept has not been explored in the literature.
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5.4 Applications

To date, our comagnetometers have only been used to measure noise. In the sections that

follow we outline several non-zero spin-dependent interactions that our device could be used

to measure.

Scale factor calibration

We have shown that our device can measure rotation rates down to 1 µHz if we assume a

scale factor which depends only on the gyro-magnetic ratios and finite gain of the frequency

locked loops. We have yet to confirm the scale factor by measuring a standard rotation

source. The earth’s rotation is such a source. With knowledge of the latitude and orientation

of the comagnetometer’s sensitive axis one can compute the earth’s expected rotation rate

to much less than 1 µHz. By mounting our comagnetometer apparatus on a swivel table

we can measure the comagnetometer’s rotation frequency as a function or sensitive axis

orientation relative to the earth’s axis of rotation. In order to calibrate the scale factor for

rotation rates other than earth’s, the device must be installed on a calibrated rate table as

was performed with the NGC-gryo [Walker and Larsen (2016)].

Through-space J-coupling

Just as a spin-spin coupling (SSC) enables angular momentum to flow from polarized

alkali-metal atoms to noble gas nuclei via spin-exchange collisions, so too there exists a

SSC between polarized noble gas nuclei of different species. Although this SSC is readily

observed in molecules, SSC in unbound nuclear spin systems (such as vapor cells) are much

more difficult to observe due to molecular motion. The first experimental observation of

SSC coupling between two different polarized nuclei in a vapor cell was reported just last

year [Limes et al. (2019)]. The coupling was manifest in the FID 3He-129Xe comagnetometer

by measuring how the cylindrical vapor cell’s aspect ratio influenced the comagnetometer’s
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frequency dependence on longitudinal polarization of 3He. They showed that the dipole field

experienced by the Xe can be written as

BXe
z = (1/3− nz + 2κHeXe/3)BHe

z , (5.3)

where nz is the magnetometric demagnetizing factor, which depends on the cell aspect ratio,

and BHe is the dipolar magnetic field from the He. The longitudinal polarization of He was

varied and not Xe because it was so much larger. The SSC between noble gases contained

in a vapor cell depends only on the vapor cell shape because their diffusion rate across the

entire cell is much faster than the timescales of transverse relaxation and long-range dipolar

interactions. They measured the frequency enhancement factor to be κHeXe = −0.011. This

was later verified by a second group whose comagnetometer contained polarized He and Xe

and relied on a SQUID for precession detection (the Rb was frozen out and removed after

SEOP) [Terrano et al. (2019)].

Recent calculations suggests that the enhancement factor between 129Xe and 131Xe, which

has yet to be measured experimentally, is κXeXe = −0.35 [Vaara and Romalis (2019)]. In

order to analyze how large of a frequency shift the SSC between our two Xe isotopes would

produce in our vapor cell one need only know nz and the max longitudinal polarization

achievable. Because we assume our cell is symmetric, we believe that 1/3− nz ≈ 0. Hence,

we can rewrite Eq. 5.3 as Ba,b
z ≈ Bb,a

z κXeXe2/3. Since our SE fields measured by the Rb are

about 50 µG we expect the dipolar field from the nuclei to be 50µG/500 ≈ 0.1 µG. So if we

tipped all of 129Xe’s polarization into the ẑ direction then we would expect 131Xe’s Larmor

resonance frequency to shift by δωb = γbBa
zκXeXe2/3 ≈ 8 µHz. In practice one would not

want to tip all of isotope a into the ẑ-direction because then isotope a would not precess

and the comagnetometer would be compromised. So a more realistic Larmor frequency shift

would be more like 1 µHz due to Ka
z /K

a
⊥ = 10%.

