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ABSTRACT

In recent years, we have witnessed the emergence of mobile applications that attempt to in-

troduce social awareness into mobile computing. These applications take advantage of person-

oriented contextual information (e.g., location, temporal, proximity, environment, etc.) to build

innovative social services. A class of applications are to build social convenience, where a city

service can collect individuals’ context information from their mobile devices, and aggregate them

for large-scale analytics (e.g., weather and urban mobility). Another class of applications are to

create social connections, where an individual can employ his/her mobile device to monitor prox-

imity and discover other individuals who share common interests. The goal of this dissertation is

to facilitate the acceptance and participation of the above applications.

A challenge for building social convenience is its applications, called public sourcing applica-

tions in this dissertation, compete with an individual’s personal applications for the device’s limited

battery resource. As a result, neither the energy needs (and thus the quality) of sourcing applica-

tions nor the energy needs of personal applications can be assured. We define a novel framework

sitting between individual volunteers and sourcing applications, which is used for managing en-

ergy resources on mobile devices as well as providing energy guarantees to sourcing applications.

We use three key insights to build the framework. First, we can enable an individual to allocate

energy into two smaller virtual batteries, one dedicatedly for the personal applications while the

other one dedicatedly for the sourcing applications. Second, we can offer energy isolation to ensure

that the personal applications own their virtual battery no matter how the sourcing applications use

the device, and vice versa. Third, the aggregation of energy dedicated to sourcing applications on

each device forms a pool of energy, and thus we can offer admission control service to sourcing

applications and provide energy guarantee to those admitted sourcing applications.
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We further describe a generalized solution to the just-described energy isolation, where an in-

dividual may classify mobile applications according to his/her needs and have one virtual battery

for each class. Each virtual battery has a semantic meaning to the individual, such as sourcing

battery, entertaining battery or work-related battery, and thus he/she can interact with any specific

virtual battery (i.e., reading its percentage level) to manage energy usages of the respective appli-

cation class. To enable the energy isolation, we describe a novel energy accounting system that

is not built on hardware-specific power models. The key insight is end users do not typically pay

attention to energy activities of fine-grained software entities (e.g., thread or process) at second

and/or millisecond levels. This allows an energy accounting approach to estimate energy usages

by application classes at a fairly slow rate (e.g., at minute level). We thus employ an adaptive

learning paradigm and use CPU time as the sole feature to estimate per-class energy consumption.

As a result, the proposed approach offers two salient features: (i) Highly portable and immediately

usable as it does not need to train hardware-specific power models, and (ii) Self adaptive as it

sequentially remodels per-class energy consumption in response to varying hardware, system and

application states.

For building social connections, we focus on “familiar stranger” social relations in which

strangers are repetitively collocated with each other. This type of relation was first observed in

1972 by Stanley Milgram, followed by an increasing number of social network research. With

mobile devices that monitor proximity context, discovering familiar strangers becomes easier. In

this dissertation, we enable commuters traveling on public buses or trains to enjoy multiplayer

gaming with their fellow commuters, called public gaming. We define a discovery/matchmaking

framework which help people discover familiar peer players on the same train/bus. We perform

extensive measurement and evaluation to interpret the possibility of offering public gaming, and

design an end-to-end system that provides guarantee to high-quality group experience. At the

cloud side, a matchmaking service guides neighbor discovery and group formation. Once a group

is formed and the group leader is selected, mobile side gaming would be built on p2p communica-

tion techniques such as Bluetooth and Wi-Fi Direct. Finally, we invite people to use the system in

crowded transport settings and play latency-sensitive games (e.g., First-Person Shooter).
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Chapter 1

Introduction

“I just wondered how things were put together.”

- Claude Shannon

Today’s mobile devices (e.g., smartphones and tablets) offer a variety of sensing (e.g., micro-

phone, camera, GPS, etc.) and networking (e.g., cellular, Wi-Fi, Bluetooth, etc.) modalities. When

combined with the unprecedented computation capacity, these devices have capability to retrieve

and infer a wide range of person-oriented contextual information (e.g., location, activity, trans-

portation mode, temperature, in crowd or alone, meeting or working, etc.). When person-oriented

contextual information from many individuals are grouped together, there are opportunities of

building many innovative services for social convenience and social connections.

For instance, in September 2015, the United States federal government launched a “Smart

cities” initiative with over $160 million to help communities improve community services [1]. The

initiative is devoted to building research infrastructures (e.g., “the Array of Things” in Chicago [2]),

inspiring ideas of next-generation mobile applications (e.g., “Envision America” [3] and “Multi-

City Innovation Campaign” [4]), encouraging city-university collaborations (e.g., “the MetroLab

Network” [5]), and a series of fundings for applying new sensing and networking techniques in

areas such as health, environment, public safety, sanitation, transportation and energy efficiency.

Many ongoing projects require engagement of ordinary citizens to collect relevant person-oriented

contextual information. Examples include detecting “heat islands” (i.e., an urban area is warmer
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than the neighboring countryside), recognizing and locating gunfires, and tracking block-level air-

borne pollen and pollution level. Such services, henceforth called public sourcing, are built on a

common social collaboration paradigm between city residents and the city: people collect sensory

data while city services aggregate such data for large-scale analytics. In literature, this paradigm

is also referred as to participatory sensing, opportunistic sensing, or crowd-sourcing. One of the

main contributions of this dissertation is a framework for seamless deployment of public sourcing

applications.

Besides building social convenience, social connections have likewise been affected by the

advances in mobile technologies. Historically, the Chicago school in sociology first stated that be-

cause of urban existence the traditional social ties such as family and neighborhood are weakened,

and “the urbanite is bound to exert himself by joining with others of similar interest into orga-

nized groups” [6]. Later on, such interest-based groups were defined more formally by Claude

Fischer as subculture [7]. To realize more such interest groups, Stanley Milgram described a social

relation built on one’s proximity context, called “familiar strangers”. Unlike the acquaintance rela-

tion (e.g., family members, friends, co-workers, etc.), Milgram stated somebody can be physically

around repetitively due to the common mobility and behavioral patterns in daily life [8]. In 2004,

Paulos and Goodman at Intel Research re-validated the experiment conducted by Milgram in 1972,

and observed building social connections based on the concept of familiar stranger is still promis-

ing in today’s environments with potential to create a huge social network space. They developed

a Bluetooth-based mobile application that helps recognize familiar strangers [9]. In this disser-

tation, we describe an end-to-end collaboration process between familiar strangers, called public

gaming: we enable commuters on public buses or trains (a typical setting for familiar strangers

introduced by Milgram) to collaboratively enjoy multiplayer games with their fellow commuters.

Unlike public sourcing, public gaming is an example of another type of social collaboration, where

all collaborators are peers organized in an ad-hoc manner.
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1.1 Research Contributions

Public sourcing is built on people’ willingness. There are several reasons for people to be less

inclined to collaborate with city services. One of the often stated concerns is privacy leak. How-

ever, recent real-world deployments indicate that this may not be a major concern. For instance,

in [10], the service provider found the energy consumed by sourcing was a bigger concern than

privacy. “When asked about the lack of privacy concerns, some participants replied that privacy

was a lower concern as they lived in a densely populated urban city where their activities were

already known by numerous people.” In non-dense places, as revealed by another deployment in

rural Scotland [11] which uses GPS locations from bus passengers’ cell phones to estimate bus

arrival time for other riders, the privacy concern might be oversold as well: “Because of the low

population in the area, it was not difficult to determine who each passenger probably was based

on where they got on and off the bus. But when the researchers expressed their privacy concerns

to the community, the members said it was worth the access to bus arrival information.”

Another often stated concern is that devices’ limited battery resources may not be adequate for

doing both personal applications and public sourcing, and hence there may not be enough of them

at a given time to meet the data collection needs of the public sourcing application. This concern

can be further detailed to the following two aspects, one is at the volunteer side where one worries

about whether private energy demands (e.g., for phone calls, video games, etc.) can be satisfied,

while the other one is at the application side where the application worries about whether its data

collection can be successfully completed.

In public gaming, the just-described issue of energy availability is often not a major concern,

since by definition, the individuals are ready to engage in public gaming. Instead, to have a large

acceptance, a key concern is whether one can discover other individuals with similar interests,

and have high-quality gaming experience together. This will not be an issue if the players have a

pre-defined relationship, such as friends, within physical proximity of each other. But in familiar

stranger settings such as trains and buses, the discovery process is not natural; and due to complex

environments, group coherence and collaboration experience are not trivially assured.
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The research in this dissertation develops mobile services that address the above concerns to

facilitate deployment of public sourcing and public gaming applications. Specifically, one of the

services developed in this dissertation enables many sourcing applications to be launched by a

social service provider. These applications compete with an individual’s personal applications for

his/her device’s limited battery resource. Our solution provides energy isolation between public

sourcing applications and private applications on an individual’s mobile device. He/she can reserve

a certain amount of energy for each class of applications. As a result, an individual is assured that

participating in public sourcing will just affect their personal usage in a pre-determined fashion.

Further, one can aggregate energy allocations from all participating individuals to provide a priori

guarantee that adequate energy will be available to meet the needs of a particular data collection.

Our service relies on energy contract with each individual and collection contract with each sourc-

ing application, to provide the needed assurances when sourcing applications are launched.

To ensure energy isolation, we provide an energy accounting system. Our accounting solution

is not hierarchically built upon fine-grained energy accounting since such accounting requires de-

tailed understanding on hardware power activities. Instead, it estimates energy consumption by a

class of applications (e.g., public sourcing class and personal application class) at the granularity

of user perception of battery. Working at the user-perceived granularity leads to three desired fea-

tures. First, there is no need to train hardware-specific power models (thus immediately-usable and

largely-deployable). Second, the solution is self-adaptive to various hardware, system and appli-

cation states (thus accurate). Third, it has very low energy overhead (e.g., milliwatt level) in real

time (thus further enabling large acceptance).

In the setting of public transport, a typical familiar stranger setting, this dissertation provides

a service that allows commuters to enjoy multiplayer gaming through peer to peer networking. A

cloud-assisted matchmaking service eliminates the overhead of discovery, and peer to peer net-

work reduces the need for high latency and expensive cellular data connections. Given the real-

time dynamics of such a complex setting, the thesis presents results collected from such a system,

with three real game applications, on many different public trains and buses with up to four hu-

man players in each game play. Thus, the thesis empirically demonstrates the effectiveness of an
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ad-hoc familiar stranger social network, which helps people recognize and construct new social

connections via mobile device-assisted proximity discovery.

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents Sourcing-Contract, an archi-

tecture with contract assurances for public sourcing applications. Chapter 3 discusses EnergOn,

a novel energy isolation scheme with a user-perceived energy accounting technique. Chapter 4

presents GameOn, a system that enables public gaming on public transport. In Chapter 5, we

conclude this dissertation.
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Chapter 2

Sourcing-Contract :
An Architecture with Contract Assurances for Public Sourcing

2.1 Introduction

Since today’s mobile devices integrates a variety of sensing and networking modalities, using

them collectively for ubiquitous data collection has drawn extensive discussion [12, 13, 14, 15,

16, 17, 18, 19]. For example, in [12], Mohan et al. describe a mobile application that detects

potholes, bumps, braking, and honking using accelerometer, microphone, GSM radio, and GPS in

a smartphone. Once a target phenomenon is detected, the mobile application signals to the city

service along with its real-time location. The city service uses the data aggregated from many

individuals to monitor road conditions without the need of a sensor network infrastructure.

To collect sufficient and high quality data, a sourcing application needs a lot of volunteers

(i.e., their mobile devices). However, recruiting volunteers is not a trivial task in part because

these applications will consume energy, potentially leaving insufficient energy left for important

personal applications. On the other hand, even if a mobile user agrees on participating, a sourcing

application is not assured that its data collection can be successfully completed by the user since

there might be considerable personal applications running on the device at the same time.

We address the two above issues (summarized in 2.1) by defining a contract-based resource

management framework, Sourcing-Contract, within a sourcing service provider platform. Con-

cretely, it consists of energy contract between volunteers and the service provider, and collec-

tion contract between sourcing applications and the service provider. With an energy contract,
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Would you affect 
my normal use?

Can you complete 
my data collection?

Public 
sourcing 
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Contract
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Contract

Figure 2.1: The problem space in this chapter.

a volunteer specifies his/her energy dedication to the service provider which ensures that sourc-

ing applications can and only can use the specified amount of energy. By this way, the service

provider can assure the volunteer that sourcing applications just affect personal energy usages in

a pre-determined fashion. With a collection contract, a sourcing application can clarify its energy

demand. The service provider then checks current resource (i.e., energy contracts) availability and

determines whether to accept or reject the application’s collection contract. The core criteria is

accepting a new collection contract should not affect the completion of all already-accepted col-

lection contracts. By this way, the service provider can assure an application that its collection can

be completed as long as its collection contract has been accepted. In real time, Sourcing-Contract

schedules data collection tasks so that the above two assurances can be provided.

Overall, our contributions in this chapter include:

• We propose a novel solution to runtime resource management for a sourcing service provider,

alleviating the energy-related concerns at both volunteer and sourcing application sides (Sec-

tion 2.2).

• We use the concept of “contract” which clarify energy supply and demand so that the sourcing

collaborations are more predictable. We describe key services, protocol and implementation

based on the proposed contracts (Section 2.3 and 2.4).
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Figure 2.2: The architecture of Sourcing-Contract, a solution to runtime resource management.

• We present a prototype to prove its feasibility and ease of implementation (Section 2.5). We val-

idate our solution in simulation (Section 2.6), and the results show both goals are well achieved.

2.2 Solution: An Overview

Figure 2.2 shows the system architecture of Sourcing-Contract, which consists of four compo-

nents: the energy tracker, the resource allocator, the admission control checker, and the logistics

manager. Collectively, such components constructs a framework that (i) organizes and uses avail-

able energy resources, and (ii) provides resource guarantees to various sourcing applications. We

now describe the primary responsibilities of four components. In the next two sections, we will

describe the way of achieving two assurances using Sourcing-Contract.

2.2.1 Energy Tracker

A volunteer starts by downloading a Sourcing-Contract -maintained mobile application agent

on his/her device, and uses the agent app to allocate a portion of energy out of the physical battery.

Then an energy contract, including the dedicated amount along with a validity period, can be

submitted to the service provider, representing the volunteer’s interest in participation. The core
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responsibility of the energy tracker is to track the remaining energy in every energy contract so

that the Sourcing-Contract can properly make resource allocation decisions.

2.2.2 Resource Allocator

The resource allocator assigns data collection tasks to the selected volunteers. From its point of

view, the underlying resources are a set of distributed energy contracts. We use General Processor

Sharing (GPS) as the allocation policy, and show its benefits when Sourcing-Contract performs

admission control.

2.2.3 Admission Control Checker

Sourcing applications need to submit a collection contract before using the platform. The con-

tract basically describes its energy demand, duration, a set of qualifier devices, etc. The admission

control checker is primarily responsible for determining to accept or reject a submitted collec-

tion contract. It must make decision as soon as a contract arrivals because once the contract is

accepted, the associated data collection tasks should be guaranteed to be completed in this end.

I.e., having the incoming contract in the system should not jeopardize the energy guarantee pro-

vided to the sourcing applications previously accepted by the admission control checker. If the

Sourcing-Contract denies the contract, it raises a denying code telling the reason. Then the sourc-

ing application can adjust the contrast based on the code, or it might want to try different service

providers.

2.2.4 Logistics Manager

The Logistics Manager keeps necessary information for every sourcing application and volun-

teer, such as demographic information, primitive contexts (e.g., in office or at home), and statistics

(e.g., a last-seen timestamp and a credit score).

We now describe two key assurance services and our solutions. Table 2.1 lists notations used

throughout this chapter.
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Symbols Description

Energy contract (Volunteer denoted as j)

Vj represents how late the contract is valid until

B j represents the maximum amount of coulomb the PS-

SP can use before Vj, which is also known as the pub-

lic virtual battery in the paper

Collection contract (Application denoted as Ai)

Di represents time length of a collection contract

di represents time interval between two consecutive

sampling

Ni represents a set of volunteers qualified to serve this

contract

ni represents the number of volunteers needed for each

sampling

Si represents a set of sensors needed for data collection

si represents the worst-case energy consumption to

complete one single sampling, which is used by the

admission control checker for feasibility check

Table 2.1: Notations used in the chapter for two types of contract
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2.3 Volunteer-Side Energy Assurance

In Sourcing-Contract, a volunteer needs to dedicate a portion of energy to sourcing applica-

tions. The amount along with its expiration time is called an energy contract. The challenge of

providing volunteer-side energy assurance is how to enforce an energy contract.

A key question here is for both a volunteer and the service provider how to perceive the “avail-

able energy” at the mobile device. Today’s mobile users interact with the battery via a percentage

level (empty=0%, full=100%). By regularly checking the level, one can apply his or her own

power saving strategies and determine the time of charging. With data collections also running on

the device, perceiving the remaining energy at a device becomes not straightforward. For exam-

ple, suppose in the morning the volunteer has 80% battery, which is typically enough for his/her

necessary energy usages over the whole day. Due to the existence of sporadically scheduled data

collections, the energy might be consumed much faster than expected (i.e., there was actually less

than 80% available in the morning for the volunteer), affecting the volunteer’s already-established

energy management experiences. Likewise, using the physical battery level can also be a trouble to

the service provider: It does not know whether data collections should be scheduled to that device

since the remaining battery is not guaranteed.

2.3.1 Solution: Battery Virtualization

Our design is to provide separate battery interfaces, presenting an illusion that both the vol-

unteer and the service provider have their own “battery” on the shared device. As a result, each

one can use its dedicated battery irrespective of how the other part behaves. In the background,

the energy in the physical battery is partitioned into these two smaller virtual batteries, and it is

the mobile Operating System that ensures energy isolation between two parts. We will describe

the isolation scheme and its energy accounting technique in the next chapter, while in this chapter

we assume such isolation exists. The service provider can only use the virtual battery for public

sourcing of each device. As Figure 2.3 shows, with such usage model, the physical battery infor-

mation, such as the remaining percentage level provided by today’s mobile devices, is buried in
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Personal 
applications
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applications

Physical battery 2000 mAh

Private virtual 
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Public virtual 
battery 500 mAh

Isolated by agent

Figure 2.3: The concept of battery virtualization. The electric charge (coulomb) in a physical bat-

tery is partitioned into two smaller virtual batteries (each with empty=0%, full=100%). Sourcing

applications are encapsulated into a Sourcing-Contract-maintained agent application.

the background. Instead, the device exposes percentage levels of two virtual batteries, indicating

the available energy in respective virtual battery.

