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Abstract 

Language comprehension and production is frequently thought to rely on a distinct verbal 

working memory (VWM) capacity. This perspective relies upon the notion that VWM is a 

wholly separate domain, supported by mechanisms distinct from language processing. In this 

work, I consider a language emergent alternative: that VWM is instead supported by language 

comprehension and production. I describe the Lichtheim-memory model, a neural network 

trained to comprehend, produce, and repeat both words and sentences. Then, I test the extent to 

which the model can perform serial recall of nonwords, noun lists, sentences, and sentence-like 

lists, comparing the model's performance to human memory benchmarks. The Lichtheim-

memory model successfully captures general patterns of human performance solely through its 

language processing abilities, providing a mechanism for language emergent VWM.



 

Introduction 

Language use and serial recall share many striking similarities: both require encoding, 

maintaining, and producing words in the correct order. Proceduralist approaches to verbal 

working memory (VWM) have long recognized these similarities (Crowder, 1993), 

hypothesizing the procedures that support behavior like language comprehension and production 

may also maintain temporary memories. Empirical evidence supports this hypothesis, with many 

researchers now proposing language emergent theories of VWM in which procedures of 

comprehension and production encode, maintain, and reproduce temporary memory 

(MacDonald, 2016; Majerus, 2013; Schwering & MacDonald, 2020). However, the 

computational principles supporting these procedures remain underspecified (Norris, 2017). In 

this dissertation, I aim to specify these computations in a computational model of both language 

use and VWM. Specifically, I adopt principles of the rich language emergent theory of VWM 

(Schwering & MacDonald, 2020), in which a web of word representations, order representations, 

and word-order interactions are hypothesized to affect both language use and memory. I describe 

the Lichtheim-memory model of sentence and list repetition, comprehension, production, and 

serial recall. Further, I conduct several tests of the model to probe its ability to employ word 

representations, order representations, and word-order interactions in serial recall.  

Much of this work concerns the definition of VWM and its characterization in different 

models. VWM is typically characterized as a form of temporary storage of information for use 

later, or as a resource that can store and manipulate information for other tasks (Cowan, 2008; 

2017). VWM is important because it is a core cognitive construct, describing the ability of 

people to hold information in mind despite engaging in concurrent processing of other 

information. This ability means the maintained memory must be resilient in the face of decay 



 
 

2 

over time or in the face of interference from other information. Researchers characterize the 

mechanisms and limitations on VWM in many different ways (e.g. Portrat et al., 2005), leading 

to vastly different application in real world settings, like in treatment of language impairments 

(e.g. Wright & Shisler, 2008). Given its centrality to many aspects of cognition, as well as 

existing debate over its nature, better understanding the mechanisms supporting VWM is an 

important objective for psychological science. 

How Does the Language System Interact with VWM?  

Language comprehension and production are often thought to be constrained by VWM. 

According to some researchers, VWM supplies the processing capacity for the language system 

by binding referents in long-distance dependencies, both in the context of comprehension (Tan, 

Martin, & Van Dyke, 2017; Van Dyke & Johns, 2012) and production (Freedman et al., 2004; 

Martin & Freedman, 2001; Slevc & Martin, 2016). VWM also affects learning. Children with 

higher VWM capacity learn words faster than children with lower VWM capacity (Gathercole & 

Baddeley, 1989) by allowing language learners to maintain sequences of phonemes in a passive 

storage system and encode frequently encountered sequences into the mental lexicon (Baddeley, 

Gathercole, & Papagno, 1998; Page & Norris, 2009). Further still, VWM training is employed as 

a tool to aid aphasic patients recovering from traumatic brain injury (Majerus, 2018; Nikravesh 

et al., 2021) on the basis that deficits in language processing are rooted in deficits of VWM 

(Freedman et al., 2004; Martin & Freedman, 2001; Slevc & Martin, 2016). Given these many 

interactions between VWM and language, understanding the specific way in which VWM and 

language processes interact is an important step in understanding language comprehension and 

production.  
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Modular perspectives have dominated the intersection of memory and language research 

(Adams, Nguyen, & Cowan, 2018; Baddeley, 2017). In the modular approach, VWM is 

described as a distinct cognitive module, employed by the language system to maintain partially 

processed linguistic representations. This perspective coexists amicably with buffer theories of 

VWM (Baddeley & Hitch, 1974; Norris, 2017). In buffer theories, VWM is characterized as a 

blank slate continually overwritten by immediate experience and separated from long-term 

memory (LTM). The transience of VWM is intentional. According to proponents, memory 

buffers are necessary to represent random or novel memory lists that are unlike natural language 

and therefore not present in LTM (Allen et al., 2009; Norris, 2017). Therefore, VWM can encode 

novel words and utterances, assisting in the processing of long-distance dependencies, word 

learning, and recovery from aphasia. 

Perhaps one of the most useful ways to specify the relationship between VWM and 

language is through a computational model that makes the mechanisms supporting each domain 

explicit. Buffer theories may be instantiated through many different computational models. For 

example, primacy (Page & Norris, 1998) and start-end models (Henson, 1998) characterize 

memory encoding through oscillator strength, and memory maintenance in a domain-

independent store. Page and Norris (2009) build on primacy models to account for word learning 

via the Hebb repetition effect, the finding that repeated exposure to a regular sequence improves 

memory. Despite these successes, ties to language remain limited. Much remains to be done to 

computationally specify how VWM affects comprehension and production beyond word 

representations like phonology. 

Furthermore, there are reasons to believe core assumptions of buffer theories may not 

accurately reflect the relationship between VWM and language. Behavioral and neuroimaging 
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research suggest language LTM and brain regions supporting language use also support VWM, 

undermining the separation between language and memory domains (see Schwering & 

MacDonald, 2020 for review). 

Word representations support VWM. Real and regular words are recalled more often than 

non-words and irregular words (Hulme et al., 1995; Roodenrys, Hulme, & Brown, 1993). 

Similarly, frequent words (Hulme et al., 1997; Poirier & Saint-Aubin, 1996), contextually 

diverse words (Johns, 2021), and concrete words (Walker & Hulme, 1999) are recalled better 

than infrequent words, less contextually diverse words, and abstract words. Parallel results are 

observed in the psycholinguistic literature. Frequent (Grainger, 1990), contextually diverse 

(Adelman, Brown, & Quesada, 2006), and concrete words (Schwanenflugel, 1991; 

Schwanenflugel, Harnishfeger, & Stowe, 1988) are more easily accessed in lexical decision tasks 

than less frequent, less contextually diverse, and less concrete words.  

Larger linguistic units also support VWM. Participants are more likely to recall common 

multiword phrases than random lists of words (Jacobs et al., 2016; Jacobs et al., 2017), and lists 

that are more sentence-like are recalled more accurately than lists that are less sentence-like 

(Allen, Hitch, & Baddeley, 2018; Baddeley, Hitch, & Allen, 2009; Lombardi & Potter, 1992; 

Potter & Lombardi, 1990). Again, parallels are observed in language use. Participants are faster 

to read common multiword phrases than novel sentences (Arnon & Snider, 2010), and 

predictable sentences are processed faster than sentences that are less predictable (Smith & Levy, 

2013). 

These results suggest that VWM may not just impact language, but that language may 

also impact VWM. Buffer theories have proposed several theoretical patches to account for this 

behavioral evidence. For example, redintegration repairs degraded memory traces using support 
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from linguistic LTM (e.g. Hulme et al. 1997). However, with an increasing number of temporary 

buffers for phonological, semantic, and other linguistic representations (e.g. Martin et al., 1994) 

buffer theories are becoming increasingly complicated; specifying the computations 

underpinning buffer theories, linguistic LTM, and their interactions remains a distant future 

direction. In response, some researchers have sought to unite VWM and language under a 

common framework to create a more parsimonious account of VWM and language. 

Language Emergent Theories of Verbal Working Memory 

 
Language emergent theories of VWM reject the distinction between VWM and language 

processes. Rather, inspired by proceduralist approaches to VWM (Crowder, 1993), language 

emergent theories characterize memory through language comprehension and production 

procedures. Under this view, language comprehension systems encode temporary memories and 

language production systems maintain and enact the plan to reproduce comprehended 

memoranda (Acheson & MacDonald, 2009; MacDonald, 2016; Majerus, 2013; Schwering & 

MacDonald, 2020). This language emergent approach suggests a vastly different computational 

architecture may support VWM and language-memory interactions than the one proposed by 

buffer theories of VWM.  

Specific language emergent theories characterize language differently or specify limits on 

the extent to which the language system supports VWM, each providing a different picture of 

how VWM may emerge from language use. Limited emergent theories of VWM argue that word 

comprehension and production processes govern memory for words in VWM tasks, but the 

ability to recall the order of those words is governed by a separate memory buffer (Majerus, 

2013). The key notion behind this perspective is the language comprehension and production 

systems can maintain memory for familiar words, but not unfamiliar, random memory lists. As a 
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result, memory for the order of words must be governed by a separate VWM system that 

processes novel sequences. These arguments reflect many of the classic perspectives in the 

memory literature, which suggest a VWM buffer must exist to handle processing of novel stimuli 

(Hitch, Hurlstone, & Hartley, 2022; Norris, 2017). 

The rich emergent theory of VWM discards the notion that memory for words and 

memory for order are governed by separate systems. Rather, this theory argues that the language 

system learns to employ integrated representations of words and their context to best complete 

the tasks of language comprehension and production, and these same representations underlie 

performance in VWM tasks (Schwering & MacDonald, 2020). Rich emergent theory borrows 

heavily from constraint satisfaction theories of language processing (Seidenberg & MacDonald, 

1999; Spivey-Knowlton, Trueswell, & Tanenhaus, 1993). According to constraint-based 

perspectives, representations underlying performance in language tasks integrate classic 

linguistic features described by phonology, morphology, semantics, syntax, and more 

(MacDonald, 1994; MacDonald et al., 1994; McRae, Spivey-Knowlton, & Tanenhaus, 1998; 

Tanenhaus, Spivey-Knowlton, & Hann, 2000). This perspective suggests that the separation of 

word representations and word order representations in limited emergent perspectives may be 

incorrect. If word and word order representations are integrated in linguistic LTM, and linguistic 

LTM informs VWM, then word and word order must be integrated in VWM.  

I mention each of these phenomena because they constrain the mechanisms that can 

support language comprehension, language production, and VWM. Being grounded in the 

procedures of language comprehension and production (Crowder, 1993), emergent 

computational models of VWM must account for memory phenomena through language 

comprehension and production mechanisms. This has proven to be challenging. The rich 
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emergent perspective has been stymied by a dearth of computational models that make its 

theoretical commitments explicit. This is clearly illustrated in Norris (2017) which adopts a grim 

perspective of emergent models, writing, “there are no computational models [of VWM] based 

on activation of LTM. Before activation-based models can be taken seriously they need to be 

clearly formulated and… shown to be competitive with existing computational models” (p. 999). 

