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Abstract

Deep learning models have achieved great success in a wide range of areas over the
past decade, like image processing, natural language processing, audio recognition
and robot control. When building a deep learning model for a specific task, one of the
main challenges is to choose the appropriate type of layers that suits the task of inter-
est. After building blocks (layers) are chosen, a deep model can be formed by simply
stacking them in an appropriate way. As a result, a majority of milestones in deep
learning can be attributed to the introduction of novel layers. To enrich the family
of deep learning layers, the dynamical system is a very useful subject to study since
it covers a large family of powerful procedures/algorithms. In this thesis, our goal
is to identify suitable dynamical systems and develop machine learning algorithms
to utilize them as layers within deep neural networks to solve computer vision prob-
lems while addressing application-specific challenges. We show the effectiveness
of our ideas on various problems where our proposed layers can be integrated into
deep models to solve the problems accurately and efficiently.



Chapter 1
Introduction

Deep learning models have achieved great success in a wide range of areas over
the past decade, like image classification He et al. (2016); Russakovsky et al. (2015);
Szegedy et al. (2016) and segmentation Chen et al. (2017); Kirillov et al. (2019); Mil-
letari et al. (2016), video processing Kahou et al. (2016); Caelles et al. (2017); Feichten-
hofer et al. (2017), audio recognition Purwins et al. (2019); Noda et al. (2015), multi-
modal learning Ramachandram and Taylor (2017); Meng et al. (2021e,d), robot con-
trol Lillicrap et al. (2015); Arulkumaran et al. (2017); Duan et al. (2016), etc. This
success comes from several factors including large-scale datasets, specialized hard-
wares to support the running of deep models, and the backbone networks which
can be modified to work for different applications. In this dissertation, we study the
building blocks of the backbone networks and explore what ideas can be used to
motivate/design better backbones with better performance and the ability to model
more data structures.

To understand or explain the operational mechanics of deep learning models
properly, it is helpful to first understand an object known as the computational graph
which plays a crucial role. Fig. 1.1 shows a simple example of a computational graph
y = wx + b where the output equals the product of the input and some scalar, which
is then added to another scalar.

If we make this example a little more complicated, by doing this kind of opera-
tion twice, we get Fig. 1.2. It is easy to notice that the subgraph in the green circle
has a similar structure to the one in the blue circle. We can keep adding more and
more operations to the graph until the model fits our need. Then, we could denote
this operation in a subgraph as a layer and the whole computational graph contains
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Figure 1.1: A simple example of the computational graph.

two (or more) layers. In the context of deep learning, generally speaking, the sub-
graph (the layer) can contain any type of operations. For example, the subgraph can
contain a full sequence of steps based on a certain algorithm for solving some task.
To instantiate this computational graph in deep learning pipeline, we need to define
the forward pass of this algorithm clearly, as well as how to compute the backward
gradients (or say the backward pass). Briefly, a forward pass refers to the execution
of a sequence of pre-defined operations, which include the calculation and storage of
intermediate variables in the order from the beginning (input) layer to the last (out-
put) layer. The backward pass refers to the process of computing the gradients from
the final loss function back to all trainable parameters in the network by the chain
rule.

Layer- Layer-2

om mm mm mm == =

O—O0—@ 10—
|
@ @)

Figure 1.2: A simple example of the computational graph with two “layers”.
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Besides expressing the operations preceisely, the computational graph also of-
fers other advantages. For example, when the data or model becomes too large to
compute on a single machine, distributed computing can be directly implemented ac-
cording to the computational graph. The computational graph is also helpful when
we want to solve relational problems where the relationship between variables can
usually be expressed in terms of a graph.



If we look at the computational graph of a deep learning model, the graph is of-
ten quite deep Goodfellow et al. (2016), which shows how the model captures more
complex concepts on top of simpler ones. This hierarchy of layers is the main char-
acteristic of deep learning models and the key reason why deep models can derive
representations for many tasks without the need for human specialists to specify all
the knowledge. Naturally, when building a deep learning model for a specific task,
one of the main challenges is to choose appropriate type of layers that suit the task
of interest (Fig. 1.3). After the building blocks (the layers) are chosen, a deep model
can be formed by simply stacking them in an appropriate way (in most cases just
sequential stacking). As a result, a majority of milestones in deep learning can be at-
tributed to the introduction of novel layers. In the following, we briefly review some
examples showing how the introductions of novel layers keep enlarging the capaci-
ties of deep learning models, which contributes to their success in a wide range of

areas.

Specify the task Choose building blocks Build a deep model

Lang , / type-A layer

eeeee

type-A layer ‘

type-B layer
type-C layer

type-C layer

i

[ e.g.: few shot image classification ]

type-A: convolutional layer type-B: graph neural network layer type-C: differentiable optimization layer
32 .'
OIS 1
000 ﬂ S 3 minimize ~27Qz + ¢¥z
o L
G subject to Az=0b, Gz < h

3

Figure 1.3: General steps to build a deep model. The key step is to choose appropriate
layers as building blocks to build the needed model for the task of interest.

1. Fully-Connected layers: Arguably, the simplest layer is the Fully-Connected (FC)
layers. The Multi-Layer perceptron model Rumelhart et al. (1985) is formed

by stacking multiple FC layers in a sequential way with non-linear activation



functions. The Multi-Layer perceptron model can distinguish data that is not
linear separable. Each FC layer consists of a matrix multiplication between the
layer input and the weight matrix, and adding a bias term. If a FC layer is
an intermediate layer in the model we are considering, usually a non-linear
activation function is added after each FC layer.

. Convolutional layers: Although a Multi-Layer perceptron formed by FC layers
can be trained to distinguish complex data and theoretically can approximate
any function according to the universal approximation theorem Hornik et al.
(1989), in practice, their performance is limited, especially for structured data
like 2-D images. Convolutional layers, due to the useful properties of convo-
lution, are more suitable to learn from 2-D images. Convolutional layers were
used together with backpropagation by LeCun et al. (1998) to identify the num-
ber in an image of the hand-written digit and became the foundation of modern
convolutional neural networks. Convolutional layers are suitable for images,
but still have limitations in terms of the modeling ability. In the past decade,
many novel convolutional layers were proposed to address the limitations. Ex-
amples include dilated convolutional layers Yu and Koltun (2015), residual lay-
ers He et al. (2016), deformable convolutional layers Dai et al. (2017), etc.

Besides modifying convolutional layers, researchers have also drawn inspira-
tion from other fields to propose novel type of layers, which allow deep learn-
ing models to perform better and work well for more various data structures.

. Message passing layer for better segmentation: While convolutional neural net-
works have become the dominant approach in image segmentation, the results
around object boundaries are relatively poor. Chen et al. (2017) proposes that
adding a conditional random field (solved by message passing updates) can
refine the results produced by CNNSs to get better segmentation results, espe-
cially on object boundaries due to the nature of probabilistic graphical models.
This kind of layer has also been utilized by others for 3D segmentation Kam-
nitsas et al. (2017).

. Quadratic optimization layer for solving quadratic optimization in the latent space:
Even modern convolutional layers often cannot encode constraints and capture
complex dependencies between hidden states, such as capturing an optimiza-

tion problem like linear programming or quadratic programming. Amos and



Kolter (2017) proposes a layer which can integrate quadratic optimization prob-
lem as individual layers in end-to-end trainable deep networks. This opens
the door to more possibilities like differentiable end-to-end planning and con-
trol, differentiable integration of SVMs into deep networks. Besides building
differentiable optimization layers from scratch, building them on top of some
black-box optimizer has also been explored Berthet et al. (2020); Vlastelica et al.
(2019).

5. Stochastic layers: Most layers used in deep models are deterministic which means
that the latent states are determinictic. Fraccaro et al. (2016) proposed a stochas-
tic sequential layer to form the recurrent neural network which models the
uncertainty in the latent space explicitly and improves the performance in se-
quence modeling by a large margin. Liu et al. (2019c) shows that adding stochas-
ticity can help stabilize the neural ODE networks.

From the above examples, we can see that these novel layers play an important
role in expanding the ability and scope of deep learning models and enabling deep
models to work for various problems. In this thesis, this need for novel type of lay-
ers in deep learning is our main motivation. Specifically, we draw inspiration from
dynamical systems and propose novel layers to enrich deep models with more/bet-
ter modeling abilities, including learning better representations of graph structured
data, solving linear programming informed by the latent variables, computing the
canonical correlation between variables, and modeling the stochastic flow of features,

as we will describe in more details in the remainder of this thesis.

1.1 Novel deep learning layers inspired by dynamical

systems

As we discussed above, the notion of a layer can refer to any procedure/algorithm
(with a clear forward and backward pass). If we take the position that the family of
deep learning layers can be much richer, the dynamical system is a very useful start-
ing point to study since it covers a large family of powerful procedures/algorithms
under a unified framework. Besides, a dynamical system often contains operations

that are sequentially conducted, thus a potentially clear forward /backward pass.



Dynamical systems have been studied for many decades and there have been
some well-established theories about their properties Strogatz (2018); Michel et al.
(2001); Hirsch (1988) like the steady state, robustness to noise, convergence, etc. Deep
learning models, on the other hand, have demonstrated great potential in recent
years while some of their properties remain unknown and the capacity is some-
times limited by the chosen layers. When used properly, dynamical systems and
deep learning models can potentially help the development of each other. For ex-
ample, we can use a DNN to solve the partial differential equation at much faster
speed compared to traditional numerical solvers Lu et al. (2021); We can also use
the established theories from dynamical systems to help analyze the properties of
DNNs Thorpe and van Gennip (2018), or use dynamical systems as layers to help
build DNNS5s Scarselli et al. (2008).

To understand more closely how dynamical systems can help deep learning, first
note that dynamical systems already have a close relationship with deep learning
models. In fact, some DNNs themselves can be viewed as a dynamical system, for
example, the construction of Resnet He et al. (2016) can be viewed as a dynamical
system Weinan et al. (2019). In the simplest form, the feed-forward propagation in a

T-layer residual network can be represented by the difference equations:
Xt+1 = Xt +f(Xt, et), t :0,,T—1 (11)

where X is the input which can take various forms depending on the specific applica-
tion, like an image, time-series data, etc. xy is the final output of the neural network.
Usually, the final output will be compared with some target label corresponding to
this input via some loss function. This expression of Resnet can be thought of as a
discretization of the ordinary differential equation (ODE):

x¢ = f(x¢, 04) (1.2)

with the initial condition equal to the network input x,.

This dynamical system view of DNNs enables researchers to use the well devel-
oped theory from the dynamical system community to help analyze the properties
of DNNs. Weinan et al. (2019) introduced a mathematical formulation of the popu-
lation risk minimization problem in deep learning as a mean-field optimal control

problem and established some quantitative relationships between population and



empirical learning problems. Thorpe and van Gennip (2018) showed that the deep
layer limit coincides with a parameter estimation problem for a nonlinear ODE and
showed the convergence of the estimation problem in a variational sense. Haber and
Ruthotto (2017) propose new forward propagation techniques inspired by systems
of ODE that overcome the critical issues of exploding or vanishing gradients and
lead to well-posed learning problems for arbitrarily deep networks.

Besides utilizing the theory from dynamical systems to understand existing DNN
models, we can also utilize dynamical systems to help build new DNN models which
is a central thread of this thesis.

In this thesis, we devote our main efforts in this direction. Specifically, we focus on utilizing
dynamical systems as layers in the constructed DNN pipeline, to bring new abilities to DNN
models which cannot be accomplished with commonly used layers like the fully connected layer,

the convolutional layer, etc.

Let us consider an example that demonstrates how dynamical systems can help
build DNN models.

Example 1. Scarselli et al. (2008) unroll a dynamical system to construct the graph
neural network model which can solve a variety of problems on graphs. Specifically,
Scarselli et al. (2008) consider the set D of pairs of a graph and a node as the domain,
ie, D =G x N where § is a set of the graphs and N is a subset of their nodes. In
the model, they attach a state x,, € R® to each node with index n that is based on
the information contained in the neighborhood of node n. The state x,, contains a
representation of the concept denoted by n and can be used to produce an output
Oy, i.e., a decision about the concept. In this graph model, the nodes iteratively pass
information to their neighbor nodes and update the node state according to the re-
ceived message. Let x, 0,1 be the vectors constructed by stacking all the states, all the
outputs, all the labels. The iterative updating scheme is,

x(t +1) = fo(x(t),1) (1.3)

where fg is the transition function and 0 refers to the parameters.

Scarselli et al. (2008) demonstrates that this dynamical system which updates
the graph node states converge exponentially fast to the final solution, which en-
ables unrolling the dynamical system and treating each updating operation as one



parameterized layer, and the whole module can be used as a DNN that is suitable for
modeling various problems on graphs. The constructed DNN model, i.e., the graph
neural network model, inherits the good property of the dynamical system to con-
verge quickly when updating the node states in the network, which is not achievable
using standard fully connected layers or convolutional layers. In this example, each
unrolled step is basically a layer (corresponding to a computational graph of a set of

steps) and all layers together form the whole graph neural network model.

Knowing that dynamical systems can help build DNN models and that DNNs are
formed by different layers, how do we instantiate the dynamical systems as layers?

Input === [ DNN-1 ] -[ Dynamical J-’[ DNN-2 ] == QOutput
systems layer
layer input gradients \

( Iteration 1 )
Some stored
Iteration 2 ) information

( Iteration N )

[ layer input ] [ gradients ]

( Iteration 1 ]

( Iteration 2 )

Forward \

Forward

Backward
Backward

( Iteration N )

k Backward: explicit Backward: implicit j

Figure 1.4: Two types of method to differentiate through a dynamical system layer.

After we find a suitable dynamical system to use for the problem of interest, how
to instantiate it as a layer in deep neural networks is not trivial. There are several chal-
lenges here: (i) The dynamical systems need to be differentiable. (ii) The runtime of
the overall model needs to be considered. (iii) The memory cost of the overall model
needs to be taken into account. Let us discuss (i) a little more. The methods to differ-
entiate through a dynamical system can be divided into two types: one can choose
to either explicitly store all the intermediate computational graphs and unroll all the
operations to compute backward gradients (Fig. 1.4 left), or figure out some way
to implicitly compute the backward gradients without saving all the intermediate
computational graph on GPU (Fig. 1.4 left). The first approach usually has a larger



memory cost while the correct backward gradient is guaranteed by construction and
it is even possible to parameterize the unrolled steps. The second approach usually
has a small memory cost because it does not store all the intermediate steps, while
its time cost and the quality of backward gradients vary according to the specific
chosen methods.

Example 2. Chen et al. (2018) propose to instantiate an ODE using neural net-
works and consider optimizing a scalar-valued loss function L() whose input is the
result of an ODE solver:

L(x(t1)) = L(ODESolve(x(tg), f, to, t1,0)) (1.4)

where f is the state update function parameterized by 0.

To optimize L, we need backward gradients with respect to 6. One problem is
that usually an ODE may take many steps to compute the forward pass, thus if we
need to store all the computational graphs for computing the backward gradients,
the memory cost may be huge. Thus, Chen et al. (2018) treats the ODE solver as
a black-box and computes the gradients using the adjoint sensitivity method Pon-

tryagin (1987), which computes the gradients by solving a second, augmented ODE

backward in time. Let a(t) = af(Lt), the dynamics of this quantity called the adjoint
is given by another ODE:
da(t) 1 of(x(t),t,0)
T a(t) ™ (1.5)

such that we do not need to store the computational graph during the forward pass.
That being said, the memory cost issue can also be solved by identifying a suitable
dynamical system that converges well within a small number of iterations. As an
example, in Meng et al. (2020) we utilize physarum dynamics to construct a linear
programming solver and unrolling can be used due to a small number of needed
iterations.

Overall, the goal of this thesis is: identify suitable dynamical systems and develop machine
learning algorithms to utilize them as layers within deep neural networks to solve computer

vision problems while addressing application-specific challenges.
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1.2 Contribution and Scope of the Thesis

In this thesis, we explore how dynamical systems can help deep learning and how
to utilize them within a deep neural network on various applications in computer
vision. We show the overall scope of the thesis along two axes as shown in Fig. 1.5,
where the vertical axis represents the type of forward pass of the layer formed using
the dynamical system, and the horizontal axis represents the type of backward pass.
For example, if we construct a layer motivated by a dynamical system with stochas-
tic terms, and use the unrolling to compute backward gradients, then it should fall
on the lower right quadrant of Fig. 1.5. In this section, we will briefly review five
problems studied in this thesis.

Forward: ODE/PDE

>

CH2: Relative attribute learning using
CH4:Differentiable non-decomposable objective graph neural network

optimization using Newton’s method I ' . 1
CH3: Differentiable linear programming

layer using physarum dynamics

Backward: implicit ¢ == === === === “|m" - === === ===~ » Backward: explicit

CHS: Stochastic CCA using stochastic
riemannian optimization

CH6: Modeling instantaneous flow of
features using SDE generators

-

Forward: SDE

Figure 1.5: The overall scope of the thesis. The layer formed by the dynamical system
can be divided into four types according to its forward and backward pass.

Graph Neural Networks for Relative Attribute Learning

A sizable body of work on relative attributes provides evidence that relating pairs
of images along a continuum of strength pertaining to a visual attribute yields im-
provements in a variety of vision tasks. We will show how instantiating a dynami-
cal system (message passing) on the graph nodes as layers (graph neural networks)
can yield a solution to various problems that broadly fall under relative attribute

learning. Our main idea is the observation that relative attribute learning naturally
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benefits from exploiting the graph of dependencies among the different relative at-
tributes of images, especially when only partial ordering is provided at training time.
We propose to use message passing to perform end-to-end learning of the image rep-
resentations, their relationships as well as the interplay between different attributes.
We will show by experiments that this simple framework is effective in achieving
competitive accuracy with specialized methods for both relative attribute learning
and binary attribute prediction, while relaxing the requirements on the training data
and/or the number of parameters, or both.

Physarum Powered Differentiable Linear Programming Layers

Consider a learning algorithm, which involves an internal call to an optimization
routine such as a generalized eigenvalue problem, a cone programming problem or
even sorting. Integrating such a method as a layer(s) within a trainable deep neural
network (DNN) in an efficient and numerically stable way is not straightforward — for
instance, only recently, strategies have emerged for eigendecomposition and differ-
entiable sorting. We propose an efficient and differentiable solver for general linear
programming problems which can be used in a plug-and-play manner within DNNs
as a layer. Our development is inspired by a fascinating but not widely used link be-
tween the dynamical system of slime mold (physarum) and optimization schemes
such as steepest descent. We describe our development and show the use of our
solver in a video segmentation task and meta-learning for few-shot learning. We
review the existing results and provide a technical analysis describing their applica-
bility for our use cases. We will show that our solver performs comparably with a
customized projected gradient descent method on the first task and outperforms the
differentiable CVXPY-SCS solver on the second task. Experiments will show that our
solver converges quickly without the need for a feasible initial point. Our proposal
is easy to implement and can easily serve as layers whenever a learning procedure

needs a fast approximate solution to an LP, within a larger network.

Differentiable Optimization of Generalized Nondecomposable

Functions using Linear Programs

We propose a framework that makes it feasible to directly train deep neural net-
works with respect to popular families of task-specific non-decomposable perfor-
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mance measures such as AUC, multi-class AUC, F-measure and others. A feature
of the optimization model that emerges from these tasks is that it involves solving
Linear Programs (LP) during training where representations learned by upstream
layers characterize the constraints or the feasible set. The constraint matrix is not
only large but the constraints are also modified at each iteration. The large number
of constraints brings additional challenges compared to the case of our physarum
solver. We will show how adopting a set of ingenious ideas proposed by Mangasar-
ian for 1-norm SVMs — which advocates for solving LPs with a generalized Newton
method, whose updating process can be viewed as a dynamical system — provides
a simple and effective solution that can be run on the GPU. In particular, this strat-
egy needs little unrolling, which makes it more efficient during the backward pass.
Further, even when the constraint matrix is too large to fit on the GPU memory (say
large minibatch settings), we will show that running the Newton method in a lower-
dimensional space yields accurate gradients for training, by utilizing a statistical con-
cept called sufficient dimension reduction. While a number of specialized algorithms
have been proposed for the models that we describe here, our module turns out to be
applicable without any specific adjustments or relaxations. We will describe each use
case, study its properties and demonstrate the efficacy of the approach over alterna-
tives which use surrogate lower bounds and often, specialized optimization schemes.
We will show that frequently, we can achieve superior computational behavior and

performance improvements on common datasets used in the literature.

An Online Riemannian PCA for Stochastic CCA

We present an efficient stochastic algorithm (RSG+) for canonical correlation analysis
(CCA) using a reparametrization of the projection matrices. We will show how this
reparametrization (into structured matrices), simple in hindsight, directly presents
an opportunity to repurpose/adjust mature techniques for numerical optimization
on Riemannian manifolds. Our developments nicely complement existing methods
for this problem which either require O(d?) time complexity per iteration with O( \/i{)
convergence rate (where d is the dimensionality) or only extract the top 1 component
with O(1) convergence rate. In contrast, our algorithm offers a strict improvement
for this classical problem: it achieves O(d?k) runtime complexity per iteration for
extracting the top k canonical components with O(1) convergence rate. While this

chapter primarily focuses on the formulation and technical analysis of its properties,
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we will show that the dynamics of streaming CCA updates can be integrated into
DNNss which scales better than the existing DeepCCA method, and our experiments
will show that the empirical behavior on common datasets is quite promising. We
will also explore a potential application in training fair models where the label of the

protected attribute is missing or otherwise unavailable.

Modeling Instantaneous flow of features via SDE Generators

We will study how stochastic differential equation (SDE, a kind of dynamical system
with stochastic terms) based ideas can inspire new modifications to existing algo-
rithms for a set of problems in computer vision. Loosely speaking, our formulation
is related to both explicit and implicit strategies for data augmentation and group
equivariance, but is derived from new results in the SDE literature on estimating in-
finitesimal generators of a class of stochastic processes. If and when there is a nomi-
nal agreement between the needs of an application/task and the inherent properties
and behavior of the types of processes (which we can efficiently handle), we obtain a
very simple and efficient plug-in layer that can be incorporated within any existing
network architecture, with minimal modification and only a few additional param-
eters. We will show experiments on a number of vision tasks including few-shot
learning, point cloud transformers and deep variational segmentation obtaining ef-

ficiency or performance improvements.

1.3 OQOutline

From Chapter 2-6 we describe the five problems we study and the proposed solu-
tions in detail. We demonstrate how to utilize a graph neural network (message
passing dynamics instantiated as layers) to model relative attribute learning in Chap-
ter 2. Then, we identify a useful dynamical system called physarum dynamics and
utilize it to construct a differentiable linear programming layer used in deep neural
networks in Chapter 3. Next, we propose a framework for solving non-decomposable
objectives using linear programming and construct a differentiable linear program-
ming solver for this type of problem in Chapter 4, utilizing the dynamics of a kind of
Newton’s method. The solvers we propose in Chapter 3 and 4 are special instances
of dynamical systems and used during the forward pass of a neural network, then in
Chapter 5, we describe how we model the dynamics that happens across the whole
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training process of a neural network, by designing an online PCA based algorithm
for solving stochastic CCA. Finally, we show a new scheme of using SDEs to model
the possible dynamics happening in the feature space in Chapter 6. We draw the

conclusions and discuss the future work in Chapter 7.
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Chapter 2
Background

In this chapter, we briefly describe the basics of dynamical systems and algorithms
(message passing, physarum dynamics, a Newton’s method for solving linear pro-
gramming, canonical correlation analysis, and stochastic differential equation gen-
erators) which facilitate the discussion of our works on constructing novel layers in

later chapters.

2.1 Notations

Before going into introducing the background, here we introduce some standard

notations that we follow consistently throughout the thesis.
* We use R™ to represent n-dimensional vector space over the reals.

* Vectors are denoted in lower case like %, y, z and matrices are denoted in upper
case suchas C,X,Y,T.

* We use calligraphic capital letters to represent sets like J, J.

¢ Xj; denotes the element at the i-th row and j-th column of the matrix X.
e Inner product between x,y € R™ is denoted by xy.

¢ x; denotes the vector x indexed by 1i.

e trace(T) denotes the trace of a matrix T, trace(T)=)_; Tis.

* A ® B: Kronecker product of matrices A and B.
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¢ I.: Identity matrix of size r and 1 is the indicator function.

* By _ (and B/) gives the k-th row (and k’-th) column of B.

2.2 Message Passing

Message passing generally refers to an iterative scheme on a graph which passes mes-
sages between nodes and update the nodes. In the context of probabilistic graphi-
cal models Jordan (1999), the sum-product message passing is also known as belief
propagation Yedidia et al. (2003), which refers to a message-passing algorithm for
performing inference on graphical models, such as Bayesian networks Murphy et al.
(2013) and Markov random fields Freeman and Pasztor (2000).

Graphical models. Probabilistic graphical models can describe joint distribu-
tions in a structured way, and the structure often allows us to compute certain proba-
bilistic estimates efficiently even when the whole distribution is too complex to write
explicitly. These models encode a given distribution into a graph where the repre-
sentations (possibly high-dimensional) of nodes and edges are computed from the
given distribution. Specifically, in a graphical representation, the nodes correspond
to the variables in some domain, and the edges correspond to direct probabilistic in-
teractions between them. For example, the graphical representation in Fig. 2.1 Koller
and Friedman (2009) illustrates one possible graph structure for the relationship be-
tween being affected by Flu and several related factors. In this graph, we can see that
there is no direct interaction between Muscle, Pain and Season, but both interact di-
rectly with Flu. The graph is a compact representation of a set of independencies
that hold in the distribution; these properties take the form X is independent of Y
given Z, denoted (X L Y|Z), for some subsets of variables X, Y, Z. For example, Fig.
2.1 suggests that

P(Congestion|Flu, Hayfever, Season) = P(Congestion|FLu, Hayfever) (2.1)

If we want to know the probabilistic distribution of the person having congestion,
and we know whether he has the flu and whether he has hayfever, the season does
not provide additional information. Note that this statement does not mean that Sea-
son is independent of Congestion; It only means that all of the information we may

obtain from the season on the probability of having congestion we already know by



17

knowing whether the person has the flu and hayfever. The middle part of Fig. 2.1
shows the set of independence assumptions associated with the graph. We refer read-
ers to Koller and Friedman (2009) for more detailed introduction of the probabilistic

graphical models.

Graph representation Independencies Factorization

(FLH|S)

(CLS|F,H) P(S F HC M)=P(S)P(F |

(M LHC|F) pH|S)P(C|F,H)PM|F
(M L C|F)

)
)

Figure 2.1: An example of the probabilistic graphical model.

Representation and inference on graphical models. The graphical language can
encode many distributions that we often need in practice which have the property
that variables tend to interact (have edges) directly only with a few others.

This graphical framework has many advantages. First, we can write down the
distribution in a tractable form using the graphical models even when the explicit
representation of the joint distribution is very large. Another important property of
this type of representation is that it provide transparency: a specialist can look at the
graph and understand the reasoning behind a solution computed from this model.

Second, the same structure also allows us to do inference, which is to answer
queries using the distribution (represented by the graph). For example, there are
algorithms to compute the posterior probability of some variables conditioned on
some other variables. In Fig. 2.1, we may observe that the season is spring and the
patient has muscle pain, and we would like to know how likely he/she is to have
the flu. This query can be written as P(Flu=true|Season=spring, Muscle Pain=true).
The inference algorithms (such as message passing) can work directly on the graph
structure and are generally several orders of magnitude faster than manipulating the
joint distribution explicitly.

Message passing. The message passing scheme, as a way to performing inference
on the graphical model, proceeds as follows. Let node i represents the variable x;,
and ¢y;(xi,x;) denote some compatibility function (depending on specific use case)
that measures some score between x; and x;. Usually there are three steps to compute
the message from node j to node i,
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1. Multiply together all messages coming in tonode j, except for the message from
node i back to node j.

2. Multiply by the compatibility function ¢y;(xi, ;).
3. Marginalize over the variable x;.

The three steps above can be summarized in this equation to compute the mes-

sage from node j to node i:

message].i(xi) = Z b (xi,%;5) H message, ; (x5) (2.2)

ken()\i

where 11(j)\1i refers to the neighbors of node j except for node i.
After computing the messages, we can use the messages to update the node. The

marginal probability at a node is the product of all incoming messages at that node

0i(xi) = H messageji(xi) (2.3)

jen(i)

In Chapter 3, we will explore the deep learning model built by parameterizing

this message passing scheme for efficient modeling of relative attributes.

2.3 Linear Programming and Physarum Dynamics

Linear programming

Since linear programming was first proposed by Dantzig (1951) as a way for spe-
cialists to set certain objectives and solve for a detailed schedule to meet the goals,
it has been widely adopted in many areas Dantzig and Thapa (1997). It has many
nonlinear and integer extensions such as integer programming Conforti et al. (2014);
Wolsey (2020), nonlinear programming Bertsekas (1997); Kuhn and Tucker (2014),
stochastic programming Prékopa (2013), combinatorial optimization Schrijver (2005);
Murphy et al. (2013), etc. These together form the mathematical programming field.
Linear programming can be thought of as a special case of this more general mathe-
matical programming: Linear programming seeks to minimize or maximize a linear
objective function subject to linear equality and inequality constraints Dantzig and
Thapa (1997). The size of linear programming problems varies from small to large.
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In Dantzig and Thapa (1997), the number of constraints less than 1000 is considered
small, between 1000 and 2000 is considered medium and greater than 2000 is con-
sidered large. In the context of machine learning, these numbers are an order of
magnitude (or more) bigger since the modern size datasets are much larger.

Many problems in real life can be cast as linear programming. Here we can take
the simple Knapsack problem as an example: Suppose we have n items, each having
a weight w; and a profit c¢;. How should we choose a subset of the items such that
the total weight is less than W and the total profit is maximized? To answer this
question, we can solve the following linear programming;:

maxc'z stwlz<W (2.4)

where z is the vector indicating the choice of each item. After introducing the basic

background of linear programming, let us look at an interesting scheme to solve it.

Physarum dynamics

Physarum refers to a single celled organism ALDRICH and DANIEL (1982). It has
been found to be very interesting by both biologists and computer scientists because
of its ability to solve complex optimization problems. Nakagaki et al. (2000) con-
ducted an experiment showing that the slime mold could solve the shortest path
problem on a maze. The solution process can be captured using dynamical systems,
leading to physarum dynamics. Straszak and Vishnoi (2015) proved that this highly
nonlinear scheme can solve the linear programming problem with convergence guar-
antees.

Let us consider a linear program in the standard form
minc'z st. Az=b,z>0 (2.5)

where A € Z™ ", z € Z%,and b € Z™ and which has a feasible solution. The
physarum dynamics for solving linear programming proceeds as follows:

Consider any vector z € R™ with z > 0 and let W be the diagonal matrix with
entries z; /c;. Let O = AWAT and p € R™ is the solution to the linear system Op = b.
Denote g = WATp. The physarum dynamics for the linear program given by (A, b, c)
then is

z=q—z (2.6)
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This can be rewritten as
z=W(ATL b —¢) (2.7)

This dynamical system has an initial condition of the form z(0) = s for some s > 0.
Note that it is not required that s is feasible and Straszak and Vishnoi (2015) shows

that the procedure can work with any initial condition

Theorem 2.1 (Existence of Solution Straszak and Vishnoi (2015)). For any initial con-
dition s € RY, the physarum dynamics z = q — z has a unique solution z : [0,00) — RZ,

with z(0) = s.

After we know that the solution exists, Straszak and Vishnoi (2015) further shows
that no matter where one starts the physarum dynamics from, as long as it is in the

positive orthant, one converges to an optimal solution of the linear program.

Theorem 2.2 (Convergence to an Optimal Solution Straszak and Vishnoi (2015)). For
any initial condition s € RZ, consider the solution z : [0,00] — RZ, to the physarum
dynamics with z(0) = s. Denote by z* an optimal solution of the considered linear program.

Then:

1. lc"z(t) — c¢"z*| = O(e™**) for some positive «, which only depends upon A, b, c and

S,
2. the limit z*° = limy_,, z(t) exists, is a feasible point and ¢'z> = c'z*.

Note that this theorem also proves that the limits of trajectories of the physarum
exist even when the optimal solution is not unique. With the convergence results
of the continuous case in hand, let us look at the discretization case which is often
needed in practice.

Theorem 2.3 (Convergence Time of Discrete Physarum Dynamics Straszak and Vish-
noi (2015)). Consider the discretization of the physarum dynamics, i.e., z(k + 1) = (1 —
h)z(k) + hq(k). Suppose we initialize the physarum algorithm with z(0) = s, i.e., As = b
and M1 < s; < M for every i = 1,...,n and some M < 1. Assume additionally that
c's < M- opt. Choose any € > O and leth = - e- C;%- D2 Then after k = O(573)

steps z(k) is a feasible solution with: opt < ¢'z(k) < (1 + €) - opt.

This theorem gives us the convergence guarantee of the discrete physarum dy-
namics. In chapter 4, we will utilize a slightly modified version of this discrete
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physarum dynamics to construct a differentiable layer for solving linear program-

ming.

2.4 Newton Method for Solving Linear Programming

Newton method

The Newton method, also known as the Newton Raphson algorithm, is an iterative
procedure that can be used to find the roots of a differentiable function f. When f
is twice differentiable, one common use case is to use Newton method to find the
roots of the first order derivative f’, i.e., find x where f(x) = 0, which are the critical
points of f. Thus Newton method can used for nonlinear function minimization.

Specifically, given a twice differentiable function f : R — R, we want to minimize f:

min f(x) (2.8)

x€R

The update rule of the Newton method can be computed by looking at the second

order Taylor expansion:

fxie +1) = flxx) + 7 (x) (t —xx) + %f//(xk)(t —xx)? (2.9)

The next iterate xy ;1 is computed by minimizing this expansion as a (quadratic) func-

tion of t. Thus we can set the derivative of t to be zero

0= %(f(xk) + () (t —xi) + %f,,(xk)(t —xi)?) = f'(xx) + 7 (xi )t (2.10)

f/(xx) . .
f“(xi) Thus the updating rule is

then the minimum is achieved att = —

- x)
7 (xx)

(2.11)

Xk+1 = Xk
When we work with a vector x € R™, this update rule becomes

Xir1 = X — VA IVF (2.12)
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A Newton Method for Solving Linear Programming

In real life applications, it is quite common to observe the case where the linear pro-
gram has a very large number of constraints and a moderate number of variables.
Standard LP solvers like the physarum dynamics mentioned above may fail on these
cases. Mangasarian (2004) proposes a fast Newton method to tackle this problem.
Before introducing the algorithm, we first briefly describe the observation made by
Mangasarian (2004) that motivates their proposed algorithm.

Consider the primal linear program

ngzr}l c'x, st Ax<b (2.13)

where ¢ € R™, A € R™*" b € R™, and its dual

max —b'u=— m]izn b'u, stATu+c=0,u>0 (2.14)
ueR™ ueR™

The parametric exterior penalty formulation of the primal linear program for a

tixed positive penalty value e can be written as a unconstrained minimization prob-

lem
min f(x) (2.15)
xER™
where f is the penalty function
f(x) = nglgl ec™x + (1/2)[|(Ax —b) || (2.16)

Mangasarian (2004) shows that the unique least 2-norm solution to the dual linear
program is given by
v=(1/e)(Ay —b), (2.17)

wherey is a solution of the primal penalty problem minycg» f(y) = ec'x+(1/2)|| (Ax—
b). ||*> (we refer readers to Mangasarian (2004) for the proof). Thus we could use
Newton method to first solve v and then get our final solution to the primal linear
program.

The algorithm proposed by Mangasarian (2004) proceeds as follows: Set the pa-
rameter value €, § and tolerance tol (typically 1072, 1074, and 10~ respectively).

Start with any y° € R™. For i = 0,1, ..., do the following steps.

1. Compute y*™! =y; — A (0%f(y:) +01) ' VF(y') =y +Aid* (let d := —(*f(yi) +
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81) 71V f(y')), where the Armijo stepsize Nocedal and Wright (1999) A\; = max{1,1/2,1/4, ...
is such that
fly") — fly' +Ad") > —(\/4)VF(yH)Td', (2.18)

and d' is the modified Newton direction, d* = —(0%f(yt) + 8I) " 'Vf(yl).

2. Stop if ||yt —y'*™ < tol||. Else, seti =1+ 1and go to step 1.

3. Define the least 2-norm dual solutionvasv = (1/¢)(Ay**!—b), and a solution
z of the primal linear program by A;z =b;,j € S ={jlv; >0,j =1,.., m}.

Mangasarian (2004) also shows a convergence result for this algorithm which
proves the exactness of the solution z provided that the submatrix A, selected by
v from A has linearly independent columns.

In chapter 5, we utilize a modified version of this algorithm to construct a dif-
ferentiable layer for solving linear programs with large number of constraints, and

explore its use in optimizing non-decomposable objectives.

2.5 Canonical Correlation Analysis

Canonical correlation analysis (CCA), first proposed by Hotelling (1992), is a way to
infer relationships between two sets of variables. In multivariate statistical analysis,
the data comprises multiple variables measured for a set of individuals. In the case
of CCA, the variables of an observation can be partitioned into two sets that can be
seen as the two views of the data.