When a user registers with the service provider, he or she needs to download an agent mobile

application which will actually collect sensory data on this particular device in future. Once down-

loaded agent interacts with the OS to enable the capability of battery virtualization. It then allows

the user to specify the maximum energy capacity of the public virtual battery out of the physical

battery, B j, which is dedicated to the service provider. Now, a volunteer only needs to interact with

the private virtual battery while the service provider would manage the public virtual battery part.

For example, with a battery that has the total amount of electric charge 2000 milli-Ampere

hour (mAh) in Figure 2.3, a user may choose allocate 1500 mAh of a fully-charged battery to the

personal class while 500 mAh to the sourcing class. Then, even if the user runs a power-hungry

sourcing task for long periods time, he/she can be assured that 1500 mAh of the battery resources

will always be available to personal applications. Likewise, there is 500 mAh charge guaranteed

to the sourcing, irrespective of how the user uses personal applications.

A volunteer also specifies a validity period Vj by when any sourcing should be terminated.

However, if the B j limit is reached before the validity period expires, any sourcing should not be
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allowed unless a new contract by the volunteer is submitted. Once the contract starts, the volunteer

do not worry about in what way the energy B j would be used (e.g., which sourcing applications

are scheduled on his/her device, which sensors are being sampled).

Overall, since sharing energy is unavoidable while running sourcing applications, our solution

guarantees that sourcing applications would just affect a volunteer’s normal energy usages in a

pre-determined fashion by enforcing energy contract. As we will describe in the next section,

energy contract plus battery virtualization also enable easier resource management for the service

provider.

2.3.2 Volunteer-side protocol

The energy tracker component in Sourcing-Contract responds to following three types of

events from volunteers: V Joining, V Contract Completion, V Contract Interruption.

V Joining. A volunteer becomes active when he/she submits an energy contract to the service

provider via agent. From this moment on, if he/she is qualified for a data collection task, Sourcing-

Contract would possibly schedule the task on the device. The energy tracker monitors the energy

usages by sourcing, preventing it from draining more than B j coulomb. agent at the mobile side

guarantees that personal applications do not use the pre-allocated energy promised for the sourcing.

V Contract Completion. When an energy contract depletes or expires, the PS-V ends up with

sending a completion signal to the energy tracker. The energy tracker sends to the logistics man-

ager a success flag along with the volunteer profile. The times of success and failure would be

added into the history data used by the reputation and rewarding recorded in the logistics manager.

V Contract Interruption. Similarly, if the energy tracker finds a volunteer becomes unavailable

during a data collection task (e.g., the device is turned off), it logs a fail code to the logistics

manager and marks the already-collected data at an earlier time invalid if necessary.
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2.4 Application-Side Energy Assurance

A primary goal of the service provider is to guarantee an application’s data collection can be

gracefully finished. However, there are two reasons that make providing such guarantees a chal-

lenge. First of all, each application has its own energy need (e.g., applications that need to contin-

uously sense microphone would consume more energy than those with just sporadic microphone

polling) and qualifying criteria (e.g., volunteers who are in their offices would not be qualifiers for

detecting road condition). Thus, to offer energy guarantee, the service provider should reserve a

dedicated portion of energy on qualified volunteers. Second, the available energy resources are not

unlimited. From the service provider’s perspective, these resources are a distributed set of public

virtual batteries. The service provider needs to calculate whether the remaining energy in each

virtual battery is sufficient to accommodate one or multiple energy reservations.

Our solution is using admission control to guarantee completions of all already-admitted ap-

plications. In the meanwhile, we seek for proper resource allocation policies so that the possibility

of accepting a newly-arrived application is maximized. We start by introducing protocol and col-

lection contract before describing our solution.

2.4.1 Application-Side Protocol

Figure 2.4 illustrates the communication protocol used between a sourcing application and

Sourcing-Contract. There are three types of events to which the admission control checker re-

sponds (labeled in red): A Qualifier Inquiry, A Admission Control Check, A Execution.

A Qualifier Inquiry. This event (#1) is a query on whether there are volunteers in the specified

contexts. The asked contexts are generic and primitive, such as location and activity, which are

tracked by the logistics manager. The admission control checker searches over its database (#2)

and replies to the sourcing application with all qualifiers (#3). Next, if the application has more

stringent requirements on the qualifier context (e.g., riding bus around the national stadium), it may

select a subset of them (#4) by combining primitive contexts provided by the Sourcing-Contract.
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Figure 2.4: The lifecycle of a collection contract.

In addition, the sourcing application may also have its own user selection criteria such as those

proposed in [20] to be considered.

A Admission Control Check. The event (#5) occurs when a sourcing application has selected a

set of qualifiers and now submits a collection contract. The admission control checker reviews the

contract (#6) and determines whether to accept the contract (#7). Collection contract and detailed

admission control algorithm will be presented in the following subsections.

A Execution. If the collection contract is accepted, this event (#8) just starts it; otherwise the

sourcing application has to adjust the contract or change to a different service provider. Other

protocol design is also possible, such as Sourcing-Contract directly starts data collection if the

contract is accepted. During the execution (#9), Sourcing-Contract communicates with volunteers

on behalf of the sourcing application, leaving the application agnostic to runtime resource avail-

ability. While in Figure 2.4 the Sourcing-Contract only responds the completion notification at the

end (#10), an alternative design for runtime communication can also be possible (such as send-

ing notification after every sampling). When the contract expires, logistics manager logs basic

information in the database as the history associated with the application.

2.4.2 Collection Contract

A collection contract has two classes of parameters: a coarser one in the contract scope, and

a finer one in the sampling scope. As shown in Figure 2.4 (#9), the contract scope consists of

multiple sampling scopes. An example collection contract described by XML language is shown
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in List 2.4.2. In this example, the collection duration is 360 minutes while each sample takes 5

minutes; there are 4 qualifier devices and each sample needs only 2 out of them; each sample will

engage the gps positioning at every 15 seconds and the accelerometer sampling at every 1 second,

spending energy at most 10 coulomb.

More specifically, the contract scope parameters include Di, Ni, Si. (i) Di is typically deter-

mined by the physical meaning of the sourcing. For example, a sourcing application that monitors

the real-time movement of spectators after a big sporting event can claim the duration from 9:30 to

11:00pm, while a sourcing application that periodically (rather than sporadically) detects pollution

levels in a region may specify from 5:00 to 6:00am and resubmit its contract every hour. (ii) Ni, as

mentioned above, are selected from the return of A Qualifier Inquiry. When determining this set

of volunteers, the sourcing application designer should be sufficiently confident that the selected

qualifiers will not leave the desired context over Di. Sourcing-Contract is difficult to maintain

such specific things and can only notify the sourcing application if any leaving takes place. The

QualifierID field is a hash value on the device’s MAC address, which is not able to be reversed

by the sourcing application. (iii) Si is provided by the application designer, specifying concrete

sensors the sourcing application is interested in.

The sampling scope parameter include di, ni, si. (i) di is determined by the sourcing application

designer, which is usually a domain expert. For a real-time monitoring application, the sampling

rate can be at the Nyquist frequency; while for a behavior observation, it is a reasonable time

duration to detect the observed phenomenon. When one sampling is completed, the resource

allocator may allocate a different group of volunteers for the next sampling. (ii) For each sampling,

ni is typically smaller than the number of qualifiers (Ni), giving the room for the resource allocator

to efficiently make use of the underlying energy resources. (iii) si is needed by the admission

control, which is estimated by the sourcing application designer by in-lab profiling. There is also a

crowd-sourcing solution [21] to help determine this quantity. Note that the sampling details within

one sampling interval is application-specific and out of the scope of this paper.
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Listing 2.1: An example contract

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>

2 <C o n t r a c t xmlns=” h t t p : / / t h e s i s c o n t r a c t / c r o w d c o n t r o l ”>

3 <D u r a t i o n>180< / D u r a t i o n>

4 <Q u a l i f i e r s>

5 <Q u a l i f i e r Q u a l i f i e r I D =” 6 c f f 5 f c . . . . c162c8d1ac ”>< / Q u a l i f i e r>

6 <Q u a l i f i e r Q u a l i f i e r I D =” 6257 fd4 . . . . d7c27fd2dc ”>< / Q u a l i f i e r>

7 <Q u a l i f i e r Q u a l i f i e r I D =” 4 cdc8c5 . . . . f c d 7 7 c e c 6 3 ”>< / Q u a l i f i e r>

8 <Q u a l i f i e r Q u a l i f i e r I D =” 332 eaed . . . . sc687b0a3d ”>< / Q u a l i f i e r>

9 < / Q u a l i f i e r s>

10 <S e n s o r s>

11 <Se ns o r>

12 <name>GPS< / name>

13 < r a t e>15< / r a t e>

14 < / S en so r>

15 <Se ns o r>

16 <name>A c c e l e r o m e t e r< / name>

17 < r a t e>1< / r a t e>

18 < / S en so r>

19 < / S e n s o r s>

20 <S a m p l e I n t e r v a l>5< / S a m p l e I n t e r v a l>

21 <MaxEnergy>10< / MaxEnergy>

22 <N e e d e d V o l u n t e e r s>2< / N e e d e d V o l u n t e e r s>

23 < / C o n t r a c t>

2.4.3 Resource Allocation

We consider Generalized Processor Sharing (GPS) [22] an ideal model and design our alloca-

tion strategy to be close to it. In the GPS model, a data collection can be split into infinitesimal

collection tasks. Then the allocator strategically distributes such tasks to qualifier devices in a way

that every qualifier device consumes identical amount of energy. Using the foregoing notations

(Table 2.1), the overall worst-case energy consumption by a collection contract Ai is si ∗
⌈

Di
di

⌉
∗ni.
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In GPS, for application Ai over time duration t, the energy consumed on each qualifier device in

the worst-case is:

E i
j =

ni∣∣Ni
∣∣ ∗ (si ∗

⌈
t
di

⌉
) (2.1)

where |·| is the cardinality of the qualifier set, i.e., the number of qualifiers for this particular

application. We call E i
j as the GPS target with regard to the application i and time duration t.

In real time, it is possible that the above allocation strategy may have deviated from the GPS

target in part because a selected worker device consumed less energy than the worst-case si. We

thus use an approach that resembles Weighted Fair Queuing (WFQ) [23]: the allocation strategy is

to allocate the next sampling to devices that are farther from the GPS target so that all devices in Ni

move towards the GPS target. For example, if qualifier devices a, b and c have already consumed

10, 20, 30 coulombs for an application, and at this moment the GPS target is 40 coulombs for

each. Suppose the application needs two workers for each sampling, then in the next allocation the

resource allocator will pick a and b.

2.4.4 Admission Control Process

An admission control process can be interpreted as a “simulation” of a corresponding resource

allocation strategy. The end goal of the process is to evaluate whether accepting an application at

the current moment would disable all already-accepted applications to be successfully completed.

In our solution, the admission control checker uses GPS to determine energy consumption on

volunteer devices. There are many other possible strategies. As we will show in the evaluation,

GPS-based admission control has higher possibility to accept a newly-arrived collection contract.

Moreover, to the best of our knowledge, the non-GPS admission control during the simulation

will require evaluating the energy consumption at each sampling time of every application until all

applications complete. In contract, in GPS, the admission control requires the energy evaluation

only when the GPS target needs to be updated, described as below.

The admission control checker is triggered when a new collection contract arrives. Let t0 be the

current time, and at this moment suppose there exists n− 1 collection contracts labeled {Ai} , i =
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1,2, ...,n− 1 in the system, and a new one An arrives. The objective of the admission control is

to check, from time t0 on, whether all n collection contracts can be successfully completed by

their respective finish time. Naturally, the checker needs to look ahead till tend which is the latest

finish time among n collection contracts, i.e, tend = maxi∈n Di. We call the period from t0 to tend a

simulation period with respect to t0. Once the checker finds any Ai cannot be satisfied before the

simulation ends, it terminates the simulation process and rejects An; otherwise, it accepts An into

the system.

The process involves computations of the remaining coulomb on each device from t0 to tend .

Fortunately, as mentioned above, since GPS assumes every volunteer will continuously get a bit of

tasks to do, we do not need to frequently check the remaining coulomb. Instead, we can compute

only when significant events occur which will update the GPS target. Hence, the simulation period

is partitioned into back-to-back event-free windows, and the remaining coulomb are computed

only at each window end. We consider following three types of significant event, which will

lead to updates of the GPS targets: collection-contract-completed, energy-contract-completed, and

energy-contract-depleted. Since the first two types can be obtained directly from collection and

energy contract, we only need to capture the energy-contract-depleted events on which a device

has already depleted its public virtual battery.

The admission control process is described in Algorithm ??. (i) Combine the energy-contract-

completed events Tcc and energy-contract-depleted Tec events, and sort the union of two sets. (ii)

Find the earliest one in the union, f irstT , plug f irstT − tcurrent into Equation 2.2 (replace t), and

then for each device j determine whether the left hand side of the equation (i.e., the remain-

ing coulomb) is equal or smaller than zero. If so, (iii) further determine an earlier time, rather

than f irstT , at which the right-hand side becomes zero, which is the moment an energy-contract-

depleted event occurs.

B j(tcurrent + t) = B j(tcurrent)−∑
i∈I j

E i
j (2.2)
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Algorithm 1: Algorithm for the admission control
Input: Existing collection contracts Ai, i = 1,2, ...,n−1, and the incoming collection contract An

Input: m engaged device (energy contracts)

Input: Completion times {Tcc} of n collection-contract and Completion times {Tec} of m energy-contract

Output: Boolean result: accepte or reject An

tcurrent = getCurrentTime(); tend = getEndSimulationPeriod(); stack = initStack(); hash = loadDevices();

Sort Tc = Tcc∪Tec in descending order and push all into the stack;

while true do

firstT = stack.pop();

if firstT ≥ tend then

Break while loop;

maxHeap = initPriorityQueue();

for each device j in hash do

Compute t so that the left-hand side of Equation 2.2 is 0;

if tcurrent + t ≤ firstT then

Offer tcurrent + t to maxHeap;

if maxHeap is not empty then

stack.push(firstT);

while maxHeap is not empty do

tempT = maxHeap.poll();

stack.push(tempT);

firstT = stack.pop(); Update GPS targets to time firstT;

for each device j in hash do

if the public virtual battery level of j ≤ 0 then

hash.remove( j);

for each collection contract in An do

if the number of qualifiers not enough then

return REJECT;

else

Update GPS targets to time firstT;

tcurrent = firstT;

return ACCEPT;
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where I j is a set applications that j is qualified to serve. It should be noted that the checking

occurs at t0, and hence the remaining energy after this time point are estimated values based on the

worst-case energy consumption si.

Whenever any of three types of the significant events occurs, the admission control checker

need to update the GPS targets. It then sums up the updated GPS targets, and determines whether

every single device still has energy in its public virtual battery if such amount of energy will be

consumed. If depleted, the device will be removed. If any sourcing application cannot be satisfied,

i.e., the available qualifier devices are not enough for its next sampling, the admission control

checker rejects An; otherwise, it moves on to the next window end.

2.5 Implementation

We now describe how the proposed architecture can be easily built on a modern web service

framework. Our current prototype consists of a cloud-side service layer, and a mobile-side agent

software. The former implementation is based on the Play framework and the latter is based on

Android. However, the architecture is agnostic to specific Play and Android features, and can be

realized on other platforms with similar engineering efforts.

The service provider prototype is built on the Play Framework [24] with version 2.5.4, a web

service framework supporting Java and Scala applications. The communication between an appli-

cation owner and the service provider is via Apache HTTP interfaces. Specifically, the collection

contract is submitted through the POST method that carries an XML format contract. The inter-

nal modules in the service provider are implemented within the Play framework, and volunteer

profile and history data are stored in a MySQL database. The resource allocation module in the

service provider uses WebSocket persistent connection (with Json data format) to communicate

with volunteers. We deploy the architecture in a lab computer with Intel i5-3470 4-core Processor.

The mobile-side prototype with battery virtualization support is implemented in Android OS

version 2.3 on Google Nexus S smartphone. Our implementation modifies the Android framework

so that agent can terminate and prevent sourcing applications from starting when its virtual battery
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Figure 2.5: Percentage level changes of physical battery and two virtual battery.

level goes zero. The modification was using the source code downloaded from the Android Open

Source Project [25].

2.6 Evaluation

Our volunteer side evaluation was performed on the prototype implementation with a focus on

illustrating the effectiveness of energy isolation. Our application side evaluation, in simulation,

shows the benefit and cost of GPS-based admission control compared against Largest Battery First

(LBF) resource allocation policy.

2.6.1 Results of Battery Virtualization Interface

We used our prototype implementation to illustrate how a volunteer would interpret the energy

usages of public sourcing. In the experiment, we run the PS-SP with 10 devices, 9 virtual devices

which were implemented by software (a.k.a. bot), and 1 real physical device. The service provider

allocates tasks to 10 devices according to our allocation strategy. The real device has a battery with

1650 mAh total capacity, and offers a public virtual battery that has 150 mAh total capacity. Thus,

the rest 1500 mAh is for the private virtual battery. Each of two virtual battery presents a percentage

level from 0% to 100%, indicating the remaining energy. Figure 2.5 shows the percentage levels

of both changed over the 2-hour evaluation period. The public virtual battery scheduled to execute
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sensing tasks dropped quickly. However, since there was not any personal applications activated,

the private virtual battery level kept 100%, not affected by the public sourcing. It also should be

noted that Sourcing-Contract will only look at the public virtual battery to make allocation and

admission control decision.