In the next sections, I seek to address the complaint levied in Norris (2017). First, I identify the 

behavioral phenomena that must be captured by a rich emergent model of VWM. Emphasis is 

paid to phenomena critical to supporting the rich emergent theory over alternatives. Then, I 

outline a computational model consistent with the rich emergent theory that can account for this 

behavior to better bridge the language and memory domains. 

Behavioral Phenomena: Targets of a Rich Emergent Computational Model 

Memory for sentence-like lists provide a particularly rich testbed to examine how 

integrated representations affect VWM. Sentence-like lists tend to be recalled better than 

randomly generated memory lists (Allen, Hitch, & Baddeley, 2018; Baddeley, Allen, & Hitch, 

2009). List-wide properties moderate this effect, such as experimenter-defined meaningfulness of 

the sentence (Jones & Farrell, 2018). Minute grammatical regularities also affect memory. Lists 

of adjective-noun pairs in canonical order (e.g. hostile window) tend to be recalled better than 

pairs in the reverse order (e.g. window hostile; Perham, Marsh, & Jones, 2009), and this effect is 

enhanced when morphosyntactic properties reinforce the grammatical regularity (Schweppe et 

al., 2022). These findings are consistent with the rich emergent perspective: properties of words 

(i.e. the part-of-speech of a word) interact with their context (i.e. the ordering of the words) to 

inform VWM. 
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Lexico-syntactic constraints are a prime target for observing word-order interactions in 

both language and memory. Lexico-syntactic constraints are word properties that influence 

comprehension and production of the syntactic structure of sentences. For example, word 

properties like the typical part-of-speech in which a word occurs, strongly constrain 

comprehension and production of sentence structure. Verb biases, the statistical bias for verbs to 

appear in specific sentence structures, affect reading times of ambiguous sentences (Trueswell et 

al., 1993). Animacy, a semantic property of nouns, biases the event structure of sentences and 

facilitates processing of sentences with animate subjects over inanimate subjects (Szewczyk & 

Schriefers, 2011). Critically, the impact of lexico-syntactic constraints depends upon the 

interaction of specific lexical features (e.g. part-of-speech, verb biases, animacy) and the syntactic 

context in which they are embedded; mutual constraints between lexical properties and syntactic 

structure impact language processing in ways that cannot be predicted by lexical properties or 

syntactic structure alone (MacDonald et al., 1992; MacDonald et al., 1994; Seidenberg & 

MacDonald, 1994). If lexico-syntactic constraints are a critical component of language 

comprehension and production, and the language system supports VWM, then integrated word 

and order representations encoded in lexico-syntactic constraints should support VWM.  

This exact prediction was tested across 3 serial recall experiments described in Schwering 

et al. (under review). In these experiments, participants recalled simplified ditransitive sentences 

in which a single word varied in part-of-speech, verb bias, or animacy. Example memory lists are 

illustrated in Figure 1. Across all conditions, participants were more likely to recall ditransitive 

sentence-like lists when lexico-syntactic constraints of the manipulated word supported the 

ditransitive sentence structure than when it did not, even when controlling for other lexical features 

like length, frequency, and contextual diversity. These results are illustrated in Figure 2. 
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Figure 1 

Example memory lists manipulating lexico-syntactic constraints 

 

Note. Each row of words (e.g. shiny sailor year loose cow paper) represents a sample 

memory list. One lexico-syntactic feature was manipulated between conditions. The manipulated 

word in each experiment is illustrated in the green box, with the condition bolded to the left of the 

list. All conditions supported by the lexico-syntactic constraint (i.e. verb, ditransitive verb, animate 

subject) are illustrated in green. Alternatives not supported by the lexico-syntactic constraint (i.e. 

noun, intransitive verb, inanimate noun) are illustrated in black. All other words outside of the 

manipulated word were held constant between conditions. If lexico-syntactic constraints support 
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memory, then lists supported by the green lexico-syntactic constraint should be recalled better in 

position than lists supported by the black lexico-syntactic constraint.  

 

Figure 2 

Impact of lexico-syntactic constraints on serial recall 

 

Note. Green bars represent recall in position for sentence-like lists supported by the lexico-

syntactic constraint. Gray bars represent recall in position for sentence-like lists not supported by 

the lexico-syntactic constraint. All differences between conditions were significant, meaning 

participants were more likely to recall sentence-like lists supported by the lexico-syntactic 

constraints than alternatives. 

 

These data demonstrate VWM capacity is sensitive to word-order interactions, because the 

lexico-syntactic constraints that support memory are a function of both word properties (i.e. part-

of-speech, verb bias, noun animacy) and the sentence context in which they are embedded. These 

results are taken as support for the rich emergent theory of VWM, which argues the language 

system supports memory for both words and the orders in which they occur. This perspective 
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contrasts sharply against both buffer theories of VWM (Norris, 2017), which argues a separate 

VWM capacity maintains memory for sentence-like lists, and limited emergent theories of VWM 

(Majerus, 2013), which argues the language system can support word memory but not memory for 

order or novel lists.  

Multiple computational architectures may account for the basic sentence superiority effect 

and for effects of part-of-speech on sentence recall (i.e. Experiment 1 in Schwering et al., under 

review). For example, Jones & Farrell (2018) account for the effect of part-of-speech on the 

sentence superiority effect through redintegration, consistent with buffer and limited emergent 

theories of VWM. In the model, memory is enhanced through a redintegration mechanism in 

proportion to part-of-speech sequence frequency in natural language. LTM intervened to rebuild 

degraded memory traces stored in a buffer. Accounting for the effects of verb biases and subject 

noun animacy on VWM remain challenging for computational models. 

Theoretically, other computational models consistent with the rich emergent theory of 

VWM, could be developed to account for these patterns. In these approaches, linguistic LTM 

encoding lexico-syntactic constraints should support memory directly (Schwering & MacDonald, 

2020). Lexico-syntactic constraints are a common element of computational models of language 

processing (e.g. Joanisse & Seidenberg, 2003; Monaghan & Woollams, 2017; Seidenberg & 

McClelland, 1989). However, no rich language emergent model adopting similar principles has 

been applied to VWM. Defining a computational architecture that can account for the impact of 

lexico-syntactic constraints on VWM is an important next step for rich emergent theories of VWM. 

Of course, lexico-syntactic constraints are not the only memory phenomena important to 

the rich language emergent theory of VWM. Any computational model of VWM must account for 

general memory benchmarks, like those outlined in Oberauer et al. (2018). Two additional 
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phenomena are of particular interest given their importance in highlighting interactions between 

VWM and linguistic LTM for words and orders. Real or regular words tend to be recalled better 

than non-words (Hulme et al., 1995), and sentences tend to be recalled better than the same list of 

scrambled words (Allen et al., 2018). If linguistic LTM for words and orders impact VWM, then 

word superiority and sentence superiority should be observed in a rich emergent model of VWM 

alongside sensitivity to supportive lexico-syntactic constraints. 

Characterizing Integrated Word-order Representations in Memory Models 

What computational principles should guide a rich emergent theory of VWM? Despite 

Norris (2017)’s claim that “there are no computational models [of VWM] based on activation of 

LTM” (p. 999), many memory models have already made strides to instantiate emergent theory. 

While these models fall short of instantiating a rich emergent theory, they nevertheless provide 

important insight into the kinds of computations that may be relevant. 

Before describing each of these emergent models, it is worth noting why these models 

can be described as emergent. Many of the models discussed below are neural networks. In these 

neural networks, activity is transformed by a series of weights in the service of some task. These 

weights instantiate the models’ LTM and are either learned by networks through trial and error 

or are set by a researcher to achieve the models’ objectives. Model activity, transformed by the 

models’ weights (i.e. their LTM), represent the models’ VWM. Characterizing the models as a 

language emergent requires model weights to transform activity in such as a way as to perform 

language tasks. Neural networks have frequently been employed in the language literature to 

understand how language experience may inform linguistic LTM and language comprehension 

and production mechanisms (e.g. Joanisse & Seidenberg, 2003; Monaghan & Woollams, 2017; 

Seidenberg & McClelland, 1989). While neural network models may not often be recognized by 
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memory researchers as instantiating an implicit, temporary memory, language researchers have 

long considered this a valid comparison (e.g. MacDonald & Christiansen, 2002; Martin et al., 

1996). 

Most emergent models of VWM have adopted principles of lexical selection or have 

otherwise focused on word representations. For example, Martin et al. (1996) developed a two-

stage model of lexical selection adopting principles of spreading activation between 

phonological, lexical, and semantic representations. Lesioning weights in the network simulated 

aphasic patients’ comorbid VWM and language deficits, while an intact network simulated 

healthy participant performance. More recent models, like the semantic network applied to serial 

recall in Kowialiewski et al. (2021), also adopt word representations in support of memory. 

Kowialiewski et al. (2021) characterized a language emergent model through activation in a 

semantic network, treating memory as spreading activation within the semantic network and 

recall as iterative selection and inhibition of the most active semantic representations. While 

these models neatly fit within limited emergent perspectives, which argue VWM is supported by 

word representations, they fail to capture critical interactions between lexical and syntactic 

representations that are central to rich emergent perspectives. As a result, word-oriented models 

exhibit a poor capacity to capture order memory (Kowialiewski et al. 2021), limiting their 

application to VWM research and the larger language literature. 

Other models in the emergent vein integrate item (i.e. word) representations and order 

representations, though not in a way comparable to natural language processing. For example, 

Botvinick and Plaut (2006) trained a simple recurrent neural network to perform serial recall, 

successfully capturing general serial recall phenomenon like serial positions curves, with some 

ability to generalize to novel sequences. The model learned to perform serial recall through 
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experience, by learning to encode conjoined item and order representations. Similarly, Gupta and 

Tisdale (2009) applied the simple recurrent architecture to word learning, forcing the model to 

learn phonotactic regularities of its training set. However, these models fail to capture important 

lexico-syntactic constraints that impact language use and memory, like part-of-speech, verb 

biases, and animacy (Schwering et al., under review.). Botvinick and Plaut (2006) trained 

networks on arbitrary patterns or a simplified grammar lacking lexico-syntactic constraints, and 

Gupta and Tisdale (2009) modeled phonotactics. While these models could, in principle, employ 

representations akin to lexico-syntactic constraints, their ability to capture lexcio-syntactic 

constraints like part-of-speech, verb biases, and animacy remains untested. 