CCA can be defined as the problem of finding two sets of basis vectors, one for
x and one for y, such that the correlations between the projections of the variables
onto these basis vectors are mutually maximized Borga (2001). We can first look at
the case of solving top-1 CCA for simplicity, meaning that we only solve for the pair
of basis vectors corresponding to the largest canonical correlation value: consider

T

the linear combinations x’ = x"w, and y’ = y'w,, of the two variables respectively,
Yy Y Wy P Y
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where x,y, wy, wy € R™. The function to be maximized is

E 15,7
o= EXY] (2.19)
E [X /2] E [y /2]
- Elwyxy ] (2.20)
\/ EwlxxTw,]E [wlj yyTwy]
- Wy CryWy (2.21)
\/WI Cxxwxwg Cyywy

The maximum of p with respect to w, and wy, is the maximum canonical correla-

tion. The subsequent canonical correlations are uncorrelated for different solutions,

ie.,
E[x{x)f] = E[wl,ixxTwX/j] = WI,iCXXWer =0
Ely{yj] = Ebwyiyy wysl =wyCyywys =0 fori#j. (2.22)
Elx{yjl = Ewixy wy;] = wi,; Ceywy; =0

The projections onto w, and wy, i.e., x" and y’ are called canonical variates.

In practice, we often utilize the following CCA formulation corresponding to the
case where we have a finite number of samples and want to extract top-k canonical
correlations (k depending on the use case). Let X € RN*4x and Y € RN*dv be N sam-
ples respectively drawn from the pair of random variables X and Y, with unknown
joint probability distribution. The goal is to find the projection matrices U € R4x*¥
and V € R%** with k < min d, d,, such that the correlation is maximized:

max F = trace(U' CxyV) (2.23)

st.UTCxU =1, VICyV =1y (2.24)

Here, Cx = %XTX and Cy = ﬁYTY are the sample covariance matrices, and Cxy =
XY denotes the sample cross-covariance.

To compute the solution of CCA, the most common way is to utilize the closed-
form solution shown by Golub and Zha (1995) utilizing the whitened covariance. Let
us define the whitened covariance T = C ;1/ e XY C;l/ % and @y (and Y¥y) contains the
top-k left (and right) singular vectors of T. Golub and Zha (1995) shows that the
optimum of the CCA optimization is achieved at U* = C;(l/ 2O,V =Cy V2

This procedure is simple but is only feasible when data matrices are small. In
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Chapter 6, we propose a stochastic approach based on differential geometry to com-
pute the solution of CCA which allows large datasets for modern applications. Thus
next we give a brief review of relevant differential geometry concepts since certain

differential geometry components will play a role in our algorithm.

Differential geometry concepts

Here we only include a condensed description — needed for our algorithm and anal-
ysis in Chapter 6 — and refer the interested reader to Boothby (1986) for a compre-
hensive and rigorous treatment of the topic.

Y = Exp(U)

Figure 2.2: Schematic description of an exemplar manifold (M) and the visual illus-
tration of Exp and Exp map.

Riemannian Manifold: A Riemannian manifold, M, (of dimension m) is defined
as a (smooth) topological space which is locally diffeomorphic to the Euclidean space
R™. Additionally, M is equipped with a Riemannian metric g which can be defined

as
gx : TxM X TxM — R,

where TxM is the tangent space at X of M, see Fig. 2.2.

If X € M, the Riemannian Exponential map at X, denoted by Expy : TxM — M
is defined as y(1) where v : [0,1] — M. We can find vy by solving the following
differential equation:

dy

v0) =X (Ve 01| =U

In general Expy is not invertible but the inverse

Expx' : U C M — TxM
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is defined only if U = B, (X), where r is called the injectivity radius Boothby (1986) of
M. This concept will be useful to define the mechanics of gradient descent on the
manifold.

In our reformulation used in chapter 6, we made use of the following manifolds,
specifically, when decomposing U and V into a product of several matrices.

(@) St(p,n): the Stiefel manifold consists of n x p column orthonormal matrices

(b) Gr(p,n): the Grassman manifold consists of p-dimensional subspaces in R™

(c) SO(n), the manifold/group consists of n x n special orthogonal matrices,
i.e., space of orthogonal matrices with determinant 1.

Differential Geometry of SO(n): SO(n) is a compact Riemannian manifold, hence
by the Hopf-Rinow theorem, it is also a geodesically complete manifold Helgason
(2001). Its geometry is well understood — we recall a few relevant concepts here and
note that Helgason (2001) includes a more comprehensive treatment.

SO(n) has a Lie group structure and the corresponding Lie algebra, so(n), is de-
fined as,

so(n) ={W e RV"W' = W},

In other words, so(n) (the set of Left invariant vector fields with associated Lie bracket)
is the set of n x n anti-symmetric matrices. The Lie bracket, [, ], operator on so(n) is

defined as the commutator, i.e.,
for U,V eson), [UV]=UV-VU.
Now, we can define a Riemannian metric on SO(n) as follows:
(U, V), = trace (UTV>, where

U,V e Tx(SO(n)),X € SO(n).

It can be shown that this is a bi-invariant Riemannian metric. Under this bi-
invariant metric, now we define the Riemannian exponential and inverse exponential
map as follows. Let, X,Y € SO(n), U € Tx(SO(n)). Then,

Expyx' (V) = Xlog(X"Y)
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Expx(U) = Xexp(XTU),

where, exp, log are the matrix exponential and logarithm respectively.

Differential Geometry of the Stiefel manifold: The set of all full column rank
(n x p) dimensional real matrices form a Stiefel manifold, St(p,n), where n > p.

A compact Stiefel manifold is the set of all column orthonormal real matrices.
When p < n, St(p,n) can be identified with

SO(n)/SO(n —p).

Note that, when we consider the quotient space, SO(n)/SO(n — p), we assume that
SO(n —p) ~ (SO(n —p)) is a subgroup of SO(n), where,

t:SO(n—p) — SO(n)

I
X |0
0 X

is an isomorphism from SO(n — p) to (SO(n —p)).

defined by

Differential Geometry of the Grassmannian Gr(p, n): The Grassmann manifold
(or the Grassmannian) is defined as the set of all p-dimensional linear subspaces in
R™ and is denoted by Gr(p,n), wherep € Z*, n € Z*, n > p. Grassmannian is a
symmetric space and can be identified with the quotient space

SO(n)/S(O(p) x O(n—p)),

where S (O(p) x O(n —p)) is the set of all n x n matrices whose top left p x p and
bottom right n — p x n — p submatrices are orthogonal and all other entries are 0,
and overall the determinant is 1.

A point X € Gr(p,n) can be specified by a basis, X. We say that X = Col(X)
if X is a basis of X, where Col(.) is the column span operator. It is easy to see that
the general linear group GL(p) acts isometrically, freely and properly on St(p,n).
Moreover, Gr(p, n) can be identified with the quotient space St(p,n)/GL(p). Hence,
the projection map

IT: St(p,n) — Gr(p,n)
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is a Riemannian submersion, where TT(X) = Col(X). Moreover, the triplet (St(p, n), T, Gr(p, n))

is a fiber bundle.

Horizontal and Vertical Space: At every point X € St(p, n), we can define the vertical
space, Vx C TxSt(p,mn) to be Ker(IT,x). Further, given g™, we define the horizontal
space, Hx to be the gSt-orthogonal complement of V.

Horizontal lift: Using the theory of principal bundles, for every vector field U on
Gr(p,n), we define the horizontal lift of U to be the unique vector field U on St(p, n)
for which Ux € Hx and IT.xUx = ﬂn(X), for all X € St(p,n).

Metric on Gr: As, TTis a Riemannian submersion, the isomorphism IT.x|s¢, : Hx —
Trx)Gr(p, ) is an isometry from (Hx, g¥) to (Tryx)Gr(p, 1), gﬁr(x)). So, g]@{(x) is de-
fined as:

97 (Unx), Vineo) = g3 (Ux, V) (2.25)
= trace((X"X) UL Vx)

Where, fl,\7 € Tr[(x)GI’(P,TL) and IMxUx = ﬁr[(x), M.xVx = \7]‘[()(), Ux € Hx and
Vx € Hx.
We covered the exponential map and the Riemannian metric above, and their

explicit formulation for manifolds listed above is provided for easy reference in Table
2.1.

gx (U, V) Expx (U) Expx’ (Y)
St(p,n) Kaneko et al. (2012) trace (UTV) A\ (Y=X)=X(Y=X)TX
USVT = svd(X + U)
Gr(p,n) Absil et al. (2004) trace (ﬂ:l Ww' ;! (V)) uvr, Y (XTY) X
USVT =svd(X+U) | X=TI(X),Y =TI(Y)
SO(n) Subbarao and Meer (2009) trace (X"UXTV) Xexpm (XTU) Xlogm (XTY)

Table 2.1: Explicit forms for some operations we need. TT(X) returns X’s column
space; I1, is TT’s differential.
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2.6 Stochastic Differential Equation

Differential equations

A differential equation is an equation consisting of a function and its derivatives.
Usually, the function is unknown and the notion of a solution in the context of the
differential equation refers to a function that satisfies this equation and is differen-
tiable. For a concrete example, x’ — x = 0 is a differential equation. Here x is the
“unknown function” with respect to the time variable t. One solution can be ob-
tained by observing that (e')’ — e* = e* — e* = 0. Thus we know that x(t) = et isa
solution of this differential equation.

Types of differential equations. Differential equations can be classified into
many types depending on their own characteristics. One commonly used way to
categorize a differential equation is by whether it contains partial derivatives. If a
differential equation does not involve partial derivatives, then it is called an ordi-
nary differential equation, otherwise, it is called an partial differential equation. Another
way to distinguish differential equations is to use order. The order of a differential
equation refers to the order of the highest derivative in the equation. For example,
x" —4x'+2x = 0 is a second order differential equation while x’ —x = 0 is first order.
There are also other ways to classify a differential equation, like whether it contains
nonlinear functions, or whether it contains stochastic terms, etc.

The use cases of differential equations exist in a much broader scope than mathe-
matics. Differential equations act as an important tool for most areas of science and
engineering. A differential equation may describe the movement of some microor-
ganism, the motion of a car, the development of economics in an area, or the spread
of news.

(’ R c L Vit

N

Figure 2.3: An RC circuit example for illustrating the use of differential equations.

For example, Fig. 2.3 shows an RC circuit with resistance R and capacity C with-

out considering external current or voltage source Ahmad and Ambrosetti (2015).
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Here we show how to analyze the current in this circuit utilizing the differential
equation as a tool. Let us denote the capacity voltage as x(t) and the current in the
circuit as I(t). We then have

R-I(t) +x(t) =0 (2.26)

In addition, according to the constitutive law of capacitor we have

(2.27)

Inserting the formulation of I(t) into the previous equation, we obtain the following

differential equation

RC-x'(t)+x(t) =0 (2.28)
This is equivalent to
x’(t)+@:0 (2.29)
RC '

The solution to this differential equation can be given by
x(t) = xge /RC (2.30)

This indicates that the voltage x(t) = V(t) decays exponentially to 0 as t — 400,

which matches our real-life experience. We can also find the intensity of current I(t)

X0 _ X0
1(t) = /.t:_ .M t/RC:__ t/RC 231
(1) =Cx'(t) =—C. o ~e e (2.31)
After the brief introduction of differential equations above, next we discuss a special
type of differential equation which involves stochastic terms and will be utilized in
our Chapter 7.

Stochastic differential equation

The stochastic differential equation (SDE) is a kind of differential equation where one
or more of the terms is a stochastic process. Accordingly the solution of the equation
will be a random function. The importance of stochastic differential equations has be-
come clear for many problems in physics, chemistry, engineering Van Kampen (1976)
and recently machine learning Liu et al. (2019¢); Fraccaro et al. (2016). In principle
every differential equation that purports to describe a physical system should be
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replaced with a stochastic one, in order to take into account the inevitable perturba-
tions due to interactions with the surroundings Van Kampen (1976), which inspires
us to bring the stochasticity to general deep learning models.

One frequently used formulation is the Ito’s stochastic differential equation:

dX, =b(X,)dt + o(X,)dW, (2.32)

where X, is the variable, W, is a (multidimensional) Brownian motion with some
covariance, b represents the drift term and o represents the diffusion function. To
compute X at some time point T, we need to perform the integration from t = 0 to
t = T. In many applications we may be interested in some function f evaluated at
Xt. Note that the f(Xy) is still a stochastic function (suppose f is deterministic) and

we may need the expectation E[f(X+)]. Then the computation becomes

t=T t=T

b(X,)dt +J o(X,)dW,) (2.33)

T t=0

EIF(X; )] = EIF(X, + |
t=0

Infinitesimal generator

This above computation may be very costly when f is computationally heavy. One
useful concept here is the infinitesimal generator which we will describe in more detail
in chapter 7. Given a stochastic process X, the infinitesimal generator £ of a function
f is defined as

2500  1im EEFX) = F1X0)

t—0 t

(2.34)

In Chapter 7 we explore bringing stochasticity into deep models by instantiating the
infinitesimal generator of an SDE there.
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Chapter 3

Efficient Relative Attribute Learning
using Graph Neural Networks

Graph structured data appear naturally in many real-life applications which stan-
dard convolutional layers have difficulty modeling directly and the visual attribute
learning studied in this chapter provides one specific example. In this chapter, we
show how the graph structure emerges from the data and how a dynamical system
(message passing perspective) can help build an efficient model for this problem.
The work presented in this chapter appeared as a conference paper at ECCV 2018
Meng et al. (2018).

3.1 Introduction

Visual attributes Farhadi et al. (2009) correspond to mid-level semantic and even non-
semantic concepts or properties of the image or objects contained in the image that
are interpretable by humans. For instance, an image can be “natural”, “smiling” or
“furry” depending on the properties of the key entities contained in it. The ability
to associate such attributes with images has enabled systems to perform better in
traditional categorization tasks, and even go beyond basic level naming Parikh and
Grauman (2011). The insight in this line of work is to first select features that can
predict attributes for the object class of interest — the subsequent classifier must then
leverage only those “relevant” features since material properties or shape may be
differentially important for different categories. The concept of “relative attributes”
takes this idea further Parikh and Grauman (2011) by arguing that the strength of
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an attribute in an image is best judged in the context of its strength with respect to
all other images in the training data rather than as a binary concept. For example,
while it is difficult to characterize how “man-made” an image is, one could set up a
comparison where humans compare the images in terms of this attribute. This strat-
egy of describing images in relative terms works well in challenging cases Jamieson
et al. (2015) — for instance, calculating how “open” an image is versus another.

Since the early works on relative attributes Souri et al. (2016); Singh and Lee
(2016); Xiao and Jae Lee (2015), several papers have proposed more task-specific mod-
els for ranking based on specialized features. But given the success of convolutional
neural networks (CNN) architectures, most recent proposals utilize CNNs for fea-
ture learning in the context of learning the overall ranking. For instance, given a set
of annotated image-pairs with respect to one/more attributes, the network learns
weights that are maximally consistent with the attribute-specific ranking of the im-
ages. Related ideas have also explored designing image-part specific detectors, that
are aligned to an attribute. For instance, what is the spatial support for an attribute
such as “smiling”. Clearly, this will involve localizing the visual concept to a part of
the image, say the mouth or lips region. In Singh and Lee (2016), the authors tran-
sitively connect the visual chains across the attribute continuum and make the case
that feature extraction and ranking should not be performed separately.

The starting point of our work is the observation that the space of attributes which
induce a ranking over the images share a great deal of correlational structure. For

instance, the attribute “furry” may be associated with the attribute “four-legged”

T mmm s m oo . CNN

GNN
®.
0 - GRU
0 - G L
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Figure 3.1: Overview of our framework for relative attribute learning.
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and the attribute “congested” may have some information to provide to the attribute
“man-made”. This induces a natural graph of attributes and images, where the input
data provides either pair-wise relationships between images for one/more attributes
or a partial (or full) ranking of the images for the attribute. We do not assume that the
annotation is exhaustive — many edges (or relationships) between the images may, in
fact, be unavailable. Extending recent work on graph neural networks (GNNs) which
extends the notion of convolution and other basic deep learning operations to non-
Euclidean grids by parameterizing the message passing dynamics on graph nodes
as layers (Gori et al. (2005); Scarselli et al. (2009); Li et al. (2015); Gilmer et al. (2017);
Bronstein et al. (2017)), we show how these ideas yield a natural model for learning
on this graph involving image<+attribute and image<«+image edges. Not only are
the image features (relevant for each attribute) extracted automatically but we also
concurrently learn the similarity function that is most consistent with the given pair-
wise annotations as well as the latent relationships between the attributes (similar
to multi-task learning). This machinery is simple, yet performs competitively with
more specialized proposals on several different problems.

Our contributions. (1) we formulate and solve relative attribute learning via mes-
sage passing dynamics on a graph, where the convolutional layers, ranking as well
as imputation of unseen relationships is performed concurrently. (2) our framework
yields results similar to the best reported for each task (at the time this research was
undertaken) with minimal change, often providing sizable reduction in the number
of parameters to be estimated or with far less stringent requirements on the training
data annotations. We note that GNNs were independently used in a classification

task in a paper made available on arXiv Garcia and Bruna (2017).

3.2 Related Work

Visual attributes. Visual attributes are semantic properties in images which can be
understood by humans and are shared among all images of similar categories (e.g.,
all images of human faces share the attribute “smiling”, whose strength can vary
from weak to strong as we will show with examples shortly. Most existing works
in visual attributes focus on binary attribute prediction (BAP) where each attribute
is predicted from a given image and cast as a binary classification problem. “Rel-
ative attributes” were proposed in Parikh and Grauman (2011) and have been ex-
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plored in a number of settings Singh and Lee (2016); Souri et al. (2016); Xiao and
Jae Lee (2015). Several current techniques use deep neural networks to learn relative
attributes (e.g.,Souri et al. (2016)), and also borrow ideas from attention mechanism
research (e.g.,Singh and Lee (2016)) to help the networks focus only on the most in-
formative areas in the images. Most of these works deal with a pair of images at
a time. Our work shows that dealing with groups of images on a fully connected
graph instead of just pairwise comparisons improves performance.

Multi-task learning. Multi-task learning is intended to achieve knowledge shar-
ing by learning several correlated tasks at the same time. This technique has recently
been used in binary attribute prediction. Learning several correlated attributes to-
gether can improve performance, and this has been demonstrated by some recent
works Abdulnabi et al. (2015); Han et al. (2017); Wang et al. (2017). Abdulnabi et
al. Abdulnabi et al. (2015) propose a multi-task CNN framework which improves
accuracy compared with learning one attribute at a time. Wang et al. Wang et al.
(2017) designed a simpler deep multi-task network for prediction of face attributes.
In contrast to most strategies related to multi-task learning, our multi-task formula-
tion learns attributes simultaneously and is shown to benefit relative attribute learn-
ing.

Graph neural networks (GNN). Graph neural networks were proposed by Gori
et al. (2005); Scarselli et al. (2009), where the authors describe GNN as a parameter-
ized message passing scheme which can be trained. Later, Li et al. (2015) proposed
using gated recurrent units (GRUs) within GNNs, which much improves the rep-
resentation capacity of the network and makes it suitable for graph structured data.
Gilmer et al. (2017) generalized the GNN using message passing neural network and
demonstrated state-of-the-art results on molecular prediction benchmarks. More re-
cently, concurrent to and independent of our work, Garcia and Bruna (2017) applied

GNN:s for classification and achieved good results on several different datasets.

3.3 Approach

Our approach is based on the observation that in a relative attribute learning task,
different images are correlated and the attributes may or may not be correlated. The
learning procedure can benefit from exploring the similarity among multiple images

on a graph, where each node represents an image and the edges are formed based
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on the relationship between the to-be-learned representations of the nodes. Further-
more, such a graphical structure can benefit multi-task learning where we can add
different types of nodes to the graph for representing different attributes that are be-
ing learned. In this way, we explicitly learn the properties of certain attributes, the
interplay between the attributes when necessary, the representations of the images
and their relationships on the graph in a way that best informs the task at hand.

We first explain how the input images are mapped into the graph representation,
and give the details of our network architecture for relative attribute learning in the
context of one attribute. Then, we show how the construction can be used to perform
multi-task attribute learning with minimal modifications. Finally, we also show how
our model can be used for a binary attribute prediction (BAP) task efficiently. The

overview of our framework is shown in Fig. 3.2.

Network Architecture

Let X be the dataset of input samples (images) with X; representing the i-th image,
and for a certain attribute (e.g., smile), we assume that a set of pairwise relation-

______________

GNN
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Figure 3.2: Overview of our framework for RAL and BAP tasks. Since many natu-
ral attributes of images are interrelated, discovering their common latent represen-
tations would be beneficial to the attribute learning tasks. This can be efficiently
achieved by mapping these images to a graphical structure. Every image has a corre-
sponding node on the graph and a corresponding output node. The initial features
f(-) for the nodes are generated using a CNN on the images and the edge features and
following updates are performed using GNNs (details in Fig. 3.3). The weights in
the entire framework including those in the CNN and GNN are trained end-to-end.
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ship labels P = {$(X;, Xj) 1T {j-1,2j Where ¢ (Xi, Xj) indicates the relative strength of
the attribute t between the two images X; and X;. This relationship may be logical
(e.g.,”stronger than" or “weaker than"). With this data, a generalized GNN is trained
where both the node features (representations of the images) and edge weights are
learned. The core architecture of our GNN is shown in Fig. 3.3.
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Figure 3.3: The architectural details of our GNN which remains the same for both
RAL and BAP. The edges on the graph are learned from adjacent nodes using a pa-
rameterized function (¢y, see (3.3)), which is shared among all edges. The “m” in
this figure refers to the message for a node passed from its connected nodes and
edges, which is defined in (3.4). Then, a GRU cell takes as input a node and its corre-
sponding message, and outputs the updated node. The parameters in GRU are also
shared across all nodes.
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Assume that we operate on groups (or mini-batches) of a certain size (which is
allowed to vary) sampled with or without replacement from the underlying training
dataset. The relationships among all the images in each mini-batch in the training
set are represented using a fully-connected graph G = (V, E), where each node v; in
V corresponds to an image X; in the mini-batch. Each time, the network takes in a
group of images and passes them through a convolutional neural network. This may
also be thought of as a set of convolutional networks that share weights. The repre-
sentations derived from this network yield the initial representations of the node
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features as
x = £(Xy), (3.1)

where f(-) refers to a CNN which operates on the images. Here, X; is the input image
and x."” is the initial node feature for the image at time k = 0. Next, the network

learns edge features as,
(k) (k) (k)
eilj = P (Xi ,X)- ) ’ (32)

where @ is a symmetric function parameterized with a single layer Neural Network:
k) (K d K K
Palx( x{) = 915 () ¥, ) (3.3)

We assume that @y is a metric which is learned by a non-linear combination of the
absolute difference between the learned features of the two nodes (or any other sim-
ple function involving the node features). This ensures that the symmetric property
®s(a,b) = @s(b, a) is satisfied by design.

Our goal now is to update the belief at each node based on the beliefs at the other
nodes in the graph as well as its own state at the previous time point. To accomplish
this, we use a message function M(-) to aggregate information from all neighbors of
each node. In particular, for each node xi(k), the message is defined as below,

ﬁlgk) = Z M (xj(k),egj;)) . (3.4)
in#t

Here, M(-) is parameterized using a single layer neural network whose details
are presented later in section 3.3. We now need to define a mechanism that utilizes
the messages received from the node’s neighbors and its previous state to update its
state. To do so, we use an updating layer G(-) which takes as input a signal x (the
current state of the node) and produces x**1). This is accomplished using a Gated

Recurrent Unit (GRU) as the updating function.
X =6 (M, ml). (3.5)

With this setup in hand, we simply use a readout function o; = R(x;) to get the

output from each node and finally define our loss function based on these outputs
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from all relevant nodes on the graph as
Loss = R ({oi}i“,), (3.6)

where n is the number of graph nodes. Note that R(-) can also be parameterized
with a simple (or more complicated) neural network depending on the needs of the
application. The specific form of R(-) depends on the specific task, which will be

discussed in the following Sections 3.3-3.3.

Learning Relative Attributes, One at a Time

The Relative Attribute Learning (RAL) task seeks to learn a network that, given input
images, outputs pairwise labels according to the relative strength of certain attributes
between each pair of images. In this section, we consider training a network for one
attribute at a time.

Recall that our network is designed to better explore the correlated information
among differentimages. So unlike other approaches in RAL (Souri et al. (2016); Singh
and Lee (2016)) which take two images at a time as an input, we sample a group of
images from the training set as input at every draw. The size of the group need not
be fixed and can vary for learning different attributes in a single dataset or different
datasets, because our network has the benefit of weight sharing on the graphical
structure of the samples. We use the five convolutional layers and the first two fully-
connected layers in AlexNet Krizhevsky et al. (2012) (conv1 through fc7) although
other architectures can be substituted in. The dimension of the output feature vector
of the node is fixed to be 4096.

Messages. We impose a fully-connected graphical structure on the images in
each group. After mapping these images on the graph, we perform message passing,
which is effective in information propagation among the nodes. We adopt the strat-
egy to learn edge features from the current node hidden representation formulated
by Gilmer et al. (2017), as suggested in (3.2). The parameters of the edge learning
function @y are shared among all nodes on the graph. Then for every node xgk) on
the graph, a message signal will be extracted from all the in-coming nodes through

the edges, see (3.4). Here, we specify the message function M(-) as,

M, els) = ReLU (W (x*'el}’) + ), (3.7)
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where || denotes the concatenation operator of two vectors, W and b are the weight
matrix and the bias respectively, and ReLU(-) is the rectified linear unit (ReLU) func-
tion. We would also like to note that the parameters (W and b) of the message func-
tion M(-) are also shared by all nodes and edges in our graph, thus providing an
explicit control on the number of parameters.

Updating. Let us now discuss the updating function for nodes. At each iteration,
each GRU takes the previous state of the node and an incoming message as input,
and produces a new hidden state as the output (see Fig. 3.3). Let xgkfl) be the node’s
hidden representation at the previous time step, mgk) be the message received via
(3.4), and xgk) be the updated node. With these notations, the basic operations of
GRU are simply given as,

I
igk) — tanh (W™ + U (r‘f ® ng 1))) ’
K9 = (-2 oV 1 o, 69

where z and r are the intermediate variables in the GRU cells, W, Z are weight matri-
ces of size h (the hidden dimension) by h, o(x) = 1/(1+ e *) is the sigmoid function
and © is element-wise multiplication.

Each node in our graph maintains its internal state in the corresponding GRU,
and all nodes share the same weights of the GRU, which makes our model efficient
while can also seamlessly deal with differently sized groups as input. In this work,
we use one time step of GRU updating. During testing time, any number of images
are allowed, and the network will output a pairwise label for every two images based
on the obtained value of output nodes on the graph. After constructing our graph
using (3.1)—(3.6), the loss defined on the output of graph takes the form

RALLoss = Z —Lijlog(Py;) — (1 — i) log(1 — Py;), where (3.9)
1j,i#)
1 it I; > I,
h]‘ =<0 if I; < Ij,

0.5 otherwise,
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and P;; = 0;—o0; (outputs of nodes i and j). This formulation has a nice property that
itis robust to noise as described in Burges et al. (2005), and symmetric by construction
so that we can easily utilize training data where some pairs of images appear with

“equal” label for one/more attributes.

Learning Relative Attributes, All at Once

In this section, we show that our graphical structure can be efficiently applied to
learn multiple relative attributes all at the same timei.e., perform multi-task attribute
learning. We consider two aspects of multi-task learning, (1) the performance of
RAL can be improved by utilizing several attributes which have common latent rep-
resentations. Although this has been demonstrated in binary attribute prediction
(BAP) setting, we present experimental results showing that RAL can benefit from
multi-task learning. (2) The second aspect is the efficiency of the construction. While
multi-task learning can improve the performance when attributes are correlated, in
the previous methods Abdulnabi et al. (2015); Wang et al. (2017), the number of pa-
rameters of the network grows much faster as a function of the number of attributes
learned together, which increases the cost of training a multi-task network. As an
example, if the number of parameters trained in RAL one at a time is O(K?) then our
version only increases the number to O(K?+nK), where n is the number of different
relative attributes learned simultaneously. This is much smaller than O(nK?) which
may be needed within other multi-task approaches Abdulnabi et al. (2015); Wang
et al. (2017).

We note that a ndive way to adapt our network (Fig. 3.3) to the multi-task setting
proceeds as follows. We simply change the dimension of the output o; from 1 to m
where m is the number of attributes. But the only change this induces is in the size
of the weight matrix in the readout function. We find that in this case, the graphi-
cal structure may slightly lose its expressive capacity. To address this issue, unlike
section 3.3, which treats all nodes in the graph in the same way, here, we define two
different types of nodes x;,1=1,2,--- ,n,and r;,i=n+1,n+2,--- ,n+ m, where
n is the number of input images in each group (to be consistent, we choose n = 5
throughout our experiments) and m equals the number of attributes the network is
learning at the same time. Here, x; has the same meaning as in section 3.3, which cor-
responds to one image and each 1 corresponds to a certain attribute. It is important

to note that while the representation at x; is learned by the convolutional network,
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the attribute node r; is randomly initialized at the beginning of the training phase
and keeps getting updated in a global manner, similar to the other parameters in the
GNN.

This scheme allows us to explicitly learn a hidden representation for each at-
tribute in a way that the latent variables of the graphical model are influencing all
attribute nodes — this is similar to multi-task learning where we expect that learn-
ing related tasks can benefit each other when carried out concurrently. The feature
extraction process using the convolutional network and the GNN procedure remain
identical as in section 3.4. The only change needed is to redefine how we use the
readout function R(-) to get the output. Here, 0;; = R(|[x; — 7jll1), where for oy, i
gives the index of nodes for the images (from 1 to n) and j gives the index of different
attributes (from 1 to m). The loss function is then defined as the sum of the loss for
each single attribute (see (3.9)) as,

RALLOSSmuiti = Z RALLoss;. (3.10)

i=1

Binary Attribute Prediction

In this section, we present details of how our graphical model can also be used to
predict binary attributes with comparable accuracy as the multi-task CNN model
Abdulnabi et al. (2015), but using much fewer number of parameters.

Binary attribute prediction (BAP) task seeks to predict whether an image has a
certain attribute (e.g., whether a person is wearing a necktie), which can be thought
of as a binary classification task. As suggested in papers for multi-task learning Ab-
dulnabi et al. (2015); Wang et al. (2017), simultaneously learning several attributes
which are correlated can improve the performance of BAP. In this setting, the labels
no longer provide pairwise information. So, it is not simple to easily extend other
RAL methods and adapt them for BAP. For example, the construction using Siamese
network Singh and Lee (2016) cannot be easily modified for BAP since the subnet-
works are no longer linked — this is because it is the pairwise annotations that link the
networks. But our network can still benefit from a fully-connected graph structure
on the training samples because despite the unavailability of pairwise annotations,
the images themselves are still related. So, we can use the same basic architecture.

The framework before loss layer remains the same as the network in section 3.3. The
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loss function for BAP is simply defined as
BAPLoss; = —1;log(Pi) — (1 — 1) log(1 — P;), (3.11)

where 1; is the binary label of image X;, and P; = o;. The total loss is defined as,

m
BAPLOSSmuii = »_ BAPLoss:. (3.12)

i=1
3.4 Experimental Results

In this section, we analyze the performance of our model on several different settings
described in section 3.3. First, we present some key implementation details. Our
network takes in a group of images and outputs the pairwise relationships for this
group (in a relative attribute task) or a binary label for each image (in a attribute
prediction task). We split the train/test set randomly. Then, we randomly split the
train/test set into groups (we choose 5 images per group, but the number can vary)
and use this as the input to our network. We report the pairwise accuracy measured
on the groups of images. In a preprocessing step, we subtract the mean of training
set and crop images to size 227 x 227.

For training, we initialize the conv1 to fc7 layers using AlexNet pre-trained on
the ILSVRC 2012 Krizhevsky et al. (2012) dataset and randomly initialize other parts
using the Xavier initializer Glorot and Bengio (2010). We use mini-batches of size 10
and Adam optimizer Kingma and Ba (2014) with 3; = 0.9, B, = 0.999. The learning
rate of relative attribute learning task is 0.0001, and for attribute prediction task, we
set the learning rate to 0.00001.

Relative Attribute Learning, One at a Time

In this experiment, we evaluate the network described in section 3.3. The goal is to
compare pairs or sets of images according to the strength of a given attribute. We
used the OSR scene dataset Oliva and Torralba (2001) and a subset of the Public
Figure Face Dataset (PubFig) Parikh and Grauman (2011). The OSR scene dataset
consists of 2,688 images with outdoor scene attributes (natural, open, perspective,
large-objects, diagonal-plane and close-depth). The subset of the PubFig con-
tains nearly 800 images from 8 random identities. We split the train/test set ran-
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domly and then split the train/test set into groups and use this as the input of net-
work. We report the results in terms of pairwise accuracy on the groups of images.

Our scheme makes it possible to make use of the information in the group of
images as a whole, which is more informative than just a pair of images (common
to Siamese Networks construction). For a fair comparison with other methods, we
measure the performance of our model by computing the pairwise accuracy for all
pairs in each group.

We choose two methods for baseline comparisons. The first one is the work of
Souri et al. Souri et al. (2016), which trains a deep convolutional network to learn
relative attributes for pairs of images. The second one is the DeepPermNet Anoop
and Gould, which learns relative attributes by learning permutations. Note that this
method needs fully ranked sequences of images as input, which is a more stringent
requirement compared to our network and the work of Souri et al. Souri et al. (2016),
which only needs pairwise labels during training. The accuracy results are shown in
Tables 3.1-3.2. Qualitative results are shown in Fig.3.4.

Table 3.1: Relative attribute learning accuracy evaluated on OSR dataset. On aver-
age, we outperform all previous methods. The penultimate row presents the results
of our network in section 3.4 and the last row presents the results of our multi-task
network in section 3.4, which learns all of the six attributes at once.

Method natural | open | diagonal-plane | close-depth | Mean

Souri et al.Souri et al. (2016) 99.4 97.44 98.43 97.65 97.77
Cruz et al.(AlexNet)Anoop and Gould 97.21 96.65 94.53 96.09 96.62
Cruz et al.(VGG)Anoop and Gould 96.87 99.79 97.99 96.87 98.48
Ours 99.56 99.19 99.63 97.98 98.96
Ours(multi-task) 99.89 99.42 99.46 98.93 99.20

Table 3.2: Relative attribute learning accuracy evaluated on the PubFig dataset. Our
results outperform the work of Souri et al. Souri et al. (2016), which is the state-of-
art for the traditional setting where only pairwise labels are used. Our results are
also competitive and get slightly better results than those in Cruz et al. Anoop and
Gould, which uses ranked input data. The last row shows the results of our network
with multi-task loss function, which learns all of the 11 attributes at once.

Method lips | eyebrows | chubby | male | eyes | nose | face | smiling | Mean

Souri et al.Souri et al. (2016) | 93.62 94.53 9232 | 9559 | 93.19 | 94.24 | 94.76 95.36 94.52
Cruz et al. Anoop and Gould | 99.55 97.21 97.66 | 99.44 | 96.54 | 96.21 | 99.11 97.88 98.14
Ours 98.28 97.11 98.67 | 98.05 | 98.62 | 99.24 | 97.32 99.26 98.51
Ours(multi-task) 99.67 99.33 99.00 | 98.33 | 97.32 | 98.46 | 99.00 97.51 98.55

Compared to the work of Souri et al. Souri et al. (2016), we outperform that
method by a margin of 4% on the Public Figure Face Dataset, and by 1% on the OSR
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Figure 3.4: Qualitative results on RAL (one at a time) from our network. We ran-
domly choose five different images from four different attributes from the PubFig
and OSR datasets and show the results by ordering them for those attributes. The
images are ranked by the corresponding output value of our network. The first two
rows are from the PubFig dataset and the last two rows are images from the OSR
dataset.

scene dataset. Since the accuracy on the OSR dataset is already high, a 1% improve-
ment is meaningful. Compared with the DeepPermNet Anoop and Gould algorithm,
we outperform that algorithm on both datasets on average. Note that DeepPermNet
requires ranked sequences of data with the same length as training data, which may
notbe possible in some applications. Also note that both Sourietal. Sourietal. (2016)
and DeepPermNet Anoop and Gould use VGG CNN model in their experiments, while
we choose the simpler Alexnet Krizhevsky et al. (2012) in all experiments, which has
far fewer parameters. As a result, our model can be trained faster than the baseline

models.

Relative Attribute Learning, All at Once

In this experiment, we evaluate our multi-task network described in section 3.3. We
learn all the attributes in each dataset and report the prediction accuracy results for
each of the attributes on two different datasets in Table 3.1 and 3.2. Qualitative results

are shown in Fig. 3.5.
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Figure 3.5: Qualitative results on RAL (all at once) using our network. The images
are arranged again by ordering them according to the output of our network as Fig.
3.4 but these are learnt from our multi-task loss function (Eq. (3.10)). We can see
that the images are quite nicely ordered even without learning the order explicitly
as is done in DeepPermNet. We also note that the performance on almost all the
images and the attributes is consistent and any randomly chosen subset gives us
good quality results.

As the data presented show, our multi-task model slightly outperforms our single
attribute learning model (section 3.3) and this indicates that some of the attributes
are interrelated thus helping the learning process when we learn them all at once.
Note that in our framework, with every additional attribute to learn, the increase
in the number of parameters of the network is equal to the dimension of the two
vectors, one in the readout function and one in the attribute node (in our work, the
dimension of these two vectors is 4096 x 1). The reader may contrast this with most
multi-task learning networks, such as Wang et al. (2017); Han et al. (2017); Abdulnabi
et al. (2015), many of which use an additional CNN or several more fully connected
layers for each additional attribute, which contribute to more parameters compared

to our model.
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Table 3.3: Attribute prediction accuracy on the Clothing Dataset Chen et al. (2012).
Similar to Abdulnabi et al. (2015) we partition the 23 binary attributes into 4 groups
(shown in Table 3.4). We achieve comparable results as those from MG-CNN Ab-
dulnabi et al. (2015), but with significantly fewer parameters (see section 3.3) and
faster training speed.