We also plotted the physical battery level changes over time. Unlike today’s common battery

interface, however, its percentage may not be shown on the device screen in the real use. The

volunteer only focuses on the private battery. To accurately compute the virtual battery level the

device needs an energy model. We will describe our energy accounting solution in the next chapter.

2.6.2 Results of GPS-Based Admission Control

We seek for an allocation policy that has higher possibility to accept more collection contracts.

To study the effectiveness on this measure of various policies, we randomly created many config-

urations, each including a fixed set of energy contracts and a sequence of collection contracts. For

each configuration, we added its collection contracts into the pool of energy contracts one after an-

other one, and for each newly-added collection contract, we performed admission control process

to determine whether it should be accepted. The sequence number of the first rejected collection

contract with regard to a particular configuration might be different when using different alloca-

tion policies: the later the first rejection occurs, the more collection contracts the policy is able to

accommodate.

Over many configurations, we can statistically compare the first rejection between GPS-based

admission control with other policies. In this dissertation, we used another simple policy called

Largest Battery First (LBF) policy that schedules collection tasks to qualifiers who have more

energy in their public virtual batteries. The simulation were carried out for a wide range of param-

eters. The parameters include the maximum public virtual battery capacities of energy contracts,

the durations of collection contracts, the sample intervals of collection contracts, the worst-case en-

ergy consumption values of collection contracts, the ratio of the number of volunteer devices (i.e.,

energy contracts) to the number of applications (i.e., collection contracts), the ratio of the number

of qualifier devices to the number of volunteer devices, and the ratio of the number of participants
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to the number of qualifier devices. Effect of each one of these parameters were analyzed from

these simulations. Due to the large number of parameters, only significant and/or typical results

from these simulations are presented here.

Figure 2.6 shows the variance of possibility density of the first rejection. We fixed the number

of applications as ten, and increased the number of volunteers a configuration includes. Note that

as the number of volunteers increases, the number of qualifiers and the number of participants

increases accordingly. For each setting, we generated one thousand configurations. Observe that

in most configurations, both GPS-based and LBF-based admission control have the same first

rejection (i.e., “tie” in the plot). However, as there are more volunteers available in a configuration,

LBF-based admission control is less likely to “win”, i.e., have a later first rejection that GPS-based

admission control. In the rightmost setting, the ratio of the number of applications to the number

of volunteers is around one tenth.

Figure 2.7 shows the variance of possibility density when we tuned the ratio of the number

of qualifiers to the number of volunteers. Likewise, in most configurations both policies reject

collection contract at the same time. As the ratio decreases, GPS-based admission control starts to

perform better significantly.

2.6.3 Results of Resource Allocation

The goal of this evaluation is to illustrate how Sourcing-Contract, using a battery-centric re-

source allocation described in this paper, would perform compared against a battery-agnostic ran-

dom allocation scheme. Note that we use the random allocation because it also uses the same ad-

mission control equations. Other policies such as the LBF-based admission control, as explained

in earlier sections, use different equations.

The following results are based on the a simple proof-of-concept configuration as below. It

includes two applications and four volunteers. All volunteers are qualified for the application 1

while only volunteer #3 and #4 are qualified to serve application 2. The application 1 needs two

workers for each sampling and the application needs one single device. Two applications are also

different in the values of other parameters which are described in earlier sections.



26

 0

 20

 40

 60

 80

 100

 0  60  120  180  240  300  360

E
ne

rg
y 

us
ed

 (
m

A
h)

Time (minute)

GPS worst-case target for appln. 1
Volunteer 1 energy consumption 
Volunteer 2 energy consumption 
Volunteer 3 energy consumption 
Volunteer 4 energy consumption 

Figure 2.8: Actual energy consumption of 4

qualifiers compared against the GPS target

of application 1.

 0

 20

 40

 60

 80

 100

 0  60  120  180  240  300  360
E

ne
rg

y 
us

ed
 (

m
A

h)
Time (minute)

GPS worst-case target for appln. 2
Volunteer 3 energy consumption 
Volunteer 4 energy consumption 

Figure 2.9: Actual energy consumption of 2

qualifiers compared against the GPS target

of application 2.

 0

 20

 40

 60

 80

 100

 0  60  120  180  240  300  360

E
ne

rg
y 

us
ed

 (
m

A
h)

Time (minute)

Volunteer 1 energy consumption
Volunteer 2 energy consumption
Volunteer 3 energy consumption
Volunteer 4 energy consumption

Figure 2.10: Actual energy consumption of 4

qualifiers by running application 1 using

random allocation.

 0

 20

 40

 60

 80

 100

 0  60  120  180  240  300  360

E
ne

rg
y 

us
ed

 (
m

A
h)

Time (minute)

Volunteer 3 energy consumption
Volunteer 4 energy consumption

Figure 2.11: Actual energy consumption of 2

qualifiers by running application 2 using

random allocation.



27

Figure 2.8 and 2.9 show the energy consumption over a 6-hour period. Observe that the GPS

allocation has an important feature that for every single application, all qualifiers consume battery

at almost the same speed. Also, per-application energy consumption on each device is determin-

istically smaller than the corresponding GPS target. These two salient features make the resource

allocation highly predictable. On the other hand, Figure 2.10 and 2.11 show how the random allo-

cation made decisions under the same setting. Clearly, energy consumption for each qualifier are

diverged due to the battery-agnostic allocation.

2.7 Related Work

2.7.1 Admission Control And Scheduling

Admission control has existed long before the idea of public sourcing with mobile devices.

It plays a critical role in many resource-constraint computer and communication systems such as

supercomputing [26], networking [27], and cloud computing [28].

In contrast, little attention has been drawn in the domain of mobile device-based public sourc-

ing. A unique challenge here is ordinary people are engaged, making resource supply a very

dynamic and unpredictable factor. In this circumstances, we propose an admission control proto-

col along with a resource allocator to guarantee the sourcing quality. A similar work to deal with

human factors is Medusa [29]. However, authors did not address energy concerns of participants

and applications.

2.7.2 Energy-Aware Resource Management for Public Sourcing

PRISM [30] focused on the ease of developing and deploying sourcing applications. Also,

their system monitors the energy consumption of public sourcing applications, and enforces lim-

its on their energy use. In contract, Sourcing-Contract focuses on a complete both-end energy

management solution.

PCS [31] reduces the energy consumption of sourcing applications by piggybacking their ex-

ecutions with the user’s personal applications. Micro-blog [32] recognized the location service
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is commonly important for sourcing applications, and traded the energy used by sourcing appli-

cations with the location accuracy. The most similar work as Sourcing-Contract was proposed

by Zhao et al [33]. Authors considered the energy-aware resource allocation problem. Again,

their solution trades energy efficiency with fairness for the resource allocation problem while the

Sourcing-Contract manages the battery to guarantee the quality of data collection

2.7.3 User Selection

There are also discussions on selecting proper participants out of a pool of volunteers so as

to meet specific data collection requirements. Current best user selection practices differ from

each other in the information used to make such decision. Among them are reputation-aware [20]

solutions that consider the quality and validity of one’s history commissions, pricing-based [34]

solutions that balance bids of volunteers with the application budget, and churn-prevention [35]

solutions that are to prevent existing participants from leaving.

However, these work do not consider the battery availability as a primary concern. In contrast,

Sourcing-Contract considers it a first class concern for a sourcing platform, especially when the

energy resources is fairly limited (e.g., the number of registered people on the platform is low).

Neglecting the energy availability would possibly result in a decreasing number of potential de-

vices.

2.8 Conclusion

While public sourcing is a promising technique, it has not been widely adopted. Alleviating

energy concerns described in this chapter is one of the most critical challenges. In this paper, we

proposed our solution approach to providing energy assurances to both sourcing volunteers and

sourcing applications. The core idea is to clarify energy supply and demand via contracts, and

Sourcing-Contract offers the energy management service and admission control service that make

the contracted strictly followed. We implemented and simulated the proposed approach, and the

results show it is feasible and effective. In future, we plan to solicit sourcing applications and

volunteers to use our system.
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Chapter 3

EnergOn :
Ensuring Energy Isolation via Unsupervised Energy Accounting

3.1 Introduction

In the last chapter, we have summarized the concept of battery virtualization, which can be

a solution for public sourcing volunteers to managing their battery that caters to sourcing appli-

cations and personal applications at the same time. A more general situation is to enable mobile

users to classify their applications and manage energy of application classes according to their own

preferences.

In fact, today’s mobile users use personal mobile devices to navigate their work life, personal

life, disparate social circles, etc. and mobile applications correspondingly are purposed in different

settings. For example, public sourcing applications enable users to be actively involved in building

social convenience, while some work-related applications installed by enterprise IT people enable

employees to access corporate data and system [36]. As a result, applications on a device are nat-

urally separated into a few classes, each having a semantic meaning to the user, such as Personal,

Sourcing, and Work. While earlier work [37, 38] have discussed the methods of creating sandboxes

for such classes to guarantee the isolation of functions and data, a less discussed yet critical point

is the energy resource, battery, is also shared by such classes.

In this chapter, we present our design, EnergOn, to ensure the energy isolation between such

application classes: once a mobile user specifies the maximum amount energy for each class,

EnergOn strives to guarantee that any class can and only can use the energy in its own battery.

In its core, EnergOn has an energy accounting system to measure remaining energy in respective
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virtual batteries at any given time. Several successful techniques in this area target on fine-grained

energy measurement. For example, Eprof [39] traces energy consumption at thread and system call

levels, while Cinder [40] controls energy usage at application and process levels. In contrast, the

energy accounting granularity that EnergOn pursues is as large as a class of mobile applications.

An important reason why EnergOn is not hierarchically built upon fine-grained energy mea-

surement is their solutions usually rely on hardware-specific power models [41, 42, 43, 44] trained

at an offline time. Unfortunately, such energy models are tied to a single point of time, i.e., the

training time, and hence when new hardwares are integrated and/or software workloads are dif-

ferent, the models have to be re-trained [45]. Unfortunately, time-sensitive applications such as

collecting data for public sourcing applications might not allow a re-training process. Moreover,

some solutions [40, 46] closely work with the process management primitives in the Operating

System kernel, making such solutions not flexibly ported on various mobile platforms.

Unlikely, EnergOn does not rely on any hardware-specific power models. It iteratively learns

energy consumption models with regard to softwares on an application classes basis. This solution

leads to an unsupervised approach which can adapt the energy accounting to various hardware,

system and application states. We take advantage of the fact that mobile users do not typically care

about fine-grained energy activities, and thus we reduce the frequency of energy measurement to

a human-perceived timescale, i.e., the minute level. Correspondingly, we use simple features, e.g.,

the CPU time, to scale per-class charge consumption over such long intervals.

We hence trade the capability of performing fine-grained energy control with several impor-

tant properties, namely, the maximum possible portability, adaptivity to various hardware, system

and application states, and negligible energy overhead. Empirical evaluation shows our approach

achieves comparable accuracy with existing energy accounting solutions in scenarios of pursuing

accuracy at coarse-grained timescales.

Overall, our primary contributions include:

• We make a case for user-perceived battery management across multiple application classes.

We further design an energy isolation model to provide energy usage assurance to the classes

(Section 3.2).



31

Battery Hardware Components

Operating System

Middleware

EnergOn

Process 
Tracker

Per-Class energy 
Accountant

Battery 
Capacity 
Tracker

Charging 
Tracker

User Interface

Apps

Class 
Manager

Flow 2 Flow 1 Flow 3

Flo
w

 4

Figure 3.1: EnergOn architecture.

• We present an unsupervised energy accounting approach that does not rely on the hardware-

based system energy model. The approach also incorporates the charging phase, making it a

complete solution for end users to manage class-level energy usages (Section 3.3).

• We present an implementation of the energy isolation as a battery management tool for end users

(Section 3.4), and by performing an extensive evaluation, we show our solution can produce

accurate results compared with other approaches, while without using detailed model training

process (Section 3.5).

3.2 Proposed Solution

3.2.1 Architecture

EnergOn runs on top of an existing mobile OS kernel (e.g., Android, iOS, webOS, etc.) across

middleware and application layers. Figure 3.1 shows the diagram of the EnergOn architecture.

Initially, the user needs to configure the EnergOn system via the user interface. This includes
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grouping applications into classes, allocating energy resource to the classes and specifying the

preferred charging policy. These configurations can be adjusted afterwards. Once the EnergOn

system is installed, a core component, called per-class energy accountant, starts to estimate the

remaining energy for each class over time.

Specifically, it listens to the updates of physical battery information regularly reported by the

underlying system (flow 1 in Figure 3.1), which in turn triggers a model update. In the current

implementation, the battery information is the changes of the physical battery percentage level over

time. For one single estimation, EnergOn reads per-class runtime statistics via flow 2, and performs

linear regression to estimate the remaining energy in each virtual battery. At the very beginning

of using EnergOn, the per-class energy accountant cannot produce estimations since it does not

collect enough observations to do regression. After this bootstrapping latency, it can generate

estimates sequentially. The virtual battery information are maintained by the class manager that

controls the application executions (flow 4) as well as updates the user interface. When a charging

status is detected via flow 3, the per-class energy accountant distributes new energy into virtual

batteries according to the user’s charging policy.

3.2.2 Isolation Model Used by Class Manager

Suppose that a mobile phone has battery with a maximum capacity of B̄ mAh. Further suppose

that the user applications in a mobile phone are partitioned into M classes denoted by A1, A2, . . . ,

AM. To meet the energy usage of each class, the user has also pre-partitioned the physical battery

into M virtual batteries.

Let B(t) denote the energy remaining in the physical battery at time t. Let VBi denote the

virtual battery of class Ai, and let Bi(t) denote the energy remaining in VBi at time t. Then, an

algorithm to isolate the physical battery is correct if the following five conditions are satisfied.

1. Conservation of Charge Condition: At all times t,

∑
M
i=1 Bi(t) = B(t).
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2. Fractional Allocation Condition: Suppose that the user allocated a fraction φi of the physical

battery to virtual battery VBi, 1≤ i≤M. Then, for all 1≤ i≤M and for all times t, Bi(t)≤ φiB̄.

3. Energy Consumption Condition: If VBi has no remaining energy, then an application from Ai

will not be permitted to run. Note that, this condition is imposed even if the physical battery

still has some remaining energy.

4. Charging Allocation Condition: Let C(t0, t) denote the amount of new electric charge into the

battery from the charger in the interval [t0, t). This energy has to be allocated to virtual batteries

using a suitable allocation policy. Let Ci(t0, t) denote the VBi’s share of C(t0, t). Then,

∑
M
i=1Ci(t0, t) =C(t0, t).

5. Consistency Condition: Let Ei(t0, t) denote the energy drawn (without charging) from the phys-

ical battery by applications in Ai in the time interval [t0, t). Then, ∑
M
i=1 Ei(t0, t) = E(t0, t). Inte-

grating the charging phase, for all 1≤ i≤M and for all times t,

Bi(t) = Bi(t0)+Ci(t0, t)−Ei(t0, t).

3.2.3 Desired Features

Realizing the above isolation model needs an energy accounting system that estimates available

coulomb in each virtual battery. In our design, we focus on the following features. Table 3.1

summarizes the features and our design choices.

Zero training burden. Without the training burden and the kernel-space mechanism, EnergOn

can be immediately usable to most mobile devices and achieve the maximum possible adoption.

Self-adaptive energy model. By iteratively updating model, EnergOn does not require a re-

training process. This is desired in public sourcing situation, where the assigned tasks are het-

erogeneous, and enter/exit sporadically, which does not allow re-training.

Energy friendly in the wild. To be a practical and largely-adopted energy management tool,

energy overhead of the proposed system should be negligible.
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Features of EnergOn Design choices used in EnergOn

Be independent of hardware and

also general to various systems

Eliminate hardware-specific power model construction; reduce the cou-

pling of the implementation with the underlying system.

Be adaptive to various hardware,

system and application states

Employ self-adaptive online learning paradigm, and update the charge con-

sumption model iteratively.

Have negligible energy overhead

while the user is using the tool

Reduce the frequency of energy measuring down to the minute-level, and

use simple model features to estimate per-class energy consumption.

Trade-offs

Not for fine-grained energy management, be suitable only for scenarios of pursuing accuracy at coarse granularity.

Table 3.1: Desired Features, design choices and trade-offs of the EnergOn design.

An important tradeoff involves EnergOn’s capability to manage battery usage in fine-grained

manners. For example, it cannot estimate the energy consumption of applications at second and

millisecond levels, and hence is not suitable for system designers. The paper shows that such a

design is suitable only for scenarios of pursuing accuracy at the speed of human perception.

3.2.4 Compared With Prior Work

Prior work on energy budgeting. This body of research focus on system-level and fine-grained

approaches. Authors in Cinder [40] describe a new OS which has explicit primitives for fine-

grained energy management. The thread scheduler in the OS supports two novel primitives called

Reserves and Taps through which a thread can allocate and bound the energy consumption rate of

each of its spawned threads. By utilizing these primitives, one can easily bound the energy con-

sumption rate of an application irrespective of the behavior of the other applications, i.e., achieving

isolation. Not limited to the mobile devices, Zeng et al [46] present an OS-level energy manage-

ment solution that assists the OS to fairly allocate energy usages to applications.

These work are closely built on specific system kernel such as HiStar to Cinder and Linux to

EcoSystem. They are for the OS to manage system energy, while not a direct solution for end users

to manage mobile device battery. There are several work on battery interface [47, 48], which talks

about user-level energy management; but they do not provide energy isolation.
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In contrast, EnergOn targets on the maximum portability. It eliminates the hardware-based

modeling process, and has a general interface with the underlying system, which can be easily

ported on many mobile platforms. Also, by decoupling energy accounting logic from the hard-

ware and kernel, EnergOn achieves self adaptability when facing various software workloads and

hardware states.

Prior work on energy accounting. PowerTutor [41] is one of the first work that targets on a model

generation system for Android-based Smartphones. It employs a self-modeling paradigm to train

power models for key hardware components such as display, networking and CPU. Next, Dong et

al [45] present Sesame that allows a mobile system to construct a high-rate system power model

based on the current sensor. Given that the current sensor is not commonly available on mobile

platforms. Xu et al [43] present V-edge that only relies on the voltage sensor available on most

mobile platforms. There are also other successful work [42, 49] that address different aspects of

power modeling.