Although it can be argued that the most unambiguous means of measuring κXeXe is to



119

vary the cell shape, the through-space J-coupling between nuclei is the only mechanism which

allows for a signed comagnetometer frequency shift whose dependence on Ka
z and Kb

z is the

same. Hence, a convincing search for κXeXe could be pursued by looking for correlations

between the comagnetometer frequencies and Ka,b
z . So how would one produce and measure

time averaged Kz of each isotope individually in a controlled fashion? For the case of PM

excitation this is simply achieved by applying an AC By field which is resonant with the

isotope one desires to tip into ẑ. For the case of PDM this can be achieved by applying

Bx = B0
d
dt

cos(αK). (Note: the application of a DC By to the PDM comagnetometer would

produce Kz for both isotopes simultaneously). The amount of Kz produced for either PM

or PDM excitation can be monitored using εz. Because we detect δ ∓ εz the production

of Ki
z will cause a frequency shift of isotope i (see Eq. 2.3). Such a “self” frequency shift

would not be a problem for resolving κXeXe if we simply looked for correlations between Ka
z

and ωb and vice verse. However, the 1/f magnetic noise inside our shield is two orders of

magnitude too large to resolve the frequency shifts due to through space J-coupling, thereby

requiring we search for the coupling using ρ or ωR, which will exhibit the self shift as well as

the through space J-coupling.

In summary, both our PM and PDM comagnetometers have demonstrated sufficient

sensitivity to enable the first measurement of κXeXe. We have outlined the basic procedure

for searching for a through space J-coupling and remarked on several anticipated subtleties

regarding the measurement.

Spin-mass coupling

Dual-species synchronous SEOP is an excellent technique for performing a direct search

for axion-induced spin-mass couplings. Because of the Yukawa type potentials assumed for

spin-mass couplings, miniaturized comagnetometers enable broad energy resolution of the

supposed coupling. If the results reported in this study are reproduced in a 2 mm cell, we
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anticipate being able to improve the present upper bound in the sub-millimeter wavelength

range by an order of magnitude. The previous upper bound was set using a prototype of the

NGC-gyro [Bulatowicz et al. (2013)]. The upper bound for scalar-psuedo scalar spin-mass

couplings from that work was limited by residual comagnetometer frequency uncertainty of

10 µHz after 20 hours of data acquisitions. The PDM comagnetometer, as shown in Chapter

4, surpasses this uncertainty after merely 10 seconds of integration. Besides switching to a 2

mm inner diameter cubic cell, our apparatus would also need to accommodate a translatable

zirconia rod whose diameter is greater than 2 mm. Because this rod must be placed along

the ẑ-direction, in the probe laser’s path, the probe will need to be retro-reflected. Because

the noble gas nuclei diffuse through the entire cell over a T2, the closest approach of the rod

to the cell center determines the Compton wavelength range that is probed with meaningful

sensitivity. Hence, it behooves the experimenter to retro-reflect the probe laser in as compact

a fashion as possible. A reasonable solution is to apply a silver coating to the face of the cell

the probe laser exits. In this way the probe will be retro-reflected back along the ẑ-direction

from whence it came allowing the zirconia rod to approach as close as possible to the cell

wall.

Work on a preliminary prototype with Mike Snow’s research group at the University of

Indian has already begun. They have developed a compressed air actuator which should

translate the zirconia rod in a highly repeatable fashion without producing substantial

magnetic fields.
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Appendix A

Estimating ΓKS , bSK, and Γ′

In the two previous sections we derived expressions characterizing the expected time average

transverse noble gas polarization K⊥ for PM and PDM excitation. Knowledge of the Rb-Xe

SE rate ΓKS is required to estimate K⊥. The signal we measure however is the SE field

as experienced by the Rb atoms which is proportional to bSK , and Γ′. In this section we

demonstrate how to estimate the Rb-Xe SE rate, SE field enhancement factor, and Rb

relaxation rate given a vapor cells partial pressure composition.

