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Decoupling inequalities for quadratic forms

Changkeun Oh

Abstract

In this dissertation, we consider decoupling inequalities. The study of this topic orig-
inated from classical problems in number thoery, for example, Waring’s problem, Wely
sum estimate, and estimates of the Riemann zeta function.

We prove sharp lqLp decoupling inequalities for p, q ∈ [2,∞) and arbitrary tuples of
quadratic forms. estimates. The proof of our main result is based on scale-dependent
Brascamp–Lieb inequalities.
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Chapter 1

Introduction

In this thesis, we study decoupling inequalities for quadratic forms. The study of this topic
originated from classical problems in number theory, for example, Waring’s problem, Wely
sum estimate, and estimates of the Riemann zeta function. To motivate our main theorem
(Theorem 1.3.3), we begin by describing Waring’s problem.

1.1 Waring’s problem

The classical Waring’s problem traces back to Lagrange’s four-square theorem. In 1770,
Lagrange proved that every positive integer can be represented as the sum of four integer
squares. In other words, for every positive integer n, there exist some integers a1, a2, a3, a4

such that
n = a2

1 + a2
2 + a2

3 + a2
4. (1.1.1)

A generalization of Lagrange’s theorem to higher degrees is well understood. For every
positive integer k ≥ 2, denote by g(k) the smallest integer s (possibly infinity) of kth
powers of positive integers needed to represent all positive integers. If g(k) is finite,
then according to the definition, for every positive integer n, there exist some integers
a1, . . . , ag(k) such that

n = ak1 + ak2 + · · ·+ akg(k). (1.1.2)

The classical Waring’s problem is to find the number g(k). A satisfactory answer to this
problem is already known a long time ago. It is proved by Hilbert 1909 that g(k) is finite
for every k. The formula of g(k) is also known by many mathematicians, for example,
Dickson 1936 and Niven 1944. We do not state the formula here.

Modern Waring’s problems concern only sufficiently large integers. For k ≥ 2, we
denote by G(k) the smallest number s such that every “sufficiently large” integer is the
sum of at most s kth powers of positive integers. If G(k) is finite, then for every sufficiently
large integer n, there exist some integers a1, . . . , aG(k) such that

n = ak1 + ak2 + · · ·+ akG(k). (1.1.3)

A modern Waring’s problem is to find the numberG(k). It is conjectured thatG(k) = k+1.
For large k, the best upper bound of G(k) is proved by Trevor D. Wooley 1995;

G(k) ≤ k(log k + log log k + 2 +O(log log k/ log k)). (1.1.4)
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There is still some gap between the upper bound and the conjectured number, but asymp-
totically it already gives an almost satisfactory answer to the modern Waring’s problem.

Let us move on to a stronger modern Waring’s problem. Denote Rs,k(n) the number
of representations of the positive integer n as sum of s kth powers. For s sufficiently large,
a precise asymptotic of Rs,k(n) is already known (see the equation (2.1) of Jean Bourgain
2016). The asymptotic formula is involved, so we do not state it here. Denote G̃(k) the
smallest integer s for which the asymptotic holds true. It is known that

G(k) ≤ G̃(k). (1.1.5)

As in the case of G(k), it is conjectured that G̃(k) = k + 1. A stronger modern Waring’s
problem is to find the number G̃(k). The best upper bounds of G̃(k) are obtained by
Vaughan, Bourgain-Demeter-Guth-Wooley, and Bourgain. Let us first state the theorem
of Bourgain-Demeter-Guth-Wooley.

Theorem 1.1.1 (Jean Bourgain, Demeter, and Guth 2016; Trevor D. Wooley 2012). For
k ≥ 3,

G̃(k) ≤ k2 + 1− max
1≤j≤k−1

2j≤k2

⌈ kj − 2j

k + 1− j

⌉
, (1.1.6)

where dxe is the smallest integer no smaller than x.

The bound (1.1.6) is derived by Trevor D. Wooley 2012 under the assumption of the
main conjecture in Vinogradov’s mean value theorem. The contribution of Jean Bourgain,
Demeter, and Guth 2016 is a verification of the conjecture for high degrees. We explain
the conjecture in the next section. We note that for large k, the bound (1.1.6) is improved
by Jean Bourgain 2016, where the main conjecture in Vinogradov’s mean value theorem
is still used as a main ingredient. For the case k = 3, the best upper bound of G̃(k) is
obtained by Vaughan 1986. Lastly, we refer to Vaughan and T. D. Wooley 2002 and
Trevor D. Wooley 2014 for historical backgrounds on Waring’s problem.

1.2 Translation-dilation invariant systems

Let us introduce the main conjecture in Vinogradov’s mean value theorem. Let s ≥ 1 and
n ≥ 2 be integers. Consider the system of Diophantine equations

x1 + · · ·+ xs = xs+1 + · · ·+ x2s

x2
1 + · · ·+ x2

s = x2
s+1 + · · ·+ x2

2s

... =
...

xn1 + · · ·+ xns = xns+1 + · · ·+ xn2s.

(1.2.1)

This system is called Vinogradov system. Denote by Js,n(N) the number of integral
solutions (x1, . . . , x2s) ∈ [−N,N ]2s satisfying Vinogradov system. The main conjecture in
Vinogradov’s mean value theorem states that for every ε > 0 , s ≥ 1, n,N ≥ 2,

Js,n(N) ≤ CεN ε(N s +N2s−n(n+1)
2 ). (1.2.2)
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This upper bound is sharp up to the loss of N ε. As mentioned in the previous section,
this conjecture is verified independently by Jean Bourgain, Demeter, and Guth 2016 and
Trevor D. Wooley 2016; Trevor D. Wooley 2019.

Theorem 1.2.1 (Jean Bourgain, Demeter, and Guth 2016; Trevor D. Wooley 2016; Trevor
D. Wooley 2019). (1.2.2) holds true.

The proofs of Bourgain-Demeter-Guth and Wooley are different. From now on, we
focus only on the proof of Bourgain-Demeter-Guth. They proved a slightly stronger in-
equality, called a decoupling inequality for the moment curve. The decoupling inequality
implies the main conjecture in Vinogradov’s mean value theorem. Let us postpone the
introduction of decoupling inequalities to the next section, and explain a generalization of
Vinogradov system.

Vinogradov system is naturally extended to translation-dilation invariant systems. Let
us give the definition of the systems. Let s, d ≥ 1 and n ≥ 2. Consider

F1(x1) + · · ·+ F1(xs) = F1(xs+1) + · · ·+ F1(x2s)

F2(x1) + · · ·+ F2(xs) = F2(xs+1) + · · ·+ F2(x2s)

... =
...

Fn(x1) + · · ·+ Fn(xs) = Fn(xs+1) + · · ·+ Fn(x2s),

(1.2.3)

where Fi(x) ∈ Z[x1, . . . , xd] and xj = (xj1, . . . , xjd) ∈ Zd for every i and j.

Definition 1.2.2. Consider the system F = (F1, . . . , Fn) given by (1.2.3). We say that
the system is translation-dilation invariant if

1. the polynomials F1, . . . , Fn are each homogeneous of positive degree, and

2. there exist polynomials

cjl(ξ) ∈ Z[ξ1, . . . , ξd] (1 ≤ j ≤ n and 0 ≤ l ≤ j), (1.2.4)

with cjj = 1 for 1 ≤ j ≤ n, having the property that whenever ξ ∈ Zd, then

Fj(x + ξ) = cj0(ξ) +

j∑
l=1

cjl(ξ)Fl(x) (1 ≤ j ≤ n). (1.2.5)

Given a translation-dilation invariant system F, denote by JF,s,n(N) the number of
integral solutions of the system with 1 ≤ xik ≤ N for every i, k. It is asked by Parsell,
Prendiville, and Trevor D. Wooley 2013 to find the lower bound and upper bound of
JF,s,n(N). Even though there has been significant progress, for example, by Parsell, Pren-
diville, and Trevor D. Wooley 2013; Jean Bourgain and Demeter 2015; Jean Bourgain,
Demeter, and Guth 2016; Shaoming Guo and Ruixiang Zhang 2019; Shaoming Guo and
Zorin-Kranich 2020b, this problem is still widely open. Our main theorem (Theorem 1.3.3)
concerns the quadratic case of translation-dilation invariant systems in the sense that all
the degrees of Fi are less or equal to two. We discuss more in the next section.
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1.3 Decoupling inequalities

In this section, we introduce decoupling inequalities and state our main theorem.

By row operations, any translation-dilation invariant system can be rewritten as

Fm :=
(
ξ1, . . . , ξd, P1(ξ1, . . . , ξd), . . . , Pn−d(ξ1, . . . , ξd)

)
. (1.3.1)

Let us call this a translation-dilation invariant manifold. For simplicity, we sometimes call
this a TDI manifold. The degree of a TDI manifold, denoted by deg(Fm), is defined by the
highest degree of Pi. For each TDI manifold and set � ⊂ [0, 1]d, we define an extension
operator associated with the system by

EFm
� f(x) :=

ˆ
�
f(ξ)e

(
x′ · ξ + x′′ · P (ξ)

)
dξ, (1.3.2)

where x = (x′, x′′) ∈ Rd × Rn−d, P = (P1, . . . , Pn−d), and e(t) = e2πit.
Let us introduce decoupling inequalities. For some technical reasons, we first define

some weight functions; for each ball B(cB, rB) ⊂ Rn with center cB and radius rB, define
an associated weight

wB(·) :=
(

1 +
| · −cB|
rB

)−10n
. (1.3.3)

Definition 1.3.1. Let Dp,q(Fm, δ) be the smallest constant D such that

∥∥EFm
[0,1]d

f
∥∥
Lp(wB)

≤ D
( ∑
�⊂[0,1]d

l(�)=δ

∥∥EFm
� f

∥∥q
Lp(wB)

)1/q
(1.3.4)

holds for every measurable function f and every ball B ⊂ Rn of radius δ−deg(Fm). This
inequality is called a lqLp decoupling inequality for the TDI manifold Fm.

The decoupling problem for the TDI manifold Fm is to find the decoupling constants
Dp,q(Fm, δ). A major motivation of finding the decoupling constants is that a decoupling
inequality for Fm gives a upper bound of JFm,s,n(N). In particular, a decoupling inequality
for a moment curve (t, t2, . . . , tn) gives sharp solution counting of Vinogradov system.

Theorem 1.3.2 (Jean Bourgain, Demeter, and Guth 2016). Let n ≥ 2 and FV =
(t, t2, . . . , tn). Then for every ε > 0 and 0 < δ < 1

Dp,2(FV , δ) ≤ Cεδ−ε max (1, δ
−( 1

2
−n(n+1)

2p
)
). (1.3.5)

Moreover, this inequality implies Theorem 1.2.1.

Before stating our main theorem, let us first review related results in the literature.
Decoupling theory originated from the work of T. Wolff 2000 and was further developed
by  Laba and Thomas Wolff 2002,  Laba and Pramanik 2006, Garrigós and Seeger 2009,
Garrigós and Seeger 2010, and Jean. Bourgain 2013. A breakthrough came with the reso-
lution of the `2-decoupling conjecture for paraboloids by Jean Bourgain and Demeter 2015.
Subsequently, Jean Bourgain, Demeter, and Guth 2016 resolved the Main Conjecture in
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Vinogradov’s mean value theorem using decoupling theory. We also refer to Jean Bourgain
and Demeter 2016b, Jean Bourgain, Demeter, and Shaoming Guo 2017, Shaoming Guo
and Ruixiang Zhang 2019, and Shaoming Guo and Zorin-Kranich 2020b for extensions of
Jean Bourgain, Demeter, and Guth 2016 to higher dimensions.

In this thesis, we study sharp decoupling inequalities for quadratic d-surfaces in Rd+n

with d, n ≥ 1. The cases n = 1, d ≥ 1, that is, quadratic hypersurfaces, were the objects
studied in Jean Bourgain and Demeter 2015 and Jean Bourgain and Demeter 2017b.
Since these works, there have been a number of other works studying sharp decoupling
inequalities for quadratic d-surfaces in Rd+n with n ≥ 2, that is, manifolds of co-dimension
greater than one. Bourgain’s improvement on the Lindelöf hypothesis (Jean. Bourgain
2017) relies on a decoupling inequality in the case d = n = 2, which was later generalized
and extended to a more general family of manifolds with dimension and codimension
2 in Jean Bourgain and Demeter 2016a. Further sharp decoupling inequalities for (non-
degenerate) quadratic d-surfaces of co-dimension 2 were proven, for 2 ≤ d ≤ 4, in Demeter,
Shaoming Guo, and Shi 2019 and Shaoming Guo and Zorin-Kranich 2020a. More recently,
in Shaoming Guo, Changkeun Oh, Roos, Yung, and Zorin-Kranich 2019, the classification
of sharp decoupling inequalities for quadratic 3-surfaces in R5 was completed, and sharp
decoupling inequalities were proved in the “degenerate” cases, which were not covered
by previously mentioned works. The approach to the “degenerate” cases in Shaoming
Guo, Changkeun Oh, Roos, Yung, and Zorin-Kranich 2019 stands out from the previously
mentioned works, in that it relies on small cap decouplings for the parabola and the
2-surface (ξ1, ξ2, ξ

2
1 , ξ1ξ2) (we refer also to Demeter, Guth, and Wang 2020 for further

discussion of small cap decouplings). For manifolds of co-dimension n > 2, the only result
for quadratic forms that are not monomials prior to the current article was by Changkeun
Oh 2018, who proved sharp decoupling inequalities for non-degenerate 3-surfaces in R6.
In this thesis, we provide a unified approach that takes care of all the above examples,
and indeed all quadratic d-surfaces in Rd+n for arbitrary combinations of d and n.

Theorem 1.3.3 (Shaoming. Guo, Changkeun. Oh, Ruixiang. Zhang, and Zorin-Kranich
2021). For all p, q ≥ 2, the sharp decoupling theorem holds true for every translation-
dilation invariant manifold of degree 2.

We refer to Theorem 3.1.1 for the complete statement of the theorem.
Beyond decoupling theory, problems associated with quadratic d-surfaces (d ≥ 2) of

co-dimension bigger than one have also attracted much attention, in particular in Fourier
restriction theory and related areas. We refer to Christ 1985, Christ 1982, Mockenhaupt
1996, Bak and S. Lee 2004, Bak, Jungjin Lee, and S. Lee 2017, Juyoung Lee and S.
Lee 2022, Shaoming Guo and Changkeun Oh 2020 for the restriction problems associated
with manifolds of co-dimension two and higher, Jean Bourgain 1991, Rogers 2006, R.
Oberlin 2007 for the planar variant of the Kakeya problem, and D. M. Oberlin 2004 for
sharp Lp → Lq improving estimates for a quadratic 3-surface in R5. Recently, Gressman
2019a, Gressman 2019b and Gressman 2021 has made significant progress in proving sharp
Lp-improving estimates for Radon transforms of intermediate dimensions. Perhaps more
interestingly, he connected this problem with Brascamp-Lieb inequalities and geometric
invariant theory.

One major difficulty in the development of the above mentioned problems in the setting
of co-dimension bigger than one is the lack of a good notion of “curvature”. This is in
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strong contrast with the case of co-dimension one, where we have Gaussian curvatures and
the notion of rotational curvatures, introduced by Phong and Stein 1986a and Phong and
Stein 1986b.

1.4 Organization of the thesis

The rest of the dissertation is organized as follows. In Chapter 2, we prove sharp decoupling
inequalities for all degenerate surfaces of codimension two in R5 given by two quadratic
forms in three variables. Together with previous work by Demeter, Guo, and Shi in
the non-degenerate case, this provides a classification of decoupling inequalities for pairs
of quadratic forms in three variables. In Chapter 3, we prove sharp lqLp decoupling
inequalities for p, q ∈ [2,∞) and arbitrary tuples of quadratic forms. Connections to prior
results on decoupling inequalities for quadratic forms are also explained. We also include
some applications of our results to exponential sum estimates and to Fourier restriction
estimates.
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Chapter 2

Decoupling inequalities for two
quadratic forms in R5

2.1 Introduction

We begin by recalling the definition of decoupling constants. Let d, n ≥ 1 be integers. For
real quadratic forms Q1, . . . , Qn in d variables, consider the surface

S0 = {(t, Q1(t), . . . , Qn(t)) | t ∈ [0, 1]d}. (2.1.1)

For a dyadic cube � ⊂ [0, 1]d with side length δ, we will use f� to denote a function with

supp(f̂�) ⊂ {(t, Q1(t) + δ(1), . . . , Qn(t) + δ(n)) | t ∈ �, |δ(1)|, . . . , |δ(n)| ≤ δ2}. (2.1.2)

For 2 ≤ p < ∞ and a dyadic number δ ∈ (0, 1), the decoupling constant DS0(δ, p) is the
smallest constant A such that the inequality∥∥∥ ∑

�∈P(δ)

f�

∥∥∥
Lp(Rd+n)

≤ A
( ∑
�∈P(δ)

∥∥∥f�∥∥∥p
Lp(Rd+n)

)1/p
, (2.1.3)

where P(δ) is the partition of [0, 1]d into dyadic cubes with side length δ, holds for every
choice of functions f� satisfying (2.1.2); replacing the `pLp norm on the right hand side
of (2.1.3) by `∞L∞ gives the definition when p =∞.

In this chapter we are interested in the case d = 3, n = 2. We will also use existing
results for smaller values of d and n, which necessitates defining (2.1.3) in more generality.
We will denote by (P,Q) a pair of real quadratic forms in three variables and by S the
surface

S := {(r, s, t, P (r, s, t), Q(r, s, t)) | (r, s, t) ∈ [0, 1]3}. (2.1.4)

Our goal is to prove, for every 2 ≤ p < ∞, an essentially sharp bound on DP,Q(δ, p) :=
DS(δ, p) as δ → 0. In order to formulate our results in a concise way, we introduce the
sharp decoupling exponent

γP,Q(p) := inf{γ ≥ 0 | DP,Q(δ, p) . δ−γ}. (2.1.5)

In other words, γP,Q(p) is the smallest exponent γ such that, for every ε > 0, we have

DP,Q(δ, p) .ε δ
−γ−ε for every δ ∈ (0, 1). (2.1.6)
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2.1.1 Previous results

The case of linearly dependent P and Q is equivalent to the case n = 1 of (2.1.1). In this
case, sharp decoupling inequalities were proved by Bourgain and Demeter Jean Bourgain
and Demeter 2017b, Theorem 1.1. Henceforth, we assume that P and Q are linearly
independent.

Moreover, we assume that there is no linear change of variables in (r, s, t) such that P
and Q both omit one of the variables, as otherwise we can reduce to the case d = n = 2
that was considered in Jean Bourgain and Demeter 2016a.

We say that the pair (P,Q) is non-degenerate if both of the following conditions hold:

det(∇P,∇Q, u) 6≡ 0 for all u ∈ R3 \ {0}, (2.1.7)

P and Q do not share a common linear real factor. (2.1.8)

Examples show that, for any pair (P,Q) of quadratic polynomials in 3 variables, the
sharp decoupling exponent satisfies

γP,Q(p) ≥

{
3(1

2 −
1
p) if 2 ≤ p ≤ 14/3,

3− 10
p if 14/3 ≤ p ≤ ∞.

(2.1.9)

In the non-degenerate case, Demeter, Shi, and the first author Demeter, Shaoming Guo,
and Shi 2019 (see also Shaoming Guo and Zorin-Kranich 2020a for a simplified proof)
proved that, in fact,

γP,Q(p) =

{
3(1

2 −
1
p) if 2 ≤ p ≤ 14/3,

3− 10
p if 14/3 ≤ p ≤ ∞.

(2.1.10)

Therefore, it is a natural question to find the minimal requirements for P and Q such
that the decoupling inequality (2.1.6) holds with the smallest possible sharp decoupling
exponent (2.1.10).

2.1.2 Classification of pairs (P,Q)

We say that two pairs of quadratic forms (P,Q) and (P ′, Q′) are equivalent if there exist
two invertible real matrices L1 ∈M3×3 and L2 ∈M2×2 such that

(P ′(r, s, t), Q′(r, s, t)) = L2 · (P (L1 · (r, s, t)), Q(L1 · (r, s, t))). (2.1.11)

This defines an equivalence relation, which we denote by

(P,Q) ≡ (P ′, Q′). (2.1.12)

By changing coordinates, it is easy to see that

DP,Q(δ, p) ≈ DP ′,Q′(δ, p), (2.1.13)

with an implicit constant depending only on L1 and L2 in (2.1.11), and in particular
γP,Q(p) = γP ′,Q′(p). The following result describes all possible sharp decoupling exponents
for two quadratic forms in three variables that do not omit any variable.
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Theorem 2.1.1. Let (P,Q) be a pair of linearly independent quadratic forms. Assume
that there is no linear change of variables in (r, s, t) after which P and Q both omit one
of the variables. Then exactly one of the following alternatives holds.

1. (P,Q) is non-degenerate, that is, both (2.1.7) and (2.1.8) hold. In this case, the
sharp decoupling exponent is given by (2.1.10).

2. (2.1.7) holds, but (2.1.8) fails. In this case, (P,Q) ≡ (rs, rt), and

γP,Q(p) =

{
2− 4

p if 2 ≤ p ≤ 6,

3− 10
p if 6 ≤ p ≤ ∞.

(2.1.14)

3. (2.1.7) fails, but (2.1.8) holds. In this case, either (P,Q) ≡ (r2, s2± t2), or (P,Q) ≡
(r2, s2 + rt). In both subcases,

γP,Q(p) =


3(1

2 −
1
p) if 2 ≤ p ≤ 4,

5
2 −

7
p if 4 ≤ p ≤ 6,

3− 10
p if 6 ≤ p ≤ ∞.

(2.1.15)

Theorem 2.1.1 combines several results. Our main result is the bound ≤ in (2.1.15)
in the case (P,Q) ≡ (r2, s2 + rt), which we repeat in Theorem 2.1.2 and discuss in more
detail below.

The classification of pairs of quadratic forms is the content of Proposition 2.2.1. The
upper bound ≤ in (2.1.14) in the case (P,Q) ≡ (rs, rt) is the content of Proposition 2.3.1.
The upper bound ≤ in (2.1.15) in the case (P,Q) ≡ (r2, s2 ± t2) follows directly from
the corresponding inequalities for the parabola (r, r2), see Jean Bourgain and Demeter
2015, and the surfaces (s, t, s2± t2), see Jean Bourgain and Demeter 2017b, Theorem 1.1.
Finally, examples that show the lower bounds ≥ in (2.1.10), (2.1.14), and (2.1.15) are
discussed in Section 2.6.

For a pair of linearly independent quadratic forms (P,Q) in three variables that omit
at least one variable (possibly after a linear change of variables), the sharp decoupling
exponent is also given by (2.1.14). The upper bound follows from flat decoupling and the
decoupling inequality for two quadratic forms in two variables that was proved in Jean
Bourgain and Demeter 2016a, similarly to the proof of Proposition 2.3.1. The lower bound
follows from Proposition 2.6.1 with d′ = n′ = 2 when 2 ≤ p ≤ 6 (and from (2.1.9) when
6 ≤ p ≤ ∞).