Method Colors | Patterns | Cloth-parts | Appearance | Total
M-CNNAbdulnabi et al. (2015) | 91.72 94.26 87.96 91.51 91.70
MG-CNNAbdulnabi et al. (2015) | 93.12 95.37 88.65 91.93 92.82
Ours 91.64 96.81 89.25 89.53 92.39

Binary Attribute Prediction

Here, we evaluate our network for attribute prediction task described in section 3.3.
The multi-task CNN model Abdulnabi et al. (2015) is a natural choice for the base-
line. This model proposes to pre-train a convolutional neural network on each at-
tribute to get the feature vectors, and then performs multi-task learning for multiple
attributes. That model has a large number of parameters and a rich representation
capacity. Similar to Abdulnabi et al. (2015), we also evaluate our model on Cloth-
ing Attributes Dataset Chen et al. (2012). It contains 1,856 images and 26 attributes.
The ground truth is provided at the image-level, and each image is annotated for
every attribute. For comparison, we ignore the multi-class value attributes as in Ab-
dulnabi et al. (2015) and use this information in the same way to divide the 23 binary
attributes into groups. We then use our multi-task network to train each group of at-
tributes together. We report our results in Table 3.3 and the group information is pro-
vided in Table 3.4. M-CNN is the multi-task framework without group information
in Abdulnabi et al. (2015) and MG-CNN is their multi-task framework with group
encoding. The performance of our model is comparable to the results presented in
MG-CNN framework, but is far more efficient both in the number of parameters and
convergence time. For the number of parameters, Abdulnabi et al. (2015) needs one
CNN for each attribute, while we only add 4096 x 1 parameters twice. In terms of
training time, MG-CNN Abdulnabi et al. (2015) takes 1.5 days for training on the
Clothing dataset with two NVIDIA TK40 16GB GPU, while our training takes less
than 4 hours for all 4 groups of attributes on two NVIDIA Geforce GTX 1080Ti 12GB
GPU.
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Table 3.4: Grouping information used in Clothing Dataset Chen et al. (2012).

Group Attributes

black, blue, brown, cyan, gray,
green, many, red, purple, white,yellow
Patterns floral, graphics, plaid, solid, stripe, spot

Colors

Cloth-parts necktie, scarf, placket, collar
Appearance skin-exposure, gender
Limitations

For our network to get a sizable performance benefit, we want that the graph formed
by each random sample, i.e., group or mini-batch of n (e.g., n = 5) images should be
“connected” or at least a subgraph with more than 2 nodes is connected. This allows
learning from more than one image pair at a time to be meaningful — which is the
main strength of our proposal. But if most pair labels do not have any node overlap,
then the graph formed by a group or mini-batch of images will not have a connected
component of size larger than two. We refer the reader to Frieze and Karonski (2015)
(Chapter 4) to see the technical aspects of connectivity. The UT-Zappos50K dataset
Yu and Grauman (2014, 2017) manifests this behavior (and is not ideal for our model
to deliver performance gains). Under this condition, our model actually performs
similar to (although not exactly the same) a Siamese network used in the literature.
The results in Table 3.5 indeed support this intuition: our performance is only slightly
better than Souri et al. (2016), rather than stronger improvements we see elsewhere.

Table 3.5: Relative attribute learning evaluated on UT-Zappos50K-lexicon dataset.
It contains 50025 images of shoes with annotations on 4000 ordered pairs for each of
10 fine-grained attributes. The method in Anoop and Gould does not directly work
on this dataset because of its “ordered sequence” requirement on the input data.

Method comfort | casual | simple | sporty | colorful | durable | supportive | Mean
Souri et al.[3] 88.93 89.20 88.27 91.33 91.67 89.27 91.00 89.31
Ours 88.80 89.82 90.13 92.60 91.87 90.07 92.73 90.07

3.5 Summary

We presented a simple framework that can perform both relative attribute learning
and attribute prediction. To exploit the underlying relationships between latent rep-

resentations of a variety of attributes among a collection of images in a dataset, we
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proposed a simple framework based on natural instantiation of graph neural net-
work, where we unroll the message passing dynamics and use it to construct the
layers. This formulation of a graph neural network can effectively encode the corre-
lational information among multiple images and the multiple attributes as demon-
strated in our experiments on three different datasets. Our framework can be used
to learn the relative attributes either one at a time or all at once with only a modest
increase in the number of parameters compared to other multi-task based methods.
Because our framework learns mainly from pairs of images and does not require a
full ranking it concurrently is less stringent on the annotation requirements of the
training dataset. To the best of our knowledge, this proposal is among the first to
explore the efficacy of multi-task GNN formulations for relative attribute learning.
Our experiments also demonstrate the effectiveness of this architecture in achieving
or surpassing the state-of-the-art results even for binary attributes prediction, where

each attribute is predicted in a binary classification setup.
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Chapter 4

Physarum Powered Differentiable
Linear Programming Layers and

Applications

In the previous chapter, the unrolled message passing dynamics are utilized as lay-
ers to model the graph-structured data. In this chapter, we attempt to model a more
challenging setup-Linear Programming (LP). Many problems in machine learning
can be expressed as, or otherwise involve as a sub-routine, the minimization of a lin-
ear function constrained by a set of linear equality and inequality constraints which
defines a linear program. However, mechanisms that can solve it in a differentiable
way are beginning to be proposed (at the time that this work was carried out). In
this chapter, we tackle this problem by utilizing a special kind of dynamical system
and instantiating it as layers. The work presented in this chapter was published as a
conference paper at AAAI 2021 Meng et al. (2021b).

4.1 Introduction

LPs can be solved efficiently even when the problem sizes are large, and industrial
strength solvers are readily available. Over the last twenty years, direct applications
of LPs in machine learning and computer vision include image reconstruction Tsuda
and Ratsch (2004), denoising Tavakoli and Pourmohammad (2012), deconvolution
Ahmed et al. (2013) surface reconstruction Grady (2008), graphical models Raviku-
mar and Lafferty (2006), scene/view understanding Mauro et al. (2014), and numer-
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ous others. While the use of specialized solvers based on combinatorial optimization
rather than the direct use of a simplex or interior point method has been more com-
mon in large scale settings (e.g., in vision), there are also numerous instances where
LP duality inspired schemes (such as primal-dual methods) have led to competitive
and/or more general solution schemes.

Are LPs needed in modern learning problems? Within the last decade, deep
neural networks have come to dominate many Al problems. So, an LP (or other well-
studied numerical algorithms/methods) will rarely provide an end-to-end model for
a practical problem. Nonetheless, similar to how various linear algebra routines such
as eigendecomposition still play a key role as a sub-routine in modern learning tasks,
LP type models are still prevalent in numerous pipelines in machine learning. For in-
stance, consider a representation learner defined by taking our favorite off-the-shelf
architecture where the representations are used to setup the cost for a “matching”
problem (commonly written as a LP). Then, once a matching problem is solved, we
route that output to pass through downstream layers and finally the loss is evalu-
ated. Alternatively, consider the case where we must reason about (or group) a set
of low-level primitives, via solving an assignment problem, to define a higher order
semantic construct as is often the case in capsule networks Sabour et al. (2017). Or,
our architecture involves estimating the Optimal transport distance Salimans et al.
(2018); Bousquet et al. (2017); Sanjabi et al. (2018) where the cost matrix depends on
the outputs of previous layers in a network. Such a module (rather, its approxima-
tions) lie at the heart of many popular methods for training generative adversarial
networks (GANSs) Arjovsky et al. (2017). Separately, confidence calibration is becom-
ing an important issue in deep learning Guo et al. (2017); Nixon et al. (2019); several
forms of calibration involve solutions to LPs. One approach for dealing with such a
“in the loop” algorithmic procedure Amos and Kolter (2017) is to treat it as a general
two-level optimization. When the feasible set of the LP is a box/simplex or can be
represented using ratio type functions Ravi et al. (2020a), it is possible to unroll the
optimization with some careful modifications of existing subroutines such as pro-
jections. This is not as straightforward in general where one must also concurrently
perform projections on to the feasible set. An ideal solution would be a LP module
that could be used anywhere in our architecture: one which takes its inputs from the

previous layers and feeds into subsequent layers in the network.
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Ours contributions: Backpropagation through LP. The key difficulty in solving
LPs within a deep network is efficiently minimizing a loss {(-) which depends on a
parameter derived from the solution of a LP — we must backpropagate through the
LP solver to update the network weights. This problem is, of course, not unique to
LPs but has been recently encountered in inserting various optimization modules as
layers in a neural network, e.g., reverse mode differentiation through an ODE solver
Chen et al. (2018), differentiable sorting Mena et al. (2018) and formulating quadratic
Amos and Kolter (2017) or cone programs as neural network layers Agrawal et al.
(2019). Our inspiration is a beautiful link Straszak and Vishnoi (2015); Johannson and
Zou (2012) between dynamics of a slime mold (physarum polycephalum) and math-
ematical optimization that has not received attention in deep learning. Exploiting
the ideas in Straszak and Vishnoi (2015); Johannson and Zou (2012) with certain ad-
justments leads to a “LP module/layers” called y—AuxPD that can be incorporated
within various architectures. Specifically, our main result together with the results
in Straszak and Vishnoi (2015); Johannson and Zou (2012) shows that y—AuxPD can
solve a much larger class of LPs. Some immediate advantages of y—AuxPD include
(a) simple plug-and-play differentiable LP layers; (b) converges fast; (c) does not need
a feasible solution as an initialization (d) very easy to integrate or implement. We will
demonstrate how these properties provide a practical and easily usable module for

solving LPs.

4.2 Related Works

The challenge in solving an optimization module within a deep network often boils
down to the specific steps and the end-goal of that module itself. In some cases
(unconstrained minimization of simple functions), the update steps can be analyti-
cally calculated Dave et al. (2019); Schmidt and Roth (2014). For more general un-
constrained objectives, we must perform unrolled gradient descent during training
Amos et al. (2017); Metz et al. (2016); Goodfellow et al. (2013). When the optimiza-
tion involves certain constraints, one must extend the frameworks to use iterative
schemes incorporating projection operators, that repeatedly project the solution into
a subspace of feasible solutions Zeng et al. (2019). Since such operators are difficult to
differentiate in general, it is hard to incorporate them directly outside of special cases.
To this end, Amos et al. (2017) dealt with constraints by incorporating them in the
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Lagrangian and using the KKT conditions. For combinatorial problems with linear
objectives, Vlastelica et al. (2019) implemented an efficient backward pass through
blackbox implementations of combinatorial solvers and Berthet et al. (2020) recently
reported success with end-to-end differentiable learning with blackbox optimization
modules. In other cases, when there is no associated objective function, some authors
have reported some success with using reparameterizations for homogeneous con-
straints Frerix et al. (2019), adapting Krylov subspace methods de Roos and Hennig
(2017), conditional gradient schemes Ravi et al. (2019) and so on.

Our goal here is to incorporate an LP as a module within the network, and is
related in principle to some other works that incorporate optimization routines of
different forms within a deep model which we briefly review here. In Belanger
and McCallum (2016), the authors proposed a novel structured prediction network
by solving an energy minimization problem within the network whereas Mensch
and Blondel (2018) utilized differentiable dynamic programming for structured pre-
diction and attention. To stabilize the training of Generative Adversarial Networks
(GANSs), Metz et al. (2016) defined the generator objective with respect to an unrolled
optimization of the discriminator. Recently, it has been shown that incorporating con-
cepts such as fairness Sattigeri et al. (2018) and verification Liu et al. (2019a) within
deep networks also requires solving an optimization model internally. Closely re-
lated to our work is OptNet Amos and Kolter (2017), which showed how to design
a network architecture that integrates constrained Quadratic Programming (QP) as
a differentiable layers. While the method is not directly designed to work for linear
programs (quadratic term needs to be positive definite), in experiments, one may add
a suitable quadratic term as a regularization. More recently, Agrawal et al. (2019) in-
troduces a package for differentiable constrained convex programming. Specifically,
it utilizes a solver called SCS implemented in CVXPY package O’Donoghue et al.
(2016, 2019), which we denote as CVXPY-SCS in this chapter.

4.3 Why Physarum Dynamics?

Consider a Linear Program (LP) in the standard form given by,

m%?n c'z st. Az=b,z2>0 4.1)
zeR™
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where A € R™*", ¢ € R®

%, b € R™ In (4.1), cis called the cost vector (we explain how

to deal with nonpositive c in Section 4.4), and the intersection of the linear equalities
Ax = b, and inequalities x > 0 is called the feasible set denoted by P. Now, we briefly
discuss two main families of algorithms that are often used to solve LPs of the form
(4.1).

Simplex Algorithms: The Workhorse

Recall that by the Minkowski-Weyl theorem, the feasible set P can be decomposed
into a finite set of extreme points and rays. A family of algorithms called Simplex
exploits this decomposition of P to solve LPs. Intuitively, the Simplex method is
based on the principle that if there exists a solution to a LD, then there is at least one
vertex (or an extreme point) of P that is optimal. In fact, Simplex algorithms can be
seen as First Order methods with a careful choice of update direction so as to move
along the edges of P. There are three key properties of simplex algorithms to solve
LP (4.1):

1. Good: We can obtain exact solutions in finite number of iterations;
2. Bad: The worst case complexity is exponential in m (or n); and

3. Highly undesirable: The update directions are computed by forming the basis
matrix making the algorithm combinatorial/nondifferentiable in nature.

Remark 4.1. It may not be possible to use a differentiable update rule since it would require

an enumeration of vertices of P — exponential in dimensions n Barvinok (2013).

Interior Point Algorithms: Trading Exactness for Efficiency

Asking for exact solutions of LP (4.1) may be a stringent requirement. An approxi-
mate solution of LP (4.1) can be computed using a different family of methods called
Interior Point Method (IPM) in O(y/max(m,n) Wright (1997). Intuitively, while the
iterates of a simplex method proceed along the edges of P, an IPM passes through
the interior of this polyhedron. In particular, IPMs are second order algorithms since
they directly solve the system of nonlinear equations derived from KKT conditions
by applying variants of Newton’s method Wright (1997). As with Simplex methods,
we point out to three key properties of IPM:
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1. Good: IPM based algorithms can efficiently solve LP (4.1) in theory Lee and
Sidford (2014); Gondzio (2012);

2. Bad: IPMs need to be started from a feasible point although there are special
infeasible start IPMs Roos (2006);

3. Bad: In practice, IPMs are faster than Simplex Method only when m, and n are
large, e.g., millions Cui et al. (2019).

Remark 4.2. Even if we can find a feasible point efficiently, it is not easy to warm start [PM
methods due to the high sensitivity of the central path equation John and Yildirim (2008). In

contrast, first order methods like Simplex can be easily warm started Arsham (1997).

Physarum Dynamics: Best of Both Worlds?

The term Physarum Dynamics (PD) refers to the movement of a slime mold called
Physarum polycephalum, and is studied in mathematical biology for its inherent com-
putational nature and properties that closely mirror mathematical optimization. For
example, in an interesting result, Toshiyuki et al. (2000) showed that the slime mold
can solve a shortest path problem on a maze. Further, the temporal evolution of
Physarum has been used to learn robust network design Tero et al. (2007); Johannson
and Zou (2012), by connecting it to a broad class of dynamical systems for basic com-
putational problems such as shortest paths and LPs. In Straszak and Vishnoi (2015),
the authors studied the convergence properties of PD for LPs, and showed that these
steps surprisingly mimic a steepest-descent type algorithm on a certain Riemannian
manifold. While these interesting links have not been explored in Al/deep learning,
we find that the simplicity of these dynamics and its mathematical behavior provide
an excellent approach towards our key goal.
We make the following mild assumption about LPs (4.1) that we consider here

Assumption 1 (Feasibility). The feasible set B :={z : Az = b,z > 0} of (4.1) is nonempty.

For the applications considered in this chapter, Assumption 1 is always satisfied.
We now describe the PD for solving LPs and illustrate the similarities and differences
between PD and other methods.

Consider any vector z € R™ with z > 0 and let W € R™*™ be the diagonal matrix
with entries z—i,i =1,2,..,n. Let O = AWAT and p € R™ is the solution to the linear
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system Op = b. Let ¢ = WATp. The PD for a LP (e.g., in (4.1)) given by (A, b, ¢) is
defined as,

dzi(t)
dt

:qi(t)—li(t), 121,2,...,TL. (42)

Equivalently, using the definition of q we can write the continuous time PD compactly

as,
z=W(ATL'b—0¢). (4.3)

Theorem 1 and 2 in Straszak and Vishnoi (2015) guarantee that (4.3) converges to an
e—approximate solution efficiently with no extra conditions and its discretization
converges as long as the positive step size is small enough.

Remark 4.3 (PD vs IPM). Similar to IPM, PD requires us to compute a full linear system
solve at each iteration. However, note that the matrix L associated with linear system in PD
is completely different from the KKT matrix that is used in IPM. Moreover, it turns out that
unlike most IPM, PD can be started with an infeasible starting point. Note that PD
only requires the initial point to satisfy As = b which corresponds to solving ordinary least
squares which can be easily done using any iterative method like Gradient Descent.

Remark 4.4 (PD vs Simplex). Similar to Simplex, PD corresponds to a gradient, and there-
fore is a tirst order method. The crucial difference between the two methods, is that the metric
used in PD is geodesic whereas Simplex uses the Euclidean metric. Intuitively, using the
geodesic metric of P instead of the Euclidean metric can vastly improve the convergence speed
since the performance of first order methods is dependent on the choice of coordinate system
Yang and Amari (1998); Zhang and Sra (2016).

When is PD efficient? As we will see shortly in Section 4.6, in the two applica-
tions that we consider in this chapter, the sub-determinant of A is provably small —
constant or at most quadratic in m, n. In fact, when A is a node incidence matrix, PD
computes the shortest path, and is known to converge extremely fast. In order to be
able to use PD for a wider range of problems, we propose a simple modification de-
scribed below. Note that since many of the vision problems require auxiliary/slack
variables in their LP (re)formulation, the convergence results in Straszak and Vishnoi

(2015) do not directly apply since L in (4.3) is not invertible. Next, we discuss how to
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deal with noninvertibility of L using our proposed algorithm called y—AuxPD (in
Algorithm 3).

4.4 Dealing with Auxiliary Variables using y—AuxPD

In the above description, we assume that ¢ € RZ,. We now address the case where
ci = 0 under the following assumption on the feasible set P of LP (4.1):

Assumption 2 (Bounded). The feasible set B C [0, K", ie,ze B = z; < KVie[n]

Intuitively, if P is bounded, we may expect that the optimal solution set to be
invariant under a sufficiently small perturbation of the cost vector along any direction.
The following observation from Johannson and Zou (2012) shows that this is indeed
possible as long as P is finitely generated:

Observation 4.5 (Johannson and Zou (2012)). Let € > 0 be the given desired level of
accuracy, and say c; = 0 for some i € [n]. Recall that our goal is to find a point 2 € P
such that ¢'2 — c¢"z* < € where z* is the optimal solution to the LP (4.1). Consider the
Y—perturbed LP given by {A,b, ¢}, where &; = ciif ¢ > 0and ¢ =y ifci = 0. Let z; be
an extreme point that achieves the second lowest cost to LP (4.1). Now it is easy to see that if
Y < ﬁ where 8 = ¢'zy — c'z*, then z* is an approximate solution of {A, b, &}. Hence, it
suffices to solve the y—perturbed LP.

With these modifications, we present our discretized y—AuxPD algorithm 3 that
solves a slightly perturbed version of the given LP.

Remark 4.6. Note that y—perturbation argument does not work for any P and c since LP

(4.1) may be unbounded or have no extreme points.

Observation 4.5 can be readily used for computational purposes by performing
a binary search over vy if we can obtain a finite upper bound v,,. Furthermore, if v,,
is a polynomial function of the input parameters m,n of LP, then Observation 4.5
implies that y—AuxPD algorithm is also efficient. Fortunately, for applications that
satisfy the bounded assumption 2, our Theorem 4.8 shows that a tight upper bound
Yu On Yp can be provided in terms of M (diameter of P).

Implementation. Under Assumption 2, negative costs can be handled by replac-
ing z; = —y; whenever c¢; < 0, or in other words, by flipping the coordinate axis
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Algorithm 1: y—AuxPD Layer

1 Input: LP problem parameters A, b, ¢, initial point zy, Max iteration number K,
step size h, accuracy level €, approximate diameter yp

2 Set zs + zy if zy is provided else rand([nl, (0, 1))

3 Perturb cost ¢ <— ¢ +vp1y where 1 is the binary vector with unit entry on the
indices i with ¢; =0

sfori=1toKdo

5 | Set: W <« diag(zs/c)

¢ | Compute: O + AWAT

7 | Compute: p < O~ 'b using iterative solvers

8

9

Set: q + WATp

Update: z; +— (1 —h)zs + hq

10 | Project onto R>.: zs <— max (zs, €)
11 end

12 Return: z,

of coordinates with negative costs, which has been noticed in Johannson and Zou
(2012). Since we use an iterative linear system solver to compute ¢, we project x on

to R> . after each iteration: this corresponds to a simple clamping operation.

4.5 Analysis of Some Testbeds for y—AuxPD: Bipartite
Matching and SVMs

In order to illustrate the potential of the y—AuxPD layer (Alg. 3), we consider two
classes of LPs common in a number of applications and show that they can be solved
using y—AuxPD. These two classes of LPs are chosen because they link nicely to

interesting problems involving deep neural networks which we study in §4.6.

Y—AuxPD PGD-Dykstra
Iter. # 10 50 100 10 50 100
Proj. # NA NA NA 5 10 50
Objective | 0.100 0.098 0.099 | 0.137 0.121 0.120
Time (s) | 0.016 0.040 0.071 | 0.016 0.146 0.498

Table 4.1: Results on solving random matching problems.
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Bipartite Matching using Physarum Dynamics

Given two finite non-intersecting sets J, J such that |J = m, [J| = n,n < m, and
a cost function € : J x J — R, solving a minimum cost bipartite matching problem
corresponds to finding a map f : I — J such that total cost }_; C(i, f(1)) is minimized.
If we represent f using an assignment matrix X € R™*™, then a LP relaxation of the

matching problem can be written in standard form (4.1) as,

in  tr(CX' 1!
(om0 X+ Ynsm

sit. X1y =10, X1y + 5 =1 (4.4)

where € € R™™ is the cost matrix, 14 is the all-one vector in d dimension, and
sm € R™ is the slack variable.

Remark 4.7. Note that in LP (4.4), the slack variables s, impose the m inequalities X", <
1.

The following theorem shows that the convergence rate of y—AuxPD applied to
the bipartite matching in (4.4) only has a dependence which is logarithmic in n.

Theorem 4.8. Assumeweset0 <y <y suchthat1/y, = O(/m). Then, oury—AuxPD
(Algorithm 3) converges to an optimal solution to (4.4) in O (33) iterations where O hides
the logarithmic factors in m and n.

Proof. (Sketch) To prove Theorem 4.8, we use a result from convex analysis called the
sticky face lemma to show that for all small perturbations of c, the optimal solution
set remains invariant. We can then simply estimate y,, to be the largest acceptable
perturbation (which may depend on C, B but not on any combinatorial function of B
like extreme points/vertices). O

Verifying Theorem 4.8. We construct random matching problems of size n =
5, m = 50 (used later in §4.6) with batch size 32, where we randomly set elements of
C to be values in [0,1]. We compare our method with CVXPY-SCS and a projected
gradient descent algorithm in which the projection exploits the Dykstras algorithm
(used by Zeng et al. (2019) in §4.6) (we denote it as PGD-Dykstra).

Evaluation Details. We run 100 random instances of matching problems for
both our y—AuxPD algorithm and PGD-Dykstra with different number of iterations.



60

We report the objective value computed using the solution given by our y—AuxPD
solver /PGD-Dykstra/CVXPY-SCS. Our step size is 1 and learning rate of PGD-Dykstra
is set to 0.1 (both used in §4.6). For CVXPY-SCS, the number of iterations is deter-
mined by the solver itself for each problem and it gets 0.112 objective with mean time
0.195 (s). The results of y—AuxPD and PGD-Dykstra are reported in Table 4.1. Our
Y—AuxPD algorithm achieves faster convergence and better quality solutions.

{;-normalized Linear SVM using y—AuxPD

In the next testbed for y—AuxPD, we solve a {;-normalized linear SVM Hess and
Brooks (2015) in the standard form of LP (4.1). Below, K[43 stands for K(x;, Xj) (15 —

062)')1

o1,02,8,b1,b2,&

min isi —I—Qi(&—FZZi)
im1 im1

st yi <Z yjlzﬁ’j] + (by — b2)> +& —Mzi -1 =1,
j=1

n n (4.5)
D uKY —sitpi=0, ) yKY4si—ai=0,

j=1 j=1

Zi + Ty = 1/ X1, X2, S, bl/bZI al Zi, li/ Pi/ Qi, Ty, > 0

Vi=1,2,---,n.

Like Thm. 4.8, we can show a convergence result for {;-SVM (4.5) (see appendix).

Verifying convergence of y—AuxPD for {;-SVM (4.5). We compare our method
with the recent CVXPY-SCS solver Agrawal et al. (2019) which can also solve LPs in a
differentiable way. We constructed some simple examples to check whether CVXPY-
SCS and our y—AuxPD solver works for SVMs (e.g., binary classification where train-
ing samples of different class come from Gaussian distribution with different mean).
Both y—AuxPD and CVXPY-SCS give correct classification results. We will further
show in §4.6 that when used in training, y—AuxPD achieves better performance and
faster training time than CVXPY-SCS.
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Figure 4.1: Architecture of DMM Zeng et al. (2019): The yellow box is where the lin-
ear program is solved. In this application the linear program is a bipartite matching
problem.
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Figure 4.2: Architecture of Meta-learning Lee et al. (2019): The yellow box is where
the linear program is solved. In this application, the linear program is a linear SVM.

4.6 Differentiable LPs in Computer Vision

We now demonstrate the versatility of our y—AuxPD layer in particular scenarios
in computer vision. Our goal here is to show that while the proposed procedure
is easy, it can indeed be used in a plug and play manner in fairly different settings,
where the current alternative is either to design, implement and debug a specialized
sub-routine Zeng et al. (2019) or to utilize more general-purpose schemes when a
simpler one would suffice (solving a QP instead of a LP) as in Lee et al. (2019). We
try to keep the changes/modifications to the original pipeline where our LP solver is
deployed as minimal as possible, so ideally, we should expect that there are no major
fluctuations in the overall accuracy profile.
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Differentiable Mask-Matching in Videos

We review the key task from Zeng et al. (2019) to introduce the differentiable mask-
matching network for video object segmentation, and how /why it involves a LP so-
lution. The overall architecture is in Fig. 4.1.

Problem Formulation. Given a video with T frames as well as the mask templates
in the first frame, the goal is to obtain a segmentation of the same set of instances in all
of remaining frames. Zeng et al. (2019) shows that differentiable matching between
the templates and the bounding boxes proposed by the detector achieves superior
performance over previous methods.

LP instance. The goal is to use the cost matrix and solve a matching problem.
Recall that minimum-cost bipartite matching can be formulated as a integer linear
program (ILP) and can be relaxed to a LD, given by the formulation in standard form
stated in (4.4) (identical to the ILP and LP in Zeng et al. (2019)). The number of
proposals m is much larger than the number of templates n and so one would ask
that X'1,, < 1,, instead of X'1,, = 1,,.

Solver. In Zeng et al. (2019), the authors use a specialized projected gradient
descent algorithm with a cyclic constraint projection method (known as Dykstra’s al-
gorithm) to solve the LP. The constraints in this LP are simple enough that calculating
the projections is not complicated although the convergence rate is not known. We
can directly replace their solver with y—AuxPD in Alg. 3 to solve the problem, also
in a differentiable way. Once the solution is obtained, Zeng et al. (2019) uses a mask

refinement module which we also use to ensure consistency between the pipelines.

Experiments on Youtube-VOS.

Parameter settings. The projection gradient descent solver in Zeng et al. (2019) has
three parameters to tune: number of gradient steps, number of projections, and learn-
ing rate. We use Ngrqq = 40, Ny,105 = 5, Ir = 0.1 as in their paper to reproduce their
results. For y—AuxPD layer, the choice is simple: step size h = 1 and K = 10 itera-
tions work well for both two experiments and the other tests we performed. From
Table 4.1 we can see that the PGD-Dykstra solver from Zeng et al. (2019) is faster and
more tailormade for this application than CVXPY-SCS thus we only compare with
the PGD-Dykstra solver for this application.

How do different solvers compare on Youtube-VOS? Our final results are shown

in Table 4.2. Our solver works well and since the workflow is near identical to Zeng
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Hm Hr 3d 9:111 fTrr fTrd
DMM-Net Zeng et al. (2019) | 63.4 72.7 93 773 849 105
vY—AuxPD layer 634 722 92 773 853 104

Table 4.2: Results on Youtube-VOS train-val split. Subscripts m, r, d stand for mean,
recall, and decay respectively.

et al. (2019), we achieve comparable results with Zeng et al. (2019) while achieving
small benefits in inference time. We notice that although our solver performs better
for a simulated matching problems; since the matching problem here is small and
the cost matrix learned by the feature extractor is already good (so easy to solve), the
runtime behavior is similar. Nonetheless, it shows that the general-purpose solver
can be directly plugged in and offers performance which is as good as a specialized
solution in Zeng et al. (2019) that exploits the properties of the particular constraint

set.

Meta-learning for Few-shot Learning

We briefly review the key task from Lee et al. (2019) to introduce the few-shot learn-
ing task using a meta-learning approach, and how it involves getting a solution to a
LP. Due to limited space, we refer readers to Lee et al. (2019) for more details of the
meta-learning for few-shot learning task. The overall architecture is in Fig. 4.2.

Problem Formulation. Given a training set D" *'™ = {(x,y.)}]_,, in this prob-
lem, the goal of the base learner A is to estimate parameters 6 of the predictor y =
f(x; 0) so that it generalizes well to the unseen test set D't = {(x, yt)},?zl. The meta
learner seeks to learn an embedding model ¢ that minimizes the generalization error
across tasks given a base learner A.

LP instance. There are several requirements for the base learners. First, the eval-
uation needs to be very efficient since a base learner needs to be solved in every
iteration within the meta-learning procedure. Second, we need to be able to estimate
and backpropagate the gradient from the solution of the base learner back to the
embedding model f4, which means that the solver for the base learner needs to be
differentiable. In Lee et al. (2019), the authors use a multi-class linear support vector
machine (SVM) with an {, norm on the weights Crammer and Singer (2001). Instead,
toinstantiate an LP, we use a {; normalized SVM proposed by Hess and Brooks (2015).

The optimization model for this SVM in a standard form is shown in (4.5). This is a
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CIFAR-FS 5-way FC100 5-way
LP Solver 1-shot 5-shot 1-shot 5-shot
MetaOptNet-CVXPY-SCS 702+0.7 83.6+05 381+06 51.7+0.6
MetaOptNet-Optnet (with regularization) 699 +£0.7 83.9+0.5 373+05 522+05
MetaOptNet-y—AuxPD (Ours) 714+0.7 843+05 382+05 542405

Table 4.3: Results on CIFAR-FS and FC100. In K-way, N-shot few shot learning, K is
the number of classes and N is the number of training examples per class.

binary SVM model, on top of which we run (%) pairwise SVMs to obtain the solution
where k is the number of classes in the task.

Solver. In Lee et al. (2019), the authors use OptNet. Note that the number of
parameters is only related to the number of training examples and the number of
classes, which is often much smaller than the dimensionality of the features for few-
shot learning. Since feature selection seems more appropriate here, we may directly
replace OptNet with our y—AuxPD layer to solve the {;-SVM efficiently. Our baseline
method is CVXPY-SCS Agrawal et al. (2019). The implementation of Optnet Amos
and Kolter (2017) does not directly support solving LPs since it requires a positive
definite quadratic term. Still, to test its ability of solving LPs, we add a diagonal ma-
trix with a small value (0.1, since diagonal value smaller than 0.1 leads to numerical
errors in our experiment) as the quadratic term (can be thought of as a regularization
term).

Experiments on CIFAR-FS and FC100.

Datasets. We follow the code from Lee et al. (2019) to conduct the experiments on
CIFAR-FS and FC100. Other training details and dataset information are in the sup-
plement.

How do different solvers compare on CIFAR-FS and FC100? The results on
CIFAR-FS and FC100 are shown in Table 4.3. Using the {; normalized SVM, our
solver achieves better performance than CVXPY-SCS Agrawal et al. (2019) and Opt-
net (with a small quadratic term as regularization) on both datasets and both the
1-shot and 5-shot setting. Expectedly, since the pipeline is very similar to Lee et al.
(2019), we achieve a similar performance as reported there, although their results
were obtained through a different solver. This suggests that our simpler solver works
at least as well, and no other modifications were needed. Importantly, during the
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batch size 8 32 128
CVXPY-SCS 32.3 122.7 455.2
Optnet 424 88.1 2437
vY—AuxPD (Ours) | 24.0 25.1 25.8

Table 4.4: Time (ms) spent on solving a batch of LP problems. The time reported
here for CVXPY-SCS does not include that spent on constructing the canonicalization

mapping.

Variance of noise 0 0.01 003 005 01
Test accuracy 714 701 69.1 682 6191

Table 4.5: Experiment on CIFAR-FS 5-way 1-shot setting where zero mean random
Gaussian noise is added to the solution of y—AuxPD solver.

training phase, our solver achieves 4x improvement in runtime compared with
CVXPY-SCS (baseline which can also solve the {;-SVM). Lee et al. (2019) also reported
the performance of solving £, normalized SVM. The choice of {; versus {, often de-
pends on specific application settings.

We also compare the time spent on solving a batch of LP problems with n =
92, m = 40,p = 122 (same size used in the experiment), where n is number of vari-
ables, m is number of equality constraints and p is the number of inequality con-
straints in the original problem form. Table 4.4 shows that our implementation is
efficient for batch processing on GPU, which is crucial for many modern Al applica-
tions. We also performed a GPU memory consumption comparison with a batch size
of 32: our solver needs 913MB GPU memory, CVXPY-SCS needs 813MB and Optnet
needs 935MB which are mostly comparable.

How does LP solver influence the global convergence of the task? To under-
stand how the quality of LP solver influences the global convergence of the learning
task (i.e., where the LP is being used), we conduct a simple experiment. This ad-
dresses the question of whether a good LP solver is really needed? Here, we add
a random Gaussian noise with zero mean and small variance to the solution of LP
solver (to emulate results from a worse solver) and observe the convergence and fi-
nal accuracy in the context of the task. We can see in Table 4.5 that the quality of LP
solution has a clear influence on the overall performance of the training (few-shot
learning in this example).
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4.7 Summary

This chapter describes how Physarum dynamics based ideas Straszak and Vishnoi
(2015); Johannson and Zou (2012) can be used to obtain a differentiable LP solver that
can be easily integrated within various deep neural networks if the task involves ob-
taining a solution to a LP. The dynamics is unrolled for a certain number of steps un-
til it converges and this unrolled dynamics is used as the layer. Outside of the tasks
shown in our experiments, there are many other use cases including differentiable
isotonic regression for calibration, differentiable calculation of Wasserstein Distance,
differentiable tracking, and so on. The algorithm, y—AuxPD, converges quickly with-
out requiring a feasible solution as an initialization, and is easy to implement/inte-
grate. Experiments demonstrate that when we preserve existing pipelines for video
object segmentation and separately for meta-learning for few-shot learning, with sub-
stituting in our simple y—AuxPD layer, we obtain comparable performance as more
specialized schemes. As briefly discussed earlier, recent results that utilize implicit
differentiation to solve combinatorial problems Vlastelica et al. (2019) or allow us-
ing blackbox solvers for an optimization problem during DNN training Berthet et al.
(2020); Ferber et al. (2020), are indeed promising developments because any state of
the art solver can be utilized. However, current LP solvers are often implemented to
be CPU-intensive and suffer from overhead compared with solvers that are entirely
implemented on the GPU. This is beneficial for DNN training. The LPs considered
in this chapter have comparable numbers of variables and constraints, and the pro-
posed solver may become inefficient when the number of constraints is much larger
than that of the variables. In the next chapter, we will propose a solver suitable for
this setting.
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Chapter 5

Differentiable Optimization of
Generalized Nondecomposable

Functions using Linear Programs

In the last chapter, we unrolled physarum dynamics to construct a differentiable LP
solver. In this chapter, the goal is similar-to propose an LP solver, but here we fo-
cus specifically on optimizing nondecomposable functions, where the number of
constraints is usually larger than the number of variables. This brings additional
challenges and we show how to use a Newton method to tackle this problem. Be-
sides, the solver we propose in this chapter computes backward gradients via the
fixed point which saves the time cost during the process of computing the backward
gradients compared with the physarum solver in the previous chapter. The work in
this chapter was published as a conference paper at NeurIPS 2021.