Rb-Xe spin-exchange rate

We define the SE rate to be the SE contribution to T1 of the Xe nuclei. We will introduce an

expression describing the SE rate for 129Xe. The SE rate for 131Xe, which is complicated by

its nuclear spin of 3/2, is sufficiently well approximated by dividing ΓaS by ρ2. Assuming that

the 85Rb atom spins are in spin-temperature equilibrium we write Walker and Larsen (2016)

ΓKS = ΓKbin + ΓKvdW = kbin[Rb] + kvdW [Rb], (A.1)
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and

kavdW =
(ατ)2

2TX [Rb]
(
1 + q(ωτ)2/g2

I

1 + (ωτ)2
) (A.2)

where k is the SE rate coefficient, Γbin is the relaxation rate due to binary (Xe-Rb) collisions,

ΓvdW is the relaxation rate due to the formation of Rb-Xe van der Waals molecules mediated by

N2 collisions, [Rb] is the Rb density, 1/TX is the molecular formation rate, α characterizes the

hyperfine interaction strength (as noted at the beginning of this chapter), τ is the molecular

lifetime, gI = 2I+1 = 6 with I = 5/2 being the 85Rb nuclear spin, q = 2+ 8
3+S2 + 8

1+3S2 is the

slowing down factor for 85Rb (note the dependence on Rb polarization), and ω = 2π 3.0357

GHz is the hyperfine frequency. We can derive an expression for 1/TX by considering that

the molecular formation rate must be equal to the rate of molecular breakup such that

[Xe]

TX
=

[RbXe]

τ
=
kchem[Rb][Xe]

τ
→ 1

Tx
=
kchem[Rb]

τ
, (A.3)

where kchem is the chemical equilibrium coefficient. The product ωτ was measured at two

different temperatures in a He(98%)-N2(1%)-Xe(1%) vapor cell Nelson and Walker (2001).

A linear interpolation of these two data is (ωτ)Nelson = −9.12 amg
[He]K

T + 5340amg
[He]

, where T

is the cell temperature in Kelvin. As our vapor cells contain Xe and N2 instead of He we

need to take into account the relative molecular breakup rates compared to He. We write

kHe[He] = kXe[Xe] + kN2[N2] so that our expression for ωτ becomes

ωτ = (ωτ)Nelson
[He]

kXe

kHe
[Xe] + kN2

kHe
[N2]

. (A.4)

Table A.1 lists the quantities and their references used to compute kaS. Figure A.1 shows

kaS vs [Xe] and [N2] for various cell temperatures. We see that kaS is maximized when [Xe] is

minimized in confirmation of the Saam-Drehus principle, “The secret to achieving high Xe

polarization is to not put any Xe in your vapor cell”. That said, recall from Eq. 2.3 that the
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Term Value Ref
α 2π 29 MHz Bhaskar et al. (1982, 1983)

kXe/kHe 4 Chann et al. (2002)
kN2/kHe 1.6
kchem 213× 10−24 cm3 (T/353)−3/2 Nelson and Walker (2001)

Table A.1: Values used to compute kvdW .

0 20 40 60 80 100
[Xe](Torr)0

2

4

6

8

10

12

kS
K(10-16

cm3

sec
)

0 20 40 60 80 100
[N2](Torr)0

2

4

6

8

10

12

kS
K(10-16

cm3

sec
)

Figure A.1: Influence of cell temperature, [Xe], and [N2] on kaS. Left shows kaS vs [Xe] for
[N2]=50 Torr. Right shows kaS vs [N2] for [Xe]=50 Torr. The influence of temperature is
displayed using the colors; Blue= 100 C, Orange= 120 C, Green= 140 C. All traces assume
Rb polarization of 1/2.

SE field we measure is bSKK⊥, where bSK depends linearly on [Xe]. In the next section we

discuss how to estimate bSK .

In conclusion of this section we note that at a Rb density of 1013 cm−3 (T = 120 C)

the 129Xe SE rate is ΓaS ≈ 6 mrad/sec while ΓbS ≈ 0.5 mrad/sec depending mostly on [Xe].

We can use these numbers to estimate the maximum K⊥ achievable for both isotopes for

each excitation scheme. We set the Rb polarization to S⊥ = 1/2 and let sp = 1 for PM and

JpJq = 1 for PDM (these are not realistic values but are sufficient to estimate an upper

bound). Assuming Γ2 = 10 mHz for both isotopes (which is realistic) we find the maximum

polarizations to be Ka
⊥ = 0.05 and Kb

⊥ = 0.004.
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Figure A.2: Dependence of bSa and bSb on [Xe].