The last class of emergent models fail to fully embrace principles of emergent theory by 

attaching a memory buffer to a language-inspired processing architecture. For example, Hartley, 

et al. (2016) generated a model of phonological working memory based on principles of 

competitive cueing, in which memory for an acoustic signal is encoded through parallel 

oscillators inspired by neural oscillations in language processing. While temporary memory is 

encoded through a language-inspired mechanism, memory itself is not stored in the language 

processing system; the memory is passed to a separate memory buffer. This general approach is 

also modeled in Page and Norris (2009), which attaches a primacy gradient buffer (Page & 

Norris, 1998) to phonotactic LTM. This class of models captures the perspective that VWM is 

linked with but functionally separate from language processing and is thus incompatible with 

rich emergent theory. 

Four primary principles of a rich emergent computational model may be distilled from 

these models. First, as demonstrated by both Martin et al. (1996) and Botvinick and Plaut (2006), 

a rich emergent model must characterize VWM as the activated form of LTM. This is a general 
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principle of language emergent models and directly contradicts buffer theories. Second, as 

demonstrated by Martin et al. (1996), the LTM of a rich emergent model must comprise 

language comprehension and production procedures. Specific ties to language processes like 

lexical selection naturally accommodate this principle. Third, as demonstrated by Botvinick and 

Plaut (2006), the LTM of a rich emergent model must integrate word and order representations. 

In conjunction with the previous principle, this suggests that comprehension and production of 

words and sentences may serve as a prime target for a rich emergent model. Fourth, a rich 

emergent model must instantiate VWM without the use of buffers. 

Artificial neural networks provide a natural way to incorporate all these principles. Under 

the right demands, neural networks learn integrated word-order representations consistent with 

constraint-based approaches in language comprehension and production (e.g. Joanisse & 

Seidenberg, 2003; Monaghan & Woollams, 2017; Seidenberg & McClelland, 1989). Neural 

networks learn these representations through experience and encode these representations in their 

LTM weights. Given the right language tasks, a neural network could serve as the foundation of 

a rich emergent computational model of VWM, specifying the computations through which 

lexico-syntactic constraints support VWM as well as the computations that support more general 

memory phenomenon like word superiority and sentence superiority effects. 

Modeling: Can a language model account for behavior in serial recall tasks? 

Generating a model of the rich emergent perspective is paramount to contrasting rich 

emergent theory against both buffer theories and limited emergent theory: computational models 

make theoretical claims explicit and allow the development of novel predictions that may 

otherwise be difficult to explain or understand without the aid of the model. In this project, I 

develop a computational model of both VWM and language use, instantiating core claims of the 
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rich emergent theory of VWM which argues language comprehension and production processes 

support word memory, order memory, and their interaction (Schwering & MacDonald, 2020). By 

testing the model’s performance on serial recall of memory lists and sentences, I can examine 

whether the specific computational architecture is equipped to account for recall of words vs 

nonwords; sentences vs lists; and sentences supported by the lexico-syntactic constraints of part-

of-speech, verb biases, and animacy. The model described below, the Lichtheim-memory model, 

can perform all these tasks via its LTM. 

Modeling logic: General Approach and Ties to Rich Emergent Theory 

The Lichtheim-memory model expands upon a prior neurobiologically-inspired model of 

word repetition, comprehension, and production known as Lichtheim-2 (Ueno et al., 2011). 

Lichtheim-2 exhibits several valuable properties: it performs multiple tasks including 

comprehension, production, and repetition of words over a delay (i.e. recall); it learns to do these 

tasks through experience with language; and the learned representations integrate item (i.e. 

phone) and order (i.e. phonotactic) representations. Lichtheim-2 was specifically aimed at 

capturing properties of single word repetition, comprehension, and production. A small change 

to the model may allow it to extend to processing word sequences. 

Lichtheim-2 is comprised of two main pathways, corresponding to dorsal and ventral 

streams that are thought to govern word comprehension and production in humans. By 

propagating activity through these pathways, the model divides the labor of word comprehension 

and production into two streams of phonological processing (dorsal) and semantic processing 

(ventral; see discussion in Ueno et al., 2011; Ueno et al., 2014). In humans, these same streams 

have been associated with higher order sentence processing, with the dorsal stream engaging in 
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time-variant structure building and the ventral stream engaging in time-invariant event 

representation (Bornkessel-Schlesewsky & Schlesewsky, 2013).  

The Lichtheim-memory model builds on Lichtheim-2 by adding a drive for the model to 

learn lexico-syntactic constraints. To do this, sentence semantic representations are integrated in 

the ventral stream. Furthermore, the Lichtheim-memory model is tasked with repeating, 

comprehending, and producing both words and sentences. For a visualization of the Lichtheim-

memory model and the pathways governing different tasks, refer to Figure 3.  

The proposed model captures gross properties of word comprehension and production. 

While the specific architecture was chosen with intention, several alternatives are viable and 

biologically plausible, like separable pathways for word and sentence semantics (e.g. 

Bornkessel-Schlesewsky & Schlesewsky, 2013). The current architecture was chosen to strike a 

balance between accuracy and tractability while capturing key interactions between word and 

sentence representations propagating among forward and backward connections. 
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Figure 3 

Lichtheim-memory model and tasks 

 

Note. A. The Lichtheim-memory model with input/output layers denoted by boxes, hidden layers 

denoted by circles, and weights connecting layers denoted by arrows. Forward connections 

denoted by solid arrows and recurrent connections through time denoted by dotted arrows. Inputs 

denoted by beige boxes and outputs denoted by blue boxes. B. The Lichtheim-memory model 

was trained on 3 different tasks: repetition, comprehension, and production. This schematic 

outlines the mapping from input to output sequences that the model must learn for each task. In 

comprehension and production tasks, the model received two sets of inputs and outputs: one set 

comprising word semantics and one set comprising sentence semantics. 

 

Method 

The following sections define the Lichtheim-memory model, including the tasks on 

which the model was trained, the artificial language on which the model was trained, and the 

model architecture. 
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Tasks 

The Lichteim-memory model was trained to repeat, comprehend, and produce, akin to 

single word repetition, comprehension, and production tasks employed in Lichtheim-2 (Ueno et 

al., 2011). Unlike Lichtheim-2, the Lichtheim-memory model repeated, comprehended, and 

produced both single words and sentences. 

Repetition. To repeat words and sentences, the model was presented a sequence of 

phonological inputs, after which the model was required to produce the same sequence as output. 

During presentation of the phonological input, the model was required to be silent, forcing the 

model to encode and maintain the entire input before repetition. During word repetition, the 

model received as input the phonological sequence of a single word and then repeated that 

phonological sequence. During sentence repetition, the model receivef as input the phonological 

sequence of a series of words and then repeated the entire phonological sequence of words. Each 

phoneme was be input to the model for 1 time step and then output for 1 timestep. It is important 

to note that, for this and all subsequent tasks, the model encountered no explicit marker of word 

boundaries. Sentences were comprised of concatenated word sequences, meaning the model 

needed to learn word boundaries through experience. In Figure 1, the repetition task required the 

model to map input from the Phonological input layer to output in the Phonological output layer. 

 Comprehension. To comprehend words and sentences, the model was provided a 

sequence of phonological inputs and required to produce a corresponding semantic 

representation. During word comprehension, the model was presented with the phonological 

sequence of one word. The model was required to immediately produce the word semantic 

representation of the presented word and maintain that semantic representation while the entire 

word was input to the model. During sentence comprehension, the model was presented with a 
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sequence of words. The model was then required to immediately produce the sentence semantic 

representation of the corresponding sentence and maintain that sentence semantic representation 

over the course of the sentence. During word comprehension, the model was not required to 

produce a sentence semantic representation, and vice versa. In Figure 1, the comprehension task 

required the model to map input from the Phonological input layer to output in the Word 

semantics layer or output in the Sentence semantics layer. 

 Production. During word production and sentence production tasks, the model was 

provided an input of word or sentence semantics, respectively. The model was then required to 

output a phonological sequence of the word or words expressing the semantics. In word 

production, the model was required to map input from the Word semantics layer to the 

Phonological output layer. In sentence production, the model was required to map input from the 

Sentence semantics layer to the Phonological output layer. During single word production, the 

model did not receive a sentence semantic input. Similarly, during sentence production, the 

model did not receive word semantic input. 

Artificial language 

To force the model to learn lexico-syntactic constraints, the Lichtheim-memory model 

was trained on a carefully controlled artificial language. The artificial language was designed to 

reflect patterns in natural language, where lexico-syntactic constraints are known to impact both 

language use and VWM (Schwering et al., under review). The following section provides a high-

level overview of the lexicon and grammar of the artificial language. In addition, the way the 

words and sentences of the artificial language are translated into phonological and semantic input 

and output patterns is described. Full details about the artificial language may be found in 

Appendix A.  
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 Artificial language: Words. The lexicon of the model was composed of ditransitive 

verbs, transitive verb, intransitive verbs, animate nouns, and inanimate nouns. Phonology for 

words in the lexicon was constructed randomly using an onset consonant-vowel-offset consonant 

pattern (C-V-C). Semantic representations for words were defined by hand to capture a variety of 

features and differentiate words within the same roles in artificial sentences. A full list of 

phonological units comprising a word may be found in Table A1. A comparison of the artificial 

language semantic space and semantics of corresponding words in natural language may be 

found in Figure A1. 

Word phonology. Phonological representations of words were one-hot through time. The 

term “one-hot” means each phone corresponded to a single binary unit in a phonological feature 

vector. Phones were input through time such that the phonological representation of a word 

unfolds over multiple timesteps. When present in a word, a phone was turned on for 1 time step, 

meaning that feature received an input of 1 and all other features received an input of 0. The 

phonological feature vector comprised 12 phones, comprising 4 onset consonants, 4 vowels, and 

4 offset consonants. Each word in the language was composed of 3 phones in a C-V-C pattern: 

an onset consonant, a vowel, and an offset consonant. Each word in the artificial language was 

randomly assigned a C-V-C pattern, and these patterns were held constant across all trained 

models. To see the full set of word phonology patterns, see Table A1. 

Word semantics. Semantic representations of words were copied from the localist 

semantic representations defined in the artificial language. When present for a word, a semantic 

feature was assigned an activation value of 1. Any feature not present was assigned a value of 0. 

Word semantic representations were time-invariant with respect to the word; the semantic 

representation of a word remained static during comprehension and production of that word. This 



 
 

23 

means that, during word comprehension, the model needed to map from a time-varying 

phonological input to a time-invariant semantic representation of the target word. During word 

production, the model needed to map from a time-invariant semantic representation to a time-

varying phonological representation of the target word. Word semantic representations were of 

size 45, corresponding to the 45 localist semantic features defined in the artificial language. 

 Artificial language: Grammar. As in natural language, words of the lexicon were 

combined into sentences. Three types of sentences composed the artificial language: intransitive 

sentences (e.g. boy blinked), transitive sentences (e.g. woman ate pizza), and ditransitive 

sentences (e.g. girl gave man gift). A schematic of the rules governing the creation of sentences 

is visualized in Figure A2.  