5.1 Introduction

Commonly used losses such as cross-entropy used in deep neural network (DNN)
models can be expressed as a sum over the per-sample losses incurred by the current
estimate of the model. This allows the direct use of mature optimization routines,
and is sufficient for a majority of use cases. But in various applications ranging from
ranking/retrieval systems to class imbalanced learning, the most suitable losses for
the task do not admit a “decompose over samples” form. Examples include Area un-
der the ROC curve (AUC), multi-class variants of AUC, F-score, Precision at a fixed
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recall (P@R) and others. Optimizing such measures in a scalable manner can pose
challenges even in the shallow setting. For AUC maximization, we now know that
convex surrogate losses can be used in a linear model Liu et al. (2018); Natole et al.
(2018) in the so-called ERM framework. These ideas have been incorporated within a
deep neural network and solved using SGD type method in Liu et al. (2019b). These
kinds of computational results on stochastic and online data models have also been
explored in Ataman et al. (2006); Cortes and Mohri (2004); Gao et al. (2013). There
are also results for measures other than the AUC: Nan et al. (2012); Dembczynski
etal. (2011) gives exact algorithms for optimizing F-score and Eban et al. (2017); Ravi
et al. (2020b) proposes scalable methods for non-decomposable objectives which uti-
lizes Lagrange multipliers to construct the proxy objective. The authors in Moha-
patra et al. (2018) propose to use a structured hinge-loss upper bound to optimize
average precision and NDCG. Recently, Fathony and Kolter (2020) presented a gen-
eral formulation for such nondecomposable measures using adversarial prediction
framework, and showed that it is indeed possible to incorporate such measures into
differentiable pipelines using ADMM based techniques.

Our work described here utilizes the simple observation that a number of these
non-decomposable objectives can be expressed in the form of an integer program
that can be relaxed to a linear program (LP). Our approach is based on the premise
that tackling the LP form of the non-decomposable objective as a module within the
DNN, one which permits forward and reverse mode differentiation and can utilize
in-built support for specialized GPU hardware in modern libraries such as PyTorch,
is desirable. First, as long as a suitable LP formulation for an objective is available,
the module may be directly used. Second, based on which scheme is used to solve
the LP, one may be able to provide guarantees for the non-decomposable objective
based on simple calculations (e.g., number of constraints, primal-dual gap). The
current tools, however, do not entirely address all these requirements, as we briefly
describe next. A characteristic of the LPs that arise from the losses mentioned above
is that the constraints (including the mini-batch of samples themselves) are modified
at each iteration — as a function of the updates to the representations of the data in
the upstream layers.

In principle, of course, backpropagating through a convex optimization model
(and in particular, LPs) is not an unsolved problem (e.g., the physarum solver we
proposed in the last chapter). For LPs, we can take derivatives of the optimal value
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/ 6. Q=A.transpose(1,2).omm(relu(A.omm(z) — b.unsqueeze(2)))
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( 7. d = torch. (P). (Q)
Our Newton LP solver 8 z=z+d
L 9. v=1/epsilon * relu(A.omm(z) — b.unsqueeze(2))
\ 10. v_gr_0 = (v>0).float().squeeze().nonzero().squeeze(1)
\| 11.Aj=A[;,v gro,:;b_j=b[;,v gr 0]
( 12. z = torch. b_j,Aj
Differentiable estimate of \ 13 E)ut;lzi' , (b, AJ)
L the metric : We provide sparse support for these operations in Pytorch

Figure 5.1: Overview of how to compute differentiable non-decomposable metric
and code example of our LP solver. We provide sparse support for operations which
are not supported in official Pytorch library (colored operations in the figure).

(or the optimal solution) of the model with respect to the LP parameters, and this can
be accomplished by calling a powerful external solver. Often, this would involve the
overhead of running the solver on the CPU. Solvers within CVXPY, are effective but
due to their general-purpose nature, rely on interior point methods. OptNet Amos
and Kolter (2017) is quite efficient but designed for quadratic programs (QP): the
theoretical results and its efficiency depends on factorizing a matrix in the quadratic
term in the objective (which is zero/non-invertible for LPs). The primal-dual prop-
erties and implicit differentiation for QPs do not easily translate to LPs due to the
polyhedral geometry in LPs. The ideas in Meng et al. (2020) are only applicable
when the number of constraints is approximately equal to the number of variables —
an invalid assumption for the models that we study here.

Our contributions. We provide LP formulations of widely used nondecompos-
able terms that satisfy the requirements for our solver. We show that the dynamics
formed by the modified Newton’s algorithm in Mangasarian (2004) can be used for
deep neural network (DNN) training in an end-to-end manner without requiring ex-
ternal solvers where support for GPUs remains limited. Specifically, by exploiting
self-concordance of the objective, we show that the algorithm can converge globally
without line search strategies. We then analyze the gradient properties of our ap-
proach, and some modifications to improve stability during backpropagation. Our
experiments will show that this scheme based on Mangasarian’s parametric exterior

penalty formulation of the primal LP is a computationally effective and scalable strat-
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egy to solve LPs with a large number of constraints. On the practical side, we provide
two ways to deal with the scaling issue when the constraint matrix is large. On the
one hand, we show that sufficient dimension reduction can be used in our solver to
solve the problem in a lower dimension space. On the other hand, when the matrix
is sparse, with our new sparse implementation, we show that we can train Resnet-18
with 10x mini-batch size (memory savings) on a 2080TI Nvidia GPU, see Fig. 5.1.

5.2 Nondecomposable Functions and corresponding
LP models

We first present a standard LP form and then reparameterize several generalized
nondecomposable objectives in this way, summarized in a table in the appendix. We
start with the binary AUC, extend it to multi-class AUC, and then later, discuss a
ratio objective, F-score. The appendix also includes a discussion of other objectives
that are amenable to our method.

Notations. Recall that we use I, to represent the identity matrix of size r; By _
(and By /) gives the k-th row (and k’-th) column of B. We also use X € R™*dimx to
represent the features fed to a classifider and Y € {0, 1} to represent the binary label.
f(x;) denotes the score function for the classifier where x; € X.

We consider a general linear program (LP) that can be given by

min, ¢'z subjectto Az<b, z>0 (5.1)

Maximizing AUC

The Area under the ROC Curve (AUC) calculates the probability that a classifier f(-)
will rank a randomly chosen positive sample higher than a randomly chosen negative
sample. AUC varies between 0 and 1, where 1 represents all positives being ranked
above the negatives. AUC may be estimated using the Wilcoxon-Mann-Whitney
(WMW) Statistic Hanley and McNeil (1982), as

Definition 5.1 (AUC). Let n be the number of samples. Let X (and X_ resp.) be the
set of positive (and negative resp.) samples such that |X.| + |X_| = n where | - | is the
cardinality of the set. Then, AUC is given as (3 5 S P 0y or0)) /(X ] IXC]) for
xi:1ef{l,---,nkL
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Here, we follow Ataman et al. (2006) to calculate the AUC based on the WMW
statistic as follows.

min zi; st f(xy) —f(x;) > e—2zy; wherex; € X,,x; € X_; zi; >0,
oy Z Z j (xi) — ;) j +rXj j
(5.2)

where € is a given constant. Problem (5.2) computes AUC indirectly by minimizing
the number of pairs (one each from the positive and negative classes) where the
positive sample is not ranked higher than the negative sample: so, the number of
zero entries in z equals the number of pairs where this condition is not true. For a
given z, we have that,

AUC = (n—[|z]lo) / (X4l X_) = (n =) > e 'relu(0,—zy + €)) / (IXo| [X_]).
i

If zi; is O, then e 'relu(0, —zij + €) equals 1. Otherwise zi; > 0, it follows from the
first constraint in (5.2), that zi; > €, so e 'relu(0, —zi; + €) equals 0. Observe that in
(5.2), the number of constraints is [X|[X_|, which is O (n?).

Maximizing Multi-class AUC

An extension of AUC to the multi-class setting, AUC,,, is defined in Kleiman and
Page (2019). The AUC,, objective optimizes an indicator matrix calculated on the

orientation function, O;; defined as,

Definition 5.2 (Orientation Function; Kleiman and Page (2019)). Assume we have K
classes {y1,- -+ ,yx}. Let f(xi, —) € R¥ (extension of f(.) to the multi-class setting) indicate
the model’s prediction on x; for each of the K classes (class-specific probability). Let x; provide
the index of x;’s true class label. Let P € R**¥ be a partition matrix where Py y is the cost
of classifying a sample as class k when it should be k'. Define,

Viw =Py — P _and v = Vxixg € R; Oi; = (Vx;‘ - Vx;)(ﬁff(xi; =) — (v, £(x5, =)

The LP formulation of AUC,, is fully characterized by P. We canset P(k, k) = 0Vk
and 1 for all other entries. We can also define a P with arbitrary entries or formulate

AUC in a one-vs-all setting (denoted as AUC®*?). Here, for presentation, use the
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simplified 0/1 partition matrix P. Let

£(1,j) = £0xi, x{) — £(xj, x7) + £(x5,x57) — £(xi, x7) (5.3)

Then the LP formulation is given by,

n n
AUCELm : ]_’]f;ln Z Z Zij s.t. dllf(l,J) Z € — Zij/ \Vll,J . X;k < X;k Zij 2 0
ij

i=1 j:1:xf<x]?‘

(5.4)

where Ei]- = Vi — VX;. Problem 5.4 can be seen as an extension of our binary AUC
model, where z;; is the ranking between a pair of points defined for multiple classes.

Maximizing F-score

The F-score (or F-measure) is a representative of objectives expressed as ratios of
some combination of True positives (IP), False positives (FP), True negatives (TN)
and False negatives (FN). We use the result in Dembczynski et al. (2011) to express
the F-score in the ratio form and further relax it into the LP form. The detailed LP

formulation of F-score and other ratio functions is in the appendix.

5.3 Backpropagation via Fast Exterior Penalty
Optimization

Unlike traditional feedforward networks, where the output of each layer is a rela-
tively simple (albeit non-linear) function of the previous layer, a LP layer must solve
a constrained problem, therefore implementing scalable/efficient backpropagation
schemes that minimizes overhead requires more care and is an active topic of re-
search. This problem is, as discussed in the previous chapter, not unique to LPs
and manifests in differentiable sorting Mena et al. (2018) and formulating quadratic
or cone programs Amos et al. (2017). One may unroll gradient descent steps Amos
et al. (2017); Goodfellow et al. (2013); Metz et al. (2016) or use projections Zeng et al.
(2019). Recently Agrawal et al. (2019) introduced a package for differentiable con-
strained convex programming, which includes LPs as a special case. For LPs, Meng
et al. (2020) presents an unrolled scheme and Blondel et al. (2020) shows that we can
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differentiate through LP formulations of sorting/ranking exactly by using smooth
approximations of projection steps. Berthet et al. (2020) describes an interesting ap-
proach where one computes approximate gradients through ranking/shortest path

problems by stochastic perturbation techniques.

Remark 5.3. Some previous works Zeng et al. (2019) have considered LPs where the con-
straints are deterministic (for a fixed input dimension), i.e., do not depend on the data X,
which is different from the LPs in Sections 5.2-5.2.

Note that perturbation techniques in Berthet et al. (2020) are applicable to our
LPs as well. The Fenchel Young losses in Berthet et al. (2020) is attractive because
there is no need to compute the Jacobian. Implementation-wise, one could think of
the backward pass as a function given the input and output of the forward pass. But
the gradient expressions of the losses involves an expectation and hence may require
multiple calls to a LP solver in order to approximate the expectation. Parallelization
and warm starts were shown to alleviate this dependency to some extent by sampling
in parallel.

Rationale for our approach. Consider a LP with a large m number of constraints
in fixed dimensions n (n < m). This assumption holds in all formulations in Sec-
tion 5.2. This is because we assume that the architecture is fixed whereas minibatch
size depends on the complexity of the task (stable gradient or when noise in gradi-
ent is high). Hence, solving such LPs using off-the-shelf solvers as in Berthet et al.
(2020), in the general case, could slow down training. The strategy in Agrawal et al.
(2019) does offer benefits over Amos and Kolter (2017) for sparse QPs. Our strat-
egy is to run Mangasarian’s Newton’s method on an exterior penalty function of the
LP. There are two advantages: (i) during forward pass, quadratic local convergence
of Newton’s method indicates that unrolling the method may be reasonable; and
further (ii) based on the relationship between dual and primal variables, and the ex-
actness of the exterior penalty we can show that backward pass is independent of m.
We will discuss both results and some modifications to deal with discontinuous Hes-
sian (and its inverse) that is required for Newton’s method. A similar approach is
adopted in Amos and Kolter (2017) where Primal-Dual Interior Point methods with
implicit differentiation is used for differentiation purposes. But the exterior penalty
in (5.5) satisfies a nice property: primal and dual solutions are related by a closed form

expression which can be exploited for efficient backpropagation.
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Forward Pass using Newton’s Algorithm on a Sufficiently Reduced
Space

Fast automatic (forward or reverse mode) differentiation requires performing the
forward pass efficiently. In our setting, we seek to solve and backpropagate through
an LP. We will focus on reverse mode differentiation since it is the most suitable for
DNN training.

Given a primal LP, for a fixed accuracy ¢ > 0, Mangasarian (2004) solves an un-

constrained problem,
S T
min g(g) := 5 [o(AG — b)||" + ey, (5.5)

where o(-) = max(-,0) represents the elementwise relu function. A modified New-
ton’s method can be used to solve (5.5) that performs the following iterations:

§=9+Ad (5.6)

where

d=H(@) 'Vg(@) = (Vg(G) + p1) 'Vg(y) (5.7)

In large scale settings of A, b, such Newton methods are known to perform em-
pirically better than gradient descent Mangasarian (2006); Keerthi et al. (2007). We
will evaluate if this holds for our purposes shortly.

Why is Newton’s method applicable for minibatches? In general, the conver-
gence of Newton’s method depends strongly on initialization (even for convex prob-
lems), i.e., we can only provide local convergence results. However, this is not the
case for our problems since in our examples, either the level sets are bounded from
below; or the feasible set is compact, as noted in Mangasarian (2004). There are two
reasons why the above result, by itself, is insufficient for our purposes: (i) it assumes
that we can perform line search to satisfy Armijo condition; (ii) even with line search,
the result does not provide a rate of convergence. In DNN training, such line search
based convergence results can be very expensive. The key difficulty is handling the
discontinuity in the Hessian. As a remedy, we use self concordance of (5.5) to guar-
antee global convergence of (5.6) iterations for the exterior penalty formulation in
(5.5). To do so, we first show a result (proof in appendix) that characterizes the dis-

crepancy between the actual Hessian of (5.5) and the modified one in (5.6) when the
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(feature) matrix A is randomly distributed.

Lemma 5.4. Assume that A is a random matrix, and fix arbitrary § € R™. Then with
probability one, g in (5.5) can be approximated by a quadratic function (given by 1, Vg(g))
over a sufficiently small neighborhood of §.

Intuitively, Lemma 5.4 states that with probability one, each y has a neighbor-
hood in which the Hessian is constant. In addition, the modified Hessian is non-
singular at all points (in particular the optimal §j*), and so we can then show the

following global convergence result.

Theorem 5.5. Assume that the primal LP has a unique optimal solution, and that the level
set {z: Az <b,c'z < o is bounded for all « (for dual feasibility). Then short step (no line
search) Newton’s method converges globally at a linear rate with local quadratic convergence.

Proof. First, note that the objective function is piecewise quadratic since it is a sum
of piecewise quadratic functions defined by coordinatewise relu function o. In par-
ticular, g is self concordant since its third derivative is zero almost everywhere. Now
setting p < ¢, we see that an approximate solution of the problem with the mod-
ified Hessian is also an approximate solution to equation 3. Moreover, since the
possible values of H is finite, the local norm (also known as Newton’s decrement)
Vg(§)"H(§)'Vg(1) is finite. Hence, we can choose p > 0 so that there is a descent
direction d, that is, there exists a step size A > 0 such that AVg (x)"d < 0. Finally, we
use Theorem 4.1.12 in Nesterov (2013) to claim the desired result. O

The assumptions in Theorem 5.5 are standard: 1. uniqueness can easily be satis-
tied by randomly perturbing the cost vector; 2. in most of our formulations, we explic-
itly have bound constraints on the decision variables, hence level sets are bounded.

Remark 5.6. Convergence in Thm. 5.5 is guaranteed under standard constraint qualification
assumptions. Linear Independent Constraint Qualification (LICQ) is satisfied for AUC, and
Multi-class AUC formulations in §5.2. But the F-score formulation does not satisfy LICQ,
hence we need safequarding principles in the initial iterations (until iterates get close to the
optimal solution).

Our analysis of the Newton’s method for LP so far indicate that we may be able
to use a constant step size A (avoid linesearch) to obtain fast convergence provided
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that we are able to choose p sufficiently small. For our purposes, we assume A to be
a hyperparameter and can be tuned by cross validation.

Sketching d using Sufficient Dimension Reduction (SDR). For training the back-
bone network, we have to compute d in (5.6) using A (and b) which could be very
large within each training iteration. But each minibatch corresponds to an LP in-
stantiation in (5.5), so it may suffice to compute an approximate d in each Newton’s
iteration. To approximate d, we use sufficient dimension reduction in which a lower
dimensional LP obtained by projecting A is solved Zhang et al. (2020); Kim et al.
(2020). That is, instead of the inverse of H, we will compute a lower dimensional
sketch of H by using SA (and Sb) instead of A (and b) for some sampling matrix
S and solve problem (5.5). During each iteration, the metrics are computed on the
current minibatch as is done in Fathony and Kolter (2020). Thus (without SDR) the
memory cost is directly proportional to minibatch size viz., number of samples and
feature dimensions. The advantage of using SDR (as opposed to naive sketching) is that
the lower dimensional space can also be chosen using data driven cross validation or other
techniques, making it ideal for training purposes. In essence, the size of minibatch does
not matter — as long as the minibatch can be sufficiently reduced, our solver is di-
rectly applicable, especially for low resource, memory constrained settings. For a

tixed (low) dimension parameter, our sketched d is,

d=H'g where g = %(Hrelu(Ag —b)|5) = (SA)'S - relu(sign(Ag — b)), (5.8)

H ~ (diag(S - relu(sign(Ay — b)) © S - relu(sign(Ag — b))) - SA)T . SA.
(5.9)

It is easy to see that the approximate update can be seen as equivalent to Itera-
tive Hessian Sketch algorithm which has geometric convergence rate, see Pilanci and
Wainwright (2016).

Backward Pass using Optimal Dual Variables Aided by Unrolling

The advantage of optimizing the exterior penalty in (5.5) is that given an iterate
Yq, accuracy ¢, we can get the optimal dual solution v; by simple thresholding, i.e.,
vi = 1/e(ATo(A§ — b)). By complementarity slackness, nonzero coordinates of v,
specify the set of active constraints in Az < b. So, given an approximate y; such that
Vo) H(§e) 'Vg(§e) < &, to get the primal solution z*, we solve the “active” linear
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system given by Ab, where A denotes the active rows of A and the corresponding
subvector b. So, backpropagation through the layer reduces to computing deriva-
tives of A~1b (simple via automatic differentiation). The appendix gives a systematic
way of choosing .

How to backpropagate through unrolled iterations? We assume that the chain

oL oz
0z 0A

note that it is possible to find 3t (either directly or using a chain rule). Therefore

rule is applicable up to this LP layer and is (for one of the parameters A), and

we focus our attention on aa—f\, which involves the LP layer. Indeed, when we unroll
the dynamics formed by optimization steps, each iteration in (5.6) is equivalent to a
“sublayer”. So, in order to backpropagate we have to show the partial derivatives of
each operation or step wrt to the LP parameters A, b, and c.

Our goal is to calculate % where d = Q7 'q, Q = Hand w = Vg({j). We can
use the product rule to arrive at: 39d = — (W'Q 1 ® Q1) 9Q + Q 'dw. To see this,
note that we have used the chain rule to differentiate through the inverse in the first

term. The second term is easy to compute similar to the computation of Hessian. For

each of these terms we eventually have to compute % or 2% where var € {c, A, b}
which can also be done by another application of chain rule. Please see appendix for
empirical verification of unrolled gradient and the one provided by A~'b.

Before proceeding, we should note an issue that comes up when differentiating
each step of the unrolled algorithm because the Hessian is piecewise linear (constant)
as a function of the input to that particular layer. Here, some possible numerical

approximations are needed, as we describe below.

Remark 5.7. Note that the diagonal matrix term in % is nondifferentiable due to the pres-
ence of the step function. However, the step function is a piecewise constant function, and
hence has zero derivative almost surely, that is, in any bounded set S, z € S, if a ball (of
radius v > 0,) B+ (z) C S, then the Lebesgue measure of the set of nondifferentiable points on
S is zero. Please see appendix for a formal justification where we show this by approximating
the step function using a sequence of logistic functions with increasing slope parameter at the

origin.

Therefore, in this setting, Remark 5.7 provides a way to compute an approximate
sub-gradient when using Newtons method based LP layers. The function is a piece-
wise quadratic function and differentiable everywhere, and the inverse of the Hes-

sian acts as a preconditioner.
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Summary. Our forward pass involved three steps: (1) finite steps of Newton’s
method using which we (2) computed the dual variable by a thresholding operation,
and (3) finally, to get the primal solution, these dual variables are first used to identify
the active constraints followed by solving a linear system. To backpropagate through
these three steps, we must differentiate through each layer of our procedure includ-
ing A~'b: this is independent of whether we use unrolling or Danskin’s theorem
Danskin (1966). For instance, using Danskin’s theorem here would involve differ-
entiating through the fixed point of the Newton’s iterations similar to (regularized)
gradient descent iterations in iIMAML Rajeswaran et al. (2019).

5.4 Experiments

In this section, we conduct experiments on commonly used benchmarks to show that
our framework can be used to optimize multiple different objectives within deep neu-
ral networks and lead to performance gain. We start with binary AUC optimization,
and then extend to multi class AUC optimization and F-score optimization. We also
show that nonnegative matrix factorization can be optimized in linear programming
form in our framework.

Optimizing Binary AUC

We follow the current state-of-the-art work on AUC optimization Liu et al. (2019b)
to conduct experiments on optimizing AUC score directly with deep neural net-
works. The baseline algorithms we compare with for binary AUC are cross-entropy
loss and two algorithms (PPD-SG and PPD-AdaGrad) from Liu et al. (2019b).

Datasets: Cat&Dog, CIFAR10, CIFAR100, and STL10 (See supplement for in-
troduction of these datasets). We follow Liu et al. (2019b) to use 19k/1k, 45k/5k,
45k /5k, 4k/1k training/validation split on Cat&Dog, CIFAR10, CIFAR100, STL10
respectively.

Experimental setting. We construct imbalanced binary classification task by us-
ing half of the classes as positive class and another half as negative class, and drop-
ping samples from negative class by a certain ratio, which is reflected by the positive
ratio (the ratio of the majority class to the minority class) in Table 5.1. During the
experiment, We use the same random seed, learning rate and total number of itera-
tions in all of our experiments including multi class AUC and F-score experiments.

(See supplement for details of model architecture, learning rate, etc.)
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Table 5.1: Binary AUC optimization results on four benchmark datasets.

AUC(%) Cat&Dog CIFAR10
Positive Ratio 91% 83% 71% 50% 91% 83% 71% 50%
Cross-Entropy 67.6 746 851 874 652 733 781 837

PPD-SG 791 815 855 871 69.8 739 79.1 826
PPD-AdaGrad 773 80.6 837 863 69.7 741 784 83.1
Ours 786 813 85.6 87.8 725 744 783 827
AUC(%) CIFAR100 STL10

Positive Ratio 91% 83% 71% 50% 91% 83% 71% 50%
Cross-Entropy 57.8 584 622 663 635 671 727 80.8

PPD-SG 56.5 589 616 652 707 716 751 774
PPD-AdaGrad 56.2 59.0 626 67.6 685 724 767 785
Ours 58.2 60.5 64.5 69.0 684 711 76.7 81.6

Results. The results are shown in Table 5.1. We can see that our method slightly
outperforms Liu et al. (2019b) and outperforms cross-entropy loss by a large margin,
especially on imbalanced datasets, where the AUC objective shows superiority over
cross-entropy loss.

Influence of €. We test the influence of € using Cat&Dog as an example. Results
(see supplement for the table) show that € = 0.1 gets slightly worse performance than
€ = 0.01, while € = 0.001 performs much worse. To choose €, we follow the approach
proposed by Mangasarian (2004). If for two successive values of €; > €5, the value
of the e perturbed quadratic function is the same, then it is the least 2-norm solution
of the dual. Therefore, we simply choose an e that satisfies this property, which is
chosen to be 0.01 in our experiments.

Optimizing Multiclass AUC

We further demonstrate our method for optimizing multiclass AUC. Similar to
previous section on binary AUC, we construct imbalanced multiclass datasets by
dividing datasets into 3 classes and drop samples from 2 of them and report the one-
versus-all AUC (denoted as AUC®*?) and AUCY™ score . For STL10, we group class
0—2,3 -5, 6 —9into the three classes, and drop samples from the first two classes.
For CIFR100, we group class 0 — 32, 33 — 65, 66 — 99 into three classes, and also drop
samples from the first two classes.

Results. Results are in Table 5.2. In addition to one-versus-all AUC metric, we
also report the performance in terms of AUC, Kleiman and Page (2019) which is
specifically designed for measuring multiclass AUC and preserves nice properties
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Table 5.2: Multiclass AUC optimization results on STL10 and CIFAR100. Drop rate
is the proportion used when dropping samples from two of three classes.

AUC*(%) CIFAR100 STL10

Drop rate 90% 80% 60% 0% 90% 80% 60% 0%
Cross-Entropy 543 594 627 635 669 68.0 748 81.0
Ours 584 592 641 657 729 725 757 827
AUCP™ (%) CIFAR100 STL10

DI‘Op rate 90% 80% 60% 0% 90% 80% 60% 0%
Cross-Entropy 55.1 60.6 65.0 640 689 69.6 758 82.2
Ours 60.1 612 66.0 672 76.1 744 77.7 845

of binary AUC such as being insensitive to class skew. We can see that our method
outperforms cross-entropy loss on all four datasets and under all different skewed
ratios.
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Figure 5.2: ROC curve of multiclass AUC optimization on STL10 with 90% drop rate.
We divide STL10 into 3 classes and use one as positive class and other two as negative
class to plot the ROC.

Optimizing F1-score

We show that by directly optimizing Fl-score, we can achieve a better perfor-
mance than when using cross entropy loss. In addition to cross entropy loss, we
perform evaluations with two other methods that can also directly optimize the F1-
score. First, we replace our solver with CVXPY-SCS Agrawal et al. (2019), which
is a differentiable general purpose linear programming solver; second, we perform
comparisons with AP-Perf Fathony and Kolter (2020) which offers differentiable op-
timization of Fl-score using an adversarial prediction framework. The datasets and
our setup to group them into two classes remain the same as in binary AUC section.

The results show that Our method yields consistent improvement over cross-entropy
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Runtime comparison on different batch sizes
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(a) Evaluation of the quality (b) Runtime comparison (c) The relationship between

of Fl-score predicted by our of our solver and blackbox reduced size and accuracy

solver and Ap-Perf. solver Poganci¢ et al. (2019)  when using SDR on con-
straint matrix A.

Figure 5.3: Three numerical experiments to show the properties of our solver.

loss in terms of F1—score. The accuracy of cross-entropy loss on Cat&Dog, CIFAR10,
CIFAR100 and STL10 is 76.0%, 70.3%, 60.4%, 71.8%, respectively, while our method
gives 77.8%, 72.6%, 63.4%, 72.7%. When we optimize Fl-score directly, there exists
a local optimal point where assigning all examples to the positive class leads to F1-
score of 66.7%. Both CVXPY-SCS and AP-Perf fall into this local optimal on four
datasets (except that CVXPY-SCS gets out of the local optimal point on Cat&Dog
and gives 70.1% accuracy). Note that although our solver, CVXPY-SCS and AP-Perf
are trying to solve the same objective, the backward gradient will be different due to
different approximations used by the methods.

Table 5.3: Properties of different methods. ¢, A, b are the parameters describing a
linear programming: min cx, s.t.Ax < b. x* denotes the optimal solution. The extra
cost for computing backward gradient for Berthet et al. (2020), depending on imple-
mentation, can either be N times time cost, or N times memory cost plus some time
cost brought by increased batch size (see supplement for detailed explanation).

Ours CVXPY-SCS Perturbed solver Berthet et al. (2020)

: dx® dx* dx~ dx® dx™ dx~¥ dax*
Gradients support Qe aar @ doraAr v ‘ac
GPU support v X depends on solver
Sparsity support v X depends on solver
Extra cost for computing backward gradient Nearly zero  around 1 N (# perturbations)

(denote forward time cost as 1)

Comparing with blackbox solvers. Recently, several results Pogancié etal. (2019);
Berthet et al. (2020) use blackbox solvers for solving combinatorial problems, which
can also been used as a LP solver for problems where we need dx*/dc (c is the cost
vector in standard form LP). These methods can utilize existing LP solvers and com-
pute backward gradient by calling the LP solvers on perturbed LP problems. To our
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knowledge, the current state-of-the-art LP solvers are often CPU based, which means
that one needs to transfer the LP parameters from GPU to CPU, then solve the LP on
the CPU before getting the solution back. These CPU-based solvers will usually be
slower than our GPU based solver, especially when the batch size is large. To evalu-
ate this property, we randomly construct LP problems using AUC as an example and
make the cost vector the parameter to optimize. In Fig. 5.3b, we compare the runtime
of our solver and the blackbox solver in Poganci¢ et al. (2019) (with the LP solver from
scipy package). We can see that our GPU based solver is not sensitive to the increase
in the batch size, while the CPU based solver is, due to the lack of support for mini-
batch operations. Our solver has a more clear advantage in backward pass because
the matrix needed for computing gradient is already computed during forward pass
thus the backward pass is nearly free, while the blackbox solver Poganci¢ et al. (2019)
needs at least the same time as forward pass to compute backward gradient. We also
compare our solver with Berthet et al. (2020) in Table 5.3.

Dealing with large scale LP. In practice we often encounter large scale LPs whose
constraint matrix may be too large to fit into the GPU memory. We first show that
we can utilize sufficient dimension reduction in Fig. 5.3c, which demonstrates a rea-
sonable tradeoff between reduced size and accuracy. Then we show that when the
constraint matrix is sparse, we can readily utilize sparse operations to save mem-
ory. We have incorporated functionality to use sparsity within our solver flaport
(2020); rustyls el al. (2020). Consider AUC maximization in which the constraint ma-
trix is extremely sparse. With our sparse implementation, we are able to run SGD
on Resnet-18 with minibatch size upto 200 on a 2080Ti GPU with just 1GB memory
whereas the same problem can take upto 11GB using dense operations (~ 10x mem-
ory savings) with some overhead.

Limitations. Scaling is still a key limitation for differentiable LP solvers. We
present two ways to mitigate these problems but there is an associated cost. Our pro-
posed SDR sacrifices some accuracy. Partly due to support within available libraries
sparse operations can sometimes be slow when the size of the matrices is large which

should improve with better sparsity support in existing libraries.



83

5.5 Summary

We demonstrated that various non-decomposable objectives can be optimized within
deep neural networks in a differentiable way under the same general framework of
LPs using a modified Newton’s algorithm proposed by Mangasarian. A number of
recent papers have studied the general problem of backpropagating through convex
optimization modules, and this literature provides several effective approaches al-
though scalability remains a topic of active research. Our work complements these
results and shows that the operations needed can be implemented to utilize the ca-
pabilities of modern deep learning libraries. While our experimental results suggest
that promising results on binary AUC, multi-class AUC and F-score optimization
within DNNs is achievable, we believe that the module may have other applications

where the number of constraints are large and data-dependent.
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Chapter 6

An Online Riemannian PCA for
Stochastic Canonical Correlation
Analysis

In the previous chapters, the dynamical systems are instantiated and then integrated
as layers and run independently for each input sample. In this chapter, we study the
problem of streaming canonical correlation analysis, where the dynamics formed
by the optimization steps happen across the entire training procedure when inte-
grated into deep models. The key challenge here is that most existing methods for
streaming CCA have high time and space complexity in each iteration, which may
not fit the needs of modern size datasets. We demonstrate how to design a more
efficient streaming CCA algorithm based on an observation of the link between PCA
and CCA. The work covered in this chapter was published as a conference paper at
NeurIPS 2021 Meng et al. (2021a).

6.1 Introduction

Canonical correlation analysis (CCA) is a classical method for evaluating correla-
tions between two sets of variables. It is commonly used in unsupervised multi-view
learning, where the multiple views of the data may correspond to image, text, audio
and so on, Rupnik and Shawe-Taylor (2010); Chaudhuri et al. (2009); Luo et al. (2015),
and has been applied to manifold-valued data also Kim et al. (2014). Classical for-
mulations have also been extended to leverage advances in representation learning,
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for example, Andrew et al. (2013) showed how the CCA can be interfaced with deep
neural networks enabling modern use cases. Many results over the last few years
have used CCA or its variants for problems including measuring representational
similarity in deep neural networks Morcos et al. (2018) and speech recognition Cou-
ture et al. (2019).

The goal in CCA is to find linear combinations within two random variables X
and Y which have maximum correlation with each other. Formally, the CCA prob-
lem is defined as follows. Let X € RN*d and Y € RN*% be N samples respec-
tively drawn from pair of random variables X (dy-variate random variable) and Y
(dy-variate random variable), with unknown joint probability distribution. The goal
is to find the projection matrices U € R%** and V € R%*¥, with k < min{d,, dy},

such that the correlation is maximized:

max F =trace (U CxyV) st. U'CxU=1I,V'CyV =1 (6.1)

Here, Cx = %XTX and Cy = %YTY are the sample covariance matrices, and Cxy =
+XTY denotes the sample cross-covariance.

The objective in (6.1) is the expected cross-correlation in the projected space and
the constraints specify that different canonical components should be decorrelated.
Let us define the whitened covariance T := C;l/ 2ny Cy 12 and @y (and ¥y) contains
the top-k left (and right) singular vectors of T. It is known Golub and Zha (1992) that
the optimum of (6.1) is achieved at U* = C;l/ 2(Dk, V* = C;l/ ZWk. We can compute
U, V* by applying a k-truncated SVD to T.

Runtime and memory considerations. The above procedure is simple but is only
teasible when the data matrices are small. In modern applications, not only are the
datasets large but also the dimension d (let d = max{d, dy}) of each sample can
be large, especially if representations are learned using deep models. As a result,
the resource needs of the algorithm can be high. This has motivated the study of
stochastic optimization routines for solving CCA, and many efficient strategies have
been proposed. For example, Ge et al. (2016); Wang et al. (2016) present Empirical
Risk Minimization (ERM) models which optimize the empirical objective. More re-
cently, Gao et al. (2019); Bhatia et al. (2018); Arora et al. (2017) describe proposals that
optimize the population objective. To summarize the approaches, if we are satisfied
with the top 1 component of CCA, effective schemes with O(1) convergence rate are
available by utilizing either extensions of the Oja’s rule Oja (1982) to the generalized
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eigenvalue problem Bhatia et al. (2018) or the alternating SVRG algorithm Gao et al.
(2019). Otherwise, a stochastic approach will use an explicit whitening operation
which can cost d° operations for each iteration Arora et al. (2017) and the conver-
gence rate for the stochastic scheme depends on its specific steps and calculations,
e.g., O(\/L{) in Arora et al. (2017) (Thm 2.3, pp 5).

Observation. Most approaches either directly optimize (6.1) or instead a repa-
rameterized or regularized form Ge et al. (2016); Allen-Zhu and Li (2016); Arora
et al. (2017). Often, the search space for U and V corresponds to the entire R4**
(ignoring the constraints for the moment). But if the formulation could be cast in
a form which involved approximately writing U and V as a product of structured
matrices, we may be able to obtain specialized routines which are tailored to exploit
those properties. Such a reformulation is not difficult to derive — where the matrices
used to express U and V can be identified as objects that live in well studied geomet-
ric spaces. Then, utilizing the geometry of the space and borrowing relevant tools
from differential geometry could lead to an efficient approximate scheme for top-k
CCA which optimizes the population objective in a streaming fashion.

Contributions. (a) First, we re-parameterize the top-k CCA problem as an opti-
mization problem on specific matrix manifolds, and show that it is equivalent to the
original formulation in (6.1). (b) Informed by the geometry of the manifold, we de-
rive stochastic gradient descent (SGD) algorithms for solving the re-parameterized
problem with O(d?k) cost per iteration and provide convergence rate guarantees. (c)
This analysis gives a direct mechanism to obtain an upper bound on the number of
iterations needed to guarantee an € error w.r.t. the population objective for the CCA
problem. (d) The algorithm works in a streaming manner so it easily scales to large
datasets and we do not need to assume access to the full dataset at the outset. (e) We
present empirical evidence for the standard CCA model and the DeepCCA setting

Andrew et al. (2013), describing advantages and limitations.

6.2 Stochastic CCA: Reformulation, Algorithm and
Analysis

Let us review the objective for CCA as given in (6.1). We denote X € RN*%x ag
the matrix consisting of the samples {x;} drawn from a zero mean random variable

X ~ X and Y € RN*d denotes the matrix consisting of samples {y;} drawn from a
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zero mean random variable Y ~ Y. For simplicity, we assume that d, = d, = d
although the results hold for general d, and d,. Also recall that Cx € R**% (and
Cy resp.) is the covariance matrix of X (and Y resp.) and Cxy is the cross-covariance
matrix between X and Y. Let U € R¥** (V € R4*¥) be the matrix consisting of {u;}
({v;}) where ({u;},{v;}) are the canonical directions. The constraints in (6.1) are called
whitening constraints.