2.1.3 The main decoupling inequality

Let us state the main new part of Theorem 2.1.1 more explicitly.

Theorem 2.1.2. Let S be the surface given by (r, s, t, r2, s2 + rt). Then, for every ε > 0,
we have

DS(δ, p) .ε,p


δ
−3( 1

2
− 1
p

)−ε
if 2 ≤ p ≤ 4,

δ
−( 5

2
− 7
p

)−ε
if 4 ≤ p ≤ 6,

δ
−(3− 10

p
)−ε

if 6 ≤ p ≤ ∞.
(2.1.16)
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It is well-known that, for an integer s ≥ 1, the study of the decoupling constant
DS(δ, p) with p = 2s is closely related to the problem of counting integer solutions to the
Diophantine system

x1 + · · ·+ xs = xs+1 + · · ·+ x2s,

y1 + · · ·+ ys = ys+1 + · · ·+ y2s,

z1 + · · ·+ zs = zs+1 + · · ·+ z2s,

P (x1, y1, z1) + · · ·+ P (xs, ys, zs) = P (xs+1, ys+1, zs+1) + · · ·+ P (x2s, y2s, z2s),

Q(x1, y1, z1) + · · ·+Q(xs, ys, zs) = Q(xs+1, ys+1, zs+1) + · · ·+Q(x2s, y2s, z2s).

(2.1.17)

Indeed, let JS,s(N) denote the number of integral solutions of (2.1.17), where all variables
xi, yi, zi with 1 ≤ i ≤ 2s take values in {0, 1, . . . , N}. Then, by the argument in Jean
Bourgain, Demeter, and Guth 2016, Corollary 4.2, we have

JS,s(N) . N3DS(N−1, 2s)2s. (2.1.18)

Theorem 2.1.1 implies sharp estimates on JS,s(N) for every N and every s ≥ 1. For
instance, if we take P = r2 and Q = s2 + rt, then Theorem 2.1.2 implies that

JS,s(N) .s,ε N
3s+ε +N5s−4+ε +N6s−7+ε, (2.1.19)

for every ε > 0. In particular, when s = 2 (which corresponds to p = 4), we have that
JS,2(N) .ε N6+ε. Notice that if we set xi = xi+2, yi = yi+2, zi = zi+2 for every i = 1, 2,
then we obtain a trivial lower bound JS,2(N) ≥ N6. In this sense, the number of integral
solutions to the system (2.1.17) still shows diagonal behavior when s = 2.

In Section 2.4, we will present a simple direct proof of the bound JS,2(N) .ε N6+ε that
relies on elementary counting methods, rather than decoupling inequalities. Such a bound
on JS,s usually cannot be used to derive a sharp decoupling inequality, that is, a sharp
bound on DS(δ, p). Nevertheless, some features of the counting argument in Section 2.4
remain visible in our proof of Theorem 2.1.2.

It is a bit surprising that the decoupling theory for the surface in Theorem 2.1.2
admits three different regimes. This is not reflected by the lower bounds for JS,s obtained
by Parsell, Prendiville, and Trevor D. Wooley 2013, since there is no even integer in the
interval (4, 6) ⊂ R. For this reason, we discuss lower bounds directly for decoupling
inequalities in Section 2.6.

In Theorem 2.1.1, we see that there are several different regimes for sharp decoupling
exponents, and in case 3 of that theorem we see that equal decoupling exponents can arise
in different ways.

2.2 Classification of pairs of quadratic forms in 3 variables

In this section we prove the classification part of Theorem 2.1.1.

Proposition 2.2.1. Let (P,Q) be a degenerate pair of linearly independent quadratic
forms. Moreover, assume that there is no linear change of variables in (r, s, t) after which
P and Q both omit one of the variables. Then exactly one of the following alternatives
holds.
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1. (P,Q) ≡ (rs, rt),

2. (P,Q) ≡ (r2, s2 ± t2), or

3. (P,Q) ≡ (r2, s2 + rt).

The key step of proving Proposition 2.2.1 is the following result.

Lemma 2.2.2. For two general quadratic forms in 3 variables P and Q, Condition (2.1.7)
is equivalent to

no non-trivial linear combination of P,Q is a complete square. (2.2.1)

Proof of Proposition 2.2.1 assuming Lemma 2.2.2. The hypothesis that (P,Q) is a degen-
erate pair means that at least one of the conditions (2.1.8), (2.1.7) fails.

Assume that (2.1.8) fails, that is, that the two quadratic forms P and Q share a
common real linear factor. Without loss of generality, we may assume that the common
factor is r. Then, up to a linear change of variables, there are two cases, (P,Q) = (r2, rs)
or (P,Q) = (rs, rt). Here we used the assumption that P and Q are linearly independent.
The former case is not admissible, as the t variable is omitted.

Suppose now that (2.1.8) holds and (2.1.7) fails. By Lemma 2.2.2, (2.1.7) fails if and
only if some non-trivial linear combination of P,Q is a complete square. Hence, after a
change of variables as in (2.1.11), we may assume P (r, s, t) = r2.

Now consider Q(0, s, t), which is a quadratic form of two variables. First of all, we
know that it cannot have rank zero, as otherwise Q(r, s, t) will share a common factor with
P (r, s, t) = r2. Therefore, Q(0, s, t) can have rank either one or two. Making a change of
variables in s and t, we may assume that Q(0, s, t) equals either s2 ± t2 (if it has rank 2)
or s2 (if it has rank 1). In the rank 2 case, we have

Q(r, s, t) = s2 ± t2 + c1r
2 + c2rs+ c3rt. (2.2.2)

Here c1, c2, c3 are real numbers. We now add multiples of P (r, s, t) = r2 to Q(r, s, t)
and complete squares. This process removes all the mixed terms in (2.2.2) and hence
(P,Q) ≡ (r2, s2 ± t2).

The case of Q(0, s, t) having rank one is similar, but one of the mixed terms cannot be
removed, hence (P,Q) ≡ (r2, s2 + crt). The coefficient c does not vanish, since otherwise
(P,Q) would omit the variable t. Rescaling the variable t, we may assume c = 1.

Proof of Lemma 2.2.2. If some non-trivial linear combination of P,Q is of the form (u1r+
u2s+ u3t)

2, then Condition (2.1.7) fails for that u.
Conversely, suppose that Condition (2.1.7) fails for some u 6= 0. Without loss of

generality, we may assume u = (0, 0, 1). Write P = arrr
2+asss

2+attt
2+arsrs+artrt+astst
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and Q = brrr
2 + bsss

2 + bttt
2 + brsrs+ brtrt+ bstst. Then

0 ≡ det(∇P,∇Q, u) = det

(
∂rP ∂rQ
∂sP ∂sQ

)
= det

(
2rarr + sars + tart 2rbrr + sbrs + tbrt
2sass + rars + tast 2sbss + rbrs + tbst

)
= 2r2(arrbrs − arsbrr) + 2s2(arsbss − assbrs) + t2(artbst − astbrt)
+ rs(4arrbss + arsbrs − 4assbrr − arsbrs)
+ rt(2arrbst + artbrs − arsbrt − 2astbrr)

+ st(arsbst + 2artbss − 2assbrt − astbrs).

(2.2.3)

Since all coefficients must vanish, we obtain

0 = arrbrs − arsbrr = arsbss − assbrs = artbst − astbrt = arrbss − assbrr
= 2arrbst + artbrs − arsbrt − 2astbrr = arsbst + 2artbss − 2assbrt − astbrs. (2.2.4)

Replacing (P,Q) by suitable linear combinations, we may assume without loss of generality
ars = 0. We distinguish several cases.

Case 1: brs = 0. Then the equations simplify to

0 = artbst − astbrt = arrbss − assbrr = arrbst − astbrr = artbss − assbrt. (2.2.5)

This shows that (arr, ass, art, ast) and (brr, bss, brt, bst) lie in the same one-dimensional
subspace of R4. Hence, subtracting a suitable multiple of Q from P , we may assume
(arr, ass, art, ast) = 0. But then P = attt

2, and we are done.
Case 2: brs 6= 0. Then from the first two equations in (2.2.4) we obtain arr = ass = 0,

and the remaining equations simplify to

0 = artbst − astbrt = artbrs − 2astbrr = 2artbss − astbrs. (2.2.6)

Case 2.1: if art = ast = 0, then P = attt
2, and we are done.

Case 2.2: if exactly one of art, ast vanishes, then suppose without loss of generality art = 0
and ast 6= 0. Then from the last equation brs = 0, contradiction.
Case 2.3: both art 6= 0 and ast 6= 0. Then, multiplying the last two equations, we obtain

2astbrr · 2artbss = artbrs · astbrs. (2.2.7)

Since all a’s don’t vanish, this gives 4brrbss = b2rs. Hence brrr
2 +bsss

2 +brsrs is a complete
square. Making a change of variables only in (r, s), we may assume brs = 0. Notice that
we retain the relation ars = 0 after this change of variables, since we have arr = ass = 0
in Case 2. Hence we are back in Case 1.

2.3 Sharp decouplings for the surface (r, s, t, rs, rt)

In this section, we will prove the upper bound in (2.1.14).
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Proposition 2.3.1. Let S be the surface given by (r, s, t, rs, rt). Then, for every ε > 0,
we have

DS(δ, p) .ε,p

{
δ
−(2− 4

p
)−ε

if 2 ≤ p ≤ 6,

δ
−(3− 10

p
)−ε

if 6 ≤ p ≤ ∞.
(2.3.1)

Proof. By interpolation with orthogonality at p = 2 and a trivial estimate at p = ∞, it
suffices to prove the case p = 6. First, we notice that

(rs, rt) ≡ (rs, r2 + rt). (2.3.2)

Denote
S ′ = {(r, s, t, rs, r2 + rt) : (r, s, t) ∈ [0, 1]3}. (2.3.3)

Our goal is to prove that∥∥∥ ∑
�∈P(δ)

f�

∥∥∥
6
.ε δ

−4( 1
2
− 1

6
)−ε
(∑
�

∥∥f�∥∥6

6

)1/6
, (2.3.4)

where

supp(f̂�) ⊂ {(r, s, t, rs+ δ′, r2 + rt+ δ′′) | (r, s, t) ∈ �, |δ′|, |δ′′| ≤ δ2}. (2.3.5)

For an integer 0 ≤ j ≤ δ−1, let

Sj = [0, 1]× [0, 1]× [jδ, (j + 1)δ]. (2.3.6)

By flat decoupling, we obtain∥∥∥ ∑
�∈P(δ)

f�

∥∥∥
6
. δ−2( 1

2
− 1

6
)
(∑

j

∥∥ ∑
�⊂Sj

f�
∥∥6

6

)1/6
. (2.3.7)

It remains to prove ∥∥∥ ∑
�⊂Sj

f�

∥∥∥
6
.ε δ

−2( 1
2
− 1

6
)−ε
(∑
�

∥∥f�∥∥6

6

)1/6
, (2.3.8)

uniformly in j. To this end, we use the decoupling inequality for the surface

S ′′ := {(r, s, rs, r2) : (r, s) ∈ [0, 1]2}, (2.3.9)

which was proved in Jean Bourgain and Demeter 2016a (see also Shaoming Guo and Zorin-
Kranich 2020a, where this result is discussed from a more general perspective). In our
notation, Jean Bourgain and Demeter 2016a, Theorem 1.2 implies that, for every ε > 0,
we have

DS′′(δ, 6) .ε δ
−2( 1

2
− 1

6
)−ε. (2.3.10)

Using Shaoming Guo and Zorin-Kranich 2020a, Theorem 2.2 with H = {(r, s, t) | t = 0},
we can now deduce (2.3.8) with j = 0. The estimates (2.3.8) for other values of j can be
obtained from the case j = 0 using the affine transformation

(r, s, t, ξ, η) 7→ (r, s, t+ t0, ξ, η + rt0)

in the frequency space, where t0 = jδ.
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2.4 A counting argument

Consider the Diophantine system (2.1.17) with P (x, y, z) = x2 and Q(x, y, z) = y2 + xz.
In this section, we will give a direct proof of the estimate

JS,2(N) .ε N
6+ε, (2.4.1)

for every ε > 0, without invoking decoupling theory. Recall that this corresponds to the
case p = 4 in Theorem 2.1.2, which is the most interesting case there. As mentioned in
the introduction, the argument used in the following proof will shed some light on how to
prove the related decoupling inequality in Theorem 2.1.2.

In the current situation, the system of equations (2.1.17) becomes

x1 + x2 = x3 + x4,

y1 + y2 = y3 + y4,

z1 + z2 = z3 + z4,

x2
1 + x2

2 = x2
3 + x2

4,

y2
1 + x1z1 + y2

2 + x2z2 = y2
3 + x3z3 + y2

4 + x4z4.

(2.4.2)

The first and fourth equations in (2.4.2) imply that {x1, x2} is a permutation of {x3, x4}.
Without loss of generality let us assume that x1 = x3 and x2 = x4. Also keeping in mind
that z1 − z3 = z4 − z2, the last equation in (2.4.2) can then be written as

y2
1 − y2

3 + (x1 − x2)(z1 − z3) = y2
4 − y2

2. (2.4.3)

We now distinguish two cases: x1 = x2 and x1 6= x2.
Case 1: x1 = x2. Then we have x1 = x2 = x3 = x4 and this is the only constraint on

the xi variables. Similarly, the only constraint on the yi variables now becomes

y1 + y2 = y3 + y4,

y2
1 − y2

3 = y2
4 − y2

2.
(2.4.4)

Finally, the only constraint on the zi variables is the linear equation z1 + z2 = z3 + z4. To
summarize, this case leads to a contribution of N ·N2 ·N3 = N6 to JS,2(N).

Case 2: x1 6= x2. In this case we have two free choices among the xi variables. Suppose
that x1, x2, x3, x4 have been fixed.

Case 2.1: z1 = z3. Then also z2 = z4, so we may choose two of the zi variables freely.
Suppose that z1, z2, z3, z4 have been fixed. The remaining constraints are now

y1 + y2 = y3 + y4,

y2
1 − y2

3 = y2
4 − y2

2,
(2.4.5)

which gives two free choices of yi variables. Summarizing, this case yields a contribution
of ≈ N6 to JS,2(N).

Case 2.2: z1 6= z3. This is the critical case. First note that there are ≈ N3 valid choices
of the zi variables. Assume that z1, z2, z3, z4 have been fixed. It remains to analyze the
constraints on the remaining variables y1, y2, y3, y4, which can be written as

y1 − y3 = y4 − y2,

y2
1 − y2

3 + C = y2
4 − y2

2,
(2.4.6)
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where C = (x1 − x2)(z1 − z3) 6= 0. We will now make critical use of the fact that all
involved quantities are integers. Observe that necessarily y1 6= y3. Next, the first equation
implies that y2

4 − y2
2 is divisible by y1 − y3. Since also y2

1 − y2
3 is divisible by y1 − y3, the

second equation implies that y1−y3 must divide C. Since C is . N2, we have d(C) .ε N ε

for all ε > 0, where d(C) denotes the number of divisors of C. Let D be one of these
divisors and suppose that y1 − y3 = D. We then have the constraints

y1 − y3 = D,

y4 − y2 = D,

y1 + y3 + C
D = y4 + y2.

(2.4.7)

For each fixed D, there are . N valid choices of y1, y2, y3, y4. Summarizing, this case gives
a contribution of .ε N6+ε to JS,2(N), for all ε > 0.

2.5 Sharp decouplings for the surface (r, s, t, r2, s2 + rt)

In this section, we will prove Theorem 2.1.2. By interpolation with orthogonality at p = 2
and a trivial estimate at p = ∞, it suffices to prove the cases p = 4 and p = 6. For
p = 6 we can use the same argument as in Proposition 2.3.1, using flat decoupling in
the t variable and the decoupling inequality of Jean Bourgain and Demeter 2016a for the
surface (r, s, r2, s2), lifted to 5 dimensions using Shaoming Guo and Zorin-Kranich 2020a,
Theorem 2.2.

It remains to consider p = 4. Let us give the proof.

Notation 2.5.1. For a dyadic number δ ∈ (0, 1) and a dyadic box α ⊂ [0, 1]3 with side
lengths at least δ, we use P(α, δ) to denote the partition of α into dyadic cubes of side
length δ. For three real numbers k1, k2, k3, we use P(k1,k2,k3)(α, σ) to denote a partition of
α into rectangular boxes of dimension σk1 × σk2 × σk3 . We also write P(δ) = P([0, 1]3, δ)
and P(k1,k2,k3)(σ) = P(k1,k2,k3)([0, 1]3, σ) for brevity.

Theorem 2.1.2 will be proved by iterating the following two propositions, which decou-
ple in different coordinates.

Proposition 2.5.2. Let α0 ∈ P(1,0,1)(σ). For each α ∈ P(1,2,1)(α0, σ), let gα be a function
with

supp(ĝα) ⊆ {(r, s, t, r2 + σ′, s2 + rt+ σ′′) | (r, s, t) ∈ α, |σ′|, |σ′′| ≤ σ2}. (2.5.1)

Then, for every ε′ > 0, we have∥∥∥ ∑
α∈P(1,2,1)(α0,σ)

gα

∥∥∥
4
.ε′ σ

−2( 1
2
− 1

4
)−ε′
( ∑
α∈P(1,2,1)(α0,σ)

∥∥gα∥∥4

4

)1/4
, (2.5.2)

uniformly in α0 and gα.

Proposition 2.5.3. Let α0 ∈ P(0,1,0)(σ). For each α ∈ P(2,1,2)(α0, σ), let gα be a function
with

supp(ĝα) ⊆ {(r, s, t, r2 + σ′, s2 + rt+ σ′′) | (r, s, t) ∈ α, |σ′| ≤ σ4, |σ′′| ≤ σ2}. (2.5.3)
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Then, for every ε′ > 0, we have∥∥∥ ∑
α∈P(2,1,2)(α0,σ)

gα

∥∥∥
4
.ε′ σ

−4( 1
2
− 1

4
)−ε′
( ∑
α∈P(2,1,2)(α0,σ)

∥∥gα∥∥4

4

)1/4
, (2.5.4)

uniformly in α0 and gα.

The Fourier support restrictions in (2.5.1) and (2.5.3) arise naturally in the proofs,
but it would be sufficient to prove the above results under the more restrictive conditions
|σ′|, |σ′′| ≤ σ4.

The proofs of Propositions 2.5.2 and 2.5.3, as well as Theorem 2.1.2, rely on translation-
dilation invariance, which we now explain. Let

α0 = [0, σk1 ]× [0, σk2 ]× [0, σk3 ], α = (r0, s0, t0) + τα0.

Then, the affine map

Lα(ξ) := (τξ1 + r0, τξ2 + s0, τξ3 + t0,

τ2ξ4 + τ2r0ξ1, τ
2ξ5 + τ(2s0ξ2 + t0ξ1 + r0ξ3) + s2

0 + r0t0) (2.5.5)

maps frequency parallelepipeds such as in (2.1.2), (2.5.1), and (2.5.3) to other frequency
parallelepipeds of a similar form. Thus, in order to decouple on α, we will first pull the
Fourier transforms of the relevant functions back by Lα, and decouple on [0, σk1 ]×[0, σk2 ]×
[0, σk3 ] instead, where

(k1, k2, k3) ∈ {(0, 0, 0), (0, 1, 0), (1, 0, 1)}.

Proof of Theorem 2.1.2 with p = 4 assuming Propositions 2.5.2 and 2.5.3. For a dyadic box
α ⊆ [0, 1]3, we write

fα :=
∑

�∈P(α,δ)

f�. (2.5.6)

Set σ = δε. By flat decoupling, we obtain∥∥∥ ∑
α0∈P(1,0,1)(σ)

fα0

∥∥∥
4
. σ−2(1− 2

4
)
( ∑
α0∈P(1,0,1)(σ)

∥∥fα0

∥∥4

4

)1/4
. (2.5.7)

We iterate the following two estimates. Let k ∈ {0, 1, . . . } with δ ≤ σ2k+3.
Given α ∈ P(2k+1,2k,2k+1)(σ), by a rescaled version of Proposition 2.5.2, we obtain∥∥fα∥∥4

=
∥∥∥ ∑
α′∈P(2k+1,2k+2,2k+1)(α,σ)

fα′
∥∥∥

4

.ε σ
−2( 1

2
− 1

4
)−ε
( ∑
α′∈P(2k+1,2k+2,2k+1)(α,σ)

∥∥fα′∥∥4

4

)1/4
.

(2.5.8)

Given α ∈ P(2k+1,2k+2,2k+1)(σ), by a rescaled version of Proposition 2.5.3, we obtain∥∥fα∥∥4
=
∥∥∥ ∑
α′∈P(2k+3,2k+2,2k+3)(α,σ)

fα′
∥∥∥

4

.ε σ
−4( 1

2
− 1

4
)−ε
( ∑
α′∈P(2k+3,2k+2,2k+3)(α,σ)

∥∥fα′∥∥4

4

)1/4
.

(2.5.9)
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Let K be the largest integer such that δ ≤ σ2K+1. Using (2.5.7) and applying the estimates
(2.5.8) and (2.5.9) for k = 0, . . . ,K − 1, we obtain∥∥∥ ∑

�∈P(δ)

f�

∥∥∥
4
.K,ε σ

−(6K+4)( 1
2
− 1

4
)−2Kε

( ∑
α∈P(2K+1,2K,2K+1)(σ)

∥∥fα∥∥4

4

)1/4
. (2.5.10)

For every α ∈ P(2K+1,2K,2K+1)(σ), we have |P(α, δ)| ≤ σ−7. Hence, by flat decoupling,
we obtain ∥∥fα∥∥4

. σ−7·(1− 2
4

)
( ∑
�∈P(α,δ)

∥∥f�∥∥4

4

)1/4
. (2.5.11)

Combining the last two estimates, we obtain∥∥∥ ∑
�∈P(δ)

f�

∥∥∥
4
.K,ε σ

−(6K+18)( 1
2
− 1

4
)−2Kε

( ∑
�∈P(δ)

∥∥f�∥∥4

4

)1/4
. (2.5.12)

Since σ−2K ≤ δ−1, this concludes the proof.

It remains to prove Propositions 2.5.2 and 2.5.3, which will be our objective in the next
two subsections. The key ingredients are a decoupling inequality on “small balls” for the
parabola {(s, s2) | s ∈ [0, 1]} and a decoupling inequality on “thin slabs” for the surface
{(r, t, r2, rt) | (r, t) ∈ [0, 1]2}. The smallness and thinness of these balls and slabs are what
allowed us to decouple certain frequency variables down to scale σ2 in Propositions 2.5.2
and 2.5.3 when the other frequency variables are limited to an interval of length σ. This
is crucial in letting us make progress, as we decouple in alternate coordinates in the above
proof of Theorem 2.1.2.