There are other energy accounting work that does not rely on a power modeling. Dong et

al [50] challenge the accuracy of power model-based approach and present a solution that is based

on cooperative game theory. However, the solution also requires fine-grained measurement.

Unlike the above work which often require energy measurement for thread or process and at a

second or millisecond level, EnergOn explicitly takes advantage of the relatively slow speed of the

human perception of battery (i.e., at the minute level), and is only suitable for managing mobile

battery on an application-class level.

3.3 Unsupervised Energy Accounting

We next present our energy accounting technique in detail. We describe the discharging phase

followed by the charging phase, and formulate the entire algorithm as an optimization problem.

Without loss of generality, we use a two-class scenario as a running example.



36

3.3.1 An Online Learning Paradigm

The Consistency Condition (without charging) shows energy consumption over a time window

[u,v) satisfies:

E(u,v) = E1(u,v)+E2(u,v) (3.1)

Then, we assume that the energy consumption by the applications in class Ai in [u,v) is modeled

by

Ei(u,v) = βi(v)δCPU,i(u,v) (3.2)

where, δCPU,i is the CPU time used by application class i.

Whenever the system informs a change on B, EnergOn can obtain a new observation of Equa-

tion 3.1. Then over an extended period w with multiple instances of equation, EnergOn is able to

compute model coefficients using the least square regression.

Example: Consider a mobile phone with two application classes. For simplicity, assume that each

class contains only one application; one class contains YouTube and the other contains Navigation.

Assume that the physical battery is fully charged, i.e., at 100% level, at time t0. Due to the charge

drawn by YouTube and Navigation, assume that battery level drops to 99% at time t1, to 98%

at time t2, 97% at time t3 and 96% at time t4. Then, based on the energy consumption model of

Equation 3.2, we can write the following four equations, one for each of the intervals [t0, t1), [t1, t2),

[t2, t3), and [t3, t4), with the assumption that β1(tk), k = 1,2,3,and4 are approximately equal and

let β1 =
1
4 ∑

t
k=1 β1(tk). Similarly, let β2 =

1
4 ∑

t
k=1 β2(tk):

β1 ∗δCPU,1(t0, t1)+β2 ∗δCPU,2(t0, t1) = 0.01∗ B̄+ ε(t1)

β1 ∗δCPU,1(t1, t2)+β2 ∗δCPU,2(t1, t2) = 0.01∗ B̄+ ε(t2)

β1 ∗δCPU,1(t2, t3)+β2 ∗δCPU,2(t2, t3) = 0.01∗ B̄+ ε(t2)

β1 ∗δCPU,1(t3, t4)+β2 ∗δCPU,2(t3, t4) = 0.01∗ B̄+ ε(t4)

We can estimate β1 and β2 by minimizing the square error, ε(t1)2+ε(t2)2+ε(t3)2+ε(t4)2, subject

to the above four equations. Then, the energy consumption from the battery by YouTube and
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Navigation in the interval [t3, t4) can be estimated as:

E1(t3, t4) = β1(t4)∗δCPU,1(t3, t4)

E2(t3, t4) = β2(t4)∗δCPU,2(t3, t4)

Thus, we can estimate per-class energy consumption over any (ti, ti+1). We now discuss two

important parameters in the above accounting process.

The estimation interval, [u,v), denoted as T throughout the paper. The above example uses

1% as estimation interval. However, this is not a must for the algorithm. If there is other source

to provide more precise E(u,v) than physical battery level change, it can be easily integrated

into the algorithm. However, in EnergOn’s usage scenarios, [u,v) is relative long for the energy

consumption model to be accurate.

The number of Least Square equations, N. It represents an observation window during which

the model coefficients are unchanged. It is sufficient to say that the least square computation

becomes more accurate as more equations are added; while as the window size increases, the

assumption that coefficients are constant (not adaptive) throughout the larger window may degrade

the estimation accuracy.

3.3.2 Per-Class Energy Consumption Model

As described above, the time window [u,v] is relatively as long as the minute level. In the

current implementation, we use the time elapsed for 1% physical battery level change. Corre-

spondingly, E(u,v) represents the amount of 1% ∗ B̄ coulomb that has been consumed since the

last 1% drop. We then model the energy consumption by an application class as a linear function

of the CPU time of its applications. Over a relatively long interval [u,v), we observe the energy

consumption from the battery can be well-characterized using a linear model as a function of CPU

time.

Figure 3.2(a) and 3.2(b) visualize the dependency of the device’s energy consumption on the

application’s CPU time. We invited two subjects to play the Browser applications on two different
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9
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0.99 0.98 0.97 0.96 0.95 0.94
R2

The number of executions

(c) Statistics of least square parameters (slope and R2) across 60 executions, each lasting for 200 seconds.

Figure 3.2: Linear correlation between per-application CPU time and the device charge consump-

tion. Experiments are done by two subjects playing 15 apps on two phones. Only Browser is

highlighted while results for other apps are visually similar. Jiffy is a system-defined time unit,

used for the CPU time.
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Application Background Customized Interactive

YouTube No No No

AngryBirds No No Yes

Navigation No No No

Facebook No No Yes

Browser No No Yes

Gallery No No Yes

Gmail No No Yes

WeChat No No Yes

VLC Yes No No

Camera No No Yes

Accelerometer sensing Yes No No

Audio sensing Yes Yes No

Gps logging Yes Yes No

BlueTooth streaming Yes Yes No

Camera sensing Yes No No

Table 3.2: Fifteen benchmark applications for evaluation.
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mobile devices. When a device was used, it was connected to a MonSoon [51] power monitor to

measure the energy consumption of the device. We also logged the CPU time of the Browser at

every second. Observe that over a short time period, there is considerable variation in the energy

consumption. These variances are caused by the uses of different hardware resources. However,

over a relatively long interval, e.g., 200 seconds in this experiment, the CPU time is an adequate

linear proxy of the energy consumption.

We further use 15 Android applications to validate the linear model (see Table 3.2), including

12 commercial applications and 3 customized applications. This set of applications covers most

types of workloads such as sensing, interactive, computation and network. Figure ?? summarizes

the statistical results of the best fitting straight line from all 15 applications. Each execution lasts

for 200 seconds. The small figure shows all executions have R2 equal or greater than 0.94. Over-

all, although considerable variation exists over fine-grained time intervals, the linear model based

solely on an application’s CPU time can effectively explains the charge consumption over a rela-

tive long period; in fact, power draw variances caused by software logics, user actions, and context

changes would be largely smoothed out over a long interval, e.g, 1% physical battery level change,

even though the variances are considerable and evident at fine-grained timescales such as seconds

and milliseconds. Consider a user is swiping pictures through the OLED display. Each picture

having a unique color distribution drains the battery at its own rate, while each one spends similar

amount of the CPU time as other pictures. That is, the CPU time would not be a good indicator for

showing individual pictures. However, over minutes when the user has browsed tens of hundreds

of pictures, the “overall” color distribution may be uniform, and arguably, the CPU time as the

feature can reflect this uniform distribution. The CPU time has been used in several work (e.g.

Magpie [52]) as the proxy of long-term software workloads. We use it here to reflect long-term

energy consumption.

3.3.3 Concurrent Execution

In our algorithm, applications in different classes can be executed sequentially, or they may

also be in parallel if the system and hardware support concurrent execution. However, the ground
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truth of concurrent execution is not readily available. As a result, existing work either use various

policies to allocate energy usages or “provide” a ground truth for energy accounting. Our isolation

model described in Section 3.2.2 is a conjecture about the ground truth. System processes (includ-

ing hardware housekeeping energy) are shared by classes. They are not visible to end users and

hence will not be allocated into any class. Thus, we consider that they consume energy on user

applications’s behalf.

3.3.4 Integrating Charging

Battery charging circuits in most mobile devices operate in two modes, constant current mode

and constant voltage mode. The constant current mode is used when the battery level is below a

chosen threshold often around 90%. In this mode, the battery charges rapidly. Once the battery

level exceeds the threshold, the charger switches to the constant voltage mode in which the output

of the charger is maintained at constant voltage. This causes the charging current to decrease with

a commensurate decrease in charging rate. This is done so that the charging process changes to

almost a trickle when the battery is fully-charged but the device is connected to an external power

supply.

To calculate the amount of new charge, we need to know the present charging rate. In EnergOn,

we assume the above transition point is at 90%, and acquire the charging rate while the user con-

nects the device to a charger: when EnergOn detects a charging behavior, it evaluates the amount

of present workload by checking the overall CPU time. If the load is light (i.e., almost idle), En-

ergOn determines the charging rate using the 1% charge capacity over the time for increasing 1%.

Once EnergOn obtains the charging rate, the amount of new charge over any time window equals

to the charging rate times the window size.

With the charging phases, we now describe the algorithm in more general way. Let t0, t1, . . .

denote the times at which EnergOn receives a callback from battery manager of underlying mobile

platform or OS. Typically, these occur when the physical battery level changes by 1%. Assume

that the current time is tk and we are using a window of w to estimate the values of β. Then, the

optimization problem used to estimate these values can be written as follows.
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Minimize ∑
w−1
l=0 ε2

k−l

Subject to:
M

∑
i=1

βi ∗δCPU,i(tk−l−1, tk−l)

= B(tk−l−1)−B(tk−l)+C(tk−l−1, tk−1)+ εk−l

for each l = 0, . . . ,w−1.

βi ≥ 0, for 1≤ i≤M

where βi =
1
w ∑

w−1
l=0 βi(tk−l).

A slightly trickier issue is the charge delivered to the battery during the charging process is tied

to the whole device. Hence, we need to allocate the new charge a particular virtual battery. There

are some possible user-specified policies to do so. For example, in the Least Percent First Policy,

all the incoming charge is allocated to the virtual battery that has the smallest percentage level,

while in the Proportional Allocation Policy, the incoming charge is allocated to the non-full virtual

batteries in proportional to their partition portions. We now describe four charging policies.

Let
dC(t)

dt
denote the rate at which the charge is being supplied to the battery from the charger

at time t. Let N (t) denote the set of virtual batteries which are not full at time t, i.e., if Bi(t)< φiC̄,

then i ∈N (t).

Least Percent First Policy. In this policy, all the incoming charge is allocated to the virtual

battery that is most depleted, i.e., the one with the smallest percentage level. If there are multiple

virtual batteries that are at the same and most depleted level, then divide the incoming charge

between them so that they are all charged at the same rate.

More formally, let

L(t) =
{

i :
Bi(t)

φi max
≤

B j(t)
φ jC̄

, i 6= j
}

dBi(t)
dt

=


φi

∑ j∈L(t) φ j

dC(t)
dt if i ∈ L(t)

0 otherwise.
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This policy violates the isolation property of virtualization. Suppose that a virtual battery

has the least level at 10% when the phone is connected to a power supply. Further suppose its

application are actively running, while applications associated with other virtual batteries are not

running. As a result, all the incoming charge is allocated to the least one, although it remains

at 10%. This behavior prevents the other two virtual batteries from getting charged. And it is

contrary to the normally observed behavior where the user expects a battery to pick up charge

when the device is charging and applications are not running.

Strict Priority Allocation: As part of the user configuration, the virtual batteries are prioritized

in some total order. Allocate all the incoming charge to the highest priority virtual battery which

is not already full. That is, let h be the virtual battery in N (t) with the highest priority.

dBi(t)
dt

=


dC(t)

dt if i = h

0 otherwise.

This policy is based on the viewpoint that each user can prioritize the charging process de-

pending on his/her need or context. Unfortunately, this policy may also result in violation of

virtualization’s isolation property. As in the case of Least Percent First policy, the behavior of ap-

plications in one party can adversely influence the charging of other virtual batteries. For instance,

the applications in a high priority party can starve the applications in a lower priority party by

continuing to consume charge at a rate which keeps the virtual battery level of the high priority

class below the virtual battery level of the low priority class.

Equal Allocation Policy: At each t, allocate the incoming charge equally to all virtual batteries

in N (t). That is,

dBi(t)
dt

=

 1
|N (t)|

dC(t)
dt if i ∈N (t)

0 otherwise.

The primary rationale for this policy is that it does not give preference to any virtual battery.

As a result, the ratio of the charging rate of physical battery and the charging rate of any single

virtual battery is bounded above by the total number of virtual batteries. Thus, the behavior of

applications in other classes cannot prevent a given virtual battery from being charged, in fact, a

minimum charging rate can be guaranteed to each virtual battery. This is very desirable feature.
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(a) Least Percent First
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(b) Strict Priority Allocation
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(c) Equal Allocation
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(d) Proportional Allocation

Figure 3.3: Illustrating the key characteristics of the charging policies.

In this policy, equal amount of charge is allocated to each virtual battery during charging.

Since virtual batteries have different capacities, smaller batteries reach full capacity faster than

larger batteries if they both start with the same remaining capacity.

Proportional Allocation Policy: Allocate the incoming charge to the non-full virtual batteries

in proportion to their weights.

dBi(t)
dt

=


φi

∑ j∈N (t) φ j

dC(t)
dt if i ∈N (t)

0 otherwise.

In this policy, the incoming charge is distributed to all the non-full virtual batteries in rates pro-

portional to their maximum capacities. This policy also has the desirable feature that each virtual

battery can be guaranteed certain minimum charging rate irrespective of the charge consumption

of applications in other classes. However, unlike the Equal Allocation Policy the percent levels of

all virtual batteries increase at the same rate in this policy.

Clearly, each of these policies have their own pros and cons. The minimum guaranteed charging

rate in the latter two policies is clearly a very desirable. However, a user may prefer the first two

policies depending on his/her context. A battery virtualization system should probably support all

four of the above policies and let user choose a suitable policy based on his/her context.

Figure 3.3 shows the virtual battery levels of three classes when the smartphone is being

charged. During the charging process, the smartphone is being used for some applications and

hence, consuming some charge. Nevertheless, the key characteristics of the charging policies are

clear in the figure. For example, the Least Percent First policy starts by charging the most depleted
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battery. After its level equals that of the second battery, both of them get charged proportionally

and their levels increase at the same rate. Finally, once all three batteries reach the same level, all

three of them are charged proportionally so that their levels increase at an equal rate.

3.4 Implementation

Our first version of EnergOn works with the Android framework to be able to terminate a

running application It has been used in the evaluation of Sourcing-Contract. However, this version

is not suitable for a small-scale qualitative user study since it requires installing custom ROM.

We then implemented a version in which EnergOn is an launcher application. Users can group

applications into folders on the phone screen. Each folder is a class powered by a dedicated virtual

battery, and cannot be opened when its battery (the virtual one) is dry. This version cannot kill a

class if an application in it runs in the background. Instead, EnergOn pops up a dialog to notify the

user. Interestingly, the feedback from our user experience shows they usually do not even know

such activities exist, and they kill the applications right away when seeing the pop-up message.

Snapshots at four important stages are shown in Figure 3.4.

Overall, the current implementation has around 2000 lines of Java code plus the least square im-

plementation by Apache math library (apache.commons.math). In particular, User Interface takes

1261 lines primarily about Android fragment and view management. Class Manager (327 lines) is

responsible for maintaining and updating real-time data and user configuration. Finally, Charging

Tracker (74 lines), Process Tracker (121 lines) Battery Capacity Tracker (58 lines) and Per-class

Energy Accountant (152 lines) implements EnergOn components as described in Section 3.2.

3.5 Evaluation

In this section, we present the evaluation results of EnergOn’s accuracy, adaptability and over-

head. The accuracy part consists of evaluation results of sequential and concurrent executions. The

evaluation on adaptability studies how EnergOn reacts to the variances of application states and

environments. Finally, we present the computation and energy overhead of the EnergOn system.
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(a) Home page (b) Configuration

(c) Personal class (d) Sourcing class

Figure 3.4: EnergOn snapshots.
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(a) Power monitor setup

A soldered 
mobile battery

(b) Digital multimeter setup

Figure 3.5: Two experimental setups.

3.5.1 Methodology

3.5.1.1 Ground truth collection

We use following two setups 3.5 to collect the ground truth measurement of energy consump-

tion used by the evaluation.

• Power monitor setup (Monsoon [51]). Because this setup does not have a real battery attached,

it can be used only for evaluating the accuracy of the discharging phase. However, it does not

need to solder test phones and is very flexible to use. We used Galaxy S5 (S5) and Note 3 (N3)

as test phones.

• Digital multimeter setup (Agilent 34411A digital multimeter (DMM) [53]). To evaluate the

solution in both discharging and charging phases, we soldered two batteries: a Nexus S (NS)

phone that has a single core CPU, and a Galaxy S2 (GS2) that is armed with a dual-core CPU.

As shown in Figure 3.5(b), the multimeter measured the voltage across a small resistor in series

with the battery. These voltage measurements directly correspond to the electric charge drawn or

supplied to the battery. When we collected discharging traces, the device was operating on the

attached battery; and when we collected charging traces, the device was connected to a battery

charger while the applications were running.
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3.5.1.2 Benchmark applications

Our trace collection, either discharging or charging, needs both energy measurements from

either of the above two setups and the test application’s CPU time at every second (available in

the /proc/ [pid of the application]/tasks folder). It should be clear that we do not log background

services’ CPU time since they are shared by classes, i.e., they are not per-class statistics. We then

combined both CPU trace and energy trace. Unless otherwise stated the “trace” used throughout

the rest of this chapter is referred as to the combination of both. To calibrate the current readings

by the logger program, we also deduct a fixed amount of current consumed, which is measured

beforehand with the screen turned off. We created the following two sets of benchmarks.

• Evaluating accuracy of sequential execution. We use the 15 mobile applications described in

Section 3.3.2 and extend the trace collection period of each application from 200 seconds to 60

minutes on average. Any 60-minute trace is a composite that may include multiple sub-traces

that are collected at different days. Collectively, we build our database including near 120-

hour traces collected from various settings. We then create synthetic energy profiles by mixing

smaller trace segments extracted from per-application traces. We will describe this process later.