Term Value Ref
κXeRb 518 Nahlawi et al. (2019)
γa 1177.7 Hz/G
γb 349.1 Hz/G
µN 762.2591 Hz/G

Table A.2: Values used to compute bSK .

spin-exchange field enhancement factor

From Eq. 2.3 we find bSK = κRbXegKµNnK8π/3. We need an expression for gK in terms of

the gyromagnetic ratio γK . Recall that in a magnetic field the energy of the nuclear spin is

H = −BKzgKµN/I = hγBKz where I is the nuclear spin. Hence, gK = hI/µN . We find it

convenient to multiply and divide by µN = e~
2Mc

where M is the mass of the proton and c is

the speed of light so that our expression for bSK becomes

bSK =
8π

3

γK

µN

I

2πµN

(
e~

2Mc

)2

κRbXenK (A.5)

In the previous section we found that the expected maximum k⊥ achievable by either

excitation scheme for 129Xe was ρ2 larger than for 131Xe. In order to make the SE fields

produced by these very different polarizations similar we enrich the Xe content of our cells
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to be 1 part 129Xe to 9 parts 131Xe. Figure A.2 shows the SE field produced as a function of

enriched Xe partial pressure according to the equation,

Bs
K = bSK([Xe])

ΓKS ([Xe])

Γ1

S⊥, (A.6)

where we assume S⊥ = 1/2, [Rb]= 1013cm−3 (T = 120 C), and [N2] = 50 Torr. Table A.2

lists specific values we use to compute bSK . We see that SE fields on the order of 100 µG are

achievable for both isotopes.

Rb relaxation rate

The Rb relaxation rate Γ′ = R+ ΓSK is determined by the optical pumping rate R and relax-

ation due to Xe atoms ΓSK (relaxation due to the cell wall is negligible). The magnetometer

detects

Sz =
RΩK

y

Γ′2 + Ω2
(A.7)

which optimizes for R = ΓSK . Hence, if we know ΓSK we can pick parameters which control R

(D1 laser polarization, detuning, and power) to satisfy this relation. This discussion assumes

zero field spin-exchange relaxation free (SERF) magnetometry. The influence of our pulsed

bias field has been calculated to be Γ′pulsed ≈ 3Γ′SERF Korver (2015). For the purpose of this

discussion we find it sufficient to ignore the pulsed bias field.

Similar to ΓKS , ΓSK = ΓSbin + ΓSvdW can be written in terms of binary and vdW terms.

The binary contribution depends only on the number of Xe atoms (partial pressure) and

was measured to be ΓSbin/[Xe] = 321 sec−1 Torr−1 Nelson and Walker (2001). The vdW

contribution depends on the concentration of all atoms in the cell and the cell temperature.

The vdW’s contribution was measured at two temperatures in the same mostly He cell

mentioned previously. To calculate ΓSvdW in our cell we need to derive an expression to scale
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these measured values, taking into account both temperature and partial pressures. We

write

ΓSvdW =
2φ2

γ

3TA
, (A.8)

where φγ is the rms precession angle form the spin rotation interaction and the alkali-noble-

gas SE interaction, and TA is the molecular formation rate per Rb atom. In order to find an

expression in terms of the cell’s constituent partial pressures, we expand φγ = γNτ , which

comes from the Hamiltonian H = γS ·N, where N is the angular momentum of the vdW

molecule, and 1/τ is the break up rate. Similar to Eq. A we write,

[Rb]

TA
=

[RbXe]

τ
=
kchem[Rb][Xe]

τ
→ TA =

τ

kchem[Xe]
. (A.9)

We can expand 1/τ in terms of each atom’s break up rate

1

τ
=

1

τXe
+

1

τN2

+
1

τHe
= kXe[Xe] + kN2[N2] + kHe[He], (A.10)

where k is the cross section times the velocity. Replacing φγ, and TA in Eq. A yields,

ΓSvdW =
2(γN)2kchem

3kXe(1 + kN2[N2]
kXe[Xe]

+ kHe[He]
kXe[Xe]

)
. (A.11)

Note how Eq. A is independent of total pressure but depends on the relative pressures.