 Sentence phonology. Sentence phonology was generated by concatenating the 

phonological representations of words comprising that sentence. No explicit cue was provided to 

the model to indicate the boundary between words in a sentence. For example, during 

comprehension, the phonological input of the transitive sentence man took letter was input over 

9 timesteps for the 3 phones in man, the 3 phones in took, and the 3 phones in letter. 

Sentence semantics. Representing sentence semantics poses a challenge for any model. 

While (non-contextual) word semantics may be clearly defined using localist representations, 

sentence semantics has no such analogue in the artificial language. Common solutions to 

representing sentence semantics in natural language include using contextualized word 

embeddings from language models trained to predict next or missing words from context (e.g. 

Devlin et al., 2018). However, such solutions are not easily tailored to the artificial language 

described above given the small size of the language. Further, contextualized word embeddings 

typically develop a different semantic representation at every time step during processing, which 
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may be inconsistent with language processing; some psycholinguistic language models ascribe 

the ventral language stream the objective of capturing time invariant semantic representations 

(Bornkessel-Schlesewsky & Schlesewsky, 2013). 

To solve this issue, sentence semantic representations were made to be time invariant 

through training of latent sentence semantic representations in a separate model. Sentence 

representations were derived through implementation of a Sentence Gestalt model (St. John & 

McClelland, 1990) trained to respond to queries about sentences of the artificial language. As its 

name implies, the Sentence Gestalt model learns to represent a gestalt representation of the 

sentence, capturing elements of gist or event semantics. The Sentence Gestalt model has been 

shown to be a particularly good facsimile of language comprehension in humans, predicting 

N400 surprisal after being trained on both artificial languages (Rabovsky & McClelland, 2020) 

and natural language (Lopopolo & Rabvosky, 2021). Critically, the Sentence Gestalt captures 

semantic information about all elements in a sentence, given the latent sentence representation is 

employed to answer queries about all elements in the sentence. Implementational details of the 

Sentence Gestalt model developed for the Lichtheim-memory model may be found in Appendix 

B. 

Sentence semantics were extracted from an independently trained Sentence Gestalt 

model. In this instantiation, the Sentence Gestalt model learned a latent representation of 10 

units. Therefore, the extracted sentence semantic representations employed in the Lichtheim-

memory model were comprised of a vector of 10 real-valued numbers (ranging in value from 0 

to 1 due to sigmoidal activation in the Sentence Gestalt model). The sentence semantic 

representations were extracted after the final word in the sentence was input to the Sentence 



 
 

25 

Gestalt model to allow the sentence semantic representation to incorporate information across the 

entire sentence.  

In sum, sentence semantic representations comprised a time invariant, real-valued vector 

capturing a distributed latent semantic representation of the event described in the sentence.  

Model architecture  

The model was provided three input layers: input phonology, input word semantics, and 

input sentence semantics. Additionally, the model output its responses through three output 

layers: output phonology, output word semantics, and output sentence semantics. Activation of 

input layers and target activation of the output layers were pre-specified, defined by the task of 

the model and the representations of phonology, word semantics, and sentence semantics 

described above. The phonological input and output layers were of size 12, corresponding to the 

12 phones in the artificial language. The word semantic input and output layers were of size 45, 

corresponding to the 45 word semantic features of the artificial language. The sentence input and 

output layers were of size 10, corresponding to the size of the gestalt layer in the Sentence 

Gestalt model trained on the artificial language. 

 Between input and output layers were hidden units, connected in sequence by learned 

weights. Weights fully connected adjacent layers in the network both forward and backward in 

time (see arrows in Figure 3). During processing, learned weights transformed input into output, 

instantiating the processing of language comprehension and production. Backward weights 

through time pass layer activity back to earlier layers in the processing stream at the next time 

step. While forward activity passes completely through the network in 1 time step, backward 

activity through time was propagated 1 layer per time step. This allows the model to integrate 

representations both across layers and through time. This means that, for any given timestep, a 
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layer needed to integrate both the current input and the latent representations the model has 

activated at previous timesteps. At the onset of a task, backwards connections were specified to 

have an input of 0. 

 All units, including output units, employed the sigmoid activation function. Phonological 

and semantic outputs ranged in value from 0 to 1. 

Model training 

The Lichtheim-memory model was trained using the pytorch library, an open-source 

package designed to implement and train neural networks using the Python programming 

language. Training was performed on Google Colab. A total of 10 models were trained, each 

using an independent random seed, governing initialization of weights in the network and 

sampling of the artificial language. 

 For each model, the sentences of the artificial language were divided into training and 

testing sets, with a .75 train-test split. Sentences were sampled without replacement into the 

training set according to their probability. One important constraint governed sampling into the 

training set. To ensure a breadth of sentences were sampled into the training set, sentences were 

binned according to their structure, and sampling occurred with respect to these bins. Therefore, 

.75 of intransitive sentences, .75 of transitive sentences, and .75 of ditransitive sentences were 

sampled into the training set. During training, the model was exposed only to sentences in the 

training set. 

Probabilities were assigned to individual sentences with respect to the probability of the 

structure of that sentence in rough proportion to natural English. Transitive sentences, being the 

most common in natural language, comprised .50 of the sentences in a training set. Ditransitive 

sentences, being less common in natural language, comprised .30 of the sentences in a training 
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set. Intransitive sentences, being the least common in natural language, comprised .20 of the 

sentences in a training set.  

 Training of the model followed the general procedure outlined in Ueno et al. (2011), with 

some modifications to train on both words and sentences. Training was divided into epochs. In 

each epoch, the model was exposed to a total of 300 sentences, with each sentence being 

presented 1 time in the context of repetition, 2 times in the context of comprehension, and 3 

times in the context of production. The model was updated following exposure to each sentence 

using standard backpropagation. The order of sentences within each epoch was randomized. 

 In addition to training on full sentences, the model was tasked to complete single word 

repetition, single word comprehension, and single word production. Following each of the first 

30 epochs, model exposure to words decreased stepwise. The model repeated, comprehended, 

and produced each word 3 times following the first 10 epochs. After epochs 11 through 20, the 

model repeated, comprehended, and produced each word 2 times. Then, after epochs 21 through 

30, the model repeated, comprehended, and produced each word 1 time. Task frequency matched 

sentence training: when exposed to a word, the model repeated that word once, comprehended 

that word twice, and produced that word 3 times. Following the first 30 epochs of training, the 

model was no longer exposed to individual words, instead being trained solely on whole 

sentences. 

 A total of 10 models were trained, each with a separate random seed governing weight 

initialization and sampling of sentences into training and testing sets. This was done to ensure 

evaluation of model performance was not dependent on specific seeds or training samples. For 

each model, weights were initialized randomly between -1 and 1, with biases initialized at 0. 
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Initial learning rate was set to 0.5 and decreased stepwise every 50 epochs with a decay gamma 

of .01. Weight decay was set to 1e5. 

The total number of training epochs was determined empirically by examining training 

and testing loss on repetition, comprehension, and production of a separate set of pilot models. A 

priori, the total number of training epochs is challenging to specify. The rich language emergent 

theory would predict that memory capacity improves with language experience, in line with 

language modeling research which argues capacity for language comprehension and production 

improves with experience (e.g. MacDonald & Christiansen, 2002; Fitz et al., 2011). However, 

the relationship between one epoch and some amount of experience with language is indirect, 

often underspecified, and highly dependent upon task. For example, Gupta and Tisdale (2009) 

associated 1 training epoch with 1 year of experience with words, yet this was only a rough 

association. In the case of the Lichtheim-memory model, the highly constrained nature of the 

artificial language makes comparison to natural experience repeating, comprehending, and 

producing language challenging. Rather than pre-specifying a set amount of exposure, quantity 

of model training was set empirically given performance of pilot models. Loss on training and 

testing sets of the pilot models is visualized in Figure 4. A total of 200 epochs was chosen to 

capture the point at which training loss appeared to no longer decrease while minimizing 

overfitting on training data. All analyses of models were subsequently conducted on the models 

at the end of training. 
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Figure 4 

Training loss on comprehension, production, and repetition 
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Note. Solid lines indicate loss on training sets. Lighter dotted lines indicate loss on testing sets. 

No lighter, dotted line is plotted for intransitive sentences due to sampling all intransitive 

sentences into training set for pilot models. 

 

Testing model behavior 

In this project, I set out to test whether a rich, language emergent model of VWM could 

account for the ways in which linguistic LTM for words, sentences, and interactions among word 

and order representations influence VWM. To that end, my primary concern is the model’s 

performance on repetition, an analogue to immediate serial recall. Model performance was tested 

through 5 tasks. In each task, the trained models were required to repeat novel lists, sentences, or 

sentence-like lists. These 5 tasks assess how the model’s experience with language affects its 

word memory (Word regularity), order memory (Sentence-likeness), and its ability to integrate 

word and order representations through lexico-syntactic constraints. These 5 tasks are 

summarized in Table 1.   
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Table 1 

Tests of the Lichtheim-memory Model 

Manipulation Comparison Example lists Comparable behavioral study 

Word regularity 

Noun list 

vs 

Nonword list 

sugar-man-pizza-girl 

vs 

frip-tog-wilp-stec 

Hulme et al. (1995) 

Sentence-likeness 

Sentence 

vs 

Scrambled 

man-gave-boy-sugar 

vs 

sugar-man-boy-gave 

Allen et al. (2018) 

Lexico-syntactic: 

Part-of-speech 

Ditransitive 

vs 

Noun 

man-gave-boy-sugar 

vs 

man-pizza-boy-sugar 

Schwering et al. (under rev.)  

Experiment 1 

Lexico-syntactic: 

Verb bias 

Ditransitive 

vs 

Intransitive 

man-gave-boy-sugar 

vs 

man-slept-boy-sugar 

Schwering et al. (under rev.)  

Experiment 2A 

Lexico-syntactic: 

Subject animacy 

Animate 

vs 

Inanimate 

man-gave-boy-sugar 

vs 

pizza-gave-boy-sugar 

Schwering et al. (under rev.)  

Experiment 2B 

Note. Each row representations a different test of the model. In the first 3 tests, the manipulation 

either comprises shuffling manipulating the word-likeness of all words in the list (Word 

regularity) or the order of the list (Sentence-likeness). In the last 3 tests, the manipulation 
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comprises 1 word, which is bolded in the column Example lists. Note, nonwords in the word 

regularity comparison represent rough approximations to the random C-V-C patterns used to test 

model repetition. 

 

Word superiority effect. The first test compared repetition of 500 randomly generated 

lists of nouns with 500 randomly generated lists of nonwords. Nonwords were generated by 

combining all possible combinations of onset consonant, vowel, and offset consonant phones. 