Reformulation: In the CCA formulation, the matrices consisting of canonical
correlation directions, i.e., U and V, are unconstrained, hence the search space is the
entire R4**. Now, we reformulate the CCA objective by reparameterizing U and
V. In order to do that, let us take a brief detour and recall the objective function of

principal component analysis (PCA):

U= arg max trace(ﬁ) subject to R=UTCU; UuTu =1, (6.2)
W

Observe that by performing PCA and assigning U = UR 2 in (6.1) ( analogous for V us-
ing Cv), we can satisfy the whitening constraint. Of course, writing U = UR ' does sat-
isfy the whitening constraint, but such a U (and V) will not maximize trace (U.T C XYV) ,
the objective of (6.1). Hence, additional work beyond the PCA solution isneeded. Let
us start from R but relax the PCA solution by using an arbitrary R instead of diagonal
R (this will still satisfy the whitening constraint).

Write U = UR with UTU = I, and R € R***, Thus we can approximate CCA
objective (we will later check how good this approximation is) as

~ max trace (UTCXYV) + trace (ﬁT Cxﬁ> + trace (\7T Cy\7> (6.3)
U,VesSt(k,d) ™ -~
Ry, Ry €RF*K F =
U=UR,; V=VR, pea
st. UTCxU =1,; VICyV =1, (6.4)

Here, St(k,d) denotes the manifold consisting of d x k (with k < d) column or-
thonormal matrices, i.e., St(k,d) = {X € R¥*|XTX = I }. Observe that in (6.3), we
approximate the optimal U and V as a linear combination of U and V respectively.
Thus, the aforementioned PCA solution can act as a feasible initial solution for (6.3).

As the choice of R,, and R, is arbitrary, we can further reparameterize these matri-
ces by constraining them to be full rank (of rank k) and using the RQ decomposition
Golub and Reinsch (1971) which gives us the following reformulation.
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A Reformulation for CCA
~ max trace (UTCXYV) + trace <LN1T CXLNl> + trace (\7T Cy\7> (6.5a)
U,V,S4,5.,Qu,Qv - ~—
U=US,Qu; V=VS$,Q, F -

cha

subjectto  U'CxU = I,
VIicyVv =1, (6.5b)
U,V € St(k,d); Qu, Qv € SO(K)

Sy, Sy is upper triangular
Here, SO(k) is the space of k x k special orthogonal matrices, i.e.,
SO(k) = {X € R®¥XTX = Iy; det(X) =1} (6.6)

Before evaluating how good the aforementioned approximation is, we first point out
some useful properties of the reformulation (6.5): (a) in the reparametrization of U
and V, all components are structured, hence, the search space becomes a subset of
R*** (b) we can essentially initialize with a PCA solution and then try to optimize
(6.5) via some scheme.

Why (6.5) helps? First, we note that CCA seeks to maximize the total correlation
under the constraint that different components are decorrelated. One difficulty in
the optimization is to ensure decorrelation, which leads to a higher complexity in
existing streaming CCA algorithms. On the contrary, in (6.5), we separate (6.1) into
finding the PCs, U, V (by adding the variance maximization terms) and finding the
linear combination (S, Q. and S,Q,) of the principal directions. After optimizing
for these variables, the whitening constraints are, up to a rescaling, automatically
satisfied. Here, we can (almost) utilize an efficient off-the-shelf streaming PCA al-
gorithm. We will defer describing the specific details of the individual steps until
the next sub-section. First, we will show why substituting (6.1) with (6.5) is sensible
under some assumptions.

Why the solution of the reformulation makes sense? We start by stating some
mild assumptions needed for the analysis. Assumptions: (a) The random variables
X ~N(0,Zs) and Y ~ N(0, L, ) with covariance £, < cl4 and covariance L, < clg
for some ¢ > 0. (b) The samples X and Y drawn from X and Y respectively have zero

mean. (c) For a given k < d, X, L, have non-zero top-k eigen values.



89

We show how the presented solution, assuming access to an effective numerical
procedure, approximates the CCA problem presented in (6.1). We formally state the
result in the following theorem with a sketch of proof (appendix includes the full

proof) by first stating the following proposition.

Definition 6.1. A random variable X is called sub-Gaussian if the norm given by ||X||, =
inf{d > 0|Ex [exp (trace(X"X)/a?)] < 2} is finite. Let U € R4*¥, then XU is sub-Gaussian
Vershynin (2017).

Proposition 1 (Reif3 et al. (2020)). Let X be a random variable which follows a sub-Gaussian
distribution. Let X be the approximation of X € RN*4 (samples drawn from X) with the top-
k principal vectors. Let Cx be the covariance of X. Also, assume that A is the it eigen value
of Cx fori =1,---,d —1and Ay > Ai4q for all i. Then, the PCA reconstruction errot,
denoted by &, = Ex||X — X|| (in the Frobenius norm sense) can be upper bounded as follows

2||Al3 ~
€x < min (\/2k||A||2, &> , A=Cx—Cx
Ak — Akt

The aforementioned proposition suggests that the error between the data matrix
X and the reconstructed data matrix X using the top-k principal vectors is bounded.
Recall from (6.1) and (6.5) that the optimal value of the true and approximated
CCA objective is denoted by F and F respectively. The following theorem states that
we can bound the error, E = ||[F — F|| (proof in the appendix). In other words, if
we start from PCA solution and can successfully optimize (6.5) without leaving the

teasible set, we will obtain a good solution.

Theorem 6.2. Using the hypothesis and assumptions above, the approximation error E =
IF — F|| as a function of N is bounded and goes to zero as N — oo while the whitening
constraints in (6.5b) are satisfied.

Sketch of the Proof. Let U* and V* be the true solution of CCA, i.e., of (6.1). Let U =
lNiSuQu,V = \N/SVQV be the solution of (6.5), with 1~1,\~/ be the PCA solutions of X
and Y respectively. Let X = XUUT and Y = YVVT be the reconstruction of X
and Y using principal vectors. Let S, Q. = uTu* and S,Q, = V'V*. Then we

~ ~ T <
can write F = trace (U'CxyV) = trace (% <XU*) YV*). Similarly we can write

F = trace <% (xu=)" YV*). As X and Y are the approximation of X and Y respec-

tively using the principal vectors, we use Prop. 1 to bound the error ||F — F|. Now
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observe that XU can be rewritten into XUUTU (similar for ?V). Thus, as long as the
solution S,,Q,, and S, Q, respectively well-approximate UTU and VTV, F is a good

approximation of F. H

Now, the only unresolved issue is an optimization scheme for (6.5a) that keeps the
constraints in (6.5b) satisfied by leveraging the geometry of the structured solution

space.

How to numerically optimize (6.5a) satisfying constraints in (6.5b)?

Overview. We now describe how to maximize the formulation in (6.5a)—(6.5b) with
respect to fl, \7, Qw Qy, Sy and S,. We will first compute top-k principal vectors to
get Uand V. Then, we will use a gradient update rule to solve for Q,,, Q,, S, and S,
to improve the objective. Since all these matrices are “structured”, care must be taken
to ensure that the matrices remain on their respective manifolds — which is where the
geometry of the manifolds will offer desirable properties. We re-purpose a Rieman-
nian stochastic gradient descent (RSGD) to achieve this task, so call our algorithm
RSG+. Of course, more sophisticated Riemannian optimization techniques can be
substituted in. For instance, different Riemannian optimization methods are avail-
able in Absil et al. (2007) and optimization schemes for many manifolds are offered
in PyManOpt Boumal et al. (2014).
The algorithm block is in Algorithm 2. Recall that

Fpea = trace (U' CxU) + trace (V' CyV) (6.7)

is the contribution from the principal directions which we used to ensure the “whiten-
ing constraint”. Moreover, F = trace (UTCXYV) is the contribution from the canon-
ical correlation directions (note that we use the subscript ‘cca’ for making CCA objective
explicit). The algorithm consists of four main blocks denoted by different colors,
namely (a) the Red block deals with gradient calculation of the objective function
where we calculate the top-k principal vectors (denoted by cha) with respect to u,
V; (b) the block describes calculation of the gradient corresponding to the
canonical directions (denoted by F) with respect to fl, \7, Sw, Sv, Qu and Q,; () the

block combines the gradient computation from both cha and F with respect to
unknowns ﬂ, \7, Sw, Sy, Qu and Q,; and finally (d) the Blue block performs a batch

update of the canonical directions F using Riemannian gradient updates.
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Gradient calculations. The gradient update for U,V is divided into two parts
(@) The (Red block) gradient updates the “principal” directions (denoted by Vﬁfpca
and V\ﬁpca), which is specifically designed to satisty the whitening constraint. This
requires updating the principal subspaces, so, the gradient descent needs to proceed
on the manifold of k-dimensional subspaces of R¢, i.e., on the Grassmannian Gr(k, d).
(b) The ( block) gradient from the objective function in (6.5), is denoted by Vﬂf
and VVF. In order to ensure that the Riemannian gradient update for Uand V stays
on the manifold St(k, d), we need to make sure that the gradients, i.e., VGF and VVF
lies in the tangent space of St(k, d). To do so, we need to first calculate the Euclidean
gradient and then project on to the tangent space of St(k, d).

The gradient updates for Q., Q., Sy, Sy are given in the block, denoted by
VQHF, VQVF, Vsuf and VSVF. Note that unlike the previous step, this gradient only
has components from canonical correlation calculation. As before, this step requires
tirst computing the Euclidean gradient and then projecting on to the tangent space
of the underlying Riemannian manifolds involved, i.e., SO(k) and the space of upper
triangular matrices.

Finally, we get the gradient to update the canonical directions by combining the
gradients which is shown in the block. With these gradients we can perform a

batch update as shown in the blue block. A schematic diagram is given in Fig. 6.1.

X e RNXd'T = U= ﬁSuQu
— _ VaFo —
Ftat

p—
N xd, / .
Y e RV*% A 15T B G B Gy V= VSUQU
—l ——
F

V=F,V+F,Vq,F,Vq,F,Vs,F,Vs,F

Figure 6.1: Schematic diagram of the proposed CCA algorithm, here Fiot = F+ cha,
where F is the approximated objective value for CCA (as in (6.5))

Using results presented next in Propositions 2-3, this scheme can be shown (un-
der some assumptions) to approximately optimize the CCA objective in (6.1).

We can now move to the convergence properties of the algorithm. We present
two results stating the asymptotic proof of convergence for
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and in the algorithm.

Proposition 2 (Chakraborty et al. (2020)). (Asymptotically) If the samples, X, are drawn
from a Gaussian distribution, then the gradient update rule presented in Step C.2 in Algo-
rithm 2 returns an orthonormal basis — the top-k principal vectors of the covariance matrix
Cx.

Proposition 3. (Bonnabel (2013)) Consider a connected Riemannian manifold M with in-
jectivity radius bounded from below by I > 0. Assume that the sequence of step sizes (y1)
satisfy the condition (a) _y? < 0o (b) 3_y1 = oo. Suppose {A} lie in a compact set K C M.
We also suppose that 3D > 0 such that, ga, (VAIF, Va, F) < D. Then Va, F — 0and
l — oo.

Notice that in our problem, the injectivity radius bound in Proposition 3 is sat-
isfied as “1” for Gr(p,n), St(p,n) or SO(p) is 7/2v/2, 7/2v/2, 71/2 respectively. So, in
order to apply Proposition 3, we need to guarantee the step sizes satisfy the afore-

mentioned condition. One example of the step sizes that satisfies the property is

1
Y= 1A

Convergence rate and complexity of the RSG+ algorithm

In this section, we describe the convergence rate and complexity of the algorithm
proposed in Algorithm 2. Observe that the key component of Algorithm 2 is a Rie-
mannian gradient update. Let A be the generic entity needed to be updated in the
algorithm using the Riemannian gradient update A, = Expp, (—ytV Atf) , where
Y¢ is the step size at time step t. Also assume {A} C M for a Riemannian manifold
M. The following proposition states that under certain assumptions, the Riemannian

gradient update has a convergence rate of O (1).

Proposition 4. (Nemirovski et al. (2009); Bécigneul and Ganea (2018)) Let {A} lie inside a
geodesic ball of radius less than the minimum of the injectivity radius and the strong convexity
radius of M. Assume M to be a geodesically complete Riemannian manifold with sectional
curvature lower bounded by « < 0. Moreover, assume that the step size {y.} diverges and
the squared step size converges. Then, the Riemannian gradient descent update given by
A1 = Expa, <—ytVAf> with a bounded V A F, ie., |[Va F|| < C < oo for some C > 0,
converges in the rate of O () with the number of iterates bounded by O(N+D/€?), for some
tolerance € > 0 and for the Lipschitz bound D of the objective function F.



93

Algorithm 2: Riemannian SGD based algorithm (RSG+) to compute canonical directions

1 Input: X € RN*d Y ¢ RN*dy k>0
2 Output: U € R&x*k v ¢ Rdyxk

3 Initialize U, V, Qu, Qy, Sw, Sy
4 Partition data X, Y into batches of size B. Let j*™ batch be denoted by X; and Y;

5 forj € {1,--- ,L%j} do
Gradient for top-k principal vectors: calculating Vﬂfpca, vapca

1. Partition X; (Y;) into L (L = | £ |) blocks of size dy x k (dy x k);
2. Let the 1'™ block be denoted by Z} (Z});
3. Orthogonalize each block and let the orthogonalized block be denoted by Z’f (Z%J );

4. Let the subspace spanned by each Z{‘ (and 21{') be Zf € Gr(k, dy) (and Z? € Gr(k,dy));

VG?pca = - Z Expal (ZT) V\N/cha = — Z EXp\i/1 (Z?) (68)
1 1

Gradient from (6.5): calculating VGF, VVF, VQMF, VQVf, Vgu?, ngf

~ ~ =T~ ~ = . =T~
_F— OF _ 1(9F _F— OF _ y/0OF
Vak = a~~ uaﬁ~u Vyb= Y% Va\7 \T/
oF oF = oF oF
Va.F= 9Q.  9Qu Vq,F 2Q, ~ 2Q,

Here, Upper returns the wupper triangular matrix of the input matrix and
%, g—\f/, %, aa—QFv, %, f—si give the Euclidean gradients, which are provided in appendix.

Gradient to update canonical directions
ViFrot = ViiFpea + Vi F ViFiot = VigFpa + Vo
VxFwot = VxF where, X is a generic entity: X € {Q, Qv, Sw, Sv};

Batch update of canonical directions
A = Expa (—ij Aft0t> where, A is a generic entity: A € {ﬂ, \7, Qu, Qv, Sw, Svi;
9

10 end for
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For this result to be applicable, we need the CCA objective function to be geodesi-
cally convex as a function of U and V (proof in the appendix). All Riemannian man-
ifolds we used, i.e., Gr(k, d), St(k, d) and SO(k) are geodesically complete, and these
manifolds have non-negative sectional curvatures, i.e., lower bounded by k = 0.
Moreover the minimum of convexity and injectivity radius for Gr(k, d), St(k, d) and
SO(k) are 71/2v/2. Now, as long as the Riemannian updates lie inside the geodesic
ball of radius less than 7t/2+/2, the convergence rate for RGD applies in our setting.

Running time. To evaluate time complexity, we must look at the main compute-
heavy steps needed. The basic modules are Exp and Exp maps for St(k, d), Gr(k, d)
and SO(k) manifolds (see Table 1 in appendix for a detailed specification of these
maps). Observe that the complexity of these modules is influenced by the complexity
of svd needed for the Exp map for the St and Gr manifolds. Our algorithm involves
structured matrices of size d x k and k x k, so any matrix operation should not exceed
a cost of O(max(d?k, k?)), since in general d > k. Specifically, the most expensive
calculation is SVD of matrices of size d x k, which is O(d?k), see Golub and Reinsch
(1971). All other calculations are dominated by this term.

6.3 Experiments

We first evaluate RSG+ for extracting top-k canonical components on three bench-
mark datasets and show that it performs favorably compared with Arora et al. (2017).
Then, we show that RSG+ also fits into feature learning in DeepCCA Andrew et al.
(2013), and can scale to large feature dimensions where the non-stochastic method
fails. Finally, we show that RSG+ can be used to improve fairness of deep neural
networks without full access to labels of protected attributes during training.

CCA on Fixed Datasets

Datasets and baseline. We conduct experiments on three benchmark datasets (MNIST
LeCun et al. (2010), Mediamill Snoek et al. (2006) and CIFAR-10 Krizhevsky (2009))
to evaluate the performance of RSG+ to extract top-k canonical components. To our
knowledge, Arora et al. (2017) is the only previous work which stochastically opti-
mizes the population objective in a streaming fashion and can extract top-k compo-
nents, so we compare our RSG+ with the matrix stochastic gradient (MSG) method
proposed in Arora et al. (2017) (note: there are two methods proposed in Arora et al.
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(2017) and we choose MSG because it performs better in the experiments in Arora
et al. (2017)). The details regarding the three datasets and how we process them are
as follows:

MNIST. LeCun et al. (2010): MNIST contains grey-scale images of size 28 x 28.
We use its full training set containing 60K images. Every image is split into left/right
half, which are used as the two views. Mediamill. Snoek et al. (2006): Mediamill
contains around 25.8K paired features of videos and corresponding commentary of
dimension 120,101 respectively. CIFAR-10. Krizhevsky (2009): CIFAR-10 contains
60K 32 x 32 color images. Like MNIST, we split the images into left/right half and
use them as two views.

Evaluation metric. We choose to use Proportion of Correlations Captured (PCC)
which is widely used Ma et al. (2015); Ge et al. (2016), partly due to its efficiency, es-
pecially for relatively large datasets. Let U € R%*¥,V/ € R4 *k denote the estimated
subspaces returned by RSG+, and U* € R&xk, V* € R4u*k denote the true canonical
subspaces (all for top-k). The PCC is defined as PCC = %, where TCC is
the sum of canonical correlations between two matrices.

Performance. We run our algorithm with step sizes chosen from {1, 0.1, 0.01,
0.001, 0.0001, 0.00001}. The performance in terms of PCC as a function of the number
of seen samples (shown in a streaming manner) are shown in Fig. 6.2, and our RSG+
achieves around 10x runtime improvement over MSG (see Table C.1). Our RSG+
captures more correlation than MSG Arora et al. (2017) while being 5 — 10 times
faster. One case where our RSG+ underperforms Arora et al. (2017) is when the
top-k eigenvalues are dominated by the top-l eigenvalues with 1 < k (Fig. 6.2b):
on Mediamill dataset, the top-4 eigenvalues of the covariance matrix in view 1 are:
8.61,2.99,1.15,0.37. The first eigenvalue is dominantly large compared to the rest and
our RSG+ performs better for k = 1 and worse than Arora et al. (2017) for k = 2,4.
Runtime of RSG+ for different data dimensions (set d, = d, = d) and number of

total samples (from a joint Gaussian distribution) is in the appendix.

CCA for Deep Feature Learning

Background and motivation. A deep neural network (DNN) extension of CCA was
proposed by Andrew et al. (2013) and has become popular in multi-view representa-
tion learning tasks. The idea is to learn a deep neural network as the mapping from

original data space to a latent space where the canonical correlations are maximized.
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Table 6.1: Wall-clock runtime of one pass through the data of our RSG+ and MSG on
MNIST, Mediamill and CIFAR (average of 5 runs).

MNIST Mediamill CIFAR
Time (s) k=1 k=2 k=4 k=1 k=2 k=4|k=1 k=2 k=4
RSG+ (Ours) 4.16 424 471 | 1.89 1.60 144 | 1480 1722 2210
MSG 35.32 42.09 49.17 | 11.59 14.21 17.34 | 80.21 100.80 106.55

MNIST MEDIAMILL CIFAR

PCC

¢ —+—Ours k=1 0.2¢ —+—Ours k=1
0.2t -©-Ours k=2 -8 -6 Ours k=2
1 —3—Ours k=4

; } MSG k=1
015 MSG k=2 01 l MSG k=2
i MSG k=4

0 1

2 3 4 5 6 0 0.5 1 1. 2 25 0 1 2 3 4 5 6
# of samples seen %104 # of samples seen %104 # of samples seen «10%

(a) on MNIST (b) on Mediamill (c) on CIFAR

Figure 6.2: Performance on three datasets in terms of PCC as a function of # of seen
samples.

We refer the reader to Andrew et al. (2013) for details of the task. Since deep neu-
ral networks are usually trained using SGD on mini-batches, this requires obtaining
an estimate of the CCA objective at every iteration in a streaming fashion, thus our
RSG+ can be a natural fit. We conduct experiments on a noisy version of MNIST
dataset to evaluate RSG+.

Dataset. We follow Wang et al.

(2015a) to construct a noisy version of Table 6.2: Results of feature learning on
MNIST. N/A means fails to yield a result

MNIST: View 1 is a randomly sampled
on our hardware.

image which is first rescaled to [0, 1] and
then rotated by a random angle from  Accuracy(%) d =100 d =500 d=1000

(%, %]. View 2 is randomly sampled = DeepCCA 80.57 N/A N/A
Ours 79.79 84.09 86.39

from the same class as view 1. Then

we add independent uniform noise from

[0, 1] to each pixel. Finally the image is truncated into [0, 1] to form view 2.
Implementation details. We use a simple 2-layer MLP with ReLU nonlinearity,

where the hidden dimension in the middle is 512 and the output feature dimension

is d € {100,500,1000}. After the network is trained on the CCA objective, we use
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a linear Support Vector Machine (SVM) to measure classification accuracy on out-
put latent features. Andrew et al. (2013) uses the closed form CCA objective on the
current batch directly, which costs O(d?) memory and time for every iteration.

Performance. Table 6.2 shows that we get similar performance when d = 100
and can scale to large latent dimensions d = 1000 while the batch method Andrew
et al. (2013) encounters numerical difficulty on our GPU resources and the Pytorch
Paszke et al. (2019) platform in performing an eigen-decomposition of a d x d matrix
when d = 500, and becomes difficult if d is larger than 1000.

CCA for Fairness applications

Block A Block B Block C Block D Block E

Pretrained on
gender

Lcca

Block A Block B Block C Block D Block E

Training on -
attractiveness s —1 ;=

3x3 Conv, 256 /2
X3 Conv,
3x3 Conv, 256
3x3 Conv, 256

Figure 6.3: Training architecture for fairness experiment. The model above is the
pretrained model and the model below is being trained. Use of CCA allows the two
network architectures to be different.

Background and motivation. Fairness is becoming an important issue to con-
sider in the design of learning algorithms. A common strategy to make an algorithm
fair is to remove the influence of one/more protected attributes when training the
models, see Lokhande et al. (2020). Most methods assume that the labels of protected
attributes are known during training but this may not always be possible. CCA en-
ables considering a slightly different setting, where we may not have per-sample
protected attributes which may be sensitive or hard to obtain for third-parties Price
and Cohen (2019). On the other hand, we assume that a model pre-trained to predict
the protected attribute labels is provided. For example, if the protected attribute is

gender, we only assume that a good classifier which is trained to predict gender from
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the samples is available rather than sample-wise gender values themselves. We next
demonstrate that fairness of the model, using standard measures, can be improved
via constraints on correlation values from CCA.

Dataset. CelebA Wang et al. (2015b) consists of 200K celebrity face images from
the internet. There are up to 40 labels, each of which is binary-valued. Here, we
follow Lokhande et al. (2020) to focus on the attactiveness attribute (which we want
to train a classifier to predict) and the gender is treated as “protected” since it may
lead to an unfair classifier according to Lokhande et al. (2020).

Table 6.3: Fairness results on CelebA. We applied CCA on three different layers in
Resnet-18 respectively. See appendix for positions of conv 0,1,2. “Ours-conv[0,1]-
conv[1,2]” means stacking features from different layers to form hypercolumn fea-
tures Hariharan et al. (2015), which shows that our approach allows two networks
to have different shape/size.

Accuracy(%) DEO(%) DDP(%)

Unconstrained 76.3 22.3 4.8
Ours-conv0 76.5 17.4 1.4
Ours-convl 77.7 15.3 3.2
Ours-conv?2 75.9 22.0 2.8
Ours-conv|[0,1]-conv|[1,2] 76.0 22.1 3.9

Method. Our strategy is inspired by Morcos et al. (2018) which showed that
canonical correlations can reveal the similarity in neural networks: when two net-
works (same architecture) are trained using different labels (schemes) for example,
canonical correlations can indicate how similar their features are. Our observation is
the following. Consider a classifier that is trained on gender (the protected attribute),
and another classifier that is trained on attractiveness, if the features extracted by the
latter model share a high similarity with the one trained to predict gender, then it
is more likely that the latter model is influenced by features in the image pertinent
to gender, which will lead to an unfairly biased trained model. We show that by im-
posing a loss on the canonical correlation between the network being trained (but
we lack per-sample protected attribute information) and a well trained classifier pre-
trained on the protected attributes, we can obtain a more fair model. This may enable
training fairer models in settings which would otherwise be difficult. The training
architecture is shown in Fig. 6.3.
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Implementation details. To simulate the case where we only have a pretrained
network on protected attributes, we train a Resnet-18 He et al. (2016) on the gender
attribute, and when we train the classifier to predict attractiveness, we add a loss
using the canonical correlations between these two networks on intermediate layers:
LOSSiotat = LOSScross-entropy + LOSScca where the first term is the standard cross
entropy term and the second term is the canonical correlation. See appendix for
more details of training/evaluation.

Results. We choose two commonly used error metrics for fairness: difference in
Equality of Opportunity Hardt et al. (2016a) (DEO), and difference in Demographic
Parity Yao and Huang (2017) (DDP). We conduct experiments by applying the canon-
ical correlation loss on three different layers in Resnet-18. In Table 6.3, we can see
that applying canonical correlation loss generally improves the DEO and DDP met-
rics (lower is better) over the standard model (trained using cross entropy loss only).
Specifically, applying the loss on early layers like conv0 and conv1 gets better perfor-
mance than applying at a relatively late layer like conv2. Another promising aspect
of our approach is that is can easily handle the case where the protected attribute is
a continuous variable (as long as a well trained regression network on the protected
attribute is given) while other methods like Lokhande et al. (2020); Zhang et al. (2018)
need to first discretize the variable and then enforce constraints which can be much
more involved.

Limitations. Our current implementation has difficulty to scale beyond d = 10°
data dimension and this may be desirable for large scale DNNs. Exploring sparsity
may be one way to solve the problem and will be enabled by additional developments

in modern toolboxes.

6.4 Related Work

Stochastic CCA: There has been much interest in designing scalable and provable
algorithms for CCA: Ma et al. (2015) proposed the first stochastic algorithm for CCA,
where local convergence is proven for the non-stochastic version. Wang et al. (2016)
designed an algorithm which uses alternating SVRG combined with shift-and-invert
pre-conditioning, with global convergence properties. These stochastic methods,
and Ge et al. (2016) Allen-Zhu and Li (2016), which reduce the CCA problem to a
generalized eigenvalue problem and solve it via an efficient power method, all be-
long to the class of methods that seeks to to solve the empirical CCA problem. It
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can be seen as an ERM approximation of the original population objective, which
requires solving numerically the empirical CCA objective on a fixed data set. These
methods usually assume access to the full dataset at the outset, which may not be
suitable for some practical applications where data is presented in a streaming man-
ner. Recently, there appears to be an interest in considering the population CCA
problem Arora et al. (2017) Gao et al. (2019). The main difficulty in the population
setting is that we have limited knowledge about the objective unless we know the
distribution of X and Y. Arora et al. (2017) handles this problem by deriving an
estimation of the gradient of the population objective whose error can be properly
bounded so that applying proximal gradient to a convex relaxed objective will prov-
ably converge. Gao et al. (2019) provides a tightened analysis of the time complexity
of the algorithm in Wang et al. (2016), and provides sample complexity for certain
distributions. The problem we study is similar to the one in Arora et al. (2017); Gao
et al. (2019): to optimize the population objective of CCA in a streaming fashion.
Riemannian Optimization: Riemannian optimization is a generalization of stan-
dard Euclidean optimization methods to smooth manifolds, which takes the follow-
ing form: given f : M — R, solve min, ¢y f(x), where M is a Riemannian manifold.
Advantages often include efficient numerical procedures for certain classes of con-
strained optimization problems. Applications include matrix and tensor factoriza-
tion Ishteva et al. (2011), Tan et al. (2014), PCA Edelman et al. (1998), CCA Yger et al.
(2012), and so on. We remark that Yger et al. (2012) also describes CCA formulation
by rewriting it as a Riemannian optimization on the Stiefel manifold. In our work,
we further explore the benefits of the Riemannian optimization toolkit, decompos-
ing the linear space spanned by canonical vectors into products of several matrices

which lie in several different Riemannian manifolds.

6.5 Summary

In this work, we presented a stochastic approach (RSG+) for the CCA model based
on the observation that the solution of CCA can be decomposed into a product of
matrices which lie on certain structured spaces. This affords specialized numerical
schemes and makes the optimization more efficient. The optimization is based on
Riemannian stochastic gradient descent and we provide a proof for its O(}) conver-
gence rate with the number of iterates upper bounded, with O(d?k) time complexity
per iteration. In experimental evaluations, we find that our RSG+ behaves favorably
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relative to the baseline stochastic CCA method in capturing the correlation in the
datasets. We also show the use of RSG+ in the DeepCCA setting showing feasibility
when scaling to large dimensions as well as in an interesting use case in training fair
models. In addition, in an ongoing collaboration with aging researchers, we are ex-
ploring the possibility of utilizing the DeepCCA setting to analyze the relationship
between the human brain and the gut microbiome.
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Chapter 7

Neural TMDlayer: Modeling
Instantaneous flow of features via SDE

Generators

In chapters 3-5, the dynamical systems we utilize do not involve stochastic terms. In
chapter 6, the stochastic terms in the dynamics of streaming CCA are introduced due
to choice of the SGD, not the network itself. In this chapter, we explicitly model the
stochasticity taking place in the feature space of deep models utilizing ideas from the
stochastic differential equations, and show that this stochasticity can help in various
vision-related tasks. The work covered in this chapter was published as a conference
paper at ICCV 2021 Meng et al. (2021c).

7.1 Introduction

Consider a deep neural network model with parameters W which we train using the

following update rule,
W W —nVwE.R(W,z) (7.1)

where z is a random variable representing data and R(-) represents the loss function.

Now, consider a slightly general form of the same update formula,

W« W —nVwER (W, Tz). (7.2)
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The only change here is the introduction of T which can be assumed to be some data
transformation matrix. Letting T = I, we see that Stochastic Gradient Descent (SGD)
is a special case of (7.2) under the assumption that we will approximate the expecta-
tion in (7.2) with finite samples (or a mini-batch).

Let us unpack the data transformation notation a bit to check what it offers. If a set
of transformations T are chosen beforehand, and applied to the data samples before
training commences, Tz simply represents data samples derived via data augmen-
tation (e.g., see the left part of Fig. 7.1). On the other hand, Tz may not necessarily
be explicitly instantiated as above. For example, spherical CNN Esteves et al. (2017)
shows that when point cloud type data are embedded in the sphere with spherical
convolutional operators, then it is possible to learn representations of data that are
equivariant to the transformation action of rotations with no explicit data augmenta-
tion procedure. In particular, these approaches register each data point on a standard
template (like the sphere) on which efficient convolutions can be defined based on
differential geometric constructions — in other words, utilizing the properties of the
transformations T of interest and how they relate the data points, such a treatment en-
ables the updates to implicitly take into account the loss on Tz. Conceptually, many
results Esteves et al. (2017); Spezialetti et al. (2019); Qi et al. (2020) on equivariance
show that by considering the entire orbit of each sample (a 3D point cloud) during
training, for special types of T, it is possible to avoid explicit data augmentation.

We can take a more expanded view of the above idea. Repeated application of
a transformation T on data point z produces a discrete sequence {z(t)};2, where
z(0) = z,z(t) = T*'z. In general, the transformation matrix at the t-th step, de-
noted by T(t), need not even be generated from a fixed matrix. Indeed, in practice
T(t) is selected from a set of appropriate transformations such as rotation, blur and
so on, with some ordering, which could even be stochastic. At a high level, ap-
proaches such as Esteves et al. (2017); Cohen et al. (2018) can be seen as a special
case of (7.2). Making this argument precise needs adding an appropriate number
of auxiliary variables and by averaging over all possible realizable T’s — the specific
steps are not particularly relevant since apart from helping set up the intuition we
just described, algorithms for equivariance to specific group actions do not directly
inform our development. For the sake of convenience, we will primarily focus on
the continuous time system since under the same initial conditions, the trajectories

of both (continuous and discrete) systems coincide at all integers t.
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use cases of TMDIlayer
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Figure 7.1: Approach overview of TMDlayer used in three applications (few-shot
recognition, point cloud learning and segmentation respectively). “EGNN" refers
to edge-labeling graph neural network Kim et al. (2019); “FF” refers to feed-forward
layer and “CV” refers to our proposed deep chan-vese model. The manifold on the
left illustrates the meaning of £ and L,,;: £ captures the structure of the manifold
and L,,, is an approximation of £ constructed from samples.

What does z(t) actually represent? There are two primary interpretations of z(t):
(i) it formalizes on-the-fly or instantaneous (smooth) data augmentation techniques
which are often used to accelerate training by exploiting symmetries in the landscape
of risk R, and (ii) a data dependent T can be designed for invariance type require-
ments which are useful for downstream applications (note: Cubuk et al. (2019) also
proposes learning augmentation from data instead of hand designing it.). The start-
ing point of this work is to exploit the view that the data sample provided to us is
merely a snapshot of an underlying process which we will describe in more detail
shortly. Nonetheless, the key hypothesis is that specifying this process to our deep
neural network model will be beneficial and provide a fresh perspective on some
strategies that are already in use in the literature.

Main ideas. The foregoing use of “process” to describe the data sample hints
at the potential use of an ordinary differential equation (ODE). While ODE type

constructions can be used to characterize simple processes, it will be insufficient to
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model more complex processes that will better reflect practical considerations. The
key challenge in directly instantiating the “z(t)” idea for SDEs is clearly infeasible
since there are infinite possible trajectories for the same initial conditions. Our main
insight is that recent results in the SDE literature show that (under some technical
conditions), the dynamics z(t) can be completely characterized by (functions of) the
infinitesimal generator £ of the process z(t) which can be efficiently estimated using
tinite data. We exploit this result by proposing a simple modification to the estima-
tion procedure that can be directly utilized within any backpropagation based train-
ing framework. Specifically, we exploit the result proposed by Banisch et al. (2020)
where they call the generator Target Measure Diffusion map (TMDmap). This leads
to our TMDlayer that can be conveniently dropped into a network, and be simply
used as a plug-and-play module with just a few additional parameters. As a result,
when utilized within standard vision pipelines, our layer provides a simple way to
incorporate much richer domain information if available, or as a regularizer or aug-
mentation scheme, or as a substitute to an existing layer, and we find is beneficial to
the overall performance of the model.

Our contributions. There is a growing interest in the interface of physics-based
formulations and deep learning models, both for algorithm design and analysis.
Models such as a Neural ODE Chen et al. (2018) and Neural SDE Liu et al. (2019¢)
usually implement or parameterize the dynamical system as a stand-alone model,
and show how gradients can be efficiently backpropagated through this module. In
this chapter, we take a different angle: we propose a stochastic process inspired layer
whose dynamics, in its most simplistic form, can be thought of as an augmentation
technique that can work with any existing layer in deep neural networks. But dif-
ferent from standard explicit data augmentation (rotation, flipping) that happens in
the input image space, our augmentation layer can be utilized in the feature space
and is fully adaptive to the input. Further, it can be used in both training and test
phases. Our proposed layer allows modeling the time-varying/stochastic property
of the data/features, and controls them by a proper parameterization in a manner
which is very parameter efficient. We will show that this stochasticity, while inter-
esting at a mathematical level, can be easily exploited in various vision applications

including point cloud transformers, object segmentation and few-shot recognition.
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7.2 Related Work

Early work in vision has made extensive use of differential equations Chan and Vese
(2001); Malladi et al. (1995); Rudin and Osher (1994); Caselles et al. (1997), especially
for segmentation. In machine learning, differential equations are useful for manifold
learning Belkin and Niyogi (2003) and semi-supervised learning Belkin et al. (2006);
Melas-Kyriazi (2020) among others. Recently, a number of strategies combine dif-
ferential equations with deep neural networks (DNNs) for solving vision problems.
For example, Chen et al. (2017) utilizes a conditional random field after the CNN en-
coder to refine the semantic segmentation results whose update rules can be viewed
as a differential equation and Marcos et al. (2018); Hatamizadeh et al. (2019) uses a
CNN to extract visual features before feeding them to an active contour model which
iteratively refines the contour according to the differential equation. Separately, the
literature includes strategies for solving differential equations with DNNs Kharazmi
et al. (2019); Michoski et al. (2020); Li et al. (2020). Over the last few years, a num-
ber of formulations including neural ODE Chen et al. (2018), neural SDE Liu et al.
(2019¢c) and augmented neural ODE Dupont et al. (2019) have been proposed, mo-
tivated by the need to solve differential equation modules within DNNs. Note that
Liu et al. (2019c¢) proposes to stabilize the neural ODE network with stochastic noise,
which leads to a neural SDE, a setting quite different from the one studied here. Fi-
nally, we note that SDEs as a tool have also been used for stochastic analysis of DNNs
Chaudhari and Soatto (2018).

7.3 Method

Background. Given a time invariant stochastic process X, the (infinitesimal) gener-
ator £ of a function f is defined as,
Ef(X,)] —f(X
L£(X) := lim X)) = £(X) . (7.3)

- t—0 t

If the process X, is deterministic, the expectation operator E becomes identity, and so
the generator £ simply measures the instantaneous rate of change in f with respect to
X. In addition, say that X, can also be expressed as a Stochastic Differential Equation
(SDE), i.e., X, satisfies:

dX, = b(X,)dt + o(X,)dW,, (7.4)
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where W, is a (multidimensional) Brownian motion with covariance C, and b, o rep-
resent drift and diffusion functions. We consider the case of general stochastic differ-
ential equations where b and o depend not only on the present value of the process
X,, but also on previous values of the process and possibly on present or previous
values of other processes too. In this case the solution process, X, is not a Markov
process, and it is called an Itd process and not a diffusion process. Then, it turns out

that £ can be written in closed form (without limit) as,
Lf=Db-Vf+oCo' -V, (7.5)

where £ acts as an operator on functions f, see Kunita (1997) for more details. In this
section, we will explain how to estimate and utilize £ within popular deep learning
frameworks.