Fitting the two measurements of ΓSvdW from Ref. Nelson and Walker (2001) to AT a, where

T is the temperature in K yields A = 7.59× 109 sec−1 and a = −2.5. Finally we write an

expression ΓKvdW for our cell estimated from measurements made on Nelson et al.’s cell as

follows

ΓKvdW = 7.59× 109 sec−1T−2.5

(
1 + kN2

kXe

[N2′]
[Xe′]

+ kHe

kXe

[He′]
[Xe′]

1 + kN2

kXe

[N2]
[Xe]

+ kHe

kXe

[He]
[Xe]

)
, (A.12)
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Figure A.3: Influence of Temperature, [Xe], and [N2] on Γ′. Left shows Γ′ vs [Xe] for
[N2]= 50 Torr. Right shows Γ′ vs [N2] for [Xe] = 50 Torr. The influence of temperature is
displayed using the colors; Blue= 100 C, Orange= 120 C, Green= 140 C. All traces assume
Rb polarization of 1/2.

where [Xe’] = 1%, [N2’] = 1%, and [He’]=98%. Figure A.3 Shows our estimate of Γ′ vs [Xe]

and [N2] assuming R = ΓSK and S⊥ = 1/2. Similar to ΓKS , Γ′ is dominated by [Xe]. Not

only does Γ′ determine the Rb magnetometer’s scaling from field to Volts, but it also scales

the sensitivity of εz to Bz. We will also see in the sections that follow how Γ′ limits the

sensitivity of the comagnetometer through photon shot noise.

We find that in practice the estimations presented in this section are only good for order-

of-magnitude approximations. The discrepancy is not surprising as the cell compositions we

use are not similar to the cell compositions used in the few measurements which exist in

published literature. Besides improperly accounted for differences in partial pressure, optical

thickness effects in our system, which are difficult to parameterize, also make these estimates

unreliable. We find that, in general, the Xe concentration of the vapor cell and number of

pump photons should be increased until the photon shot noise limits the performance of the

comagnetometer.
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Appendix B

LabVIEW FPGA

As mentioned in the main body of the thesis, the FPGA allows us to compare the phase of

precession of the noble gas nuclei to the phase of a commercial atomic clock. In the sections

that follow we discuss DDS in general as well as how it is implemented in LabVIEW FPGA

software.

Direct digital synthesis

DDS is a digital programming technique used to synthesize arbitrary frequencies from fixed

system clocks. A direct digital synthesizer consists of two components: a phase register, and

a look-up table (LUT). A phase register is simply an unsigned integer counter that wraps.

The LUT determines the DDS output for a given phase register input. The phase register

and LUT are placed in a loop which executes at fixed rate fup. Each iteration of the loop

adds ∆n to the phase register such that the phase register output repeats at frequency f

according to

f = ∆nfup/2
b, (B.1)
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where b is the bit width of the phase register counter. The influence of the phase register

resolution on the frequency uncertainty of the DDS is found by replacing ∆n = 1 and f = δf

such that δf = fup/2
b. For an update rate of 10 MHz and 64 bit counter the frequency

uncertainty is better than 1 pHz.

Advanced techniques

The code outlined in the sections that follow utilizes several advanced programming techniques

such as multiplexing, first-in-first-out (FIFO) memory, polling, and single cycle timed loops.

An excellent resource describing these concepts and others in terms of LabVIEW FPGA

code can be found in [Instruments (2014)].