From this set, all real words were removed, as well as words that violated phonotactic constraints 

in the artificial language (i.e. words that contained offset consonants or vowels in the onset 

consonant position; words that contained onset consonants or offset consonants in the vowel 

position, etc.). If the model generates a LTM sensitive to word phonotactic regularity and 

phonotactic regularity impacts word memory, then repetition of real words should be more 

accurate than repetition of nonwords. 

Sentence superiority effect. The second test compared repetition of novel, well-formed 

ditransitive sentences from the test set with repetition of the same set of words presented in a 

random, different order. Scrambled sentences were generated by taking all well-formed 

ditransitive sentences and randomizing their order, removing from the set all valid sentences and 

removing all sentences that contained legal bigrams. This second restriction was put in place to 

limit minute effects of grammatical regularities (e.g. Perham et al., 2009). If the model generates 

a LTM sensitive to gross grammatical regularities and these gross grammatical regularities 

impact order memory, then repetition of the well-formed sentence should be more accurate than 

repetition of the same words in a scrambled order. 
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Lexico-syntactic constraint: Part-of-speech. The third test compared repetition of 

novel, well-formed ditransitive sentences with repetition of the same sentences, swapping out 

ditransitive verbs for nouns. If the model generate a LTM sensitive to the lexico-syntactic 

constraint of part-of-speech regularities and these same part-of-speech regularities impact 

repetition, then repetition of the sentence with the ditransitive verb should be more accurate than 

repetition of the same sentence with a noun in place of the ditransitive verb. 

Lexico-syntactic constraint: Verb biases. The fourth test compared repetition of novel, 

well-formed ditransitive sentences with repetition of the same sentences, swapping out 

ditransitive verbs for intransitive verbs. If the model generates a LTM sensitive to the lexico-

syntactic constraint of verb biases and these verb biases impact repetition, then repetition of the 

sentence with the ditransitive verb should be more accurate than repetition of the same sentence 

with an intransitive verb. 

Lexico-syntactic constraint: Subject animacy. The fifth test compared repetition of 

novel, well-formed ditransitive sentences with repetition of the same sentences, swapping out the 

animate subject noun with an inanimate noun not otherwise present in the sentence. If the model 

generates a LTM sensitive to the lexico-syntactic constraint of subject animacy and these subject 

animacy impacts repetition, then repetition of the sentence with the animate subject noun should 

be more accurate than repetition of the same sentence with an inanimate subject noun. 

Results 

Analyses of all models was conducted using generalized linear mixed effects regression 

predicting whether the most active output phone was the target output phone (1 = correct output, 

0 = incorrect output) for each timestep. A summary of model performance on repetition tasks 

using this strict scoring procedure is provided in Table 2. Note, this scoring procedure differs 
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slightly from typical serial recall scoring procedures in the memory literature, which is typically 

conducted at the word level. To my knowledge, this scoring procedure is not standardized, as it 

often requires experimenter judgment as what constitutes a correct response given variations in 

accent or dialect, typos, errors, or other disfluencies.  

In all cases, model performance was assessed using mixed effects logistic regression, 

predicting correct/incorrect responses from condition. Models and utterances were treated as 

random effects, with by-model and by-utterance random intercepts, as well as a by-model 

random slope for condition. The constrained sentence size of the artificial language limits 

comparison to positional effects and would be of limited theoretical value. Memory lists 

typically comprise 6 or more words; the artificial language has a maximum sentence size of 4 

words. As a result, the primary model comparison concerns a gross, main effect of condition. 

The only comparison of interest of position was conducted in the analysis of the repetition of 

random noun lists and repetition of nonword lists, described below. Nevertheless, for all models, 

position and its interaction with condition were included in every model as a covariate. 
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Table 2 

Performance of the models 

Stimulus type Word 1 
accuracy 

Word 2 
accuracy 

Word 3 
accuracy 

Word 4 
accuracy 

Legal nonword list 0.27 0.32 0.32 0.29 

Noun list 0.42 0.44 0.48 0.57 

Test ditransitive sentences 0.92 0.90 0.89 0.75 

Scrambled ditransitive 
sentences 

0.28 0.51 0.58 0.6 

Verb bias manipulation 
(inanimate noun) 

0.71 0.44 0.76 0.64 

Verb bias manipulation 
(transitive verb) 

0.62 0.47 0.77 0.70 

Verb bias manipulation 
(intransitive verb) 

0.68 0.56 0.76 0.67 

Subject animacy manipulation 
(inanimate noun) 

0.34 0.80 0.83 0.72 

Postverbal DO manipulation 
(inanimate noun) 

0.89 0.72 0.50 0.65 

 

Note. Average repetition accuracy for all phones across conditions and models. Accuracy is 

given using strict serial scoring, rounded to 2 decimal places. 

 

Word superiority effect 

In this comparison, repetition of legal nonword lists and noun lists were compared. There 

was a main effect of condition, such that lists of nouns were repeated better than lists of non-
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words, b = 0.84, X2(1) = 105.15, p < .001. Further, there was a main effect of list position on 

repetition, with repetition improving as list position increased, b = 0.34, X2(1) = 467.30, p < .001. 

Finally, there was an interaction among condition and list position, indicating a greater 

improvement in repetition as position increased for lists of nouns compared to lists of non-words, 

b = 0.50, X2(1) = 253.14, p < .001.  

To further interrogate how repetition changed across position, an additional model was 

conducted examining the quadratic trend of position. The shape of serial position curves in serial 

recall includes primacy and recency effects, or improved recall for initial and final words in 

memory lists compared to middle list positions (Madigan, 1980). This finding is so foundational 

to VWM theorizing as to be a core target for models of VWM (Oberauer et al., 2018) and thus 

warrant a special analysis in noun lists typically presented in serial recall tasks. In linear 

regression, the presence of primacy or recency effects would be given by a significant effect of 

the quadratic trend of list position on recall, so an additional analysis was conducted examining 

this effect. This analysis included all previous fixed effects as well as the quadratic trend of 

position and interaction between the quadratic trend of list position and condition. 

In this additional analysis, the Lichtheim-memory models were better at recalling lists of 

nouns over lists of non-words, as indicated by a main effect of condition, b = 0.52, X2(1) = 41.41, 

p < .001. The models’ performance increased as list position increased, regardless of condition, 

as indicated by a main effect of position, b = 0.34, X2(1) = 463.72, p < .001. Additionally, 

repetition across position followed a quadratic trend, as indicated by a significant main effect of 

the quadratic trend of position, b = -0.21, X2(1) = 10.15, p < .01. The effect of the quadratic trend 

differed across conditions, as indicated by an interaction between condition and the quadratic 

trend of position, b = 1.83, X2(1) = 194.02, p < .001. Visual inspection of the trend revealed a 
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slight recency effect in the noun list, as indicated by improved repetition in final list positions, 

that was absent in the non-word list. There was no primacy effect. Finally, there was also an 

interaction between condition and linear list position, b = 0.50, X2(1) = 246.95, p < .001, 

indicating the change in repetition across list position differed between conditions. A 

visualization of repetition performance can be seen in Figure 5. 

 

Figure 5 

Repetition of non-word and noun lists 

 

Note. Small dots indicate jittered repetition accuracy for each word in an utterance collapsed 

across all trained models. All bars represent standard error. 

 

 Sentence superiority effect 

In this comparison, repetition of novel, test ditransitive sentences and scrambled 

ditransitive sentences were compared. Analyses revealed the models were better at recalling 

novel, well-formed ditransitive sentences compared to scrambled ditransitive sentences, as 
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indicated by a main effect of condition, b = 1.06, X2(1) = 693.48, p < .001. This effect was 

consistent across all positions, though it was particularly pronounced in the initial list position. 

There was no significant main effect of list position on repetition, X2(1) = 1.24, p = .27, though 

there was an interaction between condition and list position, b = 2.54, X2(1) = 529.87, p < .001. 

Visualization of scrambled sentence repetition is visualized in Figure 6. 
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Figure 6 

Repetition of scrambled sentences 

 

Note. Black dots and solid lines indicate performance on ditransitive sentences with the violated 

lexico-syntactic constraint. Green lines indicate performance on test ditransitive sentences. Small 

dots indicate jittered repetition accuracy for each word in an utterance collapsed across all 

trained models. All bars represent standard error. 

 

 Lexico-syntactic constraint: Part-of-speech  

In this comparison, repetition of novel, test ditransitive sentences and ditransitive 

sentences with the ditransitive verb swapped with an inanimate noun were compared. Repetition 

was better for well-formed ditransitive sentences compared to ditransitive sentences with a part-

of-speech violation in which the ditransitive verb was replaced with an inanimate noun, b = 1.54, 

X2(1) = 320.40, p < .001. Furthermore, there was an effect of list position, such that repetition 

decreased as list position increased, b = -0.50, X2(1) = 116.05, p < .001. Finally, there was an 
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interaction between condition and list position, such that the decrement in repetition was greater 

for well-formed sentences than sentences with a part-of-speech violation, b = -1.67, X2(1) = 

327.89, p < .001. Repetition of sentences with a part-of-speech violation is visualized in Figure 

7. 
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Figure 7 

Repetition of sentences with and without violated part-of-speech regularity constraint 

 

Note. The black solid line and dots indicate performance on ditransitive sentences with the 

violated lexico-syntactic constraint. The green line indicates performance on test ditransitive 

sentences. Small dots indicate jittered repetition accuracy for each word in an utterance collapsed 

across all trained models. All bars represent standard error. 

 

 Lexico-syntactic constraint: Verb biases 

Two separate models were fit to analyze how replacing a ditransitive verb in a novel, 

well-formed test ditransitive sentence affected repetition performance. Replacing a ditransitive 

verb with a transitive or intransitive verb similarly impaired repetition of sentences. Both models 

had a significant main effect of condition. Repetition was impaired when the ditransitive verb 

was replaced with a transitive verb, b = 1.54, X2(1) = 308.55, p < .001, and when the ditransitive 

verb was replaced with an intransitive verb, b = 1.33, X2(1) = 269.44, p < .001. Furthermore, in 
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both models, performance decreased across list position, as indicated by a main effect of list 

position when a transitive verb replaces the ditransitive verb, b = -0.25, X2(1) = 24.84, p < .001, 

and when an intransitive verb replaces the ditransitive verb, b = -0.50, X2(1) = 99.36, p < .001.  