Setup. Consider the setting in which X represents our input features, say image
as a three dimensional array (corresponding to the three RGB channels) and f corre-
sponds to a neural network with L layers. Let the data be given in the form of points
DM = x1,%9, o, X € RN with N > 0, which lie on a compact d-dimension dif-
ferentiable submanifold M € R™ which is assumed to be unknown. Diffusion map
Coifman and Lafon (2006) uncovers the geometric structure by utilizing the data
D™ to construct an m x m matrix that approximates a differential operator.

Interpreting SDE. As discussed before, when £ is used on the input space, it can
model stochastic transformations to the input image which include commonly used
hand designed rotation and clipping as special cases. When £ is used on feature
space (e.g., in an intermediate layer of a DNN), it can then model stochastic transfor-
mations of the features where it is hard to hand design augmentation methods. Be-
sides, it allows us to parameterize and learn the underlying stochastic changes/SDE
of the features.

Constructing L, in DNN training. The definition in (7.3) while intuitive, is not
immediately useful for computational purposes. Under some technical conditions
such as smoothness of b, o, f, and rank of C, Banisch et al. (2020) recently showed
that for processes that satisfy (7.4), it is indeed possible to construct finite sample
estimators L, of £. In Banisch et al. (2020) the approach is called Target Measure
Diffusion (TMD) so we call our proposed layer, a TMDlayer.

To construct the differential operator, we first need to compute a kernel matrix
K € R™*™ from the data. For problems involving a graph or a set of points as input,
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we can simply use the given data points (m would be the number of nodes in the
graph, or the number of points in the set), while for problems with a single input (e.g.,
standard image classification problem), we may not have access to m data points
directly. In this case, we can construct the kernel matrix by sampling a batch from
the dataset and process them together because we can often assume that the whole
dataset is sampled from some underlying distribution.

Algorithm 3: Our TMDlayer

1 Input: Function f, a batch of data samples {x;, ..., X, }, coefficient €,
parameterized time interval At

2 Construct distance matrix of batch data samples by
(Ke)ij = exp(—(4e) M xi —x1?)

3 Compute kernel density estimate: qe(xi) = Z;L(Ke)ij

4 Parameterize target distribution: 7'/2(x;) = Linear(x;)

5 Form the diagonal matrix D . with components (D¢ )ii = 7/%(xi)q* (x:)

6 Use D¢ . to right-normalize K: K¢ » = KeDe,

7 Form the diagonal matrix D with (De )i = Z]n; 1 (Ke )y

s Construct Ly, by Ly, = € 1(DhKer — 1)

9 Return: f(X) + At - L,,f(X)

After getting the set of data samples, we first project the data into a latent space
R™ with suitable h using a learnable linear layer, before evaluating them with an

appropriate kernel function such as,
ke(x1,%) = exp(—(4e) ! [x1 — x21?). (7.6)

We then follow Banisch et al. (2020) to construct the differential operator £ as fol-
lows: we compute the kernel density estimate q¢(xi) = Z]”; 1(K¢)ij. Then form the
diagonal matrix D, with components (D )i = 722 (x;)q-!(x). Here, we allow
the network to learn 7t by

/2 (x) = g(xq) (7.7)

where g can be a linear layer or a MLP depending on specific application. Next we
use D¢ . to right-normalize the kernel matrix K¢ . = KD . and use De,n which is
the diagonal matrix of row sums of K . to left-normalize K .

Then we can build the TMDmap operator

L =e (DKo —1). (7.8)
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We will use (7.8) to form our TMDlayer as follows.

TMDlayer: A Transductive Correction via L,,

Observe that (7.4) is very general and can represent many computer vision problems
where the density 7t could be defined using an problem specific energy function, and
W, is the source of noise. In other words, we aim to capture the underlying structure
of the so-called image manifold Zhu et al. (2016) by using its corresponding differ-
ential operator (7.5). Intuitively, this means that if we are given with a network fyy
with parameters W, then by Taylor’s theorem, the infinitesimal generator estimate

L., can be used to approximate the change of f\, as follows:

[Exfw(X, At) =~ fw(X,O) + At . Lm[fw], (79)

where [f\,] € R™ such that the i—th coordinate [f\/]; = fw/(xi), and At is interpreted
as a hyperparameter in our use cases. Please see Algorithm 3 for more details.

Inference using L,,. In the ERM framework, typically, each test sample is used
independently, and identically i.e., network (at optimal parameters) is used in a se-
quential manner for predictive purposes. Our framework allows us to further use
relationships between the test samples for prediction. In particular, we can design
custom choices of b, o tailored for downstream applications. For example, in applica-
tions that require robustness to small and structured perturbations, it may be natural
to consider low bias diffusion processes i.e., we can prescribe the magnitude using
|b]|, < k almost everywhere for some small constant k > 0 (akin to radius of pertur-
bation) and structure using diffusion functions o, C. Inference can then be performed
using generators £ derived using the corresponding process.

Layerwise £ for improved estimation of L,,. While (7.9) allows us to use L,;, for
any network with no modifications, using it naively can be unsatisfactory in practice.
For example, often we find that features from input layers might not be too informa-
tive for the task and may hinder training, especially in the early stages. We suggest a
simple adjustment: instead of applying approximation in (7.9) on the entire network,
we do it layerwise — could be every intermediate layer or several interested layers. It
means that f can in principle be any layer (e.g., a layer in graph neural networks or a
layer in Resnet), as shown in Fig. 7.1.
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Justification. Recall that most feed-forward neural networks can be completely
defined by a finite sequence of linear transformations followed by activation func-
tions (along with intermediate normalization layers). One option is to estimate L,,,
by directly applying the Taylor series-like expansion in (7.9) on f = ftof'" 1o ... f!
where 1 represents the number of layers. However, from (7.9) we can see that the
variance of such an estimate of the value L., [f\/] will be high due to the well-known
propagation of uncertainty phenomenon (across f;’s). To avoid this, we can estimate
L., [fw] in a sequential manner i.e., use Lm[fi,;l] to estimate L,,,[f} ] V 1 € [l]. We will
show in section 7.4 that this parameterization can be useful in various applications.

Synopsis. We briefly list the benefits of our TMDlayer next which we will further
demonstrate by experiments in section 7.4:

1. Our TMDlayer can parameterize and model the underlying stochastic transfor-

mations of features, providing a simple way to augment features at any layer.

2. The stochasticity /randomness in our TMDlayer is a stability inducing opera-
tion designed for robust predictive purposes Hardt et al. (2016b).

3. Our TMDlayer is parameter efficient. All we need is a projection linear layer
and a linear layer parameterizing the density 7t and a scalar parameter At. In
practice, we can work with small latent dimension (e.g., h = 16) when construct-
ing L., thus the total number of parameters in TMDlayer is very small com-

pared with the layer function f in most deep learning applications.

But the reader will recognize that a mild limitation of the SDE perspective in practice
is that in principle it is possible that the dynamics eventually get stuck in a meta-
stable state. This means that in this case, the estimate L,,, will not be very informative
in the forward pass, and so the gradient estimates might be biased. In such cases, it
may be useful to add points by sampling on the orbit if needed. We will now describe
four different vision settings in which our TMDlayer can be simply instantiated in a

plug-and-play manner.

7.4 Applications

In this section, we show the use of our TMDlayer in different applications. As a
start, we demonstrate the use of TMDlayer on a simple image classification task and
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study its properties in both inductive and transductive settings. We then move to
point cloud learning where the point cloud naturally forms a suitable object for the
TMDlayer’s use, and conduct experiments in an inductive setting. Next we explore
the use of TMDlayer on segmentation problem, also in inductive setting. We pro-
pose a novel deep active contour model which can be viewed as a dynamical process
within a neural network, and demonstrate the use of TMDlayer on top of this dy-
namic process. Finally we investigate few-shot learning which natively provides the

graph needed for computing our L., and allows transductive inference.

A Simple Sanity check on Resnet
We start with a simple example of image classification on CIFAR10 Krizhevsky et al.
(2009) using Resnet He et al. (2016), to demonstrate the wide applicability of our
TMDlayer and study its properties.
Role of TMDlayer: Use in Resnet
We choose Resnet-18 as the backbone network and treat each of its three residual
blocks as f (see He et al. (2016) for details of a residual block),

f(x'" 1) = Residual-block(x'™1) (7.10)
and then use our TMDlayer on it,

x' = f(x"" 1) + At - L f(x" 1) (7.11)

where x! is the feature at l-th layer and L., is constructed from a mini-batch of sam-
ples.

Experimental results

During training, we first sample m data points in a batch as input so that we can
construct L,,,. During inference, we also group m test samples together as input,
where m increases from 1 to 200. We can see from Table 7.1 that m does have an
influence on the test accuracy with larger m performing better than small m, since

L., with large m may better capture the geometric structure of the data.
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We also test whether our TMDlayer can lead to improvement of the robustness of
the network, by adding random noise to input image and evaluating the test accuracy.
Results are shown in Table 7.2. We can see that with TMDlayer, the network gains
better resilience to the noise injected in the input. This can be parly attributed to
the use of our parameterized At, which allows the network to control the stochastic
process in TMDlayer adaptively to the input.

m | Inference w/ TMDlayer | Accuracy (%)
1 No 75.15
1 Yes 87.35
10 Yes 87.65
50 Yes 88.14
100 Yes 88.52
150 Yes 88.55
200 Yes 88.25

Table 7.1: Accuracy on test set of CIFAR10 by adding TMDlayer to Resnet-18. m
is the batch size used to construct L,, during test/inference time. The accuracy of
Resnet-18 alone is 88.27%.

o 0.01 | 0.02 | 0.03 | 0.05 0.1
Resnet-18 | 87.54 | 83.90 | 75.85 | 53.87 | 17.27
Ours 87.79 | 84.37 | 77.96 | 56.18 | 19.18

Table 7.2: Accuracy on CIFAR10 when adding random noise (mean = 0, std = o) to
input. “Ours” means Resnet-18 plus TMDlayer.

Point cloud transformer

Point cloud learning is a important topic in 3D vision. The input is usually a point
cloud represented by a set of points, each associated with its feature description.
These points can be naturally thought of as samples from the underlying distribu-
tion which captures the structure of the object. It provides an ideal sandbox to study
the effect of our TMDlayer. Very recently, Guo et al. (2020) proposed a transformer
based model for point cloud learning which achieves state-of-the-art performance
on point cloud learning, motivated partly by the broad use and popularity of trans-
formers in machine learning and computer vision. Nonetheless, Transformer models

are known to be very parameter costly and it is sensible to check to what extent our
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TMDlayer operating on a simple linear layer can be competitive with the transformer
layer proposed in Guo et al. (2020), while offering significant parameter efficiency.

Problem formulation

Given an input point cloud P € RN*4 with N points each with d-dimensional feature
description, the classification task is to predict a class label for the whole point cloud.

Role of TMDlayer: to replace transformer layer

The point cloud transformer layer proposed by Guo et al. (2020) is designed as,
Fout = FF(Fln - Fsa) + Fin (712)

where FF refers to their feed-forward layer (a combination of Linear, BatchNorm and
ReLU layer), and F;, is the output of self-attention module which takes F;,, as input
(we refer readers to Guo et al. (2020) for more details of their network design, also
included in appendix).

The reason transformer layer is suitable for point cloud is that it can simultane-
ously captures the correlation among features of all points. Since our TMDlayer can
be viewed as a diffusion operator which captures the structure of underlying man-
ifold from the data, we test its ability by using TMDIlayer on a single feed-forward
layer to replace the transformer layer in (7.12).

Fout = FF(Fin) + At - L, ,FF(Fiy) (7.13)

Surprisingly, it turns out that this simple layer can perform comparably with the
carefully designed transformer layer in (7.12) while being much more parameter ef-

ticient (L, is constructed using points of the same point cloud).

Experimental results

Dataset. We follow Guo et al. (2020) to conduct point cloud classification experiment
on ModelNet40 Wu et al. (2015). It contains 12311 CAD models in 40 object categories
and has been widely used in point cloud shape classification benchmarking. We use
the official splits for training and evaluation.
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Network architecture and training details. We use the same network as Guo
et al. (2020) except that we replace each point cloud transformer layer with a TMD-
layer built on a single feed forward layer. We follow Guo et al. (2020) to use the same
sampling strategy to uniformly sample each object to 1024 points and the same data
augmentation strategy during training. The mini-batch size is 32 and we train 250
epochs using the SGD optimizer with momentum 0.9, initial learning rate 0.01 and a
cosine annealing schedule. The hidden dimension is 256 for the whole network and
16 for the construction of L, in our TMDlayer.

Results. We see from Table 7.3 that our approach achieves comparable perfor-
mance with Guo et al. (2020). In terms of number of parameters, using hidden di-
mension 256 (used in this experiment) as an example, one self-attention layer con-
tains 148k parameters; one linear layer contains 65.5k parameters; and the TMDlayer

module only needs 4k parameters.

Method Input | #Points | Accuracy(%)
PointNet Qi et al. (2017) P 1k 89.2
A-SCN Xie et al. (2018) P 1k 89.8
SO-Net Li et al. (2018) P N 2k 90.9
Kd-Net Klokov and Lempitsky (2017) P 32k 91.8
PointNet++ Qi et al. (2017) P 1k 90.7
PointNet++ Qi et al. (2017) PN 5k 91.9
PointGrid Le and Duan (2018) P 1k 92.0
PCNN Atzmon et al. (2018) P 1k 92.3
PointConv Wu et al. (2019) PN 1k 92.5
A-CNN Komarichev et al. (2019) PN 1k 92.6
DGCNN Wang et al. (2019) P 1k 92.9
PCT Guo et al. (2020) P 1k 93.2
Ours P 1k 93.0

Table 7.3: Results of classification task on ModelNet40. Accuracy means overall ac-
curacy. P = points, N = normals. Ours means replacing transformer layers in PCT
with our TMDlayer.

Object segmentation

In this experiment we show that our TMDlayer, directly based on dynamical sys-
tems principles, can also be built on top of another dynamical system. We do so by

demonstrating experiments on object segmentation.
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Recall that active contour models are a family of effective segmentation models
which evolve the contour iteratively until a final result is obtained. Among many
models that exist in the literature, the Chan-vese Chan and Vese (2001) model is a
widely used and efficient model which evolves the contour based on a variational
functional. Here we propose to combine Chan-vese functional with a deep neural
network by parameterizing the iterative evolving steps and build our TMDlayer on
top of it, and show that it leads to better segmentation results. (See appendix for
details of our proposed deep active contour model.)

Problem formulation

Let Q be a bounded open subset of R?, with 9Q its boundary. LetI: QO — R be
a given image, the task of object segmentation is to predict a dense map in Q —
0/1 where 1 indicates the object and 0 indicate the background. In our method, we
parameterized the contour of object by a level set function ¢ : 3 — R and evolve
it within the DNN. We note that hybrid approaches using level sets segmentation
schemes together with DNNs is not unique to our work, and has been independently

investigated via specialized architectures in Marcos et al. (2018); Yuan et al. (2020).

Role of TMDIlayer: in deep active contour model

Our proposed deep active contour model evolves the contour in the form of level set
function within the network, and the updating function is,

1_ 411 @ /
Ol =+ SEAL (7.14)

where ¢! is the level set function at layer l—1 and %—‘,’[’ is derived from our proposed
deep variational functional. (See appendix for details of our proposed model, the
variational functional, and the derivation of updating equation).

Denote the updating function in (7.14) as ¢' = (' !). Together with our TMD-
layer, the complete updating function of the whole layer is:

et =f(dV ) + At- L f(d" (7.15)

Remark 7.1. Note that At’ in (7.14) and the At in (7.15) are for two different dynamical
systems. The first one is for the updating function of deep active contour model and the second
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one is for the TMDlayer. L, in (7.15) is constructed using samples from the same mini-batch.

Remark 7.2. Note that our proposed segmentation model is different from Yuan et al. (2020)
which uses the variational energy function directly as the final loss function, whereas we are
parameterizing the updating steps within our network so that the final output will already

satisfy low variational energy.

Experimental results

Dataset. The Vaihingen buildings dataset consists of 168 building images extracted
from the training set of ISPRS “2D semantic labeling contest” with a resolution of
9cm. We use only 100 images to train the model and the rest 68 serve as the test set.

Network Architecture and Experiment Setup. We use an encoder CNN with an
architecture similar to Hariharan et al. (2015) and Marcos et al. (2018). The input is
the original image. The network is trained with a learning rate of 10~* for 300 epochs
using a batch size of 10. We setup our baseline using the same CNN architecture to
predict the segmentation mask without our Chan-Vese updating module. Previous
works combining active contour model and deep learning Marcos et al. (2018); Ling
et al. (2019) can only be used to provide segmentations of a single building based on
manual initialization or another algorithm based initialization whereas our model
can be used to segment multiple buildings in the image without any initialization.
For this reason, the results cannot be meaningfully compared. See our appendix for
more details about the setup.

Results and Discussion. We use the average Intersection over Union (IoU) to
evaluate the performance on Vaihingen dataset: the baseline yields 68.9 while our
model without TMDlayer achieves 73.5 and our complete model with TMDlayer
achieves 74.6, which is a significant improvement in terms of IoU. This shows that
our TMDlayer can be built on top of another dynamical system and provide extra
benefits.

Qualitative results of the baseline model and our model are shown in Fig. 7.2.
We can see that our method tends to predict more precise shape and boundary, and

also fixes some flaws compared with the baseline results.



117

GT Baseline Ours

Figure 7.2: Qualitative results on Vaihingen dataset. Our model performs well de-
spite the small sample size.

Few-shot learning

In N-way B-shot few-shot learning, the input is N * B samples which naturally forms
a fully connected graph and can be used to construct the differential operator L,;,.
Kim et al. (2019) proposed a graph neural network based approach named EGNN
for few-shot learning and this model achieves state-of-the-art performance. We show
that by adding TMDlayer, the performance of the model increases by a clear margin.

Problem formulation

The goal of few-shot learning classification is to learn a classifier given only a few
training samples for every class. Each few-shot classification task T contains a sup-
port set S which is a set of labeled input-label pairs, and a query set Q which is an
unlabeled set where the learned classifier is evaluated. If there are B labeled sam-
ples for each of N classes in the support set S, the problem is called N-way B-shot
classification problem.
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Role of TMDlayer: Use in graph neural network

Let G be the graph formed by samples from the task 7, with nodes denoted as V :=
{vi}i=1,. 71 The node feature updating equation is designed as (we refer readers to

Kim et al. (2019) or our appendix for more details about the network)
vl = NodeUpdate({y}’l},{e}j’ el (7.16)

where v! is the feature of node 1 at I-th layer, e;; is the edge feature between node
i and node j, and 0 refers to the parameters in the updating function. We abstract
(7.16) as v} = f(vi ') and use our TMDlayer

vi = f(vi™) + At L flvi™) (7.17)

Remark 7.3. In (7.17) the L, is constructed using samples from the same episode, and f is
a GNN module updating the node features using all node features and edge features.

Experimental results

Dataset. We follow Kim et al. (2019) to conduct experiments on minilmageNet, pro-
posed by Vinyals et al. (2016) and derived from ILSVRC-12 dataset Russakovsky et al.
(2015). The images are sampled from 100 different classes with 600 samples per class,
all of size 84 x 84 pixels. We use the same splits as in Ravi and Larochelle (2017); Kim
et al. (2019): 64, 16 and 20 classes for training, validation and testing respectively.
Network architecture and training details. We use the same graph neural net-
work architecture and follow training strategy as Kim et al. (2019) by utilizing the
code provided by the authors. We add our TMDlayer as shown in (7.17) to each
node updating layer in the graph neural network, with a latent dimension 16 for
constructing the L,,. We follow Kim et al. (2019) to conduct experiments for 5-way
5-shot learning, in both transductive and non-transductive settings, as well as for
both supervised and semi-supervised settings. The network is trained with Adam
optimizer with an initial learning rate 5 x 10~* and weight decay of 107°. The learn-
ing rate is cut in half every 15,000 episodes. For evaluation, each test episode was
formed by randomly sampling 15 queries for each of 5 classes, and the performance
is averaged over 600 randomly generated episodes from the test set. Note that the

feature embedding module is a convolutional neural network which consists of four
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blocks (following Kim et al. (2019)) and used in most few-shot learning models with-
out any skip connections. Thus, Resnet-based models are excluded from the table
for fair comparison. We refer reader to Kim et al. (2019) or the appendix for more
training and evaluation details.

Results. The performance of supervised and semi-supervised 5-way 5-shot learn-
ing are reported in Table 7.4 and 7.5 respectively. We can see that our TMDlayer
leads to consistent improvements with a clear margin in both supervised and semi-

supervised settings, and also for both transductive and non-transductive settings.

Model Trans. | Accuracy(%)
Matching Networks Vinyals et al. (2016) | No 55.30
Reptile Nichol et al. (2018) No 62.74
Prototypical Net Snell et al. (2017) No 65.77
GNN Garcia and Bruna (2017) No 66.41
EGNN Kim et al. (2019) No 66.85
Ours No 68.35
MAML Finn et al. (2017) BN 63.11
Reptile + BN Nichol et al. (2018) BN 65.99
Relation Net Sung et al. (2018) BN 67.07
MAML + Transduction Finn et al. (2017) | Yes 66.19
TNP Liu et al. (2019d) Yes 69.43
TPN (Higher K) Liu et al. (2019d) Yes 69.86
EGNN+Transduction Kim et al. (2019) Yes 76.37
Ours+Transduction Yes 77.78

Table 7.4: Results of 5-way 5-shot learning on minilmageNet. Ours means EGNN
plus our TMDlayer. BN means that the query batch statistics are used instead
of global batch normalization parameters. All results are averaged over 600 test
episodes.

Labeled Ratio (5-way 5-shot)
Training method 20%  40% 60%  100%
GNN-semi Garcia and Bruna (2017) | 52.45 58.76 - 66.41
EGNN-semi Kim et al. (2019) 61.88 6252 63.53 66.85
Ours 63.14 64.32 64.83 68.35
EGNN-semi(T) Kim et al. (2019) 63.62 6432 66.37 7637
Ours(T) 64.84 66.43 68.62 77.78

Table 7.5: Accuracy of semi-supervised few-shot classification. “Ours” means EGNN
plus our TMDlayer.
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7.5 Summary

We proposed a SDE based data augmentation framework that can be used for data
and feature augmentation purposes in any layer. Our framework is beneficial where
data generation can be described using stochastic processes, or more specifically dif-
tusion operators. Thisis particularly useful in settings in which obtaining a determin-
istic model of image manifold or when learning density functions are impossible due
to high sample complexity requirements. TMD layer does not require explicit knowl-
edge of samples, especially during training making it computationally efficient. The
“process” of which a data sample is a snapshot, whose characterization is enabled
by our TMDlayer, also appears to have implications for robust learning. Indeed, if
the parameters that define the process are explicitly optimized, we should be able to
establish an analogy between the resultant model as a stochastic/simpler version of
recent results for for certified radius maximization which often rely on Monte Carlo
sampling. We believe that periodicity in SDEs for data augmentation is an important
missing ingredient — for instance — this may help model seasonal patterns in disease
progression studies for predictions, automatically. For this purpose, tools from Flo-
quet theory will allow us to consider transformed versions of the process, potentially

with simplified generators.
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Chapter 8

Conclusions

In this thesis, we demonstrated how dynamical systems can motivate novel layers for

deep neural networks which expand the ability of deep models. We proposed novel

layers based on several different dynamical systems and applied them on various

applications in computer vision and machine learning. Specifically,

1.

In Chapter 3, we leveraged message passing algorithm as layers to model rela-
tive attributes efficiently.

. In Chapter 4, we proposed a differentiable layer for solving linear programs

based on physarum dynamics, which is time efficient and GPU friendly.

. In Chapter 5, we utilized a Newton’s method to construct a differentiable LP

layer to optimize non-decomposable objectives where the number of constraints

is larger than the number of variables.

. In Chapter 6, we studied the problem of streaming canonical correlation anal-

ysis where the dynamics happen across the whole training stage when inte-
grated into deep models, and proposed an algorithm with less complexity per

iteration and fast convergence rate compared with previous approaches.

. In Chapter 7, we explicitly modeled the stochasticity taking place in the feature

space of deep models by proposing a layer based on ideas from the stochas-
tic differential equations, and show that this stochasticity can help in various
vision-related tasks.
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8.1 Future Work

We now discuss some ongoing and future research directions.

Utilize relative attribute learning beyond vision

Due to the flexibility that the framework of relative attribute learning provides, we
can use it to solve real world problems (possibly outside of computer vision) by cast-
ing them as relative attribute learning. As an example, in a follow-up work Kanchi-
nadam et al. (2021) to our work in Chapter 3, we utilize our method proposed in
Chapter 3 to solve a regression task on language data — to predict a customer’s sat-
isfaction score from his/her phone call. The system takes as an input speech-to-text
transcriptions of calls and predicts call satisfaction reported by customers on post-
call surveys (scale from 1 to 10). Because of its ordinal, subjective, and often highly-
skewed nature, predicting survey scores is not a trivial task and presents several
modeling challenges. We introduce a graph neural network (GNN) approach that
takes into account the comparative nature of the problem by considering the relative
scores among batches, instead of only pairs of calls when training. This approach
produces more accurate predictions than previous approaches including standard
regression and classification models that directly fit the survey scores with call data.
Compared with directly performing regression, our model is more tolerant to the
noise in the labels since it considers the relative strength among a group of data sam-
ples. Compared with the pairwise ranking model, the benefit of our method is that
the GNN predicted rankings for a batch of examples is guaranteed to be coherent
with respect to the transitive nature of a ranking. In addition, the GNN may uti-
lize higher order features among the data samples. It can be a promising direction
to check whether our proposed relative attribute learning can work on more tasks
beyond computer vision like language data demonstrated in the follow-up work, or
other data modalities like audio, gaze, etc.

More efficient differentiable combinatorial optimization layer

Our works in this thesis focus primarily on differentiable continuous optimization
although the discrete optimization setting is also important since its frequently used
in real world applications, for example, when some part of the hidden state becomes

discrete Rolfe (2016), or when the problems involves certain selection over candi-
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dates Abbas and Swoboda (2021). Current works on differentiable combinatorial op-
timization are mostly based on perturbations and treat the specific solver as a black-
box Berthet et al. (2020); Vlastelica et al. (2019). This approach has the flexibility of
utilizing existing combinatorial solvers, but is not efficient enough in a number of
scenarios since the computation increases linearly with the number of perturbations
and the number of perturbations needed for a good solution is often large. Since this
process treats the specific combinatorial solver as a blackbox, we cannot rely on the
solver to speedup this process of adding perturbations. It would be useful to explore
whether some specialized solver based on some type of dynamics can act as better
candidates. For example, if we can define gradients for each step of the solver then
we can use unrolling to differentiate through it. Or if we can define the gradients
based on certain information stored in the forward pass of the solver, we can also

possibly avoid using perturbations.

A unified framework for differentiable optimization

Although there have been quite a few works on differentiable optimization, their
implementations and practical considerations are quite different. For example, the
solver proposed in Zeng et al. (2019) is specialized for matching problems, while the
solver proposed in Cuturi et al. (2019) is for sorting problems. Optnet Amos and
Kolter (2017) is designed for continuous optimization and implemented in Pytorch,
while Berthet et al. (2020) is for discrete optimization and implemented in Tensor-
flow. Our solver in Chapter 4 works for LP problems with a comparable number of
constraints and variables, while our solver in Chapter 5 work for LPs when the num-
ber of constraints is much larger than the number of variables. When a practitioner
has a specific use case in hand, it might be very hard to find a good differentiable
solver ready to use in a plug-and-play manner. It would be beneficial if we could
develop a unified framework for differentiable optimization, which allows the user
to input the order (first/second/more), the type (continuous/discrete), the speed
preference (fast/precise), and maybe the GPU memory, etc. In this way, the differen-
tiable optimization really becomes accessible to researchers who have very limited
or no experience with low-level optimization concepts. To achieve this, one of the
challenges is that different solvers may perform differently in terms of speed/accu-
racy tradeoff, thus we need to have a comprehensive evaluation to determine which

solver to use given a user’s preference. Most existing (non-differentiable) solvers are
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implemented on CPU and implementing them on GPU can encounter challenges
(for methods which start from existing non-differentiable solvers). Of course, there
are also engineering challenges to implement solvers for so many different use cases

under a unified framework.

More applications of our DeepCCA algorithm

In Chapter 6, we conduct experiments on several simple image datasets like MNIST
and CIFAR, although our method can be applied to many other scientifically mean-
ingful datasets. For example, many tasks associated with biomedical and scientific
datasets need to analyze the relationship between two groups of variables or multi-
ple modalities. While the simple variants of this task can be handled via regression,
a large scale regression with hundreds (or more) of response variables takes a form
quite similar to CCA. DeepCCA is a promising tool for these applications: it can
utilize the power of deep neural networks to learn from the data, and can find cor-
related subgroups from the two set of variables using a single model. In addition,
with our algorithm proposed in Chapter 6, DeepCCA can scale to accept large inputs.
In an ongoing collaboration with aging researchers, we are exploring the possibility
of utilizing the DeepCCA to analyze the relationship between the human brain and
the gut microbiome. Specifically, researchers first make quantitative measurements
of the human brain and the gut microbiome respectively, which results in two set
of variables with N samples per variable (each sample here could come from a dif-
ferent individual). We then utilize our DeepCCA algorithm on this set of measure-
ments. As a preliminary result, we find relatively strong correlation between certain
anatomical regions in human brain and certain microbiome groups, which appears
to be meaningful. In the future, we can also explore utilizing partial CCA to control
for a set of variables whose influence is known. In a recent work Zhen et al. (2022)
we propose a reasonable alternative to partial CCA and have verified its effective-
ness on several experiments including training independent deep models and doing
informative comparisons between deep networks. It will be interesting to compare
these approaches with an extension of our deepCCA where one or more variables
could be controlled for.
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A new family of graph convolutional networks based on our

proposed TMDlayer

The graph convolutional network (GCN) has been widely used in various problems
involving graph structured data. Since GCN was first proposed by Kipf and Welling
(2016), there have been a family of follow-up works proposed. Examples include
graph attention networks Velickovic¢ et al. (2017) which adds the attention mecha-
nism for calculating weights over the neighborhood nodes, graph partition neural
networks Liao et al. (2018) which partition the nodes to decrease the amount of re-
sources needed for computing, etc. Overall, the graph convolutional network models
a collection of data points with certain graph structures utilizing the normalized ad-
jacency matrix. Similarly, our TMDlayer (proposed in Chapter 7) also accepts a batch
of data as input, and we also consider the relationship between data points when we
construct this L,,. In other words, when the input X is a batch of data with some
graph structure, the TMDlayer may possibly act in a similar way as GCN while the
mechanism is different. Our TMDlayer can be viewed as a graph neural network
with a residual link (since our layer is defined based on the first order Talor expan-
sion) where infinitesimal SDE generator L,, replaces the normalized adjacency ma-
trix. This perspective may provide a new family of graph neural networks which con-
siders the stochasticity of the input. We carried out some preliminary experiments
on some standard GNN benchmarks (CORA citation dataset) where the TMDIlayer
outperforms the GCN layer. It remains to be seen whether this improvement can
generalize to other datasets and tasks.
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Appendix A

Physarum Powered Differentiable
Linear Programming Layers and

Applications: Appendix

Proof of Theorem 4.8

Proof. 1t is sufficient to show that y,, = ©(y/m + n). But showing such a constant
exists is equivalent to showing that there is a neighborhood N = B(c, r) around the
cost vector or objective function c of radius r > 0 such that the optimal values of any
two cost ¢1, ¢, € N coincide i.e., there exists x* € P such that ¢/ x* = ¢] x*. To see that
this is sufficient for our purposes, note that we can add small but positive constant to
all the coordinates in c that correspond to auxiliary/slack variables. Now, it is easy
to see that Assumptions 1 and 2 guarantee that the optimal solution set is a bounded
polyhedral multifunction. Hence, we can use the Sticky Face lemma Robinson (2018)
to guarantee that such a nonzero r exists. To conclude, we observe from the proof of
the Sticky Face lemma, that r can be upper bounded by 1/M, where M corresponds
to the the diameter of P which is ©@(y/m). H

Proof of Convergence of {;-SVM

Since the SVM formulation is always feasible, by the separating hyperplane theo-
rem, there exists a k > 0 such that the when we add cost of k to each coordinate of
o1, %, by, by, p, q, 1, then the (cost) perturbed linear program and the original LP ((6)
in the main paper), have the same optimal solution. Then, it is easy to see that C of
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this perturbed problem is quadratic in n, C and k. By scaling the data points, we can
assume that

Ixi]l2 < 1. (A1)

We now bound the magnitude of sub-determinant D of the perturbed SVM LP. First
note that the slack variables are diagonal, hence, the contribution to the determinant
will be at most 1. Hence, to bound D, we need to bound the determinant of the kernel

matrix K(X, X). Using Fischer’s inequality Thompson (1961), we have that,
D < (K (xi,x:))" (A.2)

For a linear kernel, we have that, D = ||x;||™ < 1 (by assumption (A.1)). For a Gaus-
sian kernel scale o, we have that, D = O(o) with high probability. We can easily
extend this to any bounded kernel K.



128

Appendix B

Differentiable Optimization of
Generalized Nondecomposable
Functions using Linear Programs:

Appendix

LP formulation for multi-class AUC

One way to extend binary AUC to multi-class is by considering multiple one-versus-
all pairs. This leads us to the following formulation:

AUC rr;mi i Zij (B.1)

=1 j=1ox #x
st (f(xi, xi) — £(x5,x7)) = € —zyVi,j i xXi #X],

Zij 20

In our multi-class AUC experiment, we use this one-versus-all AUC as training
loss and report performance in both one-versus-all AUC and AUCE™. In addition,
we can also consider the setting of AUC,, where P is set arbitarily. In this case, the

exact terms in orientation function O proposed by Kleiman and Page (2019) can be
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written as follows:

IA[JCj_ar‘bit n‘zlll]n Z Z Zij (B 2)

i=1 j:1:XI<x]?*
" K
st diy ) V(K)(f(xi, k) — £(x;, k) > e —z;;
k=1

Vi,j:x <x;-k,

Zij 20

Note that AUC* has the same number of constraints and variables as AUCPI,

Once the LPs are solved, the loss function is calculated the same way as binary AUC.

Formulating Ratio Objectives

In this section, we study a subset of non-decomposable metrics, which are typically
expressed as ratios of some combination of True Positive(TP), False Positives(FP),
True Negatives(TN) and False Negatives(FN). These can be expressed in a general

(111TP+C112
a21TP+a22FP+a23FN+a24

means the term is absent and not equal to zero in other cases. This formulation can

form as , where a, are constants/cofficients which if set to 0,
used to define Fscore, Fg, Jaccard, IOU and Precision at fixed recall. In the following
section, we describe the formulation of Fscore as a representative of this approach,
other metrics can be formulated similarly.

Given Y the groud truth, our goal is to compute Y both of length n, which aligns
with Y based on the specific metric. We first show how to write TP, FP, TN and FN
wrt to these vectors.

TP=YT"xY FP=(1-Y)TxY
TN=(1-Y)Tx(1=Y) FIN=(Y)Tx (1-Y)

Formulating F-score

The F-score or F-measure is routinely used as a performance metric for different types
of prediction problems, including binary classification and, multi-label classification.
Compared to measures like error rate in binary classification and Hamming loss,

it enforces a better balance between performance on the minority and the majority
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classes, and, therefore, it is more suitable in the case of imbalanced data Dembczyn-

ski et al. (2011). F-score is defined as follows:

x R(Y,Y)
P(Y,Y) + R(Y,Y)

where P is the measure of precision defined as

F-score(Y,Y) = (B.3)

. TP
PYVY) = 15w

and R stands for the measure of recall, given as

. TP
RYY) = N

Plugging this in Eq(1), and replacing the formulations for TP, FP and FN(from Eq B)
we get

. 2TP
F-score(Y,Y) = 2TP + FP + FN

B 2(YT x Y)
iavit it
e
_2AYTxY) (B.4)
1TY +17Y

where y; refers to the ith element of Y(same for {J;). 1 represents an all one vector
in R™. Note that in training, since Y is generally provided, we can assume 1'Y =
B which is constant (the number of examples in the positive class in the ground
truth). We can also represent the the values of 2Y as a coefficient matrix c, then the

optimization problem for finding F-score can be written as

maximize (B.5)

v 1Y +b
subject to Y;€0,1],i=1,...,n.
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Maximizing Jaccard Coefficient and Fg

The Jaccard Coefficient and Dice Index lead to similar formulation as F-score. The
Jaccard coefficient can be expressed as:

. TP
Jace(Y, ¥) = TP+ FP+FN

B (YT x V)
XY 0 Xy x D
_ (YT xY)

1Y+ (1-N)TY

(B.6)

This can be equivalently written as a linear factional program as shown in Model(B.3)
wherec =Y,d = (1 —Y)and b = 1"Y. The rest of the construction is similar to F-
score.