The LabVIEW FPGA software consists of two parts: code that runs on the FPGA, and

code that runs on the Host computer. The Host computer we use is embedded in the Labview

Chassis in which our FPGA is installed. This Host computer has a Labview operating

system called Real Time. We actually write the programs (for both FPGA and Host) on a

seperate desktop computer. In order to run the programs we write, we must command the

Host computer to compile the FPGA code onto the FPGA device. The amount of time this

compilation takes depends on the complexity of the FPGA code one is trying to compile.

It is important to understand the difference between the Host and FPGA. The timing

of the Host is not rigid, but it has much greater resources enabling it to perform double

precision arithmetic. The FPGA has very rigid timing (if a loop can not run on time there

will likely be an error), but it has finite resources (mostly limited to integer arithmetic). In

general, the FPGA code contains the DDS, DAQ (the hardware for which is built into the

FPGA), and demodulation code. The Host contains the data archiving, digital filtering,

and double precision arithmetic. As much computation as possible should be performed

on the Host instead of the FPGA because of the FPGA’s finite resources. The general

naming scheme for the hundreds of files we have written follows the scheme “XY Host.vi”
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Figure B.1: Code for LabVIEW FPGA DDS generator.

and “X FPGA.vi”. Since it is common to use the same FPGA code for different Host progam

files, the Y is used as a Host program version identifier.

The following snippets of code are from the FPGA program named “kappaE” which

is used to control the PDM comagnetometer. We will describe the function of the code

and provide motivation for its particular form. We begin by describing the code used to

generate two analog square waves of the same arbitrary frequency but with independent

phase and amplitude control. Figure B.1 shows the code for a single DDS generator and

square wave LUT. The timed loop in which the code is placed is a so called “single cycle

timmed loop” (SCTL) set to execute at 10 MHz. We use a SCTL because it is the most rigid

timing stucture in LabVIEW FPGA. If the loop can not execute at the specified rate for

any reason then the program will not run and an error will be generated. The programmed

rate of SCTLs is limited to certain integers of the master clock of the FPGA, which for our

FPGA is 40 MHz. In order to satisfy the finite update rate of the analog output channels,
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Figure B.2: Code for sending output of LUT to analog output channel.

the DDS code is embedded in a case structure such that despite the SCTL update rate of 10

MHz, the DDS code only runs once every 30 loop iterations or 333 kHz. The DDS generator

consists of three input controls, where IncEOM = ∆n from Eq. B.1 and PhaseEOM

and PhaseComp determine the phase of the two channels and are computed on the Host

according to 264θ/360 where θ is the phase in degrees. These inputs are used to compute

the output of a 64 bit unsigned summer programmed to wrap. The output of the phase

register (summer) is compared to 263 or half the bit width. If the output of the summer is

less than this value a boolean line is low and if it is greater than this value the boolean line

is high. Such constitutes the square wave LUT. The boolean outputs for each channel are

then loaded into independent first-in-first-out (FIFO) memory channels.

Figure B.2 shows the code for scaling the output of the LUT and sending it to separate

analog output channels. This code can not be place in its entirety inside a SCTL because of

the analog output write commands. The loop in which the code is contained is an ordinary
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0

Figure B.3: Code for Computing α for each noble gas.

while loop. The rate of execution of the while loop is controlled by the FIFO read commands

such that the loop is “polling” the SCTL mentioned previously (note the -1 in the FIFO

timeout read commands). This means that the while loop will execute when both FIFOs

have new data to be processed. Polling is a powerful tool for transfering the reliable timing

of SCTLs to ordinary while loops. The boolean data is read from each FIFO memory bank.

The boolean value is converted to an arbitrary signed 16 bit number (the bit width of the

analog output channels) using the code shown in the embedded SCTL. This SCTL is not

necessary for the code to run. That said, any code in a SCTL will utilize the minimum

number of FPGA resources required to compile the programmed code. Hence, it is wise to

put as much code as possible in SCTLs, even when embedded in a while loop. Finally, the

signed 16 bit integers are sent to analog output channels.

Figure B.3 depicts the code for generating the 2π pulse triggers and computing α for

each noble gas in terms of two phase registers/accumulators labeled θ1 and θ2. Because we
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need to compute sin(θ1) and sin(θ2) we mutliplex a built-in LabVIEW FPGA vi called LUT.