• Evaluating accuracy of concurrent execution: We create 16 benchmark applications for the

evaluation of concurrent executions. They are combinations of one out of four background sens-

ing/computing applications (Audio sensing, Camera sensing, Gps logging and Bluetooth stream-

ing) and the other one out of four foreground applications (Web browser, WeChat, YouTube and

Navigation). We compare our evaluation results against other energy accounting solutions.

3.5.2 Accuracy of Sequential Execution

The first task of evaluation is to create synthetic energy profiles each of which consists of

many small trace segments extracted from the application traces. For each synthetic profile, we

first tagged applications with different class Ids, then started an automated process of picking an

application, getting a segment from its trace, followed by appending this segment to the profile

with the specified class Id. We also collected the energy consumption when a test device was in
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the idle state (the screen was off without running processes in the foreground and background), and

considered it as a separate application that can be picked by the above automated process. Other

parameters such as the length of each segment were determined from the statistical analysis in the

user study work [54].

Overall, each synthetic energy profile mixes a fair amount number of segments. Recall that the

segments from the same application might be collected in different settings. Therefore, we believe

our synthetic profiles can represent the everyday experience of battery use.

3.5.2.1 Overall accuracy

We first randomly grouped all applications into two classes. For each class size (in our experi-

ments they are 1, 3, or 5), we created 1000 synthetic profiles from the application traces. Figure 3.6

shows the relative error varies with the different group sizes. When there is only one application

in each group, the accuracy of estimations is 8.9% at N3 phone and 7.5% at S5. When the group

size increases to five (i.e, the diversity within one class becomes larger), the errors become 16.5%

and 14.9%.

We now quantify the influence caused by the diversity. We sorted 15 applications by their

model coefficients (i.e., the slope in Figure 3.2) obtained when running individually. We then

group them using following four allocation policies. (a) Homogeneity (Homo.): allocating the

first seven applications in the sorted order into one class, while the rest into the other one; (b)

Heterogeneity(Hetero.): allocating odd-number applications in the sorted list into one class, while

even-number applications into the other one; (c) Random: randomly allocating them into two

groups, as we did in the last evaluation; and (d) Sensing-aware(Sensing): allocating 5 sensing-

intensive applications into one class, representing the public sourcing class. Figure 3.7 shows the

accuracy of four policies when the group size is 5. As shown in the figure, the sensing-aware

policy performs close to the Homogeneity policy.

Last but not the least, we evaluate the accuracy when integrating the charging phase. Each trace

is sufficient long consisting of many discharging, charging, and idle segments. Figure 3.8 shows



50

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

Size = 1 Size = 3 Size = 5

R
el

at
iv

e 
er

ro
rs

 to
 

 th
e 

gr
ou

nd
 tr

ut
h 

(x
10

0%
)

N3
S5

Figure 3.6: Accuracy of the discharging phase.
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Figure 3.7: Accuracy with different grouping policies.
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Figure 3.8: Accuracy when having the charging.
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the estimation errors over two classes on NS and GS2. The overall results show the estimation of

remaining energy is reasonably accurate.

3.5.2.2 Accuracy affected by parameters

We now study the error variances when tuning two important parameters described in Sec-

tion 3.3: the estimation interval, T, and the number of Least Square equations, N. We also examine

whether the session length, i.e., the average execution duration, would affect the accuracy.

The estimation interval. This parameter corresponds to the frequency of performing algorithm

computation. In the current implementation, we use 1% physical battery level change to trigger

the algorithm computation. Typically, for modern smartphone batteries, 1% capacity of physical

batteries is near 60000-70000mAs. However, when a trigger can produce triggers at different

intervals, this parameter would affect the accuracy. Figure 3.9 shows the accuracy varies from a

fast rate (trigger the algorithm every 10000mAs used, about 1-2 minutes when the device is being

used) to a slow rate (every 90000mAs used). This demonstrates the EnergOn design is suitable

only for longer estimation intervals (at least 40000mAs for the current evaluation).

The number of equations. Figure 3.10 shows two opposite trends. When the group size is one

or three, the homogeneity inside a group dominates. In this case, more equations bring us more

stable and accurate least square outputs. However, when group members are more heterogeneous

(i.e, group size == 5), a longer period, i.e., more equations integrated, the accuracy decreases.

Average session length. The shorter this parameter is, within one single estimation interval the

more trace segments (i.e., activations) are included. Figure 3.11 shows the errors variances when

the average session length increases from 30 to 150 seconds. An evident trend is when the group

size is one, estimations are more accurate when the session length increases. The trend is not

significant as the other two cases.

3.5.3 Accuracy of Concurrent Execution

There are some policies and solutions that work in fine-grained accounting. Albeit targeting on

different usage scenarios, we compare against following two approaches.
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Figure 3.9: Influenced by estimation interval.
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Figure 3.10: Influenced by the number of equations.
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Figure 3.11: Influenced by session length.
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1. Proportional allocation policy: This is a policy that are usually considered “good enough”:

portioning the overall energy into two applications in such a way that the portion is the ratio of

energy consumption during their standalone executions. Zhong et al [55] uses a similar policy.

2. Shapley value-based accounting: This policy looks at the energy accounting from a microe-

conomic point of view. Dong et al [50] describe the policy based on cooperating game theory,

which can be considered as a general form of Nash Bargaining Solution [56].

3.5.3.1 Energy consumption of a concurrent execution

Prior study [31] has shown energy consumption of a concurrent execution is not simply equal

to the sum of their individual executions. Our measurements using the Monsoon setup over 16

concurrent benchmarks show consistent results with this observation. Some concurrent executions

consume roughly equal (equal case) or lower (lower case) amount of current than the sum of

individuals, while some may consume even a higher amount (higher case). In the meanwhile,

we also observe for a large number of combinations it is difficult to reproduce the relation across

multiple executions due to different hardware and system states, which restates the need of a self-

adaptive solution.

We pick 3 out of the 16 combinations, which can evidently and reproducibly demonstrate each

of the above three cases: Browser + Audio sensing, YouTube + Camera sensing, and Navigation +

Gps logging. For each case, we started with two phases for two individual executions, followed by

a third phase that is a concurrent execution. In the equal case shown in Figure 3.12, albeit consid-

erable noises due to user actions, the Browser consumes 400mA on average; the Audio consumes

500mA in the background with the screen turned off; and the mixture of two is on average 900mA.

In the higher case shown in Figure 3.13, the mixture phase consumes more current because two

applications compete for the shared hardware and software resources, leading to inefficient usages.

In the lower case shown in Figure 3.14, the mixture phase consumes less current because two

applications share the GPS polling results without duplicate requests.
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Figure 3.12: Browser + Audio sensing, equal case.
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Figure 3.13: YouTube + Camera sensing, higher case.
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Figure 3.14: Navigation + Gps logging, lower case.
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3.5.3.2 Result comparison over three approaches

We run the above 3 combinations each for 15 minutes. Figure 3.15, 3.16, 3.17 show the results

of energy accounting. Each column in the figure stands for the normalized total charge consump-

tion over the 15-minute execution. Each column consists of two parts, and the percentages are

results generated from three accounting approaches. Overall, three approaches produce similar

results. Note again that we do not have the ground truth for such evaluation. The purpose of a

comparison is not to conclude which policy is more accurate. However, the results show EnergOn

can achieve a similar level of accuracy without complex algorithm and fine-grained measurements

required by other approaches.

Figure 3.18 shows the comparison results across all 16 combinations. We plot both Shapley

and EnergOn against the results the proportional approach. Overall, the difference of accounting

results across three approaches is small.

3.5.4 Adaptability

The above evaluation reveals, for individual executions, the short-term variances albeit consid-

erable do not greatly affect the long-term linear trend. If there is long-term variances, however, the

linear model needs to be sequentially updated. For example, when a user turns off the screen for a

long time, the slope of the least square fitting changes significantly. Figure 3.19 shows the slope

of an Audio sensing application decreases after turning off the phone screen. Similarly, long-term

variances also include moving from an indoor office (with Wi-Fi connection) to an outdoor place

(with cellular connection), phone getting hot after a long time usage, etc.

In fact, there would be a huge number of application states within one application, causing

the model coefficients to vary with time. Figure 3.20 shows a simple example where the current

measurement varies when the Audio application is altered with different sampling frequencies from

8K to 44.1K as well as different computation intensity related to respective sampling frequencies.

We observe that the 44.1K case can consume 130mA on average more than the 8K case. Both

Proportional and Shapley approach needs to know the charge consumption in the mixture scenario

and individual scenarios. The existence of various application states makes them not practical to
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Figure 3.16: higher case. Energy accounting results generated by three approaches.
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Figure 3.20: Application states of the Audio app affect the current measurement.

measure current in all cases. In contrast, Figure 3.21 shows EnergOn sequentially updates model

coefficients to react to the application state change. In this experiment, both Audio and Browser are

running concurrently. When the 44.1k sampling frequency is used, EnergOn increases the fraction

accounted for the Audio by around 5%.

We observe the least square regression is affected during the switch from a session of individual

execution to another session of concurrent execution, and vise versa. In fact, when there is a second

application added, the relation of CPU time of two classes significantly changes: a part of them

is obsolete but still involved in the least square computation. They cannot represent the present

energy usage relation across two classes. This “phase transition” leads to a time window in which

the regression results in not stable. This can also be observed in Figure 3.21 where the change of

application states make the regression output fluctuating. A naive solution is wait for several more

observations and compute the results using only the CPU observations valid in the current phase.

However, we examine whether the history CPU observations, by the same two applications, can

be reused. For this purpose, we conduct an experiment over three days. On each day, we collect

the CPU time observations when the Audio and Browser are running concurrently for two times

with one hour interval without turning off the device in between. Finally, we mix such history

data with the present data, and generate fraction estimations. Concretely, for each model update,

we use 3 obsolete and 3 fresh observations to make an estimation. This experiment reveals how
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Figure 3.21: Model coefficients (as well as the fractions) are adaptive to varying application states.

EnergOn would perform when there are not sufficient number of equations to run regression. Over

a 15-minute time window, we compare such results with that computed by 6 fresh observations

(Thursday, left bar) that is normalized. Figure 3.22 shows that the observations collected from

Tuesday and Wednesday should not be used on Thursday, while the observations collected one

hour ago, when mixed with fresh observations, can be used as an approximation.

We understand that this is our initial findings given that we have not collected enough CPU

observations for more comprehensive evaluation. In the future work, we will study on further

stabilizing the least square outputs.

3.5.5 System Overhead

Figure 3.23 shows the current waveform of energy spendings of doing two consecutive model

computations. The peak current is near 330mA and the latency of performing estimation once is

600ms. Overall, both the energy overhead and computation latency are negligible. It would be

expected when we shorten the estimation interval T, the energy overhead and latency increases.

However, taking the average over an extended time window, EnergOn’s energy cost is negligible.

3.5.6 Training Cost Vs. Bootstrapping Latency

EnergOn does not employ an offline training process, and thus there is no training cost and time

required for power-model generation. However, it has a bootstrapping latency when the user starts



60

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Thursday Wednesday Tuesday

N
or

m
al

iz
ed

 fr
ac

tio
n This moment run

Hour-ago run

Figure 3.22: Effectiveness and results of using history CPU time observations.

0

200

400

C
u

rr
en

t 
(m

A
)

1% duration 

600 ms

Figure 3.23: Energy overhead of performing two consecutive model computations over a 1% win-

dow.



61

to use it. The latency is to wait for enough CPU time observations to do least square regression.

This is needed just when the user starts to use it in the first time. The latency would be T ∗N. Once

model coefficients are built by the initial execution, it can continue to generate new coefficients.

3.5.7 Qualitative Study

We invited 8 Android users to use EnergOn for 7 days. The users’ devices are all recent

Android devices. Seven devices have quad-core CPU and one has octa-core. Their systems are at

least 4.0 version of Android (Galaxy S3), and the battery capacity is from 2100mA (the smallest)

to 3200mA (the largest). Since EnergOn is implemented as an application, it was installed on these

devices without any modification.

Before installing the application on our users’ devices, we explained the goal and key features

of the EnergOn application. At the end, we asked each of EnergOn users to answer self-reported

questions on whether they felt the EnergOn application successfully implements the baseline fea-

tures. We summarize the results and raised issues as follows.

1. All users agree EnergOn can control energy usages of a class of applications, and successfully

isolate the energy share of individual application classes.

2. All users agree the virtual battery level reports appear to be reasonably accurate.

3. Over the week, none of users report over-heat situations. When there is not any application

running, the physical battery level drops at a reasonable pace.

Our users also provide simple comments and interesting hints based on their preliminary ex-

perience with EnergOn. Six users report a borrow-return policy is needed across classes: ”The

isolation is a good idea to prevent applications from consuming more battery than they are al-

lowed to. But sometimes I might need an application to work in case of emergency. Could we

probably just allow a class to suck battery from the other after its battery is dead?”

One of our users suggests that the access control can also be based on time: ”The launcher app

(i.e., the EnergOn tool) should have the option to set the active time, like I set a group of apps that

can only access from 8 AM to 5 PM.”
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The first comment is about battery partition policy when using EnergOn, while the second

comment is about access control policy. Both comments are valuable for the next-step design of

EnergOn.

3.6 Related Work

In Section 3.2.4, we have differentiated EnergOn’s design goal and usage scenarios from that

in existing fine-grained energy accounting work and hardware-based power modeling work. In this

section, we discuss other related work in terms of following two aspects.

OS/machine-level energy management. In a virtualized system, each system user (e.g., an Op-

erating System) may have its own needs and policies for managing its energy consumption. Some

of their management mechanisms require privileged accesses to real hardware power states. The

system-level energy management solution thus needs the “hypervisor” (i.e., Virtual Machine Mon-

itor) below the system users to limit the direct executions, and coordinate various power manage-

ment policies. Nathuji and Schwan propose a solution [57] for the server domain. Similarly, Cao

et al [58] aims at supporting power management in a sensor network.

In contrast to system users in the above scenarios, mobile applications do not have sophisticated

energy control strategies (e.g., kill itself to save energy for the entire device). Consequently, it is

the end user that coordinates energy usages across applications over time. EnergOn is an attempt

to simplify such user-managed approach.

Some research work trade the application performance and user experiences for energy sav-

ing [59, 60], while JouleGuard [61] maximizes the performance under a given energy budget.

e-Doctor [62] detects abnormal energy usages of mobile applications. Badam et al [63] propose

software-defined batteries, which is for system designers to integrate heterogeneous batteries. En-

ergOn is for end users to manages multiple “virtual” batteries with the same chemistries.

Design for energy efficiency. Energy-aware design occurs at all layers of the software stack. There

has been an extensive body of research on developing energy-efficient design for mobile systems
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and applications [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 31, 75]. These work are orthogonal to

design for energy assurance. We now describe two examples.

Many energy efficiency design save energy consumption by utilizing the hardware power state

information. In PCS [31], for example, the authors target on energy-efficient data collection on

mobile platforms. They observe it is more energy efficient for a data collection task to execute

concurrently with a user-activated application, saving the wake-up energy of hardware compo-

nents. Therefore, they strive to figure out when personal applications would be started by the

user. We do observe similar behaviors in the scenarios of concurrent execution. However, Ener-

gOn aims at accurately accounting for energy consumption by concurrent applications, and can

be complementary to the PCS technology. Lentz et al propose that waking up all hardware and

software components for one task is a waste. They create a drowsy state for the OS level power

management [76], in which only a necessary set of components would be activated.

Other energy measurement approaches. NEAT [77] and PowerBlade [78] are recent work on

high-accuracy hardware power management solutions. In the cloud computing context, a linear

energy consumption model for power metering of virtual machines in cloud computer is proposed

in [79]. Specifically, the energy consumption of three key resources (CPU, memory, and disk) are

each modeled as linear function of the time utilization of that resource by the corresponding virtual

machine.

3.7 Conclusion

In this paper, we presented design, implementation and evaluation of the EnergOn system. En-

ergOn enables different application classes to share the battery resource efficiently and predictably.

The growing trend is that mobile users today use the same device to navigate their work life, per-

sonal life, disparate social circles, etc. and use multiple diverse applications to do so. These

applications intermingle with each other in random patterns as the mobile user furiously multi-

tasks across all of her mobile personas. As this trend accelerates, we believe that the capability

to share battery charge predictably across multiple application groups will become crucial. Our
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user study though preliminary, indicates that mobile professionals are positively inclined towards

EnergOn.

We first sketched out several new requirements for a user-managed energy management tool.

We then formalized an online learning algorithm that can dynamically learn energy usages at ap-

plication class basis. Further, by reducing the estimation interval to a human-perceived speed, En-

ergOn can accurately estimate per-class energy consumption with milliwatt-level energy overhead.

The most important advantage of EnergOn is it does not rely on a hardware-based power model

training. This enables EnergOn to be highly flexible and portable. Evaluation results show Ener-

gOn achieves a comparable level of estimation accuracy with the state-of-the-art energy accounting

solutions in user-perceived management granularity. We evaluated the operation of EnergOn over

a few days to understand the preferred usage models as well as use the feedback to design a better

system.

The main limitation of the current EnergOn prototype is, the implementation that can kill a

background application needs to work with the middleware code, which makes a complete, large-

scale usability study not possible. We are limited to a workaround implementation in order to

perform the preliminary user study. Also, albeit 15 applications, most of them are well-designed

commercial applications used by millions of users. These applications have already optimized

device resource usages in great details. In the real world, however, mobile application codes may

not be resource-efficient. In the future work, we will investigate in more depth on evaluating the

system in the wild. We evaluated three class scenarios that have similar accuracy as two-class

cases. However, an interesting future work would be to study if abundant battery information

increases the management burden.
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Chapter 4

GameOn :
Towards Building Familiar Stranger Social Network

4.1 Introduction

In this chapter, we shift the focus from the public sourcing type of collaboration to the public

gaming type of collaboration. Unlike public sourcing where individuals’ willingness to participate

is a concern, public gaming is a type of collaboration that people seek for to build familiar stranger

social network. A typical familiar stranger setting is on public transport. In many dense crowded

urban cities (which are common in Asia and Europe, and include some US cities like New York

City and San Francisco), the cost of driving tends to be quite high in terms of traffic, time taken,

aggravation, and parking availability, etc. As such, a significant fraction of the population in these

cities take public transport for their daily commute.