Note that Fg which is defined as

P(Y,Y) x R(Y,

FalY, V) = 1+ 8) o \)?) +R(Y %)

(B.7)

where (3 is a user specified parameter (balancing the importance of precision and
recall) also permits a similar formulation. Here we simply set ¢ = (1 + i)Y, d =1
and b = fi*1"Y.

Maximizing P@R

We begin by defining the maximum precision at fixed minimum recall problem as

P@Rx = maximize P s.tR> « (B.8)
YTy .
= maximize (m?) st. Y'Y>a1'Y (B.9)

This is again a linear fractional objective with a linear constraint. So we can write it
as an equivalent Linear program using the same transformation wherec =Y, d =1

and b = 0. R@P on the other hand directly leads to a linear program.
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Optimizing Non-negative Matrix Factorization (NMF)

Nonnegative matrix factorization is different from the other objectives we presented
in that it is primarily used in unsupervised learning and does not satify the criteria
for a metric loss function. It can still be formulated in a generalized non-decomposable
form because (i) cannot be written as a sum over individual samples, (ii) leads to a
model where the constraints depend on learned features.

Note that purpose of discussing NMF in this context, is not to provide a gen-
eral purpose solver for the problem, and instead to assess whether NMF layers can
serve as a regularizer or a clustering module, e.g., learning more interpretable at-
tributes, co-segmentation and a substitute for clustering, see Trigeorgis et al. (2014)
and Collins et al. (2018). The following description in this section and the experi-
mental validation in the following section is a proof of principle instantiation of this
idea.

We briefly review from Arora et al. (2012) and Recht et al. (2012), how NMF is
written as a LP.

We know from Arora et al. (2012) that a NMF decomposition V = FW where F is
sxs’and Wis s’ xwand V and W have a row sum of 1, is ‘separable’ if the rows of W

T
are simplicial and there is a permutation matrix R € R®*® such that RF = [ . M } .
The top r rows of F contains so-called anchor words. Recht et al. (2012) proposed a
data-driven model where the most salient features in the data are used to express

the remaining features, given as V ~ CV, where C is of size s x s. Assuming V

I. 0
admits a rank-r separable factorization, then V = R M 0 RV = CV. To show

that thsis factorization is possible, we need to first make F square, which is why it is
zero-padded to make it a size s x s matrix. Let p be any vector which is used as the
coefficient in the objective in the following model. According to Recht et al. (2012),
any value for the entries of p should suffice as long as they are distinct. with distinct
values. Then the LP formulation is as follows:

min p'diag(C) st. CV =V,
tr(C) =T, Cj]‘ < 1 \V/J, Cij < ij Vl),
cC>0

With C in hand, W is constructed by extracting rows of V for those indices k where
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Cxx = 1. Fis constructed by extracting rows of C which correspond to k where
Cxk =1

Experimental results on Nonnegative Matrix Factorization

Figure B.1: NMF example. Three rows correspond to original images, k = 1 and
k = 2 respectively.

We demonstrate applicability of our strategy to nonnegative matrix factoriza-
tion (NMF) by performing a rank k factorization on Convolutional Neural Network
(CNN) activations as an example, following Collins et al. (2018). Recall that the ac-
tivation tensor of an image at some layer in CNN has the shape V € R®*™" where
h,w are the spatial sizes and c is the number of channels. We can reshape it into
V € R and calculate a rank k NMF for V: V = FW. Each row W; of the re-
sultant W € R**("") can be reshaped into a heat map of dimension h x w which
highlights regions in the image that correspond to the factor Wj. We show an ex-
ample for k = 1,2 in Fig. B.1. We can see that heatmap consistently captures a
meaningful part/concept in the examples. Currently, our memory consumption in-
creases quickly with ¢ here since the constraint matrix in our LP formulation is of
size O(c?) x O(c?). This makes our method only work for small ¢ on a GPU with
11GB memory (here, we use ¢ = 20). This scaling issue can be possibly solved by

utilizing sparsity in the constraint matrix, but the sparse matrix operations are cur-
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Objective || g h E F P B G ¢
AUC 1 G - -1 e = pl] — - - =
ZITIXIN| ZITIXIN] (f(x;) —

f(Xj)
€)
AuC;™ | 1f, - -1 - Py = - - -
e . (fitj_e)
11’ -1 y
F-score || ¢ 0 -1 d(f(xi)) 0 d b b
1 —(1+ ¢(f(x4)))

Table B.1: Table showing the general LP coefficients for each model. T: length based

on problem setting; *: 1, = dij (f(xi, Y (x))—F (X5, Yc(x0)) Hx5, Y (x) ) —F (X0, Ycx)));
$: one block for each i € [1,..n]. We do not include NMF in this table, as its for-
mulation as a general LP is more verbose including vectorization of matrices and
kronecker product calculations.

rently not well supported on mainstream deep learning platforms like PyTorch and
Tensorflow. Since our method provides backward gradients for the NMF operation,
the heatmap generated here can, in fact, be used to construct a loss function during
training in order to learn a interpretable models.

Verification of Unrolling gradient and the one provided by A~'b

We use Fscore formulation as an example. For input sample x, the neural network
predicts a score f(x), and then the scores of a batch of samples will be used in solving
the linear programming form of Fscore and be used to construct the loss function.
We compute the gradient from the final loss function back to the predicted scores
from the neural network and compare two approaches: one is that we use z = A~'b
as the solution (the one we used in our experiment) where we can compute gradient
by only one step, another one is that we directly use y, resulting from the Newton
iterations as the solution and compute gradients by unrolling those iterations. We
then compute the cosine value between these two gradient vectors. By experiments
on 100 randomly sampled batches, the average cosine value is 0.9991, which means
the two gradients are highly consistent.
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Table B.2: Ablation study of € on Cat&Dog dataset.

Positive Ratio 91% 83% 71% 50%
Ours(e = 0.1) 713 770 844 873
Ours(e =0.01) 786 813 85.6 87.8
Ours(e =0.001) 659 713 71.8 76.1

B.1 F-score

The F-score (or F-measure) is a representative of objectives expressed as ratios of
some combination of True positives (ITP), False positives (FP), True negatives (TN)
and False negatives (FN). The general form of the ratio functions and formulations

for other objectives is in the supplement. Specifically, F-score is defined as follows:

2 (Precision X Recall) 2TP
Precision+Recall ~ 2TP+FP+FN

Definition B.1 (F-score). F-score = =2(YTxY) /1Ty +17V).

The second equality in the definition is due to a simplification of the precision
(7555 and recall (f5tie) expressions based on Dembczynski et al. (2011). The last
part is obtained by replacing TP with YT x Y, FP with (1 — Y)T x Y and FN with
(Y)T x (1 =) as functions of Y and Y. This leads to the following integer fractional

optimization model,

Ty R o
F-score = rnaXCA— st. Y;€[0,1],i=1,...,nwherec=2Yand b = Z Y;.
v 1TY+Db i=1
(B.10)

To solve this, we first relax the constraint on Y and reformulate the model as the

following LP, by introducing two variables z € R™ and t € R! where z = %,
t= 1TY+b andie{l,---,nk
c'z
max — st 1Tz4+bt=b; z; <t; d(fx))t <z < (1 +p(f(x))t; 1 >2,t >0
z,t b T/ W ~
a (c)

The supplement simple algebraic adjustments to derive the three constraints (a)(b)(c).
This model imposes 4n constraints for n samples. Since this is a maximization, a so-
lution to the LP, Oy, is an upper bound on the integer objective opt*, and serves as
the loss.
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B.2 How to choose ¢

How to choose €? If we can successfully retrieve the active constraints at the opti-
mal solution, we do not need to store the intermediate iterates y; at all during the
forward pass (memory efficient). However, setting € correctly can be tricky for ar-
bitrary polyhedra since it depends on the geometric properties such as facets and
vertices that may be difficult to enumerate. One possible way to get around this is
to use a “burn-in” period in which we increase € slightly in each iteration (of deep
network training) and backpropagate through the unrolled Newton’s iterations dur-
ing this period. Once we see that the convergence profile has stabilized, we can fix
€ at that value and start using the complementarity conditions and derive the active

linear system A~'b as discussed above.
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Appendix C

An Online Riemannian PCA for
Stochastic Canonical Correlation
Analysis: Appendix

Proof of Theorem 1

We first restate the assumptions from section 3.1:

Assumptions:

(@) The random variables X ~ N(0,Z,) and Y ~ N(0,Z,) with Z, =< cIj and
X, = clq4 for some c > 0.

(b) The samples X and Y drawn from X and Y respectively have zero mean.

(c) For agivenk < d, £, and X, have non-zero top-k eigen values.

Recall that F and F are the optimal values of the true and approximated CCA

objective in (1) and (4) respectively, we next restate Theorem 1 and give its proof:

Theorem C.1. Under the assumptions and notations above, the approximation error £ =

IF — F| is bounded and goes to zero while the whitening constraints in (4b) are satisfied.

Proof. Let U*, V* be the true solution of CCA. Let U = ﬁSuQu,V = \75v Q. be the
solution of (4) with U, V be the PCA solutions of X and Y respectively with S,,Q,, =
UTU* and S,Q, = VTV* (using RQ decomposition). Let X=XUUTand Y = YVVT
be the reconstruction of X and Y using principal vectors.
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Then, we can write

. 1 /~ T .
F = trace (UTCXYV) = trace (N (XU*> YV*) (C.1)
Similarly we can write F = trace (% (xu)"’ YV*).

Using Def. 1, we know that 5(\, Y follow a sub-Gaussian distribution.

Consider the approximation error between the objective functions as E = |[F — F.

Due to von Neumann'’s trace inequality and CauchySchwarz inequality, we have
1 A\ TYTV (\/* #\ Ty T *
E = ltrace ((u TXTY(VF) — (U)TXTY(V )) |
- T/~ ~ =~
< ltrace ((u*)T ((x =X) (Y=Y) =2XTY + XV + XTY) (v*)) |

<D olXu—Xu)ouVy = V) + Y oiXu — Xu)ou(Vo) + Y ou(Ye — Vo) oi(Xu)

i

< (R =X ) el (Yo =0 ) e 1 (K= X)) e Yolle + (Yo = Yo ) HeliXollr

(A1)

Here A, = AU* and A, = AV" for any suitable A. where ¢;(A) denote the i-th
singular value of matrix A and || e ||z denotes the Frobenius norm.

Now, using Proposition 1, we get

(R =)l < min (VIR 21550

A
. | 203

1 (Yo =Y.) lIr < min (V2K]|A, |l 52y (A2)
}\k_}\k+1

where
A, = C(Xy) — C(Xy), Ay =C(Y,)—C(V,).

Here A*s and AYs are the eigen values of C(X,) and C(Y,) respectively. Now,
assume that C(X,) = Ix and C(Y,) = Ix as X, and Y, are solutions of Eq. 1. Fur-
thermore assume A}f — A%, ; > Aand A} — A}, ; > A for some A > 0. Then, we can
rewrite Eq. (A.1) as
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A A

o 2|1 — C(Xu) |2 ~ 2T — C(Y,)|12
E < min (VZkHIk_C(Xu)Hz, [Tk ( )Hz) min( /2| Tk — C(V) s I — C(Y)|I3

. - 2|1 — C(Xy)|2
mm<V2kHIk_C(Xu)H2/ I /\( )H2> 1Yy lle+

_ o 2l —C(Y,)|3
min (vZkHIk—C(Yv)Hz, I /\( )”2> [ Xu[F

And as C()A(u) — Iy or C(\?v) — I, E = 0. Observe that, the limiting conditions
for C()?u) and C(\?v) can be satisfied by the “whitening” constraint. In other words,

as C(Xy) = Ix and C(Y,) = L, C(Xy) and C(Y,,) converge to C(X,) and C(Y,), the

approximation error goes to zero. [

RSG+ algorithm

Here we show our algorithm with more details about the gradients in every step in
Alg.4.

Implementation details of CCA on fixed dataset

Implementation details. On all three benchmark datasets, we only passed the data
once for both our RSG+ and MSG Arora et al. (2017) and we use the code from Arora
et al. (2017) to produce MSG results. We conducted experiments on different dimen-
sions of target space: k = 1,2,4. The choice of k is motivated by the fact that the
spectrum of the datasets decays quickly. Since our RSG+ processes data in small
blocks, we let data come in mini-batches (mini-batch size was set to 100).

Runtime of RSG+ and baseline methods

The runtime comparison of RSG+ and MSG is reported in Table C.1. Our algorithm
is 5-10 times faster.

We also plot the runtime of our algorithm under different data dimension (set
dy = dy = d) and number of total samples sampled from joint gaussian distribution
in Fig. C.1.

)+
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Algorithm 4: Riemannian SGD based algorithm (RSG+) to compute canonical directions

1 X e RNXdx Yy ¢ RNXdy | > 0U € R&xxk vV ¢ Rdyxk
2 Initialize U, V, Qu, Qy, Sw, Sy ;

3 Partition data X, Y into batches of size B. Let j*" batch be denoted by X; and Y; ;

sje{l -, g}

Gradient for top-k principal vectors: calculating Vﬂfpri, V\N/Fpri
1. Partition Xj (Yj) into L (L = | £ |) blocks of size dy x k (dy x k);

2. Let the 1'™ block be denoted by Z} (Z});

3. Orthogonalize each block and let the orthogonalized block be denoted by Z¥ (Z});
4. Let the subspace spanned by each 2{‘ (and 2%) be Zf € Gr(k, dy) (and Z? € Gr(k, dy));

Ve ==Y Bxog (&) VgFen=—) Expg! (V) (C2)
5 1 1
Gradient from the original CCA objective: calculating
vﬂ Fcan/ v\N/Fcan/ quFcan/ VQV Fcan/ vSchan/ vS\,Fcan
- = . =T~ ~ = =T
__OF oF _ __ oF oF 17
vﬂFcan ~ U - ﬁ 1_,: v\/Fc:an ~ v - W v/
VQchan = atgu - a%]:u VQVFcan = 667(5\, T 0Qy ’
Vs, Fean = Upper (%) Vs, Fean = Upper (%EV)?

Here, Upper returns the wupper triangular matrix of the input matrix and

dF  dF F OF

0’ oV’ 9Qu’ 3Q,” 3547 35, Sive the Euclidean gradients.
orm expression of the gradients is,

oF oF

5 —CxyVQ,$,QlsT 30, = —U"CxyVQ,S,S)

oF ~ oF ~ -

— = —CyxUQ,S.Q/s! = —VTCyxUQySuS!
\% 0Qy

Gradient to update canonical directions

VGF = vﬂ;ﬁpﬂ + Vﬁfcan Vf/F = V\N/Fpri + vvfcan;

For completeness, the closed

OF

9S.,
oF

aSV

VXF = VxFen Where, X is a generic entity: X € {Q, Qv, Sw, Sv};

7

Batch update of canonical directions

= Qlﬁ—r CXY\7QV Sv

=-slQiuTcxyvQ,
(C3)

A = Expa (—ijAF> where, A is a generic entity: A € {Cl, \~/, Qu, Qv, Sw, Svi;

8

9 U=UQuSyand V = VQ,Sy;
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Table C.1: Wallclock runtime of one pass through the data of our RSG+ and MSG on
MNIST, Mediamill and CIFAR (average of 5 runs).

MNIST Mediamill CIFAR
Time (s) k=1 k=2 k=4|k=1 k=2 k=4|k=1 k=2 k=4
RSG+ (Ours) 4.16 424 4.71 1.89 1.60 144 | 14.80 17.22 22.10
MSG 35.32 42.09 49.17 | 11.59 1421 17.34 | 80.21 100.80 106.55
Runtime
900 ‘ ‘ ‘
—— N=1000
800 |- | =——N=5000
N=10000
700 L|l— N=20000
D
»n 600 -
@
Q500 +
2
S 400}
(@]
.g 300
|_

0L ‘ | |
0 2000 4000 6000 8000 10000

Data dimension d
Figure C.1: Runtime of RSG+ under different data dimensions and size of datasets.

Error metrics for fairness

Equality of Opportunity (EO) Hardt et al. (2016a): A classifier h is said to satisfy
EO if the prediction is independent of the protected attribute s (in our experiment
s is a binary variable where s = 1 stands for Male and s = 0 stands for Female) for
classification label y € {0, 1}. We use the difference of false negative rate (conditioned
ony = 1) across two groups identified by protected attribute s as the error metric,
and we denote it as DEO.

Demographic Parity (DP) Yao and Huang (2017): A classifier h satisfies DP if
the likelihodd of making a misclassification among the positive predictions of the
classifier is independent of the protected attribute s. We denote the difference of de-
mographic parity between two groups identified by the protected attribute as DDP.
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Implementation details of fairness experiments

Implementation details. The network is trained for 20 epochs with learning rate 0.01
and batch size 256. We follow Donini et al. (2018) to use NVP (novel validation pro-
cedure) to evaluate our result: first we search for hyperparameters that achieves the
highest classification score and then report the performance of the model which gets
minimum fairness error metrics with accuracy within the highest 90% accuracies.
When we apply our RSG+ on certain layers, we first use randomized projection to
project the feature into 1k dimension, and then extract top-10 canonical components
for training. Similar to our previous experiments on DeepCCA, the batch method
does not scale to 1k dimension.

Resnet-18 architecture and position of Conv-0,1,2

The Resnet-18 contains a first convolutional layer followed by normalization, non-
linear activation, and max pooling. Then it has four residual blocks, followed by
average polling and a fully connected layer. We denote the position after the first
convolutional layer as conv0, the position after the first residual block as conv1 and
the position after the second residual block as conv2. We choose early layers since
late layers close to the final fully connected layer will have feature that is more di-

rectly relevant to the classification variable (attractiveness in this case).

Yger et al. 2012

We implemented the method from Yger et al. (2012) and conduct experiments on the
three datasets above. The results are shown in Table C.2. We tune the step size be-
tween [0.0001,0.1] and 3 = 0.99 as used in their paper. On MNIST and MEDIAMILL,
the method performs comparably with ours except k = 4 case on MNIST where it
does not converge well. Since this algorithms also has a d* complexity, the runtime
is 100x more than ours on MNIST and 20x more on Mediamill. On CIFAR10, we

fail to find a suitable step size for convergence.
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MNIST Mediamill
Performance k=1 k=2 k=4 |k=1 k=2 k=4
PCC 0.93 0.81 0.53 055 0.61 0.51
Time (s) 575.88 536.46 54091 | 41.89 28.66 28.76

Table C.2: Results of Yger et al. (2012) (on CIFAR-10, our implementation of Yger et al.
(2012) faces convergence issues).
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Appendix D

Neural TMDlayer: Modeling
Instantaneous flow of features via SDE
Generators: Appendix

D.1 Details regarding Point cloud Transformer layer

proposed in Guo et al. (2020)

Here, we provide additional low-level details relevant to our point cloud learning
experiments.
Let Q, K,V denote the query, key and value matrices respectively, generated by

linear transformations of the input features F;,, € RN*4¢ as follows:

(QI KI V) - Fin : (quwkl Wv) (Dl)
Q,K € RN*da =y ¢ RNxde (D.2)
Wy, Wy € Rde¥de W, g Rdexde (D.3)

where W, W\ and W, are the shared learnable linear transformations, and d, is the
dimension of the query and key vectors. Note that d, may not be equal to d..

Next, we calculate the attention weights:

A= (&) =Qx KT (D.4)
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The weights are then normalized to give A = ()i ;:

®ij = D.5
T V(da) ()
_ exp(&i;)
i = softmax(&i) = =————2— D.6
: ) T epla) (D9)
The self-attention output F;a is computed as:
Fsa =A-V (D.7)

In Guo et al. (2020), they design an offset-attention which is used on top of F,.

After computing F,, the final output of the transformer layer is specified as
Fout = FF(FLn - Fsa) + Fin (D8)

where FF is the feed-forward layer comprised of the linear layer, normalization layer
and nonlinear layer.

D.2 Details regarding GNNs for few-shot learning
proposed in Kim et al. (2019)

Here, we provide additional low-level details relevant to our few-shot learning ex-
periments.

Let § = (V,&;T) be the graph constructed with samples from the task T, where
respectively. Let v; and e;; be the node feature of V; and the edge feature of Eyj,
respectively. We take [J]| = N x K + T to be the total number of samples in the task
7. Each ground-truth edge-label y;; is defined by the ground-truth node labels as
yij = 1if y; = y;; 0 otherwise.

In the proposed GNN in Kim et al. (2019), in the experiments, node feature up-
date and edge feature update are done iteratively for L layers. The node features
are initialized by the output of the convolutional embedding network and the edge
features represent the strengths of the intra- and inter-class relations between two
connected nodes. We treat the node feature update function as f and use our TMD-

layer on top of it. In Kim et al. (2019), the proposed node feature update function
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is:

v =gl Zémlvl 1HZ€}J;VL ! 9]) (D.9)

. N o ~ e
where each edge feature e;; = {eijd}%izl is a 2-dimensional vector &4 = 5 ‘éﬁikd, and
x €i

g}, is the feature transformation network with the parameter set 0.

D.3 Details regarding deep active contour model

Here, we provide additional details relevant to our segmentation experiments with
our proposed deep active contour model. In our segmentation experiments, we treat

the entire update module introduced here as f and use our TMDlayer on top of it.

Parameters

Input (A1, Ao, )
Image scalar
T g Predefined — ¢T
! or
map \
CNN e b0 Updating Module

Color —— C1 Color — ©i
Encoder

~ Encoder
2 / \ c2
%o ¢1 ¢2 ér
[Parameter( [Parameters{

Figure D.1: Architecture of our model: The image is fed into the CNN encoder to
produce initial level set function and needed parameters. The parameters could be
chosen to be a learned map or simply a constant. The updating module will evolve
the level set function using initial ¢ and the parameters, producing the final ¢r.
Within the updating module, in every step the color encoder learns C1, C2 from the
image and the current ¢¢. The images of ¢y and ¢t are binarized for a clear view.
Our TMDlayer is added to every layer in the updating module. Here we only show
once for clear view.

Overview. Given an input image I, our model learns to perform weighted length
minimization and learns feature-value sets in the image region, which are then used
to perform T steps of a level set update from the initial configuration ¢,. Our frame-
work also enables a semi-supervised segmentation once we add a modified varia-

tional energy term which our level set updates will explicitly optimize as a loss func-
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tion (for the unlabeled images). The level set update takes place within the network,
which seamlessly enables end-to-end training of our whole network.

Weighted Length Minimization

In active contour models, a length minimization term is used to yield curvature-
based evolution that is responsible for a smooth curve representation of the desired
object boundary. More precisely, one uses the arc length minimization Chan and
Vese (2001): 1

iréfL IC’(s)|ds (D.10)
However, minimizing the curve length alone will not suffice as a means to segment
object boundaries. A weighted curve length is more meaningful in this context, es-
pecially if the weighting function is derived from image data and sensitive to edges
in the image. Thus, Caselles et al. proposed geodesic active contour (GAC), which

can be viewed as a weighted length minimization written as,
1
irclfJ g(C(s))ds (D.11)
0

where g(C(s)) := m,
that this choice of weighting function is hand-crafted like so many others that have

G, is a Gaussian with a variance parameter o. Note

been used in literature. Indeed, such hand-crafted weighting functions in general
can be the right choice for a small class of images and tasks but is often suboptimal
in general. To overcome this limitation, we replace the image gradient based weight-
ing function g(C(s)) with a term parameterized by deep neural networks thereby
allowing the weighting function to be data driven as follows:

1

irclfJ w(C(s))ds where p(-) = CNN(I) (D.12)
0

where p(-), which can be viewed as a 2-D function in the discrete case, is parameter-

ized using a convolutional neural network. As we see in our experiments, this leads

to better segmentation results.

In a level set framework, this weighted length minimization is usually performed
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by solving the strong form given by the following PDE:

¢ . Vo
— =d — D.13
|: ot :| length v (H|Vd)|) ‘Vd)’ ( )

Chan-Vese in Learned Feature (Latent) Space

We now develop a Chan-Vese based active contour energy term that is set in a latent
space i.e., a feature space where the features are learned by a deep neural network
(DNN). To make the description simple, we will derive the loss function for a single
image I (or X in the main paper), and so in this section (x,y) represents 2D pixel
coordinates in X. As usual, the total loss function is given by summing over the
examples in the training set. Let us first recall the classical Chan-Vese active contour
energy functional Chan and Vese (2001) given by,

F(cy, ¢, C) =N J I(x,y) — el dxdy+ (D.14)
in(C)
AQJ 1(x,y) — cof* dxdy (D.15)
out(C)

In (D.14), c; is the color averaged over pixels inside the contour C and c; is the color

averaged over the pixels outside.

¢ = fl¢>0 - ¢pdxdy = f1¢<0 - pdxdy
f1¢>0dxdy f1¢<0dxdy

(D.16)

This assumption has been shown to work well for simple images, but for most
natural images that we may want to segment, this assumption may be too restric-
tive. In this paper, we replace the weighting factors (I(x,y) — c;)? in the Chan-Vese
energy with an energy in the learned feature space obtained using a deep network.
The intuition here is that rather than perform variance minimization in the native
space, we can perform this operation in a learned feature space which better cap-
tures the unknown homogeneity property of each region within the image. Note
that the transformation from image space to the feature space can be achieved by

simply modifying original scalar A into a spatially variant map. Thus, the final en-
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ergy functional of our active contour is given by,

Flei,¢2,C) = J MOy) - 1 y) — el dxdy
e (D.17)

+J A(x,y) - II(x,y)—czl2 dxdy
out(C)

Another observation one can make is that if we restrict A(-) to learn a nonnegative
function, it becomes similar to the localized kernel weighting function. Thus, the

functional based on the image data denoted by [F(¢)]c, becomes:

2
i 7 * 7 - i He
i_§1 ,,,,, HLM (x,y) - (T y) — Cri)He () dxdy D1

F(®)lc,

where Cy; refers to the ith channel of C; (e.g., there are 3 channels in a color image)
and we follow Chan and Vese (2001) to define a Heaviside function H. which acts as

an differentiable approximation to the indicator function 1 defined as,

1 2 .
H(:) := = (1 + — arctan (—)) , (D.19)
2 us €
where € is a specified constant (hyperparameter).
After deriving the corresponding Euler-Lagrange equation of (D.18) and param-
eterizing the descent direction with an artificial time parameter t > 0, we obtain,

(D.20)

ot C1 i=1,..n

Similarly, we can have an energy and corresponding evolution equation for the

region outside outside the active contour,

{a_ﬂ = 8e() [ > }\21(7(19)'(’I(X/U)_C21|2)] (D.21)
ot c2 i=1,..n

where we follow Chan and Vese (2001) to define 6. = H..
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Initial Level Set Function

Active contour models usually need manual initialization, which often influences the
quality of the final result. This makes it impractical in large-scale applications. We

propose to learn the initial level set function by using a segmentation neural network.
That is,
$o = f(I) (D.22)

where I is the given image and f denotes an encoder CNN. We see in our experi-
ments that despite the “multi-stage” nature of this setup (CNN followed by level set
updates), it can indeed be trained end-to-end.

The Full Evolution Model

The full ("total’) model evolution is simply the sum of all the terms above:

{a} total - [E} c1 " {a} c2 i {a} length (D-23)

Training Procedure

For training, we first learn an initial level set function ¢y from an encoder CNN
shown in (D.22). Then, we perform T update steps according to (D.23). The final
update after ¢ steps will be used to calculate the loss based on the ground truth
segmentation mask label Mgr

Loss = CE(HE(CI)T), MGT) (D24)

where CE refers to the standard cross-entropy loss.



151

references

Abbas, Ahmed, and Paul Swoboda. 2021. Combinatorial optimization for panop-
tic segmentation: A fully differentiable approach. Advances in Neural Information
Processing Systems 34:15635-15649.

Abdulnabi, Abrar H, Gang Wang, Jiwen Lu, and Kui Jia. 2015. Multi-task cnn model
for attribute prediction. IEEE Transactions on Multimedia 17(11):1949-1959.

Absil, P-A, Robert Mahony, and Rodolphe Sepulchre. 2004. Riemannian geometry
of grassmann manifolds with a view on algorithmic computation. Acta Applicandae
Mathematica 80(2):199-220.

Absil, Pierre-Antoine, Robert E. Mahony, and Rodolphe Sepulchre. 2007. Optimiza-

tion algorithms on matrix manifolds.

Agrawal, Akshay, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond,
and Zico Kolter. 2019. Differentiable convex optimization layers. arXiv preprint
arXiv:1910.12430.

Ahmad, Shair, and Antonio Ambrosetti. 2015. A textbook on ordinary differential equa-
tions, vol. 88. Springer.

Ahmed, Ali, Benjamin Recht, and Justin Romberg. 2013. Blind deconvolution using
convex programming. IEEE Transactions on Information Theory 60(3):1711-1732.

rustyls el al. 2020. pytorch-sparse.

ALDRICH, HENRY C, and JOHN W DANIEL. 1982. Cell biology of physarum and
didymium.


https://github.com/rusty1s/pytorch_sparse
https://github.com/rusty1s/pytorch_sparse

152

Allen-Zhu, Zeyuan, and Yuanzhi Li. 2016. Doubly accelerated methods for faster

cca and generalized eigendecomposition. In Icml.

Amos, Brandon, and ] Zico Kolter. 2017. Optnet: Differentiable optimization as
a layer in neural networks. In International conference on machine learning, 136-145.
PMLR.

Amos, Brandon, Lei Xu, and ] Zico Kolter. 2017. Input convex neural networks. In
Proceedings of the 34th icml-volume 70, 146-155. JMLR. org.

Andrew, Galen, Raman Arora, Jeff Bilmes, and Karen Livescu. 2013. Deep canonical

correlation analysis. In International conference on machine learning, 1247-1255.

Anoop, Rodrigo Santa Cruz Basura Fernando, and Cherian Stephen Gould. Deep-
permnet: Visual permutation learning. learning 33:25.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. 2017. Wasserstein gan. arXiv
preprint arXiv:1701.07875.

Arora, Raman, Teodor Vanislavov Marinov, Poorya Mianjy, and Nati Srebro. 2017.
Stochastic approximation for canonical correlation analysis. In Advances in neural
information processing systems, 4775-4784.

Arora, Sanjeev, Rong Ge, and Ankur Moitra. 2012. Learning topic models—going
beyond svd. In 2012 ieee 53rd annual symposium on foundations of computer science,
1-10. IEEE.

Arsham, H. 1997. Initialization of the simplex algorithm: An artificial-free ap-
proach. SIAM Review.

Arulkumaran, Kai, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE Signal Process-
ing Magazine 34(6):26-38.

Ataman, Kaan, W Nick Street, and Yi Zhang. 2006. Learning to rank by maximizing
auc with linear programming. In The 2006 ieee international joint conference on neural
network proceedings, 123-129. IEEE.

Atzmon, Matan, Haggai Maron, and Yaron Lipman. 2018. Point convolutional neu-
ral networks by extension operators. arXiv preprint arXiv:1803.10091.



153

Banisch, Ralf, Zofia Trstanova, Andreas Bittracher, Stefan Klus, and Péter Koltai.
2020. Diffusion maps tailored to arbitrary non-degenerate it6 processes. Applied
and Computational Harmonic Analysis 48(1):242-265.

Barvinok, Alexander. 2013. A bound for the number of vertices of a polytope with

applications. Combinatorica.

Bécigneul, Gary, and Octavian-Eugen Ganea. 2018. Riemannian adaptive optimiza-
tion methods. arXiv preprint arXiv:1810.00760.

Belanger, David, and Andrew McCallum. 2016. Structured prediction energy net-
works. In Icml, 983-992.

Belkin, Mikhail, and Partha Niyogi. 2003. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation 15(6):1373-1396.

Belkin, Mikhail, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-
tion: A geometric framework for learning from labeled and unlabeled examples.
Journal of machine learning research 7(11).

Berthet, Quentin, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe
Vert, and Francis Bach. 2020. Learning with differentiable pertubed optimizers. Ad-

vances in neural information processing systems 33:9508-9519.

Bertsekas, Dimitri P. 1997. Nonlinear programming. Journal of the Operational Re-
search Society 48(3):334-334.

Bhatia, Kush, Aldo Pacchiano, Nicolas Flammarion, Peter L Bartlett, and Michael I
Jordan. 2018. Gen-oja: Simple & efficient algorithm for streaming generalized eigen-
vector computation. In Advances in neural information processing systems, 7016—7025.

Blondel, Mathieu, Olivier Teboul, Quentin Berthet, and Josip Djolonga. 2020. Fast

differentiable sorting and ranking. In International conference on machine learning.

Bonnabel, Silvere. 2013. Stochastic gradient descent on riemannian manifolds. IEEE
Transactions on Automatic Control 58(9):2217-2229.

Boothby, William M. 1986. An introduction to differentiable manifolds and riemannian
geometry. Academic press.



154

Borga, Magnus. 2001. Canonical correlation: a tutorial. On line tutorial http://people.
imt. liu. se/magnus/cca 4(5).

Boumal, Nicolas, Bamdev Mishra, P-A Absil, and Rodolphe Sepulchre. 2014.
Manopt, a matlab toolbox for optimization on manifolds. The Journal of Machine
Learning Research 15(1):1455-1459.

Bousquet, Olivier, Sylvain Gelly, Ilya Tolstikhin, Carl-Johann Simon-Gabriel, and
Bernhard Schoelkopf. 2017. From optimal transport to generative modeling: the
vegan cookbook. arXiv preprint arXiv:1705.07642.

Bronstein, Michael M, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine 34(4):18-42.

Burges, Chris, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on machine learning, 89-96. ACM.

Caelles, Sergi, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel
Cremers, and Luc Van Gool. 2017. One-shot video object segmentation. In Pro-
ceedings of the ieee conference on computer vision and pattern recognition, 221-230.

Caselles, Vicent, Ron Kimmel, and Guillermo Sapiro. 1997. Geodesic active con-
tours. International journal of computer vision 22(1):61-79.

Chakraborty, Rudrasis, Liu Yang, Soren Hauberg, and Baba Vemuri. 2020. Intrinsic
grassmann averages for online linear, robust and nonlinear subspace learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Chan, Tony F, and Luminita A Vese. 2001. Active contours without edges. IEEE
Transactions on image processing 10(2):266-277.

Chaudhari, Pratik, and Stefano Soatto. 2018. Stochastic gradient descent performs
variational inference, converges to limit cycles for deep networks. In 2018 informa-
tion theory and applications workshop (ita), 1-10. IEEE.

Chaudhuri, Kamalika, Sham M Kakade, Karen Livescu, and Karthik Sridharan.
2009. Multi-view clustering via canonical correlation analysis. In Proceedings of
the 26th annual international conference on machine learning, 129-136.



155

Chen, Huizhong, Andrew Gallagher, and Bernd Girod. 2012. Describing clothing
by semantic attributes. In European conference on computer vision, 609-623. Springer.

Chen, Liang-Chieh, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. 2017. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence 40(4):834-848.

Chen, Ricky TQ, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018.
Neural ordinary differential equations. arXiv preprint arXiv:1806.07366.

Cohen, Taco S, Mario Geiger, Jonas Kohler, and Max Welling. 2018. Spherical cnns.
arXiv preprint arXiv:1801.10130.

Coifman, Ronald R, and Stéphane Lafon. 2006. Diffusion maps. Applied and compu-
tational harmonic analysis 21(1):5-30.

Collins, Edo, Radhakrishna Achanta, and Sabine Susstrunk. 2018. Deep feature fac-
torization for concept discovery. In Proceedings of the european conference on computer
vision (eccv), 336-352.

Conforti, Michele, Gérard Cornuéjols, Giacomo Zambelli, et al. 2014. Integer pro-
gramming, vol. 271. Springer.

Cortes, Corinna, and Mehryar Mohri. 2004. Auc optimization vs. error rate mini-
mization. In Advances in neural information processing systems, 313-320.

Couture, Heather D., Roland Kwitt, J. S. Marron, Melissa A. Troester, Charles M.
Perou, and Marc Niethammer. 2019. Deep multi-view learning via task-optimal
cca. ArXiv abs/1907.07739.

Crammer, Koby, and Yoram Singer. 2001. On the algorithmic implementation of
multiclass kernel-based vector machines. Journal of machine learning research 2(Dec):
265-292.

Cubuk, Ekin D, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.
2019. Autoaugment: Learning augmentation strategies from data. In Proceedings of

the ieee/cvf conference on computer vision and pattern recognition, 113-123.



156

Cui, Yiran, Keiichi Morikuni, Takashi Tsuchiya, and Ken Hayami. 2019. Implemen-
tation of interior-point methods for lp based on krylov subspace iterative solvers
with inner-iteration preconditioning. Computational Optimization and Applications.

Cuturi, Marco, Olivier Teboul, and Jean-Philippe Vert. 2019. Differentiable ranking
and sorting using optimal transport. Advances in neural information processing systems
32.

Dai, Jifeng, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen
Wei. 2017. Deformable convolutional networks. In Proceedings of the ieee international
conference on computer vision, 764-773.

Danskin, John M. 1966. The theory of max-min, with applications. SIAM Journal on
Applied Mathematics 14(4):641-664.

Dantzig, GB. 1951. Gb,(1947).maximization of a linear function of variables subject
to linear inequalities, 1939 also published pp. 339-347 in tc koopmans (ed.): Activity

analysis of production and allocation.

Dantzig, George B, and Mukund N Thapa. 1997. The linear programming problem.
Linear Programming: 1: Introduction 1-33.

Dave, Achal, Pavel Tokmakov, Cordelia Schmid, and Deva Ramanan. 2019. Learn-

ing to track any object. arXiv preprint arXiv:1910.11844.

Dembczynski, Krzysztof J., Willem Waegeman, Weiwei Cheng, and Eyke Hiiller-
meier. 2011. An exact algorithm for f-measure maximization. In Advances in neu-
ral information processing systems 24, ed. J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, 1404-1412. Curran Associates, Inc.