Mutliplexing allows us to utilize a single LUT to compute the sine of each θ. Hence, in

the larger SCTL, which executes at 10 MHz, we compute θ1 and θ2 and then transfer both

values via FIFO memory to the smaller SCTL which computes the sine of θ1 and θ2 at a

rate of 20 MHz. The output of the faster SCTL is then transferred by FIFO memory (again)

back into the larger SCTL for further processing. Because the LUT vi does not support

64 bit inputs we must divide the 64 bit values of the θs into smaller bit widths. Some of

the disgarded bits are used for linear interpolation within the LUT. Because the LUT vi

takes two cycles to produce a valid output, a feedback node (box with an arrow) is placed

directly after the LUT vi. This feedback node delays the output by one cycle. So on the first

iteration of the SCTL, the current value of θ1 is loaded and the LUT produces no output.

On the second iteration it loads θ2 and outputs sin(θ1). On the third iteration it loads θ1’s

new value and outputs sin(θ2) etc.

Once the values of sin(θ1) and sin(θ2) are loaded into the larger SCTL they are manipu-

lated to modulate ωp and compute φmod for each species where

φKmod = g(t)γK
∫

(B1 sin(θ1(t)) +B2 sin(θ2(t))) dt, (B.2)

and g(t) is the gating due to ω3 modulation. The integral is performed using another phase

register for each isotope. The value of αK is then computed according to

αK = pKθ1 + qKθ2 + φKmod. (B.3)

Note: for the code shown: (pa, qa) = (0, 1) and (pb, qb) = (1, 0). The values of αa and αb are

then put into an array which is accessed by subsequent while loops (discussed below). The

bottom left of the main SCTL depicts the phase register for generating the ω3 modulation

used to gate the 2π pulses. Note how the trigger for ω3 toggles the input to the φmod
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Figure B.4: Code for DAQ trigger and data averaging.

accumulators such that when the pulses are triggered off the value of φmod stays constant.

Finally, the bottom right of the main loop depicts the code for the ωp phase register. This

code is similar to φmod for each isotope except there is a constant offset to its input that

produces the average pulsing frequency.

The next loop, shown in Fig. B.4 is another standard while loop that performs the

triggered acquistion and averaging of the magnetometer signal. The loop cycles as fast as

possible (no timing is enforced) effectively polling the variable DAQtrig, which is the trigger

for ω3 generated in the large SCTL discussed previously. When this variable becomes true,

a nested while loop executes N times with a rate of SamplePeriod(usec). The analog input

Channel 1 is read and summed with previous readings at each iteration of the nested loop.

After N iterations (readings) the sum is scaled by 2f3norm and then stored in a FIFO memory.

The summer is also reset to 0 in preparation for the next signal acquisition.

Figure B.5 shows the code for computing sin(αK) and cos(αK) among other waves. It
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Figure B.5: Code for computing of sin(αK) and cos(αK)

also utilizes multiplexing to compute many sine waves from a single LUT. The loop is

triggered similarly to the DAQ loop just discussed. A standard while loop executes as fast

as possible. When f3trig, which is a phase shifted version of DAQtrig, is true then the code

shown in the case structure executes. The code within the case structure is very similar

to the mutliplexing code discussed previously but extended to many more channels. Also

computed is the change in αK between successive data acquisitions, which was used in one

of the demodulation schemes. Once again, an imbedded SCTL is used not because it is

necessary but because it is good practice. The values of sin(αK) and cos(αK) are stored in

FIFO memory for further processing.

Figure B.6 depicts the final while loop of the FPGA program. This standard while loop

polls the many FIFO outputs from the many channel mutliplexing loop. Some of these

channels are then put into an array and streamed to the Host through a direct memory

access FIFO structure, shown in an embedded For loop. This For loop will execute as many
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Figure B.6: Code depicting DMA data stream from FPGA to Host

times as there are channels to be written (as long as its input terminal labeled N is unwired).
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