2.5.1 Decoupling on small balls and proof of Proposition 2.5.2

We will need the following “small ball” decoupling inequality. The term “small ball”
refers to the fact that it can be localized to spatial scale δ−1, whereas the usual decoupling
inequality (2.1.3) can only be localized to the larger spatial scale δ−2. As a side note,
optimal decoupling inequalities for the parabola at spatial scales between δ−1 and δ−2

were recently established in Demeter, Guth, and Wang 2020. In that paper, “small ball”
decoupling inequalities are referred to as “small cap” inequalities. They mean the same
thing: One features the spatial side of the problem, while the other features the frequency
side. Here, we prefer the name “small ball”, because in Proposition 2.5.3 we need a
decoupling inequality similar in spirit that also features the spatial side of the problem.

Theorem 2.5.4 (cf. Shaoming Guo, Li, and Yung 2021, Lemma 4.2). Let δ ∈ (0, 1) be a
dyadic number, and for each θ ∈ P([0, 1], δ) let fθ be a tempered distribution on R2 with

supp f̂θ ⊆ {(s, s2 + δ′) | s ∈ θ, |δ′| ≤ δ}. (2.5.13)

Then, for every ε > 0, we have∥∥∥ ∑
θ∈P([0,1],δ)

fθ

∥∥∥
L4(R2)

.ε δ
−( 1

2
− 1

4
)−ε
( ∑
θ∈P([0,1],δ)

∥∥fθ∥∥4

L4(R2)

)1/4
. (2.5.14)
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In Shaoming Guo, Li, and Yung 2021, Lemma 4.2, a version of Theorem 2.5.4 is
stated for the extension operator. Although it is possible to deduce Theorem 2.5.4 from
Shaoming Guo, Li, and Yung 2021, Lemma 4.2 by the argument in Jean Bourgain and
Demeter 2017a, Section 5, it is preferable to observe that the proof continues to work at
the level of generality in Theorem 2.5.4.

Proof of Proposition 2.5.2. By affine scaling, we may assume that α0 = [0, σ]×[0, 1]×[0, σ].
The inequality (2.5.2) will follow from the fiberwise inequality∥∥∥ ∑
α∈P(1,2,1)(α0,σ)

gα(x1, ·, x3, x4, ·)
∥∥∥
L4(R2)

.ε′ σ
−2( 1

2
− 1

4
)−ε′
(∑

α

∥∥gα(x1, ·, x3, x4, ·)
∥∥4

L4(R2)

)1/4

(2.5.15)
with a constant independent of x1, x3, x4. The inequality (2.5.15) holds by Theorem 2.5.4,
since for every choice of x1, x3, x4 the Fourier support of

gα(x1, ·, x3, x4, ·) (2.5.16)

is contained in an O(σ2)-neighborhood of a σ2-arc of the unit parabola in R2. Indeed,
the Fourier support is contained in the projection of the right hand side of (2.5.1) to R2

by omitting the first, third and fourth coordinate. Since |rt| ≤ σ2 when (r, s, t) ∈ α0, the
projection is contained inside {(s, s2 + σ′′′) | |σ′′′| ≤ 2σ2}, as claimed.

2.5.2 Decoupling on thin slabs and proof of Proposition 2.5.3

In view of the proof of Proposition 2.5.2, it would be natural to use a small ball decoupling
for the 2-dimensional surface (r, t, r2, rt) in R4. If we had such a small ball decoupling,
then we could hope to have the estimate (2.5.4) under the assumption that

supp(ĝα) ⊆ {(r, s, t, r2 + σ′, s2 + rt+ σ′′) : (r, s, t) ∈ α, |σ′| ≤ σ2, |σ′′| ≤ σ2}. (2.5.17)

One would then be able to finish the proof of Theorem 2.1.2 using the same bootstrap-
ping argument. Unfortunately, although such a small cap decoupling holds for the more
“elliptic” surface (r, t, r2, t2), it fails for its “hyperbolic” variant (r, t, r2, rt).

For a dyadic rectangle R ⊂ [0, 1]2, we let P(R, δ) be the partition of R into squares of
side length δ. We denote by V(δ) the smallest constant such that, for every collection of
functions gα indexed by α ∈ P([0, 1]2, δ) with

supp(ĝα) ⊂ {(r, t, r2 + δ′, rt+ δ′′) : (r, t) ∈ α, |δ′| ≤ δ2, |δ′′| ≤ δ}, (2.5.18)

the following inequality holds:

∥∥∥ ∑
α∈P([0,1]2,δ)

gα

∥∥∥
L4(R4)

≤ V(δ)

( ∑
α∈P([0,1]2,δ)

‖gα‖4L4(R4)

) 1
4

. (2.5.19)

Theorem 2.5.5. For every ε > 0 and every dyadic δ ∈ (0, 1), we have

V(δ) .ε δ
−1/2−ε. (2.5.20)
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Proof of Proposition 2.5.3 assuming Theorem 2.5.5. By affine scaling, we may assume α0 =
[0, 1]× [0, σ]× [0, 1]. By Fubini’s theorem, it suffices to show the fiberwise inequality∥∥∥ ∑

α∈P(2,1,2)(α0,σ)

gα(·, x2, ·, ·, ·)
∥∥∥
L4(R4)

.ε′ σ
−1−ε′

(∑
α

‖gα(·, x2, ·, ·, ·)‖4L4(R4)

)1/4
, (2.5.21)

uniformly in x2. This follows from Theorem 2.5.5 with δ = σ2, because for each fixed x2

the Fourier support of
gα(·, x2, ·, ·, ·) (2.5.22)

is contained in the projection of the Fourier support of gα modulo the second coordinate,
and this projection satisfies an inclusion of the form (2.5.18) because s2 ≤ σ2 when s ∈
[0, σ].

2.5.3 Proof of decoupling on thin slabs

Theorem 2.5.5 will follow from

Proposition 2.5.6. For each ε > 0, there exists K > 0 such that for any δ ∈ (0, 1)

V(δ) ≤ K1/2+εV(Kδ) + CKδ
−1/2, (2.5.23)

where CK is a constant depending only on K.

Proof of Theorem 2.5.5. By iterating the result in Proposition 2.5.6, (ε−1) log δ
logK -many times

(assuming without loss of generality that this is a positive integer), we obtain

V(δ) ≤ δ(ε−1) 1
2
−εV(δε) + C̃K(log δ−1)δ−1/2. (2.5.24)

It remains to note that
V(δε) . δ−2ε (2.5.25)

by the triangle inequality and Hölder’s inequality.

It remains to prove Proposition 2.5.6. We will apply a bilinear method, together with
a Bourgain–Guth type argument Jean Bourgain and Guth 2011. We need the following
bilinear estimate.

Lemma 2.5.7. Let K−1 > δ > 0. Let j1, j2 ∈ Z with |j1−j2| ≥ 2. Let R1 = [j1K
−1, (j1 +

1)K−1]× [0, 1] ⊂ [0, 1]2 and R2 = [j2K
−1, (j2 + 1)K−1]× [0, 1] ⊂ [0, 1]2. Then∥∥∥∥∣∣∣∣( ∑

β∈P(R1,δ)

gβ

)( ∑
β′∈P(R2,δ)

gβ′

)∣∣∣∣ 1
2
∥∥∥∥
L4

≤ CKδ−1/2

( ∑
β∈P(δ)

‖gβ‖4L4

) 1
4

. (2.5.26)

Lemma 2.5.7 would in fact still work under the more relaxed Fourier support assump-
tion |δ′| ≤ δ in (2.5.18).
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Proof of Lemma 2.5.7. By Plancherel’s theorem,∥∥∥∥∣∣∣∣( ∑
β∈P(R1,δ)

gβ

)( ∑
β′∈P(R2,δ)

gβ′

)∣∣∣∣ 1
2
∥∥∥∥
L4

=

∥∥∥∥ ∑
β∈P(R1,δ)

∑
β′∈P(R2,δ)

ĝβ ∗ ĝβ′
∥∥∥∥ 1

2

L2

. (2.5.27)

We claim that the collection

{supp(ĝβ) + supp(ĝβ′)}β∈P(R1,δ),β′∈P(R2,δ) (2.5.28)

has overlap bounded by a constant depending on K: if β1, β3 ∈ P(R1, δ) and β2, β4 ∈
P(R2, δ), and (ri, ti) ∈ βi for i = 1, 2, 3, 4 are such that

(r1, t1, r
2
1, r1t1) + (r2, t2, r

2
2, r2t2) = (r3, t3, r

2
3, r3t3) + (r4, t4, r

2
4, r4t4) +O(δ), (2.5.29)

then the distances between βi and βi+2 are O(K2δ) for i = 1, 2.
The geometric reason for this is that the pieces of the surface (r, t, r2, rt) with (r, t)

restricted to R1 and R2, respectively, are transverse. Indeed, if (r1, t1) ∈ R1 and (r2, t2) ∈
R2, then for bases of tangent spaces at these points we have

det


1 0 1 0
0 1 0 1

2r1 0 2r2 0
t1 r1 t2 r2

 = 2(r1 − r2)2 ≥ 2K−2. (2.5.30)

However, it is formally easier to verify the bounded overlap property of the collection
(2.5.28) algebraically. Suppose that (2.5.29) holds. Looking at the third component of
(2.5.29), we obtain

O(δ) = r2
1 − r2

3 + r2
2 − r2

4 = (r1 − r3)(r1 + r3) + (r2 − r4)(r2 + r4)

= (r4 − r2)(r1 + r3) + (r2 − r4)(r2 + r4) +O(δ)

= (r2 − r4)(r2 + r4 − r1 − r3) +O(δ).

(2.5.31)

Since |r2 +r4−r1−r3| & 1/K, it follows that r2−r4 = O(Kδ). Similarly, r1−r3 = O(Kδ).
Looking at the fourth component of (2.5.29), we obtain

O(δ) = r1t1 − r3t3 + r2t2 − r4t4 = r1(t1 − t3) + r2(t2 − t4) +O(Kδ)

= r1(t4 − t2) + r2(t2 − t4) +O(Kδ)

= (r2 − r1)(t2 − t4) +O(Kδ).

(2.5.32)

Since |r2− r1| & 1/K, it follows that t2− t4 = O(K2δ). Similarly, t1− t3 = O(K2δ). This
shows that the collection (2.5.28) has bounded overlap. Therefore,

(2.5.27) ≤ CK
( ∑
β∈P(R1,δ)

∑
β′∈P(R2,δ)

‖ĝβ ∗ ĝβ′‖2L2

) 1
4

. (2.5.33)
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By Plancherel’s theorem and Hölder’s inequality, this implies

(2.5.27) ≤ CK
( ∑
β∈P(R1,δ)

∑
β′∈P(R2,δ)

‖gβgβ′‖22
) 1

4

≤ CK
( ∑
β∈P(R1,δ)

‖gβ‖24
) 1

4
( ∑
β′∈P(R2,δ)

‖gβ′‖24
) 1

4

≤ CKδ−2( 1
2
− 1

4
)

( ∑
β∈P(R1,δ)

‖gβ‖4L4

) 1
8
( ∑
β′∈P(R2,δ)

‖gβ′‖44
) 1

8

.

(2.5.34)

This completes the proof of Lemma 2.5.7.

Proof of Proposition 2.5.6. Let K > 0 be a large number that is to be determined. For
each j ∈ Z with 0 ≤ j ≤ K − 1, we define the strip Rj = [jK−1, (j + 1)K−1]× [0, 1]. We
define

Gj :=
∑

α∈P(Rj ,δ)

gα. (2.5.35)

For each x ∈ R4, we define the significant part

C(x) :=
{
j′ ∈ {0, . . . ,K − 1} :

∣∣∣K−1∑
j=0

Gj(x)
∣∣∣ < 10K|Gj′(x)|

}
. (2.5.36)

Note that C(x) 6= ∅ unless
∑

j Gj(x) = 0. By considering two possible cases |C(x)| ≥ 3
and |C(x)| ≤ 2, we obtain∣∣∣ ∑

α∈P([0,1]2,δ)

gα(x)
∣∣∣ ≤ 10 max

j
|Gj(x)|+ 10K max

j,j′:|j−j′|≥2
|Gj(x)Gj′(x)|

1
2 ; (2.5.37)

indeed, for j′ /∈ C(x), we have |Gj′(x)| ≤ 1
10K

∣∣∣∑K−1
j=0 Gj(x)

∣∣∣, so∣∣∣ ∑
j′ /∈C(x)

Gj′(x)
∣∣∣ ≤ 1

10

∣∣∣ ∑
j′ /∈C(x)

Gj′(x)
∣∣∣+ 1

10

∑
j′∈C(x)

|Gj′(x)|, (2.5.38)

which implies, if |C(x)| ≤ 2, that
∣∣∣∑j′ /∈C(x)Gj′(x)

∣∣∣ ≤ 2
9 maxj |Gj(x)| and hence

∣∣∣K−1∑
j′=0

Gj′(x)
∣∣∣ ≤ (2 + 2

9

)
max
j
|Gj(x)|. (2.5.39)

Raising both sides of (2.5.37) to the fourth power and integrating in x, we obtain

∥∥ ∑
α∈P([0,1]2,δ)

gα
∥∥4

4
.

K∑
j=1

‖Gj‖44 +K4
∑

j,j′:|j−j′|≥2

‖|GjGj′ |
1
2 ‖44. (2.5.40)
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By Lemma 2.5.7, the second term is bounded by

C4
Kδ
−2

( ∑
α∈P([0,1]2,δ)

‖gα‖44
)
. (2.5.41)

In order to conclude the proof, it suffices to show that, for each j = 0, . . . ,K − 1, we have

‖Gj‖4 ≤ CK1/2V(Kδ)

( ∑
α∈P(Rj ,δ)

‖gα‖44
) 1

4

(2.5.42)

and take K large enough so that C ≤ Kε.
By an affine transformation, we may assume without loss of generality that j = 0. We

define the scalings:

L : (ξ1, ξ2, ξ3, ξ4) 7→ ( ξ1K , ξ2,
ξ3
K2 ,

ξ4
K ),

L′ : (ξ1, ξ2) 7→ ( ξ1K , ξ2).

Note that L′ scales [0, 1]2 to the strip R0. The map L is chosen so that L′ is the restriction
of L to the first two coordinates, and so that L leaves the surface (r, t, r2, rt) invariant.

For each β ∈ P([0, 1]2,Kδ), we define a function Hβ by

Ĥβ(ξ1, ξ2, ξ3, ξ4) :=
∑

α∈P(L′(β),δ)

ĝα(L(ξ1, ξ2, ξ3, ξ4)). (2.5.43)

Then,

supp(Ĥβ) ⊆ {(r, t, r2 + δ′, rt+ δ′′) : (r, t) ∈ β, |δ′| ≤ (Kδ)2, |δ′′| ≤ Kδ}. (2.5.44)

Thus, by the definition of the constant V(Kδ),∥∥∥ ∑
β∈P([0,1]2,Kδ)

Hβ

∥∥∥
4
≤ V(Kδ)

( ∑
β∈P([0,1]2,Kδ)

‖Hβ‖44
) 1

4

. (2.5.45)

Changing back to the original variables and applying flat decoupling, we obtain

‖Gj‖4 . V(Kδ)

( ∑
β∈P([0,1]2,Kδ)

∥∥∥ ∑
α∈P(L′(β),δ)

gα

∥∥∥4

4

) 1
4

. K1/2V(Kδ)

( ∑
α∈P(Rj ,δ)

‖gα‖44
) 1

4

,

(2.5.46)

where we used that |P(L′(β), δ)| = K in the last step. This finishes the proof of (2.5.42).

Remark 2.5.8. We have already seen, at the beginning of Section 2.5.2, that one could
not replace the condition |δ′| ≤ δ2 on the right hand side of (2.5.18) by |δ′| ≤ δ and still
hope to prove Theorem 2.5.5. It may be helpful to see what goes wrong in the proof of
Theorem 2.5.5 if we had the condition |δ′| ≤ δ instead. In that case, when we rescale, on
the right hand side of (2.5.44), we would only get |δ′| ≤ K2δ, which would not allow us
to close the induction on scale argument. This signifies the advantage to decouple on thin
slabs as in Theorem 2.5.5.
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2.6 Lower bounds

In this section, we prove lower bounds for decoupling constants defined in (2.1.3). In
the case when p is an even integer, such bounds were proved for the related problem of
bounding multidimensional Vinogradov mean values in Parsell, Prendiville, and Trevor D.
Wooley 2013, Theorem 3.1. However, the construction given there does not detect the
optimality of the bound (2.1.16) for p ∈ (4, 6).

Proposition 2.6.1. Let Q1(t), . . . , Qn(t) be quadratic forms in d variables. Suppose that
Q1, . . . , Qn′ do not depend on td′+1, . . . , td for some partitions n = n′+n′′ and d = d′+d′′.
Let K′′ := d′′ + 2n′′.

Let S be the surface defined in (2.1.1) and let DS(δ, p) be the associated decoupling
constant, defined in (2.1.3). Then, for 2 ≤ p <∞, we have

DS(δ, p) & δ−d
′(1/2−1/p) · δ−d′′(1−1/p)+K′′/p. (2.6.1)

We postpone the proof of Proposition 2.6.1 till the end of this section and indicate
how it recovers the lower bounds in Shaoming Guo and Zorin-Kranich 2020a, Section 1.5.

Corollary 2.6.2. Let Q1, . . . , Qn be quadratic forms in d variables and K := d+ 2n. Let
S be the surface defined in (2.1.1) and let DS(δ, p) be the associated decoupling constant,
defined in (2.1.3). Then, for 2 ≤ p <∞, we have

DS(δ, p) & max(δ−d(1/2−1/p), δ−d(1−1/p)+K/p). (2.6.2)

Proof of Corollary 2.6.2 assuming Proposition 2.6.1. The hypothesis of Proposition 2.6.1
clearly holds for arbitrary quadratic forms Q1, . . . , Qn with either d′ = n′ = 0 or d′′ =
n′′ = 0.

By considering functions fθ of tensor product form, we also obtain the following lower
bound.

Lemma 2.6.3. In the situation of Corollary 2.6.2, if V ≤ Rd is a linear subspace, Q̃j :=
Qj |V , j = 1, . . . , n, are restrictions of Qj’s to V , and S̃ is the surface

{(t, Q̃1(t), . . . , Q̃n(t)) : |t| ≤ 1}, (2.6.3)

then
DS(δ, p) & DS̃(δ, p). (2.6.4)

Now we can justify the lower bounds on the sharp decoupling exponents in Theo-
rem 2.1.1.

For surfaces (2.1.4), we have d = 3 and K = 7. Hence, (2.6.2) above implies the lower
bounds

DS(δ, p) & max(δ−3(1/2−1/p), δ−3+10/p). (2.6.5)

This shows the lower bounds on sharp decoupling exponents in (2.1.9).
In case 2 of Theorem 2.1.1, assume without loss of generality that (P,Q) = (rs, rt).

Then we apply (2.6.4) for the subspace given by r = 0. On this subspace, we apply (2.6.2)
with d̃ = 2 and K̃ = 2. This gives the additional lower bound

DS(δ, p) & δ−2(1−1/p)+2/p = δ−2+4/p. (2.6.6)
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In case 3 of Theorem 2.1.1, assume without loss of generality that P = r2. Applying
(2.6.1) with d′ = 1 and n′ = 1, we obtain

DS(δ, p) & δ−1·(1/2−1/p)δ−2·(1−1/p)+4/p = δ−5/2+7/p. (2.6.7)

This shows the middle lower bound in (2.1.15).

Proof of Proposition 2.6.1. Write points in Rd+n as (x′, x′′, y′, y′′) ∈ Rd′+d′′+n′+n′′ . For
θ ∈ P(δ), write θ = θ′× θ′′. Choose functions fθ of the form fθ = gθ′(x

′, y′)hθ(x
′′, y′′) with

the following properties

1. ĝθ′ and ĥθ are positive smooth functions,

2.
´
ĝθ′ =

´
ĥθ = 1,

3. ĝθ′ is supported in a ball of radius ≈ δ2,

4. f̂θ is supported in and adapted to a rectangular box of dimensions

δ2/10× · · · × δ2/10︸ ︷︷ ︸
d′ times

× δ/10× · · · × δ/10︸ ︷︷ ︸
d′′ times

× δ2/10× · · · × δ2/10︸ ︷︷ ︸
n times

(2.6.8)

inside the set (2.1.2).

Note that gθ′ depends only on the projection of θ onto Rd′+n′ , whereas hθ has to depend
on θ because of the geometry of the set (2.1.2).

On one hand, ‖fθ‖p ∼ δ−(2d′+d′′+2n)/p, and by definition we have∥∥ ∑
θ∈P(δ)

fθ
∥∥
p
≤ DS(δ, p)

( ∑
θ∈P(δ)

‖fθ‖pp
)1/p

∼ DS(δ, p)δ−d/pδ−(2d′+d′′+2n)/p. (2.6.9)

On the other hand,∥∥ ∑
θ∈P(δ)

fθ
∥∥
p
& inf

x′′∈Rd′′ ,y′′∈Rn′′ ,
|x′′|,|y′′|≤1/100

∥∥ ∑
θ∈P(δ)

fθ
∥∥
Lp(Rd′×{x′′}×Rn′×{y′′})

= inf
x′′∈Rd′′ ,y′′∈Rn′′ ,
|x′′|,|y′′|≤1/100

∥∥∑
θ′

cθ′,x′′,y′′gθ′
∥∥
Lp(Rd′×Rn′ )

(2.6.10)

where cθ′,x′′,y′′ :=
∑

θ′′ hθ(x
′′, y′′) is independent of x′, y′ and satisfies

|cθ′,x′′,y′′ | ∼ δ−d
′′

(2.6.11)

uniformly in θ′ and |x′′|, |y′′| ≤ 1/100. This is because there is almost no cancellation in
the sum over θ′′.

Let φ = η(δ2·), where η is a fixed positive Schwartz function on Rd′×Rn′ with supp η̂ ⊂
B(0, 1/10). Then, by Hölder’s inequality,∥∥∑

θ′

cθ′,x′′,y′′gθ′
∥∥
Lp(Rd′×Rn′ ) ≥ ‖φ‖

−1
1/(1/2−1/p)

∥∥φ∑
θ′

cθ′,x′′,y′′gθ′
∥∥
L2(Rd′×Rn′ )

∼ δ2·(d′+n′)(1/2−1/p)
∥∥∑
θ′

cθ′,x′′,y′′φgθ′
∥∥
L2(Rd′×Rn′ ).