Finally, in both models, there was an interaction between condition and list position, both for the 

transitive verb manipulation, b = -2.19, X2(1) = 488.29, p < .001, and the intransitive verb 

manipulation, b = -1.69, X2(1) = 289.07, p < .001.  Repetition of sentences with violated verb 

biases is visualized in Figures 8 and 9. Repetition with a swapped intransitive verb is visualized 

in Figure 8, and repetition with a swapped transitive verb is visualized in Figure 9. 
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Figure 8 

Repetition of sentences with and without violated verb bias constraint (intransitive) 

 

Note. The black solid line and dots indicate performance on ditransitive sentences with the 

violated lexico-syntactic constraint. The green line indicates performance on test ditransitive 

sentences. Small dots indicate jittered repetition accuracy for each word in an utterance collapsed 

across all trained models. All bars represent standard error. 
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Figure 9 

Repetition of sentences with and without violated verb bias constraint (transitive) 

 

Note. The black solid line and dots indicate performance on ditransitive sentences with the 

violated lexico-syntactic constraint. The green line indicates performance on test ditransitive 

sentences. Small dots indicate jittered repetition accuracy for each word in an utterance collapsed 

across all trained models. All bars represent standard error. 

 

 Lexico-syntactic constraint: Subject animacy 

In this comparison, repetition of novel, test ditransitive sentences and ditransitive 

sentences with the subject noun replaced with an inanimate noun were compared. The 

Lichtheim-memory models were less accurate at repeating ditransitive sentences with an animate 

subject noun than an inanimate subject noun, b = 1.20, X2(1) = 165.11, p < .001. Further, as list 

position increased, repetition slightly improved, b = 0.10, X2(1) = 4.31, p < .05. Finally, there 
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was an interaction among condition and list position such that repetition decreased across list 

position for well-formed sentences but not sentences with an inanimate subject, b = -2.86, X2(1) 

= 964.80, p < .001. Repetition of sentences with violated subject noun animacy is visualized in 

Figure 10. 
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Figure 10 

Repetition of sentences with and without violated subject animacy constraint 

 

Note. The black solid line and dots indicate performance on ditransitive sentences with the 

violated lexico-syntactic constraint. The green line indicates performance on test ditransitive 

sentences. Small dots indicate jittered repetition accuracy for each word in an utterance collapsed 

across all trained models. All bars represent standard error. 

Discussion 

In this project, I developed and tested the Lichtheim-memory model, an instantiation of the rich 

emergent theory of VWM (Schwering & MacDonald, 2020). This model was tested on a series 

of serial recall tasks and compared with human behavioral data to determine whether language 

comprehension and production processes could plausibly subserve VWM. In accordance with 

human subjects data, the model captured 5 ways in which linguistic LTM supports VWM: 

improved memory for words over nonwords (Hulme et al., 1995), for sentences over scrambled 
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sentences (Allen et al., 2018), for sentence-like lists with consistent part-of-speech patterns over 

inconsistent patterns, for sentence-like lists with consistent verb biases over inconsistent verb 

biases, and for sentence-like lists with animate subjects over inanimate subjects (Schwering et 

al., under review). Critically, each performance pattern was driven entirely by the model’s 

linguistic LTM, trained to complete the tasks of language comprehension, production, and 

repetition. Together, these results provide a plausible computational underpinning to a 

mechanism by which VWM can emerge from processing language. 

Comparisons to prior memory theories and models  

Emergent theories of VWM starkly contrast dominant, buffer theories of VWM 

(Baddeley, 2000; Baddeley & Hitch, 1974; Norris, 2017). According to buffer theories, VWM is 

a distinct cognitive module, temporarily storing and manipulating memoranda to be used by 

other cognitive systems. In contrast, language emergent theories argue language comprehension 

and production processes support encoding, maintenance, and retrieval of linguistic memoranda. 

A bevy of behavioral and neuroscientific research supports this perspective (Acheson & 

MacDonald, 2009; Schwering & MacDonald, 2020; MacDonald, 2016). Nevertheless, emergent 

theory has been stymied by a lack of computational models, leading proponents of buffer 

theories to argue emergent theory is untenable. Critics of emergent theories have argued 

emergent computational models are either non-existent or wholly incapable of accounting for 

hallmark phenomenon in the VWM literature (Norris, 2017). Generating an emergent 

computational model is challenging; in addition to developing a model of VWM, emergent 

theorists need consider both constraints on language use and VWM. The Lichtheim-memory 

model provides one instantiation of emergent VWM. In this model, language processing and 

linguistic LTM is characterized as a transformation of phonological and semantic representations 
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in the service of comprehension, production, and repetition in a simple recurrent neural network. 

Temporary memory is characterized as the activation of the language system in the service of 

comprehension, production, and repetition.  

 Models of VWM have rarely adopted perspectives from language research. For many 

buffer theories, VWM is an explicit cognitive module. For example, the Start-end model 

(Henson, 1998) generates a memory trace through an explicit, endogenously generated ordering 

signal. Of course, models need not incorporate an explicit ordering signal, and some models blur 

the line between LTM and VWM without explicitly adopting emergent VWM theory. The 

Context Retrieval and Updating model (Logan, 2018; Logan & Cox, 2021) and the Temporal 

Context Model (TCM, Howard and Kahana, 2002) both build temporary memory from fading 

traces of earlier presented items and their contexts. In these models, particularly the TCM, LTM 

can be accounted for by incorporating interference or support from traces over long delays. 

Nevertheless, ties to specific language comprehension and production mechanisms remain 

sparse. In contrast, the Lichtheim-memory model is an explicit instantiation of the mechanisms 

of language comprehension, production, and repetition. 

Unlike buffer models, however, the Lichtheim-memory model was trained solely to 

comprehend, produce, and repeat sentences in an artificial language and not to explicitly repeat 

real words or consistent sentences better than non-words or inconsistent sentences. That is, the 

Lichtheim-memory model was not explicitly fit to the target behavioral benchmarks. Instead, the 

Lichtheim-memory model’s capacity to repeat sentences is a function of its experience. Prior 

research into language modeling suggests this is a natural product of neural networks. Capacity 

of language models improves with training, leading experienced models to better map on to adult 

language comprehension and production than less experienced models (e.g. MacDonald & 
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Christiansen, 2002; Fitz et al., 2011). The Lichtheim-memory model demonstrates a similar 

pattern in the domain of VWM. Alternative models of VWM employ a very different set of 

techniques. To account for improved performance of memoranda stored in linguistic LTM, 

buffer theories make reference to redintegration (e.g. Jones & Farrell, 2018). Over time, more 

modules have been added to the memory models to account for the ways in which different types 

of linguistic LTM can affect processing, such as the way in which part-of-speech patterns 

enhance recall in Jones and Farrell (2018). In comparison to buffer models, the Lichtheim-

memory model provides a parsimonious account of both language processing and VWM. 

 The Lichtheim-memory model shares several similarities with other emergent models of 

VWM but expands their processing to integrate word and sentence representations. Prior 

emergent models have characterized how phonological, lexical, and word semantic 

representations support memory for words. For example, the lexical network of Martin et al. 

(1996) employed spreading activation between phonological, lexical, and semantic word 

representations to capture word memory in healthy and aphasic populations. While this model 

could capture single word performance, the model did not incorporate relations among words 

into its processing, leaving its application to the VWM literature regarding list memory 

ambiguous. In another vein, Botvinick and Plaut (2006) created a simple recurrent neural 

network and trained it to perform serial recall. While this model was not explicitly linked to 

language use, it could accurately capture several VWM phenomenon, including transposition 

effects (Henson et al., 1996) and primacy and recency effects (Madigan, 1980). The Lichtheim-

memory models combines the best of both works, applying a neurobiologically inspired 

language network that incorporates both word and word order representations in the service of 

VWM tasks. 
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Tested behavioral phenomena and future benchmarks 

The Lichtheim-memory model provides a clear way to account for the sentence 

superiority effect. The sentence superiority effect is the finding that sentence-like lists tend to be 

recalled better than scrambled sentences (e.g. Allen et al., 2018). This finding has been 

established at multiple grain sizes, with researchers finding improved memory for attested 

phrases over random strings (Arnon & Snider, 2010; Jacobs et al., 2016) for canonical adjective-

noun sequences over the reversed (Perham et al., 2009l Schweppe et al., 2022), and noun-noun 

compounds consistent with patterns in natural language over the reversed (Schwering & 

MacDonald, under review). The sentence superiority effect is important for the memory 

literature, not only to establish that linguistic LTM influences VWM performance, but also 

because it suggests that LTM retains a specific character. Namely, these patterns suggest that 

word and word order representations interact to influence VWM; sentence structure is a function 

of inter-word relationships, taking on meaning both as a function of the individual words 

themselves but also their context (see Schwering & MacDonald, 2020 for discussion). This is 

critical for theories of VWM, which typically characterize word or “item” representations as 

wholly distinct from word order representations (Majerus, 2013). In contrast to this memory 

perspective, the Lichtheim-memory model adopts the rich emergent theory of VWM which does 

not consider word and word order representations to be wholly distinct (Schwering & 

MacDonald, 2020). In simple recurrent neural networks like the Lichtheim-memory model, 

representations from prior timesteps bear on the present, naturally integrating word and word 

order representations. In Lichtheim-2, phonological and semantic representations were largely 

but not wholly separable along ventral and dorsal streams (Ueno et al., 2011; Ueno et al., 2014). 

Similarly, it is expected that the Lichtheim-memory model should incorporate word and word 



 
 

51 

order representations throughout processing. The fact the Lichtheim-memory model could 

comprehend, produce, and repeat sentences is initial evidence that this information influenced 

behavior. Future research, discussed below, will consider this explicitly. 

 There are several ways in which the Lichtheim-memory model’s performance could 

better match human performance. First, with respect to the current tests, the model fails to 

capture the subtle ways in which lexico-syntactic constraints shape VWM when verb biases are 

manipulated. In human behavioral data, participants’ recall performance tracked the relative 

goodness of sentence-like lists. For example, when recalling ditransitive sentences with an 

intransitive verb replacing the ditransitive verb, participants’ performance appeared to drop when 

the sentence context was no longer supported by the verb (see Figure 2, Experiment 2A). 

Consider the following case: when recalling the sentence-like list HAPPY-DOG-SLEPT-

ANGRY-BUTCHER-PAPER, participants recalled the partial sentence HAPPY-DOG-SLEPT at 

similar rates to a well-formed ditransitive sentence. However, they recalled the unwarranted 

phrase ANGRY-BUTCHER-PAPER relatively poorly compared to the well-formed ditransitive 

sentence. The Lichtheim-memory model did not track this sensitivity to partial well-formedness 

of the sentence, instead recalling the entire sentence-like list poorly (see Figure 8 and Figure 9). 

Further interrogation of the model’s sentence semantics representations should reveal whether 

repetition of violated lexico-syntactic constraints show a graded degradation, or whether the 

overall decrement in performance is matched by catastrophic degradation of sentence semantic 

representations.   