This commute period is a natural “down time” where the commuter can be engaged. Currently,

many commuters spend the time by sleeping, reading something, or using their phones to check

email, browse the web, chat with friends, watch videos, listen to music, or play games. We also ob-

served that an increasingly large fraction has access to smartphones that have the performance and

networking capabilities required for mobile game playing. We thus hypothesize that these com-

muters could benefit from playing spontaneous multiplayer games, to ease the commute boredom

and potentially build more social connections.

Thus, we present GameOn, a system for allowing public transport commuters to engage in

multiplayer games with fellow commuters traveling on the same bus or train. The key technical

challenges we overcame were:
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High 3G/LTE latencies. This causes serious lag and playability issues in multiplayer games

(especially in the near real-time games like shooting or racing games). We overcame this by using

p2p networking solutions for the actual game plays.

Identifying the appropriate p2p networking mechanisms. As we show in Section 4.4.4,

Bluetooth [80] does not work well for this use case. Instead, we used Wi-Fi Direct [81], a relatively

new Wi-Fi mode optimized for p2p communications, which is now a standard feature on new

smartphones, as our communication medium. We showed performance characteristics of both

Bluetooth and Wi-Fi Direct in various p2p game scenarios.

Matching game players in an efficient way. A drawback of pure p2p solutions is that neigh-

bor discovery can take a long time. We overcame this by using the insight that all the passengers

still have Internet connectivity via cellular connections — albeit with high latency and low band-

width. We leveraged this and used a central server to perform the matchmaking of players. This

also allowed us to match players based on various pre-collected player information such as skill

levels, travel times, and other preferences.

Working with minimal modifications to existing systems. For GameOn to be successful,

it should be as backward compatible as possible. As such, we designed it to run as a normal

application (root access is not needed) with minimal changes needed to existing applications. For

instance, we retained the existing client-server models used by most existing games to minimize

code changes. Thus, one smartphone will have to serve as both the master server as well as a

client — we show that the energy overhead for the server phone is still quite acceptable. We also

intentionally kept GameOn as simple as possible to make it easier to deploy, debug, and explain to

end users.

Overall, we make the following contributions:

• A detailed analysis of the public transport travel times. In particular, we show how long pas-

sengers are co-located on the same train or bus (which is the shared time when they can play a

game together).
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• A detailed comparison of the efficacy of Wi-Fi Direct and Bluetooth as communication mediums

for playing multiplayer games. We show results from both in-lab synthetic experiments as well

as real-world experiments conducted by playing games on actual public trains at various times

of the day.

• A detailed description of the design and implementation of GameOn. This includes a discussion

of how the GameOn matchmaker can be extended to support many more metrics (such as co-

location times and connection stability) to enable spontaneous p2p games, beyond ping times

commonly used by existing matchmakers.

• An in-depth evaluation of GameOn that comprises of both micro benchmarks involving synthetic

evaluations of various system components as well as real-world tests involving actual game play,

using three different popular games, on a public train (at various times of the day). The games

chosen were OpenArena [82], Racer [83], and 2048 [84], which represent the shooter, car racing,

and casual game genres, respectively.

4.2 Motivating Scenarios

Jill is heading to school and her regular commute involves a 25 minute train ride. She boards

the train and settles in for the somewhat long journey. She starts using her smartphone to do

her regular routine — check emails, browse news articles, facebook posts, and videos tagged by

friends. However, she quickly finishes all of these and realizes that she is still 20 minutes away

from her station and she is getting bored.

Fortunately, she remembers about that new application, called GameOn, that her friend asked

her to install. She starts GameOn and sees that 3 people around her are interested in playing Quake

III multiplayer (which is setup to require at least 4 people). She expresses her interest in playing

the game. Within seconds, GameOn starts a server on one of the 4 phones, and automatically

connects all the 4 game players (using their anonymous in-game IDs) to the server using Wi-Fi

Direct and the game starts. 10 minutes later, the game concludes as some of the participants get
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off the train. Jill is happy with her performance and wonders who she was playing with (that info

is not revealed).

She realizes that she still has ≈ 10 minutes left and she decides to see if a quick round of 2048

(a puzzle game) is possible. She re-starts GameOn and specifies that she is looking for one other

2048 player who will alight at the same station. Within seconds, she is connected with another

anonymous player (on the same train) and the game starts. Jill finds the system just assigned a

player who played with herself yesterday. The game continues until Jill reaches her train stop at

which point she ends the game, gets off, and goes to her classes happily.

The above scenario motivates the entire design of GameOn, as the first step to build familiar

stranger social network. In Section 4.3, we first show that passengers spend sufficient shared time

on public buses and trains. We then present the design, implementation, and evaluation of GameOn

in the remaining sections.

4.3 Is GAMEON even Practical?

To support the above scenarios, we require two pre-conditions to be true as follows: First

and most importantly, commuters must be on the same train or bus long enough for a shared

game session to be feasible. Prior work [85] has published the minimum game length at about

10 minutes. Accounting for the overheads of settling onto the bus/train and allowing for time to

finish reading emails, news sites, etc., we pessimistically need commuters to be co-located with

a large number of other commuters on the same train or bus for at least 20 to 25 minutes for a

GameOn-like system to be plausible.

Second, commuters must have the interest to play games while on buses and trains with others,

probably random commuters. Fortunately, statistics [86] show that games are the most popular

applications downloaded from any app store and this popularity increases as the population gets

younger. In addition, multiplayer games tend to be the most engaging of all game types. Thus, we

believe that the desire to play multiplayer games is present in a large fraction of the commuting

population.
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4.3.1 Concern 1: Commute Times

We pick Singapore as an experimental place for GameOn. Singapore is a small country of

about 715 square kilometers (≈60% the size of New York City) with about 5.3 million inhabitants.

It has a modern integrated public transportation network of trains, buses, and taxis (not considered

for this analysis). The bus network uses about about 360 bus routes to serve over 4,800 bus stops

while the train network comprises of over 120 stations across 5 main lines. In total, the buses and

trains handle over 6 million trips per day [87].

Singapore uses a NFC-based store value card system to pay for bus and train rides that requires

every commuter to tap their NFC cards at both entry and exit before the actual fare is computed

based on the distance traveled. This is different from fixed rate systems used elsewhere, such as the

New York City and Paris subways, which only require a tap on entry. This requirement to tap in

and out makes it possible for data analysts to know exactly when a particular NFC card has entered

or exited a bus or train station (even though the owner of the card is unknown).

In this section, we present rigorous analysis of its transportation system data (Section 4.3.1)

along with summary data from other countries (Section 4.3.1.3), and show that a sufficient long

commute times are very achievable in practice.

4.3.1.1 Singapore Transportation Data Set

We used three months of bus and train entry and exit data (from November 2011 to January

2012) obtained from the Land Transport Authority of Singapore [88]. For every public bus, we had

the time and location (bus stop number) where every passenger boarded and alighted. For trains,

we have, for every train station, the exact time when a commuter entered and left that train station.

With these two sets of data along with the publicly available train/bus timings and route maps, we

can quantitatively determine the average commute time needed to reach any destination. Table 4.1

summarizes the data used for this analysis.

For the purpose of this analysis, we used the Singapore Management University campus as the

final destination and calculate the commute time statistics needed to reach the campus from any

location in Singapore. Because the university is located downtown, it is very well connected and
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Bus Data

Nov. 2011 Dec. 2011 Jan. 2012

Total # of Records 100,521,633 100,732,193 105,449,970

Unique Bus Routes 353 353 353

Unique Bus Stops 4873 4873 4873

Unique Commuters 3,910,636 4,364,309 4,202,792

Train Data

Nov. 2011 Dec. 2011 Jan. 2012

Total # of Records 62,272,880 63,655,069 63,092,608

Unique Train Stations 127 127 127

Unique Commuters 4,210,625 4,051,357 4,384,240

Table 4.1: Summary of Public Transportation Data

served by 3 different train stations and 43 different bus routes across 7 different bus stops. Also,

when performing our analysis, we only considered the most direct routes to the campus that did

not require switching between trains to buses and vice versa.

4.3.1.2 Quantitative Analysis Results

Table 4.2 shows the results of our data-driven analysis for both trains and buses across all 5

weekdays for both peak hours (7.30 a.m. - 9.30 a.m.) and off-peak hours (9.31 a.m. - 5.59 p.m.).

Note that we only consider the morning peak period as the evening peak period will not have too

many people coming to campus.

The data shows that the average time spent on a bus is about 17 minutes with a fairly high

standard deviation (numbers in parenthesis). For trains, the average time is about 26 minutes with

a reasonably large standard deviation as well. This matches well with reported data [87] that

states that trains are the preferred option for longer routes. However, even though these numbers

look low, many commuters experience higher commute times as they need to take more indirect

routes that involve multiple trains/buses for their commute. We show this through a survey in the
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Commute Time (mins)

Bus Train

Peak Off-Peak Peak Off-Peak

Mon 17.4 (9.2) 18.5 (10.6) 24.1 (11.1) 23.3 (13.4)

Tue 16.5 (11.8) 17.1 (9.8) 27.5 (12.9) 21.1 (13.7)

Wed 17.0 (10.4) 17.9 (10.1) 25.6 (11.2) 20.5 (13.3)

Thu 16.9 (11.0) 17.1 (10.3) 27.9 (12.9) 20.9 (13.6)

Fri 17.1 (10.7) 17.4 (10.2) 25.6 (11.2) 21.1 (13.6)

All 16.9 (10.8) 17.6 (10.2) 26.5 (12.1) 21.4 (13.5)

Table 4.2: Average Commute Times for Buses and Trains. Numbers in parenthesis are the standard

deviations

following section where the majority of respondents reported high commute times with more than

one transfer.

4.3.1.3 Commute Times in Other Major Cities

We additionally describe analysis of the commute times observed in other urban cities (from

prior work and online sources). Table 4.3 shows our findings. What we observe is that commute

times in other cities are higher, and thus GameOn might also prove to be useful in other cities.

4.3.2 Concern 2: Willingness

In addition to the data driven analysis presented above, which is completely game agnostic, we

also surveyed students and working professionals to obtained their willingness to play multiplayer

games while commuting. Out of 118 participants, 90 participants (76%) stated that they played

mobile games with 67 (57%) saying that they played mobile games while commuting.

64 participants (54%) answered yes to the question “Are you interested in playing multiplayer

games with other commuters traveling in the same bus/train/car?”. When asked why they wanted to

play these games, the answers provided were “Ease the boredom during the commute” - 44 (37%),
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City Average One-Way Commute Time (minutes)

London 39.5 [89]

New York 40.0 [90]

Montreal 38.0 [91]

Toronto 39.5 [91]

Tokyo 66.0 [92]

Seoul 53.0 [93]

Hong Kong 46.0 [94]

Taipei 37.5 [95]

Beijing 97.0 [96]

Delhi 42.3 [97]

Mumbai 47.3 [97]

Table 4.3: Average Commute Times for Other Cities

“Potential to meet more people who share similar interests” - 34 (28%), “Thrill of competitive

challenge inherent in multiplayer gaming” - 33 (28%), “Other” - 2 (2%).

For the 54 participants (46%) who were against the idea, the most common reason offered (via

a free form text box) was the unwillingness to pay for 3G/LTE bandwidth just to play a game

on the train – “Dataplan consumption and slow/connectivity issue when in train”. They also felt

that the 3G/LTE speeds were not good enough for gaming – “You need a solid connection when

playing such games during commuting.”. Another strong opinion raised was the fear that playing

with nearby strangers would impact their real world comfort levels – “Do you really think we are

that open to play with strangers standing right next to us?”. Finally, some participants feared that

the game experience would be bad due to poor player quality or players leaving abruptly.

Overall, the survey results indicate that there is potential for GameOn to be successful. How-

ever, to become even more accepted, GameOn must reduce the use of 3G/LTE bandwidth that (i)

may have high usage charges in some countries, and (ii) might have connectivity issues in certain

parts of the transport network. GameOn overcomes this by using completely local bandwidth pro-

vided by Wi-Fi Direct to support the various games. Thus, it does not incur any charges and is

much less likely to have connectivity issues. In addition, the survey shows that the matchmaking

component also needs to take into account the physical proximity of people, historical collocation
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records, the expected trip length for each person to avoid game interruptions caused by people

leaving.

4.4 Design Goals & Assumptions

In this section, we present the design goals for GameOn along with our assumptions.

4.4.1 Design Goals

The main design goals for GameOn were:

• Provide a smooth gameplay experience: This is the most important design goal and it perme-

ates all the other goals below. In a nutshell, GameOn should add as little overhead as possible

to both game players and game developers.

• Low latency networking with sufficient bandwidth: A key cause of discontent in multiplayer

games is lag caused by network issues. Thus, GameOn should not introduce any user notice-

able lag or bandwidth artefacts when games are being played. We compared the client to server

latencies and energy consumption of LTE, Bluetooth, and Wi-Fi Direct (results shown in Fig-

ure 4.1) and found Wi-Fi Direct to have the lowest latencies and the lowest energy consumption.

GameOn thus uses Wi-Fi Direct for the actual game plays while using the cellular Internet con-

nectivity only for the matchmaking process (a low bandwidth latency tolerant task that requires

history tracking)

• Easy and effective matchmaking: Commuters should be able to easily express their game

interests and also easily find games that they can join. The matchmaker should also ensure that

the players in the game do not leave abruptly and that any skill, demographics, or other factors

are also factored in, where necessary, when performing the matchmaking. For example, even

though GameOn enables playing multiplayer games with fellow passengers in close proximity,

some players may not want to be matched with players located next to them on the bus/train as

they may not want their physical identities to be easily discovered. To support this, we use a

centralised matchmaking service, that can track historical performance etc., located in the cloud.
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Figure 4.1: Latency & Power Consumption Comparison. All experiments were conducted with a

Galaxy S3 & S5 Android smartphones. The latencies were computed by pinging a common in-lab

server. The power consumption was measured in our lab using a Monsoon power monitor [51].

WFD == Wi-Fi Direct.

• Use simple user-space mechanisms: For GameOn to be easily deployable, it has to be a user

space component (i.e., no rooting of the phone is required) and it should be as simple as possible

(making it easier to explain to end users and more robust overall). In addition, we retain the

existing client-server models used by almost all multiplayer games. However, this requires us to

dynamically host the server on one of the smartphones of the commuters playing that game. The

game and player statistics are then uploaded to the matchmaking service after the game ends.

• Low energy usage: GameOn should not add any significant energy cost beyond the cost of

playing the game itself. In particular, the smartphone that has to host the game should not see a

large increase in energy usage.

4.4.2 Assumptions

The assumptions we made when devising a solution that addressed our design goals were the

following: (i) We assume that every commuter had access to a smartphone with cellular Internet

connectivity. The smartphone was necessary for gameplay while the connectivity was necessary to
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use a central matchmaker. (ii) Some changes to the game interfaces may be needed for GameOn

to be fully operational. In particular, the game will have to report game statistics (in game scores

etc.) to GameOn so that it can be used during matchmaking and have to use the GameOn APIs to

send data to/from other p2p clients. Indeed, to demonstrate how easy our APIs are to use, for our

evaluation, we converted, with minimal effort, an open source single player version of a popular

game, 2048, to work as a multiplayer game using GameOn. Finally, (iii) we assume that the

multiplayer games will only be played by a small number of players – 2 to 6 players at most. This

system is not designed by larger games that involve 10s or 100s simultaneous players. However,

there can be multiple games being played simultaneously in the same area.

4.4.3 Overall Architecture

To satisfy the design requirements stated in Section 4.4, GameOn was designed to use a hybrid

p2p architecture composed of GameOn clients interacting with each other using local networking

capabilities coupled with a matchmaking service located in the cloud. Figure 4.2 shows the archi-

tecture overview of GameOn. We focus our discussion on only a few core modules (the shaded

blocks in Figure 4.2). Overall, GameOn comprises of two components:

1. GameOn clients: A GameOn client supports various multi-player games that can be played

by peers co-located on a train or bus. It has a UI component that allows players to login, specify

grouping preferences, and discover co-located peers. When a user starts GameOn, peer discov-

ery is started and any discovered peers (along with their performance metrics) is passed to the

matchmaker. Upon request, the matchmaker provides the GameOn client with the list of playable

games and corresponding game hosts. When a peer is already hosting a user’s desirable game, the

GameOn client makes a new game client connection to the peer. Otherwise, it serves as a game

host for the user’s specified game and waits for other players to join.

The game play is automatically initiated when the required number of players join. During

game play, GameOn clients form a star topology by default, and all the game packets are relayed

through the host device; GameOn also supports a multi-hop topology when a host cannot be con-

nected to a client directly due to distance (located on the other side of the train for example). The
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Gameplay Manager component configures the p2p connection manager component by specifying

the role of the player in a group and the topology of collocated peers. Note: We do not require any

changes to the existing game logic to support this type of p2p game play. GameOn wraps around

the original networking APIs (Section 4.4.5) used by the multiplayer games and automatically re-

routes packets to p2p hosts using either Wi-Fi Direct or Bluetooth. When the game ends, the game

results and performance data are reported to the matchmaking server to update its records.

2. The GameOn matchmaking server: This server allows GameOn clients to find a set of

players that are collocated and who will stay on the same bus/train long enough for a satisfying

game session. It collects various information required for p2p matchmaking from GameOn clients

such as the observed signal strength and ping times between peers, as well as the mobility patterns

(how long they spend on a specific train etc.) and skill levels (how well they did in previous

sessions of a game etc.) of each user (as represented by their mobile phones). We show how

the matchmaker can use all available data (mobility history, user preferences, game-specific skill

levels, and performance measures) to match the best set of people together for any game request.

4.4.4 Which p2p Protocol is Best on Trains?

The success of GameOn depends on having reliable p2p networking connectivity between peers

on a bus or train. However, these are particularly challenging environments due to their movement,

layouts, and frequent passenger movements. In this subsection, we present detailed performance

results to understand the performance of wireless protocols in these environments.