(2.6.12)
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Since the Fourier supports of φgθ′ are disjoint for different (θ′)’s, we obtain

∥∥∑
θ′

cθ′,x′′,y′′φgθ′
∥∥
L2(Rd′×Rn′ ) =

(∑
θ′

|cθ′,x′′,y′′ |2
∥∥φgθ′∥∥2

L2(Rd′×Rn′ )

)1/2

∼ δ−d′/2 · δ−d′′ · δ−2·(d′+n′)/2,

(2.6.13)

uniformly for |x′|, |y′| ≤ 1/100. Combining the above estimates, we obtain

DS(δ, p)δ−d/pδ−(2d′+d′′+2n)/p & δ2·(d′+n′)(1/2−1/p) · δ−d′/2 · δ−d′′ · δ−2·(d′+n′)/2. (2.6.14)

This implies the claim (2.6.1).
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Chapter 3

Decoupling inequalities for
quadratic forms

3.1 Introduction

Let n, d ≥ 1. We denote by Q(ξ) = (Q1(ξ), . . . , Qn(ξ)) an n-tuple of real quadratic
forms in d variables. The graph of such a tuple, SQ = {(ξ,Q(ξ)) ∈ [0, 1]d × Rn}, is a
d-dimensional submanifold of Rd+n. We often write a spatial vector in Rd+n as (x, y) with
x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , yn) ∈ Rn. Similarly we often write a frequency
vector in Rd+n as (ξ, η) with ξ = (ξ1, . . . , ξd) ∈ Rd and η = (η1, . . . , ηn) ∈ Rn.

Let � ⊂ [0, 1]d. Define the Fourier extension operator

EQ
� g(x, y) :=

ˆ
�
g(ξ)ei(x·ξ+y·Q(ξ))dξ, (3.1.1)

with x ∈ Rd, y ∈ Rn. For q, p ≥ 2 and dyadic δ ∈ (0, 1), let Dq,p(Q, δ) be the smallest
constant D such that∥∥EQ

[0,1]d
g
∥∥
Lp(wB)

≤ D
( ∑
�⊂[0,1]d

l(�)=δ

∥∥EQ
� g
∥∥q
Lp(wB)

)1/q
(3.1.2)

holds for every measurable function g and every ball B ⊂ Rd+n of radius δ−2, where wB is
a smooth version of the indicator function of B (see (3.1.28) in the subsection of notation)
and the sum on the right hand side runs through all dyadic cubes of side length δ. In this
chapter, we determine an optimal asymptotic behavior of Dq,p(Q, δ) as δ tends to zero,
for every choice of q, p ≥ 2 and Q.

Let us introduce more definitions. We will formulate a slightly more general (and
essentially equivalent) version of (3.1.2). This version uses functions with Fourier supports
in small neighborhoods of SQ, instead of Fourier extension operators, and lends itself more
readily to induction on dimension d.

It is convenient to define the Fourier supports in terms of symmetries of SQ. The
group A generated by translations and scalings of Rd consists of affine maps of the form
A(ξ) = δξ + a with a ∈ Rd and δ ∈ (0,∞) (in particular, A ∼= Rd o (0,∞)). This group
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acts on Rd+n by affine transformations

A(A)(ξ, η) = (δξ + a, δ2η + δ∇Q(a) · ξ + Q(a)). (3.1.3)

This A-action leaves SQ invariant. For a cube � ⊂ Rd, let A� ∈ A be the map such
that A�([0, 1]d) = �, and denote the corresponding affine transformation on Rd+n by
A� := A(A�). We define the associated uncertainty region by

U� = U�(Q) := A�
(

[−2, 2]d ×
n∏
j=1

4d(‖HessQj‖+ 1)[−1, 1]
)
. (3.1.4)

The main feature of the definition (3.1.4) is that the uncertainty region U� contains the
convex hull of the graph of Q on � and is not much larger than this convex hull. Another
convenient property is that

2� ⊆ 2�′ =⇒ U� ⊆ U�′ . (3.1.5)

We will denote by f� an arbitrary function with supp f̂� ⊆ U�.

Let q, p ≥ 2. Let δ < 1 be a dyadic number. Let P(δ) be the partition of [0, 1]d into
dyadic cubes of side length δ. Let Dq,p(Q, δ) be the smallest constant D such that

‖
∑
�∈P(δ)

f�‖Lp(Rd+n) ≤ D
( ∑
�∈P(δ)

‖f�‖qLp(Rd+n)

)1/q
(3.1.6)

holds for every f� with supp f̂� ⊆ U�. If p = q, we often write

Dp(Q, δ) := Dq,p(Q, δ). (3.1.7)

Let Γq,p(Q) be the smallest constant Γ such that, for every ε > 0, we have

Dq,p(Q, δ) ≤ Cp,q,Q,εδ−Γ−ε, for every dyadic δ < 1, (3.1.8)

where Cp,q,Q,ε is a constant that is allowed to depend on p, q,Q and ε. If p = q, we often
write

Γp(Q) := Γp,p(Q). (3.1.9)

For a tuple Q̃ = (Q̃1(ξ), . . . , Q̃ñ(ξ)) of quadratic forms with ξ ∈ Rd, denote

NV(Q̃) := |{1 ≤ d′ ≤ d : ∂ξd′ Q̃ñ′ 6≡ 0 for some 1 ≤ ñ′ ≤ ñ}|. (3.1.10)

Here for a function F , we use F 6≡ 0 to mean that it does not vanish constantly, and
NV(Q̃) refers to “the number of variables that Q̃ depends on”. For instance, for Q̃ =
((ξ1 + ξ3)2, (ξ1 + ξ3 + ξ4)2), we have that NV(Q̃) = 3.

For 0 ≤ n′ ≤ n and 0 ≤ d′ ≤ d, define

dd′,n′(Q) := inf
M∈Rd×d

rank(M)=d′

inf
M ′∈Rn×n

rank(M ′)=n′

NV(M ′ · (Q ◦M)), (3.1.11)

where Q ◦M is the composition of Q with M . We abbreviate dn′(Q) := dd,n′(Q).
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As these quantities will be crucial throughout the entire paper, it may make sense to
look at them from a few angles. Let H ⊂ Rd be a linear subspace of codimension m. Let
RotH be a rotation1 on Rd that maps {ξ ∈ Rd : ξd−m+1 = · · · = ξd = 0} to H. We define

Q|H(ξ′) := Q((ξ′,0) · (RotH)T ), with ξ′ ∈ Rd−m and 0 = (0, . . . , 0) ∈ Rm. (3.1.12)

Here (RotH)T refers to the transpose of RotH . Similarly, for Q = (Q1, . . . , Qn), we denote

Q|H := (Q1|H , . . . , Qn|H). (3.1.13)

With the above notation, we can also write

dd′,n′(Q) = inf
H

inf
M∈GLd′

inf
M ′∈Rn′×n

rank(M ′)=n′

NV(M ′ · (Q|H ◦M)), (3.1.14)

where H runs through all linear sub-spaces in Rd of dimension d′. In other words, this
is the minimal number of variables that n′ many of the forms in Q depend on, after
restricting them to sub-spaces of dimension d′, up to linear changes of variables in their
definition domain Rd′ and their value domain Rn. From (3.1.14), one can also see that

dd′,n′(Q) = inf
H of dim d′

dd′,n′(Q|H). (3.1.15)

For example, if we take d = 3, n = 3 and Q = ((ξ1 + ξ2 + ξ3)2, (ξ1 + ξ2)2, (ξ1 + ξ2)2), then
d0(Q) = d1(Q) = 0, d2(Q) = 1 and d3(Q) = 2.

Theorem 3.1.1. Let d ≥ 1 and n ≥ 1. Let Q = (Q1, . . . , Qn) be a collection of quadratic
forms in d variables. Let 2 ≤ q ≤ p < ∞. Then the `qLp decoupling exponent for the
d-surface SQ = {(ξ,Q(ξ)) : ξ ∈ [0, 1]d} equals

Γq,p(Q) = max
0≤d′≤d

max
0≤n′≤n

(
d′
(
1− 1

p
− 1

q

)
− dd′,n′(Q)

(1

2
− 1

p

)
− 2(n− n′)

p

)
. (3.1.16)

Moreover, for 2 ≤ p < q ≤ ∞, we have

Γq,p(Q) = Γp,p(Q) + d(1/p− 1/q). (3.1.17)

The expression (3.1.16) simplifies in the case q = p in the following way.

Corollary 3.1.2. In the situation of Theorem 3.1.1, we have

Γp(Q) = max
d/2<d′≤d

max
0≤n′≤n

(
(2d′ − dd′,n′(Q))

(1

2
− 1

p

)
− 2(n− n′)

p

)
. (3.1.18)

for every p ≥ 2.

Proof. For every d′ ≤ d/2 and 0 ≤ n′ ≤ n, we have 2d′ − dd′,n′(Q) ≤ d ≤ 2d − dd,n′(Q).
Hence, the (d′, n′) term in (3.1.16) is not larger than the (d, n′) term.

1There are infinitely many such rotations: We pick an arbitrary one.
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Taking d′ = d and n′ ∈ {0, n} in (3.1.18), we see that, for every tuple Q = (Q1, . . . , Qn)
of quadratic forms depending on d variables, it always holds that

Γp(Q) ≥ max
(
d(

1

2
− 1

p
), 2d(

1

2
− 1

p
)− 2n

p

)
for every p ≥ 2. (3.1.19)

Similarly,

Γ2,p(Q) ≥ max
(

0, d(
1

2
− 1

p
)− 2n

p

)
for every p ≥ 2. (3.1.20)

We say that Q = (Q1, . . . , Qn) is strongly non-degenerate if

dd−m,n′(Q) ≥ n′d/n−m, (3.1.21)

for every n′ and every m with 0 ≤ m ≤ d.

Corollary 3.1.3 (Best possible `2Lp decoupling). We have

Γ2,p(Q) = max
(

0, d(
1

2
− 1

p
)− 2n

p

)
for every 2 ≤ p <∞ (3.1.22)

if and only if Q is strongly non-degenerate.

We say that Q = (Q1, . . . , Qn) is non-degenerate if

dd−m,n′(Q) ≥ n′d/n− 2m, (3.1.23)

for every n′ and every m with 0 ≤ m < d/2.

Corollary 3.1.4 (Best possible `pLp decoupling). We have

Γp,p(Q) = max
(
d(

1

2
− 1

p
), 2d(

1

2
− 1

p
)− 2n

p

)
for every 2 ≤ p <∞ (3.1.24)

if and only if Q is non-degenerate.

In view of (3.1.20) and (3.1.19), Corollary 3.1.3 and Corollary 3.1.4 characterize tu-
ples of quadratic forms that possess “best possible” `2Lp decoupling constants and `pLp

decoupling constants, respectively.
We say that Q = (Q1, . . . , Qn) is weakly non-degenerate if

dd−m,n(Q) ≥ d− 2m, (3.1.25)

for every 0 ≤ m < d/2.

Corollary 3.1.5. A tuple Q = (Q1, . . . , Qn) of quadratic forms is weakly non-degenerate
if and only if there exists some pc > 2 such that

Γp(Q) = d(
1

2
− 1

p
), 2 ≤ p ≤ pc. (3.1.26)

If Q is weakly non-degenerate, then the largest possible pc is given by

2 + min

(
4(n− n′)

d−
(
dd−m,n′(Q) + 2m

)), (3.1.27)

where the minimum on the right hand side is taken over all n′ and m satisfying n′ ≤
n− 1,m < d/2 and d > dd−m,n′(Q) + 2m.
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One reason that we are interested in the exponent pc in Corollary 3.1.5 is that, when
applying our main results to exponential sum estimates (see Corollary 3.2.1 below), the
exponent pc is the largest for which we can still expect square root cancellation; see right
below Corollary 3.2.1 for what we mean by square root cancellation.

Organization of Chapter 3

In Section 3.2 we state a few applications of our main theorem. In Section 3.3, we compute
the decoupling exponent provided by the main theorem more explicitly for several examples
of tuples of quadratic forms Q, including some of those tuples Q for which sharp decoupling
inequalities have been previously established in the literature, and a few tuples Q (in
particular, arbitrary pairs of forms and tuples of simultaneously diagonalizable forms) for
which our results are new.

The upper bounds of Γq,p(Q) in Theorem 3.1.1 with q ≤ p are proven in Section 3.4
and Section 3.5. The lower bounds of Γq,p(Q) in Theorem 3.1.1 with q ≤ p are proven in
Section 3.6. In Section 3.7, we show that the optimal decoupling inequalities for q > p
follow from the case q = p of Theorem 3.1.1.

In Section 3.8, we provide the proofs of Corollary 3.1.3, Corollary 3.1.4 and Corol-
lary 3.1.5. In Section 3.9, we prove the Fourier restriction estimate in Corollary 3.2.3.

Notation

For two positive constants A1, A2 and a set I of parameters, we use A1 .I A2 to mean
that there exists C > 0 depending on the parameters in I such that A1 ≤ CA2. Typically,
I will be taken to be {Q, d, n, p, q, ε} where ε > 0 is a small number. Similarly, we define
A1 & A2. Moreover, A1 ∼ A2 means A1 . A2 and A1 & A2.

Let δ ∈ (0, 1) be a dyadic number. We denote by P(Q, δ) the dyadic cubes of side
length δ in Q for every dyadic cube Q ⊂ [0, 1]d. Let P(δ) be the partition of [0, 1]d into
dyadic cubes of side length δ. Let � be a cube with side length l(�), we use c ·� to denote
the cube of side length c · l(�) and of the same center as �.

For two linear spaces V, V ′, we use V ′ ≤ V to mean that V ′ is a linear subspace of

V . For a sequence of real numbers {Aj}Mj=1, we abbreviate
∏
Aj :=

(∏M
j=1 |Aj |

)1/M
. For

E > 0 and a ball B = B(cB, rB) ⊂ Rd+n with center cB and radius rB, define an associated
weight

wB,E(·) :=
(

1 +
| · −cB|
rB

)−E
. (3.1.28)

The power E is large number depending on d, n, e.g., E = 10(d+ n), and will be omitted
from the notation wB,E . All implicit constants in the paper are allowed to depend on E.
Also, we define averaged integrals:

‖f‖–Lp(B) := (
1

|B|

ˆ
B
|f |p)1/p and ‖f‖–Lp(wB) := (

1

|B|

ˆ
|f |pwB)1/p.

For a dyadic box� ⊂ [0, 1]d, a function f� is always implicitly assumed to satisfy supp f̂� ⊂
U�, unless otherwise stated.

We would like to make the convention that all vectors are column vectors, unless they
are variables of functions or otherwise stated. Below are a few more conventions we make
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on notation: We will use dyadic cubes of side lengths δ, δb with b < 1 and 1/Kj with
1 ≤ j ≤ d. One can always keep in mind that logKj logKj (1/δ) ≥ Kj . We will always
use � to denote a dyadic cube of the smallest scale δ, J to denote a dyadic cube of
an intermediate scale δb, and W or Wj to denote a dyadic cube of a large scale 1/Kj .
We will introduce certain multi-linear estimates during the proof, and the degree of the
multi-linearity will always be called M .

3.2 Applications

3.2.1 Exponential sum estimates.

Let Q = (Q1, . . . , Qn) be a collection of quadratic forms of integral coefficients defined on
Rd. Let w = (w1, . . . , wd) ∈ Nd.

Corollary 3.2.1. For every d, n ≥ 1, every p ≥ 2, ε > 0, there exists CQ,ε,p such that∥∥∥ ∑
1≤d′≤d

∑
0≤wd′≤W

e2πi(w·x+Q(w)·y)
∥∥∥
Lp([0,1]d×[0,1]n)

≤ CQ,ε,pW
Γp(Q)+ d

p
+ε

(3.2.1)

for every integer W .

If Γp(Q) = d(1/2− 1/p), then the above corollary says that∥∥∥ ∑
1≤d′≤d

∑
0≤wd′≤W

e2πi(w·x+Q(w)·y)
∥∥∥
Lp([0,1]d×[0,1]n)

≤ CQ,ε,pW
ε
∥∥∥ ∑

1≤d′≤d

∑
0≤wd′≤W

e2πi(w·x+Q(w)·y)
∥∥∥
L2([0,1]d×[0,1]n)

,
(3.2.2)

by which we mean square root cancellation holds for the exponential sum at such p.
The derivation of exponential sum estimates of the form in the above corollary from

decoupling inequalities has been standard, see for instance Section 2 Jean Bourgain and
Demeter 2015 and Section 4 Jean Bourgain, Demeter, and Guth 2016. We will not repeat
the argument here.

Let s ≥ 1 be an integer. Consider the system of Diophantine equations

w1 + · · ·+ ws = ws+1 + · · ·+ w2s,

Q(w1) + · · ·+ Q(ws) = Q(ws+1) + · · ·+ Q(w2s).
(3.2.3)

For a large integer W , let JQ(W ) be the number of solutions to (3.2.3) where 0 ≤ wd′ ≤W
for every d′. As a immediate corollary of (3.2.1), we obtain

Corollary 3.2.2. For every d, n ≥ 1, integer s ≥ 1, and every ε > 0, there exists CQ,ε,s

such that
JQ(W ) ≤ CQ,ε,sW

2sΓ2s(Q)+d+ε, (3.2.4)

for every W .
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3.2.2 Fourier restriction estimates.

Let Q = (Q1, . . . , Qn) be a collection of quadratic forms defined on Rd. We say that Q
is linearly independent if Q1, . . . , Qn are linearly independent. We are interested in the
Fourier restriction problems: Find an optimal range of p such that

‖EQ
[0,1]d

g‖Lp(Rd+n) .d,n,p,Q ‖g‖p (3.2.5)

holds true for every function g. By a simple change of variables, one can see that the
restriction estimate (3.2.5) cannot hold true for any p <∞ if Q is linearly dependent. As
an application of Corollary 3.1.2, we prove some restriction estimates for every linearly
independent Q for some range of p.

Corollary 3.2.3. Let Q = (Q1, . . . , Qn) be a collection of linearly independent quadratic
forms defined on Rd. Then

‖EQ
[0,1]d

g‖Lp(Rd+n) .d,n,p,Q ‖g‖p (3.2.6)

for every

p > pQ := 2 + max
m≥1

max
n′≤n

4n′

2m+ dd−m,n′(Q)
. (3.2.7)

The proof of this corollary will be presented in Section 3.9. One significance of this
corollary is that the range (3.2.7) is sharp for Parsell–Vinogradov systems. Let us be
more precise. Let d ≥ 2. Denote ξα := ξα1

1 . . . ξαdd for ξ = (ξ1, . . . , ξd) and a multi-index
α = (α1, . . . , αd). For Q := (ξα)|α|=2, we have n = d(d + 1)/2, and it has been shown by
Christ Christ 1982 and Mockenhaupt Mockenhaupt 1996 that (3.2.6) holds if and only if

p > 2 +
4n

d+ 1
= 2d+ 2. (3.2.8)

Let us also mention that, for this tuple Q, the full range of Lq → Lp estimates generalizing
(3.2.6) has been obtained in Bak and S. Lee 2004; D. M. Oberlin 2005. The next claim
shows that the range (3.2.7) coincides with (3.2.8).

Claim 3.2.4. Let Q := (ξα)|α|=2. Then

max
m≥1

max
n′≤n

4n′

2m+ dd−m,n′(Q)
=

4n

2 + dd−1,n(Q)
=

4n

d+ 1
= 2d. (3.2.9)

In other words, the max is attained at m = 1, n′ = n.

Proof of Claim 3.2.4. By definition, dd−1,n(Q) = d − 1. Hence it suffices to show the
leftmost expression in (3.2.9) is equal to 2d.

Fix m ≥ 1 and n′ ≤ n. Denote l := dd−m,n′(Q). Notice that by the definition of

dd−m,n′(Q), we see that l +m ≤ d. Our goal is to show that 4n′

2m+l ≤ 2d. We claim that

n′ ≤
(
l + 1

2

)
+

(
m+ 1

2

)
+m(d−m). (3.2.10)
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Indeed, by definition (3.1.14), there exist a linear subspace H ⊂ Rd of dimension d−m and
a linear subspace Q of the span of Q of dimension n′ such that the restrictions of the forms
from Q to H depend only on l variables. Since the system Q = (ξα)|α|=2 is a basis for the
space of all quadratic forms in d variables, the above statement does not depend on H and
the l variables inside H, so we may assume H = {ξ : ξd−m+1 = · · · = ξd = 0} and the l
variables are ξ1, . . . , ξl. In this case, Q is contained in the space of all quadratic forms that
depend either only on ξ1, . . . , ξl, or on at least one of the variables ξd−m+1, . . . , ξd. The
right-hand side of (3.2.10) is precisely the dimension of the latter space, which concludes
the proof of (3.2.10).

Given (3.2.10), it remains to show

4(
l(l + 1)

2
+
m(m+ 1)

2
+m(d−m)) ≤ 2d(2m+ l), (3.2.11)

which is equivalent to
2(l +m)(l −m+ 1) ≤ 2dl. (3.2.12)

This holds because l +m ≤ d and l −m+ 1 ≤ l.

3.3 Examples: Old and new

3.3.1 Example: Hypersurfaces with nonvanishing Gaussian curvatures

We take n = 1. Let Q be a quadratic form depending on d variables. Without loss of
generality we assume that d1(Q) = d. Via a change of coordinate, we can write Q(ξ) as
ξ2

1 ± ξ2
2 ± · · · ± ξ2

d. This is the (hyperbolic) paraboloid case. It is easy to see d0(Q) =
0, d1(Q) = d.

Lemma 3.3.1. Let Q̃ : Rd → R be a quadratic form. Let M ∈Md×d with rank d′. Then

d1(Q̃(·M)) ≥ d1(Q̃(·))− 2(d− d′). (3.3.1)

Proof of Lemma 3.3.1. A lemma of this form was already proved and used by Bourgain
and Demeter, see Lemma 2.6 in Jean Bourgain and Demeter 2017b. We use Hess(Q̃)
to denote the Hessian of the quadratic form Q̃. What we need to prove is, for every
M ∈Md×d with rank d′, it holds that

rank(MHess(Q̃)MT ) ≥ rank(Hess(Q̃))− 2(d− d′). (3.3.2)

This follows immediately form Sylvester’s rank inequality:

rank(AB) ≥ rank(A) + rank(B)− n, (3.3.3)

for two arbitrary matrices A,B ∈Mn×n.

By Lemma 3.3.1, we know that d1(Q|H) ≥ d − 2m for every linear subspace of codi-
mension m, which means Q is non-degenerate. Therefore we can apply Corollary 3.1.4
and obtain

Γp(Q) = max
(
d− 2d+ 2

p
, d(

1

2
− 1

p
)
)
. (3.3.4)
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This recovers the `pLp decoupling results of Bourgain and Demeter in Jean Bourgain
and Demeter 2015 and Jean Bourgain and Demeter 2017b. Moreover, if we take Q(ξ) =
ξ2

1 + · · ·+ ξ2
d, then it is elementary to see that d1(Q|H) ≥ d−m for every linear subspace

of co-dimension m, which means Q is strongly non-degenerate. Therefore we can apply
Corollary 3.1.3 and obtain

Γ2,p(Q) = max
(

0,
d

2
− d+ 2

p

)
. (3.3.5)

This recovers the `2Lp decoupling results of Bourgain and Demeter in Jean Bourgain and
Demeter 2015.