Additionally, there are several memory benchmarks that need be considered to establish 

the Lichtheim-memory model as a general model of VWM. Oberauer et al (2018) identified 67 

benchmarks for computational models of VWM. While no model of VWM can currently capture 
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all benchmarks, several core benchmarks of high priority need be considered. Many core 

benchmarks would likely require alteration of the model’s training tasks or architecture: set-size 

effects on accuracy (Unsworth & Engle, 2006) and reaction time (Mayberry et al., 2002), 

impairments in recall in presence of concurrent cognitive load (Vallar & Baddeley, 1982), 

improved recall for grouped memoranda (Hitch et al., 1996), preservation of short-term memory 

in amnesia (Baddeley & Warrington, 1970; though see Dell et al., 1997), and so on. Other 

phenomenon are viable target benchmarks using the existing architecture due to their reliance on 

linguistic LTM or establishment in previous simple recurrent neural networks: effects of 

chunking and number of remembered chunks (Miller & Selfridge, 1950; Botvinick & Bylsma, 

2005), effects of relatedness of memoranda on confusions (Henson et al., 1996; Saint-Aubin & 

Poirier, 1999), locality constraints on transpositions (Henson et al., 1996; Botvinick & Plaut, 

2006), phonological similarity effects (Conrad & Hull, 1964), and so on. Nevertheless, in its 

current instantiation, the Lichtheim-memory model provides a useful account of the sentence 

superiority effect and word superiority effects in an emergent framework, an important extension 

of prior memory models. 

Primacy and recency effects deserve additional interrogation, given, at first glance, the 

model’s ability to capture recency effects in repeating random lists of nouns. Primacy and 

recency effects, the pattern of improved recall for list initial and list final memoranda, are 

considered core phenomenon in VWM tasks (Madigan, 1980). Typically, primacy effects are 

functionally captured through enhanced repetition of list initial items (Page & Norris, 1998; Tan 

& Ward, 2008), and recency effects are captured through minimal decay for recently 

encountered memoranda (Page & Norris, 1998), though researchers have proposed a number of 

alternative mechanisms (e.g. Oberauer & Lewandowsky, 2008). While the Lichtheim-memory 
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model demonstrates a recency effect in random memory lists composed of nouns, the source of 

these effects is not currently clear. This may be a function of minimal interference between 

memoranda, given list final nouns are encountered immediately before output. However, these 

effects may also be driven by the structure of the model’s training data; all transitive and 

ditransitive sentences encountered during training end in nouns, meaning the model’s experience 

at later list positions was comprised solely of nouns. This would make nouns relatively frequent 

in list final positions compared to earlier list positions, resulting in a primacy effect in noun lists. 

Nevertheless, this hypothesis is undermined by the fact that repetition of transitive and 

ditransitive sentences does not also exhibit a recency effect. Indeed, visual inspection of 

repetition of sentences reveals what appears to be a small primacy effect. Further research could 

be done using models trained on varying artificial languages to determine whether the effect is 

reliable or an artifact of the language. 

Applications to the language literature 

Many language comprehension and production theories characterize VWM as a 

constraint on language use. How does the Lichtheim-memory model fit into this framework? 

Rather than considering VWM as a separate cognitive constraint on language processing, the 

Lichtheim-memory model characterizes VWM as an emergent capacity from language 

comprehension and production. This perspective aligns with constraint-satisfaction theories of 

language processing (Seidenberg, 1997; MacDonald & Seidenberg, 2006), which emphasize the 

role multiple interacting sources of linguistic LTM play in shaping language use. Indeed, 

language users tend to produce more familiar syntactic structures and structures supported by 

lexical constraints, even when the less familiar syntactic structures induce a lower VWM demand 

(Montag & MacDonald, 2015). Similarly, in the Lichtheim-memory model, the relative 
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frequency of different structures influences processing, making well-formed sentence structures 

easier to repeat than random memory lists or sentences with violated structures. Rather than 

emphasizing the importance of a separate VWM capacity on language processing, the 

Lichtheim-memory model emphasizes the importance of language experience. In this way, the 

Lichtheim-memory model continues a long line of using computational models, and neural 

networks, in particular, to characterize language processing (e.g. Joanisse & Seidenberg, 2003; 

Joanisse & McClelland, 2015). 

Computational modeling and the Lichtheim-memory model could provide one avenue to 

compare memory-limited (e.g. Lewis et al., 2006) and constraint-satisfaction theories (e.g. 

MacDonald & Seidenberg, 2006). In its current state, the Lichtheim-memory model provides an 

account of the ways in which language experience can predict language use. One could imagine 

adding a separate VWM capacity to the network to see whether the fit to human performance 

improves with a separate VWM capacity. In parallel, Hahn et al. (2022) applied a similar 

approach to large language models, demonstrating human sentence comprehension and 

production patterns could be predicted better using both measures of memory load and sentence 

surprisal than memory load or surprisal alone. Similarly, the Lichtheim-memory model could 

provide one avenue to test theories of language use by comparing comprehension and production 

of sentences in the model’s current form and when a separate VWM capacity is added to the 

model. The addition of a separate VWM capacity could take several forms. Lewis et al. (2006) 

have characterized both the importance of decay and interference in governing language use. The 

current version of the Lichtheim-memory model incorporates interference in the form of 

multiplexed signals in the model’s activated state, and decay could easily be incorporated as a 



 
 

55 

function of time (e.g. Page & Norris, 2009). Regardless, the Lichtheim-memory model could 

serve as a means of providing computational specificity to VWM in language models. 

Future directions 

There are several ways in which the model’s performance could be improved. Of 

foremost concern is improving the model’s training experience. Developing a more naturalistic 

language on which the model could be trained as well as a more naturalistic training procedure 

should improve the extent to which the model would map on to human performance. The current 

artificial language is heavily restricted, consisting of sentences with a maximum of 4 words, with 

many classes of words missing, like articles or adjectives. Including alternative sentence 

structures would be critical to testing the role that language experience and VWM plays in 

language processing. Additionally, expansion of the model’s training set would allow testing of 

additional memory phenomenon. The sentence superiority effect has been extended to adjective 

noun pairs (Perham et al., 2009) and noun compounds (Schwering & MacDonald, under review), 

which could prove a fruitful avenue for testing the model’s sensitivity to sentence-likeness at 

multiple grain sizes. Additionally, it is worth noting that the model’s ability to extend to novel 

examples is a function of the breadth of its training experience. A relatively restricted set of 

training examples means the model’s generalizability to novel examples is restricted. Memory 

lists, typically lists of nouns, do not reflect the sentences in the artificial language. However, in 

natural language, ill-formed speech and lists of nouns appear with some frequency, requiring the 

language comprehension and production system adapt to many examples that may better reflect 

memory lists. Extending the model’s training environment to include ill-formed utterances and 

lists of nouns may allow the model to better capture language phenomenon as well as VWM. 
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 The psycholinguistic literature provides a rich set of mechanisms that can be used to 

further refine the Lichtheim-memory model. One particularly interesting area of consideration is 

that of neural oscillations. Neural oscillations have been linked to structure building mechanisms 

in language processing, with oscillations entrained to detection of phones, combination of phones 

into words, and in phrasal processing (Meyer, 2018). These neural oscillations have been 

explicitly linked to cognitive mechanisms that allow the model to process novel sentences 

through compositional structure building (Martin & Doumas, 2017). Though the extension of 

these mechanisms to a simple recurrent neural network remains unclear, and is at odds with 

neural networks (Martin & Doumas, 2017), it is worth noting that oscillations are often invoked 

in the VWM literature as a form of order maintenance. For example, the Primacy gradient (Page 

& Norris, 1998; 2009) and Start-end models (Henson, 1998) encode memory as activation 

strengths from an oscillating order signal. While ties to language mechanisms remains sparse, 

there is some research tying psycholinguistic oscillations to the memory literature. The bottom-

up multi-scale population oscillator model (BUMP) was inspired by acoustic signal processing 

(Hartley et al., 2016). BUMP employs battery of oscillators to encode a continuous memory 

signal into item- and list-level representations. The psycholinguistic literature typically 

characterizes oscillations as an endogenously generated grouping signal; incorporating 

oscillations as either a learned or architectural constraint into the Lichtheim-memory model 

could serve as one way to improve the model’s structure-building abilities and link the model 

closer with prior work in the memory literature.  

 Several additional analyses have yet to be conducted to understand the mechanisms 

supporting processing in the Lichtheim-memory model. The latent sentence semantic 

representations are a particular area of interest. These sentence semantic representations are 
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hypothesized to support sentence processing in repetition. If this is the case, then lesioning of 

these representations should result in degradation of sentence repetition performance. Beyond 

establishing the causal role of the sentence semantic representations in repetition, lesioning the 

model could be a particularly fruitful way of modeling impairments of language function and 

recovery (Ueno et al., 2011). Classic aphasiology has argued that language processing and VWM 

may be governed by distinct modules (e.g. Baddeley & Warrington, 1970), though VWM 

impairments are often comorbid with aphasia (Caplan & Waters, 1995). The Lichtheim-memory 

model provides an opportunity to computationally capture sentence comprehension, production, 

and repetition impairment as a function of damage to the different components of the model. 

Additionally, given the model’s emphasis on learning LTM representations, modeling recovery 

training regimes via sentence repetition could be a potential target application (e.g. Eom & Sung, 

2016). 
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Appendix A 

Artificial language 

The artificial language was designed to include the sentence structures and semantic 

features targeted in all tests of model performance. The following describes the lexicon of the 

artificial language and provides an overview of the grammatical rules governing construction of 

sentences in the language. 

Lexicon and semantic features  

At minimum, the lexicon of the artificial language needed to comprise of (1) a set of 

verbs that differed in their transitivity, (2) a set of nouns that could serve as subjects in all 

sentences, and (3) a set of nouns that could serve as direct and indirect objects in transitive 

sentences. While addressing these three grammatical constraints, loose semantic constraints were 

also considered. Semantic features were chosen to provide a wide array of semantic features that 

would correlate with certain events and not others while keeping the language no larger than 

necessary to test effects of verb biases on processing. For example, a range of foods with 

different properties were chosen to occur with fed or ate sentences but not mailed or drank verbs. 

Ultimately, a total of 4 intransitive, 4 transitive, and 4 ditransitive verbs were selected, along 

with 4 possible subject nouns, and 11 possible direct objects. Word semantic features were 

designed by hand, with some of the words and features borrowed from Rabovsky & McClelland 

(2018). 

Word phonetic and semantic features are listed in Table A1. Figure A1 provides a visual 

summary of the cosine similarity of the semantic features of the words in the artificial language 

and in natural language. There was no explicit objective to generate a set of semantic features 
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that would re-create a real semantic space, though the comparison does demonstrate some 

overlap between the artificial space and the real. 

Grammar 

The grammar of the artificial language needed to contain, at minimum, two structures: (1) 

ditransitive sentences with two objects of the verb and (2) intransitive sentences. In the current 

iteration of the artificial language, a third structure, expressing simple transitive sentences with 

only one object of the verb, was also included, to add a degree to uncertainty to the model’s 

predictions. 