Donini, Michele, Luca Oneto, Shai Ben-David, John S Shawe-Taylor, and Massim-
iliano Pontil. 2018. Empirical risk minimization under fairness constraints. In Ad-

vances in neural information processing systems, 2791-2801.

Duan, Yan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. 2016.
Benchmarking deep reinforcement learning for continuous control. In International
conference on machine learning, 1329-1338. PMLR.

Dupont, Emilien, Arnaud Doucet, and Yee Whye Teh. 2019. Augmented neural
odes. arXiv preprint arXiv:1904.01681.



157

Eban, Elad, Mariano Schain, Alan Mackey, Ariel Gordon, Ryan Rifkin, and Gal Eli-
dan. 2017. Scalable learning of non-decomposable objectives. In Artificial intelligence
and statistics, 832-840.

Edelman, Alan, Tomés A. Arias, and Steven Thomas Smith. 1998. The geometry of
algorithms with orthogonality constraints. SIAM |. Matrix Anal. Appl. 20:303-353.

Esteves, Carlos, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Dani-
ilidis. 2017. Learning so(3) equivariant representations with spherical cnns. CoRR.

Farhadi, Ali, Ian Endres, Derek Hoiem, and David Forsyth. 2009. Describing objects
by their attributes. In Computer vision and pattern recognition, 2009. copr 2009. ieee
conference on, 1778-1785. IEEE.

Fathony, Rizal, and Zico Kolter. 2020. Ap-perf: Incorporating generic performance
metrics in differentiable learning. In International conference on artificial intelligence
and statistics, 4130-4140. PMLR.

Feichtenhofer, Christoph, Axel Pinz, and Richard P Wildes. 2017. Spatiotemporal
multiplier networks for video action recognition. In Proceedings of the ieee conference

on computer vision and pattern recognition, 4768—4777.

Ferber, Aaron, Bryan Wilder, Bistra Dilkina, and Milind Tambe. 2020. Mipaal:
Mixed integer program as a layer. In Aaai, 1504-1511.

Finn, Chelsea, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of the 34th icml-volume
70,1126-1135. JMLR. org.

flaport. 2020. torch-sparse-solve.

Fraccaro, Marco, Seren Kaae Senderby, Ulrich Paquet, and Ole Winther. 2016. Se-
quential neural models with stochastic layers. Advances in neural information process-
ing systems 29.

Freeman, William T, and Egon C Pasztor. 2000. Markov networks for super-

resolution. In Proc. 34th annual conf. on information sciences and systems (ciss 2000).


1711.06721
https://github.com/flaport/torch_sparse_solve
https://github.com/flaport/torch_sparse_solve

158

Frerix, Thomas, Daniel Cremers, and Matthias NiefSner. 2019. Linear inequality
constraints for neural network activations. arXiv preprint arXiv:1902.01785.

Frieze, Alan, and Michat Karonski. 2015. Introduction to random graphs. Cambridge
University Press.

Gao, Chao, Dan Garber, Nathan Srebro, Jialei Wang, and Weiran Wang. 2019.
Stochastic canonical correlation analysis. Journal of Machine Learning Research
20(167):1-4e6.

Gao, Wei, Rong Jin, Shenghuo Zhu, and Zhi-Hua Zhou. 2013. One-pass auc opti-
mization. In International conference on machine learning, 906-914.

Garcia, Victor, and Joan Bruna. 2017. Few-shot learning with graph neural networks.
arXiv preprint arXiv:1711.04043.

Ge, Rong, Chi Jin, Praneeth Netrapalli, Aaron Sidford, et al. 2016. Efficient algo-
rithms for large-scale generalized eigenvector computation and canonical correla-
tion analysis. In International conference on machine learning, 2741-2750.

Gilmer, Justin, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212.

Glorot, Xavier, and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, 249-256.

Golub, Gene H, and Christian Reinsch. 1971. Singular value decomposition and
least squares solutions. In Linear algebra, 134-151. Springer.

Golub, Gene H., and Hongyuan Zha. 1992. The canonical correlations of matrix

pairs and their numerical computation.

Golub, Gene H, and Hongyuan Zha. 1995. The canonical correlations of matrix
pairs and their numerical computation. In Linear algebra for signal processing, 27-49.
Springer.

Gondzio, Jacek. 2012. Interior point methods 25 years later. European Journal of
Operational Research.



159

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

Goodfellow, Ian, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. 2013. Multi-
prediction deep boltzmann machines. In Neurips, 548-556.

Gori, Marco, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In Neural networks, 2005. ijcnn’05. proceedings. 2005 ieee
international joint conference on, vol. 2, 729-734. IEEE.

Grady, Leo. 2008. Minimal surfaces extend shortest path segmentation methods to
3d. IEEE TPAMI 32(2):321-334.

Guo, Chuan, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration of
modern neural networks. In Proceedings of the 34th icml-volume 70, 1321-1330. JMLR.

org.

Guo, Meng-Hao, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin,
and Shi-Min Hu. 2020. Pct: Point cloud transformer. arXiv preprint arXiv:2012.09688.

Haber, Eldad, and Lars Ruthotto. 2017. Stable architectures for deep neural net-
works. Inverse problems 34(1):014004.

Han, Hu, Anil K Jain, Shiguang Shan, and Xilin Chen. 2017. Heterogeneous face
attribute estimation: A deep multi-task learning approach. IEEE transactions on
pattern analysis and machine intelligence.

Hanley, James A, and Barbara ] McNeil. 1982. The meaning and use of the area
under a receiver operating characteristic (roc) curve. Radiology 143(1):29-36.

Hardt, Moritz, Eric Price, and Nati Srebro. 2016a. Equality of opportunity in super-
vised learning. In Advances in neural information processing systems, 3315-3323.

Hardt, Moritz, Ben Recht, and Yoram Singer. 2016b. Train faster, generalize better:
Stability of stochastic gradient descent. In International conference on machine learning,
1225-1234. PMLR.

Hariharan, Bharath, Pablo Arbeldez, Ross Girshick, and Jitendra Malik. 2015. Hy-
percolumns for object segmentation and fine-grained localization. In Proceedings of
the ieee conference on computer vision and pattern recognition, 447-456.



160

Hatamizadeh, Ali, Debleena Sengupta, and Demetri Terzopoulos. 2019. End-to-
end deep convolutional active contours for image segmentation. arXiv preprint
arXiv:1909.13359.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the ieee conference on computer vision
and pattern recognition, 770-778.

Helgason, Sigurdur. 2001. Differential geometry and symmetric spaces, vol. 341. Amer-
ican Mathematical Soc.

Hess, Eric ], and ] Paul Brooks. 2015. The support vector machine and mixed integer
linear programming: Ramp loss svm with 11-norm regularization. In 14th informs
computing society conference, 226—235.

Hirsch, Morris W. 1988. Stability and convergence in strongly monotone dynamical
systems.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedfor-

ward networks are universal approximators. Neural networks 2(5):359-366.

Hotelling, Harold. 1992. Relations between two sets of variates. In Breakthroughs in
statistics, 162-190. Springer.

Ishteva, Mariya, Pierre-Antoine Absil, Sabine Van Huffel, and Lieven De Lathauwer.
2011. Best low multilinear rank approximation of higher-order tensors, based on the
riemannian trust-region scheme. SIAM |. Matrix Anal. Appl. 32:115-135.

Jamieson, Kevin G, Lalit Jain, Chris Fernandez, Nicholas ] Glattard, and Rob Nowak.
2015. Next: A system for real-world development, evaluation, and application of
active learning. In Advances in neural information processing systems, 2656-2664.

Johannson, Anders, and James Zou. 2012. A slime mold solver for linear program-
ming problems. In Conference on computability in europe, 344-354. Springer.

John, Elizabeth, and E. Alper Yildirim. 2008. Implementation of warm-start strate-
gies indinterior-point methods for linear programming indfixed dimension. Com-
putational Optimization and Applications.

Jordan, Michael Irwin. 1999. Learning in graphical models. MIT press.



161

Kahou, Samira Ebrahimi, Xavier Bouthillier, Pascal Lamblin, Caglar Gulcehre, Vin-
cent Michalski, Kishore Konda, Sébastien Jean, Pierre Froumenty, Yann Dauphin,
Nicolas Boulanger-Lewandowski, et al. 2016. Emonets: Multimodal deep learning

approaches for emotion recognition in video. Journal on Multimodal User Interfaces
10(2):99-111.

Kamnitsas, Konstantinos, Christian Ledig, Virginia F] Newcombe, Joanna P Simp-
son, Andrew D Kane, David K Menon, Daniel Rueckert, and Ben Glocker. 2017.
Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion seg-
mentation. Medical image analysis 36:61-78.

Kanchinadam, Teja, Zihang Meng, Joseph Bockhorst, Vikas Singh, and Glenn Fung.
2021. Graph neural networks to predict customer satisfaction following interactions
with a corporate call center. arXiv preprint arXiv:2102.00420.

Kaneko, Tetsuya, Simone Fiori, and Toshihisa Tanaka. 2012. Empirical arithmetic
averaging over the compact stiefel manifold. IEEE Transactions on Signal Processing
61(4):883-894.

Keerthi, S Sathiya, Vikas Sindhwani, and Olivier Chapelle. 2007. An efficient
method for gradient-based adaptation of hyperparameters in svm models. In Ad-
vances in neural information processing systems, 673—680.

Kharazmi, Ehsan, Zhongqgiang Zhang, and George Em Karniadakis. 2019. Varia-
tional physics-informed neural networks for solving partial differential equations.
arXiv preprint arXiv:1912.00873.

Kim, Hyunwoo J, Nagesh Adluru, Barbara B Bendlin, Sterling C Johnson, Baba C
Vemuri, and Vikas Singh. 2014. Canonical correlation analysis on riemannian
manifolds and its applications. In European conference on computer vision, 251-267.

Springer.

Kim, Jongmin, Taesup Kim, Sungwoong Kim, and Chang D Yoo. 2019. Edge-
labeling graph neural network for few-shot learning. In Proceedings of the ieee/cvf
conference on computer vision and pattern recognition, 11-20.

Kim, Kyongwon, Bing Li, Zhou Yu, Lexin Li, et al. 2020. On post dimension reduc-
tion statistical inference. Annals of Statistics 48(3):1567-1592.



162

Kingma, Diederik P, and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980.

Kipf, Thomas N, and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

Kirillov, Alexander, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollar.
2019. Panoptic segmentation. In Proceedings of the ieee/cvf conference on computer
vision and pattern recognition, 9404-9413.

Kleiman, Ross, and David Page. 2019. Aucp: A performance metric for multi-class

machine learning models. In International conference on machine learning, 3439-3447.

Klokov, Roman, and Victor Lempitsky. 2017. Escape from cells: Deep kd-networks
for the recognition of 3d point cloud models. In Proceedings of the ieee international
conference on computer vision, 863-872.

Koller, Daphne, and Nir Friedman. 2009. Probabilistic graphical models: principles and
techniques. MIT press.

Komarichev, Artem, Zichun Zhong, and Jing Hua. 2019. A-cnn: Annularly convo-
lutional neural networks on point clouds. In Proceedings of the ieee/cvf conference on
computer vision and pattern recognition, 7421-7430.

Krizhevsky, Alex. 2009. Learning multiple layers of features from tiny images. Tech.
Rep.

Krizhevsky, Alex, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

from tiny images.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in neural information
processing systems, 1097-1105.

Kuhn, Harold W, and Albert W Tucker. 2014. Nonlinear programming. In Traces
and emergence of nonlinear programming, 247-258. Springer.

Kunita, Hiroshi. 1997. Stochastic flows and stochastic differential equations, vol. 24. Cam-
bridge university press.



163

Le, Truc, and Ye Duan. 2018. Pointgrid: A deep network for 3d shape understanding.
In Proceedings of the ieee conference on computer vision and pattern recognition, 9204—
9214.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proceedings of the IEEE 86(11):2278—
2324.

LeCun, Yann, Corinna Cortes, and CJ] Burges. 2010. Mnist handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2.

Lee, Kwonjoon, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. 2019.
Meta-learning with differentiable convex optimization. In Copr, 10657-10665.

Lee, Yin Tat, and Aaron Sidford. 2014. Path finding methods for linear program-
ming: Solving linear programs in o (vrank) iterations and faster algorithms for
maximum flow. In 2014 ieee 55th annual symposium on foundations of computer sci-
ence. IEEE.

Li, Jiaxin, Ben M Chen, and Gim Hee Lee. 2018. So-net: Self-organizing network
for point cloud analysis. In Proceedings of the ieee conference on computer vision and

pattern recognition, 9397-9406.

Li, Yujia, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated graph
sequence neural networks. arXiv preprint arXiv:1511.05493.

Li, Zongyi, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. 2020. Fourier neural operator

for parametric partial differential equations. arXiv preprint arXiv:2010.08895.

Liao, Renjie, Marc Brockschmidt, Daniel Tarlow, Alexander L Gaunt, Raquel Urta-
sun, and Richard Zemel. 2018. Graph partition neural networks for semi-supervised
classification. arXiv preprint arXiv:1803.06272.

Lillicrap, Timothy P, Jonathan ] Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971.



164

Ling, Huan, Jun Gao, Amlan Kar, Wenzheng Chen, and Sanja Fidler. 2019. Fast
interactive object annotation with curve-gen. In Proceedings of the ieee/cvf conference
on computer vision and pattern recognition, 5257-5266.

Liu, Changliu, Tomer Arnon, Christopher Lazarus, Clark Barrett, and Mykel ]
Kochenderfer. 2019a. Algorithms for verifying deep neural networks. arXiv preprint
arXiv:1903.06758.

Liu, Mingrui, Zhuoning Yuan, Yiming Ying, and Tianbao Yang. 2019b. Stochastic

auc maximization with deep neural networks. ICLR.

Liu, Mingrui, Xiaoxuan Zhang, Zaiyi Chen, Xiaoyu Wang, and Tianbao Yang. 2018.
Fast stochastic auc maximization with o(1/n)-convergence rate. In International con-
ference on machine learning, 3189-3197.

Liu, Xuanging, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. 2019c.
Neural sde: Stabilizing neural ode networks with stochastic noise. arXiv preprint
arXiv:1906.02355.

Liu, Y, J Lee, M Park, S Kim, E Yang, S] Hwang, and Y Yang. 2019d. Learning to
propagate labels: Transductive propagation network for few-shot learning. In 7th

international conference on learning representations, iclr 2019.

Lokhande, Vishnu Suresh, Aditya Kumar Akash, Sathya N Ravi, and Vikas Singh.
2020. Fairalm: Augmented lagrangian method for training fair models with little
regret. arXiv preprint arXiv:2004.01355.

Lu, Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. 2021. Deepxde: A
deep learning library for solving differential equations. SIAM Review 63(1):208-228.

Luo, Yong, Dacheng Tao, Kotagiri Ramamohanarao, Chao Xu, and Yonggang Wen.
2015. Tensor canonical correlation analysis for multi-view dimension reduction.
IEEE transactions on Knowledge and Data Engineering 27(11):3111-3124.

Ma, Zhuang, Yichao Lu, and Dean P. Foster. 2015. Finding linear structure in large

datasets with scalable canonical correlation analysis. In Icml.

Malladi, Ravi, James A Sethian, and Baba C Vemuri. 1995. Shape modeling with
front propagation: A level set approach. IEEE transactions on pattern analysis and
machine intelligence 17(2):158-175.



165

Mangasarian, OL. 2004. A newton method for linear programming. Journal of Opti-
mization Theory and Applications 121(1):1-18.

Mangasarian, Olvi L. 2006. Exact 1-norm support vector machines via uncon-
strained convex differentiable minimization. Journal of Machine Learning Research
7(Jul):1517-1530.

Marcos, Diego, Devis Tuia, Benjamin Kellenberger, Lisa Zhang, Min Bai, Renjie Liao,
and Raquel Urtasun. 2018. Learning deep structured active contours end-to-end. In
Proceedings of the ieee conference on computer vision and pattern recognition, 8877-8885.

Mauro, Massimo, Hayko Riemenschneider, Alberto Signoroni, Riccardo Leonardi,
and Luc Van Gool. 2014. An integer linear programming model for view selection
on overlapping camera clusters. In 2014 2nd international conference on 3d vision,
vol. 1, 464-471. IEEE.

Melas-Kyriazi, Luke. 2020. The geometry of semi-supervised learning. Ph.D. thesis,
Harvard University Cambridge, Massachusetts.

Mena, Gonzalo, David Belanger, Scott Linderman, and Jasper Snoek. 2018.
Learning latent permutations with gumbel-sinkhorn networks. arXiv preprint
arXiv:1802.08665.

Meng, Zihang, Nagesh Adluru, Hyunwoo ] Kim, Glenn Fung, and Vikas Singh.
2018. Efficient relative attribute learning using graph neural networks. In Proceed-
ings of the european conference on computer vision (eccv), 552-567.

Meng, Zihang, Rudrasis Chakraborty, and Vikas Singh. 2021a. An online rieman-
nian pca for stochastic canonical correlation analysis. Advances in Neural Information
Processing Systems 34:14056-14068.

Meng, Zihang, Sathya N Ravi, and Vikas Singh. 2020. Physarum powered differen-
tiable linear programming layers and applications. arXiv preprint arXiv:2004.14539.

. 2021b. Physarum powered differentiable linear programming layers and
applications. In Proceedings of the aaai conference on artificial intelligence, vol. 35, 8939—
8949.



166

Meng, Zihang, Vikas Singh, and Sathya N Ravi. 2021c. Neural tmdlayer: Model-
ing instantaneous flow of features via sde generators. In Proceedings of the ieee/cvf
international conference on computer vision, 11635-11644.

Meng, Zihang, David Yang, Xuefei Cao, Ashish Shah, and Ser-Nam Lim. 2021d.
Object-centric unsupervised image captioning. arXiv preprint arXiv:2112.00969.

Meng, Zihang, Licheng Yu, Ning Zhang, Tamara L Berg, Babak Damavandi, Vikas
Singh, and Amy Bearman. 2021e. Connecting what to say with where to look by
modeling human attention traces. In Proceedings of the ieee/cvf conference on computer

vision and pattern recognition, 12679-12688.

Mensch, Arthur, and Mathieu Blondel. 2018. Differentiable dynamic programming
for structured prediction and attention. arXiv preprint arXiv:1802.03676.

Metz, Luke, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. 2016. Unrolled gen-
erative adversarial networks. arXiv preprint arXiv:1611.02163.

Michel, Anthony, Kaining Wang, and Bo Hu. 2001. Qualitative theory of dynamical
systems. CRC Press.

Michoski, Craig, Milo$ Milosavljevi¢, Todd Oliver, and David R Hatch. 2020. Solv-
ing differential equations using deep neural networks. Neurocomputing 399:193-212.

Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. 2016. V-net: Fully con-
volutional neural networks for volumetric medical image segmentation. In 2016
fourth international conference on 3d vision (3dv), 565-571. IEEE.

Mohapatra, Pritish, Michal Rolinek, CV Jawahar, Vladimir Kolmogorov, and
M Pawan Kumar. 2018. Efficient optimization for rank-based loss functions. In
Proceedings of the ieee conference on computer vision and pattern recognition, 3693-3701.

Morcos, Ari, Maithra Raghu, and Samy Bengio. 2018. Insights on representational
similarity in neural networks with canonical correlation. In Advances in neural infor-

mation processing systems, 5727-5736.

Murphy, Kevin, Yair Weiss, and Michael I Jordan. 2013. Loopy belief propagation
for approximate inference: An empirical study. arXiv preprint arXiv:1301.6725.



167

Nakagaki, Toshiyuki, Hiroyasu Yamada, and Agota Téth. 2000. Maze-solving by
an amoeboid organism. Nature 407(6803):470—-470.

Nan, Ye, Kian Ming Chai, Wee Sun Lee, and Hai Leong Chieu. 2012. Optimizing
f-measure: A tale of two approaches. arXiv preprint arXiv:1206.4625.

Natole, Michael, Yiming Ying, and Siwei Lyu. 2018. Stochastic proximal algorithms
for auc maximization. In International conference on machine learning, 3710-3719.

Nemirovski, Arkadi, Anatoli B. Juditsky, Guanghui Lan, and Alexander Shapiro.
2009. Robust stochastic approximation approach to stochastic programming. SIAM
J. Optimization 19:1574-1609.

Nesterov, Yurii. 2013. Introductory lectures on convex optimization: A basic course,
vol. 87. Springer Science & Business Media.

Nichol, Alex, Joshua Achiam, and John Schulman. 2018. On first-order meta-
learning algorithms. arXiv preprint arXiv:1803.02999.

Nixon, Jeremy, Mike Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran.

2019. Measuring calibration in deep learning. arXiv preprint arXiv:1904.01685.
Nocedal, Jorge, and Stephen ] Wright. 1999. Numerical optimization. Springer.

Noda, Kuniaki, Yuki Yamaguchi, Kazuhiro Nakadai, Hiroshi G Okuno, and Tet-
suya Ogata. 2015. Audio-visual speech recognition using deep learning. Applied
Intelligence 42(4):722-737.

O’Donoghue, B., E. Chu, N. Parikh, and S. Boyd. 2016. Conic optimization via oper-
ator splitting and homogeneous self-dual embedding. Journal of Optimization Theory
and Applications 169(3):1042-1068.

. 2019. SCS: Splitting conic solver, version 2.1.2.

Oja, Erkki. 1982. Simplified neuron model as a principal component analyzer. Jour-
nal of Mathematical Biology 15:267-273.

Oliva, Aude, and Antonio Torralba. 2001. Modeling the shape of the scene: A holis-
tic representation of the spatial envelope. International journal of computer vision
42(3):145-175.


https://github.com/cvxgrp/scs
https://github.com/cvxgrp/scs

168

Parikh, Devi, and Kristen Grauman. 2011. Relative attributes. In Computer vision
(iccv), 2011 ieee international conference on, 503-510. IEEE.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. In Advances

in neural information processing systems, 8024-8035.

Pilanci, Mert, and Martin J. Wainwright. 2016. Iterative hessian sketch: Fast and
accurate solution approximation for constrained least-squares. Journal of Machine
Learning Research 17(53):1-38.

Poganci¢, Marin Vlastelica, Anselm Paulus, Vit Musil, Georg Martius, and Michal
Rolinek. 2019. Differentiation of blackbox combinatorial solvers. In International

conference on learning representations.

Pontryagin, Lev Semenovich. 1987. Mathematical theory of optimal processes. CRC

press.

Prékopa, Andrds. 2013. Stochastic programming, vol. 324. Springer Science & Busi-
ness Media.

Price, W Nicholson, and I Glenn Cohen. 2019. Privacy in the age of medical big
data. Nature medicine 25(1):37—43.

Purwins, Hendrik, Bo Li, Tuomas Virtanen, Jan Schliiter, Shuo-Yiin Chang, and Tara
Sainath. 2019. Deep learning for audio signal processing. IEEE Journal of Selected
Topics in Signal Processing 13(2):206-219.

Qi, Charles R, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of the
ieee conference on computer vision and pattern recognition, 652-660.

Qi, Guo-Jun, Liheng Zhang, Feng Lin, and Xiao Wang. 2020. Learning general-
ized transformation equivariant representations via autoencoding transformations.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

Rajeswaran, Aravind, Chelsea Finn, Sham M Kakade, and Sergey Levine. 2019.
Meta-learning with implicit gradients. In Advances in neural information processing
systems, 113-124.



169

Ramachandram, Dhanesh, and Graham W Taylor. 2017. Deep multimodal learning:
A survey on recent advances and trends. IEEE signal processing magazine 34(6):96—
108.

Ravi, Sachin, and Hugo Larochelle. 2017. Optimization as a model for few-shot
learning. ICLR 2017.

Ravi, Sathya N, Tuan Dinh, Vishnu Suresh Lokhande, and Vikas Singh. 2019. Ex-
plicitly imposing constraints in deep networks via conditional gradients gives im-

proved generalization and faster convergence. In Aaai, vol. 33, 4772-4779.

Ravi, Sathya N., Abhay Venkatesh, Glenn M. Fung, and Vikas Singh. 2020a. Opti-
mizing nondecomposable data dependent regularizers via lagrangian reparameter-

ization offers significant performance and efficiency gains. AAAI 34:5487-5494.

Ravi, Sathya N, Abhay Venkatesh, Glenn M Fung, and Vikas Singh. 2020b. Optimiz-
ing nondecomposable data dependent regularizers via lagrangian reparameteriza-
tion offers significant performance and efficiency gains. In Proceedings of the aaai
conference on artificial intelligence, vol. 34, 5487-5494.

Ravikumar, Pradeep, and John Lafferty. 2006. Quadratic programming relaxations
for metric labeling and markov random field map estimation. In Proceedings of the
23rd icml, 737-744. ACM.

Recht, Ben, Christopher Re, Joel Tropp, and Victor Bittorf. 2012. Factoring nonneg-
ative matrices with linear programs. In Advances in neural information processing
systems, 1214-1222.

Reifs, Markus, Martin Wahl, et al. 2020. Nonasymptotic upper bounds for the recon-
struction error of pca. Annals of Statistics 48(2):1098-1123.

Robinson, Stephen M. 2018. A short proof of the sticky face lemma. Mathematical
Programming 168(1-2):5-9.

Rolfe, Jason Tyler. 2016. Discrete variational autoencoders. arXiv preprint
arXiv:1609.02200.

Roos, Cornelis. 2006. A full-newton step o (n) infeasible interior-point algorithm
for linear optimization. SIAM Journal on Optimization 16(4):1110-1136.



170

de Roos, Filip, and Philipp Hennig. 2017. Krylov subspace recycling for fast iterative
least-squares in machine learning. arXiv preprint arXiv:1706.00241.

Rudin, Leonid I, and Stanley Osher. 1994. Total variation based image restoration
with free local constraints. In Proceedings of 1st international conference on image pro-
cessing, vol. 1, 31-35. IEEE.

Rumelhart, David E, Geoffrey E Hinton, and Ronald ] Williams. 1985. Learning in-
ternal representations by error propagation. Tech. Rep., California Univ San Diego

La Jolla Inst for Cognitive Science.

Rupnik, Jan, and John Shawe-Taylor. 2010. Multi-view canonical correlation analy-
sis. In Conference on data mining and data warehouses (sikdd 2010), 1-4.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. 2015.
Imagenet large scale visual recognition challenge. International journal of computer
vision 115(3):211-252.

Sabour, Sara, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic routing be-
tween capsules. In Neurips, 3856-3866.

Salimans, Tim, Han Zhang, Alec Radford, and Dimitris Metaxas. 2018. Improving
gans using optimal transport. arXiv preprint arXiv:1803.05573.

Sanjabi, Maziar, Jimmy Ba, Meisam Razaviyayn, and Jason D Lee. 2018. On the
convergence and robustness of training gans with regularized optimal transport.
In Neurips, 7091-7101.

Sattigeri, Prasanna, Samuel C Hoffman, Vijil Chenthamarakshan, and Kush R
Varshney. 2018. Fairness gan. arXiv preprint arXiv:1805.09910.

Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20(1):61-80.

.2009. The graph neural network model. IEEE Transactions on Neural Networks
20(1):61-80.



171

Schmidt, Uwe, and Stefan Roth. 2014. Shrinkage fields for effective image restora-
tion. In Copr, 2774-2781.

Schrijver, Alexander. 2005. On the history of combinatorial optimization (till 1960).

Handbooks in operations research and management science 12:1-68.

Singh, Krishna Kumar, and Yong Jae Lee. 2016. End-to-end localization and ranking
for relative attributes. In European conference on computer vision, 753-769. Springer.

Snell, Jake, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. In Neurips, 4077-4087.

Snoek, Cees GM, Marcel Worring, Jan C Van Gemert, Jan-Mark Geusebroek, and
Arnold WM Smeulders. 2006. The challenge problem for automated detection of
101 semantic concepts in multimedia. In Proceedings of the 14th acm international
conference on multimedia, 421-430.

Souri, Yaser, Erfan Noury, and Ehsan Adeli. 2016. Deep relative attributes. In Asian
conference on computer vision, 118-133. Springer.

Spezialetti, Riccardo, Samuele Salti, and Luigi Di Stefano. 2019. Learning an ef-
tective equivariant 3d descriptor without supervision. In Proceedings of the ieee/cvf
international conference on computer vision, 6401-6410.

Straszak, Damian, and Nisheeth K Vishnoi. 2015. On a natural dynamics for linear
programming. arXiv preprint arXiv:1511.07020.

Strogatz, Steven H. 2018. Nonlinear dynamics and chaos: with applications to physics,
biology, chemistry, and engineering. CRC press.

Subbarao, Raghav, and Peter Meer. 2009. Nonlinear mean shift over riemannian
manifolds. International journal of computer vision 84(1):1.

Sung, Flood, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. Learning to compare: Relation network for few-shot learning. In
Copr, 1199-1208.

Szegedy, Christian, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wo-
jna. 2016. Rethinking the inception architecture for computer vision. In Proceedings
of the ieee conference on computer vision and pattern recognition, 2818-2826.



172

Tan, Mingkui, Ivor Wai-Hung Tsang, Li Wang, Bart Vandereycken, and Sinno Jialin

Pan. 2014. Riemannian pursuit for big matrix recovery. In Icml.

Tavakoli, Amin, and Ali Pourmohammad. 2012. Image denoising based on com-

pressed sensing. International Journal of Computer Theory and Engineering 4(2):266.

Tero, Atsushi, Ryo Kobayashi, and Toshiyuki Nakagaki. 2007. A mathematical
model for adaptive transport network in path finding by true slime mold. Journal
of theoretical biology 244(4):553-564.

Thompson, R. C. 1961. A determinantal inequality for positive definite matrices.
Canadian Mathematical Bulletin 4(1):5762.

Thorpe, Matthew, and Yves van Gennip. 2018. Deep limits of residual neural net-
works. arXiv preprint arXiv:1810.11741.

Toshiyuki, NAKAGAKI, YAMADA Hiroyasu, and TOTH Agota. 2000. Maze-
solving by an amoeboid organism. Nature 407:470.

Trigeorgis, George, Konstantinos Bousmalis, Stefanos Zafeiriou, and Bjoern
Schuller. 2014. A deep semi-nmf model for learning hidden representations. In

International conference on machine learning, 1692-1700.

Tsuda, Koji, and Gunnar Rétsch. 2004. Image reconstruction by linear program-
ming. In Neurips, 57-64.

Van Kampen, Nicolaas G. 1976. Stochastic differential equations. Physics reports
24(3):171-228.

Velickovié, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017.  Graph attention networks. arXiv preprint
arXiv:1710.10903.

Vershynin, Roman. 2017. Four lectures on probabilistic methods for data science.
The Mathematics of Data, IAS/Park City Mathematics Series 231-271.

Vinyals, Oriol, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and
Daan Wierstra. 2016. Matching networks for one shot learning. arXiv preprint
arXiv:1606.04080.



173

Vlastelica, Marin, Anselm Paulus, Vit Musil, Georg Martius, and Michal
Rolinek. 2019. Differentiation of blackbox combinatorial solvers. arXiv preprint
arXiv:1912.02175.

Wang, Fang, Hu Han, Shiguang Shan, and Xilin Chen. 2017. Deep multi-task learn-
ing for joint prediction of heterogeneous face attributes. In Automatic face & gesture
recognition (fg 2017), 2017 12th ieee international conference on, 173-179. IEEE.

Wang, Weiran, Raman Arora, Karen Livescu, and Jeff Bilmes. 2015a. On deep multi-
view representation learning. In International conference on machine learning, 1083—
1092.

Wang, Weiran, Raman Arora, Karen Livescu, and Nathan Srebro. 2015b. Stochastic
optimization for deep cca via nonlinear orthogonal iterations. In 2015 53rd annual

allerton conference on communication, control, and computing (allerton), 688-695. IEEE.

Wang, Weiran, Jialei Wang, Dan Garber, and Nati Srebro. 2016. Efficient globally
convergent stochastic optimization for canonical correlation analysis. In Advances
in neural information processing systems, 766—774.

Wang, Yue, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. 2019. Dynamic graph cnn for learning on point clouds. Acm
Transactions On Graphics (tog) 38(5):1-12.

Weinan, E, Jiequn Han, and Qianxiao Li. 2019. A mean-field optimal control formu-
lation of deep learning. Research in the Mathematical Sciences 6(1):1-41.

Wolsey, Laurence A. 2020. Integer programming. John Wiley & Sons.
Wright, Stephen J. 1997. Primal-dual interior-point methods, vol. 54. Siam.

Wu, Wenxuan, Zhongang Qi, and Li Fuxin. 2019. Pointconv: Deep convolutional
networks on 3d point clouds. In Proceedings of the ieee/cuvf conference on computer vision
and pattern recognition, 9621-9630.

Wu, Zhirong, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the ieee conference on computer vision and pattern recognition,
1912-1920.



174

Xiao, Fanyi, and Yong Jae Lee. 2015. Discovering the spatial extent of relative at-
tributes. In Proceedings of the ieee international conference on computer vision, 1458—
1466.

Xie, Saining, Sainan Liu, Zeyu Chen, and Zhuowen Tu. 2018. Attentional shapecon-
textnet for point cloud recognition. In Proceedings of the ieee conference on computer
vision and pattern recognition, 4606—4615.

Yang, Howard Hua, and Shun-ichi Amari. 1998. The efficiency and the robustness

of natural gradient descent learning rule. In Neurips.

Yao, Sirui, and Bert Huang. 2017. Beyond parity: Fairness objectives for collabora-

tive filtering. In Advances in neural information processing systems, 2921-2930.

Yedidia, Jonathan S, William T Freeman, Yair Weiss, et al. 2003. Understanding
belief propagation and its generalizations. Exploring artificial intelligence in the new
millennium 8(236-239):0018-9448.

Yger, Florian, Maxime Berar, Gilles Gasso, and Alain Rakotomamonjy. 2012. Adap-

tive canonical correlation analysis based on matrix manifolds. In Icml.

Yu, A., and K. Grauman. 2014. Fine-grained visual comparisons with local learning.
In Computer vision and pattern recognition (copr).

. 2017. Semantic jitter: Dense supervision for visual comparisons via syn-

thetic images. In International conference on computer vision (iccv).

Yu, Fisher, and Vladlen Koltun. 2015. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122.

Yuan, Jialin, Chao Chen, and Li Fuxin. 2020. Deep variational instance segmenta-
tion. NeurIPS 2020.

Zeng, Xiaohui, Renjie Liao, Li Gu, Yuwen Xiong, Sanja Fidler, and Raquel Urtasun.
2019. Dmm-net: Differentiable mask-matching network for video object segmenta-
tion. In Iccv, 3929-3938.

Zhang, Brian Hu, Blake Lemoine, and Margaret Mitchell. 2018. Mitigating un-
wanted biases with adversarial learning. In Proceedings of the 2018 aaai/acm conference
on ai, ethics, and society, 335-340.



175

Zhang, Hongyi, and Suvrit Sra. 2016. First-order methods for geodesically convex
optimization. In Conference on learning theory.

Zhang, Xin, Qing Mai, and Hui Zou. 2020. The maximum separation subspace in
sufficient dimension reduction with categorical response. Journal of Machine Learn-
ing Research 21(29):1-36.

Zhen, Xingjian, Zihang Meng, Rudrasis Chakraborty, and Vikas Singh. 2022. On
the versatile uses of partial distance correlation in deep learning. arXiv preprint
arXiv:2207.09684.

Zhu, Jun-Yan, Philipp Krahenbiihl, Eli Shechtman, and Alexei A Efros. 2016. Gen-
erative visual manipulation on the natural image manifold. In European conference
on computer vision, 597-613. Springer.



	Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Novel deep learning layers inspired by dynamical systems
	Contribution and Scope of the Thesis
	Outline

	Background
	Notations
	Message Passing
	Linear Programming and Physarum Dynamics
	Newton Method for Solving Linear Programming
	Canonical Correlation Analysis
	Stochastic Differential Equation

	Efficient Relative Attribute Learning using Graph Neural Networks
	Introduction
	Related Work
	Approach
	Experimental Results
	Summary

	Physarum Powered Differentiable Linear Programming Layers and Applications
	Introduction
	Related Works
	Why Physarum Dynamics?
	Dealing with Auxiliary Variables using -AuxPD
	Analysis of Some Testbeds for -AuxPD: Bipartite Matching and SVMs
	Differentiable LPs in Computer Vision
	Summary

	Differentiable Optimization of Generalized Nondecomposable Functions using Linear Programs
	Introduction
	Nondecomposable Functions and corresponding LP models
	Backpropagation via Fast Exterior Penalty Optimization
	Experiments
	Summary

	An Online Riemannian PCA for Stochastic Canonical Correlation Analysis
	Introduction
	Stochastic CCA: Reformulation, Algorithm and Analysis
	Experiments
	Related Work
	Summary

	Neural TMDlayer: Modeling Instantaneous flow of features via SDE Generators
	Introduction
	Related Work
	Method
	Applications
	Summary

	Conclusions
	Future Work

	Physarum Powered Differentiable Linear Programming Layers and Applications: Appendix
	Appendices

	Differentiable Optimization of Generalized Nondecomposable Functions using Linear Programs: Appendix
	F-score
	How to choose 

	An Online Riemannian PCA for Stochastic Canonical Correlation Analysis: Appendix
	Neural TMDlayer: Modeling Instantaneous flow of features via SDE Generators: Appendix
	Details regarding Point cloud Transformer layer proposed in guo2020pct
	Details regarding GNNs for few-shot learning proposed in kim2019edge
	Details regarding deep active contour model

	References