3.3.2 Example: Co-dimension two manifolds in R4

Take d = n = 2. Let Q1(ξ) = A1ξ
2
1 + 2A2ξ1ξ2 +A3ξ

2
2 and Q2(ξ) = B1ξ

2
1 + 2B2ξ1ξ2 +B3ξ

2
2 .

Under the assumption that

rank

[
A1, A2, A3

B1, B2, B3

]
= 2, (3.3.6)

Bourgain and Demeter Jean Bourgain and Demeter 2016a proved that

Γp(Q) = max
(

2(
1

2
− 1

p
), 2(1− 4

p
)
)
, (3.3.7)

with Q = (Q1, Q2). This decoupling inequality is particularly interesting as it is one key
ingredient in Bourgain’s improvement on the Lindelöf Hypothesis in Jean. Bourgain 2017.

Let us see how Theorem 3.1.1 recovers this result. We take d = n = 2 and notice that
d2(Q) = 2 (indeed, if d2(Q) ≤ 1, then Q1, Q2 would be linearly dependent, since the space
of quadratic forms in one variable is one-dimensional, contradicting (3.3.6)). Moreover, it
is straightforward to see that d1(Q) > 0 as the assumption (3.3.6) says that Q1 and Q2

are linearly independent. Therefore, Q is non-degenerate in the sense of (3.1.23). We can
apply Corollary 3.1.4 and recover the result of Bourgain and Demeter Jean Bourgain and
Demeter 2016a.

3.3.3 Example: Degenerate three-dimensional submanifolds of R5

Take d = 3, n = 2 and Q = (ξ2
1 , ξ

2
2+ξ1ξ3). Note that d0(Q) = 0, d1(Q) = 1, d2(Q) = 3, and

therefore Q fails to satisfy the non-degeneracy condition (3.1.23). On the other hand, one
can also compute, for instance via (3.1.14), that d2,2(Q) = 1, d2,1(Q) = 0 and dd′,n′(Q) = 0
whenever d′ ≤ 1. We apply Theorem 3.1.1 and obtain that

Γp(Q) = max
(

3(
1

2
− 1

p
),

5

2
− 7

p
, 3− 10

p

)
, (3.3.8)

after some elementary computation. This recovers the main result of Guo, Oh, Roos,
Yung and Zorin-Kranich Shaoming Guo, Changkeun Oh, Roos, Yung, and Zorin-Kranich
2019, via an entirely different approach: The proof in Shaoming Guo, Changkeun Oh,
Roos, Yung, and Zorin-Kranich 2019 relies on bilinear Fourier restriction estimates, small
cap decoupling inequalities for the parabola and the manifold (ξ1, ξ2, ξ

2
1 , ξ1ξ2) and a more

sophisticated induction argument; while the proof in the current paper relies on more
sophisticated Brascamp-Lieb inequalities and multi-linear Fourier restriction estimates.
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3.3.4 Simultaneously diagonalizable forms

Corollary 3.3.2. Let Q = (Q1, . . . , Qn) be a collection of quadratic forms without mixed
terms. Then

Γp(Q) = max
0≤n′≤n

(
d
(1

2
− 1

p

)
+
(1

2
− 1

p

)
(d− dn′(Q))− 2(n− n′)

p

)
, (3.3.9)

for every p ≥ 2.

Proof of Corollary 3.3.2. We first apply Corollary 3.1.2 and obtain

Γp(Q) = max
d/2≤d′≤d

max
0≤n′≤n

(
(2d′ − dd′,n′(Q))

(1

2
− 1

p

)
− 2(n− n′)

p

)
. (3.3.10)

In order to obtain (3.3.9), it suffices to prove that

max
d/2≤d′≤d

(2d′ − dd′,n′(Q)) = 2d− dn′(Q), (3.3.11)

for every n′. By the equivalent definition of dd′,n′(Q) as in (3.1.14), this is equivalent to
proving

min
0≤m≤d/2

inf
H of

Setcodim m

(
dn′(Q|H) + 2m

)
= dn′(Q), (3.3.12)

for every n′, which is the same as saying

dn′(Q)− 2m ≤ dn′(Q|H) (3.3.13)

for every 1 ≤ n′ ≤ n and every plane H of codimension m with 1 ≤ m ≤ d/2.
We argue by contradiction and assume that

dn′(Q|H) ≤ dn′(Q)− 2m− 1, (3.3.14)

for some n′ and some linear subspace H of codimension m. By the definition (3.1.11), we
can find Md−m ∈ GLd−m(R) and M ′ ∈Mn×n′ of rank n′ such that

NV(P̄) = dn′(Q|H), (3.3.15)

where for ξ′ ∈ Rd−m we define

P̄(ξ′) := (Q1|H(ξ′ ·Md−m), . . . , Qn|H(ξ′ ·Md−m)) ·M ′

= (Q1((ξ′ ·Md−m,0) · RotH), . . . , Qn((ξ′ ·Md−m,0) · RotH)) ·M ′.
(3.3.16)

Here 0 = (0, . . . , 0) ∈ Rm and RotH is a rotation matrix acting on Rd. Let Md ∈ GLd(R)
be a matrix such that

(ξ′ ·Md−m,0) = (ξ′,0) ·Md, for every ξ′ ∈ Rd−m. (3.3.17)

With this notation, we can write

P̄(ξ′) = (Q1((ξ′,0) ·Md · RotH), . . . , Qn((ξ′,0) ·Md · RotH)) ·M ′

=: (P̄1(ξ′), . . . , P̄n′(ξ
′)).

(3.3.18)
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Recall (3.3.15). It implies that

NV(λ1P̄1 + · · ·+ λn′P̄n′) ≤ dn′(Q|H) ≤ dn′(Q)− 2m− 1, (3.3.19)

for all choices of λ1, . . . , λn′ ∈ R. Now if we denote

Q̄(ξ) := (Q̄1(ξ), . . . , Q̄n′(ξ)) := (Q1(ξ), . . . , Qn(ξ)) ·M ′, (3.3.20)

then from the definition of dn′(Q) and the fact that Q1, . . . , Qn are diagonal quadratic
forms, we can find some λ1, . . . , λn′ such that

d1(λ1Q̄1 + · · ·+ λn′Q̄n′) = NV(λ1Q̄1 + · · ·+ λn′Q̄n′) ≥ dn′(Q). (3.3.21)

Recall the definition of P̄ in (3.3.16) and the relation in (3.3.17) and (3.3.18). Lemma 3.3.1
then says that

NV(λ1P̄1 + · · ·+ λn′P̄n′) ≥ dn′(Q)− 2m, (3.3.22)

which is a contradiction to (3.3.19).

Corollary 3.3.3. For 1 ≤ n′ ≤ n, define

Qn′(ξ) :=
∑

1≤d′≤d
an′,d′ξ

2
d′ . (3.3.23)

Then for every p ≥ 2, with Q = (Q1, . . . , Qn),

Γp(Q) = max
(
d(

1

2
− 1

p
), 2d(

1

2
− 1

p
)− 2n

p

)
(3.3.24)

if and only if, for every 1 ≤ n′ ≤ n, every n× (bd− n′d
n c+ 1) submatrix ofa1,1, a1,2, . . . , a1,d

. . .
an,1, an,2, . . . , an,d

 (3.3.25)

has rank at least n− n′ + 1. Here for A ∈ R, bAc refers to the largest integer ≤ A.2

When n = 2, a condition of the form (3.3.25) already appeared in Heath-Brown and
Pierce Heath-Brown and Pierce 2017. Let Q = (Q1, Q2) be a pair of quadratic forms with
integer coefficients. Heath-Brown and Pierce Heath-Brown and Pierce 2017 studied the
problem of representing a pair of integers (n1, n2) by the pair of (Q1, Q2) for general Q1

and Q2. If Q1 and Q2 are assumed to be simultaneously diagonalizable, say of the form
(3.3.23), then the condition in Heath-Brown and Pierce 2017 becomes that every 2 × 2
minor of [

a1,1, a1,2, . . . , a1,d

an,1, an,2, . . . , an,d

]
(3.3.26)

has rank 2, see Condition 3 there.

2This notation is used only in Corollary 3.3.3 and its proof.
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Proof of Corollary 3.3.3. Let us show the “only if” part by contradiction. Suppose that,
for some 1 ≤ n′ ≤ n, some n × (bd − n′d

n c + 1) submatrix of (3.3.25) has rank n − n′ or
less. Then

dn′(Q) ≤ d− (bd− n′d

n
c+ 1) <

n′d

n
. (3.3.27)

Therefore, Q is not non-degenerate in the sense of 3.1.23, and (3.3.24) cannot hold true
by Corollary 3.1.4.

Let us show the other direction of the equivalence. First of all, notice that the two
terms on the right hand side of (3.3.24) match at p = pn,d := 2+4n/d. By Corollary 3.3.2,
it suffices to show that

d
(1

2
− 1

p

)
+
(1

2
− 1

p

)
(d− dn′(Q))− 2(n− n′)

p
≤ 2d(

1

2
− 1

p
)− 2n

p
(3.3.28)

for every 1 ≤ n′ ≤ n and every p ≥ pn,d. By rearranging the terms, what we need to show
becomes

dn′(Q) ≥ n′d/n (3.3.29)

for every 1 ≤ n′ ≤ n. We argue by contradiction and assume that

dn′(Q) < n′d/n (3.3.30)

for some 1 ≤ n′ ≤ n. By definition, there exist M ∈ Rd×d of rank d and M ′ ∈ Rn×n of
rank n′ such that

dn′(Q) = NV(M ′ · (Q ◦M)). (3.3.31)

Since the assumption (3.3.25) is invariant under the row operations, we may assume that
M ′ is a diagonal matrix with diagonal entries 1, . . . , 1, 0, . . . , 0. By the inequality (3.3.30),
we have

dim

n′⋂
i=1

⋂
ξ∈Rd

ker∇Qi(ξ) > d− n′d

n
. (3.3.32)

It remains to observe that

ker∇Qi(ξ) = {η ∈ Rd :
d∑
j=1

ξjηjai,j = 0} and

⋂
ξ∈Rd

ker∇Qi(ξ) = {η ∈ Rd : ηjai,j = 0 for all j = 1, . . . , d},

so that (3.3.32) implies that an n′ × (bd− n′d
n c+ 1) submatrix of (3.3.25) vanishes.

3.3.5 Decoupling theory for two quadratic forms

Corollary 3.3.4. Let Q = (Q1, Q2) be two linearly independent quadratic forms defined
on Rd satisfying d2(Q) = d.
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(1) Let 1 ≤ k < d/2. Then Q satisfies d1(Q) = k and the weakly non-degenerate
condition if and only

Γp(Q) = max
(
d(

1

2
− 1

p
), (2d− k)(

1

2
− 1

p
)− 2

p
, 2d(

1

2
− 1

p
)− 4

p

)
, (3.3.33)

for every p ≥ 2.

(2) Q is non-degenerate if and only if it is weakly non-degenerate and satisfies d1(Q) ≥
d/2.

Proof of Corollary 3.3.4. Let us start with proving the first part of the corollary. We
denote the right hand side of (3.3.33) by Γ′p(Q). By Corollary 3.1.2, Γp(Q) is given by

max
d/2≤d′≤d

max
(

(2d′−dd′,2(Q))(
1

2
− 1

p
), (2d′−dd′,1(Q))(

1

2
− 1

p
)− 2

p
, 2d(

1

2
− 1

p
)− 4

p

)
. (3.3.34)

Let us first show that (3.3.33) holds, that is, Γp(Q) = Γ′p(Q) for every p ≥ 2, if and only
if

max
d′

(2d′ − dd′,1(Q)) = 2d− k

max
d′

(2d′ − dd′,2(Q)) = d.
(3.3.35)

To show that (3.3.35) implies (3.3.33), we apply (3.3.34), move the maxd/2≤d′≤d inside
the second max and obtain (3.3.33). To show the other direction of the equivalence, the
constraint k < d/2 will come into play. Notice that under this assumption,

Γ′p(Q) =


d(1

2 −
1
p) if p ≤ 2 + 4

d−k ,

(2d− k)(1
2 −

1
p)− 2

p if 2 + 4
d−k ≤ p ≤ 2 + 4

k ,

2d(1
2 −

1
p)− 4

p if p ≥ 2 + 4
k .

(3.3.36)

Note that we are now under the assumption that Γp(Q) = Γ′p(Q) for every p ≥ 2. When
p is slightly larger than 2, we have

Γp(Q) = max
d/2≤d′≤d

(2d′ − dd′,2(Q))(
1

2
− 1

p
), (3.3.37)

as the contributions from the other two terms in (3.3.34) are already negative. This implies

max
d/2≤d′≤d

(2d′ − dd′,2(Q)) = d. (3.3.38)

We use (3.3.38) to further simplify Γp(Q) to

max
(
d(

1

2
− 1

p
), max
d/2≤d′≤d

(2d′ − dd′,1(Q))(
1

2
− 1

p
)− 2

p
, 2d(

1

2
− 1

p
)− 4

p

)
. (3.3.39)

By comparing Γp(Q) with Γ′p(Q) for 2 + 4
d−k ≤ p ≤ 2 + 4

k , we see that

max
d/2≤d′≤d

(2d′ − dd′,1) = 2d− k. (3.3.40)
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This finishes the proof that (3.3.33) is equivalent to (3.3.35).
It remains to show that (3.3.35) is equivalent to that Q is weakly non-degenerate and

satisfies d1(Q) = k. Since the second equation in (3.3.35) is already equivalent to the
weakly non-degenerate condition, what we need to prove becomes dd,1(Q) = d1(Q) = k if
and only if

max
d′

(2d′ − dd′,1(Q)) = 2d− k, (3.3.41)

which follows immediately from

max
d′

(2d′ − dd′,1(Q)) = 2d− dd,1(Q). (3.3.42)

To prove (3.3.42), it suffices to prove

Claim 3.3.5.
dd,1(Q)− dd′,1(Q) ≤ 2(d− d′) (3.3.43)

for every d/2 ≤ d′ ≤ d.

The proof of Claim 3.3.5 will be presented in the end of this subsection. So far we
have finished the proof of the first part of the corollary.

Let us turn to the second part and show that Q is non-degenerate if and only if it is
weakly non-degenerate and satisfies d1(Q) ≥ d/2. By definition, we need to show that
d1(Q) ≥ d/2 if and only if

dd−m,1(Q) ≥ d/2− 2m (3.3.44)

for every 0 ≤ m ≤ d/2. By taking m = 0, we see that (3.3.44) implies d1(Q) ≥ d/2. The
other direction immediately follows from Claim 3.3.5. This finishes the second part of the
corollary.

Proof of Claim 3.3.5. We take M0 ∈ Rd×d of rank d′ and M ′0 ∈ R2×2 of rank one such
that

dd′,1(Q) = inf
M∈Rd×d

rank(M)=d′

inf
M ′∈Rn×n

rank(M ′)=1

NV(M ′ · (Q ◦M)) = NV(M ′0 · (Q ◦M0)). (3.3.45)

Therefore there exist λ1, λ2 ∈ R such that

dd′,1(Q) = NV(Q̃(·M0)) = dd,1(Q̃(·M0)) (3.3.46)

where Q̃ = λ1Q1 + λ2Q2 and Q = (Q1, Q2). We now apply Lemma 3.3.1 and obtain

dd′,1(Q)− dd,1(Q) = dd,1(Q̃(·M0))− dd,1(Q)

≥ dd,1(Q̃(·M0))− dd,1(Q̃)

≥ −2(d− d′).
(3.3.47)

This completes the proof of Claim 3.3.5.
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3.4 Transversality

3.4.1 Brascamp–Lieb inequalities

A central tool in most existing proofs of decoupling inequalities are the Brascamp–Lieb
inequalities for products of functions in Rm which are constant along some linear sub-
spaces. Scale-invariant inequalities of this kind have been characterized in Bennett, Car-
bery, Christ, and Tao 2008. A novelty of our approach is that we for the first time take full
advantage of scale-dependent versions of Brascamp–Lieb inequalities. First inequalities of
this kind were proved in Bennett, Carbery, Christ, and Tao 2008; Bennett, Carbery, Christ,
and Tao 2010, and a unified description taking into account both minimal and maximal
scales was obtained in Maldague 2021. We will only use the results of Maldague 2021 in
a special symmetric case when all functions fj below play similar roles. This special case
is captured in the following definition.

Definition 3.4.1. Let m,m′ ∈ N. Let (Vj)
M
j=1 be a tuple of linear subspaces Vj ⊆ Rm of

dimension m′. For a linear subspace V ⊆ Rm, let πV : Rm → V denote the orthogonal
projection onto V . For 0 ≤ α ≤ M and R ≥ 1, we denote by BL((Vj)

M
j=1, α,R,Rm) (for

Brascamp–Lieb constant) the smallest constant such that the inequality

ˆ
[−R,R]m

M∏
j=1

fj(πVj (x))αdx ≤ BL((Vj)
M
j=1, α,R,Rm)

M∏
j=1

(ˆ
Vj

fj(xj)dxj
)α

(3.4.1)

holds for any functions fj : Vj → [0,∞) that are constant at scale 1, in the sense that
Vj can be partitioned into cubes with unit side length on each of which fj is constant. If
the dimension m of the total space Rm is clear from the context, BL((Vj)

M
j=1, α,R,Rm) is

often abbreviated to BL((Vj)
M
j=1, α,R).

We also need a Kakeya variant of Brascamp–Lieb inequalities, in which each function
fj ◦ πVj is replaced by a sum of functions of the form fj,l ◦ πVj,l , where Vj,l are different
subspaces. The first almost optimal inequality of this kind was the multilinear Kakeya
inequality, proved in Bennett, Carbery, and Tao 2006, which generalizes the Loomis–
Whitney inequality. A simplified induction on scales proof was later given by Guth Guth
2015. An endpoint version of the multilinear Kakeya inequality was proved by Guth Guth
2010 using the polynomial method. Endpoint Kakeya type extensions of Brascamp–Lieb
inequalities were further developed in Carbery and Valdimarsson 2013; Ruixiang Zhang
2018; Zorin-Kranich 2020. It will be convenient to use the following formulation, although
a non-endpoint result such as Maldague 2021, Theorem 2 would also suffice for the purpose
of proving decoupling inequalities with the optimal range of exponents.

Theorem 3.4.2 (Kakeya–Brascamp–Lieb, Zorin-Kranich 2020). Fix integers m′ ≤ m. Let
Vj, 1 ≤ j ≤ M , be families of linear subspaces of Rm of dimension m′. Let 1 ≤ α ≤ M
and R ≥ 1. Assume that

A := sup
V1∈V1,...,VM∈VM

BL((Vj)
M
j=1, α,R) <∞. (3.4.2)

Then, for any non-negative integrable functions fj,Vj : Vj → R constant at scale 1, we have

ˆ
B(0,R)

M∏
j=1

( ∑
Vj∈Vj

fj,Vj (πVj (x))
)α

dx ≤ CαA
M∏
j=1

( ∑
Vj∈Vj

ˆ
Vj

fj,Vj (x)dx
)α
, (3.4.3)
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where the constant C depends only on the dimension m.

The uniform bound (3.4.2) is clearly necessary for (3.4.3) to hold. In the scale invariant
case, such uniform bounds for Brascamp-Lieb constants were obtained in Bennett, Bez,
Flock, and S. Lee 2018; Bennett, Bez, Cowling, and Flock 2017. We need the following
corresponding result in the scale-dependent case.

Theorem 3.4.3 (Maldague 2021, Theorem 3). In the situation of Definition 3.4.1, fix a
tuple (Vj)

M
j=1 and an exponent 1 ≤ α ≤M . Let

κ := sup
V≤Rm

(
dimV − α

M

M∑
j=1

dimπVjV
)
, (3.4.4)

where the supremum is taken over all linear subspaces of Rm.
Then there exists a constant C0 < ∞ and a neighborhood of the tuple (Vj)

M
j=1 in the

M -th power of the Grassmanian manifold of all linear subspaces of dimension m′ of Rm
such that, for any tuple (Ṽj)

M
j=1 in this neighborhood and any R ≥ 1, we have

BL((Ṽj)
M
j=1, α,R) ≤ C0R

κ. (3.4.5)

3.4.2 Transversality for quadratic forms

Let Q = (Q1, . . . , Qn) be a sequence of quadratic forms defined on Rd. The subspaces
in the subsequent application of Kakeya–Brascamp–Lieb inequalities will be the tangent
spaces to the manifold SQ:

Vξ = Vξ(Q) := lin{(ej , ∂jQ(ξ)), j = 1, . . . , d}, ξ ∈ Rd. (3.4.6)

Here ej is the j-th coordinate vector and lin refers to linear span. Transversality of pieces
of this manifold will be measured by the exponent κ defined in (3.4.4) evaluated at tangent
spaces somewhere at the respective pieces: The smaller the exponent, the more transverse
are the pieces. It is an observation going back to Jean Bourgain and Demeter 2016b (for
scale-invariant Brascamp–Lieb inequalities) that the most transverse situations arise when
the pieces are not concentrated near a low degree subvariety in the following sense.

Definition 3.4.4. A subset W ⊆ P(1/K) will be called θ-uniform if, for every non-zero
polynomial P in d variables with real coefficients of degree ≤ d, we have

|{W ∈ W : 2W ∩ ZP 6= ∅}| ≤ θ|W|.

Here ZP refers to the zero set of P . When using the notation W = {W1, . . . ,WM} =
{Wj}Mj=1 for θ-uniform sets, we always mean that the Wj ’s are pairwise distinct.

Lemma 3.4.5. Let θ ∈ [0, 1], α ≥ 1, and K ∈ 2N. Then there exists Cθ,K,α < ∞ such
that, for every θ-uniform set W = {W1, . . . ,WM} ⊆ P(1/K) with α ≤ M and every
R ≥ 1, we have

sup
ξj∈Wj

BL((Vξj )
M
j=1, α,R,Rd+n) ≤ Cθ,K,αRκQ(α·(1−θ)),

where
κQ(α) := sup

V≤Rd+n

(
dimV − α sup

ξ∈Rd
dimπVξV

)
. (3.4.7)
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In the remaining part, if Q is clear from the context, we often abbreviate κQ(α) to
κ(α).

Proof of Lemma 3.4.5. Since there are only finitely many θ-uniform sets W, and, for any
fixed θ-uniform set W = {W1, . . . ,WM}, the set

∏M
j=1Wj is compact, by Theorem 3.4.3,

it suffices to show that, for any ξj ∈Wj , and every subspace V ≤ Rd+n, we have

dimV − α

M

M∑
j=1

dimπVξjV ≤ dimV − α(1− θ) sup
ξ∈Rd

dimπVξV.

This is equivalent to

1

M

M∑
j=1

dimπVξjV ≥ (1− θ) sup
ξ∈Rd

dimπVξV.