The first key question we addressed was the choice of network protocol. The two main options

were Bluetooth and Wi-Fi Direct. Eventually, we chose Wi-Fi Direct as its overall performance,

beyond just the better latencies and power consumption (Figure 4.1), was better as explained below.

4.4.4.1 Experiment Setup

To understand how the protocols behave in realistic environments, we conducted experiments

using Galaxy S3 and S5 smartphones on a train during three time periods – when the train was

extremely full (6 p.m.), normal load (8 p.m.), and empty (midnight). We used the Galaxy S3
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(running Android 4.3) as the stationary peer and moved the S5 (running Android 4.4.2) to different

adjacent train carriages (up to 3 carriages away) and measured (on the S3), using both Bluetooth

and Wi-Fi Direct, the RSSI signal strengths of the S5 and the ping times to the S5. Each train

consisted of 3 carriages [98]. Each carriage was filled with numerous metallic objects (seats, hand

rails, guard rails etc.) and was 23 meters in length, 3.2 meters in width, and 2.1 meters in height

with a very small (negligible) inter-carriage gap. We repeated each experiment multiple times over

different days. We do not report any results for buses as the public buses are shorter in length

(each bus is about 12 meters long [99]) than a train carriage. Thus, the train is a more demanding

environment.

4.4.4.2 Peer Discovery, Connectivity & Density

The first step in connecting phones together in a p2p fashion is to discover them. In our pre-

liminary measurements, we also discovered that just because a device can be discovered does not

mean that a successful connection can be made to it. A typical Wi-Fi Direct connection starts with

scanning, then group owner negotiation, then provisioning, and finally DHCP. When peers are

side-by-side, these steps can be done quickly without packet loss. However, as peers are further

away and/or in “noisy” environments, these steps can become harder to complete.

To include the effect of people density in this experiment, we performed it during normal

hours (when the train was normally crowded). With this level of crowd, we can assume that the

density of people increases linearly as we move further away from the discovery node. To perform

this experiment, we used one device as the stationary node and moved another device further and

further away (in increments of half a train carriage every time). Both devices then tried to discover

the other device. In addition to discovering the device, we also tried to connect to the device after

it was discovered. We found that even though both devices could eventually discover each other

(taking about 10 seconds) even at a two train carriage distance (about 46 meters), they were unable

to actually connect to each other. However, at shorter distances, the two devices could discover

and connect to each other. Our experiment results are shown in Figure 4.3.
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Figure 4.3: Discovery Time vs. Distance (Wi-Fi Direct). We found that discovery times > 10 sec-

onds, corresponding to a peer distance of about 46 meters (2 carriages away) was a good indicator

of a peer that could not be reliably connected to. We then shortened the inter-device distance by a

meter at a time (roughly) and were able to reliably connect two devices at a 38 to 43 meter range.

We found that even very far devices (70 meters away) could be eventually discovered (taking 108

seconds). We omit these long tail numbers from the plot.
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The GameOn matchmaker has to make decisions about peering without being able to actually

check the connectivity between those hosts – at best it knows something about inter-peer ping

times. As such, a naive host assignment might pair hosts together who can discover each other

but cannot actually connect (because one of the steps involved (probably DHCP) fails). What

we discovered, for Wi-Fi Direct, was that the discovery time turned out to be a good predictor

of connectivity. In particular, as shown in Figure 4.3, peers that could be discovered within 10

seconds (i.e., before the discovery time shoots up) can be successfully connected to.

However, even a 10 second discovery time can be too long as every scan is costly in terms

of battery usage. Thus we reduced the scan time to 5 seconds to strike a balance between power

consumption and finding enough nearby connectible peers. Each peer performs a scan every time

it requests a peer match list from the matchmaker. This allows the matchmaker to gradually build

a client map for a bus / train without needing aggressive client scanning.

The discussion above is solely for Wi-Fi Direct. We also repeated this discovery and connec-

tivity tests for Bluetooth and achieved very disappointing results. We found that Bluetooth was

unreliable beyond 20 to 25 meters. We show the difference between Bluetooth and Wi-Fi Direct in

terms of RSSI and ping times in Figure 4.4.

4.4.4.3 Effect of Density on Network Latency

We now investigate the effect of people density on wireless performance – in particular the

latency of the connection. This is important as games require low latency network connections.

To do this, we picked three different times of the day (corresponding to light, normal, and heavy

train/bus use) and four different inter-client distances. We measured the inter-client ping times and

also measured the RSSI values. Note: the ping times changed when we repeated this experiment

across different days. In the rest of this section, we present the ping times for the worst day.

Figure 4.4 shows how the signal strength and ping times changed as the distance to the peer

phone varied. We observe that in all cases, Wi-Fi Direct performs better than Bluetooth. In partic-

ular, the second row of results shows the RSSI observed when the stationary phone connects to the



81

(a) Empty (midnight) (b) Normal (8 p.m.) (c) Busy (6 p.m.)

-120

-100

-80

-60

-40

-20

 0
WFD(5.745G) WFD(2.412G) Bluetooth4.0

R
S

S
I (

dB
m

)

0-car-away
1-car-away
2-car-away
3-car-away

(d) Empty

-120

-100

-80

-60

-40

-20

 0
WFD(5.745G) WFD(2.412G) Bluetooth4.0

R
S

S
I (

dB
m

)

0-car-away
1-car-away
2-car-away
3-car-away

(e) Normal

-120

-100

-80

-60

-40

-20

 0
WFD(5.745G) WFD(2.412G) Bluetooth4.0

R
S

S
I (

dB
m

)

0-car-away
1-car-away
2-car-away

(f) Busy

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60  70

P
in

g 
tim

e 
(m

S
)

Distance between two phones (Meters)

Wifi-Direct 
Bluetooth 

(g) Empty

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60  70

P
in

g 
tim

e 
(m

S
)

Distance between two phones (Meters)

Wifi-Direct 
Bluetooth 

(h) Normal

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60  70

P
in

g 
tim

e 
(m

S
)

Distance between two phones (Meters)

Wifi-Direct 
Bluetooth 

(i) Busy

Figure 4.4: Comparison of Observed RSSI & Ping Times at Different Times on a Public Train.

The top row shows the state of the train (empty, normal, busy) at the time of the measurement,

the middle row shows the observed RSSI values of a peer device by a stationary phone (after

connecting to that peer) when the peer device was placed further and further away (by up to 3

train carriages). The bottom row shows the observed ping times on one device (to the other) as

the other device moved further away. Missing data in the figures indicates that the other phone

was not connectible to or pingable at that distance using that protocol. Each result was repeated

multiple times over different days and the averages are shown. We omit the error bars to improve

readability as these results are presenting trends (actual values are not important).
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moving peer using various protocols. The actual RSSI values are not important (as they fluctuate

due to noise etc.). What matters is the pattern and trends.

For Wi-Fi Direct, we could connect using both the 5Ghz and 2.4Ghz spectrums with no clear

winner in spectrum choice emerging. We found that, when the train was normally occupied, the

maximum distance that a peer could be connected to was 2 carriages away using Wi-Fi Direct. For

Bluetooth, the range was just 1 carriage away. When the train was busy, the range of Wi-Fi Direct

decreased to just the same train carriage while Bluetooth could only usefully connect to clients

very close by (distances greater than 20 meters had very high ping times).

The last row shows the ping times achievable to the connected peer using Wi-Fi Direct and

Bluetooth. In all cases, the ping times for Wi-Fi Direct are much lower than Bluetooth. In addition,

Bluetooth stops working (the line for the ping graphs stops) at much lower distances than Wi-Fi

Direct. For example, on a normal occupancy train, Bluetooth stops receiving pings at about 20

meters while Wi-Fi Direct continues until about 60 meters.

4.4.4.4 Connectivity Issues at Train Stations

Unfortunately, even with Wi-Fi Direct, we found that if peers were 2 or more carriages apart,

on entering a station, the process of opening the doors to let passengers embark and disembark

resulted in high latency spikes. Figure 4.5 shows this where a peer (located 1 carriage away)

experiences constant good ping times while another peer (located 2 carriages away) experiences

consistent latency spikes which corresponded directly with the train entering a station, stopping,

opening its door, and then leaving (the high latency goes away at this point). We have no current

solution other than adding a matchmaking heuristic to not match peers more than one carriage

away for games that cannot handle brief latency spikes.

4.4.5 Modifying Games to Work with GameOn

In this section, we describe how GameOn support can be added to existing games by mak-

ing two different modification; 1) support local client-server multiplayer, and b) interface with

GameOn’s networking, matchmaking, and reporting APIs.
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Games Multiplayer

already?

Language Lines of

code added

OpenArena [82] Y C / C++ 8

Racer [83] N Java 86

2048 [84] N Java /

JavaScript

14

Table 4.4: Three Games Modified to Use GameOn
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Figure 4.6: Traditional Approach (a) vs. GameOn Approach (b). Unlike traditional approaches,

in GameOn, each peer can serve as a client and also as a server. GameOn selects only one peer

to serve as the game server. Game traffic is exchanged with peers using p2p connections (usually

Wi-Fi Direct).
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4.4.5.1 Games Used for Evaluation

The first requirement for any game to work with GameOn is for the game to support client-

server multiplayer. To make a game multiplayer compatible, it requires creating a server compo-

nent for the game along with changing the UI, where necessary, to display any multiplayer-specific

information. In this work, we decided to use both existing multiplayer games as well as support

single-player games to understand the complexity inherent in making different types of games

work with GameOn.

The three games we used are described in Table 4.4. OpenArena was the only game that already

multiplayer-enabled with separate client and server components. Even in this case, as shown in

Figure 4.6, we need to modify the game to use a local server (that is running on a peer phone and

accessed via Wi-Fi Direct) instead of a server sitting in the cloud that is accessed via a cellular

link.

Unlike OpenArena, Racer and 2048 were single player games that had no server component.

For both games, we created a simple server that basically stored and forwarded packets to other

clients. To help developers to extend existing singleplayer games to communicate with a game

server, we provide two functions to share game state: sendCommand(String jsonObjectInString) is

used to send client moves periodically, and updateSnapshot() is used to receive global game states

from the game server.

In all cases, the amount of additional code we had to write was minimal (86 lines for Racer

and 14 for 2048). For both games, we did not modify the UI component and just leveraged the

existing game code that could already display the output of a secondary player. Currently GameOn

does not provide any UI modules as these components are very game specific. Instead, GameOn

focuses on the networking components and provides enough infrastructure (and APIs) to allow

game developers to concentrate on the UI and gameplay portions of the game and let GameOn

handle all the networking bits.
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4.4.5.2 Using GameOn Libraries

Next, we had to modify all three games to use the GameOn APIs. This required 1) using

the GameOn matchmaking service, 2) using the GameOn networking libraries, and 3) using the

GameOn game statistics reporting libraries.

The matchmaking service is initiated by the player (in our prototype, the player presses a UI

button). This is a single API call in GameOn and it sends a request to the matchmaker, using JSON

objects, along with the performance measurements from the current client (neighbours discovered,

ping times to neighbours etc.). The matchmaker responds with a list of games and hosts. The de-

veloper can then use GameOnp2p APIs to initiate a game request with discovered clients. Once the

game starts, the state sharing APIs described earlier are used to play the game. Finally, the devel-

oper has to use the GameOn reporting libraries to commit the game results back to the matchmaker

(for use in global statistics and future matchmaking sessions). Note: games don’t communicate

with the matchmaker directly. That functionality is handled transparently by GameOn.

The GameOn networking libraries handle most networking requests. Internally, the GameOn

networking logic uses two layers: a physical Wi-Fi Direct group, and a logical game group. In

our current implementation, the physical group is built using legacy Android APIs (for backward

compatibility), while the logical group is built using TCP/UDP sockets. All status sharing infor-

mation is exchanged via the TCP/UDP sockets. For simplicity reasons, when a player initiates a

new game, our current implementation makes him or her the game server and owner of the logical

group. All subsequent players are clients in the group. This logic can be changed, if necessary, to

share the server load among other all players.

Overall, all these changes were easy to implement. A single grad student, with no game de-

velopment experience, managed to modify all three games in less than 2 days each. Most of the

time was spent understanding how each of the games maintained its game state (to find the right

places to insert the networking and statistics reporting APIs). As shown in Table 4.4, the amount

of code that needed to be created was minimal. OpenArena, in particular, needed very little code

as it already had discrete client-server components.
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The goal of the GameOn matchmaker is to find groups of commuters on the same bus / train

who can play a game together. In such dynamic environments, these formed groups should be

chosen so that they are stable – i.e., members don’t abruptly leave. For example, a group is not

considered to be stable if the elected game host alights (thus ending the game) very soon after a

game session is started.

4.4.6 Data Used For Matchmaking

To make these matchmaking decisions, the matchmaker can use data from three information

sources as shown in Table 4.5.

4.4.6.1 Performance Data

The first is performance data such as RSSI values and ping times of various nodes (as observed

by other nodes). The GameOn client periodically updates its discovery results to the matchmaker.

With this data, the matchmaker can create a logical map of where each player is situated relative

to other players. It can then use the heuristics shown earlier (peers more than 1 carriage apart can

experience variable ping times etc.) to match clients together.

In addition to network measurements, we can also use historical predictions about how long a

particular client will remain on the train/bus as a key input. These values can be computed using

historical data (using techniques similar to Balan et al [100]). We show in Section 4.6.3.4 how

using predicted trip times can improve the matchmaking performance.

4.4.6.2 Game-Specific Data

The next category of matchmaking data is game specific data. This is data that categorizes

players into different buckets – based on their skill levels, probability of cheating, and other game-

specific data. In addition, games can specify minimum and maximum game player numbers to

ensure a high game experience. Grouping players according to the skill level is a well-known

matchmaking metric. There are a few algorithms that have been employed by commercial video

gaming platforms. For example, Xbox Live [101] uses the TrueSkill ranking system [102] that



88

Data Reason To Use It

Performance

Detection time Hint for a robust connection

RSSI Hint for a robust connection

Ping time Hint for distance and crowdedness

Pred. Trip time Games don’t end abruptly

Game-specific

Player Level Ensure a fair/engaging game

Player Credibility Ensure no cheating

Min. Player No. Ensure game is interesting

User-specified

Only with friends Guarantee game experience

Nobody close by Reduce real-world detection probability

Similar interests Find future friends

Table 4.5: Data that can be used by the Matchmaker
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computes the skills of gamers. Unfortunately, our current prototype does not use any of this data

or these algorithms as we do not have the game-specific player information to generate this data

historical data. However, adding this data into the matchmaking decision process, when the infor-

mation does become available, is fairly straightforward.

4.4.6.3 User-Specific Data

The last category of data that can help the matchmaker is user-specific data. This is data that

encapsulates a specific user’s preferences and interests. For example, a player may not want to

play games with nearby people as they are afraid it might lead to a confrontation. On the other

hand, another player might want to meet nearby game players – but only if their interests match.

Unfortunately, similar to game-specific data, our current prototype does not use this type of data

as we have no historical or player records to generate the data from. However, once the data is

available, integrating it into the matchmaker is easy.

4.4.7 Matchmaking Algorithm

In this work, we do not propose any new matchmaking algorithms. Instead, we leverage exist-

ing techniques to build a reasonable matchmaking solver. Our current prototype uses a weighted

sum of components to determine the final match score of each player relative to every other player.

The matchmaker then clusters these matched scores together to group players together who have

similar scores. Currently, we use equally weighted normalized forms of collocation time, detection

time, and ping time as the data sources for the match. In future work, we plan to investigate more

sophisticated algorithms (including dynamic matchers that change their match goals (i.e., weights)

based on the current situation) as well as add more data sources to the matching process.

4.5 Implementation

The GameOn Android client was implemented using Android 14 APIs (Android 4.0) as a

user space application. It implements two background services that do the following; 1) Cell
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connection manager (225 lines of code) that uses WebSockets to communicate with the cloud-

based matchmaker using JSON objects, and 2) p2p connection manager (1,027 lines of code) that

implements the functions required to support multiple communication mediums (Wi-Fi Direct,

Bluetooth, and etc.) as well as support multiple roles (client, server, relay node, and etc.). The

GameOn client also provides a simple UI (201 lines of code) for the player to sign in, configure

which games are available, configure their in-game names (handle), and to select games to play,

and accept game requests. All the components are wrapped around a central control core (539 lines

of code) that runs in separate threads.

We implemented the matchmaker in Java (188 lines of code) using the Play Framework [24]

version 2.3.7. The matchmaker uses WebSocket and multiple threads to support multiple GameOn

clients. All client generated data is stored in a MySQL database. The server also has a web

interface for game developers to configure their game requirements and access game and credit

records. The code size is small as the matchmaker currently uses “Performance” data only to

make its decisions. However, as discussed earlier, the matchmaking logic can be easily modified

to support use other data sources as and when they become available.

4.6 Evaluation

In this section, we present performance evaluation of GameOn. We first experimented its per-

formance under various real-world use cases. In addition, we present detailed results from micro-

benchmark experiments conducted under controlled settings, including overheads of matchmaking

and hosting games as a server, performance impacts by various underlying network topologies (star

topology vs. multi-hop topology), and impact of co-location time to game plays.

4.6.1 Experimental Setup

We performed all the experiments using Samsung Galaxy S3 (running Android 4.3) and S5

(running Android 4.4.2) phone. We used the three benchmark games described in Section 4.4.5

for all our real-world usage results as well as some of our micro-benchmarks. The matchmaker
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was run on an Ubuntu server with a 3.4GHz 4-core CPU with 32 GB of memory. All power

consumption values were measured using a Monsoon power monitor [51].

4.6.2 GameOn Working in Real Environments

We evaluated the end-to-end real-world performance of GameOn by playing three games on

real public transports. The main goal was to compare GameOn’s performance with that of the

game played with GameOn. Each experiment was a 10 minute game session conducted by a four

person group. After each gameplay session, all group members were asked to report their current

phone battery level (which was compared to the reading just before the session started).