All sentences in the artificial grammar were constructed through the verb. Verbs assigned 

probabilities to both the sentence structures they afforded as well as the fillers that may fill the 

roles required by the chosen sentence structure. Note, in natural language, verbs, sentences 

structures, and fillers all mutually inform one another. These constraints do not inform this 

artificial language. The construction of an example sentence in the artificial language is 

illustrated in Figure A2. 
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Table A1 

Word representations in the artificial language 

Word Role Phonological features Semantic features 

blinked Verb, intransitive C1-3, V1-3, C2-0 action, body, blinked 

ran Verb, intransitive C1-3, V1-0, C2-2 action, body, ran 

sat Verb, intransitive C1-1, V1-0, C2-2 action, body, sat 

slept Verb, intransitive C1-2, V1-1, C2-1 action, body, slept 

ate Verb, transitive C1-1, V1-1, C2-0 
action, meals, body, 

ate 

drank Verb, transitive C1-1, V1-2, C2-1 
action, meals, body, 

drank 

took Verb, transitive C1-1, V1-2, C2-2 action, social, took 

borrowed Verb, transitive C1-2, V1-0, C2-2 
action, social, 

borrowed 

fed Verb, ditransitive C1-1, V1-3, C2-2 action, meals, fed 

gave Verb, ditransitive C1-3, V1-2, C2-2 action, social, gave 

lent Verb, ditransitive C1-2, V1-0, C2-1 action, social, lent 

mailed Verb, ditransitive C1-1, V1-0, C2-3 action, social, mailed 
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man Noun, S, IO C1-3, V1-0, C2-3 
person, active, adult, 

male, man 

woman Noun, S, IO C1-1, V1-0, C2-0 
person, active, adult, 

female, woman 

boy Noun, S, IO C1-0, V1-3, C2-2 
person, active, male, 

boy 

girl Noun, S, IO C1-3, V1-2, C2-1 
person, active, 

female, girl 

eggs Noun, DO C1-2, V1-2, C2-1 
consumable, food, 

white, eggs 

toast Noun, DO C1-0, V1-0, C2-1 
consumable, food, 

brown, toast 

pizza Noun, DO C1-2, V1-3, C2-3 
consumable, food, 

pizza 

coffee Noun, DO C1-1, V1-1, C2-2 

consumable, 

drinkable, brown, 

coffee 

tea Noun, DO C1-0, V1-3, C2-0 
consumable, 

drinkable, tea 

soup Noun, DO C1-2, V1-2, C2-2 
consumable, 

drinkable, food, soup 

sugar Noun, DO C1-3, V1-0, C2-0 
consumable, food, 

white, sugar 
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book Noun, DO C1-2, V1-3, C2-1 writing, book 

letter Noun, DO C1-0, V1-3, C2-1 writing, mail, letter 

package Noun, DO C1-3, V1-3, C2-1 mail, package 

gift Noun, DO C1-2, V1-1, C2-0 social, birthday, gift 

Note. The role column indicates role in which a word can occur in the artificial language. A tag 

of S indicates that the word occurs as a subject. A tag of IO or DO indicates that the word occurs 

as an indirect object or a direct object, respectively. The phonological features column indicates 

the phonemes of the word, in sequence. Phones were randomly assigned to words based on an 

artificial C-V-C pattern (C1 = onset consonant; V1 = vowel; C2 = offset consonant). For 

example, a pattern of C1-0, V1-1, C2-3 indicates the word contained the first onset consonant, 

the second vowel, and the fourth offset consonant. The semantic features column indicates what 

semantic features were assigned to the word. All words had at least 1 unique semantic feature, as 

indicated by the word being repeated in the semantic features column. 
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Figure A2 

Verb biases in the artificial language 

Verb Dominant 
construction 

p(Intransitive) p(Transitive) p(Ditransitive)  

blinked Intransitive 1 0 0 

ran Intransitive 1 0 0 

sat Intransitive 1 0 0 

slept Intransitive 1 0 0 

ate Transitive 0 1 0 

drank Transitive 0 1 0 

took Transitive 0 1 0 

borrowed Transitive 0 1 0 

fed Ditransitive 0 0.1 0.9 

gave Ditransitive 0 0.1 0.9 

lent Ditransitive 0 0.1 0.9 

mailed Ditransitive 0 0.1 0.9 

 

Note. Verb biases. Probability that a verb occurs in a specific construction in the training set for 

the Sentence Gestalt model. Note, ditransitive verbs could occasionally appear in intransitive 

sentences. 
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Figure A1 

Cosine similarities between semantic representations of words 
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Note. The top figure displays the similarities between the hand-defined localist representations. 

The bottom figure displays the similarities between word embeddings taken from a pre-trained 

en_core_web_md language model in the spacy language processing python package. 

 

Figure A2 

Construction of sentences in the artificial language 

 

Note. Construction of an example sentence in the artificial language. Example sentences are 

generated in the artificial language through the verb. After a verb is selected, a valid syntactic 

structure is selected. In this example, the verb fed licenses two potential syntactic structures: a 

transitive sentence with probability .10 and a ditransitive sentence with probability .90. Next, 

fillers are selected to fill the roles required by this syntactic structure. In this example, the 

selected ditransitive syntactic structure requires a subject, direct object, and indirect object. The 

probability of each filler (probabilities not pictured) is again governed by the verb. To produce 

the final sentence, the verb and the selected fillers are slotted into the syntactic structure. 
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Appendix B 

Sentence Gestalt model 

The Sentence Gestalt model, as its name implies, learns a gestalt representation of the 

event described in a sentence. The model learns to do this following exposure to a series of word 

inputs, in which the model needs to answer questions about the role/filler pairs of the sentence. 

The model must do this task even for words it has not yet encountered, meaning that the model 

must learn dependencies between words and their contexts. For example, if the model were 

exposed to the incomplete sentence The woman gave…, it could be queried on both known 

information, like the subject, as well as currently unknown information, like the upcoming direct 

object. 

While the details of the currently instantiated Sentence Gestalt model are described 

below, reference to foundational work by St. John & McClelland (1990), contemporary ties to 

human neuroimaging data by Rabovsky & McClelland (2018), as well as training on large, 

naturalistic corpora by Popolo & Rabovksy (2021) will be informative for the curious reader. 

Model architecture 

The Sentence Gestalt model is composed of a word input, a probe input, a role/filler 

output, and hidden layers connecting these inputs and outputs. The critical layer of the model is 

the sentence gestalt hidden layer, which contains recurrent connection through time to another 

hidden layer. This layer develops a representation of the event in the sentence as it unfolds in 

time. Critically, this sentence gestalt is forced to be generated by the model prior to integration 

with probes into the sentence. As a result, the model is forced to learn a representation of an 

event described in a sentence that can express information about all role/filler pairs in that 

sentence. 
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 The current trained model was comprised of an input layer of size 31 units (27 words + 3 

timing units + 1 padding unit), a hidden layer preceding the sentence gestalt of size 10 units, a 

second hidden layer labelled the sentence gestalt layer of size 10 units, a probe input layer of size 

50 units (4 roles + 45 semantic features + 1 padding unit), a hidden layer integrating input from 

the probe and the sentence gestalt of size 10 units, and a final output layer of size 50 (same as the 

probe input). Layers were connected by weights (randomly initialized between -1 and 1), with 

biases (initialized at 0). All layers used a sigmoid activation function. An illustration of the 

model and the specific manner in which layers were connected may be seen in Figure B1. 

Model task and training procedure 

In a training example, the model receives two inputs. The first is a series of one-hot 

encoded words concatenated with a timing signal indicating the time of a word relative to the 

verb in the sentence (see St. John & McClelland, 1990). The second is role/filler probe composed 

of either a one-hot representation of the target role, or a localist representation of the semantic 

features of the target filler. Together, these two sources of information inform the model’s 

behavior as it attempts to complete the target role/filler pair indicated by the probe. 

The Sentence Gestalt model was trained on all possible sentences of the artificial 

language described in Appendix A. For each sentence, the model was trained on all possible 

probes into role/filler pairs of that sentence. The model was trained on 10000 epochs of all 

sentences in the artificial language. Batch size was set to 64. Learning rate was initially set to .01 

with a decay gamma of .01. Decay of the learning rate was step-wise every third of the way 

through training (i.e. epoch 0 lr = .01; epoch 3333 lr = .001; epoch 6666 lr = .0001). Loss was 

calculated using binary cross entropy, and weights were updated using stochastic gradient 

descent, with momentum of .1. 
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Figure B1 

Architecture of the Sentence Gestalt Model with Schematic of Training Example 

 

Note. Architecture of the Sentence Gestalt model with schematic of training example. In part A, 

forward projecting weight are denoted by solid lines while recurrent connections through time 

are denoted by the dotted line. Inputs are denoted by beige boxes and outputs denoted by blue 

boxes. Hidden layers are denoted by circles. Note, the hidden layer labeled SG comprised the 

sentence gestalt representation learned by the model. It is of particular importance the model 

generates this representation without reference to the role/filler probe. As a result, the sentence 

gestalt representation is the same for any probe, and the model must learn a sentence gestalt 

representation that can “answer” the query of any probe on which it is trained. In part B, two 

possible training examples are presented for the sentence woman fed boy sugar. These examples 

were chosen to illustrate the training procedure; the model is probed both on the roles in the 

sentence (e.g. the direct object sugar), and the fillers (e.g. features of the direct object sugar). In 

either case, the model must output the missing component of the role/filler pair. When presented 

with a role probe, the model must output the corresponding filler information of the word that 
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fulfills that role. When presented with a filler probe, the model must output the corresponding 

role that word fills. Note, the model tries to complete the role/filler pair at every time step with 

every presented word, even during the time steps before which the model has encountered the 

role/filler. 
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Figure B2 

Relationship between the Sentence Gestalt Model and the Lichtheim-memory Model 

 

Note. Relationship between the Sentence Gestalt model and the Lichtheim-memory model. Note 

the Lichtheim-memory model is simplified to conserve space; the sentence gestalt representation 

is fed into the sentence semantics layer of the full Lichtheim-memory model. Sentence gestalt 

representations from the layer labelled SG are used as target and input for comprehension and 

production tasks, respectively. The sentence gestalt representation employed in the Lichtheim-

memory model is taken from the Sentence Gestalt model after the final word is presented, 

meaning that the Lichtheim-memory model’s task of mapping from phonology to semantics 

entails comprehending semantic features of words that may not yet be encountered. While 

sentence gestalt representations develop over the course of exposure to a sentence, the 

Lichtheim-memory model will treat the input/output semantic representation of the word 

sequence as time-invariant.   

 