If v1, . . . , vm is a basis of V , then

dimπVξV = rank

e1 ∂1Q(ξ)
...

...
ed ∂dQ(ξ)

 · (v1 . . . vm
)
, (3.4.8)

where on the right hand side we have the product of two matrices. Each minor determinant
of this matrix is a polynomial of degree at most d. Consider the largest minor (of size
d′ × d′, say) whose determinant is a non-vanishing polynomial; call this polynomial P (if
d′ = 0, then P = 1). Then

d′ = sup
ξ∈Rd

dimπVξV.

By Definition 3.4.4, we have P (ξj) 6= 0 for at least (1− θ)M many j’s. Therefore,

1

M

M∑
j=1

dimπVξjV ≥
1

M

∑
j:P (ξj)6=0

dimπVξjV ≥
1

M

∑
j:P (ξj)6=0

d′ ≥ (1− θ)d′.

This finishes the proof of the lemma.

From the proof of Lemma 3.4.5, we see that the sup in supξ∈Rd dimπVξV is attained
at almost every point, with respect to the d-dimensional Lebesgue measure. Therefore,
we introduce the following notation

dimπV := sup
ξ∈Rd

dimπVξV. (3.4.9)

Next, we will find a more explicit description of the exponent (3.4.7) in terms of the
quadratic forms Q. The following result relates the terms in (3.4.7) to the quantities
introduced in (3.1.11).

Lemma 3.4.6. Let Q be an n-tuple of quadratic forms in d variables. For a linear subspace
V ⊆ Rd+n, let

d′ := dimπV, n′ := dimV − dimπV.

Then
n′ ≤ n and dn′(Q) ≤ d′.
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Lemma 3.4.6 relies on the following algebraic result.

Lemma 3.4.7. Let F = R(ξ1, . . . , ξd) be the field of rational functions in d variables.
Let A = (

∑
k ai,j,kξk)i,j be a (N1 × N2)-matrix whose entries are linear maps with real

coefficients. Suppose that rankFA = r. Then there exist real invertible matrices B,B′

such that

BAB′ =

(
∗ ∗
∗ 0

)
, (3.4.10)

where the zero block has size (N1 − r)× (N2 − r).

Standard linear algebra shows that there exist invertible matrices B,B′ with entries
in F such that (3.4.7) holds. The point of this Lemma 3.4.7 is that we can find B,B′ with
real entries. Note that Lemma 3.4.7 may fail if entries of A are not assumed to be linear
forms. We will include a proof of Lemma 3.4.7 below and we also note that after finishing
the first version of the paper, Zipei Nie Nie 2021 pointed out to us that Lemma 3.4.7 is
in fact known in the literature and follows from Flanders 1962, Lemma 1. We thank him
for this comment.

Proof of Lemma 3.4.6 assuming Lemma 3.4.7. The claim n′ ≤ n follows from the fact
that the tangent spaces Vξ have codimension n.

After linear changes of variables in Rd and Rn, we may assume that V is spanned by
linearly independent vectors of the form

(e1, v1), . . . , (es, vs), (0, ẽ1), . . . , (0, ẽj),

where ei are unit coordinate vectors in Rd, ẽi are unit coordinate vectors in Rn, vi are
vectors in Rn and s ≤ min(d,dimV ). Note also that dimV = s+ j and that j ≤ n. As in
(3.4.8), we have

dimπVξV = rankR

e1 ∂1Q(ξ)
...

...
ed ∂dQ(ξ)

 · (eT1 . . . eTs 0 . . . 0
vT1 . . . vTs ẽT1 . . . ẽTj

)
.

Since all entries of the product matrix on the right-hand side are polynomials in ξ, we
have

d′ = sup
ξ

dimπVξV = rankF

e1 ∂1Q(ξ)
...

...
ed ∂dQ(ξ)

 · (eT1 . . . eTs 0 . . . 0
vT1 . . . vTs ẽT1 . . . ẽTj

)
,

where F is the field of rational functions in d variables. This is because the rank equals
the size of the largest minor with non-vanishing determinant, and the determinant of any
minor, viewed as an element of F, vanishes if and only if its value vanishes for every ξ.
The latter matrix can be written in the block form(

I + L1 L3

L2 B

)
, (3.4.11)
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where I is the s × s identity matrix, L1, L2, L3 are matrices whose entries are linear
combinations of monomials of degree 1, and

B =

∂s+1Q1(ξ) . . . ∂s+1Qj(ξ)
...

...
∂dQ1(ξ) . . . ∂dQj(ξ)

 .

Let r := rankFB. Any r × r-minor determinant P of the matrix B is a homogeneous
polynomial of degree r, and P coincides with the lowest degree homogeneous part of the
corresponding (r + s)× (r + s)-minor determinant of (3.4.11), obtained by adjoining the
first s rows and columns. Therefore,

d′ ≥ s+ r.

Let us continue to prove dn′(Q) ≤ d′. Recall that n′ = s + j − d′ ≤ j − r. By the
definition in (3.1.11), it suffices to find linear changes of variables in Rd and Rn, after
which Qr+1, . . . , Qj no longer depend on variables ξs+r+1, . . . , ξd. Notice that row and
column operations on B with coefficients in R correspond to linear changes of variables in
Rd and Rn, respectively. By Lemma 3.4.7, by row and column operations with coefficients
in R, B can be brought in a form in which it has a (j − r) × (d − s − r)-block of zeroes.
This means that, after a change of variables, Qr+1, . . . , Qj do not depend on variables
ξs+r+1, . . . , ξd.

Proof of Lemma 3.4.7. Let k1 be the largest index such that ξk1 appears in A. Swapping
rows and columns, we may assume a1,1,k1 6= 0. Using elementary row and column opera-
tions, we may further assume that a1,1,k1 = 1, a1,j,k1 = 0, and ai,1,k1 = 0 for all j 6= 0 and
i 6= 0. Thus, we may assume

A =

(
ξk1 + ∗ ∗
∗ A′

)
,

where ξk1 does not appear in entries ∗ and A′ is an (N1− 1)× (N2− 1)-matrix. If A′ 6= 0,
we repeat the same procedure in A′, and so on. If this process stops after at most r
iterations, then we are done. Otherwise, we have brought the upper left corner of A into
the form 

ξk1 + ∗ ∗ . . . ∗
∗ ξk2 + ∗ . . . ∗
...

. . .
...

∗ . . . ∗ ξkr+1 + ∗

 , (3.4.12)

where ai,j,k = 0 if i 6= j and k ≥ kmin(i,j). The determinant of this matrix is a polynomial
whose leading term in the lexicographic ordering is ξk1 · · · ξkr+1 :

det (3.4.12) = ξk1 · · · ξkr+1 + lower order terms.

This can be seen by induction on the size of this matrix. Indeed, if k1 = · · · = kl > kl+1,
then ξk1 appears in this matrix only in the first l diagonal entries, so

det (3.4.12) = ξlk1
· det


ξkl+1

+ ∗ ∗ . . . ∗
∗ ξkl+2

+ ∗ . . . ∗
...

. . .
...

∗ . . . ∗ ξkr+1 + ∗

+ lower order terms.
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In particular, the matrix (3.4.12) is invertible (over F), so that rankFA ≥ r+ 1, a contra-
diction.

Corollary 3.4.8. For any α ≥ 1, the exponent defined in (3.4.7) satisfies

κ(α) ≤ sup
0≤n′≤n

(
n′ + (1− α)dn′(Q)

)
. (3.4.13)

Proof of Corollary 3.4.8. Let V ⊆ Rd+n be a linear subspace. With the notation from
Lemma 3.4.6, we obtain

dimV − α dimπV = (d′ + n′)− αd′ = n′ + (1− α)d′ ≤ n′ + (1− α)dn′(Q).

The conclusion follows after taking the supremum over all subspaces V .

3.4.3 Ball inflation

A so-called ball inflation inequality, based on scale invariant Kakeya–Brascamp–Lieb in-
equalities, was first introduced in Jean Bourgain, Demeter, and Guth 2016, Theorem
6.6. Here, we formulate a version of this inequality based on scale-dependent Kakeya-
Brascamp-Lieb inequalities. Recall that UJ was defined in (3.1.4).

Proposition 3.4.9 (Ball inflation). Let K ∈ 2N be a dyadic integer and 0 < ρ ≤ 1/K.
Let {Wj}Mj=1 ⊂ P(1/K) be a θ-uniform set of cubes. Then, for any 1 ≤ t ≤ p < ∞, any

functions fJ with supp f̂J ⊂ UJ and any x0 ∈ Rd+n, we have

∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,ρ)

‖fJ‖t–Lt(wB(x,1/ρ))

)1/t∥∥∥
–Lp
x∈B(x0,ρ

−2)

≤ Cθ,K,p,tρ−( d
t
− d+n

p
+
κ((1−θ)p/t)

p
)
M∏
j=1

( ∑
J∈P(Wj ,ρ)

‖fJ‖t–Lt(wB(x0,ρ
−2))

)1/t
.

(3.4.14)

Proof of Proposition 3.4.9. Let R := ρ−1. Without loss of generality, we set x0 = 0. Let
Ω := B(0, R2). Let α := p/t. The p-th power of the left-hand side of (3.4.14) equals

 
x∈Ω

M∏
j=1

( ∑
J∈P(Wj ,ρ)

‖fJ‖t–Lt(wB(x,1/ρ))

)α
, (3.4.15)

where
ffl

Ω := |Ω|−1
´

Ω denotes the average integral. For each cube J ∈ P(Wj , ρ) with center
ξJ , we cover Ω with a family TJ of disjoint tiles TJ , which are rectangular boxes with n
long sides of length 2ρ−2 centered at 0 pointing in the directions V ⊥ξJ and d short sides of

length ρ−1 pointing in complementary directions (the length of the long sides equals the
diameter of B(x0, ρ

−2), so that we only need one layer of tiles in the directions V ⊥ξJ ). We
can choose these tiles so that they are contained in C0Ω with C0 . 1. We let TJ(x) be
the tile containing x, and for x ∈ ∪TJ∈TJTJ we define

FJ(x) := sup
y∈TJ (x)

‖fJ‖–Lt(wB(y,1/ρ)).
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Then  
x∈Ω

M∏
j=1

( ∑
J∈P(Wj ,ρ)

‖fJ‖t–Lt(wB(x,1/ρ))

)α
≤
 

Ω

M∏
j=1

( ∑
J∈P(Wj ,ρ)

|FJ |t
)α
.

Since the function FJ is constant on each tile TJ ∈ TJ , we can write its restriction to Ω in
the form F̃J ◦πJ , where πJ is the orthogonal projection onto VξJ . To apply Theorem 3.4.2,
we apply the change of variables x → Rx such that the resulting functions FJ(Rx) are
constant at the unit scale:

 
Ω

M∏
j=1

( ∑
J∈P(Wj ,ρ)

|FJ |t
)α

= R−(d+n)

ˆ
B(0,R)

M∏
j=1

( ∑
J∈P(Wj ,ρ)

FJ(R·)t
)α
. (3.4.16)

By Theorem 3.4.2 and Lemma 3.4.5 with R = ρ−1, we bound the last expression by

R−(d+n)Cθ,K,αR
κ(α(1−θ))

M∏
j=1

( ∑
J∈P(Wj ,ρ)

ˆ
B(0,C0R)⊂Rd

(F̃J(R·))t
)α

. R−(d+n)Cθ,K,αR
κ(α(1−θ))Rαd

M∏
j=1

( ∑
J∈P(Wj ,ρ)

 
B(0,C0R2)⊂Rd+n

|FJ |t
)α
.

(3.4.17)

The conclusion will now follow from the bound

‖FJ‖–Lt(C0Ω) . ‖fJ‖–Lt(wΩ), (3.4.18)

which is a standard application of the uncertainty principle, see e.g. Shaoming Guo and
Zorin-Kranich 2020b, (3.13).

The ball inflation inequality in Proposition 3.4.9 is sufficient for proving `pLp decou-
pling. For the proof of `qLp decoupling with q < p we need a slightly more general
statement.

Corollary 3.4.10 (Ball inflation, `qLt version). In the situation of Proposition 3.4.9, for
any 1 ≤ q̃ ≤ t, we have

∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,ρ)

‖fJ‖q̃–Lt(wB(x,1/ρ))

)1/q̃∥∥∥
–Lp
x∈B(x0,ρ

−2)

≤ Cθ,K,p,t,q̃(|log ρ|+ 2)K
d
ρ
−( d

t
− d+n

p
+
κ((1−θ)p/t)

p
)
M∏
j=1

( ∑
J∈P(Wj ,ρ)

‖fJ‖q̃–Lt(wB(x0,ρ
−2))

)1/q̃
.

(3.4.19)

Proof of Corollary 3.4.10. This follows from Proposition 3.4.9 by a dyadic pigeonholing
argument in the proof of Jean Bourgain, Demeter, and Guth 2016, Theorem 6.6. For
the sake of completeness, we still include the proof here. We follow the presentation in
Shaoming Guo and Zorin-Kranich 2020b, Appendix A.
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For each 1 ≤ j ≤M , partition

P(Wj , ρ) = Jj,∞ ∪
bd log2(1/ρ)c⋃

ι=0

Jj,ι, (3.4.20)

where for 0 ≤ ι ≤ log(1/ρ)

Jj,ι :=
{
J ∈ P(Wj , ρ) : 2−ι−1 <

‖fJ‖–Lt(wB)

maxJ ′∈P(Wj ,ρ)‖fJ ′‖–Lt(wB)
≤ 2−ι

}
,

Jj,∞ :=
{
J ∈ P(Wj , ρ) : ‖fJ‖–Lt(wB) ≤ 2−bd log2 (1/ρ)c max

J ′∈P(Wj ,ρ)
‖fJ ′‖–Lt(wB)

}
.

(3.4.21)

Since M ≤ Kd, the claim (3.4.19) follows by the triangle inequality from∥∥∥ M∏
j=1

( ∑
J∈Jj,ιj

‖fJ‖q̃–Lt(wB(x,1/ρ))

)1/q̃∥∥∥
–Lpx∈Ω

≤ Cθ,K,p,t,q̃ρ−( d
t
− d+n

p
+
κ((1−θ)p/t)

p
)
M∏
j=1

( ∑
J∈P(Wj ,ρ)

‖fJ‖q̃–Lt(wΩ)

)1/q̃
,

(3.4.22)

which we will show for every choice of ι1, . . . , ιM ∈ {0, . . . , bd log2(1/ρ)c} ∪ {∞}.
Since q̃ ≤ t, by Hölder’s inequality, the left hand side of (3.4.22) is bounded by(∏

|Jj,ιj |
1
q̃
− 1
t

)∥∥∥ M∏
j=1

( ∑
J∈Jj,ιj

‖fJ‖t–Lt(wB(x,1/ρ))

)1/t∥∥∥
–Lpx∈B

. (3.4.23)

By Proposition 3.4.9, the last display is bounded by

Cθ,K,p,t,q̃ρ
−( d

t
− d+n

p
+
κ((1−θ)p/t)

p
)
(∏

|Jj,ιj |
1
q̃
− 1
t

) M∏
j=1

( ∑
J∈Jj,ιj

‖fJ‖t–Lt(wB)

)1/t
. (3.4.24)

It remains to observe that, for every ι, we have

|Jj,ι|
1
q̃
− 1
t

( ∑
J∈Jj,ι

‖fJ‖t–Lt(wB)

)1/t
.
( ∑
J∈P(Wj ,ρ)

‖fJ‖q̃–Lt(wB)

)1/q̃
. (3.4.25)

If ι 6=∞, this follows as the summands on the left hand side are comparable. For ι =∞,
we have

|Jj,∞|
1
q̃
− 1
t

( ∑
J∈Jj,∞

‖fJ‖t–Lt(wB)

)1/t

≤ |Jj,∞|
1
q̃ max
J∈Jj,∞

‖fJ‖–Lt(wB)

≤ ρ−d2−bd log2(1/ρ)c max
J ′∈P(Wj ,ρ)

‖fJ ′‖–Lt(wB)

.
( ∑
J∈P(Wj ,ρ)

‖fJ‖q̃–Lt(wB)

)1/q̃
.
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3.5 Induction on scales

The upper bounds of Γq,p(Q) in Theorem 3.1.1 will be proved by induction on the di-
mension d. The main inductive step is contained in the following result, whose proof will
occupy the whole Section 3.5. One can apply Theorem 3.5.1 repeatedly and then obtain
the upper bounds in part (3.1.16) of Theorem 3.1.1.

Theorem 3.5.1. Let d ≥ 1 and n ≥ 1. Let Q = (Q1, . . . , Qn) be a collection of quadratic
forms in d variables. Let 2 ≤ q ≤ p <∞ and

Λ := sup
H

Γq,p(Q|H), (3.5.1)

where the sup is taken over all hyperplanes H ⊂ Rd that pass through the origin. Then

Γq,p(Q) ≤ max
(

Λ, max
0≤n′≤n

[
d
(
1− 1

p
− 1

q

)
− dn′(Q)

(1

2
− 1

p

)
− 2(n− n′)

p

])
. (3.5.2)

In the proof of Theorem 3.5.1, we may assume that

Γ := Γq,p(Q) > Λ, (3.5.3)

since otherwise (3.5.2) already holds. The assumption (3.5.3) is convenient, because it
means that the multilinear terms in Proposition 3.5.6 below dominate the lower-dimensional
terms. On a technical level, it allows us to define the quantities (3.5.32) that are central
to the bootstrapping argument.

3.5.1 Stability of decoupling constants and lower dimensional contribu-
tions

In order to make use of the quantity (3.5.1), we need to show that we have a bound
for the decoupling constants Dq,p(Q|H , δ) that is uniform in the hyperplanes H. More
generally, it turns out that decoupling constants can be bounded locally uniformly in the
coefficients of the quadratic forms Q. Although it is possible to obtain such uniform
bounds by keeping track of the dependence on Q in all our proofs, we use this opportunity
to record a compactness argument for decoupling constants whose validity is not restricted
to quadratic forms.

Theorem 3.5.2. For every 2 ≤ q ≤ p < ∞, ε > 0, and real quadratic forms Q1, . . . , Qn
in d variables, there exist CQ,ε,q,p < ∞ and a neighborhood Q of (Q1, . . . , Qn) such that,
for every (Q̃1, . . . , Q̃n) ∈ Q and every δ ∈ (0, 1), we have

Dq,p((Q̃1, . . . , Q̃n), δ) ≤ CQ,ε,q,pδ
−Γq,p(Q)−ε,

where Γq,p(Q) is given by (3.1.8).

Lemma 3.5.3 (Affine rescaling). Let 2 ≤ q ≤ p < ∞. For any dyadic numbers 0 < δ ≤
σ ≤ 1 and every J ∈ P(σ),

‖
∑

�∈P(J,δ)

f�‖Lp ≤ Dq,p(Q, δ/σ)(
∑

�∈P(J,δ)

‖f�‖qLp)
1/q. (3.5.4)
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Such a lemma has also been standard in the decoupling literature, see for instance
Jean Bourgain and Demeter 2015, Section 4 or Shaoming Guo and Zorin-Kranich 2020a,
Lemma 1.23.

Proof of Theorem 3.5.2. Let σ = σ(Q, ε, q, p) be a small number, which will be determined
later. We may assume that δ ≤ σ/4. We consider a tuple (Q̃1, . . . , Q̃n) such that

sup
i
‖Hess(Q̃i −Qi)‖ < σ2/(10d+ 10). (3.5.5)

Then, for every J ∈ P(σ) and � ∈ P(J, δ), we have

U�(Q̃) ⊆ UJ(Q). (3.5.6)

Take a collection of functions f� with supp f̂� ⊂ U�(Q̃) for each � ∈ P(δ). Using
(3.5.6) and the definition of Γq,p(Q), we obtain

‖
∑
�∈P(δ)

f�‖Lp ≤ CQ,εσ
−Γq,p(Q)−ε/2(

∑
J∈P(σ)

‖fJ‖qLp)
1/q

≤ CQ,εσ
−Γq,p(Q)−ε/2Dq,p(Q̃, δ/σ)(

∑
�∈P(δ)

‖f�‖qLp)
1/q.

(3.5.7)

The last inequality follows from the affine rescaling (Lemma 3.5.3). Hence, we obtain

Dq,p(Q̃, δ) ≤ CQ,εσ
−Γq,p(Q)−ε/2Dq,p(Q̃, δ/σ). (3.5.8)

We iterate this inequality logσ−1(δ−1)-times and obtain

Dq,p(Q̃, δ) ≤ CQ,ε(δ
−1)logσ−1 CQ,εδ−Γq,p(Q)−ε/2. (3.5.9)

It suffices to take σ small enough so that logσ−1 CQ,ε ≤ ε/2.

Corollary 3.5.4. Let 2 ≤ q ≤ p < ∞. For each ε > 0, there exists CQ,ε,q,p < ∞ such
that, for every linear subspace H ⊂ Rd of co-dimension one, we have

Dq,p(Q|H , δ) ≤ CQ,ε,q,pδ
−Λ−ε, (3.5.10)

where Λ was defined in (3.5.1).

Proof. Recall from (3.1.12) that the Q|H are parametrized by the orthogonal group O(d).
Since Q|H depends continuously on the rotation used to define it, the group O(d) is
compact, and by Theorem 3.5.2, we obtain the claim.

To prepare for the broad-narrow analysis of Bourgain and Guth Jean Bourgain and
Guth 2011 in the following section, we need the following lemma that takes care of the
case when frequency cubes are clustered near sub-varieties of low degrees.
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Lemma 3.5.5 (Shaoming Guo and Zorin-Kranich 2020a, Corollary 2.18). For every d ≥ 1,
D > 1 and ε > 0, there exists c = c(D, ε) > 0 such that the following holds. For every
sufficiently large K, there exist

Kc ≤ K1 ≤ K2 ≤ · · · ≤ KD ≤
√
K (3.5.11)

such that for every non-zero polynomial P in d variables of degree at most D, there exist
collections of pairwise disjoint cubes Wj ⊂ P(1/Kj), j = 1, 2, . . . , D, such that

N1/K(ZP ) ∩ [0, 1]d ⊂
D⋃
j=1

⋃
W∈Wj

W (3.5.12)

and ∥∥∥ ∑
W∈Wj

fW

∥∥∥ .D,Q,ε,q,p KΛ+ε
j

( ∑
W∈Wj

‖fW ‖qp
)1/q

. (3.5.13)

Here N1/K(ZP ) denotes the 1/K neighborhood of the zero set of P .

This lemma was stated in Shaoming Guo and Zorin-Kranich 2020a only for p = q and
with Fourier support condition that is slightly different from (3.1.4). The same proof works
also for q ≤ p and with Fourier support condition (3.1.4) without any change, and we will
therefore not repeat it here. The main hypothesis of Shaoming Guo and Zorin-Kranich
2020a, Corollary 2.18 is Shaoming Guo and Zorin-Kranich 2020a, Hypothesis 2.4, which
is exactly what we verified in Corollary 3.5.4.