Figure 4.7 shows the latencies observed when playing the three games under five scenarios

across three different times. In the first scenario, the games were hosted on an Internet server that

was accessed using a cellular LTE connection. All four players in this scenario played solely as

clients. The remaining four scenarios use GameOn where one peer device is selected to be the

server with all the other peers connecting to it via Wi-Fi Direct. The four scenarios were “All

players in the same train carriage, but spread throughout the carriage” (Train-23m), “All players

spread across two train carriages (Train-46m), “All players spread across the same single deck bus”

(Bus-Single-Deck), and “All players spread across the same double deck bus with the server on the

lower deck” (Bus-Double-Deck). During game play, we periodically logged the ping latencies to

the server on each client phone.

From the figure, we observe that LTE latencies are about 10 times longer than GameOn and

that GameOn has very low latencies even across different types of transport and at different times

(peak hours, normal etc.)

Figure 4.8 shows the battery usage of the phone when playing those three games. Since these

experiments were done on buses and trains, we could not connect a hardware power monitor to

the phones. Instead, we just used the Android battery levels as a gauge. The “Host” values is the

power consumption of the phone that was chosen to host the server while “Client” values are the

power consumption of the other client-only phones. Note: the “Host” phone serves as both a server

and a client.
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Figure 4.7: Game Latencies across 5 Scenarios and 3 Test Times
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Player 1 

Player 2 

Figure 4.9: GameOn Being Used on a Real Public Train

(a) Player 1 Starts a New Game (b) Player 2 Searches for a Game to

Play

(c) Player 2 Joins Player 1’s Game

Figure 4.10: The Demonstration of the Bootstrap of a GameOn Game Play
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From the figure, we observe that hosting a server is not that expensive – power wise. Indeed,

the power consumption for Hosts and Clients are quite similar and within the margin of error.

Across the protocols, the power consumption is also somewhat similar.

The measured latency and energy values show that GameOn is capable of providing good local

multiplayer game experience even in different types of train and bus environments. However, does

it impact the user experience in some subtle way? To verify this, we asked each of the 4 game

players to answer two self-reported questions on whether they felt the game was playable. To

calibrate each member, they were asked, before doing the experiment, to play each game in a lab

setting with no GameOn modifications to understand what the unmodified game felt like under

perfect conditions. The two self reported questions were 1) “The game experience is the same as

the one in the lab” and 2) “The phone feels hotter than it did in the lab”. For both questions, the

members had to answer using a 5-point Likert scale (1 – Strongly Agree to 5 – Strongly Disagree).

The final score was that all 4 game players strongly agreed that the modified game had the same

experience as the in-lab unmodified version. In addition, all 4 players also strongly disagreed that

the phone felt hotter than it did in the lab. However, they also mentioned that one of the games,

2048, was not the easiest to play in a multiplayer fashion due to some UI limitations. However,

this bug was not introduced by GameOn and was beyond our ability to fix.

Figure 4.9 demonstrates two players playing a game on the same train using GameOn. In this

use case, the two players are a half-carriage away from each other – one sitting and one standing.

Figure 4.10 shows the matchmaking process to start the game session. At step (a), the player 1

starts a new game session using the GameOn UI, by selecting a game to host. At step (b), player 2

starts GameOn and queries the GameOn matchmaker to find the available games in their vicinity.

Player 2 then picks one of the available games through the GameOn UI – he can only host a game

if there are no suitable games available. Finally, at step (c), player 1 accepts the join request from

player 2, and the game starts.

4.6.3 Micro-benchmarks

We now present micro-benchmarks results:
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4.6.3.1 GameOn Overheads

We evaluated the overheads of two key operations: peer discovery and requesting a suitable

game group from the matchmaker. Figure 4.11 shows the energy cost of scanning for nearby

players via Wi-Fi Direct and that of sending a request for a game group. By themselves, both

actions cause reasonably high spikes in the power consumption. However, compared with the

power spike when the game itself starts, the scanning and requesting costs are acceptable.

4.6.3.2 Resource Usage and Group Scalability

GameOn selects a player to host the game server and all the other players will connect to this

server. As shown earlier, this does not increase the energy cost of the server device. However, what

about the scalability of the device? Can it support multiple game clients without any performance

degradation?

To understand this, we scheduled 8 clients to join a particular server one after the other at fixed

intervals over a 10-minute period. On the server device, we logged its resource usage, including

CPU utilization, heap usage, and network traffic using Wi-Fi Direct, every 10 seconds. Figure 4.12

shows the CPU and heap usage plots. Each plot starts from a single client case where the server

phone is connected to itself with new clients (up to a max of 8) periodically connecting. The heap
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Figure 4.12: CPU & Memory Overhead. Up to 8 clients join the group gradually. The arrows

represent the time at which one more client joins. The saw tooth decrease in heap size is when the

Java garbage collector activates.

usage shows a zigzag curve due to memory being reclaimed by the Android garbage collector at

regular intervals. From the figure, we observe that the CPU and heap usage do not substantially

increase even when the server device is hosting all 8 client players.

We next investigate how large p2p groups can become before performance (in terms of server

ping times) and server energy consumption become factors. Figure 4.13 shows the ping times

and power consumption when the group size scales up. When connected to 8 players, the power

consumption of the server increases 23.7% compared to hosting just 1 player. Thus, hosting a game

does not add a very large overhead to the phone’s energy usage. However, we found that the ping

latencies increase quite fast as more and more clients are added. In particular, we observed a large

latency rise when the 7th client was connected. Thus, we find that a current modern smartphone

can comfortably serve as the server for up to 6 clients. After this point, the ping latencies start to

increase significantly which could result in gameplay issues.

Figure 4.14 shows the network usage of the server in terms of the number of bytes exchanged

over the Wi-Fi Direct link. We observe that both the received and transmitted traffic grows quadrat-

ically as the group size increases. A transmitted packet from the server usually includes a snapshot

of the whole group state, while a received packet usually includes only a single client command
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or update. Thus, on the server, the amount of data received is usually much lower than the amount

sent.

4.6.3.3 Support for Other Topologies

In all previous experiments, we have used a star topology where every client is connected

directly to the server. However, in some cases, a client may not be able to connect directly to

the server (when the client is at the other end of a crowded train for example). For example,

Figure 4.15 shows a scenario where the four players are spread out linearly so that the rightmost

player does not have a reliable connection with the server client. In these cases, is it possible to

leverage intermediate clients as relay nodes to form a multi-hop linked-list topology where a node

is connected to an intermediate node that connects it to the server? GameOn supports multi-hop

networks but with some limitations. In particular, joining two Wi-Fi Direct groups (to create a

multi-hop network) at the same time is not allowed, even in the latest version of Android. This

joining of groups feature is an optional feature in the Wi-Fi Direct standard that has not been

implemented in Android. Thus, to create a relay node for a multi-hop environment, we have to use

two different networking technologies / radios. In this case, we will have to use Bluetooth together

with Wi-Fi Direct with one side of the linked-list using Bluetooth and the other side using Wi-Fi

Direct. However, as stated earlier, Bluetooth is not the best protocol for the scenarios GameOn is

tackling. We re-visit these claims using a three-node scenario as shown in Figure 4.15.

Figure 4.16 shows the energy consumption when using three nodes with a star and a linked-list

topology. We instrumented the Racer game so that it automatically looped the same track to create

a repeatable trace. For each experiment, we turned off all background processes and measured

the power consumption using the Monsoon power monitor. It should be noted that the absolute

numbers are not that interesting as they are device-specific. Instead we focus on the difference

between the two topologies.

We observed that in the star topology, the server node (the one sending most of the data)

consumes the most power followed by the other two nodes (client 2 and client 1). When using the

linked-list topology, the host (server) and sink (client 1) nodes consume similar power to the star
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Server(Game host) 

Client 3 Client 2 (Relay) 
Client 1 (Sink) 

Link used by the sink in single-hop 
Link used by the sink in multi-hop 

Figure 4.15: Single-hop vs. Multi-hop Topologies. The arrows indicate the server information

flow direction. Dotted Wi-Fi Direct link indicates poor connectivity.

topology. However, the relay node (client 2) uses 13% more power in the linked-list case. This

is because it has to use two radios (Wi-Fi Direct and Bluetooth) simultaneously to bridge the two

sides of the relay.

We now evaluate the effectiveness of the linked-list topology at reducing latency spikes caused

by nodes being too far away from each other. To do this, we placed two node (a source and a

sink) two train carriages apart from each other on a public train (that was moving and picking up

passengers etc.). We then placed a relay node in between the two nodes (i.e., the relay node was 1

carriage away from both the source and the sink). The source and the sink were then connected to

each other using Wi-Fi Direct. The source was also connected to the relay node via Wi-Fi Direct

while the sink connected to the relay node via Bluetooth. The sink then started pinging the source

across both the direct Wi-Fi Direct connection as well as the multi-hop (via the relay) Bluetooth

connection.

Figure 4.17 shows the latency results. We observe that the direct link between the source

and the sink (i.e., the star topology) showed variable ping times as the distance was far and the

link quality was thus affected by passenger movements etc. However, the link via the relay node

showed much more predictable and stable performance. However, the ping times for the Bluetooth

link are still high (yet stable) as Bluetooth is not the best protocol (as shown earlier) for this type

of environment.
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4.6.3.4 Improving Matchmaking With Time Predictions

In this final test, we show that using predictions of how long a particular trip will last for a

given individual can have big positive effects on the matchmaking performance. To perform this

test, we selected only the trips that started from one of the starting train stations (called k) to a

specific train station at our university. The starting train station was chosen because the trains start

off empty there (so everyone on that train when it leaves got on at station k) and it was not an

interchange station. I.e., everyone had to swipe their NFC cards at that station itself to get into it.

It was not possible for them to enter at some other station and take another train to this station. 2)

We picked a specific time (8 a.m.) and day (1st Monday of Nov.) and extracted all the commuters

who entered station k at that time and day. 3) We then exhaustively created all possible 2, 3, 4, 5,

6 person groups that could be created from the set of people who entered that station. 4) We then

computed how long each of these groups actually stayed together (i.e., the minimum co-location

time until someone in that group left the train). This result represents a naive matchmaker that just

selects people randomly and hopes that they will be together long enough.

Figure 4.18 shows the results of this test. We observe that the time the entire group was together

is quite low and with a very high standard deviation (indicating that some groups were together

for much less time). In addition, as the group size increased, the time spent together decreased

significantly as the probability of any one person in the group leaving increased. This result shows

that just randomly grouping people together can lead to bad outcomes.

However, we found that using predicted individual trip times can result in better estimates.

First, we created historical buckets for each user that was station, day, and time specific. We then

used this history to calculate, for each user, a predicted trip start time (with stdev.) for any station at

any time and day. This prediction lets us increase the minimum co-location time for all group sizes

as we can cluster passengers by their predicted trip times. For example, our standard deviation

for any given trip time and group size dropped to a few % compared to 60-70% with the naive

approach. However, this approach can lead to data sparsity issues. For example, only 3,500 of the

15,948 passengers (22%) used to generate Figure 4.18 had multiple trips from that station from
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which we could calculate a history. We plan to look at techniques to improve this yield in future

work.

4.6.4 Summary

In this section, we showed that GameOn works well in the real world with good latencies and

end-user experiences with up to 4 players in a variety of bus and train environments. We then

showed that the energy, CPU, ping latencies, and memory overheads of hosting a game server are

minimal if the number of game clients is kept low (under 8). Next, we should that we could support

multi-hop p2p methodologies in addition to he base star topology. Finally, we showed that naively

predicting the co-location time can result in very sub-optimal matches.

4.7 Discussion

The main limitations of the current GameOn prototype are: 1) The matchmaker, while support-

ing many attributes well (as far as we can tell), cannot be completely validated as we do not have

data for many of the skill and player-centric attributes. 2) We have built GameOn to handle only

the system aspects of multiplayer games. Unfortunately, we have no control over the game itself

which has a larger say on user satisfaction. For example, GameOn can handle cases where users
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join and leave a game in the middle (as long as the player hosting the server does not leave) and

GameOn can handle alternate game modes such as “spectator mode” if those modes use standard

networking APIs. However, GameOn, by itself, can do very little to make a game “fun” which

is ultimately the most important criteria. And 3), the multi-hop support needs to use Bluetooth

and Wi-Fi Direct for multi-hop settings (thus lowering its range to what Bluetooth supports) as

Android does not currently allow multiple Wi-Fi Direct connections. Finally, the survey presented

in Section 4.3.2 was conducted mostly with undergraduate students and thus may not be general-

isable. In addition, our performance experiments were conducted using only two different models

of phones. Thus results may vary with other phone types.

4.8 Related Work

p2p game matchmaking: Switchboard [103] proposed techniques to predict latencies dur-

ing a game play using quick pre-game measurements. Htrae [104] predicts inter-player latencies

using geo-location data. Ly et al. [105] developed an approach to select the best detour route for

game packets. However, these systems and techniques were targeting game consoles or devices

connected to the Internet. Our goal is to use p2p networking to connect players on public transport.

Mobile p2p applications: Collaborative smartphone applications have emerged in diverse ap-

plication domains such as media sharing [106] and context sensing [107][108]. Like GameOn, they

propose several core techniques to enable in-situ collaboration among co-located smartphones.

McNamara et al. [106] devised a scheme to predict remaining co-location duration for stable ex-

change of multimedia files. CoMon [107] proposed a resource planning mechanism to maximize

benefit while achieving fairness. However, building a system for collaborative mobile gaming im-

poses a set of unique challenges due to the strict gaming latency and power requirements. To ad-

dress these, we developed a new end-to-end system, GameOn, with careful attention to various sys-

tem components such as network protocols, peer discovery, matchmaking, and low latency game

play. Some airlines offer multi-player games among passengers during long-haul flights [109].
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However, only a few limited games can be supported through wired entertainment systems embed-

ded in passenger seats whereas GameOn can support commodity mobile games on smartphones

without any infrastructure support in buses or trains.

Mobile p2p framework: There have been efforts to develop generic platforms to facilitate

development of various mobile p2p applications [110]. For example, the well-known open source

project Alljoyn [111], aims to provide a set of APIs and runtime to easily build network connections

among multiple mobile devices. GameOn opens a new application domain of multiplayer gaming

by supporting game-specific requirements that Alljoyn does not support. It will be an interesting

to test if Alljoyn can work with GameOn. There have also been prior work to re-write binaries

without source code access. RetroSkeleton [112] presents an app rewriting framework that allows

developers to integrate new features into existing apps. GameOn did not use re-writing methods

initially as we wanted to understand the challenges required to port existing games to use GameOn.

4.9 Conclusion

In this paper, we presented GameOn, a system for allowing commuters on public transportation

to play multiplayer games with each other using Wi-Fi Direct as a p2p communication medium. We

motivated the reasons why GameOn is useful (long commute times) and then described the various

components of GameOn. We plan to extend GameOn to allow users who share similar interests

(that are discovered through specific types of games) to meet up with each other in the physical

world. We are also considering system-level support for spectator-mode; where commuters can

join existing games as passive observers instead of active players. Both of these planned extensions

should increase the adoption rate of GameOn .
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Chapter 5

Conclusion

5.1 Lessons Learned

• The gap between a well-established technique and its wholesale adoption.

This dissertation draws inspiration from many existing systems. Such systems usually have been

published in good academia venues, and some does have their mobile users. Can such systems

be directly plugged into our design? If not, what are they missing? In fact, there have been some

research papers that talk about selecting proper participants for public sourcing, but they do not

consider whether the selected ones can afford; there have been many energy accounting systems

available in literature, but they are not able to be immediately applied to most of today’s mobile

devices; there have been industrial tutorials and platforms that assist discovering mobile devices

and building mobile p2p networks, but they do not enable one to find the “wanted” devices. One

may argue that it is technology creators that should fill such gaps; while my argument is it is

ordinary people’s true needs that drive us to find out such gaps. The three components of this

dissertation is under the guidance of such philosophy.

• The scope in which we discuss the accuracy (or performance) of a proposed technique.

Given a target goal and a target group of users, a designer can quickly sketch a rough design

space including core goals and a set of design choices. When we include ordinary people in the

loop, the design space might be enlarged. For example, an energy accounting technique used by

computer system designers basically would target on improving accuracy and reducing energy

overhead. However, when we design an energy accounting technique for ordinary people, our
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goal now include good user experience and high portability. Sufficient tradeoff analysis within

the design space is definitely needed.

• The value of performing empirical research in the field of mobile computing.

While my dissertation attempts to technically eliminating people’ concerns to participating in

mobile device-assisted collaboration, it is just the initial step to finally achieving large participa-

tion. We performed preliminary user study and qualitative research, but it was hard to field test

it in the real world. However, by comparing different design choices and results, we clarify the

desired properties in a concrete system. A networked computer system can be as complicated as

a biological and physical system. Without prototyping and testing end-to-end systems, it is not

easy to get insights out of it and then make a system effective and efficient.

5.2 Open Questions

• In the first work, we observed while the desired contexts by applications can be various, the un-

derlying sensors (GPS, microphone, accelerometer, camera etc.) and general contexts (location,

activity, transportation mode etc.) are not unlimited. This offers an opportunity of combining

multiple data collection instances of different applications so as to greatly reduce overall energy

consumption. In fact, when the resource management as an separate layer emerges, other man-

agement facilities, such as data management and privacy management, can be added into this

layer, and all together can make up an “Operating System” of “Smart cities”.

• In the second work, we opened the possibilities of turning personal device into a multi-user usage

model. However, the idea also raises interesting usability issues. For example, how much energy

a user may want to allocate into a class? Relevantly, should the system implement a borrow-

return mechanism across classes, as our users suggest, or encourage users to proactively adapt

to new usage model and battery interface? Our user also suggests adding access control scheme

based on time. All these problems surely need to be investigated in more detail.

• In the third work, we have not investigated the downsides of enabling familiar stranger social

network. What happens if that person gets angry and starts looking for the person(s) they lost
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to? and Would it be a form of “game-rage” (similar to road rage)? Identifying the people you

are playing with will be hard in crowded trains where everyone is awake and using their phone.

But what about on longer train journeys where a majority of commuters are sleeping? These

types of social phenomena and implications need to be investigated in more details. In addition,

whether can the same setup be applied to other venues such as schools and conferences?
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