3.5.2 Multilinear decoupling

For a positive integer K, a transversality parameter θ > 0, and 0 < δ < K−1, the
multilinear decoupling constant

MulDec(δ, θ,K) = MulDec(Q, δ, θ,K) (3.5.14)

is the smallest constant such that the inequality

(ˆ
Rd+n

( M∏
j=1

‖fWj‖–Lp(B(x,K))

)p
dx
)1/p

≤ MulDecq,p(Q, δ, θ,K)

M∏
j=1

( ∑
�∈P(Wj ,δ)

‖f�‖qLp(Rd+n)

) 1
q

(3.5.15)

holds for every choice of functions f� and every θ-uniform set {W1, . . . ,WM} ⊆ P(K−1)
with 1 ≤M ≤ Kd.

We use a version of the Bourgain–Guth reduction of linear to multilinear estimates
Jean Bourgain and Guth 2011. Estimates of a similar form already appeared in works of
Bourgain and Demeter, see Jean Bourgain and Demeter 2017b and Jean Bourgain and
Demeter 2016b for instance. The version below is a minor variant of Shaoming Guo and
Zorin-Kranich 2020a, Proposition 2.33. This is the place where the uniform bound in
Theorem 3.5.2 is used.
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Proposition 3.5.6. Let 2 ≤ q ≤ p <∞. Let Λ be given by (3.5.1). Then, for each ε > 0
and θ > 0, there exists K such that

Dq,p(Q, δ) .ε,θ δ−Λ−ε + δ−ε max
δ≤δ′≤1;δ′dyadic

[(δ′
δ

)Λ
MulDecq,p(Q, δ

′, θ,K)
]
. (3.5.16)

Proof of Proposition 3.5.6. Let {f�}�∈P(δ) be a collection of functions with supp f̂� ⊂ U�.
In the proof, for each dyadic cube J with l(J) ≥ δ, we denote

fJ :=
∑

�∈P(J,δ)

f�. (3.5.17)

Let K be a large constant that is to be determined. For each ball B′ ⊂ Rd+n of radius K,
we initialize

S0(B′) := {W ∈ P(1/K)
∣∣ ‖fW ‖Lp(B′) ≥ K−d max

W ′∈P(1/K)
‖fW ′‖Lp(B′)}. (3.5.18)

We repeat the following algorithm. Let ι ≥ 0. If Sι(B′) = ∅ or Sι(B′) is θ-uniform, then
we set

T (B′) := Sι(B′) (3.5.19)

and terminate. Otherwise, there exists a sub-variety Z of degree at most d such that

|{W ∈ Sι(B′)|2W ∩ Z 6= ∅}| ≥ θ|Sι(B′)|. (3.5.20)

Fix any such variety Z. Note that 2W ∩ Z 6= ∅ =⇒ W ⊆ N2d/K(Z). For j ∈ {1, . . . , d},
letWι,j(B

′) :=Wj be as in Lemma 3.5.5 with K replaced by K/2d. Repeat this algorithm
with

Sι+1(B′) := Sι(B′) \
d⋃
j=1

⋃
W∈Wι,j(B′)

P(W, 1/K). (3.5.21)

This algorithm terminates after O(logK) steps, with an implicit constant depending on
θ, as in each step we remove at least the set on the left-hand side of (3.5.20), which
constitutes a fixed proportion θ of Sι(B′).

To process the cubes in Wι,j and to avoid multiple counting, we define

W̃ι,j :=
(
Wι,j \

⋃
0≤ι′<ι

Wι′,j

)
\
⋃

1≤j′<j

⋃
ι′

⋃
W∈Wι′,j′

P(W, 1/Kj). (3.5.22)

So far we see that every cube in (3.5.18) can be covered by exactly one cube in(⋃
ι

⋃
j

W̃ι,j

)⋃
T (B′). (3.5.23)

Therefore, by the triangle inequality we obtain

‖
∑

�⊂[0,1]d

f�‖Lp(B′) ≤
( ∑
W∈P(1/K)

‖fW ‖qLp(B′)

)1/q

+
∑

ι.logK

d∑
j=1

∥∥∥ ∑
W∈W̃ι,j

fW

∥∥∥
Lp(B′)

+
∑

W∈T (B′)

‖fW ‖Lp(B′).

(3.5.24)
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On the right hand side of (3.5.24), the first term is used to take care of the cubes that are
not counted in (3.5.18). Next, we will see how to handle all these three terms. The second
term on the right hand side will be processed via a standard localization argument (see
for instance Shaoming Guo and Zorin-Kranich 2020a, Remark 1.24) and Lemma 3.5.5. It
is bounded by

CQ,ε,p,q logK
d∑
j=1

KΛ+ε
j

( ∑
W∈P(1/Kj)

‖fW ‖qLp(wB′ )

)1/q
. (3.5.25)

Recall in Lemma 3.5.5 that Kc ≤ Kj ≤
√
K for some c = c(d, ε) and every j. This allows

us to absorb logK by Kε
j , which is the only place where the lower bound Kc in (3.5.11)

is used. To bound the last term, we use the definition of T (B′) and obtain

Kd max
W∈T (B′)

‖fW ‖Lp(B′) ≤ K2d
( ∑
{W1,...,WM}⊆P(1/K)

θ−uniform

M∏
j=1

‖fWj‖
p
Lp(B′)

)1/p
. (3.5.26)

The above estimate seems rather crude, but we can allow any K-dependent constant in
the estimate for this term. We plug (3.5.25) and (3.5.26) in (3.5.24), integrate over the
centers of balls B′, and obtain

‖
∑
�∈P(δ)

f�‖Lp(Rd+n) ≤ CQ,ε,q,p

d∑
j=0

KΛ+2ε
j

( ∑
W∈P(1/Kj)

‖fW ‖qLp(Rd+n)

)1/q

+K2d
∑

{W1,...,WM}⊆P(1/K)
θ−uniform

( ∑
B′⊂Rd+n

M∏
j=1

‖fWj‖
p
Lp(B′)

)1/p
.

(3.5.27)

Here we let K0 := K. The terms under the sum in the former term have the same form
as that on the left hand side, and therefore are ready for an iteration argument. In other
words, we will apply (rescaled versions of ) (3.5.27) to each term ‖fW ‖Lp(Rd+n) under the
sum in the former term. By the definition of the multi-linear decoupling constant, the
latter term can be controlled by

K2d2K
d
MulDecq,p(Q, δ, θ,K)

( ∑
�∈P(δ)

‖f�‖qLp(Rd+n)

)1/q
, (3.5.28)

where we used that there are only 2K
d

subsets of P(1/K), and hence at most that many
θ-uniform subsets. We plug (3.5.28) in (3.5.27). Now it is standard argument to iterate
(3.5.27) and obtain the desired estimate in the proposition. We leave out the details and
refer to Jean Bourgain and Demeter 2016b, Section 8 or Jean Bourgain and Demeter
2016b, Proposition 8.4.

Recall that we have assumed (3.5.3). For most of Section 3.5, we fix some 0 < ε < Γ−Λ,
a transversality parameter θ > 0, and a corresponding K as in Proposition 3.5.6.

The mutlilinear decoupling constant will be estimated by the same procedure as in
Jean Bourgain and Demeter 2015. For a detailed exposition of this argument we refer to
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Jean Bourgain and Demeter 2017a, Theorem 10.16 or Shaoming Guo and Zorin-Kranich
2020a, Section 2.6. We use a compressed version of this argument, in which each step
is expressed as an inequality between the quantities (3.5.32) below. This version of the
Bourgain–Demeter argument was originally motivated by decoupling for higher degree
polynomials, see Shaoming Guo and Zorin-Kranich 2020b.

For a θ-uniform set {Wj}Mj=1 ⊂ P(1/K) and a choice of functions f�, � ∈ P(δ), we
write

Ã2(b) :=
∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δb)

‖fJ‖2–L2(w
B(x,δ−2b)

)

)1/2∥∥∥
Lp
x∈Rd+n

,

Ãt(b) :=
∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δb)

‖fJ‖q̃–Lt(w
B(x,δ−b))

)1/q̃∥∥∥
Lp
x∈Rd+n

,

Ãp(b) :=
∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δb)

‖fJ‖q–Lp(w
B(x,δ−2b)

)

)1/q∥∥∥
Lp
x∈Rd+n

,

where 0 < b ≤ 1 and
1

t
=

1/2

p
+

1/2

2
,

1

q̃
=

1/2

q
+

1/2

2
. (3.5.29)

Note that 2 ≤ q̃ ≤ t ≤ p. For

0 < b < 1 and ∗ = 2, t, p, (3.5.30)

let a∗(b) be the infimum over all exponents a such that, for every θ-uniform set {Wj}Mj=1 ⊆
P(1/K), every δ < 1/K, and every choice of functions f�, � ∈ P(δ), we have

Ã∗(b) .a,θ,K δ−a
M∏
j=1

( ∑
�∈P(Wj ,δ)

‖f�‖qLp(Rd+n)

)1/q
(3.5.31)

with the implicit constant independent of the choice of the tuples (Wj) and (f�), and in
particular independent of b as we will send b→ 0. It follows from Hölder’s inequality that
this a∗(b) <∞. Recall that Γ := Γq,p(Q). As in Shaoming Guo and Zorin-Kranich 2020b,
Section 3.6, we define

a∗ := lim inf
b→0

Γ− a∗(b)
b

, ∗ ∈ {2, t, p}. (3.5.32)

The next lemma says that a∗ is non-trivial.

Lemma 3.5.7. Under the above notation, it holds that

a∗ <∞, (3.5.33)

for ∗ = 2, t, p.
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Proof of Lemma 3.5.7. By Hölder’s inequality and Bernstein’s inequality, the left-hand
side of (3.5.15) is bounded by

δ−CbÃ∗(b) (3.5.34)

for any ∗ ∈ {2, t, p} and any 0 < b < 1 with some constant C depending on ∗. Therefore,
we obtain that

MulDecq,p(Q, δ, θ,K) .ε,θ,K δ−
(
Cb+a∗(b)+ε

)
, (3.5.35)

for every ε > 0 and 1 > b > 0. This, together with Proposition 3.5.6 and the assumption
(3.5.3), implies that

Γ ≤ Cb+ a∗(b). (3.5.36)

This finishes the proof of the lemma.

3.5.3 Using linear decoupling

By Hölder’s inequality, we obtain

Ãp(b) ≤
M∏
j=1

∥∥∥( ∑
J∈P(Wj ,δb)

‖fJ‖q–Lp(w
B(x,δ−2b)

)

)1/q∥∥∥
Lp
x∈Rd+n

. (3.5.37)

By Minkowski’s inequality, this is further bounded by

M∏
j=1

( ∑
J∈P(Wj ,δb)

∥∥∥‖fJ‖–Lp(w
B(x,δ−2b)

)

∥∥∥q
Lp
x∈Rd+n

)1/q

.
M∏
j=1

( ∑
J∈P(Wj ,δb)

‖fJ‖qLp(Rd+n)

)1/q
.

(3.5.38)

By the definition of the decoupling exponent and affine scaling (Lemma 3.5.3), this is

.ε δ
−(Γ+ε)(1−b)

M∏
j=1

( ∑
�∈P(Wj ,δ)

‖f�‖qLp
)1/q

. (3.5.39)

Hence
ap(b) ≤ (Γ + ε)(1− b),

for every ε > 0, which means ap(b) ≤ Γ(1− b). It follows that

ap ≥ Γ. (3.5.40)

3.5.4 Using L2 orthogonality

By L2 orthogonality, see e.g. Shaoming Guo and Zorin-Kranich 2020b, Appenidx B for
details, we have

Ã2(b) =
∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δb)

‖fJ‖2–L2(w
B(x,δ−2b)

)

)1/2∥∥∥
Lp
x∈Rd+n

.
∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δ2b)

‖fJ‖2–L2(w
B(x,δ−2b)

)

)1/2∥∥∥
Lp
x∈Rd+n

.

(3.5.41)
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We further apply Hölder’s inequality and obtain

. δ−d·2b(1/2−1/q̃)
∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δ2b)

‖fJ‖q̃–Lt(w
B(x,δ−2b)

)

)1/q̃∥∥∥
Lp
x∈Rd+n

(3.5.42)

Note that the last expression is exactly δ−db(1−2/q̃)Ãt(2b). Hence

a2(b) ≤ db(1− 2/q̃) + at(2b).

It follows that
a2 ≥ −d(1− 2/q̃) + 2at. (3.5.43)

3.5.5 Ball inflation

Using Corollary 3.4.10 with ρ = δb and taking Lp norms in x0 on both sides of (3.4.19),
we obtain

Ãt(b) =
∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δb)

‖fJ‖q̃–Lt(w
B(x,δ−b))

)1/q̃∥∥∥
Lp
x∈Rd+n

.ε δ
−b(γ+ε)

∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δb)

‖fJ‖q̃–Lt(w
B(x,δ−2b)

)

)1/q̃∥∥∥
Lp
x∈Rd+n

,

(3.5.44)

for every ε > 0, where

γ :=
d

t
− d+ n

p
+
κ((1− θ)p/t)

p

≤ d

t
− d+ n

p
+

1

p
sup

0≤n′≤n

(
n′ + (1− p

t
(1− θ))dn′(Q)

)
,

(3.5.45)

and the log factors in Corollary 3.4.10 have been absorbed by δ−bε. In the last step we
used Corollary 3.4.8. In the end, we apply Hölder’s inequality to the last term in (3.5.44)
and obtain

Ãt(b) . δ
−b(γ+ε)Ã2(b)1/2Ãp(b)

1/2. (3.5.46)

It follows that
at(b) ≤ bγ + ap(b)/2 + a2(b)/2.

Substituting this inequality into the definition (3.5.32), we obtain

at ≥ −γ + ap/2 + a2/2. (3.5.47)

3.5.6 Proof of Theorem 3.5.1

Inequalities (3.5.29), (3.5.40), (3.5.43), (3.5.47) imply

Γ ≤ ap ≤ 2γ − a2 + 2at ≤ 2γ + d(1− 2/q̃) = 2γ + d(1/2− 1/q).



56

Inserting the definitions of the respective terms into this inequality, we obtain

Γq,p(Q) ≤ 2
(d
t
− d+ n

p
+

1

p
sup

0≤n′≤n

(
n′ + (1− p

t
(1− θ))dn′(Q)

))
+ d
(1

2
− 1

q

)
.

Both sides of this inequality depend continuously on θ, and we consider its limit when
θ → 0. This gives

Γq,p(Q) ≤ 2
(d
t
− d+ n

p
+ sup

0≤n′≤n

(n′
p

+ (
1

p
− 1

t
)dn′(Q)

))
+ d
(1

2
− 1

q

)
.

Substituting the ansatz (3.5.29) for t, we obtain

Γq,p(Q) ≤ d(
1

p
+

1

2
)− 2

d+ n

p
+ sup

0≤n′≤n

(2n′

p
+ (

2

p
− 1

p
− 1

2
)dn′(Q)

)
+ d
(1

2
− 1

q

)
= sup

0≤n′≤n

((1

2
− 1

p

)
(d− dn′)−

2(n− n′)
p

)
+ d
(1

2
− 1

q

)
.

This finishes the proof of Theorem 3.5.1.

3.6 Lower bounds in Theorem 3.1.1

In this section, we show the lower bounds for `qLp decoupling constants in Theorem 3.1.1
for q ≤ p. We will prove that

Γq,p(Q) ≥ max
(

sup
H

Γq,p(Q|H), max
0≤n′≤n

(
d
(
1− 1

p
− 1

q

)
− dn′(Q)

(1

2
− 1

p

)
− 2(n− n′)

p

))
,

(3.6.1)
where H is a hyperplane passing through the origin, for every p ≥ 2, q ≥ 2. Note that
here we do not necessarily require q ≤ p. One can apply the above inequality repeatedly
and then obtain the lower bounds in Theorem 3.1.1 for q ≤ p.

First of all, we relate the decoupling exponent with the decoupling exponents on sub-
spaces. Here, the distinction between the cases q ≤ p and q > p becomes apparent.

Lemma 3.6.1. Let Q be an n-tuple of quadratic forms in d variables and H ⊆ Rd a linear
subspace of dimension d′. Then, for any 2 ≤ q ≤ p <∞, we have

Γq,p(Q) ≥ Γq,p(Q|H), (3.6.2)

and, for any 2 ≤ p < q ≤ ∞, we have

Γq,p(Q) ≥ Γq,p(Q|H) + (d− d′)
(1

p
− 1

q

)
. (3.6.3)

Proof of Lemma 3.6.1. For notational convenience, assume that Rd = H ×Rd′′ with d′′ =
d− d′. The bound (3.6.2) will follow from

Dq,p(Q, Cδ) & Dq,p(Q|H , δ), (3.6.4)
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for some absolute constant C. To see this, let {f̃�′ : �′ ∈ P([0, 1]d
′
, δ)}, be a tuple of

functions on Rd′+n that nearly extremizes the inequality (3.1.6) for Q|H . Fix a bump
function φ such that supp φ̂ ⊆ B(0, δ2) ⊂ Rd′′ and, for

� = �′ ×�′′ ∈ P([0, 1]d, δ) = P([0, 1]d
′
, δ)× P([0, 1]d

′′
, δ),

consider the functions

f� = f�′×�′′ =

{
f̃�′ ⊗ φ, �′′ = �′′0 := [0, δ]d

′′
,

0, �′′ 6= �′′0.

Then supp f̂� ⊆ CU� and

‖
∑
�

f�‖p = ‖φ‖p‖
∑
�′

f�′‖p, ‖f�′×�′′‖p = 1�′′=�′′0 ‖φ‖p‖f�′‖p,

which implies (3.6.4). Here 1 denotes an indicator function, that takes the value 1 if the
statement in the subscript is true, and 0 otherwise.

To see (3.6.3), we define f�′×�′′0 , as above. For other �′′ ∈ P([0, 1]d
′′
, δ), let a′′ ∈ Rd′′

be the center of �′′ and define

f�′×�′′ := A�′′f�′×�′′0 (·+ c�′′),

where c�′′ ∈ Rd+n are very large vectors and the linear operators A�′′ are given by affine
transformations in the Fourier space:

Â�′′f(ξ, η) := f̂(ξ − (0, a′′), η +Q(0, a′′)−∇Q(0, a′′) · ξ).

If c�′′ are sufficiently far apart, then functions f�′×�′′ and f�̃′×�̃′′ are almost disjointly

supported for �′′ 6= �̃′′, so that

‖
∑
�

f�‖p ∼
(∑
�′′

‖
∑
�′

f�′×�′′‖pp
)1/p

= ‖φ‖p
(∑
�′′

‖
∑
�′

f̃�′‖pp
)1/p

= ‖φ‖pδ−d
′′/p‖

∑
�′

f̃�′‖p

and (∑
�

‖f�‖qp
)1/q

=
(∑
�′′

∑
�′

‖f�′×�′′‖qp
)1/q

= ‖φ‖p
(∑
�′′

∑
�′

‖f̃�′‖qp
)1/q

= ‖φ‖pδ−d
′′/q
(∑
�′

‖f̃�′‖qp
)1/q

.

This implies
Dq,p(Q, Cδ) & δ−d

′′(1/p−1/q)Dq,p(Q|H , δ),

and therefore (3.6.3).

To show the lower bound in (3.6.1), it remains to prove
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Proposition 3.6.2. Let Q be an n-tuple of quadratic forms in d variables. For 0 ≤ n′ ≤ n
and 2 ≤ q, p ≤ ∞, we have

Γq,p(Q) ≥ d
(
1− 1

p
− 1

q

)
− dn′(Q)

(1

2
− 1

p

)
− 2(n− n′)

p
. (3.6.5)

Proof of Proposition 3.6.2. Let d′ = dn′(Q). After linear changes of variables, we may
assume that Q1, . . . , Qn′ depend only on ξ1, . . . , ξd′ . Write frequency points in Rd+n as

(ξ′, ξ′′, η′, η′′) ∈ Rd
′+d′′+n′+n′′ , (3.6.6)

with

ξ′ = (ξ1, . . . , ξd′), ξ
′′ = (ξd′+1, . . . , ξd),

η′ = (η1, . . . , ηn′), η
′′ = (ηn′+1, . . . , ηn),

(3.6.7)

and d′ + d′′ = d, n′ + n′′ = n. Similarly, we write spatial points in Rd+n as

(x′, x′′, y′, y′′) ∈ Rd
′+d′′+n′+n′′ . (3.6.8)

For a dyadic cube � ∈ P(δ), write � = �′ × �′′ with �′ ⊂ Rd′ and �′′ ⊂ Rd′′ . Choose
functions f� of the form

f�(x′, x′′, y′, y′′) = g�′(x
′, y′)h�(x′′, y′′) (3.6.9)

with the following properties3

1. ĝ�′ and ĥ� are positive smooth functions satisfying

ˆ
ĝ�′ =

ˆ
ĥ� = 1, (3.6.10)

2. ĝ�′ is supported on a ball of radius ≈ δ2 contained in

{(ξ′, η′) : ξ′ ∈ δ ·�′, |η1 −Q1(ξ′)| ≤ δ2, . . . , |ηn′ −Qn′(ξ′)| ≤ δ2}, (3.6.11)

where δ ·�′ is the box of the same center as �′ and side length δ times that of �′.

3. ĥ� is supported on a rectangular box of dimensions comparable to

δ1 × · · · × δ1︸ ︷︷ ︸
d′′ times

× δ2 × · · · × δ2︸ ︷︷ ︸
n′′ times

(3.6.12)

contained in⋃
ξ′∈δ·�′

{(ξ′′, η′′) : ξ′′ ∈ �′′, |ηñ′ −Qñ′(ξ′, ξ′′)| ≤ δ2, n′ < ñ′ ≤ n}. (3.6.13)

3Here and below we use � instead of �′′ in h� as Qn′+1, . . . , Qn still depend on ξ′.
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On one hand, by the uncertainty principle,

‖f�‖p ∼ δ−(2d′+d′′+2n)/p, (3.6.14)

and by definition we have∥∥ ∑
�∈P(δ)

f�
∥∥
p
≤ Dq,p(Q, δ)

( ∑
�∈P(δ)

‖f�‖q
)1/q

∼ Dq,p(Q, δ)δ−d/qδ−(2d′+d′′+2n)/p.

(3.6.15)

On the other hand, with

U = {(x′′, y′′) ∈ Rd
′′ × Rn

′′
: |x′′|, |y′′| ≤ 10−d−n/(sup

j
‖HessQj‖+ 1)}, (3.6.16)

we have ∥∥ ∑
�∈P(δ)

f�
∥∥
p
& inf

(x′′,y′′)∈U

∥∥ ∑
�∈P(δ)

f�
∥∥
Lp(Rd′×{x′′}×Rn′×{y′′})

= inf
(x′′,y′′)∈U

∥∥∑
�′

c�′,x′′,y′′g�′
∥∥
Lp(Rd′×Rn′ )

(3.6.17)

where
c�′,x′′,y′′ :=

∑
�′′

h�′×�′′(x
′′, y′′) =

∑
�′′

h�(x′′, y′′) (3.6.18)

satisfies
|c�′,x′′,y′′ | ∼ δ−d

′′
(3.6.19)

uniformly in �′ and (x′′, y′′) ∈ U . This is because h�(0, 0) = 1 and

|h�(x′′, y′′)−h�(0, 0)| ≤
ˆ
|e(x′′·ξ′′+y′′·η′′)−1||ĥ�(ξ′′, η′′)|dξ′′dη′′ ≤ 1

2

ˆ
|ĥ�(ξ′′, η′′)|dξ′′dη′′ = 1

2
,

so that all summands in (3.6.18) are close to 1.
Let φδ(·) = φ(δ2·), where φ is a fixed positive Schwartz function on Rd′ × Rn′ with

supp φ̂ ⊂ B(0, 1/10). Then, by Hölder’s inequality,∥∥∑
�′

c�′,x′′,y′′g�′
∥∥
Lp(Rd′×Rn′ )

≥ ‖φδ‖−1
1/(1/2−1/p)

∥∥φδ∑
�′

c�′,x′′,y′′g�′
∥∥
L2(Rd′×Rn′ )

∼ δ2·(d′+n′)(1/2−1/p)
∥∥∑
�′

c�′,x′′,y′′φδ · g�′
∥∥
L2(Rd′×Rn′ ).

(3.6.20)

Since the Fourier supports of φδ · g�′ are disjoint for different (�′)’s for sufficiently small
δ, we obtain∥∥∑

�′

c�′,x′′,y′′φδ · g�′
∥∥
L2(Rd′×Rn′ ) =

(∑
�′

|c�′,x′′,y′′ |2
∥∥φδ · g�′∥∥2

L2(Rd′×Rn′ )

)1/2

∼ δ−d′/2 · δ−d′′ · δ−2·(d′+n′)/2,

(3.6.21)
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uniformly in (x′′, y′′) ∈ U . Combining the above estimates, we obtain

Dq,p(Q, δ)δ−d/qδ−(2d′+d′′+2n)/p

& δ2·(d′+n′)(1/2−1/p) · δ−d′/2 · δ−d′′ · δ−2·(d′+n′)/2.
(3.6.22)

This implies

Γq,p(Q) ≥ d(1− 1/q − 1/p)− d′(1/2− 1/p)− 2(n− n′)/p,

as desired.

3.7 Sharp `qLp decoupling inequalities with q > p

Proof of Theorem 3.1.1 with q > p. The upper bound≤ follows from the Hölder inequality
between `p and `q sums in the definitions of Γq,p and Γp,p.

Let us prove the lower bound. Recall from Corollary 3.1.2 that

Γp,p(Q) = max
d/2≤d′≤d

max
0≤n′≤n

(
(2d′ − dd′,n′(Q))

(1

2
− 1

p

)
− 2(n− n′)

p

)
. (3.7.1)

We will show that

Γq,p(Q) ≥ max
d′≤d

max
0≤n′≤n

(
(2d′ − dd′,n′(Q))

(1

2
− 1

p

)
− 2(n− n′)

p

)
+ d(1/p− 1/q) (3.7.2)

via an induction on d. The base case d = 1 is easy, as quadratic forms depending on
one variable ξ1 are all multiples of ξ2

1 . Let us assume we have proven (3.7.2) for d = d0,
that is, we have established (3.7.2) for all Q depending on d0 variables. We aim to prove
it for d = d0 + 1, that is, for Q depending on d0 + 1 variables. First of all, we apply
Proposition 3.6.2 and obtain

Γq,p(Q) ≥ max
0≤n′≤n

(
(2(d0 +1)−dd0+1,n′(Q))

(1

2
− 1

p

)
− 2(n− n′)

p

)
+(d0 +1)(

1

p
− 1

q
), (3.7.3)

which is the right hand side of (3.7.2) with d′ = d0 + 1. It remains to prove that

Γq,p(Q) ≥ max
d′≤d0

max
0≤n′≤n

(
(2d′ − dd′,n′(Q))

(1

2
− 1

p

)
− 2(n− n′)

p

)
+ (d0 + 1)(

1

p
− 1

q
). (3.7.4)

Let H ⊂ Rd0+1 be a linear subspace of dimension d0. By Lemma 3.6.1, we obtain

Γq,p(Q) ≥ Γq,p(Q|H) +
1

p
− 1

q
. (3.7.5)

Now we apply our induction hypothesis to Γq,p(Q|H) as Q|H depend on d0 variables, and
obtain

Γq,p(Q) ≥ max
d′≤d0

max
n′≤n

(
(2d′ − dd′,n′(Q|H))

(1

2
− 1

p

)
− 2(n− n′)

p

)
+ (d0 + 1)(

1

p
− 1

q
). (3.7.6)

In order to prove (3.7.4), we first take the sup over H in (3.7.6) and realize that it suffices
to prove

inf
H

dd′,n′(Q|H) ≤ dd′,n′(Q), (3.7.7)

for every H of dimension d0 and every d′ ≤ d0. This follows from the definition of dd′,n′ .
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The following example shows that Proposition 3.6.2 does not by itself always give the
correct lower bound for Γq,p when q > p. Let us take the extreme case q =∞.

Example 3.7.1. Let d = 4, n = 2, and

Q = (ξ2
1 + ξ2ξ4, ξ3ξ4)

We have
d4,2 = 4, d4,1 = 2, d3,2 = 1,

and all other dd′,n′ are 0. Let p = 2 + 4n/d = 4. Then direct computation shows that
Γ∞,p = 9/4. However Proposition 3.6.2 only shows Γ∞,p ≥ 2.

3.8 Proofs of Corollaries 3.1.3–3.1.5

3.8.1 Proof of Corollary 3.1.3

We apply Theorem 3.1.1 with q = 2 to the tuple of quadratic forms Q, and by (3.1.20),
we know that (3.1.22) holds true if and only if

max
0≤d′≤d

max
0≤n′≤n

(
(d′ − dd′,n′(Q))

(1

2
− 1

p

)
− 2(n− n′)

p

)
≤ max

(
0, d(

1

2
− 1

p
)− 2n

p

) (3.8.1)

for every p ≥ 2. Both sides of (3.8.1) are finite maxima of affine linear functions in 1/p.
The two arguments of the max on the right hand side coincide at p0 := 2 + 4n/d. Hence,
(3.8.1) holds for every p ∈ [2,∞] if and only if it holds for all p ∈ {2, p0,∞}.

For p = 2, we have LHS(3.8.1) = 0 = RHS(3.8.1). For p =∞, we have

LHS(3.8.1) = max
0≤d′≤d

max
0≤n′≤n

(d′ − dd′,n′(Q))/2 = d/2,

where the maximum is attained at d′ = d and n′ = 0, and therefore (3.8.1) holds with
equality at p =∞. For p = p0, (3.8.1) is equivalent to

max
0≤d′≤d

max
0≤n′≤n

(
(d′ − dd′,n′(Q))

2n

dp0
− 2(n− n′)

p0

)
≤ 0. (3.8.2)

A direct calculation shows that (3.8.2) is equivalent to the strong non-degeneracy condition
(3.1.21).

3.8.2 Proof of Corollary 3.1.4

The proof is basically the same as that for Corollary 3.1.3. We apply Corollary 3.1.2 to
the tuple of quadratic forms Q, and by (3.1.19), we know that (3.1.24) holds true if and
only if

max
d/2<d′≤d

max
0≤n′≤n

(
(2d′ − dd′,n′(Q))

(1

2
− 1

p

)
− 2(n− n′)

p

)
≤ max

(
d(

1

2
− 1

p
), 2d(

1

2
− 1

p
)− 2n

p

) (3.8.3)
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for every p ≥ 2. The two numbers on the right hand side coincide at p0 = 2 + 4n/d. As
in the proof of Corollary 3.1.3, (3.8.3) holds for every p ∈ [2,∞] if and only if it holds for
all p ∈ {2, p0,∞}. For p ∈ {2,∞}, the condition (3.8.3) again always holds with equality.
Hence, (3.8.3) holds for every p ∈ [2,∞] if and only if it holds at p = p0, which is further
equivalent to

max
d/2<d′≤d

max
0≤n′≤n

(
(2d′ − dd′,n′(Q))

2n

dp0
− 2(n− n′)

p0

)
≤ 2n

p0
. (3.8.4)

A direct calculation shows (3.8.4) is equivalent to the non-degeneracy condition (3.1.23).

3.8.3 Proof of Corollary 3.1.5

Recall from Corollary 3.1.2 that

Γp(Q) = max
d/2<d′≤d

max
0≤n′≤n

γd′,n′(1/p), γd′,n′(1/p) = (2d′ − dd′,n′(Q))
(1

2
− 1

p

)
− 2(n− n′)

p
.

The functions γd′,n′ are affine. For n′ < n and arbitrary d′, we have γd′,n′(1/2) < 0.
Moreover, for arbitrary d′, we have γd′,n(1/2) = 0. For every p ∈ (2,∞), the condition
(3.1.25) is equivalent to

∀d′ ∈ (d/2, d] γd′,n(1/p) ≤ d(1/2− 1/p).

In particular, if (3.1.25) fails, then (3.1.26) fails for any pc > 2.
Suppose now that the condition (3.1.25) is satisfied. Then, in particular, dd,n(Q) = d,

and it follows that Then, Corollary 3.1.2 implies

Γp(Q) = max
(
d
(1

2
− 1

p

)
, max
d/2<d′≤d

max
0≤n′<n

γd′,n′(1/p)
)
.

Since the latter double maximum is a piecewise affine function of 1/p and is strictly
negative for p = 2, we see that there exists pc > 2 satisfying (3.1.26). The largest possible
pc is the minimum of solutions p ∈ (2,∞) of the equations

d
(1

2
− 1

p

)
= γd′,n′(1/p) (3.8.5)

for d/2 < d′ = d−m ≤ d and 0 ≤ n′ ≤ n− 1. These solutions are given by the formula

p(d′, n′) = 2 +
4n− 4n′

2d′ − d− dd′,n′(Q)
. (3.8.6)

This shows (3.1.27), since the minimum in (3.1.27) is restricted in such a way as to be
taken over numbers in (2,∞).

We note also that, for n′ = 0 and m = 0, we have dd,0(Q) = 0, which shows that the
minimum in (3.1.27) is taken over a non-empty set, and is at most 2 + 4n/d.
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3.9 Fourier restriction: proof of Corollary 3.2.3

In this section we prove Corollary 3.2.3. The proof is standard, and it relies on an epsilon
removal lemma of Tao Tao 1999, the broad-narrow analysis of Bourgain and Guth Jean
Bourgain and Guth 2011 and the decoupling inequalities established in the current paper.
The use of decoupling inequalities in this context is also standard, see for instance Guth
Guth 2018. As Q will be fixed throughout the proof, we will leave out the dependence of
the extension function EQg on Q and simply write Eg.

Let us begin with the epsilon removal lemma. In order to prove (3.2.6), it suffices to
prove that for every ε > 0, there exists Cd,n,p,Q,ε = Cε such that

‖E[0,1]dg‖Lp(B) ≤ Cεδ−ε‖g‖p, (3.9.1)

for every δ ≤ 1, ε > 0, p > pQ and every ball B ⊂ Rd+n of radius δ−2. Here and below, we
will leave out the dependence of our implicit constants on d, n, p and Q. Such a reduction
first appeared in Tao 1999, see also Jean Bourgain and Guth 2011; Kim 2017. For a
version of epsilon removal lemmas for manifolds of co-dimension bigger than one, we refer
to Section 4 in Shaoming Guo and Changkeun Oh 2020.

In order to prove (3.9.1), we will apply the broad-narrow analysis and the decoupling
inequalities in the current paper, together with an induction argument on δ. Let us assume
that we have proven (3.9.1) with δ′ in place of δ for every 1 ≥ δ′ ≥ 2δ. Under this induction
hypothesis, we will prove (3.9.1). Let us begin with one corollary of Proposition 3.4.9.

Corollary 3.9.1 (Multilinear restriction estimate). Let K ∈ 2N be a dyadic integer and
0 < δ ≤ 1/K. Let θ > 0 and {Wj}Mj=1 ⊆ P(1/K) be a θ-uniform set of cubes. Let

B ⊂ Rd+n be a ball of radius δ−2. Then, for each 2 ≤ p <∞ and ε′ > 0, we have

∥∥∥ M∏
j=1

|EWjg|
∥∥∥
Lp(B)

≤ Cθ,K,ε′δ−γ(p,θ,Q)−ε′
M∏
j=1

‖g‖L2(Wj), (3.9.2)

where

γ(p, θ,Q) := sup
0≤n′≤n

(
2n′

p
+
(2

p
− (1− θ)

)
dn′(Q)

)
. (3.9.3)

Proof of Corollary 3.9.1. The proof is essentially via the argument of passing from multi-
linear Kakeya estimates to multi-linear restriction estimates as in Bennett, Carbery and
Tao Bennett, Carbery, and Tao 2006. Let us first show that

∥∥∥ M∏
j=1

|EWjg|
∥∥∥
–Lp(B)

≤ Cθ,K,ε′δ−2( d
2
− d+n

p
+
κ((1−θ)p/2)

p
)−ε′

M∏
j=1

( ∑
�∈P(Wj ,δ)

‖E�g‖2–L2(wB)

)1/2
,

(3.9.4)

for every ε′ > 0. We take a Schwartz function ψ such that ψ is positive on the ball of
radius one centered at the origin, and Fourier transform of ψ has a compact support. Let
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us define the function ψB(x) := ψ(δ2x). By Hölder’s inequality and L2-orthogonality (see
for instance Shaoming Guo and Zorin-Kranich 2020b, Appenidx B), we see that

∥∥∥ M∏
j=1

|EWjg|
∥∥∥

–Lp(B)
.
∥∥∥ M∏
j=1

|ψBEWjg|
∥∥∥

–Lp(B)

. δ−ε
′(d+n)/2

∥∥∥ M∏
j=1

‖ψBEWjg‖–L2(B(x,δ−ε′ ))

∥∥∥
–Lpx∈B

. δ−ε
′(d+n)/2

∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δε

′ )

‖ψBEJg‖2–L2(w
B(x,δ−ε′ ))

)1/2∥∥∥
–Lpx∈B

.

(3.9.5)

We apply (3.4.14) and L2-orthogonality, and bound the above term by

δ−ε
′(d+n)/2δ

−ε′( d
2
− d+n

p
+
κ((1−θ)p/2)

p
)
∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δε

′ )

‖ψBEJg‖2–L2(w
B(x,δ−2ε′ ))

)1/2∥∥∥
–Lpx∈B

. δ−ε
′(d+n)/2δ

−ε′( d
2
− d+n

p
+
κ((1−θ)p/2)

p
)
∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δ2ε′ )

‖ψBEJg‖2–L2(w
B(x,δ−2ε′ ))

)1/2∥∥∥
–Lpx∈B

.

(3.9.6)

We repeat this process and obtain

δ−ε
′(d+n)/2δ

−2( d
2
− d+n

p
+
κ((1−θ)p/2)

p
)
∥∥∥ M∏
j=1

( ∑
J∈P(Wj ,δ)

‖ψBEJg‖2–L2(wB(x,δ−2))

)1/2∥∥∥
–Lpx∈B

. (3.9.7)

We rename ε′(d + n)/2 by ε′, and the above term is bounded by the right hand side of
(3.9.4).

By Plancherel theorem, we see that

‖E�g‖–L2(wB) . δ
d‖g‖L2(�). (3.9.8)

Therefore, by (3.9.4), we obtain that

∥∥∥ M∏
j=1

|EWjg|
∥∥∥
Lp(B)

≤ Cθ,K,ε′δ−2κ((1−θ)p/2)/p−ε′
M∏
j=1

‖g‖L2(Wj). (3.9.9)

It suffices to apply Corollary 3.4.8 to bound κ.

We let θ be a small number, which will be determined later. Its choice depends only
on how close p is to pQ. Therefore the dependence of the forthcoming constants on θ
will also be compressed. Readers can take θ = 0 for convenience. We define pc to be the
smallest number such that γ(pc, θ,Q) = 0. More explicitly,

pc = max
1≤n′≤n

(
2 +

2n′ + 2θdn′(Q)

(1− θ)dn′(Q)

)
. (3.9.10)
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To prove (3.9.1), we run the broad-narrow analysis of Bourgain and Guth Jean Bourgain
and Guth 2011, in a way that is almost the same as in the proof of Proposition 3.5.6.
We repeat the proof there until before the step (3.5.27), with q = p and f� replaced by
ψBE�g for every dyadic box � of side length δ. Next, instead of summing over all balls
B′ of radius K in Rd+n, we sum over B′ ⊂ B, a ball of radius δ−2, and obtain

‖
∑

�⊂[0,1]d

ψBE�g‖Lp(B) ≤ Cε′
d∑
j=0

KΛ+2ε′

j

( ∑
W∈P(1/Kj)

‖ψBEW g‖pLp(wB)

)1/p

+Kd
∑

1≤M≤Kd

∑
W1,...,WM∈P(1/K)

θ−uniform

( ∑
B′⊂B

M∏
j=1

‖ψBEWjg‖
p
Lp(B′)

)1/p
,

(3.9.11)

where
Λ := sup

H
Γp(Q|H), (3.9.12)

and the sup is taken over all hyperplanes H ⊂ Rd that pass through the origin. Regarding
the second term on the right hand side of (3.9.11), we notice that each term |EWjg| is
essentially constant on B′ and therefore we can apply Corollary 3.9.1 and bound it by
Cε′,Kδ

−ε′‖g‖2, whenever p > pc. So far we have obtained

‖ψBE[0,1]dg‖Lp(B) ≤ Cε′
d∑
j=0

KΛ+2ε′

j

( ∑
W∈P(1/Kj)

‖ψBEW g‖pLp(wB)

)1/p
+ Cε′,Kδ

−ε′‖g‖2,

(3.9.13)
for every ε′ > 0 and p > pc. After arriving at this form, we are ready to apply an inductive
argument as the terms on the right hand side of (3.9.13) are of the same form as that on
the left hand side, with just different scales. To be precise, we will apply our induction
hypothesis to each ‖ψBEW g‖Lp(wB). All these terms can be handled in exactly the same

way. Without loss of generality, we take W = [0, 1/Kj ]
d. Recall that

EW g(x, y) =

ˆ
W
g(ξ)e(ξ · x+ Q(ξ) · y)dξ, (3.9.14)

where x ∈ Rd, y ∈ Rn. We apply the change of variables ξ 7→ ξ/Kj , the induction
hypothesis and obtain

‖ψBEW g‖Lp(wB) ≤ CCεδ−εK−dj K
d+2n
p

j K
d
p

j ‖g‖Lp(W ), (3.9.15)

where C is some new large constant that is allowed to depend on d, n, p and Q. This,
together with (3.9.13), implies that

‖E[0,1]dg‖Lp(B) ≤ CCε′Cεδ−ε
d∑
j=0

K
Λ−d+ 2d+2n

p
+2ε′

j ‖g‖p + Cε′,Kδ
−ε′‖g‖p, (3.9.16)

for every ε′ > 0. Recall from (3.5.11) that there exists a small number c = cε′ such that

Kc ≤ K1 ≤ K2 ≤ · · · ≤ Kd ≤
√
K. (3.9.17)
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From (3.9.16) we see that if p is such that

Λ− d+ (2d+ 2n)/p < 0, (3.9.18)

then we can pick ε′ small enough and K sufficiently large, depending on ε′, such that

CCε′K
Λ−d+(2d+2n)/p+2ε′ ≤ 1/(2(d+ 1)). (3.9.19)

After fixing ε′ and K, we see that in order to control the second term in (3.9.16), we just
need to set the constant Cε from (3.9.1) to be 2Cε′,K and then we can close the induction
step.

Notice that there were two constraints on p, including p > pc and (3.9.18). Recall the
definition of Λ in (3.9.12). One can apply Theorem 3.1.1 and see that

Λ = max
d′≤d−1

max
0≤n′≤n

[
(2d′ − dd′,n′(Q))

(1

2
− 1

p

)
− 2(n− n′)

p

]
. (3.9.20)

Elementary computation shows that

p > max
(
pc, 2 + max

m≥1
max
n′≤n

4n′

2m+ dd−m,n′(Q)

)
= max(pc, pQ). (3.9.21)

As pc is a continuous function depending on θ, to see that we have the range p > pQ, it
suffices to show that

max
1≤n′≤n

(
2 +

2n′

dn′(Q)

)
≤ 2 + max

m≥1
max
n′≤n

4n′

2m+ dd−m,n′(Q)
. (3.9.22)

This inequality follows from

2dd,n′(Q) ≥ 2 + dd−1,n′(Q), (3.9.23)

for every n′ ≥ 1, which holds true because dd,n′(Q) > dd−1,n′(Q) as long as dd,n′(Q) > 0.
Recall that we assumed Q is linearly independent, and therefore we indeed have that
dd,n′(Q) > 0 for every n′ ≥ 1. This verifies the range p > pQ and thus finishes the proof
of the corollary.



67

Bibliography

Bak, Jong-Guk, Jungjin Lee, and Sanghyuk Lee (2017). “Bilinear restriction estimates
for surfaces of codimension bigger than 1”. In: Anal. PDE 10.8, pp. 1961–1985. issn:
2157-5045. doi: 10.2140/apde.2017.10.1961.

Bak, Jong-Guk and Sanghyuk Lee (2004). “Restriction of the Fourier transform to a
quadratic surface in Rn”. In: Math. Z. 247.2, pp. 409–422. issn: 0025-5874. doi: 10.
1007/s00209-003-0626-8.

Bennett, Jonathan, Neal Bez, Michael G. Cowling, and Taryn C. Flock (2017). “Behaviour
of the Brascamp-Lieb constant”. In: Bull. Lond. Math. Soc. 49.3, pp. 512–518. issn:
0024-6093. doi: 10.1112/blms.12049. arXiv: 1605.08603 [math.CA].

Bennett, Jonathan, Neal Bez, Taryn C. Flock, and Sanghyuk Lee (2018). “Stability of
the Brascamp-Lieb constant and applications”. In: Amer. J. Math. 140.2, pp. 543–569.
issn: 0002-9327. doi: 10.1353/ajm.2018.0013. arXiv: 1508.07502 [math.CA].

Bennett, Jonathan, Anthony Carbery, Michael Christ, and Terence Tao (2008). “The
Brascamp-Lieb inequalities: finiteness, structure and extremals”. In: Geom. Funct.
Anal. 17.5, pp. 1343–1415. issn: 1016-443X. doi: 10.1007/s00039- 007- 0619- 6.
arXiv: math/0505065.
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